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I. INTRODUCTION

Twenty-five years ago the unusual magneto-optical
properties of several Heusler alloys motivated the study
of their electronic structure. This yielded an unexpected
result: Some of these alloys showed the properties of
metals as well as insulators at the same time in the same
material, depending on the spin direction. This property
was given the name of half-metallic magnetism �de
Groot, Mueller, v. Engen, et al., 1983�. Although it is not
exactly clear how many half metals are known to exist at
this moment, half-metallic magnetism as a phenomenon
has been generally accepted. Formally the expected
100% spin polarization of charge carriers in a half-
metallic ferromagnet �HMF� is a hypothetical situation
that can be approached only in the limit of vanishing
temperature and by neglecting spin-orbital interactions.
However, at low temperatures �as compared with the
Curie temperature, which exceeds 1000 K for some
HMFs� and minor spin-orbit interactions, a half metal
deviates so markedly from a normal material that the
treatment as a special category of materials is justified.
The confusion about the number of well-established half
metals originates from the fact that there is no “smoking
gun” experiment to prove or disprove half metallicity.
The most direct measurement is spin-resolved positron
annihilation �Hanssen and Mijnarends, 1986�, but this is
a tedious, expensive technique requiring dedicated
equipment. NiMnSb is the only proven HMF so far to
the precision of the experiment, which was better than
one-hundredth of an electron �Hanssen et al., 1990�. This
number also sets the scale for concerns about
temperature-induced depolarization and spin-orbit ef-
fects, detrimental for half metallicity.

The half metallicity in a specific compound should not
be confused with the ability to pick up 100% polarized
electrons from a HMF. The latter process involves elec-
trons crossing a surface or interface into some medium
where their degree of spin polarization is analyzed. This
is clearly not an intrinsic materials property. The rich-
ness but also the complications of surfaces and inter-
faces are still not fully appreciated.

Because of these experimental complications, it is not
surprising that electronic-structure calculations continue
to play an important role in the search for new HMFs, as
well as in the introduction of new concepts like half-
metallic antiferromagnetism. However, electronic-
structure calculations have weaknesses as well. Most of
the calculations are based on density-functional theory
�DFT� in the local-density or generalized gradient ap-
proximation. It is well known that these methods under-
estimate the band gap for many semiconductors and in-
sulators, typically by 30%. It has been assumed that
these problems do not occur in half metals since their
dielectric response is that of a metal. This assumption
was disproved recently. A calculation on the HMF
La0.7Sr0.3MnO3 employing the GW approximation
�which gives a correct description of band gaps in many
semiconductors� leads to a half-metallic band gap 2 eV
in excess of the DFT value �Kino et al., 2003�. The con-
sequences of this result are potentially dramatic: If it
were valid in half-metallic magnetism in general, it
would imply that many of the materials showing band
gaps in DFT-based calculations of insufficient size to en-
compass the Fermi energy are actually true half metals.
Clearly more work is needed in this area.

The strength of a computational approach is that it
does not need samples: calculations can be performed
even for nonexistent materials. But, in such an endeavor,
a clear goal should be kept in mind. Certainly, computa-
tional studies can help in the design of new materials,
but the interest is not so much in finding exotic physics
in materials that have no chance of ever being realized.
Such studies can serve didactical purposes, in which case
they will be included in this review. However, the main
focus will be devoted to materials that either exist or are
�meta�stable enough to have a fair chance of realization.

This review will cover half metals and will not discuss
the area of magnetic semiconductors. Some overlap ex-
ists, however. The older field of magnetic semiconduc-
tors started with semiconductors like the europium
monochalcogenides and cadmium-chromium chalco-
genides �Nagaev, 1983�. Later, the focus changed to the
so-called diluted magnetic semiconductors �Delves and
Lewis, 1963�. These are regular �i.e., III-V or II-VI�
semiconductors, where magnetism is introduced by par-
tial substitution of the cation by some �magnetic� 3d
transition element. The resulting Curie temperatures re-
mained unsatisfactory, however. The next step in the de-
velopment was the elimination of the nonmagnetic tran-
sition element altogether. HMFs could be realized in this
way, provided that the remaining transition-metal pnic-
tides could be stabilized in the zinc-blende or related
structures. The review will treat not the �diluted� mag-
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netic semiconductors as such, but some aspects of meta-
stable zinc-blende HMFs.

HMFs form quite a diverse collection of materials
with different chemical and physical properties, and
even the origins of the half metallicity can be quite dis-
tinct. For this reason, the origin of the band gap must be
discussed in terms of two ingredients that define a solid:
the crystal structure and the chemical composition. Two
aspects are of importance in this context. The first one is
“strong magnetism” versus “weak magnetism.” In a
strong magnet, the magnetic moment will not increase if
the exchange splitting is hypothetically increased. Thus
the size of the magnetic moment is not determined by
the strength of the exchange interaction, but is limited
instead by the availability of electron states. In practice,
this implies that either the minority-spin subshell�s� re-
sponsible for the magnetism is �are� empty or the rel-
evant majority channel�s� is �are� completely filled. In
the case of weak magnetism, the magnetic moment is
determined by a subtle compromise between the energy
gain of an increase in magnetic moment �the exchange
energy� and the �band� energy that the increase of the
magnetic moment costs. To avoid misunderstanding, we
emphasize that this definition of weak and strong mag-
nets differs from that used by Moriya �1985� and most
theoretical work on itinerant-electron magnetism. Ac-
cording to Moriya, strong magnets are those with well-
defined magnetic moments, which means, for example,
Curie-Weiss behavior of the wave-vector-dependent
magnetic susceptibility ��q ,T� in the whole Brillouin
zone. In this sense, all HMFs containing Mn ions are
strong magnets. However, within this group of materials,
we may introduce a finer classification based on the sen-
sitivity of the magnetic moment to small variations of
parameters.

All combinations of weak or strong magnetism with
majority- or minority-spin band gaps are known today.
Thus weak magnets with minority-spin band gaps are
found in the Heusler alloys and artificial zinc blendes;
examples of weak magnets with majority-spin gaps are
the double perovskites and magnetite. The colossal-
magnetoresistance materials, as well as chromium diox-
ide, are examples of strongly magnetic half metals with
minority-spin band gaps, while the anionogenic ferro-
magnets such as rubidium sesquioxide are examples of
strongly magnetic half metals with a majority-spin band
gap.

An interesting and relatively new development is the
work on half-metallic sulfides. The HMF state in oxides
with the spinel structure is relatively rare. The prime
example, of course, is magnetite. However, any substitu-
tion into the transition-metal sublattice leads almost in-
variably to a Mott insulating state, like the one in mag-
netite itself below the Verwey transition at 120 K. On
the other hand, electrons in sulfides are substantially less
well correlated. Hence a wealth of substitutions is pos-
sible in order to optimize properties, design half-metallic
ferromagnets or antiferromagnets, and so on, without
the risk of losing the metallic properties for the second
spin direction as well. There is a price to be paid, how-

ever: Since the cation-cation distances are larger in sul-
fides, the Curie and Néel temperatures are lower than in
oxides. Nevertheless, the work on half-metallic sulfides
deserves much attention.

In all metallic ferromagnets, the interaction between
conduction electrons and spin fluctuation is of crucial
importance for physical properties. In particular, the
scattering of charge carriers by magnetic excitations de-
termines the transport properties of itinerant magnets
�temperature dependences of resistivity, magnetoresis-
tivity, thermoelectric power, anomalous Hall effect, etc.�.
From this point of view, HMFs, as well as ferromagnetic
semiconductors, differ from “normal” metallic ferro-
magnets by the absence of spin-flip �one-magnon� scat-
tering processes. This difference is also important for
magnetic excitations since there is no Stoner damping,
and spin waves are well defined in the whole Brillouin
zone, as in magnetic insulators �Auslender and Irkhin,
1984a; Irkhin and Katsnelson, 1994�.

Electron-magnon interaction also modifies consider-
ably the electron energy spectrum in HMFs. These ef-
fects occur both in the usual ferromagnets and in HMFs.
However, the peculiar band structure of HMFs �the en-
ergy gap for one spin projection� results in important
consequences. In generic itinerant ferromagnets, the
states near the Fermi level are quasiparticles for both
spin projections. In contrast, in HMFs, an important role
is played by incoherent �nonquasiparticle �NQP�� states
that occur near the Fermi level in the energy gap �Irkhin
and Katsnelson, 1994�. The appearance of the NQP
states in the work of Edwards and Hertz �1973� and
Irkhin and Katsnelson �1983� is one of the most interest-
ing correlation effects typical of HMFs. The origin of
these states is connected with “spin-polaron” processes:
Spin-down low-energy electron excitations, which are
forbidden for HMFs in the one-particle picture, turn out
to be possible as a superposition of spin-up electron ex-
citations and virtual magnons. The density of the NQP
states vanishes at the Fermi level but increases greatly at
an energy scale of the order of the characteristic magnon
frequency �̄. These states are important for spin-
polarized electron spectroscopy �Irkhin and Katsnelson,
2005a, 2006�, nuclear magnetic resonance �NMR�
�Irkhin and Katsnelson, 2001�, and subgap transport in
ferromagnet-superconductor junctions �Andreev reflec-
tion� �Tkachov et al., 2001�. The density of NQP states
was calculated from first principles for a prototype HMF,
NiMnSb �Chioncel, Katsnelson, de Groot, et al., 2003�,
as well as for other Heusler alloys �Chioncel, Arrigoni,
Katsnelson, et al., 2006�, zinc-blende structure com-
pounds �Chioncel et al., 2005; Chioncel, Mavropoulos,
Lezaic, et al., 2006�, and CrO2 �Chioncel et al., 2007�.
Figure 1 shows the NQP contribution to the density of
states.

Therefore, HMFs are interesting conceptually as a
class of materials which may be convenient to treat
many-body solid-state physics that cannot be described
by band theory. It is usually accepted that many-body
effects lead only to renormalization of the quasiparticle
parameters in the sense of Landau’s Fermi liquid �FL�

317Katsnelson et al.: Half-metallic ferromagnets: From band …

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008



theory, the electronic liquid being qualitatively similar to
the electron gas �see, e.g., Nozieres, 1964�. On the other
hand, NQP states in HMFs are not described by the FL
theory. As an example of highly unusual properties of
the NQP states, we mention that they can contribute to
the T-linear term in the electron heat capacity �Irkhin et
al., 1989, 1994; Irkhin and Katsnelson, 1990�, even
though their density at EF is zero at temperature T
=0 K. Some developments concerning the physical ef-
fects of NQP states in HMFs are considered in this re-
view.

II. CLASSES OF HALF-METALLIC FERROMAGNETS

A. Heusler alloys and zinc-blende structure compounds

In this section, we treat HMFs with the Heusler C1b
and L21 structures. Although not Heusler alloys in the
strict sense, artificial half metals in the zinc-blende struc-
ture will also be discussed because of their close relation
with the Heusler C1b alloys. The zinc-blende structure
has a face-centered-cubic �fcc� Bravais lattice with a ba-
sis of �0,0 ,0� and �1/4 ,1 /4 ,1 /4�, the two species coordi-
nating each other tetrahedrally. The Heusler C1b struc-
ture consists of the zinc-blende structure with additional
occupation of the �1/2 ,1 /2 ,1 /2� site. Atoms at the latter
position, as well as those at the origin, are tetrahedrally
coordinated by the third constituent, which itself has a
cubic coordination consisting of two tetrahedra. The
Heusler L21 structure is obtained by additional occupa-
tion of the �3/4 ,3 /4 ,3 /4� site by the same element al-
ready present at �1/4 ,1 /4 ,1 /4�. This results in the occur-
rence of an inversion center that is not present in the
zinc-blende and Heusler C1b structures. This difference
has important consequences for the half-metallic band
gaps. The electronic structure of the Heusler alloys was
reviewed recently by Galanakis and Mavropoulos
�2007�.

1. Heusler C1b alloys

Interest in fast, nonvolatile mass storage memory
sparked much activity in the area of magneto-optics in

general, and the magneto-optic Kerr effect �MOKE�
specifically, at the beginning of the 1980s. All existing
magnetic solids were investigated, leading to a record
MOKE rotation of 1.27° for PtMnSb �van Engen et al.,
1983�. The origin of these properties remained an un-
solved problem, however. This formed the motivation to
study the electronic structure of the isoelectronic Heu-
sler C1b compounds NiMnSb, PdMnSb, and PtMnSb,
and the subsequent discovery of half-metallic magne-
tism. Interestingly enough, there seems still to be no
consensus on the origin of the magneto-optical proper-
ties. The original simple and intuitive explanation
�de Groot, 1991� was complementary to the production
of spin-polarized electrons by optical excitation in III-V
semiconductors. In that case, the top of the valence band
is split by the spin-orbit coupling, and the photoexcita-
tion of electrons from the very top of the band by circu-
larly polarized light leads to 50% spin polarization. In
contrast, excitations from a valence band are possible
for only one of the two components of circular light, as
in the case of PtMnSb; this should result in a strong
difference of the refraction and absorption for the two
opposite polarizations. In PtMnSb, this difference is
maximal for visible light, and for NiMnSb the maximum
of off-diagonal optical conductivity is shifted to the ul-
traviolet region. The main contribution to this shift
comes from scalar relativistic interactions in the final
state �Wijngaard et al., 1989�, which are much weaker for
Ni than for Pt due to the difference in nuclear charge.
Further, the magneto-optical properties of the Heusler
alloys were calculated by Antonov et al. �1997� in good
agreement with experimental data, but the physical ex-
planation was not provided. Recently, Chadov et al.
�2006� demonstrated that the agreement between the
calculated and experimental values for the Kerr rotation
and ellipticity in NiMnSb can be improved further by
taking into account correlation effects within the so-
called local-density approximation plus dynamical
mean-field theory �LDA+DMFT� approach �see Sec.
IV.A�.

Since NiMnSb is the most studied HMF �at least
within the Heusler C1b structures�, we concentrate on it
here. The origin of its half-metallic properties has an
analogy with the electronic structure of III-V zinc-
blende semiconductors. Given the magnetic moment of
4�B, manganese is trivalent for the minority-spin direc-
tion and antimony is pentavalent. The Heusler C1b
structure is the zinc-blende one with an additional site
�1/2 ,1 /2 ,1 /2� being occupied. The role of nickel is both
to supply Mn and Sb with the essential tetrahedral coor-
dination and to stabilize MnSb in the cubic structure
�MnSb in the zinc-blende structure is half metallic, but
not stable�. Thus a proper site occupancy is essential:
nickel has to occupy the double tetrahedrally coordi-
nated site �Helmholdt et al., 1984; Orgassa et al., 1999�.
The similarity in chemical bonding between NiMnSb
and zinc-blende semiconductors also explains why it is a
weak magnet, as discussed in the Introduction: the pres-
ence of occupied manganese minority d states is essen-

FIG. 1. �Color online� Density of nonquasiparticle states for
half-metallic ferromagnets, possessing the gap in the minority
spin channel. NQP states are the dominant many-body feature
around EF in comparison with other mean-field effects, such as
spin-orbit or noncollinearity, as discussed.
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tial for the band gap. These states play the same role as
the metal p states in zinc-blende semiconductors, a situ-
ation that is possible only because of the absence of in-
version symmetry. The similarity of chemical bonding in
Heusler and zinc-blende structures in the original paper
�de Groot, Mueller, v. Engen, et al., 1983� was illustrated
by “removing the nickel d states from the Hamiltonian.”
This has led to considerable confusion. Actually, the
coupling ofmanganese and antimony states through non-
diagonal matrix elements of the nickel d states was
maintained in this calculation.

Several explanations of the band gap have been given
in terms of a Ni-Mn interaction only �Galanakis et al.,
2002a�. While this interaction is certainly present, it is
not sufficient to explain the band gap in NiMnSb. These
analyses are based on calculations for NiMnSb excluding
the antimony, but keeping the volume fixed. This is a
highly inflated situation with a volume more than twice
the equilibrium one �Egorushkin et al., 1983�. Under ex-
pansion, bandwidths in metals decrease, leading eventu-
ally to a Mott insulating state. But even before this tran-
sition, a band gap appears simply due to inflation. This is
not a hypothetical scenario: a solid as simple as elemen-
tal lithium becomes a half-metallic ferromagnet under
expansion �Min et al., 1986�, yet there is no evidence for
half-metallic magnetism under equilibrium conditions
for this element. Also, it is not clear from these consid-
erations why NiMnSb is half metallic only in the case of
tetrahedrally coordinated manganese. Probably the
chemical bonding in relation to the band gap is best
summarized by Kübler �2000�: a nickel-induced Mn-Sb
covalent interaction.

Surfaces of NiMnSb do not show 100% spin polariza-
tion as determined by positron annihilation for the bulk
�Bona et al., 1985; Soulen et al., 1999�; part of the reason
is their tendency to show surface segregation of manga-
nese �Ristoiu et al., 2000�. Also, surfaces of NiMnSb are
quite reactive and are easily oxidized. But, even without
contaminations, none of the surfaces of NiMnSb is genu-
inely half metallic �de Wijs and de Groot, 2001;
Galanakis, 2003�. This is just another example of the
sensitivity of half-metallic properties in NiMnSb to the
correct crystal structure. But this does not necessarily
imply that interfaces of NiMnSb with, for example, semi-
conductors cannot be completely spin polarized. For ex-
ample, it was shown that, at the 111b interface of
NiMnSb with CdS or InP, the HMF properties are com-
pletely conserved if semiconductors are anion termi-
nated at the interface �de Wijs and de Groot, 2001�. This
anion-antimony bond may look exotic, but such a coor-
dination is quite common in minerals like costobite and
paracostobite �minerals are stable on a geological time
scale�. No experimental verification is available at
present, partly because experimentalists tend to prefer
the easier 100 surfaces in spite of the fact that calcula-
tions show that no half-metallic properties are possible
there.

Several photoemission measurements have been re-
ported on NiMnSb �Correa et al., 2006� as well as the

closely related PtMnSb �Kisker et al., 1987�. We concen-
trate on the latter because it is the first angular-resolved
measurement using single-crystalline samples. Good
agreement with the calculated band structure was ob-
tained. This is a remarkable result. In calculations based
on density-functional theory, the eigenvalues depend on
the occupation. These occupations deviate from the
ground state in a photoemission experiment. To very
good precision, the dependence of the eigenvalues on
the occupation numbers is given by the Hubbard param-
eter U. The consequence is that the effective U value in
alloys like NiMnSb and PtMnSb is much smaller than,
e.g., in Ni metal, where photoemission experiments indi-
cate a satellite structure related to the so-called Hub-
bard bands �Lichtenstein et al., 2001�.

The transport properties of NiMnSb have been stud-
ied extensively �Otto et al., 1989; Hordequin et al., 2000;
Borca et al., 2001�; a theoretical discussion of transport
properties in HMFs is given in Sec. III.I. At low tem-
peratures, the temperature dependence of the resistivity
follows a T2 law; however, this is absent in thin films
�Moodera and Mootoo, 1994�. At around 90 K, a transi-
tion takes place, beyond which the temperature depen-
dence is T1.65. The nature of this phase transition is un-
known. One possibility is that it is the effect of thermal
excitations, if the Fermi energy is positioned close to the
top of the valence band or the bottom of the conduction
band. For example, in the latter case, thermal excitations
are possible from the metallic majority-spin direction to
empty states in the conduction band of the minority-spin
direction. Such, excitation reduces the magnetic mo-
ment, which in turn will reduce the exchange splitting,
resulting in an even greater reduction in the energy dif-
ference between the Fermi energy and the bottom of the
conduction band. This positive feedback will lead to a
collapse of the half-metallic properties at a certain tem-
perature. An analogous situation exists for EF close to
the valence-band maximum. Numerical simulations indi-
cate that this scenario is highly unlikely in the case of
NiMnSb because of its unusually low density of states at
the Fermi energy. Another explanation has been put for-
ward based on the crossing of a magnon and a phonon
branch at an energy corresponding to 80 K �Hordequin,
Lelivre-Bernab, and Pierre, 1997; Hordequin, Pierre,
and Currat, 1997�. It is unclear how this phonon-magnon
interaction influences the electronic properties of
NiMnSb.

Local magnetic moments have been studied experi-
mentally as a function of temperature with polarized
neutron scattering. The manganese moment decreases
slightly with increasing temperature from 3.79�B at 15 K
to 3.55�B at 260 K, while the nickel moment remains
constant at 0.19�B in the same temperature range. On
the other hand, magnetic circular dichroism shows a re-
duction of both the manganese and nickel moments
around 80 K. Borca et al. �2001� concluded that, at the
phase transition, the coupling of the manganese and
nickel moments is lost. A computational study �Lezaic et
al., 2006� showed vanishing of the moment of nickel at
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the transition temperature. None of these anomalies is
reflected in the spontaneous magnetization �Otto et al.,
1989� of bulk NiMnSb.

Two Heusler C1b alloys exist, isoelectronic with
NiMnSb: PdMnSb and PtMnSb. Their electronic struc-
tures are very similar, but we discuss the differences.
The calculated DFT band structure for PdMnSb is not
half metallic. The minority-spin direction does show a
band gap very similar to that of NiMnSb but the Fermi
energy intersects the top of the valence band. Reliable
calculations �e.g., based on the GW approximation� are
needed to settle the issue of whether or not PdMnSb is
half metallic. PtMnSb is very similar to NiMnSb, the
largest differences being in the empty states just above
the Fermi energy. The direct band gap �at the � point� in
PtMnSb is between the triplet top of the valence band
�neglecting spin-orbit interactions� and a totally symmet-
ric singlet state. This singlet state is positioned at much
higher energy in NiMnSb. These differences have been
attributed to the much stronger mass-velocity and Dar-
win terms in platinum �Wijngaard et al., 1989�. Platinum
does not carry a magnetic moment in PtMnSb. Conse-
quently, no 90 K anomaly as in NiMnSb is to be ex-
pected and none has been reported to date.

Now consider whether half metals in the Heusler C1b
structure exist when other than isoelectronic elements
are substituted for Ni in NiMnSb. Since NiMnSb is a
weak magnet, substitutions can be made only with ele-
ments reducing the total magnetic moment if the half-
metallic properties are to be maintained. Thus cobalt,
iron, manganese, and chromium will be considered. The
case of Co was studied by Kübler �1984�. The half-
metallic properties are conserved; consequently, the
magnetic moment is reduced to 3�B. Calculations on
FeMnSb �de Groot et al., 1986�, MnMnSb �Wijngaard
et al., 1992�, as well as CrMnSb �de Groot, 1991� all show
the preservation of the half-metallic properties. In the
case of FeMnSb, this implies a reduction of the total
magnetic moment per formula unit to 2�B, which is an
unusually small moment to be shared by iron and man-
ganese. It is possible because FeMnSb orders antiferro-
magnetically. Thus the 2�B total magnetic moment cor-
responds to the difference between the moments of iron
and manganese rather than to their sum as implied by
ferromagnetic ordering. This way of preserving a band
gap �energetically favorable from a chemical-bonding
point of view� while maintaining a sizable magnetic mo-
ments �favorable for the exchange energy� determines
the magnetic ordering here. Both of these effects are
usually larger than the exchange-coupling energies. The
antiferromagnetic ordering is maintained in MnMnSb
with a total moment of 1�B. In the case of CrMnSb, the
antiferromagnetic coupling leads to a half-metallic solu-
tion with a zero net moment. This is a really exotic state
of matter. It is genuinely half metallic, implying 100%
spin polarization of the conduction electrons, yet it lacks
a net magnetization �de Groot, 1991�. The stability of
such a solution depends sensitively on the balance be-
tween the energy gain of the band gap and the energy

gain due to the existence of magnetic moments: if the
first one dominates, a nonmagnetic semiconducting so-
lution will be more stable �remember that the two spin
directions are isoelectronic here�.

In reality, the situation is more complex. CoMnSb
does exist, but it crystallizes in a tetragonal superstruc-
ture with Co partially occupying the empty sites �Sena-
teur et al., 1972�. The magnetic moments deviate from
the ones expected for a half-metallic solution. FeMnSb
does not exist, but part of the nickel can be substituted
by iron. Up to 10%, the Heusler C1b structure is main-
tained, from 75% to 95% a structure comparable with
CoMnSb is stable, and between 10% and 75% both
phases coexist �de Groot et al., 1986�. MnMnSb exists,
orders antiferromagnetically, and has a net moment of
1�B. It does not crystallize in the Heusler C1b structure
and consequently is not half metallic. CrMnSb exists, is
antiferromagnetic at low temperatures, and shows a
transition at room temperature to a ferromagnetic
phase.

A different substitution is the replacement of Mn by
another transition metal. An interesting substitution is a
rare-earth element R. Because of the analogy of half
metals with C1b structure and III-V semiconductors, one
expects NiRSb compounds to be nonmagnetic semicon-
ductors.

Several of these compounds do exist in the C1b struc-
ture. Some examples are Sc, Y, and heavy rare-earth
elements from the second half of the lanthanide series.
All of them are indeed semiconductors �Pierre et al.,
1999; Pierre and Karla, 2000�. Doping of NiMnSb by
rare-earth elements has been suggested as a way to im-
prove the finite-temperature spin polarization in
NiMnSb. These substitutions do not influence the elec-
tronic band structure much �see also Sec. V.A.2�, the
band gap for the minority-spin direction remaining com-
pletely intact. However, the random substitution of non-
magnetic �Y, Sc� or very different �Ho–Lu� magnetic el-
ements for manganese will modify the magnon spectrum
�Attema et al., 2004; Chioncel, 2004�. This could be ben-
eficial in increasing spin polarization in some tempera-
ture ranges.

2. Half metals with zinc-blende structure

The Curie temperatures of diluted magnetic semicon-
ductors remain somewhat disappointing. A solution is to
replace all the main group metals by transition metals.
But there is a heavy price to be paid: These systems can
be prepared only as metastable states—if at all—on a
suitable chosen substrate. An alternative way to come to
the same conclusion is to consider Heusler C1b alloys
with larger band gaps. This is most easily accomplished
by replacement of the antimony with arsenic or phos-
phorus. No stable Heusler C1b alloys exist with these
lighter pnictides, however. An alternative is to try to
grow them as metastable systems on a suitable chosen
substrate. This makes nickel superfluous, since it fails in
the case of lighter pnictides to play the role it does so
well in NiMnSb. The bottleneck in this quest is not so
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much in predicting systems that are good half metals,
but in designing combinations of half metals and sub-
strates that are metastable enough to have a chance of
being realized experimentally.

Shirai et al. �1998� were the first to relate concentrated
magnetic semiconductors with half-metallic magnets in
their study of MnAs in the zinc-blende structure. The
experimental realization indeed showed an increase of
the Curie temperature: 400 K was reported for CrAs
grown on GaAs. Xie, Xu, Liu, et al. �2003� calculated the
stability of all 3d transition-metal chalcogenides in the
zinc-blende structure with respect to the ground-state
structure. Chromium telluride and selenide, as well as
vanadium telluride, are good half metals that are stable
toward tetrahedral and rhombohedral distortions. Zhao
and Zunger �2005� considered the stability of an epitax-
ial layer as a function of the lattice parameter of the
substrate, allowing for relaxation in the growth direc-
tion. The result is that, while the bulk zinc-blende phase
is always unstable with respect to the �equilibrium� NiAs
structure, there exist lattice constants for which the epi-
taxial zinc-blende phase is more stable than the epitaxial
nickel arsenide structure. This is realized �computation-
ally� for half-metallic CrSe.

An alternative to the concentrated III-V magnetic
semiconductors is given by �-doped III-V semiconduc-
tors. Here the magnetic properties are not introduced by
a more or less homogeneous replacement of main group
metals by magnetic transition metals. Instead, a very
thin transition-metal layer is sandwiched between un-
doped III-V semiconductor materials �Nazmul et al.,
2002�. The result is a clear increase in Curie temperature
�Chiba et al., 2003�. This is not unrelated to the interface
half metallicty introduced earlier �de Groot, 1991�.

3. Heusler L21 alloys

The crystal structure of the Heusler L21 alloys is
closely related to that of the C1b alloys. In the L21 struc-
ture, the �1/2 ,1 /2 ,1 /2� position, empty in the C1b struc-
ture, is occupied by the same element that occupies the
�0,0 ,0� position. The similarity in structure suggests a
similarity in interactions and physical properties, but, on
the contrary, the interactions and physical properties of
the two classes are actually quite distinct. The introduc-
tion of the fourth atom in the unit cell introduces an
inversion center in the crystal structure. The band gap in
the C1b compounds resulted from an interaction very
similar to that in III-V semiconductors, where the man-
ganese t2g d electrons play the role of the p electrons in
the III-V semiconductor. This is no longer possible in
the presence of an inversion center. Consequently, band-
widths are reduced and usually Van Hove singularities
occur in the vicinity of the Fermi energy. The smaller
bandwidth leads to several �pseudo�gaps. Correlation ef-
fects are expected to become more observable here.

Another difference is the occurrence of defects. Ex-
perimentally it was noted that “the strong effect of cold
work on Heusler alloys �L21 structure� contrasts with
almost unobservable effects in the C1b structure alloy

NiMnSb” �Schaf et al., 1983�. But here also there are
indications that defects that destroy the band gap are
energetically less favorable.

Experimental work goes back to Heusler in the begin-
ning of the last century. The motivation for his work was
the possibility of preparing magnetic alloys from non-
magnetic elements �Heusler, 1903�. �A material was con-
sidered magnetic in that period only if it possessed a
spontaneous net magnetization.� More recently, the
work of Ziebeck and Webster on neutron-diffraction in-
vestigations �Ziebeck and Webster, 1974� deserves men-
tion as well as the NMR work by the Orsay group of
Campbell.

The first band-structure calculations were by Ishida
and co-workers �Ishida et al., 1976a, 1976b, 1980, 1982�,
and by Kuebler, Williams, and Sommers �Kübler et al.,
1983�. The latter contains a clue to half-metallic proper-
ties in the L21 compounds. The authors remark the fol-
lowing: “The minority-state densities at the Fermi en-
ergy for ferromagnetic Co2MnAl and Co2MnSn nearly
vanish. This should lead to peculiar transport properties
in these two Heusler alloys.”

Calculations that explicitly addressed the question of
half-metallic properties in the full Heusler alloys ap-
peared not earlier than 1995 �Fujii et al., 1995; Ishida
et al., 1995�. A systematic study of the electronic struc-
ture of Heusler L21 compounds was undertaken by
Galanakis, Dederichs, and Papanikolaou �Galanakis
et al., 2002b�. That work also reviews half-metallic mag-
netism in full Heusler compounds upto 2002. For this
reason, we refer to it for details and concentrate on sub-
sequent developments here. �See Fig. 2.�

The Heusler L21 compounds have a unique position
in the spectrum of half metals because of their Curie
temperatures. High Curie temperatures are important in
the application of half metals at finite temperature, since
many of the depolarization mechanisms scale with the
reduced temperature T /TC. The Curie temperatures
here approach 1000 K, Co2MnSn shows a Curie tem-
perature of 829 K, the germanium analog 905 K, while
Co2MnSi was a record holder for some time with a Curie
temperature of 985 K �Brown et al., 2000�. A further
increase was realized in Co2FeSi. Experimentally an in-
teger magnetic moment of 6�B and a Curie temperature

FIG. 2. DOS for the Co2MnZ compounds with Z=Al, Si, Ge,
Sn �Galanakis et al., 2006�.
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of 1100 K were found �Wurmehl et al., 2005�. This result
was not reproduced in calculations employing the LDA
approximation. The magnetic moment of 6�B could only
be reproduced by the application of U in excess of
7.5 eV. This is an unusually high value and alternative
explanations should also be considered. The question of
lattice defects has been studied. On the basis of neutron
diffraction, Co-Fe disorder can be excluded, but no data
are available for the degree of Fe-Si interchange. Calcu-
lation of the magnetic saturation moment as a function
of the iron-silicon disorder seems a logical next step in
the understanding of this fascinating compound.

Whereas the investigations of the bulk electronic
structures of full Heusler alloys have advanced compa-
rably to those of half Heusler alloys, the situation with
respect to the preservation of half-metallic properties at
surfaces and interfaces still lags behind. Two important
results were obtained recently. One result is the preser-
vation of half-metallic properties of a Co2MnSi �001�
surface provided it is purely manganese terminated. This
is the only surface of this half metal showing this prop-
erty �Hashemifar et al., 2005�.

No genuine half-metallic interfaces between full Heu-
sler alloys and semiconductors have been reported yet,
but the results for Co2CrAl/GaAs look promising. For a
�110� interface, a spin polarization of �90% was ob-
tained �Nagao et al., 2004�. Although this is clearly not a
genuine half-metallic interface, it should provide a good
basis to analyze why half-metallic behavior is lost at an
interface, in analogy with the successful work in the C1b
case.

An interesting development in half-metallic magne-
tism is in electron-deficient full Heusler alloys. Reduc-
tion of the number of valence electrons to 24 per for-
mula unit leads to either a nonmagnetic semiconductor
or a half-metallic antiferromagnet. But, remarkably
enough, the reduction of the number of valence elec-
trons can be continued here, reentering a range of half-
metals but now with a band gap for the majority-spin
direction. This is best exemplified for the case of
Mn2VAl. It is a half-metallic ferrimagnet as calculated
with the generalized gradient exchange-correlation po-
tential �Weht and Pickett, 1999�. Half metals with a band
gap for the majority-spin direction rarely occur. The
search for new candidates should be strongly supported.

B. Strongly magnetic half metals with minority-spin gap

1. Chromium dioxide

Chromium dioxide is the only metallic oxide of chro-
mium. It orders ferromagnetically with a Curie tempera-
ture of about 390 K. Its half-metallic state was discov-
ered by band-structure calculations �Schwarz, 1986;
Matar et al., 1992�. The origin of the half metallicity is
straightforward: in an ionic picture, chromium is in the
form of a Cr4+ ion. The two remaining d electrons oc-
cupy the majority d states. The crystal-field splitting is
that of a �slightly� deformed octahedron. The valence
band for the majority-spin direction is 2/3 filled, hence

the metallic properties. The minority-spin d states are at
a significant higher energy due to the exchange splitting.
For this reason, the Fermi level falls in a band gap be-
tween the �filled� oxygen 2p states and the �empty� chro-
mium d states. Thus the HMF properties of chromium
dioxide are basically properties of chromium and its va-
lence and, as long as the crystal-field splitting is not
changed too drastically, the half-metallic properties are
conserved. This implies that the influence of impurities
should not be dramatic, and a number of surfaces retain
the half metallicity of the bulk. As a matter of fact, all
the surfaces of low index are half metallic, with the pos-
sible exception of one of the �101� surfaces �van Leuken
and de Groot, 1995; Attema et al., 2006�. Although ini-
tial measurements did not confirm these expectations
�Kämper et al., 1987�, they were confirmed later by ex-
periments with tunneling �Bratkovsky, 1997� and An-
dreev reflection �Ji et al., 2001� on well-characterized
surfaces. Recently, the flow of a triplet-spin supercurrent
was realized in CrO2 sandwiched between two supercon-
ducting contacts �Keizer et al., 2006�.

As mentioned before, an interesting question is the
origin of metallic ferromagnetism in CrO2. This was ex-
plained in terms of the double-exchange �Zener� model
by Korotin et al. �Korotin et al., 1998; Schlottmann,
2003�. The octahedral coordination in the rutile struc-
ture is slightly distorted. This leads to splitting of the
degenerate t2g state into a more localized dxy state and
more delocalized dxz and dyz states �or linear combina-
tions of these�. The localized filled dxy state plays the
same role as the filled t2g majority-spin state in the Ze-
ner double-exchange model, while the partially occupied
dxy±dyz majority states in CrO2 play the role of the par-
tially occupied eg states. The transport properties of
CrO2 have been investigated in detail �Watts et al., 2000�
and interpreted in terms of a two-band model, very
much in line with the double-exchange model for CrO2.

The importance of explicit electron-electron interac-
tions in CrO2 remains a subject of active research. On
the one hand, Mazin, Singh, and Ambrosch-Draxl �1999�
compared local spin-density approximation �LSDA� cal-
culations with experimental optical conductivities and
found no indications for strong-correlation-related ex-
otic phenomena. On the other hand, Craco, Laad, and
Müller-Hartman �Laad et al., 2001; Craco et al., 2003�
considered photoemission results and conductivity �both
dc and optical� and confirmed the importance of dy-
namical correlation effects. The ferromagnetic corre-
lated state was also investigated in a combined local and
nonlocal approach �Chioncel et al., 2007�, which demon-
strates that the dxy orbital is not completely filled and
localized as described by the LDA+U or model calcula-
tions �Korotin et al., 1998; Schlottmann, 2003; Toropova
et al., 2005�. More recently, Toropova, Kotliar, Savrasov,
and Oudovenko �Toropova et al., 2005� concluded that
the low-temperature experimental data are best fitted
without taking into account the Hubbard U corrections.
Chromium dioxide will clearly remain an area of active
research.
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2. The colossal-magnetoresistance materials

The interest in ternary oxides of manganese with di-
valent or trivalent main group metals goes back to Van
Santen and Jonker �Jonker and Santen, 1950�. The oc-
currence of ferromagnetism in transition-metal oxides,
considered unusual at that time, was explained by Zener
�1951� with the introduction of the “double-exchange”
mechanism. In the 1970s and 1980s, these systems were
investigated theoretically in connection with the prob-
lem of phase separation and “ferron” �magnetic po-
laron� formation in ferromagnetic semiconductors �Au-
slender and Katsnelson, 1982; Nagaev, 1983�. The
interest in spintronics developing 15 years ago revived
the interest in the ternary manganese perovskites, gen-
erally referred to as colossal-magnetoresistance �CMR�
materials. A wealth of interesting physics is combined in
a single phase diagram of, for example, La1−xSrxMnO3.
From a “traditional” antiferromagnetic insulator for x
=1, the reduction of x results in a ferromagnetic metallic
state, while finally at x=0 a Mott insulating antiferro-
magnet is found. Some of the transitions are accompa-
nied by charge and/or orbital ordering. Finite tempera-
tures and applied magnetic fields complicate the phase
diagram substantially. The ferromagnetic metallic phase
for intermediate values of x is presumably half metallic
�Pickett and Singh, 1996�. We concentrate on this phase
here and refer to other reviews for a more complete
overview of the manganites �Nagaev, 2001; Salamon and
Jaime, 2001; Ziese, 2002; Dagotto, 2003�.

Once the occurrence of ferromagnetic magnetic or-
dering is explained, the discussion of half-metallic mag-
netism is rather straightforward. Manganese possesses
around 3.5 d electrons in the metallic high-spin state; its
rather localized majority-spin t2g state is filled, the ma-
jority, much more dispersive, eg state is partially occu-
pied, and the minority d states are positioned at higher
energy, thus being empty. Hence, a rather large band gap
exists for the minority spin at the Fermi energy, and the
manganites are strong magnets. Correlation effects are
expected to be much stronger here. Notice that no ref-
erence has been made to the actual crystal structure:
subtleties such as those in the Heusler structure are ab-
sent here. The half-metallic properties basically stem
from the valence of the manganese alone. Surface sensi-
tivity of the HMF properties is not expected as long as
the valence of the manganese is maintained: this is easily
accomplished in the layered manganites �de Boer and
Groot, 1999�.

Experimental verification of half-metallic properties
has not been without debate. The origin of the contro-
versy is that the calculated position of the Fermi energy
in the energy gap is invariably very close to the bottom
of the conduction band. Experimental confirmation of
the HMF behavior by photoemission �Park et al., 1998�
was contested on the basis of Andreev reflection mea-
surements that showed minority-spin d states at the
Fermi energy �Nadgorny et al., 2001; Nadgorny, 2007�.
Also, tunneling experiments initially cast doubt on the
half-metallic properties �Viret et al., 1997; Jo, Mathur,

Evetts, and Blamire, 2000; Jo, Mathur, Todd, and
Blamire, 2000�. Mazin subsequently introduced the con-
cept of a transport half metal: the Fermi energy may
straddle the bottom of the minority-spin t2g band, but
since these states are localized this does not influence
the half-metallic properties as far as transport is con-
cerned �Mazin et al., 1999; Nadgorny, 2007�. Recent mag-
netotransport measurements on better samples support
the HMF picture of the CMR materials �Bowen et al.,
2003�. Recent GW calculations by Kino et al. �2003� shed
a different light on this matter. In these calculations, the
half-metallic band gap is increased by as much as 2 eV
with respect to the DFT value. This implies that the
minority-spin d band is not even close to the Fermi en-
ergy, and the CMR materials should be considered as
genuine HMFs.

C. Weakly magnetic half metals with majority-spin gap

1. The double perovskites

The double perovskites have a unit cell twice the size
of the regular perovskite structure. The two transition-
metal sites are occupied by different elements. Double
perovskites are interesting for two reasons: first-, half-
metallic antiferromagnetism has been predicted to occur
for La2VMnO6 �Pickett, 1998� �we return to this in Sec.
II.E.2�; second, high Curie temperatures can be occur as
compared with the regular perovskites. Sr2FeMoO6 was
the first example to be studied in this respect by means
of band-structure calculations �Kobayashi et al., 1998�.
The density of states is shown in Fig. 3. In the majority-
spin direction, the valence band consists of filled oxygen

FIG. 3. �Color online� Density of states �DOS� of Sr2FeMoO6
�Kobayashi et al., 1998�.
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2s and 2p states as well as a completely filled Fe 3d
band, showing the usual crystal-field splitting. A band
gap separates the conduction band, which is primarily
formed by molybdenum d states. The minority-spin di-
rection shows an occupied oxygen-derived valence band
and a hybridized d band of mixed iron and molybdenum
character. It intersects the Fermi energy.

The Curie temperature is in the range 410–450 K.
More recently, a similar behavior was found for
Sr2FeReO6 �Kobayashi et al., 1999�. Optical measure-
ments did show excitations across the half-metallic band
gap of 0.5 eV �Tomioka et al., 2000�. A substantially
higher Curie temperature is found in Sr2CrReO5, TC
=635 K �Kato et al., 2002�, but band-structure calcula-
tions showed that the band gap for the majority-spin
direction is closed by the spin-orbit interaction
�Vaitheeswaran et al., 2005�.

2. Magnetite

Magnetite Fe3O4 is one of the most widespread natu-
ral iron compounds and the most ancient magnetic ma-
terial known. Surprisingly, we still have no complete ex-
planation of its magnetic, electronic, and even structural
properties; many issues about this substance remain con-
troversial. At room temperature, magnetite has inverted
cubic spinel structure with tetrahedral A sites occupied
by Fe3+ ions, whereas octahedral B sites are randomly
occupied by Fe2+ and Fe3+ ions with equal concentra-
tions. Fe3O4 is a ferrimagnet with a high Curie tempera-
ture TC�860 K. As discovered by Verwey �1939�, at
TV�120 K magnetite undergoes a structural distortion
and metal-insulator transition. Usually the Verwey tran-
sition is treated as a charge ordering of Fe2+ and Fe3+

states in octahedral sites �for a review, see Mott �1974,
1980��. The nature of the Verwey transition and the low-
temperature phase of Fe3O4 has been the subject of nu-
merous investigations which are beyond the scope of our
topic; see, e.g., recent reviews �Walz, 2002; Garsia and
Sabias, 2004�. As demonstrated by a band-structure cal-
culation �Yanase and Siratori, 1984�, magnetite in the
cubic spinel structure is a rather rare example of a HMF
with majority-spin gap. This means a saturated state of
itinerant 3d electrons propagating over B sites, the mag-
netic moment being close to 4�B per formula unit. Re-
cently, this picture was questioned by x-ray magnetic cir-
cular dichroism �XMCD� data �Huang et al., 2004�,
which were interpreted as evidence of a large orbital
contribution to the magnetization and nonsaturated spin
state. However, later XMCD experiments �Goering et
al., 2006� confirmed the purely spin-saturated magnetic
state. Direct measurements of spin polarization by spin-
polarized photoemission spectroscopy �Mortonx et al.,
2002� yield a value of about −40% �instead of −100%
predicted by a naive band picture�, which might be due
to both surface effects and electron correlations in the
bulk �see Sec. III.C�. The transport properties of
Fe3O4-based films have been intensively studied �see,
e.g., Eerenstein et al. �2002� and Zhao et al. �2005��. In
particular, a large magnetoresistance was found, owing

to electron propagation through antiphase boundaries
�Eerenstein et al., 2002�.

Unlike the Heusler alloys, magnetite is a system with
a narrow 3d band and therefore strong-correlation ef-
fects. The metal-insulator transition can already be con-
sidered as evidence of strong electron-electron interac-
tion �Mott, 1974�. The influence of these effects on the
electronic structure of Fe3O4 was considered recently by
Craco et al. �2006� and Leonov et al. �2006�.

D. Strongly magnetic half metals with majority-spin gap

1. Anionogenic ferromagnets

Until recently, strongly magnetic HMFs with a
majority-spin band gap were unknown. The chemical
composition of the compounds calculated to be half me-
tallic in this category was quite unexpected: heavy alkali-
metal oxides �Attema et al., 2005�. The magnetic mo-
ment is carried by complex oxygen ions, hence the
name. In addition to the oxygen molecule, which has
two unpaired electrons, the O2− ion occurs in the so-
called hyperoxides such as RbO2 and CsO2. These are
antiferromagnetic insulators with rather low Néel tem-
peratures. Another molecular ion of interest is the non-
magnetic peroxide ion O2

2−. In the series molecular
oxygen–hyperoxide ion–peroxide ion, the antibonding �
orbital is progressively filled, leading to vanishing of the
magnetic moment for the peroxides. Sesquioxides also
exist; these have a composition between peroxide and
hyperoxide. They are rather stable thermally, but do re-
act with atmospheric water and carbon dioxide. The
analogy between the holes in the antibonding doubly
degenerate � level and the electrons in the doubly
degenerate antibonding eg level of the colossal-
magnetoresistance materials motivated a computational
study. This yielded a HMF state with surprisingly high
Curie temperatures �300 K�. A partial explanation is the
absence of superexchange in these oxides, since the me-
diators for it, the alkali-metal ions, do not possess the
required electron states in the vicinity of the Fermi level.
Direct experimental evidence is unfortunately lacking.
Indirect evidence is the cubic crystal structure measured
down to 5 K �unlike in peroxides and hyperoxides�, the
crystallographic equivalence of molecular oxygen ions,
the occurrence of charge fluctuations down to 5 K �Jan-
sen et al., 1999�, the opaque optical properties, and indi-
cations of unusual widths of the stability regions of the
sequioxides in the oxygen-rubidium and oxygen-cesium
phase diagrams �Rengade, 1907�.

E. Sulfides

The spectacular developments in the area of high-
temperature superconductivity followed by the interest
in colossal-magnetoresistance materials have pushed the
interest in sulfides and selenides somewhat into the
background. These materials have some advantages
over oxides, however. Two main differences, both due to
the increased metal-anion covalence as compared with
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oxides, are of importance here: the more correlated be-
havior of the oxides as well as their preference for a
high-spin configuration. Sulfides often prefer a low-spin
configuration, which makes their behavior less predict-
able without careful computation. So the sulfur analog
of magnetite, the mineral greigite, has a magnetic mo-
ment of 2�B only, compared with 4�B of magnetite.
Consequently, it is not half metallic. In the widespread
mineral pyrite, FeS2, iron has a nonmagnetic d6 configu-
ration, unimaginable in oxides. As mentioned before,
magnetite shows half-metallic properties, but is at the
brink of Mott localization: cooling below 120 K suffices
to accomplish this. On the other hand, the much less
correlated behavior of sulfospinels allows a broad range
of transition metals to occupy the octahedral and tetra-
hedral cation sites without the risk of a Mott insulating
state. This does not hold for all the pyrites, however.
Thus FeS2 is a nonmagnetic semiconductor. The excel-
lent agreement between LDA calculations and the pho-
toemission spectra indicates negligible correlation ef-
fects �Folkerts et al., 1987�. CoS2 is a ferromagnetic
metal with a Curie temperature of 122 K. The magnetic
moments were calculated as a function of the Hubbard
U, and comparison with experimental data indicated the
importance of U �of less than1 eV�. NiS2 is a Mott insu-
lator. NiSe2 is metallic while in NiSe2xS2�1−x� the strength
of the correlation effects can be adjusted by variations in
the composition.

Magnetic ordering temperatures, important for main-
taining the polarization of charge carriers at finite tem-
perature, of oxides are usually higher than those of sul-
fides and selenides.

1. Pyrites

Saturated itinerant ferromagnetism in the pyrite-
structure system Fe1−xCoxS2 was discovered experimen-
tally by Jarrett et al. �1968� and discussed from the
theoretical-model point of view by Auslender et al.
�1988�. Half-metallic ferromagnetism in pyrites was first
considered in band calculations by Zhao, Callaway, and
Hayashibaran �1993�. Their results for CoS2 near the
Fermi energy show two completely filled t2g bands for
the two spin directions: a partial filled eg majority band
as well as a minority eg band just overlapping the Fermi
energy. At slightly higher energy, antibonding sulfur 3p
states are found. Clearly, cobalt disulfide is an almost
half-metallic ferromagnet. It has also been suggested
that half-metallic magnetism can be obtained in the ter-
nary system FexCo1−xS2, an idea explored further by
Mazin �2000�. He calculated that the expected HMF re-
gion in the phase diagram extends from 0.2 to 0.9. A
detailed study, both computational and experimental
�Wang et al., 2005�, revealed a strong dependence of the
spin polarization at the Fermi level on the composition.
Theoretically, 100% spin polarization is obtained for x
=0.25, whereas the maximal polarization �85% � deter-
mined with Andreev reflection at 4.2 K is obtained at
x=0.15; the polarization drops for higher concentrations
of iron. The Fermi level is located very close to the bot-

tom of the conduction band. This can lead to thermal
instabilities of the half metallicity as discussed for
NiMnSb. Recently, half-metallic properties of pyrite-
structure compounds have been reviewed by Leighton
et al. �2007�.

2. Spinels

For the spinels, there is less activity in the area of half
metallicity. A complication in this class of compounds is
that of cation ordering. The application of high tempera-
tures leads to disproportionation, so long annealing at
lower temperatures may be required. The type of cation
ordering depends on the preparation conditions. On the
other hand, once controlled, the cation occupancy can
form a degree of freedom to achieve HMF materials.

CuCr2S4, one of the compounds considered in a study
on chromium chalcogenides, is of interest here. It shows
an almost HMF band structure: the Fermi level is posi-
tioned 50 meV below the top of the valence band �An-
tonov et al., 1999�.

Sulfospinels were also considered in detail in the
quest for the elusive half-metallic antiferromagnet �Park
et al., 2001; Min et al., 2004�. Mn�CrV�S4, with chromium
and vanadium occupying the octahedral sites, is calcu-
lated to satisfy all the requirements. It shows a band
gap of approximately 2 eV, while the Fermi level inter-
sects a band of primarily vanadium character. The Mn
moment is compensated by the moments of chromium
and vanadium on the octahedral sites. Another sulfo-
spinel with predicted half-metallic properties is
�Fe0.5Cu0.5��V0.5Ti1.5�2S4. In this case, the metallic behav-
ior is attributed to the atoms at the tetrahedral site; their
magnetic moments are exactly canceled by those at the
octahedral site.

F. Miscellaneous

1. Ruthenates

The 3d transition elements and their compounds have
been studied in much more detail than their 4d and 5d
analog. Part of the reason for this is that magnetism is
expected to be favored more in the 3d series where no d
core is present. Ruthenium is a perfect example of the
contrary. The binary and ternary oxides of this 4d tran-
sition metal show a rich variety of physical properties
such as ferromagnetism in SrRuO3 and unconventional
superconductivity in Sr2RuO4 �Maeno et al., 1994�. Here
we consider the case of SrRuO3. Ruthenium is tetrava-
lent in this compound, just as in RuO2. The latter com-
pound is a nonmagnetic metal with 4d electrons in the
slightly split t2g subband. In SrRuO3, a magnetic, low-
spin state occurs with a filled t2g majority-spin band and
a partially filled t2g minority-spin band. Thus all ingredi-
ents seem to be present for a half metal. Calculations
showed that the exchange and crystal-field splitting are
not sufficient to create a band gap large enough to en-
compass the Fermi energy. Recently, it was shown that
the application of the LDA+U method leads to a sub-
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stantial increase in the band gap in conjunction with or-
bital ordering. Thus a half-metallic solution is obtained.
Comparison with experiment does not lead to a definite
conclusion. No experimental determination of U is avail-
able. The measured magnetic moment is more in line
with the LDA results �0.8�B–1.6�B�, but extrapolation
to the high-field limit could lead to an integer magnetic
moment. There is no experimental evidence for orbital
ordering, however.

The research on ruthenates is relatively recent; in par-
ticular, ternary compounds have not yet been investi-
gated exhaustively.

2. Organic half metals

Conducting organic materials have been an area of
active research since the discovery of electrical conduc-
tion in doped polyacetylene �Shirakawa et al., 1977�. A
surge of activities has resulted in applications generally
referred to as plastic electronics. Recently, attempts
have been made to develop HMFs suitable for these
applications. Originally, the focus was on carbon nano-
tubes in which magnetism was achieved by the introduc-
tion of 3d metals. Calculations were performed for 3,3
single-wall carbon nanotubes with a linear iron nanowire
inside �Rahman et al., 2004�. Structure optimization re-
sulted in a slightly asymmetrical position of the iron wire
in the nanotube. The results were somewhat disappoint-
ing: the iron loses its magnetic moment and the overall
system is semiconducting. A subsequent investigation of
the 3,3 single-wall carbon nanotube with a linear cobalt
wire inside resulted in a HMF band structure with the
band gap for the minority-spin direction of order 1 eV.
This band structure is very much like that of the iron
system. The metallic properties are caused by the extra
electron of the cobalt system, which is completely ab-
sorbed by the majority-spin band structure.

Another series of materials investigated is inspired by
the molecule ferrocene. This is a so-called sandwich
complex with an Fe ion between two cyclopentadienyl
anions. Ferrocene can be considered to be the first mem-
ber of a series of so-called multiple-decker sandwich
structures. They are formed by adding additional pairs
of iron atoms and cyclopentadienyl molecules. Thus the
chemical structure is fundamentally different from the
nanotubes discussed above: The latter can be thought of
as two interacting wires in parallel, one of organic and
one of metal nature. The former is characterized by a
parallel stacking of cyclopentadienyl �or benzene� rings
coupled together by transition-metal atoms. The synthe-
sis of these systems was shown to be possible for various
vanadium-benzene clusters �Hoshino et al., 1995�. The
most promising candidate at the moment is the one-
dimensional manganese-benzene polymer �Xiang et al.,
2006�. It is a genuine HMF with a moment of 1�B. The
ferromagnetic ordering is much more stable than the an-
tiferromagnetic. This large difference �0.25 eV� can be
traced back to the coexistence of a rather narrow and
rather dispersive band for the metallic spin direction, a
scenario reminiscent of the double-exchange model.

III. MODEL THEORETICAL APPROACHES

A. Electron spectrum and strong itinerant ferromagnetism in
the Hubbard model

To investigate the spectrum of single-particle and
spin-wave excitations in metallic magnets, we use many-
electron models that enable us to describe the effects of
interelectron correlations. The simplest such model is
the Hubbard model. In the case of a nondegenerate
band, its Hamiltonian reads

H = �
k�

tkck�
† ck� + Hint,

Hint = U�
i

ci↑
† ci↑ci↓

† ci↓ �1�

with U being the on-site repulsion parameter and tk the
bare electron spectrum. The Hubbard model was widely
used to consider itinerant electron ferromagnetism since
it takes into account the largest term of the Coulomb
interaction, namely, the intra-atomic one. Despite its ap-
parent simplicity, this model contains very complex
physics, and its rigorous investigation is a difficult prob-
lem.

The simplest Hartree-Fock �Stoner� approximation in
the Hubbard model �1�, which corresponds formally to
first-order perturbation theory in U, yields an electron
spectrum of the form

Ek� = tk + Un−� = tk + U�n

2
− �	Sz
� � tk� �2�

�n�= 	ci�
† ci�
�, so that we have for the spin splitting �

=U�n↑−n↓�=2U	Sz
, and U plays the role ofthe Stoner
parameter.

Consider more strictly the case of a half-metallic
�saturated� ferromagnet in which n↑=n=1−n0, n↓=0
�note that, for realistic HMFs, the saturated ferromag-
netic behavior is described by the generalized Slater-
Pauling rule; see Sec. III.F�. Then the spin-up electrons
behave at T=0 K as if free,

Gk↑�E� = �E − tk�−1. �3�

For spin-down states, the situation is nontrivial. Writing
down the sequence of equations of motion for Gk↓�E�
and for the Green’s function

	kp�E� = 		Sp
+ck−p↑
ck↓

† 

E, Sq
+ = �

k
ck↑

† ck+q↓ �4�

and performing decoupling in the spirit of a ladder ap-
proximation, we obtain for the self-energy


k↓ =
Un↑

1 − URk�E�
, �5�

where
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Rk�E� = �
q

1 − nk−q

E − tk−q − �q
�6�

describes the electron-magnon scattering, nk= f�tk� is the
Fermi function. This result corresponds to the Edwards-
Hertz approximation �Edwards and Hertz, 1973�.

In a more general nonsaturated situation, one obtains
for the self-energy to second order in U �Irkhin and
Katsnelson, 1990�


k��E� = − U2�
q
�

−�

� d�

�
Im		Sq

�
S−q
−�

�

NB��� + nk+q,−�

E − tk+q,−� + �
,

�7�

where NB��� is the Bose function. Retaining only the
magnon pole contribution to the spin spectral density
�i.e., neglecting the spin-wave damping�, we have


k↑�E� = U��
q

Nq + nk+q↓

E − tk+q↓ + �q
, �8�


k↓�E� = U��
q

1 + Nq − nk−q↑

E − tk−q↑ − �q
, �9�

where �q is the magnon energy, Nq=NB��q�. These re-
sults are valid in the s-d model �U→I, see below� to first
order in the small parameter 1/2S. Taking into account
the relation

	Sz
 = S0 − �
p

Np, �10�

where S0 is the saturation magnetization, one obtains for
the spin-wave correction to the electron energy

�Ek��T� = �
q

Akq
� Nq

=
v0

2	Sz

��5/2�
32�3/2� T

D
�5/2� �2tk

�kx
2 −

�

U	Sz

� �tk

�k
�2� ,

�11�

where ��x� is the Riemann function, v0 is the lattice cell
volume,

Akq
� = �U

tk+q − tk

tk+q − tk + ��
. �12�

The T5/2 dependence of the electron spectrum owing to
magnons is weaker than the T3/2 dependence of the mag-
netization. This is the because the electron-magnon in-
teraction amplitude A vanishes at zero magnon wave
vector, as a result of the symmetry of the exchange in-
teraction. Such a weakening of the temperature depen-
dence of spin splitting was observed in iron �Springford,
1980�. The one-electron damping in the half-metallic
situation was calculated by Auslender and Irkhin
�1984a�; they obtained a Fermi-liquid-type behavior
�small damping near the Fermi level containing high
powers of temperature�.

The problem of ferromagnetic ordering in narrow en-
ergy bands has been discussed extensively. To stabilize

the ferromagnetic solution within the Hubbard model is
another difficult problem. It was proved recently that
the necessary conditions for ferromagnetism are a den-
sity of state with large spectral weight near the band
edges �Ulmke, 1998� and Hund’s rule coupling for the
degenerate case �Vollhardt et al., 1999�. Real examples
of saturated ferromagnetic ordering are provided by
pyrite-structure systems Fe1−xCoxS2 with itinerant-
electron ferromagnetism in a doubly degenerate narrow
eg band �Jarrett et al., 1968; Auslender et al., 1988;
Ramesha et al., 2004�. CMR manganites, the magnetite
Fe3O4 above the Verwey transition temperature, and
“anionic” half-metallic ferromagnets are other examples
�see Sec. V�. Recently, a model of sp-electron magnetism
in narrow impurity bands was proposed �Edwards and
Katsnelson, 2006� that may be applicable to some
carbon- or boron-based systems such as doped CaB6. In
this model, the magnon excitations turn out to have
higher energy than the Stoner ones. Also, T-matrix
renormalization of the Stoner exchange parameter,
which decreases its value considerably in a typical
itinerant-electron magnet, is much less relevant. For
these reasons, narrowband sp systems can provide an
example of real Stoner magnets that can have rather
high Curie temperatures at a small enough magnetiza-
tion value �Edwards and Katsnelson, 2006�. According
to that model, these ferromagnets should also be satu-
rated.

Systems with strong interelectron correlations are the
most difficult for standard approaches in itinerant-
electron magnetism theory �band calculations, spin-
fluctuation theories�. Physically, the magnetism picture
in this case differs substantially from the Stoner picture
of weak itinerant magnetism �Moriya, 1985�, since corre-
lations lead to a radical reconstruction of the electron
spectrum, namely, the formation of Hubbard subbands
�Hubbard, 1963�, which are intimately connected with
the local magnetic moments �Auslender et al., 1988�.

In the limit U→�, considering the case in which the
number of electrons n=1−�
1 �� is the hole concentra-
tion�, the Hubbard Hamiltonian reads

H = �
k�

�kX−k
0�Xk

�0, �13�

where Xk
�� is the Fourier transform of the Hubbard op-

erators Xi
��= 
i�
	i�
, and �k=−tk. According to Nagaoka

�1966�, the ground state for simple lattices is a saturated
ferromagnetic state for a low density � of current carri-
ers �“doubles” or “holes” in an almost half-filled band�.
Roth �1969a, 1969b� applied a variational principle to
this problem and obtained two critical concentrations.
The first one, �c, corresponds to the instability of a satu-
rated ferromagnetic state, and the second one, �c�, to the
transition from a nonsaturated ferromagnetic to a para-
magnetic state. For the simple cubic �sc� lattice, the val-
ues �c=0.37 and �c�=0.64 were obtained. Next, the sta-
bility of ferromagnetism was investigated within various
approximations and methods. Most calculations for a
number of lattices yield a value of �c that is close to 0.3.
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In particular, the Gutzwiller method �Fazekas et al.,
1990�, the t /U expansion �Zhao et al., 1987�, the density-
matrix renormalization-group approach, and the quan-
tum Monte Carlo �QMC� method �Liang and Pang,
1995� yielded �c=0.2–0.35.

At the same time, for the critical concentrations �c�,
the interval of values is broader and varies from 0.38 to
0.64. Irkhin and Zarubin �2004, 2006� obtained the dis-
tribution of the density of states �DOS� in a Hubbard
ferromagnet, taking into account the Kondo scattering
and spin-polaron contributions, and they calculated the
values of the critical concentrations of current carriers.
This approach yields a rather simple interpolational de-
scription of saturated and nonsaturated ferromagnetism.

The simplest “Hubbard-I” approximation for the elec-
tron spectrum �Hubbard, 1963� corresponds to the ze-
roth order in the inverse nearest-neighbor number 1/z
�“mean-field” approximation in the electron hopping�.
This approximation is quite unsatisfactory for describing
ferromagnetism �in particular, ferromagnetic solutions
are absent, except for peculiar models with bare density
of states�. Therefore, to treat the problems connected
with ferromagnetism formation in narrow bands, the
one-particle Green’s functions were calculated to first
order in 1/z and in the corresponding self-consistent ap-
proximations.

The retarded anticommutator Green’s functions
Gk��E�= 		Xk

�0 
X−k
0�

E can be calculated using the

equation-of motion approach of Irkhin and Katsnelson
�1988� and Irkhin and Zarubin �2004, 2006� taking into
account spin fluctuations. In the locator representation,
one obtains �Irkhin and Zarubin, 2004�

Gk��E� = �Fk��E� − �k�−1, Fk��E� =
bk��E�
ak��E�

, �14�

with

ak��E� = n0 + n� + �
q

�k−q
�q

�−� + nk−q−�

n0 + n−�

�Gk−q−�
0 �E − ��q�

+ �
q

�k−q
�q

−�−�

n0 + n�

Gk−q�
0 �E� ,

bk��E� = E + �
q

�k−q
2 nk−q−�

n0 + n−�

Gk−q−�
0 �E − ��q� , �15�

where �q
�−�= 	Sq

�S−q
−�
= 	Xq

�−�X−q
−��
 and �q

−�−�

= 	�Xq
−�−��X−q

−�−�
 are the correlation functions for spin
and charge densities, and nk�= 	X−k

0�Xk
�0
. To simplify nu-

merical calculations, the long-wavelength dispersion law
�q=Dq2 �D is the spin-wave stiffness constant� was used,
with the magnon spectral function Kq��� being the aver-
age of this in q. Following Nagaoka �1966�, the value
D=0.66� 
 t
 was taken for the cubic lattice and the same

K̄��� was adopted for other lattices �the choice of D
weakly influences the critical concentration�. Thus a�E�
and b�E� do not depend on k and can be expressed in

terms of the bare electron density of states. In the case
of saturated ferromagnetism, expressions �14� reduce ap-
proximately to the result �6� for U→�,


k↓�E� = − �1 − n0���
q

nk−q

E − �k−q + �q
�−1

. �16�

To write down the self-consistent approximation, one
has to replace in Eqs. �15� Gk�

0 �E�→Gk��E� and calcu-
late nk� via the spectral representation. In such an ap-
proach, large electron damping is present that smears
the Kondo peak.

The 1/z corrections lead to a nontrivial structure of
the one-particle density of states. In the non-self-
consistent approach, the integral of the Fermi functions
yields a logarithmic singularity, as in the Kondo problem
�Irkhin and Zarubin, 2000�. For very low �, a significant
logarithmic singularity exists only in the imaginary part
of the Green’s function, which corresponds to a finite
jump in the density of states �Irkhin and Katsnelson,
1985a�. However, when � increases, it is necessary to
take into account the resolvents in both the numerator
and denominator of the Green’s function, so that the
real and imaginary parts are “mixed” and a logarithmic
singularity appears in the DOS. The magnon frequen-
cies in the denominators of Eqs. �15� result in the singu-
larity being spread out over the interval �max and the
peak becoming smoothed. In the self-consistent approxi-
mation, the form of N↓�E� approaches the bare density
of states and the peak is smeared, even if spin dynamics
is neglected.

There are no poles of the Green’s function for �=↓
above the Fermi level at small �, i.e., the saturated fer-
romagnetic state is preserved. Unlike most other ana-
lytical approaches, the results of Irkhin and Zarubin
�2004, 2006� for the one-particle Green’s function de-
scribe the formation of nonsaturated ferromagnetism as
well, the account of longitudinal spin fluctuations �q

−�−�

being decisive for obtaining the nonsaturated solution
and calculating the second critical concentration �c�
where the magnetization vanishes. For ���c, this de-
pendence deviates from the linear one, 	Sz
= �1−�� /2.
The calculations of Irkhin and Zarubin �2004, 2006�
yield �c� values that are considerably smaller than the
results of the spin-wave approximation �Roth, 1969a,
1969b�. In the nonsaturated state, a spin-polaron pole
occurs, so that quasiparticle states with �=↓ occur above
the Fermi level �Fig. 4�.

The finite-U case can also be treated with the Green’s
function methods. The Edwards-Hertz approximation
�5� enables one to investigate the stability of the satu-
rated ferromagnetic state only, i.e., to calculate �c. The
corresponding results are presented in Fig. 5. For com-
parison, the variational results of von der Linden and
Edwards �1991� are shown, which yield a strict upper
boundary for the saturated state. Agreement occurs for
large U �far from antiferromagnetic and phase-
separation instability, which are not taken into account
in the calculations�. It should be noted that DMFT
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yields qualitatively similar results �Obermeier et al.,
1997�. One can see that saturated ferromagnetism can
occur for large U / 
t
, and its existence at realistic U is,
generally speaking, a not very simple problem.

Now we treat the orbital-degenerate case, which is
more realistic for transition-metal compounds. Consider
the many-electron system with two ground terms of dn

and dn+1 configurations, �n= �SL� and �n+1= �S�L��. The
representation of the Fermi operators in terms of the
many-body atomic quantum numbers is suitable �Irkhin
and Irkhin, 1994, 2007�,

cil�m
† = �n + 1�1/2 � GSL

S�L�CL�,lm
L��� CSM,�1/2��

S�M�

�Xi�S�L�M���,SLM�� , �17�

where GSL
S�L� are the fractional parentage coefficients

and Ĉ are the Clebsch-Gordan coefficients. We can in-
troduce a further simplification by assuming that only
one of the competing configurations has nonzero orbital
moment L= l. This assumption holds for the d5 and d6

ground-state configurations of Fe3+ and Fe2+, respec-
tively, the first configuration having zero orbital mo-
ment. A similar situation occurs, for the CMR mangan-

ites �with d3 and d4 configurations for Mn4+ and Mn3+;
due to the relevance of t2g-eg crystal-field splitting, the
former configuration corresponds to the completely
filled t2g band with L=0�.

We treat the narrowband case, which should be de-
scribed by a two-configuration Hubbard model where
both conduction electrons and local moments belong to
the same d band, the states with n+1 electrons playing
the role of current-carrier states. After performing the
procedure of mapping onto the corresponding state
space, the one-electron Fermi operators for the strongly
correlated states cil�m

† are replaced by many-electron op-
erators according to Eq. �17�. Taking into account the
values of the Clebsch-Gordan coefficients that corre-
spond to the coupling of momenta S and 1/2, we obtain
the double-exchange Hamiltonian

H = �
k�m

tkmgk�m
† gk�m. �18�

Here we have redefined the band energy by
including the many-electron renormalization factor

tkm�n+1��GSL
S�0�2 / �2l+1�→ tkm, and

gi�m
† = � �

M=−S

S �S − �M

2S + 1
Xi�S − 1/2,M +

�

2
;SMm�, S� = S − 1/2

�
M=−S

S �S + �M + 1

2S + 1
Xi�S + 1/2,M +

�

2
;SMm�, S� = S + 1/2,� �19�

where 
SMm
 are the empty states with the orbital index
m, and 
S�M�
 are the singly occupied states with the
total on-site spin S�=S±1/2 and its projection M�, �
=±. We see that the two-configuration Hamiltonian is a

generalization of the narrowband s-d exchange model
with 
I 
 →� �double-exchange model� �Irkhin and
Katsnelson, 1985a; Irkhin and Irkhin, 1994, 2007�: in the
case in which the configuration dn+1 has larger spin than
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FIG. 5. Boundary of the saturated ferromagnetic region in the
approximation �5� for the semielliptic band �solid line� and
square lattice �short-dashed line�, W the bandwidth. The re-
sults of von der Linden and Edwards �1991� for the square
lattice are shown by a long-dashed line.
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the configuration dn, we have the effective s-d exchange
model with ferromagnetic coupling, and in the opposite
case with antiferromagnetic coupling. In the absence of
orbital degeneracy, the model �18� is reduced to the nar-
rowband Hubbard model.

For S=1/2, the narrowband s-d exchange model with

I 
 →−� is equivalent to the Hubbard model with the
replacement tk→ tk /2, so that the ferromagnetism pic-
ture corresponds to the one already described. In a gen-
eral case, the criteria for spin and orbital instabilities
�Irkhin and Katsnelson, 2005b� are different. It turns out
that the saturated spin ferromagnetism is more stable
than the orbital one in the realistic case S�1/2 �e.g., for
magnetite and for colossal-magnetoresistance mangan-
ites�. This means that half-metallic ferromagnetic phases
with both saturated and nonsaturated orbital moments
can arise. The phase diagram at finite temperatures was
discussed by Edwards �2002�.

In contrast with the usual itinerant-electron ferromag-
nets, additional collective excitation branches �orbitons�
occur in the model. Also, mixed excitations with simul-
taneous change of spin and orbital projections exist �op-
tical magnons�. These excitations can be well defined in
the whole Brillouin zone, the damping due to the inter-
action with current carriers being small enough �Irkhin
and Katsnelson, 2005b�.

The XMCD data �Huang et al., 2004� suggest large
orbital contributions to magnetism in Fe3O4. However,
more recent experimental XMCD data �Goering et al.,
2006� yield very small orbital moments in Fe3O4 and
confirm the HMF behavior of magnetite. In any case,
the model of orbital itinerant ferromagnetism �Irkhin
and Katsnelson, 2005b� is of general physical interest
and can be applied, e.g., to CMR manganites.

B. Electron spectrum in the s-d exchange model:
The nonquasiparticle density of states

Besides the Hubbard model, it is often convenient to
use the s-d�f� exchange model for a theoretical descrip-
tion of magnetic metals. The s-d exchange model was
first proposed for transition d metals to consider the pe-
culiarities of their electrical resistivity �Vonsovsky, 1974�.
This model postulates the existence of two electron sub-
systems: itinerant s electrons, which play the role of cur-
rent carriers, and localized d electrons, which give the
main contribution to the magnetic moments. This as-
sumption can hardly be justified quantitatively for d
metals, but is useful in the qualitative consideration of
some physical properties, especially transport phenom-
ena. At the same time, the s-d model provides a good
description of magnetism in rare-earth metals and their
compounds with well-localized 4f states. Now this model
is widely used in the theory of anomalous f systems
�intermediate-valence compounds, heavy fermions, etc.�
as the Kondo-lattice model �Hewson, 1993�.

The Hamiltonian of the s-d exchange model in the
case of an arbitrary inhomogeneous potential reads

H =� dr��
�

��
†�r�H0

����r�

− I�
���

�S�r� · ��
†�r���������r�� + Hd,

H0
� = −

�2

2m
�2 + V��r� , �20�

where V��r� is the potential energy �taking into account
the electron-electron interaction in the mean-field ap-
proximation�, which is supposed to be spin dependent,
���r� is the field operator for the spin projection �, ����
are the Pauli matrices, S�r� is the spin density of the
localized-moment system, and �S�r�=S�r�− 	S�r�
 is its
fluctuating part, the effect of the average spin polariza-
tion 	S�r�
 included in V��r�. We use the approximation
of contact electron-magnon interaction described by the
s-d exchange parameter I,

Hd = − �
q

JqSq · S−q �21�

�for simplicity, we neglect the inhomogeneity effects for
the magnon subsystem�, where Sq are operators for lo-
calized spins and Jq are the Fourier transforms of the
exchange parameters between localized spins. In rare-
earth metals, the latter interaction is usually the indirect
Ruderman-Kittel-Kasuya-Yosida �RKKY� exchange via
conduction electrons, which is due to the same s-d inter-
action. However, when constructing perturbation theory,
it is convenient to include this interaction in the zero-
order Hamiltonian.

Although more complicated in its form, the s-d model
turns out to be simpler in some respects than the Hub-
bard model �1� since it enables us to construct the qua-
siclassical expansion in the small parameter 1/2S.
Within simple approximations, the results in the s-d�f�
and Hubbard models differ as a rule by the replacement
I→U only. To describe the effects of electron-magnon
interaction, we use the formalism of the exact eigenfunc-
tions �Irkhin and Katsnelson, 1984, 2006�. In the repre-
sentation of exact eigenfunctions for the Hamiltonian
H0

�,

H0
��v� = ������,

���r� = �
�

����r�c��, �22�

one can rewrite the Hamiltonian �20� in the following
form:

H = �
��

���c��
† c�� − I �

����q
���,��
q��Sqc��

† ���c�� + Hd,

�23�

where
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���,���
q� = 	���
eiq·r
��
 . �24�

We take into account again the electron-spectrum spin
splitting in the mean-field approximation by keeping the
dependence of the eigenfunctions on the spin projection.

In the spin-wave region, one can use for the spin op-
erators the magnon �e.g., Dyson-Maleev� representation.
Then we have for the one-electron Green’s function

G�
��E� = �E − ��� − 
�

��E��−1, �25�

with the self-energy 
�
��E� describing correlation effects.

We start with the perturbation expansion in the
electron-magnon interaction. To second order in I, one
has


�
↑�E� = 2I2S�

�q
���↑,�↓
q��2

Nq + n�
↓

E − ��↓ + �q
,


�
↓�E� = 2I2S�

�q
���↓,�↑
q��2

1 + Nq − n�
↑

E − ��↑ − �q
, �26�

where n�
� = f����� �discussion of a more general ladder

approximation is given below�. Using the expansion of
the Dyson equation �25�, we obtain for the spectral den-
sity

A���E� = −
1

�
Im G�

��E�

= ��E − ���� − ���E − ����Re 
�
��E�

−
1

�

Im 
�
��E�

�E − ����2 . �27�

The second term on the right-hand side of Eq. �27� gives
the shift of quasiparticle energies. The third term, which
arises from the branch cut of the self-energy, describes
the incoherent �nonquasiparticle� contribution owing to
scattering by magnons. One can see that this does not
vanish in the energy region corresponding to the “alien”
spin subband with the opposite projection −�.

Neglecting temporarily in Eq. �26� the magnon energy
�q in comparison with typical electron energies and us-
ing the identities

�
�q

����
q��2

E − ��

F���� = −
1

�
� dE�

F�E��
E − E�

�Im	�
�E� − H0 + i0�−1
�
 , �28�

one derives at zero temperature


�
↑�E� = 2I2S� dE�

f�E��
E − E�

	�↑
��E − E� − H0
↓�
�↑
 ,

�29�


�
↓�E� = 2I2S� dE�

1 − f�E��
E − E�

	�↓
��E − E� − H0
↑�
�↓
 .

�30�

Using the tight-binding model for the ideal-crystal
Hamiltonian, one obtains in the real-space representa-
tion


R,R�
↑ �E� = 2I2S� dE�f�E���−

1

�
Im GR,R

↓ �E − E����R,R�,

�31�


R,R�
↓ �E� = 2I2S� dE��1 − f�E���

��−
1

�
Im GR,R

↑ �E − E����R,R�, �32�

where R ,R� are lattice site indices, and therefore


�
��E� = �

R

����R�
2
R,R

� �E� . �33�

One can generalize the above results to the case of ar-
bitrary s-d exchange parameter. Simplifying the se-
quence of equations of motion �cf. Irkhin and Katsnel-
son, 1984�, we have for the operator Green’s function

G��E� = �E − H0
� + �I�H0

� − H0
−��

�
1

1 + �IR��E�
R��E��−1

. �34�

If we consider the spin dependence of the electron spec-
trum in the simplest rigid-splitting approximation ���

=��−�I	Sz
 and thus neglect the spin dependence of the
eigenfunctions ����R�, Eqs. �29� and �30� are drastically
simplified. Then the self-energy does not depend on �,


��E� =
2I2SR��E�

1 + �IR��E�
, �35�

R↑�E� = �
�

n�
↓

E − ��↓
, R↓�E� = �

�

1 − n�
↑

E − ��↑
. �36�

If H0
� is the crystal Hamiltonian ��=k, ���= tk�, tk� is the

band energy for spin projection ��, Eq. �34� coincides
with the result for the Hubbard model after the replace-
ment I→U �see Sec. III.A�. The imaginary part of 
��E�
determines the NQP states. Description of such states in
the Hubbard model with arbitrary U by the dynamical
mean-field theory will be presented in Sec. IV.A

Equation �34� can be also represented in the form

G��E� = �E − H0
−� − �H0

� − H0
−��

1

1 + �IR��E��
−1

.

�37�

Equation �37� is convenient in the narrowband case. In
this limit where spin splitting is large in comparison with
the bandwidth of the conduction electrons, we have H0

↑
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−H0
↑=−2IS, and we obtain for the lower spin subband

with �=−sgn I

G��E� = �E − H0
−� +

2S

R��E�
�−1

. �38�

For a periodic crystal, Eq. �38� takes the form

Gk
��E� = �E − tk−� +

2S

R��E�
�−1

. �39�

This expression yields the exact result in the limit I
→ +�,

Gk
↓�E� = �� − tk +

2S

R���
�−1

, R��� = �
k

1 − f�tk�
� − tk

�40�

with �=E+IS. In the limit I→−�, Eq. �39� gives cor-
rectly the spectrum of spin-down quasiparticles,

Gk
↓�E� =

2S

2S + 1
�� − tk

*�−1, �41�

with �=E−I�S+1� and tk
* = �2S / �2S+1��tk. However, it

does not describe the NQP states correctly; more accu-
rate expressions can be obtained using the atomic-
representation �Irkhin and Katsnelson, 2005b�,

Gk
↑�E� =

2S

2S + 1
�� − tk

* +
2S

R*���
�−1

, R*��� = �
k

f�tk
*�

� − tk
* .

�42�

The Green’s functions �39�, �40�, and �42� have no
poles, at least for small current carrier concentration,
and the whole spectral weight of minority states is pro-
vided by the branch cut �nonquasiparticle states� �Irkhin
and Katsnelson, 1983, 1985b, 1990�. For surface states,
this result was obtained by Katsnelson and Edwards
�1992� in a narrowband Hubbard model. Now we see
that this result can be derived in an arbitrary inhomoge-
neous case. For a HMF with the gap in the minority-spin
subband, NQP states occur above the Fermi level, and
for the gap in the majority-spin subband they occur be-
low the Fermi level.

In the absence of spin dynamics �i.e., neglecting the
magnon frequencies�, the NQP density of states has a
jump at the Fermi level. However, the magnon frequen-
cies can be restored in the final result, in analogy with
the case of the ideal crystal, which leads to a smearing of
the jump on the energy scale of the characteristic mag-
non energy �̄. It should be mentioned again that we
restrict ourselves to the case of the three-dimensional
magnon spectrum and we do not consider the influence
of surface states on the spin-wave subsystem. The ex-
pressions obtained enable us to investigate the energy
dependence of the spectral density.

An analysis of the electron-spin coupling yields differ-
ent DOS pictures for two possible signs of the s-d ex-
change parameter I. For I�0, the spin-down NQP scat-
tering states form a “tail” of the upper spin-down band,
which starts from EF �Fig. 6� since the Pauli principle
prevents electron scattering into occupied states.

For I
0, spin-up NQP states are present below the
Fermi level as an isolated region �Fig. 7�: occupied states
with the total spin S−1 are a superposition of the states

S
 
 ↓ 
 and 
S−1
 
 ↑ 
. The entanglement of the states of
electron and spin subsystems, which is necessary to form
the NQP states, is a purely quantum effect formally dis-
appearing at S→�. To understand better why the NQP
states are formed only below EF, in this case we can
treat the limit I=−�. Then the current carrier is really a
many-body state of the occupied site as a whole with

FIG. 6. Density of states in the s-d exchange model of a half-
metallic ferromagnet with S=1/2 ,I=0.3 for the semielliptic
bare band with width of W=2. The Fermi energy calculated
from the band bottom is 0.15 �the energy is referred to EF�.
The magnon band is also assumed semielliptic with width of
�max=0.02. The nonquasiparticle tail of the spin-down sub-
band �lower half of the figure� occurs above the Fermi level.
The corresponding picture for the empty conduction band is
shown by a dashed line; the short-dashed line corresponds to
the mean-field approximation.

FIG. 7. Density of states in a half-metallic ferromagnet with
I=−0.3
0, other parameters the same as in Fig. 1. The spin-
down subband �lower half of the figure� nearly coincides with
the bare band shifted by IS. Nonquasiparticle states in the
spin-up subbands �upper half of the figure� occur below the
Fermi level; the short-dashed line corresponds to the mean-
field approximation.
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total spin S−1/2, which propagates in the ferromagnetic
medium with spin S at any site. The fractions of states

S
 
 ↓ 
 and 
S−1
 
 ↑ 
 in the current carrier state are
1/ �2S+1� and 2S / �2S+1�, respectively, so that the first
number is a spectral weight of occupied spin-up electron
NQP states. At the same time, the density of empty
states is measured by the number of electrons with a
given spin projection that one can add to the system. It
is obvious that one cannot put any spin-up electrons in
the spin-up site at I=−�. Therefore, the density of NQP
states should vanish above EF.

It is worthwhile to note that in most of the known
HMFs, the gap exists for minority-spin states �Irkhin and
Katsnelson, 1994�. This is similar to the case I�0, so
that the NQP states should arise above the Fermi en-
ergy. For exceptional cases with the majority-spin gap
such as the double perovskite Sr2FeMoO6 �Kobayashi et
al., 1998� and magnetite, one should expect the forma-
tion of NQP states below the Fermi energy.

The presence of space inhomogeneity �e.g., surfaces,
interfaces, impurities� does not change the spectral den-
sity picture qualitatively, except for smoothing the ma-
trix elements. Later in this section we consider, for sim-
plicity, the case of a clean infinite crystal; all temperature
and energy dependences of the spectral density will be
basically the same, e.g., for the surface layer.

The second term on the right-hand side of Eq. �27�
describes the renormalization of quasiparticle energies.
The third term, which arises from the branch cut of the
self-energy 
��E�, describes the incoherent �nonquasi-
particle� contribution owing to scattering by magnons.
One can see that this does not vanish in the energy re-
gion corresponding to the alien spin subband with the
opposite projection −�. Consider for definiteness the
case I�0 �the case I
0 differs, roughly speaking, by a
particle-hole transformation�. On summing up Eq. �27�
to find the total DOS N��E� and neglecting the quasi-
particle shift, we get

N↑�E� = �
kq
�1 −

2I2SNq

�tk+q↓ − tk↑�2���E − tk↑� ,

N↓�E� = 2I2S�
kq

1 + Nq − nk↑

�tk+q↓ − tk↑ − �q�2��E − tk↑ − �q� .

�43�

The T3/2 dependence of the magnon contribution to the
residue of the Green’s function, i.e., of the effective elec-
tron mass in the lower spin subband, and an increase
with temperature of the incoherent tail from the upper
spin subband, result in a strong temperature dependence
on the partial densities of states N��E�, the corrections
being of opposite sign. At the same time, the tempera-
ture shift of the band edge for the quasiparticle states is
proportional to T5/2 rather than to the magnetization
�Irkhin and Katsnelson, 1983, 1984, 1985b�.

It is worth noting that there exists a purely single-
particle mechanism of the gap filling in HMFs which is
due to relativistic interactions. Specifically, one should

take into account spin-orbit coupling effects that con-
nect the spin-up and spin-down channels through the
angular momentum l. The strength of this interaction is
proportional to the spatial derivatives of the crystal po-

tential V�r�: VSO� 
�V
�l ·s�, off-diagonal elements VSO
�,��

being nonzero. For a HMF with a gap in the minority-
spin �spin-down� channel, one could construct the wave
function for spin-down electrons within perturbation
theory, so that the DOS in the gap has a square depen-
dence on the spin-orbit coupling strength, �n↓

SO�E�
� �VSO

↓,↑�2 �Mavropoulos et al., 2004�. There is an obvious
qualitative distinction between the many-body and spin-
orbit contributions in the minority-spin channel; besides
that, the latter is orders of magnitude smaller and
weakly temperature dependent. For further discussions
of the spin-orbit effects in HMFs, see Pickett and Es-
chrig �2007�.

The exact solution in the atomic limit �for one conduc-
tion electron�, which is valid not only in the spin-wave
region but also for arbitrary temperatures, reads �Au-
slender et al., 1983�

G��E� =
S + 1 + �	Sz


2S + 1

1

E + IS

+
S − �	Sz


2S + 1

1

E − I�S + 1�
. �44�

In this case, the energy levels are not temperature de-
pendent, whereas the residues are strongly temperature
dependent via the magnetization.

Now we consider the case T=0 K for finite band fill-
ing. The picture of N�E� in HMFs �or degenerate ferro-
magnetic semiconductors� demonstrates a strong energy
dependence near the Fermi level �Figs. 6 and 7�. If we
neglect magnon frequencies in the denominators of Eq.
�43�, the partial density of incoherent states should occur
by a jump above or below the Fermi energy EF for I
�0 and I
0, respectively, owing to the Fermi distribu-
tion functions. Taking account of finite magnon frequen-
cies �q=Dq2 �D is the spin-wave stiffness constant� leads
to smearing of these singularities, N−��EF� being equal
to zero. For 
E−EF 
 � �̄, we obtain

N−��E�
N��E�

=
1

2S
�E − EF

�̄
�3/2

�„��E − EF�…, � = sgn I

�45�

��=± corresponds to the spin projections ↑ ,↓�. With in-
creasing 
E−EF
, N−� /N� tends to a constant value that
is of the order of I2 within perturbation theory.

In the strong-coupling limit where 
I 
 →�, we have
from Eq. �43�

N−��E�
N��E�

=
1

2S
�„��E − EF�…, 
E − EF
 � �̄ . �46�

In fact, this expression is valid only in the framework of
the 1/2S expansion, and in the narrowband quantum
case we have to use more exact expressions �40� and
�42�.
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To investigate the details of the energy dependence of
N�E� in the broadband case, we assume the simplest iso-
tropic approximation for the majority-spin electrons,

tk↑ − EF � �k =
k2 − kF

2

2m* . �47�

Provided that we use the rigid-splitting approximation
tk↓= tk↑+���=2IS ,I�0�, the half-metallic situation �or,
more precisely, the situation of a degenerate ferromag-
netic semiconductor� takes place for ��EF. Then, quali-
tatively, Eq. �45� works to the accuracy of a prefactor. It
is worth noting that the NQP contribution to the DOS
occurs also for a usual metal where �
EF. In the case
of small �, there is a crossover energy �or temperature�
scale

T* = D�m*�/kF�2, �48�

which is the magnon energy at the boundary of the
Stoner continuum, T*� �̄�� /EF�2� �̄. At 
E−EF 
 � �̄,
Eq. �43� for the NQP contribution reads

�N↓�E� � �1
2

ln� 1 + ��E − EF�/T*

1 − ��E − EF�/T*�
− ��E − EF�/T*���E − EF� . �49�

At 
E−EF 
 �T*, this gives the same results as above.
However, at T*� 
E−EF 
 � �̄, this contribution is pro-
portional to −��E−EF� /T* and is negative �of course,
the total DOS is always positive�. This demonstrates that
one should be careful when discussing the NQP states
for systems that are not half metallic.

The model of rigid spin splitting used above is in fact
not applicable for a real HMF, where the gap has a hy-
bridization origin �de Groot, Mueller, v. Engen, et al.,
1983; Irkhin and Katsnelson, 1994�. The simplest model
for the HMF is as follows: a normal metallic spectrum
for majority electrons �47� and a hybridization gap for
minority ones,

tk↓ − EF = 1
2 ��k + sgn��k���k

2 + �2� . �50�

Here we assume for simplicity that the Fermi energy lies
exactly in the middle of the hybridization gap �otherwise
one needs to shift �k→�k+E0−EF in the last equation,
E0 being the middle of the gap�. One can replace in Eq.
�43� �k+q by vk ·q, vk=k /m*. Integrating over the angle
between the vectors k and q, we derive

�� 1

tk+q↓ − tk↑ − �q
�2�

=
8

vFq�
�2

3
�X3 − �X2 + 1�3/2 + 1� + X� , �51�

where the angular brackets stand for the average over
the angles of the vector k, and X=kFq /m*�. Here we do
have a crossover with the energy scale T*, which can be
small for a small enough hybridization gap. For ex-
ample, in NiMnSb the conduction-band width is about

5 eV and the distance from the Fermi level to the near-
est gap edge �i.e., the indirect energy gap, which is pro-
portional to �2� is smaller than 0.5 eV, so that �� /EF�2

�0.1.
For the case 0
E−EF� �̄, one has

N↓�E� � b�E − EF

T* � ,

b�y� =
2
5

�y5/2 − �1 + y�5/2 + 1� + y + y3/2

� �y3/2, y � 1

y , y � 1.
�52�

Thus the behavior N↓�E�� �E−EF�3/2 occurs only for
very small excitation energies E−EF�T*, whereas in a
broad interval T* �E−EF� �̄ one has the linear depen-
dence N↓�E��E−EF.

C. The problem of spin polarization

The functionality of devices that exploit charge as well
as spin degrees of freedom depends in a crucial way on
the behavior of the spin polarization of current carriers
�Prinz, 1998�. Unfortunately, many potentially promising
half-metallic systems exhibit a dramatic decrease in spin
polarization. Crystal imperfections �Ebert and Schutz,
1991�, interfaces �de Wijs and de Groot, 2001�, and sur-
faces �Galanakis, 2003� constitute important examples of
static perturbations of the ideal periodic potential that
affect the states in the half-metallic gap.

In addition, several other depolarization mechanisms
have been suggested that are based on magnon and pho-
non excitations �Skomski and Dowben, 2002; Dowben
and Skomski, 2003, 2004; Skomski, 2007�. These papers
extend the view of spin disorder as random interatomic
exchange fields and claim that disorder rotates the spin
direction locally and thus modifies the local magnetic
moment and spin polarization �MacDonald et al., 1998;
Orgassa et al., 1999, 2000; Itoh et al., 2000�. The coupling
between atomic moments can be treated in terms of
Heisenberg-type interactions �see Secs. VI.A and VI.B�.
The sign and magnitude of the exchange constants de-
termine whether the spin structure is collinear �Sand-
ratskii, 2001�.

Simple qualitative considerations �Edwards, 1983�, as
well as direct Green’s functions calculations �Auslender
and Irkhin, 1984a, 1984b� for ferromagnetic semiconduc-
tors, demonstrate that the spin polarization of conduc-
tion electrons in the spin-wave region is proportional to
the magnetization,

P �
N↑ − N↓

N↑ + N↓
= P0	Sz
/S . �53�

A weak ground-state depolarization 1−P0 occurs in the
case of the empty conduction band where I�0. As dis-
cussed in the preceding section, in the case of the Fermi
statistics of charge carriers �degenerate ferromagnetic
semiconductors and HMFs�, the NQP states at T=0 ex-
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ist only below EF for the majority-spin gap �I
0 for the
case of semiconductors� and only above EF for the
minority-spin gap �I�0 for the case of semiconductors�.

Spin-resolved photoelectron spectra for magnetite
slightly above the Verwey transition point have been
measured by Mortonx et al. �2002�, a negative polariza-
tion about −40% being found near the Fermi energy.
The strong deviation from −100% polarization may be,
at least partially, related to NQP states. Since according
to the electronic-structure calculations �Yanase and Sira-
tori, 1984� magnetite is a HMF with a majority-spin gap,
the NQP should exist below the Fermi energy and thus
be relevant for photoelectron spectroscopy. Since elec-
tron correlations in Fe3O4 are quite strong, the spectral
weight of the NQP states should be considerable. Of
course, photoemission is a surface-sensitive method, and
it is not quite clear to what degree these data character-
ize the electronic structure of bulk Fe3O4.

An instructive limit is the Hubbard ferromagnet with
infinitely strong correlations U=� �13� and electron con-
centration n
1. The DOS calculations yield �Irkhin and
Katsnelson, 1983, 1985b�

N↓�E� = �
k�

f�tk+q���E − tk+q + �q�

= �N↑�E� , E − EF � �max

0, E 
 EF.
�54�

A schematic density of states is shown in Fig. 29�a� �a
more realistic picture is presented in Fig. 4; see also
Irkhin and Katsnelson �2005b��. The result �54� has a
simple physical meaning. Since the current carriers are
spinless doubles �doubly occupied sites�, electrons with
spins up and down may be selected with an equal prob-
ability from the states below the Fermi level of doubles,
so that these states are fully depolarized. On the other
hand, according to the Pauli principle, only the spin-
down electrons may be added in the singly occupied
states in the saturated ferromagnet.

The behavior P�T��	Sz
 is qualitatively confirmed by
experimental data on field emission from ferromagnetic
semiconductors �Kisker et al., 1978� and transport prop-
erties of half-metallic Heusler alloys �Otto et al., 1989�.
An attempt was made �Skomski and Dowben, 2002;
Dowben and Skomski, 2003� to generalize the result �53�
in the HMF case �in fact, using qualitative arguments
that are valid only in the atomic limit, see Eq. �44��.
However, the situation for HMFs is more complicated.
We focus on the magnon contribution to the DOS �43�
and calculate the function

� = �
k,q

2I2SNq

�tk+q↓ − tk↑ − �q�2��EF − tk↑� . �55�

Using the parabolic electron spectrum tk↑=k2 /2m* and
averaging over the angles of the vector k, we obtain

� =
2I2Sm2

kF
2 ��

q

Nq

�q*�2 − q2 , �56�

where �=N↑�EF ,T=0�; we have used the condition
q�kF ,q*=m*� /kF=� /vF, where �=2 
I 
S is the spin
splitting. In a ferromagnetic semiconductor, we have, in
agreement with the qualitative considerations presented
above,

� =
S − 	Sz


2S
� � � T

TC
�3/2

� . �57�

Now we consider the spectrum model �47� and �50�
where the gap has a hybridization origin. At T�T*, we
reproduce the result �57�, which is actually universal for
this temperature region. At T*�T� �̄, we derive

� = �
k,q

2I2SNq���k�
16

3vFq�
� q*�

q

Nq

q
�

T*1/2

TC
1/2 T ln

T

T* .

�58�

This result distinguishes HMFs such as the Heusler al-
loys from ferromagnetic semiconductors and narrow-
band saturated ferromagnets. In the narrowband case,
the spin polarization follows the magnetization up to the
Curie temperature TC.

For finite temperatures, the density of NQP states at
the Fermi energy is given by

N�EF� � �
0

�

d�
K���

sinh��/T�
. �59�

The filling of the energy gap is important for possible
applications of HMFs in spintronics: in fact, HMFs have
clear advantages only if T�TC. Since a single-particle
Stoner-like theory leads to the much less restrictive in-
equality T��, the many-body treatment of the spin-
polarization problem �inclusion of collective spin-wave
excitations� is crucial. Generally, for temperatures com-
parable with the Curie temperature TC, there are no
essential differences between half-metallic and ordinary
ferromagnets since the gap is filled.

The corresponding symmetry analysis was performed
by Irkhin et al. �1989, 1994� for a model of conduction
electrons interacting with pseudospin excitations in
ferroelectric semiconductors. The symmetric �with re-
spect to EF� part of N�E� in the gap can be attributed to
the smearing of electron states by electron-magnon scat-
tering; the asymmetric �Kondo-like� part is the density
of NQP states owing to the Fermi distribution function.

Skomski and Dowben �Skomski and Dowben, 2002;
Dowben and Skomski, 2003, 2004; Skomski, 2007� inves-
tigated spin-mixing effects for NiMnSb by using a simple
tight-binding approximation. Figure 8 shows a schematic
comparison between this approximation and many-body
results. In the tight-binding approach, the distortion of
the spin-up and spin-down DOSs is presented by the
dark regions. The spin mixing gives a nonzero symmetric
N↓�E�, the DOS being weakly modified by thermal fluc-
tuations.
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Itoh et al. �2000� calculated the polarization for a
ferromagnet-insulator magnetic tunnel junction with and
without spin fluctuations in a thermally randomized
atomic potential. The results indicate that the effect of
spin fluctuations is significant. The idea of spin fluctua-
tions was further developed by Lezaic et al. �2006� by
considering the competition between hybridization and
thermal spin fluctuation in the prototype HMF NiMnSb.

Figure 9 shows the sublattice susceptibilities com-
puted within a generalized Heisenberg-type Hamil-
tonian. These results demonstrate that the Ni-sublattice
magnetic order is lost already at 50 K �this effect is a
consequence of the weakness of the coupling between
the Ni moments and neighboring atoms�; however,
neutron-diffraction data �Hordequin, Lelivre-Bernab,
and Pierre, 1997; Hordequin, Pierre, and Currat, 1997�
do not support this scenario. The right-hand side of Fig.
9 presents the polarization P�T� calculated in a disor-
dered local moment �DLM� approach �Gyorffy et al.,
1985�, representing the system at finite temperatures in a
mean-field way. It was concluded that the thermal col-
lapse of the polarization is connected with a change in
hybridization due to the moment fluctuation, the effect
of noncollinearity being much milder.

The issue of finite-temperature spin polarization in
half metals remains an open question. Magnons play a
crucial role, independent of the theoretical approach. In
addition, the role of phonon modes in many-sublattice
half metals is not excluded. Nevertheless, a nontrivial

contribution to the physics of half-metallic ferromagnets
comes from genuine many-body effects. The corre-
sponding first-principles calculations will be presented in
Sec. V.

D. Tunneling conductance and spin-polarized STM

A useful tool to probe the spin polarization and non-
quasiparticle states in HMFs is provided by tunneling
phenomena �Auslender and Irkhin, 1985b; Bratkovsky,
1998; Auth et al., 2003; Gercsi et al., 2006; Sakuraba,
Hattori, Oogane, et al., 2006; Sakuraba, Miyakoshi, Oo-
gane, et al., 2006; Sakuraba et al., 2007�, and particularly
by Andreev reflection spectroscopy for a HMF-
superconductor tunnel junction �Tkachov et al., 2001�.
The most direct way is the measurement of a tunnel
current between two pieces of the HMF with opposite
magnetization directions.

Here we explain in a simple qualitative way why the
NQP states are important for tunneling transport. With
this aim, we consider the above-discussed narrowband
saturated Hubbard ferromagnet where the current carri-
ers are the holes in the lowest Hubbard band, and the
NQP states provide all of the spectral weight for the
minority-spin projection. Suppose we have a tunnel
junction with two pieces of this ferromagnet with either
parallel �Fig.29�b�� or antiparallel �Fig. 29�c�� magnetiza-
tion directions. From the one-particle point of view,
spin-conserving tunneling is forbidden in the latter case.
However, in the framework of a many-particle picture,
the charge current is a transfer process between an
empty site and a singly occupied site rather than the
motion of an electron irrespective of the site, as in band
theory, and therefore the distinction between these two
cases �see Fig. 29� is due only to the difference in the
densities of states. This means that the estimations of
the tunneling magnetoresistance based on a simple one-
electron picture are too optimistic; even for antiparallel
spin orientation of two pieces of the half-metallic ferro-
magnets in the junction for zero temperature, the cur-
rent is not zero, due to nonquasiparticle states. More
exactly, it vanishes for zero bias since the density of
NQP states at the Fermi energy is equal to zero. How-
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FIG. 9. �Color online� Monte Carlo results for finite-
temperature magnetic properties. �a� Magnetization as a func-
tion of temperature. �b� Polarization at EF as a function of
total spin moment in the DLM picture for NiMn1−x

↑ Mnx
↓Sb cal-

culated with CPA �Lezaic et al., 2006�.
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FIG. 8. Schematic half-metallic DOS with and without the spin
mixing. �a� Classical picture �Dowben and Skomski, 2004�. �b�
Schematic half-metallic DOS, and the presence of NQP states,
a genuine many-body effect.
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ever, it grows sharply with the bias, having the scale of
typical magnon energies, i.e., millivolts.

Formally, we consider a standard tunneling Hamil-
tonian �see, e.g., Mahan �1990��,

H = HL + HR + �
k,p

�Tkpck↑
† cp↓ + H.c.� , �60�

where HL,R are the Hamiltonians of the left �right� half
spaces, respectively, k and p are the corresponding
quasimomenta, and spin projections are defined with re-
spect to the magnetization direction of a given half space
�spin is conserved in the global coordinate system�. Car-
rying out standard calculations of the tunneling current
I in second order in Tk,p, one has �cf. Mahan �1990��

I � �
k,q,p


Tk,p
2�1 + Nq − f�tp−q���f�tk� − f�tk + eV��

���eV + tk − tp−q + �q� , �61�

where V is the bias voltage.
A new experimental method is spin-polarized

scanning-tunneling microscopy �STM� �Wiesendanger et
al., 1990; Heinze et al., 2000; Kleiber et al., 2000�, which
enables one to directly probe the spectral density with
spin resolution in magnetic systems. The spin-polarized
STM should be able to probe the NQP states via their
contribution to the differential tunneling conductivity
dI� /dV�N��eV� �Irkhin and Katsnelson, 2006�. Note
that the value N��eV� vanishes for 
eV 
 
��0, where
��0 is the anisotropy gap in the magnon spectrum
�Irkhin and Katsnelson, 2002�, which is small, but could
be changed by suitable substitution �Attema et al., 2004�.
Keeping in mind that ferromagnetic semiconductors can
be considered as a particlular case of HFMs �Irkhin and
Katsnelson, 1983�, taking account of NQP states can be
important for a proper description of spin diodes and
transistors �Flatte and Vignale, 2001; Tkachov et al.,
2001�.

The above formulas are derived for the usual one-
electron density of states at EF, which is observed, say, in
photoemission measurements. However, the factors that
are present in the expression for the tunneling current
do not influence the temperature dependence, and
therefore these results are valid for spin polarization
from tunneling conductance at zero bias in STM
�Ukraintsev, 1996; Irkhin and Katsnelson, 2006�. Unlike
photoemission spectroscopy, which probes only occu-
pied electron states, STM detects the states both above
and below EF, depending on the sign of the bias.

One should keep in mind that sometimes the surface
of the HMF is not half metallic; in particular, this is the
case of a prototype HMF, NiMnSb �de Wijs and
de Groot, 2001�. In such a situation, the tunneling cur-
rent for minority electrons is due to surface states only.
However, the NQP states can still be visible in the tun-
neling current via hybridization of the bulk states with
the surface one. This leads to the Fano antiresonance
picture, which is usually observed in STM investigations
of the Kondo effect at metallic surfaces. In such cases,
the tunneling conductance will be proportional to a mix-

ture of N� and the real part of the on-site Green’s func-
tion L�. Surprisingly, in this case the effect of NQP
states on the tunneling current can be even more pro-
nounced than in the ideal crystal. The reason is that the
analytical continuation of the jump in N��E� is logarith-
mic; both singularities are cut at the energy �̄. Neverthe-
less, the energy dependence of L��E� can be pro-
nounced �Irkhin and Katsnelson, 2006�.

STM measurements of the electron DOS also give the
opportunity to probe bosonic excitations interacting
with conduction electrons. Due to electron-phonon cou-
pling, the derivative dN��E� /dE and thus d2I��V� /dV2

at eV=E have peaks at energies E= ±�i corresponding
to the peaks in the phonon DOS. According to the
above treatment �see, e.g., Eq. �43��, the same effect
should be observable for the case of the electron-
magnon interaction. However, in the latter case these
peaks are essentially asymmetric with respect to the
Fermi energy �zero bias� due to asymmetry of nonqua-
siparticle contributions. This asymmetry can be used to
distinguish phonon and magnon peaks.

Thermoelectric power in the tunnel situation was
theoretically investigated by McCann and Fal’ko �2002,
2003�. The relative polarizations of ferromagnetic layers
can be manipulated by an external magnetic field, and a
large difference occurs for a junction between two fer-
romagnets with antiparallel and parallel polarizations.
This magnetothermopower effect becomes very large in
the extreme case of a junction between two half-metallic
ferromagnets, since the thermopower is inversely pro-
portional to the area of the maximal cross section of the
Fermi surface of minority electrons in the plane parallel
to the interface. One has a strong polarization depen-
dence of the thermopower

QAP = 0.64kB/e, QP � kB
2 T/eEF. �62�

This result is independent of temperature and of
the specific half-metallic material, and it represents a
very large magnetothermopower effect, �Q�QAP
=−55 �V/K.

E. Spin waves

Unlike the Stoner theory, the Hubbard model and
other models with electron correlations enable one to
describe spin-wave excitations in an itinerant ferromag-
net. This was already done in the old approaches based
on the random-phase approximation �RPA� �Herring,
1966�. To discuss related approaches, we present the in-
teraction Hamiltonian in terms of the spin density op-
erators,

Hint =
U

2 �
k�

ck�
† ck� −

U

2 �
q

�S−q
− Sq

+ + Sq
+S−q

− � , �63�

where Sq
� are the Fourier components of the spin-density

operators. The first term in Eq. �63� yields a renormal-
ization of the chemical potential and may be omitted.
Writing down the sequence of equations of motion for
the spin Green’s function
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Gq��� = 		Sq
+
S−q

− 

�, �64�

one derives �Irkhin and Katsnelson, 1990�

Gq��� =
	Sz
 − �q���/U

� − �q��� − �q���
, �65�

where

�q��� = U�
k

tk+q − tk

tk+q − tk + � − �
�nk↑ − nk+q↓� , �66�

where � is the spin splitting defined after Eq. �2� and the
self-energy � describes corrections to the RPA. Unlike
the standard form of the RPA,

Gq��� =
�q���

1 − U�q���
, �67�

�q��� = − �
k

nk↑ − nk+q↓

� + tk↑ − tk+q↓
, �68�

the equivalent representation �65� yields explicitly the
magnon �spin-wave� pole

�q � �q�0� = �
k�

Akq
� nk�, �69�

where Akq
� is given by Eq. �12�. Expanding in q, we get

�q=D��q�q�, where

D�� =
U

�
�
k
� �2tk

�k� � k�

�nk↑ + nk↓�

−
1

�

�tk

�k�

�tk

�k�

�nk↑ − nk↓�� . �70�

Equation �70� is the spin-wave stiffness tensor compo-
nent. For a weak ferromagnet ���EF ,U�, we have D
��. The magnon damping in the RPA is given by

 q
�1���� = − Im �q���

= �U���
k
�−

�nk↑

�tk↑
���� − tk+q↓ + tk↑� , �71�

 q
�1� �  q

�1���q� � �U��qN↑�EF�N↓�EF����q − �−�
�72�

with ��x� being the step function. Here �−=��q*� is the
threshold energy, which is determined by the condition
of entering into the Stoner continuum �decay into the
Stoner excitations, i.e., electron-hole pairs�, q* being the
minimal �in k� solution to

tk+q*↓ = tk↑ = EF. �73�

The quantity �− determines a characteristic energy scale
separating two temperature regions, namely, the contri-
butions of spin waves �poles of the Green’s function �65�
dominate at T
�− and those of Stoner excitations �its
branch cut� at T��−�.

Although the formal expressions in the s-d exchange
model are similar, the presence of two electron sub-

systems leads to some new effects, in particular to the
possible occurrence of the “optical mode” pole �
�2 
I 
S. The problem of the optical mode formation and
its damping was investigated in degenerate ferromag-
netic semiconductors �Auslender and Irkhin, 1984a,
1985a; Irkhin and Katsnelson, 1985a; Irkhin, 1987�. Ka-
plan et al. �2001� performed exact diagonalization stud-
ies of the double-exchange model which indicate the ex-
istence of continuum states in the single-spin-flip
channel that overlap the magnons at very low energies
�of order 10−2 eV� and extend to high energies. This pic-
ture differs dramatically from the prevalent view, in
which there are magnons plus the Stoner continuum at
the high-energy scale, with nothing in between. The pe-
culiarities of magnons in HMFs, especially in the
collossal-magnetoresistance materials have recently
been reviewed by Zhang et al. �2007�.

In the case of weak ferromagnets, the contribution of
the branch cut from the spin Green’s function may be
treated approximately as that of a paramagnon pole at
imaginary �, and we obtain

q* = kF↑ − kF↓, �− = D�kF↑ − kF↓�2 � �3 � TC
2 /EF.

�74�

Since q* is small, we have at small q�q*, instead of Eq.
�72�,

 q
�1���q� �

U��

q

�0

4�
�m*�2 � A/q , �75�

with �0 the lattice cell volume. The estimation �74� holds
also for the s-d�f� exchange model with the indirect
RKKY interaction, where D�TC /S�I2S /EF.

The damping at very small q
q* �where Eq. �71� van-
ishes� is due to two-magnon scattering processes. To
consider these, we have to calculate the function � to
leading order in the fluctuating part of the Coulomb in-
teraction. Writing down the equation of motion for the
Green’s function �64�, we obtain

�q��� = �
pk

�Akq
↑ �2�B�k↑,k + q − p↑,�p − �� + B�k

+ p↓,k + q↓,�p − �� − B�k + p↓,k↑,�p�

− B�k + q↓,k + q − p↑,p,�p�� , �76�

where

B�k���,k�,�� =
Np�nk��� − nk�� + nk����1 − nk��

� − tk��� + tk�

.

�77�

The magnon damping needed is given by the imaginary
part of Eq. �76�,

 q
�2���� = ��

kp�

�Akq
↑ �2�nk� − nk+q−p���Np − NB��p − ���

���� + tk − tk+q−p − �p� . �78�

Integration for the isotropic electron spectrum gives
�Irkhin and Katsnelson, 1990�
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 q
�2���� =

�0
2

12�3

q4

4	Sz
2�
�

kF�
2

� ��q/35, T � �q

�T/4��ln�T/�q� +
5
3
� , T � �q. � �79�

These results were obtained by Silin and Solontsov
�1984� within the phenomenological Fermi-liquid theory
and Auslender and Irkhin �1984a, 1985a� within the s-d
exchange model. Golosov �2000� reproduced the results
of Auslender and Irkhin �1984a, 1985a� and Irkhin and
Katsnelson �1985a� within the 1/2S expansion and per-
formed numerical investigations of the magnon spec-
trum and damping in the limit of large 
I
 �double-
exchange situation� in application to colossal-
magnetoresistance compounds.

The real part of Eq. �76� describes the temperature
dependence of the spin stiffness owing to two-magnon
processes �in addition to the simplest T2 contribution,
which occurs from the temperature dependence of the
Fermi distribution functions in Eq. �65��. The spin-wave
contribution connected with the magnon distribution
functions is proportional to T. More interesting is the
nonanalytical many-electron contribution owing to the
Fermi functions,

�D�� =
1

4	Sz
2�
pk

�tk

�k�

�tk

�k�
�nk↓�1 − nk−p↑�

tk − tk−p − �p

+
nk+p↓�1 − nk↓�
tk+p − tk − �p

−
nk+p↓�1 − nk↑�
tk+p↓ − tk↑ − �p

−
nk↓�1 − nk−p↓�
tk↓ − tk−p↑ − �p

� . �80�

Performing integration for parabolic spectra of electrons
and magnons yields

�D�T� = � ��0T

12	Sz
m*�2 1

D��
�

N�
2�EF�ln

T

�+

− 2N↑�EF�N↓�EF�ln
max��−,T�

�+
� �81�

with

�± = D�kF↑ ± kF↓�2, N��EF� = m*�0kF/2�2. �82�

It should be noted that the correction �81� dominates at
low temperatures over the above-mentioned T2 correc-
tion, which demonstrates an important role of correc-
tions to the RPA. Unfortunately, the T2 ln T term has
not yet been considered when analyzing magnon spectra
of ferromagnetic metals. We see that the temperature
dependences of spin-wave characteristics in conducting
magnets differ considerably from those in the Heisen-
berg model.

F. Magnetization and local moments

To treat the problem of magnetic moments in the
Hubbard model, we consider corrections to the magne-
tization 	Sz
. We have

	Sz
 =
n

2
− �

q
	Sq

−Sq
+
 − 	n̂i↑n̂i↓
 . �83�

The first average involved in Eq. �83� is calculated from
the spectral representation of the RPA Green’s function
�65�,

	S−q
− Sq

+
 = �2S0Nq �q 
 q*� �84�
1

�
�

−�

�

d�
NB��� q

�1������ − ��/U
�� − Re �q����2 + � q

�1�����2 �q � q*� . �85�

In contradiction with Eqs. �83� and �84�, in the true
Bloch spin-wave contribution to magnetization every
magnon should decrease 	Sz
 by unity. Agreement may
be restored by allowing not only the magnon pole but
also branch cut contributions �Irkhin and Katsnelson,
1990�. In the semiphenomenological manner, it is conve-
nient to introduce magnon operators that satisfy on av-
erage the Bose commutation relations,

bq = �2S0�−1/2Sq
+, bq

† = �2S0�−1/2S−q
− . �86�

Then we have

�	Sz
 = − �
q

	bq
†bq
 =

1

�2S0��q
	S−q

− Sq
+
 . �87�

Performing integration over � in Eq. �84� at T=0 K, we
obtain

�	Sz
 = −
1

�
�
q

 q
�1�

�q
ln

W

�q
, �88�

with W the bandwidth. This contribution of the order of
U2 ln�W /�+� describes a zero-point decrease of the mag-
netization due to the ground-state magnon damping,
which is caused by the Stoner excitations. For parabolic
electron and magnon spectra, neglecting the damping in
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the denominator of Eq. �85�, we obtain at low tempera-
tures T
�− the dependence �	Sz
cl�U2�T /�+�2. For a
weak ferromagnet, the temperature correction is propor-
tional to �T /TC�2, in agreement with the self-consistent
renormalization theory �Moriya, 1985�. It should be
noted that the T2 correction obtained is much larger
than the Stoner contribution of the order of �T /EF�2.
The spin-wave corrections to the local magnetic moment
at a site 	S2
= �3/4��n−2	n̂i↑n̂i↓
� at low T��− have a
weak dependence −�T /TC�5/2 �Irkhin and Katsnelson,
1990�. This justifies their omission in the above discus-
sion of the magnetization �83�.

At high T��−, the damping in the denominator
dominates at small q in the case of a weak ferromagnet.
Taking into account Eq. �75�, we obtain from Eq. �84�

�	S−q
− Sq

+
 =
�

�U
�

−�

�

d� NB����
0

� �Aq dq

�Dq2�2 + A2�2/q2

� � T

EF
�4/3

. �89�

Thus we get from Eq. �83� the T4/3 contribution to the
magnetization, which agrees with the result of the phase-
transition scaling theory near T=TC. For a ferromagnet
with well-localized magnetic moments, damping may be
neglected and we derive a small correction �	Sz
el
�−I2�−ln�T /�−� �Irkhin and Katsnelson, 1996�.

Now we discuss a more realistic situation in HMFs, in
particular in the Heusler alloys. These compounds dem-
onstrate high values of the saturation magnetization and
Curie temperature �see Irkhin and Katsnelson �1994�,
Galanakis and Dederichs �2005�, Fecher et al. �2006�,
Ozdogan et al. �2006��. The strong ferromagnetism is due
mainly to local moments of well-separated Mn atoms.
On the other hand, the highest magnetic moment �6�B�
and Curie temperature �1100 K� in the classes of Heu-
sler compounds as well as half-metallic ferromagnets
were revealed for Co2FeSi �Wurmehl et al., 2005�. It was
found empirically that the Curie temperature of
Co2-based Heusler compounds can be estimated from a
nearly linear dependence on the magnetic moment
�Fecher et al., 2006�.

The high spin polarization and magnetic moment of
half-metallic ferromagnets can be treated within the
generalized Slater-Pauling rule �Galanakis et al., 2002b;
Fecher et al., 2006�. According to the original formula-
tion by Slater and Pauling, the magnetic moments m of
3d elements and their binary compounds can be de-
scribed by the mean number of valence electrons nV per
atom. A plot of m versus magnetic valence m�nM� is
called the generalized Slater-Pauling rule, as described
by Kübler �1984�. According to Hund’s rule, it is often
favorable for the majority d states to be fully occupied
�nd↑=5�. Starting from m=2n↑−nV, this leads to the defi-
nition of the magnetic valence as nM=10−nV, so that the
magnetic moment per atom is given by m=nM+2nsp↑.

In the case of localized moments, the Fermi energy is
pinned in a deep valley of the minority electron density.
This constrains nd↓ to be approximately 3, and m=nV

−6−2nsp↑. HMFs are supposed to exhibit a real gap in
the minority density of states where the Fermi energy is
pinned. Then the number of occupied minority states
has to be an integer. Thus, the Slater-Pauling rule will be
strictly satisfied with the spin magnetic moment per
atom m=nV−6. The situation for the HMF and non-
HMF full Heusler alloys is shown in Fig. 10.

For ordered compounds with different kinds of atoms,
it may be more convenient to consider the total spin
magnetic moment Mt of all unit cell atoms. This quantity
scales with the valence electron number Zt: Mt=Zt−18
for the half Heusler and Mt=Zt−24 for the full Heusler
alloys. Thus, in both types of compound, the spin mag-
netic moment per unit cell is strictly integer for the
HMF situation. On the other hand, for alloys with non-
integer site occupancies like the quaternaries
X2Y1−xYxZ, the moment may become noninteger
depending on the composition, even for the HMF
state. First-principles calculations of the quaternary
Heusler alloys Co2�Cr1−xMnx�Al, Co2Mn�Al1−xSnx�, and
�Fe1−xCox�2MnAl �Galanakis, 2004� demonstrated the
Slater-Pauling behavior and half-metallic properties.
Moreover, this behavior was investigated theoretically in
V-based Heusler alloys Mn2VZ �Z=Al, Ga, In, Si,
Ge, Sn�, which are predicted to demonstrate half-
metallic ferrimagnetism �Weht and Pickett, 1999; Sasio-
glu, Galanakis, Sandratskii, et al., 2005; Ozdogan et al.,
2006�.

An interesting feature of the half-metallic Heusler al-
loys is that the Rhodes-Wolfarth ratio pC /ps �pC are the
effective moments, ps the saturation moments� can be
considerably smaller than unity �Irkhin and Katsnelson,
1994�. Moreover, the effective moment in the paramag-
netic state, determined from the paramagnetic suscepti-
bility, decreases appreciably with temperature. We recall
that for Heisenberg magnets �atomiclike magnetic
states� we have pC /ps=1, and for weak itinerant ferro-
magnets such as ZrZn2, pC /ps�1, in accordance with
the concept of thermally induced local magnetic mo-

FIG. 10. Slater-Pauling graph for Heusler compounds �Fecher
et al., 2006�.
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ments �Moriya, 1985�. In the case of conventional strong
itinerant ferromagnets �for example, Fe and Ni�, this ra-
tio is also greater than unity �for a detailed discussion,
see Lichtenstein et al. �2001��. It follows, therefore, that
the inequality pC /ps
1 is a striking property of HMFs
that could be used in their preliminary experimental
identification.

This behavior may be explained by a change of elec-
tronic structure. The temperature dependence of the
magnetic moment in the paramagnetic state may be due
to short-range magnetic order �local densities of states
are similar to those in the ferromagnetic state�. Numeri-
cal calculations demonstrate that the reduction in the
moments is a consequence of a change in the electron
structure as a result of rotation of the magnetic mo-
ments, as demonstrated for Fe and Ni by Turzhevskii et
al. �1990�. One would expect such changes to be particu-
larly large in the case of HMFs, and they should be of a
qualitative nature �smearing out of the hybridization gap
because of spin disorder; for a review, see Irkhin and
Katsnelson �1994��. From the many-electron model
point of view, the decrease of the local moment with
increasing temperature is connected with the absence of
corrections to ground-state magnetization of the type
�88�. However, such corrections do occur at high tem-
peratures.

G. Nuclear magnetic relaxation

Nuclear magnetic resonance �NMR�, which is one of
most powerful tools for investigating various physical
properties, has a number of peculiarities for magneti-
cally ordered materials, and especially for HMFs. The
localized-spin Heisenberg model is inadequate to de-
scribe the systems mentioned above, where the role of
conduction electrons is essential for the magnetic prop-
erties. Usually the data on the longitudinal nuclear mag-
netic relaxation rate 1/T1 are discussed within itinerant-
electron models such as the Hubbard model or
phenomenological spin-fluctuation theories �Ueda and
Moriya, 1975; Moriya, 1985, 1994; Millis et al., 1990; Ishi-
gaki and Moriya, 1996�. On the other hand, in the s-d�f�
exchange model �well-separated localized and itinerant
subsystems�, magnetic properties differ essentially from
those in the paramagnon regime. We discuss the contri-
butions to 1/T1�T� owing to electron-magnon interac-
tions for three- and two-dimensional �3D and 2D� me-
tallic ferromagnets with well-defined local magnetic
moments, with special attention to the HMF case �Irkhin
and Katsnelson, 2001�.

The standard Hamiltonian of the hyperfine interac-

tion Hhf=hI �h�=A��S�, Â is the hyperfine interaction
matrix� contains the Fermi �contact� and dipole-dipole
contributions, A��=AF���+A��

dip. According to Abragam
�1961�, we have

h− = �AF + 1
3aF�0��S− + aF�2�S+ + 2aF�1�Sz, �90�

hz = �AF − 2
3aF�0��Sz + a�F�1�S+ + F�1�*S−� , �91�

where

F�0� = 	�1 − 3 cos2��/r3
 ,

F�1� = 	sin � cos � exp�− i!�/r3
 ,

F�2� = 	sin2� exp�− 2i!�/r3
, a = − 3
2 e n, �92�

	¯
 is the average over the electron subsystem states,
and  e and  n are the gyromagnetic ratios for electron
and nuclear moments, respectively. In the case of local
cubic symmetry, we have F�a�=0. The Fermi hyperfine
interaction is proportional to the electron density at the
nucleus and therefore only s states participate in it, the
contribution of core s states �which are polarized due to
local magnetic moments� being much larger than that of
conduction electrons. This is a consequence of the con-
siderably smaller localization area �and therefore higher
density on nuclei� for the core states. It is obvious that
magnetic f or d electrons dominate also in dipole inter-
actions because of their large spin polarization. Hence
the direct interaction of nuclear spins with those of con-
duction electrons can be neglected in magnets with well-
defined local magnetic moments. Nevertheless, conduc-
tion electrons do affect nuclear relaxation via their
influence on the local-moment system; besides that, as
we show below, such contributions possess large ex-
change enhancement factors.

Using the expressions for 1/T1 and linewidth 1/T2 in
terms of the Green’s functions �Moriya, 1963�,

1

T1
= −

T

2�
Im�

q
		hq

+
h−q
− 

�n

/�n, �93�

1

T2
=

1

2T1
−

T

2�
lim
�→0

Im�
q

		hq
z
h−q

z 

�/� �94�

��n= 	hz
�T is the NMR frequency�, we derive

1

T1
=

T

2
���AF + 1

3aF�0��2 + a2
F�2�
2�K+−

+ 4a2
F�1�
2Kzz� , �95�

1

T2
=

1

2T1
+

T

2
��AF − 2

3aF�0��2Kzz + a2�2
F�1�
2K+−�� ,

�96�

K�� = − �1/�� lim
�→0

Im�
q

		Sq
+
S−q

− 

�/� . �97�

Passing to the magnon representation, we obtain

		Sq
+
S−q

− 

� = 2S/�� − �q + i q���� , �98�

where �q=2S�Jq−J0�+�0 is the magnon frequency and
 q����� is the magnon damping. Thus we have
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K+− =
2S

��n
�
q

 q��n�
�q

2 . �99�

The damping owing to the one-magnon decay processes
can be represented as

 q
�1���� = 2�I2S��

k
��tk↑���tk−q↓� , �100�

where the energy is referred to the Fermi level. The
linearity of spin-fluctuation damping in � is a character-
istic property of metals. According to Eq. �95�, this leads
to T-linear contributions to 1/T1, which is the Korringa
law. It is important that the simplest expression for the
Korringa relaxation

1/T1 � 1/T2 � A2N↑�EF�N↓�EF�T �101�

�A is the effective hyperfine interaction constant� is al-
most never applicable for magnetic metals: exchange en-
hancement factors can change even the order of magni-
tude of 1/T1 �Moriya, 1985; Irkhin and Katsnelson,
1994�. An accurate expression for the Korringa contri-
bution in the case under consideration can be derived by
the substitution of Eqs. �99� and �100� into Eq. �95�.

Apart from the three-dimensional case, we can also
consider two-dimensional HMFs, keeping in mind, for
example, layered CMR compounds like LaSr2Mn2O7
�de Boer and Groot, 1999; Nagaev, 2001�. According to
Eq. �72�, the damping �100� has a threshold value of q,
which is determined by the spin splitting �=2 
I 
S, q*

=� /vF �vF is the electron velocity at the Fermi level�, the
corresponding characteristic temperature and energy
scale being �−��� /vF�2TC. After integration for the
parabolic electron spectrum, the one-magnon damping
contribution to Eq. �99� takes the form

��1�K+− =
N↑�EF�N↓�EF�

D2m2 � �1/4, D = 3

1/��q*� , D = 2,

�102�

with m the electron effective mass. Thus in the 3D case
the factor of I2 is canceled, and the factor of I−1 occurs in
the 2D case, so that we obtain a strongly enhanced
T-linear Korringa-type term �remember that D�J
�I2 /W for the RKKY interaction�. This means that the
contribution of conduction electrons to the T-linear re-
laxation rate via their interaction with localized spins is
indeed much more important than the “direct” contribu-
tion: perturbation theory in the s-d exchange coupling
parameter I turns out to be singular.

In HMFs, the one-magnon decay processes are absent
and electron-magnon �two-magnon� scattering processes
should be considered �Sec. III.E�. Substituting the corre-
sponding damping into Eq. �99� yields for D=3

��2�K+− =
�0T1/2

128�2Sm2D7/2�
�

N�
2�EF�

� �3�1/2��3
2
�T , T � �−

5.2�, T � �−,

where ��z� is the Riemann function and �0 is the lattice
cell volume. This contribution can also considerably
modify the temperature dependence of 1/T1 in usual fer-
romagnets, a crossover from T5/2 to T3/2 dependence of
the correction taking place.

For D=2 and T ,�−��0, small magnon momenta of
order of ��0 /D�1/2 make the main contribution to Eq.
�99�. Using the high-temperature expression Np=T /�p,
one gets

��2�K+− = 1.23
�0

3kF

8�4SD5/2�0
1/2T . �103�

Thus in the 2D FM case, in contrast with the 3D one, the
relaxation rate 1/T1 is strongly dependent on the aniso-
tropy gap. It is worth noting an important difference
between relaxation processes via phonons and via mag-
nons, due to the gap in the magnon spectrum. Usually
�0��n and therefore one-magnon processes contribute
to the relaxation rate due to magnon damping only �cf.
the discussion of the phonon-induced relaxation pro-
cesses by Abragam �1961��. However, the mechanisms of
magnon damping in magnetic dielectrics �magnon-
magnon interactions� are different from those in mag-
netic metals and degenerate semiconductors �Auslender
and Irkhin, 1984a, 1985a�.

H. Thermodynamic properties

Consider the renormalization of electronic specific
heat in an itinerant ferromagnet due to interaction with
spin fluctuations. Integration in Eqs. �8� and �9� at T=0
gives

Re 
��kF�,E� = −
U�

�+ − �−
N−��EF�

��
�=±

��E − ���ln

E − ��


W
.

Then the inverse residue of the electron Green’s func-
tion 1/Zk��E�=1− �� /�E�Re 
k��E�, which determines
the renormalization of the electron effective mass owing
to the electron-magnon interaction, contains a logarith-
mic factor. We obtain for the coefficient at the linear
term in the electronic specific heat at T��−

 � =  �
�0�/Z��kF�,EF�

=
�2

3
N��EF��1 +

U�

�+ − �−
N−��EF�ln

�+

�−
� . �104�

For weak itinerant ferromagnets, we have
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ln
�+

�−
� − 2 ln�UN�EF� − 1� �105�

so that a paramagnon enhancement of the specific heat
is obtained, the numerical factor in Eq. �104� being in-
exact in this limit because of the neglect of longitudinal
spin fluctuations �see Moriya �1985��. On the other hand,
we have a considerable enhancement of specific heat
owing to spin fluctuations in strong ferromagnets, which
is actually observed in a number of systems.

Other thermodynamic properties may be treated by
calculating the free energy of the system. The spin-wave
contribution to the free energy has the usual form for
Bose excitations with a square dispersion law, and is pro-
portional to �T /TC�5/2. At low T
�−, the many-electron
�branch cut� contribution reads

Fel =
1

2S0
�

q�q*

�q	S−q
− Sq

+
 � U��
kk�

nk�↓�1 − nk↑�

tk↑ − tk�↓ + �k−k�
.

�106�

Differentiating Eq. �106� over T, one obtains

�Cel = −
�

�T
�Fel�T�

= U2 2	Sz

�+ − �−

N↑�EF�N↓�EF�
2�2

3
T ln

�+

max��−,T�
.

�107�

Thus at T��− we have the T ln T dependence of spe-
cific heat instead of Eq. �104�.

As one can see from Eq. �104�, the enhancement of
the effective mass and electronic specific heat owing to
spin fluctuations is absent in the half-metallic state. We
demonstrate that the specific heat of a conducting ferro-
magnet may contain spin-fluctuation contributions of
another nature. A general expression for the specific
heat in the s-d exchange model in terms of the total
energy is

C�T� =
�	H

�T

=
�

�T
� dE Ef�E�Nt�E�

=
�2

3
Nt�E�T +� dE Ef�E�

�

�T
Nt�E,T� , �108�

where

Nt�E� = −
1

�
�
k�

Im Gk��E� .

The first term on the right-hand side of Eq. �108� yields
the standard result of the Fermi-liquid theory. The sec-
ond term is due to the energy dependence of the density
of states. Such a dependence occurs in the conducting
ferromagnet owing to nonquasiparticle �incoherent� sta-
tus. Using again the expressions for the self-energies �8�
and �9�, we derive �Irkhin and Katsnelson, 1990�

�C��T� = 2�I2	Sz
�
kq

f�tk+q,−� − ��q�
�tk+q,−� − tk,��2

�

�T
nk+q,−�.

�109�

Since at low temperatures f�tk+q,↓−�q�=1, f�tk+q,↑−�q�
=0, the nonquasiparticle states with �=↓ do not contrib-
ute to the linear specific heat since they are empty at
T=0 K. In the half-metallic state, nonquasiparticle con-
tributions �108� with �=↑ are present for I
0 only, and
we obtain

�C↑�T� =
2�2

3
I2	Sz
N↓�EF�T�

k

1

�tk↑ − EF�2 . �110�

To avoid misunderstanding, it should be noted that the
presence of such contributions to specific heat indicates
the inapplicability of the Fermi-liquid description in
terms of dynamical quasiparticles only, which are deter-
mined by poles of Green’s functions. It may be shown
that the entropy of interacting Fermi systems at low T is
expressed in terms of Landau quasiparticles with the en-
ergies determined as variational derivatives of the total
energy with respect to occupation numbers �Carneiro
and Pethick, 1975�. Thus, even in the presence of non-
pole contributions to the Green’s functions, the descrip-
tion of thermodynamics in terms of statistical quasipar-
ticles �Carneiro and Pethick, 1975� holds. �However, the
quasiparticle description is insufficient for spectral char-
acteristics, e.g., optical and emission data.� The anoma-
lous  T term is determined by the difference of the spec-
tra between statistical and dynamical quasiparticles.

Similar contributions to the specific heat in the Hub-
bard model with strong correlations were also discussed
by Irkhin and Katsnelson �1990�. They dominate in the
enhancement of specific heat for half-metallic ferromag-
nets and may be important, besides the effective-mass
enhancement �104�, for the usual magnets with well-
defined local moments.

I. Transport properties

Transport properties of HMFs have been the subject
of numerous experimental investigations �see, e.g., re-
cent works for CrO2 �Rabe et al., 2002� and NiMnSb
�Borca et al., 2001�, and the reviews �Irkhin and Katsnel-
son, 1994; Nagaev, 2001; Ziese, 2002��. At the same time,
the theoretical interpretation of these results is still a
problem. As for electronic scattering mechanisms, the
most important difference between HMFs and standard
itinerant electron ferromagnets such as iron or nickel is
the absence of one-magnon scattering processes in the
former case �Irkhin and Katsnelson, 1994�.

Since states with one spin projection exist only at the
Fermi level and one-magnon scattering processes are
forbidden in the whole spin-wave region, the corre-
sponding T2 term in resistivity is absent in the case of
half-metallic ferromagnets. This seems to be confirmed
by comparing experimental data on resistivity of Heu-
sler alloys TMnSb �T=Ni, Co, Pt, Cu, Au� and PtMnSn
�Otto et al., 1989� �see also the discussion in Sec. V.A.1�.
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The T2 contribution from one-magnon processes to the
resistivity for half-metallic systems �T=Ni, Co, Pt� was
not observed out, whereas the dependences ��T� for the
usual ferromagnets were considerably steeper.

Two-magnon scattering processes were considered
many years ago, the temperature dependence of resistiv-
ity obtained being T7/2 �Hartman-Boutron, 1965;
Roesler, 1965�. The temperature dependence of the re-
sistivity obtained has the form T7/2. At low enough tem-
peratures, the first result fails and should be replaced by
T9/2 �Lutovinov and Reizer, 1979�; the reason is the com-
pensation of the transverse and longitudinal contribu-
tions in the long-wavelength limit, which is a conse-
quence of the rotational symmetry of the s-d exchange
Hamiltonian �Grigin and Nagaev, 1974; Auslender et al.,
1983; Nagaev, 1983�. We discuss the effects of interaction
of current carriers with local moments in the standard
s-d exchange model in the spin-wave region,

H = H0 − I�2S�1/2�
kq

�ck↑
† ck+q↓bq

† + H.c.�

+ I �
kqp�

�ck�
† ck+q−p�bq

†bp. �111�

The zero-order Hamiltonian includes noninteracting
electrons and magnons,

H0 = �
k�

Ek�ck�
† ck� + �

q
�qbq

†bq,

Ek� = tk − ��/2, �q = 2S�J0 − Jq� , �112�

with �=2IS the spin splitting that is included in H0. In
the half-metallic case, the spin-flip processes do not
work in the second order in I since states with one spin
projection only are present at the Fermi level. At the
same time, we have to consider the renormalization of
longitudinal processes in higher orders in I �formally, we
have to include terms up to second order in the quasi-
classical small parameter 1/S�. To this end, we can elimi-
nate from the Hamiltonian the terms that are linear in
the magnon operators using the canonical transforma-
tion �Grigin and Nagaev, 1974; Nagaev, 1983�. Then we
obtain the effective Hamiltonian

H̃ = H0 +
1
2 �

kqp�

�Akq
� + Ak+q−p,q

� �ck�
† ck+q−p�bq

†bp.

�113�

Here Akq
� is the s-d scattering amplitude, which is de-

fined by Eq. �12� �U→I�. A more general interpolation
expression for the effective amplitude, which does not
assume the smallness of 
I
 or 1/2S, was obtained by
Auslender et al. �1983� using a variational approach.

The most general and rigorous method for calculating
the transport relaxation time is the use of the Kubo for-
mula for the conductivity �xx �Kubo, 1957� �see details in
Irkhin and Katsnelson �2002��,

�xx = ��
0

�

d"�
0

�

dt exp�− �t�	jx�t + i"�jx
 , �114�

where �=1/T, �→0,

j = − e�
k�

vk�ck�
† ck� �115�

is the current operator, and vk�=�Ek� /�k is the electron
velocity. Representing the total Hamiltonian in the form
H=H0+H�, the correlator in Eq. �114� may be expanded
in the perturbation H� �Nakano, 1957; Mori, 1965�. In
the second order, we obtain for the electrical resistivity

�xx = �xx
−1 =

T

	jx
2
2�

0

�

dt	�jx,H��t���H�,jx�
 , �116�

where H��t� is calculated with the Hamiltonian H0.
In the HMF situation, band states with one spin pro-

jection only, �=sgn I, are present at the Fermi level
�Irkhin and Katsnelson, 1994�. We consider the case I
�0, �=+ and omit the spin indices in the electron spec-
trum to obtain for the transport relaxation time # de-
fined by �xx=e2	�vx�2
#

1

#
=

�

4T �
kk�q

�vk
x − vk�

x �2�Akq
↑ + Ak�,q−k�+k

↑ �2

�Nq�1 + Nq−k�+k�nk�1 − nk��

� ��tk� − tk − �q + �q−k�+k���
k

�vk
x�2��tk� . �117�

Averaging over the angles of the vector k leads to the
result 1 /#�I2	 with

	 = �
pq

fpq
���p − �q�
p − q


exp ���p� − exp ���q�
�1 + Nq��1 + Np� ,

�118�

where fpq=1 for p ,q�q* and

fpq =
�p � q�2

�p − q�2�q*�2 �p,q � q*� . �119�

As discussed earlier, the wave vector q* determines the
boundary of the region where the q dependence of the
amplitude become important, so that t�k+q�− t�k��� at
q�q*. In the case q
q*, simple perturbation theory
fails and we have to take into account the spin splitting
by collecting terms of higher order in I. In the simple
one-band model of HMF where EF
�, one has q*

��� /W �W is the conduction bandwidth� �Grigin and
Nagaev, 1974; Nagaev, 1983�. The quantity q* determines
a characteristic temperature and energy scale T*

=D�q*�2�D�� /W�.
When estimating the temperature dependences of re-

sistivity, one has to remember that each power of p or q
gives T1/2. At very low temperatures T
T*, small quasi-
momenta p ,q
q* yield main contribution to the inte-
grals and
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��T� � �T/TC�9/2. �120�

Such a dependence was obtained in the narrowband
case �double-exchange model with large 
I
�, where the
scale T* is absent �Kubo and Ohata, 1972�, and by the
diagram approach in the broadband case �Lutovinov and
Reizer, 1979�. At the same time, at T�T* the function
fpq in Eq. �118� can be replaced by unity to obtain

��T� � �T/TC�7/2. �121�

Generally speaking, q* may be sufficiently small pro-
vided that the energy gap is much smaller than W, which
is the case for real HMF systems. We consider the model
of the HMF spectrum �50� where the majority-spin band
is metallic and the minority spin is semiconducting. For
temperatures T�TC, both the characteristic q and p are
small in comparison with the inverse lattice constant and
we can set

Akq
� =

1

2S
�tk↓ − tk↑�

tk+q↑ − tk↑

tk+q↑ − tk↓
. �122�

The wave vector q* determines the boundary of the re-
gion where the q dependence of the amplitude become
important, so that q*=� /vF �the same value as for the
spin polarization problem�. The corresponding charac-
teristic temperature and energy scale is

T* = D�q*�2 � D��/W�2, �123�

which coincides with the case of a usual ferromagnetic
metal. The above temperature dependences of resistivity
are not changed �Irkhin and Katsnelson, 2002�.

Now we treat the two-dimensional situation which
may be appropriate for layered manganites �de Boer
and Groot, 1999; Nagaev, 2001�. At low temperatures,
we obtain

��T 
 T*� � �T/TC�7/2. �124�

At the same time, for T�T* we obtain, after replacing
the scattering amplitude by unity, a logarithmically di-
vergent integral that should be cut at T*. Thus we get

��T � T*� � �T/TC�5/2ln�T/T*� . �125�

To discuss the magnetoresistivity, we have to intro-
duce the gap in the magnon spectrum, �q→0=Dq2+�0.
Provided that the external magnetic field H is large in
comparison with the anisotropy gap, �0 is proportional
to H. In the 3D case, the resistivity at T
T* is linear in
the magnetic field,

��T,H� − ��T,0� � − �0T7/2/TC
9/2. �126�

The situation at T�T* is more interesting since the
quantity �	 /��0 contains a divergence that is cut at �0
or T*. We have at T��0 ,T*

���T,H� � −
T3�0

�max��0,T*��1/2 �127�

�of course, at T
�0 the resistivity is exponentially
small�. A negative H-linear magnetoresistance was ob-
served in CrO2 �Rabe et al., 2002�.

The discovery of giant magnetoresistance �GMR� led
to tremendous effort to understand and develop tech-
nology based on high-density magnetic recording �Zutic
et al., 2004�. Giant magnetoresistance for metallic multi-
layers �superlattices� containing HMFs was first pre-
dicted by Irkhin and Katsnelson �1994�. NiMnSb-based
spin-valve structures using Mo spacer layers
NiMnSb/Mo/NiMnSb/SmCo2 were successfully pro-
duced �Hordequin et al., 1998�. The associated GMR ex-
hibits a clear spin-valve contribution of about �R /R
�1% �Hordequin et al., 1998�. One limiting factor for
such a small value is the large resistivity of the Mo layer,
which determines the limited flow of active electrons ex-
changed between the two ferromagnetic layers without
being scattered. The giant tunneling magnetoresistance
differs in the use of a dielectric spacer instead of a me-
tallic one. The GMR in tunnel junctions based on HMFs
was considered theoretically by de Groot, Janner, and
Mueller �1983� and Tkachov et al. �2001�, and recently
this issue became a subject of intensive experimental in-
vestigations �Gercsi et al., 2006; Rybchenko et al., 2006;
Sakuraba, Hattori, Oogane, et al., 2006; Sakuraba, Miya-
koshi, Oogane, et al., 2006; Sakuraba et al., 2007�.

It is important that NQP states do not contribute to
the temperature dependence of the resistivity for pure
HMFs. The opposite conclusion was drawn by Fu-
rukawa �2000�. He attempted to calculate low-
temperature resistivity of half-metals taking into ac-
count the non-rigid-band behavior of the minority band
due to spin fluctuations at finite temperatures, and he
derived that the unconventional one-magnon scattering
process gives T3 dependence in resistivity. However, this
calculation was not based on a consistent use of the
Kubo formula and, in our opinion, can be hardly justi-
fied.

In contrast, impurity contributions to transport prop-
erties in the presence of potential scattering are deter-
mined mainly by the NQP states �Irkhin and Katsnelson,
1994; Irkhin et al., 1989, 1994�. To second order in the
impurity potential U that derived after neglecting vertex
corrections and averaging over impurities, we obtain for
the transport relaxation time

�#imp
−1 �E� = − 2U2 Im�

p
Gp�

�0��E� , �128�

where Gp�
�0��E� is the exact Green’s function for the ideal

crystal. Thus the contributions under consideration are
determined by the energy dependence of the density of
states N�E� for the interacting system near the Fermi
level. The most nontrivial dependence comes from the
nonquasiparticle �incoherent� states with the spin pro-
jection �=−sgn I, which are present near EF. Near the
Fermi level, the NQP contribution is determined by the
magnon density of states g��� and follows a power law,
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�Nincoh�E� � �
0

�E

d�g��� � 
E
����E� �
E
 � �̄� .

�129�

Here ��x� is the step function, and E refers to EF; we
have �= 3

2 and d=1 for the 3D and 2D cases, respec-
tively. The corresponding correction to resistivity reads

��imp�T�
�2 = − ��imp�T�

� − U2� dE�−
�f�E�
�E

��Nincoh�E� � T�.

�130�

A contribution of the order of T� with ��1.65 �which is
not too far from 3/2� was observed in the temperature
dependence of the resistivity for NiMnSb �Borca et al.,
2001� above 100 K. The half-metallic properties above
100 K are being challenged, however. The incoherent
contribution to magnetoresistivity is given by

��imp�T,H� � �0 � �Nincoh��T�/�T � �0T�−1, �131�

so that we obtain a temperature-independent term in
the 2D case.

The correction to thermoelectric power, which is simi-
lar to Eq. �130�, reads �cf. Irkhin et al. �1989, 1994��

�Q�T� �
1

T
� dE�− �f�E�/�E�E�N�E� . �132�

In addition, taking account of higher orders in impurity
scattering leads to the replacement of the impurity po-
tential V by the T matrix. For pointlike scattering, the
latter quantity is given by

T�E� =
U

1 − UR�E�
, R�E� = �

k
Gk��E� . �133�

Expanding Eq. �133� yields the term

�Q�T� �
1

T
� dE�− �f�E�/�E�E Re �R�E� , �134�

with �R�E� being obtained by analytical continuation
from �N�E�. Thus we have �Q�T��T3/2.

J. X-ray absorption and emission spectra. Resonant x-ray
scattering

The NQP contributions in the presence of the poten-
tial U, which is induced by the impurity at a lattice site,
can be treated in the s-d exchange model in the repre-
sentation �23�. The impurity potential results in the NQP
contribution to this quantity being enhanced for U
0
and suppressed for U�0. These results can be used to
consider the manifestations of NQP states in the core-
level spectroscopy �Irkhin and Katsnelson, 2005a�.

Various spectroscopy techniques such as x-ray absorp-
tion, x-ray emission, and photoelectron spectroscopies
�XAS, XES, and XPS� give important information about

the electronic structure of HMFs and related com-
pounds, i.e., ferromagnetic semiconductors and colossal
magnetoresistance materials �see, e.g., Yarmoshenko et
al. �1998�, Yablonskikh et al. �2001�, Kurmaev et al.
�2003� and Wessely et al. �2003��. It is well known �Ma-
han, 1990� that many-body effects �e.g., dynamical core
hole screening� can be important for core-level spectros-
copy even when the system is not strongly correlated in
the initial state. Therefore, it is interesting to study the
interplay of these effects and NQP states, which are of
essentially many-body origin themselves.

To consider the core-level problem in HMFs, we use
the Hamiltonian of the s-d exchange model in the pres-
ence of the external potential U induced by the core
hole,

H� = �0f†f + U �
kk��

ck�
† ck��f†f , �135�

where f† , f are core-hole operators and U
0. X-ray ab-
sorption and emission spectra are determined by the
Green’s function �Mahan, 1990�

Gkk�
� �E� = 		ck�f
f†
ck��

† 

E. �136�

It follows from the investigation of the sequence of
equations of motion �Irkhin and Katsnelson, 2005a� that,
in the ladder approximation, the spectral density for the
two-particle Green’s function Gkk�

� �E� is equivalent to
the one-particle spectral density in the presence of the
core-hole potential U �note that the ladder approxima-
tion is inadequate to describe the XAS edge singularity
in a vicinity close to the Fermi level �Mahan, 1990��.
Thus the core-hole problem is intimately connected with
the impurity problem.

Since XAS probes empty states and XES occupied
states, the local DOS

Nloc
� �E� = −

1

�
Im G00

� �E� �137�

describes the absorption spectrum for E�EF and the
emission spectrum for E
EF. To take into account the
core-level broadening, a finite damping � should be in-
troduced �Irkhin and Katsnelson, 2005a�. For small band
filling, exciton effects �strong interaction with the core
hole� result in a considerable enhancement of NQP con-
tributions to the spectra in comparison with those to
DOS. The results for the semielliptic bare band are
shown in Figs. 11 and 12.

To probe the spin-polaron nature of the NQP states
more explicitly, it would be desirable to use spin-
resolved spectroscopic methods such as x-ray magnetic
circular dichroism �XMCD; for a review, see Ebert
�1996��. Owing to the interference of electron-magnon
scattering and exciton effects �interaction of electrons
with the core hole�, the NQP contributions to x-ray
spectra can be considerably enhanced in comparison
with those to the DOS of the ideal crystal. Thus the
core-level �x-ray absorption, emission, and photoelec-
tron� spectroscopy might be an efficient tool to investi-
gate the NQP states in the electron energy spectrum.
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Now we consider the NQP effects in resonant x-ray
scattering processes. It was observed �Kurmaev et al.,
2003� that the elastic peak of the x-ray scattering in
CrO2 is more pronounced than in usual Cr compounds,
e.g., in elemental chromium. These authors have put for-
ward some qualitative arguments that the NQP states
may give larger contributions to resonant x-ray scatter-
ing than usual itinerant electron states. Here we treat
this question quantitatively and estimate explicitly the
corresponding enhancement. The intensity of resonant
x-ray emission induced by the photon with the energy �
and polarization q is given by the Kramers-Heisenberg
formula

Iq�q���,�� � �
n
��

l

	n
Cq�
l
	l
Cq
0


E0 + �� − El − i�l
�2

���En + �� − E0 − �� . �138�

Here q� and �� are the polarization and energy of the

emitted photon; 
n
 , 
0
, and 
l
 are the final, initial, and
intermediate states of the scattering system, respec-
tively; Ei are the corresponding energies; and Cq is the
operator of the dipole moment for the transition, which
is proportional to fc+c†f†. Assuming for simplicity that
�l does not depend on the intermediate state, �l=�, and
taking into account only the main x-ray scattering chan-
nel �where the hole is filled from the conduction band�,
one obtains �Sokolov et al., 1977�

I�� � ��
�

G00
� �z��2

, �139�

where z=��−E0+ i�. Owing to a jump in the DOS at the
Fermi level, the NQP part of the Green’s function con-
tains a large ln�W /z� term at small z. This means that
the corresponding contribution to the elastic x-ray scat-
tering intensity ���=E0� is enhanced by a factor of
ln2�W /��, which makes a quantitative estimation for the
qualitative effect as discussed by Kurmaev et al. �2003�.
Of course, the smearing of the jump in the density of
NQP states by spin dynamics is irrelevant provided that
�� �̄ ��̄ is a characteristic magnon frequency�.

IV. MODERN FIRST-PRINCIPLES CALCULATIONS

A. Different functional schemes

In this section, we review contemporary approaches
to the electronic-structure calculations, taking into ac-
count correlation effects. Model considerations dis-
cussed above demonstrate the relevance of the correla-
tion effects �such as electron-magnon interactions� for
the physics of half-metallic ferromagnets. In order to
calculate the electronic structure of real materials, we
have to solve a complicated many-body problem for a
crystal, corresponding to inhomogeneous gas of interact-
ing electrons in an external periodic potential,

H = H0 + Hint,

H0 = �
�
� dr ��

+�r��− 1
2�2 + Vext�r�����r� ,

Hint =
1
2 �

���
� � dr dr���

+�r����
+ �r��

�V�r − r������r�����r� . �140�

In this section, we use atomic units ��=m=e=1�, ���r� is
a field operator for electrons, Vext�r� describes the inter-
action of electrons with static nuclei which are supposed
to form the periodic crystal lattice and also may include
other external potentials �defects, electric fields, etc.�,
and V�r−r��=1/ 
r−r�
 is the Coulomb interaction be-
tween electrons.

The modern view on various practical schemes for so-
lution of this general many-electron problem is based on
its functional formulation in the framework of the so-
called effective action approach �Fukuda et al., 1994;
Georges et al., 1996; Kotliar et al., 2006�. The partition

FIG. 11. Local density of states Nloc
↓ �E� �solid line� for a half-

metallic ferromagnet with S=1/2, I=0.3, �=0.01 in the pres-
ence of the core-hole potential U=−0.2. Dashed line shows the
DOS N↓�E� for the ideal crystal. The value of EF calculated
from the band bottom is 0.15.

FIG. 12. Local density of states Nloc
↑ �E� �solid line� for a half-

metallic ferromagnet with S=1/2, I=−0.3, �=0.01 in the pres-
ence of the core-hole potential U=−0.3. Dashed line shows the
DOS N↑�E� for the ideal crystal. The value of EF calculated
from the band bottom is 0.15.
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function of an electronic system within an imaginary-
time functional integral formalism can be expressed as
an integral over electronic Grassmann variables,

Z = �
�
� D���

+���e−S,

S = �
�
� dr�

0

�

d#��
+�r,#�

�

�#
���r,#� + �

0

�

d#H�#� .

�141�

The free energy of the many-electron system F
=−T ln Z can be expressed as a function of optimally
chosen physical variables for a given problem. The most
accurate scheme corresponds to the Baym-Kadanoff or
Luttinger-Ward functional �Luttinger and Ward, 1960;
Baym and Kadanoff, 1961� of the one-electron Green’s
function,

G��r − r�,# − #�� = − 	T#���r,#���
+�r�,#��
 , �142�

T# is the time-ordering operator. In this formulation, one
has to add constraint fields of dual variable 
 to the
action,

S�
� = S + �
�
� dr� dr��

0

�

d#�
0

�

d#�

�
��r,r�,#,#��G��r�,r,#�,#� , �143�

and find the partition function in the presence of the
auxiliary source field,

Z�
� = e−F�
� =� D��+��e−S�
�. �144�

The corresponding Baym-Kadanoff functional is defined
as the Legendre transformation of F�
� to the Green’s
function variable,

F�G� = F�
� − Tr�
G� , �145�

with further use of the functional derivative G=�F /�

to eliminate the constraint fields. Using the free-electron
Green’s function corresponding to the H0 part of the
Hamiltonian, the final form of the functional with Kohn-
Sham decomposition can be written in the following
form:

F�G� = − Tr ln�G0
−1 − 
� − Tr�
G� + 	�G�; �146�

here 	�G� is the Luttinger generating functional, which
can be represented as a sum of all irreducible diagrams
without legs constructed from the exact Green’s function
G and the bare electron-electron interaction line �bare
four-leg vertex� V. The Baym-Kadanoff functional is sta-
tionary in both G and 
 and its variation with respect to

 leads to the Dyson equation

G−1 = G0
−1 − 
 , �147�

and the G extremum gives the variational identity 

=�	 /�G.

The Baym-Kadanoff functional allows us in principle
to calculate not only free energy and thus thermody-
namic properties of the system, but also the Green’s
function and thus the corresponding excitation spec-
trum. The main point that makes this scheme rather use-
ful for model many-body analysis and preserves its
broad practical use in electronic-structure calculations is
related to the difficulties in finding an exact representa-
tion of F�G� even for simple systems.

In this situation, the density-functional scheme of
Kohn, Hohenberg, and Sham �Hohenberg and Kohn,
1964; Kohn and Sham, 1965� turns out to be the most
successful scheme for electronic-structure calculations of
an electronic systems with not too strong correlations.
For this purpose, the functional of the static electronic
density

���r� = −
1

�
Im G��r,# = 0−� �148�

is constructed. The corresponding constraint fields in the
effective action are related to the Kohn-Sham interac-
tion potential, which is represented as a sum of Hartree
and exchange-correlation �xc� parts,

Vint = VH + Vxc. �149�

Finally, the Kohn-Sham free-energy functional can be
written in the following form:

F��� = − Tr ln�G0
−1 − Vext − Vint� − Tr�Vint��

+ FH��� + Fxc��� , �150�

where Vext is an external potential and FH is the Hartree
potential. Again, there is a similar problem: an exact
form of the exchange-correlation functional Fxc��� is,
generally speaking, unknown, and only a formal expres-
sion in terms of the integral over the coupling constant
exists �Harris and Jones, 1974�. The practical use of the
density-functional theory �DFT� is related with the local-
density approximation �LDA�,

Fxc��� � � dr��r��xc���r�� , �151�

where �xc��� is the exchange-correlation energy per par-
ticle of homogeneous electron gas with a given density.
It can be parametrized from numerically exact Monte
Carlo calculations �Ceperley and Alder, 1980�. Taking
into account the spin dependence of the DFT through
���r�, one can study the magnetic properties of complex
materials. This was the method used in most of the
electronic-structure calculations referred to above; in
particular, the concept itself of half-metallic ferromag-
netism was introduced based on this kind of calculation
�de Groot, Mueller, v. Engen, et al., 1983�. In practice,
the LDA scheme results sometimes in well-known diffi-
culties; in particular, it usually underestimates energy
gaps in semiconductors. For this reason, it can fail to
describe properly the half-metallic state, e.g., in the case
of colossal magnetoresistance manganites �Pickett and
Singh, 1996�. The DFT scheme is formally exact �assum-
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ing that an exact Exc is known� to find the energy and
electronic density of the many-body systems by minimi-
zation of the density functional. However, the excitation
spectrum, rigorously speaking, cannot be expressed in
terms of the Kohn-Sham eigenenergies �i defined by

�− 1
2�2 + Vext + Vint��i = �i�i �152�

�see, e.g., the discussion of NQP contributions to ther-
modynamic properties in Sec. III.H�.

A reasonable scheme that can overcome the difficul-
ties of the DFT scheme for the gap problem uses the
so-called GW approximation proposed by Hedin �1965�.
The functional approach to the GW scheme was devel-
oped �Almbladh et al., 1999; Chitra and Kotliar, 2000,
2001� and is related with the free-energy functional of
both the total Green’s function G and screened Cou-
lomb interactions W= �V−1−��−1,

F�G,W� = − Tr ln�G0
−1 − 
� − Tr�
G�

+ 1
2 Tr ln�V−1 − �� + 1

2 Tr��W� + FH���

+ 	�G,W� , �153�

where � is the polarization operator. Earlier a similar
approach was used in the theory of phonon-induced su-
perconductivity of disordered systems �Anokhin and
Katsnelson, 1996�. In the GW approximation, only the
lowest-order diagram in the screened interactions is in-
cluded in the generating functional,

	�G,W� = 1
2 Tr�GWG� . �154�

In this case, the polarization operator �, which serves as
a constraint field for the screened Coulomb interactions
W, has the simplest form

� = − 2
�	�G,W�

�W
= − GG , �155�

and the corresponding electron self-energy reads


 =
�	�G,W�

�G
= GW . �156�

The GW scheme gives an accurate estimation of the
screened Coulomb interactions in solids and can be used
to define the first-principles values of local Hubbard-like
multiorbital energy-dependent interactions for corre-
lated local orbitals !i�r�, which describe d states of
transition-metal ions �Aryasetiawan et al., 2004�,

Uijkl��� = 	!i!j
W̃���
!k!l
 , �157�

where W̃ does not take into account the effects of d-d
screening, the latter being explicitly taken into account
further within an effective low-energy Hubbard-like
model. The numerical estimation of U for metallic nickel
�Aryasetiawan et al., 2004� shows a relatively weak en-
ergy dependence within the d-band energy width and
the static values of the order of 2–4 eV, in good agree-
ment with the experimental values of the Hubbard pa-
rameters �van der Marel and Sawatzky, 1988�.

The success of the GW approximation is closely re-
lated to the fact that the bare Coulomb interaction V is
strongly screened in solids, thus one can use the lowest-
order approximation for 	�G ,W�. On the other hand,
the spin dependence of self-energy in the GW scheme
comes only from the spin dependence of the Green’s
function G��r ,#� and not from the effective interactions
W. In the Baym-Kadanoff formalism, this means that
only the density-density channel was taken into account
in the screening of the Coulomb interactions. It is well
known that Hund’s intra-atomic exchange interactions
are weakly screened in crystals �van der Marel and Sa-
watzky, 1988�, and strong spin-flip excitation processes
will modify electronic self-energy in itinerant electron
magnets. In particular, these processes are responsible
for electron-magnon interaction and lead to the appear-
ance of the NQP states in the gap region for half-
metallic ferromagnets.

An accurate treatment of the effects of local screened
Coulomb U and exchange J interactions beyond the GW
or DFT methods can be carried out within the dynami-
cal mean-field theory �DMFT� combined with the GW
or LDA-GGA functionals. The DMFT scheme defines
the best local approximation for the self-energy, which
uses the mapping of the original many-body system with
Hubbard-like interactions onto the multi-orbital quan-
tum impurity model in the effective electronic bath un-
der the self-consistency condition �Georges et al., 1996�.
The corresponding GW+DMFT scheme �Biermann et
al., 2003� or spectral-density functional theory �Savrasov
and Kotliar, 2004� is probably the best known way to
treat correlation effects in the electronic structure of
real materials. However, it is still very cumbersome and
computationally expensive; also, methods of work with
the frequency-dependent effective interaction �157� have
not been developed enough yet �for examples of first
attempts, see Rubtsov et al. �2005� and Savkin et al.
�2005��. The only way to consider the effects of spin-flip
processes on the electronic structure of real materials is
a simplified version of a general spectral-density func-
tional known as the LDA+DMFT approach �Anisimov,
Poteryaev, Korotin, et al., 1997; Lichtenstein and
Katsnelson, 1998�. In a sense, one can consider the
LDA+DMFT and the LDA as complementary ap-
proaches. In both cases, we split a complicated many-
body problem for a crystal into a one-body problem for
the crystal and a many-body problem for some appro-
priate auxiliary system where we calculate the correla-
tion effects more or less accurately. For the LDA, we
choose the homogeneous electron gas as this auxiliary
system. For the LDA+DMFT, it is an atom in some
effective medium. The latter choice is optimal to con-
sider atomiclike features of d or f electrons in solids.
The local Green’s function in magnetic solids is obtained
from the effective impurity action with the static
�frequency-independent� Hubbard-like multiorbital in-
teractions,
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Simp = − �
ij
�

0

�

d#�
0

�

d#�ci
+�#�Gij

−1�# − #��cj�#��

+
1
2�

ijkl
�

0

�

d#ci
+�#�cj

+�#�Uijklcl�#�ck�#� , �158�

where ci�#� are the fermionic Grassmann variables for
localized correlated d orbitals !i�r�, and Gij is the so-
called bath Green’s function, which is defined self-
consistently within the single-particle lattice model. The
corresponding interacting local Green’s function

Gij�# − #�� = − 	T#ci�#�cj
+�#��
Simp

�159�

can be found, within the numerically exact quantum
Monte Carlo scheme �Hirsch, 1983�, or some perturba-
tive approach that treats accurately spin-flip excitation
processes in the particle-hole channel �Katsnelson and
Lichtenstein, 1999�. The corresponding self-energy ma-
trix of the impurity model


 = G−1 − G−1 �160�

can be used in the spectral-density functional,

F�G� = − Tr ln�G0
−1 − 
� − Tr�
G� + 	�G� , �161�

and satisfies the self-consistent equation for the bath
Green’s function,

G��� = �
k

�G0
−1�k,�� − 
����−1 + 
��� . �162�

B. LDA+DMFT: The quantum Monte Carlo solution of the
impurity problem

Now we describe the most rigorous way to solve an
effective impurity problem using the multiband quan-
tum Monte Carlo �QMC� method �Rozenberg, 1997�. In
the framework of LDA+DMFT, this approach was used
first by Katsnelson and Lichtenstein �2000� for the case
of ferromagnetic iron.

We start from the many-body Hamiltonian in the
LDA+U form �Anisimov, Aryasetiawan, and Lichten-
stein, 1997�,

H = HLDA
dc +

1
2 �

i��m�
Um1m2m1�m2�

i cim1�
+ cim2��

+ cim2���cim1��,

HLDA
dc = �

ij��m�
tm1m2

ij cim1�
+ cjm2� − Edc, �163�

where �ij� represents different crystal sites, �m� label dif-
ferent orbitals, ��� are spin indices, and tm1m2

ij are the
hopping parameters. The Coulomb matrix elements are
defined by

Um1m2m1�m2�
i =� � dr dr��im1

* �r��im2

* �r��

�Vee�r − r���im1�
�r��im2�

�r�� , �164�

where Vee�r−r�� is the screened Coulomb interaction,

which remains to be determined. We follow again the
spirit of the LDA+U approach by assuming that within
the atomic spheres, these interactions retain to a large
measure their atomic nature. Moreover, the values of
screened Coulomb �U� and exchange �J� interactions can
be calculated within the supercell LSDA approach
�Anisimov and Gunnarsson, 1991�: the elements of the
density matrix nmm�

� are to be constrained locally, and
the second derivative of the LSDA energy with respect
to the variation of the density matrix yields the interac-
tions required. In a spherical approximation, the matrix
elements of Vee can be expressed in terms of the effec-
tive Slater integrals F�k� �Judd, 1963� as

	m,m�
Vee
m�,m�
 = �
k

ak�m,m�,m�,m��F�k�, �165�

where 0�k�2l and

ak�m,m�,m�,m�� =
4�

2k + 1 �
q=−k

k

	lm
Ykq
lm�


�	lm�
Ykq
* 
lm�
 .

For d electrons, one needs F�0�, F�2�, and F�4�; they are
connected with the Coulomb and Stoner parameters U
and J by U=F�0� and J= �F�2�+F�4�� /14, while the ratio
F�2� /F�4� is to a good accuracy a constant, about 0.625 for
the 3d elements �de Groot et al., 1990; Anisimov et al.,
1993�. HLDA

dc represents the LDA Hamiltonian corrected
by double counting of average static Coulomb interac-
tion that is already presented in the LDA �Anisimov,
Aryasetiawan, and Lichtenstein, 1997�. The index i for
Ui represents only the same correlated sites as the or-
bital indices �m�, unlike the LDA term tm1m2

ij �one-
particle Hamiltonian parameters�, where we have the
contribution of all sites and orbitals in the unit cell.

The one-particle spin-polarized LDA+DMFT
Green’s function G��k ,�� is related to the LDA Green’s
function and the local self-energy 
���� via the Dyson
equation

G�
−1�k,�� = � + � − HLDA,�

dc �k� − 
���� , �166�

where HLDA,�
dc �k� is the LDA Hamiltonian in a local or-

thogonal basis set depending on the Bloch vector k, and
� is the chemical potential. In order to avoid “double
counting,” we can subtract the static part of the self-
energy, Edc=Tr 
��0�. It has been proven that this type
of metallic double-counting is suitable for moderately
correlated d-electron systems �Lichtenstein et al., 2001�.

The standard QMC scheme for local Coulomb inter-
actions takes into account only density-density-like in-
teractions, although the new continuous-time QMC
method �Rubtsov et al., 2005; Savkin et al., 2005� can
overcome this problem and include all elements of the
interaction vertex. We use the functional integral for-
malism and describe the discrete Hubbard-Stratonovich
transformations to calculate the partition functions and
corresponding Green’s function. In this method, the lo-
cal Green’s function is calculated for the imaginary time
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interval �0,�� with the mesh #l= l�#, l=0, . . . ,L−1 ��#
=� /L ,�=1/T� using the path-integral formalism
�Georges et al., 1996�. The multiorbital DMFT problem
with density-density interactions is described by the fol-
lowing effective impurity action:

S = − �
0

�

d#�
0

�

d#��
i,j

ci
+�#�Gij

−1�# − #��cj�#��

+
1
2�0

�

d#�
i,j

ni�#�Uijnj�#� , �167�

where i= �m ,�� labels both orbital and spin indices �we
remind the reader that we have no site indices since we
are now solving the one-site effective impurity problem�.
Thus we truncate the original four-index rotationally in-
variant vertex and use only the two-index approximation
for it. This is a price we should pay for a more exact way
to solve the effective impurity problem. Without spin-
orbital coupling, we have Gij=Gm,m�

� ����.
In the auxiliary fields Green’s-function QMC scheme,

one can use the discrete Hubbard-Stratonovich transfor-
mation introduced by Hirsch �1983�,

exp�− �#Uij�ninj −
1
2

�ni + nj���
=

1
2 �

sij=±1
exp�"ijsij�ni − nj�� , �168�

where Sij�#� are the auxiliary Ising fields for each pair of
spins, orbitals, and time slices with strength

"ij = arccosh�exp��#

2
Uij�� . �169�

Using Hirsch’s transformation �168�, �169�, we can trans-
form the nonlinear action to a normal Gaussian one �for
a given configuration of the auxiliary Ising fields sij� and
integrate out exactly fermionic fields in the functional
integral �167�. As a result, the partition function and
Green’s function matrix have the form �Georges et al.,
1996�

Z =
1

2NfL �
sij�#�

det�Ĝ−1�sij�� ,

Ĝ =
1

Z

1

2NfL �
sij�#�

Ĝ�sij�det�Ĝ−1�sij�� , �170�

where Nf is the number of Ising fields, L is the number

of time slices, and Ĝ�sij� is the Green’s function of non-
interacting fermions for a given configuration of the ex-
ternal Ising fields,

Gij
−1�s� = Gij

−1 + �i�ij�##�,

�i = �eVi − 1� ,

Vi�#� = �
j��i�

"ijsij�#��ij. �171�

Here we introduce the generalized Pauli matrix

�ij = �+ 1, i 
 j

− 1, i � j .
�172�

To calculate the Green’s function Gij�s� for an arbitrary
configuration of the Ising fields, one can use the Dyson
equation �Hirsch, 1983�,

G� = �1 + �1 − G��eV�−V − 1��−1G , �173�

where V and G are the potential and Green’s function
before the Ising spin flip, and V� and G� after the flip.
The QMC important sampling scheme allows one to in-

tegrate over the Ising fields with 
det�Ĝ−1�Sij��
 being a
stochastic weight �Hirsch, 1983; Georges et al., 1996�.
Using the output local Green’s function from QMC and
the input bath Green’s functions, the new self-energy is
obtained via Eq. �160�, the self-consistent loop being
closed through Eq. �162�. The main problem of the
multiband QMC formalism is the large number of aux-
iliary fields Smm�

l . For each time slice l, it is equal to
M�2M−1�, where M is the total number of the orbitals,
which gives 45 Ising fields for d states and 91 fields for f
states. Analytical continuation of the QMC Green’s
functions from the imaginary time to the real energy axis
can be performed by the maximum entropy method
�Jarrell and Gubernatis, 1996�. It is important to stress
that for the diagonal Green’s function Gij=Gi�ij, the de-
terminant ratio is always positive. This means that the
sign problem, which is the main obstacle for the appli-
cation of the QMC method to fermionic problems
�Troyer and Wiese, 2005�, does not arise in this case.
Real computational experience shows that even for the
generic multiband case, the sign problem for the effec-
tive impurity calculations is not serious.

It is worthwhile to illustrate the QMC scheme for cor-
relation effects in the electronic structures of HMFs us-
ing a simple example. Since solving the full one-band
Hubbard model

H = − �
i,j,�

tijci�
† cj� + U�

i
ni↑ni↓ �174�

is difficult �see the discussion in Sec. III.A�, we treat the
dynamical mean-field theory �DMFT� �Georges et al.,
1996�, which is formally exact in the limit of infinite di-
mensionality. Following this approach, we consider the
Bethe lattice with coordination z→� and nearest-
neighbor hopping tij= t /�z. In this case, a semielliptic
density of states is obtained as a function of the effective
hopping t, N���= �2�t2�−1�4t2−�2. In order to stabilize
the toy model in the HMF state, we add an external
magnetic spin splitting term � that mimics the local
Hund polarization. This HMF state corresponds to a
mean-field �HF� solution denoted in Fig. 13 as a dashed
line.
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The effective-medium Green’s function G� is con-
nected with the local Green’s function G� on the Bethe
lattice through the self-consistency condition �Georges
et al., 1996�

G�
−1 = i�n + � − t2G� − 1/2�� , �175�

where �n= �2n+1��T �n=0, ±1, ±2, . . . � are the Matsub-
ara frequencies. The Green’s function corresponding to
the DMFT effective action, Eq. �167�, G��#−#��
=−	T#c��#�c�

†�#��
Seff
, has been calculated using the quan-

tum Monte Carlo scheme within the so-called exact enu-
meration technique �Georges et al., 1996� using the time
discretization parameter L=25 �for details, see Chioncel,
Katsnelson, de Groot, et al. �2003��. We emphasize that
due to the symmetry of the ferromagnetic state, the local
G� and the effective-medium Green’s functions are di-
agonal in spin space, even in the presence of the inter-
actions that enable the spin-flip scattering process. The
magnon excitation can be studied through the two-
particle correlation function

�loc
+−�# − #�� = 	S+�#�S−�#��


= 	T#c↑
†�#�c↓�#�c↓

†�#��c↑�#��
Seff
, �176�

which is obtained by using the QMC procedure �Jarrell,
1992�. Being local, this function is insufficient to find the
q dependence of the magnon spectrum, but yields only a
general shape of the magnon density of states.

The DMFT results are presented in Fig. 13. In com-
parison with a simple Hartree-Fock solution, one can
see an additional well-pronounced feature appearing in
the spin-down gap region, just above the Fermi level,
namely the nonquasiparticle states that are visible in

both spin channels of the DOS around 0.5 eV. In addi-
tion, a many-body satellite appears at 3.5 eV.

The left inset of Fig. 13 represents the imaginary part
of the local spin-flip susceptibility. One can see a well
pronounced shoulder ��0.5 eV�, which is related to a
characteristic magnon excitation �Irkhin and Katsnelson,
1985b, 1990, 1994�. There is a broad maximum at about
1 eV, which corresponds to the Stoner excitation energy.
The right inset of Fig. 13 represents the imaginary part
of self-energy. The spin-up channel can be described by
a Fermi-liquid-type behavior with a parabolic energy de-
pendence −Im 
↑� �E−EF�2, whereas in the spin-down
channel, the NQP shoulder at 0.5 eV is visible. Due to
the relatively high temperature �T=0.25 eV� in the
QMC calculation, the NQP tail extends below the Fermi
level �remember that at zero temperature, the tail
should vanish exactly at the Fermi level; see Sec. III.B�.

C. Spin-polarized T-matrix fluctuating exchange
approximation

Most HMF materials are moderately or weakly corre-
lated systems. This means that one can use some pertur-
bative approaches that make computations much less la-
bor intensive and allow one to work with the complete
four-index Coulomb interaction matrix. An efficient per-
turbative scheme was proposed by Bickers and Scala-
pino �1989� and was called the fluctuating exchange ap-
proximation �FLEX�. This was generalized to the
multiband case and used in the context of the DMFT by
Lichtenstein and Katsnelson �1998� and Katsnelson and
Lichtenstein �1999�. The latter step means that this ap-
proach is not used directly for the whole crystal, but for
the effective impurity problem, so that the momentum
dependence of the Green’s functions is neglected. On
the other hand, the self-consistency of the DMFT pro-
cedure makes the description of the local effects in per-
turbative schemes more accurate. For example, in the
case of the one-band half-filled Hubbard model, the
second-order perturbation expression for the self-energy
in the context of the DMFT provides the correct atomic
limit and, actually, an accurate description of the metal-
insulator transition �Kajueter and Kotliar, 1996�. A start-
ing point in the FLEX approximation is the separation
of different interaction channels. The symmetrization of
the bare U matrix is done over particle-hole and
particle-particle channels,

Um1m1�m2m2�
d = 2Um1m2m1�m2�

i − Um1m2m2�m1�
i ,

Um1m1�m2m2�
m = − Um1m2m2�m1�

i ,

Um1m1�m2m2�
s = 1

2 �Um1m1�m2m2�
i + Um1m1�m2�m2

i � ,

Um1m1�m2�m2

t = 1
2 �Um1m1�m2�m2

i − Um1m1�m2m2�
i � . �177�

The above expressions are the matrix elements of bare
interaction, which can be obtained with pair operators
corresponding to different channels:
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FIG. 13. Density of states for HMFs in the Hartree-Fock �HF�
approximation �dashed line� and in QMC solution of the
DMFT problem for the semicircular model �solid line� with
bandwidth W=2 eV, Coulomb interaction U=2 eV, �
=0.5 eV, chemical potential �=−1.5 eV, and temperature T
=0.25 eV. Insets: Imaginary part of the spin-flip susceptibility
�left� and imaginary part of self-energy �right� �Chioncel,
Katsnelson, de Groot, et al., 2003�.
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• particle-hole density,

d12 =
1
�2

�c1↑
+ c2↑ + c1↓

+ c2↓�; �178�

• particle-hole magnetic,

m12
0 =

1
�2

�c1↑
+ c2↑ − c1↓

+ c2↓� ,

m12
+ = c1↑

+ c2↓,

m12
− = c1↓

+ c2↑; �179�

• particle-particle singlet,

s12 =
1
�2

�c1↓c2↑ − c1↑c2↓� ,

s12
+ =

1
�2

�c1↓
+ c2↑

+ − c1↑
+ c2↓

+ �; �180�

• particle-particle triplet,

t12
0 =

1
�2

�c1↓c2↑ − c1↑c2↓� ,

t12
+0 =

1
�2

�c1↓
+ c2↑

+ − c1↑
+ c2↓

+ � ,

t12
± = c1↑,↓c2↓,↑,

t12
± = c1↑,↓

+ c2↓,↑
+ . �181�

These operators describe the correlated movements
of the electrons and holes below and above the Fermi
level and therefore play an important role in defining

the spin-dependent effective potentials Wm1m2m3m4

��� .
In the spin-polarized T-matrix fluctuating exchange

approximation �SPTF� scheme �Katsnelson and Lichten-
stein, 2002� the particle-particle interactions are de-
scribed in the T-matrix approach �Galitski, 1958; Kan-
amori, 1963� where for the effective interaction the sum
over the ladder graphs is carried out with the aid of the
so-called T matrix, which obeys the Bethe-Salpether-like
integral equation,

	13
T����i��
24
 = 	13
v
24
 −
1

�
�
�

�
5678

G56
i��i��

�G78
i���i��G�i� − i��

�	68
T����i��
24
 . �182�

The corresponding contributions to the self-energy are
described by the Hartree and Fock diagrams with the
formal replacement of the bare interaction by the T ma-
trix,


12,�
�TH��i�� =

1

�
�
�

�
34��

	13
T����i��
24
G43
���i� − i�� ,

�183�


12,�
�TF��i�� = −

1

�
�
�

�
34��

	14
T���i��
32
G34
i��i� − i�� .

�184�

The Hartree contribution dominates for small concen-
tration of electrons and holes; these two contributions
together contain all second-order-in-V terms in the self-
energy.

Combining the density and magnetic parts of the
particle-hole channel, we can write an expression for the
interaction part of the Hamiltonian �Lichtenstein and
Katsnelson, 1998; Katsnelson and Lichtenstein, 1999�,

HU = D * HU * D+,

HU = 1
2 Tr�D+ * V� * D + m+ * Vm

� * m−

+ m− * Vm
� * m+� , �185�

where D is a row vector with elements �d ,m0�, and D+ is
a column vector with elements �d+m0

+�; * stands for the
matrix multiplication with respect to the pairs of orbital
indices. It follows from the model consideration pre-
sented above that for a proper description of the effects
of electron-magnon interactions, it is important to re-
place the bare spin-flip potential by a static limit of the T
matrix �see Eqs. �6� and �35��. With this replacement, the
expression of the effective potential is

V��i�� =
1
2
�Vdd Vdm

Vmd Vmm � ,

�Vm
��1234 = 	13
T↑↓
42
 . �186�

The matrix elements of the effective interaction for z
�longitudinal� spin fluctuations are

Vdd =
1
2�

�
��

��

	13
T���
42
 − 	13
T����
42
� ,

Vdm = Vmd =
1
2 �

���

��	13
T��
42
 − 	13
T��
24


+ 	13
T���
42
� ,

Vmm =
1
2�

�
��

��

���	13
T���
42
 − 	13
T����
42
� .

�187�

Further, we introduce the expressions for the general-
ized longitudinal ���� and transverse ���� susceptibilities,

���i�� = �1 + Vm
��↑↓�i���−1 * �↑↓�i�� , �188�
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���i�� = �1 + V� * �0
� �i���−1 * �0

� �i�� , �189�

where ��i�� is the Fourier transform of the empty loop,

�m1m2m3m4

��� �#� = − Gm2m3

i� �#�Gm4m1

i�� �− #� , �190�

and the bare matrix longitudinal susceptibility is

�0
� �i�� =

1
2
��↑↑ + �↓↓ �↑↑ − �↓↓

�↑↑ − �↓↓ �↑↑ + �↓↓ � . �191�

The four matrix elements correspond to the density-
density �dd�, density-magnetic �dm0�, magnetic-density
�m0d�, and magnetic-magnetic channels �m0m0� and
couple longitudinal magnetic fluctuation with density
magnetic fluctuation. In this case, the particle-hole con-
tribution to the self-energy is


12�
�ph��#� = �

34��

W1342
��� �#�G34

�� �192�

with the particle-hole fluctuation potential matrix

W����i�� = �W↑↑ W↑↓

W↓↑ W↓↓
� , �193�

and the spin-dependent effective potentials are defined
by

W↑↑ = 1
2V� * ��� − �0

� � * V� ,

W↓↓ = 1
2V� * ��̃� − �̃0

� � * V� ,

W↑↓ = 1
2Vm

� * ��+− − �0
+−� * Vm

�,

W↓↑ = 1
2Vm

� * ��−+ − �0
−+� * Vm

�, �194�

where �̃� , �̃0
� differ from the values of �� ,�0

� by the re-
placement �↑↑↔�↓↓ in Eq. �191�. The final expression
for the SPTF self-energy is given by


 = 
�TH� + 
�TF� + 
�ph�. �195�

Due to off-diagonal spin structure of the self-energy

�ph�, this method can be used to consider the nonquasi-
particle states in HMFs. A more detailed justification
and description of the method has been given by
Katsnelson and Lichtenstein �2002�. This approach was
also generalized to the case of strong spin-orbit coupling
and used for actinide magnets �Pourovskii et al., 2005,
2006�. In that case, separation into density and magnetic
channels is not possible and one should work with the
4�4 supermatrices for the effective interaction.

Recently, several LDA+DMFTcalculations of differ-
ent HMF materials have been carried out. Now we re-
view the results of these calculations, focusing mainly on
nonquasiparticle states resulting from the electron-
magnon interactions. LDA+DMFT is the only contem-
porary practical way to consider them in the electronic-
structure calculations.

V. ELECTRONIC STRUCTURE OF SPECIFIC HALF-
METALLIC COMPOUNDS

A. Heusler alloys

1. NiMnSb: Electronic structure and correlations

The intermetallic compound NiMnSb crystallizes in
the cubic structure of MgAgAs type �C1b� with the fcc

Bravais lattice �space group F4̄3m=Td
2�. The crystal

structure is shown in Fig. 14. This structure can be de-
scribed as three interpenetrating fcc lattices of Ni, Mn,
and Sb. A detailed description of the band structure of
semi-Heusler alloys was given using electronic-structure
calculations analysis �de Groot, Mueller, v. Engen, et al.,
1983; Öğüt and Rabe, 1995; Galanakis et al., 2002a; Ku-
latov and Mazin, 2003; Nanda and Dasgupta, 2003;
Galanakis and Mavropoulos, 2007�; we briefly summa-
rize the results.

To obtain the minority spin gap, not only the
Mn-d-Sb-p interactions but also Mn-d-Ni-d interactions
must be taken into account. Moreover, the loss of inver-
sion symmetry produced by C1b structure �the symmetry
lowering from Oh in the L21 structure to Td in the C1b
structure at Mn site� is an essential additional ingredient.
All above interactions combined with the Td symmetry
lead to a nonzero anticrossing of bands and to gap open-
ing.

The large exchange splitting of the Mn atom �produc-
ing the local Mn magnetic moment of about 3.7�B� is
crucial to induce a half-metallic structure. In the spin-
polarized calculation, the position of t2g and eg Ni states
is changed slightly, so that the exchange splitting on Ni is
not large. The local Ni magnetic moment calculation
gives a value around 0.3�B.

The non-spin-polarized result has a striking resem-
blance to the majority-spin-polarized calculations, pre-
sented in Fig. 15. Kulatov et al. explained the half me-
tallicity of NiMnSb by the extended Stoner factor

FIG. 14. �Color online� C1b structure with the fcc Bravais lat-
tice �space group F4̄3m�. Mn �green� and Sb �purple� atoms are
located at �0,0,0� and � 1

2 , 1
2 , 1

2 � forming the rocksalt structure
arrangement. Ni �orange� atom is located in the octahedrally
coordinated pocket, at one of the cube center positions � 3

4 , 3
4 ,

3
4 � leaving the other � 1

4 , 1
4 , 1

4 � empty. This creates voids in the
structure �Yamasaki et al., 2006�.
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calculations in the rigid-band approximation �Kulatov
and Mazin, 2003�: the minority spin-band gap opens due
to the exchange splitting, which shifts minority bands, so
that they become empty.

There is excellent agreement between the first band-
structure calculation �de Groot, Mueller, v. Engen, et al.,
1983� and Nth-order muffin-tin orbital �NMTO� investi-
gations �Andersen and Saha-Dasgupta, 2000; Zurek et

al., 2005; Yamasaki et al., 2006�. NMTO Wannier Mn d
orbitals are shown in Fig. 16. The triply degenerate man-
ganese t2g orbitals are complicated due to the hybridiza-
tion with Ni d and Sb p states. The dxy orbital at the Mn
site is deformed by antibonding with the Ni d state di-

rected tetrahedrally to �111̄�, �1̄1̄1̄�, �11̄1�, and �1̄11�. The
same Ni d orbitals couple with Sb p states. The direct
Mn-dxy-Sb-p � coupling is not seen since the distance is
d�Mn-Sb� :d�Ni-Sb�=1:�3/2. Therefore, the Ni-d-Sb-p
interactions are more favorable. The dispersion of the
Mn t2g bands is mainly due to hopping via the tails of Sb
p and Ni d orbitals. On the other hand, the next-nearest-
neighbor �NNN� d-d hopping of the t2g orbital is small.
The eg orbitals at the Mn site are much easier to under-
stand: they point toward Sb atoms, and a strong pd�
coupling between Sb p and Mn eg states is seen. This
induces large NNN d-d hoppings.

The Wannier orbital analysis for NiMnSb �Yamasaki
et al., 2006� confirms the previous conclusions of
�de Groot, Mueller, v. Engen, et al., 1983� about the role
of p-d hybridization as well as the role of d-d hybridiza-
tion �Galanakis et al., 2002a�. The LDA partial density
of states for half-metallic NiMnSb and the fat-band
structure that marks the main orbital character of va-
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FIG. 15. Full basis-set spin-polarized �ferromagnetic� bands
for NiMnSb; majority spin �left� and minority spin �right�. The
high-symmetry points are W� 1

2 ,1 ,0�, L� 1
2 , 1

2 , 1
2 �, ��0,0 ,0�,

X�0,1 ,0�, and K� 3
4 , 3

4 ,0� in the W-L-�-X-W-K-� line, and
X�0,0 ,1�, U� 1

4 , 1
4 ,1�, and L� 1

2 , 1
2 , 1

2 � in the X-U-L line �Ya-
masaki et al., 2006�.

FIG. 16. �Color online� NMTO Mn-d Wannier orbitals of NiMnSb. Ni is orange, Mn is green, and Sb is purple. Red �blue�
indicates a positive �negative� sign. Upper panel: t2g orbitals; dxy �left�, dyz �middle�, dzx �right�. The triply degenerate t2g orbitals
can be obtained by the permutation of axes. Lower panel: eg orbitals; d3z2−1 �left�, dx2−y2 �middle�. These eg orbitals are doubly
degenerated �Yamasaki et al., 2006�.
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lence states are presented in Figs. 17–19. One can see
that the spin-up Mn d and Ni d states are located at the
same energy region, while spin-down bands are separate
due to the significant Mn exchange splitting. The top of
the valence spin-down bands forms by the Mn t2g, Sb p,
and Ni t2g orbitals, while the bottom of the conduction
bands is due to the Mn eg and t2g states. This means that
large Mn spin splitting and Sb-mediated indirect Mn-Ni
interactions are responsible for the formation of the
half-metallic gap. One can see these complicated Mn t2g
valence orbitals with large contributions of Sb p and Ni
t2g states in Fig. 15. The physical picture of the down-
folding analysis should not change very much if one ex-
plicitly includes Sb p and Ni d orbitals.

We now discuss the prototype half-metallic ferromag
net NiMnSb where the gap is situated in the spin-down
�minority� channel. The temperature dependence of the
HMF electronic structure and the stability of half metal-
licity against different spin excitations are crucial for
practical applications in spintronics. A simple attempt to
incorporate finite-temperature effects �Skomski and
Dowben, 2002; Dowben and Skomski, 2003�, leading
to static noncollinear spin-configurations, shows a mix-
ture of spin-up and spin-down density of states that de-
stroy the half-metallic behavior. Chioncel, Katsnelson,
de Groot, et al. �2003� used a different more natural ap-
proach to investigate the proper effect of dynamical spin

FIG. 17. �Color online� Deco-
rated �fat� bands for the spin-
polarized �ferromagnetic�
NiMnSb; Mn majority spin �up�
and minority spin �down�. The
high-symmetry points are

W� 1
2 ,1 ,0�, L� 1

2 , 1
2 , 1

2 �, ��0,0 ,0�,
X�0,1 ,0�, and K� 3

4 , 3
4 ,0� in the

W-L-�-X-W-K-� line, and
X�0,0 ,1�, U� 1

4 , 1
4 ,1�, and

L� 1
2 , 1

2 , 1
2 � in the X-U-L line

�Yamasaki, 2006�.
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fluctuations on the electronic structure at T
TC, within
the half-metallic ferromagnetic state.

The LDA+DMFT calculation for NiMnSb �Chioncel,
Katsnelson, de Groot, et al., 2003� was the first applica-
tion of the combined electronic structure and many-
body technique to HMF. Aryasetiawan et al. �2004�
pointed out that a rigorous way to define the screened
frequency-dependent on-site Coulomb interaction ma-
trix elements for correlated states is related to the gen-
eralized GW scheme in which d-d screening is sup-
pressed to preserve the double counting in the model
approach. However, in practice for realistic materials,
the elimination of degrees of freedom is a difficult pro-
cedure. To find the average Coulomb interaction on the

d atoms U and corresponding exchange interactions J, a
simpler approach, the constrained LDA scheme �Deder-
ichs et al., 1984; Norman and Freeman, 1986; McMahan
et al., 1988; Gunnarsson et al., 1989; Hybertsen et al.,
1989; Anisimov and Gunnarsson, 1991�, can be used. In
this approach, the Hubbard U is calculated from varia-
tion of the total energy with respect to the occupation
number of the localized orbitals. In such a scheme, the
metallic screening is rather inefficient for 3d transition
metals, and effective U is of the order of 6 eV �Anisi-
mov and Gunnarsson, 1991�. The perfect metallic
screening will lead to a smaller value of U. Unfortu-
nately, there are no reliable schemes to calculate U

FIG. 18. �Color online� Deco-
rated �fat� bands for the spin-
polarized �ferromagnetic�
NiMnSb; Ni majority spin �up�
and minority spin �down� �Ya-
masaki, 2006�.
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within the constrained LDA for metals �Solovyev and
Imada, 2005�, and in the works of Chioncel, Katsnelson,
de Groot, et al. �2003�, Chioncel, Arrigoni, Katsnelson,
et al. �2005�; Chioncel, Katsnelson, de Wijs, et al. �2005�,
and Chioncel, Mavropoulos, Lezaic, et al. �2006�, some
intermediate values were chosen, U=2−4 eV and J
=0.9 eV. Recent analysis of angle-resolved photoemis-
sion and the LDA theory indicates a shift of spectral
function of the order of 0.5−1 eV, which can be attrib-
uted to correlation effects beyond the LDA �Correa

et al., 2006�. The first angle-resolved photoemission re-
sults �Kisker et al., 1987� generally agree with the LDA
band structure, but demonstrate the same shift of quasi-
particle dispersion of the order of 0.5 eV below the
Fermi level for spin-down Mn t2g bands. This can easily
lead to the effective Hubbard interactions in the static
mean-field approximation of the order of U*=1 eV, al-
though one should carefully investigate the effects of
spin-orbital splitting. Since the spherically averaged ef-
fective Hubbard interaction is U*=U−J and the value of

FIG. 19. �Color online� Elec-
tronic structure of NiMnSb.
Upper figure: FLAPW calcula-
tion of spin-polarized NiMnSb
�Lezaic, 2006�. Lower figures:
Decorated �fat� bands for the
spin-polarized �ferromagnetic�
NiMnSb; Sb majority spin �up�
and minority spin �down� �Ya-
masaki, 2006�.
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intra-atomic exchange interactions is not screened much
in solids being of the order of J=1 eV, we can conclude
from the photoemission experiments �Kisker et al., 1987�
and resonant x-ray scattering �Yablonskikh et al., 2001�
that the Hubbard interaction U=2 eV is quite reason-
able. An account of the correlation effects in the frame-
work of the LDA+DMFT method also improves the
description of magneto-optical properties of NiMnSb
�Chadov et al., 2006�.

Typical results for the density of states using the LDA
and LDA+DMFT are presented in Fig. 20. The LDA
+DMFT density of states shows the existence of non-
quasiparticle states in the LDA gap of the spin-down
channel just above the Fermi level.

It is important to note that the magnetic moment per
formula unit is not sensitive to the U values. For a tem-
perature T=300 K, the calculated magnetic moment, �
=3.96�B, is close to the zero-temperature LDA value,
which is integer, �=4�B. This means that the half-
metallic state is stable with respect to switching on cor-
relation effects. The DMFT gap in the spin-down chan-
nel, defined as the distance between the occupied part
and the starting point of the NQP tail, is also not very
sensitive to U. The total DOS is also weakly U depen-
dent due to the T-matrix renormalization effects.

In comparison with the LDA result, a strong spectral
weight transfer is present for the unoccupied part of the
band structure due to the appearance of the nonquasi-
particle states in the energy gap above the Fermi energy
�Sec. III.B�. Their spectral weight is not too small
and has a relatively weak dependence on the U
value �Fig. 21�, which is also a consequence of the
T-matrix renormalization �Katsnelson and Lichtenstein,
2002�.

For spin-up states, we have a normal Fermi-liquid be-
havior −Im
d

↑�E�� �E−EF�2 with a typical energy scale
of the order of several eV. The spin-down self-energy
behaves in a similar way below the Fermi energy, with a
bit smaller energy scale. At the same time, a significant
increase in Im 
d

↓�E� with a much smaller energy scale
�tenths of an eV� is observed right above the Fermi

level, which is more pronounced for t2g states �Fig. 20�.
The NQP states are visible in the spin-down DOS �Fig.
20� at the same energy scale as the imaginary part of 
↓.
Similar behavior is evidenced in the model calculation of
Fig. 13. The NQP spectral weight in the density of states
�Fig. 21� is proportional to the imaginary part of the
self-energy.

From the general many-body theory, the DMFT ap-
proach neglects the momentum dependence of the elec-
tron self-energy. In many cases, such as the Kondo effect
and the Mott metal-insulator transition, the energy de-
pendence of the self-energy is more important than the
momentum dependence, and therefore the DMFT
scheme is adequate to consider these problems �Georges
et al., 1996�. In the case of itinerant electron ferromag-
netism, the situation is much less clear. However, the
LDA+DMFT treatment of finite-temperature magne-
tism and electronic structure in Fe and Ni appeared to
be quite successful �Lichtenstein et al., 2001�. Experi-
mentally, even in itinerant electron paramagnets that are
close to ferromagnetic instability, such as Pd, the mo-
mentum dependence of the self-energy does not seem to
be essential �Joss et al., 1984�. One can expect that in
magnets with well-defined local moments such as half-
metallic ferromagnets, the local DMFT approximation

FIG. 20. Density of states for HMF NiMnSb in LSDA scheme �dashed line� and in LDA+DMFT scheme �solid line� with effective
Coulomb interaction U=3 eV, exchange parameter J=0.9 eV, and temperature T=300 K. The nonquasiparticle state is evidenced
just above the Fermi level. The imaginary part of self-energies Im 
d

↓ for t2g �solid line� and eg �dotted line�, and Im 
d
↑ for t2g

�dashed line� and eg �dash-dotted line�, respectively.
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FIG. 21. Spectral weight of the nonquasiparticle state, calcu-
lated as a function of average on-site Coulomb repulsion U at
temperature T=300 K �Chioncel, Katsnelson, de Groot, et al.,
2003�.

359Katsnelson et al.: Half-metallic ferromagnets: From band …

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008



for the self-energy should be even more accurate. In par-
ticular, as discussed above, it can be used for calculations
of spin-polaronic or nonquasiparticle effects in these
materials.

2. Impurities in HMF: Lanthanides in NiMnSb

Here we discuss the inroduction of nonintrinsic def-
fects in NiMnSb, which preserves the half-metallic prop-
erties, on the one hand, while optimizing the magnetic
disorder, on the other hand �Attema et al., 2004�. Good
candidates are the rare-earth impurities in NiMnSb �At-
tema et al., 2004; Chioncel, 2004�. The motivation of this
choice is connected with the substantial spin-orbit inter-
action in the rare-earth localized f shell. Besides that,
the origin of the band gap in NiMnSb is closely related
to the band gap in III-V semiconductors: it is expected
that substitution of some of the tetravalent elements in
NiMnSb by a lanthanide preserves the essential feature
of the half-metal, namely, the band gap for one spin di-
rection.

These systems can be really synthesized, compounds
RNiSb �for heavy rare-earth elements R� existing with
exactly the same crystal structure as NiMnSb. The rare-
earth atoms, which show both a large spin and orbital
moment, can be expected to introduce a large spin-orbit
interaction, in other words around 1/4 �Nd� and 3/4 �Er�
in the lanthanides series. Total energy calculations allow
one to evaluate the coupling between the rare-earth �4f�
impurity spins and the manganese �3d� conduction elec-
tron spins. For substantial coupling, the fluctuations of
the Mn �3d� conduction electron spins, i.e., the spin
wave, might be blocked, thus the magnon branch is
qualitatively changed. In contrast with the clean limit
�pure NiMnSb�, the magnon spectra of NiMn1−xRxSb
present a fragmented structure with several gaps in the
Brillouin zone. This fragmentation implies that the
finite-temperature effects are diminished for a suitably
chosen rare-earth element.

The ab initio electronic-structure calculations were
carried out using the scalar relativistic linear muffin-tin
orbital �LMTO� method within the atomic-sphere ap-
proximation in two flavors: LDA and LDA+U �Ander-
sen, 1975; Andersen and Jepsen, 1984; Anisimov, Ar-
yasetiawan, and Lichtenstein 1997�. To evaluate the
coupling between the rare-earth and the Mn sublattices,
ferromagnetic and ferrimagnetic structures were taken
as the initial state of the calculation and they were pre-
served after the self-consistent calculation.

A simplified model was used that captures the com-
plex interplay of the Mn �3d� itinerant conduction-band
electrons and the localized 4f electrons, the latter carry-
ing a strong magnetic moment. This model deals with a
mean-field decoupling, in which the Mn 3d and the R f
states are described by the LDA+U whereas the 3d-4f
interaction is treated as perturbation. The corresponding
mean-field Hamiltonian can be written in the form

H � HLDA+U − J�
i

�i
3dSi+�

f , �196�

where the spin of the conduction electron at site Ri is
denoted by �i

3d and Si+�
f represents the spin of the 4f

shell at the Ri+� site. The Mn d local moment fluctua-
tions could be quenched by a strong f-d coupling, which
affects the magnon excitations. The strength of such a
coupling was evaluated by calculating in an ab initio
fashion the total energy of NiMn1−xRxSb compounds for
a parallel or antiparallel f-d coupling �Attema et al.,
2004; Chioncel, 2004�. Given the geometry of the cell,
the lanthanide substitution is realized in the fcc-Mn sub-
lattice, so 12 pairs of R�4f�-Mn�3d� are formed. The f-d
coupling is calculated as the E↑↑−E↓↑ energy corre-
sponding to a pair.

Adopting a two-sublattice model described by the
Hamiltonian �196�, i.e., the sublattice of lathanides R�4f�
being antiferromagneticaly and ferromagnetically ori-
ented with respect to the Mn�3d� sublattice, the J values
correspond to the intersublattice couplings. In pure
NiMnSb, the ferromagnetic Curie temperature TC
=740 K is determined by the strength of the Mn-Mn
�3d-3d� sublattice interaction. For a small lanthanide
content, one can expect this interaction in NiMn1−xRxSb
compounds is on the same scale as in pure NiMnSb.
Therefore, the substitution introduces competition be-
tween the intrasublattice and intersublattice interac-
tions, which are crucial parameters for any practical ap-
plication. In the case of Nd, there is a large 3d-4f
coupling that should dominate over the 3d-3d coupling.
For temperatures lower than the Curie temperature cor-
responding to the Ni8Mn7NdSb8 compound, TC

Nd, the
3d-4f coupling interaction will lock the Mn �3d�magnetic
moment fluctuations decreasing the available number of
magnon states. Above TC

Nd, the thermal fluctuations al-
ready removed the long-range order of the Mn �3d� sub-
lattice, and there are no available magnon states. As a
consequence, the Nd substitution can be attractive for
high-temperature applications where the 3d-4f coupling
might play an important role. In the cubic structure of
NiMnSb, the uniaxial anisotropy is completely missing.
Nevertheless, the 4f impurity spin-orbit coupling lifts the
degeneracy in the � point. The lowest 3d-4f coupling is
realized in the case of Ho.

The LDA+U density of states for HoNi8Mn7Sb8 for
3d-4f antiparallel and parallel couplings and the Uf
=9 eV value of the on-site Coulomb interaction is pre-
sented in Fig. 22. On the one hand, for the antiparallel
coupling the magnetic moments are �Ho

AF=−4.09�B,
�Mn1

AF =3.73�B, �Mn2
AF =3.80�B and the gap of 0.55 eV is

situated in the majority spin channel. On the other hand,
for parallel coupling the magnetic moments have almost
the same magnitude �Ho

F =3.96�B, �Mn1
F =3.72�B, �Mn2

F

=3.80�B with a similar gap situated in the minority spin
channel. It is important to note that in the case of
Ni8Mn7HoSb8, the Ho�4f� orbitals do not hybridize with
the Mn�3d� orbitals near the Fermi level. As one can see
in Fig. 22, the behavior of the DOS near the Fermi level
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is very similar, so that the nature of carriers around EF is
not changed.

The electronic-structure calculation for the antiferro-
magnetic HoNiSb compound was performed by Attema
et al. �2004� and Chioncel �2004� �see Fig. 23�. This is

known to be a semiconducting material with interesting
transport properties �giant magnetoresistance effect
�Karla, Pierre, and Ouladdiaf, 1998; Karla, Pierre, and
Skolozdra, 1998; Karla et al., 1999; Pierre and Karla,
2000��. The inverse susceptibility curves show a Curie-
Weiss behavior down to 10 K �Karla, Pierre, and Oulad-
diaf, 1998; Karla, Pierre, and Skolozdra, 1998; Karla
et al., 1999; Pierre and Karla, 2000�. The onset of the
antiferromagnetic ordering was estimated from suscepti-
bility measurements between 1.5 and 2.5 K, and the
neutron-diffraction data indicated an antiferromagnetic
propagation vector �1/2 ,1 /2 ,1 /2� �Karla, Pierre, and
Ouladdiaf, 1998; Karla, Pierre, and Skolozdra, 1998;
Karla et al., 1999, Pierre and Karla, 2000�. In order to
describe the antiferromagnetic ground state, a rhombo-
hedral description of the Ho2Ni2Sb2 unit cell was used.
The atoms Ho1�0,0 ,0� and Ho2�1,1 ,1� acquire magnetic
moments of �Ho1

=4.0�B and �Ho2
=−4.0�B, respectively.

The antiferromagnetic insulating state shows a gap of
0.29 eV in agreement with the experimental results.
There are some qualitative features that are similar for
the antiferromagnetic Ho2Ni2Sb2 and the HoNi8Mn7Sb8
compounds, namely the almost identical magnetic mo-
ment �Ho and positions of occupied and unoccupied
Ho�4f� peaks in DOS. Perhaps the most important ob-
servation is that the spin-down channel in Ho2Ni2Sb2 is
isoelectronic to that in NiMnSb, so that the Ho substitu-
tion would preserve the half metallicity of HoNi8Mn7Sb8
in the minority spin channel.

3. FeMnSb: A ferrimagnetic half-metal

Early theoretical studies demonstrated that the gap in
the minority spin channel is stable with respect to
change of the 3d atom X=Fe,Co,Ni in the XMnSb
compounds �Kübler, 1984; de Groot et al., 1986�. A no-
ticeable difference between Ni- and Fe-based Heusler
alloys is that NiMnSb is a half-metallic ferromagnet with
a very small value of Ni magnetic moment �0.2�B�,
whereas in FeMnSb the antiferromagnetic coupling be-
tween Fe �−1�B� and Mn �3�B� moments stabilizes the
gap and the half-metallic ferrimagnetic electronic struc-
ture �de Groot et al., 1986�. Unfortunately, the ternary
compound FeMnSb does not exist, but indications of its
magnetic and crystallographic properties were obtained
by extrapolating the series of Ni1−xFexMnSb �de Groot
et al., 1986� to high Fe concentration.

In the nonrelativistic approximation, there are two es-
sentially different sources for states in the gap at finite
temperatures. First, there is the simple effect of gap fill-
ing due to disorder, i.e., due to scattering on static �clas-
sical� spin fluctuation or thermal magnons; this is sym-
metric with respect to the Fermi energy. On the
contrary, the correlation effects result in an asymmetry
in the gap filling, spin-down nonquasiparticle states ap-
pearing above the Fermi level. One has to take into ac-
count also spin-orbit coupling effects mixing the spin-up
and spin-down states due to nonzero elements of spin-

orbital interactions VSO
�,�� �see the discussion in Sec.
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FIG. 22. Density of states for the half-metallic ferromagnet
Ni8Mn7HoSb8 in the case of antiparallel 3d-4f coupling �a� and
parallel coupling �b�.
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FIG. 23. Density of states of semiconducting HoNiSb �Chion-
cel, 2004�.
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III.B�. To illustrate the differences between the static
and dynamic effects, we plot the DOS of the LDA
+DMFT calculations compared with recent results in-
cluding SO coupling �de Groot et al., 1986; Mavropoulos
et al., 2004�.

A relatively weak dependence of the NQP spectral
weight on U �Fig. 24� is evidenced for both NiMnSb and
FeMnSb compounds. A “saturation” of the spectral
weight for FeMnSb takes place for almost the same
value, U*�1 eV, as in the case of NiMnSb, which is in
agreement with experimental observation of relatively
weak correlation effects in Heusler HMFs like PtMnSb
�Kisker et al., 1987�. The small value of the effective
Hubbard parameter can be understood in terms of the
large T-matrix renormalization of the Coulomb interac-
tions �Katsnelson and Lichtenstein, 1999, 2002�. The
spectral weight values for FeMnSb are larger in com-
parison with those obtained for NiMnSb �Chioncel,
Katsnelson, de Groot, et al., 2003; Chioncel et al., 2003�,
which can be attributed to a larger majority spin DOS at
the Fermi level.

The spin-orbit coupling produces a peak in the
minority-spin channel close to the Fermi level
�Mavropoulos et al., 2004�, which is an order of magni-
tude smaller than the spectral weight of the NQP states.
According to the SO results, the polarization at the
Fermi level for NiMnSb and FeMnSb is almost the
same. In contrast, calculation �Chioncel, Arrigoni,
Katsnelson, et al., 2006� shows that the spectral weight of
the NQP states in FeMnSb is almost twice as large as the
value for NiMnSb.

To discuss the influence of temperature and local Cou-
lomb interactions on the polarization in the FeMnSb
compound, we present results of LDA+DMFT calcula-
tions for T�400 K and different U’s. Figure 25 presents
the contour plot of spin polarization P�E ,T� as a func-
tion of energy E and temperature T for U=2 and 4 eV.
The LDA value, plotted for convenience as the T=0 K
result, shows a gap with magnitude 0.8 eV, in agreement
with previous calculations �Mavropoulos et al., 2004�.

One can see a peculiar temperature dependence of
the spin polarization. The NQP features appear for E
−EF$0 and are visible in Fig. 24 for U=2 eV and T
=300 K. Increasing the value of U from 2 to 4 eV, the
NQP contribution in depolarization becomes more sig-
nificant. When the tail of the NQP states crosses the
Fermi level, a drastic depolarization at the Fermi level
takes place, the NQP contribution being pinned to the
Fermi level for U=4 eV.

One can see a clear distinction between the finite-
temperature behavior of the polarization and magneti-
zation, shown in Fig. 26 for different values of U. For
U=4 eV, already at 100 K there is a strong depolariza-
tion about 25%. On the contrary, it is interesting to note
that the reduced magnetization M�T� /M�0� decreases
slowly in the temperature range shown in Fig. 25. This
reduction is a consequence of the finite-temperature ex-
citations, i.e., spin-flip processes, affecting both spin
channels. In the minority-spin channel, NQP states are
formed, and in the majority channel a spectral weight
redistribution around the Fermi level �Fig. 24� contrib-
utes to the depolarization. The corresponding depolar-
ization increases with the strength of correlations. The
density of NQP states displays a rather strong tempera-
ture dependence �Sec. III.C� and results in an asymme-
try that is visible in Figs. 24 and 25.
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FIG. 24. �Color online� Electronic structure of FeMnSb. Left:
Density of states of half-metallic FeMnSb, LSDA �black line�,
and LSDA+DMFT �red line� for the effective Coulomb inter-
action U=2 eV exchange parameter J=0.9 eV and tempera-
ture T=300 K. Lower right panel: Zoom around EF for differ-
ent values of U. Upper right panel: Spectral weight of the NQP
states calculated as a function of U. The values obtained for
NiMnSb �Chioncel, Katsnelson, de Groot, 2003� are plotted for
comparison �Chioncel, Arrigoni, Katsnelson, et al., 2006�.

FIG. 25. �Color online� Contour plots of polarization as a func-
tion of energy and temperature for different values of local
Coulomb interaction U. Left, U=2 eV; right, U=4 eV. The
LSDA polarization is plotted as the T=0 K temperature re-
sult. The asymmetry of the NQP states is clearly visible for
U=4 eV �Chioncel, Arrigoni, Katsnelson, et al., 2006�.
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NQP states dominate in the depolarization of this
class of Heusler compounds, while spin-orbit contribu-
tions are much smaller. In addition, many-body effects
are more pronounced in FeMnSb than in NiMnSb. This
is connected with the larger DOS in the majority spin
channel in the former material. Therefore, doping of
NiMnSb by Fe could be an interesting issue to investi-
gate the interplay between alloying and many-body ef-
fects. The LDA+DMFT calculations for the NiMnSb
supercell containing 25% Fe impurities show a half-
metallic character at the LDA level, with the same
strong correlation-induced depolarization effects as in
pure FeMnSb. Therefore, many-body effects for this ma-
terial are of primary importance even in the presence of
disorder. Correlation effects on surfaces of half metals
were discussed recently, and it was shown that these
states can be probed both directly and via their effect on
surface states �Irkhin and Katsnelson, 2006�.

4. Co2MnSi: A full-Heusler ferromagnet

The origin of the minority band gap in full Heuslers
was discussed by Galanakis et al. �Galanakis et al., 2006;
Galanakis and Mavropoulos, 2007�. Based on the analy-
sis of the band-structure calculations, it was shown that
the 3d orbitals of Co atoms from the two different sub-
lattices, Co1�0,0 ,0� and Co2�1/2 ,1 /2 ,1 /2�, couple and
form bonding hybrids Co1�t2g /eg�-Co2�t2g /eg�. In other
words, the t2g /eg orbitals of one of the Co atoms can
couple only with the t2g/eg orbitals of the other Co atom.
Furthermore, the Co-Co hybrid bonding orbitals hybrid-
ize with the Mn�d�-t2g ,eg manifold, while the Co-Co hy-
brid antibonding orbitals remain uncoupled owing to
their symmetry. The Co-Co hybrid antibonding t2g is
situated below the Fermi energy EF and the Co-Co hy-
brid antibonding eg is unoccupied and lies just above the
Fermi level. Thus, due to the missing Mn�d�-t2g ,eg and
Co-Co hybrid antibonding hybridization, the Fermi en-
ergy is situated within the minority gap formed by the
triply degenerate Co-Co antibonding t2g and the doubly
degenerate Co-Co antibonding eg �see Fig. 27�.

Figure 28 shows the results of DOS calculations using
the LDA and LDA+DMFT schemes. The inset presents
the spin polarization P�EF�= �N↑�EF�−N↓�EF�� / �N↑�EF�
+N↓�EF��. One can see that in the minority spin channel
asymmetric NQP states are formed, while in the major-
ity a spectral weight redistribution takes place, which
contributes to the depolarization. Contrary to the
FeMnSb �Chioncel, Arrigoni, Katsnelson, et al., 2006�,
where the density of NQP states shows a rather strong
temperature dependence, in the full-Heusler Co2MnSi
the temperature dependence is not so significant, similar

FIG. 26. �Color online� Temperature-dependent polarization
at the Fermi level; P�E=EF ,T� �solid line� and magnetization
�dashed line� for different values of local Coulomb interaction
U �Chioncel, Arrigoni, Katsnelson, et al., 2006�.

FIG. 27. Schematic illustration of the gap formation in
Co2MnZ compounds with Z=Al,Si,Ge,Sn �Galanakis et al.,
2006�.

FIG. 28. �Color online� Total density of states of Co2MnSi
full-Heusler alloy. Notice that the gap is formed between the
occupied Co-Co antibonding t2g orbitals and empty Co-Co an-
tibonding eg orbitals. The LDA+DMFT results are presented
as well for U=3 eV, J=0.9 eV, and different temperatures.
The inset shows the finite-temperature spin polarization.
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to the result obtained for NiMnSb �Chioncel, Katsnel-
son, de Groot, et al., 2003�.

B. Half-metallic materials with zinc-blende structure

One of the strongest motivations to investigate mag-
netic semiconductors and half-metallic ferromagnets is
the possibility to design and produce stable structures on
semiconducting substrates with interesting properties.
From this point of view, first-principles studies are an
excellent starting point to predict new systems having
the desired properties. Using the full-potential density-
functional method, all 3d transition metal pnictides and
chalcogenides with wurtzite structure were investigated
systematically by Xie, Liu, and Pettifor �2003� in order
to find half-metallic ferromagnets. These can be fabri-
cated as thin films with large thickness for real spintronic
applications. Nine of the wurtzite phases �MnSb, CrAs,
CrSb, VAs, VSb, CrSe, CrTe, VSe, and VTe� were
found to be robust half-metallic ferromagnets with large
half-metallic gaps �0.2−1 eV�. Being compatible with
the III-V and II-VI semiconductors, these half-metallic
ferromagnetic phases, when realized experimentally,
would be useful in spintronic and other applications. At
the same time, zinc-blende �ZB� phases of MnAs, CrAs,
and CrSb have been fabricated successfully in the form
of nanodots, ultrathin films, and multilayers, respec-
tively. A study within density-functional theory �Liu,
2003� for the ZB predicted CrSb half-metallic ferromag-
netism with a magnetic moment of 3.0�B per formula.

1. CrAs: Tunable spin transport

Akinaga et al. �2000� have found the possibility to fab-
ricate ZB-type CrAs half-metallic ferromagnetic mate-
rial. Experimental data confirmed that this material is
ferromagnetic with the magnetic moment of 3�B, in
agreement with theoretical predictions �Akinaga et al.,
2000�. According to this calculation, this half-metallic
material has a gap of about 1.8 eV in the minority spin
channel, which has attracted much attention to this po-
tential candidate for spintronic applications, keeping in
mind also its high Curie temperature TC about 400 K.
Recent experiments on CrAs epilayers grown on
GaAs�001� evidenced an orthorhombic structure, differ-
ent from the ZB one, so the structure is rather sensitive
to the preparation process �Etgens et al., 2004�. How-
ever, it is highly desirable to explore the possibility of
the existence of half-metallic ferromagnetism in materi-
als that are compatible with practically important III-V
and II-IV semiconductors. For this purpose, efforts have
been made to investigate metastable ZB structures, such
as CrAs �Akinaga et al., 2000; Mizuguchi et al., 2002�.

It is interesting to explore the mechanisms of half-
metallic ferromagnetism at finite temperature from a re-
alistic electronic-structure point of view. Theoretical
studies �Shirai, 2003� of the 3d transition-metal
monoarsenides have shown that the ferromagnetic
phase of ZB structure CrAs compound should be more
stable than the antiferromagnetic one. The many-body

effects �see Fig. 29� are very sensitive to structural prop-
erties of the artificially produced CrAs compound
�Chioncel et al., 2005�. Similar electronic-structure calcu-
lations concerning the stability of the half-metallic ferro-
magnetic state in the ZB structure have been carried out
�Xie, Xu, Liu, et al., 2003�. The LDA+DMFT calcula-
tions were carried out for three lattice constants: the
GaAs �5.65 Å�, InAs �6.06 Å�, and the equilibrium
value �aeq=5.8 Å� obtained by density-functional calcu-
lations �Shirai, 2003�. The corresponding LDA computa-
tional results agree with previous ones �Akinaga et al.,
2000; Galanakis and Mavropoulos, 2003; Shirai, 2003�.
In order to evaluate the average Coulomb interaction on
the Cr atoms and the corresponding exchange interac-
tions, the constrained LDA method �Anisimov and
Gunnarsson, 1991� was used by Chioncel et al. �2005�,
which yielded U=6.5 eV and J=0.9 eV. It is important
to note that the values of the average Coulomb interac-
tion parameter decrease slightly going from the GaAs
�U=6.6 eV� to InAs �U=6.25 eV� lattice constants
�Chioncel et al., 2005�, which is in agreement with a na-
ive picture of a less effective screening due to increasing
the distances between atoms.

The typical insulating screening used in the constraint
calculation �Anisimov and Gunnarsson, 1991� should be
replaced by a metallic kind of screening. The metallic
screening will lead to a smaller value of U. Since there
are no reliable schemes to calculate U in metals, some
intermediate values were chosen, U=2 eV and J
=0.9 eV. It is important to realize that there are no sig-
nificant changes in the values of the average Coulomb
interaction for the lattice structures studied, the ex-
change interaction being practically constant. Note that
the physical results are not very sensitive to the value of
U, as was demonstrated for NiMnSb �Chioncel, Katsnel-
son, de Groot, et al., 2003�.

FIG. 29. The tunneling transport between strongly correlated
ferromagnets. �a� The density of states in the lower Hubbard
band is provided by standard current states for majority-spin
electrons �above� and by nonquasiparticle states for minority-
spin electrons �below�, the latter contribution nonzero only
above the Fermi energy �occupied states are shadowed�. How-
ever, the tunneling is possible both for �b� parallel and �c� an-
tiparallel magnetization directions �Chioncel et al., 2005�.
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The LSDA and LSDA+DMFT calculation for the
density of states, is presented in Fig. 30. Depending on
the lattice constant, the Cr and As atoms lose electrons
and this charge is gained by the vacant sites. As a result,
the Fermi level is moved from the right edge of the gap
�for the GaAs substrate� toward the middle of the gap
�for the InAs substrate�. The Cr moments are well local-
ized due to a mechanism similar to localization of
the magnetic moment on the Mn atom in NiMnSb
�de Groot, Mueller, v. Engen, et al., 1983�. The local Cr
spin moment is more than 3�B, and the As atom pos-
sesses a small induced magnetic moment �of order of
−0.3�B� coupled antiparallel to the Cr one. The results
are presented in Table I. Cr magnetic moments calcu-
lated in DMFT increase in comparison with the LDA
results due to the localization tendency of the Cr 3d
states, which is a consequence of correlation effects.

According to the calculations of Chioncel et al. �2005�,
the system remains half metallic with a rather large band
gap �about 1.8 eV� for all lattice constants compared
with the band gap of the NiMnSb, which is only 0.75 eV
�de Groot, Mueller, v. Engen, et al., 1983�. In Fig. 30, the
nonquasiparticle states are visible for a lattice parameter
higher than the equilibrium one, with a considerable
spectral weight in the case of the InAs substrate. This
situation is favorable for the experimental investigation
of the NQP states.

Comparing the electronic structure of CrAs growing
on InAs or GaAs substrates, we conclude that the most

significant change in the electronic structure is related
with the As p states. Having a larger lattice constant in
the case of InAs substrates, the Cr atom acquires a
slightly larger magnetic moment. Nevertheless, in the
LDA calculations the magnetic moment per unit cell is
integer, 3�B. Expanding the lattice constant from the
GaAs to the InAs lattice, the Cr states become more
“atomic,” and therefore the spin magnetic, moment in-
creases. This is reflected equally in the charge transfer,
which is smaller for the InAs lattice parameters. A
larger Cr moment induces a large spin polarization of
the As p states, compensating the smaller p-d hybridiza-
tion, the total moment retaining its integer value of 3�B
�Galanakis and Mavropoulos, 2003�.

The essential difference of the many-body electronic
structure for the lattice constants of GaAs and InAs is
due to the difference in the position of the Fermi energy
with respect to the minority-spin band gap, whereas the
self-energy characterizing the correlation effects is not
changed much �Fig. 31�. The total density of states N�E�
is rather sensitive to the difference between the band
edge Ec and the Fermi energy EF. If this difference is
very small �i.e., the system is close to the electronic to-
pological transition Ec→EF�, one can use a simple ex-
pression for the singular contribution to the bare density
of states, �N0�E���E−Ec �E�Ec�. The appearance of
the complex self-energy 
�E�=
1�E�− i
2�E� changes
the singular contribution as

�N�E� � ��Z1
2�E� + 
2

2�E� + Z1�E��1/2, �197�

where Z1�E�=E−Ec−
1�E� �cf. Katsnelson and Trefilov
�1990��. Assuming that the self-energy is small in com-
parison with E−Ec, one can find for the states in the gap
�N�E��
2�E� /�Ec−E �E
Ec�. One can see that the
shift of the gap edge changes drastically the density of
states for the same 
2�E�.

A practical use of tunable properties of NQP states in
CrAs grown on different substrates is possible. For most
applications, room temperature and the stability of the
ferromagnetic state are important prerequisites. The fer-
romagnetic CrAs might be grown on III-V semiconduc-
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FIG. 30. �Color online� Cr density of states calculated in
LSDA �dashed line� and LSDA+DMFT �solid line� methods
corresponding to temperature T=200 K, average Coulomb in-
teraction parameter U=2 eV, and exchange J=0.9 eV. The
nonquasiparticle states are clearly visible for lattice parameters
larger than aeq=5.8 Å, in the unoccupied part for the minority-
spin channel just above the Fermi level, around 0.5 eV �Chion-
cel et al., 2005�.

TABLE I. Summary of the results of calculations �Chioncel et
al., 2005�. CrAs magnetic moments corresponding to the
GaAs, InAs, and the equilibrium lattice constant aeq. For the
latter one, the value aeq=5.8 Å was used. Parameters of the
DMFT calculations are presented in the last three columns
�Chioncel et al., 2005�.

Cr
��B�

As
��B�

E
��B�

E1
��B�

Total
��B�

T
�K�

U
�eV�

J
�eV�

�LDA
GaAs 3.191 −0.270 −0.009 0.089 3.00

�DMFT
GaAs 3.224 −0.267 −0.023 0.067 3.00 200 2 0.9

�LDA
eq 3.284 −0.341 −0.018 0.076 3.00

�DMFT
eq 3.290 −0.327 −0.024 0.068 3.00 200 2 0.9

�LDA
InAs 3.376 −0.416 −0.025 0.066 3.00

�DMFT
InAs 3.430 −0.433 −0.033 0.043 3.00 200 2 0.9
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tors similar to the zinc-blende CrSb �Zhao et al., 2001�.
The presence of the NQP states was obtained by Chion-
cel et al. �2005� for CrAs lattice parameters larger than
5.8 Å. It was found experimentally that at 300 K, around
this value of the lattice parameter, a stable solid solution
of Ga0.65In0.35As is formed �Harland and Woolley, 1966�.
Thus, from a practical point of view, 65% of gallium in a
GaxIn1−xAs compound would constitute the ideal sub-
strate for the CrAs half metal. This could be a part of
the epitaxial III-V structure providing an easy way to
integrate with the existing semiconductor technology.

To determine possible substrates for growth of lay-
ered half-metallic materials, electronic-structure calcula-
tions were carried out for lattice parameters in the range
5.60−6.03 Å �Fong et al., 2004�. According to these cal-
culations, growth with minimal strain might be accom-
plished in a half-metallic multilayer system grown on
InAs substrate, which would be the best choice to evi-
dence the NQP states, since the Fermi energy is situated
in this case far enough from the bottom of the conduc-
tion band.

A high sensitivity of the minority-electron DOS near
EF to the lattice constant opens a new opportunity. Sup-
pose we have an antiparallel orientation of the magneti-
zations in the CrAs-based tunnel junction �such as
shown in Fig. 29�c��. Then the I−V characteristic is de-
termined by the density of the NQP states. Thus if we
will influence the lattice constant �e.g., using a piezoelec-
tric material�, we can modify the differential conductiv-
ity. This makes CrAs a very promising material with tun-
able characteristics, which opens new ways for
applications in spintronics.

2. VAs: Correlation-induced half-metallic ferromagnetism?

Interesting materials for spintronics applications are
ferromagnetic semiconductors �Nagaev, 1983; Ohno,
1998a, 1998b�. Candidate systems are ordered com-
pounds such as europium chalcogenides �e.g., EuO� and
chromium spinels �e.g., CdCr2Se4� �Nagaev, 1983�, as
well as diluted magnetic semiconductors �e.g.,
Ga1−xMnxAs� �Ohno, 1998a, 1998b�. Unfortunately, all
have Curie temperatures much lower than room tem-
perature. On the other hand, VAs in the zinc-blende
structure is, according to density-functional calculations
�Galanakis and Mavropoulos, 2003�, a ferromagnetic
semiconductor with a high Curie temperature. Unlike
CrAs �Akinaga et al., 2000�, CrSb �Zhao et al., 2001�, and
MnAs �Okabayashi et al., 2004�, VAs has not yet been
experimentally fabricated in the zinc-blende structure,
but the increasing experimental activity in the field of
the �structurally metastable� zinc-blende ferromagnetic
compounds is promising in this respect.

The main result including many-body correlation ef-
fects is displayed in Fig. 33. While this material is ex-
pected to be a ferromagnetic semiconductor from
density-functional theory �LSDA or GGA� or static
LSDA+U calculations, the inclusion of dynamic Cou-
lomb correlations within the LSDA+DMFT approach
predicts a majority-spin band metallic behavior due to
the closure of the gap ��50 meV�. However, since the
minority-spin band gap ��1 eV� remains finite, the ma-
terial is found to be a half-metallic ferromagnet. To our
knowledge, this is the first example in which dynamic
correlations transform a semiconductor into a half-metal
�Chioncel, Mavropoulos, Lezaic, et al., 2006�. This result
demonstrates the relevance of many-body effects for
spintronic materials.

Important features of the electronic structure of VAs
�Galanakis and Mavropoulos, 2003� are shown schemati-
cally in Fig. 32. The t2g states hybridize with the neigh-
boring As p states, forming wide bonding and antibond-
ing hybrid bands. In contrast, the eg states form mainly
nonbonding narrowbands. The Fermi level lies between
eg and antibonding t2g states in the majority-spin bands,
and between bonding t2g and eg in the minority-spin
bands. The spin moment, concentrated mainly at the V
atoms, is an integer of exactly M=2�B per unit formula,
which is obvious from counting the occupied bands for
two spin directions.
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FIG. 31. �Color online� Energy dependences of imaginary
parts of the electron self-energy 
2�E�, for lattice constants of
GaAs, equilibrium, and InAs: eg down solid line, t2g down
decorated solid line, eg up dashed line, t2g up decorated dashed
line �Chioncel et al., 2005�.
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The exchange constants of VAs were calculated
within the GGA and the adiabatic spin dynamics ap-
proach, similar to the one used by Halilov et al. �1998�.
Using these exchange parameters in a Monte Carlo
simulation of the corresponding classical Heisenberg
Hamiltonian yields a Curie temperature TC=820 K
�Chioncel, Mavropoulos, Lezaic, et al., 2006� by the
fourth-order cumulant crossing point. This result agrees
with the value of TC=830 K calculated by Sanyal et al.
�2003� using a similar method. The high Curie point is
well above room temperature, which makes VAs a
promising candidate for applications in spintronics.

Static correlations were taken into account within the
LDA+U method using similar values for the effective
interaction parameters U=2 eV and J=0.9 eV, as in the
case of Heusler alloys. This gives an estimation of cor-
relation effects in VAs, since for an exact value of U one
would need to perform a complicated analysis of screen-
ing effects in this compound �Aryasetiawan et al., 2004;
Kotliar et al., 2006�. The theoretically determined equi-
librium lattice parameter, a=5.69 Å, and a broadening �
of about 15 K, which allows the majority spin gap to be
clearly resolved, were used. For different lattice param-
eters �e.g., as for InAs� the LDA results agree with the
previous ones �Galanakis and Mavropoulos, 2003; San-
yal et al., 2003�. The GGA DOS is shown in Fig. 33. The
main difference in the GGA+U spectrum is that the
occupied localized majority eg states are expected to
shift to even lower energy, while the unoccupied minor-
ity eg states to higher energy. The semiconducting char-
acter does not change, since the eg and t2g bands remain
separated for both spins; the majority-spin gap increases
slightly, but remains small.

In order to investigate dynamic correlation effects in
VAs, the fully self-consistent in spin, charge, and self-
energy LSDA+DMFT scheme �Chioncel, Katsnelson,
de Groot, et al., 2003; Chioncel, Vitos, Abrikosov, et al.,

2003; Chioncel et al., 2005� was used. Computational re-
sults for the DFT in the GGA approximation and
LDA+DMFT densities of states are presented in Fig.
33. The nonquasiparticle states in the minority spin band
are visible just above the Fermi level �inset�, also pre-
dicted by previous calculations �Chioncel, Katsnelson,
de Groot, et al., 2003; Chioncel et al., 2005�. The weak
spectral weight of NQP states is due to the fact that the
Fermi level is close to the right edge of the minority-spin
gap, as discussed for CrAs having a similar structure
�Chioncel et al., 2005�. The local spin moments at V at-
oms do not change significantly �by less than 5%�. How-
ever, in the case of VAs, another correlation effect ap-
pears: the small majority-spin gap at EF closes, making
the material half metallic �Chioncel, Mavropoulos,
Lezaic, et al., 2006�.

In order to investigate the mechanism of the gap clos-
ing for the majority-spin channel, the behavior of the
electron self-energy has been investigated �Chioncel,
Mavropoulos, Lezaic, et al., 2006�. For the majority spin,
Im 
↑�E���E−EF�2, which indicates Fermi-liquid be-
havior, as opposed to Im 
↓�E�, which shows a suppres-
sion around EF due to the band gap, as well as a peculiar
behavior for E�EF related to the existence of NQP
states.

From the Dyson equation �166�, one can see that the
real part Re 
��E� causes a shift of the LDA energy
levels. Therefore, due to the nonzero 
↑

eg, the eg orbitals
in the close vicinity of the Fermi level are pushed closer
to EF. This renormalization is connected with the large
absolute value of Re��
 /�E�EF


0. This causes occupied
levels to be shifted to higher energy and unoccupied lev-
els to lower energy. Note that this effect is completely
opposite to the LDA+U results discussed above. In ad-
dition to this shift, the eg peak is broadened by correla-
tions, its tail reaching over the Fermi level �Fig. 33, in-
set�. Thus the finite-temperature LDA+DMFT
calculations demonstrate the closure of the narrow gap
in the spin-up channel, which is produced by the
correlation-induced Fermi-liquid renormalization and
spectral broadening. At the same time, NQP states ap-
pear for the minority-spin channel just above EF.

The slope of the majority-spin self-energy is almost a
constant as a function of temperature at low T :
Re��
↑ /�E�EF

�−0.4 between 200 and 500 K. The qua-
siparticle weight, which measures the overlap of the qua-
siparticle wave function with the original one-electron
one for the same quantum numbers, is Z= �1
−� Re 
↑ /�E�−1�0.7. As a consequence, the closure of
the gap in the majority channel is a quantum effect origi-
nating from the multiorbital nature of the local Cou-
lomb interaction �energy states are shifted toward EF�
rather than an effect of temperature. A similar gap clo-
sure is obtained for larger values of U, namely, U=4 and
6 eV, although the latter values should be taken with
some caution in the FLEX calculation, which is in prin-
ciple appropriate only in weak to intermediate coupling.
As a general tendency, increasing U*=U−J produces a
stronger Fermi-liquid renormalization in the majority-
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spin channel, the same effect being evidenced for J=0.
On the one hand, density-functional theory calcula-

tions within the GGA �Chioncel, Mavropoulos, Lezaic,
et al., 2006� predict this material to be a ferromagnetic
semiconductor with a tiny gap of about 50 meV in the
majority-spin states and a large gap of the order of 1 eV
for minority-spin states. Quantum effects, such as spin
and orbital fluctuations, described by LDA+DMFT de-
stroy the narrow gap and turn the material into a half-
metallic ferromagnet.

On the other hand, several other mechanisms could
contribute to the band-gap narrowing with increasing
temperature. A well studied example is electron-phonon
interaction. In another semiconductor with the zinc-
blende structure, GaAs, it amounts to 50 meV at 200 K
�Paessler, 1999�. Also spin-orbit coupling can be essen-
tial when considering closing of the gap.

The LDA-GGA calculation supplemented by a
Monte Carlo simulation also predicts a high Curie tem-
perature of 830 K �Sanyal et al., 2003�, which makes this
material of interest for technological applications. One
can expect that TC is not strongly affected by dynamical
correlation, for the same reason as the effective ex-
change interaction parameters �see works of Katsnelson
and Lichtenstein �2002��.

The revealed half-metallic �instead of semiconducting�
behavior has important consequences in the potential
applications of VAs in spintronics. In contrast to all
semiconductor-based spin-injection devices �Zutic et al.,
2004� that avoid the resistivity mismatch problem, half
metals can be applied to obtain giant magnetoresistance
or, provided that interface states are eliminated
�Mavropoulos et al., 2005�, tunneling magnetoresistance
effects. We see that correlation effects play a decisive
role in the prediction of new spintronic materials. The
metallic nature of the majority spin channel would be
visible in resistivity measurements. Therefore, the ex-
perimental realization of zinc-blende VAs would pro-
vide a test of this prediction. Further research should
address the stability issue of the half-metallic ferromag-
netic state in a zinc-blende structure. Some work in this
direction has already been done �Shirai, 2003; Xie, Xu,
Liu, et al., 2003�.

C. Half-metallic transition-metal oxides

1. CrO2: A rutile structure half-metallic ferromagnet

Chromium dioxide CrO2 has a rutile structure with a
=4.421 Å, c=2.916 Å �c /a=0.65958�, and internal pa-
rameter u=0.3053. �Porta et al., 1972�. The Cr atoms
form a body-center tetragonal lattice and are sur-
rounded by a slightly distorted octahedron of oxygen
atoms. The space group of this compound is nonsym-
morphic �P42/mnm=D4h

14�. The Cr ions are in the center
of CrO6 octahedra, so that the 3d orbitals are split into a
t2g triplet and an excited eg doublet. The eg states with
only two valence 3d electrons are irrelevant, and only
the t2g orbitals are to be considered. The tetragonal sym-
metry distorts the octahedra, which lifts the degeneracy

of the t2g orbitals into a dxy ground state and dyz+zx and
dyz−zx excited states �Lewis et al., 1997; Korotin et al.,
1998� �see Fig. 34; a local coordinate system is used for
every octahedron�. A double exchange mechanism for
two electrons per Cr site has been proposed �Schlott-
mann, 2003�. According to this, the strong Hund rule
together with the distortion of CrO6 octahedra leads to
localization of one electron in the dxy orbital, while the
electrons in the dyz and dxz are itinerant.

Measurements of the magnetic susceptibility in the
paramagnetic phase show a Curie-Weiss-like behavior
indicating the presence of local moments �Chamberland,
1977�, which suggests a mechanism of ferromagnetism
beyond the standard band or Stoner-like model.

Several recent experimental investigations of photo-
emission �Tsujioka, 1997�, soft-x-ray absorption �Stagar-
escu et al., 2000�, resistivity �Suzuki and Tedrow, 1998�,
and optics �Singley et al., 1999� suggest that electron cor-
relations are essential for the underlying physical picture
in CrO2. Schwarz �1986� first predicted the half-metallic
band structure with a spin moment of 2�B per formula
unit for CrO2. Lewis et al. �1997� used the plane-wave
potential method and investigated the energy bands and
transport properties, characterizing CrO2 as a “bad
metal” �a terminology applied earlier to high-
temperature superconductors and to other transition-
metal oxides, even ferromagnets like SrRuO3�. A de-
cade later, the LSDA+U calculation �Korotin et al.,
1998� treated conductivity in the presence of large on-
site Coulomb interactions and described CrO2 as a nega-
tive charge-transfer gap material with self-doping. Con-
trary to the on-site strong correlation description,
transport and optical properties obtained within the
FLAPW method �LSDA and GGA� �Mazin et al., 1999�

FIG. 34. �Color online� CrO2 �rutile� structure. Cr1 �green�
and Cr2 �orange� are located at �0, 0, 0� and � 1

2 , 1
2 , 1

2 �. Cr atoms
are octahedrally coordinated by oxygen atoms �purple�. The
local coordinate system is used for each Cr atom; x̂1=− 1

2 â
+ 1

2 b̂− 1
�2 ĉ, ŷ1=− 1
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2 â− 1

2 b̂
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�2 ĉ, ẑ2=− 1

�2 â+ 1
�2 b̂. x̂1,2 and ŷ1,2 approxi-

mately point to O atom, and ẑ1,2 exactly point to O atom. The
local axes are transformed into each other by a 90° rotation
around the crystal c axis �Yamasaki et al., 2006�.
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suggested that the electron-magnon scattering is respon-
sible for the renormalization of one-electron bands.
More recent model calculations �Laad et al., 2001; Craco
et al., 2003� propose even orbital correlations.

Chemical bonding in rutile-type compounds including
CrO2 has been analyzed by Sorantin and Schwarz
�1992�. One can see that around the Fermi level, the
bands are primarily chromium 3d states of t2g manifold,
with eg bands being situated higher in energy due to the
crystal-field splitting. In the spin-polarized case, the ex-
change splitting shifts the minority spin d bands above
the Fermi level �Fig. 35�. For the majority t2g bands, the
Fermi level lies in a pseudogap. Oxygen p− chromium d
hybridization creates both bonding and antibonding hy-
brid orbitals, with the bonding orbital appearing in the
occupied part and the antibonding hybrid orbital re-
maining in the Cr t2g manifold. Half of the dyz and dzx

components of t2g are pushed upward by antibonding,
which explains the dxy dominance in the spin density.
The nonmagnetic DOS shows a sharp peak at the Fermi
level, which signals the magnetic instability according to
the usual Stoner argument.

Although there is a significant difference between the
t2g and eg orbitals �Schwarz, 1986; Sorantin and Schwarz,
1992; Korotin et al., 1998; Mazin et al., 1999�, the analysis
in the framework of the NMTO technique �Andersen
and Saha-Dasgupta, 2000; Zurek et al., 2005� shows that
their interplay is important not only for the crystal-field
splitting of t2g states, but also for the general bonding in
the rutile structure. The t2g orbitals form the basis set
used by Yamasaki et al. �2006� to evaluate the effective
hopping Hamiltonian matrix elements.

In CrO2, the bands around the Fermi level are prima-
rily chromium 3d states of t2g manifold, eg bands occur-
ing higher in energy due to the crystal-field splitting. The
t2g orbitals are further split into single dxy and nearly
degenerate dyz±zx bands due to the orthorhombic distor-
tion of CrO6 octahedra. Despite the differences between
Cr t2g-eg orbitals, their interaction plays an important
role not only in characterizing the crystal-field splitting,
but also in the general picture of bonding in the rutile
structure.

Concerning the Coulomb interaction U in CrO2, the
higher energy eg bands, although making no noticeable
contribution at the Fermi level, participate in the screen-
ing of the t2g orbitals �Solovyev et al., 1996; Pickett et al.,
1998�, thereby giving the values U=3 eV and J
=0.87 eV.

Previous LSDA+U �Korotin et al., 1998; Toropova
et al., 2005� and DMFT �Laad et al., 2001; Craco et al.,
2003� studies yielded independently a narrow almost flat
band of dxy character, which produces ferromagnetism in
CrO2. In contrast to these results, the fully self-
consistent LSDA+DMFT �Chioncel et al., 2007� yields,
in agreement with a nonlocal variational cluster ap-
proach �Chioncel et al., 2007�, an itinerant dxy orbital
that crosses the Fermi level. Despite the nonlocalized
character of the orbital, a ferromagnetic phase is ob-
tained.

Results of the LSDA+DMFT calculation are pre-
sented in Fig. 36 for two different values of T and com-
pared with the LSDA results. The LSDA Fermi level
intersects the majority-spin bands near a local minimum
and lies in the band gap of the minority spin. Finite tem-
peratures and correlation effects close this pseudogap
around the Fermi level, as can be seen from the LDA
+DMFT results in Fig. 36. No differences can be ob-
served between the two DMFT results at different tem-
peratures, except for the smearing of DOS features at
larger temperature. For both spin channels, the DOS is
shifted uniformly to lower energies in the energy range
−2 to −6 eV, where predominantly the O�p� bands are
situated. This is due to the Cr�d� bands, which affect the
O�p� states through the Cr�d�-O�p� hybridization, so
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that O�p� states contribute actively to the ferromagnetic
ground-state formation.

Figure 37 presents the experimentally measured spin
polarization �Huang et al., 2003� in comparison with the
theoretical calculations within the LSDA and finite-
temperature LDA+DMFT �T=200 K� �Chioncel, 2006�.
Resonant x-ray emission spectroscopy �Kurmaev et al.,
2003� showed the existence of nearly currentless minor-
ity spin states in the vicinity of the Fermi level, which
can be connected to the nonquasiparticle states �Sec.
III.J�. As described in Secs. IV.A and V, the electronic
structure of several half-metallic ferromagnets reveals
the existence of such NQP states, which are important
for description of spin polarization near the Fermi level.
The LSDA+DMFT description, however, is not suffi-
cient to capture the high-energy tail of the experimental
spin polarization. This can be related to an improper
description of unoccupied Cr eg orbitals in the LSDA,
and probably also to nonlocal exchange effects, which
can be investigated within a cluster DMFT scheme �Kot-
liar et al., 2006�.

The NQP states occur around 0.25 eV in the spin-
down channel. At zero temperature, the variational clus-
ter results �Chioncel et al., 2007� yield states in the mi-
nority channel that are actually far from EF, but have
a tail vanishing at EF. This is in agreement with
low-temperature experiments �Soulen et al., 1998; Ji
et al., 2001� that support very high polarization of CrO2.

The effects of local and nonlocal electronic correla-
tions in CrO2 �Chioncel et al., 2007� change considerably
the mean-field LSDA+U picture, despite the interaction
is not too strong. In particular, in LSDA+U the single
occupancy of the Cr dxy orbital is determined by the
exchange and crystal-field splitting. On the other hand,
the competition of the latter with correlation effects,
which is taken into account in the DMFT and variational
cluster perturbation theory calculations, induces a ferro-
magnetic state with itinerant-type dxy orbitals possessing

a large effective mass rather than with localized mo-
ments, in contrast to previous results �Korotin et al.,
1998; Laad et al., 2001; Craco et al., 2003; Toropova et al.,
2005�. In the minority-spin channel, correlations induce
NQP states that are crucial for the occurrence of spin
depolarization in CrO2. However, a quantitative analysis
of the depolarization requires the inclusion of additional
effects, e.g., disorder or phonons �Sec. III.C�.

VI. EXCHANGE INTERACTIONS AND CRITICAL
TEMPERATURES IN HALF-METALLIC COMPOUNDS

Owing to the strong interest in the half-metallic ferro-
magnetism, the number of theoretical studies of ex-
change interactions and calculations of Curie tempera-
tures in Heusler alloys has been drastically increased
�see, e.g., Zhang et al. �2007��. The first investigation of
exchange interactions in half metals within the DFT for-
malism was by Kübler �Kübler et al., 1983�. The mecha-
nisms of ferromagnetism in Heusler alloys were dis-
cussed on the basis of total-energy calculations for the
ferro- and antiferromagnetic configurations. Since the
antiferromagnetic state of the system is not half metallic,
such an estimation gives only crude values of exchange
parameters in HMFs. Therefore, a more precise evalua-
tion of the exchange interactions from the first-
principles theory is required. In this section, we present
the real-space Green’s function and frozen-magnon
techniques to calculate the exchange parameters, and
their applications to full-Heusler, semi-Heusler, and
zinc-blende half metals.

A. The Green’s function formalism

Within the first-principles Green’s function approach,
the exchange parameters �Liechtenstein et al., 1987� are
obtained by mapping the second variation of electronic
band energy to the classical Heisenberg Hamiltonian
and making use of the magnetic version of Andersen’s
local force theorem �Mackintosh and Andersen, 1980�,

Heff = − �
�,�

�
RR�

JRR�
�,� sR

�sR�
� . �198�

In Eq. �198�, the indices � and � mark different sublat-
tices, R and R� are the lattice vectors specifying the at-
oms within a sublattice, and sR

� is the unit vector in the
direction of the magnetic moment. By introducing the
generalized notation for site �i=� ,R�, a simple and
transparent expression for the exchange interaction pa-
rameters is obtained in the following form �Liechten-
stein et al., 1987�:

Jij =
1

4�
�

−�

EF

d� Im TrL��iGij
↑�jGji

↓� , �199�

where Gij
� is the real-space Green’s function and �i is the

local exchange splitting for site i.
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FIG. 37. �Color online� Energy dependence for the spin polar-
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B. The frozen-magnon approach and DFT calculations of spin
spirals

The frozen-magnon approach is based on evaluation
of the energy configurations defined by the following
atomic polar and azimuthal angles:

�R
� = � ; !R

� = q · R + !�. �200�

The angle � defines the cone of the spin spiral, and the
constant phase !� is normally chosen to be zero. The
magnetic moments of other sublattices are kept parallel
to the z axis. Within the classical Heisenberg model
�198�, the energy of the spin-spiral configuration is

E����,q� = E0
����� + J���q�sin2� , �201�

where E0
����� does not depend on q and the Fourier

transform J���q� is defined by

J���q� = �
R

J0R
�� exp�iq · R� . �202�

In the case in which �=�, the sum in Eq. �202� does not
include the local interaction with R=0. Calculating
E���� ,q� for a regular q-mesh in the Brillouin zone of
the crystal and performing the inverse Fourier transfor-
mation, one gets exchange parameters J0R

�� for sublattice
�.

The Curie temperature can be estimated within the
mean-field approximation �MFA�,

kBTC
MFA =

2
3�

R
J0R

�� =
M

6�B

1

N�
q

��q� , �203�

and the random-phase approximation �RPA�,

1

kBTC
RPA =

6�B

M

1

N�
q

1

��q�
, �204�

with ��q� the spin-wave dispersion, N the number of q
points in the first Brillouin zone, and M the atomic mag-
netic moment. In the MFA, the Curie temperature is
determined by the arithmetic average of the magnon en-
ergies, while in the RPA, TC is determined by the har-
monic average. Therefore, the value of TC within the
MFA is larger than the RPA one, the two values being

equal only provided that the magnon spectrum is disper-
sionless.

C. First-principles calculations

1. Semi-Heusler C1b alloys

First-principles studies of exchange interactions and
magnetic phase transitions for NiCrZ �Z=P,Se,Te�,
NiVAs, NiMnSb, and CoMnSb were carried out by
many �Sasioglu, Sandratskii, and Bruno, 2005; Rusz et
al., 2006� In Fig. 38, the frozen-magnon dispersion and
exchange interactions are presented �Sasioglu, Sand-
ratskii, and Bruno, 2005�. The exchange interactions are
Fourier transforms of the frozen-magnon spectrum.

A remarkable feature of the exchange interactions is
their short-range character, the Curie temperature deter-
mined by the interaction within the first two coordina-
tion spheres. The deviation from the collinear alignment
of magnetic moments can also be characterized by mag-
non energies �Sandratskii, 1998; Sandratskii and Bruno,
2003�. The deviation leads to the mixing of the majority
and minority spin states, which makes half metallicity
less favorable. A detailed discussion of different depo-
larization mechanisms is given in Sec. III.C.

2. Full-Heusler L21 alloys

Recently, studies of the interatomic exchange interac-
tions in several full-Heusler compounds were reported
by Kurtulus et al. �2005�. Sasioglu et al. �2005� studied
the exchange interactions in non-half-metallic
Ni2MnZ �Z=Ga,In,Sn,Sb� and half-metallic Mn2VZ
�Z=Al,Ge�. The importance of the intersublattice ex-
change interactions has been demonstrated. For
Mn2VZ �Z=Al,Ge�, it was shown that the ferrimagnetic
coupling between the V and Mn moments stabilizes the
ferromagnetic alignment of the Mn moments.

In Co2MnZ �Z=Ga,Si,Ge,Sn�, the presence of Co
atoms makes the interaction more complicated �Kurtu-
lus et al., 2005�. The interaction between Co atoms in the
same sublattice, Co1�2�-Co1�2�, and between Co atoms
at different sublattices, Co1�2�-Co2�1�, has to be taken
into account. This approach gives results that go beyond
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the initial approach of Kübler �Kübler et al., 1983�. From
the Jij values, it is clear that the exchange interactions
are relatively short ranged and do not exceed the first
four neighbors in each sublattice. The main exchange
parameter corresponds to the nearest-neighbor
Co�1�-Mn interaction. This already gives 70% of the to-
tal contribution to J and is about ten times larger than
the Co-Co and Mn-Mn interactions �Kurtulus et al.,
2005�. Thus, it was concluded that the Co-Mn interac-
tions are responsible for the stability of ferromagnetism
�see Fig. 39�.

3. Zinc-blende half-metals

Besides the large number of results on the electronic
properties of zinc-blende half metals, the exchange in-
teractions constitute an important aspect to understand
the stability of half metallicity in these structures. Shirai
�2003� obtained that in VAs, CrAs and MnAs ferromag-
netism is energetically favorable in comparison with the
antiferromagnetic state, unlike FeAs, where an opposite
effect was demonstrated. Sakuma �2002� predicted ferro-
magnetism in the isoelectronic MnSi, MnGe, and MnSn
compounds. Similar to CrAs, the ferromagnetism in
these systems is stabilized by short-range interactions
�direct Mn-Mn and indirect through sp atoms�, giving a
Curie temperature of 1000 K �Sakuma, 2002�. TC for the
VAs �CrAs and MnAs� was also calculated by Kübler
�2003� yielding the same range of magnitudes. Using
GaAs and InAs lattice constants, Sanyal et al. �2003�
calculated TC for the VAs CrAs and MnAs. Sasioglu,
Galanakis, Sandratskii, et al. �2005� calculated the ex-
change parameters for a large number of pnictides.

MnC presents an interesting situation since its half-
metallic gap is situated in the majority spin channel. The
Curie temperature was found to be 500 K. Figure 40
represents the frozen-magnon energies for a selected di-

rection in the Brillouin zone and the exchange constants.
Ferromagnetism is stabilized by the direct Mn-Mn inter-
actions and Mn-C ferromagnetic coupling. A remark-
able feature of MnC is the small difference between the
MFA and RPA values of TC �Sasioglu, Galanakis, San-
dratskii, et al., 2005�.

VII. CONCLUSIONS

The idea of half-metallic ferromagnetism appeared as
a result of band-structure calculations �de Groot, Muel-
ler, v. Engen, et al., 1983�. For a long time, the dominant
activity in this field was theoretical. Conceptually, HMFs
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are of interest because they provide an opportunity to
probe some essentially many-particle effects �Irkhin and
Katsnelson, 1990�. Whereas for a generic metallic system
the Landau Fermi-liquid theory �Nozieres, 1964; Vons-
ovsky and Katsnelson, 1989� works, most correlation ef-
fects hidden in a parameter renormalization �such as ef-
fective mass, magnetic moment, etc.�, in HMFs the spin-
polaronic effects lead to a qualitatively new feature,
namely, the occurrence of nonquasiparticle �incoherent�
states in the energy gap for one of the spin projections
near the Fermi level. On the contrary, similar effects for
electron-magnon interactions in traditional itinerant-
electron ferromagnets are mixed with other kinds of
renormalization �e.g., electron-phonon, electron-
electrons, etc.�. The NQP states occur only above �be-
low� EF for a minority spin �majority-spin� gap. There-
fore, HMFs are ideal objects to investigate the effects of
electron-magnon interactions �Irkhin and Katsnelson,
1990�.

An even stronger motivation to study HMFs is con-
nected with the idea of using them in giant magnetore-
sistance and tunnel magnetoresistance �de Groot, Jan-
ner, and Mueller, 1983; Irkhin and Katsnelson, 1994;
Prinz, 1998� devices. This initiated great theoretical ac-
tivity in the field of heterostructures containing HMFs
�Tkachov et al., 2001; Irkhin and Katsnelson, 2002�. At
the same time, the interest in the search and prediction
of new HMFs was growing on the basis of band-
structure calculations, as well as attempts to better un-
derstand the features of electronic structure and chemi-
cal bonding, which are relevant for half metallicity �see
Sec. V�.

Recently, numerous attempts have been performed to
build heterostructures with HMFs, such as Heusler al-
loys �Gercsi et al., 2006; Sakuraba, Hattori, Oogane,
et al. 2006; Sakuraba, Miyakoshi, Oogene, et al. 2006;
Sakuraba et al., 2007�, CrO2 �Miao et al., 2006�, and
Fe3O4 �Rybchenko et al., 2006; Zhao et al., 2006�. There-
fore, the half metallicity predicted by electronic-
structure calculations becomes practically applicable.
Nevertheless, direct experimental evidence of half-
metallic structure for specific compounds is still rather
poor. Perhaps the unique method of testing genuine,
bulk, half-metallic properties remains spin-resolved pos-
itron annihilation. This underexposed technique enables
direct measurement of spin polarization in the bulk. Ad-
vanced techniques borrowed from semiconductor tech-
nologies that access spatially resolved spin polarization
at the Fermi level would be interesting alternatives for
positron annihilation. Although extensively used to
characterize semiconductors, they are poorly known in
the spintronics community.

Among other experiments expected to advance the
field, we mention STM �Irkhin and Katsnelson, 2006�,
spin-polarized photoemission �Park et al., 1998�, and An-
dreev reflection �Soulen et al., 1999�. Investigations of
the nuclear magnetic relaxation rate should be men-
tioned in particular since the absence of the Korringa
relaxation is a clear sign of half metallicity �Irkhin and
Katsnelson, 2001�. NMR gives direct information on

bulk properties that is not surface, sensitive. Also, the
data of core-level spectroscopies, especially XMCD,
would be very useful �see Sec. III.J�. As for the band-
structure calculations, application of state-of-art meth-
ods taking into account correlation effects, such as GW
or DMFT �see Sec. IV.A�, looks very promising. An-
other possible direction is the use of electron-structure
calculations to search essentially new types of HMFs
such as sp electron �or anionic� magnets �Attema et al.,
2005; Edwards and Katsnelson, 2006�.
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