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Disclinations were first observed in mesomorphic phases. They were later found relevant to a number
of ill-ordered condensed-matter media involving continuous symmetries or frustrated order.
Disclinations also appear in polycrystals at the edges of grain boundaries; but they are of limited
interest in solid single crystals, where they can move only by diffusion climb and, owing to their large
elastic stresses, mostly appear in close pairs of opposite signs. The relaxation mechanisms associated
with a disclination in its creation, motion, and change of shape involve an interplay with continuous
or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or
are akin to Nye’s dislocation densities, which are particularly well suited for consideration here. The
notion of an extended Volterra process is introduced, which takes these relaxation processes into
account and covers different situations where this interplay takes place. These concepts are illustrated
by a variety of applications in amorphous solids, mesomorphic phases, and frustrated media in their
curved habit space. These often involve disclination networks with specific node conditions. The
powerful topological theory of line defects considers only defects stable against any change of
boundary conditions or relaxation processes compatible with the structure considered. It can be seen
as a simplified case of the approach considered here, particularly suited for media of high plasticity
or/and complex structures. It cannot analyze the dynamical properties of defects nor the elastic
constants involved in their static properties; topological stability cannot guarantee energetic stability,
and sometimes cannot distinguish finer details of the structure of defects.
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I. INTRODUCTION

A. Gereral considerations: Dislocations, disclinations,
dispirations, and disvections

Defects in mesomorphic phases (or liquid crystals)
have been the subject of numerous investigations in the
last 30 years. This research has emphasized the impor-
tance of disclinations, line defects first defined by Volt-
erra (1907), and the main specific defects of liquid crys-
tals (Friedel, 1922). As a consequence, the role of
defects of a similar nature has also been recognized in
other media, most of them (though not all) with non-
solid-crystalline symmetries. This article is devoted to
the geometrical and topological concepts relevant to this
field of research, in various media where disclinations
act in interplay with other defects, mostly other types of
line defects (dislocations).

We compare two different theoretical approaches to
the classification of line defects, the Volterra process and
the topological stability theory. They are not equivalent,
but rather complementary. The topological theory has
attracted attention because it can be used to classify not
only line defects, but also defects of any dimensionality,
in a very general manner, on the basis of the topological
properties of the order parameter. The Volterra process
applies only to line defects, which it classifies by the el-

Rev. Mod. Phys., Vol. 80, No. 1, January—March 2008

ements of the symmetry group within the ordered me-
dium. This approach allows us to deal with the (static
and dynamical) interplay between disclinations and
other line defects. Continuous defects (which relate to
continuous symmetries) thus control the shape of quan-
tized disclinations with which they are associated, either
attached to them or accompanying them at a small dis-
tance. These specific defects of the Volterra process have
been little studied in recent years. Yet the sustained in-
terest in mesomorphic and frustrated phases, and in
other media whose structural properties are remote
from those of three-dimensional (3D) crystalline media,
justifies a reappraisal of the subject.

The Volterra process yields the same main conclusions
as the topological stability theory, but at a finer level, by
properly handling boundary conditions and all plastic
relaxations, including those related to line-attached de-
fects. This approach can be particularly useful when
dealing with nanostructures or with dynamical proper-
ties, when the viscosity is large.

We do not approach the subject of mesomorphic
phases immediately. The final situation depends of
course on the symmetries of the media under consider-
ation, a topic that is not considered in the first part (Sec.
IT) of our article, and on the physical nature of the re-
laxation processes that bring the defects toward their
final, stable or metastable, state. We consider several
structures characteristic of ill-condensed media. But we
first make a detour through isotropic uniform solid me-
dia, with the sole purpose of understanding the generic
geometrical relations between disclinations and disloca-
tions, and their interplay. A number of new results are
presented, which has forced us to limit the review of
some topics (the foundations of the topological theory,
geometrical frustration), especially when excellent re-
views already exist. On the other hand, the basic ingre-
dients of the theory of continuous defects, in the per-
spective we want to place it, are rather scattered in the
literature, and in any case deserve some deeper analysis;
the distinction between constitutive and relaxation line-
attached dislocations is new and structures this topic.

As a major application, the concept of disclination in
smectic-A (SmA) and other mesomorphic phases will be
considered at some length. Other topics of some impor-
tance will also be tackled: (i) the role of disclinations in
polycrystal structure and deformation, of importance for
polynanocrystals; (ii) the structure of an undercooled
liquid, which features a curved-space crystal mapped
into flat physical space. This is a typical example, along
with liquid-crystalline blue phases (BPs), of geometrical
frustration. Our analysis of defects in a 3D amorphous
curved space S is new and generalizes the results for the
usual £* amorphous phase.

We find it useful to recall the main features of the
description of defects in ordered media in terms of the
Volterra process and its extension, the topological clas-
sification, and the theory of continuous defects, all in-
volved in our description of disclinations.
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FIG. 1. The Volterra process for elementary types of disloca-
tions: (a) screw dislocation, (b) and (c) two constructions of the
same edge dislocation; and disclinations: (d) wedge disclina-
tion, (e) twist disclination. The original cut surface 3 is a ver-
tical half plane bounded by the axis of a cylinder of matter.
View (c) and (d) before the void is filled and the medium re-
laxed (all). From Kleman and Lavrentovich, 2003, Fig. 8.2., p.
265, with kind permission of Springer Science and Business
Media.

B. The Volterra process and its plastic extension

Recall the main characteristics of the Volterra process
for defect lines in a solid body (Volterra, 1907); cf. Frie-
del (1964). Cut the matter along a surface 2 (the cut
surface) bound by a line L (a loop or an infinite line),
displace the two lips %’ and X" of the cut surface by a
relative rigid displacement that can be analyzed as the
sum of a translation b and a rotation €2, introduce mat-
ter in its perfect state (i.e., elastically undeformed) in
order to fill the void left by the rigid displacement, or
remove matter in the regions of double covering, glue
back together the new matter and primitive matter
along the lips " and %", and let the medium relax elas-
tically. Figure 1 represents the Volterra process for dif-
ferent orientations of b and Q with respect to a straight
dislocation line. This process is certainly ill defined along
the line L itself (an elastic singularity remains along L,
the defect) and generates a singularity of the order pa-
rameter on the cut surface; however, this latter difficulty
disappears if b and € are translational and rotational
symmetries of the medium (quantized, perfect defects).
The strain field is small if the rigid displacement is re-
stricted to a translation of small amplitude, comparable
to the atomic distance, say; L is then a dislocation, and b
is its Burgers vector. There are always large-amplitude
displacements if the Volterra process applies to a rota-
tion Q=0t, except on the axis of rotation t itself; L is
then a disclination. This is the reason why research in
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the field of defects presents such complexity and,
thereby, such an accumulation of riches.

When the Volterra process involves at the same time a
translation and a rotation, one has a dispiration (Harris,
1970, 1977).!

In a curved space, as discussed in this paper, the lines
produced by a Volterra process are disclinations or dis-
vections, the latter being the nearest equivalent to
(translation) dislocations.

1. Quantized perfect disclinations

The situation is particularly simple if the line is
straight, along the rotation vector (wedge disclination); it
is more complex in the Volterra process sense when the
rotation vector is perpendicular to the line (twist discli-
nation), in which case it generally involves the simulta-
neous presence of perfect dislocations attached to the
twist line. Research in this domain is very lively: the
approach in terms of the Volterra process is supple-
mented here by the theory of topological stability (see
Sec. I.C below).

Stemming from the Volterra process picture of a de-
fect, line and surface geometry theory is specifically em-
ployed for columnar and lamellar media (Kleman et al.,
2004) and, more generally, for liquid media with quan-
tized translations (Achard et al., 2005). Riemannian ge-
ometry is the main mathematical tool used to treat per-
fect quantized disclinations in geometrically frustrated
media (Kleman, 1989).

2. Three important concepts in the development of the
Volterra process

(i) Imperfect line singularities. If the relative displace-
ment (,b) is not a symmetry of the medium, the defect
line is bordering a surface of misfit along the cut surface
of the Volterra process. One then speaks of imperfect
dislocation, disclination, or dispiration. This is for in-
stance the case, in a crystal, of partial dislocations bor-
dering a stacking fault or of disclinations bordering grain
boundaries.

(it) Continuous distributions of defect lines of infinitesi-
mal strength (Q,b), already considered by Volterra
(1907). Such planar distributions were introduced by
Frank (1950b) for describing pure flexion and rotation
grain boundaries, which can be attached to straight
wedge and twist disclinations, respectively (2, respec-
tively, parallel and perpendicular to the line). Three-
dimensional distributions were introduced by Nye (1953)

1Dispira‘[ions have been studied only in some smectic phases
where symmetry elements include simultaneously a translation
and a rotation. Tanakashi e al. (1992) have observed dispira-
tions in an antiferroelectric smectic phase (SmCy): the layer
thickness dj is half the repeat distance of the polarization P,
which changes sign from one layer to the next. Hence a d,
translation and a 7 rotation of P together constitute a helical
symmetry. See also Kuczinski et al. (1999) for observations in a
chiral antiferroelectric smectic phase (SmC)), and Lejéek
(2002) for theoretical considerations, and references therein.
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and others to describe plastic distortions of minimal en-
ergy.

(iii) Plastic relaxation, leading to an extended Volterra
process. In a medium such as a liquid crystal, where
some of the stresses can be released plastically in a vis-
cous way, this relaxation plays a large role in reducing
the energy and increasing the mobility and flexibility of
disclinations. The classical Volterra process, which refers
to a solid (frozen) medium, has then to be completed by
a stress relaxation that can be analyzed in terms of a
three-dimensional continuous distribution of disloca-
tions of infinitesimal strength. This is usually obtained
by replacing the elastic stress field of a solid medium by
the elastic stresses referring to the liquid crystal consid-
ered [see, e.g., Frank and Oseen equations (Frank, 1958)
replacing Hooke’s elasticity]. We talk in this case of an
extended Volterra process.

Somewhat similar plastic stress relaxations are pos-
sible in solids at the tips of slip lines or cracks, consid-
ered as dislocations or disclinations; the end of a sub-
boundary produced by slip can also relax plastically by
developing a localized crack. One can also talk in those
cases of extended Volterra processes, but remember that
the plastic relaxation can now have a finite elastic limit,
or at least strongly viscous friction (Friedel, 1959b).

The motion and bending of disclinations involve the
production of two-dimensional continuous distributions
of infinitesimal dislocations that can often disperse in a
liquid crystal, or be plastically relaxed in a solid, or again
be absorbed by another defect, as we show by some ex-
amples.

C. The topological classification

1. Why do we use a topological classification?

We outline the general principles of this theory and
illustrate them using examples of liquid-crystal phases,
in order to bring out the concept of topological stability
(the essential contribution of this theory to the physics
of defects), and to comment on the effects of noncom-
mutativity of the symmetries, which are taken into ac-
count in a systematic way in this theory.

The topological theory started with the papers of
Rogula (1976), Volovik and Mineev (1976), and Tou-
louse and Kleman (1976); for recent reviews, with em-
phasis on mesomorphic phases, see Mermin (1979),
Michel (1980), and Trebin (1982). The topological classi-
fication remedies a number of difficulties in the Volterra
process when applied to ill-condensed matter, mostly lig-
uid crystals. Liquid-crystal defect features have no
equivalent in the usual solid crystals: disclinations whose
core singularity vanishes, point singularities, and 3D
knotted nonsingular configurations. (i) The Volterra pro-
cess correctly describes straight wedge disclinations of
strength |k|=1/2 (i.e., rotational symmetries of angle
==+1), but cannot be extended to |k|>1/2 [i.e., angles
w=2n+1)m, n#0,n € Z], in its naive version. (i) Twist
disclinations cannot be constructed, except locally [for
an illustration, see Harris (1977)]. (iii) Escape in the
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third dimension (Meyer, 1973) does not result from the
Volterra process.

However, these difficulties can also be dealt with suc-
cessfully by introducing the concept of the extended
Volterra process.

2. The order-parameter space

The topological classification of defects relies on the
application to ordered media of the methods and con-
cepts of algebraic topology; standard references are
Steenrod (1957) and Massey (1967). The manifold V of
internal states, also called the vacuum or the order-
parameter space, is the space of all possible different
positions and orientations of the perfect crystal in (flat)
Euclidean space. Let H be the symmetry group of the
ordered structure G=E*=R300(3) the group of Euclid-
ean isometries of E3. The symbol [J indicates the semi-
direct product of groups. R? is the 3D group of continu-
ous translations O(3)=SO(3) X Z?; the full group of
rotations, with center of symmetry included. The symbol
X indicates the direct product of groups; H is a subgroup
of G. V is then the quotient space G/H. Observe that V
is not a group, generically, except if H is a normal sub-
group of G.

Examples of order-parameter spaces have been given
by Kleman and Lavrentovich (2003); the order-
parameter space of a uniaxial nematic V(N)=P? is the
projective plane; the order-parameter space of a 3D
crystal, regarding only the translations, is V(Crystal)
=73, the 3D torus.

These concepts extend in a natural way when G is the
group of a space M of constant but nonzero curvature,
and H a subgroup of G, i.e., the group of symmetry of an
ordered structure of habit space M. We make use of this
extension in the investigation of defects in frustrated
media; see Sec. VII.

3. The first homotopy group (the fundamental group) of the
order-parameter space

Now consider how the order-parameter space V en-
ters into the issue of the topological classification of de-
fects. We start from a distorted ordered medium, in
which the order parameter is broken along a line L. In
order to test the topological nature of the breaking, sur-
round L by a closed loop v entirely located in a well-
ordered structure, well ordered in the sense of the usual
theory of dislocations in solids. It is possible to attach to
each point r belonging to y a tangent perfectly ordered
structure, which maps in a unique way onto some point
R € V. When r traverses the closed loop v, R traverses a
closed loop I' on V. Call this well-defined continuous

mapping ¢:

¢:y—T.
The function ¢ can be extended continuously to the
whole continuous domain D of the ordered medium in

which the order parameter is well defined, since the or-
der parameter is expected to vary continuously in D.
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Therefore, any continuous displacement of vy in D maps
onto a continuous displacement of I'. There is, conse-
quently, a relation of equivalence between the different
images [I'; it is this equivalence that is described by the
notion of homotopy (Steenrod, 1957). All the I'’s belong-
ing to the same class of equivalence are represented by
an element [I'] of a group, the so-called fundamental
group (or first homotopy group) I1;(V). More precisely,
IT1,(V) is the group of classes of oriented loops belonging
to V, equivalent under homotopy, and all having the
same base point. This latter technicality has no effect on
the classification of defects. It is more important that, in
most cases, the fundamental group is not commutative, a
property related to the fact that the topological charge
of a defect, i.e., the corresponding element in II;(V), is
modified when the defect [I'] circumnavigates about a
defect [T"']; it is changed to [T'][T'][T"']™!, an element of
the same conjugacy class. It is therefore usual to con-
sider that all elements of a given class of conjugacy rep-
resent the same defect. Examples are provided later.

D. The theory of continuous defects

This theory flourished in the early 1960s [see Nye
(1953), Bilby et al. (1955), Kondo (1955-1967), Kroner
(1981)]; it was at that time applied to solid crystals only.
The theory concentrates mostly on the study of sets of
line defects, whether these defects, of the quantized
type, are considered at such a scale that the concept of
defect density makes sense, or whether the characteristic
invariants carried by the defects (in the sense of Volt-
erra, i.e., translations, rotations) are continuous, with the
result that the notion of infinitesimal defects—with van-
ishing Burgers vector dislocation or vanishing rotation
vector disclination—is significant. Indeed, most results
of the theory of continuous defects relates to continuous
distributions of dislocations of infinitesimal strength, to
intrinsic point defects (interstitials, vacancies, etc.), and,
to a lesser extent, to disclinations of infinitesimal
strength. The main geometrical ingredients of the con-
tinuous theory of dislocation line defects and intrinsic
point defects are the concepts of torsion and curvature
on a manifold; the points of contact with Einstein’s
theory of generalized relativity are therefore numerous,
and have been stated a number of times (Hehl et al.,
1976; Kroner, 1981): cosmic strings are spacetime topo-
logical defects that may be described in delta-function-
valued torsion and curvature components, carried, re-
spectively, by translation- and rotation-symmetry-
breaking defects in a Minkowskian manifold (Vilenkin
and Shellard, 1994). For recent spacetime defect calcu-
lations, see, e.g., Letelier (1995), Puntigam and Soleng
(1997), and references therein. Defects such as disclina-
tions whose characteristic invariants belong to noncom-
mutative groups cannot so easily be turned into density
sets. Methods borrowed from the field theory in high-
energy physics have also been applied; this is the so-
called gauge field theory of defects; cf. Julia and Tou-
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louse (1979), Dzyaloshinskii and Volovik (1980), and
Dzyaloshinskii (1981).

It was expected that these continuous approaches
would open the way to solutions of a certain number of
problems that are difficult to attack using the physics of
quantized defects when these defects are numerous.
Thus the dynamical theory of dislocations in solids, de-
fect melting theory, and the defect content of deformed
frustrated phases [see, e.g., Frank and Kasper phases,
quasicrystals, even amorphous media and glasses, and
mesomorphic blue phases or twist grain boundary
(TGB) phases] would also provide a suitable definition
of other defect densities: of disclinations, point defects,
and so on. The rich and interesting courses given at the
Les Houches Summer School on Defects held in 1980
(Dzyaloshinskii, 1981; Kroner, 1981) took stock of the
various advances in continuous and gauge field theory
made at the time.

However, although the continuous theory of defects is
of rare mathematical elegance, applications have been
scarce, one of the most convincing being perhaps the
analysis of magnetostrictive effects in ferromagnets
(Kleman, 1967). At the discussion meeting organized in
Stuttgart (Kroner, 1982), Kroner made the following re-
mark:

Although the field theory of defects [by field theory
he obviously meant the traditional theory of continu-
ous defects as well as its gauge field extension] has
found many applications, the early hope that it could
become the basis of a general theory of plasticity has
not been fulfilled. Among various reasons we men-
tion, first of all, that the defects, namely, the disloca-
tions, that above all are responsible for plastic flow, do
not form smooth line densities that can well be de-
scribed by a dislocation density tensor field. Direct
observation of dislocations in crystals, for instance, by
means of electron microscopy, shows that dislocations
rather form three dimensional networks [our empha-
sis] that are interconnected in practically immobile
nodes and other often complex local arrangements....
These networks have a strong statistical component, a
fact that shows that a real physical understanding of
plasticity requires also considerations in the frame of
statistical physics. However, a statistical theory of in-
teracting deformable lines that can be created, annihi-
lated, and change their length has never been worked
out.

To these remarks it can be added that the material-
science physicists, who certainly know best the problems
and traps of the physics of defects, are in general not
fully aware of the mathematical tools (non-Riemannian
manifolds, exterior calculus, Grassmann algebra, differ-
entiation on manifolds, and fiber bundles) that are at the
very basis of continuous gauge theory. This language
problem has little chance of being resolved in the near
future, inasmuch as the gap between material scientists
and field theorists keeps widening. We here avoid as
much as possible complex mathematical tools.
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In any case, we are led to conclude that field theory is
not a panacea. On the other hand, the fundamentals of
plastic deformation and fracture of crystalline materials
have recently undergone a revival through the develop-
ment of new experimental methods that now explore
nanometric scales, and through the improvement of
computer power and computing methods.

Dislocations (whose set of characteristic invariants is
isomorphic to an infinite Abelian group) and intrinsic
point defects are the dominant defects in solid crystals;
there is therefore no real necessity to introduce in the
theory the group-theoretic description of other types of
defects that would require finite Abelian groups or non-
Abelian groups, making the theory unmanageable. Not-
withstanding this simplification, Kroner’s criticism re-
mains valid; even if one restricts consideration to static
situations, the continuous theory neglects real disloca-
tion networks—in the sense of Frank (1950b)—and the
frictional effects due to them. This is probably the true
reason why the theory of continuous dislocations has
found so little use yet.

E. Disclinations

1. Disclinations and continuous dislocations

There is, however, a situation where dislocation den-
sities retrieve their true importance and where continu-
ous theory plays a role; it is with disclinations considered
as singularities of dislocation and disclination densities.
This is the point of view taken here, and it has some
relevance to mesomorphic phases, and perhaps also to
quasicrystals, Frank and Kasper phases, undercooled
liquids, polynanocrystals, and, more generally, frustrated
phases.

Disclinations can exist in solid crystals, whose building
blocks are atomic and pointlike; but the continuous
theory has not been applied much to disclinations in
solid crystals, where such objects have a large energy.
On the other hand, disclinations are the rule in meso-
morphic phases, whose building blocks are anisometric
molecules (rodlike, disklike, etc.). These disclinations
quite often appear as the singularity set of a dislocation
density. This explains the interest in reconsidering the
continuous theory of defects, although new concepts
have to emerge. The case of mesomorphic phases re-
quires an extension of the theory of continuous defects
for solids to situations when there is locally only one
physical direction (the director), i.e., no local trihedron
of directions, as in the uniaxial nematic N, the SmA, and
the columnar D cases;2 see also a related remark in Sec.
IV.A.2. The role of stress relaxation is especially impor-
tant and complex in such mesomorphic phases.

’The continuous theory of defects makes use of lattice mani-
folds, whose points carry local trihedra.
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2. Three-dimensional networks

The question also arises whether disclinations form
3D networks in amorphous systems, liquid crystals such
as cholesteric blue phases, and undercooled liquids—it
has been hypothesized that glass disorder can be de-
scribed in terms of disclinations in an icosahedral curved
crystal (Kleman and Sadoc, 1979)—or in nanocrystals,
clusters (Friedel, 1984), quasicrystals and Frank and
Kasper phases, where they are documented (Frank and
Kasper, 1958, 1959; Nelson, 1983a). In such 3D net-
works, disclinations have to be somewhat flexible, which
is possible (whether these disclinations are quantized or
not) only if other defects, dislocations, or disclinations
(continuous or not) are attached to them. Thus consid-
eration of the interplay between dislocations and discli-
nations goes beyond mesomorphic phases. This question
will be presented and discussed in this article.

F. Outline

To summarize, the continuous theory of defects in its
primitive form considers only dislocation densities,
which are singularities of continuous fields. It does not
consider finite defects like disclinations, neither grain
boundaries nor Frank networks. This article, contrari-
wise, assumes the coexistence of finite and infinitesimal
defects. Grain boundaries are introduced. Field-theory
instruments are not employed; but this is possible [see
Kleman (1982b) in a similar context, but because of the
advances presented here, results have to be reconsid-
ered]. An important aspect of disclinations in mesomor-
phic phases is the relation of their flexibility and mobil-
ity to the relaxation of stresses imposed by the boundary
conditions (static or dynamic). We suggest that both dis-
location and disclination densities play leading roles in
such relaxation processes.

Section II concerns the description, in geometrical
terms, of the defect structure of disclinations, without
taking into account constraints due to the symmetries of
the medium. Section II applies to amorphous media and
isotropic liquids, but it does not provide more than the
geometrical tools needed to study the role of stress re-
laxation mediated by continuous defects in various me-
dia and how it affects disclination line flexibility and mo-
bility, and the geometrical rules for building disclination
networks. It is therefore directly applicable to solid me-
dia only.

The results of Sec. II are employed in Sec. III to shed
new light on the properties of nanocrystals, and are ex-
tended in Sec. IV to quantized disclinations, examples
being found in mesomorphic phases. This is where we
discuss the relationship between topological stability
and the kind of stability that stems from the Volterra
process. Sections IV and V (devoted to focal conics in
SmA liquid crystals considered as quantized disclina-
tions) discuss the nature of disclinations in partly or-
dered materials, and their interplay with continuous
and/or quantized dislocations.
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TABLE 1. The different types of line defects (first column) viewed in the Volterra perspective.
Second column: the symmetries they break. Third column: systems in which the defect type of the
corresponding row is present. Fourth column: interplays between disclinations and the other types of
line defects, described by the extended Volterra process. As a general rule, quantized line defects
correspond to some nontrivial class of homotopy belonging to I1;(V), continuous line defects belong

to the zero class. V is the order-parameter space.

Defect type Broken symmetry

Volterra process

Extended Volterra process

Dislocation Translation

cholesterics

Continuous: amorphous solids,

Quantized: solid crystals,
smectics, TGB phases,”

Grain boundaries,
nanocrystals

Nye dislocation densities,
dislocations attached to

nematics, and other liquid crystals disclinations

Disclination Rotation

Quantized: solid crystalls,b

Disclinations

(Na NB7 N*,SmA,
amorphous systems)
Disclination networks

liquid crystals, frustrated media
(amorphous solids, glasses,

blue phases)

Continuous: liquid crystals

Dispiration Rotatory translation
Disvection  Noncommutative
translation’

Quantized: SmC™
Continuous: cholesterics

Crystals in spaces of constant
nonvanishing curvature, e.g., S°

Dispirations attached
to disclinations
Disvections attached
to disclinations

dConsidered in footnotes only.

PIsolated disclinations are not present usually in crystals, due to their long-range stresses.

“Not considered in this article.

dSuch translations, also named transvections after Cartan (1963), are present in crystals with nonva-

nishing constant curvature.

Defects in frustrated phases are discussed in Sec. VI.
Taking into account the frustrated local order, this sec-
tion extends to three-dimensional spherical amorphous
media the results obtained in Sec. II for three-
dimensional Euclidean amorphous media, making full
use of the quaternion representation of the geometry of
S3. Important results are (i) that dislocations, like the
translational symmetries they break, are noncommu-
tative—we call them disvections; (i) that infinitesimal
disclinations (rather than dislocations) are attached to
twist finite disclinations. This result emphasizes the role
of disclination networks in frustrated media. A part of
Sec. VI is devoted to the classification of defects in the
spherical {3,3,5} polytope, which has been used as a tem-
plate for amorphous media with local icosahedral order.
Section VI.B discusses some characteristics of the de-
curving process of curved media just mentioned.

The discussion in Sec. VIII bears on a comparison
between the extended Volterra process and the topologi-
cal theory—a question that runs as a thread through the
entire article—and expatiates on the question of plastic
relaxation, i.e., the role in various media of continuous
mostly and quantized defects in stress relaxation.

Table I summarizes the different types of line defect,
related in one way or another to the Volterra concept of
the defect, investigated in this article.
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II. CONTINUOUS DEFECTS IN ISOTROPIC UNIFORM
MEDIA: GEOMETRICAL INTERPLAY BETWEEN
DISCLINATIONS AND DISLOCATIONS

An amorphous metal, considered at a scale larger
than the atomic size, is an example of an isotropic uni-
form solid medium. The Volterra process allows the con-
sideration of continuous, nonquantized dislocations and
disclinations that carry stresses. On the other hand, a
result of the topological theory of defects is that these
are not topologically stable. The objects to which this
section is devoted are therefore, at best, metastable. In
Secs. IILA-II.D, we investigate disclinations of finite
strength whose rotation vector {2 is constant in modulus
and direction. Such objects are attended by two types of
attached infinitesimal dislocation (constitutive and relax-
ation dislocations), from which the concept of an ex-
tended Volterra process emerges. We comment on the
equivalence between these infinitesimal dislocation sets
and grain boundaries in Sec II.E. In Secs. IL.F and II.G,
we investigate the case when the rotation vector varies
along the line in direction and in modulus. The ensuing
considerations directly yield an expression for the fun-
damental invariant of a disclination, which we call the
Frank vector. The Frank vector is for disclinations what
the Burgers vector is for dislocations; in particular, it
satisfies a Kirchhoff relation at disclination nodes. De-
tailed study of quantized disclinations is postponed to
Secs. IV and V.
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FIG. 2. Wedge disclination L and its edge dislocation content.
OM=0M~=0M*; M*M~=20M sin ¥.

This case of an isotropic uniform medium is chosen
for the simplicity of relaxations in the extended Volterra
process. As mentioned, it is somewhat artificial to distin-
guish relaxations of stresses involved in the motions of a
given (nonquantized) disclination from those for the dis-
persion of the disclination itself: the same plastic prop-
erties are involved in both, and should occur in similar
lengths of time in nonviscous liquids. It is only for very
viscous liquids or, better, for amorphous solids with slow
atomic diffusion that one can assume that short-range
relaxation of stresses due to the motion of the disloca-
tions is more rapid than their dispersion lifetime, which
we consider here as infinite.” The dynamical competition
of the two processes in viscous liquids has so far not
been much studied.

The models developed and applied in Secs. II and III
are extended in Secs. IV and V to quantized and topo-
logically stable disclinations.

A. Dislocation content of a straight wedge disclination

We consider an infinitely long wedge disclination line
L, of rotation angle Q=Qt, the rotation axis t being
along L (Fig. 2).

The Volterra process consists in opening a dihedral
void of matter (for simplicity we consider a disclination
of negative strength). The relative displacement of the
lips of the cut surface 3, which we take to be a half-
plane, at a point M of 3, is written as sin %tx OM, O
being any origin on L; this displacement can also be the
result of a set of edge dislocations [Friedel (1964), Chap.
1] located uniformly in %, and whose total Burgers vec-
tor by is precisely 2 sin %t X OM, for those dislocations
lying between the edge of the dihedron and M, i.e., with
density

3Such dynamical considerations also apply to quantized dis-
clinations, whose dispersion lifetime is in essence infinite. For
example, the stress relaxation of quantized disclinations in
nematics and other liquid crystals, where translation and rota-
tion symmetries are partly or totally continuous, can be as-
signed to continuous dislocations and disclinations.
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Q
dby =2 sin Et X dM, (1)

thus producing a tilt boundary of rotation  along 3.

We give some examples.

(i) In an amorphous solid or a glass the angle () can
take any value; a continuous distribution of dislocations
thereby yields a continuous wedge disclination. This tilt
boundary introduces a mismatch of short-range atomic
order, which can be suppressed if some local atomic dif-
fusion is allowed at short range.

(i) In a ferromagnetic solid, the meeting line of sev-
eral magnetic walls is a continuous wedge disclination
whose angle () relates directly to the magnetoelastic
constants (Kleman, 1974). Again, this disclination can be
analyzed in terms of continuous dislocations.

(iii) Nonquantized wedge disclinations in a crystalline
solid are the limits of tilt boundaries, which are split into
finite dislocations parallel to that limit; this is the type
considered up to now. The angle () can take any value; it
is tuned by the density of edge dislocations. For small
values of (), the continuous distribution of infinitesimal
dislocations can also regroup into parallel dislocations of
finite strength allowed by the crystal structure (see Sec.
IIL.C for a more detailed discussion). In the general case,
this is an imperfect disclination with a stacking fault that
is a tilt boundary. Such disclinations have very large en-
ergies, as long as () is finite, in the absence of any plastic
relaxation. They can nevertheless be produced, for in-
stance, when a slip line crosses a low-angle grain bound-
ary, during plastic deformation of polygonized crystals;
they can also be associated in parallel pairs of equal
rotation strength and opposite signs. The stress concen-
trations produced at the cores of the disclinations are
often relaxed by the development of cracks (Friedel,
1964).

Remark. The Volterra process is properly defined for
|| < 7. Observe that Eq. (1) does not distinguish (i) be-
tween =27 and Q=0, and (ii) between =27—a and
Q) =a. This equation puts limits on the application of the
Volterra process and on the use of Eq. (1). Notice also
that it is inconsistent to consider a unique Volterra pro-
cess with an angle |Q)| =2, since this requires removing
matter (for 1 >0) or adding matter (for (2 <0) in at least
a full space. Hence, for any angle Q=Q2n+1)7m+a, |a|
<1, one has to consider 2n+1 successive applications of
the Volterra process, followed by a Volterra process of
angle a.

We now deepen the relationship of a wedge disclina-
tion with its accompanying dislocations by first consider-
ing the displacement of the entire line parallel to itself
(Sec. I1.B), and second displacing a part of the line only
(Sec. 11.C).

B. Emitted and absorbed dislocations: Constitutive and
relaxation dislocations

It is clear that the energy of the disclination becomes
prohibitive if the rotation axis t stays in place when the
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FIG. 3. Displacement of a wedge disclination from (a) L to (b)
L’ by emission of dislocations that disperse away.

disclination is displaced; if some plastic relaxation is al-
lowed, t moves to a new position by the emission or
absorption of a certain number of dislocations. We have
to specify the direction of this motion, as the stress
about L depends on the position of the cut surface 3 in
space, even if the medium is isotropic.

1. Motion in the cut surface

If L is moved in the plane of 3 by a displacement
vector 9, the total Burgers vector bs of emitted or ab-
sorbed dislocations is +2 sin({}/2)t X &: these are edge
dislocations; b4 is the sum total bs=2b, of elementary
dislocations b, allowed by the symmetries of the me-
dium (Fig. 3).

In an amorphous solid or a glass, the b,’s may have
any modulus. In an ordered solid, the b,’s have to be
equal to translation symmetries of the medium. Notice
that in both cases emitted and/or absorbed dislocations
contribute to the relaxation of the sample that has suf-
fered the displacement of the disclination. To illustrate
this point in the amorphous solid case, observe that it
would make no sense if emitted dislocations remained in
place in the continuation of the cut surface, because this
would not modify the strains and stresses previously car-
ried by the medium, before the line moved. In other
words, one is led to recognize the existence of two types
of dislocation density: those belonging to the actual cut
surface of the disclination, which we call constitutive dis-
locations, and those left in the wake of the moving dis-
clination, which we call relaxation dislocations. In prin-
ciple, since the stress field attached to a wedge line L,
measured in a frame of reference attached to L, is inde-
pendent of the position of L, relaxation dislocations
should carry no stress at all at complete relaxation; they
are dispersed in the entire space with vanishing Burgers
vectors if they are continuous, or vanish at the bound-
aries of the sample if they are quantized.
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FIG. 4. Kink AB linking the two wedge half lines L~ and L*.
The cut surface 3 is supposed to be on the right of the discli-
nation L™, AB, L*. The upper segments of the dislocations that
traverse AB tend to disperse away (plastic relaxation), while
keeping attached to the constitutive segments on the kink.

2. Motion off the cut surface

If L is translated off the plane of X by &, the total
Burgers vector of the absorbed dislocations is also
+2 sin (2/2)v X &, where v is the new axis of rotation. A
new piece of cut surface, parallel to the {»v, 8} plane, is
created.

C. Twist component of a disclination

We now turn our attention to a line L made of three
segments, namely, two parallel semi-infinite wedge seg-
ments L~ and L* joined by a third perpendicular seg-
ment AB of small length, called a kink (Fig. 4). We as-
sume that the cut surface 2 is a plane that contains the
three segments.

The L* segment is the result of a displacement of a
part of the entire line parallel to itself by a translation
60=AB, by emitting or absorbing dislocations. In this
process,  stays parallel to itself. According to the re-
sults above, we have, on the X side of AB, constitutive
dislocations of total Burgers vector

)
b, (AB) = +2sin Et X AB, (2)

and on the other side of AB, relaxation dislocations of
total Burgers vector

Q
b,(AB) = +2sin Et X 6. (3)

These two quantities being equal, we see that disloca-
tions cross the segment AB, but behave quite differently
on either side.

A classical Volterra process, acting once for all on the
cut surface of the disclination line, is not relevant to the
present geometry, because such a Volterra process can
be performed only if the rotation vector € is fixed in
space.
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FIG. 5. Constitutive and relaxation dislocations attached to a
disclination. Generic case. (a) The infinitesimal dislocations
dflpg are constructed assuming first that the cut surface bound
by L is common to all d¢’s attached along L. (b) Then each
dlpg is deformed at fixed P, Q; the two parts of d{pg on both
sides of the infinitesimal arc PQ do not have the same elastic
distribution. L is the limit between the two distribution types.

D. Q constant: Generic disclination line

Again, we restrict our attention to the isotropic case.
Consider a curved disclination line: Fig. 5 shows a discli-
nation with € constant in length and in direction from
point to point along L. The angle between L and Q
varies from point to point. Let P and Q=P+% ds be
two points infinitesimally close together on L. The Bur-
gers vector of the infinitesimal dislocation introduced by
the variation of position of  from P to Q is, by reason-
ing on the cut surface X as above, equal to dbpy
=dy(M)~-dp(M), where

Q
dp(M) =2 sin Et X PM,

Q
dy(M) =2 sin Et X QM

are the displacements of the cut surface at M, any point
on 3, seen, respectively, from P and Q. Hence

Q dp
dp(M) —dp(M) = -2 sin Et X I ds. 4)
s

This dislocation, which we denote dfp, can be thought
of as attached to the line at the infinitesimal arc PQ. Of
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course dbpg has to be a translation allowed by the sym-
metry of the phase. The shape taken by d€p, resulting
from plastic relaxation optimizes the energy carried by
the disclination.

1. Two types of continuous distribution of dislocations

The question arises whether any infinitesimal relax-
ation dislocation d€pg, attached to L at the arc PQ,
crosses the line L, and transforms on the other side of L
into a constitutive infinitesimal dislocation with the same
Burgers vector, as it does in the simple case investigated
in Sec. II.C. The answer is positive, and the demonstra-
tion is as follows. Since M is on the cut surface 3, of L,
Eq. (4) is, as a result, valid on the full area of X. In other
words, the infinitesimal dislocation line d{p, with Bur-
gers vector dbpy has the same cut surface as L, and
consequently meets L, is fixed between P and Q, and is
closed in the manner of L [Fig. 5(a)]. In fact, with the
local rotation vector defined as above, the disclination L
is the result of creating a density of infinitesimal d{ p, by
infinitesimal Volterra processes on the same cut surface.

Now we deform these d{ p( dislocation lines (this is an
allowed operation), opening them into infinite lines (or
line segments ending on the boundaries of the sample)
in such a way that now they cross the imaginary line L,
which divides each of them into two semi-infinite arcs.
This process traces out the bounds of the cut surface 2,
along L if one imposes different types of distribution for
the line arcs on both sides of L, yielding different elastic
distributions. In the spirit of Fig. 4, one can imagine on
one side a 2D surface tiled with constitutive dislocations,
a kind of generalized misorientation boundary, and, on
the other side, relaxation dislocation segments dispersed
in space [see Fig. 5(b)].

Of course, some stresses carried by the disclination
can also be relaxed by defects that are not attached to
the line, e.g., infinitesimal dislocations nucleated in the
bulk; these are Nye dislocations, which we discuss later
when we come to layered media (smectics) (Sec. [IV.B.2),
and in Appendix A. But we shall not consider nonat-
tached defect densities in the present section. The final
result depends on the material properties of the me-
dium, whether it has solid elasticity (amorphous) or vis-
cous behavior (liquid). In this latter case the relaxation
can be complete.

2. Line tension of twist vs wedge segments

Notice that we have realized a dislocation geometry
that displays two metastable configurations with a set of
infinitesimal dislocations, namely, those of the misorien-
tation boundary and those fully dispersed. Therefore the
core region of a twist disclination line, where these two
configurations merge, has a contribution to the total en-
ergy that scales as its length. The other contribution is
the energy of the dislocation lines, essentially that of the
constitutive dislocations, which scales as the area of the
cut surface, i.e., the square of the length of the line. One
expects this contribution to be larger than the first one.
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Therefore the line energy per unit length of line is pro-
portional to the length of the line. The latter contribu-
tion is worth comparing with the energy per unit length
of a wedge line, which scales as the square of the trans-
verse size: the line tension of a disclination is thus a
linear function of their length that reduces to a propor-
tionality for wedge disclinations, whereas, for twist dis-
clinations, one must add a small constant term due to
their relaxed dislocations.

E. Disclinations and grain boundaries

As in crystalline solids (see Sec. II.A), wedge lines in
solid amorphous materials carry a large energy, except in
the same circumstances as indicated above. The exis-
tence of twist lines or mixed twist-wedge lines is even
less probable, and their mobility and change of curva-
ture are certainly negligible, since mobility would re-
quire the climb of the attached dislocations, which re-
quires plastic deformation. Hence a caveat: Except in
the case of polycrystals (considered later), the discussion
that follows assumes implicitly that there is no restric-
tion on reaching low-energy states by plastic relaxation;
it therefore applies to an amorphous material endowed
with a finite viscosity, which operates through the exis-
tence and mobility of infinitesimal relaxation dislocation
densities. One does not expect such processes to be pos-
sible in a solid crystal. But the comparison between crys-
tals and amorphous media is worth carrying out, espe-
cially through the parallel concepts of the grain
boundary and cut surface.

1. Comparison of Frank’s grain boundary and Friedel’s
disclination

Equation (1), integrated along a segment MN of the
disclination line L, gives the total Burgers vector of the
dislocations that are attached to any segment MN of L
(and lie along its cut surface X;),

Q

Equation (5) is similar to Frank’s formula (Frank, 1950b)
for a crystal grain boundary 3,55 of angle of misorienta-
tion w=ws, |s|=1. Frank’s formula yields the total Bur-
gers vector of the (quantized) dislocations that cross any
segment PQ belonging to X g,

ABpq =2 sin gs X PQ. (6)

This similarity does not come as a surprise, after the
foregoing discussion. In particular, one can deduce from
Frank’s approach that any closed line in a grain bound-
ary can be chosen as a disclination line, provided the
exterior dislocation segments are allowed to relax. Iden-
tifying Eqgs. (5) and (6) and assuming M=P, N=Q, we
have
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FIG. 6. Burgers vector. A crystal structure has been super-
imposed to show more clearly the Burgers circuit
O'M'NM"0O"O0O’'—in (a) the final state and in (b) the initial
state—and the rotation £ of the Volterra process.

. Q L w
sin Et X MN = sin ES X MN, (7)
which yields either
Q
sin —t — sin 2s =0 (8)
2 2
or
) )
sin —t — sin —s « MN. 9)
2 2

We assume that w is a constant vector, i.e., that the cut
surface of the disclination line belongs to a unique grain
boundary. Equation (8), which yields ()=w, t=s, applies
when Q is a constant vector, which is what we have as-
sumed up to now. Equation (9), on the other hand, ex-
presses that other possibilities exist, with () # w, t#s,
where the tangent t to the disclination (MN=7ds) be-
longs to the plane {t,s}. Although w is a constant vector,
Eq. (9) applies to a variable €2, a situation discussed in
Secs. ILF and II.G. We present later an example obeying
Eq. (9) (see Appendix C).

Remark. The 2 sin % (or 2 sin 5) factor in Egs. (1), (5),
or (6) deserves some comments.

The integral Burgers vector b of the cut 2, is consid-
ered as a lack of closure of a Burgers circuit in the final
state [more properly in the final state of the Volterra
process before elastic relaxation of the sector M'OM”
here introduced; Fig. 6(a)].

It is usual for dislocations to consider the Burgers vec-
tor b, as a lack of closure in the initial state; one would
then have (Fig. 6)

. Q
|b|=M'M"=20M' sin By

and
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FIG. 7. An elementary disclination of mixed character. The
constitutive dislocations (inside) are drawn, but not the relax-
ation dislocations (outside).

Q
[bo| = 00" =20M" tan —-.

Such a difference originates from the noncommutativ-
ity of the Burgers circuit and the rotation of the discli-
nation. Obviously, the formula in 2 sin% is to be pre-
ferred, as it correctly describes the final state, the only
one of interest here. The difference is noticeable only
for large ’s, where the Burgers vector b of the consti-
tutive dislocation is smaller by a factor cos {}/2 than b
of a crystal dislocation. In the following, we use the Bur-
gers vector formula b; it appears as follows in the Frank
vector introduced in Sec. II.F.2:

f(Q) =2 sin %t. (10)

2. Isolated twist segments

Equation (6) has been derived by Frank for a finite
segment PQ, independently of any loop to which PQ
could pertain; dislocations that cross this segment (the
crossing set) in the grain boundary have two parts (re-
laxation on one side of PQ, constitutive on the other),
with no violation of any conservation law on Burgers
vectors. Such a segment and its set of attached disloca-
tions constitute a sort of stripe in the grain boundary,
geometrically and topologically independent of it (cer-
tainly not energetically, but we pay no attention to this
question).

Therefore, proceeding with our analysis, we conclude
that a continuous disclination line can be made of a se-
quence of independent segments M;M;_, possibly infini-
tesimal, each of them carrying a different rotation vector
Q;;,1. Each stripe M;M,,; defines a grain boundary of
finite width. Therefore any isolated, finite segment MN
can divide each of the dislocations (continuous or quan-
tized) belonging to the crossing set into constitutive (on
one side) and relaxation (on the other side) dislocation
segments. Each stripe has two edges parallel to £ and
two edges of mixed character (see Fig. 7).

A stripe is an elementary disclination, with a twist (or
mixed, but not pure wedge) segment transverse to the
stripe. The longitudinal boundaries of the stripe, along
the dislocations that construct the stripe, can be consid-
ered as wedge segments. Thus a stripe, considered as a
disclination loop, is necessarily of mixed character.
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FIG. 8. A polygonal disclination: (a) two semi-infinite wedge
lines L and L' meeting at O; (b) polygonal disclination made
of segments L; of mixed character (twist wedge). The Burgers
vectors are continuous across the line parallel to 7;.

F. Polygonal disclination lines: Attached disclinations

Disclinations with a rotation vector varying in length
and direction are possible; they require attached discli-
nations (or attached disclination densities). For clarity,
we do not introduce disclination densities immediately,
and develop the theory for attached disclinations of fi-
nite strength. A disclination can be thought of as the
sum of infinitesimal stripes that tile its cut surface and
partition it into long stripes, elongated along the consti-
tutive dislocations; the situation is reminiscent of the til-
ing of the cut surface of a dislocation into elementary
dislocation loops.

1. Wedge polygonal loops and bisecting disclination lines

Consider, for instance, Fig. 8(a), which represents a
disclination line made of two semi-infinite wedge seg-
ments L and L’. The stripes are divided into two sets
parallel to the disclination segments; the continuity of
the constitutive dislocations is ensured, when Q'=Q, if
the twist edges of the stripes are along the line that bi-
sects L and L’. It is easy to show that the Burgers vec-
tors of the constitutive dislocation segments parallel to
L and L' are continuous across this line.

A wedge loop is nothing other than a continuous gen-
eralization of Fig. 8(a), applied to a closed polygonal
disclination;  is constant in length and everywhere tan-
gent to the loop, the constitutive dislocations close into
loops entirely located in the cut surface.

The bisecting line has a special stability because it has
no relaxation dislocations attached to it. It is indeed a
wedge disclination, as established by the analysis that
follows.
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2. Disclinations meeting at a node: Kirchhoff relation, Frank
vector

The foregoing considerations generalize to a polygo-
nal disclination made of segments L; of mixed character
(twist wedge), with €; varying in direction but also in
modulus (Q;# ;) [Fig. 8(b)]. The considerations that
follow apply when there are no restrictions on €;, €,
and the directions of the segments L; and Lj; they are
not necessarily in the same plane. Let L;(€; and
L; 1(Q;,1) be two consecutive disclination segments. The
constitutive dislocation segments meet without disconti-
nuity of the Burgers vector on the half line parallel to
the direction

. Ly .
7;=2sin ?’ti —2sin gltiﬂ, (11)
as, following Eq. (10), the density of dislocations must be
counted along the common edge L; of the two bound-
aries.

In effect, if O,P is parallel to 7, we have

. Qi . Qi+l
2 sin ?ti X O;P =2 sin ) t.. X OP. (12)

Equation (12) means, according to Frank’s formula,
that the Burgers vector is continuous across any segment

parallel to 7;. The half line L, is a generalization of the
bisecting line. Notice that, in general, the planes {L;,7;}

and {L,,, 7} are not tilt planes for the constitutive dis-
locations; this happens only if €; and ;. and the di-
rections of the segments L; and L,,; are four coplanar
directions.

a. Kirchhoff relation

We introduce, instead of the rotation vector fli:ﬁiii,
. Q.
7,=2sin jti. (13)

Equation (11) then takes the form

Q Q. Q,
2 sin ?lt[ =2 sin jti +2 sin ;] ti1, (14)

which can be written

Qi: Qi+ﬂi+1 (15)

if the rotation angles are small. In these expressions, the
signs are such that the line L; is oriented inward (toward

0O,), whereas L;,; and ii are oriented outward. If the
orientations are so chosen that they all are outward or
all inward, one gets

Q
> 2sin 7’}}, =0. (16)
P

Equation (16) is valid for any number of disclination
segments meeting at the same point O (see below).
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FIG. 9. Polygonal disclination as in Fig. 8: splitting of L~,<.

Equation (16) does not contain any reference to the
directions of the disclination segments meeting in O;
it is akin to a Kirchhoff relation for the vectors
2 sin(Q)p/2)tp. Notice in particular that Eq. (15), which is
valid for small angles, is obtained straightforwardly by
considering Frank circuits about the lines L;, L;,;, and

[,,-. We call the vector =2 sin()/2)t, which plays for a
disclination line the same role as the Burgers vector b
plays for a dislocation line, the Frank vector. This vector
is oriented in the same direction as the rotation vector
Ot.

By ensuring that line L; has no attached relaxed dis-
locations, Eq. (12) expresses the fact that L has wedge

character. Such a choice of L assumes that the twist lines
have a larger line tension than the wedge ones because
of their core energy, as discussed in Sec. IL.E.

b. Lines meeting at a node

We now deepen the disclination nature of L; in the
case considered above when three disclinations meet in
O,. As defined above, it is a wedge line—the Frank vec-

< T . . -
tor f;=2sin 5°t; is along the line—that is split into two
. . - i z
mixed lines, with f;=2sin 5°t; Frank vectors and f;

i+l

=2 sin 92 f;.; (Fig. 9). Again, there are no relaxation dis-

locations along L; and is therefore a very special wedge
line.

Now, line fluctuations 5L~,~ would break the continuity

of the Burgers vector on l~,,~ and generate relaxation dis-
locations with Burgers vector

0, = T =
b =2 sin 3tl~ X O6L;—2 sin Ttm X OL;,

according to Eq. (1) (&b=éb;—db,, ), by adding the ef-
fects of the two lines involved in the splitting, i.e., from
Eq. (11),

P (e F L o
bb=2$1n?ti><5Li—281n 3 ti+l><5Li:Ti><5Li'

(17)

From Eq. (17) it emerges that 7; is the Frank vector of
the l~,,~ disclination. These considerations also confirm
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b=0+ 0 £,=¢,- ¢;

\
\%\/

fi= 0+ @3

FIG. 10. Three broken disclinations of Frank vectors
é1,¢,, 3, meeting at a point and composing three disclina-
tions obeying Kirchhoff relation f;+f,+f3=0 (inset).

that Eq. (16) is a Kirchhoff relation at a node where
three disclinations meet.
Notice that our reasoning has given a specific role to

one of the three disclinations I:, but this restriction can
be easily removed. Consider three Frank vectors ¢y, ¢,
and ¢;, and construct three disclination segments meet-
ing at a common point O, such that

fi=dr+ s, h=—ds+¢, B=—¢1 - (18)
This can be done by giving a sharp corner to the three
disclinations ¢; at O and joining their straight segments
two by two, as in Fig. 10. If all segments L; are along f;,
the L;s are all of wedge character, and there are no
relaxation dislocations attached to them. The appear-
ance of relaxation dislocations attached with the L;s
would make them change direction. The final geometry
depends on the energy balance between the grain
boundaries (the constitutive dislocations), the relaxation
dislocations, and the core energy of disclinations. Notice
that the three L;s are coplanar if they are of wedge
character.

The extension to any number of disclinations is obvi-
ous, which justifies our claim concerning Eq. (16). No-
tice, however, that whereas Fig. 10 represents three
grain boundaries merging two by two along three discli-
nations, the case of four disclinations (say) meeting at a
node requires, in the most general case, four grain
boundaries merging three by three along the four discli-
nations; each of them is then split into three subdisclina-
tions. Such a geometry occurs by nature in ideal
polynanocrystals (see Sec. I11.C.2).

Remark. In accordance with the remark at the end of
Sec. I1.A, Eq. (16) does not apply properly if one of the
angles |Q,|> .

3. Disclinations merging along a line

The situation where three lines L, L,, and L3 merge
along a unique line L is also worth considering. One
expects that the Kirchhoff relation
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f1+f2+f3:0 (19)

is satisfied. This case is physically represented in a ferro-
magnet by three Bloch walls merging along a Bloch line,
dislocations being the sources of the magnetoelastic
stresses (Kleman, 1974). More generally, one expects
that in an amorphous medium 7 disclinations ---f;--
merging along a line yield a unique disclination of the
Frank vector f=2f;.

G. Generic disclination lines: Disclination densities

We now come to the generic case when a disclination
line L is smoothly curved and its Frank vector varies
smoothly. Consider two infinitesimally close points P
and Q on L, with Frank vectors fp and fy; we write

O=P+sés,
Q Q
fQ—fPZZSin —2QtQ—2 sin Tptp,

48 oo M s (20)
So—Sp=—05=—0s.

e P s R

Here sp and s are the unit tangents to L in P and Q, s
is a unit vector pointing from P to Q, which can be
chosen to leading order equal to sp, and likewise n is the
principal normal in P. R is the radius of curvature of L
in P. The variation between P and Q of the displace-
ment on the cut surface of L in M can be written

&):fQXQM—prPM
:—fPX55S+(fQ—fP) X PM. (21)

The first term (—fp X s85) measures the relaxation dislo-
cation densities attached to the line between P and Q.
We now focus on the second one, which measures the
relaxation disclination densities. According to Kirch-
hoff’s relation, we have —df=f,—fp, the sign chosen such
that the attached disclination densities Z—§ are oriented
outward (as fo), and fp is inward.

If we assume that L is a wedge disclination, i.e., tp
=sp, tp=80, we have

2 .0
5f:59ptp+Esm TPnb‘s. (22)

The first term of the right member (8Qptp) measures the
effect of the variation in modulus of the rotation vector.
In its absence, the rotation vector of the attached discli-
nations is along the principal normal. This is obviously
reminiscent of the bisecting disclination line. If the at-
tached disclinations have a wedge character, i.e., are
along the principal normals, again as above, there are no
supplementary dislocations accompanying them, apart
from those constituting L., and we might expect that the
energy is minimized. Another result, not visible in the
previous analysis (Sec. II.F.2), is that the curvature of
the disclination line L is directly related to the presence
of the attached disclinations.



76 M. Kleman and J. Friedel: Disclinations, dislocations, and continuous ...

FIG. 11. Quantized wedge disclination in a crystal, Q=—r.

In the generic case (tp#sp, ty#sg, Hp#0), the
Frank vectors of the attached disclinations are no longer
along n, but, as shown in the previous analysis, there is
still a choice for the direction of the attached disclina-
tions for which the supplementary dislocations are can-
celed; and the conclusion on the relation between curva-
ture and attached disclinations is still valid.

III. COARSE-GRAINED CRYSTALLINE SOLIDS, GRAIN
BOUNDARIES, POLYNANOCRYSTALS

A. Coarse-grained crystalline solids

Nonquantized wedge disclinations in a crystalline
solid have been mentioned previously; they are akin to
the limited tilt boundaries discussed in Sec. II.

Grain boundaries of small misorientation angle (sub-
grain boundaries) are well documented; they are limited
by wedge, twist, or mixed disclinations, according to the
geometrical interactions between Burgers and Frank
vectors discussed previously. These interactions are re-
stricted to those that imply Burgers vectors equal to
translation symmetries of the medium.

Large misorientation angle grain boundaries are espe-
cially important in polynanocrystals.

A quantized disclination in a crystalline solid carries
an angle Q of rotational symmetry of the crystal; in the
wedge case, the line is itself the axis of this symmetry
(see Fig. 11). As emphasized, the related energy is ex-
tremely large and so their existence is improbable. A
related imperfect disclination occurs when the grain
boundary is a plane of geometry of large atomic density
for the two grains. If this imperfect disclination is re-
jected outside the sample, one has a low-energy twin.

Quantized disclinations in mesomorphic media are
discussed in Secs. IV and V.

B. Grain boundaries

1. Classification of grain boundaries and of continuous
disclinations

Grain boundaries in solids are classified according to
the orientation of the rotation vector w with respect to
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the plane of the boundary Xgp: a tilt grain boundary
occurs when  is in g, and a twist grain boundary
when o is perpendicular to Xgp. This classification
makes sense: a tilt grain boundary can be split into a set
of parallel identical edge dislocations whose Burgers
vectors are perpendicular to the boundary; a twist grain
boundary can be split into two sets of parallel identical
screw dislocations whose Burgers vectors belong to the
boundary. Such splittings are currently observed in
small-misorientation grain boundaries (also called sub-
boundaries). Each set of screw lines of a twist grain
boundary carries nonvanishing stresses, but the long-
distance stresses of the two sets cancel.

We have classified disclination lines according to the
orientation of the rotation vector @ with respect to the
line direction L: a wedge line when w is along L, and a
twist line when @ is perpendicular to L. This classifica-
tion is perfectly adequate when no account is taken of
the presence of a grain boundary attached to the line,
e.g., quantized disclinations (no grain boundaries), but is
not consistent with the grain boundary classification. For
instance, a tilt grain boundary can be limited by either a
wedge disclination or a twist disclination.

A finer classification of continuous disclinations (i.e.,
carrying a grain boundary) seems therefore appropriate.

(i) Wedge disclination line, Fig. 12(a): L is parallel to
the constitutive dislocations of a tilt boundary; w is par-
allel to L.

(ii) Normal tilt disclination line, Fig. 12(b): L is per-
pendicular to the constitutive dislocations of a tilt
boundary; e is perpendicular to L.

(iii) Pure twist disclination line, Fig. 12(c): L belongs to
a twist boundary; w is perpendicular to the boundary,
thus to L. We have taken |by|=|b,|; hence b=b;+b, per-
pendicular to L, as required.

2. Polycrystals as compact assemblies of polyhedral crystals

Nearly perfect polycrystals, as possibly created by an-
nealing, can be viewed as compact assemblies of polyhe-
dral grains. Their common facets are commonly triangu-

*The boundary conditions (vanishing strains at infinity) of a
set of parallel screw dislocations in a twist grain boundary can
be satisfied in two different ways: either by a purely (nonplas-
tic) strain field or by a second set of parallel screw dislocations,
perpendicular to the first set, forming another twist boundary
parallel to the first one (Nabarro, 1967). It is well known that
this latter situation is achieved in real solid crystals, the two
parallel twist boundaries being located in the same plane. On
the other hand, it is believed that there is only one set of screw
lines in the “twist grain boundary” liquid crystalline phase (de-
noted TGBA phase) [see Renn and Lubensky (1988), Kamien
and Lubensky (1999)]; in that case also, the long-distance can-
cellation of the stresses carried by each grain boundary can be
achieved either by a purely (nonplastic) strain field or by the
presence of a family of parallel grain boundaries at periodic
distances. We favor this second possibility, in similarity with
the case of solid crystals; but a detailed calculation is still
lacking.
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FIG. 12. Classification of continuous disclinations in a solid: (a)
wedge disclination, (b) normal tilt disclination, and (c) pure
twist disclination.

lar and fairly flat grain boundaries 3, each surrounded
by a disclination line L of strength equal to the rotation
w of the grain boundary.

Three grains meet along a fairly straight edge E bor-
dering such a facet, where the three parallel disclinations
combine along the edge (Fig. 13). In such a stress-free
annealed polycrystal, each such triplet of parallel discli-
nations must compensate their long-range stresses.

Z,

2,

FIG. 13. The three parallel disclinations D;, with rotations w;,
along an edge E between three grain boundaries 2, ;.
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2

FIG. 14. Composition of the three edge disclinations of paral-
lel rotations ;).

a. Kirchhoff relations

To analyze the stresses due to the three disclinations
D; of an edge E, we have again to distinguish the con-
tributions of the wedge components w; [parallel to E;
cf. Fig. 12(a)] from those of the normal tilt and pure
twist components w; ;, with attached dislocations, Figs.
12(b) and 12(c).

For this second part ; , the compensation of the
three families of relaxation dislocations leads to the
same condition as above for a node:

E_ f(ew; ) =0, (23)

with f(w)=2 sin 5t.
To have a completely stress-free edge, the wedge com-
ponents ;) must also add up to zero:

2 wi’H = 0 (24)

It is clear from Fig. 14 that the Volterra process which
produces @, and w,; by moving M’ to M" and M" to
M" sums up to an effect opposite to that which ;)
produces by moving M"” to M'. Thus, using Eq. (1) and
the fact that M’', M", and M" are on a circle centered at
E, one gets

M/M// cos L (MIIM/M///) + M//M//I cos L (M//M///MI)

-M'M'=0
because
. W () . W wy
sin — cos —2! 4 gin —2! cog —=!
2 2 2 2
. Wt oy . W3
=sin —— =—s8in —.
2 2

b. Subboundaries

For small misorientation boundaries, and also for
boundaries whose orientation does not differ much from
a small energy twin, all or part of the continuous dislo-
cations cluster into a periodic distribution of quantized
dislocations (Burgers, 1939a, 1939b; Read and Shockley,
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1950). This polygonization was first observed by x rays
and described in these physical terms by Crussard
(1944a, 1944b), after annealing of fcc single crystals
strained in multislips (stages II and III). Later observa-
tions after etching of low-angle boundaries (Lacombe
and Beaujard, 1948) provided the first experimental
proof of the decomposition of these boundaries into
rows of dislocations, and various techniques such as
electron microscopy for metals and semiconductors and
pinning of dislocations by precipitates in transparent
ionic solids analyzed the details of the dislocation net-
works on the subboundaries and the way these disloca-
tions connect at the edges of the grains [cf. Friedel
(1964, 1985)]. These dislocations can slip under stress,
especially after annealing of crystals strained in single
slip (stage I), which produces especially simple networks
as pictured in Fig. 12 (Washburn and Parker, 1952); in
the more general case, the bowing under stress of the
dislocations of the various sub-boundaries decreases the
effective elastic moduli by a large fraction (Friedel et al.
1955).

c¢. Large misorientation boundaries

Following Friedel (1926), who calls them “macles par
mériédrie,” Bollmann (1970) has established similar dis-
location arrangements for large misorientation bound-
aries, in terms of a crystallographic network common to
both grains in contact along the boundary. A common
crystallographic network has also been put forward by
Friedel (1926) for what he calls “macles générales.” But
generally it is believed that the boundary is an amor-
phous contact on an atomic thickness, with possible
ledges along which one of the grains can overlap into the
other. These configurations, as a whole, obey the same
conditions of stability as small-angle boundaries, but al-
low more stressed states than the former, like roughness,
glide, lateral motions of the grains, and so on.

d. Specific complications that arise from the crystal structure

The coalescence of continuous distributions of infini-
tesimal dislocations, considered in this paper, into quan-
tized crystal dislocations can introduce some complica-
tions that should be stressed, as they have no
equivalents in liquid crystals or magnetic structures.
Some of the following complications have been pre-
sented by Friedel (1964).

(i) In the simplest cases, the infinitesimal dislocations
coalesce into quantized dislocations, all with the same
directions of line and Burgers vector. This condition op-
timizes the energy of contact between grains at the ex-
pense of an elastic distortion of the crystal, over a dis-
tance from the grain boundary of the order of the
distance /=ON between dislocations (Fig. 6). This is the
case for three grain boundaries meeting along wedge
disclinations, as in Figs. 12(a) and 14, when one set of
edge dislocations rearrange after straining in stage I of a
single-slip system; another example is given by two (or
three) systems of screw dislocations building a network
of increasing density into a twist boundary, as in Fig.

Rev. Mod. Phys., Vol. 80, No. 1, January—March 2008

12(c), this can be obtained by torsion of a hexagonal
lattice along the hexagonal axis of symmetry, e.g., in
graphite (de Gennes and Friedel, 2007) and in hcp met-
als (Fivel, 2006).

(ii) In most cases, however, where dislocations of a
number of slip systems have been developed by strain-
ing, the subboundaries of the polygonal structures ob-
tained by recovery are each composed of a distribution
of two or more systems of dislocations, so as to produce
subboundaries of mixed nature and more or less random
orientation. Such subboundaries are somewhat less
stable, as their elastic distortions average out at a larger
distance from the subboundaries for a given rotation,
owing to the mixing of dislocations of several slip sys-
tems.

(iii) Even in the simpler case first considered, Fig. 6
shows that the possible positions of the crystal disloca-
tions can occur only at specific positions such as O and
N along the subboundary. The periodic distribution of
such dislocations must be coherent with the crystal
structure along the boundary; it must correspond to a
discrete series of angles w;, with intervals increasing with
the angle at least for small angles w;. A subgrain bound-
ary with an angle between w; and w;; can be built only
of successive segments corresponding to w; and w;,, and
the distance of elastic relaxation away from the bound-
ary is of the order of two such successive domains.

(iv) Figure 6 shows schematically the structure of such
a symmetric tilt boundary, in its initial state, with a con-
tinuous distribution of infinitesimal dislocations. Their
regrouping into quantized crystal dislocations can occur
only at distances /;, where /; are integer multiples of the
lattice period along the boundary (n=2 in Fig. 6); /; is
related to w; by

£,=b/l;=sin w;. (25)

For increasing w;, this special Frank vector is increas-
ingly smaller than Eq. (10) for the general case.

(v) These w;’s correspond to coherent structures of
lower energy. In fact, in crystal structures with a center
of symmetry, they are twins; and Eq. (25) then leads for
w;=7 to a perfect coherence of the two crystals, with
vanishing boundary tension. In the absence of a center
of symmetry, w;=7 leads to a twin with especially low
boundary tension and again no crystal dislocations. In
both cases, the increase of f; when w; decreases from
can be described in terms of an increasing density of
crystal dislocations. More generally, perfect matching
without crystal dislocations and vanishing grain bound-
ary tension occurs when w; is an allowed rotational sym-
metry of the crystal, such as w;=/2 for the case of Fig.
6 with a cubic crystal symmetry. The same occurs, of
course, in all cases for w;=+2n.

(vi) In cubic structures, such as the twins considered
by Friedel (1926) and Bollmann (1970), they can be built
on a common superlattice of the two crystals. Such
twins, with not too large /;’s so w; is not too far from /2,
can present ledges as sketched in Fig. 15, which intro-
duce supplementary dislocations such as Dj.
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FIG. 15. Ledge in a merihedric twin [cf. Friedel (1926), Boll-
mann (1970)]. The superlattice is underlined by black dots.

C. Polynanocrystals

Polynanocrystalline materials are assemblies of small
polyhedral grains. The grain size ranges from a few na-
nometers to 1 wm. Their plastic properties, in pure met-
als, pure semiconductors, and ceramics, show several
features. One example is the presence of large internal
stresses, which distinguish them from the classic picture
of dislocation-driven phenomena in the usual coarse-
grained crystalline materials [see, e.g., Weertman et al.
(1999); Kumar et al. (2003); Ovid’ko (2005); Wolf et al.
(2005); Van Swygenhoven and Weertman et al. (20006)].
Polynanocrystals provide a remarkable physical example
for discussion of the notions just introduced. We are in-
terested in the relation between the polynanocrystal
plastic properties and the disclination and grain-
boundary structure.

1. Data on the plastic deformation of polynanocrystalline
materials

A dominant mechanism of coarse-grained crystal plas-
tic deformation (work hardening) at low temperature is
the slip of dislocation pileups; this mechanism obeys the
well-known Hall-Petch relation oy=oy, +ki'?, where
oy, is the single-crystal yield stress (the friction contri-
bution), k is a material-dependent constant, and / is the
grain size [see, e.g., Friedel (1959a)].

But the yield stress does not increase without limit
when / approaches atomic sizes. After reaching consid-
erable values in the nanoscopic range, it decreases some-
what below some crossover size /.—often referred to as
the strongest size (Yip, 1998); the material becomes duc-
tile and even “superplastic.” This latter property does
not occur in all samples, and depends crucially on the
absence of porosity (high density) and of nanocracks. It
has been observed, e.g., in an iron alloy (Branagan et al.,
2003), in nickel (MacFadden et al., 1999; Schuh et al.,
2002), and in copper (Lu et al., 2000; Wang et al., 2002;
Champion et al., 2003; Koch, 2003; Zhu and Liao, 2004).
Nanocrystalline nickel, for instance, exhibits a Hall-
Petch strengthening as the grain size decreases down to
l,~14 nm, thus reaching internal stresses of order at
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least ten times those observed in the usual coarse-
grained samples.

High ductility requires suppression of plastic flow lo-
calization, i.e., strain hardening that stabilizes the tensile
deformation, see Ovid’ko (2005). Several mechanisms at
the origin of this strain hardening are currently under
discussion in the literature.

(i) Partial dislocations emitted by grain boundaries.
The size range just below [/, is characterized in fcc metals
by the appearance of Shockley partials with (1/6)(112)

Burgers vectors bordering {111} stacking faults and the
(correlated) formation of twin lamellae, during which
process the yield stress is still increasing; [see, e.g., for
Al, Chen et al. (2003)]. In effect, one can imagine that
the formation of partials on some glide system impedes
the motion of partials on another one. A large number
of atomistic calculations, reviewed by Van Swygenhoven
et al. (2006), supports a few experimental results point-
ing in this direction.

We keep in mind that this type of dislocation-biased
plastic deformation must put into play glides and prob-
ably lateral displacements or growth or shrinking pro-
cesses of grain boundaries; the published data do not
clearly show whether these glides are analogous to low-
temperature glide or employ diffusion mechanisms, at
the emission and/or absorption of dislocations.

(it) Hardening by annealing and softening by deforma-
tion. Huang et al. (2006) have recently reported on the
necessity of extremely high stresses in order to nucleate
partials in well-annealed, equilibrated, ultrafine nano-
crystalline grains of Cu with no intragranular isolated
dislocations or twins; on the other hand, the appearance
of these grain-boundary or/and disclination (probably)
nucleated dislocations softens the material. This is remi-
niscent of the plastic behavior of whiskers (Ma et al.,
2006), and suggests that grain-boundary perfection is an
important factor. Indeed, the computer simulations
noted above employ grain boundaries that are not to-
tally relaxed and show up ledges that act as sources of
partials.

(iti) Grain-boundary sliding and grain rotation. It
seems that this is the dominant mechanism at high tem-
peratures and/or grain size below [., with Coble (1963)
diffusion inside the grain boundaries; see Schigtz et al.
(1998); Ovid’ko (2002); Van Swygenhoven (2002); Ma
(2004); Shan et al. (2004).

We distinguish in the following an ideal polynanocrys-
tal configuration, with continuous disclinations and their
constitutive dislocations, from actual configurations,
with their defects and unusually large internal stresses.

2. Structure of the ideal polynanocrystal

The picture developed above for annealed coarse-
grained polycrystals should apply to polynanocrystals.
Thus the computer simulations of Van Swygenhoven et
al. (2000) indicate that there is no difference between
boundaries in polynanocrystals and those in coarse-
grained materials, and that the degree of organization is
often rather high.
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FIG. 16. A modification process frequent in foams and pos-
sible in polynanocrystalline media.

Two main differences arise from the conditions of
preparation.

(i) Sintering can produce large internal stresses or in-
tergranular cavities. These large stresses should displace
possible low-angle boundaries, which are fairly common
in coarse-grained polycrystals Friedel et al. (1953): such
subboundaries should be mobile enough to glide toward
large-angle boundaries, with which they should be inte-
grated.

(ii) The usual size of the mosaic structure of crystals,
whether in the form of a simple Frank network or of a
finely polygonized structure, should not be present in
polynanocrystals near their maximum elastic limit, be-
cause of their destruction by the high internal stresses,
and because annealing conditions should destroy mosaic
structures of sizes less than typically 10 um (Friedel,
1964, p. 240). With these provisos, the conditions of sta-
bility of a polynanocrystal should follow the same Kirch-
hoff relations for coarse-grained materials.

The surface tension E of a subboundary depends on
the misorientation w: E =~ Eyw, where Ey=ub/4m(1-v);
on the other hand, for large misorientations, above some
value 0> wp,,x~20°, E can be taken independent of the
direction of the grain boundary with respect to the two
grain orientations (E= Eywg,)—see Friedel et al.
(1953), Friedel (1964), Chap. 10—as long as the grain
boundary is not along or close to a lattice direction com-
mon to the two grains.

Most of the grain boundaries in polynanocrystalline
materials are large-angle ones; as a consequence, they
have an energy fairly independent of the angle of mis-
orientation. If submitted to this sole constant surface
tension, the grain boundaries should form angles of
~120° at triple junctions. Other forces originate from
the wedge disclination segments. Equilibrium can be
reached, in principle, by processes of the form described
Fig. 16, proposed by Friedel (1985) for solids and well
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known in foams (Weaire and Hutzler, 2000), which con-
sist, first, in the vanishing of the boundary segment AB,
and, subsequently, after a passage through an unstable
quadruple junction, the appearance of the boundary seg-
ment A'B’. In this figure A, B, A’, B' are triple junc-

tions seen end on, and wg), wf), wg), wg), oV

e @ o' are
the wedge component misorientations of the grain
boundaries (GBs) whose sections with the plane are
drawn; these rotation vectors are all directed along the
normal to the figure.

The triple junction Kirchhoff relations can be written
(1)

W+ wy +a)A ow, along A,
-—w+ wg) + o) = owp along B,
o) +wg)+w3 =dw, along A,

-w +wf4 +w53)=5w3r

They yield

along B'.

5wA + 5(1)3 = 5(1)A/ + 5(1)3/(:250)).

Hence we can write

owy = 0w+ 0w, Owp=dw-— ow,
5wAr=5a)+5m', 5(,03!:6(1)—5'67,,
where

25&7:5((),44'5&)3, 25'57,:5(1)14!4'50)31.

Jéw measures the repulsive terms between A and B, and
between A’ and B’; they are equal. The attractive terms
0w and Sdw’ are different; thus modification is favored if
|6w’|<|Sw|. In the case when Sw=dw= 5w’ =0, modifi-
cation is ruled by the surface tension.

There is probably no chance, although it is in principle
possible, that a polynanocrystal reaches the same struc-
tural configuration as foreseen for a foam, and even less
that this structure coarsens, as 2D foams do (von Neu-
mann, 1952), a result extended recently to 3D foams
(Hilgenfeldt et al., 2001).

3. Plastic deformation of a polynanocrystal

The lack of a mosaic structure in fine polynanocrystals
prevents the presence of internal Frank-Read sources in
the grains. This is well recognized by most. We consider
two possible processes: production of partials, and grain-
boundary sliding, grain rotation and, more generally,
grain boundaries as sources and sinks of dislocations.

a. Production of partials

There are probably several mechanisms possible for
the production of partials, some relating to the grain
boundaries, others to the disclination lines (triple junc-
tions).

(i) Constitutive edge dislocations. The role of the ap-
plied stress in a possible bowing of dislocations of the
boundary has already been suggested. This is probably a
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FIG. 17. Slip of a pileup, left half plane, against a normal tilt
disclination.

low-temperature mechanism, by glide, but a number of
computer simulations [see Van Swygenhoven et al.
(2006)] as well as experimental works indicate that the
process is thermally activated (Van Petegem et al., 2006),
and displays a small activation volume. The same dislo-
cations are free, given suitable stresses, to climb in the
plane of the boundary, and thus to displace the border-
ing disclination, thereby displacing the two other bound-
aries that merge along the common edge along which
the disclination is located.

(i) Slip of dislocation in the boundary, whose Burgers
vectors are in the plane (Fig. 17).

Such dislocations can pile up along the edges and be
at the origin of stress concentrations large enough to
nucleate new dislocations and/or move the other grains,
as proposed by Ovid’ko (2005). Notice that dislocations
considered here are not constitutive or relaxation dislo-
cations of the boundary to which they belong [they do
not obey Eq. (1)]. In fact, they pile up classically.

(iii) Grain boundaries and triple junctions as sources
and sinks for dislocations. The emitted or absorbed dis-
locations are not constitutive dislocations of the grain
boundaries, nor are pairs of dislocations of opposite
signs (dipoles). Assume the presence of a ledge on a
grain boundary bordered by a triple junction. If this
ledge affects only one (possibly two) of the three grain
boundaries merging at the triple junction, there is nec-
essarily some kind of splitting of the triple junction into
its constitutive disclinations, in the region of the ledge.
Consider one of these stripped disclination segments; on
it, the ledge determines a double kink AB, A'B’ (Fig.
18). According to Eq. (2), the Burgers vector of the dis-
location that necessarily joins the two kinks is perpen-
dicular to the kinks and to the rotation vector w of the
kinked disclination; e is certainly close in direction, if
not parallel, to the disclination line, according to the
analysis of Sec. III.C.2. Thus a large component of the
Burgers vector of the dislocation is in the plane of the
grain boundary; this might favor slip in this plane. Also,
the smaller the kink lengths AB, A'B’ (Fig. 18), the
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FIG. 18. Double kink on a disclination. The dislocation Bur-
gers vector is in the plane of the grain boundary or close to it;
see text.

smaller the Burgers vector of the dislocation attached to
them, and the smaller the energy needed to nucleate the
double kink. One can therefore speculate that this is the
origin of partials (rather than perfect dislocations) and
of the related small activation energy and volume
(smaller by two orders of magnitude as compared to the
values observed in coarse-grained metals).

b. Grain-boundary sliding and grain rotation

These mechanisms of deformation have been men-
tioned in Sec III.C.1. Notice that a relative rotation dw
of two grains with a common grain boundary requires
that the constitutive dislocation densities be modified ac-
cordingly, i.e., that an exchange of grain-boundary dislo-
cations with the intergranular medium takes place.
Huang et al. (2006) have observed that the number of
subboundaries decreases under high-7" annealing, so
that the grains necessarily “roll” (Shan et al., 2004), the
trend being seemingly toward a polynanocrystal with
large misorientation grain boundaries only.

IV. QUANTIZED DISCLINATIONS IN MESOMORPHIC
PHASES

There is no conceptual difficulty in constructing, in the
manner of the Volterra process, a quantized wedge dis-
clination in a medium endowed with finite rotational
symmetries; e.g., a nematic phase )=+, a smectic
phase (== ), liquid crystals in general, a solid crystal
(Q=+27/n,n=1, 2, 3, 4, or 6), a quasicrystal (Bohsung
and Trebin, 1987) (n=5,8,10,12, etc.) or a 3D spherical
or hyperbolic curved crystal (Kleman, 1989). In 3D solid
crystals, the line energies are so large that disclinations
are observed in special conditions only; see Secs. II.A
(3D solid crystal wedge lines) and IL.E (continuous twist
lines) for comments.

Disclinations that are observed in various liquid crys-
tals usually differ widely from those expected to result
from a pure (not extended) Volterra process. These dif-
ferences originate in various liquid-crystal symmetries,
and thus in various types of relaxation defect. As in the
previous section, one can consider the interplay of quan-
tized wedge disclinations, either with attached disloca-
tions, which transform them into twist or mixed disclina-
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tion with the same rotation vector {2, or with attached
disclinations, which yield a € variable in a direction that
illustrates the large rotation deformations that a liquid
crystal can suffer, or again with unattached dislocations
that result from their motion. Quantized disclinations
constructed by such extended Volterra processes can be
described in terms of twist, wedge, or mixed segments,
in addition to their physical property of topological sta-
bility.

Two questions therefore arise: (i) How are the Volt-
erra characteristics of wedge, twist, or mixed character
(i.e., different types of extended Volterra processes) re-
flected in the topological classification? (ii) Can any
quantized disclination, empirically given, be constructed
in a systematic way by an extended Volterra process? To
point (i) we have a partial answer, namely, that disclina-
tions, when differing only by constitutive dislocations,
belong to the same conjugacy class of I1;(V). Point (ii) is
considered in the final discussion (Sec. VIII).

A. Quantized wedge disclinations and their transformations

This subsection is devoted to the molecular configura-
tions carried by quantized disclinations, when the limi-
tations that are imposed in the Volterra process by the
specific symmetries of the medium are taken into ac-
count. Examples given in this subsection relate to nem-
atics (N) and cholesterics (N”), and in the next subsec-
tion to SmA phases. It appears that important
disclination properties (shape, flexibility, interplay be-
tween them and with other defects, etc.) escape an
analysis based solely on the topological classification.

1. N phase

The order-parameter space of the nematic phase is the
projective plane P2, whose first homotopy group II;(P?)
is Z,, the group with two elements {e,a}, a>=e, e being
the identity. All topologically classified defects belong to
a unique class of homotopy, namely, a; all Volterra de-
fects of strength |[k|=n+3, |Q|=Q2n+1)m, ne Z*U{0},
can be mapped on a. Most experimental observations
yield n=0, i.e., two different Volterra disclination types,
k= +% and —%, which the topological theory classifies un-
der the same heading; indeed, the topological theory
predicts that it is possible to transform smoothly a
k= +% into a k:—% (Bouligand, 1981). In fact, since the
Volterra process predicts also k=n (these lines, again,
are not topologically stable), the cases k=+% and k
:—% differ by the not topologically stable but Volterra
line k=1. The Volterra classification thereby proves use-
ful when analyzing experimental results.

Consider a wedge line. Any axis orthogonal to the
director is a twofold symmetry axis. The wedge line has
to be along such an axis. As a consequence, there is a
director that is orthogonal to the line in its close vicinity.

The deformation of a wedge straight line implies a
translation and/or a rotation of € along the line. We
apply the considerations of Sec. I1.G, Egs. (21) and (22).
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The translation and rotation of £ along the line bring (i)
a nonvanishing density of attached dislocations

bbTrz—thX Spas (26)

that vanishes if the Frank vector is along the tangent sp
in P, along the disclination line, i.e., if the deformed
disclination is still of wedge character, and (ii) a nonva-
nishing density of attached disclinations

2
5fP = Enpﬁs (27)

(this expression is valid in the pure wedge case only),
whose infinitesimal Frank vectors &fp are along the prin-
cipal normal np to the line in P. Such a defect configu-
ration is allowed if the direction of np is along an actual
director, because any director is an axis of continuous
rotation symmetry for the N phase. This is in agreement
with our remark above, according to which there is a
director that is orthogonal to a wedge line in its close
vicinity. The density of attached disclinations is vanish-
ing if € suffers a pure translation along the disclination
line.

Continuous defects belong to the identity element of
the first homotopy group; this is why their distribution,
which is a function of the shape of the line and of the
field, does not influence the topological invariant, always
a for any |k|=3 disclination line.

A |k|=1 disclination line does not require special con-
figuration rules for the director in the near vicinity of the
line, because any axis is a 27 rotational symmetry axis. It
is then possible to align the director along the line, at the
expense of special densities of defects (Kleman, 1973).

Remark. The above description of the curvature of a
disclination line in a N phase in terms of defect densities
might look overdone; but, at least in what concerns dis-
location densities, it is no more so than the description
of the strains and stresses in an amorphous medium in
terms of defects. There is no difference in nature be-
tween the nonvanishing density of dislocations in a nem-
atic and that of an amorphous medium, except that in
the first case the dislocations originate on disclinations,
and the rules of elastic relaxation differ. In both cases
the 3D continuous translational symmetries render the
dislocation densities trivial (this is not so in most liquid-
crystalline phases, the biaxial nematic Ny being an ex-
ception; see below). The disclination densities (continu-
ous rotational symmetries about the directors) are
superimposed on the dislocation densities but are inde-
pendent; it would be interesting, knowing the field of
distortions of a NV phase, to separate what is due to dis-
location densities from what is due to disclination den-
sities.

2.N* phase

The interplay between continuous dislocations and
quantized disclinations in cholesterics has been dis-
cussed (Friedel and Kleman, 1969) where this concept
was first introduced. There are three types of quantized
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FIG. 19. (Color online) Cholesteric phase N*. The X and =
directors indicated on the left side belong to the extreme left
molecules. The x director is constant throughout. From Kle-
man and Lavrentovich, 2003, Fig. 2.22, p. 63, with kind permis-
sion of Springer Science and Business Media.

rotational symmetries  in a N* phase, all multiples of
the angle m: (i) along the molecular axis, which we de-
note \; (ii) along the helicity axis y; (iii) along the trans-
verse axis 7 (see Fig. 19). The related Volterra processes
yield similar results (similar limitations) to those above
for the N phase, since N, x, and 7 are directors; since A is
a twofold axis, any direction orthogonal to it, e.g., x and
7, is necessarily singular on the core of a Volterra-
constructed related disclination, except if the rotation
vector is an integer multiple of 4, as shown by Ander-
son and Toulouse (1977). Hence, Volterra processes are
perfectly defined for k\=2n+%, n, m € Z (and by an ob-
vious extension for k,=2n+%5 and k,=2n+7%). Topologi-
cally stable disclinations are classified by the elements of
the non-Abelian quaternion group (g, whose elements
are usually denoted {1, +i, =/, £k} in quaternion nota-
tion, or {+e, +ioy, +io,, io3} in a 2 X 2 matrix represen-
tation, where o;’s are the Pauli matrices and e is the unit
2 X2 matrix. We employ the quaternion notation, which
is more appropriate to crystals in curved spaces of con-
stant positive curvature (Coxeter, 1991); see Sec. VL
{+1} corresponds to k,, k,, k,=2n, {-1} to k,, k, k,=n
odd, and {+i}, {+j}, {k} to k,, k,, k, half integers, re-
spectively (Mermin, 1979; Kleman et al., 2004).

Employing the Volterra method, we now look for pos-
sible attached continuous defects and their role in the
flexibility of quantized disclination lines.

a. Attached defects: Continuous dislocations; k,, kX, and k.= t%
lines

The only possible continuous dislocation Burgers vec-
tors are parallel to the cholesteric planes (orthogonal to
the helicity axis x), which are invariant under any in-
plane translation. Consider then a disclination line L,
with tangent vector t at some point P of L. The associ-
ated attached Burgers vectors are along the direction
Q Xt, according to Eq. (1). Therefore there is no topo-
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logical obstruction to the flexibility of a line L in a plane
perpendicular to 7if L is a A disclination, or in a plane
perpendicular to N if L is a 7 disclination, but no other
types of flexibility are allowed for these lines. On the
other hand, a y line could curve in any plane; another
way to state this latter result is to notice that a y discli-
nation line of strength & is also a dislocation of Burgers
vector b=—kpy, because of the equivalence of a 7 rota-
tion along the yx axis with a %p translation along the
same axis (p is the pitch) [see Friedel and Kleman (1969)
and Bouligand and Kleman (1970)].

b. Attached defects: Continuous dispirations; k,, and k.= i% twist
lines

The other continuous symmetries in a N* phase are
helical rotations {5.(),—19%}, 60 =80y along the y axis,
i.e., the combination of a translation and a rotation. The
corresponding Volterra defect is a continuous dispira-
tion that combines a dislocation and a disclination. Ap-
plying Eq. (1) to the translational part —p%, the tangent
tp to the line at P has to be in the {A, 7} plane (perpen-
dicular to y). The rotation vector direction € p, which we
write Qp=Qwp, |wp|=1, is along N\ or 7. The vector
dw=wy—p [which appears in Eq. (21), where it is de-
noted &t] has to be along y. We have, after Eq. (21) and
assuming that the disclination line strength is k:%,

X9
2w X tds = — pz— (dislocation component),
ar

26w = 80 (disclination component), (28)
and, by elimination of 62,

dw 27

ds p

Equation (29) means that the rotation rate of Qp is %Ttp.
Therefore the rotation rate of the Frenet trihedron at-
tached to the disclination line at P is

2 1
wp=—tp+ ——wp. (30)
p p(s)

Because, according to Frenet’s formulas, we have w
=7 p+p 'bp, we infer that the disclination line has a
constant torsion (T: 5%7), the same for all lines of this
type, and that wp=bp is along the binormal of the dis-
clination line. The rotation vector Qp is therefore along
the binormal, which is either a N or a 7 direction. Be-
cause of Eq. (28) and 8Qp« y, it follows that the local x
axis is along the principal normal np, that the rotation
vector (N or 7) is along the binormal, and that the tan-
gent to the line is a 7 or N direction. The disclination is
of pure twist character. The search for constant torsion
curves started with Darboux (1894) and has been the
subject of recent investigations, related to the Backlund
transformation and the classification of surfaces of con-
stant negative curvature [see, e.g., Calini and Ivey
(1998)]. Among the solutions, the simplest ones are
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those for which p(s) is a constant; the curve is then a

circular helix with pitch P:%z(#+t7—ﬂj)_l and radius R

:l(%+ @)71. The p=< limit case is simple and interest-
ing.pThé7 disclination line is straight and orthogonal to
the x axis. Such an object is highly energetic, but can be
stabilized by the presence of another straight disclina-
tion of opposite sign, parallel to the first one and at a
short distance. Continuous dispirations link the two lines
in a ribbon. Now, because the set of two disclination
lines of opposite signs is equivalent to a dislocation, the
ribbon can take any shape, which is comparable to the
case discussed by Friedel and Kleman (1969).

As reviewed by Calini and Ivey (1998), there is a con-
siderable variety of closed constant torsion curves with
different knot classes. The search for disclinations af-
fecting such shapes in N phases remains to be done.

The foregoing analysis of the flexibility of disclina-
tions does not allow for curved lines in the (N, ) plane
orthogonal to the y axis. But such lines are known to
exist, e.g. ellipses belonging to focal conic domains
(FCDs), much akin to focal conic domains in SmA liquid
crystals (Bouligand, 1972, 1973, 1974). In the limit where
the pitch is small compared to the size of the sample,
and the size of the FCD is large compared to the pitch
that the inner helicity of the N* layers is a negligible
phenomenon, the analysis of these ellipses (and of their
conjugate hyperbolas) can be conducted similarly to
FCDs in SmA liquid crystals (see below). But in most
experimental cases the situation is more delicate, and a
thorough investigation is lacking.

Remark 1. The above discussion relates to disclina-
tions of strength |k|=3, of homotopy classes {+i}, {+j}, or
{+k}. The case of |k|=1 defects (homotopy class {-1})
requires a different approach, since Eq. (1) is no longer
valid, and we have to treat the |k|=1 defect as a sum of
two |k|=3 defects. There is no objection in principle to
uniting two disclinations of the same strength % along
the same line, making then a disclination of unit
strength. For instance, in the constant torsion case, such
a process of adding two |k| =% defects is a way of cancel-
ing the singularity at the core, if the rotation vector is
along the 7 director (the N director is then along the
line); however, the singularity of the order parameter
itself, which consists of the three-director trihedron, is
not canceled. One can infer that, in the set of defects
investigated (Sec. IV.A.2), the twist line |k|=1 is favored.

A situation where a nonsingular defect of seemingly
|k|=1 strength cannot be split into two |k|=1 defects has
been discussed by Bouligand et al. (1978), but in fact it
relates to nonsingular topological configurations, in the
sense of Michel (1980), classified by the Hopf index for
the director field, not line defects.

Remark 2. The biaxial nematic phase (Ng) has the
same topological classification of disclinations as the N
phase (Toulouse, 1977a; Volovik and Mineev, 1977) but
the symmetry group is different. Ny is invariant under
any translation (i.e., belonging to E°) but there are no
continuous rotation symmetries. Hence, the only pos-
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FIG. 20. The disclination located at (a), (b) L is displaced to (c)
L' by the absorption of a dislocation of Burgers vector unity
(b=1, LL'=1/2). The dislocation visible in (b) has disappeared
in (c) the process.

sible way to curve a Ny line is by attaching continuous
dislocations, in strong contrast with N. This is an ex-
ample where the Volterra process appears to give a
more detailed view of the defect conformation than the
topological theory.

B. SmA phase
1. Wedge disclinations

Figure 20 shows a k:—% wedge line in a Sm phase,’
displaced from L to L' by the absorption of an edge
dislocation |b|=d, whose Burgers vector is twice as large
as this displacement, %do. The nature of the core has
changed. The absorption of a second dislocation equal
to the first one, along the same route, would displace the
line by the same amount, the total effect of the two dis-
placements being equal to the repeat distance d,, of the
layers, and L being moved to a position L” (not drawn in
Fig. 20), where the original core is retrieved. The anal-
ogy with the displacement of a wedge continuous line
described in Sec. II.B is striking; the configuration of L”,
compared to L, displays a full new layer equivalent to a
dislocation of Burgers vector |b|=2d,, for a displacement
d, of the disclination line, as obtained by applying Eq.
(1). The inverse displacement requires the appearance of
a dislocation line on the core, which relaxes and eventu-
ally disappears far away from the line.®

Frank (1969) was the first to point out that the dis-
placement of a disclination in a liquid crystal (he used a
cholesteric phase N*) involves the emission or absorp-
tion of dislocations, which are quantized in the case he
considered.

>The same picture is valid for a 3D crystal; see the 2D cut
along a lattice plane (Fig. 11).

%It is often taken for granted that dislocations always nucleate
by pairs of opposite signs. Here we have a situation where a
dislocation line is nucleated with no partner of the opposite
sign. We believe that this possibility is relevant in some impor-
tant cases. For example, one might in this way nucleate screw
dislocations all of the same sign at the SmA—TGBA
transition.
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(b)
A

FIG. 21. The k=1/2 wedge SmA disclination: (a) Nye’s infini-
tesimal dislocations as agents of layer curvature; (b) calculating
the sum total of the infinitesimal dislocations belonging to one
layer.

2. Nye’s relaxation dislocations

There is a feature not apparent in the analysis of con-
stitutive and relaxation dislocations carried out in Sec.
II, namely, the possibility of continuous relaxation dislo-
cations that are directly related to the curvature of the
layers, and not attached to the line. Figure 21(a) shows
the case k:%. We now turn our attention to one of the
layers inside the disclination wedge. As a liquid layer, its
inner group of symmetry is EZ; it thereby admits con-
tinuous dislocations whose Burgers vectors are parallel
to the layer. Those dislocations determine the curvature
1/p of the layers, with the relation between the disloca-
tion density and curvature given by db/ds=d,/p, where
dy is the layer thickness. This relation was first estab-
lished by Nye (1953) for solid crystals (the curvature of
the lattice planes is a function of the dislocation densi-
ties); see Appendix A.

Let t be a unit vector along the tangent to the layer in
a section perpendicular to the wedge line, and we
traverse a path AB in this section, everywhere tangent
to the layer along t, in the part of the layer which is
curved [see Fig. 21(b)]. The total Burgers vector mea-
sured along the path from A to B (A, B are any points
on the upper and lower horizontal parts of the path) is

B B
db t
bAB = J t—ds = dof —ds
A ds AP

B

d

:—dof _ndszdo(ﬂA—ﬂB)» (31)
A ds

i.e., bagp=2dyng, where ny is the normal to the layers far
from the disclination [we have employed one of Frenet’s
formulas to transform the second integral into the third,
namely, dn/ds=b/7—t/p, where 7(s) is the torsion and
b(s) is the binormal at a point s on the path].

Observe that byg is of a sign opposite to that of the
Burgers vector of the constitutive dislocations of the dis-
clination line; observe further that the result does not
depend on the precise shape of the layer, whose possible
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n,

FIG. 22. The k=-1/2 wedge SmA disclination; A, n, and B,
ng are at infinity along the asymptotic directions of the discli-
nation configuration. The edge dislocation density vanishes at
infinity.

strain at finite distance does not invalidate the result of
Eq. (31), as long as the layers are parallel and planar far
away from the disclination.

Equation (31) establishes that the set of infinitesimal
dislocations attending a k:% line relaxes the elastic
stresses due to the constitutive dislocations, in the geom-
etry considered. This is also true for a k:—% line; appli-
cation of the method of Eq. (31) to Fig. 22 shows that
the equivalent Burgers vector is byg=2dyn, (=2dyny).

Any layer curvature can be analyzed in terms of Nye’s
dislocations (see Sec. V for the case of focal conic do-
mains in SmA phases).

The example just developed evidences the main fea-
tures of the relaxation processes relating to Nye’s dislo-
cations: (i) the relaxation of the elastic stresses carried
by a disclination that results from a pure (nonextended)
Volterra process is obtained by the glide of the Sm lay-
ers past each other, which accumulates infinitesimal dis-
locations; (ii) the accumulation of these dislocations
along the layers is equivalent to a set of infinitesimal
disclinations attached to the master disclination, analo-
gous to those discussed in Sec. II.G (see a similar discus-
sion relating to focal conics, which are special types of
disclinations, in Sec. V)—it is also equivalent to a piling
up of subboundaries; (iii) the stresses resulting from the
fact that the molecules inside the layers are compressed
at one end and stretched at the other introduce an elas-
tic constant at the origin of the Frank-Oseen splay con-
stant for smectics; (iv) finally, the Nye dislocation geom-
etry screens the long-distance stresses carried by the
master disclination, which considerably reduces its line
tension.

In all cases, the plastic relaxation at the end of a gen-
eralized Volterra process can be obtained by the produc-
tion of generalized Nye dislocations compatible with the
structure of the matter under consideration.

3. Topological stability and Volterra process compared in SmA
phases: Twist disclinations

How do the topological stability approach and the
Volterra process approach compare in SmA phases? The
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elements of the first homotopy group I1;(V) classify line
defects (dislocations and disclinations). For a SmA
phase, Il; (Vgpna) ~Z0OZ,. Let (n,a) denote an element
of Z[1Z,, with n € Z and «a € Z,(={e,a}). With these no-
tations, the identity (null) defect is denoted (0,e), a dis-
location is denoted (n,e), where n stands for the Burgers
vector, and a |Q|=m disclination is denoted (0,a), irre-
spective of the sign of Q; a’=e.

Clearly enough, (n,a) is a |Q)| = disclination that has
absorbed a dislocation (n,e), i.e., that has suffered a
translation nd,,. Therefore in Fig. 20, if L is represented
by the homotopy class (0,a) [which we write L+ (0,a)],
then L'+ (1,e)(0,a)=(1,a). Notice that the nature of
the core has changed. The absorption of another dislo-
cation of the same sign yields a disclination L"—(2,e)
X(0,a)=(2,a) (not represented Fig. 20), with the same
core as L. The product of two disclinations yield the
identity (0,e). All these operations are summarized in
the multiplication rules

(n,@)(m,p) = (n + a(m),ap),

e(m) =m,a(m)=-m. (32)

Observe that any disclination, whatever the nature of its
core, can be chosen arbitrarily as the origin disclination
(0,a).

With the above analysis, L, L', and L" are given three
different topological invariants. But L and L” can also
be gathered under the same heading in the frame of the
topological theory; they belong indeed to the same con-
jugacy class of I1; (Vg 4)—see Appendix B—and this is
enough to consider them as the same topologically
stable defect, according to the general topological
theory (Michel, 1980; Kleman, 1989). Consider the two
equalities

(2,a) = (0,a)(2,e),

(2,a)=(-1,e)(0,a)(1,e). (33)

The first equality means that L" is obtained by adding
the dislocation L,,~(2,e) to L. In the Volterra sense, it
is an addition; in the topological stability theory sense, it
is the product of two homotopy classes (0,a) and (2,e).
The second equality, which expresses that (0,a) and
(2,a) are conjugate in Il; (Vgua), has a simple physical
image: it expresses the effect of a complete circumnavi-
gation of the disclination L~ (0,a) about a dislocation
L,—(1,e). Such an operation cannot change the nature
of the circumnavigating defect, although its homotopy
class is modified. We refer the reader to Mermin (1979)
for a pedagogical discussion and an illustration of this
property.

In terms of Volterra invariants, L, L”, and all disclina-
tions of the same conjugacy class carry rotations about
twofold axes located in planes between layers; L’ and all
disclinations of the same conjugacy class carry rotations
about twofold axes located in the middle planes of lay-
ers.
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C. Nature of the defects attached to a quantized disclination

Taking stock of the specific examples discussed above,
we now derive some general properties relating to at-
tached defects. Various cases arise as follows.

1. Continuous attached defects (dislocations, disclinations,
dispirations) and kinks

a. Topological stability

Continuous defect densities belong to the identity ho-
motopy class, and therefore they do not modify the ho-
motopy class of the master disclination L all along it. Or,
stated otherwise, they are not visible when mapping a
closed loop of the deformed medium into the order-
parameter space V.

b. Volterra process

Because the existence of continuous defects has to
comply, in an ordered medium, with the existence of
broken symmetries, not all continuous defects are real-
izable, and thereby limits are put on the possible realiza-
tions of master disclinations, in particular their shapes
(in dynamic terms, their flexibility). Equation (21), which
derives from Eq. (1) and has been established for an
isotropic uniform medium, is still valid it we take these
limits into account.

2. Quantized attached defects of the first type: Full kinks

a. Topological stability

Inspired by the SmA example, we first refer to a case
where L~—{a} is transformed into a disclination
L"—{a"} belonging to the same conjugacy class {a"}
={ula}{u""} of the first homotopy group II;(V) as L, by
the absorption or emission of a dislocation {v}. This dis-
location hits the master disclination at some node, where
we have the Kirchhoff relation, which is written in topo-
logical theory as {a"}={a}{v}; this relation also reads

{v}={a""Ha"} = {a” HuHa}tu"} (34)
and therefore the attached defect is a commutator of
IT,(V). The result is not restricted to attached disloca-
tions; it is valid for a defect {v} of any type. We now
establish a reciprocity theorem, which extends the con-
cept of the node, which is as yet not understood.

Recall that the commutators of a group G generate an
invariant subgroup D[G], also called the derived group.
Not all elements of the derived group are commutators,
but all are products of commutators. From the point of
view of the physics of defects, it is important to observe
that D contains entire conjugacy classes of II;(V), and
that the cosets of D in I1;(V) are also composed of entire
conjugacy classes (Kleman, 1977; Trebin, 1984). As an
example, in a SmA liquid crystal, dislocations having the
same Burgers vector parity all belong to the same coset
of I} (Vsma)/D; for the sake of clarity, consider only
even dislocations: the two homotopy classes (2r,e) and
(-2r,e), r#0, form an entire class of conjugacy and they
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belong to the same coset as the homotopy class
(0,e)—the null defect, which constitutes by itself a full
conjugacy class. This very fact means that the even dis-
locations are equivalent to the null dislocation (0,¢), in
the following sense. It is possible to split the even dislo-
cation (2r,e) into two equal dislocations (r,e); let one of
them circumnavigate about an (m,a) disclination, bring-
ing it to the conjugate state (-m,a)(r,e)(m,a)
=(-r,e), while the other one stays in place. It is then
possible for (2r,e) to self-annihilate by letting the fixed
and the returned dislocations mutually annihilate, i.e.,
generate a defect of homotopy class (0,e). Similarly, any
odd dislocation (2r+1,e) is equivalent to (1,e); but odd
dislocations are not commutators.

One can therefore establish the following reciprocity
theorem: if the attached defect {v} is a commutator, then
{a} and {a"} are either in the same conjugacy class, or
belong to two conjugacy classes belonging to the same
coset of I1,(V)/D.

This is also true, by an easy extension, for any element
of D, not only commutators. We can thereby state in all
generality that any defect whose homotopy class belongs
to the derived group D[II,(V)] is eligible as an attached
defect, and separates the master disclination into seg-
ments whose homotopy classes belong to the same coset
of I1,(V)/D.

We name such a defect an attached defect of the first

type.

b. Volterra process

Insofar as defects of the first type are commutators,
they can terminate on a singular point, since they are
equivalent to the identity homotopy class, and this sin-
gular point can be the node where they meet the master
disclination. This is the main result one can reach from
the analysis of topological properties, but one cannot do
more, because the topological theory does not properly
separate dislocations and disclinations. In other words,
the topological analysis does not say anything about the
shape (the flexibility) of the master line, even though
there is no doubt that the attachments are the tools for
its changes of shape and the relaxation of the stresses.

Consider the geometry of a kink on a wedge disclina-
tion (Fig. 23); this geometry differs somewhat from that
of Fig. 4 for a continuous disclination. According to the
above discussion, the same dislocations that have been
absorbed by the wedge segment L™, say, are still outside
the wedge segment L*; we still have relaxation disloca-
tions, terminating on the kink, an allowed process inso-
far as these dislocations are of the first type.

Friedel’s relation [Eq. (1)] is established for an a priori
Volterra description of line defects. Assume that, in Fig.
23, L* and L™ are k= i% wedge disclination segments in
a SmA phase, as in Fig. 20. According to Friedel’s rela-
tion, as which can be written as, with Q=+ 7t,
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L_

FIG. 23. L is a quantized disclination, AB a kink. The relax-
ation dislocations no longer cross the master line.

> b= £2t X AB, (35)

the relaxation dislocation Burgers vectors are perpen-
dicular to the figure plane. If we assume that we are
under the conditions of using this relation in a SmA liq-
uid crystal, the lines are drawn in a medium that is not
yet deformed by the Volterra process, and the layers are
parallel to the L* and L~ lines. We do not lose generality
by assuming further that the layers are perpendicular to
the plane of the figure; AB is along the layer normal.
Therefore the Burgers vectors b; are parallel to the lay-
ers; the related dislocations are continuous. The layers
in the transition region between L* and L~ suffer extra
curvatures, which represent these dislocations. This is
certainly not a small-energy geometry. But the geometry
of Fig. 23 can be understood differently. If the relaxation
dislocations are quantized, there should be layers paral-
lel to the plane of the figure in the AB region (perpen-
dicular to the Burgers vector), whereas AB is along the
normal to the layers. This is possible only if we consider
a medium already deformed by disclinations. Friedel’s
relation still works for AB joining a segment along L to
a segment along L'; for example, in Fig. 20. It therefore
works when applied locally to the tangent undistorted
medium, on either sides of the disclination. We give an
example in a SmA phase in Sec. V. We use the term full
kinks for kinks that separate master disclination seg-
ments belonging to the same coset of 11,(V)/D.

3. Quantized attached defects of the second type: Partial kinks

The discussion of the SmA case has shown that it is
perfectly licit to consider a master line made of two
wedge segments L and L’ that do not belong to the
same coset of I1;(V)/D. The dislocation {»} that hits the
(now partial) kink is not a commutator, and the relation
{a’}={a}{v} is no longer a trivial relation. In the above
case it was possible, at least in a thought experiment, to
abolish the node by smoothly turning the two segments
to the same homotopy class—simultaneously abolishing
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FIG. 24. (Color online) Toric FCD.

the full kink. This is now forbidden. On the other hand,
the attached defect exists only on one side of the master
line, because {a’'}={a}{v} is now the topological stability
(TS) expression of a true Kirchhoff relation for three
defects meeting at a node. In the Volterra process lan-
guage, {a’}={a}{v} is nothing other than Eq. (35).

V. FOCAL CONICS IN SMECTIC A PHASES AS
QUANTIZED DISCLINATIONS

The most remarkable defects in SmA phases are focal
conic domains (FCDs), whose geometrical properties
were first investigated by Friedel and Grandjean (1910)
and Friedel (1922). A FCD consists of a pair of confocal
conics (an ellipse E and a hyperbola H), which are the
focal lines of the set of normals to a family of parallel
smectic layers folded into Dupin cyclides [Hilbert and
Cohn-Vossen (1964)]. For a recent account of the physics
behind this geometry, see Kleman and Lavrentovich
(2003) and Kleman et al. (2004); an essential property of
E and H is that they are disclination lines.

Consider the simple case where E degenerates into a
circle C and thereby its conjugate conic C’ is a straight
line orthogonal to the plane of C, passing through its
center. The Dupin cyclides are then nested tori (Fig. 24).
They are restricted in this figure to the cyclides with a
Gaussian curvature of negative sign, with planar con-
tinuations outside. This is the most frequent, if not the
only, empirical occurrence of toric domains.

It is apparent that C and C' are both wedge disclina-
tion lines, C of strength k:%, C’ of strength k=1. Ac-
cording to the analysis in Sec. II.G, there are no at-
tached dislocations, only attached disclinations, whose
density can be written as

2
of = Ends =2ns9. (36)
The Nye’s edge dislocations that follow the latitude lines
of the tori are of the type (call them the first type) that

attends such disclinations; their (infinitesimal) Burgers
vectors b, are along the meridian lines; they introduce

Rev. Mod. Phys., Vol. 80, No. 1, January—March 2008

FIG. 25. (Color online) FCD with positive and negative Gauss-
ian curvature surface elements From Kleman and Lavrentov-
ich, 2003, Fig. 10.5.c, p. 348, with kind permission of Springer
Science and Business Media.

extra matter that curves the C disclination. On the other
hand, the Nye’s edge dislocations (of the second type)
that follow the meridian lines of the tori, whose (infini-
tesimal) Burgers vectors &by, are along the latitude lines,
relax the quantized dislocations that attend the C wedge
disclination, after the manner already discussed for a
straight k:% line (Fig. 21). Note that the Burgers vector
ob,, is variable along a dislocation of the second type,
since the local frame of reference is continuously rotated
by the dislocations of the first type.

All these results extend to more general FCDs. Figure
25 represents such a FCD with positive and negative
Gaussian curvature surface elements.

In a local frame of reference where the one and two
axes are along the lines of curvature of the Dupin cy-
clide, the three axis along the normal, the dislocation
density tensor (defined in Appendix A) has components

a1 =0, ap=—-, a;3=0,
R,
1
0(21=—R_, a,=0, ay=0,
1
1 1
a3 =—, ap=—, apu=0.
pgl pg2

where 1/py and 1/p,, are the geodesic curvatures of the
curvature lines. The geodesic curvatures vanish in the
toric case, since then the lines of curvature are also geo-
desic lines. Recall that a;; measures a dislocation con-
tent; the integral

f J aidel-
Y

over an area bound by a loop vy is the j component of the
Burgers vector of dislocations going through this area
along the i direction. The dislocation tensor, being a ten-
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FIG. 26. (Color online) Generic FCD with negative Gaussian
curvature layers; see text.

sor, is invariant under a change of coordinates; the
choice of the curvature lines as coordinate lines has a
simple physical interpretation in terms of b, and b,
for the components @, and ay;. The extra dislocation
densities @3, and a3, also have Burgers vectors parallel
to the smectic layers, as they must, for the symmetry
reasons already mentioned. They correspond to edge
lines along the normals to the layers, and contribute to
the stability of the shape of the conics and their relax-
ation.

As observed (Kleman et al., 2004), FCDs are restricted
to the negative Gaussian curvature parts o0, <0 of the
cyclides (Fig. 26). The FCD is therefore confined inside a
double cylinder lying on the ellipse, whose generatrices
are parallel to the asymptotes of the hyperbola. Any
layer inside this double cylinder is bordered by a curva-
ture line of the cyclides, i.e., a circle (Fig. 26). The plane
IT containing the circle is tangent to the cyclide, so that
the outside extension of the layer can be along II, with-
out any cusp. II is perpendicular to one or the other of
the asymptotic directions of the hyperbola; thus the set
of all planes II forms two families of parallel planes that
eventually cross on the plane of the ellipse. By limiting
the corresponding material layers to the half space
above or below the ellipse plane 1z, I1; appears as a tilt
grain boundary of misorientation w=2 sin"'e, where e is
the ellipse eccentricity. E itself is a k:% disclination line
to which are attached the constitutive dislocations of the
tilt grain boundary; see Appendix C for a detailed inves-
tigation of its characteristics.

VI. GEOMETRICAL FRUSTRATION: ROLE OF
DISCLINATIONS

A. Geometrical frustration; A short overview

The concept of frustration covers a number of inho-
mogeneous structures which are all describable in terms
of defects, in fact disclinations; see Kleman (1989) for a
review. The word was introduced by Toulouse (1977b) in
the frame of the theory of antiferromagnetic systems,
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where there exist closed paths of atoms with nearest-
neighbor exchange interactions that cannot be satisfied
simultaneously.

1. Unfrustrated domains separated by defects

By geometrical frustration (Kleman, 1985a, 1987), we
mean an extension of the concept of frustration such
that (i) it connotes systems where the short-range inter-
actions are so dominant that they completely determine
the local configuration, and (ii) it is possible to describe
these interactions in geometrical terms—in a sense geo-
metrical frustration is an extension of the notion of
steric hindrance. The concept is therefore of interest
when the local configuration is incompatible with long-
range Euclidean ordering, i.e., is noncrystallographic in
the usual sense of this term. The frustrated medium is
thereby divided into small, unfrustrated, domains, of
size &, say, separated by defect regions where the short-
range order is broken.

In three dimensions, it is fruitful to introduce a crystal
template where the unfrustrated domains spread with-
out obstruction, if such a description is feasible. Such
templates, where this local order extends homoge-
neously without distortion, are necessarily curved, non-
Euclidean, with Riemannian habit spaces of constant
curvature. The decurving of the template into an Euclid-
ean medium employs disclinations of these curved crys-
tals; they delimit the unfrustrated domains of the actual
medium. Geometrical frustration connotes the existence
of a particular type of incompatibility resulting from the
different interactions in competition. Disorder at the
scale £ does not prevent the existence at larger scales of
correlations between the unfrustrated domains; the re-
sulting frustrated medium can be either a crystal with
broken translations—if weak long-range interactions
take over at some scale—or a medium truly disordered
at all scales greater than &—if long-range interactions
are very small. Very similar but simpler approaches in
one or two dimensions were developed earlier to de-
scribe approximate epitaxy and surface reconstruction
of crystals, helical magnetic order, and charge- or spin-
density waves [cf. Friedel (1977b) for an introduction].
Chemists have also talked in the same spirit since the
1930s of nonalternating electronic structures of mol-
ecules and solids.

We first present a short overview of frustrated media
with an emphasis on the presence of disclinations. In
most of the examples below, the three-dimensional
sphere S° is employed as a template habit space.

2. Covalent glasses, disclinations

For covalent glasses, frustration originates in the con-
stancy of the coordination number z, which can be in-
compatible with certain ring configurations. For ex-
ample, five- and seven-membered rings do not generate
Euclidean order. A large literature exists on the subject,
starting with the model of Zachariasen (1932) for con-
tinuous random networks; see Mosseri and Sadoc (1990)
for covalent frustration models.
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As pointed out by Rivier (1987), the underlying geo-
metrical structure of a covalently bound material is a
graph with a constant coordination at each node, except
for dangling bonds and possible double bonds. There is
no reason why covalent bonds should form polyhedra. A
stacking of polyhedra is a particular graph. In that latter
case, Rivier’s theorem, which states that “odd-
membered rings are not found in isolation, but are
threaded through by uninterrupted lines which form
closed loops or terminate on the boundaries of the speci-
men” (Rivier, 1979), is quite useful. But it applies also to
nonpolyhedral structures, as soon as rings are recogniz-
able. Rivier’s lines are disclinations; see also Toulouse
(19770b).

3. Double-twisted configurations of liquid crystal directors and
polymers, disclinations

The most studied phenomenon of frustration in liquid
crystals is the double-twist molecular arrangement of
short molecules met in blue phases, and whose presence
has been suggested in cholesterics of biological origin
(DNA, etc.); see Livolant and Bouligand (1986); Livol-
ant (1987); and Giraud-Guille (1988). The chromosome
of dinoflagellates (Livolant and Bouligand, 1980) also
displays a double-twisted geometry of DNA molecules
of a type somewhat different from the type met in blue
phases (Friedel, 1984; Kleman, 1985b). The idea has also
been presented that the double twist is present in amor-
phous molten polymers (Kleman, 1985a).

Consider a liquid crystal of chiral molecules. If the
director is an axis of cylindrical symmetry, all directions
orthogonal to any director can act effectively as axes of
helicity—in a classical N* phase, this symmetry is broken
and there is only one axis of helicity. The local unfrus-
trated arrangement can be described as in Fig. 27, where
the integral lines of the director are helices of chirality
opposite to the chirality of the rotation of the director
about the radii. We have n,=0, ny=sin(r), n,
=cos (r), with (0)=0. The molecules rotate with the
inverse pitch

in 2
d_zp+sm 1

21
qgir)=—=-n-VXn= ,
p dr 2r

which is of the same order of magnitude as the inverse
pitch of the cholesteric phase. Double twist is entirely
satisfied only for the director along the z axis (r=0); at a
distance r=p/4 from the z axis, the director has rotated
by /2 along the r axis and is now perpendicular to the
Z axis; its vicinity is no longer double twisted; frustration
sets in.

Blue phases are made of elements of double-twisted
cylinders of matter assembled in space. Three cylinders
can stack along three orthogonal directions; the region
of highest frustration, in between, may show up a singu-
larity of the director field, a k:—% disclination. This lo-
cal arrangement has been found in several cubic symme-
tries showing a 3D disclination segment network
(Meiboom et al., 1983; Barbet-Massin et al., 1984). The
blue fog is amorphous, and disclination lines are seem-
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FIG. 27. Double-twist configuration. From Kleman, Lavren-
tovich, and Nastishin, 2005, Dislocations and Disclinations in
Mesomorphic Phases, Fig. 54, p. 246; copyright Elsevier.

ingly random; it has also been suggested that the blue
fog is icosahedral, as in quasicrystals (Hornreich and
Shtrikhman, 1986; Rokhsar and Sethna, 1986) achieving
thereby another type of frustration.

Double twist can be thought of as resulting from a
competition between a tendency to dense packing, en-
suring parallel alignment of the integral lines, and a ten-
dency to chirality. But a geometry with equidistant heli-
ces, which would result from such a competition
(Kleman, 1985a), is not homogenecous in Euclidean
space.

The template proposed by Sethna (1985) in an S°
curved space ensures a homogeneous unfrustrated
double twist; we denote it by {dtw/S3}. The director is
along a family of great circles of the habit three-sphere,
all those great circles being equidistant and twisted, and
parallel in the sense of spherical geometry. This is de-
scribed in Appendix D (the Hopf fibration) and its de-
fects are studied in Sec. VII.C; see also Dubois-Violette
and Pansu (1988).

4. Tetrahedral and icosahedral local orders, disclinations

For amorphous metals and Frank and Kasper phases,
the origin of frustration is the tendency toward dense
packing of equal or quasiequal spheres, representing at-
oms.

a. Frank and Kasper phases

In complex metallic alloy structures, particularly those
of transition metals, it occurs frequently that the struc-
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ture is entirely determined by the requirements for
sphere packing, i.e., atoms form tetrahedral clusters, and
coordination polyhedra are triangulated.

Frank and Kasper (1958, 1959) made a thorough topo-
logical and geometrical study of crystalline structures
submitted to such constraints, showing that—if one ad-
mits that the number of neighbors Zg of an atom on the
coordination polyhedra to which it belongs is either Zg
=5 or 6—there are only four types of coordination poly-
hedra, with Z=12, 14, 15, and 16. Frank and Kasper
distinguish the sites Z=12 as minor sites, and the other
ones as major sites. The edges which join neighboring
major sites form a skeleton; sites of Z=14, 15, or 16 are
meeting points of two, three, or four bones. This skel-
eton is much simpler to study than the structure as a
whole. The description of the Frank and Kasper phases
in terms of a skeleton of bones (i.e., a network of line
defects) is contemporary to the development of disclina-
tion in liquid crystals [due to Frank (1958)], but it was
only later that the topological nature of these defects as
true disclinations was recognized (Nelson, 1983a).

The Frank and Kasper networks constitute a remark-
able example where the main characteristics of geo-
metrical frustration show up; frustrated atoms are along
lines which structure a sea of unfrustrated atoms Z=12,
and there is a typical distance between lines which scales
with the lattice parameter. The existence of the skeleton
of major sites is not dependent on the existence of a
periodic lattice, and the only necessary hypothesis is that
the medium be polytetrahedral.

b. Amorphous metals

Icosahedral order (Z=12) is met in Frank and Kasper
phases, but also in amorphous metals, undercooled
atomic systems (Frank, 1950a; Bernal, 1959, 1964), and
quasicrystals (Schechtman et al., 1984). It is also valid for
small clusters less than a few hundreds of atoms; for
metals and rare gases, see Friedel (1977a, 1984).

Bernal has used a polyhedral approach to analyze
handmade systems of equal spheres, and has shown that
a large majority of the polyhedra (approximately 86%)
are tetrahedra; hence the predominance of local icosa-
hedral order. Furthermore, these tetrahedra arrange fre-
quently into pseudonuclei that are aggregates of face-
sharing tetrahedra, two by two, and tend to build a
connected lattice in the whole structure, wrapping them-
selves around the larger holes (i.e., rather low-density
polyhedra with V=8, 9, or 10 vertices). Of course the
tetrahedra cannot fill the whole three-dimensional
space; however, since they can extend freely along one
direction, one notices a large number of three-stranded
spirals, right- or left-handed, formed by a one-
dimensional array of regular tetrahedra. Their local den-
sity is large. They are reminiscent of the twisted great
circles of $°, and therefore fit locally into the curved-
space crystal representative of the local order. The
pseudonuclei are the regions of less frustrated order.

Numerous analyses of atomic packings have followed
Bernal’s pioneering work; we refer the interested reader
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to Zallen’s (1979) review on dense random packings.

c. The {3, 3, 5} template

This is an example of a crystalline structure in a
curved space. There are no icosahedral Euclidean crys-
tals, but icosahedral order is compatible with a space of
constant curvature, namely, the three-sphere S, which
can be tiled with regular tetrahedra, 20 of them meeting
at a vertex, i.e., generating an icosahedron. This struc-
ture is known, after Coxeter (1973), as the {3, 3, 5} poly-
tope: elementary facets have three edges, and hence are
equilateral triangles; three facets meet at a vertex, and
hence elementary cells are regular tetrahedra; five cells
share a common edge, and hence an edge is a fivefold
axis.

This polytope has Ny=120 vertices, N;=720 edges,
N,=1200 faces, and N;=600 cells. The passage from this
template to a disordered system, i.e., the decurving of {3,
3, 5} and its infinite extension to a Euclidean space, oc-
curs through the introduction in the perfect {3, 3, 5} crys-
tal (Kleman and Sadoc, 1979; Kleman, 1989) of disclina-
tions of negative strength—i.e., which introduce extra
matter—forming a 3D network in physical space, like
the Frank and Kasper network. For a description of qua-
sicrystals in terms of frustration, see Kleman and Ripa-
monti (1988) and Kleman (1989, 1990).

B. The decurving process

1. Rolling without glide and disclinations

We now focus our attention on the transformation of
a curved template into an actual flat medium, under the
constraint that the local order of the template is con-
served. An isometric mapping continuous over the
whole medium is not possible, because it would require
that the Gaussian curvatures be equal at corresponding
points (Darboux, 1894; Hilbert and Cohn-Vossen, 1964;
Singer and Thorpe, 1996).

However, isometric mapping can be achieved locally,
by parallel transport along a line L, according to Cartan
(1963). Letting M (S°, say) roll without glide upon E3,
along any path L C S°, lengths and angles along the path
are conserved at corresponding points in E3. If L is a
geodesic of $°, it maps along a straight line L in E3: this
is the so-called Levi-Civita connection. In general, such
a mapping transforms a closed line L C M into an open
line in E3. The closure failure can be described as a dis-
clination.

Consider a material cone: the curvature is concen-
trated at the apex, a useful feature here, for it maps
isometrically on the plane as a whole, except at the apex,
which becomes the vertex of an empty wedge bordered
by two generatrices. This is clearly the picture of the
Volterra process for a disclination, whose angle, called
here the deficit angle, is a measure of the concentrated
curvature. In order to complete the mapping, it suffices
to fill the void with perfect matter. The final object does
not carry stresses, if the material cone is amorphous; but
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it cannot be so if the medium is ordered, since then dis-
clinations are quantized.

We show next that the decurving process yields ge-
nerically two sets of disclinations: (i) those resulting
from the mapping of M onto the Euclidean space E;
these disclinations are of negative (respectively positive)
strength if M has positive (respectively negative) Gauss-
ian curvature; (i) those resulting from an elastic relax-
ation (disclinations of a sign opposite to the former
ones).

The relationship between disclination lines and curva-
ture has been emphasized long ago by Kondo (1955-
1967) and Bilby (1960). Their approach is opposite to the
present one; Kondo and Bilby start from E3, which they
consider as the habit space of the physical crystal, and
map it on a space that is curved due to the presence of
disclinations in E>. In contrast, the physics of the disor-
dered system, which lives in E3, is contained in its curved
representation.

2. The Volterra process in a curved crystal

It is useful to approximate a Riemannian manifold by
a piecewise flat manifold. Such a process of triangulation
has been proposed by Regge (1961) to calculate proper-
ties of curved manifolds in general relativity without us-
ing coordinates. For instance, in {3, 3, 5}, the edges of
the lattice are replaced by straight lines in the embed-
ding Euclidean space, and the faces and cells by Euclid-
ean faces and cells. The edges, on which all the curva-
ture is now concentrated, form the skeleton of the
triangulated manifold (the one-bones), which is articu-
lated at the vertices (the zero-bones). Consider a D=2
example, {5, 3} (three pentagons at each vertex); its
Regge image is a dodecahedron with flat pentagonal
faces. By mapping the pentagons around a vertex (where
the curvature is concentrated) onto the plane, one allows
the appearance of a deficit angle

dr-3x 2T 37
w,=2m-3 X 5 = 5 ( )
(Fig. 28), which is not equal to the angle of a quantized
disclination in {5, 3}, namely, )=37/5. The stress field
produced by the Volterra process at such a vertex is that
of a negative disclination of strength w_=Q-w,=
—2m/5. This angle also measures the deficit angle of the
local negative Gaussian curvature generated by the in-
troduction of extra matter; this negative Gaussian curva-
ture would manifest itself as a locally hyperbolic surface
element, if the disclinated {5, 3} is allowed to relax elas-
tically in three dimensions.

It is energetically unfavorable that the only disclina-
tions present in the actual medium be of negative
strength. Therefore all vertices are not the seats of map-
ping disclinations, and those which are not are flattened
by force, which yields stresses characteristic of positive
disclinations of strength w,.

In three dimensions, the curvature is concentrated
along the one-bones; if one moves a vector by parallel
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FIG. 28. Deficit angle at a merging vertex of three regular
pentagons, w,=m/5.

transport on a closed circuit L about an edge i, it rotates
by an angle w; (the deficit along i),

wi=277—2ak, (38)

which does not depend on the precise location of L as
long as it is traced in Euclidean space and does not cross
another edge; a; is the dihedral angle of the local flat
polyhedron k with edge i. One can perform a Volterra
process, now truly reminiscent of the usual Volterra pro-
cess in flat space, either by gluing the two lips across the
angle w; or by inserting (removing) a lattice unit cell () in
the space separating the lips. According to which case
one considers, one introduces a topological disclination
of strength +|w;| or ¥|w;—|. These disclinations are
wedge disclinations, since they lie along a rotation vec-
tor €. The Volterra process for twist disclinations does
not add or remove matter; therefore it does not change
the curvature.

The deficit vectors w; that are merging at a vertex and
are parallel to the corresponding edges obey the Kirch-
hoff relation

> w=0, (39)

here written for small w;’s. This expression is in fact the
Bianchi identity for curvatures when the deficit angles
are small (Regge, 1961).

To summarize, the actual medium contains two sets of
disclinations; we call them D; lines when they carry
spherical curvature and are positive strength disclina-
tions, D, lines otherwise. Notice the duality between D
and D, lines; it means that one can start equally from a
spherical crystal or from a hyperbolic crystal to con-
struct a disordered system (Kleman, 1982a, 1983). The
precise location and density ¢, and @, of the D, and D,
lines are, of course, subject to great arbitrariness, and it
is the best elastic balance which decides the final choice.
From that point of view, an amorphous solid with local
icosahedral order is certainly closer to a spherical crystal
than a hyperbolic crystal, and one expects ;> Q.
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C. The concept of a non-Euclidean amorphous medium

The foregoing model of an amorphous medium, based
on the existence of a frustrated order, does not forbid
the conceptual possibility of a homogeneous, isotropic,
structureless, medium in S3, whose defects we can inves-
tigate after the manner of the amorphous medium dis-
cussed in Sec. II.

The model we consider has no relation whatsoever
with any kind of local order. We denote it {am/S°}. Be-
cause of the curvature imposed by the habit space S°,
the singularities that break the continuous rotation and
(noncommutative) translation symmetries are somehow
at variance with disclinations and dislocations in flat Eu-
clidean space. This is also true for the {3, 3, 5} case, but
the continuous case is expected to be easier to under-
stand. Furthermore, the concept itself of a curved amor-
phous medium is new and worth investigating in its own
right. As we just observed, a pending question in the {3,
3, 5} case is how to decurve such a template in order to
get an atomic liquid or amorphous medium with icosa-
hedral local order. The difficulty lies in the fact that the
{3, 3, 5} disclinations are quantized, and the answer is
not unique; stresses remain. The same question for
{am/S$3} yields a unique answer with no stresses remain-
ing, since defects are continuous in strength and distri-
bution.

Finally there is the question of disclination networks,
analogous in spirit to Frank dislocation networks. Discli-
nation networks are apparent in polynanocrystals (Sec.
III.C) and in Frank and Kasper phases (Sec. VI.A.4).
They might also be important in undercooled liquids,
but the true local geometry is that one of a spherical
crystal with icosahedral symmetry (Sec. VI.A.4). This
situation requires reconsidering the Kirchhoff relations
in a curved habit space, either amorphous (as a generali-
zation of Sec. IL.F.2, see Sec. VILE) or icosahedral (i.e.,
with quantized disclinations, see Sec. VILF).

VII. DEFECTS IN THREE-SPHERE TEMPLATES
A. Geometry and topology of a three-sphere: A reminder

A point M on the three-sphere 3 of unit radius will
be defined by its Cartesian coordinates in FE*,
{x0,x1,%,x3}, or more concisely by the unit quaternion
'x’

X =Xg+ X1+ X + X3k,

YP=xF=xi+xt+x5+x3=1, (40)

where & stands for the (complex) conjugate of x.

1. The rotation group SO(3) in quaternion notation

The set of unit quaternions forms a group that is re-
lated to the group of rotations SO(3) in E3, as follows.
The unit quaternion x,
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X1l + Xof + x3k

/7 ’

(41)
X} + X3+ x5

x=cosv+gqgsind, q=
i1s representative of a rotation ¥ along the direction
{x1,%,,x3}; two antipodal points x, —x on S* embedded in
E* are representative of the same rotation 9 and 9+
along the same direction x1,x,,x3; ¢ is called a pure unit
quaternion; its real part vanishes, g>=-1, gG=1. All
SO(3) rotations are therefore represented by a sphere S°
with antipodal points identified, namely, P>=S3/Z,, the
projective plane in three dimensions. Reciprocally, QO
=S, the multiplicative group of unit quaternions, is the
double covering of P? and, as a topological group, is
isomorphic to SU(2) and homomorphic 2:1 to the group
SO(3) of all rotations that leave the origin fixed,

SO@3)=SUQ®)/Z,, (42)

the kernel of the homomorphism being generated by the
rotation 2.

Because of the validity of Moivre’s formula for unit
quaternions, x can also be denoted

x= exp(gq) . (43)

2. The rotation group SO(4) in quaternion notation

The quaternion notation provides an easy analysis of
the basic isometric transformations of E* (Coxeter, 1991)
that conserve a fixed point (the center of S°). These are
as follows.

(i) The single rotation, with one pointwise fixed 2D
plane, the so-called axial plane containing the origin O;
this plane is the E* generalization of the rotation axis in
E®. For that reason, one shall often call the single rota-
tion in E* as the rotation.

(i1) The double rotation (with one fixed point only, the
center of %), which is the commutative product of two
rotations about two completely orthogonal axial planes.

a. The single rotation

The basic formula for a rotation of angle « about the
axial plane II; ,=(0,1,w), defined by three points in E*,
namely, (i) the origin {0, 0, 0, 0}—denoted {0}, (ii) {1, 0, 0,
0}—denoted {1}, (iii) {0,w;,w,,ws}—denoted {w}, is

x' = e—(a/Z)wxe(a/Z)w' (44)

The transformation (44) leaves invariant any point x

of Iy ,,, i.e., x=N+uw (N, u real), and no other points,
N+ uw =e @\ 4 uw)el @D,

If x is a pure quaternion (not necessarily a unit one),
Eq. (44) gives the rotation of its representative point x
by an angle a about the axis w, on a two-sphere S? of
radius |x|. Therefore a pair of two conjugate unit quater-
nions (e~(?" ¢~(@2%) represents one element of SO(3);
the pair (—e (@?W —e~(@2") represents the same ele-
ment; the representation is 2:1, as already noted.
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IT,,, intersects the habit sphere S° or {3, 3, 5} or
{am/S$3}, radius R, along a great circle C,,, radius R,
which is thereby pointwise invariant in the rotation
given by Eq. (44); {R} and {Rw} belong to this great
circle.

The vector at tangent to C; ,, at M is the local rotation
vector in S3 induced by the single rotation in E*.

With Eq. (44), we have considered a special axial
plane. A rotation of angle «a about a generic axial plane
passing through the origin in E* is

x' = e @Dy pleDq 43)
p # +£q, with axial plane
I, ,=(0,1-pgq.p+q). (46)

It is easy to show that 1—-pqg and p +¢ are invariant in
the transformation given by Eq. (45). Notice that p and ¢
are pure unit quaternions.

This is now the place to introduce the plane

I,=(0,1+pg.p-q), (47)

which is the plane completely orthogonal to II, ;; the
directions denoted by 1+pg and p—q are both orthogo-
nal to 1-pqg and to p+q. A rotation of angle B8 about
le, , taken as an axial plane reads

x' = B2y e(B2)a (48)

Since the four directions 1-pq, p+q, 1+pg, and p
—q are mutually orthogonal, they can be used as the
directions of a Cartesian frame of reference in E*.

b. The double rotation: Right and left helix turns

The rotations about two completely orthogonal planes
are commutative. Consider the product of two rotations
of the same angle « about I, , and H; 4 According to
Egs. (45) and (48), we have

x' = e—(a/2)p(e(a/2)pxe(a/2)q)e(a/2)q ,

pP.q

ie.,
x' =xe". (49)

This double rotation conserves S* (and any three-
sphere centered at the origin) globally, and leaves only
one point invariant, the intersection of the two planes
I, , and H;q, i.e., the center {0} of S°. It leaves no point
invariant in $%; thereby it is akin to a translation in Eu-
clidean space; E. Cartan introduced the term transvec-
tion to connote such an operation in a Riemannian space
(Cartan, 1963).

The term p does not appear any longer in Eq. (49);
hence this transformation can be given a geometric in-
terpretation in any pair of a large set of completely or-
thogonal plane pairs. For instance, it is a transformation
that, in the two-plane II; ;, containing the origin {0} and
the directions {1, 0, 0, 0} and ¢={0,q;,¢>,g3}, is a rota-
tion of angle «, and in the completely orthogonal two-
plane Hi , 18 a rotation of the same angle & (Montesinos
1987).
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(b)

FIG. 29. Helix turns. (a) Right helix turn x"=xe*? and (b) left
helix turn x"=e~“x in stereographic projection.

It can also be called a right helix turn, for the follow-
ing reason. Consider the transvection x’ =xe®. In order
to visualize it, we employ the stereographic projection of
$3 from its pole {~1,0,0,0} onto the hyperplane spanned
by the directions i, j, and k (the imaginary part of the
quaternion set); x’ =xe® turns the equator plane spanned
by the directions j and k (i.e., the plane Hti completely
orthogonal to II, ;) to the right by an angle a about the
axis i, and pushes it forward by the same angle [Fig.
29(a)]. The same is true, also in stereographic projection,
for the transformation x’ =xe“?, where ¢q is any pure unit
quaternion chosen as the axis of the rotation, since any
axis g results from the axis i by a rotation in the 3D
(i,j,k) hyperplane; all pure unit quaternions are visual-
izable in stereographic projection, as well as their corre-
sponding equator planes.

The left helix turn

x'=e *x (50)

results from the product of two rotations of the
same angle and of opposite  signs, x’
=e (@2 (e~ @DPye(@2)0)e~(@2)4  performed on two com-
pletely orthogonal planes; it turns the equator of p also
to the right by an angle a, but pushes its equator plane
backward by the same angle [Fig. 29(b)]. A left helix
turn and a right helix turn are commutative, but two left
(or right) helix turns are not. Therefore these transfor-
mations are akin to noncommutative translations.

3. Group of direct isometries in the habit three-sphere $3

Any product of a right translation by a left translation
is a direct isometry in S°:

x' = e PPxed: (51)

it is also the product of two commutative rotations of
angles a+ 8 and a—f about two completely orthogonal
axial planes II, , and Hp{ > a right (or left) helix turn is
given by Eq. (51), with 8 (or a)=0,27. {-e®,—e"P7} gen-
erates the same isometry as {e®,e 4},

Since any isometry in S3 is generated by a combina-
tion of two commutative helix turns {e®”,e 4}, one right,
one left—each belonging to the group SU(2)—the maxi-
mal group that leaves S? invariant is

SO4) = G(8?) ~ SU(2) X SU(2)/Z, = 5 X SO(3).
(52)
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It is a direct product. Its universal cover is G(5%)=S>
X §3, i.e., the group of unit quaternions, squared.

A discussion on some geometric characteristics of S°
can be found in Appendix D.

B. Disclinations and disvections in $3

The notion of line defect easily generalizes to any or-
dered medium in S°. In terms of the Volterra process, we
have two types of defects.

1. Disclinations in S3

Disclinations break a single rotation in E*, defined by
the SO(4) group element {e~ 2P (224} about some
axial plane II, ;; they conserve the habit sphere S glo-
bally. The plane II,, , intersects S* along a great circle C.
For an observer confined to the habit sphere, this rota-
tion appears as a set of rotation vectors ()t tangent to C
all along, as already indicated. The points x of the cut
surface are displaced by the single rotation

~(Q2)p p(Q2)q

x'=e Pxe

Remember that any great circle is a geodesic of $3, so
that this operation is clearly a generalization of a discli-
nation in E°, where the rotation vectors are along
straight lines, i.e., Euclidean geodesics.

2. Disvections in S3

Disvections break transvection symmetries and are
thereby generalizations of dislocations, which break
translation symmetries. A right (say) transvection

|xi| =R,

r aq
x; =x.e%,

brings M;(x;) to M/(x/), at a distance |b|=|x/—x;]
=2Rsin §, along the great circle C; through M; and M;.
M/ in turn is moved by the same distance |b| along the
same great circle. Any point M; outside C; likewise fol-
lows another great circle C; which is equidistant from C;,
with the same |b|, i.e., which turns about C; in a double-
twisted manner. The points x of the cut surface are dis-
placed by the double rotation

x' =xe".

This operation is clearly a generalization of a dislocation
in E3, with b the analog of the Burgers vector.

The term disvection was introduced to connote line
defects that break noncommutative translation symme-
tries in quasicrystals (Kleman, 1992).

C. Defects of the double-twist S* template

The topological classification of line defects in the
double-twist template {dtw/S>} is the same as that of the
uniaxial nematic (Sethna, 1985), namely,
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I, (Vgw) = Z5, (53)

since  V4w=S0(4)/SUQ2) X D,,=P,, the projective
plane. In this expression, SO(4)=SO(3) X SU(2) is the
group of isometries of S [Eq. (52)], SU(2), in the de-
nominator, is isomorphic to the group of left or right
transvections—the template has a definite chirality, and
D,,;, is the rotation point group, as in a N phase. These
results can be obtained using the geometric picture of
the Hopf fiber bundle (see Fig. 36 in Appendix D),
which is the geometrical representation of {dtw/S>}.

Whereas the topological stability analysis provides
only one class of topological defects, namely, |k|=%, the
Volterra process provides many more, exactly as the N
phase. Therefore one has to differentiate kz—% disclina-
tions, which add matter, and k:% disclinations, which
remove matter. In principle, only the first category of
disclinations is liable to decurve {dtw/S?} a Euclidean
medium; this is precisely the result that is claimed in the
current BP structural models (Meiboom et al., 1983).
However, a caveat is in order: Because viscous relax-
ation operates at constant density, a negative sign for the
decurving disclinations should not be a prerequisite;
Sethna (1985) has proposed a model where there are no
disclinations at all, with, however, the same cubic struc-
ture.

D. Continuous defects in a 3D spherical isotropic uniform
medium

1. The wedge disclination

First, a few remarks about the great circles of S°,
which are geodesics of %, i.e., the equivalent of straight
lines in flat space.

a. Wedge disclinations are along great circles

Let II, ,={0,1-pq.,p+q} be the plane that intersects
the habit sphere along the great circle C. We have |1

-pql*=|p+q[*=2-pg—qp, where
—Pq—4qp=2p-q=2c0s ¢, ,,

¢, 4 being the angle between p and q; 1-pg and p+q

are orthogonal. We then have, for any point u# on C,
u=a(l-pq)+b(p+q), |ul=R.

We choose the origin of the angles in the I, , plane
along the direction 1-pgq; one then gets

u(9) = RNp’qe("/z)p(l —pq)e(ﬁ/z)q
=RN, [(1-pg)cos ¥+ (p + q)sin V], (54)

where

- bpg )\
N,q=2-pq-ap) 1/2=<2cos e

The first equality expresses the fact that the points of C
are obtained by a rotation {e”?7 "2} about II,
={0,1+pg,p—q} in E* Observe that the rotation
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{e(2)P (9124} keeps pointwise invariant the intersection
of TI; with §°, which is a great circle C* orthogonal to
C. The angular distance between any pair of points M
e C, M+ e C* is equal to 7/2 (the two vectors OM and
OM are orthogonal). The circles C and C*, which have
the same center and the same diameter, have no point in
common.

b. Volterra elements of a wedge disclination

Consider now the rotation {e~¥? (%24} about I1,, ;
it conserves S° globally. The plane I1, , intersects 3
along C. In $°, this rotation is a set of rotatlon vectors
Qt tangent to C throughout. It is therefore a rotation
that builds C Volterra-wise as a line of wedge character,
of strength (). Its constitutive dislocations are as follows.
Let x=x"+x' be the quaternion representation of a
point P=x"+x* on the cut surface 3¢ of C (it is not
useful to select a special cut surface), split into its two
components, one, x', belonging to II, , (invariant in the
rigid Volterra rotation {e~(¥?P e(“/z)q} that moves apart
the two lips of the cut surface), the other one, x*, be-
longing to H; , (not invariant in the rotation under con-
sideration). Hence

! =yl = o @20p (@2 1L =2y 1, (Q2)g
Thus |x*| is the distance of P from the axial plane I, , of
the Volterra process we are considering.

The sum total of the Burgers vectors of the constitu-
tive dislocations between the wedge line and P is, in

quaternion notation,

b=x"—x=e Y2y ¥2q _ x (55)

which can also be written

Q Q
b =sin 53_(9/2)” (xq = px) =sin = (xq - px)e ¥,

(56)
But, because x' belongs to II, , and x* to H; ;> We have
b= 2yl (02a I (92l (912)g
for any . Hence
xtg+pxt=0, x'g-px'=0, (57)

and eventually
Q Q
b=-2sin prie(mz)” =2 sin Ee‘(ﬂ/z)”xiq. (58)
To connect with the discussion concerning Eq. (1), we

make use of two remarks: (i) the modulus of b, calcu-
lated from Eq. (58), is

Q
|b| = 2|x*|sin 5 (59)
(ii) the Burgers vector b is perpendicular to II,, ,. Notice

that it is also orthogonal to x* and to x’*, which both

belong to Hp , hence b-OP=b-OP’=0.
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These two properties also belong to the constitutive
dislocations of a wedge line in {am/E>}. Note that Eq.
(59) reproduces the integral of Eq. (1) performed on the
interval between the line and a point P on the cut sur-
face for a wedge disclination, since |x*| is in both cases
the distance to the invariant manifold [in Eq. (1) it is the
distance to the rotation axis of the disclination]. The fact
that b is orthogonal to the axial plane II, , compares to
the fact that in Eq. (1) the Burgers vector is orthogonal
to the axis of rotation.

The Burgers vector db of the constitutive dislocations
situated between x and x+dx on the cut surface is

db = e~ @D gye@Da _ gy

which can also be written

Q Q
db =—2sin Epdxle(“/z)q =2 sin Ee‘(“mpdeq.

(60)

To summarize, Eq. (60), valid in {am/S%, is the
equivalent of Eq. (1), valid in {am/E%}. It describes the
constitutive dislocations of a wedge disclination € lo-
cated at the intersection of the habit three-sphere and
the two-plane I1, ,={0,1-pqg,p+q}.

It then remains to find the manifolds along which db is
constant not only in magnitude, but also in direction,
i.e., the geometry of the constitutive dislocation lines.
The relation x*=const defines a two-plane parallel to
11, ,, which intersects the habit sphere along a circle C, 1,
of radius |x'|, which is not a great circle, except if x*=0,
in which case C,. is the disclination C itself. The circles
C and C,. are parallel and perpendicular to some direc-
tion d, belonging to II p 4 b, which depends only on xt
is constant on C,1, which is indeed a constitutive dlslo-
cation of the wedge disclination. The set of constitutive
dislocations C,. for 0<|x!|<R, so chosen that these
circles are in parallel planes all perpendicular to the
same direction d,. in IT- | describes half a great sphere,
which is a geodesic mamfold of §3, and consequently the
equivalent of a half plane in flat space. There is a one-
parameter family of such half great spheres, depending
on the direction d,. in Hp each of them playing the
role of a possible cut surface >,¢ for the wedge disclina-
tion C.

Equation (58) can be given an interpretation in terms
of disvections. We introduce the quaternion z, =-px*
=x1gq; it results geometrically from a rotation by an
angle of 7 of the Vector x* in the HL plane, so that
z —e‘(”/4)1’x e™¥4; 71 is constant all along C,.. Hence

Q Q
db =2sin —(dz* ¢! ¥?7) = 2 sin (" @dzt) - (61)

appears as either a left screw or a right screw.
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2. Defects attached to a disclination in {am/S3}

a. Useful identities and relations

We introduce two great circles at each point M of a
generic disclination line L; one of them, C,,, is tangent
to L at M along the direction m, the other one, C,, is
tangent to the local rotation vector Q=Qu; mm=ppn
=1. Their analogs in {am/E>} are the straight lines along
m—the tangent to the disclination line—and p—along
the rotation vector. The two-planes to which these
circles belong are denoted I1, ,={0,1-pg,p+q} for C,,
and I, ,={0,1-¢0,0+0} for C,; p, q, @, 0, are defined
as in Egs. (62) and (63):

1 1 1
p——EunE:Emzl, q—Eﬁm:—Enﬁu, (62)
T R T )
Q= QUA= puil, 0= plu ==,

Full details are given in Appendix D. Notice that the
relations mii+um=0 and am+mu=0, easily deduced
from Eq. (62), express the orthogonality of m and u,
m-u=0. Likewise, uii+uu=0, and so on.

Observe that m is invariant in any rotation about I1,, ,,
and that u is likewise invariant in any rotation about

I, ,; this yields
e~ 2P0 — g (9200 (0T _
for any ; hence
pm-mq=0, ou-—puc=0. (64)

These relations also stem from Egs. (62) and (63), but
it is worth retrieving them in this way, in order to em-
phasize the role of invariance by rotation. Since M be-

longs to both axial planes 11, , and II, ,, we have
e~y dDa — (920 (20 _

for any J; hence
pu—-uq=0, ou-uc=0. (65)

also stemming from Egs. (62) and (63).
More generally, the quaternion components a' and a*,
: : L —gli gl
respectively, in II, , and IL, ., of any vector a=a'+a
obey

pa'—a'q=0, pat+a‘q=0, (66)

and similar relations for its components ¢, and a, inIl, ,
and I17

p.0?
Qau—aH(T:O, Qai+ala':0. (67)
By differentiating, one also gets

e(”/z)pudqe(ﬁ/z)" =udq, e("/z)pdpuewz)" =dpu,
e dae "7 = ydo, e "?2doue¥?7 = dou,

e(ﬂ/z)pmdqe(ﬁ/z)q =mdgq, e(‘m)pdpme(’?/z)q =dpm,
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o92)e (92)c

2240 1e @29 = doy, .

(68)

All these relations are easy to establish directly, by
employing identities of the type

e(ﬂ/2)gde _ dQe—(ﬂ/Z)Q da.e(ﬂ/Z)O': e—(l‘}/2)ad0_ (69)

udoe = udao,

which express rotational invariance about H]f , and Hl
The quatermons udq, dpu, mdq, dpm belong to the
plane Hp o, they are invariant in any rotation about the
axial plane Hl The quaternions udo, doo, pudo, dou
belong to the plane He ,» they are invariant in any rota-
tion about the axial plane Hg

More generally, the quaternions b' and b* in II,, , and
IT, . and the quaternions by and b in Il and IT, ,, b
=bl+bL=b,+b,, are such that

b'dg, dpb', b'q, pb*
belong to the plane H; 7
b*dq, dpb*, b'q, pb' (70)
belong to the plane II, ,,
b”do', deH’ bJ_O', le
belong to the plane Hé,m
b,do, deb,, bjo, b (71)
I I

belong to the plane I, ,. Other useful relations are ob-
tained by considering small rotations d{ about an axial
plane. For instance, we have

doi2 doi2
u+ du = e\ Py edd2)q

which yields
1
du = E(pu +uq)d?. (72)

Since pu—-uq=0 [Eq. (65)], Eq. (72) yields
du=pudd=uqdd=Rmd?9, (73)

the last equality also originating in the expressions for p
and g [Eq. (62)].

b. A general expression for the attached defect density

We reproduce the extended Volterra process ap-
proach used for Euclidean crystals. Because {am/S$%} is
amorphous, any disclination L, whatever its strength,
can be constructed as a sum of infinitesimal constitutive
defects attached to L if L has twist character. The wedge
disclination case has already been discussed; the consti-
tutive defects are disvections [one set of disvections,
whose chirality is ambiguous, left or right, Eq. (61)]. Dis-
vections are the analogs in {S°} of dislocations in {E£%}, so
that one can consider this result as the {S°} analog of the
result in {E£3}. Contrarily, as we show, in the twist or
mixed line case, the attached defects are generically dis-
clinations, which, however, can be defined as the sum of
two sets of disvections of opposite chiralities.
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Now assume that L is any loop in the habit three-
sphere, and consider two neighboring points M and M
+dM on this line, # and u+du in quaternion notations,
with uii=(u+du)(d+di)=R? i.e., diiu+iadu=0. In order
to compare the Volterra processes at two neighboring
points M and M+dM, we proceed as follows.

Let Q=Qu be the rotation vector of the disclination
at M. Being a rotation vector, s belongs to the axial
plane II,,={0,1-p0,0+0} that intersects the habit
sphere along the great circle C, running through M, and
to which u is tangent. This is akin to the situation inves-
tigated in the case of the wedge disclination, where C,, is
the wedge line itself and where m is tangent to the
wedge line (observe that g does not belong to the habit
three-sphere but to the 3D flat tangent space to the
sphere at M). We therefore have u-OM=0.

Consider now two close points M and M+dM on the
disclination L, with rotation vectors along u and pw+dpu,
and a point P (x in quaternion notation) on the cut sur-
face 3. The variation in displacement observed from M
to M+dM at the same point P is
— o (2)0,,,(2)0

dbM — e—(ﬂ/2)(Q+dg)xe(Q/2)(0'+d0')

Q
=sin E(e‘(mz)gxda — doxe 7). (74)

If the line L is a great circle and the local rotation
vector is along the tangent of this circle, which means
that one can choose @, o constant (independent of the
point on C), then dp=do=0; the line is of wedge char-
acter, as expected, and dby;=0. There are no attached
defects. We retrieve the results of Sec. VIL.D.1.

Equation (74) is the fundamental equation related to
attached defect densities in {am/S°}.

We show now that it cannot be interpreted the same
way as Eq. (4) in {am/E?}, although the extended Volt-
erra process from which it results is similar.

c. Attached disclination densities

As a matter of fact, Eq. (74) appears as the difference
between two disclinations of axial planes II,, and
[y, 4o 0+dos this difference can be expressed as a unique
disclination carrying an infinitesimally small angle of ro-
tation.

The quaternions @+d@ and o+do are pure unit
quaternions, if second-order terms in do?, d@?, etc. are
neglected; do and do are pure quaternions, of equal
moduli |dg|=|do|=d\ real and positive. We introduce
the two pure unit quaternions 7,, f, such that dAz,
=dp,d\t,=do.

We define

dyy = e AODlgy Oty _ (75)

Equation (75) is the displacement dy(x) at P(x) due to
an infinitesimal disclination of angle d{} about the axial
plane Ht «, Notice that dy(u)=0, which confirms that
the 1nﬁn1tes1ma1 disclination just defined is attached at
M to L. We now show that Eq. (74) can be given the
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same form as Eq. (75), with the following choice of d():
Q Q
dQp=2sin > cos Ed)\, (76)

justified below. Equation (76) can also be written as
dQp=2d(sin ) dQp thus appearing as the differential of
the modulus of the Frank vector introduced in Sec.
ILLF.2, if one assumes that the variation d() of the argu-
ment equals 2d\ sin %; we see later on why it should be
SO.

We now give hints how to identify Eqgs. (74) and (75),
and find passim an interesting simplification of the ex-
pressions of dby, dy.

Split x=x;+x, into its components x;eIl,, and x
eI, . According to Eq. (71), xdo and dox; belong to
I, Hence e Y2ex do=x,doe'Y??, and

dbyg = sin ({dea dox e

+{e" 2y do - dox, eV, (77)
Because x Il ,, we have
xjo—@x;=0.
Likewise, because x| €Il ,, we have
XL0'+ Qxi = O.

We differentiate these relations, keeping x constant,
and get

X||d0'—deH=0, deO"f‘del:O.
Hence
. Q —(QR2)e QR)o
dbyg = sin E{e x, do—dpox e 1. (78)

The terms depending on x; have disappeared. The re-
maining terms can be transformed in many ways, using
the equalities just derived and the rotation invariances
of Egs. (70) and (71). We get for dby

Q Q
dby=-2sin Py cos Eal)\tgxL

Q0 Q
=2sin 5 cos Ed)\thow (79)

and using similar transformations for dy,
dM =- dQFthL = dQFxltU. (80)

Hence, to summarize, dby; and dy; describe the same
infinitesimal disclination attached to L at M, of angle
dQp, of axial plane H, 1

Notice that the deﬁnltlon of 8Q=2d\ sin 5 2 is not mere
chance; it originates in expressions of the type
e(Q/2)("+d"), which can also be written as

. Q dQ
P W2)(0rdo) _ OQ2)0 | i 5 At = D7 4 Tt"'
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For the sake of completeness, we write some other
expressions for dby:

(()/2)0}

’

Q
dby; = sin 5{— e Y2edox | +x, doe

Q
=sin 5{— doeY?ex | 4 x e g, (81)

We make use of Eq. (81).
Also, because x, eIl ,
v, = ey —x @20

we can write
)

dby; =sin 5(— dov, +v ,do),

L

0.00
e~ (W00 Yoo = (O _ 0200y

where v, eIl , because

(the first member of this equation is a rotation of v | with
axial plane HQ{U).

d. Infinitesimal Burgers vectors and disclination lines
Starting from Eq. (74) or (81), we calculate |dby| using

|dby|?=dbydby. The calculation, not reproduced here,
uses some of the equalities established above. One finds

Q
|dby| = 2 sin® E|xL|d)\. (82)

This equation compares to Eq. (61) (wedge disclina-
tion) by the common presence of the |x | term—again,
the relevant distance is the distance to the axial plane
that carries the rotation vector of the disclination. The
presence of the sin? % term is interpreted as follows. We
can split dby; into two Burgers vectors, appearing in Eq.
(81), related to two disvections, one right, one left,

Q
dby = sin EdeaeWZ)”,

Q
dbyge=—sin Ee’(mz)gdgxi. (83)

dby; o and dby , have the same Burgers vector modu-
lus, namely, |dbyol=|dby,|=sinF|x,|d\. The extra
sin% factor in |dby| means that the two vectors dby,
and dby;, make a constant angle, equal to (). One

can check directly that dbM’p-dbMyoz%(dbM,gdl;M,g

+dbyy pdby ;) =cos Q.

The description of the infinitesimal defects related to
the disclination L in terms of disvections is equivalent to
the description in terms of attached disclinations. Notice
that the disvection lines, which are those lines along
which dby , and dby , are constant, are not attached to
L—which would require that x, =0, since the points of
L are characterized by the quaternion coordinate u
which obeys u | =0. The line L itself is a particular dis-
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vection line, of vanishing Burgers vector. Hence the in-
finitesimal disvection lines form two sets of lines sur-
rounding L, each comparable to the set of disvections
surrounding a wedge disclination line.

3. Twist disclination along a great circle

By constant rotation vector we mean that the local
rotation axis of the disclination L, namely, Qu in quater-
nion notation, with wa=1, is parallel transported along a
line with the natural connection of the sphere S°. If such
a line is a great circle, i.e., a geodesic, the rotation axis
makes a constant angle with this circle, u-m=cos ¢. This
configuration is equivalent to a straight disclination line
in {am/E%}, with constant rotation vector. A point M on
L depends on the variable u or the arc angle ¥. Let Ci
be the great circle tangent to u(d¥) at M(d) e L; it be-
longs to the plane II, ,={0,1-¢0,0+0}; ¢=0(9) and
o=o(9) are given by Eq. (63). II, ,={0,1-pg.,p+q} is
the two-plane that contains the great circle L; p and ¢
are constant.

The parallel transport of w along L, a geodesic, is also
a rotation about the axial plane IT,,={0,1+pq.p—q},
completely orthogonal to II, ,. Such a rotation can be
written as

w+ d,LL — e(dﬁ/Z)pMe(dﬁ/Z)q’

which yields

1
dp= E(PM+ uq)dy. (84)

Using Eqgs. (84) and (63), the following expressions for
do and do are obtained:

1 1
dgzz(pg—gp)dﬁ, d0=—5(q0'—(76])d19- (85)
We also have
1 1
d\ =2 ddlpe - ep| = Sddlqo - oql.

We then have g -m=cos <p=%(m,&+ i), a constant.
We can show, again using Egs. (62) and (63), that

(pe - op)*=(qo—o0q)*=4sin’ ¢,
which yields
d\ = |sin ¢|d¥. (86)

As indicated by the presence of the coefficient |sin ¢
in the expression of d\, the only component of u that is
relevant in the twist properties of the line is its compo-
nent orthogonal to m. Hence we split the rotation vector
as follows:

w(®) =pt+ pl, (87)

where u' belongs to the plane H; ; and is therefore in-
variant in any rotation about this plane; u'=m cos ¢ be-
longs to the plane I, ;. It is a question of simple algebra
to show that the u; component does not contribute to
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oq—qo or to pe—p. The only component of the rota-
tion vector that contributes to the dislocation densities
attached to C is u, (which is a constant all along the
disclination), through the |sin ¢| factor. But notice that
the rotation vector is still Qu.

The same discussion as in Secs. VIL.D.1 and VII.D.2 is
valid, with the simplifications of Egs. (85) and (86).

E. Kirchhoff relations

Any isometry of $° has the form x'=e Pixe®, Eq.
(51), and can be split into the product of two commuta-
tive helix turns, one right, one left. Therefore a product
of isometries can be written

x = l(l) ... l(i)l(i+1) ceixees r(i+1)r(i) ... r(Ql), (88)

where l rQ e O=SU(2). n disclinations meeting at a
node can be split into two sets of disvections meeting at
this node, n left disvections and n right disvections. Thus
we first investigate the Kirchhoff relations for (left or
right) disvections.

1. Three disvections meeting at a node

Let h J=e®, h'P=¢P1, h'¥=¢” be the elements of
symmetry of three right (say) disvections meeting at a
node. We then have

hG RS G ={=1}. (89)

Remember that the group of all unit quaternions is 2:1
homomorphic to the group of all rotations of a two-
sphere that leave the origin fixed. In that sense, iy and
—h represent the same rotation in SO(3), but they do
not represent the same transvection in SU(2). {-1} trans-
forms x into —x by a helix turn of angle 7 about any axis
w: {-1}=e™. However, it will appear as a fundamental
necessity to introduce the quaternion {1} in Eq. (89), as
we shall see.

Denote by a, b, and ¢ the angles between the direc-
tions defined by the three pure unit quaternions p, q,
and r, namely, a= 2 (q,r), b=/ (r,p), and c= 2 (p,q).
Equation (89), which also reads, e.g., & 1)h(2) +hY
yields three relations coming from the reaIQpart of tl%s
relation, of the type

cos a cos B — cos ¢ sin @ sin B= + cos v, (90)

where cos c=p-q=piq1+p2g9>+P3q3, and nine relations
coming from the pure quaternion part, of the type

g1 sin B cos a + p; sin a cos B+ s, sin ¢ sin asin 8
= Frysinvy, (91)
where the unit vector s, (i.e., the pure unit quaternion
s.), defined by the cross product s,sinc=(pXq), has
been introduced; similarly, s,sina=(qXr) and s, sin b
=(rXp).
Multiplying Eq. (91) by s.; and summing over the
three Egs. (91) containing s.,S.,,5.3, one gets
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FIG. 30. Spherical 2D representation of Kirchhoff relations for
disvections. P, Q, and R are on the sphere centered at O; see
text.

-2 -2
sin sin %
a ¢ _ b 92)

sm asin Bsin y’

sin® b

sina sin®? B sin’y

where Vp ¢-=T"(pXq) is the scalar triple product; V,
=p-s,sina=q-s, sin b=r-s,sin c.

One recognizes in Egs. (90) and (92) expressions much
akin to those met in 2D spherical trigonometry. The geo-
metric interpretations of Eq. (89) in terms of spherical
triangles are different, whether one has a {-1} or a {1} in
the right-hand member.

p.q.r

a. hy hGhy)={-1}

One finds that there are two conjugate spherical tri-
angles, here after denoted 7, ,, and Tg . whose
angles and angular arcs y1e1d { 1} in the nght -hand
member:

(i) The vertices of T,,,are extremities P,Q,R, of the
three-vectors p,q,r; the angles of the triangles are
«a, 3,7, and the angular arcs are a,b,c (see Fig. 30). Stan-
dard results in spherical trigonometry yield (Weisstein,

1999)

—COs y=Ccos a cos B— cos ¢ sin a sin 3, (93)
sina sinfB sinvy Vopar (94)
sina sinb sinc sinasinbsinc’

Equation (93) is obtained by applying the “cosine rules
for the angles,” specialized to the angle y. The construc-
tion of a triangle of angles «, 3, y, of angular arcs a,b,c,
requires that the following inequalities are obeyed:

a+B+y=m a+b+c<2m. (95)

(ii) The vertices of T |  are extremities A,B,C, of
the three-vectors s,,s;,,S; the angles of the triangles are
m—a,m—b,m—c, the angular arcs are m—a,7—,7— 7.
One checks that s, s,=(qXr)-(rXp)=(cosacosb
—cos ¢)/sinasin b etc., i.e., s,-8,=—co0s ¥, etc., by apply-
ing the cosine rules for the angles, specialized to the
angle 7—c. Equation (93) is also satisfied (it is obtained
by applying the cosine rules for the edges, specialized to
the edge of arc w— ), and Eq. (94) is replaced by

sinb sinc

“sinB

sin a

_ Vsa’sb’sc (96)
sin « sin y  sin a sin Bsin y
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Equations (94) and (96) are identical, and both are
identical to Eq. (92), as can be shown by employing the
standard identities

Vp,q

,=sinasinbsin y=sinbsincsina= ---,
Vsa,sb,sC =sinasin Bsinc= ---,

which yield
V,orV

pa.rVs,s,s, = SN asin Bsin ysinasin b sinc,

V2, =sinasinbsincV,

pq SaSpSe?
2 o . .
V-“msb»“c =sin asin gsin yV, , ..

The construction of a triangle of angular arcs
—a,m—B,7m—7, of angles m—a,m—b,m—c, requires that
the same inequalities are obeyed as for T}, .

Remark. The two tetrahedra OABC and OPQR are
in conjugate positions on the two-sphere; the edge s, of
OABC is perpendicular to the facet (OQR) of OPQR,
and the edge p of OPQR is perpendicular to the facet
(OBC) of OABC, etc. Hence the appearance of the arc
angles m—«, conjugate to the angles «, etc., of the angles
7—a, conjugate to the arc angles a, etc.

Both geometrical representations OABC and OPQR
of the Kirchhoff relation for three disvections are
equivalent; we retain the first one. They express that the
set of disvections terminate on a disvection of angle r,
whose direction w is not given a fixed value. In that
sense, the terminal node can be interpreted as a singular
point.

Notice also that the same {-1} disvection can be as-
signed to the spherical triangle (PQR)" outside the
smaller triangle (PQR). This shows that, in the present
representation of transvections, the full two-sphere S?
has to be assigned the identity disvection {+1}, with
angle 2.

1,2, ) _
b. hy G ny)={1}

Notice that e ™=e¢ ™ =¢ ™ ={-1}. Hence the {+1}
Kirchhoff relation of Eq. (89), for the angles «, 3,y and
the angular arcs a,b, ¢, can be transformed to the follow-
ing:

T VrelmBaglm-ap _ {1}, 97)

which can be discussed like the previous one for the
angles m—a,7—(B,7m—v and the angular arcs w—a,w
—b,m—c. The inequalities of Eq. (95) are now replaced
by

a+b+c=m, a+B+y<2m, (98)

i.e., the complementary ones to those for the case {—1}.

For the spherical representation of Eq. (97), see Fig.
30. Now the relevant angles are the external angles.
There is no {-1} disvection at the point where the three
disvections merge.
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FIG. 31. Sketches representing conjugate disvections; see text.

2. Orientation vs handedness of a disvection

The handedness of a disvection is a topological con-
cept; its orientation is related to the Volterra process; it
does not make sense topologically.

We have not yet taken care of the orientations (of the
disvection lines, or of the edges of the triangles T;f’q’r)
and of the signs of the angles «, B, and 7. In the usual
dislocation theory, the orientation of a dislocation line is
fixed arbitrarily, from which orientation the sign of the
related Burgers vector is deduced, but still depending on
a convention, generally the so-called FS/RH (final start/
right hand) convention (Nabarro, 1967). For a given ori-
entation, the change of Burgers vector has a topological
meaning, because b and -b are different translation
symmetries. We have here a somewhat more subtle situ-
ation.

a. Topological considerations only

(i) The change of sign of a transvection, viz., x —xe®’
changing to x ——xe®’, does not connote the same dis-
vection, for in such a case the triple node e®ePie”
={+1} changes sign: e®’eP1e” ={F1} is a different disvec-
tion. Hence a change of sign does not correspond to an
arbitrariness in the orientation.

(ii) The change of sign of the angle of a transvection,
viz., x —xe®’ changed to x —xe~“?, does not connote the
same disvection. The triple nodes e®ePle? ={+1} and
e e Pie= £ {+1} are different disvections, because of
the noncommutativity of the transvections. A change of
sign of the angle does not correspond to an arbitrariness
in the orientation.

(iii) Two conjugate disvections, viz., x —xe® and x
— e~ %x, are equivalent disvections. They are not equal,
because they differ by the disclination e™*xe”“?, which
breaks a proper rotation, but a proper rotation does not
modify chirality in the usual sense. This emphasizes the
concept of conjugacy (change of handedness). The two
equations e®efle?={+1} and e~ e Ple~*?={+1} are con-
jugate. The two oriented triangles of Fig. 31 (illustrating
the case {-1}) are conjugate triangles.

b. Volterra process

The topological considerations above indicate that the
lips of the cut surface of a disvection are displaced at x
by the quantity b(x)=xe® —x (expressed as a quater-
nion), but there is no hint whether this process adds or
removes matter. Once the choice is made, it can be re-
lated to an arbitrary orientation and a convention on the
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e ebiereds= {1}

ewePiered= {1}

FIG. 32. Four disvections meeting at a node; representation on
the unit two-sphere.

sign +|b|, in the manner of dislocations. The situation is
then much the same, and is independent of the handed-
ness.

The situation is different with disclinations, because
the opposite rotations e “xe”? and e“xe”“’ are both
allowed topologically.

3. More than three disvections meeting at a node
Let
ePePle7e® = {1} (99)

be four disvections meeting at a node, P,Q,R,S the ter-
minations of the directions p,q,r,s on the unit two-
sphere, a=2(SPQ), B=2(PQR), y=2(QRS), &
=/ (RSP). They are represented in Fig. 32 (top) as a
spherical quadrangle that can be split into two triangles

T,,,and T, . Equation (99) also holds if the triangles
are of types T,,, and T, . ie., if the angles are all
complementary to the 1n51de angles of the quadrangle
(not represented in Fig. 32). The two other sketches of
Fig. 32 correspond to other possibilities mixing inside
and outside angles.

More generally, a n-gon is the graphical representa-
tion of the meeting at a node of n disvections; the n-gon
can be split into n triangles (in many ways), each of them
of type 7;,'»17_,'»1’/( o Tl;i,Pj,Pk'

4. Kirchhoff relations for disclinations

It suffices to consider one set of right disvections and
one set of left disvections, separately. The results of the
previous section apply to each set.

a. Three disclinations meeting at a node

Assume first that the right and left transvections in
Eq. (88) are complex conjugate, l(') r“<Ql), and that the
angles «; and the directions p; are such that they form a
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FIG. 33. Node relations for disvections and disclinations,
mixed. A disvection is either left (black lines) or right (shaded
lines). (a) Disclination split into two disvections of opposite
hands; (b) disvection split into two disclinations.

{~1} triangle. The same triangle represents as well the
left and right transvections (Fig. 31). Hence, because
{-1}>={1}, the left and the right transvections all to-
gether amount to an identity isometry. The representa-
tive triangle, which is at the same time left and right, has
then to be thought of as a {1} triangle, i.e., a disclination
of angle 2. Taking into account the complementary tri-
angle on the two-sphere, the full S? has to be assigned
the identity isometry {+1}?, with angle 4.

Also, the rotation Z(Qi)xr(Qi) (with lg:f(g) is of angle 2«;,
each disvection taking part by an angle «;. We consider
the Euclidean limit in the OABC representation. Keep-
ing in mind that the rotation Z(Ql)xr(l) (= @_ l)) is of angle

2q; (a,:%, half the angle of the related disclination),
and noticing that, in this limit, the quantities sin «;, etc.,
are proportional to the edge lengths of a flat triangle it

appears that in this limit the vectors f, =2 sin - =p;» etc.,
obey a Kirchhoff relation, as already observed for dlsch-
nations in {am/E3}.

b. Extension to the generic case, when l(’) and r(')

complex conjugate

are not

It is possible, as noted in Sec. VII.A.3, to split a rota-

tion /xrY into two rotations with complex conjugate
transvections. Such a splitting having been performed,
we are back to the previous case.

5. Mixed case

Figure 33 indicates with two simple examples how dis-
clinations and disvections can merge at nodes, in the
particular case when the involved disvections all have
the same strength, up to chirality (complex conjugacy).
Notice that three disclinations of the same strength can-
not meet at the same node, a seemingly obvious result,
easily demonstrated by using the splitting of each discli-
nation into two disvections of opposite hands.

These results are entirely topological, and do not take
into account the orientations and signs of the disvections
that have been previously discussed (Sec. VIL.E.2). For



M. Kleman and J. Friedel: Disclinations, dislocations, and continuous ... 103

example, in Fig. 33(b), one can assume that the two
bundled right disvections are of opposite signs and the
same Burgers vectors. Therefore the bundle annihilates
and the two remaining disclinations are oriented the
same way, making them together a unique disclination.
Hence Fig. 33(b) is not at variance with the result of Sec.
VIL.D.2, established in the extended Volterra process
fashion, which states that a twist disclination carries con-
tinuous disclinations, not disvections.

F. The {3,3,5} defects

A short discussion of the {3,5} and {3,3,5} groups is
given in Appendix F.

We distinguish between disclinations, disvections, and
defects that combine both types. In this section, we re-
strict to defects in the nondecurved {3,3,5} polytope.

1. Disclinations

There are 60 Volterra disclinations, when identifying
“antipodal” elements in Y. This number goes up to 120

in the TS classification, for which Hl(V{3,3,5})~I_/>< Y.
Each element of rotation symmetry leaves invariant a
great circle C,,. For instance, for |o|=2m/5, C, follows a
sequence of ten spherical edges of the {3, 3, 5} polytope;
in the locally Euclidean version of {3,3,5}, in which each
spherical facet is approximated by a planar facet and
each spherical edge by a straight segment in E*, C, is a
polygon with ten edges. Observe that a wedge disclina-
tion is a disclination loop along such a C,. The local
rotation vector wt is along the tangent to C,; no at-
tached dislocations (disvections) are necessary to curve
the disclination line. See Nicolis et al. (1986) for a quan-
titative description of a disclinated {3,3,5} crystal in its
habit three-sphere.

2. The disvection Burgers vectors

There are 60 left disvections hyx{1}=hyx, and 60
right disvections {1}xhy=xhy, when identifying antipo-
dal elements in Y. These numbers go up to 120 right
disvections and 120 left disvections in the TS classifica-
tion. Disvections leave no fixed point in {3,3,5}.

Consider the right screw xe?, x=x+x1i+X,j+x3k be-
ing some {3,3,5} vertex M on the habit sphere S* of ra-
dius R. The displacement of M is Ax=xe*?—x, whose
absolute value |Ax| is [x||e?—1|=2R sin §. The left screw
e *x has the same Burgers modulus |Ax| as the right
screw; it is a constant independent of x. However, the
direction of Ax varies with M in {3,3,5}: it is tangent to
the Clifford parallels belonging to the Hopf fibration re-
lated to ¢ (Fig. 36), Appendix D.

There are two such Burgers vectors at each point, one
right and one left. Thereby, Ax is not a Burgers vector in
the ordinary sense, but it would tend to a constant vec-
tor if the radius R of {3,3,5} is allowed to increase with-
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out limit; however, this process has no physical meaning,
and we see later on another method to transform Ax
into a genuine Burgers vector.

Taking as=7%, we find [Ax|s=R7!, which is precisely
the length of an edge of the polytope {3,3,5}. This Bur-
gers vector is the smallest possible. It displaces x to one
of its 12 nearest neighbors, which are at the vertices of
an icosahedron. The orbit of x under the repeated action
of the right screw is a geodesic circle Cs ygp that is ap-
proximated by a ten-edge polygon. The coordinate x,
measures the distance to the geodesic circle C,, along the
0 axis. The angle Bs made by the orbit of x with C, is
arc(xp)/2R (Sommerville, 1967). The same consider-
ations apply to a left screw, yielding the same absolute
value for the Burgers vector, but directed now along an-
other great circle Csj at x, with angle —arc(x,)/2R.
Hence, the spherical angle between the two circles
Cs right and Cs i at X is arc(x,)/ R, which has to be equal
to 27/5 (five ten-edge great circles emanating from any
vertex and belonging to a geodesic two-sphere). Observe
that the notion of right or left is relative to C,. A Cs has
an intrinsic meaning; there are 72 different Css, since
there are 120 vertices and since 6 Css are incident at
each vertex (6 X 120/10=72). There are 48 right (48 left)
screws whose angle is a multiple of /5 (72° of arc, 288°
of arc, 144° of arc, 216° of arc) along six possible direc-
tions from each vertex. The Burgers vectors have re-
spective lengths R7!, R(3-7"?, R7, and R(2+17)'.
They all join x to the vertices of icosahedra of edge
lengths R7! for the first and R for the three others. The
Burgers vectors of length R(3— 1) join x to its 12 third
nearest neighbors, which also form an icosahedron
(Coxeter, 1973).

We also have | Ax|;=R for az=3—this is the distance
from the center x of a dodecahedron (edge length R71)
to its 20 vertices, which are the next-nearest neighbors
of x; these are not the vertices of the {3,3,5} polytope,
but the centers of the {3,3,5} triangular facets; |Ax|,
=\2R for a,= 5—this is the distance from the center x of
an icosidodecahedron (edge length \2R) to its 30 verti-
ces, which are the fourth nearest neighbors of x. Ob-
serve that the edge length can be larger than the radius
of the habit sphere (Coxeter, 1973). These vertices are
the midpoints of the {3,3,5} edges.

3. Screw disvections

In analogy with the Euclidean case, we define a screw
disvection as a disvection line parallel to the Burgers
vector, which in our case points out a great circle C,, n
=2, 3, or 5. We have emphasized above the n=5 case.
The cut surface can be any surface bound by Cs, for
example, half a great two-sphere. Now, in analogy with
the classical Euclidean case, we are interested in an ideal
cut surface 3, that slips along itself in the Volterra pro-
cess. An ideal cut surface of a screw disvection (i.e., a
loop) has to be parallel to the Burgers vectors, which are
supported by a set of Clifford parallels. Several possibili-
ties exist.
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(i) C, being the axis about which Cs is twisted, drop a
segment of geodesic C, (an arc of great circle) perpen-
dicular to C, between any point of Cs and C,,; this op-
eration determines a unique point on C, if Cs and C, are

not conjugate, any point on C, if Cs=C,,
(ii) The surface generated by the great Clifford circles

parallel to Cs and lying on C,. In effect, consider two

conjugate great circles Cs and Cs, generated by a five-
fold axis; these conjugate geodesics are indeed ten-edge
great circles, as shown by Coxeter (1991). Assume that
the screw disvection line is along Cs. The Burgers vector
varies in direction along Cs and the cut surface, but has
a constant modulus, as shown above. It is along the tan-
gent to Cs. The cut surface is made of Clifford parallels

to Cs and 65 which stretch on the skew surface 3 be-

tween Cs and 65. The Burgers vector attached to each
point of % is, by construction, along the local Clifford
parallel, and the Volterra process consists in a move-
ment of 3 in its surface.

4. Edge disvections

An ideal cut surface ¥, of an edge disvection loop has
to be orthogonal to the Burgers vectors, which are sup-
ported by a set of Clifford parallels. Therefore according
to the previous discussion, %, is a cap of a great sphere,
bound by a loop of any shape.

VIII. DISCUSSION

The foregoing discussions present a general view of
disclinations and dislocations. The emphasis is on (i)
their interplay with continuous defects (themselves char-
acterized as continuous dislocations, disclinations, or
dispirations) in the constitution of defect textures in all
media with continuous and frustrated symmetries; (ii)
their various relaxation processes as they can be ap-
proached by the consideration of defects, in particular
continuous ones.

These questions are not entirely new, as can be seen
from the literature, but they have been largely ignored
in the ill-ordered media community. The purpose of the
present article is to stress the changes of perspective
which occur in the theory of defects in mesomorphic
phases (liquid crystals) and other ill-ordered media,
when the notions of disclination and continuous defects
and the correlated use of the Volterra process are fully
used, in concurrence with the topological stability theory
of defects. Central to that analysis is the concept of the
extended Volterra process, essential to the understand-
ing of disclinations: this considers, in the last stage of the
process, a viscous or plastic relaxation of the elastic
stresses developed.

The other approaches to the defects in ill-ordered me-
dia are of two sorts. Only the second one is directly
comparable to the Volterra process approach.

(1) In liquid crystals with quantized translation symme-
tries, like smectics or columnar phases, many observa-
tions can be described in purely geometrical terms as
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isometric singular textures, largely inspired by the work
of Georges Friedel in the first decades of the twentieth
century (Friedel and Grandjean, 1910; Friedel, 1922); fo-
cal conic domains and developable domains, which obey
rather restrictive geometric properties, are of this sort.
But the geometrical approach to defects is limited to
situations where the role of continuous defects can be
set aside. For a review, see Kleman et al. (2004). It is a
rather remarkable fact that some mesomorphic liquid
phases adopt, on rather huge sizes compared to molecu-
lar sizes, configurations that obey very precise geometri-
cal rules, and that these configurations are directly re-
lated to the structural symmetries of the medium. These
configurations are worth investigation and they continue
to be of interest today. But these investigations did not
inspire considerations leading to the present theory of
defects.

(ii) In contrast to the emphasis on the geometrical
point of view, and since the late 1970s, when the theory
appeared, the basic concepts of defect classification in
mesomorphic phases and in frustrated media are those
of topological theory. The topological theory relates the
stability of defects to the topological properties of the
order parameter; it is concerned only with discrete,
quantized, defects. That topological stability leads to en-
ergetic metastability is in many cases a reasonable as-
sumption, which, however, cannot distinguish between
different topologically equivalent configurations.

A. The extended Volterra process

1. Pure Volterra process in the absence of plastic relaxation:
Constitutive defect densities

The pure Volterra process has been widely employed
in the study of material deformation (Frank, 1950b; Frie-
del, 1964); it applies to the construction of a Volterra
disclination in a solid, but only to a limited extent. One
distinguishes two cases.

a. Perfect disclinations

The only case is that one of a straight, wedge, discli-
nation line in a Volterra continuous elastic body or in a
crystalline solid, with rotation vector  parallel to the
line,  being a symmetry operation of the crystal.

b. Imperfect disclinations

This includes (i) straight wedge Frank grain bound-
aries, which are analyzable: in an amorphous medium, in
terms of parallel infinitesimal dislocations, uniformly
distributed, and in a solid crystal, in terms of finite dis-
locations, at least for small rotations; (ii) straight twist
lines or lines of a more general shape, which absorb or
emit constitutive dislocations attached to the line or in
its vicinity. In a solid medium with no relaxation, these
disclinations require very large energies to be created
and also to move: their creation involves large stress
concentrations extending over large regions; their mo-
tion would, whatever their nature, leave behind a stream
of dislocations that could be dispersed only by slip
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and/or climb. These properties are related to the fact
that, in such a solid without relaxation, the long-range
elastic energy is large as long as () is finite and the solid
is of macroscopic size; the core energy is also large when
the position of the lines deviates from the axis of rota-
tion. Except for borderline cases involving disclinations
of very small rotations, connected with weakly
polygonized grain boundaries in crystals, disclinations in
solids have not been observed as isolated objects, but
only regrouped in close parallel strands with compensat-
ing strengths: parallel wedge pairs of opposite rotations
in single crystals [described, e.g., by Friedel (1964)] or
triplets with rotations following a Kirchhoff relation, at
the edges of the grains in relaxed polycrystals, as in Sec.
III. In this last case, the twist components of the in-
volved disclinations exchange their constitutive disloca-
tions. In the absence of possible relaxation by slip or
climb, these are all sessile defects.

Remark. The pure Volterra process applies only if ()
> -2, since below this limit there is no matter left. But
any value in the range defined is allowed, even if the
configuration is topologically unstable. Notice also that
there is no limitation on the choice of the cut surface
with respect to crystalline symmetries, but this yields dif-
ferent dislocation configurations with different energies,
e.g., a tilt grain boundary if the rotation vector Q [Eq.
(1)] is in the plane of 3, with a set of parallel edge dis-
locations; a twist grain boundary if the rotation vector is
perpendicular to the plane of %, with two crossing sets of
parallel screw dislocations.

2. Extended Volterra process: Relaxation defect densities

Some plasticity of the medium can allow dislocations
to relax. Disclinations are relaxed either by Nye disloca-
tions or/and by absorbed or emitted attached defects.

a. Nye dislocations

Nye dislocations compensate as far as possible for dis-
locations of the grain boundaries associated with the dis-
clination. They widen the singular core of topologically
unstable disclinations (as for a k=n line in a nematic).
They can be included in the extended Volterra process,
in the last step which takes into account the plastic re-
laxations allowed by the boundary conditions and sym-
metries.

Notice that the extended Volterra process includes
OA=<-2m.

b. Emitted or absorbed dislocations

Emitted or absorbed dislocations play a prevailing
role when the disclination moves or changes its shape, in
interplay with Nye dislocations. And, like Nye disloca-
tions, they can be included in the extended Volterra pro-
cess, also taking into account the allowed plastic relax-
ations. They can be induced: in a solid, either by high-
temperature diffusion or by plastic deformation at low
temperature (or twinning, or crack formation), in a lig-
uid crystal by the anisotropic flow of matter.
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3. Mostly liquid crystals

It has been known for a long time, since well before
the emergence of the topological theory, that the geo-
metrical variability, the energetic (as opposed to topo-
logical) stability, and the elastic relaxation of defects in
cholesterics (Friedel and Kleman, 1969) are largely con-
trolled by relaxation defect densities. This occurs
through mechanisms, not yet thoroughly investigated,
that involve continuous symmetries of the medium. A
continuous defect, just like a quantized defect in the
Volterra classification, is related to a symmetry element
of the liquid crystal, precisely a continuous symmetry. In
topological theory, it always belongs to the identity ele-
ment {1} of the first homotopy group II;(V); in that
sense, a continuous defect is never topologically stable.
Continuous defects are often attached to quantized dis-
clinations, whose flexibility and relaxation they control.
Similar results apply to all mesomorphic phases, as they
display continuous symmetries. The extended Volterra
process was presented by Friedel and Kleman (1969),
but has not been developed since. It is interesting to
note that even Georges Friedel’s “rigid” defect geom-
etries show different aspects when discussed in terms of
continuous dislocations.

Remark. Some noncontinuous Volterra disclinations
also belong to {1}. For instance, in uniaxial nematics N,
the Volterra process provides two types of quantized dis-
clinations, those whose rotation angle is an odd multiple
of 7, and those whose rotation angle is a multiple of 2.
Only the defects of the first type are recognized as being
topologically stable (i.e., differing from {1}); the defects
of the second type belong to {1}. This is so because the
liquid-crystal symmetries contain a continuous rotation
subgroup (not present in solid crystals) whose presence
drives the first homotopy group finite, whereas the
group of Volterra defects is infinite. In practice, quan-
tized defects that are not allowed by the topological
theory are also of interest, as it may happen, for instance
with suitable boundary conditions, that the energetic
stability of the defect prevails over its topological stabil-
ity. In this sense these quantized disclinations which
carry an angle of rotation multiple of 27 are true discli-
nations.

Since a deformed mesomorphic phase is a liquid,
there are no strains at rest; but there are large curvature
deformations that can be analyzed in terms of Nye den-
sities (Kleman, 1982b), continuous dislocations, or con-
tinuous dispirations. Since continuous defects are topo-
logically related to the continuous symmetries of the
mesomorphic phase, this puts limitations on the possible
curvature deformations of the medium in the vicinity of
quantized disclinations, and on the shape modifications
and mobility of those defects.

Indeed, a continuous transition between Hooke strain
elasticity for solids and Frank-Oseen curvature elasticity
for mesomorphic phases is ensured by a continuously
growing density of dislocations whose Burgers vectors
decrease and vanish in such a way that the total Burgers
vector remains constant.
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4. Extended Volterra process vs topological stability

a. The topological stability theory

The topological stability theory considers only defects
that cannot be suppressed by plastic relaxation. It pro-
vides an a posteriori description that results from a map-
ping of the distorted medium onto the order-parameter
space V=E*/H. Quantized dislocation and disclination
invariants {a;} belong to the first homotopy group of the
order-parameter space I1;(V), which is usually non-
Abelian.

The topological approach has the advantage of being
extendible to defects of any dimensionality (point, line,
and wall defects, and configurations). It is a more con-
densed process but a poorer one than the Volterra pro-
cess, as it neglects the boundary conditions and makes
equivalent all configurations that can be deduced one
from the other by continuous deformations. For such
deformations to occur, a high degree of plasticity is re-
quired, which does not occur in solids at low tempera-
tures, whether crystals or glasses, and other amorphous
systems, but is present in liquid crystals and ferromag-
netics. The approach does not always allow prediction of
the stabler configuration in ordered media, still less pre-
diction of the finer details of any configuration. By ne-
glecting the topologically unstable situations, TS makes
the bet that the corresponding singularities do reduce
their energy by dissipating in some way. This bet is most
often justified; however, it might fail in the presence of
special boundary conditions, as the k=1 nematic line in
a capillary tube (Cladis and Kleman, 1972; Meyer, 1973)
and more generally in thin samples, where their broad
core was well known to Friedel (1922). Also, in the pres-
ence of strong material constant anisotropies, a k=1 dis-
clination core may be singular—this latter situation is
met in nematic main-chain polymers (Mazelet and Kle-
man, 1986).

b. The extended Volterra process

The extended Volterra process is an a priori descrip-
tion of defects, as it gives a process of creation of line
defects (only) whose characteristic invariants are classi-
fied by the elements of the symmetry group H of the
medium in a medium free of stresses.

It yields the same conclusions as the topological sta-
bility theory, but at a finer level, by properly handling all
plastic relaxations, including those related to line-
attached defects. This approach can be useful when in-
vestigating dynamical aspects, when the viscosity is large
as in solids, in most smectics, and in polymeric liquid
crystals (Friedel, 1979; Kleman, 1984). It is also useful
when dealing with nanostructures. This is at the price of
an often much more complex analysis.

5. Reconsideration of a posteriori Volterra description of a
defect in an amorphous medium

A Volterra constructed disclination is qualified by the
line direction with respect to the rotation vector: it is a
wedge, twist, or mixed disclination line. Similarly, a dis-
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location is a screw, edge, or mixed dislocation line. Such
specificity does not characterize a line defined by its to-
pological invariant. The question therefore arises as to
whether it is possible to qualify any given line of the
deformed medium in the same terms. This requires an a
posteriori description of the defect, i.e., some kind of
mapping that brings back the deformed medium to a
stress-free reference medium, from which the line has
been supposedly constructed in the Volterra mode.

This program seems feasible when the reference me-
dium is endowed with a 3D crystal lattice L whose
equivalent directions and equivalent points can be rec-
ognized in the deformed medium. Directions can be fol-
lowed along circuits surrounding disclinations, and a ro-
tation or Frank vector obtained that is unique in the
reference lattice. This is how the Kirchhoff relations are
established.’

This consideration, namely, the possibility of fully
characterizing an isolated dislocation or disclination, ex-
tend to the continuous theory of defects of Bilby,
Kroner, and so on, which always assumes explicitly the
presence of a lattice, whose repeat distances are most
certainly taken infinitesimally small, but this does not
invalidate our reasoning. The continuous theory, in a
way, contemplates continuous sets of isolated defects,
whose Burgers vector is nonetheless infinitesimally
small. For this purpose it employs the methods of differ-
ential geometry on manifolds. It is precisely the exis-
tence of a lattice that justifies the use of the Cartan-
Levi-Civita distant parallelism method in the continuous
theory of defects. For if equivalent points and directions
did not exist in the deformed medium, the comparison
of vectors at two distant points would make no sense. It
then follows that there are quantized disclinations in an
amorphous medium, but their characteristics depend on
the gedanken lattice drawn on it; therefore they do not
present physical interest. We have considered only con-
tinuous disclinations in amorphous media in this article.

B. Volterra processes in various media compared

The Volterra process applies to amorphous and frus-
trated media as well as to liquids, solid crystals, and tem-
plates of frustrated media. There are, however, some dif-
ferences worth stressing.

a. Amorphous medium

In an amorphous medium, the translation vector and
the rotation vector that define the relative displacement
of the cut surface are elements of the full Euclidean
group E3. The related defects are not topologically
stable. Dislocations and finite disclinations are noninde-

"Notice that the Burgers vector of a dislocation surrounding a
disclination € is not uniquely determined this way; it is defined
but to a rotation €, as first noticed by Sleeswyk (1966), see
also de Wit (1971) and Harris and Scriven (1970, 1971). This is
a small complication stressed in Sec. II.LE.1, whose effect on the
Kirchhoff relations has not been investigated.
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pendent defects. A finite disclination carries a field com-
prising constitutive and relaxation dislocations. It also
possibly carries infinitesimal disclinations. The constitu-
tive and relaxation dislocations relate to the strength of
the line and to a part of its curvature (through the kink
mechanism); the infinitesimal disclinations relate to an-
other curvature component. These infinitesimal disclina-
tions correspond to infinitesimal rotations belonging to
the rotational part of the Euclidean group, whereas the
strength of a finite disclination is characterized by invari-
ants associated to the constitutive and relaxation dislo-
cations, i.e., belonging to the translational part of the
Euclidean group only; these translations generate the
Frank vector associated with the finite disclination.

b. Solid crystal

In the solid crystal, the characteristic Volterra invari-
ants of the defects are the translation and rotation ele-
ments of its Euclidean symmetry group H, whose ele-
ments classify dislocations and disclinations (necessarily
finite) as now independent defects. However, the con-
cepts of constitutive and relaxation dislocations still
make sense. Because there are no infinitesimally small
rotations in H, a line can be curved only by the kink
mechanism, which makes use of finite relaxation dislo-
cations. On the other hand, a straight disclination line is
necessarily of wedge character, as there are no infinitesi-
mal dislocations to give it a twist character.

Notice that this description applies better to coarse-
grained crystals with a quasi-perfectly-polygonized, an-
nealed structure. Most grain boundaries in a polycrystal
are strongly misorientated, like polynanocrystalline ma-
terials below.

c¢. Polynanocrystal

In a polynanocrystal, the nanograins are separated by
generally large misorientation grain boundaries which
thereby are not analyzable in terms of quantized dislo-
cations (those of the crystal) but rather in terms of con-
tinuous dislocations. In an ideal picture, three grains
meet along a segment of (continuous) disclination, and
these segments meet at quadruple nodes, forming then a
3D disclination network. The plastic deformation of
polynanocrystals is at variance with that one of usual
polygonized crystals; it is governed by the disclinations,
which yields considerable stresses. Disclination-
governed plastic deformation has long been a subject of
the Saint Petersburg Russian school [see Romanov and
Vladimirov (1992) for a review], without attracting much
attention elsewhere.

d. Liquid crystal

In a liquid crystal, the characteristic invariants of the
defects are as above the translation and rotation ele-
ments of a Euclidean group H, whose elements classify
dislocations and disclinations as independent defects.
But, according to the case, the corresponding translation
and rotation symmetries are finite or/and continuous, in-
cluding infinitesimally small elements. In a nematic (N)
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FIG. 34. (Color online) Genealogy of Nye’s dislocations. These
represent the gradual passage from a situation where (a) a ran-
dom density of finite dislocations imposes curvature and strain
to a situation where (c) the Burgers vectors becoming infini-
tesimal, the strain vanishes but the curvature subsists. In be-
tween (b), the dislocations of (a) have organized into subgrain
boundaries.

liquid crystal, translation symmetries are continuous, in-
cluding infinitesimally small elements, and rotation sym-
metries are of both types. In a SmA liquid crystal, there
are quantized and continuous translation and rotation
symmetries. Line defect curvatures are therefore related
to both the kink mechanism, through (quantized or con-
tinuous) dislocations, and the presence of infinitesimally
small strength disclinations.

e. Curved habit spaces of frustrated media

In the curved habit spaces of frustrated media, like
{am/S$3}, {3,3,5/53}, and {dtw/S3}, dislocations (which
we call disvections) are not commutative, and disclina-
tions can still be defined, with the same differences as
above between amorphous media and crystalline media.
Generically, disvections do not attach to disclinations,
but disclinations do. Three-dimensional disclination net-
works are therefore important features of the habit
curved spaces, if one draws one attention to the plastic
deformation of such spaces at constant Gaussian curva-
ture.

Disclinations also form 3D networks in actual, Euclid-
ean, amorphous systems, liquid crystals such as choles-
teric blue phases, Frank and Kasper phases, and prob-
ably in undercooled liquids or quasicrystals. In such 3D
networks, the disclinations have to be somewhat flexible,
which is possible, whether these disclinations are quan-
tized or not, only if other defects, dislocations (defined
in the Euclidean decurved medium) or disclinations,
continuous or not, attach to them.
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APPENDIX A: CONTINUOUS DISLOCATIONS IN SOLIDS
AND NYE’S DISLOCATION DENSITIES

This is a simplified presentation of a topic that has
been very inspiring for the theory of continuous disloca-
tions.

We consider a deformed body described in terms of
deformations B;; or of strains e;;= 2(:34"' ,8],) and assume
that these quantities are so small that it is permissible to
ignore second-order terms. As is well known, it suffices
to know the strains e;; in order to derive the stresses and
the elastic energy, so that the deformations g;; are gen-
erally ignored. In the absence of elastic singularities (dis-
locations, disclinations), the 8;s are derived from a dis-
placement B;;=u;; (we use the notation u; j=du;/ dx;). The
Beltrami conditions (that the strains have to obey in or-
der to ensure the existence of a displacement function)
are

(A1)

Here we have introduced the incompatibility tensor
(ince);;= €;jx&pmnjm kn; it does not vanish in the presence
of elastic singularities.

The condition for the existence of a displacement
function takes a much simpler form in terms of the B;’s,

@;j = —giPr = 0. (A2)

The theory of continuous dislocation densities empha-
sizes the role of the tensor a;;; when there is no displace-
ment function, it does not vanish, and it can be inter-
preted in terms of dislocation densities; we refer the
reader for details to Kroner (1981); see also Kroner
(1958) and Nabarro (1967), Chaps. 1 and 8.

The integral Au;=—;,8;dx;=—J [ ;o1;dS) on a loop dor
that bounds the surface element o vanishes if the strain
derives from a displacement function (8;=u;); if this is
not the case, the one-form B;dx; is not integrable, and
the integral measures a displacement vector Au;. Au is
interpreted as the Burgers vector of the dislocation den-
sities that pierce the surface bounded by do; a;; is the
density of dislocations along the x; axis; it measures the
total Burgers vector component along the x; axis of the
set of dislocations through the unit area perpendicular
to the x; axis. For a dislocation L of finite Burgers vector

b along a direction t, one gets a;;=—1;b;8(L).

Now, again after Kroner, we wr1te @;j as

(lnce)ij = &ijik€imnCimkn = 0.

@ = — EikClj k + W;j— Wy, k‘sl > (A3)

by splitting Bjj=e;;+ w;; into a symmetric part e; and an
antisymmetric part w;. We have introduced w;=
(reciprocally, ij_s,»]»kwk), which yields o,

the relation (A3). If e 18 “compatible

zslklwkl
281k1,3k1, hence
Le., =0, we
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have w,-:%sik,u,,k. In the generic incompatible case, the
Bij’s and w;’s have to be given new interpretations, which
we detail below.

For the time being, notice that w; measures the rota-
tion of an element of volume with respect to the lattice
directions (w; is a rotation about the x; axis with respect
to the x; axis and the x, axis); according to Eq. (A3) it
contains two contributions to the rotations, one coming
from the strains and the other from the dislocation den-
sities a;;. This sphttlng into two contributions makes
sense, because it is possible to conceive an ordered me-
dium with no strains but a density of dislocations, the
Nye’s dislocation densities (Nye, 1953), at the origin of
the rotation distortions. An example is given in Fig. 34,
directly inspired by Nye’s analysis. In a strainless me-
dium, these densities read

Qj; = W; wk,kéi,j, (A4)
which can also be written
1
w; ;= & — 2 akk‘sl (AS)

In the general case, the gradient tensor of the rotations
is
(A6)

w; = &€kt ¥ — 5 %k

2
where the two contributions (from the strains, and dis-
location densities) are separately nonintegrable.

Of course, this model is valid as long as the rotations
w; are small. In the smectic case discussed, the w,;’s mea-
sure the rotation of the orthonormal Darboux-
Ribaucour trihedron from its equilibrium position along
the principal axes of the shell (Darboux, 1894).

There is no equivalence between a description in
terms of Nye’s dislocation densities and a description in
terms of strain dislocation densities; in other words, the
solutions in B; of the equation a;=-g;B)i=w;;

—wy i 6;; are such that g+ B;=0. Reciprocally, the solu-
tions in B; of the equation «;=—&y,B)=—¢&€jjx are
such that ;- B;;=0. Descriptions in terms of Nye’s dis-
locations and of strain dislocations are exclusive one
from the other.

The gradual passage depicted in Fig. 34 can also be
thought of as a gradual transformation of a solid (with
quantized dislocations carrying strains) into a SmA
phase (with continuous Nye dislocations only). In this
transformation, the distorted solid crystal elasticity
gradually becomes the elasticity of the distorted smectic
phase. More generally, the prevalence in mesomorphic
phases of Nye’s dislocations over quantized dislocations
is the sign of their liquid character, and the origin of the
Frank-Oseen elasticity (Frank, 1958), replacing the
Hookean elasticity.

Returing to the physical meaning of the g;’s and w;’s
in the generic incompatible case, 3,; describes a plastic
distortion that displaces an element of volume with a
finite section Ax;Ax, along the x; axis, by a quantity
Bo1Ax,. This distortion can be managed by the glide



M. Kleman and J. Friedel: Disclinations, dislocations, and continuous ... 109

along the same axis of a set of edge dislocations parallel
to the x5 axis, with Burgers vectors along the x; axis.
There is no change of volume density.

B, describes a plastic distortion that elongates (or
shortens, according to the sign) an element of volume
with a finite section Ax; Ax, along the x, axis, by a quan-
tity B, Ax,. This distortion can be managed by the
climb, along the same axis, of a set of edge dislocations
parallel to the x5 axis, with Burgers vectors along the x,
axis. There is a relative change of volume density equal
to Br.

w3, discussed above, can also be thought of as the re-
sult of two glide operations, 3,; and — 5.

In the present theory, no account is taken of disclina-
tion densities, since the rotation dw;= w; jdx; is, of course,
integrable: the density of disclinations vanishes.

In fact this theory computes the minimum density of
dislocations necessary to produce a given distortion of
the medium. It assumes that this results from dislocation
creation and annihilation, as well as from motion by
glide and climb. Such hypotheses are well satisfied in
magnets or liquids or (partly) in liquid crystals. They are
not generally satisfied in solids, except partly at very
high temperatures. As in TS theory, it assumes perfect
plastic relaxations, but for given boundary conditions.

APPENDIX B: TOPOLOGICAL STABILITY AND
VOLTERRA PROCESS COMPARED, CONJUGACY
CLASSES AND HOMOLOGY

To begin, notice that L+ (0,a) and L"—(2,a) are in
the same conjugacy class of the first homotopy group; in
fact, all elements (2p,a), p € Z, belong to the same con-
jugacy class and represent the same core type of discli-
nation; the other type of core corresponds to the conju-
gacy class (2gq+1,a), geZ. Each core-type of
disclination, i.e., each conjugacy class can be identified
in the Volterra classification with two types of disclina-
tions, k= i%, differing by the sign: the topological clas-
sification does not distinguish k:% and k:—%. There is
an infinite number of other conjugacy classes, corre-
sponding to the dislocations, each defined by a positive
integer r and containing two elements {(r,e),(-r,e)}, i.e.,
two Burgers vectors equal in modulus, opposite in signs.
All together one has %+2 conjugacy classes:

C,A(r,e),(-r,e)y reZ"U{0}
Ci:{2p+1,a)}y peZ
C{(2q,a)} qeZ

Each conjugacy class therefore corresponds to an ele-
ment of the Volterra classification, although it does not
specify whether the line is twist, wedge, etc. This asser-
tion can be made more accurate as follows. The classes
C,—they represent dislocations whose Burgers vector is
even—are commutators of I1;(Vgy,); it is indeed not

difficult to prove that any element of the form uvu v,

(B1)
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where u,v=(n,a), belong to a C,,. The commutators
generate a normal subgroup of I1;(Vg,,4)—the so-called
derived group D—such that I1;(Vg,,) can be parti-
tioned into cosets c;,

Hl(VSmA) = E Ci= E ltiD =D+ ulD + uzD + M3D,
i i

(B2)

with c¢y=D, c¢;=Q2p+1,a)D, ¢,=Q2q,a)D, c3=2r
+1,e)D. It is easy to check that the content of each coset
is independent of the values of the integers p, g, and r.
Furthermore, all elements of C; belong to ¢, those of C,
belong to ¢,, and those of all C,,,; belong to c3. Finally,
I1,(Vgma)/ D={cg,c1,¢y,c3} is an Abelian group whose
identity element is c¢,. It is the dihedral group Dj; its
multiplication rules cjc3=c¢,, c,c3=c; reproduce the ef-
fects described above of the emission or absorption of a
dislocation with an odd Burgers vector at the core of a
disclination. Two disclinations of different core types
give an odd dislocation, when merging: c¢;c,=c3. All the
odd dislocations appear as one and the same element c3;
the even dislocations appear in the identity element c,,.
More generally, I1;(V)/D is an Abelian group, called the
first homology group, noted H(V,Z).

Let (), be some rotation symmetry axis in a SmA lig-
uid crystal; an axis (), obtained by any rotation of (),
about the normal to the layers is also a rotation symme-
try axis. However, the two wedge disclinations L; and L,
are not distinguished by the topological classification,
which assigns indifferently the element (0,a) to both.
The latter result is another weakness of the topological
classification, which originates in the presence of a con-
tinuous rotation symmetry about the layer normal in a
SmA phase. The same difficulty does not arise with a
SmC phase, whose first homology group is also D,,
whereas the conjugacy classes are twice as numerous as
in a SmA phase; II;(Vg,c)=Z0Z,; see Bouligand
(1974), Bouligand and Kleman (1979). Observe that the
symmetry point group of a SmC phase is Hg, =202,
(reflections excluded), and that D, is precisely the quo-
tient of the point group by its derived group. Z[1Z, is
the Volterra group of defects (it is easy to check that it
contains the two kinds of rotation axes, those in the
layer planes, and those in the midlayer planes, all per-
pendicular to the mirror plane), and D, can be under-
stood as the Volterra group restricted to its Abelian
properties. The SmC point group is a quantized group,
and the relation just indicated between the Volterra
group and the homology group can be extended to any
medium with a quantized point group (reflections ex-
cluded). The same relation does not hold when the point
group is continuous, as it is for SmA (Hg,4,=Z0D..); see
Kleman (1982b), Chap. 10.

But in both cases the even dislocations are lumped in
the identity element of H{(V,Z). In both cases, and
eventually in all cases of ordered media, the Volterra
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N(r+dr, ¢+d¢)

M(r,9)
—

FIG. 35. Distribution of the rotation vectors =t on an el-
lipse in a focal domain. The layers intersect the plane of the
ellipse along circles centered in one of the foci.

classification has a stronger kinship with the set of con-
jugacy classes of I1;(V) than with H{(V,Z). The lumping
of even dislocations in the identity element of the first
homology group is, of course, a weakness of the homol-
ogy classification; a tentative explanation has been given
by Kleman (1982b), Chap. 10, where a more general dis-
cussion of the conjugacy classes and of the homology
classification in any ordered medium can be found [see
also Kleman (1977)].

APPENDIX C: THE ELLIPSE IN A FCD AS A
DISCLINATION

In a generic FCD (Fig. 26), the hyperbola H is com-
pletely embedded in the domain and is a wedge discli-
nation of strength k=1; indeed any direction along it is a
27 symmetry axis. On the other hand, the ellipse E,
which is usually on the boundary of the domain, is a
disclination of strength k:% for the full layer geometry,
which contains the FCD and two sets of outside layers
that meet on the plane of E. But E is not in general of
wedge character, because the tangent to the ellipse is not
a folding axis for the local smectic layers. An obvious
solution is given in Fig. 35, where the local rotation vec-
tor Ot, with =1, is tangent to the layers, which are
folded symmetrically with respect to the plane of the
ellipse (Kleman et al., 2006). Other solutions are pos-
sible, with  off this plane (but then necessarily non-
symmetric with respect to the ellipse plane), which
would correspond to a different set of attached disloca-
tions, most probably of higher energy.

We apply Eq. (1), rewritten

db,. =2t X MN, (C1)
to the ellipse, Fig. 35; db,, is perpendicular to the plane
of the ellipse, and one easily gets db,,=2dr; therefore the
total Burgers vector attached to one side of the ellipse
(0< ¢p<m) is (Kleman and Lavrentovich, 2000)

d=1
b, = f db,. =4c.
=0

(C2)

Taking dr=dy—an approximation which makes sense
(up to second order), since d; is so small compared to
the size a of the ellipse—it is visible that the points M, of
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polar coordinates {r, ¢}, and N, of polar coordinates {r
+dr,d+dd}, are on two parallel smectic layers at a dis-
tance d, and the total Burgers vector attached to a layer
is equal to 2d,. There are no dislocations attached to the
singular circle of a toric FCD, as the eccentricity e van-
ishes, and 6r=0. The Burgers vector attached to a layer
that is transverse to the perimeter of the ellipse is a
constant, 2d,,. Consider one such dislocation of Burgers
vector 2d,; it spreads outside the ellipse in the shape of a
quantized dislocation, on both sides of the ellipse, and
goes across it in the shape of curved layers, in a manner
akin to the k:% case (Fig. 21). The full balance of Bur-
gers vectors has to take into account the Nye disloca-
tions, including those related to the infinitesimal discli-
nations,

— df = dt = - {cos ¢,sin ¢p}d . (C3)

dt is a vector along the normal of the layer, as required
by symmetry (the normal to the layer is an axis of con-
tinuous rotational symmetry). But there is no a priori
reason that the total Burgers vector carried by the Nye
dislocations balances topologically the quantized at-
tached dislocations; it is the attachment that provides a
balance equation.

If the dislocation segments outside the ellipse belong
to a plane, they build a grain boundary limited by the
ellipse. It is a simple matter to check that the misorien-
tation angle is w=2 sin~! e. This grain boundary is a pure
tilt boundary if it occupies the plane of the ellipse. No-
tice that e (the tilt vector, along the direction of the
ellipse minor axis) and Qt (along the ellipse) define both
the same tilt grain boundary; as described in Sec. IL.E.1,
Eq. 9).

We know from topological stability theory that the
defect geometry of the ellipse as a disclination does not
break the constancy of its conjugacy class in I1;(Vgya)
along E. The variation of the representative homotopy
class (inside the same class of conjugacy) for a circuit
embracing the line depends on the quantized disloca-
tions (not the infinitesimal dislocations which belong to
the identity class of the homotopy group) attached to it,
which it also embraces.

APPENDIX D: A FEW GEOMETRICAL
CHARACTERISTICS OF THE THREE-SPHERE

Details on the topics that follow can be found in Som-
merville (1967), Montesinos (1987), and Coxeter (1998).

1. Clifford parallels and Hopf fibration

The trajectory of a point M € S° under the action of a
right screw, say, x'=xe?, 0<a<2m, is a great circle
Cyigne Of S°. Two right (respectively, left) great circles that
rotate helically about the same ¢ are equidistant all
along their length and mutually twisted with a pitch w
=2 (respectively, —2): they form a congruence of so-
called right (respectively, left) Clifford parallels that fill
S3 uniformly. All great circles of this congruence are



M. Kleman and J. Friedel: Disclinations, dislocations, and continuous ... 111

s j/a,,

|(~Ip (6=m/2) (b)

FIG. 36. (a) C, and C'p are conjugate great circles (represented
as straight lines in reason of their geodesic character); Cyign
and Cyey are equidistant to C,, and é‘p (OA=9, AQ=7/2-).
All right and left Clifford parallels at the same distance ¥ gen-
erate a ruled Clifford surface with two axes of revolution C,
and ép. (b) Representation on the basis S of a Hopf fibration
of 83, with C » and Cp as particular fibers. Each fiber is repre-
sented by a point on the basis; Clifford surfaces (the small
circles on S2) 9=const; spherical torus 9=m/4.

equivalent. Because any of those great circles can be
considered as the axial line of cylindrical double-twist
geometry for the other parallel great circles, the geom-
etry of Clifford parallels has inspired a nonfrustrated
model of the blue phase (Sethna, 1984). The great
sphere S? defined by the intersection of the hyperplane
q1X1+q.%,+q5x;=0 and S° intersects the great circles of
the congruence orthogonally; this geometry defines S° as
a fiber bundle of great circles S' over a great sphere S,
the Hopf fibration (see Fig. 36). Notice that great circles
are the geodesic lines of S® and great spheres the geode-
sic surfaces of §°.

2. Spherical torus

The axis p and the circle of unit radius in its equator
plane (Fig. 29) play identical roles in the double rotation:
p is the stereographic projection of a great circle of S,
here denoted C,, which is the intersection of the sphere

of unit quaternions xj+x}+x3+x3=1 with the two-plane
X1_ X

X3 . jod .
o= 22 =1y the equator circle, here denoted C,, is a great
circle intersection of the unit quaternion sphere with the
two-plane x(=0, pix;+prx,+p3x3=0. These two great
circles are conjugate; they have this remarkable prop-
erty that the arc of any great circle C, joining any point

on C, to any point on @p is perpendicular to both and
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has arc length /2. Select any C, and transform it under
the action of the right screw x'=xe®, 0 <a<2m, say;
this yields a set (C,) of great circles, all stretching be-

tween C, and C‘p. The surface obtained is called the
spherical torus; it is generated by two families of great
circles: (C,) and (C,) made of the Clifford parallels that

are parallel to C,, (and to Cp). These two families form a

rectangular network on the spherical torus.

3. Clifford surfaces

Consider now the action of a left screw y’'=efPx’
about the same axis p, i.e., y'=e”xe®p on Cright When
M(a) traverses the geodesic line Ciigy, and B varies in
the range 0 <=2 each point on Ci, develops into a
full geodesic trajectory Cy. (a great circle) whose entire
set forms a Clifford surface, which is a closed surface
with two conjugate axes of revolution; these axes are
precisely the conjugate geodesic circles of the double
rotation p. The geometric properties of the Clifford sur-
face depend on the angular distance ¢ of Cigy to C,.
This is illustrated Fig. 36.

The particular Clifford surface d=m/4 is a spherical

torus, whose axes of revolution are C, and C,,.

APPENDIX E: GEOMETRICAL ELEMENTS RELATED
TO A GREAT CIRCLE IN §3

1. Great circle defined by two points

Consider two points M and M’ on the three-sphere 3,
in quaternion notation « and u', in vector notation u and
u’. We have

u-u' =R*cos ¥, uil’+u'ti=2R?cos J. (E1)
¥ is the angle between the directions u and u’.

We define the geometric elements related to the great
circle C (centered at the origin {0}) going through u and
u'.

We introduce two quaternions u+u’ and u—u', corre-
sponding to orthogonal vectors. We now show that there
are two pure unit quaternions @ and o such that

!

u+u' «1-op0,

u' —-uxpg+ao, (E2)

with the same coefficient of proportionality, a real num-
ber. In effect, multiplying the second equation by ¢ (on
the left) in order to get an expression for ¢, and by o (on
the right) in order to get an expression for o, and sub-
stituting then in the first equation, it becomes

oox(u —uw)@ +a)=u't—-ui’,

cx(@ +a)u -uw=0u"-id'u, (E3)
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where uii=u'ii(=R?). It is easy to check that ¢ and o are
pure quaternions. It remains to renormalize, in order to
get pure unit quaternions. Using

luit' —u'd* = (uit’ - u'it)(u'il — uii') = 4R* sin* &

and the same expression for [iu—7u'|?, ¢ and o eventu-
ally read

au' —i'u
o= - .
2R?|sin 9

B u't—ui’
~ 2R?[sin 9|’

Y (E4)

The two-plane in which lies the great circle C, defined
by u, u’, and the origin of the coordinates (which is the
center of C), contains the directions 1-go and p+o. It
is denoted I, ,={0,1-p0,0+0}. Any rotation of angle
U that leaves invariant this plane leaves invariant the
great circle C that contains u and u'; it transforms any
point y € E* into y’ € E* according to

' = e (9210 (92)0

I, , is the axial plane of the rotation. The plane
Hé’0{0,1+QU,Q—U} is completely orthogonal to IT, .

2. Great circle defined by the tangent at a point

We look for the great circle going through two very
close points # and u+du, when du vanishes continu-
ously; one gets

dud-udi 1 (duﬂ dﬁ)
= —iu-u—/|,
2R?d9  2R\ds ds

_adu—dau_i<~d_u dii )
T 2Rd9 2R\"as " as")
where ds=R d¥ is the arc element on C.
Let u be the unit tangent at u to C, |u|=1; we have

1 1
Q=EEUW—uﬂ% 0=5§@M—ﬂw- (ES)
Because of the relation of orthogonality p-u=0, we
can also write

1 1 1 1

O=—pl=——"uUul, O0=_"Uu=——"[U.

(E6)
R R R R

One easily checks that ¢ and o are two pure unit
quaternions; >=c>=-1.

APPENDIX F: THE {3,5} AND {3,3,5} SYMMETRY
GROUPS

The symmetry group of the {3,3,5} curved crystal is
related to the symmetry group Y of the icosahedron,
since any vertex is the center of an icosahedron.

1. The group of the icosahedron {3,5}

The group Y is finite with 60 elements, represented by
rotations about the 6 fivefold axes, the 10 threefold axes,
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and the 15 twofold axes of the icosahedron. The order-
parameter space of the icosahedron {3,5} is Vi35

=S0(3)/Y, whose first homotopy group I1;(V55) ~ Y is
the lift of Y in the covering group of SO(3), i.e., in SU(2).

Y is also known as the binary group (5,3,2) (Coxeter,
1973); it has twice as many elements as Y.
The topological theory defect classes of the icosahe-

dron have been investigated by Nelson (1983b). Y is per-

fect (i.e., the commutator subgroup D[Y]=Y), so that in
principle all defects can mutually annihilate (Trebin,
1984).

The icosahedron vertices can be expressed in terms of
quaternions, so that we have the analytical tools to rep-
resent the symmetry actions on {3,5}. A caveat: Since all
symmetry elements /iy € Y are rotations about axes hav-
ing the center of the icosahedron as a fixed point, going
through the two-sphere S? on which {3, 5} lives, any ac-
tion on a point x of the icosahedron has the form hyxhy
and connotes a disclination, in the Volterra process
terms. Therefore there are no disvections generated by
the point group Y in {3,5}.

2. The group of the {3,3,5} polytope

The 120 elements of Y, in quaternion representation,
occupy on S3 precisely the locations of the 120 vertices
of a {3,3,5}. Thus the binary icosahedral group consti-
tutes a group isomorphic to the group built by these
vertices (Coxeter, 1973). The {3,3,5} symmetry point
group (indirect isometries excluded) is

H=YXY, (F1)
whose lift in G(S3)=5%x §3 is

H=YXY. (F2)
H has 7200 elements. The displacement of a point x of
{3,3,5} under the action of the symmetry group is

x'=hyxhy, hyeY, hyeY (F3)

(or, taking the conjugate, a point y’ =hyyhy), where hy

and /1y are not necessarily conjugate, i.e., Eq. (F3) com-
poses any right action and any left action.
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