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Recent interest in aspects common to quantum information and condensed matter has prompted a
flurry of activity at the border of these disciplines that were far distant until a few years ago. Numerous
interesting questions have been addressed so far. Here an important part of this field, the properties
of the entanglement in many-body systems, are reviewed. The zero and finite temperature properties
of entanglement in interacting spin, fermion, and boson model systems are discussed. Both bipartite
and multipartite entanglement will be considered. In equilibrium entanglement is shown tightly
connected to the characteristics of the phase diagram. The behavior of entanglement can be related,
via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an
experimental test. Out of equilibrium entangled states are generated and manipulated by means of
many-body Hamiltonians.
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I. INTRODUCTION

Entanglement expresses the “spooky” nonlocality in-
herent to quantum mechanics �Bell, 1987�. Because of
that, it gave rise to severe skepticisms since the early
days of quantum mechanics. It was only after the semi-
nal contribution of John Bell that the fundamental ques-
tions related to the existence of entangled states could
be tested experimentally. In fact, under fairly general
assumptions, Bell derived a set of inequalities for corre-
lated measurements of two physical observables that any
local theory should obey. The overwhelming majority of
experiments done so far are in favor of quantum me-
chanics thus demonstrating that quantum entanglement
is physical reality �Peres, 1993�.1

Entanglement has gained renewed interest with the
development of quantum information science �Nielsen
and Chuang, 2000�. In its framework, quantum entangle-
ment is viewed as a resource in quantum information
processing. It is, e.g., believed to be the main ingredient
of the quantum speed-up in quantum computation and
communication. Moreover, several quantum protocols,
such as teleportation �Bennett et al., 1993� just to men-
tion an important example, can be realized exclusively
with the help of entangled states.

The role of entanglement as a resource in quantum

information has stimulated intensive research trying to
unveil both its qualitative and quantitative aspects �Ple-
nio and Vedral, 1998; Wootters, 2001; Bruß, 2002; Ve-
dral, 2002; Bengtsson and Zyczkowski, 2006; Eisert,
2006; Horodecki et al., 2007; Plenio and Virmani, 2007�.
To this end, necessary criteria for any entanglement
measure to be fulfilled have been elaborated and lead to
the notion of an entanglement monotone �Vidal, 2000�
allowing one to attach a precise number to the entangle-
ment encoded in a given state. There is a substantial
bulk of work for bipartite systems, in particular for the
case of qubits. Many criteria have been proposed to dis-
tinguish separable from entangled pure states, as, for
example, the Schmidt rank and the von Neumann en-
tropy. The success in the bipartite case for qubits asked
for extensions to the multipartite case, but the situation
proved to be far more complicated: Different classes of
entanglement occur, which are inequivalent not only un-
der deterministic local operations and classical commu-
nication, but even under their stochastic analog �Bennett
et al., 2001�.

In the last few years it has become evident that quan-
tum information may lead to further insight into other
areas of physics as statistical mechanics and quantum
field theory �Preskill, 2000�. The attention of the quan-
tum information community to systems studied in con-
densed matter has stimulated an exciting cross-
fertilization between the two areas. Methods developed
in quantum information have proved to be extremely
useful in the analysis of the state of many-body systems.
At T=0 many-body systems are often described by a
complex ground state wave function which contains all
correlations that give rise to the various phases of matter
�superconductivity, ferromagnetism, quantum Hall sys-
tems, etc.�. Traditionally many-body systems have been
studied by looking, for example, at their response to ex-
ternal perturbations, various order parameters, and ex-
citation spectrum. The study of the ground state of
many-body systems with methods developed in quantum
information may unveil new properties. At the same
time experience built up over the years in condensed
matter is helping in finding new protocols for quantum
computation and communication: A quantum computer
is a many-body system where, different from traditional
ones, the Hamiltonian can be controlled and manipu-
lated.

The amount of work at the interface between statisti-
cal mechanics and quantum information has grown dur-
ing the last few years, shining light on many different
aspects of both subjects. In particular, there has been
extensive analysis of entanglement in quantum critical
models �Osborne and Nielsen, 2002; Osterloh et al.,
2002; Vidal et al., 2003�. Tools from quantum informa-
tion theory also provided support for numerical meth-
ods, such as the density matrix renormalization group or
the design of new efficient simulation strategies for
many-body systems �see, for example, Verstraete, Por-
ras, and Cirac, 2004; Vidal, 2003, 2004�. Spin networks
have been proposed as quantum channels �Bose, 2003�
by exploiting the collective dynamics of their low lying

1There are states that do not violate Bell inequalities and
nevertheless are entangled �Methot and Scarani, 2000�.
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excitations for transporting quantum information.
Despite being at its infancy, this new area of research

has grown so fast that a description of the whole field is
beyond the scope of a single review. Many interesting
facets of this branch of research will therefore remain
untouched here. In this review we only discuss the prop-
erties of entanglement in many-body systems. The mod-
els which will be considered include interacting spin net-
works, itinerant fermions, harmonic and bosonic
systems. All of them are of paramount interest in con-
densed matter physics.

This review is organized as follows. In the next section
we give a brief overview on the concepts and measures
of entanglement, with particular attention to those mea-
sures that we use later. In Sec. III we then proceed with
an introduction to several models of interacting many-
body systems which will be the subject of the review. We
discuss various aspects of quantum correlations starting
from the pairwise entanglement, Sec. IV, we then pro-
ceed with the properties of block entropy, Sec. V, and
localizable entanglement, Sec. VI. In these three sec-
tions it is especially relevant the connection between en-
tanglement and quantum phase transitions. The effect of
a finite temperature is considered in Sec. VII. The char-
acterization of entanglement in many-body systems re-
quires also the understanding of multipartite entangle-
ment. This topic will be reviewed in Sec. VIII. From the
point of view of quantum information processing, dy-
namical properties of entanglement are important as
well. They will be addressed in Sec. IX. The conclusions,
the outlook, and a very short panorama of what is left
out from this review are presented in the concluding
section.

II. MEASURES OF ENTANGLEMENT

The problem of measuring entanglement is a vast and
lively field of research of its own. Numerous different
methods have been proposed for its quantification. In
this section we do not attempt to give an exhaustive
review of the field. Rather we introduce those measures
that are largely being used to quantify entanglement in
many-body systems. Comprehensive overviews of en-
tanglement measures can be found in Plenio and Vedral
�1998�; Wootters �2001�; Bruß �2002�; Vedral �2002�;
Bengtsson and Zyczkowski �2006�; Eisert �2006�; Horo-
decki et al. �2007�; Plenio and Virmani �2007�. In this
context, we also outline a method of detecting entangle-
ment, based on entanglement witnesses.

A. Bipartite entanglement in pure states

Bipartite entanglement of pure states is conceptually
well understood, although quantifying it for local dimen-
sions higher than two still bears theoretical challenges
�Virmani and Plenio, 2000; Horodecki et al., 2007�. A
pure bipartite state is not entangled if and only if it can
be written as a tensor product of pure states of the parts.
Moreover, for every pure bipartite state ��AB� �with the

two parts, A and B�, two orthonormal bases ���A,i�� and
���B,j�� exist such that ��AB� can be written as

��AB� = �
i

�i��A,i���B,i� , �1�

where �i are positive coefficients. This decomposition
is called the Schmidt decomposition and the parti-
cular basis coincides with the eigenbasis of the corre-
sponding reduced density operators �B/A=trA/B���AB��
=�i�i

2��B/A,i���B/A,i�. The density operators �A and �B
have a common spectrum, in particular, they are equally
mixed. Since only product states lead to pure reduced
density matrices, a measure for their mixedness points a
way towards quantifying entanglement in this case.
Given the state ��AB�, we can thus take its Schmidt de-
composition, Eq. �1�, and use a suitable function �i to
quantify the entanglement.

An entanglement measure E is fixed uniquely after
imposing the following conditions: �1� E is invariant un-
der local unitary operations �⇒E is indeed a function of
the �i’s only�; �2� E is continuous 	in a certain sense also
in the asymptotic limit of infinite copies of the state; see,
e.g., Plenio and Virmani �2007�
; and �3� E is additive,
when several copies of the system are present: E���AB�
� ��AB��=E���AB��+E���AB��. The unique measure of
entanglement satisfying the above conditions is the von
Neumann entropy of the reduced density matrices:

S��A� = S��B� = − �
i

�i
2 log��i

2� , �2�

this is just the Shannon entropy of the moduli squared of
the Schmidt coefficients. In other words: under the
above regularity conditions, the answer to the question
of how entangled a bipartite pure state is, given by the
von Neumann entropy of �either of� the reduced density
matrices. The amount of entanglement is generally dif-
ficult to define once we are away from bipartite states,
but in several cases we can still gain some insight into
many-party entanglement if one considers different bi-
partitions of a multipartite system.

It is worth noticing that a variety of purity measures
are admissible when the third condition on additivity is
omitted. In principle, there are infinitely many measures
for the mixedness of a density matrix; two of them will
typically lead to a different ordering when the Hilbert
space of the parts has a dimension larger than 2.

In contrast, if we trace out one of two qubits in a pure
state, the corresponding reduced density matrix �A con-
tains only a single independent and unitarily invariant
parameter: its eigenvalue �1/2. This implies that each
monotonic function 	0,1 /2
� 	0,1
 of this eigenvalue
can be used as an entanglement measure. Though, also
here an infinity of different mixedness measures exists,
all lead to the same ordering of states with respect to
their entanglement, and in this sense all are equivalent.
A relevant example is the �one-� tangle �Coffman et al.,
2000�
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�1	�A
 = 4 det �A. �3�

By expressing �A in terms of spin expectation values,
it follows that �1	�A
=1−4��Sx�2+ �Sy�2+ �Sz�2�, where
�S��=trA��AS�� and S�= 1

2	�, 	���=x ,y ,z� being the
Pauli matrices. For a pure state ��AB� of two qubits the
relation �1����*�	A

y
� 	B

y ����2¬C	��AB�
2
¬�2 applies,

where C is the concurrence �Hill and Wootters, 1997;
Wootters, 1998� for pure states of two qubits, a measure
of pairwise entanglement �see the next section�, and the
asterisk indicates the complex conjugation in the eigen-
basis of 	z. The von Neumann entropy can be expressed
as a function of the �one-� tangle S	�A
=h� 1

2 �1
+�1−�1	�A
��, where h�x�¬−x log2 x− �1−x�log2�1−x� is
the binary entropy.

B. Pairwise qubit entanglement in mixed states

Subsystems of a many-body �pure� state will generally
be in a mixed state. In this case a different way of quan-
tifying entanglement can be introduced. Three impor-
tant representatives are the entanglement cost EC, the
distillable entanglement ED 	both defined by Bennett,
Bernstein, et al. �1996�
, and the entanglement of forma-
tion EF �Bennett, Di Vincenzo, et al., 1996�. Whereas ED
and EC are asymptotic limits of multicopy extraction
probabilities of Bell states and creation from such states,
the entanglement of formation is the amount of pure
state entanglement needed to create a single copy of the
mixed state. Although recent progress has been
achieved �Paz-Silva and Reina, 2007�, the full additivity
of the EF for bipartite systems has not been established
yet 	see, e.g., Vidal et al. �2002�
.

The conceptual difficulty behind the calculation of EF
lies in the infinite number of possible decompositions of
a density matrix. Therefore even knowing how to quan-
tify bipartite entanglement in pure states, we cannot
simply apply this knowledge to mixed states in terms of
an average over mixtures of pure state entanglement.
The problem is that two decompositions of the same
density matrix usually lead to a different average en-
tanglement. Which one do we choose? It turns out that
we must take the minimum over all possible decompo-
sitions, simply because if there is a decomposition where
the average is zero, then this state can be created locally
without the need of any entangled pure state, and there-
fore EF=0. The same conclusion can be drawn from the
requirement that entanglement must not increase on av-
erage by means of local operations including classical
communication �LOCC�.

The entanglement of formation of a state � is there-
fore defined as

EF��� ª min �
j

pjS��A,j� , �4�

where the minimum is taken over all realizations of the
state �AB=�jpj��j���j�, and S��A,j� is the von Neumann
entropy of the reduced density matrix �A,jª trB��j���j�.
Equation �4� is the so-called convex roof �also the ex-

pression convex hull is found in the literature� of the
entanglement of formation for pure states, and a decom-
position leading to this convex roof value is called an
optimal decomposition.

For systems of two qubits, an analytic expression for
EF is given by

EF��� = − �
	=±

�1 + 	C2���
2

ln
�1 + 	C2���

2
, �5�

where C��� is the so-called concurrence �Wootters, 1998,
2001�, the convex roof of the pure state concurrence,
which has been defined in the previous section. Its con-
vex roof extension is encoded in the positive Hermitian
matrix R����̃��=���	y � 	y��*�	y � 	y���, with eigen-
values 
1

2� ¯ �
4
2 in the following way:

C = max�
1 − 
2 − 
3 − 
4,0� . �6�

As the entanglement of formation is a monotonous
function of the concurrence, also C itself or its square
�2—called also the 2-tangle—can be used as entangle-
ment measures. This is possible due to a curious pecu-
liarity of two-qubit systems: namely, that a continuous
variety of optimal decompositions exist �Wootters,
1998�. The concurrence C and the tangle �1 both range
from 0 �no entanglement� to 1.

By virtue of Eq. �6�, the concurrence in a spin-1 /2
chain can be computed in terms of up to two-point spin
correlation functions. As an example we consider a case
where the model has a parity symmetry, it is transla-
tional invariant, and the Hamiltonian is real; the concur-
rence in this case reads

Cij = 2 max�0,Cij
I ,Cij

II� , �7�

where Cij
I = �gij

xx+gij
yy�−��1/4+gij

zz�2−Mz
2 and Cij

II= �gij
xx

−gij
yy�+gij

zz−1/4, with gij
��= �Si

�Sj
�� and Mz= �Sz�. A state

with dominant fidelity of parallel and antiparallel Bell
states is characterized by dominant CI and CII, respec-
tively. This was shown by Fubini et al. �2006�, where the
concurrence was expressed in terms of the fully en-
tangled fraction as defined by Bennett, DiVincenzo, et
al. �1996�. Systematic analysis of the relation between
the concurrence �together with the 3-tangle, see Sec.
II.E� and the correlation functions has been presented
by Glaser et al. �2003�.

The importance of the tangle and concurrence is due
to the monogamy inequality derived in Coffman et al.
�2000� for three qubits. This inequality has been proven
to hold also for n-qubits system �Osborne and Verstra-
ete, 2006�. In the case of many-qubits �the tangle may
depend on the site i that is considered� it reads

�
j�i

Cij
2 � �1,i. �8�

The so-called residual tangle �1,i−�j�iCij
2 is a measure

for multipartite entanglement not stored in pairs of qu-
bits only. We finally mention that the antilinear form of
the pure state concurrence was the key for the first ex-
plicit construction of a convex roof, and hence its exten-
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sion to mixed states �Hill and Wootters, 1997; Wootters,
1998; Uhlmann, 2000�.

Another measure of entanglement is the relative en-
tropy of entanglement �Vedral et al., 1997�. It can be
applied to any number of qubits in principle �or any
dimension of the local Hilbert space�. It is formally de-
fined as E�	�ªmin��D S�	 
��, where S�	 
��=tr 		ln 	
−ln �
 is the quantum relative entropy. This relative en-
tropy of entanglement quantifies the entanglement in 	
by its distance from the set D of separable states �since
D is compact, the minimum is assumed always�. The
main difficulty in computing this measure is to find the
disentangled state closest to �. This is in general an open
problem, even for two qubits. In the presence of certain
symmetries—which is the case for, e.g., eigenstates of
certain models—an analytical access is possible. In these
cases, the relative entropy of entanglement becomes a
very useful tool. The relative entropy reduces to the en-
tanglement entropy in the case of pure bipartite states;
this also means that its convex roof extension coincides
with the entanglement of formation, and is readily de-
duced from the concurrence �Wootters, 1998�.

We close this summary on the pairwise entanglement
by commenting on the quantum mutual information.
Groisman et al. quantified the work necessary to erase
the total correlations existing in a bipartite system �Gro-
isman et al., 2005�. The entanglement can be erased by a
suitable random ensemble of unitary transformations
acting on one of the parts, but a certain amount of clas-
sical correlation among the two partners may survive.
The work necessary to erase all correlations is given by
the quantum mutual information

IAB = S��A� + S��B� − S��AB� . �9�

C. Localizable entanglement

A different approach to entanglement in many-body
systems arises from the quest to swap or transmute dif-
ferent types of multipartite entanglement into pairwise
entanglement between two parties by means of general-
ized measures on the rest of the system. In a system of
interacting spins on a lattice one could then try to maxi-
mize the entanglement between two spins �at positions i
and j� by performing measurements on all others. The
system is then partitioned in three regions: the sites i, j
and the rest of the lattice. This concentrated pairwise
entanglement can then be used, e.g., for quantum infor-
mation processing. A standard example is that the three
qubit Greenberger-Horne-Zeilinger �GHZ� state
�1/�2���000�+ �111�� after a projective measure in the x
direction on one of the sites is transformed into a Bell
state.

The concept of localizable entanglement has been in-
troduced by Verstraete �2004�; Popp et al. �2005�. It is
defined as the maximal amount of entanglement that
can be localized, on average, by doing local measure-
ments in the rest of the system. In the case of N parties,
the possible outcomes of the measurements on the re-

maining N−2 particles are pure states ��s� with corre-
sponding probabilities ps. The localizable entanglement
Eloc on sites i and j is defined as the maximum of the
average entanglement over all possible outcome states
��s�ij,

Eloc�i,j� = supE �
s

psE���s�ij� , �10�

where E is the set of all possible outcomes �ps , ��s�� of
measurements and E is the chosen measure of entangle-
ment of a pure state of two qubits �e.g., the concur-
rence�. Although difficult to compute, lower and upper
bounds have been found which allow one to deduce a
number of consequences for this quantity.

An upper bound to the localizable entanglement is
given by the entanglement of assistance �Laustsen et al.,
2003� obtained from localizable entanglement when also
global and joint measurements were allowed on the N
−2 spins. A lower bound of the localizable entanglement
comes from the following theorem �Verstraete, Martin-
Delgado, and Cirac, 2004�: Given a �pure or mixed� state
of N qubits with reduced correlations Qij

�,�= �Si
�Sj

��
− �Si

���Sj
�� between the spins i and j and directions � and

� then there always exist directions in which one can
measure the other spins such that this correlation does
not decrease, on average. It then follows that a lower
bound to localizable entanglement is fixed by the maxi-
mal correlation function between the two parties �one of
the various spin-spin correlation functions Qij

�,��.2

D. Entanglement witnesses

It is important to realize that not just the quantifica-
tion of many-party entanglement is a difficult task; it is
an open problem to tell, in general, whether a state of n
parties is separable or not. It is therefore of great value
to have a tool that is able to merely certify if a certain
state is entangled. An entanglement witness W is a Her-
mitian operator which is able to detect entanglement in
a state. The basic idea is that the expectation value of
the witness W for the state � under consideration ex-
ceeds certain bounds only when � is entangled. An ex-
pectation value of W within this bound, however, does
not guarantee that the state is separable. Nonetheless,
this is an appealing method also from an experimental
point of view, since it is sometimes possible to relate the
presence of the entanglement to the measurement of a
few observables.

Simple geometric ideas help to explain the witness op-
erator W at work. Let T be the set of all density matrices
and let E and D be the subsets of entangled and sepa-

2It has been argued �Gour, 2006; Gour and Spekkens, 2006�
that in order to extend the entanglement of assistance and
localizable entanglement to an entanglement monotone �Vidal,
2000� one should admit also local operations including classical
communication on the extracted two spins, this was named
entanglement of collaboration.

521Amico et al.: Entanglement in many-body systems

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008



rable states, respectively. The convexity of D is a key
property for witnessing entanglement. The entangle-
ment witness is then an operator defining a hyperplane
which separates a given entangled state from the set of
separable states. The main scope of this geometric ap-
proach is then to optimize the witness operator �Lewen-
stein et al., 2000� or to replace the hyperplane by a
curved manifold, tangent to the set of separable states
�Gühne, 2004� 	for other geometric aspects of entangle-
ment see Klyachko �2002�, Bengtsson and Zyczkowski
�2006�, and Leinaas et al. �2006�
. We have the freedom
to choose W such that tr��DW��0 for all disentangled
states �D�D. Then, tr��W��0 implies that � is en-
tangled. A caveat is that the concept of a witness is not
invariant under local unitary operations 	see, e.g., Cav-
alcanti and Terra-Cunha �2005�
.

Entanglement witnesses are a special case of a more
general concept, namely that of positive maps. These are
injective superoperators on the subset of positive opera-
tors. When we now think of superoperators that act non-
trivially only on part of the system �on operators that act
nontrivially only on a sub-Hilbert space�, then we may
ask the question whether a positive map on the subspace
is also positive when acting on the whole space. Maps
that remain positive also on the extended space are
called completely positive maps. The Hermitian time
evolution of a density matrix is an example for a com-
pletely positive map. Positive but not completely posi-
tive maps are important for entanglement theory. There
is a remarkable isomorphism between positive maps and
Hermitian operators �Jamiolkowski, 1972�. This can be
used to prove a key theorem �Horodecki et al., 1996�: A
state �AB is entangled if and only if a positive map 

exists �not completely positive� such that �1A � 
B��AB
�0. For a two-dimensional local Hilbert space the situ-
ation simplifies considerably in that any positive map P
can be written as P=CP1+CP2TB, where CP1 and CP2
are completely positive maps and TB is a transposition
operation on subspace B. This decomposition tells us
that for a system of two qubits the lack of complete
positivity in a positive map is due to a partial transposi-
tion. This partial transposition clearly leads to a positive
operator if the state is a tensor product of the parts. In
fact, also the opposite is true: a state of two qubits �AB is
separable if and only if �AB

TB �0 that is, its partial trans-
position is positive. This is very simple to test and it is
known as the Peres-Horodecki criterion �Horodecki et
al., 1996; Peres, 1996�. The properties of entangled states
under partial transposition lead to a measure of en-
tanglement known as the negativity. The negativity NAB
of a bipartite state is defined as the absolute value of the
sum of the negative eigenvalues of �AB

TA . The logarithmic
negativity is then defined as

EN = log2 2�2NAB + 1� . �11�

For bipartite states of two qubits, �AB
TA has at most one

negative eigenvalue �Sanpera et al., 1998�. For general
multipartite and higher local dimension this is only a
sufficient condition for the presence of entanglement.

There exist entangled states with a positive partial trans-
pose known as bound entangled states �Horodecki et al.,
1998; Acin et al., 2001�.

E. Multipartite entanglement measures

Both the classification of entanglement and its quan-
tification are at a preliminary stage even for distinguish-
able particles 	see, however, Dür et al. �2000�; Miyake
and Wadati �2002�; Verstraete et al. �2002�; Briand et al.
�2003, 2004�, Luque and Thibon �2005�; Osterloh and
Siewert �2005, 2006�; Mandilara et al. �2006�, and refer-
ences therein
. We restrict ourselves to those approaches
which have been applied so far for the study of con-
densed matter systems discussed in this review. It has
already been mentioned that several quantities are use-
ful as indicators for multipartite entanglement when the
whole system is in a pure state. The entropy of entangle-
ment is an example for such a quantity and several
works use multipartite measures constructed from and
related to it 	see, e.g., Coffman et al. �2000�; Meyer and
Wallach �2002�; Barnum et al. �2003�; Scott �2004�; de
Oliveira, Rigolin, and de Oliveira �2006a�; Love et al.
�2006�
. These measures are of “collective” nature—in
contrast to “selective” measures—in the sense that they
give indication of a global correlation without discerning
among the different entanglement classes encoded in the
state of the system.

The geometric measure of entanglement quantifies
the entanglement of a pure state through the minimal
distance of the state from the set of pure product states
�Vedral et al., 1997; Wei and Goldbart, 2003�

Eg��� = − log2 max
�

�������2, �12�

where the maximum is on all product states �. As dis-
cussed in detail by Wei and Goldbart �2003�, the previ-
ous definition is an entanglement monotone if the con-
vex roof extension to mixed states is taken. It is zero for
separable states and rises up to unity for, e.g., the maxi-
mally entangled n-particle GHZ states. The difficult task
in its evaluation is the maximization over all possible
separable states and of course the convex roof extension
to mixed states. Despite these complications, a clever
use of the symmetries of the problem renders this task
accessible by substantially reducing the number of pa-
rameters �see Sec. VIII�.

Another example for the collective measures of mul-
tipartite entanglement as mentioned in the beginning of
this section are the measures introduced by Meyer and
Wallach �2002� and by Barnum et al. �2003, 2004�. In the
case of qubit system the Q measure of Meyer and
Wallach is the average purity 	which is the average one-
tangle in Coffman et al. �2000�
 of the state �Meyer and
Wallach, 2002; Brennen, 2003; Barnum et al., 2004�

Egl = 2 −
2

N�
j=1

N

Tr �j
2. �13�
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The notion of generalized entanglement introduced
by Barnum et al. �2003, 2004� relaxes the typically cho-
sen partition into local subsystems in real space. The
generalized entanglement measure used by Barnum et
al. is the purity relative to a distinguished Lie algebra A
of observables. For the state ��� it is defined as

PA = Tr�	PA������
2� , �14�

where PA is the projection map �→PA���. If the set of
observables is defined by the operator basis
�A1 ,A2 , . . . ,AL� then PA=�i=1

L �Ai�2 from which the re-
duction to Eq. �13� in the case of all local observables is
evident. This conceptually corresponds to a redefinition
of locality as induced by the distinguished observable
set, beyond the archetype of partition in the real space.
It defines an observer dependent concept of entangle-
ment adapted to, e.g., experimentally accessible or
physically relevant observables. In this case, the gener-
alized entanglement coincides with the global entangle-
ment of Meyer and Wallach.

Another approach pursued is the generalization of the
concurrence. For the quantification of pairwise entangle-
ment in higher dimensional local Hilbert spaces, the
concept of concurrence vectors has been formulated
�Audenaert et al., 2001; Badziag et al., 2002� besides the
I-concurrence �Rungta et al., 2001�. A concurrence vec-
tor was also proposed for multipartite systems of qubits
�Akhtarshenas, 2005�. It consists in applying the pure
state concurrence formula to a mixed two-site reduced
density matrix. It coincides with the true concurrence if
and only if the eigenbasis of the density matrices provide
optimal decompositions.

The n-tangle is a straightforward extension of the con-
currence to multipartite states as the overlap of the state
with its time reversed �Wong and Christensen, 2001�. It
vanishes identically for an odd number of qubits, but an
entanglement monotone is obtained for an even number
of qubits. It detects products of even-site entangled
states in addition to certain genuine multipartite en-
tangled states: it detects the multipartite GHZ or cat
state, but not, for example, the four qubit cluster state.

Three classes of states inequivalent under SLOCC
�stochastic LOCC� exist for four qubits �Osterloh and
Siewert, 2005, 2006�. Representatives are the GHZ state,
the celebrated cluster state, and a third state, which is
also measured by the 4-qubit hyperdeterminant. Class
selective measures are constructed from two basic ele-
ments, namely the operator 	y employed for the concur-
rence, and the operator 	� ·	�

ª1 ·1−	x ·	x−	z ·	z

where the dot is a tensor product indicating that the two
operators are acting on different copies of the same qu-
bit. Both are invariant under sl�2,C� operations on the
qubit. The 3-tangle is then expressed as �3	�

= ��* � · ��* �	� � 	� � 	
 ·	� � 	� � 	
��� · ���. The multi-
linearity, however, makes it problematic to employ the
procedure of convex roof construction presented by
Wootters �1998� and Uhlmann �2000� for general mix-
tures.

Finally we mention the approach pursued by Gühne et
al. �2005� �see also Sharma and Sharma, 2006� where
different bounds on the average energy of a given sys-
tem were obtained for different types of n-particle quan-
tum correlated states. A violation of these bounds then
implies the presence of multipartite entanglement in the
system. The starting point of Gühne et al. is the notion
of n-separability and k-producibility which admit to dis-
criminate particular types of n-particle correlations
present in the system. A pure state ��� of a quantum
system of N parties is said to be n-separable if it is pos-
sible to find a partition of the system for which ���
= ��1���2�¯ ��n�. A pure state ��� can be produced by
k-party entanglement �i.e., it is k-producible� if we can
write ���= ��1���2�¯ ��m�, where ��i� are states of maxi-
mally k parties; by definition m�N /k. It implies that it
is sufficient to generate specific k-party entanglement to
construct the desired state. Both these indicators for
multipartite entanglement are collective, since they are
based on the factorizability of a given many particle
state into smaller parts. k-separability and
k-producibility both do not distinguish between differ-
ent k-particle entanglement classes 	as, e.g., the
k-particle W-states and different k-particle graph states
�Hein et al., 2004�, like the GHZ state
.

F. Indistinguishable particles

For indistinguishable particles the wave function is
�anti�symmetrized and therefore the definition of en-
tangled states as given in the previous section does not
apply. In particular, it does not make sense to consider
each individual particle as parts of the partition of the
system. Having agreed upon a definition of entangle-
ment, concepts as entanglement cost or distillation re-
main perfectly valid. Following Ghirardi et al. �2002� and
Ghirardi and Marinatto �2003� one can address the
problem of defining entanglement in an ensemble of in-
distinguishable particles by seeing if one can attribute to
each of the subsystems a complete set of measurable
properties, e.g., momenta for free pointless particles.
Quantum states satisfying the above requirement repre-
sent the separable states for indistinguishable particles.

There is another crucial difference between the en-
tanglement of �indistinguishable� spin-1 /2 particles and
that of qubits. We therefore consider two fermions on
two sites. Whereas the Hilbert space Hs of a two-site
spin lattice has dimension dim Hs=4, the Hilbert space
Hf for two fermions on the same lattice has dimension
dim Hf=6. This is due to the possibility that both fermi-
ons, with opposite spins, can be located at the same
lattice site. When choosing the following numbering
of the states �1�= f1

†�0�¬cL,↑
† �0�, �2�= f2

†�0�¬cL,↓
† �0�, �3�

= f3
†�0�¬cR,↑

† �0�, �4�= f4
†�0�¬cR,↓

† �0�, and the definition
�i , j�= fi

†fj
†�0�, there are Bell states analogous to those oc-

curring for distinguishable particles ��1,3�± �2,4�� /�2
and ��1,4�± �2,3�� /�2. There are, however, new en-
tangled states, as ��1,2�± �3,4�� /�2, where both fermions
take the same position. The local Hilbert space is made
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of four states labeled by the occupation number and the
spin, if singly occupied. The site entanglement of indis-
tinguishable particles is then defined as the entangle-
ment of the corresponding Fock states. It can be mea-
sured, e.g., by the local von Neumann entropy. This
quantity is the analog to the one-tangle for qubits, but
the local Hilbert space dimension is four due to the pos-
sibility of having empty and doubly occupied sites. Also
the quantum mutual information �Groisman et al., 2005�,
see Eq. �9�, can be defined in this way, quantifying the
total amount �classical and quantum� of correlations
stored in a given state of a second quantized system.

Although from a mathematical point of view the en-
tanglement of indistinguishable particles can be quanti-
fied, the major part of the literature on second quantized
systems that we discuss in this review considers the site
entanglement described above or the entanglement of
degrees of freedom, singled out from a suitable set of
local quantum numbers �e.g., the spin of the particle at
site i�. In both cases, entanglement measures for distin-
guishable particles �see Secs. IV.C.1 and V.F� can be
used. With this respect, this section has a different scope
than the others on the quantification of entanglement;
although most of the discussion which follows will not be
used later on, we believe that it will be of interest for
further studies of entanglement in itinerant many-body
systems.

1. Two fermion entanglement

Due to the antisymmetry under particle exchange,
there is no Schmidt decomposition for fermions. Never-
theless, a fermionic analog to the Schmidt rank which
classifies entanglement in bipartite systems of distin-
guishable particles does exist: the so-called Slater rank.
A generic state of two electrons on two lattice sites can
be written as ���ª�i,j=1

4 �i,j�i , j�, where � is a 4�4 matrix
which can be assumed antisymmetric and normalized as
tr �†�= 1

2 . Since the local entities whose entanglement
studied here are particles, unitary transformations act on
the four-dimensional single-particle Hilbert space. Due
to the indistinguishability of particles, the transforma-
tion must be the same for each particle. Given a unitary
transformation U�SU�4� such that fj�ªUjkfk, the trans-
formed state is given by ����, where ��ªU�UT. The
above unitary transformation preserves the antisymme-
try of � and can transform every pure state of two
spin-1 /2 particles on two sites into a state corresponding
to the normal form of �. In fact, every two-particle state
within a D-dimensional single-particle Hilbert space
can be transformed into the normal form �s
=diag�Z1 , . . . ,Zr ,Z0�, where Zj= izj	y and �Z0�ij=0 for
i , j� �1, . . . ,D−2r�. In the previous expression r is then
called the Slater rank of the pure fermion state �Schli-
emann, Cirac, et al., 2001; Schliemann, Loss, and Mac-
Donald, 2001; Eckert et al., 2002�. A pure fermion state
is entangled if and only if its Slater rank is larger than 1.
It is important to note that the above concept of en-
tanglement only depends on the dimension of the Hil-
bert space accessible to each of the particles �this in-

cludes indistinguishable particles on a single D-level
system�.

For electrons on an L-site lattice the “local” Hilbert
space dimension is 2L, and the question whether a pure
state living in a 2L-dimensional single particle Hilbert
space has full Slater rank can be answered by consider-
ing the Pfaffian of � �Caianello and Fubini, 1952; Muir,
1960�:

�
��S2L

�

sgn����
j=1

L

���2j−1�,��2j�, �15�

which is nonzero only if � has full Slater rank L. In the
above definition S2L

� denotes those elements � of the
symmetric group S2L with ordered pairs, i.e., ��2m−1�
���2m� for all m�L and ��2k−1����2m−1� for k
�m. Note that relaxing the restriction to S2L

� leads to a
combinatorial factor of 2LL! by virtue of the antisymme-
try of � and hence can we write

pf	�
 =
1

2LL! �
j1,. . .,j2L=1

2L

�j1,. . .,j2L�j1,j2
. . . �j2L−1,j2L

, �16�

where �j1,. . .,j2L is the fully antisymmetric tensor with
�1,2,. . .,2L=1. There is a simple relation between the Pfaff-
ian and the determinant of an antisymmetric even-
dimensional matrix: pf	�
2=det	�
.

For the simplest case of two spin-1 /2 fermions on two
lattice sites the Pfaffian reads pf	�
=�1,2�3,4−�1,3�2,4
+�1,4�2,3. Normalized in order to range in the interval
	0, 1
 this has been called the fermionic concurrence
C	���
 �Schliemann, Cirac, et al., 2001; Schliemann, Loss,
and MacDonald, 2001; Eckert et al., 2002�:

C	���
 = ���̃���� = 8�pf	�
� , �17�

where �̃ª

1
2�ijkl�

k,l
* has been termed the dual to �. Then,

��̃�¬D��� is the analog to the conjugated state in �Hill
and Wootters, 1997; Wootters, 1998; Uhlmann, 2000�
leading to the concurrence for qubits. It is important to
note that the Pfaffian in Eq. �15� is invariant under the
complexification of su�2L�, since it is the expectation
value of an antilinear operator, namely the conjugation
D for state ���. Since this invariant is a bilinear expres-
sion in the state coefficients, its convex roof is readily
obtained �Uhlmann, 2000� by means of the positive
eigenvalues 
i

2 of the 6�6 matrix R=��D�D��.
The conjugation D expressed in the basis
��1,2�,�1,3�,�1,4�,�2,3�,�2,4�,�3,4�� takes the form D0C, where
C is the complex conjugation and the only nonzero ele-
ments of D are D16=D61=D34=D43=1 and D25=D52=1.
Notice that the center part of this matrix is precisely
	y � 	y and indeed corresponds to the Hilbert space of
two qubits. The remaining part of the Hilbert space
gives rise to an entanglement of different values for the
occupation number. This type of entanglement has been
referred to as the “fluffy bunny” �Verstraete and Cirac,
2003; Wiseman et al., 2003�, in the literature.

For a single-particle Hilbert space with dimension
larger than four one encounters similar complications as
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for two distinguishable particles on a bipartite lattice
and local Hilbert space dimension larger than two, i.e.,
for two qudits. This is because different classes of en-
tanglement occur, which are characterized by different
Slater rank as opposed to their classification by different
Schmidt rank for distinguishable particles. The Slater
rank can be obtained by looking at Pfaffian minors
�Muir, 1960�: if the Slater rank is r, all Pfaffian minors of
dimension larger than 2r are identically zero.

2. Multipartite entanglement for fermions

For indistinguishable particles the only classification
available up to now is to check whether or not a pure
state has Slater rank one. Eckert et al. formulated two
recursive lemmata �Eckert et al., 2002� that can be sum-
marized as follows: Let an N-electron state be con-
tracted with N−2 arbitrary single electron states en-
coded in the vectors aj as ak

j fk
†�0� �j=1, . . . ,N−2 and sum

convention� to a two-electron state. Then the Pfaffian of
the two-electron state is zero if and only if the original
state �and hence all intermediate states in a successive
contraction� has Slater rank one. This means that all
four-dimensional Pfaffian minors of � are zero.

Instead of the Pfaffian of �, the single-particle re-
duced density matrix can also be considered, and its von
Neumann entropy as a measure for the quantum en-
tanglement has been analyzed by Li et al. �2001� and
Paškauskas and You �2001�. It is important to remember
that for distinguishable particles the local reduced den-
sity matrix has rank one if and only if the original state
were a product. This is no longer true for indistinguish-
able particles. For an N-particle pure state with Slater
rank one the rank of the single-particle reduced density
matrix coincides with the number of particles N. A
subtlety is that a measure of entanglement is obtained
after subtraction of the constant value of the von Neu-
mann entropy of a disentangled state. This must be
taken into account also for the extension of the measure
to mixed states.

3. Entanglement of particles

Entanglement in the presence of superselection rules
�SSR� induced by particle conservation has been dis-
cussed by Bartlett and Wiseman �2003�, Schuch et al.
�2003, 2004�, and Wiseman and Vaccaro �2003�. The
main difference in the concept of entanglement of par-
ticles �Wiseman and Vaccaro, 2003� from the entangle-
ment of indistinguishable particles as described in the
preceding section �but also to that obtained from the
reduced density matrix of, e.g., spin degrees of freedom
of indistinguishable particles� consists in the projection
of the Hilbert space onto a subspace of fixed particle
numbers for either part of a bipartition of the system.
The bipartition is typically chosen to be spacelike, as
motivated from experimentalists or detectors sitting at
distinct positions. For example, two experimentalists in
order to detect the entanglement between two indistin-

guishable particles must have one particle each in their
laboratory.

This difference induced by particle number superse-
lection is very subtle and shows up if multiple occupan-
cies occur at single sites for fermions with some inner
degrees of freedom, such as spin. Their contribution is
finite for finite discrete lattices and will generally scale to
zero in the thermodynamic limit with vanishing lattice
spacing. Therefore both concepts of spin entanglement
of two distant particles coincide in this limit. Significant
differences are to be expected only for finite nondilute
systems. It must be noted that the same restrictions im-
posed by SSR which change considerably the concept of
entanglement quantitatively and qualitatively, on the
other hand, enable otherwise impossible protocols of
quantum information processing �Schuch et al., 2003,
2004� which are based on variances about the observable
fixed by superselection.

Wiseman and Vaccaro projected an N-particle state
��N� onto all possible subspaces, where the two parties
have a well defined number �nA ,nB=N−nA� of particles
�Wiseman and Vaccaro, 2003�. Let ��	nA
� be the respec-
tive projection, and let pnA

be the weight
��	nA
 ��	nA
� / ��N ��N� of this projection. Then the en-
tanglement of particles Ep is defined as

Ep	��n�
 = �
n

pnEM†�	nA
‡ , �18�

where EM is some measure of entanglement for distin-
guishable particles. Although this certainly represents a
definition of entanglement appealing for experimental
issues, it is sensitive only to situations where, e.g., the
two initially indistinguishable particles eventually are
separated and can be examined one by one by Alice and
Bob. Consequently, “local operations” have been de-
fined by Wiseman and Vaccaro �2003� as those per-
formed by Alice and Bob in their laboratory after hav-
ing measured the number of particles.3

Verstraete and Cirac pointed out that the presence
of SSR gives rise to a new resource which has to be

3As a potential difference between the entanglement of pho-
tons as opposed to that of massive bosonic particles, it has
been claimed that certain superselection rules may hold for
massive particles only. One such claim is that we would in
practice not be able to build coherent superpositions of states
containing a different number of massive particles 	for a recent
discussion see Bartlett et al. �2007�
. This superselection rule
would, for instance, prohibit creating a superposition of a hy-
drogen atom and molecule. However, the origin and validity of
any superselection rule remains a debated subject. The argu-
ments pro superselection rules usually involve some symmetry
considerations, or some decoherence mechanism. On the other
hand, it turns out that if we allow most general operations in
quantum mechanics, we no longer encounter any superselec-
tion restrictions. Recent work �Dowling, Bartlett, et al., 2006;
Terra Cunha et al., 2007� has shown that it should be possible
to coherently superpose massive particles and to observe a vio-
lation of certain Bell inequalities �Terra Cunha et al., 2007� also
for this case.
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quantified. They have proposed to replace the quantity
Ep with the SSR entanglement of formation. This is de-
fined as

Ef
�SSR�	��N�
 = min

pn,�n
�
n

pnEM	�n
 ,

where the minimization is performed over all those de-
composition of the density matrix where the ���n are
eigenstates of the total number of particles �Schuch et
al., 2003, 2004�.

4. Entanglement for bosons

The quantification and classification of boson en-
tanglement is very close in spirit to that of fermions as
described in Sec. II.F.1. In the bosonic case the matrix �
introduced in the previous section is symmetric under
permutations of the particle numbers. Consequently, for
any two-particle state of indistinguishable bosons, � can
be diagonalized by means of unitary transformations of
the single-particle basis. This leads to the Schmidt de-
composition for bosons �Eckert et al., 2002�. A curious
feature distinguishing this case from the entanglement
measures of distinguishable particles is that the Schmidt
decomposition is not unique. In fact, any two equal
Schmidt coefficients admit for a unitary transformation
of the two corresponding basis states, such that the su-
perposition of the two doubly occupied states can be
written as a symmetrized state of two orthogonal states
�Li et al., 2001; Ghirardi and Marinatto, 2005�. This is the
reason why it is not directly the Schmidt rank, but rather
the reduced Schmidt rank—obtained after having re-
moved all double degeneracies of the Schmidt
decomposition—that determines whether or not a state
is entangled. This nonuniqueness of the Schmidt rank is
also responsible for the ambiguity of the von Neumann
entropy or other purity measures of the single-particle
reduced density matrix as an entanglement measure for
bosons �Ghirardi and Marinatto, 2005�.

With zi the Schmidt coefficients with degeneracy gi,
the reduced Schmidt rank is at most gi /2+2�gi /2�, where
�·� denotes the noninteger part. As a consequence, a
Schmidt rank larger than 2 implies the presence of en-
tanglement. A Schmidt rank 2 with degenerate Schmidt
coefficients can be written as a symmetrized product of
orthogonal states and consequently is disentangled
�Ghirardi and Marinatto, 2005�. This feature is also
present in the N-boson case, where in the presence of up
to N-fold degenerate Schmidt coefficients the corre-
sponding state can be rewritten as a symmetrization of a
product.

For bipartite systems � has full Schmidt rank if
det ��0. A Schmidt rank 1 can be verified by the same
contraction technique described for the fermion case in
the previous section, where the Pfaffian must be re-
placed by the determinant. This applies to both the bi-
partite and the multipartite case �Eckert et al., 2002�.

G. Entanglement in harmonic systems

In this section we concentrate on the entanglement
between distinct modes of harmonic oscillators 	see
Braunstein and van Loock �2005�; Adesso and Illuminati
�2007� for recent reviews on the subject
. The entangle-
ment in this case is termed as continuous variable en-
tanglement in the literature �to be distinguished from
the entanglement of indistinguishable bosonic particles;
see Sec. II.F�.

Dealing with higher dimensional space of the local
degrees of freedom generally involves complications
which are not tamable within the current knowledge
about entanglement. The Peres-Horodecki criterion, just
to mention an important example, is not sufficient al-
ready for two three-level systems, 3�3. The situation
simplifies if only so-called Gaussian states of the har-
monic oscillator modes are considered. This restriction
makes the infinite dimensional case even conceptually
simpler than the finite dimensional counterparts. In or-
der to explain what Gaussian states are, we introduce
the Wigner distribution function W�p ,q� �Wigner, 1932�.
For a single degree of freedom it is defined from the
density operator � as

W�r,p� ª
1

��
�

−�

�

dr��r + r����r − r��e�2i/��pr�, �19�

where r and p are conjugate position and momentum
variables of the degree of freedom. The connection be-
tween bosonic operators â, â† and phase space operators
r̂, p̂ is â= �r̂+ ip̂� /�2, â†= �â�†= �r̂− ip̂� /�2. More degrees
of freedom are taken into account in a straightforward
manner. A �mixed� state � is then called Gaussian when
its Wigner distribution function is Gaussian. Examples
for such states are coherent pure states ���, â���=����
with ��C, and arbitrary mixtures of coherent states �
=�d2�P���������, determined by the so-called
P-distribution P�z�. Such states are termed classical if
the Wigner function and the P-distribution are non-
negative 	see Simon �2000�
.

The key quality of Gaussian states is that they are
completely classified by second moments, which are en-
coded in the symmetric so-called �co-�variance matrix
with the uncertainties of the phase space coordinates as
entries. For two bosonic modes the phase space is four
dimensional and the covariance matrix V is defined as

V�� ª ����̂�,��̂��� =� d4�������W������ , �20�

where the curly brackets on the left-hand side indicate

the anticommutator. The components of �̂�, �=1, . . . ,4

are �r̂1 , p̂1 , r̂2 , p̂2� and ��̂�ª �̂�− ��̂��; the average �·� is
taken with respect to the given two-mode density matrix
�, or, equivalently, using the Wigner distribution of �.
Then, the canonical commutation relations assume the

compact form 	�̂� , �̂�
= i���,� with �= i	y � 1. When ex-
pressed in terms of V, the Heisenberg uncertainty rela-
tion can be invoked in invariant form with respect to
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canonical transformations as det V��2 /4 	see, e.g., Si-
mon et al. �1994�
. The set of the real linear canonical
transformation generates the symplectic group Sp�2n ,R�
that plays an important role in the theory. Being a sym-
plectic matrix, V can be brought in its diagonal form Vn
by means of symplectic transformations. The elements
on the diagonal are then called the symplectic eigenval-
ues of V. An analysis of Vn� has unveiled an even more
powerful invariant form of the Heisenberg uncertainty
principle, V+ �i� /2���0, where the positive semidefi-
niteness means that all symplectic eigenvalues are non-
negative. The uncertainty relation can hence be cast di-
rectly in terms of the symplectic eigenvalues of the
covariance matrix V, which are the absolute values of
the eigenvalues of −i�V.

Some aspects of the harmonic systems can be dis-
closed by recognizing that the Gaussian structure of the
bosonic states can be thought of as a certain limit of the
algebraic structure of the qubits in the sense that
Sp�2,R��SL�2,C�. The latter is the invariance group
relevant for qubit entanglement classification and quan-
tification �Dür et al., 2000; Verstraete et al., 2003; Oster-
loh and Siewert, 2005�.

We now introduce the notion of bipartite entangle-
ment for Gaussian states. In complete analogy to the
finite-dimensional case, a state is termed separable if it is
a mixture of product states. In particular, all classical
states, i.e.,

� =� d2z1d2z2P�z1,z2��z1��z1� � �z2��z2� , �21�

with positive P�z1 ,z2� are separable.
It was Simon �2000� that first proved the Peres-

Horodecki positive partial transpose criterion being nec-
essary and sufficient for entanglement of two harmonic
oscillator modes, again in complete analogy to a system
of two qubits. The effect of transposition of the density
matrix is a sign change in the momentum variables of
the Wigner function �19�. Consequently, a partial trans-
position induces a sign change of those momenta in the
phase space vector, where the transposition should act

on. For an entangled state, the partial transposition Ṽ of
its covariance matrix V might then have symplectic ei-
genvalues smaller than � /2. This can be detected by the
logarithmic negativity as defined from the symplectic

�doubly degenerate� eigenvalues �c̃i ; i=1, . . . ,n� of Ṽ /�
�Vidal and Werner, 2002�:

EN�V� = − �
i=1

n

log2�2c̃i� . �22�

These important results paved the way towards a sys-
tematic analysis of multipartite systems of distinguish-
able bosonic modes.

III. MODEL SYSTEMS

This section is devoted to the basic properties of the
model systems that will be analyzed in the rest of the

review �in several cases we concentrate on one-
dimensional systems�.

A. Spin models

Interacting spin models �Auerbach, 1998; Schollwöck
et al., 2004� provide a paradigm to describe a wide range
of many-body systems. They account for the effective
interactions in a variety of different physical contexts
ranging from high energy to nuclear physics �Polyakov,
1977; Belitsky et al., 2004�. In condensed matter beside
describing the properties of magnetic compounds 	see
Matsumoto et al. �2004� for a recent survey
, they cap-
ture several aspects of high-temperature superconduct-
ors, quantum Hall systems, and heavy fermions, just to
mention few important examples. Hamiltonians for in-
teracting spins can be realized artificially in Josephson
junctions arrays �Fazio and van der Zant, 2001� or with
neutral atoms loaded in optical lattices �Duan et al.,
2003; Jané et al., 2003; Porras and Cirac, 2004�. Interact-
ing spins are paradigm systems for quantum information
processing �Nielsen and Chuang, 2000�.

1. Spin-1 Õ2 models with short range interactions

A model Hamiltonian for a set of localized spins in-
teracting with nearest-neighbor exchange coupling on a
d-dimensional lattice is

H��,�,hz/J� =
J

2�
�i,j�

	�1 + ��Si
xSj

x + �1 − ��Si
ySj

y


+ J��
�i,j�

Si
zSj

z − hz�
i

Si
z. �23�

In the previous expression i , j are lattice points, �·� con-
straints the sum over nearest neighbors, and Si

� ��
=x ,y ,z� are spin-1 /2 operators. A positive �negative� ex-
change coupling J favors antiferromagnetic �ferromag-
netic� ordering in the x-y plane. The parameters � and �
account for the anisotropy in the exchange coupling in
the z direction, and hz is the transverse magnetic field.
There are only very few exact results concerning
H�� ,� ,hz /J� in dimension d�1. The ground state of
Eq. �23� is in general entangled. It exists, however, for
any value of the coupling constants � and �, J�0 a
point in d=1,2 �for bipartite lattices� where the ground
state is factorized �Kurmann et al., 1982; Roscilde et al.,
2005b�. It occurs at the so-called factorizing field hf given
by hf= �z /2�J��1+��2− �� /2�2, where z is the coordina-
tion number.

In d=1 the model is exactly solvable in several impor-
tant cases. In the following we discuss the anisotropic
quantum XY model ��=0 and 0���1� and the XXZ
model ��=0�. Also the XYZ model in zero field, �
�0,��0 can be solved exactly but it will not be dis-
cussed here 	see Takahashi �1999� for a review
.

�a� �=0: Quantum XY model. The quantum Ising
model corresponds to �=1 while the �isotropic� XX
model is obtained for �=0. In the isotropic case the
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model possesses an additional symmetry resulting in the
conservation of magnetization along the z axis. For any
value of the anisotropy the model can be solved exactly
�Lieb et al., 1961; Pfeuty, 1970; Barouch and McCoy,
1971�. By first applying the Jordan-Wigner transforma-

tion ck=ei��j=1
k−1

	j
+

	j
−
	k

− 	with 	±= �1/2��	x± i	y�
 the XY
model can be transformed onto a free fermion Hamil-
tonian

H = �
i,j
�ci

†Ai,jcj +
1
2

�ci
†Bi,jcj

† + H.c.�� +
1
2�

i
Ai,i. �24�

In the previous equation ci ,ci
† are the annihilation and

creation operators for the spinless Jordan-Wigner fermi-
ons. The two matrices A, B are defined as Aj,k
=−J��k,j+1+�j,k+1�−hz�j,k and Bj,k=−�J��k,j+1−�j,k+1�. For
the case of periodic boundary conditions on the spins, an
extra boundary term appears in the fermionic Hamil-
tonian which depends on the parity of the total number
of fermions NF. Note that although NF does not com-
mute with the Hamiltonian the parity of NF is con-
served. A generic quadratic form, like Eq. �24�, can be
diagonalized in terms of the normal-mode spinless
Fermi operators by first going to the Fourier space and
then performing a Bogoliubov transformation.

The properties of the Hamiltonian are governed by
the dimensionless coupling constant 
=J /2h. In the in-
terval 0���1 the system undergoes a second order
quantum phase transition at the critical value 
c=1. The
order parameter is magnetization in the x direction, �Sx�,
which is different from zero for 
�1. In the ordered
phase the ground state has a twofold degereracy reflect-
ing a global phase flip symmetry of the system. Magne-
tization along the z direction, �Sz� is different from zero
for any value of 
, but presents a singular behavior of its
first derivative at the transition. In the interval 0��
�1 the transition belongs to the Ising universality class.
For �=0 the quantum phase transition is of the
Berezinskii-Kosterlitz-Thouless type.

As discussed in Secs. II.A and II.B one- and two-site-
entanglement measures can be related to various equal-
time spin correlation functions �in some cases the block
entropy can be reduced to the evaluation of two-
point correlators� Ml

��t�= �� �Sl
��t� ��� and glm

���t�
= �� �Sl

��t�Sm
� �t� ���. These correlators have been calcu-

lated for this class of models in the case of thermal equi-
librium �Lieb et al., 1961; Pfeuty, 1970; Barouch and Mc-
Coy, 1971�. These can be recast in the form of Pfaffians
that for stationary states reduce to Toeplitz determi-
nants �i.e., determinants, whose entries depend only on
the difference of their row and column number�. It can
be demonstrated that the equal-time correlation func-
tions can be expressed as a sum of Pfaffians �Amico and
Osterloh, 2004�.

�b� �=0: XXZ model. The two isotropic points �=1
and �=−1 describe the antiferromagnetic and ferromag-
netic chains, respectively. In one dimension the XXZ
Heisenberg model can be solved exactly by the Bethe
ansatz technique �Bethe, 1931� 	see, e.g., Takahashi

�1999�
 and the correlation functions can be expressed in
terms of certain determinants 	see Bogoliubov et al.
�1993� for a review
. Correlation functions, especially for
intermediate distances, are in general difficult to evalu-
ate, although important steps in this direction have been
made �Kitanine et al., 1999; Göhmann and Korepin,
2000�.

The zero temperature phase diagram of the XXZ
model in zero magnetic field shows a gapless phase in
the interval −1���1. Outside this interval the excita-
tions are gapped. The two phases are separated by a
Berezinskii-Kosterlitz-Thouless phase transition at �=1
while at �=−1 the transition is first order. In the pres-
ence of the external magnetic field a finite energy gap
appears in the spectrum. The universality class of the
transition is not affected as a result of the conservation
of the total spin-z component �Takahashi, 1999�.

When one moves away from one dimension, exact re-
sults are rare. Nevertheless it is now established that the
ground state of a two-dimensional antiferromagnet pos-
sesses Néel long range order �Manousakis, 1991; Dag-
otto, 1994�.

2. Spin-1 Õ2 models with infinite range interaction

In this case each spin interacts with all other spins
in the system with the same coupling strength H
=−�J /2��ij	Si

xSj
x+�Si

ySj
y
−�ihi ·Si. For site-independent

magnetic field hi
�=h�∀ i, this model was originally pro-

posed by Lipkin, Meshkov, and Glick �LMG� �Lipkin et
al., 1965; Meshkov, Glick, and Lipkin, 1965; Meshkov,
Lipkin, and Glick, 1965� to describe a collective motion
in nuclei. In this case the dynamics of the system can be
described in terms of a collective spin S�=�jSj

�. The pre-
vious Hamiltonian reduces to

H = −
J

2
	�Sx�2 + ��Sy�2
 − h · S . �25�

Since the Hamiltonian commutes with the Casimir op-
erator S2 the eigenstates can be labeled by the represen-
tation S of the collective spin algebra, at most linear in
the number N of spins; this reduces �from 2N to N /2� the
complexity of the problem. A further simplification is
achieved at the supersymmetric point corresponding to
J2�=4hz, where the Hamiltonian can be factorized in
two terms linear in the collective spin �Unanyan and
Fleischhauer, 2003�; then the ground state can be ob-
tained explicitly. For a ferromagnetic coupling �J�0�
and hx=hy=0 the system undergoes a second order
quantum phase transition at 
c=1, characterized by
mean field critical indices �Bottet et al., 1982�. The aver-
age magnetization �for any �� mz= �Sz� /N saturates for

�
c while it is suppressed for 
�
c. For hy=0, hz�1,
and �=0 the model exhibits a first order transition at
hx=0 �Vidal et al., 2006� while for an antiferromagnetic
coupling and hy=0 a first order phase transition at hz
=0 occurs, where the magnetization saturates abruptly
at the same value mz=1/2 for any �’s.
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The model Hamiltonian introduced at the beginning
of this section embraces an important class of interacting
fermion systems as well. By interpreting the nonhomo-
geneous magnetic field as a set of energy levels �hz�i
�−�i, for hx=hy=0 and �=1, it expresses the BCS
model. This can be realized by noting that the operators
Sj

−
ªcj↑cj↓ ,Sj

+
ª �Sj

−�†, Sj
z
ª �cj↑

† cj↑+cj↓
† cj↓−1� /2 span the

su�2� algebra in the representation 1/2. In the fermion
language the Hamiltonian reads HBCS=�j,	=�↑,↓��jcj	

† cj	

− �J /2��ijcj↑
† cj↓

† ci↓ci↑.
Both the LMG and BCS type models can be solved

exactly by Bethe ansatz �Richardson, 1963; Richardson
and Sherman, 1964� 	see also Dukelsky et al. �2004� for a
review
 as they are quasiclassical descendants of the six
vertex model �Amico et al., 2001; Di Lorenzo et al., 2002;
Ortiz et al., 2005�.

3. Frustrated spin-1 Õ2 models

Frustration arises in systems where certain local con-
straints prevent the system from reaching a local energy
minimum. The constraints can be of geometric nature
�for example, the topology of the underlying lattice� or
of dynamical nature �two terms in the Hamiltonian tend-
ing to favor incompatible configurations�. A classical ex-
ample of the first type is that of an antiferromagnet in a
triangular lattice with Ising interaction. At a quantum
mechanical level this phenomenon can result in the ap-
pearance of ground state degeneracies. The equilibrium
and dynamical properties of frustrated systems have
been extensively studied in the literature �Diep, 2005� in
both classical and quantum systems.

A prototype of frustrated models in one dimension is
the antiferromagnetic Heisenberg model with nearest-
and next-nearest-neighbor interactions. This class of
models was discussed originally to study the spin-Peierls
transition �Schollwöck et al., 2004�. The Hamiltonian
reads

H� = J�
i=1

N

�Si · Si+1 + �Si · Si+2� . �26�

Analytical calculations �Haldane, 1982� corroborated by
numerical result �Okamoto and Nomura, 1992� indicate
that at ��1/4 there is a quantum phase transition to a
dimerized two-fold degenerate ground state, where sin-
glets are arranged on doubled lattice constant distances.
Such a phase is characterized by a finite gap in the low
lying excitation spectrum.

The Majumdar-Ghosh model �Majumdar and Ghosh,
1969a, 1969b; Majumdar, 1970� is obtained from Eq. �26�
for �=1/2. The exact ground state can be solved by
means of matrix product states �see next section� and it
is shown to be disordered. It is a doubly degenerate va-
lence bond state made of nearest-neighbor spin singlets.
Although all two-point correlation functions vanish, a
finite four-spin correlation function does reflect an or-
dered dimerization.

4. Spin-1 models

Spin-1 systems were originally considered to study the
quantum dynamics of magnetic solitons in antiferromag-
nets with single ion anisotropy �Mikeska, 1995�. In one
dimension, half-integer and integer spin chains have
very different properties �Haldane, 1983a 1983b�. Long
range order which is established in the ground state of
systems with half-integer spin �Lieb et al., 1961� may be
washed out for integer spins. In this latter case, the sys-
tem has a gap in the excitation spectrum. A paradigm
model of interacting spin-1 systems is

H = �
i=0

N

Si · Si+1 + ��Si · Si+1�2. �27�

The resulting gapped phase arises because of the pres-
ence of zero as an eigenvalue of Si

z; the corresponding
eigenstates represent a spin excitation that can move
freely in the chain, ultimately disordering the ground
state of the system �Gomez-Santos, 1991; Mikeska,
1995�. The so-called string order parameter was pro-
posed to capture the resulting “floating” Néel order,
made of alternating spins �↑�, �↓� with strings of �0�’s in
between �den Nijs and Rommelse, 1989�,

Ostring
� = lim

R→�
�Si

�� �
k=i+1

i+R−1

ei�Sk
��Si+R

� � . �28�

The ground state of physical systems described by
Hamiltonians of the form of Eq. �27� has been studied in
great detail �Schollwöck et al., 2004�. Various phase tran-
sitions have been found between antiferromagnetic
phases, Haldane phases, and a phase characterized by a
large density of vanishing weights �Si

z=0� along the
chain.

The Affleck-Kennedy-Lieb-Tasaki (AKLT) model.
Some features of the phenomenology leading to the de-
struction of the antiferromagnetic order can be put on a
firm ground for �=1/3 �AKLT model�, where the
ground state of the Hamiltonian in Eq. �27� is known
exactly �Affleck et al., 1988�. In this case it was proven
that the ground state is constituted by a sea of nearest-
neighbor valence bond states, separated from the first
excitation by a finite gap with exponentially decaying
correlation functions. Such a state is sketched in Fig. 1.
In fact it is a matrix product state �MPS�, i.e., it belongs
to the class of states which can be expressed in the form

FIG. 1. Schematic of the nearest-neighbor valence bond state,
exact ground state of the spin-1 model in Eq. �27� for �=1/3
�AKLT-model�. The ground state is constructed regarding ev-
ery S=1 in the lattice sites as made of a pair of S=1/2, and
projecting out the singlet state. The singlets are then formed
taking pairs of S=1/2 in nearest-neighbor sites.
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��MPS� = �
s1,. . .,sN

D

Tr A1
s1
¯ AN

sN�s1, . . . ,sN� , �29�

where the matrices �Ak
si�lm parametrize the state; �si� de-

notes a local basis of the D-dimensional Hilbert space;
the trace contracts the indices l ,m labeling bond states
of the auxiliary system �namely the spin-1 /2 for the
AKLT model�. The dimensions of A depend on the par-
ticular state considered, if the state is only slightly en-
tangled then the dimension of A is bounded by some
DMPS. MPS, first discussed by Fannes et al. �1992�, ap-
pear naturally in the density matrix renormalization
group �DMRG� �Ostlund and Rommer, 1995�. In one-
dimensional noncritical systems they describe faithfully
the ground state. In fact, as shown by Vidal, matrix
product states constitute an efficient representation of
slightly entangled states �Vidal, 2003�.

B. Strongly correlated fermionic models

The prototype model of interacting fermions on a lat-
tice is the Hubbard model �Essler et al., 2004�

H = − t�
�ij�

	ci,	
† cj,	 + H.c.
 + U�

i
ni,↑ni,↓ − �N , �30�

where ci,	, ci,	
† are fermionic operators: �ci,	 ,cj,	�

† �
=�i,j�		�. The coupling constant U describes the on-site
repulsion and t is the hopping amplitude.

The Hubbard model possesses a u�1� � su�2� symme-
try expressing the charge conservation u�1�=span�N
=�j	nj	� and the invariance under spin rotation su�2�
=span�Sz=�j�nj↑−nj↓� ,S+=�jcj,↑

† cj,↓ ,S−= �S+�†�. Such a
symmetry allows one to employ the total charge and
magnetization as good quantum numbers. At half filling
n=N /L=1 ��=U /2� the symmetry is enlarged to so�4�
=su�2� � su�2� by the generator �=�j�−�jcj,↑cj,↓ together
with its Hermitian conjugate �Yang and Zhang, 1990�. It
was demonstrated that ���= ���N�gs� are eigenstates of
the Hubbard model �in any dimension�, characterized by
off-diagonal long-range order via the mechanism of the
so-called � pairing �Yang, 1989�.

In one dimension the Hubbard model undergoes a
Mott transition at U=0 of the Berezinskii-Kosterlitz-
Thouless type. By means of the Bethe ansatz solution
�Lieb and Wu, 1968� it can be demonstrated how bare
electrons decay in charge and spin excitations. The phe-
nomenon of spin-charge separation occurs at low ener-
gies away from half filling. For a repulsive interaction
the half-filled band is gapped in the charge sector; while
spin excitations remain gapless. The mirror-inverted
situation occurs for an attractive interaction where the
gap is in spin excitations instead �see Essler et al., 2004
for a recent review�.

The Hubbard model in a magnetic field was proven to
exhibit two quantum critical points at hc

a±=4��U � ±1� and
half filling for U�0, while there is one at hc

r =4��t2+U2

−U� for U�0 �Yang et al., 2000�.

If a nearest-neighbor Coulomb repulsion
V�	,	�,jnj	nj+1	� is taken into account in Eq. �30�, a spin
density wave and a charge density wave phase appear. A
transition to a phase separation of high density and low
density regions 	see, e.g., Clay et al. �1999�
 is also
present.

The bond charge extended Hubbard model, originally
proposed in the context of high Tc superconductivity
�Hirsch, 1989�, include further correlations in the hop-
ping process already involved in Eq. �30�. The Hamil-
tonian reads

H = U�
i

L

ni,↑ni,↓ − t	1 − x�ni,−	 + ni+1,−	�
ci,	
† ci+1,	

+ H.c. �31�

	for x=0 the Eq. �31� coincides with the Hubbard model
�30�
. For x�0 the hopping amplitudes are modulated
by the occupancy of sites involved in the processes of
tunneling. Because of the particle-hole symmetry, x can
be restricted in 	0,1
, without loss of generality. For x
=1 the correlated hopping term commutes with the in-
teraction. In this case the exact ground state was shown
to exhibit a variety of quantum phase transitions be-
tween insulators and superconducting regimes, con-
trolled by the Coulomb repulsion parameter U. For x
=1 the phase diagram is shown in Sec. IV, Fig. 15. At
U / t=4 and n=1, a superconductor-insulator quantum
phase transition occurs; for −4�U / t�4 the ground state
is characterized by off-diagonal long-range order; the
low lying excitations are gapless. For U / t=−4 a further
quantum critical point projects the ground state into the
Hilbert subspace spanned by singly and doubly occupied
states �Arrachea and Aligia, 1994; Schadschneider,
1995�. For intermediate x the model has not been
solved exactly. Numerical calculations indicate a
superconducting-insulator transition controlled by U
and parametrized by x. Specifically, for 0�x�1/2 the
phase is gapped at any nonvanishing U; for 1/2�x�1
the onset to a superconducting phase was evidenced at
some finite U �Anfossi, Degli Esposti Boschi, et al.,
2006�.

C. Spin-boson models

A prototype model in this class is that of a quantum
system coupled to a bath of harmonic oscillators 	see
Weiss �1999� for a review of open quantum mechanical
systems
 known also as the Caldeira-Leggett model. In
this case the quantum system is a two level system. This
class of models was investigated to study the quantum-
to-classical transition and the corresponding loss of
quantum coherence �Zurek, 2003�.

The spin-boson Hamiltonian has the form
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Hsb = −
�

2
Sx + �

n
�n�an

†an +
1
2
� +

1
2

Sz�
n


n�an
† + an� ,

�32�

it can be demonstrated to be equivalent to the aniso-
tropic Kondo model �Anderson et al., 1970; Guinea,
1985�. The coupling constants �
n� fix the spectral den-
sity of the bath: J���= �� /2��n
n

2���−�n� /�n. At low en-
ergy the spectral function can be represented as a power
law: J��� 2��s
0

1−s, where � is the parameter control-
ling the spin-boson interaction and 
0 is a ultraviolet
cutoff frequency. The power s characterizes the bath.
For s=1 the bath is called Ohmic, in this case the model
has a second order quantum phase transition at �=1
from underdamped to overdamped oscillations �where
the value of the spin is frozen�. The value �=1/2 iden-
tifies a crossover regime where the two-level system is
driven from coherent to incoherent oscillations. If the
bath is super-Ohmic �s�1�, the quantum critical point is
washed out, while a crossover occurs at �� log�
0 /��.
For sub-Ohmic baths �s�1�, several studies indicate
the existence of a quantum critical point �Spohn and
Dümcke, 1985�. The question, however, is not com-
pletely settled �Kehrein and Mielke, 1996; Stauber and
Mielke, 2002; Bulla et al., 2003�.

An interesting case is also that of a spin interacting
with a single bosonic mode, 
n=
�n,0:

H = −
�

2
Sx + �0�a0

†a0 +
1
2
� +


0

2
Sz�a0

† + a0� . �33�

Such a model describes, for example, an atom interact-
ing with a monochromatic electromagnetic field �Cohen-
Tannoudji et al., 1992� via a dipole force �Jaynes and
Cummings, 1963�. Recently, the dynamics corresponding
to Eq. �33� was studied in relation to ion traps �Cirac et
al., 1992� and quantum computation �Hughes et al.,
1998�. The model defined in Eq. �33� with S=1/2
�Jaynes-Cummings model� was generalized and solved
exactly to consider generic spin �Tavis and Cummings,
1969� in order to discuss the super-radiance phenom-
enon in cavity QED.

D. Harmonic lattices

The Hamiltonian for a lattice of coupled harmonic
oscillators �harmonic lattice� can be expressed in terms

of the phase space vector ��T= �q1 , . . . ,qn ;p1 , . . . ,pn� as

H = �T�
m

2
�2U 0

0
1

2m
1n
�� , �34�

where U is the n�n interaction matrix for the coordi-
nates. If the system is translational invariant the matrix
U is a Toeplitz matrix with periodic boundaries, also
called circulant matrix �Horn and Johnson, 1994�. In
the case of finite range interaction of the form

�r�k=1
n Kr�qk+r−qk�2 and assuming periodic boundary

conditions, its entries are Uj,j=1+2�r�r and Uj,j+r=−�r
with �r=2Kr /m�2. Since the Hamiltonian �34� is qua-
dratic in the canonical variables its dynamical algebra is
sp�2n ,R�. Then the diagonalization can be achieved by
RHR−1, where R= ��=1

n exp�i!�G�� with G� the generic
Hermitian element of sp�2,R�.

As discussed in Sec. II.G the key quantity that
characterizes the properties of harmonic systems is
the covariance matrix defined in Eq. �20�. For
the resulting decoupled harmonic oscillators it
is diag��m��1��−1 , . . . , �m��n��−1 ;m��1� , . . . ,m��n���,
where �j are the eigenvalues of U. Employing the virial
theorem for harmonic oscillators, the covariance matrix
for a thermal state with inverse temperature �=1/kBT
can be calculated as well,

V = ��m��U�−1N� 0

0 �m��U�N�

� , �35�

where N�=1n+2/ 	exp����U�−1n
. The range of the po-
sition or momentum correlation functions is related to
the low lying spectrum of the Hamiltonian. For gapped
systems the correlations decay exponentially. The ab-
sence of a gap �some eigenvalues of U tend to zero for
an infinite system� leads to critical behavior of the sys-
tem and characteristic long ranged correlations. A rigor-
ous and detailed discussion of the relations between the
gap in the energy spectrum and the properties of the
correlations can be found in Cramer and Eisert �2006�.

IV. PAIRWISE ENTANGLEMENT

At T=0 many-body systems are most often described
by complex ground state wave functions which contain
all correlations that give rise to the various phases of
matter �superconductivity, ferromagnetism, quantum
Hall systems, etc�. Traditionally many-body systems
have been studied by looking, for example, at their re-
sponse to external perturbations, various order param-
eters, and excitation spectrum. The ground state of
many-body systems studied with methods developed in
quantum information unveil new properties. In this sec-
tion we classify the ground state properties of a many-
body system according to its entanglement. We concen-
trate on spin systems. Spin variables constitute a good
example of distinguishable objects, for which the prob-
lem of entanglement quantification is most developed.
We discuss various aspects starting from the pairwise en-
tanglement, and proceed with the properties of block
entropy and localizable entanglement. Most calculations
are for one-dimensional systems where exact results are
available. Section IV.B overviews the status in the
d-dimensional case. Multipartite entanglement in the
ground state will be discussed in Sec. VIII.
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A. Pairwise entanglement in spin chains

1. Concurrence and magnetic order

The study of entanglement in interacting spin systems
was initiated with the works on isotropic Heisenberg
rings �Arnesen et al., 2001; Gunlycke et al., 2001;
O’Connors and Wootters, 2001�. O’Connors and Woot-
ters aimed at finding the maximum pairwise entangle-
ment that can be realized in a chain of N qubits with
periodic boundary conditions. Starting from the assump-
tion that the state maximizing the nearest-neighbor con-
currence C�1� was an eigenstate of the z component of
the total spin �Ishizaka and Hiroshima, 2000; Munro et
al., 2001; Verstraete et al., 2001� the problem was recast
to an optimization procedure similar in spirit to the co-
ordinate Bethe ansatz �Bethe, 1931�:4 the search for the
optimal state was restricted to those cases which ex-
cluded the possibility to find two nearest-neighbor up
spins. For fixed number of spins N and p spins up, the
state can be written as ���=�1�i1�¯�ip�Nbi1¯ip

�i1¯ ip� �b
are the coefficients and ij are the positions of the up-
spins� therefore mapping the spin state onto a particle
state such that the positions of the p particles corre-
spond to those of the up spins. The maximum concur-
rence within this class of states can be related to the
ground state gas of free spinless particles with the result

C�1� = −
1

N
Egs = −

2 sin
�p

N − p

sin
�

N − p

. �36�

Equation �36� gives a lower bound for the maximal at-
tainable concurrence. The isotropic antiferromagnetic
chain was considered as the physical system closest to a
perfectly dimerized system �classically, with alternating
up and down spins�. It was noticed, however, that the
concurrence of the ground state of the antiferromagnetic
chain is actually smaller than the value of the ferromag-
netic chain, indicating that the situation is more compli-
cated �O’Connors and Wootters, 2001�. In order to
clarify this point, a couple of simple examples are useful.
For a system of N=2 spins the ground state is a singlet.
However for general N �with an even number of sites�
the ground state is not made of nearest-neighbor singlets
	resonant valence bond �RVB� state
. For example, the
N=4 ground state is �gs�= �1/�6�	2�0100�+2�1000�
−�1001�− �0110�− �0011�− �1100�
, different from the
product of two singlets. It can be seen that the effect of
the last two components of the state is to reduce the
concurrence with respect to its maximum attainable
value. Given the simple relation Eq. �36� between the
nearest-neighbor concurrence and the ground state en-

ergy, the deviation from the RVB state can be quantified
by looking at the difference from the exact ground state
energy corresponding to the maximum concurrence.
This maximum value is reached within the set of eigen-
states with zero total magnetization 	the “balanced”
states in O’Connors and Wootters �2001�
, indicating
that the concurrence is maximized only on the restricted
Hilbert space of z-rotationally invariant states. Indica-
tions on how to optimize the concurrence were dis-
cussed by Meyer et al. �2004� and Hiesmayr et al. �2006�.
The solution to the problem for N→� was given by
Poulsen et al. �2006�. It turns out that the states with
nearest-neighbor aligned spins 	not included in
O’Connors and Wootters �2001�
 correspond to a
“density-density” interaction in the gas of the spinless
particles considered above, that hence are important for
the analysis. �in the analogy of the coordinate Bethe an-
satz method, this provides the “interacting picture”�.
Following the ideas of Wolf et al. �2003�, the problem to
find the optimum concurrence was shown to be equiva-
lent to that of finding the ground state energy of an
effective spin Hamiltonian, namely, the XXZ model in
an external magnetic field. The optimal concurrence is
found in the gapless regime of the spin model with a
magnetization Mz=1−2p /N. It was further demon-
strated that states considered by O’Connors and Woot-
ters �2001� maximize the concurrence for Mz�1/3 �for
0�Mz�1/3 the states contain nearest-neighbor up
spins�.

The concurrence, beyond nearest neighbors, in isotro-
pic Heisenberg antiferromagnets in an external mag-
netic field was discussed by Arnesen et al. �2001�; Wang
�2002a�; and Fubini et al. �2006�. The combined effect of
the magnetic field and the anisotropy in Heisenberg
magnets was studied by Jin and Korepin �2004a� making
use of the exact results existing for the one-dimensional
XXZ model. It turns out that the concurrence increases
with the anisotropy � �Kartsev and Karshnukov, 2004�.
For strong magnetic fields the entanglement vanishes
�the order is ferromagnetic�; for large values of the an-
isotropy � the state is a classical Neel state with Ising
order. Except for these cases, quantum fluctuations in
the ground state lead to entangled ground states.

As discussed in Sec. III, in low-dimensional spin sys-
tem there exists a particular choice of the coupling con-
stants for which the ground state is factorized �Kurmann
et al., 1982�. This is a special point also from the perspec-
tive of investigating the entanglement in the ground
state. Several works were devoted to the characteriza-
tion of the entanglement close to the factorizing point. It
turns out that the point at which the state of the system
becomes separable marks an exchange of the parallel
and antiparallel sector in the ground state concurrence,
see Eq. �7�. As this phenomenon involves a global �long-
range� reorganization of the state of the system, the
range of the concurrence diverges. �We notice that sev-
eral definitions of characteristic lengths associated with
entanglement decay exist.� The concurrence is often ob-
served to vanish when the two sites are farther than R

4Such a method relies on the existence of a “noninteracting
picture” where the wave function of the system can be written
as a finite sum of plane waves; the ansatz is successful for a
special form of the scattering among such noninteracting
pictures.
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sites apart: the distance R is then taken as the range of
the concurrence. For the XY model it was found that
this range is

R  �ln
1 − �

1 + �
�−1

ln�
−1 − 
f
−1�−1. �37�

The divergence of R suggests, as a consequence of the
monogamy of the entanglement �Coffman et al., 2000;
Osborne and Verstraete, 2006�, that the role of pairwise
entanglement is enhanced while approaching the sepa-
rable point �Roscilde et al., 2004, 2005a, 2005b�. In fact,
for the Ising model �i.e., �=1�, one finds that the ratio
�2 /�1→1 when the magnetic field approaches the factor-
izing field hf �Amico et al., 2006�. For ��1 and hf�hz
�hc it was found that �2 /�1 monotonically increases
for hz→hf

+ and that the value ���2 /�1��hf
+ increases with

�→1. The existence of factorizing has been also pointed
out in other one-dimensional systems for both short-
�Amico et al., 2006; Roscilde et al., 2004, 2005a� and
long-range interactions �Dusuel and Vidal, 2005�. In all
these cases the range of the two-site entanglement di-
verges. The range of the concurrence was also studied
for the XXZ �Jin and Korepin, 2004a� where it was
shown to vary as

R = � 2A�hz�
1 − 4Mz

2�!

. �38�

The exponent !=2 for finite fields, while it is !=1 for
h=0; the coefficient A�h� is known exactly in the para-
magnetic phase �Lukyanov and Zamolodchikov, 1997;
Lukyanov, 1999; Lukyanov and Terras, 2003� �vanishing
magnetization� and in the saturation limit �Vaidya and
Tracy, 1979a, 1979b�. For generic h it was calculated nu-
merically by Hikihara and Furusaki �2004�. For the iso-
tropic Heisenberg antiferromagnet, R=1 �Gu et al.,
2003�.

In all previous cases the increase in the range of the
pairwise entanglement means that all pairs at distances
smaller than R share a finite amount of entanglement �as
quantified by the concurrence�. There are one-
dimensional spin systems where the pairwise entangle-
ment has qualitative different features as a function of
the distance between sites. An example is the long-
distance entanglement observed by Campos Venuti, De-
gli Esposti Buschi, and Roncaglia �2006�. Given a mea-
sure of entanglement E��ij�, Campos Venuti, Degli
Esposti Buschi, and Roncaglia showed that it is possible
that E��ij��0 when �i− j�→� in the ground state. Long-
distance entanglement can be realized in various one-
dimensional models as in the dimerized frustrated
Heisenberg models or in the AKLT model. For these
two models the entanglement is highly nonuniform and
it is mainly concentrated in the end-to-end pair of the
chain.

Spontaneous symmetry breaking can influence the en-
tanglement in the ground state. To see this, it is conve-
nient to introduce the thermal ground state �0

= 1
2 ��gso��gso�+ �gse��gse��= 1

2 ��gs−��gs−�+ �gs+��gs+�� which

is the T→0 limit of the thermal state. In the previous
expression gs+ and gs− are the symmetry broken states
which give the correct order parameter of the model.
They are superpositions of the degenerate parity eigen-
states gso and gse. Being convex, the concurrence in gs±

will be larger than in gso/e �Osterloh et al., 2006�. The
opposite is true for the concave entropy of entanglement
	see Osborne and Nielsen �2002� for the single spin von
Neumann entropy
. The spontaneous parity symmetry
breaking does not affect the concurrence in the ground
state as long as it coincides with CI, Eq. �7�: that is, if the
spins are entangled in an antiferromagnetic way �Syl-
juåsen, 2003b�. For the quantum Ising model, the con-
currence coincides with CI for all values of the magnetic
field, and therefore the concurrence is unaffected by the
symmetry breaking, the hallmark of the present quan-
tum phase transition. For generic anisotropies � instead,
also the parallel entanglement CII is observed precisely
for magnetic fields smaller than the factorizing field �Os-
terloh et al., 2004�; this interval excludes the critical
point. This changes at �=0, where the concurrence in-
deed shows an infinite range. Below the critical field, the
concurrence is enhanced by the parity symmetry break-
ing �Osterloh et al., 2006�

2. Pairwise entanglement and quantum phase transitions

A great number of papers have been devoted to study
entanglement close to quantum phase transition �QPTs�.
QPT occur at zero temperature. They are induced by
the change of an external parameter or coupling con-
stant �Sachdev, 1999�. Examples are transitions occur-
ring in quantum Hall systems, localization, and the
superconductor-insulator transition in two-dimensional
systems. Close to the quantum critical point the system
is characterized by a diverging correlation length �
which is responsible for the singular behavior of differ-
ent physical observables. The behavior of correlation
functions, however, is not necessarily related to the be-
havior of quantum correlations present in the system.
This behavior seems particularly interesting as quantum
phase transitions are associated with drastic modifica-
tions of the ground state.

The critical properties in the entanglement we sum-
marize below allow for a screening of the qualitative
change of the system experiencing a quantum phase
transition. In order to avoid possible confusion, it is
worth noting that the study of entanglement close to
quantum critical points does not provide new under-
standing to the scaling theory of quantum phase transi-
tions. Rather it may be useful in a deeper characteriza-
tion of the ground state wave function of the many-body
system undergoing a phase transition. In this respect it is
important to understand, for instance, how the entangle-
ment depends on the order of the transition, or what is
the role of the range of the interaction to establish the
entanglement in the ground state. In this section we dis-
cuss exclusively the pairwise entanglement while in the
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next section we approach the same problem by looking
at the block entropy.5

Pairwise entanglement close to quantum phase transi-
tions was originally analyzed by Osborne and Nielsen
�2002�, and Osterloh et al. �2002� for the Ising model in
one dimension. Below we summarize their results in this
specific case. The concurrence tends to zero for 
"1
and 
#1, the ground state of the system is fully polar-
ized along the x axes �z axes�. Moreover, the concur-
rence is zero unless the two sites are at most next-
nearest-neighbors, we therefore discuss only the nearest
neighbor concurrence C�1� �see, however, Sec. IV.A.1
for cases where there is a longer-range pairwise en-
tanglement�. The concurrence itself is a smooth function
of the coupling with a maximum close to the critical
point �see the right inset of Fig. 2�; it was argued that the
maximum in the pairwise entanglement does not occur
at the quantum critical point because of the monogamy
property �it is the global entanglement that should be
maximal at the critical point�. The critical properties of
the ground state are captured by the derivatives of the
concurrence as a function of 
. The results for systems of
different size �including the thermodynamic limit� are
shown in Fig. 2. For the infinite chain �
C�1� diverges on
approaching the critical value as

�
C�1� �
8

3�2 ln�
 − 
c� . �39�

For a finite system the precursors of the critical behavior
can be analyzed by means of finite size scaling. In the
critical region the concurrence depends only on the
combination N1/��
−
m�, where � is the critical expo-
nent governing the divergence of the correlation length
and 
m is the position of the minimum �see the left inset
of Fig. 2�. In the case of log divergence the scaling ansatz
has to be adapted and takes the form �
C�1��N ,
�
−�
C�1��N ,
0��Q	N1/��m

−Q	N1/��m
0
, where 
0 is
some noncritical value, �m�
�=
−
m, and Q�x�
�Q���ln x �for large x�. Similar results have been ob-
tained for the XY universality class �Osterloh et al.,
2002�. Although the concurrence describes short-range
properties, nevertheless scaling behavior typical of con-
tinuous phase transition emerges.

For this class of models the concurrence coincides
with CI in Eq. �7� indicating that the spins can only be
entangled in an antiparallel way �this is a peculiar case
of �=1; for generic anisotropies the parallel entangle-
ment is also observed�. The analysis of the finite size
scaling in the, so-called, period-2 and period-3 chains
where the exchange coupling varies every second and
third lattice sites, respectively, leads to the same scaling
laws in the concurrence �Zhang and Burnett, 2005�.

The concurrence was found to be discontinuous at the
first order ferromagnetic transition �=−1 in the XXZ
chain �Gu et al., 2003� 	see Glaser et al. �2003� for ex-
plicit formulas relating the concurrence and correlators
for the XXZ model in various regimes
. This result can
be understood in terms of the sudden change of the
wave function occurring because of the level crossing
characterizing these types of quantum critical points.
The behavior of the two-site entanglement at the con-
tinuous quantum critical point of the Kosterlitz-
Thouless type �=1 separating the XY and the antiferro-
magnetic phases is more complex. In this case the
nearest-neighbor concurrence �that is the only nonvan-
ishing one� reaches a maximum as shown in Fig. 3. Fur-
ther understanding of such behavior can be achieved by
analyzing the symmetries of the model. At the antiferro-
magnetic point the ground state is an su�2� singlet where
nearest-neighbor spins tend to form singlets; away from
�=1, this behavior is “deformed” and the system has the
tendency to reach a state of the type � ��q

j � made of
q-deformed singlets corresponding to the quantum alge-
bra suq�2� with 2�=q+q−1 �Pasquier and Saleur, 1990�.
This allows one to rephrase the existence of the maxi-
mum in the concurrence as the loss of entanglement as-
sociated to the q-deformed symmetry of the system
away from �=1 �note that q-singlets are less entangled
than undeformed ones�. This behavior can be traced
back to the properties of the finite size spectrum �Gu et
al., 2007�. In fact, at �=1 the concurrence can be related
to the eigenenergies. The maximum arises since both the
transverse and longitudinal orders are power law decay-

5QPTs were also studied by looking at quantum fidelity
�Cozzini et al., 2006; Zanardi et al., 2006� or the effect of single
bit operations �Giampaolo, Illuminati, and Sienga, 2006; Giam-
paolo et al., 2008�.
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FIG. 2. �Color online� The derivative of the nearest-neighbor
concurrence as a function of the reduced coupling strength.
The curves correspond to different lattice sizes. On increasing
the system size, the minimum gets more pronounced and the
position of the minimum tends �see the left-hand side inset�
towards the critical point where for an infinite system a loga-
rithmic divergence is present. The right-hand side inset shows
the behavior of the concurrence for the infinite system. The
maximum is not related to the critical properties of the Ising
model. From Osterloh et al., 2002.
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ing at this critical point, and therefore the excited states
contribute to C�1� maximally.

Studies of finite size energy spectrum of other models
like the dimerized Heisenberg chain �Sun et al., 2005�
and Majumdar-Ghosh model 	Eq. �26� with �=1/2

show how level crossings in the energy spectrum affect
the behavior of the bipartite entanglement occurring at
the quantum phase transition �Gu et al., 2007�.

�a� LMG model. Because of the symmetry of the
LMG models 	see Eq. �25�
 any two spins are entangled
in the same way. The concurrence C is independent on
the two site indices, it can be obtained by exploiting the
explicit expression of the eigenstates. Due to the mo-
nogamy of entanglement the result must be rescaled by
the coordination number, CR= �N−1�C to have a finite
value in the thermodynamic limit. For the ferromagnetic
model �Vidal, Mosseri, and Dukelsky, 2004�, it was
proven that close to the continuous QPT, 
=1 character-
izing the ferromagnetic LMG model, the derivative of
the concurrence diverges, but, differently from Ising
case, with a power law. It is interesting that CR can be
related to the so-called spin squeezing parameter $

=2��Sn�
�Wang and Burnett, 2003�, measuring the spin

fluctuations in a quantum correlated state �the subscript
n� indicates a perpendicular axes to �S��. The relation
reads $=�1−CR. According to Lewenstein and Sanpera
�1998� the two-spin reduced density operator can be de-
composed into a separable part and a pure entangled
state �e with a certain weight 
. Such a decomposition
leads to the relation C���= �1−
�C��e�. Critical spin
fluctuations are related to the concurrence of the pure
state C��e� while the diverging correlation length is re-
lated to the weight 
 �Shimizu and Kawaguchi, 2006�.
Analysis of critical entanglement at the first order quan-
tum critical point of the antiferromagnetic LMG model
shows that �Vidal, Mosseri, and Dukelsky, 2004� the dis-
continuity is observed directly in the concurrence for
spin interacting with a long range; see Fig. 4.

�b� Pairwise entanglement in spin-boson models. We

first discuss the Tavis-Cummings model defined in Eq.
�33�. In this model the spin S is proportional to the num-
ber of atoms, all interacting with a single mode radiation
field. The pairwise entanglement between two different
atoms undergoing the super-radiant quantum phase
transition �Lambert et al., 2004, 2005; Reslen et al., 2005�
can be investigated through the rescaled concurrence
CN=NC, see Fig. 5, similar to what has been discussed
above for the LMG models. In the thermodynamic limit
the spin-boson model can be mapped onto a quadratic
bosonic system through a Holstein-Primakoff transfor-
mation �Emary and Brandes, 2003�. Many of the prop-
erties of the Tavis-Cummings model bear similarities
with the ferromagnetic LMG model. In the thermody-
namic limit the concurrence reaches a maximum value
1−�2/2 at the super-radiant quantum phase transition
with a square root singularity �see also Schneider and
Milburn, 2002�. The relationship between the squeezing
of the state and entanglement was highlighted by Sø-
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rensen and Mølmer �2001� and analyzed in more details
by Stockton et al. �2003� where it was also suggested how
to deal with entanglement between arbitrary splits of
symmetric Hilbert spaces �such as the Dicke state span�.

Entanglement between the qubits and a single mode
and between two spins with a Heisenberg interaction of
the XXZ type, additionally coupled to a single bosonic
field, was considered by Liberti et al. �2006a, 2006b� and
He et al. �2006�, respectively.

3. Entanglement versus correlations in spin systems

From the results summarized above it is clear that the
anomalies characterizing the quantum critical points are
reflected in the two-site entanglement. At a qualitative
level this arises because of the formal relation between
the correlation functions and the entanglement. A way
to put this observation on a quantitative ground is pro-
vided by a generalized Hohenberg-Kohn theorem �Wu
et al., 2006�. Accordingly, the ground state energy can be
considered as a unique function of the expectation val-
ues of certain observables. These, in turn, can be related
to �the various derivatives of� a given entanglement
measure �Wu et al., 2004; Campos Venuti, Degli Esposti
Boschi, et al., 2006�.

Specifically, for a Hamiltonian of the form H=H0
+�l
lAl, with control parameters 
l associated with op-
erators Al, it can be shown that the ground state reduced
operators of the system are well-behaved functions of
�Al�. Then, any entanglement measure related to re-
duced density operators M=M��� is a function of �Al�
�in absense of ground state degeneracy� by the
Hellmann-Feynman theorem: �E /�
l= ��E /�
l�= �Al�.
Therefore it can be proven that

M��Al�� = M� �E

�
l
� , �40�

where E is the ground state energy. From this relation
emerges how the critical behavior of the system is re-
flected in the anomalies of the entanglement. In particu-
lar, first order phase transitions are associated with the
anomalies of M while second order phase transitions
correspond to a singular behavior of the derivatives of
M. Other singularities, like those in the concurrence for
models with three-spin interactions �Yang, 2005�, are
due to the nonanalyticity intrinsic in the definition of the
concurrence as a maximum of two analytic functions and
the constant zero.

The relation given in Eq. �40� was constructed explic-
itly for the quantum Ising, XXZ, and LMG models �Wu
et al., 2006�. For the Ising model: �l
Al=h�lSl

z; the di-
vergence of the first derivative of the concurrence is
then determined by the nonanalytical behavior of �SxSx�
�Wu et al., 2004�. For the XXZ model: �l
lAl

=��lSl
zSl+1

z . At the transition point �=1 both the purity
and the concurrence display a maximum. It was proven
that such a maximum is also reflected in a stationary
point of the ground state energy as a function of �Si

zSi+1
z �;

the concurrence is continuous since the Berezinskii-

Kosterlitz-Thouless transition is of infinite order. A rel-
evant caveat to Eq. �40� is constituted by the uniaxial
LMG model in a transverse field �with hy=0 and �=0�
that displays a first order QPT for hx=0. The concur-
rence is continuous at the transition since it does not
depend on the discontinuous elements of the reduced
density matrix �Vidal, Palacios, and Mosseri, 2004�.

The relation between entanglement and criticality was
also studied in the spin-1 XXZ with single ion aniso-
tropy. It was established that the critical anomalies in the
entropy experienced at the Haldane large D 	if an axial
anisotropy D�i�Si

z�2 is added to the Hamiltonian in Eq.
�27�
 transition fans out from the singularity of the local
order parameter ��Sz�2� �Campos Venuti, Degli Esposti
Boschi, et al., 2006a�.

A way to study the general relation between entangle-
ment and critical phenomena was pursued by Hasel-
grove et al. �2004�. It was argued how for systems with
finite range interaction a vanishing energy gap in the
thermodynamic limit is an essential condition for the
ground state to have nonlocal quantum correlations be-
tween distant subsystems.

4. Spin models with defects

The problem of characterizing entanglement in chains
with defects was addressed first for the quantum XY
models with a single defect in the exchange interaction
term of the Hamiltonian �Osenda et al., 2003�. It was
found that the effect of the impurity is to pin the en-
tanglement. Moreover, the defect can induce a pairwise
entanglement on the homogeneous part of the system
that was disentangled in the pure system. Even at the
quantum critical point the finite size scaling of the criti-
cal anomaly of the concurrence is affected by the dis-
tance from the impurity. This basic phenomenology was
observed in a variety of different situations that we re-
view below.

The presence of two defects has been analyzed in the
XXZ chain. It turns out �Santos, 2003� that various types
of entangled states can be created in the chain by spin
flip excitations located at defect positions. The entangle-
ment oscillates between defects with a period that de-
pends on their distance. The anisotropy � of the chain is
a relevant parameter controlling the entanglement be-
tween defects. Small anisotropies can suppress the en-
tanglement �Santos and Rigolin, 2005�. This kind of lo-
calization, which can be exploited for quantum
algorithms, was studied by Santos et al. �2005�. The en-
tanglement was also studied in systems with defects in
the presence of an external magnetic field �Apollaro and
Plastina, 2006�. It was demonstrated that such a defect
can lead to an entanglement localization within a typical
length which coincides with the localization length.

A possible way to mimic a defect is to change the
boundary conditions. The concurrence was studied for
the ferromagnetic spin-1 /2 XXZ chain with an antipar-
allel boundary magnetic field which gives rise to a term
in the Hamiltonian of the form Hboundary=h�S1−SN� �Al-
caraz et al., 2004�. The boundary field triggers the pres-

536 Amico et al.: Entanglement in many-body systems

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008



ence of domain walls in the system that induces a first
order phase transition between ferromagnetic and kink-
type phases at hc=��2−1. In the ferromagnetic phase
the pairwise entanglement vanishes. In the kink-type
phase the concurrence acquires a finite value �for h=0
the ground state is factorized�. For a finite chain of
length L pairwise entanglement is generically triggered
from the external magnetic field, and it is enhanced at
the center of the chain. In the gapless and antiferromag-
netic regimes oscillation in nearest-neighbor entangle-
ment is established in the system resulting from the ten-
dency to reach the antiferromagnetic order. The
oscillations are more pronounced in the gapped phase.
Finally, a critical inflection point was noticed in the mea-
sure of Meyer and Wallach �2002� for the global en-
tanglement at the transition point. The spin-1 /2 XXX
antiferromagnetic chain with open boundary conditions
with single defect was studied by Wang �2004�. It was
proven that a threshold value exists for coupling be-
tween the impurity and the rest of the system at which
the concurrence between them is switched on; for
smaller values the entanglement is dimerized in such a
way that the monogamy property prevents the impurity
to be entangled with the rest of the chain.

The case of many defects was also studied. For the
quantum Ising model it was found �Huang et al., 2004�
that disorder can shift the point at which the concur-
rence is maximum, eventually washing out the critical
behavior �strong disorder�. The concurrence tends to be
suppressed at the lattice site corresponding to the center
of the Gaussian; such effect is more robust for near criti-
cal chains. Quantum XY and XXZ chains with Gaussian
disorder in the exchange interaction have been also
studied to investigate how the quantum criticality of the
concurrence is robust by insertion of the inhomogene-
ities in the chain �Cai et al., 2006; Hoyos and Rigolin,
2006�.

B. Two- and three-dimensional systems

In higher dimensions nearly all results were obtained
by means of numerical simulations. The concurrence
and localizable entanglement in two-dimensional quan-
tum XY and XXZ models �Syljuåsen, 2003a� were con-
sidered. The calculations are based on quantum Monte
Carlo �QMC� simulations and the use of stochastic series
expansion for spin systems �Sandvik and Kurkij, 1991;
Syljuåsen and Sandvik, 2002�. Although the concurrence
for the 2D models results to be qualitatively similar to
the one-dimensional case, it is much smaller in magni-
tude. It is the monogamy that limits the entanglement
shared among the number of neighbor sites �which is
larger in two dimensions as compared with chains�. Fi-
nally, it is observed that the maximum in the concur-
rence occurs at a position closer to the critical point than
in the 1D case.

By studying appropriate bounds �concurrence of assis-
tance and the largest singular value of the connected
correlation functions�, it was proven for the XXZ model

that the localizable entanglement is long ranged in the
XY region up to the isotropic antiferromagnetic point.
Similar to the case of the quantum XY chain, the bounds
for the localizable entanglement are very tight in this
case.

The pairwise entanglement in the d-dimensional XXZ
model was studied by Gu et al. �2005�. The concurrence
reaches its highest value at the antiferromagnetic quan-
tum critical point �=−1. A spin-wave analysis corrobo-
rated by numerical exact diagonalization indicates that
the concurrence develops a cusp in the thermodynamic
limit, only for d�2. Such behavior can be explained by
noting that the level crossing between the ground and
first excited states occurring at the antiferromagnetic
point causes a nonanalyticity in the ground state energy.
The enhanced pairwise entanglement at the antiferro-
magnetic point together with its nonanalyticity support
the conjectured existence of long-range order for two-
dimensional antiferromagnets. Further support to this
conjecture is the strong size dependence of the von Neu-
mann entropy that becomes singular in thermodynamic
limit �Gu et al., 2006�.

The ground state entanglement in the two-
dimensional XYZ model was analyzed by Roscilde et al.
�2005b� with quantum Monte Carlo simulations. The di-
vergence of the derivative of the concurrence at the con-
tinuous phase transition, observed in d=1, was con-
firmed; in this case the range of the pairwise
entanglement extends only to a few lattice sites. By
studying the one and the two tangle of the system, it was
proven that the QPT is characterized by a cusp mini-
mum in the entanglement ratio �1 /�2. The cusp is ulti-
mately due to the discontinuity of the derivative of �1.
The minimum in the ratio �1 /�2 signals the enhanced
role of the multipartite entanglement in the mechanism
driving the phase transition. Moreover, by looking at the
entanglement it was found that the ground state can be
factorized at a certain value of the magnetic field. The
existence of the factorizing field in d=2 was proven for
any 2D XYZ model in a bipartite lattice. Unexpectedly
the relation implying the factorization is very similar to
that one found in d=1.

Multiple spin exchange is believed to play an impor-
tant role in the physics of several bidimensional magnets
�Schollwöck et al., 2004�. Entanglement in the ground
state of a two leg ladder with four spin ring exchange
was evaluated by means of the concurrence �Song et al.,
2006�.

C. Pairwise entanglement in fermionic models

1. Noninteracting fermions

The site-based entanglement of spin degrees of free-
dom through the Jordan-Wigner transformation has
been exploited for calculating the concurrence of
nearest-neighbor sites and the single site von Neumann
entropy �see Sec. II.F� for the one-dimensional tight-
binding model in the presence of a chemical potential
for spinless fermions by Zanardi �2002�. This model is
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related to the isotropic XX model in a transverse mag-
netic field. In this specific case, no double occupancy can
occur and the concept of entanglement coincides with
that for spin 1/2. It was found that the nearest-neighbor
concurrence of the ground state at T=0 assumes its
maximum at the half-filled chain. Due to particle-hole
symmetry, the concurrence results are symmetric with
respect to half filling. At finite temperatures it was found
that the threshold temperature for vanishing concur-
rence is independent of the chemical potential. Raising
the chemical potential leads from a monotonically de-
creasing concurrence with raising temperature at low
filling fraction to the formation of a maximum at a cer-
tain temperature for high filling fractions.

The continuous limit of the tight-binding fermion
model is the ideal Fermi gas. In this system, the spin
entanglement between two distant particles has been
studied by Vedral �2003�. There, depending on the di-
mensionality, the pairwise spin entanglement of two fer-
mions was found to decrease with their distance for a
finite range R of the concurrence. The two spin reduced
density matrix is

�12 =
1

4 − 2f2�
1 − f2 0 0 0

0 1 − f2 0

0 − f2 1 0

0 0 0 1 − f2
� , �41�

where f�x�=d	J1�x� /x
 with d� �2,3� the space dimen-
sion and J1 the �spherical for d=3� Bessel function of the
first kind �Vedral, 2003; Oh and Kim, 2004�. This density
matrix is entangled for f2�1/2. As a consequence, there
is spin entanglement for two fermions closer than d0
�0.65� /kf for d=3 and d0�0.55� /kf for d=2 �kf is the
Fermi momentum�. A finite temperature tends to dimin-
ish slightly the range of pairwise spin entanglement �Oh
and Kim, 2004�.

It should not be surprising that noninteracting par-
ticles are spin entangled up to some finite distance. It is
true that the ground state and even an arbitrary thermal
state of noninteracting fermions has vanishing entangle-
ment among particles 	which should not be confused
with the nonvanishing entanglement of particles �Dowl-
ing, Doherty, and Wiseman, 2006�
, since the corre-
sponding states are �convex combinations of� antisym-
metrized product states. However, disentanglement in
momentum space typically leads to entanglement in co-
ordinate space. A monochromatic plane wave of a single
particle, for example, corresponds to a W state, which
contains exclusively pairwise entanglement in coordi-
nate space for an arbitrary distance of the sites. Further-
more, a momentum cutoff at kf corresponds to a length
scale of the order kf

−1.
It is interesting that fuzzy detection of particles in co-

ordinate space increases the entanglement detected by
the measurement apparatus. To this end, Cavalcanti et
al. �2005� calculated the two-position reduced density
matrix defined by �ss�,tt�

�2� = ��t��r��
†�t�r�†�s��r���s�r��

with blurred field operators �s�r�ª�dr�dp�s�p�D�r

−r��eipr�, where D�r−r��= �1/�2�	�exp�−�r−r�� /2	2� is a
Gaussian distribution describing the inaccuracy of the
position measurement. This could be understood from
the blurred field operators being coherent sums of local
field operators; the entanglement measured by the appa-
ratus as described above then is the bipartite entangle-
ment between two regions of width 	 around r and r�.
This entanglement is larger than the average of all pair-
wise contributions out of it due to the superadditivity of
the entropy or negativity. An analysis by Vedral �2004b�
for the three fermion spin density matrix revealed that
the state carries entanglement within the W class �Dür et
al., 2000�, provided the three particles are in a region
with radius of the order of the inverse Fermi momen-
tum; a similar reasoning applies to n fermions in such a
region �Vedral, 2004b; Lunkes et al., 2005�.

2. Pairing models

Itinerant systems, where the focus of interest is the
entanglement of degrees of freedom forming a represen-
tation of su�2� in terms of the fermionic operators, have
been the subject of intense investigation. This line has
been followed by Shi �2004� and Zanardi �2002� for ana-
lyzing a connection to BCS superconductivity and to the
phenomenon of � pairing, a possible scenario for high Tc
superconductivity 	see also Fan et al. �2004� and Vedral
�2004a, 2004b�
. Such states appear as eigenstates of the
Hubbard model with off-diagonal long-range order �see
Sec. III.B�. A simplified model of BCS-like pairing for
spinless fermions has been studied by Zanardi �2002�.
The concurrence of the two qubits represented by the
modes k and −k has been found to be a monotonically
increasing function of the order parameter; it drops to
zero significantly before the critical temperature is
reached. For electrons with spin, a connection between
the BCS order parameter and the local von Neumann
entropy in the particle number projected BCS ground
state has been proposed by Shi �2004� 	see also Gedik
�2002�
.

States with off-diagonal long-range order by virtue of
� pairing are defined in Sec. III.B. These are symmetric
states and their concurrence vanishes in the thermody-
namic limit due to the sharing property of pairwise en-
tanglement of su�2� degrees of freedom. Consequently, a
connection to the order parameter of off-diagonal long-
range order O�= ����j

†�k���=N�L−N� /L�L−1�→n�1
−n� �with N ,L→� and fixed filling fraction n� cannot be
established, not even for the rescaled concurrence, since
C→1/L �see also the analysis for the LMG model in
Sec. IV.A.2�. Nevertheless, the state is entangled, as can
be seen from the entropy of entanglement and the geo-
metric measure of entanglement �Wei and Goldbart,
2003�. The latter is tightly connected to the relative en-
tropy �Wei et al., 2004�. Both have been calculated by
Vedral �2004a� and indicate the presence of multipartite
entanglement.
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3. Kondo models

The Kondo models are paradigms to explore quantum
impurity problems. They identify a special class of physi-
cal systems whose macroscopic properties are dramati-
cally influenced by the presence of few impurities with
quantum internal degrees of freedom �Hewson, 1997�. In
its simplest formulation, the effective Hamiltonian de-
scribes a single impurity spin interacting with a band of
free electrons. The many-body screening of the impurity
spin provided by electrons as a collective effect leads the
system from weak coupling to strong coupling regimes
�Andrei, 1995�; the length scale of the screening cloud is
�K=v /TK, where v is the speed of the low lying excita-
tions and TK is the Kondo temperature.

In the first studies of the entanglement the charge de-
grees of freedom of electrons were considered frozen.
The pairwise entanglement of spin degrees of freedom
in the isotropic Kondo model was analyzed �Oh and
Kim, 2006� within the variational formalism of Yosida
where the Kondo singlet is described as ��s�
= �1/�2����↓��%↑�− ��↑��%↓��, with �%	� the impurity spin
states and ��	� the electronic states with an unbalanced
spin 	 �Hewson, 1997�. It is commonly known that the
reduced density operator of the impurity is found to be
maximally mixed, meaning that the Fermi sea and the
impurity spin are in a maximally entangled state �the
Kondo singlet�. The impurity spin and a single electron
are in a Werner state by superposition of the back-
ground and Kondo singlets. Due to the entanglement
monogamy �electrons cooperatively form a singlet with
spin� two electrons cannot be entangled with each other
within the Kondo cloud and the single-electron spin en-
tanglement vanishes in the thermodynamical limit. Pairs
of electronic spin can be nevertheless entangled in a fi-
nite system through the scattering with the spin impu-
rity; this effect can be used to manipulate the electron-
electron entanglement by performing a projective
measure on the impurity spin �Yang et al., 2007�. This
suggests that some amount of electron-electron en-
tanglement might be extracted even in the thermody-
namical limit where it was demonstrated that the Kondo
resonance is washed out by measurement �Katsnelson et
al., 2003�—effectively removing the constraint of the en-
tanglement sharing.

The two impurity Kondo model was also studied. The
new feature here is the Ruderman-Kittel-Kasuya-Yosida
�RKKY� effective interaction between the impurity
spins S1 and S2 that competes with the Kondo mecha-
nism �favoring nonmagnetic states�; it is ferromagnetic
or antiferromagnetic depending on the distance between
the impurities. Because of such interplay a quantum
critical point emerges in the phase diagram separating
the spin-spin interaction regime from the phase where
the two spins are completely screened �Jones et al., 1988;
Affleck and Ludwig, 1992�.

As for the single impurity, the two impurity spins are
in a Werner state, for which the concurrence is charac-
terized by a single parameter ps, exhibiting a singlet type
of entanglement between the two spin impurities. The

concurrence is found to vanish at the critical point.
For a ferromagnetic RKKY interaction the concur-

rence between the impurity spin vanishes identically as
the result of a S=1 Kondo screening. It turns out that
�Cho and McKenzie, 2006� the impurity spins can be
entangled �with a finite concurrence� by the RKKY in-
teraction only when a certain amount of antiferromag-
netic correlations fs= �S1S2� is established in the system;
the value of the correlation function reached is at the
quantum critical point. The entanglement between the
conduction electrons and Kondo impurities is quantified
by a combined analysis of the von Neumann entropies of
the two impurities and single impurity �tracing out both
electronic spins and the remaining impurity�. The latter
quantity is maximized independent on fs, meaning that
the impurity spin is completely screened either by the
Kondo cloud or by the other impurity spin. In the re-
gime where the Kondo mechanism dominates, the con-
currence cannot be finite because of the entanglement
sharing.

Entanglement in the Kondo physics of double quan-
tum dots in an external magnetic field was studied by
Ramsak et al. �2006�. The main phenomenology results
to be consistent with the scenario depicted by Cho and
McKenzie �2006� especially if the dots are arranged in
series �each dot is coupled to the leads exclusively, re-
sembling the configuration of the Kondo spins embed-
ded in electrons�. The concurrence switches to finite val-
ues for a certain threshold of the interdot coupling �for
which the assumptions of negligible charge fluctuations
results are still valid�. The temperature weakens the en-
tanglement between the qubits at T�TK. For the side-
and parallel-coupled dots a more intense coupling
among the qubits is required to entangle them. For the
side-coupled dots this results because one has to win on
the enhanced Kondo effect on the dot coupled to the
leads �“two stage Kondo” effect�; therefore the critical
interdots coupling is �TK. For the parallel-coupled ar-
rangement the concurrence is zero because the effective
RKKY interaction turns out to be ferromagnetic up to a
certain value that is the threshold to entangle electrons.

The RKKY interaction effectively controls the en-
tanglement among the qubits in the case of many impu-
rity spins arranged as in the Kondo necklace model
�Saguia and Sarandy, 2003�. The Hamiltonian describes a
Kondo lattice where the localized impurity spins, dis-
placed in every lattice site, interact with the �pseudo�
spins of the electrons 	see Tsunetsugu et al. �1997� for a
review on Kondo lattice models
. This results in the fact
that additional on-site spin-spin interaction imposes a
“selective” monogamy of the entanglement, depending
on whether the Heisenberg interactions are ferromag-
netic or antiferromagnetic. The effects of finite tempera-
ture and magnetic field were also considered in aniso-
tropic models. In these models a critical field emerges
that exists separating different patterns in the thermal
entanglement between the eigenstates of the model.

Fluctuations of the charge degrees of freedom of elec-
trons �frozen in the references cited above� in the
RKKY mechanism was discussed quantifying the en-
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tanglement of particles in a small cluster described by
the periodic Anderson model �Samuelsson and Ver-
dozzi, 2007�. It was evidenced that the ground state of
the system is characterized by a double occupancy of
electronic levels, whose entanglement can be only par-
tially captured by assuming them as simple qubits.

D. Entanglement in itinerant bosonic systems

In contrast to the free Fermi gas, in bosonic systems
the phenomenon of Bose-Einstein condensation �BEC�
takes place at sufficiently low temperatures. Then, a
macroscopic portion of bosons is found in the single par-
ticle ground state of the system. This state is a symme-
trization of a product state in momentum space, and in
fact all eigenstates of the ideal Bose gas are of that struc-
ture. Nevertheless, in principle entanglement could be
present when going in the coordinate basis. It results,
however, that this is not the case. Neither do two distant
bosons carry spin entanglement �Vedral, 2003� nor are
two distant groups of n and m particles entangled
�Dowling, Doherty, and Wiseman, 2006� when superse-
lection rules for the particle number are applied in both
regions �Wiseman and Vaccaro, 2003�. Simon �2002� em-
ployed a different notion of entanglement: the state of
either part of a certain bipartition of the BEC has been
viewed as a qudit, or, more precisely, an N-level system,
where N is the number of bosons in the condensate and
the different states in both regions are labeled by its
occupation number. The entropy of entanglement for a
spatial bipartition of the BEC is then nonzero. A pro-
posal for entangling internal atomic degrees of freedom
in a weakly interacting BEC has been put forward by
Helmerson and You �2001�; and Sørensen et al. �2001�.

The disentangled modes in a BEC naturally become
entangled by means of interactions or scattering be-
tween these modes. This has been exemplified by Vedral
�2003� 	see also Shi �2004�
 for when the scattering
strength is independent of the momentum transfer
q : H=�q��p�ap

†ap+V�p,p�,qap+q
† ap�−q

† ap�ap. The Hamil-
tonian can be diagonalized for q=0 and p�=−p by
means of a Bogoliubov transformation ap¬upbp+vpb−p

† .
We observe that such transformation entangles the
two modes ±p. The corresponding entropy of entangle-
ment is �Vedral, 2003� Sp,−p=−�vp /up�2 ln �vp /up�2− 	1
− �vp /up�2
ln	1− �vp /up�2
. If up=vp, the reduced state for
mode p is maximally mixed, and hence the modes p and
−p are maximally entangled. The entanglement entropy
for a bipartition in positive and negative modes is then
given by �p�0Sp,−p. This constitutes a simple example on
how mode mixing generates entanglement. Such a sce-
nario is rather generic; a curious example is the en-
tanglement of the accelerated vacuum and from the
viewpoint of relatively accelerated observers due to the
Unruh effect 	see, e.g., Alsing and Milburn �2003�; Ve-
dral �2003�; Benatti and Floreanini �2004�; Fuentes-
Schuller and Mann �2005�
.

Further studies of entanglement in bosonic systems
include the analysis in two-mode condensates �Hines et

al., 2002�, in dipolar-couplar �Ng and Burnett, 2007�, and
in two-species spinor Bose condensates �Shi and Niu,
2006�.

E. Entanglement of particles

Studies which use measures for indistinguishable par-
ticle entanglement �see Sec. II.F� in the area of many-
body systems are still only few, particularly regarding
the use of the fermionic concurrence, accounting for the
possibility of double occupancy �with spin degrees of
freedom�. The entanglement of particles and its differ-
ence with the usual spin entanglement has been dis-
cussed by Dowling, Doherty, and Wiseman �2006�, start-
ing with very small systems as two spinless fermions on
four lattice sites and the Hubbard dimer, and then for
the tight binding model in one spatial dimension, in or-
der to compare with existing results for the spin en-
tanglement by Vedral �2003�. For the Hubbard dimer �a
two-site Hubbard model�, these authors compare their
results with those for the entanglement measured by the
local von Neumann entropy without superselection rule
for the local particle numbers �Zanardi, 2002�. Whereas
the latter signals decreasing entanglement in the ground
state with increasing U / t, the entanglement of particles
increases �Dowling, Doherty, and Wiseman, 2006�. This
demonstrates that imposing superselection rules may
lead to qualitatively different behavior of the entangle-
ment. Interestingly, an increase with U / t is also observed
for the entanglement of modes without imposing super-
selection rules �Deng et al., 2005�.

We finish this section by noting a recent proposal of
an experiment in order to decide whether even en-
tanglement merely due to the statistics of the indistin-
guishable particles can be useful for quantum informa-
tion processing �Cavalcanti et al., 2006�.

V. ENTANGLEMENT ENTROPY

An important class of works analyzing the entangle-
ment in a many-body system considered a bipartition of
the system dividing it into two distinct regions A and B
as shown in Fig. 6. If the total system is in a pure state
then a measure of the entanglement between A and B is
given by the von Neumann entropy S associated with the
reduced density matrix of one of the two blocks ��A/B�.

Motivated by the work of Fiola et al. �1994� and
Holzhey, Larsen, and Wilczek �1994� born in the context
of black hole physics, the problem was first reanalyzed
in the framework of quantum information by Vidal and
co-workers for quantum spin chains �Vidal et al., 2003�
and by Audenaert and co-workers for harmonic lattices
�Audenaert et al., 2002�.

In studying the properties of block entropy it is impor-
tant to understand its dependence on the properties �to-
pology, dimensions, etc.� of two regions A and B. A key
property which is explored to understand its range of
validity is known as the area law �Srednicki, 1993�.
When it holds the reduced entropy S would depend only
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on the surface of separation between regions A and B.
In a d-dimensional system this means Sl��d−1, where �
is the order of the size of one block 	see Riera and
Latorre �2006� for a discussion of the area law
. In the
rest of the section we discuss several different physical
systems in one- and higher-dimensional lattices to see
when the area law holds. Here we consider only many-
body systems in their ground state, the thermal effect
and the dynamical properties of the entropy will be dis-
cussed in Secs. VII and IX, respectively.

The entanglement entropy is not a mere theoretical
concept but might be measured. Following the proce-
dure proposed by Klich et al. �2006� the measure of S
can be related to the distribution measurement of suit-
ably chosen observables.

A. One-dimensional spin systems

We start our review on the properties of the block
entropy by analyzing the case of one-dimensional spin
systems to which a large body of work has been devoted.
By means of the Jordan-Wigner transformation it is pos-
sible to map the models onto lattice fermions, hence the
results discussed here are applicable to fermionic models
�after the appropriate mapping� as well. A particularly
important case which is amenable of an exact solution is
the XY model �see Sec. III.A.1� which can be mapped
onto a free fermion model. For this case we discuss in
more detail the method to calculate the block entropy.
In this section we consider only chains with short-range
interaction.

1. Spin chains

In one dimension the surface separating the two re-
gions is constituted by two points, therefore the area’s
law would imply that the reduced entropy is indepen-
dent of block size. This is indeed the case when the sys-
tem is gapped and hence the correlation length � is finite
	see Hastings �2004� for a rigorous proof
. In the gapless
case, �=�, logarithmic corrections appear and the pref-
actor of the block entropy is universal, related to the
central charge of the underlying conformal field theory.

Holzey et al. �1994�, benefiting from earlier work of
Cardy and Peschel �1988�, analyzed the block entropy of
a �1+1�-dimensional massless bosonic field. Vidal et al.
studied numerically one-dimensional Ising and Heisen-
berg chains �Vidal et al., 2003; Latorre et al., 2004� and
conjectured that the block entropy would saturate for a
noncritical chain while diverge logarithmically with a
prefactor related to the central charge of the underlying
conformal theory �Holzhey et al., 1994�. Such violation
of the area law in critical systems reflects how the mix-
edness of the state increases by the partial tracing opera-
tion, regardless of the spatial extension of the spin block.

Calculation of the block entropy by means of confor-
mal field theory, generalizing in several respects the re-
sults of Holzey et al. by including the case of free and
periodic boundary conditions, different partitions, non-
critical systems, and finite temperature, has been per-
formed by Calabrese and Cardy �2004�. Starting from
the work on the XX model of Jin and Korepin �2004b�,
important explicit analytic calculations for a number of
one-dimensional XY spin �free fermion� models have
been carried out by Jin and Korepin �2004b�; Korepin
�2004�; Peschel �2004, 2005�; Eisler and Zimborás �2005�;
Its et al. �2005, 2007�; Keating and Mezzadri �2005�; Pop-
kov and Salerno �2005�; Franchini et al. �2006, 2007�;
Weston �2006�. Numerical calculations on the XX and
XXZ models were also performed by De Chiara et al.
�2005� and Laflorencie �2005�. The study of entangle-
ment entropy is of great interest in a more general con-
text 	see Fiola et al. �1994�; Holzhey et al. �1994�; Casini
and Huerta �2005�; Casini et al. �2005�; Ryu and Takay-
anagi �2006a, 2006b� and references therein
, Casini and
co-workers, for example, evaluated the entanglement
entropy for both massive scalar field theory �Casini and
Huerta, 2005� and Dirac fields �Casini et al., 2005�
. Re-
cently the area law for gapped one-dimensional systems
was proven by Hastings �2007a, 2007b�.

The main features of the reduced entropy in one-
dimensional spin Fermi systems can be summarized as
follows �for clarity we discuss only the long distance be-
havior as dictated by the underlying conformal field
theory�.

• At criticality a one-dimensional system has a block
entropy which diverges logarithmically with block
size. If the block is of length � and the system is L
long with periodic boundary condition then S� is
given by

S� =
c

3
log2� L

�a
sin��

L
��� + A , �42�

where c is the central charge of the underlying con-
formal field theory and a is an ultraviolet regulariza-
tion cutoff �for example, the lattice spacing in spin
systems�. A is a nonuniversal constant. For the Ising
model c=1/2 while for the Heisenberg model c=1
�see Fig. 7�.

• Slightly away from criticality, where the system has a
large but finite correlation length �"a and the

A B

FIG. 6. �Color online� The block entropy is evaluated after
partitioning the system in regions A and B. For finite range
correlations, it is intuitive that the wave function of the system
is factorized ��A���B� by removing the region at the boundary.
Accordingly the reduced entropy would vanish.
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Hamiltonian is short ranged, the block entropy satu-
rates to a finite value �see Fig. 7�

S� �
c

3
log2

�

a
for � → � . �43�

• An extension to finite temperature in the critical
case has been obtained by means of conformal field
theory �Calabrese and Cardy, 2004� and by confor-
mal mapping together with the second law of ther-
modynamics �Korepin �2004� with the result

S� =
c

3
log2� �

�a
sinh��

�
��� + A , �44�

where A is a constant and � the inverse tempera-
ture. In the finite temperature case, however, the
block entropy is not a measure of the entanglement
between the two partitions as the state to start with
is mixed. A comparison of numerical data with the
CFT prediction is shown in Fig. 7 for the XXZ
model.

By now it is clear that the various measures of en-
tanglement are sensitive to the presence of quantum
phase transitions, the scaling of the entropy gives excel-
lent signatures as well. Recent work tried to construct
efficient ways to detect quantum phase transitions by
analyzing the reduced entropy for small clusters. One-
site entropy has been considered by Gu et al. �2004� and
Chen et al. �2006�. Chen et al. analyzed the entanglement
of the ground states in XXZ and dimerized Heisenberg
spin chains as well as in a two-leg spin ladder suggesting
that the phase boundaries might be identified based on
the local extreme of the entanglement entropy �Chen et

al., 2006�. Legeza and co-workers �Legeza and Sólyom,
2006; Legeza et al., 2007� pointed out that in the biqua-
dratic spin-1 Heisenberg chain, see Eq. �27�, the two-site
entropy is ideal to highlight the presence of a dimerized
phase. They also considered the two-site entropy for the
ionic Hubbard model �Hubbard and Torrance, 1981�.

The idea of partitioning the system in a more elabo-
rate way in order to analyze additional properties of en-
tanglement lead to the introduction of the concept of
comb entanglement �Keating et al., 2006�. This is illus-
trated in Fig. 8. The two blocks A and B are not chosen
contiguous but A consists of � equally spaced spins, such
that the spacing between spins in this subsystem is p
sites on the chain while B contains the remaining spins.
For this choice of the partition, the “surface” separating
the two blocks grows with the system size �different
from the case p=1 where it is composed by two links�.
As a consequence nonlocal properties of entanglement
between the two blocks can be investigated. For p�1
the leading contribution to the entropy scales linearly
with block size S��p�=E1�p��+E2�p�ln �. In the limit p
→� the coefficient E1�p� is, to leading order, a sum from
single spin contributions. The unexpected result is that
the corrections vanish slowly, as 1/p, different from
other measures like concurrence where these long-range
corrections are not present.

We conclude this section by discussing the single copy
entanglement E1 introduced by Eisert and Cramer
�2005� and studied in detail for one-dimensional spin
systems �Eisert and Cramer, 2005; Peschel and Zhao,
2005; Orus et al., 2006�. Single copy entanglement Ssc,�
quantifies the amount of entanglement that can be dis-
tilled from a single specimen of a quantum system. For
spin chains it can be shown �Eisert and Cramer, 2005�
that single copy entanglement asymptotically is half of
the entanglement entropy limL→�Ssc,� /S�=1/2. This re-
sult was later generalized to conformally invariant mod-
els �Peschel and Zhao, 2005; Orus et al., 2006�.
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FIG. 7. The block entropy S� for L=200 in the case of an XXZ
Heisenberg chain for a critical value �=0.0 �circles� and non-
critical value �=1.8 �squares�. The critical data compared with
the conformal field theory prediction �dashed line�. Lower in-
set: Central charge extrapolated by fitting the numerical data
S� with Eq. �42� �with a factor 1/2 as done in the numerical
calculation with the block at the boundary� for different values
of �. The data are for L=1000. Upper inset: Scaling of c ex-
trapolated as a function of 1/L for the worst case �=0.5 and
compared to a quadratic fit �dashed line�. From De Chiara et
al., 2005.
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FIG. 8. The idea of the comb partition suggested by Keating
Mezzadri, and Novaes illustrated for three different values of
the spacing p. In all cases the subsystem A, denoted by solid
circles contains l spins �be careful with the different notation
with original paper� while the other �denoted by empty circles�
contains the rest of the chain. The case p=1 corresponds to the
well-known “block” division. From Keating et al., 2006.
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2. XY chains and free fermion models

As shown in Sec. III.A.1.a the XY chain 	�=0 in Eq.
�23�
 can be mapped onto a model of free fermions. As a
result an analytical �albeit nontrivial� approach is pos-
sible to calculate the block entropy. An analytic proof of
the logarithmic dependence on the block entropy in the
isotropic XY model was obtained by Jin and Korepin
�2004b�; Its et al. �2005�; Franchini et al. �2006, 2007�. The
relation between the entanglement entropy of this
model and the corner transfer matrices of the triangular
Ising lattice has been derived by Peschel �2004�. Keating
and Mezzadri considered a more general free fermion
Hamiltonian in which the matrices A and B 	defined in
Eq. �24�
 do not have the tridiagonal structure which
appear in the XY model �Keating and Mezzadri, 2005�.
They showed that under certain conditions the entropy
can be expressed in terms of averages over ensembles of
random matrices. In this section we recall the main steps
of the derivation leading to the evaluation of the en-
tanglement entropy, more details can be found in
Latorre, Rico, and Vidal �Latorre et al., 2004� and in the
above-mentioned papers �Jin and Korepin, 2004b; Its et
al., 2005; Keating and Mezzadri, 2005; Franchini et al.,
2006, 2007�.

The reduced density matrix of a block of � spins
can be expressed in terms of averages of strings of �
spin operators with weights given by the averages of
these strings on the ground states. By mapping the spin
operators in terms of the Majorana fermions, a2l−1

= �&m�l	m
z �	l

x, a2l= �&m�l	m
z �	l

y, and given the fact that
the resulting fermionic Hamiltonian is quadratic �Wick
theorems holds�, it is possible to express the block en-
tropy in terms of the elements of the correlation
matrix B�,

B� = �
&0 &1 ¯ &�−1

− &1 &0 ]

] � ]

− &�−1 ¯ ¯ &0

� , �45�

where &l= 	 0
−g−l

gl

0 
 with real coefficients gl given as, for
L→�,

gl =
1

2�
�

0

2�

d�e−il� cos � − 
 − i� sin �

�cos � − 
 − i� sin ��
. �46�

It is crucial to note that the matrix B� are block Toeplitz
matrices, that can be considered as usual Toeplitz matri-
ces but with noncommuting entries. After the transfor-
mation of B� into a canonical form �m=1

L =�mi	y, the sys-
tem is described by a set of l independent two-level
systems. Therefore the entanglement entropy is given by

S� = − �
m=1

� �1 + �m

2
log

1 + �m

2
+

1 − �m

2
log

1 − �m

2
� .

�47�

Numerical and analytical analysis of Eq. �47� has been
performed leading to the behavior described in the pre-

ceding section. In order to obtain the analytical formula
for the asymptotics of the entropy �47�, the first step is to
recast it, by the Cauchy formula, into a contour integral
�Jin and Korepin, 2004b; Its et al., 2005�

S = lim
�→0+

lim
�→0+

1

2�i�c��,��
e�1 + �,
�

d ln DA�
�
d


d
 , �48�

where e�2x ,2y�=−�±�x±y�log2�x±y�. The contour of in-
tegration c�� ,�� approaches the interval 	−1,1
 as � and
� tend to zero without enclosing the branch points of
e�1+� ,
�. The matrix in DA�
�=det�
I−B�� is again of
the block Toeplitz type. The asymptotics of the entropy
can then be obtained from the asymptotics of DA�
�.
This in turn can be done resorting to the Riemann-
Hilbert approach to the theory of Fredholm integral
equations �Bogoliubov et al., 1993�. This allows one to
generalize the standard Szegö theorem for scalar
Toeplitz matrices to obtain the leading formula for the
determinant of the block Toeplitz matrix DA�
�. This
leads to the asymptotics, �→�, for the entropy

S =
1
2�1

�

ln�!3	��x� + �	�/2�
!3	��x� − �	�/2�

!3�	�/2� �dx ,

�49�

where !3�s ,�� is one of the Jacoby elliptic functions,
��x�= �1/2�i�	ln�x+1�−ln�x−1�
, 	=1,0 for hz� , �hc
and �� log��1−
−1��. The critical behavior of Eq. �49�
can be obtained by the asymptotic properties of !3�s ,��
for small �, and the leading term of the critical entropy
results S=−�1/6�log	�1−
−1� / �4��2
+O	�1−
−1��log�1
−
−1��2
. The previous expression can be obtained in a
more direct way via a duality relation connecting the
quantum Ising chain with the Ising model on a square or
triangular lattice �Peschel et al., 1999; Calabrese and
Cardy, 2004; Peschel, 2004�. In particular the reduced
density matrix can be written as the trace of the corre-
sponding �corner� transfer matrix. In this way, however,
the expression for the critical entropy can be obtained
only for �2+hz

2�1.
In the isotropic case �=0, c=1 and then the prefactor

of the log divergence is 1 /3. In this case the critical en-
tropy can be obtained as an average, by realizing that
the block Toeplitz matrices �for �=0� are unitary. Then
the contour integral can be recast into an integral in the
ensemble of unitary matrices. This observation �Keating
and Mezzadri, 2005� allows are to relate the spectral sta-
tistics of the model with the entanglement encoded in
the ground state, following a reasoning that has many
analogies in spirit with random matrix theory. The en-
tanglement entropy was obtained explicitly for matrices
B, in Eq. �24�, being elements of classical groups. It is
interesting that only B effects the prefactor of the loga-
rithm in entropy, which is proportional to 2wG, where wG
is a universal quantity related to the classical group es-
tablishing the symmetries, and the constant of propor-
tionality is Hamiltonian dependent.
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3. Disordered chains

Conformal invariance implies universal properties for
the entanglement entropy. What happens when confor-
mal invariance is lost as in the case of certain one-
dimensional disordered spin systems? Refael and Moore
�2004� were the first to look at this question by comput-
ing the block entropy for the Heisenberg, XX, and
quantum Ising chains with random nearest-neighbor
coupling. Their approach was based on a real space
renormalization group developed earlier �Ma et al.,
1979; Fisher, 1994� for random spin chains where disor-
der is relevant and drives the system at low energies in
the so-called random singlet phase which can be thought
of as a collection of singlet bonds of arbitrary length.
Consequently, the entropy of a given chain segment is
ln 2 times the number of singlets crossing the boundary
between the two regions in which the systems is parti-
tioned. Refael and Moore showed that the entropy, as in
the case of clean critical chain, grows as the logarithm of
block size S�� c̃ log � with a renormalized central charge
c̃=c ln 2.

A numerical test of this prediction was performed
both for the XX �Laflorencie, 2005� and for the Heisen-
berg models �De Chiara et al., 2005�. In Fig. 9 we report
the data of Laflorencie, the two curves represent the
results for the clean and disordered case and fully con-
firm the prediction of Refael and Moore. The result that
the ratio between the random and pure prefactor values
of the block entropy is the same for the different chains
studied by Refael and Moore �2004� suggest that this
value might be determined by flow from the pure to the
random fixed point. This conjecture was questioned by
analyzing the entanglement entropy for a family of mod-
els which includes the N-states random Potts chain and

the ZN clock model. In this case it was shown that the
ratio between the entanglement entropy in the pure and
disordered systems is model dependent �Santachiara,
2006�.

4. Boundary effects

Boundaries or impurities may alter in a significant
way the the entanglement entropy. The result given in
Eq. �42� was obtained for periodic boundary conditions.
If the block is at the boundary of the chain then the
prefactor is modified and the block entropy is one-half
of the one given in Eq. �42� �Calabrese and Cardy, 2004�:

S� =
c

6
log2�2L

�a
sin��

L
��� + g +

A

2
, �50�

where A is the nonuniversal constant given in Eq. �42�
and g is the boundary entropy �Affleck and Ludwig,
1991�. The case of open boundary conditions in critical
XXZ chains was also reconsidered by Laflorencie et al.
�2006�. In addition to the log divergence there is a parity
effect depending on the number of spins of the block
being even or odd. The amplitude of the resulting oscil-
lating term decays as a power law with the distance from
the boundary. The origin of this oscillating term is easy
to understand qualitatively as an alternation of strong
and weak bonds along the chain. The boundary spin has
a strong tendency to form a singlet pair with its nearest
neighbor on the right-hand side; due to the monogamy
of the entanglement this last spin will be consequently
less entangled with its partner on the third site of the
chain. Furthermore, it was also shown that the alternat-
ing contribution to the entanglement entropy is propor-
tional to a similar term in the energy density �the con-
stant of proportionality related to the lattice constant
and velocity of excitations�. The effect of open boundary
conditions on the entanglement entropy of a resonant
valence bond solid was studied as well �Fan et al., 2007�.
In this case, however, corrections due to open ends de-
cay exponentially.

Different types of boundaries can appear in the
AKLT quantum spin chain, with bulk spin 1 and two
spin 1/2 at the ends. The entanglement entropy has
been studied by Fan et al. �2004�. They showed that the
block entropy approaches a constant value exponen-
tially fast with �.

The entanglement entropy of one-dimensional sys-
tems is affected by the presence of impurities in the bulk
�Levine, 2004; Peschel, 2005; Zhao et al., 2006� or aperi-
odic couplings �Igloi et al., 2007�. In these cases the en-
tanglement entropy has the same form as in Eq. �42� but
with an effective value which depends on the strength of
the defect. The entanglement properties of anisotropic
open spin-one-half Heisenberg chains with a modified
central bond were considered by Zhao et al. �2006�
where the entanglement entropy between the two half
chains was calculated using the DMRG approach. They
find logarithmic behavior with an effective central
charge varying with the length of the system. Numerical
simulations of Zhao et al. �2006� showed that by going

FIG. 9. �Color online� Entanglement entropy of a subsys-
tem of size � embedded in a closed ring of size L, shown
vs � in a log-linear plot. Numerical results obtained by
exact diagonalization performed at the XX point. For clean
nonrandom systems with L=500 and L=2000 �open
circles�, Sl is in agreement with Eq. �42� A=0.8595
+ �ln 2/3� ln �, Y=0.72602+ 1

3 ln	�2000/�� sin ��� /2000�
, Z
=0.72567+ 1

3 ln	�500/�� sin ��� /500�
. From Laflorencie, 2005.
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from the antiferromagnetic to the ferromagnetic case
the effective central charge grows from zero to one in
agreement with Levine �2004�. The combined presence
of interaction between the excitation and a local impu-
rity modifies the properties of a one-dimensional system.
Starting from the work of Kane and Fisher �1992� it is
now understood that at low energies scattering with the
impurity is enhanced or suppressed depending on the
interaction being repulsive or attractive. It is therefore
expected that the entanglement entropy is affected as
well. Levine, by means of bosonization, studied the en-
tanglement entropy in a Luttinger liquid interrupted by
an impurity and found that there is a correction to S due
to the impurity which scales as �Simp�−VB log�l /a�,
where VB is the renormalized backscattering constant
�Levine, 2004�. In the repulsive case the backscattering
flows to large values suggesting that the total entropy
would vanish �the correction is negative�. In the opposite
case of attractive interactions, the impurity potential is
shielded at large distances and the entropy would ap-
proach the value of the homogeneous liquid.

The single copy entanglement in the presence of
boundaries has been considered as well �Zhou et al.,
2006�. Different from the bulk contribution here the
boundary contribution to the von Neumann entropy
equals that of the single copy entanglement.

Some of these results provided fertile ground to study
the entanglement encoded in the Kondo cloud. Specifi-
cally, the block entropy Simp of a spin cloud with radius r
around the impurity with the rest of the system has been
analyzed �Sørensen et al., 2007�. By using a combination
of Bethe ansatz results, conformal field theory, and
DMRG methods, these authors demonstrated that Simp
is a universal scaling function of r /�K.

B. Harmonic chains

Static systems of harmonic chains have been first ana-
lyzed by Audenaert et al. �2002�, where periodic ar-
rangements of harmonic oscillator modes have been
considered. The oscillators have been coupled via their
coordinate variables and the Hamiltonian has been cho-
sen to be translational invariant. The entanglement in
these systems has been analyzed for both the ground
state and thermal states; both belong to the class of
Gaussian states. Here we review the results obtained by
Audenaert et al. �2002�. For work on higher-dimensional
lattices and emphasis on the entropy area law see Sec.
V.C.2.

Using the covariance matrix defined in Eq. �35�, the
logarithmic negativity can be expressed in terms of the
interaction matrix U �Audenaert et al., 2002� EN
=tr log2 U−1/2PU1/2P, where P is a diagonal matrix, with
nonzero entries Pjj=−1 when the partial transposition is
performed and Pjj=1 elsewhere. This entanglement
monotone has been analyzed for bipartitions of a ring
containing an even number of oscillators. It is conve-
nient to define U= � U� U�

U� U�
�. For the symmetric bisection

into equally large connected parts, a lower bound for the

logarithmic negativity has been obtained as

EN �
1
2

�tr Fn log2 U� =
1
2

log2�1 + 4 �
m=0

�2m+1� , �51�

where the coefficients �n have been defined in Sec.
III.D. Fn is the n�n flip matrix with 1 in the cross diag-
onal and 0 elsewhere. Equality holds if Fn/2U� is
semidefinite, which is the case for nearest-neighbor in-
teraction. For this case one obtains EN

NN= 1
2 log2�1+4�1�.

Remarkably, this result is independent of the ring size.
This also tells us that the negativity of the symmetric
bisection for a model including couplings �d of arbitrary
range is higher than that of the corresponding chain with
only nearest-neighbor coupling and coupling strength
�d�d. It is interesting to note here that, for critical sys-
tems, the lowest eigenvalue of U tends to zero with
growing system size. This leads to a symplectic eigen-
value of V that diverges with the system size with a con-
sequent divergence of the negativity.

Analysis of general bisections revealed that for
nearest-neighbor couplings the negativity of a single os-
cillator with the rest of the chain monotonically de-
creases with the size of the chain. This single-oscillator
negativity turned out to establish a lower bound for the
negativity of any connected set of two or more oscilla-
tors with the rest of the same chain �see top panel of Fig.
10�. In all cases the maximum negativity has been ob-
served for the symmetric bisection. Both features are
expected to be generic to coupled ensembles of har-
monic oscillators �Audenaert et al., 2002�. In particular,
the infinite size limit of the symmetric bipartition nega-
tivity establishes an upper bound: limm→� EN�m ,m�
�EN�n1 ,n2�. This upper bound appears as a plateau in
the top panel of Fig. 10, which as a function of n1 and n2
is reached for not too small n1 and n2. The plateau value
is essentially proportional to the average energy per os-
cillator. With increasing nearest-neighbor coupling
strength, a more shallow approaching of the plateau
value is observed �see bottom panel of Fig. 10�.

The situation changes when the negativity of two dis-
connected parts of the chain is considered. The particu-
lar limiting case of an alternating bipartition, consisting
in all oscillators located at odd and even sites, has been
analyzed in the presence of nearest-neighbor couplings
only �Audenaert et al., 2002�. In this setting the logarith-
mic negativity is no longer limited by the average energy
per oscillator but instead it grows linearly with system
size n. The conclusion is that one part of the negativity
can be related to the energy; the second part can be seen
as a surface term, proportional to the area of the bound-
ary forming the contact between both bipartitions. In
one spatial dimension this “area” is the number of con-
tacts between both parts, which in the periodic setting
described above equals n. This interpretation finds fur-
ther support in the result for the logarithmic negativity
of a symmetric bisection in an open chain of oscillators,
which is then roughly half the logarithmic negativity of
the corresponding chain with periodic closure 	see dis-
cussion in Audenaert et al. �2002�
.
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An interesting puzzle results from analysis of the
negativity of two connected chain parts that are sepa-
rated from each other by a finite number of sites. Be-
sides an expected all-over exponential decay of the loga-
rithmic negativity with the distance between the two
equally large groups, the negativity is also of limited
range �see top panel of Fig. 11�. This range increases
with the size of the two parts. In particular, there is no
pairwise negativity between two single oscillators unless
they are neighbors. This implies that the entanglement
of a distant group of oscillators cannot be due to “free”
pairwise entanglement of single oscillators �as opposed
to “bound” entanglement not detected by the negativ-
ity�. So either “bound” pairwise entanglement is respon-
sible for the entanglement present in distant groups or
multipartite entanglement might play an important part.

We mention that pairwise correlations between single
oscillators do exist notwithstanding a vanishing pairwise
negativity �Audenaert et al., 2002�. In any case the pres-
ence of correlations is necessary for quantum entangle-
ment of the parts. It is worth noting that both the pla-
teau exhibited by the negativity for not too small size of

the parts and the decrease of the single oscillators’ nega-
tivity with the system size find a plausible explanation
merely in terms of the correlation length. The same
plausibility arguments predict the single oscillators’
negativity to increase with growing system size when
open chains are considered; in fact this is what these
authors observed 	see Audenaert et al. �2002�
. The ob-
served short range of the negativity in particular for
small connected sets of oscillators overstretches this
simple reasoning and demonstrates that the connection
between entanglement and correlations is indeed more
subtle.

C. Systems in d�1 and the validity of the area law

The scaling of the entanglement entropy in systems of
higher dimensions has been the subject of intense inves-
tigation in various fields of research. In the context of
quantum information the understanding of the entropy
scaling as a function of block size has important conse-
quences on the simulability of a quantum system by a
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FIG. 10. �Color online� Logarithmic negativity for harmonic
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et al., 2002.
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classical algorithm and therefore is attracting a lot of
interest. The picture that emerged from the analysis of
the one-dimensional case, i.e., the violation of the area
law when the system is critical, does not seem to hold in
higher dimensions. The situation appears more complex.
The higher dimensional generalization of matrix product
states, the projected entangled pair states, satisfy the
area law �Verstaete and Cirac, 2004; Verstaete et al.,
2006� despite a divergent correlation length. Another
example is the ground state of antiferromagnetic Ising-
spin networks embedded on planar cubic lattices
�Wellard and Orus, 2004� where the area law is fulfilled
at the critical point. In the following we concentrate on
the ground state of some many-body Hamiltonian for
which the block entropy has been recently computed.
We first consider the case of hopping Hamiltonian of
�free� fermions and bosons and then discuss the case of
harmonic lattices �note that historically the bosonic case
was considered first�.

1. Fermi systems

In one dimension, by virtue of the Jordan-Wigner
transformation, the block entropy of a system of inter-
acting spins is tightly connected to that of a �free� Fermi
gas. It is of great interest to understand what are the
properties of the block entropy for free fermions in d
dimensions. This has been studied by Gioev and Klich
�2006� and Wolf �2006� where it was shown that logarith-
mic corrections persist in higher dimensions,

S� � �d−1 log2 � . �52�

The expression for the constant of proportionality in the
equation above has been obtained by Gioev and Klich
�2006� resorting to the Widom conjecture. Wolf �2006�
exploited the quadratic lower bound of Fannes et al.
�2003�. The corrections to the area law are a Fermi sur-
face effect. In the case of fractal dimension of either the
Fermi or the block surface, the scaling is modified to
S�

fr��d−� log2 �, where 1−� is the maximum fractal en-
hancement of dimension of either the Fermi or the block
boundary. An interesting case where the system under-
goes a Lifhitz phase transition has been considered by
Cramer et al. �2007�. As it was pointed out by Cramer et
al. these transitions related to a change in the Fermi
surface manifest in nonanalytic behavior of the prefactor
of the leading order term entanglement entropy.

For regular block and Fermi surfaces, numerical
analysis has confirmed the modified area law for critical
two-dimensional �Barthel, Chung, and Schollwöck,
2006; Li et al., 2006� and three-dimensional �Li et al.,
2006� models. Barthel, Chung, and Schollwöck �2006�
studied the tight binding model as a two-dimensional
model with a connected Fermi surface as well
as the model H=−�x,y�	1+ �−1�y
cx,y

† cx,y+1+cx,y
† cx+1,y+1

+cx,y
† cx−1,y+1� with a disconnected Fermi surface and H

=−�x,y�hcx,y
† cx+1,y+ 	1+ �−1�x+y
cx,y

† cx,y+1� with a zero-
dimensional Fermi surface, for the one-dimensional
case. Whereas in the first two cases, the entropy is found
to obey the modified area law, this is no longer true for

the third model with zero-dimensional Fermi surface.
There corrections to the standard area law S��d−1 are
sublogarithmic.

The same feature has been observed by Li et al. �2006�
studying the spinless fermionic in two and three spatial
dimensions. These authors conjectured an interesting
connection between the modified area law and the den-
sity of states at the Fermi energy. They formulated this
in terms of the codimension at the Fermi energy: i.e., the
dimension of momentum space minus the dimension of
the degeneracy at the Fermi energy in momentum space,
providing a measure of the relative portion of gapped
excitations in the low lying spectrum of the model. In
agreement with the findings for the model zero-
dimensional Fermi surface, these authors observed only
sublogarithmic corrections to the area law if the codi-
mension at the Fermi energy is 2. From this they conjec-
tured that in two spatial dimensions a codimension less
or equal to 1 is necessary for the modified area law S
�� log2 � to apply. They do not mention implications of
fractal codimension due to a fractal Fermi or block sur-
face. This finding would be worth further investigation
to higher dimensions in order to fix the connection be-
tween area law and codimension at the degeneracy
point. We finally mention the interesting connection be-
tween the block entropy and the Berry phase in lattice
models of fermions discussed by Ryu and Hatsugai
�2006�.

2. Harmonic systems

Harmonic systems have also been investigated to un-
derstand the validity of the area law. They provide one
of the few physical systems for which exact analytical
treatements are avaliable 	see Cramer et al. �2006�, and
references therein
.

We first consider a system of noncritical harmonic os-
cillators with nearest-neighbor interaction and periodic
boundary conditions. Noncriticality implies that the low-
est eigenvalue of the interaction matrix U, 
min�U�, is
well separated from zero. Further peculiar characteris-
tics of the covariance matrix, in particular its symmetric
and circulant form, allow one to give estimates for upper
and lower bounds of the block entropy of some compact
d-dimensional hypercubic region with edge length � and
surface proportional to �d−1 �Plenio et al., 2005�. The
upper bound has been established directly from the
logarithmic negativity 	see Audenaert et al. �2002�
,
whereas for the lower bound several estimates for the
dominant eigenvalue of the reduced density matrix have
been employed.

Key ingredients to the problem are the largest eigen-
value of the covariance matrix and the uncertainty rela-
tion which constrains all eigenvalues of the covariance
matrix to lie above � /2. The result is that both bounds
are proportional to �d−1, hence the entanglement en-
tropy is proportional to the surface of the block. An
extension to general block shapes has been formulated
as well for Gaussian states �Cramer et al., 2006�. For
pure states, lower and upper bounds are given as before,
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which both scale linearly with the surface area of the
block. For a given finite range of interaction beyond
nearest neighbors, the area law can be stated only in
terms of an upper bound 	as in Plenio et al. �2005�, this
upper bound has been obtained from the logarithmic
negativity
. Therefore Cramer et al. �2006� could not ex-
clude the block entropy to scale with lower dimension-
ality than the block area. The area law can even be
present in disordered systems; the requirement for the
area law to hold in this case is that 'ª
max�U� /
min�U� is
bounded for all admissible disorder realizations. The
presence of a finite temperature T enters only in the
proportionality factor, when thermal equilibrium states
�which are still Gaussian� are considered.

It is interesting to note that an algebraically diverging
correlation length does not automatically imply a viola-
tion of the area law. Cramer et al. �2006� found that for
noncritical systems of harmonic oscillators and algebraic
decay r−� of the correlations with distance r still leads to
the area law as long as ��2d. Essential for this conclu-
sion is that ' is bounded. These authors conjectured d as
a tighter bound at least for hypercubic blocks �when
compared to the one-dimensional Ising model, already
at �=d=1 logarithmic corrections appear�.

For critical systems the situation is different: criticality
leads to eigenvalues of U arbitrarily close to zero and
hence unbound '. Unanyan and Fleischhauer �2005� re-
ported a one-to-one connection between criticality and
logarithmic corrections to the area law for one-
dimensional systems with finite range interaction. These
authors also reported evidence for this connection to
hold in higher dimensional setups. However, the absence
of logarithmic corrections for critical two-dimensional
arrays of harmonic oscillators and nearest-neighbor in-
teraction has been evidenced numerically in Barthel,
Chung, and Schollwöck et al. �2006a�. The analytical cal-
culations of Cramer et al. �2007� concluded the area law
to apply for arbitrary number of dimensions, opposed to
the conclusions of Unanyan and Fleischhauer �2005�. As
support for their claim, Unanyan and Fleischhauer
�2005� quoted a factoring interaction matrix, which,
however, corresponds to a noninteracting array of one-
dimensional harmonic chains; this can be seen as the
limiting case of an anisotropic interaction with finite
range and does not give support to the original claim. It
is indeed fundamentally different from harmonic
d-dimensional lattices with isotropic finite range interac-
tion, as discussed by Barthel, Chung, and Schollwöck
�2006� and Cramer et al. �2007�. Nevertheless it raises the
question for a critical anisotropy for the coupling of the
harmonic oscillators, which on the background of the
findings by Barthel, Chung, and Schollwöck et al. �2006�
and Cramer et al. �2007� could be phrased as: “Does a
finite critical anisotropy exist beyond which the har-
monic lattice is quasi one-dimensional?”

Logarithmic corrections are also observed, when infi-
nite range interactions are considered, which drive the
system towards criticality �Unanyan et al., 2007�. To this
end, these authors considered a two-dimensional array
of harmonic oscillators, with an interaction of finite

range in the x direction and an infinite range in the y
direction. This is an instructive example in that it leads
to the logarithmic correction �lx ln ly. Interestingly, the
logarithm contains the length ly of the block, where the
interaction has infinite range. The prefactor of the loga-
rithm is half the length of the block in the x direction
�with finite range interaction�.

D. LMG model

The logarithmic divergence with the block size of the
entanglement entropy is not exclusive of one-
dimensional systems. The block entropy of the LMG
model was studied in both the ferromagnetic �Stockton
et al., 2003; Latorre, Orus, et al., 2005; Barthel, Dunsuel,
and Vidal, 2006b; Vidal et al., 2007� and antiferromag-
netic �Unanyan et al., 2005� cases. In the LMG model
each spin is interacting with all other spins in the net-
work; therefore, the idea of a block as depicted in Fig. 6
does not fit very well. Nevertheless, it is perfectly legiti-
mate to define the reduced entropy of � spins once the
other N−� �N is the total number of spins� have been
traced out. Evidently the entropy is independent on
which spins have been selected to be part of the block.
In Fig. 12 the representative behavior of the entangle-
ment entropy as a function of the various regions of the
phase diagram is shown for a fixed value of the block
and system sizes. Below we summarize the main findings
related to the LMG model. In the ferromagnetic case
and in the case of �=1 �isotropic mode�, the entropy
diverges logarithmically with the block size S
��1/2�log � while at fixed l and N diverges when the
external magnetic field approaches 1 from below. Also
in the antiferromagnetic, case �Unanyan et al., 2005�,
when no transition as a function of the field is present,
the entropy grows logarithmically with the size of the
block in the isotropic limit. Different from the one-
dimensional case where the prefactor is universal and
related to the central charge, here the origin of the pref-
actor of the logarithmic divergence is related to the pres-
ence of the Golstone modes and to the number of van-
ishing gaps. Vidal et al. clarified this issue by studying a
number of collective spin models by means of 1/N ex-
pansion and scaling analysis �Vidal et al., 2007�.

E. Spin-boson systems

The entropy in models of spins interacting with har-
monic oscillators have been analyzed as well. Here the
separation between spin and bosonic degrees of freedom
is natural and the partition leads to study the reduced
entropy of one subsystem �say the spin�. The entangle-
ment entropy was studied for the Jaynes-Cummings
�Bose et al., 2001�, Tavis-Cummings model �Lambert et
al., 2004, 2005�, and for the spin-boson model �Costi and
McKenzie, 2003; Jordan and Buttiker, 2004; Stauber and
Guinea, 2006a; Kopp et al., 2007�. Lambert and co-
workers analyzed how the super-radiant quantum phase
transition manifests in the entanglement between the
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atomic ensemble and the field mode. They computed the
von Neumann entropy numerically at finite N and ana-
lytically in the thermodynamical limit. They found that
the entropy diverges at the phase transition as �see Fig.
13�

S � − �1/4�log�
 − 
c� , �53�

where 
 is the coupling between the spins and the boson
field and 
c is the value at which the transition takes
place �see Fig. 13�. The entropy of the spin-boson model
	see Eq. �32�
 was studied by numerical renormalization
group by Costi and McKenzie �2003�. An analytic calcu-
lation, including other dissipative models, has been pre-
sented by Stauber and Guinea �2004� and more recently
by Stauber and Guinea �2006a, 2006b� and Kopp et al.
�2006�. The broken-symmetry state has an effective clas-
sical description and the corresponding von Neumann

entropy is zero. In the symmetric phase the entropy can
be easily expressed as a function of the ground state
energy and � 	defined in Eq. �32�
. At the transition
point the entropy is discontinuous with a jump given by
Kopp et al. �2007� as �S=ln 2+� /4�c ln�� /�c� ��c is a
high energy cutoff�. A systematic analysis of the entropy
in the spin-boson model for different coupling regimes
was pursued recently by Kopp and Le Hur �2007� and
Le Hur et al. �2007�.

We finally mention the interesting connection be-
tween entanglement and energy fluctuations introduced
by Jordan and Buttiker �2004� and exploited in detail
both for a spin and for harmonic oscillators coupled to a
bath. This connection might be useful in light of possible
experimental measure of entanglement 	see also Klich et
al. �2006�
. For example, as pointed by Jordan and Butt-
iker �2004�, in certain mesoscopic realization of qubits as
metallic rings of superconducting nanocircuits, a mea-
surement of persistent current can be directly related to
a measurement of the entropy.

F. Local entropy in Hubbard-type models

An important class of interacting fermion models is
that of Hubbard type models �see Sec. III.B�. First stud-
ies of entanglement in the one-dimensional case have
appeared in Gu et al. �2004� and in Korepin �2004�. Most
of the studies in this type of systems analyzed the prop-
erties of the local entropy.

Gu et al. analyzed the local entropy for the one-
dimensional extended Hubbard model for fermions with
spin 1/2. Due to the conservation of particle number
and z projection of the spin, the local density matrix of
the system takes the simple form

�j
�1� = z�0��0� + u+�↑��↑ � + u−�↓��↓ � + w�↑↓��↑↓� ,

independent of the site number j because of transla-
tional symmetry. The broken translation invariance in
the charge density wave phase has not been taken into
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account in this work. This does not affect the central
result but might affect the entropy within the charge
density wave phase. Except the superconducting phase,
the phase diagram at half filling �for �=0� of this model
has been nicely reproduced by the contour plot of the
local entropy �see top panel of Fig. 14�, where the phase
transition coincides with its crest. This turns out to be a
general feature of local entropies—also for spin
models—as opposed to entanglement class specific mea-
sures, as, e.g., the concurrence for pairwise entangle-
ment whose maxima in general appear at a certain dis-
tance to quantum critical points and hence are not
associated to the quantum phase transition. In view of
the monogamy of entanglement this is interpreted as
evidence of dominant multipartite entanglement in the
vicinity of quantum phase transitions.

For the Hubbard model Eq. �30� and fixed U / t, the
local entropy as a function of n shows a dip at the critical

filling fraction nc=1, where a metal-insulator transition
occurs �for U�0� �see bottom panel of Fig. 14�. For the
two limiting cases U=0,� the maximum instead is lo-
cated at filling fractions, where the ground state is a sin-
glet of the largest symmetry group. Gu et al. conjectured
that this was true for general U�0 and then
the presence of an unknown phase transition at these
maxima.

This analysis points out that the local entropy indi-
cates different phase transitions in different ways, essen-
tially depending on whether the quantity is sensitive to
its order parameter or not. Due to the u�1� symmetry of
the model, the single site reduced density matrix is a
function of occupation numbers only. These operators
cannot, however, describe order parameters of super-
conductivity or some order parameter of the metal-
insulator transition. Indeed, the superconducting phase
can be predicted if the entropy of entanglement is cal-
culated for a block of spins, instead of for just a single
site �Deng et al., 2006�. A reduced density matrix of at
least two sites is necessary for superconducting correla-
tions 	see also Legeza and Sólyom �2006� for a similar
result obtained for the ionic Hubbard model
 to be seen.

Another model studied is the so-called bond-charge
extended Hubbard model �see Sec. III.B�. In phases II
and III of Fig. 15 there are superconducting correlations
which are due to � pairing and hence indicate the pres-
ence of multipartite entanglement, as discussed before
�Vedral, 2004a�. At the bond-charge coupling corre-
sponding to x=1, the entanglement of the model has
been analyzed by Anfossi, Giorda, et al. �2005� and for
general x and n=1 by Anfossi, Degli Esposti Boschi,
et al. �2006� and Anfossi et al. �2007�. Besides the local
entropy of entanglement Si, Anfossi, Giorda, et al.
�2005� used the negativity �Vidal and Werner, 2002� and
the quantum mutual information �Groisman et al., 2005�.
While Si measures all �pairwise and multipartite� quan-
tum correlations involving this specific site, the negativ-
ity offers a lower bound for the quantum correlation of
two specific sites, and mutual information accounts for
pairwise quantum and classical correlations. Therefore
this combination of correlation measures opens the pos-
sibility to decide what type of correlation is relevant at a
quantum phase transition. The results are shown in the
uper panel of Fig. 15. The different phases are shown in
Fig. 15: they are discriminated by local occupation num-
bers as described in the top panel; consequently, the en-
tropy Si bears the information on all phase diagrams
except the insulating line IV. This is seen from the plot
of �uSi �with u�U / t� as a function of the on-site Cou-
lomb coupling u and the filling fraction n. A comparison
of first derivatives with respect to y=n ,u �depending on
the phase transition� of all three correlation measures
reveals common singularities for �ySi and �yIij only for
the transitions II-III and II-IV; furthermore, for both it
was proven that the range of the concurrence R diverges
�Anfossi, Degli Esposti Boschi, et al., 2006�. These facts
allow one to characterize the transitions II-III and II-IV
�at n=1 and arbitrary x� as governed by pairwise en-
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tanglement, that is the more spread along the chain the
closer the transition is gotten. For the transitions II-I
and II-I� instead the multipartite entanglement is rel-
evant, with a finite range of the concurrence. Similar
behavior was encountered for noncritical spin models
where the divergence of R is accompanied by the emer-
gence of a fully factorized ground state �see Secs. III and
IV.A.1�. Here R diverges close to QPT; it was also noted
by Anfossi et al. that, while the ground state in IV is
indeed factorized, phase III is made of a superposition
of doubly occupied and empty states. Observing that the

pairwise entanglement is vanishing in both phases III
and IV, these authors conjectured that the divergence of
R marks an “entanglement transition” solely in the pair-
wise entanglement.

In order to detect the transition II-IV at n=1 and any
x, �xSi has been calculated by means of DMRG �An-
fossi, Degli Esposti Boschi, et al., 2006�. Its singularities
allow one to accurately determine the charge gap as a
function of the bond-charge coupling x.

We now proceed with the Hubbard model in a mag-
netic field �see Sec. III.B� Also here, the local entropy Si
has been looked at in order to analyze its entanglement.
As in the examples before, Si indicates the second order
phase transitions in terms of divergences of its deriva-
tives �hSi and ��Si, respectively. Indeed, it has been dem-
onstrated that �hSi and ��Si can be expressed in terms of
spin and charge susceptibilities �Larsson and Johannes-
son, 2005�, hence bridging explicitly the gap between the
standard method in condensed matter physics for study-
ing phase transitions and the approach from quantum
information theory.

The local entropy for the bosonic version of the Hub-
bard model, the Bose-Hubbard model, was computed by
Giorda and Zanardi �2004� and by Buonsante and Vez-
zani �2007� for different graph topologies. The focus of
this work was on the dependence of the entanglement
on the hopping amplitude. These authors showed that
for certain classes of graphs the local entropy is a non-
monotonic function of the hopping. Also for the bosonic
case the local entropy is a good indicator for the pres-
ence of a �superfluid-insulator� quantum phase transi-
tion.

Summarizing, the body of work developed suggests
that local entropies can detect QPTs in systems of itin-
erant fermions, particularly if the transition itself is well
predicted by a mean field approach for local observables
of the model 	see also Larsson and Johannesson �2006�
.
Furthermore, translational invariance is necessary for
the prediction to be independent of the site, which the
local entropy is calculated for. If this symmetry is absent,
it might prove useful to average over the sites; the re-
sulting measure is then equivalent to the Q measure
�Meyer and Wallach, 2002�.

G. Topological entanglement entropy

We close this section by summarizing the ongoing re-
search studying subleading corrections to the block en-
tropy in the two-dimensional systems. Most of the re-
sults were demonstrated for quantum two-dimensional
lattices �though generalizations to higher dimension is
straightforward�.

Fradkin and Moore considered quantum critical
points in two spatial dimensions with scale invariant
ground state wave functions, characterizing, for ex-
ample, the scaling limit of quantum eight vertex models
and non-Abelian gauge theories 	see Ardonne et al.
�2004�
. The main result is that a universal logarithmi-
cally divergent correction, determined by the geometry

FIG. 15. �Color online� Local entanglement entropy in bond-
charge Hubbard models. Upper panel: The ground state phase
diagram of the Hirsch model at x=1. Empty, slashed, and solid
circles indicate the presence of empty, singly, and doubly occu-
pied sites, respectively. Bottom panel: Except the insulating
line IV, the phase diagram is nicely reproduced by �uSi. From
Anfossi, Degli Esposti Boschi, et al., 2006.
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of the system’s partition, emerges in addition to the ar-
ea’s law term in the entanglement block entropy �Frad-
kin and Moore, 2006�.

Such work benefits of the earlier seminal contribution
of Kitaev and Preskill �2006� and Levin and Wen �2006�
demonstrating that the correction to the area law is of
topological origin. Namely, the entanglement entropy
was demonstrated to scale as

S = �� − � + O��−1� . �54�

The coefficient � is nonuniversal and ultraviolet diver-
gent. In contrast, the quantity � can be expressed as
log D, where D is known as the total quantum dimen-
sion, it is universal, and related to the topological wind-
ing number of the theory. Calculations were pursued
with methods of topological field theory, giving an ex-
plicit expression for �.

We remark that the result of Kitaev and Preskill and
Levin and Wen provides an alternative avenue to lattice
gauge theory methods �Wen, 2004�, detecting a genuine
topological order in the system �when descriptions based
on local order parameters fail� by direct inspection of
the wave function.

When a topological order is present, the ground state
of the system acquires a peculiar degeneracy when its
lattice has a nontrivial genus g. Hamma et al. studied the
entropy of the Kitaev model on a two-dimensional lat-
tice with generic genus g. The Kitaev model �Kitaev,
2003� is a two-dimensional exactly solvable lattice model
with double periodic boundary conditions, whose
Hamiltonian can be realized with a set of spins in a
square lattice with ring exchange and vertex interac-
tions. The ground state of the Kitaev model is character-
ized by the presence of a topological order.6 For such
systems Hamma et al. related the degeneracy of the
ground state �that is, 4g� to the block entropy �Hamma et
al., 2005a, 2005b�.

As a step toward models with more generic topologi-
cal orders, the topological entropy was studied numeri-
cally for the quantum dimer model in a triangular lattice
�Furukawa and Misguich, 2007� and for fractional quan-
tum Hall states �Haque et al., 2007�. We finally mention
that the topological term in the entanglement entropy in
the context of quantum gravity was evidenced by Fur-
saev �2006� and Ryu and Takayanagi �2006b�.

H. Entanglement along renormalization group flow

One of the original motivations put forward by
Preskill to investigate entanglement in many-body sys-
tems �Preskill, 2000� was the idea that quantum informa-
tion could elucidate some features of the renormaliza-
tion group which is a cornerstone method in modern
physics. It is natural to think that the procedure of trac-

ing out high energy modes in a renormalization group
step has some kind of irreversibility built in. Quantum
information concepts could prove to be useful in eluci-
dating issues related to this irreversibility and possible
help could come from relating the celebrated c theorem
�Zamolodchikov, 1986� to the loss of information.

Entanglement loss along a renormalization group tra-
jectory was studied in spin chains �Latorre, Lütken, et
al., 2005�. Recently a number of relations relating renor-
malization group, conformal field invariance, and en-
tanglement loss were derived by Orus �2005�. According
to Latorre, Lütken, et al. �2005� entanglement loss can
be characterized at three different levels.

�1� Global entanglement loss. By using the block en-
tropy as a measure of entanglement, for which we know
the result of Eq. �42�, and an inequality on the central
charges which derives from the c theorem, it follows that
SUV�SIR. The block entropy at the ultraviolet fixed
point cannot be smaller than that at the infrared fixed
point.

�2� Monotonous entanglement loss. It is also possible
to follow the entanglement along the entire transforma-
tion. In this case the entropy is a nondecreasing function
along the flow. As a simple example one can consider
the block entropy of an Ising chain close to the critical
point which goes as S� ln�
−1�, from which monotonic-
ity follows.

�3� Fine-grained entanglement loss. The monotonicity
of the entanglement appears present at a deeper level in
the structure of the density matrix. One can show
�Latorre, Lütken, et al., 2005; Orus et al., 2006� through
majorization relations that the spectrum of the reduced
density matrix gets more ordered along the flow. By de-
noting rm the eigenvalues of the reduced density matrix
�, majorization relation between the two sets of spectra
�corresponding to two different parameters� means that
there is a set of relations for which �i=1,nri��i=1,nri� for
n=1, . . . ,d �d is the dimension of ��.

Motivated by ultraviolet divergencies of the entropy
of entanglement in quantum field theory, Casini and
Huerta introduced a quantity F�A ,B� related to the en-
tropy measuring the degree of entanglement between
two regions A and B. The function F is defined as
F�A ,B�=S�A�+S�B�−S�A�B�−S�A�B� which coin-
cides with the mutual information Eq. �9� in the case of
nonintersecting regions. In two dimensions, it is a finite
positive function with the property F�A ,B��F�A ,C� for
B�C if A�C=�. Then, for sets with a single �path-
connected� component in two-dimensional conformal
field theories they showed that it allows one to prove an
alternative entropic version of the c theorem �Casini and
Huerta, 2007�.

VI. LOCALIZABLE ENTANGLEMENT

A. Localizable entanglement and quantum criticality

The study of localizable entanglement �see Sec. II.C�
in spin chains allows one to find a tighter connection

6The Kitaev model was suggested to provide a realization of
the so-called “toric code,” namely, a topological quantum com-
puter made by a physical system with anionic excitations �see
also Castagnoli and Rasetti, 1993�.
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between the scales over which entanglement and corre-
lations decay �as shown previously the two spin en-
tanglement, expressed by the concurrence, does not de-
cay on the same range of correlations� �Verstraete,
Martin-Delgado, and Cirac, 2004; Popp et al., 2005,
2006�. One expects that the procedure of entangling dis-
tant sites by a set of local measurements will be less
effective as the distance the two particles increases thus
leading to a definition of entanglement length �E. For a
translational invariant system �E can be defined in anal-
ogy of the standard correlation length:

�E
−1 = − lim

�i−j�→�
log

Eloc��i − j��
�i − j�

. �55�

By definition the entanglement length cannot be smaller
than the correlation length �E��, therefore at a second
order phase transition the localizable entanglement
length diverges. In addition, there may also appear
“transition points” associated solely to a divergence in
�E. In order to avoid misinterpretations, it must be
stressed that the localizable “classical” two-point corre-
lations then diverge as well. Thus the essence of the phe-
nomenon is that correlations can be localized between
arbitrarily distant sites by means of suitable local opera-
tions and classical communication despite a finite corre-
lation length; necessary for this is the presence of global
entanglement �Popescu and Rohrlich, 1992�.

For the Ising model in a transverse field it can be
shown that �Verstraete, Popp, and Cirac, 2004�

max
�=x,y,z

�Q�
ij� � Eloc�i − j� �

1
2�

±

�s±
ij , �56�

where s±
ij = �1± �Si

zSj
z��2− ��Si

z�± �Sj
z��2 and Q�

ij = �Si
�Sj

��
− �Si

���Sj
��. In this case, the lower bound in Eq. �56� is

determined by the two-point correlation function in the
x direction. In the disordered phase �
�1� the ground
state possesses a small degree of entanglement and con-
sequently its entanglement length is finite. The situation
changes at the other side of the critical point. Here, al-
though the correlation length is finite, the entanglement
length is infinite as asymptotically the correlation tends
to finite values. The divergence of �E indicates that the
ground state is a globally entangled state, supporting the
general idea that multipartite entanglement is most rel-
evant at the critical point �Osborne and Nielsen, 2002;
Roscilde et al., 2004�.

The properties of localizable entanglement were fur-
ther investigated for a spin-1 /2 XXZ chain by Jin and
Korepin �2004a� and Popp et al. �2005� as a function of
the anisotropy parameter � and of an externally applied
magnetic field h. These authors used exact results for
correlation functions relying on the integrability of the
models to find the bounds in Eq. �56�. For the antiferro-
magnetic XXX case they provided the lower bound
Eloc�i− j�� �2/�2/3�ln�i− j� / �i− j�. The presence of the an-
isotropy increases the lower bound of the localizable en-
tanglement. At the Berezinskii-Kosterlitz-Thouless criti-
cal point ��=1� the lower bound of the nearest-neighbor

localizable entanglement shows a kink �Popp et al.,
2005�. As pointed out this might have implications in the
general understanding of the Berezinskii-Kosterlitz-
Thouless phase transitions where the ground state en-
ergy and its derivatives are continuous as well as the
concurrence �see Sec. IV.A.2 and Fig. 3�.

The localizable entanglement in the two-dimensional
XXZ model was discussed as well �Syljuåsen, 2003b� by
means of quantum Monte Carlo simulations. A lower
bound has been determined by studying the maximum
correlation function which for ��−1 is Qx, the long-
range �power-law� decay of the correlation implying a
long-ranged localizable entanglement.

The definition of localizable entanglement has an in-
teresting connection with the concept of quantum re-
peaters introduced by Briegel et al. �1998�. Quantum re-
peaters have been designed to enhance the transmission
of entanglement through noisy channels. The idea is to
distribute along the channels a number of intermediate
sites where a certain number of local operations are al-
lowed in order to maximize the entanglement between
the transmitter and a receiver. This is the very definition
of localizable entanglement.

Localizable entanglement has been defined in Sec.
II.C as an average over all possible measuring processes,
it is of interest to also understand the statistical fluctua-
tions around this average value. To this end Popp et al.
�2005� analyzed the variance associated to the entangle-
ment fluctuations: �Eloc

2 =�spsE
2���s��−Eloc

2 , where E is a
measure of pairwise entanglement. Fluctuations of the
entanglement increase in the vicinity of a critical point.
This was checked explicitly for the one-dimensional
Ising model. As detailed below, additional results were
obtained for spin-1 systems where a true transition in
the entanglement �with a diverging �E but finite correla-
tion length� has been found.

B. Localizable entanglement in valence bond ground states

For half-integer spins, gapped nondegenerate ground
states are characteristic for systems in a disordered
phase �consider paramagnets, for example�. A finite gap
in the excitation spectrum of the system in the thermo-
dynamic limit makes the correlations decaying exponen-
tially. This is the Lieb-Schultz-Mattis theorem, establish-
ing that, under general hypothesis, the ground state of a
spin system is either unique and gapless or gapped and
degenerate �Lieb et al., 1961� 	see Hastings �2004�
. It
was a surprise when Haldane discovered that systems of
integer spins can violate this theorem �Haldane, 1983a,
1983b�. This suggests to investigate whether the en-
tanglement in the ground state might play some role in
establishing the hidden order characteristic for the
Haldane phases. An aspect that might be relevant to this
aim was addressed by studying the localizable entangle-
ment in AKLT models �Verstraete, Martin-Delgado, and
Cirac, 2004�. The ground state of this class of models is
the valence bond type as discussed in Sec. III.A.4:
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�gs�AKLT = ��kAk,k̄��I�0̄1�I�1̄2 ¯ �I�N̄N+1. �57�

�I� are singlets and A are 3�4 operators projecting the
Hilbert space of two combined spins on its symmetric
part, at the given site. This is nothing other than a matrix
product state �see Sec. III.A.4�. For this state it was
demonstrated that a singlet state made of two spins 1/2
located at the ends of the chain can be always found �see
Fig. 1�. This implies that the localizable entanglement is
long ranged despite the exponentially decaying correla-
tion �Verstraete, Martin-Delgado, and Cirac, 2004�.

The localizable entanglement can be related to the
string order parameter Ostring

� defined in Eq. �28�. The
key to this relation is to observe that the localizable en-
tanglement can be calculated as an expectation value
�Campos Venuti and Roncaglia, 2005� as L�����
= ���	0Gs���	N���, where Gs=�s�s��s̄�sgn����	y � 	y����,
and �s� is the optimal basis which maximizes the en-
tanglement of assistance. For the AKLT model, the ex-
pression above reads

L��gs�AKLT� =��
i=1

N

ei�Si
y� . �58�

In this case, both the localizable entanglement and all
three components of the string order parameter satu-
rate. Perturbing the AKLT ground state, namely making
the resonating valence bonds with nonmaximally en-
tangled states ��10�−e−i2��01�� /�2, the relation between
the hidden order and the localizable entanglement is
weaken �as compared to the AKLT model�: It has been
demonstrated that the string order parameters for �
=x ,z are finite, while the localizable entanglement van-
ishes exponentially with the deformation � �Popp et al.,
2005�, but a tight connection of the localizable entangle-
ment and Ostring

y is observed to persist also for the �
deformed ground state �Campos Venuti and Roncaglia,
2005�.

The valence-bond-solid phase order was further stud-
ied by looking at the hidden order in chains with more
complicated topology. The von Neumann entropy was
studied in the spin-1 XXZ model with biquadratic inter-
action and single ion anisotropy by Wang et al. �2005�;
Gu et al. �2006�; and by Campos Venuti, Degli Esposti
Boschi �2006�. Some features of the corresponding phase
diagram are captured. The Haldane transitions exhibited
in the phase diagrams are marked by anomalies in the
von Neumann entropy; its maximum at the isotropic
point is not related to any critical phenomenon �the sys-
tem is gapped around such a point�, but it is due to the
equiprobability of the three spin-1 states occurring at
that point �Campos Venuti, Degli Esposti Boschi, et al.,
2006�. Since the Berezinskii-Kosterlitz-Thouless transi-
tion separating the XY from the Haldane or large-D
phases connects a gapless with a gapped regime, it was
speculated that an anomaly in the entanglement should
highlight such a transition �Gu et al., 2006�.

VII. THERMAL ENTANGLEMENT

Though the very nature of entanglement is purely
quantum mechanical, we saw that it can persist for mac-
roscopic systems and will survive even in the thermody-
namical limit. Entanglement survives also at finite tem-
perature. This temperature could be as high as 100 K in
high-temperature superconductors �Vedral, 2004a; see
also Fan and Lloyd, 2005�. In this section we review the
properties of entanglement in many-body systems at fi-
nite temperatures �see also Anders and Vedral, 2007�.
We show that the analysis could shed new light on the
interplay between the quantum nature of the system and
its thermodynamics. Moreover, somewhat surprisingly,
macroscopic state variables can be used to detect en-
tanglement. Thermodynamics describes large scale sys-
tems with macroscopic properties, state variables
T ,N ,V ,p, external fields h, and response functions of
the susceptibility and heat capacity, respectively, % ,C,
etc. Addressing entanglement as a thermodynamical
property raised a significant amount of interest in vari-
ous communities. One wants to know, for example, un-
der what conditions can we detect and extract entangle-
ment. Can we see entanglement itself as a state variable,
just like pressure is for a collection of atoms in a gas?
What could be the corresponding thermodynamical po-
tential? Is entanglement extensive? Since entanglement
is closely related to entropy, we would expect the answer
to the last question to be “yes.”

The states describing a system in thermal equili-
brium states are determined by the Hamiltonian and
the inverse temperature �= �1/T�. The density matrix is

�=Z−1e−�Ĥ, where Z=tr�e−�Ĥ� is the partition function
of the system. The thermal states expanded in the en-
ergy eigenbasis �ei� , i=0,1 , . . . are then

� =
e−�E0

�
i

e−�Ei
�e0��e0� +

e−�E1

�
i

e−�Ei
�e1��e1� + ¯ . �59�

Any separable state, or classical state, with respect to
this split into subsystems A ,B ,C ,D , . . . �for example, the
sites of a spin system� can then be written as a convex
mixture of tensor products of states of the respective
subsystems A ,B ,C ,D , . . . with probabilities pi , �

=�ipi�i
A

� �i
B

� �i
C

� �i
D

�¯. If the state in Eq. �59� can-
not be written in the form given above then it is en-
tangled. In this section we discuss the properties of this
thermal entanglement.

A. Thermal pairwise entanglement

Extensive efforts have been made to quantify thermal
entanglement in many-body systems starting from Arne-
sen et al. �2001�; Gunlycke et al. �2001�; and Nielsen
�2001�. Several models of interacting spins in arrays were
discussed. Entanglement as measured by concurrence
was shown to exist at nonzero temperatures in the trans-
verse Ising �Osborne and Nielsen, 2002�, Heisenberg
�Wang, 2002b; Wang and Zanardi, 2002; Asoudeh and
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Karimipour, 2004; Tribedi and Bose, 2006�, XXZ �Ros-
signoli and Canosa, 2005; Canosa and Rossignoli, 2006�,
and XYZ models �Rigolin, 2004; Zhang and Zhu, 2006�,
ferrimagnetic transition �Wang and Wang, 2006�, and
spin-one chains �Zhang and Li, 2005�. Sevaral nontrivial
aspects of the behavior of the pairwise entanglement at
finite temperatures are illustrated by considering the
simple case of two-site systems.

�a� XXX model. We start our discussion on thermal
entanglement by considering the XXX antiferromagnet
	see Eq. �23�
. In this case the thermal state of this sys-
tem can be written as a Boltzmann mixture of the singlet
and triplet states:

�T =
1

Z
e3�J��−���−� + e−��J+2h��00��00�

+ e−��J−2h��11��11� + e−�J��+���+� , �60�

where Z=e3�J+e−��J+2h�+e−��J−2h�+e−�J is the partition
function of the system and ��±�= �01�± �10�. For the sake
of simplicity, we focus our attention on only two re-
gimes.

The first regime is when the coupling J is large com-
pared to the external field h. The ground state is then
the singlet state, and at low temperature the system is
therefore entangled. At higher temperatures the triplet
becomes mixed into the singlet, and when �roughly� T
�J /k the entanglement completely disappears �when
the external field is zero�. Therefore in order to have
high-temperature entanglement in dimers we need a
large value of the coupling constant J.

When J is fixed, the second regime occurs when we
vary the value of the external field h. When h is large
�greater than 2J�, the ground state is �11� and at zero
temperature the dimers are therefore not entangled.
The point where the singlet state becomes replaced by
�11� as the ground state corresponds to the quantum
phase transition �occurring in the thermodynamical
limit�. However, if we start to increase the temperature,
the singlet state—which is the first excited state under
these circumstances—starts to become populated. En-
tanglement can then be generated by increasing the tem-
perature. The behavior of entanglement as a function of
the magnetic field is shown in Fig. 16.

�b� Ising model. Another interesting case is that of
Ising coupling. At zero temperature only the lowest en-
ergy level is populated. In the case N=2 the tangle of
this pure state can be calculated from the density matrix,
for h�0, �1=J2 / �J2+hz

2�. It is clear that the entangle-
ment is highest for nearly vanishing magnetic fields and
decreases with increasing field amplitude �this expres-
sion, however, is not valid for strictly h=0, where no
entanglement is present�. We now turn our attention to
the case of nonzero temperatures. For a general pure
state only one of the eigenvalues of the Hamiltonian
weight Eq. �59� is nonzero and therefore equal to the
tangle. For low temperature and magnetic field, i.e.,
h ,T#J, it is a good approximation to assume that only
the two lowest energy levels are populated. In this case,

the combination of the two lowest states also combines
their concurrences in the following way �Gunlycke et al.,
2001�:

C = max��w0C0 − w1C1�,0� , �61�

where the index 0 refers to the ground state, while 1
refers to the excited state, and w0 and w1 are the thermal
weights of the ground and excited states, respectively;
see Eq. �59�. This phenomenon has been named as con-
currence mixing. In this case, the first excited state is the
Bell state ��−�= ��01�− �10�� /�2 and Eq. �61� reduces to
C= �w0�J /�J2+hz

2�−w1�. In general, the first term in the
above equation is larger than the second, and in this case
the concurrence decreases with temperature as w0 de-
creases and w1 increases. Moreover, it is also possible to
see that, for a given temperature, the entanglement can
be increased by adjusting the magnetic field and is gen-
erally largest for some intermediate value of the mag-
netic field. This effect can be understood by noting that
w0 increases with increasing h as the energy separation
between the levels increases, but J /�J2+hz

2 decreases.
As a result the combined function reaches a peak as we
vary h and decreases subsequently, inducing analogous
behavior for the concurrence.

B. Pairwise entanglement in the TÅ0 critical region

At finite temperatures but close to quantum critical
points, quantum fluctuations are essential to describe
the properties of the systems �Chakravarty et al., 1989;
Sachdev, 1999�. In order to study the interplay between
the thermal entanglement and quantum fluctuations
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FIG. 16. Entanglement between two qubits interacting accord-
ing to the antiferromagnetic Heisenberg model as a function
of the external field hz and temperature �multiplied by the
Boltzmann’s constant� T with coupling J=1. The topmost plot
shows the variation of nearest-neighbor entanglement with the
magnetic field. The middle and bottommost plots show the
same for next-nearest and next-to-next-nearest neighbors, re-
spectively, from Arnesen et al., 2001.

555Amico et al.: Entanglement in many-body systems

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008



caused by the critical point at T=0 analysis on small
clusters is no longer sufficient. For the presentation we
consider the one-dimensional quantum XY models.
Such systems cannot exhibit any phase transitions at fi-
nite temperature, but the existence of the quantum criti-
cal point is reflected in the crossover behavior at T�0.
The renormalized classical crosses over the quantum dis-
ordered regimes through the so-called quantum critical
region �Sachdev, 1999�. In the T-h plane a V-shaped
phase diagram emerges, characterized by the crossover
temperature customarily defined as Tcross� �
−1−
c

−1�.
For T#Tcross the thermal de Broglie length is much
smaller than the average spacing of excitations; there-
fore the correlation functions factorize in two contribu-
tions coming from quantum and thermal fluctuations
separately. The quantum critical region is characterized
by T"Tcross. Here we are in the first regime and the
correlation functions do not factorize. In this regime the
interplay between quantum and thermal effects is the
dominant phenomenon affecting the physical behavior
of the system.

Thermal entanglement close to the critical point of
the quantum XY models was studied by Amico and Pa-
tané �2007�. In analogy with the zero-temperature case
they demonstrated that the entanglement sensitivity to
thermal and to quantum fluctuations obeys universal T
�0 scaling laws. The crossover to the quantum disor-
dered and renormalized classical regimes in the en-
tanglement has been analyzed by the derivatives of the
concurrence �
C and �TC. The thermal entanglement re-
sults to be very rigid when the quantum critical regime is
accessed from the renormalized classical and quantum
disordered regions of the phase diagram; such a “stiff-
ness” is reflected in a maximum in �TC at T�Tcross. The
maximum in the derivatives of the concurrence seems a
general feature of the entanglement in the crossover re-
gime. In this respect we mention also that the concur-
rence between two Kondo impurity spins discussed by
Stauber and Guinea �2004, 2006b� experiences the larg-
est variation in the crossover phenomenon.

Due to the vanishing of the gap at the quantum criti-
cal point, in the region T"Tcross an arbitrarily small
temperature is immediately effective in the system �see
Fig. 17�. From the analysis of the quantum mutual infor-
mation 	see Eq. �9�
 it emerges that the contribution of
classical correlations is negligible in the crossover, thus
providing indication that such a phenomenon is driven
solely by the thermal entanglement. It is interesting to
study how the existence of the factorizing field hf affects
the thermal pairwise entanglement �vanishing at zero
temperature�. It is found that the two tangle �2 still van-
ishes in a region of the h-T plane, fanning out from just
hf �white region in Fig. 18� �Amico et al., 2006�. If en-
tanglement is present it is shared between three or more
parties.

It is further observed that, in contrast to the analysis
of the ground state, at finite temperature we cannot
characterize the two separate phases of parallel and an-
tiparallel entanglement. In fact, the two types of en-

tanglement �though well defined also for mixed states�
can swap by varying T and/or r. The exchange between
parallel and antiparallel entanglement occurs in a non-
trivial way that ultimately produces the reentrance of �2
seen in Fig. 18.

The common feature in all cases for which the exis-
tence of entanglement could be proven is that both high
temperatures and high values of magnetic field move the
thermal states away from the region with nonzero en-
tanglement. This is understandable because high values
of magnetic field tend to order all spins parallel to the
field which corresponds to an overall state being a prod-
uct of the individual spin states. There is upper limit of

FIG. 17. �Color online� Temperature effect on the anomalies
from the critical divergence of the field derivative C�R� mea-
sured by �T	�aC�R�
. The density plot corresponds to �=1 and
R=1. T=T* and T=TM are drawn as dashed and thick lines,
respectively. Maxima below T* are found at TM=�Tcross with
��0.290±0.005 and are independent of � and R; the crossover
behavior is enclosed between two flexes of �T	�aC�R�
 at Tc1
Tc2; such values are fixed to Tc1= �0.170±0.005�Tcross and Tc2
= �0.442±0.005�Tcross and independent of � and R. For T
(Tc1, �T	�aC�R�
�0. Scaling properties are inherited in
�T	�aC�R�
 from �aC�R�
. From Amico and Patané, 2007.

T

h

FIG. 18. �Color online� Contour plot of �2 in the h-T plane,
for �=0.3 �i.e., hf=0.9539. . .�. The white area indicates where
�2=0. From Amico et al., 2006.
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this phenomenon, since an increase in the temperature is
disruptive for entanglement due to thermal fluctuations.

C. Thermal entanglement witnesses

At first sight it may be surprising that thermodynami-
cal variables can witness entanglement since what is re-
quired to obtain them are the system’s eigenenergies,
and no eigenstate information is required. Since en-
tanglement resides in the fact that the state is insepa-
rable �and is not related to the value of its energy�, it
would appear that the partition function is not enough
to characterize entanglement. This logic, although seem-
ingly simple, is not entirely correct. The reason is subtle
and lies in the fact that the whole Hamiltonian is used
for constructing the partition function, so in a round-
about way we do have information about the states as
well. Entanglement witnesses in spin systems have been
considered by Brukner and Vedral �2004�; Tóth �2005�;
Wu et al. �2005�; Hide et al. �2007� �see also the next
section on multipartite entanglement�.

We now illustrate how and why we can derive en-
tanglement witnesses for the partition function. Suppose
that the system is described by an antiferromagnetic
Heisenberg model. First, we have the following iden-
tity coming from the Hellman-Feynman theorem
�i=1

N �Si
xSi+1

x +Si
ySi+1

y +Si
zSi+1

z �� d
dJ �ln Z�. This means that

the two point correlations function summed over all
nearest neighbors can be derived from the partition
function. This is also a quantity that can be accessed
experimentally as is usually performed in solid state ex-
periments. Most importantly, this average has in general
different values for separable and entangled states. It
can, therefore, serve as an entanglement witness as will
be seen shortly. The fact that will emerge is that, in order
to say if a state is entangled, we do not need to have the
analytically calculated form of the eigenstates in order
to tell if the resulting mixture is entangled. One price to
pay for this is that we will only be able to derive a suf-
ficient condition for entanglement that is typical of en-
tanglement witnesses. Namely, we will be able to tell if
for some conditions the resulting thermal state is en-
tangled, but we will not be able to say with certainty that
the state is not entangled if these conditions are vio-
lated.

Using U= �H� and Mz=�j=1
N �Sj

z� we obtain

U + hMz

NJ
= −

1

N�
i=1

N

��Si
xSi+1

x � + �Si
ySi+1

y � + �Si
zSi+1

z �� .

�62�

The right-hand side of Eq. �62� is an entanglement wit-
ness as shown by Tóth �2005�: for any separable state,
that is, for any classical mixture of the products states,
�=�kwk�k

1
� �k

2
� ¯ � �k

N, one has

1

N
��

i=1

N

��Si
xSi+1

x � + �Si
ySi+1

y � + �Si
zSi+1

z ��� �
1
4

. �63�

This is also valid for any convex sum of product states
�separable states�. The upper bound was found using the
Cauchy-Schwarz inequality and knowing that for any
state �Sx�2+ �Sy�2+ �Sz�2�1/4. It is important to note that
the same proof can also be applied if one considers the
XX model. We now give our thermodynamical entangle-
ment witness: if, in the isotropic XXX or XX Heisen-
berg model, one has

�U + hMz� � N�J�/4, �64�

then the solid state system is in an entangled state. The
entanglement witness is physically equivalent to the ex-
change interaction energy or, equivalently, to the differ-
ence between the total �internal� energy U and the mag-
netic energy −hM. From the tracelessness of the Pauli
operators one can see that limT→� U→0. This means
that the value of the internal energy as given by Eq. �64�
should be defined relative to the referent value of zero
energy in the limit of high temperatures. In order to
complete the proof we need to give an explicit example
of a state that violates Eq. �63� �or the corresponding
inequality for the XX model�. This implies that Eq. �64�
is indeed an entanglement witness and not just a bound
that is trivially satisfied by any quantum state.

As an example of such a state we take the ground
state of the antiferromagnetic isotropic XXX Heisen-
berg model with zero magnetic field. The energy of this
state was found to be �Hulthén, 1938� �E0 /JN�
=0.443 25�1/4. Furthermore, due to the symmetry of
the XXX Heisenberg Hamiltonian one has E0 /3NJ
= �Si

xSi+1
x �0= �Si

ySi+1
y �0= �Si

zSi+1
z �0=−1.773/12 for every i.

This implies that �1/N���i=1
N ��Si

xSi+1
x �0+ �Si

ySi+1
y �0��=0.295

�1/4. Therefore Eq. �64� is an entanglement witness for
the solid state systems described by XXX or XX
Heisenberg interaction.

We now discuss various spin interaction models some
of which are exactly solvable and whose dependence of
internal energy U and magnetization M on temperature
T and magnetic field h are known. This will help us to
determine the parameter regions of T and h where one
has entanglement in the solids.

We first consider the XXX Heisenberg model with no
magnetic field, in this case the magnetization vanishes
and the thermodynamical witness, Eq. �64�, reduces to
�U��N�J� /4. It was shown that concurrence C�1� is zero
at any temperature in the ferromagnetic case and that it
is given by C= 1

2 max	0, �U� / �NJ�−1/4
 in the antiferro-
magnetic case �Wang and Zanardi, 2002�. Thus C is non-
zero if and only if �U� / �NJ��1/4. This shows that the
thermodynamical entanglement witness can detect en-
tire bipartite entanglement as measured by concurrence.
Furthermore, the fact that the value of the entanglement
witness for the ground state is well above the limit of 1 /4
suggests that entanglement could exist and be detected
by the thermodynamical witness at nonzero tempera-
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tures. In the presence of a finite magnetic field the low
temperature partition function is given by Z
=e��J+hz�/4�1+e−�hz/2N /�2��J�. Using this we obtain �U
+hzM� / �NJ�=1/4 and thus no entanglement can be de-
tected in agreement with Asoudeh and Karimipour
�2004� and Pratt �2004�.

The XX Heisenberg model with nonzero magnetic
field is the most interesting as it is exactly solvable, the
partition function was found by Katsura �1962�. We in-
troduce the dimensionless quantities b=hz /T and K
=J /T 	note a difference of a factor of 2 in the definitions
of J and K with respect to Katsura �1962�
 and the func-
tion f�K ,b ,��=�2K2+2K2 cos 2�−4bK cos �+C2 for
convenience. Then the internal energy is given by �Kat-
sura, 1962�

U

N
= −

T

4�
�

0

�

f�K,b,��tanh f�K,b,��d� , �65�

and the magnetization by �Katsuram, 1962�

M

N
= −

1

2�
�

0

� 4K2 cos2 �

f�K,b,��
tanh f�K,b,��d� , �66�

in both the ferromagnetic and antiferromagnetic cases.
We use Eqs. �65� and �66� to determine the parameter

regions of temperature T and magnetic field hz for which
entanglement exists in the solid state system. The critical
values of T and h below which entanglement can be
detected is of the order of J, which can be as high as
10 K �Hammar et al., 1999�.

It should be stressed that the analysis based on the
entanglement witness can be applied to any model for
which we can successfully obtain the partition function.
This feature is the main advantage of using the thermo-
dynamic witnesses approach to detecting entanglement.
This method for determining entanglement in solids
within the models of Heisenberg interaction is useful in
the cases where other methods fail due to incomplete
knowledge of the system. This is the case when only the
eigenvalues but not eigenstates of the Hamiltonian are
known �which is the most usual case in solid state phys-
ics� and thus no measure of entanglement can be com-
puted. Furthermore, in the cases where we lack the com-
plete description of the systems one can approach the
problem experimentally and determine the value of the
thermodynamical entanglement witness by performing
appropriate measurements. It is important to emphasize
that any other thermodynamical function of state could
be a suitable witness, such as the magnetic susceptibility
or heat capacity �Wiesniak et al., 2005�; see next section.

The temperature as well as other thermodynamical
state variables have been shown to behave also as en-
tanglement witnesses of spatial entanglement �Anders
et al., 2006�. This general feature was explicitly worked
out in the case of a noninteracting bosonic gas. It was
found that entanglement can exist at arbitrarily high
temperatures, provided that one can probe smaller and
smaller regions of space.

The methods outlined here are not only applicable to
the models we considered. There are several interesting
questions and possibilities for generalizations such as
consideration of Hamiltonians with higher spins, two-
and three-dimensional systems, non-nearest interac-
tions, anisotropies, other thermodynamical properties
�e.g., heat capacity, magnetic susceptibility�, and so on.
Similar analysis can be done for continuous thermal en-
tanglement in a field. It has been shown that for nonin-
teracting bosons entanglement exists when their de Bro-
glie thermal wavelength is smaller than their average
separation a �Anders et al., 2006�. The precise condition
is kT��2 /2ma2, where m is the mass of bosonic par-
ticles. We now introduce the following correspondence
between spin coupling J and the continuous variables
bosonic kinetic energy J=�2 /2ma2. This implies that we
can think of the thermal de Broglie wavelength for spins
as 
dB=a�J /T, where a is the spin separation. The con-
dition for entanglement that the wavelength is larger
than the lattice spacing a now leads us to the condition
that T�J which is exactly the result obtained from a
more detailed analysis above.

D. Experimental results

The question of having macroscopic entanglement is
not only fascinating in its own right but it also has a
fundamental significance as it pushes the realm of quan-
tum physics well into the macroscopic world, thus open-
ing the possibility to test quantum theory versus alterna-
tive theories well beyond the scales on which theirs
predictions coincide. It also has important practical im-
plications for implementation of quantum information
processing. If the future quantum computer is to reach
the stage of wide commercial application, it should share
the same feature as the current �classical� information
technology and be based on solid state systems. It will
thus be important to derive the critical values of physical
parameters �e.g., the high-temperature limit� above
which one cannot harness quantum entanglement in sol-
ids as a resource for quantum information processing.

It was demonstrated experimentally that entangle-
ment can affect macroscopic properties of solids, albeit
at very low �critical� temperature �below 1 K� �Ghosh et
al., 2003�. This result opens a possibility that purely
quantum correlations between microscopic constituents
of the solid may be detected by only a small number of
macroscopic thermodynamical properties.

Ghosh et al. made measurement on an insulating salt,
LiHoF4. At low temperatures the susceptibility deviates
from a simple Curie-type law. They found that the tem-
perature dependence is well fitted by a power law %
�T−�, with �=0.75. The key observation made by
Ghosh et al. �2003� is that the experimental data at low
temperatures cannot be explained by simply resorting to
a classical approximation. By itself this might not be
enough. It is remarkable, however, that these authors
are able to put in close connection the power-law diver-
gence of the susceptibility with the entanglement
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present in the low-lying excited states; see Fig. 19.
Vértesi and Bene studied the magnetic susceptibility

of NaV3O7 and used macroscopic entanglement wit-
nesses as discussed in the previous section to estimate
the critical temperature below which thermal entangle-
ment is present. The experimental value of this tempera-
ture is 365 K approximately three times higher than the
critical temperature corresponding to the vanishing
of bipartite entanglement �Vertési and Bene, 2006�.
We also mention the recent experiment reporting on
macroscopic magnetic measurements of the pyroborate
MgMnB22O5 and warwickite MgTiOBO3 	Rappoport et
al., 2007; see also Continentino �2006�
.

Earlier experimental data witnessing entanglement in
bulk properties of solids have been reanalyzed by
Brukner et al. �2006�. They discussed the experimental
results of neutron scattering measurement of CN �Xu et
al., 2000� and showed that they provided a direct experi-
mental demonstration of macroscopic entanglement in
solids. The experimental characterization of the dynamic
spin correlations for next neighboring sites enabled
them to determine the concurrence and show the exis-
tence of entanglement at moderately high temperatures
�as high as 5 K�. In the same work they also showed that
magnetic susceptibility at zero magnetic field is a macro-
scopic thermodynamical entanglement witness for the
class of solid states systems that can be modeled by a
strongly alternating spin-1 /2 antiferromagnet chain
�Brukner et al., 2006�. The measured values for magnetic
susceptibility of CN �Berger et al., 1963� imply the pres-
ence of entanglement in the same temperature range
�below 5 K�.

An analysis of the experimental results of a magnetic
susceptibility measurement of CN �Berger et al., 1963�
showing that the values measured at low temperatures
cannot be explained without entanglement being
present was performed by Brukner et al. �2006�. This was
based on the general proof that magnetic susceptibility
of any strongly alternating antiferromagnetic spin-1 /2
chain is a macroscopic thermodynamical entanglement
witness. As discussed by Brukner et al. �2006� the mag-
netic susceptibility for separable states is bounded by

%sep �
g2�B

2 N

T

1
6

. �67�

The results of their analysis are reported in Fig. 20.

VIII. MULTIPARTITE ENTANGLEMENT

Most of the results reviewed in the previous section
are for pairwise entanglement. Although much has been
learned from the study of those quantities, the structure
of entanglement in many-body systems is much richer
and it is natural to expect that multipartite entanglement
is present both in the ground state and at finite tempera-
tures. Although multipartite entanglement in many-
body systems is much less studied, some important re-
sults have been already obtained.

A number of groups showed that in certain limits the
state of a spin chain can resemble that of known multi-
partite states. For small chains Wang first noted that the
ground state tends to have multipartite entanglement
�Wang, 2002a�. This analysis was further pursued in Ising
and Heisenberg rings where the ground state has GHZ-
�Stelmachovi~ and Bužek, 2004� and W-like �Bruß et al.,

FIG. 19. �Color online� Magnetic susceptibility vs temperature
T from simulations of the diluted, dipolar-coupled Ising mag-
net, compared to experimental data �triangles�. The solid
circles use quantum decimation as well as the correct quantum
mechanical form of susceptibility, utilizing the entanglement of
the low-lying energy doublet with the excited states. From
Ghosh et al., 2003.

FIG. 20. �Color online� The temperature dependence of mag-
netic susceptibility of powder CN �triangles� and a single-
crystal CN, measured at low field parallel �open squares� and
perpendicular �open circles, crosses, filled circles� to the mono-
clinic b axis. The data and the figure are from Berger et al.
�1963�. The intersection point of this curve and the experimen-
tal one defines the temperature range �left from the intersec-
tion point� with entanglement in CN around �5 K. From
Brukner et al., 2006.
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2005� correlations, respectively. Multipartite mixed
states can be also realized in the case of ferromagnetic
rings where the ground state is fully polarized along
the direction of the field and the first excited state is
a W state. At finite but low temperatures the density
matrix is given approximately as �=p�0¯0��0¯0�+ �1
−p��W��W�, where p is the Boltzmann factor and �0¯0�
is the ferromagnetic ground state. For three qubits � has
been shown to contain tripartite entanglement by Bruß
and Macchiavello �2003�.

These examples show that several models naturally
have multipartite entangled ground states. At the same
time it also shows that it is important to quantify multi-
partite entanglement in many-body systems. Analysis in
this direction is reviewed below.

A. Multipartite entanglement in spin systems

A first way to estimate multipartite entanglement in a
spin system is provided by the entanglement ratio �2 /�1
as the amount of two spin relative to global entangle-
ment. For 1D XYZ models it was shown that a small
value of such a ratio is generic in these systems with a
cusp minimum at the quantum critical point �Roscilde et
al., 2004�. This is shown numerically for the XYZ chain
in a field �Fig. 21�.

In order to quantify the multipartite entanglement,
Wei et al. calculated the geometric measure of entangle-
ment �Wei and Goldbart, 2003�, see Sec. II.E, for the
transverse XY chain �Wei et al., 2005�. The calculation
can be done by a clever use of symmetries: translational
invariance and periodic boundary conditions. In this
case, the set of all possible separable states can be de-
scribed by a global rotation around the y axis of the fully
polarized state. The maximization is thus reduced to
only one variable.

As well as in the case of bipartite entanglement, the
multipartite measure of Wei et al. is sensitive to the ex-
istence of QPTs. As a paradigmatic example these au-
thors analyzed the phase diagram in the anisotropy-

magnetic field plane. Their results are shown in Fig. 22.
As expected there is no divergence in the measure itself
but in its derivative. The new aspect here is that differ-
ent from the concurrence the multipartite entanglement
measure in Eq. �12� can be expanded as a function of
n-point correlators.

The geometric entanglement cannot discriminate be-
tween different n-particle entanglement classes. A com-
prehensive classification in spin systems has been given
by Gühne et al. �2005� via the concept of k-producibility
�see Sec. II.E�. The systems analyzed in detail are the
one-dimensional XY and Heisenberg models. Different
types of n-particle quantum correlated states lead to dis-
tinct bounds for the internal energy �or the ground state
energy at T=0�. Violation of these bounds implies the
presence of certain k-party producible entanglement in
the system. As pointed out by Gühne et al. �2005�, aim-
ing at the thermodynamic limit of an infinite number of
spins, the notion of k-producibility is easier to handle
than the n-separability �see Sec. II.E� as its definition is
independent of the number of sites in the system.

A systematic approach for deriving energy bounds for
states without certain forms of multipartite entangle-
ment has been developed by Gühne and Toth �2006�.
The method allows one to investigate higher dimen-

TABLE I. Energy bounds for one-, two-, three-, and four-
producible states

−4�H� /J 1p 2p 3p 4p

1d 1 3/2 1.505 1.616
2d 1 13/12 1.108 1.168
3d 1 31/30 1.044 1.067
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FIG. 21. �Color online� One-tangle �1 and the sum of squared
concurrences �2 as a function of the applied magnetic field in
the z direction for the XYZ model with exchange along y: Jy
=0.25 �in unit of exhange along z�. Inset: Contributions to the
concurrence between jth neighbors; closed symbols stand for
CI�j� and open symbols for CII�j�. The dashed line marks the
critical field hc. From Roscilde et al., 2004.
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FIG. 22. �Color online� The geometric entanglement measure
Eq. �12� per site versus � and hz for the XY model. There are
three different phases: the ordered oscillatory phase for �2

+hz
2�1 and ��0, the ordered ferromagnetic phase between

��2+h�z2�1 and h�1, and the paramagnetic phase for hz�1.
There is a sharp rise in the entanglement across the quantum
phase transition line 
−1=hz=1. At �=0 lies the XX model,
which belongs to a different universality class than the aniso-
tropic XY model. From Wei et al., 2005.
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sional and frustrated systems. As an example we report
the results for the Heisenberg model. In d dimension,
the energy bounds per bond for one-, two-, three-, and
four-producible states are given in Table I. It is striking
how relatively close the 2- and 3-producible bounds are
in all cases. All bounds given above are found to be
violated in the ground state. In the previous expression
the superscripts refer to the dimensionality of the model
and the subscripts to the k-party entanglement for which
the bound is obtained. There is a factor of 1/4 of differ-
ence with respect to the original paper because of the
different notation used in this review.

Corresponding to the energy scales fixed by the
bounds there are different temperature scales at which
the various n-party entanglement types disappear. As
one would expect, these crossover temperatures are
monotonic in k, i.e., Tk�Tk+1. The example given in Fig.
23 shows how higher order multipartite entanglement
progressively disappears as the temperature increases.

B. Global entanglement

Multipartite entanglement close to quantum phase
transitions was quantified by the global-entanglement
Egl measure of Meyer and Wallach �see Sec. II.E� by de
Oliveira, Rigolin, and de Oliveira �2006�; de Oliveira,
Rigolin, et al. �2006�; and Somma et al. �2004�. Together
with the Meyer-Wallach measure, de Oliveira et al. also
introduced a slight extension of it as

Egl
�2� =

4
3

1

N − 1 �
l=1

N−1 �1 −
1

N − 1�
j=1

N

Tr �j,j+l
2 � , �68�

where �j,j+l is the reduced density matrix associated to
sites j and j+ l. Similarly one can consider three-body
reduced density matrices and construct the correspond-
ing global entanglement measure. According to de Ol-
iveira et al. the above hierarchy provides a comprehen-
sive description of entanglement in many-body systems.
Explicit calculations for the one-dimensional Ising
model �de Oliveira, Rigolin, and de Oliveira, 2006�
showed that both Egl and Egl

�2� are maximal at the critical

point �with Egl�Egl
�2� for any value of the coupling con-

stant� suggesting that the quantum critical point is char-
acterized by the presence of multipartite entanglement.
As in the case of concurrence the nonanalyticity associ-
ated with the critical point is manifest in the derivative
of the global entanglement measure. Extending an ear-
lier approach developed by Wu et al. �2004�, de Oliveira
et al. also showed how the nonanalytic behavior of Egl

�n� is
related to that of the ground state energy. Note that
from Eq. �68� it is possible to define an entanglement
length proportional to the correlation length �. This dif-
fers considerably from the one defined by the localizable
entanglement 	see Eq. �55�
; the latter is always bounded
from below by the correlation length and can even be
divergent where � is finite.

As discussed by Facchi et al. �2006, 2007� the analysis
of the average purity might not be sufficient and analysis
of the purity distribution for different partitions could
give additional information. Rather than measuring mul-
tipartite entanglement in terms of a single number, one
characterizes it by using a whole function. One studies
the distribution function of the purity �or other mea-
sures of entanglement� over all bipartitions of the sys-
tem. If the distribution is sufficiently regular, its average
and variance will constitute characteristic features of the
global entanglement: the average will determine the
“amount” of global entanglement in the system, while
the variance will measure how such entanglement is dis-
tributed. A smaller variance will correspond to a larger
insensitivity to the choice of the bipartition and, there-
fore, will be characteristic for different types of multi-
partite entanglement. Application of this technique to
the one-dimensional quantum Ising model in a trans-
verse field shows that the distribution function is well-
behaved and its average and second moment are good
indicators of the quantum phase transition �Costantini
et al., 2007�. This is in agreement with previously ob-
tained results. At the onset of the QPT both the average
and the standard deviation exhibit a peak that becomes
more pronounced as the number of qubits is increased.

C. Generalized entanglement

A different route for studying the multipartite en-
tanglement is paved by the general observable based en-
tanglement �see Sec. II.E�. It was first pursued by
Somma et al. for the LMG and the quantum XY model.
In the realm of solid state systems an experimental pro-
tocol to measure many-fermion entanglement based on
this concept has been proposed by Kindermann �2006�.
A connection which emerges the work of Somma et al. is
the one between the generalized entanglement and
quantum fluctuations of the magnetization which are re-
sponsible for the quantum phase transition �Somma et
al., 2004�. Later, Montangero and Viola considered the
dynamical behavior of generalized entanglement in dis-
ordered systems �Montangero and Viola, 2006�. As re-
marked by Somma et al. �2004�, it is important to choose

0 0.2 0.4 0.6 0.8 1 1.2 1.4
T/J

0

0.5

1

1.5

2

h

not 1�producible
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FIG. 23. �Color online� Entanglement in thermal states of the
XX model in a transverse magnetic field. The different regions
correspond to different types of multipartite entanglement
contained in the equilibrium thermal state. From Gühne and
Toth, 2006.
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the appropriate subset of observables in order to see the
critical behavior in the entanglement.

In the case of the LMG model a natural choice for the
local observables was to consider the purity relative to
the spin-N /2 representation of the angular momentum
PS= �4/N2�	�Sx�2+ �Sy�2+ �Sz�2
. Somma et al. also consid-
ered the purity relative to the single observable Sz: PSz

= �4/N2�	�Sz�2
. With this last choice the relation be-
tween the multipartite entanglement and the order pa-
rameter becomes evident. The result is shown in Fig. 24.

Further interesting results emerge from the XY
model. By choosing the following subset of operators
expressed in terms of the spinless fermions of the
Jordan-Wigner transform u�N�=span�ci

†ci�+ci�
† ci , i�ci

†ci�
−ci�

† ci� ,�2�ci
†ci−1/2�� it is possible to show that the asso-

ciated purity may be considered as a disorder parameter,
i.e., it is nonzero in the symmetric phase only. A trans-
parent way to express the purity in this case is to relate
it to the variance of the number fermion operator Nf

=�ici
†ci. The result is plotted in Fig. 25 for different val-

ues of the anisotropy parameter �. Two considerations
are in order at this stage. First, it is clear from the pre-
vious example that important properties of entangle-
ment appear when one moves away from the conven-
tional picture of partitioning in real space. Second, the
purity shows different from other measures as the con-
currence, direct indications of critical behavior �and not
only in the derivatives�.

D. Renormalization group for quantum states

We continue our discussion on multipartite entangle-
ment with recent work �Verstraete et al., 2006� where the
method of renormalization group was applied to quan-
tum states and not, as traditionally done, to the Hamil-
tonian. The renormalization group is based on a recur-
sive transformation which leads to an effective
description of the low-energy �long distance� physics of a
given system where all effects of high energy modes are

included in a renormalization of certain coupling con-
stants of the model Hamiltonian. A flow study of these
recursive equations, their fixed point�s�, and the behav-
ior of the flow close to the fixed points allows one to
determine the critical behavior of the system under con-
sideration. Contrary to the conventional renormaliza-
tion group approach, the idea of Verstraete et al. is to
analyze how the quantum states change under this
coarse graining and to classify their fixed points. Given a
system characterized by N sites and a D-dimensional lo-
cal Hilbert space. The steps of this real space renormal-
ization procedure are the following.

�i� Coarse graining, in which clusters of neighboring
sites are merged into one site of a new lattice.

�ii� Rescaling of the local variables associated to the
new sites.

�iii� Identification of the states which are invariant un-
der local unitary transformation �long distance behavior
should not depend on the choice of the local basis�.

�iv� Rescale the distances in order to have a unit lat-
tice constant.

In this way a representative of a given class of quan-
tum states, invariant under local transformations, is
transformed at each step. The irreversibility of the trans-
formation is crucially related to step �iii� of the transfor-
mation as one loses track of the unitary transformation
performed �which needs to be local over the cluster�.

Verstraete et al. carried out explicitly the renormaliza-
tion group transformation for matrix product states
�MPS�, see Eq. �29�. The decimation step in which two
neighboring sites, say i and i+1, are merged together is
performed by merging the corresponding matrices Api

and Api+1 into Ã��
pi,pi+1 =��=1

min�DMPS
2 ,D2�A��

pi A��
pi+1. With a sin-

gular value decomposition of Ã it is possible to find the
representative of the new state 	see step �iii�
 and there-
fore to iterate the renormalization group map. In the

FIG. 24. �Color online� Purity relative to the observable Sz in
the ground state of the LMG model. From Somma et al., 2004 FIG. 25. �Color online� The purity Pu�N�� =Pu�N�− �1+��−1 of an

XY model in a transverse field as a function of 
 for different
anisotropies �. The constant part has been subtracted in order
to make the connection to the disorder parameter. From
Somma et al., 2004.
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case DMPS=2, Verstraete et al. provided a complete clas-
sification of the fixed point transformation which con-
tains product, GHZ, and domain wall states. A similar
analysis in the case DMPS�2 and/or in higher dimen-
sional systems may turn out to be useful for the classifi-
cation of multipartite entanglement in many-body sys-
tems.

E. Entanglement distribution for Gaussian states

It has been observed in Sec. II.G that the symmetry
groups of admissible local transformations of Gaussian
states and qubits are isomorphic. This suggests to look
for further analogies with the qubit case or to search for
deviations from it. A striking feature of qubit entangle-
ment is the monogamy as far as entanglement distribu-
tion along chains of qubits is concerned �see Sec. II.B�.
For continuous variable entanglement such an inequal-
ity was originally analyzed analytically for fully symmet-
ric Gaussian states and numerically for randomly chosen
Gaussian states by Adesso and Illuminati �2005a�. The
general proof of monogamy has been obtained by Hi-
roshima et al. �2007�. In this section we use the particular
case of a symmetric state as a guideline to discuss the
monogamy for Gaussian states. A more detailed discus-
sion and the general proof can be found in the review by
Adesso and Illuminati �2007�.

A Gaussian state is called fully symmetric if and only
if its covariance matrix is invariant with respect to per-
mutations of the modes. Its covariance matrix can then
be written as �Adesso et al., 2004a�

Vsymm =�
�̂ �̂ ¯ �̂

�̂ �̂ ¯ ]

] �̂ � �̂

�̂ �̂ ¯ �̂
� , �69�

where �̂ and �̂ are 2�2 matrices. Both can be diagonal-
ized by means of local symplectic transformations in

phase space, such that �̂=diag�b ,b� and �̂=diag��1 ,�2�.
This leads to a highly degenerate symplectic spectrum
where n−1 doubly degenerate symplectic eigenvalues
are equal to �= �b−�1��b−�2� and the remaining eigen-
value is �n= 	b+ �n−1��1
	b+ �n−1��2
. After a partial
transposition, n−2 symplectic eigenvalues � remain un-
affected. The negativity is then determined solely by �̃−,
which is the smaller one of the remaining two affected
eigenvalues �± �Adesso et al., 2004a�. This is due to the
fact that the uncertainty leads to a lower bound �2 /4 for
the product �+�−.

For a single Gaussian mode with covariance matrix
V1, the tangle is given by �1=2�1−det V1� /�det V1. The
quantity which is analog to the pairwise tangle has been
identified as the square of the logarithmic negativity,

�2��̃−� = 	ln �̃−
2, �70�

and has been termed contangle by Adesso and Illumi-
nati �2005a�. Identification of the square negativity as

the continuous variable tangle is crucial for the demon-
stration of the monogamy inequality. Extensions of
these measures to mixed states are given by the corre-
sponding convex roofs �Uhlmann, 2000�, where the av-
erage of the pure state measure of entanglement has to
be minimized over all pure state decompositions of the
density matrix. Restriction to decompositions purely out
of Gaussian states gave rise to the notion of the Gauss-
ian entanglement measures �Wolf et al., 2004� and the
Gaussian entanglement of formation. It clearly estab-
lishes an upper bound for the entanglement of forma-
tion.

Negativity and Gaussian entanglement measures have
been analyzed by Adesso and Illuminati �2005b� for two-
mode Gaussian states with particular focus on symmet-
ric Gaussian states. One important result is that negativ-
ity and Gaussian measures lead to different ordering of
Gaussian states with respect to their entanglement. For
symmetric Gaussian states instead, both give the same
ordering. This result must be handled with care, since it
is not obvious what precisely the restriction to Gaussian
decompositions entails for the ordering of states. Believ-
ing in the striking similarity to qubit systems, one might
be tempted to conjecture that for symmetric Gaussian
states a purely Gaussian optimal decomposition always
existed.

There are two extremal classes of two-mode Gaussian
states considered: for fixed local and global purity, those
states that maximize the negativity are termed Gaussian
maximally entangled mixed states �GMEMS� introduced
by Adesso et al. �2004b�, whereas those states minimiz-
ing the negativity have been termed GLEMS, which are
states whose covariance matrix has one symplectic ei-
genvalue equal to 1 �mixed states with partial minimal
uncertainty�. The symmetric two-mode Gaussian states
have been singled out as those states containing minimal
Gaussian entanglement at fixed negativity �Adesso and
Illuminati, 2005b�.

The entanglement sharing inequality for Gaussian
states assumes the same form as for qubits �1,i
��j�i�2,ij, where the indices are the numbers of the vari-
ous distinguishable modes in a multimode Gaussian
state. This inequality has been proven for multimode
Gaussian states by Hiroshima et al. �2007�. In the par-
ticular case of symmetric states �1,i��1,1 and �2,ij=�2,12
for all indices i , j.

As for qubit systems one can define a residual con-
tangle by the difference �nª�1,i−�j�i

n �2,ij as a quantifier
of the multipartite entanglement present in a Gaussian
state. In particular, the residual contangle is an entangle-
ment monotone under Gaussian LOCC. An important
difference, however, arises as compared to the residual
tangle for qubits: not even for three modes is the re-
sidual tangle invariant under permutations of the modes
and its minimum with respect to the common mode i has
to be taken. Even for symmetric Gaussian states, where
this anomaly is absent, a promiscuous nature of continu-
ous variable entanglement is encountered, in sharp con-
trast to the monogamy inherent to qubit entanglement
�Coffman et al., 2000; Yu and Song, 2005; Osborne and
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Verstraete, 2006�. The term promiscuous is an interpre-
tation of the fact that the maximal residual contangle �3
in a symmetric Gaussian three-mode state without pair-
wise contangle �2 is smaller than the maximum possible
residual contangle without this restriction. Having in
mind the entanglement sharing inequality, this implies
that the local contangle �1 is larger when �2 and �3 coex-
ist. It is worth noting at this point that the peculiarity of
Gaussian states is completely described by two-point
correlation functions. Consequently, all types of multi-
partite entanglement are inextricably related in that the
same type of correlations are responsible for either type
of quantum correlation. This is not the case for non-
Gaussian states and in particular not for qubit systems
or general higher-dimensional local Hilbert spaces.

IX. DYNAMICS OF ENTANGLEMENT

The interest in studying the properties of entangle-
ment in a many-body system has been recently directed
also to the understanding of its dynamical behavior. En-
tanglement dynamics has been studied from different
perspectives. In a spirit similar to the study of propaga-
tion of excitations in condensed matter systems, several
works analyzed the propagation of entanglement start-
ing from a given initial state where the entanglement has
been created in a given portion of the many-body sys-
tem. One can imagine, for example, to initialize a spin
chain such that all spins are pointing upwards except two
neighboring spins which are entangled. Due to the ex-
change interaction the entanglement, initially localized
on two neighboring sites of the chain, will spread. This
propagation is ballistic in clean systems. A “sound veloc-
ity” for excitations results in a finite speed for the propa-
gation of excitations. If some weak disorder is present
one might expect diffusion. Entanglement localization
and chaotic behavior can eventually also be observed.
An alternative approach is to start with the ground state
of a Hamiltonian H0 and let the Hamiltonian change in
time. Most of the attention up to now has been devoted
to the case of sudden quench, i.e., after the preparation
the Hamiltonian suddenly changes to H1. Moreover,
since we are mostly dealing with interacting systems, en-
tanglement can be also generated or it can change its
characteristics during the dynamical evolution.

Another important aspect of entanglement dynamics
is the possibility to generate entangled states with given
properties by taking advantage of interactions present in
many-body systems. This is the natural generalization of
the case where a Bell state can be obtained by letting
two qubits interact for a fixed time by means of an ex-
change coupling of XX symmetry. In the same spirit one
can think to generate three-bit entangled GHZ or W
states or multipartite entangled states by tailoring the
appropriate exchange couplings in spin networks.

A. Propagation of entanglement

1. Pairwise entanglement

The simplest situation which we consider first is the
propagation of entanglement in the one-dimensional

XX model, i.e., �=0 and �=0 in Eq. �23� �Amico et al.,
2004; Subrahmayam, 2004�. Suppose the initial state of
the chain is

��±�t = 0�� �
1
�2

�	i
x ± 	j

x��0, . . . ,0� , �71�

namely, all spins are in a fully polarized state except two,
at positions i and j, which are in one of the two Bell
states ��±�=2−1/2��01�± �10��. In this case the problem is
amenable of a simple analytical solution. The reason is
that, since the total magnetization is conserved, evolu-
tion is confined to the sector where only one spin is up.
In this sector the dynamics is completely described by
the states �l���0, . . . ,0 ,1 , . . . ,0� �l=1, . . . ,N� which rep-
resents a state of the chain where the lth spin is prepared
in �1� while all the other N−1 ones are in �0�. At later
times the state of the chain is to be

��±�t�� = �
l

w±,l
�i,j��t��l� . �72�

In the thermodynamic limit N→� the coefficients
can be expressed in terms of Bessel functions Jn�x� as
w±,l

�i,j��t�= 1
�2 �Ji−l�4Jt�± �−i�j−iJj−l�4Jt��. Equation �72� to-

gether with the coefficients defined previously allows
one to study various kinds of entanglement measures for
this particular case.

As a first indication of the entanglement propagation
we analyze the dynamical evolution of the concurrence
between two sites, located at positions n and m �initially
the entangled state is between sites i and j�. The concur-
rence reads

Cn,m
i,j �±,t� = 2�w±,n

�i,j��t�w±,m
�i,j���t�� . �73�

The function Cn,m
i,j �t� plotted in Fig. 26 shows sites which

are symmetric with respect to the initial position of the
Bell state ��±�. The time evolution dictated by the XX

4

8

12

-5

0

5

10

0

0.5

1

4Jt

x

FIG. 26. �Color online� Concurrence between sites n=−x, m
=x, symmetrically placed with respect to the state where the
singlet was initially created. From their initial position i=−1
and j=1; From Amico et al., 2004.
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Hamiltonian amounts to a propagation of the single
flipped spin through the chain. The speed of propagation
is set up by the interaction strengths. The information
exchange or entanglement propagation over a distance
of d lattice spacings takes time t��d /J. The external
field h does not enter into Eq. �73�, since all components
of the state are in the same sector where one spin has
been flipped and therefore it contributes only to an over-
all dynamical phase to the state evolution.

Having in mind the use of spin chains as quantum
channels, the preparation scheme described above does
not lead to faithful entanglement transfer. The most
natural way to perform this task is to prepare the en-
tangled state and then let only one of the qubits propa-
gate along the spin chain 	thereby following the protocol
originally proposed by �Bose 2003� or its modified ver-
sion �Christandl et al., 2004� to achieve perfect transfer
with a modulated chain
. A detailed analysis in this di-
rection was recently performed by Hartmann et al.
�2006�. They considered initial maximally entangled
states and used the chain to transfer the state of one of
the two qubits, found a relation between a measurement
of the entanglement fidelity at the fidelity of state trans-
fer, and concluded that there are possibilities to have
perfect entanglement transfer.

If the chain is initially prepared in ��±�t=0��, given in
Eq. �71�, the entanglement propagates maintaining its
original characteristics. This is not the case if, for ex-
ample, the initial states of the two entangled sites is of
the type ��±�= �1/�2���00�± �11��. These states are super-
positions of components belonging to different magneti-
zation sectors. The entanglement propagates with the
same velocity as before, however, under certain condi-
tions, it turns out that the propagating quantum correla-
tions change their character. After some time a singlet-
like entangled state propagates even if the initial state
was not a singlet. A different set of initial states has also
been considered. In Hamieh and Katsnelson �2005� the
chain was initialized in a separable state by means of a
set of projective measurement �in particular they consid-
ered all spins aligned in the z direction except one pre-
pared in an eigenstate of Sx�. The evolution can be de-
scribed using the same approach as outlined above. The
new ingredient now is the creation of entanglement dur-
ing the dynamics. Hamieh and Katsnelson showed that
oscillations of the entanglement wave have the same pe-
riodicity, but out of phase, with the oscillation of the
�nonequilibrium� average magnetization. The distribu-
tion of entanglement in the chain has been analyzed af-
ter launching a single excitation from the central site of
a XX chain by Fitzsimons and Twamley �2005� It was
found that the second-order moment of the spatial ex-
tent of the concurrence grows much faster �with a rate
increasing as t5/2� if some disorder is present in the cen-
tral portion of the chain �in the ordered case the in-
crease goes as t2�.

Additional features emerge in the quantum XY with
��0. In this case the magnetization is no longer a con-
stant of motion �two spins can be flipped simulta-

neously�. Calculations were done analytically �Amico et
al., 2004� resorting to the exact set of out-of-equilibrium
correlation functions �Amico and Osterloh, 2004�. The
most notable difference in the two-site entanglement
studied is an entanglement production from the vacuum.
This occurs uniformly along the chain and it superim-
poses to the associated entanglement wave discussed be-
fore. The velocity of propagation of the entanglement is
almost independent of the anisotropy parameter �.
What is strongly dependent on � is the damping coeffi-
cient of the entanglement wave. As the anisotropy ap-
proaches �=1, the Ising point, the wave is strongly
damped and vanishes approximately after a few �J−1.
Furthermore, in the anisotropic case it is possible to ob-
serve nontrivial dynamics when the external magnetic
field is time dependent 	Huang and Kais, 2005; Sen�De�
et al., 2005
. In Sen�De� et al. �2005� the system is initially
prepared in the ground state; the evolution is analyzed
after the magnetic field is �suddenly� switched off.
Sen�De� et al. analyzed the two-site entanglement by
means of the logarithmic negativity as shown in Fig. 27
and demonstrated the existence of a dynamical phase
transition, not observable in the magnetization. As it can
be seen in Fig. 27 at a fixed time t the entanglement
vanishes �and then grows again� for certain values of the
initially applied magnetic field. For t�1.8 the critical
field is almost independent on the time t and is h�0.8.
A remarkably different situation occurs for t�1.8, here
a dynamical phase transition occurs where the entangle-
ment vanishes for any value of h�hc. For values of the
initial field in the region near the phase transitions, en-
tanglement behaves nonmonotonically with respect to
temperature of the initial equilibrium state.

FIG. 27. �Color online� The nearest-neighbor logarithmic
negativity EN as a function of the initial transverse field hz and
time t for the anisotropy �=0.5. At short times t�1.8 the dy-
namical phase transition is a point of reentrance for the en-
tanglement. At later times the state remains separable for val-
ues of the field above the critical value. For t=0, entanglement
vanishes, as it should, as hz grows. The transverse magnetiza-
tion of the evolved state does not show a similar critical be-
havior as a function of hz. From Sen�De� et al., 2005.
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The two-site entanglement is nonergodic 	Sen�De� et
al., 2004
. The evolution of two-site entanglement of a
XY chain was studied after a sudden change of the ex-
ternal magnetic field. The evolved state does not ap-
proach its equilibrium value. That is, entanglement by
itself does not relax to its equilibrium value in the ab-
sence of further contact with reservoirs. Therefore en-
tanglement in such systems cannot be described by equi-
librium statistical mechanics.

The entanglement dynamics has been studied, to a
large extent analytically, in the LMG model �Vidal, Pala-
cios, and Aslangul, 2004; Latorre, Lütken, et al., 2005�.
They considered the dynamical evolution of entangle-
ment by analyzing both the one-tangle �1�t� and the con-
currence C�t� for cases in which the initial state is fully
polarized either in the z or in the x direction. Because of
the model symmetries and since the initial state belongs
to the sector with maximal spin, S=N /2, both quantities
do not depend on the spins which are selected. This
means that they can be expressed in terms of the aver-
age value of the total spin �S�� and its correlation func-
tions �S�S�� ��=x ,y ,z�. An interesting feature of this
model is that its level spacing is finite even in the ther-
modynamic limit. Contrary to expectations, however,
the Poincaré time is dependent on the number of spins N
and this has important consequences on the entangle-
ment dynamics.

When the spins are prepared in the state �0¯0� ana-
lytical results can be obtained in the limit of zero and
very large magnetic field. In the limit of zero external
field the tangle and the concurrence can be expressed as
�1�t�=1−c�t�2�N−1� and C�t�= �1/4��c�t��N−2�−1+ 	c�t��N−2�

−1
2+ 	4c�t��N−2�s�t��N−2�
21/2
�, with c�t�=cos�4Jt /N�, s�t�

=sin�4Jt /N�, and show perfect anticorrelation in time. In
the opposite limit of a strong applied field it is possible
to resort to a semiclassical approximation of the Heisen-

berg equation of motion �Law et al., 2001�, Ṡx=2hSy,

Ṡy=−2hSx+ �2J /N�	Sz ,Sx
+, Ṡy=−�2J /N�	Sz ,Sy
+ by not-
ing that, for N"1, the z component of the magnetiza-
tion has negligible fluctuations 	Sz�t��S=N /2
. There-
fore the set of equations governing the dynamics of the
system becomes linear and can be easily solved. The
concurrence as a function of time for positive values
of the external field evolves as C�t�=1−ch�t�2

− �J2 /4hz
2�sh�t�2, with ch�t�2=cos2	�h�h−J�t
 and sh�t�2

=sin2	�h�h−J�t
. Dynamics of two-site entanglement
was also discussed in the context of spin-bosonlike mod-
els. Ciancio and Zanardi �2006� analyzed the negativity
for a two-modes Jaynes-Cummings with particular em-
phasis on the entanglement between two bosonic modes
mediated by the qubit. The relaxation dynamics of the
entanglement, quantified through the concurrence, in
the spin-boson model was discussed by Lim et al. �2006�.

We finally mention a study where it was noted that the
entanglement encoded in states caused by the splitting
of the degeneracy determined by the transverse field in
the quantum XY model is not preserved by an adiabatic
perturbation. Separable states can become entangled af-

ter the field is varied adiabatically, and vice versa �Cao et
al., 2006�.

2. Dynamics of the block entropy

The dynamical behavior of the block entropy was first
considered by Calabrese and Cardy �2005� in the general
framework of conformal field theory and via an exact
solution of the quantum Ising model. Later Dür et al.
considered Ising models with long range interaction and
De Chiara et al. �2005� performed numerical simulations
of the XXZ chain.

Calabrese and Cardy showed that a quench of the sys-
tem from a noncritical to a critical point leads the block
entropy first to increase linearly in time and then to
saturate. For periodic boundary conditions and given a
block of dimensions �, the time at which the entropy
saturates is given by t*=� / �2v�, where v is the spin wave
velocity:

S��t� �  t , t � t*

� , t � t*.
! �74�

Thus there is an arbitrary large entanglement entropy in
the asymptotic state, contrary to the ground-state case
where the entropy diverges only at critical point. An
example of the block entropy time dependence for the
Ising and XXZ models is shown in Fig. 28. Calabrese
and Cardy proposed a simple interpretation for this be-
havior in terms of quasiparticles excitations emitted
from the initial state at t=0 and freely propagating with
velocity v. The argument goes as follows. The initial
state has a high energy relative to the ground state of the
Hamiltonian which governs the subsequent time evolu-
tion, and therefore acts as a source of quasiparticle ex-
citations. Particles emitted from different points are in-
coherent, but pairs of particles moving to the left or
right from a given point are highly entangled �see Fig.
29�. The idea is that a point xA in the region A will be
entangled with a point xB in the region B if a pair of
entangled particles emitted at an earlier time arrive si-
multaneously at xA and xB. In this picture the block en-
tropy is proportional to the length of the interval where
this occurs. Saturation is reached when the most distant
quasiparticles �which started in the middle of the block�
have already got entangled. In the presence of disorder
the dynamical behavior is strikingly different. This pic-
ture applies in the more general context of dynamical
correlation functions after a quench as discussed by
Calabrese and Cardy �2006�.

Possible evidence of localization in the block entropy
has been discussed by De Chiara et al. �2005�. The case
of Ising models in zero magnetic field with long range
interaction of the dynamics was analyzed in the case of
factorized initial states �Dür et al., 2005�. The general
picture is also confirmed in this case although in the
short time limit additional oscillations appear probably
due to the various different phases related to the differ-
ent couplings.

We finally mention that the entropy in the case of a
finite time quench has been considered by Cherng and
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Levitov �2006� and by Cincio et al. �2007�. Recently rig-
orous bounds for the time evolution of the block en-
tropy were obtained by Bravyi et al. �2006� and by Eisert
and Osborne �2006�.

3. Chaos and dynamics of entanglement

The evolution of entanglement is sensitive to the dif-
ferent properties of the spectrum in the transition to
chaos as in the case of a quantum computer with imper-
fections. A small inaccuracy in the coupling constants
induces errors in gating or a unwanted time evolution if
the Hamiltonian cannot be switched exactly to zero. If
the imperfection strength increases, new phenomena oc-
cur and above a certain threshold the core of the com-
puter can even “melt” due to the setting in of chaotic
behavior �Georgeot and Shepelyansky 2000; Benenti et
al., 2001�. In addition to understanding the behavior of
the fidelity as an indicator to measure the stability of the
quantum memory 	see Gorin et al. �2006� for a review
, a
more complete characterization has included the behav-
ior of entanglement on approaching the transition to
chaos either by considering dynamics of a disordered
	Montangero and Viola, 2006; Montangero et al., 2006;
Sen �De� et al., 2006
 or time-dependent Ising model

	Lakshminarayan and Subrahmayam �2005�; see Prosen
�2007� for a recent review on the dynamical complexity
analyzed on the kicked Ising model
 and by studying the
dynamics of a quantum map �Miller and Sarkar, 1999;
Bandyopadhyay and Lakshminarayan, 2002; Bettelli and
Shepelyansky, 2003; Ghose and Sanders, 2004; Rossini et
al., 2004�. In particular the disordered Ising model has
been proposed �Georgeot and Shepelyansky, 2000� to
describe the hardware of a quantum computer, in which
system imperfections generate unwanted interqubit cou-
plings and energy fluctuations. Three different regimes
appear depending on the variance of the fluctuations of
the exchange couplings. At the critical value �Jc the sys-
tem crosses from the perturbative to the chaotic regime,
while at the second point �JE the system goes into an
ergodic state characterized by a Gaussian local density
of states. All these dynamical regimes have been de-
tected in the dynamics of entanglement by Montangero
et al. �2003� and Montangero and Viola �2006�.

We finally mention the interesting connections �Bon-
ess et al., 2006� found for the properties of the entangle-
ment in a Heisenberg chain with pulsed magnetic field
with the localization behavior of the quantum kicked
rotator.

B. Generation of entanglement

The Hamiltonians discussed so far can be also used to
generate particular entangled states. The simplest case
to consider is the XX model in the sector in which only
one spin is flipped. The fact that the Hilbert space is
spanned by the basis set ��� hints to the fact that
W-states can be generated. For short chains, N=3,4,
generalized W-states of the type �W�= 1

�4 	�1000�− i�0100�
− �0010�− i�0001�
 appear at discrete times as the initial
state of the chain is fully polarized �Wang, 2001�. This
simple scheme cannot be extended easily to an arbitrary
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FIG. 29. Schematic representation of the of block entropy dy-
namics. Entangled particles are emitted from region A, and
they contribute to the block entropy as long as one of the two
particles ends in region B. From Calabrese and Cardy, 2005.
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FIG. 28. �Color online� Evolution of the entropy for different
types of quenches in the case of the Ising �top panel� 	from
Calabrese and Cardy �2005�
 and Heisenberg �bottom panel�
	from De Chiara et al. �2005�
 models. The block are of 60 and
6 sites in the Ising and Heisenberg cases, respectively. In the
Ising case the quench are obtained by changing the external
magnetic field from h0 to h1=1. In the Heisenberg model the
anisotropy parameters are used instead, �0=1.5 while �1=0.0,
0.2, 0.4, 0.6, and 0.8. The time is expressed in units of the spin
wave velocity. The inset of the top panel shows the behavior of
the initial slope as a function of the final value of the aniso-
tropy.
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number of qubits. The reason is related to the fact that
for generic terms the various frequencies appearing in
the dynamical evolution of the state are not commensu-
rate.

An interesting example of entangled state generation
is that of cluster states �Briegel and Raussendorf, 2001�
which has been shown to be essential for one-way quan-
tum computation �Raussendorf and Briegel, 2001; Raus-
sendorf et al., 2003� 	see Hein et al. �2006� for a review
.
Remarkably, they can be generated by certain spin
Hamiltonians. In fact, the dynamical evolution of an
Ising model in zero magnetic field, H=�i,jJij	i

z	j
z, is

equivalent to a series of conditional phase shifts. In the
case of a regular lattice this Hamiltonian generates clus-
ter states which are readily generalized to graph states
for an Ising model defined on a simple graph. It is easy
to realize that the evolution operator at time Jt=� /4 can
be written as U�� /4�=�i,j

1
2 �1+	i

z	j
z�. If the initial state is

a product state with all spins pointing along the x direc-
tion, then at time Jt=� /4 the state is a graph state char-
acterized by a maximal bipartite entanglement and
maximal entanglement persistence. An example of a
cluster state generated by an Ising chain with nearest-
neighbor couplings, for N=4, is given by ���cl= �0000�
+ �1100�+ �0011�− �1111� �for N=2,3 cluster states coin-
cide with Bell and GHZ states, respectively�. The Ising
model is not the only case when graph states can be
created. Borhani and Loss �2005� showed how to gener-
ate them using the Heisenberg interaction while Clark et
al. �2005� considered the XX-model Hamiltonian.

An appropriate tailoring of the initial state or the spin
graph can lead to production of properly tailored en-
tangled states �Koniorczyk et al., 2005�. In an XX model
in a star network it is possible to control the concurrence
between two spins by varying the initial state of the cen-
tral spin only. Such a spin mediates the interaction be-
tween the outer ones as discussed by Hutton and Bose
�2004�. The pairwise entanglement can be maximized by
choosing all outer spins down and the central spin up.
These dynamically generated states saturate the
Coffman-Kundu-Wootters �CKW� inequality, Eq. �8�
�Coffman et al., 2000� and hence have the maximal pos-
sible two-site entanglement. Koniorczyk et al. analyzed
the concurrence of assistance, i.e., the maximum amount
of entanglement which could be concentrated on two
qubits by means of assisted measurements on the rest of
the system. Depending on the initial system, the behav-
ior of the concurrence and concurrence of assistance can
be quite different.

C. Extraction of entanglement

The entanglement naturally contained in a many-body
state can in principle be extracted and therefore used for
quantum information processing. This means that such
entanglement can be transferred to a pair of particles
and subsequently used, in principle, for quantum com-
putation or to test the violation of Bell’s inequalities. De
Chiara et al. proposed a scheme of entanglement swap-

ping by scattering a pair of particles with a spin chain or
an optical lattice �De Chiara et al., 2006�. To this end one
sends simultaneously a pair of probe particles toward
the entangled spin chain in such a way that each probe
interacts with a different spin. The entanglement be-
tween probes has been extracted from the spin chain
and cannot exist without entanglement in the chain. This
is a genuine nonlocal process between two probes as in
the case of entanglement swapping. In practice the scat-
tering interaction between probes and spins in the chain
must be capable of �at least partially� swapping their
state. This is the case of very common interactions like
the Heisenberg or the XY ones. The most natural way to
extract entanglement from entangled electron spins in
solids would be to scatter pairs of neutrons off the solid.
Another possibility would be to use Hamiltonians of en-
tangled spin chains or ladders that can be realized using
trapped cold atoms �Duan et al., 2003; Garcia-Ripoll et
al., 2003; Garcia-Ripoll and Cirac, 2004� and as probe
particles one can use marker qubits �Calarco et al.,
2004�.

D. Time evolution of the entanglement in Gaussian states

The dynamics of Gaussian states was first discussed by
Plenio et al. �2004�, where essentially two aspects have
been highlighted: The creation of entanglement from an
initially disentangled state and the propagation of an en-
tangled state on top of a disentangled background, both
induced by Hamiltonian dynamics.

The initially entangled two-mode state is character-
ized by the squeezing parameter r, which appears in the
co-variance matrix as V��,��

=cosh r for all phase space
variables of the zeroth and first oscillator modes,
whereas Vq0,q1

=Vp0,p1
=sinh r; in absence of further off-

diagonal elements, all other diagonal elements are equal
to 1. Two different types of nearest-neighbor couplings
of the oscillator have been considered: ideal springs
obeying Hooke’s law and the rotating wave approxima-
tion �RWA�. In this approximation both the kinetic and
potential energy terms assume the same form �Plenio et
al., 2004�. The RWA conserves the number of bosonic
excitations in the system, whereas the ideal spring cou-
pling does not. The initial entanglement is encoded in a
zeroth oscillator, itself decoupled from the chain of os-
cillators, and one oscillator within the chain as described
above. In this case, the Hamiltonian for the harmonic
lattice 	with an appropriate choice of the matrix U, see
Eq. �34�
 reads

H =
1
2�q0

2 + p0
2 + �

k=1

N

	qk
2 + pk

2 + K1�qk+1 − qk�2
� . �75�

After discarding the terms ââ and â†â†, in RWA, Eq. �75�
can be written �up to a constant� as �Plenio et al., 2004�
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HRWA = â0
†â0 + �1 + K1��

k=1

N

âk
†âk − K1�âk+1

† âk + âk
†âk+1� .

�76�

For both Eqs. �75� and �76� the time evolution of the
position and momentum operator can be evaluated ana-
lytically.

The initially entangled state of two oscillators—a de-
coupled and one harmonic oscillator within a periodic
chain—is released at time t=0 into the background of
initially disentangled oscillators, all prepared in their
ground state. In regard to the pairwise entanglement we
observe that the nth and zeroth oscillators become en-
tangled after a finite time tc�n�, which is given by the
velocity of sound of the underlying model Hamiltonian.
After this entanglement wave arrives, the nth oscillators’
entanglement exhibits damped oscillations with the
characteristic time scale of the model. For the model
�75�, the velocity of sound has been determined as v
=K1 /�1+2K1. Within the RWA this velocity appears en-
hanced: vRWA=K1. The height ENf of the first local
maximum in the logarithmic negativity has been used to
define the transmission efficiency Teff for entanglement
in the chain as Teff=ENf /ENi, where ENi is the logarith-
mic negativity initially prepared between the oscillators
zero and one.

In both models ENf is observed to saturate when
cranking up r and hence the initial entanglement. As
expected, the saturation value is a decreasing function of
the distance n. The main difference is that for generic
coupling the saturation value depends on the coupling
strength K1 and the smaller it is, the stronger the cou-
pling is. Within the RWA it is independent of the cou-
pling strength. Given the initial logarithmic negativity
ENi=−2r / ln 2, the transmission efficiency behaves differ-
ently. For the generic model it is zero for zero squeezing,
has a maximum at a finite squeezing rmax, and vanishes
for r→�. In sharp contrast, in RWA Teff is a monotoni-
cally decreasing function of r. Interestingly enough, for
the model in RWA, the oscillator frequencies and cou-
pling strengths can be optimized to have perfect trans-
mission from one end of an open chain of M sites to
the other end. This is achieved by virtue of Uj,j+1

=Uj+1,j=K1�n�M−n�, Uj,j=1, and �n=1−K1
�nn̄

−K1
��n−1��n̄+1�, where n̄=M−n. The same turns out

to be impossible for the generic model and M�2. The
only possibility is to choose the couplings and frequen-
cies as in the RWA case in the limit of K1→0 �where the
RWA is exact�. In this way, the transmission efficiency
can be pushed arbitrarily close to perfect transmission
but with a transmission speed tending to zero. The trans-
mission of quantum information has been found to be
robust against noise in K1 for both models �Plenio et al.,
2004�.

Another effect occurring in the generic model is en-
tanglement creation from a disentangled state, which is
not an eigenstate. This can be realized by an abrupt
change of the coupling strength. As in the spin case �see

Sec. IX.A� no entanglement creation can be generated
within the RWA. In an open chain the oscillators at the
end points become entangled after half the time a signal
needs to travel through the entire chain. This indicates
that this initial pairwise entanglement is mediated from
the center of the chain. Actually this is the first signal
that can possibly arrive when essentially pairwise en-
tanglement is created or contributes to the eventual
pairwise entanglement of the boundary oscillators. Rais-
ing a finite temperature for a thermal state, the arrival
time is slightly enhanced and the signal is subject to
damping. However, this effect turned out to be much
more sensitive to noise in the coupling strength than the
propagation of quantum information �Plenio et al.,
2004�.

X. CONCLUSIONS AND OUTLOOK

During the last years it became evident that quantum
information offers powerful instruments to grasp the
properties of complex many-body systems. This is the
reason why this area of research is undergoing an im-
pressive expansion. In this review we touched only one
particular aspect of this activity, namely the properties of
entanglement in many-body systems.

As mentioned in the Introduction, there are several
important aspects which, for space limitations, were ig-
nored. In this respect we should certainly mention the
increasing interest towards the optimization of numeri-
cal simulations of quantum systems. There were already
a number of breakthroughs �see also the Introduction�
that, for example, lead to the development of the time-
dependent DMRG. The design of variational methods
to study the ground state and finite temperature proper-
ties of many-body Hamiltonians has been exploited in
numerous work. We mentioned in the Introduction the
large body of activity on quantum state transfer in spin
chains. Here the knowledge of low-lying excitations of
the chain �spin waves� has helped in finding new quan-
tum protocols. More is expected to come in the future.

It is tempting, although difficult, to try to envisage the
possible evolution of this line of research. The study of
the topological entanglement entropy is an important
aspect that will be investigated in the future. Adiabatic
quantum computation and one-way quantum computa-
tion will benefit from the study of entanglement in com-
plex systems. The study of the topological entanglement
may also have remarkable spin off to understand many
puzzling phenomena in condensed matter physics
among which high-Tc superconductors and heavy fermi-
ons are of paramount importance �Coleman and
Schofield, 2005�. Furthermore, analysis of new measures
for multipartite entanglement may provide the addi-
tional insight necessary for understanding the role of en-
tanglement in such complex phenomena, which might
also reveal valuable information, e.g., on how to simu-
late these systems efficiently on a computer.

Many interesting results have been already obtained,
but the overlap between quantum information and
many-body physics is not yet fully unveiled. There is a
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number of open questions which provide a fertile
ground for a field of lively exciting research.
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