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The progress in solving problems involving nonrelativistic fast ion (atom)-atom collisions with two
actively participating electrons is reviewed. Such processes involve, e.g., (i) scattering between a bare
nucleus (projectile) P of charge Zp and a heliumlike atomic system consisting of two electrons e; and
e, initially bound to the target nucleus 7 of charge Zr, i.e., the Zp-(Z7;e1,e,); collisions; (ii) scattering
between two hydrogenlike atoms (Zp,ey);, and (Z7,e5);,, etc. A proper description of these collisional
processes requires solutions of four-body problems with four active particles including two nuclei and
two electrons. Among various one- as well as two-electron transitions which can occur in such
collisions, special attention will be paid to double-electron capture, simultaneous transfer and
ionization, simultaneous transfer and excitation, single-electron detachment and single-electron
capture. Working within the four-body framework of scattering theory and imposing the proper
Coulomb boundary conditions on the entrance and exit channels, the leading quantum-mechanical
theories are analyzed. Both static and dynamic interelectron correlations are thoroughly examined.
The correct links between scattering states and perturbation potentials are strongly emphasized.
Selection of the present illustrations is dictated by the importance of interdisciplinary applications of
energetic ion-atom collisions, ranging from thermonuclear fusion to medical accelerators for hadron

radiotherapy.
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I. INTRODUCTION

Determination of the interactive dynamics of atomic
systems is still among the most fundamental challenges
in physics. Since the interaction potentials in atomic sys-
tems are exactly known, any discrepancy between ex-
perimental measurements and theories can be attributed
to inappropriate theoretical models for describing many-
particle systems or to unreliable experimental tech-
niques. One of the central questions which arises in
scattering problems involving many-electron systems
concerns the influence of the electron-electron interac-
tion on the overall dynamics in these collisional phe-
nomena. Since the helium atom (or a heliumlike ion) is
the simplest many-electron target where one can assess
the importance of electronic correlations, its investiga-
tion has attracted most attention from both the theoret-
ical and experimental sides. Collisional processes in
which two nuclei and two electrons take part represent
pure four-body problems (Belkic, 1997a, 1997b; Belkic
and Mancev, 1992, 1993). One of the basic motivations
for developing four-body theories to treat ion (atom)-
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atom collisions is to more thoroughly understand the
role of the electron-electron correlation and phase co-
herences in such important processes. In atomic physics,
electronic correlation effects originate from pure Cou-
lombic interactions between active electrons. Phase co-
herences are interference patterns for competing mecha-
nisms in four-body collisional transitions.

In ion-atom collisions, there are two kinds of elec-
tronic correlations: static and dynamic. Static correla-
tions are built into multielectron bound-state wave func-
tions without any reference to collisions. Quantum-
mechanical bound states are “prepared” without the
presence of an incident beam. Several methods for ob-
taining bound-state wave functions and the correspond-
ing eigenenergies for two-electron atomic systems have
recently been reviewed (Tanner et al., 2000). The dy-
namic correlations describe interactions between two
electrons in the exit channel, if we deal with the
Zp-(Zr1;eq,e,); collisions, or in the entrance channel, if
the (Zp,el)il-(ZT,ez)i2 process is considered. The elec-
tronic interactions alone are capable of causing a transi-
tion of the entire collisional system from an initial to a
final state. Such a dynamical effect automatically pos-
sesses both radial and angular correlations through the
inclusion of the interelectron Coulomb potential 1/r, in
the final interaction potential V; appearing in the post
form of the transition amplitude T}, if the Zp-(Z7;eq,¢,);
collisions are studied. The same potential 1/r(, appears
in the initial perturbation potential V; of the prior form
of the transition amplitude T, if the (Z P,el),»]-(ZT,ez)iz
collisions are investigated.

The majority of the theoretical studies that have
considered the Zp-(Zr;eq,e,); collisions employed the
independent-particle model' (IPM) (Hansteen and
Mosebekk, 1972; Mukherjee et al., 1973; Biswas et al.,
1977; McGuire and Weaver, 1977; Lin, 1979; Theisen and
McGuire, 1979; Gayet et al., 1981, 1991; Gayet and Salin,
1987; Gayet, 1989; Olson, 1982; Olson et al., 1986;
Brandt, 1983; Ghosh et al., 1985, 1987; Sidorovich et al.,
1985; McGuire, 1987, 1992; Stolterfoht, 1990, 1993; Deco
and Griin, 1991; Jain et al., 1991; Shingal and Lin, 1991;
Martinez et al., 1994, 1997; McCartney, 1997; Zerarka,
1997). The basic feature of all these previous investiga-
tions within the IPM and its variants is the preservation
of a pure three-body formalism, despite the fact that the
studied four-body problems include two active electrons.
Within the IPM itself, there are many ways of approxi-
mating the wave function of a heliumlike atomic system.
An approach in which an active electron of a two-
electron atom or ion moves in an effective potential gen-
erated by the other nucleus and the passive electron has
frequently been used. The term passive electrons is used
here in the sense that their interactions with the active
electrons do not contribute to the collisional process.
Thus, in the IPM, the initial four-body problem is effec-
tively reduced to a three-body problem. The main draw-
back of the IPM is that the dynamic correlation effects

TAll acronyms used are defined at the end of the article.
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during the collisional phenomenon are completely ig-
nored from the outset.

Hence, if we are to adequately assess the role of
electron-electron correlations, we must deal with a four-
body problem from the beginning. Guided by this argu-
ment, various quantum-mechanical four-body methods
have been proposed to study one- and two-electron
transitions in scattering of completely stripped projec-
tiles on heliumlike atomic systems or in collisions be-
tween two hydrogenlike atoms or ions. In addition to
four-body theories, which are the subject of this review,
the role of electronic correlations in energetic ion-atom
collisions has also been investigated elsewhere (Stolter-
foht, 1990, 1993; McGuire, 1992, 1997).

The first formulation and implementation of the four-
body continuum distorted-wave (CDW-4B) method for
double-electron capture was carried out by Belkic and
Mancev (1992, 1993). The CDW-4B method obeys the
asymptotic convergence criteria of Dollard (1963, 1964)
for Coulomb potentials. These initial computations of
Belki¢ and Mancev (1992, 1993) on the formation of H-
in the H*-He collisions yielded total cross sections that
were in excellent agreement with available experimental
data. Subsequently, the CDW-4B method was applied to
other collisional systems (Belki¢, 1994; BelkicC et al.,
1994; Gayet et al., 1994a, 1996; Martinez et al., 1999),
including double capture into singly and doubly excited
final states by multiply charged projectile ions. Further,
an adequate description of simultaneous transfer and
ionization has been devised using the CDW-4B method
(Belkic et al., 1997a, 1997b; Mancev, 1999b, 2001). Stud-
ies of transfer ionization by means of the CDW-4B
method indicate that dynamic electronic correlations
in perturbation potentials are more important than
the static ones. The substantial improvement of the
CDW-4B method over, e.g., the IPM has been attributed
solely to the role of dynamic electron correlation effects.

Throughout this review, emphasis is placed on the ad-
equate solutions of the asymptotic convergence problem
(Dollard, 1964; Belkic et al., 1979) by requiring not only
the correct asymptotic behaviors of all the scattering
wave functions, but also their proper connections with
the corresponding perturbation interactions. This strat-
egy proves to be simultaneously fundamental (consis-
tency of theory by reference to the first principles of
physics), and practical (stringent scrutiny of theory
through its systematic verification against experiment).
A striking example which illustrates this issue is a four-
body problem with single-electron detachment from H~
by H*. For this problem, the eikonal Coulomb-Born
method has been proposed by Gayet, Janev, and Salin
(1973) with the correct asymptotic behaviors of the ini-
tial and final scattering states. Yet, the ensuing total
cross sections of this method overestimate the corre-
sponding experimental data by some 2-3 orders of mag-
nitude at all impact energies. As shown by Belkic
(1997a, 1997b), the reason for this discrepancy was the
lack of the proper link between the initial scattering
state and the perturbation potential in the entrance
channel. When this link has properly been established
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for the same collisional problem, the modified Coulomb-
Born method emerged (Belkic, 1997a, 1997b), exhibiting
excellent agreement with the experimental data at all
impact energies. This latter approximation is a simplified
version of the CDW method for ionization proposed by
Belkic (1978), who originally derived the scattering wave
for the final state as the product of three full Coulomb
functions (later called the C3 function) to satisfy the cor-
rect boundary condition for three charged particles in
the exit channel. This C3 scattering wave function has
repeatedly been rediscovered in subsequent studies
(Garibotti and Miraglia, 1980; Brauner, Briggs, and Klar,
1989). Throughout the years, and especially more re-
cently (Gulyas and Fainstein, 1998; Ciappina et al.,
2003), it was conclusively established that the most suc-
cessful theory for heavy-particle ion-atom ionization at
high energies is the CDW method of Belkic (1978) re-
garding both differential and total cross sections. Of
late, the CDW method has been exported to neighbor-
ing research fields, such as medical physics for a more
adequate description of the stopping power of multiply
charged ions passing through matter, as encountered in
applications to hadron radiotherapy (Belkic, 2007).

The three-body reformulated impulse approximation
(RIA-3B) of Belkic (1995, 1996), after resolving a long-
standing problem on the inadequacy of the correspond-
ing impulse approximation (IA) for the total cross sec-
tions in the H*-H charge exchange, has been extended
to four-body collisions. Cross sections of the four-body
reformulated impulse approximation (RIA-4B) of Bel-
ki¢ for transfer ionization (TI) in the H*-He collisions
have been reported in a joint theoretical and experimen-
tal study (Mergel et al., 1997). The total cross sections
of the RIA-4B for the TI process have indicated a trend
of the v™!! behavior at sufficiently large values of the
impact velocity v. This asymptotic behavior, as the
quantum-mechanical counterpart of the corresponding
classical double scattering (Thomas, 1927), has been con-
firmed on the same collision by two subsequent mea-
surements (Schmidt et al., 2002; Schmidt, Jensen, ef al.,
2005).

As a further exploration of the CDW-4B method, si-
multaneous transfer and excitation (TE) have also been
the subject of studies (Bachau et al, 1992; Gayet and
Hanssen, 1992; Gayet et al., 1995; 1997; Ourdane et al.,
1999). This process takes place when a target electron is
captured by a nonbare projectile, while the initial elec-
tronic structure of the latter is excited at the same time.
For the process of TE, where a doubly excited (autoion-
izing) state is formed on the projectile, two modes have
been identified and termed the resonant (RTE) and the
nonresonant transfer excitation (NTE). In the RTE, ex-
citation of the projectile is due to the dielectronic inter-
action between the projectile electron and the target
electron, which is captured. In the NTE, a target elec-
tron is transferred and excitation of the projectile comes
from the interaction with the rest of the target. In addi-
tion to these two-electron transitions, the CDW-4B
method has also been applied to single-electron capture
(Belkic et al., 1997; Mancev, 1999a, 2001) in a number of
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processes, such as the H*-He, H*-Li*, He?*-He, and
Li**-He collisions. In the CDW-4B method, the elec-
tronic continuum intermediate states are included in
both channels through the full Coulomb waves. Using
this method, we emphasize the pivotal role of the dy-
namic electron correlations in differential cross sec-
tions. In particular, the CDW-4B method predicts two
competing double scattering mechanisms leading to
a double structure with the Thomas peak of the 1st
(P-e-T) and 2nd (P-e—e) kind, where the former
(standard) is a purely high-energy occurrence, whereas
the latter (novel) systematically persists at all impact
energies (Belkic, 2001, 2004).

In the boundary-corrected four-body first Born ap-
proximation (CB1-4B), pure electronic continuum inter-
mediate states are not taken into account. Here the
scattering state vectors are given by the product of un-
perturbed channel states and logarithmic distortion
phase factors due to the Coulomb long-range remain-
ders of the perturbation potentials. The CB1-4B method
was initially formulated and applied to double-electron
capture by Belkic (1993a, 1993b). This method has sub-
sequently been used for describing single-charge ex-
change in energetic collisions between two hydrogenlike
atoms or ions (Mancev, 1995, 1996).

The four-body boundary-corrected continuum inter-
mediate state (BCIS-4B) method of Belkic¢ (1993c) and
the four-body Born distorted-wave (BDW-4B) method
of Belkic (1994) have been introduced and used first for
investigation of double- and then single-electron cap-
ture. These two methods, with the correct boundary
conditions, can be applied and extended to any number
of colliding particles, so that the more generic acronyms
BCIS and BDW can be used. Both methods employ the
scattering wave functions from the CDW method in one
of the two channels, in either the entrance or exit chan-
nel, for the initial or final state, depending on whether
the prior or post form of the transition amplitudes is
used. For the other channel, the BCIS and BDW meth-
ods use the corresponding wave functions of the CB1
method. As a result, the distorting potentials that cause
the transitions from the initial to final states of the sys-
tem are different in the BCIS and BDW methods. These
latter potentials are the usual electrostatic Coulomb in-
teractions in the BCIS method (shared by the CBI1
method), whereas they are the operator-type potentials

V-V in the BDW method (shared by the CDW method).
Thus, if one wishes to make these remarks more trans-
parent, the original acronym BDW introduced by Belkic
(1994), and subsequently used by Mancev (2003) and
Mancev et al. (2003), could be relabeled as CDW-CB1.
In particular, the notations for the post and prior BDW
or, equivalently, CDW-CB1 can further be differentiated
by highlighting the use of the boundary-corrected first-
order Born initial and final states (BIS and BFS). This
has led to yet another equivalent set of acronyms, CDW-
BIS and CDW-BFS (Mancev, 2005a, 2005b) for the post
and prior versions of the BDW method of Belkic (1994).
Using the BCIS and BDW methods, Belki¢ (1993c,
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1994) has shown that double-charge exchange is sensi-
tive to the inclusion of long-range Coulomb effects
through electronic continuum states. These latter states
play an important role even at those incident energies at
which the Thomas double scattering is not apparent. By
means of the mentioned hybrid four-body approxima-
tions, one can study various mechanisms that can pro-
duce the Thomas peaks in the differential cross sections.
Even for single-charge exchange with heliumlike targets,
these methods deal explicitly with two active electrons
from the onset and, therefore, they preserve the four-
body nature of the original problem. The post and prior
BDW methods (or, equivalently, the CDW-BIS and
CDW-BFS methods, respectively) have been employed
to compute both differential and total cross sections for
single-electron capture in collisions between bare pro-
jectiles and heliumlike atoms or ions (Mancev, 2003,
2005a, 2005b; Mancev et al., 2003).

Additionally, there are other hybrid-type approxima-
tions with the correct boundary conditions known as the
continuum distorted wave eikonal initial state (CDW-
EIS) and the continuum distorted wave eikonal final
state (CDW-EFS) methods (Crothers and McCann,
1983; Busnengo et al., 1995, 1996; Galassi et al., 2002).
The CDW-EIS method was originally introduced by
Crothers and McCann (1983) for ionization of hydrogen-
like atomic systems by nuclei treated as a pure three-
body problem. In the work of Busnengo et al. (1996), the
CDW-EIS and CDW-EFS methods for single-electron
capture from a two-electron target are reduced to a one-
electron process. Here, the active captured electron was
described by a self-consistent field orbital. The other
noncaptured electron is passive, since it is considered as
frozen in its initial state during the collision. Therefore,
such versions of the CDW-EIS and CDW-EFS methods
(Busnengo et al., 1995, 1996; Galassi et al., 2002) belong
to the category of three-body approximations. As to
pure four-body collisions with two active electrons, the
four-body continuum distorted wave eikonal initial state
(CDW-EIS-4B) method has also been introduced and
applied to double capture from helium by alpha par-
ticles (Martinez et al., 1999), but without any success.
The CDW-EIS and CDW-EFS methods differ from the
CDW-BIS and the CDW-BFS methods, since EIS and
EFS are different from BIS and BFS, respectively. Spe-
cifically, the difference is in the independent variables in
the eikonal phase factors for the two sets of the invoked
asymptotic states {EIS, EFS} and {BIS, BFS}.

The dominant feature of most of the quoted quantum-
mechanical four-body approximations is that they show
systematic agreement with the corresponding experi-
mental data at intermediate and high impact energies.
This is striking in view of the fact that the impact param-
eter versions of the investigated approximations often
fail (and do so dramatically in some cases) in their at-
tempts to reproduce experimental data. The first indica-
tion on the breakdown of the IPM for double-electron
capture has been given by Belki¢ and Mancev (1992).
The clear implication of this is that dynamic correlation
effects are of critical importance for two-electron transi-
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tions. One of the tasks of the present review is to high-
light this latter feature and to assess its overall signifi-
cance for energetic ion-atom collisions with two actively
participating electrons. The major goal of this review is
to critically evaluate the efficiency and overall utility of
the leading methods within the realm of four-body
quantum-mechanical scattering theory. For validation
purposes, we shall formulate the necessary theoretical
criteria that adequate four-body methods are expected
to satisfy. Intermediate and high nonrelativistic energies
permit a consistent extension of rigorous pure three-
body distorted-wave methods to their pure four-body
counterparts without any significant additional approxi-
mation. This represents an excellent opportunity to esti-
mate the relevance of the well-known asymptotic con-
vergence problem from formal scattering theory for
Coulomb potentials when more than three particles are
actively involved. Such an opportunity will presently be
seized by building on the past successful experience
with the similar challenges encountered in simpler
three-body ion-atom rearrangement collisions for which
Belki¢ et al. (1979) have conclusively established the
critical importance of the correct Coulomb boundary
conditions in the most general case with the exact eiko-
nal transition amplitude. Subsequent detailed numerical
computations, with dramatic improvements relative
to experimental data, expecially for the boundary cor-
rected three-body first-order approximation of this exact
eikonal T matrix (Belki¢ et al., 1986; Belki¢, Taylor, and
Saini, 1986; Belkic er al., 1987; Belki¢ and Taylor, 1987;

(ZP;€1»€2)f+ Zr

(Zp,e))p+Zr+e,
Zp+(Zriey,e;), —

Zp+ (ZT,ez)f'*‘ €1

Zpier,en)r+ 2
(Zp,el)i1+(zr,€2)i2—’{( penedrt Zr

where indices i, f, iy, i, f, and f, represent the collective
labels for the set of quantum numbers needed to de-
scribe the initial and final bound states, while the double
asterisk denotes the doubly excited state.

Let the position vectors of the projectile nucleus, the
target nucleus, and electrons e, , relative to an arbitrary
coordinate frame be, respectively, denoted by 7, 7, F3,
and 7. Then the kinetic energy operator is given by

1 1 1 1
V-V -V, - V), (1)

Hy=-
0T oM, 2My 2 2 2

where Mp and M, are the masses of the projectile and
target, respectively. The position vectors of electrons e; ,
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Dewangan and Eichler, 1986), confirmed the validity of
this theoretical concept, which was then widely accepted
and reviewed in several articles and books on the subject
(Bransden and Dewangan, 1988; Bransden and McDow-
ell, 1992; Crothers and Dubé, 1993; Dewangan and
Eichler, 1994; Bransden and Joachain, 2003; Belkic,
2001, 2004, 2007).

Atomic units will be used throughout unless otherwise
stated.

II. GENERAL THEORY
A. Notation and basic formulas

In the present review we are interested in ion-atom
collisions in which two electrons take part. Such pro-
cesses involve (i) scattering between a bare nucleus (pro-
jectile) P of charge Zp and a heliumlike atomic system
consisting of two electrons e; and e, initially bound to
the target nucleus T of charge Z, i.e., the Zp-(Z1;e1,€5);
collisions, where the parentheses indicate the bound
states; (ii) scattering between two hydrogenlike atoms
(ZP,el),-l and (Zr,e,);, etc. We adopt the quantum-
mechanical nonrelativistic spin-independent formalism,
which permits consideration of the two electrons as be-
ing distinguishable from each other.

Among various processes that can occur in such colli-
sions, special attention will be paid to the following re-
arrangement collisions

(double-electron capture),
(transfer ionization),
(Zp,e))y, + (Zr,e3)y, (single-electron capture),

(single-electron ionization/detachment),

(single-electron capture),

(Z P;el,ez);* + Z7 (transfer excitation),

relative to Zp and Zr are denoted by s, and X ,, re-

spectively. We denote by R the position vector of the
projectile Zp relative to Z; and by ry, the interelectron
distance.

1. The entrance channel
a. Zp-(Zy;e;,ey); collisions

We first concentrate on the collisions of completely
stripped projectiles with heliumlike targets, i.e., the
Zp-(Zp;e;,ey); collisions. Introducing 7; as a relative
vector of Zp with respect to the center of mass of
(Zyieq,ey); we have ri=r — (F3+ g+ M) [ (Mp+2). 1t is
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convenient to express the Hamiltonian H,, alternatively
via a set of independent variables {x,,X,,7;}

AV WV Y, )

2u; o 2b "t 2b 2 My Tt 2
where ,lLi:MP(MT+2)/(MP+MT+2) and b:MT/(MT
+1). The last term in Eq. (2) is the so-called mass polar-
ization term, which can be neglected for heavy particles
because M>1.

The full Hamiltonian of the system under study, in the
center-of-mass frame for the whole system, is given by

H=Hy+V, 3)

H0=

where V represents the total interaction potential opera-
tor

ZpZy Zp Zp Zy Z 1
y==EEr 2P 2P 2T ST - (4)
R St S X1 X I
As usual for rearranging collisions, the complete Hamil-
tonian from Eq. (3) can further be split into the follow-
ing form

H=H;+V, (5)

Here H; and V; are the Hamiltonian and the perturba-
tion potential in the entrance channel
Zr Z;y 1
—+

H,=Hy— — -
X1 X2 I

bl

_ZeZy Zp 7

Vi 6
! R S1 Ao ( )

The unperturbed channel state ®; is defined by
(Hi— E)®;=0, ;= gixy.5p)ei", ™)

The function ¢;(x;,%,) represents the two-electron
bound-state wave function of the atomic system
(Z7:e1,e,);, whereas k; is the initial wave vector. This
latter wave function satisfies the following eigenproblem

(h; — €)@i(x1,%,) =0,

hi:_LV)Z(_L i_é_é+L’ (8)

2b 1 2b 2 X1 Xo rip
where #; is the electronic Hamiltonian and ¢; is the elec-
tronic binding energy. The total energy of the four-body
system is given by E =Ei=kl-2/ (2u;) + €; and it is conserved
during the scattering event.

The wave functions of two-electron atomic systems
have been the subject of extensive studies (Bethe and
Salpeter, 1977; Tanner et al., 2000). In the case of helium,
the variational estimate ¢€=-2.903 724377034105
(Drake, 1988) via a fully correlated Hylleraas wave func-
tion, with an explicit allowance for the interelectron co-
ordinate ry, (through some 600 expansion terms), could
be treated as practically the exact value.

The initial state ®; is distorted even at infinity, due to
the presence of the asymptotic Coulomb repulsive po-
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tential V =Zp(Z7-2)/R between the projectile and
screened target nucleus. Notice that V; is the asymptotic
value of the perturbation V;

_Zplyr _Zp _Zp Zp(Z7-2)

Vi
R 51 o) R

=Vi (r;—).
)

Bearing in mind the long-range nature of the Coulomb
interaction, the Hamiltonian H can be decomposed ac-
cording to

H=H+ V¢, (10)
HS=- va Zp(Zr-2) _ Lvi _ Lvi Zy
2u; i r; 2b v 2b 2 xy
Z 1
==L —, (11)
X2 T

c_ZpZr ZpZr=2) Zp Zp

== : (12)

i St 82

The potential V; exhibits short-range behavior when R
— oo, The difference 1/R—1/r; is by a factor 6§ smaller
than [R-(¥,+%,)]/R3, where 8=1/(M;+2), as can be
checked using the Taylor series expansion. Thus, ne-
glecting the terms of the order of 1/My, we have that
r;=R, so that V{ can be approximated as

e 220 7o Zp

13
"R s 5 (13

Obviously, V¢ tends to O(1/R?) as R— . It should be
emphasized that the perturbation V{ depends only on
the interaction between electrons and the projectile. The
term 2Zp/ R in Eq. (13), despite its form, is not related to
the internuclear potential, but originates solely from the
electron-projectile interaction. The asymptotic tail of the
potential —Zp/s; is —Zp/R, since s;— R as R—o. This
can be seen by utilizing a Taylor expansion for Zp/s,
around R. The small value of the x; coordinate in the
entrance channel justifies this development. The same
statement also holds true for the potential —Zp/s,. It is
important to note that, unlike the channel perturbation
V%, the corresponding perturbation V; from Eq. (6) con-
tains the internuclear interaction ZpZ;/R. With the
Hamiltonian H; from Eq. (11), the eigenproblem in the
entrance channel reads as (H;—E;®{=0. This is the
counterpart of Eq. (7) when there is a remaining Cou-
lomb potential in the asymptotic region. The solution of
the eigenproblem for ®{ is given by

o = <Pi(f1,f2)€ik’“;"/\f+(7/i) By (= iv, Likgr; = ilgi T,
(14)
where N*(v,)=e ™"*T'(1+iv;) and v,=Zp(Z7—2)/v. The
symbol F,(a,b,z) stands for the confluent hypergeo-

metric function. The channel wave function ®; has the
asymptotic form
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Bi(r; — ) = D] = (T, e rrin ) (15)

Thus the function (14) satisfies the correct Coulomb
boundary condition in the entrance channel.

We recall that the wave functions in the attractive
Coulomb field U=-B/r have the following forms (Lan-
dau and Lifshitz, 1977)

Wi = N*(0)e®" | F,(xiv,1, = ikr — ik - 7),

with N*(v)=e™?I'(1 ¥ iv) and v=upB/k, where u is a re-
duced mass. At r— oo, this function behaves like

Wi _ eil€~7?ivln(krilz'ﬂ +O(1/r).

In the case of a repulsive field U= B/r, the incoming and
outgoing waves are

Wt = N5 (0)e* " | F(Fiv1, + ikr — ik - ),

where N*(v)=e ™?I'(1+iv) such that the appropriate
asymptotic forms read as

q,i — eilg}iv ln(kr1E~?) + (/)(1/’,) (16)

Above, the same symbol O(1/r) for the remainders of
the asymptotes for Wy has two different explicit forms
for an attractive (—B/r) and repulsive (B/r) potential.
The Coulomb wave functions ¥; are normalized to a &
function, as in the corresponding plane waves

(VLW =2m sk’ k).

The normalization constant is chosen so that the corre-
sponding wave function has unit amplitude.

b. (Zp,e\)i-(Zr,e9);, collisions

The additive form of the Hamiltonian for this collision
in the entrance channel is defined by Eq. (10) with

_ ZPZT_é_é+L_ (Zp-1)(Zr-1)

%5 17
' R Sy Xp I i (17)
Zr+Zp—-1 Zp Z 1
:L__P__T_i__, (18)
R S2 X1 Iz
Zp Z Zr—-1)(Z;-1
weopy P 7 Ze=0Zr=1) 19
S X2 Ti
1 1 1
Hy= V-V -ooVi, (20)

T 2w i 2a % 2b

where = (Mp+ 1)(Mp+ 1)/ (Mp+ M7+2), a=Mp/(Mp
+1), and b=M /(M +1). Here r; is the position vector
between the centers of mass of the (Zr,e,) and (Zp,e)
systems. The set {r;,s,,X,} represents the independent

coordinates. The asymptotic channel state ®; is defined
by
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ik Ftivg In(kr ki)

q);r = ‘PP(El)(PT()ZZ)e s
(21)

(H ~ E)} =0,

where v;=(Z;-1)(Zp—1)/v. The functions ¢p(s;) and
@7(x,) are single-electron hydrogenlike states in the en-
trance channel.

2. The exit channels
a. Double-electron capture

In analogy to the vector 7; introduced earlier, we can
also consider 7y as the position vector of T with respect
to the center of mass of the system (Zp;eq,e))y via r}
=Fy—(F3+Fy+Mpr;)/ (Mp+2). With this, the Hamiltonian
H, can be written in terms of the independent variables
{s1,5,,74} as

1, 1, 1

Hy=——V2 - —
T 2u "t 20 2a

1 - -
V:io—vV .V, ., (22)
2 Mp 1%

where wp=M(Mp+2)/(Mp+M7y+2). The mass polariza-
tion term (1/Mp)V, -V, can be omitted in accordance
with the mass limit Mp>1 for heavy particles. It is con-
venient to express the total Hamiltonian in a separable
form, H=H+V, where the channel Hamiltonian Hyand
corresponding perturbation Vy are defined via

Zp Z 1

Hy=Hy,-=F-=L4
St S22 TIn

’

_ZeZy Zr 7

23
R X1 X @3

Vi
We introduce the unperturbed state @, in the exit chan-
nel for double-charge exchange as the solution of the
eigenproblem (H;— E;)®;=0 which yields

D= o5),55)e 7, (24)

where ¢/} ,5,) is the bound state of the heliumlike atom
or ion (Zp;ey,e,)s This function satisfies the eigenprob-
lem (71— €)@(s;,5,)=0 or, explicitly,

1, 1, Zp Zp 1 ) -
A __V ____+__ b :O’
( 2 ' 2a 2 s s, I &) #51:5)

(25)

where ¢ is the binding energy of the final state. Con-
servation of energy for the entire four-body system re-
quires E= k%/ (2up) + €= E;=E, where sz is the final wave
vector.

The final state is distorted even at asymptotically large
separations due to the presence of an overall repulsive
long-range Coulomb interaction between the target
nucleus and the screened projectile Vi=Z1(Zp-2)/R.
This suggests that the Hamiltonian should be written in
the following additive form

H=H+ V5, (26)
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e Lo, Z1(Zp-2) 1 1y 1y 2
f 2:““f rf rf 261 51 2a 52 S1
Z 1
e 27)
2 Tz
_ZpZy Z1(Zp=2) Zy Zrp (28)

f R rf X1 X2 '

Neglecting the terms of the order of 1/Mp, we have ry

~_R or rs=R, so that V,Cc is reduced to

22y 71 7y
R X1 Xz.

Vi= (29)

The potential V7 is of a short range, since it tends to
O(1/R?) when R— . We recall that
ZpZy Zr Z Z(Zp-2
Ly Zr Zr ZiZem2) o )
: R X1 Xy R ’
(30)
The solution of the eigenproblem H;®i=E®d} is

(D} = QDf(El,.;z)eiikf';fNi(Vf) lFl (in,l,— lkfrf+ llgf Ff)7
(31)

where N (v)=e ™' (1-ivy) and vy=ZHZp-2)/v. The
asymptotic form of @} as r;— = reads as

Dy — ) = BF = {5y, 5p)e Kbk (32)

Thus the function (31) obeys the correct boundary con-
dition in the exit channel.

For heavy particle collisions, we have kiz/ 2> |ef— €.
In this case, scattering takes place mainly in the forward
direction, so that we can write 1?1-25]& v , where v;

=K/ ps, 0=kl iy, and G, =0 v,y It is readily verified
for double-electron capture that the following expres-
sions are valid

-

Ei'fﬁkf'Ffzcjp'(§1+§2)+C;T‘(f1+322) (33)
:—ZC})P-E—J'()?1+)?2)
=247 R0 (5 +5)), (34)
Zq—)P: + 73_ U+l§)7 2q_)T: - ﬁ_ Uilj)s (35)
ey S &
v v
dp+qr=-"v. (36)

The vector of the incident velocity is chosen along the Z

axis, i.e., o= (0,0,1), whereas the vector 7 is the trans-
verse momentum transfer, 7=(7cos ¢,,7sin ¢,,0), so
that 7-0=0.

Rev. Mod. Phys., Vol. 80, No. 1, January—March 2008

b. Single-electron capture

Keeping the same notation as in the case of double-
electron capture, we list the quantities that need to be
redefined for single-electron capture. Now, in the exit
channel we have two hydrogenlike atomic systems, so it
is convenient to introduce the vector 7, as the position
vector between the centers of mass of the (Z P,el)fl and
(Z7,e))y, systems. The set of the independent Jacobian
coordinates {ry,s},X,} can be used; namely, the kinetic
energy operator in terms of these coordinates is given by

Hoz—ivf 1 —V2 - ! —V? (37)
2up T 2a Y 2D 2’
where up=(M7+1)(Mp+1)/(Mp+M7+2). It should be
noted that the mass polarization term does not appear
when coordinates {r,s;,x,} are employed.

The channel Hamiltonian Hy and perturbation V; are,

respectively, defined by
Zp Zr

Hp=Hy- " - =1,
S1 X2

ZpZr Zr Zp 1
Zelr _Lr_ZLp 2

‘/f: R °
X1 2 '

(38)
Solving the eigenvalue equation (H;—E;)®;=0, we ob-
tain the unperturbed state @ in the exit channel as

D= op(s) @r(Ky)e 1T, (39)

where @p(s;) and ¢(x,) are the electron hydrogenlike
wave function of the atomic systems (Z P,el)f1 and
(ZT,ez)f, respectively. The total energy is glven by E;
=k2 /(2/.Lf)+6f, where €= €, + €, with &, :—ZP/(an) and
€= -72 /(2nf) The distortion of the unperturbed state
®,in the case of single charge exchange is caused by the
potential Vf:(ZT—l)(ZP—l)/R, which represents the
asymptotic form of the perturbation V. In this case, the
constituent two terms of the separable Hamiltonian H
=H;+ V5 are defined as

ol (Z-DEZ-) 1, 1
== r T T A Vs, T A VY
2,bLf f rf 2a 1 2b 2
V4 V4
- (40)
S X
e ZpZy Zr-1O)(Zp-1) Zp Zp 1
P _Ze LT L 4
R Ty Sy Xy I

Using ry=R, we obtain the following approximate ex-

pression
. 1 1 1 1 1 1
Vi=Zpl 5 -— |+ Zr-D\s——|+|{———
R No) R X1 rip X1
(42)
With this, the solution of the eigenvalue equation

H{®i=EP5 is given by
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Pf = ¢P(§1)<Pr(fz)€_ikfff-/\/_(Vf)
XlFl(in,l,—ikf}’f'i‘iEf‘Ff), (43)

where N™(v)=e ™ T(1-ivy) and vy=(Z7—1)(Zp-1)/v.
The asymptotic form of CI); as ry— is correct since

(I)Jcc(rf—> m) = (I)j; = (PP(El)(Pr(fz)e—ilzf‘;f—ivf ln(kfrf_lzf;f).
(44)

Employing a similar procedure as in the case of double-
electron capture, it can be shown that for heavy scatter-
ing aggregates the following relations are valid

Ei‘;i'i'-)f‘*f:a_)f‘§1+ﬂ'£1:—&'R—lj'fl, (45)
S s _3 > > 3 U €~ €
a=7-vvu, B=-7n-v', R

2 v
a+pB=-0. (46)

c. Transfer ionization

During transfer ionization, one electron (e;) is cap-
tured while the other (e,) is simultaneously ionized. The
unperturbed wave function for this process is given by

D= @p(S) by, = (2m) e Rk, (47)

where k represents the momentum vector of the ejected
electron e, with respect to its parent nucleus. The wave
function which obeys the correct boundary condition has
the form

CD;(rf—> 0,Xy) — ) = @,
- ® fe—ivf In(kepr ki +i(Z ) )y +:55)
(48)

where v=(Z;~1)(Zp-1)/v.

The analysis in this section aims to emphasize the
need to establish a proper connection between long-
range Coulomb distortion effects and the accompanying
perturbation potentials. Otherwise, unphysical results
could easily be incurred as has been shown by Belkic
(1997a, 1997b, 2001, 2004) for ionization (detachment) of
H- by H".

B. Perturbation series with the correct boundary conditions

Before proceeding further, it must be emphasized that
imposing the proper Coulomb boundary conditions on
the entrance and exit channels is of crucial importance
for ion-atom collisions. Experience has shown that, if
this requirement is disregarded, serious problems may
arise, and such models are inadequate for a description
of experimental findings.

The dynamics of the entire four-body system are de-
scribed by means of the Schrodinger equation
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(H-E)V*=0, (49)

where W= are the full scattering states with the outgoing
or incoming boundary conditions

Vo (),

V- oy (rp— ). (50)

The exact transition amplitude with the correct bound-
ary conditions can be written in the post (+) and prior
(—) forms as

Ty=( @ |ViW?),  Typ=(¥|Vi|®]). (51)

Both forms are equivalent to each other on the energy
shell, i.e., the exact expressions are equal, Ti}= ij, for
transitions for which the total energy is conserved (Bel-
kic, 2004).

Solving a scattering problem in which four bodies take
part (two nuclei and two electrons) is extremely difficult.
As usual, at intermediate and high impact energies, the
perturbation procedure is frequently employed. It is
convenient to convert the Schrodinger equation for a
four-body problem into the corresponding integral equa-
tion such as the Lippmann-Schwinger equations or the
associated distorted-wave integral equations.

1. The Lippmann-Schwinger equations for four-body collisions

We introduce the function
Vi =ieGt], (52)

where ®; is the wave function defined by Egs. (15) and
(21). Here € is an infinitesimally small positive number.
In addition to the total Green’s functions G* in Eq. (52),
we also define the initial G7, the final G}, and the free
Green’s functions Gj as

G*=(E-H=zie)!, G'=(E-H{xie, (53)

Gi=(E-Hj+io™', Gy=(E-Hy+ie) " (54)

These propagators are interrelated by the following
Lippmann-Schwinger integral equations for the total
Green’s functions

G*=Gi+GiViG*, G*=Gi+GiViG,

G* =G+ GLVG®, (55)

as can be checked. For example, if the ansatz G*=G7
+G;V{G* is multiplied from the left by E—Hj+ie and
simultaneously from the right by E-H=+ie, it follows
that E-H{+ie=E—-H=ie+V{, in agreement with Eq.
(10).

Applying the iteration procedure to Eq. (55), we ob-
tain the following expansions for the total Green’s func-
tion in terms of Gy, G;, and G}

G* =G+ G{VGy + GiVG{VGy
+ GYVGVG{VGE+ -+, (56)



258 Belki¢, Mancev, and Hanssen: Four-body methods for high-energy ion-atom ...

G*=Gi + GViG} + GIViG; ViG]
+ GIVEGIVEGVEGT + -+, (57)

G*= Gj + GjViGj + GiViGiViGy
+ G}V;G}V;G;VJ?G; + e (58)
Inserting G* from Eq. (55) into (52), we have
Vi =ieG D =ieG; P + G ViieG* D]
= ieGI®] + GIViv], (59)

where the first term can be written as ieG;®; =®;. This
can be directly verified if [ie/(E—H +ie)]®; =] is mul-
tiplied from the left by E—H{+ie. Thus we have ie®;
=(E-H{+ie)®;, in agreement with Eq. (21). In this way,
we obtain the Lippmann-Schwinger equation for the to-
tal scattering wave function in the case of a four-body
problem

Ui =0 + GV (60)

This is an inhomogeneous integral equation, since it con-
tains explicitly the incident wave ®;. The integral equa-
tion (60) can formally be solved as

i =07 + GIViv;
=/ + GIVi(®] + G{V¥)
=® + GIVid! + GIViG VW]
=®] + G/ Vid! + GIViG Vid!
+ G VG ViG] V¥
=(1+G/Vi+ G VGV
+ G ViGIVIGTVS + -+ )®]
- (1 5> (G?Vf)”)cb,-* =1+ GV,
n=1

This is the case because, if we multiply Eq. (57) by V%,
we obtain

G*Vi=GiVi+ G ViG; Vi + GIViG ViG]V
+GIVIGIVIGIViGIVi + - = 3 (G Vi)'
n=1
Hence, the formal solution of the Lippmann-Schwinger

equation in terms of the total Green’s function G* is

Vi = @) + GTVD! = (1+ GV (61)

2. The Born expansions with the correct boundary conditions
for four-body collisions

Inserting the formal solution (61) into Eq. (51) for the
post form of the transition amplitude, it follows that

To= @V = @ViL+ GVOOD. ()
This implies that, by substituting G* from Egs. (56)—(58)

into Eq. (62), we can write several different versions of
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the Born expansions with the correct boundary condi-
tions

Ti=Ti PV + (@ Vi Gy Vi @)
(D VEGI VG V@) + -+, (63)

Th= T + (@ |ViGVi|®))
+ (O |[ViGIVIGT V@) + -+, (64)

= T 4 @y VG Vi)
O VEGTVEGVED) + -+, (65)

TR = (0| Vi|0]). (66)

Here TﬁfCB D* is the post form of the first Born appro-
ximation with the correct boundary conditions for four-
body collisions, i.e., the CB1-4B method. As can be

seen, the term TECBW is identical in all versions. In
other words, the 6B1-4B method can be obtained by
replacing the total wave function W; by the asymptotic
channel state ®;. Two methods for an explicit calcula-
tion of the matrix elements in the CB1-4B method for
double-charge exchange have been devised and imple-
mented by Belkic (1993a, 1993b).

Likewise, the nth Born approximation with the cor-
rect boundary conditions (CBn-4B) may be obtained by
keeping the first n terms in the expansion. For example,
the four-body second Born approximation with the cor-
rect boundary conditions (CB2-4B) can be obtained in
this way

T = TPV 4 (@7 | VG Ve 7). 67)
TP = TRV 4 (7| ViGTVE @), 68)
(B2 TEBIT (@ | VSGVE|DY). (69)

Here Eq. (67) in terms of G is recognized as an exten-
sion of the corresponding three-body second Born ap-
proximation with the correct boundary conditions (CB2-
3B) of Belkic (1988a, 1991, 2004). Of course, many other
versions of the Born expansion can be formulated by
utilizing various possible iterative solutions for G*. In
other words, a unique Born series of the transition am-
plitude T}, does not exist.

A similar procedure can be employed for the prior
form of the transition amplitude. That is, the time-
independent wave function of the whole system in the
exit channel is given by the following integral form

W7 =07 + GIVUT = (1+ G VP (70)

The corresponding prior form of the transition ampli-
tude is

Typ= (@1 + G VY VE|D]). (71)

Thus far, explicit computations in the CB1-4B method
have been carried out for double-electron capture by
Belkic¢ (1993a, 1993b) as well as for single-charge ex-
change by Mancev (1995, 1996). The CB2-4B method
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has not yet been used within the four-body formalism.
However, it should be emphasized that much experience
has been gained using the CB2-3B method, with its dis-
tinct improvement in the description of single-charge
exchange, when passing from the first- to the second-
order perturbation theory, as demonstrated by Belkic
(1991). Guided by this fact, here we recall certain aspects
of the basic three-body problem Zp+(Zy,e)—(Zp,e)
+Zyp. If one employs a pure Coulomb potential Vp
=—Zp/s as the perturbation in the entrance channel,
together with the unperturbed wave functions ®; and
®;, where the plane waves describe the relative motion
of heavy aggregates, one would obtain the three-
body first-order Brinkman-Kramers (BK1-3B) approxi-
mation via its transition amplitude (®4Vp|®;). By includ-
ing the second-order term in the Born expansion
(®AV GV p|®;) with the free-particle Green’s function,
one obtains the three-body second-order Brinkman-
Kramers approximation (BK2-3B). From the physical
viewpoint, the BK2-3B model should be more adequate
than the BK1-3B model, due to the addition V;G;Vp.
Neither the BK1-3B nor the BK2-3B model obeys the
correct boundary conditions. As has been shown by Bel-
ki¢ (1991), the BK2-3B model gives an even poorer de-
scription of the corresponding experimental data than
the BK1-3B model, which itself is inadequate for differ-
ential cross sections of charge exchange in the H*-H col-
lisions. This shows that inclusion of higher-order terms
in a perturbation series can deteriorate the overall de-
scription if certain basic principles are disregarded from
the outset, as in the Brinkman-Kramers approximation.
On the other hand, the CB2-3B method (Belkic, 1988a,
1991; Belkic and Taylor, 1989) yields reliable results rela-
tive to the experimental data. Crucially, the CB2-3B
method shows a significant improvement over the corre-
sponding boundary-corrected three-body first Born
(CB1-3B) method. This success of the CB2-3B method
in describing charge-exchange processes has been attrib-
uted to the rigorous treatment of the correct boundary
conditions, which represent the essential and distinct
features of any scattering event (Belkic, 1988a, 1991;
Belkic and Taylor 1989). The CB2-3B method for single-
electron capture has subsequently been the subject of
several investigations (Decker and Eichler, 1989b;
Toshima and Igarashi, 1992).

C. The Dodd-Greider distorted-wave series for four-body
collisions

In order to solve Eq. (49), we adopt the distorted-
wave formalism. We recall the salient features of this
theory (Cheshire, 1964; Dodd and Greider, 1966; Gre-
ider and Dodd, 1966; Dollard, 1964; Belkic et al., 1979;
Crothers and Dubé, 1993).

In the distorted-wave formalism, instead of solving di-
rectly the full Schrodinger equation (49) with rigidly de-
termined interactions, one considers a model problem in
which the real channel interactions V; and V; are re-
placed by certain distorting potentials W; and Wy The
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following Green’s functions are associated with these po-
tentials

g =(E-H-W;+i9", g =(E-Hy-W;—ie,

(72)
or, equivalently,
gi =(1+gW)G; = w'G;,
g =(1+gW)G; = 0 G;. (73)
Here g; and QJI are the Green’s functions defined by
G/ =(E-H;+ie)”", Gi=(E-Hp—ie ", (74)

where o* are the Mgller wave operators. Next, instead
of ‘I’ffz(l +G*V; )@ff, we introduce the distorted waves

Xif: (1 + gii:fWi,f)¢i,f: (J)i(bi’f. (75)

The distorted waves y; and x; satisfy the following
equations in the limits e—0*

(E-H;-W)x; =0, (E-Hy=Wpx;=0. (76)

The connection of the model problem (76) with the
original equation (49) is provided through the condition
that x;; and W}, must exhibit the same asymptotic be-
haviors as r; j—

X'+ — \If;r—> (I)?,

L

rp— %, (77)

Xp =Wy =@y, rp—e (78)

The transition amplitude in its prior form, as defined via
Ty =P |V||®;) = (D1 + G V)TV[D)

= (2JQV]®), (79)

can be expressed in terms of the model quantities in the
entrance channel

Ty= (@A (V- W)
+ Q1= (V= W)g TW||®)). (80)

This relation can be readily verified by employing the
definitions for g/ and w* or by an algebraic derivation

Vi=Vi(l+ gi+W1) - Wi+ g;-Wi)
+[1-(V,— W)g/ W,
=(Vi-Woe" +[1-(V;,— W)g/IW,.

Using the well-known Chew-Goldberger operator iden-
tity 1/A-1/B=(1/A)(B-A)(1/B) with 1/A=G* and
1/B=g;, the second term in Eq. (80) becomes (E+ie
-Hp)(o"~1)=ie(w*~1). We write the transition ampli-
tude Tl} as

Ty = (PO (V; - W' D)) + T,
T} = 113(1) P’ |®;) = 1133 i Dx;). (81)

The contribution of the term Tg will vanish in the limit
€—0. The condition
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lim (@) =0 (82)
e—0

is satisfied by choosing a distorting potential which leads
only to elastic scattering in the considered channel and
as such does not cause a rearrangement. This can be
achieved by choosing the distorting potential in such a
way that it depends only on the relative coordinate be-
tween the projectile and target.

By a simple transformation, the wave operator ()~
from Eq. (79) can be rewritten as

O = [1 + G_(Vf— Wf)]ﬂ)— (83)
Then, by employing Eq. (82), we obtain from Eq. (81)
Ty=(PAQ (V= W) w'|®))
= (o 1+ (Vi= WHG IV, - W)o'| D)
= (D] U{ACD). (84)
We recall that the Hermitian-conjugated relation (83) is
given by QO T=w 1+(V,- W})G*]. Hence, the exact
transition amplitude 77, in the distorted-wave theory
reads as
Ty=OGl(Vi= W) + (V= WHGH (V= W)lx).  (85)
Similarly, we can obtain the exact post form of the tran-
sition amplitude in the distorted-wave theory via
Tip=OG1(Vy= WP + (V= WRG*(Vi= Wi)lx)),  (86)
provided that lim._oi&(®/| o *|®;)=0. Using
QO =[1+Q°G(Vi-Wplaw, (87)

the transition operator U;, introduced in Eq. (84) can be
written as the following integral equation
Uy= o' (Vi- W)o' + o (V- WHGI Uy, (88)

1

This can alternatively be cast into the form
Ul -K) = '(V;- W)o', K=o (V;-W)G;,
(89)

where C represents the so-called kernel, i.e., the homo-
geneous term of the integral equation. Since w™ is given
by w™=1+g,; Wy, it follows that the form of K is indepen-
dent of the choice of distortion in the initial channel.
Expanding U, in powers of K, i.e., in an infinite pertur-
bation series, we obtain

Uif:1<1+ > /c"), I=0 ' (V.- W)w", (90)
n=1
where [ is an inhomogeneous term of the integral equa-
tion (88). However, this latter expansion diverges in the
case of rearrangement collisions due to the existence of
disconnected diagrams. These Feynman diagrams would
correspond to collisional paths describing three constitu-
ents interacting pairwise with each other in the presence
of a fourth body as a freely propagating particle. In the
impulse space this physical situation is described by
means of a delta function in the kernel of the integral
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equation. The presence of this 6 function highlights the
conservation of momentum. Such a kernel is said to con-
tain disconnected diagrams. The free motion is mediated
via the free-particle Green’s resolvent G¢, and it leads to
the factor 1/(E—Ey+ie), where E,=k?/2. Since in the T
matrix we have integration over momentum k in the
whole space, it is clear that we may have a situation
where E=E, and this causes divergence of the energy-
dependent term 1/(E—Ejy+ie) in the limit e—0. The
typical kernel (V- W})Gg(Vi—Wi) from the iterated
transition 7 operator will not contain any disconnected
diagrams if no two-body interaction in the perturbation
Vi- W} is repeated in V;— W,. This can be achieved with
the introduction of a virtual intermediate channel x as
suggested by Dodd and Greider (1966). The Green’s
function associated with this virtual channel is given by

gi=(E-H+V,+ie™, (91)
where V is an appropriate channel potential. Using

Gr=g;(1+V,G"), (92)
we obtain the integral equation

Ul -K)= o' (Vi-W)e'+ o (V- W))

Xg (Vi= W], (93)
where the kernel is now defined by
Ki=w (V- W)gig;. (94)

By employing certain suitably chosen potentials V, and
Wy, the kernel can be freed from disconnected diagrams.
An example of such a situation is when the potential V,
does not appear in V;— W; Inserting Eq. (92) into Eq.
(85), we arrive at

Tip=OG(Vi= W) + (V= Whgi(1 + V,G)
X(Vi= Wilxi)- (95)

If we neglect the term with the Green’s function G, we
obtain a first-order approximation for the prior form of
the transition amplitude (also denoted by 77

Ty=x7l[1 + g (V= WOT'(V; = W) x)- (96)
Introducing an auxiliary distorted wave

&) =[1+g.(Vi=Wpllxp), 97)
we have

Ty=<&|Vi- Wilxi). (98)

1. Derivation of the distorted waves for the initial states
a. Zp-(Zr;ey,ey); collisions

According to the requirement (77) and the correct
asymptotic behavior of W™, i.e., ¥ — ¢;(X;,X,)explik; 7:
+iv; In(k;r;—k; 7;)]=®; (r;— =), the following factorized
form for the function y; appears to be the most conve-
nient
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Xi = gDi()Z]’-fZ) wja (99)

where ¢ is an unknown function determined by the par-
ticular choice of the distorting potential. Inserting Eq.
(99) into Eq. (76), we obtain

2

ol E ~ &~ Hy = V)i + bE Vi Vi i+ Uit
k=1

+ i (6= h)@; =0, (100)

Ui: Vi_ Wi' (101)

The term (- h;) o= (xl,xz)— o in Eq. (100) van-
ishes identically only for the exact eigensolutions
¢i(x;,%,)=¢; and ¢ of the target Hamiltonian 4;. How-
ever, since these are unavailable, the term 0<P,— should, in
principle, be kept throughout, as suggested by Belkic
(1993a) within the CB1-4B method. Explicit computa-
tions for double-charge exchange (Belki¢, 1993a) and
transfer ionization (Belkic et al., 1997a) have shown that
the contribution from this term is ~(10-15)%. This cor-
rection will be neglected in the present study, so that Eq.
(100) becomes

k2 ZpoZ, Zp Z
q»l( ~Hy- =T+ =y —”)¢r
2 R S S2

+- E ka(Pi : ﬁxk¢; + Uiy =0.

(102)
bk 1

In general, the presence of the coupling term

kagoi-kaz,/f;’ precludes a separation of independent vari-
ables in Eq. (102). However, at the same time, there is
some flexibility provided by the perturbation potential
operator U;=V,;,—W,, which permits a cancellation of the
coupling term.

A convenient choice has been made by Belki¢ and
Mancev (1992, 1993) as

Ui = EVsto, o i (103)

Alternatively, the following choices for U; can be imple-
mented (BelkiC et al., 1997; Mancev, 1999a):

1 1 -
U, f:z( ) V. ¢V, i, 104
Xi P R 55 Xi — bkE:l k‘P klﬂz ( )
1 1 1 1
Xi |: P R S5 + R 5 Xi
1 2
-—2. V.-V 105
bg % Ve b (105)

Although other choices are possible, in all cases the
requirement that the function y; has the correct
asymptotic behavior must be satisfied. It is seen that the
distorting potentials (103)-(105) contain the term

—(1/ b)zi:1€xk¢i‘€xk¢f, which together with the eikonal
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approximation R~ —7¢ (Mp 7>1), provide an exact solu-
tion ¢ of the differential equation (102). In this case, a
separation of the independent variables r, 51, and s, is
possible, i.e., we can write

i = CIFI(S)F5 () F(Fp), (106)
where C; is a constant to be determined. We first deter-

mine the distorted wave y; for the distorting potential
(103) in accordance with Belkic and Mancev (1992,
1993). Inserting Eq. (106) into Eq. (102), we obtain

1 Z
(—vf Ze, P k)F(sk) 0 (k=1,2), (107)
2a k Sk
1 ZpZ ; B
(_ e T+£L>f+(rf)=o, (108)
with the solutions
Fi(51) = N*(vp )Pk, Fy (ivp , 1,ipisic = i - 5i),
(109)
FH(7) = N (vpp)eP 1\ Fy(— ivpp, Liprs— ip;- 7).
(110)

where N+(VPT) =e_7TVPT/2F(1 + iVPT), VPk=(lZP/pk (k= 1 5 2)
and vpr=ZpZuy/py. The auxiliary vectors py, p,, and py
are determined from the following conditions

2 2 2

E-g=2tL P2  Pr (111)
2apy  2apy 2uy

P1-S1+ D2 So+ Py =k Fy, (112)

2
Cl+ eXp(inT ln(pfrf—ﬁf ;f_ i 2 VPk
k=1

XIn(pysy — pi- 5k)> — expliv; In(k;r; — k; - 7)1,

Vi — ©,

(113)

Equation (111) is introduced in order to obtain three
separable equations from Eq. (102) for the independent
variables 7y, 51, and s,. Expressions (112) and (113) origi-
nate from the requirement that x; must satisfy the cor-
rect boundary condition (77). It is easily shown that
pr=-v and py= —k; for Mp>1 and M ;> 1, respectively.
With these values of the vectors py, p,, and py, the en-
ergy conservation law is satisfied within the eikonal mass
limit, so that E;— e;=k?/(2u;) and, moreover, C; = u;2"".
The constant C;, which is needed in (113), follows from
the limit (1/w)(kjri—k; 1)/ (vsg+0-5,) —1 as r;—o».
Hence, the solution for the function ¢ is
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Ui = N IN () P
X Fy(=iv,1ikips+ik; - 7 Fy(ivp,1,ivs) +iv - §))

XlFl(iVP,l,iUS2+il;‘§2), (114)
where vg=Zg/v (K=P,T) and v=ZpZ/v. Now, it is
readily checked that the distorted wave x; = has the
correct asymptotic behavior (77). It should be noted that
the proof of the correctness of the boundary conditions
for the continuum distorted-wave methodologies is con-
sistent with the concept of the strong limit from formal
scattering theory (Dollard, 1964; Belkic, 2004). This has
been shown within the three-body distorted-wave for-
malism for single-electron capture (Deco et al., 1995).
This consistency is not hampered by the presence of
the kinetic energy perturbation, as in the three-body
symmetric eikonal (SE-3B) approximation, or by the
Coulombic behavior of perturbative potentials from
the three-body continuum distorted-wave (CDW-3B)
method. The same conclusions can be shown to hold
true also for the scattering vector y; from Eq. (114)
which is encountered in double capture treated in the
four-body distorted-wave formalism. The role and physi-
cal meaning of the strong limit in scattering theory have
been analyzed by Belkic (2004).

Proceeding as before, the choice of the distorting po-
tential (104) provides a solution for the distorted wave
X; in the entrance channel in the following form

X;r = MﬁVPNJr(V;)N+(VP)31'E’JF"1F1(— in{’l,ikirf"' i];i : ;f)

X 1F1(iVP,1,iUS1 +i6'§1)§0i(321,)z2), (115)

where v/=Zp(Zr—1)/v. For the distorting potential
given by Eq. (105) we obtain the same distorted wave as
in Eq. (115), but the following quantities should be re-
defined accordingly: v —v/=[Zp(Z7-1)-1]/v and vp
—Vp=(Zp—1)/v. The determination of the distorted
waves in the exit channel depends on the collisional pro-
cess considered.

b. (Zp,e\)i-(Zy,ey);, collisions
Imposing  the  correct boundary  condition
on the (Zp,el)il-(ZT,ez)iz collisions  via X;'—>\P:—

— @p(8)) @p(xy)etkiTirivinkiri=kiTi) = @ we look for x; in a
separable form

Xi = ep(S)er(X2) ] = oprd (116)

Inserting Eq. (116) into (E—H;—W;)x; =0, we obtain the
following equation for ¢

1 1 1 Z{(Zp—1
(15—ei+—v2+—v2 s Ly ZiZe=l)

2up T 2a ° 2a 2 rr

Zp—1

+ =L )gzo, (117)
52

provided that the distorting potential is given by
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1 1 1 1 1- -
Uxi = |:ZT<E - x_1> -+t _]X:r - ;VSZSDPT' Vszg
1= -
- EVX1GDPT'Vx1§-

We can solve Eq. (117) exactly by separation of the in-
dependent variables. As the net result for the distorted
wave x;, we have

X = N (vp)N*(0) op(5)) @p(E) ki

><1F1(— iV,l,ikiri— llgl N Fl)

(118)

XlFl(iVP,l,iUSZ + ll; . 52)@1'()21,)22), (119)

where N*(vp)=I'(1-ivp)e™??, N*(v)=I'(1+iv)e ™2, v
=Z{(Zp-1)/v, and vp=(Zp-1)/v.

III. DOUBLE-ELECTRON CAPTURE
A. The CDW-4B method

In order to complete the expression for the transition
amplitude in the distorted-wave theory for double-
electron capture, we look for the distorted waves in the
exit channel. First, we determine the auxiliary distorted
wave & defined by Eq. (97). Letting e— 0", it can be
seen that, according to Egs. (97) and (91), § is the solu-

tion of
(E-H+V)&=(E-H+ V= W+ Vy. (120)

Since X; satisfies the relation (76), Eq. (120) can be re-
duced to

(E-H+V)&=Vix;. (121)
Under the assumption
Vix; =0, (122)

it follows that Eq. (121) becomes solvable analytically. In
such a case, we write g? in the factored form

g]: = <Pf(§1,§2)1//f,

where the unknown function ¢; satisfies the following
equation

(123)

2

N - _

eAE -~ Hy— Vi + ;2 Vs er Vs by + Vaophy

k=1
0. (124)
Choosing the potential V, in the form (Belki¢ and
Mancev, 1992, 1993)

(125)

we have
(E - - Hy— Vi =0,

so that the function ¢; finally becomes
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U = 1IN ()N (vp) Pe s
X Fy(iv,1,~ iksr; - iky- )
X Fy (= ivp,1,— ivx, —iv - X;)
(126)

Employing Eq. (103) for the distorting potential U; and
the corresponding distorted wave for the initial state
X; =@y, where the function ¢ is determined by Eq.
(114), the transition amplitude for double-electron cap-
ture within the CDW-4B method acquires the form (Bel-
ki¢ and Mandev, 1992)

><1F1(— iVT,l,— iUX2— ll;.fz)

Ty=-N f f f A%, dirdF T RTL (L ) 0 (51,55)
X, Fy(ivy, 1ivxy + iv - X1) 1 Fy(ivy, 1,ivx, + 0 - X))
X{1Fy(ivp,1,ivs, + il;'§2)€x1§0i(f1af2)

V1 Fy(ivp,Livs; +iv - 5))

+1Fy(ivp,1,ivs) +iv - 5PV, ¢i(X1,X))

-

"V, 1Fi(ivp,1,ivsy +iv - 55)}, (127)
where N=N*(vp)N*(vy) and
‘C(Fiif) _ M;ZivPszziuT[Nf(V)]z
X\Fy(=iv,Likrs+ik; - 7y)
X\ Fy(=iv,Likgr; + ik;- 7). (128)

A considerable simplification of Eq. (128) is obtained in
the eikonal approximation
V()P Fy(— iv, 1 ikirp+ ik; - )
X\ Fy(= iv,1,ikr; + iky- F)
= (kjrp+ k;- P (kg + Ef- 7)Y
= ()" TR 3 RIWR + 3 R)J"
= ()" To*(R* = Z7)]"
= ()" (pv)*"”
= (upv)*”,

L(;l,;f) = (lu’pv)zi]}7 V= ZPZT/U > (129)

where u=MpMy/(Mp+M7). Here p is the projection of
the vector R onto the XOY plane perpendicular to the Z
axis, i.e., p=R—Z with p-Z=0, where the vector Z rep-
resents the projection of the vector R onto the Z axis.
The phase factor (upv)>?, which stems directly from the

internuclear potential Vpr=ZpZ /R, does not influence
the total cross section, since

1 . N -
Q&(ﬁhmjdﬂf}(ﬂﬂz:Jdﬂ

— >

Ri 77)
270

2

>

(130)
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RZ‘( 7)== sz f f df]d)zzdﬂei‘iP'(51+52)+itfr(il+£2)

N . . > >
X @p(81,52) 1 Fy(ivy, 1,ivx, +iv - xy)
X1F](iVT,1,iUX2+iJ'i2)

X{ 1 Fy(ivp, Livsy + 10 - )V, @i(X1,%;)

>

. Vsl 1F](in,1,iUS1 +iv- S])

+ lFl (in,l,ivsl + ll; . §1)VX2(IDi()Zl7'fZ)

'Vsz lFl(l'VP,l,l'US2+l.l;‘§2)}. (131)
It is now obvious from Eq. (130) that the total cross
section Q; is independent of the internuclear potential
ZpZ7I R, as it should be (Belkic et al., 1979). The basic
matrix element R;, represents the main working expres-
sion for calculating the total cross sections. Such a
CDW-4B method represents a strict generalization of
the CDW-3B method of Cheshire (1964), who originally
formulated this latter theory for single-charge exchange
within a three-body formalism. As per derivation, which
followed the original work of Belki¢ and Mancev (1992),
the result (131) for R in the CDW-4B method repre-
sents the rigorous first-order term (96) in the four-body
Dodd-Greider perturbation series. This is very impor-
tant, in view of the absence of any disconnected dia-
grams in the Dodd-Greider expansion, a feature which
precludes divergence of the series. Only nondivergent
perturbation series have a chance to provide mathemati-
cally meaningful first-order terms that, in turn, could
capture the major physical effects. Such is the CDW-4B
method which could, therefore, alternatively be called
the four-body first-order continuum distorted wave
(CDW-4B1) method.

In the same way, we can establish the post form of a
first-order of the exact transition amplitude. In this case,
we start from the integral equation of Dodd and Greider
(1966) in analogy to Eq. (96)

Ti=(@AQ; (V= WHIL + g1 (Vi = W)1Q]|®).  (132)

The derivation of the transition amplitude in the post
form is carried out in a fashion similar to its prior coun-
terpart, and the final result is

RZ‘( 7)=- sz f f ds; d§2dffeiq‘P'(§1+§z)+iér(i1+)22)
X @i(X1,5) F, (ivp,1,ivsy +iv - §1)
X 1F1(in,1,iUS2 + ll; . S_)z)

. . J N PN
X{Fy (v Livxy +iv - %) Vi @4(51,52)

-

. Vx] 1F1(iVT,1,iUX1 + ll; . )Zl)

. . L e %, 5 o
+ 1 Fi(ivr, Livxg +iv - X1) V@ (51,52)

>

: sz 1F1(l.VT,1,l.UxZ+l.l;)')Z2)}. (133)
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The transition amplitude as a function of the vector p
can be obtained via

1 . o
>y _ 2iv s pPRE( T
ailp) = P fdn eTPRiA7). (134)
Using the Parseval relation, i.e., the convolution theo-
rem for the Fourier integral in the total cross section, we
have

Qjap) = f dplai(p)|*. (135)
The differential cross section in the CDW-3B and
CDW-4B methods can be calculated directly from the
expressions for T;} (Pedlow et al., 2005). Alternatively, in
an indirect calculation, we carry out first the Fourier in-
tegral according to Eq. (134) and then use the following
expression for the differential cross section

40y _ ’
a0

iﬂvf dp p1+2i”]mi_mf(2,t1,vp sin[ 0/2])a;}(p)
0 ;

(136)

where 6 is the scattering angle in the center-of-mass
frame of reference. Here J,(z) is a Bessel function of the
first order and the vth kind, whereas m; and my are the
magnetic quantum numbers of the initial and final
bound state, respectively.

Calculation of the matrix elements for double-
electron capture into the ground state 1s> from any he-
liumlike atom has been carried out by Belki¢ and
Mancev (1992). Their method of calculation provides the
total cross sections Q; through four-dimensional inte-
grals that are subsequently computed by utilizing the
standard Gauss-Legendre and Gauss-Mehler quadra-
tures (Abramowitz and Stegun, 1956; Press et al., 1992).
It can be verified that, in the symmetric resonant case
(i=f, Zp=Z7), there is no post-prior discrepancy, i.e.,

R;;=Rj, so that we have Q;=Q;.

X (a% srlatom™),

B. The BDW-4B method

The CDW-4B method takes full account of the Cou-
lomb continuum intermediate states of electrons in both
the entrance and exit channels. On the other hand, in
the CB1-4B method, electrons are treated as being free
in the intermediate stage of collision involving double-
charge exchange. In other words, the CB1-4B method
completely ignores these intermediate ionization elec-
tronic continua.

Double ionization dominates over double-charge ex-
change at high energies. Therefore, to properly describe
electron transfer to a final bound state, in the limit of
high energies, the electronic continuum intermediate
states must be included, and this is fully accomplished in
the CDW-4B method. At lower energies, however,
charge exchange dominates over ionization. This time,
the electronic continuum states represent a drawback,
since they overweight the intermediate ionization paths
of the studied reaction. Consequently, the CDW-4B
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method overestimates the corresponding experimental
data at lower energies, as was also the case with the
CDW-3B method (Belkic et al., 1979).

Models that partially mitigate the overemphasis on
continuum intermediate states at lower energies are cer-
tain hybrid approximations that combine the CDW-4B
method in one channel with the CB1-4B method in the
other channel. An example from this hybrid category is
the BDW-4B method of Belkic (1994). Specifically, the
BDW-4B method exactly coincides with the CDW-4B
method in one channel and with the CB1-4B method in
the other channel. As such, the BDW-4B method pre-
serves the correct boundary conditions in both scattering
channels, since both the CDW-4B and CB1-4B methods
do so. Here the wave function given by Eq. (114), from
the CDW-4B method, is employed for the entrance
channel. We now determine the distorted wave x; in the
exit channel. The boundary condition given by

X; — ‘I’; — CI); (137)
e e
suggests that y; should be determined in the following
factorized form

Xr = eAS1,52) ;- (138)

The equation from which we determine {; reads as

) lee o
¢ (E - &~ Ho)ly = Wyegly + ;Z«l Vs #r Vo =0

(139)

Here the term é}(hf— €)¢r is mneglected as in the
CDW-4B method. The potential W, is chosen as W;
=Z(Zp-2)/ry which is the asymptotic form of the per-
turbation V; in the exit channel (Belki¢, 1994). Obvi-
ously, this choice of Wy implies that the function ¢, will
be independent of the electronic coordinates, in which

case the coupling term V-V from Eq. (139) will become
identical to zero. Consequently, the remaining equation

(E- ef—HO—Wf)g? =0 can be solved exactly with the re-
sult

X; = N_(Vf)e_ikfFf 1F1(in,1,— lkff’l - lEf ;i)¢f(§1’§2)’
(140)

where N (v)=e ™*I'(1-ivy) and v=Z{(Zp-2)/v. In
this way, we obtain a function which is identical to
Eq. 31).

If we neglect the term with the total Green’s function
G* in the exact transition amplitude in Eq. (85), we ob-
tain the following expression for the matrix element in
the BDW-4B method (e.g., in the prior form)

TP = (G Vi Wil (141)

Inserting Egs. (140), (103), and (114) into Eq. (141), it
follows that
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BDW - _ NPJ' f J dx]dxzdr elk r+zkfrf

XL (PP @ (S1, 511 Fy ivp, 1ivsy + v - §5)
XVxI(Pi()Zl’)ZZ) ) Vx] 1Fi(ivp,1,ivsy +iv - 51)
+1Fy(ivp,1,ivs) +iv - )V, ¢i(X1,X))

-V, Fy(ivp,L,ivs; + it - 5y)}, (142)

where Np=[N*(vp)]? and &x=2vx=2Zx/v (K=P,T) and

Ly (rprf 1F1( iv,l,ikirf+il€i-ff)

X\ Fy(=ivg ik + ikp 7).
with N =N*(»)N*(vy) and v=ZpZ;/v. Within the eiko-

nal approximation, the following simplification is pos-
sible

LI(,‘.’”,‘.}) ~ MEViM}eriyf ln(UR+J-R)eiV In(vR-v-R)

~ T EPED () 2iveiér MORIR) (143)

Then the total cross section can be found from Eq. (130),
with R;, replaced by REPW- where

(BDW) (7) = —prffdxldXZdR(Pf(sl’sz)

% ei(ip<(§1+§2)+itir(f1+f2)(U R+o- ]f,)—igr
X{,F,(ivp,1,ivs, +iv - 52)€xl¢i(f1,fz)
-V, 1 Fy(ivp,Livs; +i0 - )

+ 1 Fy(ivp,1,ivs) + 0 - §)V, ¢,(¥1,5))

-V, 1 Fy(ivp,1,ivs; + i - 55)}. (144)

An extension of the analysis to the post version of the
formalism can also be accomplished. This time we
choose the distorting potential in the form W;=Zp(Z;
—2)/r;. This choice in the eikonal approximation gives
the distorted waves x; as

=N+(Vi)€lk i 1Fi(= anl,lkirfJf ilgi'@)%@h@)-

(145)
In the exit channel, the potential Uy is chosen as in the

CDW-4B method, i.e.,

2
S T
Upx == - 2 Voo Vo -

(146)

The distorted wave is given by x;=¢As,5,)¥;, where
the function ¢; is determined by Eq. (126). The corre-
sponding post form of the transition amplitude is ob-
tained by neglecting the second term in Eq. (86), so that
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T(BDW)+

X IVe= Wilxh = Oq U XD - (147)

Inserting Eqgs. (145), (146), and (126) into (147), we have

TPV =~ Ny f f J A5, dS,dF @RI (7, 7))
X @i(xX1,X {1 Fy(ivy, 1,ivx, + iv - X;)
XV, 051,50) - Vo 1 Fy (i Livx, +i6 - 5)
+ 1 Fy(ivp, v, + 0 - ¥V ¢f(51.5)

(148)

-V, 1Fiivy Livx, +iv - X)),

i o M . .
‘Cz(ri»rj) = MziVTlFl(_ lVl‘,l,lkl‘rf'i' lki . rf)
f

X\ Fy(= iv,Likgr; + ikg- 7)),

where Ny=[N~"(vp) ]2, No=N*(v)N*(v), and v=ZpZ/v.
The function £3(7;,7,) can also be expressed in the eiko-
nal approximation via

‘C;(anf) —~ M;Viﬂ}'vfeh}i ln(vR—J-R)eiv In(vR+0-R)

~ M_i(§P+§T)(/LpU)2iVe_i§P ln(vR—J-R)' (149)
Therefore, the total cross sections are given by
RBDW)x( = |2
Q(BDW)+ (2)) _ f d (77) (150)

BDW

Rjf (7) =~ NTI f f d5,d5,d Re,(%),%,)
Xeitip'(fl+§2)+i¢?T'(f1+fz)(vR —-U- ]_é)—lfp
X{ Fy(ivp 1, ivx, + 6 - 5)V 0(51,52)
-V, 1 Fyivy,Livx, + 0 - %)

+ Fylivy, Livx, +i0 - $)V, ¢/(51.5)

Vo, Fylivp Live, +i5- 5} (151)

can be obtained directly from
by making the transformations s+ s, and
X1 <X, in both Egs. (144) and (151). This is possible be-
cause the vector R is invariant under this latter transfor-

mation. In such a case, these transformations will map

the first of the two terms in R (BDW)= nto the second

term, and vice versa. In other words the contributions
o REBDW):

Notice that R(]?DW)
R(BDW)

coming from V-V, and V,-V, are identical to
each other. Hence, these expressions can be rewritten as
follows:
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(BDW) ( ) - 2pr f f dX]dedR

X etqp(s] +89)+iq 7 (X1 +X5)

X(@WR+v- ﬁ)_igTP;(ﬂjz)FP(i,gz),

(152)
REPW* () = - 2Ny J J J ds,ds,dR

X etqp~(sl+32)+qu~(x]+x2

X(@wR-v- I_é)_igPﬁDi()Zl’fZ)FT(fl’fﬁa

(153)

FP(§1’§2) = lFl(iVP,l,iUS2 + llj . §Z)Vxl(p,-(f1,f2)
-V, 1 Fyivp,Livs, +i0 - 5)), (154)

Fr(xy,%) = Fy(ivy,1,ivx; + iv - fz)Vs1¢;(§1,§2)
Vo 1 Fylivy vy, +i5 - ). (155)

The prior form of the T-matrix element in the BDW-4B
method can be physically interpreted in the following
manner. The incident particle scatters on each of the
three constituents of the target (Zr;e;,e,). In the en-
trance channel, a collision between the projectile Zp
and target nucleus Z; results in accumulation of the

Coulombic phase factor exp[(i/v)ZPZTln(vR—J-é)].
On the other hand, in the exit channel, the target
nucleus Z; interacts with the newly formed atom or
ion (Zp,2e); considered as the point charge (Zp-2),
thus accumulating the phase factor exp[—(i/v)Z(Zp

-2)In(vR+v -ﬁ)] due to the asymptotic residual Cou-
lombic interaction W/=Z(Zp-2)/R. Here no explicit
electronic distortion factor is taken into account. In
other words, the presence of the two electrons is felt by
the target nucleus Z solely through the effect of screen-
ing the nuclear charge Zp in the heliumlike atomic sys-
tem (Zp,2e);. In contrast, in the entrance channel, the
BDW-4B method allows the projectile to separately dis-
tort the nuclear and electronic motions through the ad-
ditive Coulombic interaction. Thus, the interaction of Zp
with electrons e; and e, leads to double ionization of the
target (Z7,2e);. The ionized electrons propagate in the
Coulomb field of Zp in a particular eikonal direction
with momenta «;= k,~v. Finally, capture of the two
electrons occurs from these intermediate ionizing states
(capture from continuum), because electrons are travel-
ing with each other, as well as with the projectile, in the
same direction, and the attractive potential between Zp
and ¢; (j=1,2) is sufficient to bind them together into the
new heliumlike atomic system (Zp;e;,e;)r This is a
quantum version of the well-known Thomas classical
double scattering. An analogous situation can also be

pictured in the case of the post form RE;}D W)+ of the
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transition amplitude. Calculation of the matrix elements

R(}3D W)= has been done by Belkic (1994). He has shown
that the BDW-4B method gives the matrix elements

RBPWE in terms of four-dimensional real quadratures
from O to 1, whereas for computations of the total cross
sections five-dimensional quadratures are needed. It
should be noted that the integrands in the prior and post
forms have the functions [7,/(1-7)]*»7 (j=1,2) which
originate from an integral representation of the two con-
fluent hypergeometric functions. These functions pos-
sess integrable branch-point singularities at 7, ,=0 and 1,
as well as the simple poles at points 7 ,=0. Therefore,
Cauchy regularization of the whole integrand should be
performed before applying the Gauss-Legendre quadra-
tures (Belkic, 1994).

C. The BCIS-4B method

The BCIS-4B method has been formulated and imple-
mented by Belki¢ (1993c¢). This approximation takes full
account of the electronic continuum intermediate states
in one channel (entrance or exit, depending upon
whether the prior or post form of the transition ampli-
tudes is considered). The transition amplitudes in the
prior and post versions of the BCIS-4B method without
the term (pv)*#P77" are (Belkic, 1993c)

(BCIS ( ) ZPNTJdeR dsld52€lk +il€f;f

o oz oL L (2 1 1
X(UR_U'R)_lgP(Pf(sl»SQ)(E_S__S_>
1 2

X @(X1,X0) 1 Fy(ivy, 1,ivxy + iv - X1)

XlFl(ivT,l,ivx2+ ll;)Zz), (156)

(BCIS +( ) ZTNPJJJdR dxldx ezk r+zkfrf

e 2 L o (2 1 1
X(@WwR+v- R)_lngDf(Sl,SQ)(E - x— - x—)
1 2

X @i(X1,Xp) 1 F(ivp,1,ivsy + iv - 57)

X]Fl(iVP,l,iUS2+iJ'§2). (157)

It should be noted that in R (BCIS)= the electronic con-
tinuum intermediate states are included in the same way

. (BDW)* . . (BDW) =
as in R . The essential difference between R

and R(B CIS)+

(BCIS)*
R

© lies in the perturbation potentlals In

(), these potentials are given by the multi-
plicative operators [Zp(2/R-1/s;—1/s,)] and [Z2/R
—1/x;-1/x,)], whereas in the case RE;?DW)i(f;) we have
the typical gradient operator potentials

)

(1/a) > ¥V

k=1

Sk In @f(§1’§2) : ka

and
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2
(1/6) 2V, In ¢,(%1,5) - V.
k=1

which are familiar from the CDW-4B method.

Two alternative methods have been developed by Bel-
ki¢ (1993c) for calculation of the required matrix ele-
ments. One of these gives the matrix elements Riif(fy) in
terms of a three-dimensional integral over real variables
from 0 to 1. The other method provides the basic quan-
tities Ri(7) in the form of four-dimensional numerical
quadratures over real variables. Both methods have

been found to give the same numerical results (Belkic,
1993c).

D. The CB1-4B method

Numerous investigations and comparisons with ex-
periments have confirmed that the CB1-3B method is an
accurate theory for rearrangement collisions at interme-
diate and high impact energies (Belkic, 1988b, 1989b;
Belkic et al., 1986; Belkic, Taylor, and Saini, 1986; Belkic
et al., 1987; Belki¢ and Taylor, 1987; Dewangan and
Eichler, 1986). Therefore, it is reasonable to extend this
approximation to four-body collisions with one or two
active electrons. Such an extension for double capture
has been done by Belki¢ (1993b) through the introduc-
tion of the CB1-4B method. The transition amplitudes in
the CB1-4B method for double-charge exchange within
the prior (T}) and post (7}, forms are given by

Typ=(Pp|Vi|®7),  Tjp= (D Vil ®]). (158)

Here @/ and CD; are defined by Egs. (15) and (32),
whereas V7 and V} are the same as in Egs. (13) and (29),
respectively. Explicitly, the transition amplitudes without
the term (pv)*4r#7 are (Belkic, 1993b)

T = | dR PR oR <5 RO R, (159

F(ﬁ)zzpffd§1d§2¢;(§1,52)€_iv"(§'+§2)

2 1 1 N
X(E - - _)qu(xth)’ (160)
St 8
FR)=Zy f f X d%, @y (8),5,)e v 1)
2 1 1 N
X(E -— - _><Pi(x1,x2)- (161)
X1 X2

Here, Eq. (33) and £=2(Z;—Zp)/v are used together
with the vectors ¢ and ¢p taken from Eq. (35). A com-
plete calculation of the matrix elements Tff( 7), as a two-
dimensional integral, has been performed by Belkic
(1993b). The method used is general in the sense that it
can be applied to heteronuclear (asymmetric) as well as
homonuclear (symmetric) collisions in which double-
charge exchange occurs. This has been substantiated for
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the symmetric He?*-He collision, for which the algo-
rithm of Belki¢ (1993b) reproduced exactly the results
from the corresponding previous study (Belkic, 1993a).
This cross-validation is important, since Belki¢ (1993a)
presented a completely different way of calculating the
matrix elements. It should be mentioned that a partial-
wave analysis of the transition amplitude in the CB1-4B
method has also been carried out for double-electron
capture in collisions of alpha particles and helium (Gu-
lyds and Szabo, 1994). If the necessary convergence over
the partial waves has been achieved, the numerical re-
sults of Gulyas and Szabo (1994) would be the same as
those obtained without the partial wave analysis. How-
ever, this is not the case, possibly due to only 3 partial
waves retained in each of several summations, calling for
a reinvestigation to clarify the disagreement.

E. Comparison between theories and experiments
for double-electron capture

1. Double-electron capture into the ground state

We first analyze the total cross sections in the
CDW-4B method for double electron capture from He
by fast H* and He?" ions

H* + He(1s?) — H (15 + He*", (162)

He?* + He(1s%) — He(1s%) + He?*. (163)

In order to investigate the sensitivity of the prior and
post forms of the total cross sections to the choice of the
ground-state wave functions for He and H™, we employ
four two-electron functions: (i) a one-parameter uncor-
related wave function (Hylleraas, 1929), (ii) a radially
correlated two-parameter orbital (Silverman et al., 1960),
(iii) a three-parameter function (Green et al., 1954), and
(iv) a four-parameter function (Lowdin, 1953). As shown
by Belkic and Mancev (1993), the post-prior discrepancy
for reaction (162) for all four wave functions is within
at most 40% at impact energies where the CDW-4B
method is expected to be most adequate (E£=100 keV).
In the case of the wave function of Lowdin (1953), the
difference between the prior and post cross sections
does not exceed 20% at £=100 keV.

Comparison between the CDW-4B method and the
available experimental data for reaction (162) is pre-
sented in Fig. 1. Only the prior cross sections obtained
with the wave functions of Hylleraas (1929) and Léwdin
(1953) are depicted in this figure. The corresponding re-
sults computed using the orbitals of Green et al. (1954)
and Silverman et al. (1960) are not displayed in Fig. 1,
since they are very close to those generated by means of
the wave function of Lowdin (1953). The cross sections
of the CDW-4B method are seen to be in excellent
agreement with the measurement at impact energies E
=100 keV. The results of the first Born approximation
(Gerasimenko, 1961), also given in Fig. 1, are about
three orders of magnitude larger than the experimental
data. The corresponding results from the three-state
two-center close coupling method (Lin, 1979) consider-
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FIG. 1. Total cross sections Q(cm?) for double-charge ex-
change in the collisional reaction H*+He(1s?) —H™(1s?)
+He?". Theory: solid curve: the CDW-4B method (Belki¢ and
Mancev, 1992) [the wave functions of Lowdin (1953)]; dashed
curve: the CDW-4B method (Belki¢ and Mandev, 1992) [the
wave functions of Hylleraas (1929)]; dotted curve: the three-
state two-center close coupling approximation of Lin (1979),
and singly chained curve: the first Born approximation
(Gerasimenko, 1961). Experimental data: @ (Schryber, 1967),
O (Toburen and Nakai, 1969), V (Fogel et al., 1958), and O
(Williams, 1966).

ably underestimate the associated measured values at
lower energies (E <45 keV), with precisely the reversed
pattern above 120 keV.

We conclude that, in the case of reaction (162) at im-
pact energies £=100 keV, the CDW-4B method is rela-
tively weakly dependent upon the choice of the bound-
state wave functions of Hylleraas (1929), Lowdin (1953),
Green et al. (1954), and Silverman et al. (1960). Hence,
the simplest one-parameter orbital of Hylleraas (1929)
can confidently be used in subsequent applications re-
garding reaction (162). At energies E=100 keV, where
the CDW-4B method is assessed to be the most ad-
equate, the prior and post cross sections are in satisfac-
tory mutual agreement and, furthermore, they provide
an adequate interpretation of the existing experimental
data on the H*-He double-charge exchange.

The results of the CDW-4B method (Belkic, 1994;
Belkic et al., 1994) for reaction (163) are shown in Table
I and Fig. 2. There is no post-prior discrepancy for this
reaction, so that 0= Q;}E Q. It can be observed from
Table I that the dependence of the total cross sections
for the He**-He collisions upon the bound-state wave
functions is weak and, therefore, quite similar to that in
the H*-He collisions.

In Fig. 2 we give the total cross sections for process
(163) obtained using the CB1-4B, CDW-4B=CDW-4B1,
CDW-4B2, BDW-4B, and BCIS-4B methods. This time
the results for total cross sections from the CDW-4B1
method (Belki¢, 1994; Belkic et al., 1994) do not repro-

Rev. Mod. Phys., Vol. 80, No. 1, January—March 2008

TABLE 1. The total cross sections Q; cmz):Q;}(cmz)
= Q,»f(cmz) for double-charge exchange: He”*+He(1s%)
— He(1s?)+ He?* computed by means of the CDW-4B method
(Belkic, 1994; Belkic et al., 1994), utilizing the wave functions
of Hylleraas (1929), Lowdin (1953), Green et al. (1954), and
Silverman et al. (1960) for both the initial and final states.

Qir (cm?)
E (keV) Hylleraas  Silverman Green Lowdin
100 5.31[-16]  6.07[-16]  5.58[-16] 5.49[-16]
200 428[-17]  4.50[-17) 4.37[-17] 4.28[-17]
300 8.18[-18]  8.11[-18]  8.19[-18] 7.99[-18]
400 2.25[-18] 2.14[-18] 2.23[-18] 2.17[-18]
500 7.70[-19]  7.08[-19]  7.54[-19]  7.33[-19]
600 3.03[-19]  2.72[-19] 2.95[-19] 2.86[-19]
700 1.33[-19]  1.17[-19]  1.28[-19] 1.25[-19]
800 6.32[-20]  5.44[-20]  6.06[-20]  5.88[-20]
900 3.21[-20]  2.72[-20]  3.06[-20] 2.97[-20]
1000 1.72[-20]  1.44[-20] 1.63[-20]  1.58[-20]
1250 4.34[-21]  3.54[-21] 4.09[-21] 3.98[-21]
1500 1.34[-21]  1.07[-21] 1.26[-21] 1.23[-21]
1750  4.81[-22]  3.79[-22] 4.53[-22] 4.40[-22]
2000  1.93[-22] 1.50[-22] 1.83[-22] 1.78[-22]
2500  4.01[-23]  3.08[-23] 3.92[-23] 3.80[-23]
3000  1.06[-23]  8.11[-24] 1.09[-23]  1.05[-23]
3500 337[-24]  2.56[-24] 3.62[-24] 3.74[-24]
4000  1.22[-24]  9.29[-25] 1.39[-24] 1.32[-24]
5000  2.17[-25]  1.65[-25] 2.72[-25]  2.55[-25]
6000 5.10[-26]  3.89[-26]  7.06[-26]  6.51[-26]
7000 1.46[-26] 1.12[-26] 2.21[-26] 2.01[-26]

duce most of the experimental data, except those at the
two largest energies 4 and 6 MeV. One of the inadequa-
cies of the CDW-4B1 method is the use of unnormalized
total scattering wave functions in both the entrance and
exit channels. Of course, the same drawback of the
CDW-3B method is also encountered for single-charge
exchange (Crothers, 1982), but without significant conse-
quences at impact energies satisfying the usual validity
condition (Belkic et al., 1979)

incident energy E (keV/amu) = 80 max{|€],| ¢/},
(164)

where € and € are the initial and final orbital energies of
the captured electron, respectively.” This discrepancy
may indicate that the same type of inadequacies invoked
in theories of rearrangement collisions could be more
serious for double- than for single-charge exchange. To-
tal cross sections for high-energy two-electron transfer
are smaller than the corresponding results for one-

?According to (164), the expected limit of the validity of the
CDW-4B method for a He?* projectile is 0.45 MeV, whereas
for Li** impact it is above 2 MeV and for a B>* projectile it is
above 9.7 MeV.
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electron capture by at least two orders of magnitude.
Therefore, it is not surprising that double-charge ex-
change, a much weaker effect than single-electron trans-
fer, appears to be very sensitive to any, even apparently
small, inadequacies of the theory. Nevertheless, this
normalization problem is not expected to be the main
cause for the lack of agreement between the CDW-4B1
method and experiment below 4 MeV in Fig. 2. This
could be inferred from the work of Martinez et al
(1999). Their results from the CDW-EIS-4B=CDW-EIS-
4B1 method (which uses the normalized eikonal scatter-
ing wave function in the entrance channel) underesti-
mate both the experiments and the CDW-4B1 method
for the same process (163) (not shown to avoid clutter).

An alternative reason for the fact that the CDW-4B1
method is satisfactory only at the highest energies (4 and
6 MeV) in Fig. 2 could be the neglect of the second-
order contribution from a perturbation series. Indeed,
when the first-order contribution from the CDW-4B1
method is augmented by the inclusion of an approxi-
mate on-shell second-order term in the transition matrix
element (Martinez et al., 1999), the ensuing CDW-4B2
method yields cross sections that agree favorably with
most of the available experimental data in Fig. 2, except
at 4 and 6 MeV (precisely the reverse pattern relative to
the CDW-4B1 method). However, using the four-body
continuum distorted wave eikonal initial state method
(Martinez et al., 1999), the same procedure of adding an
approximate on-shell second-order term to the con-
tribution from the CDW-EIS-4B1 method yields the
CDW-EIS-4B2 method, which gave the results that
overestimate both the cross sections of the CDW-
4B2 method and the experimental data for the process
(163). More precisely, Fig. 2 from Martinez et al. (1999)
shows that throughout the interval 100-6000 keV,

QECDW_EIS_“BD largely underestimates the experimen-
ta{ data. For example, this underestimation is within
2-3 orders of magnitude in the range 100-2000 keV,
which is well within the expected validity domain of
this method. On the other hand, in the same Fig. 2

from Martinez et al. (1999), QECDW_EIS_“BZ) is seen to
overestimate considerably all the available experimental
data in the whole range 100-6000 keV. In particular,
at energies 100-1000 keV, the values of the ratio

(CDW-EIS-4B2) ; (CDW-EIS-4B1) .
Ql.f / Ql.f are enormous, ranging

from 10° to 10* (Martinez et al., 1999). Previously, the
same on-shell Green’s propagator for a second-order
contribution has also been used within the IA by Gra-
vielle and Miraglia (1992) for the process (163). They
omitted the first-order IA, without showing that this ig-
nored term is indeed negligible. Moreover, such an omis-
sion is not supported by the CDW-4B2 method, which
contains a significant contribution from the correspond-
ing first-order term provided by the CDW-4B1 method,
as seen via the singly chained and dashed curves in Fig.
2. Here it is pertinent to recall that the IA for three- and
four-body collisions does not obey the correct boundary
conditions. This latter drawback has been rectified by
Belki¢ with the emergence of the RIA-3B and RIA-4B

Rev. Mod. Phys., Vol. 80, No. 1, January—March 2008

10™

10"
10%
10" L

10%

Q(em?)

10%
24

10

10%

1000 2000 3000 7000
E(keV)

FIG. 2. Total cross sections, as a function of the incident en-
ergy E(keV) for reaction (163). The theoretical curves relate
only to the transition 1s*>— 1s?. Doubly-chained curve: the
CB1-4B method (Belki¢, 1993a, 1993b); solid curve: the
BCIS-4B method (Belkic¢, 1993c); dotted curve: the BDW-4B
method (Belki¢, 1994); singly chained curve: the CDW-4B1
method (Belkic, 1994); dashed curve: the CDW-4B2 method
(Martinez et al., 1999). All computations are performed by
using the one-parameter Hylleraas (1929) orbital for the initial
and final states of helium. Experimental data: O (Pivovar et al.,
1962), A (McDaniel et al., 1977), V (DuBois, 1987), (I (de Cas-
tro Faria et al., 1988), and @ (Schuch et al., 1991).

(Belkic, 1995, 1996; Mergel et al., 1997). Overall, it is
physically plausible that the second-order term in a per-
turbation expansion could play an important role for
double- relative to single-electron capture due to the
two actively participating electrons in the former pro-
cess. This is evidenced by large differences between the
CDW-4B1 and CDW-4B2 methods, on the one hand,
and between the CDW-EIS-4B1 and CDW-EIS-4B2
methods, on the other hand. These initial assessments of
the second-order terms in a perturbation series are en-
couraging. Nevertheless, it would be important to ex-
tend such computations by including both on- and off-
shell second-order contributions in the CDW-4B2 and
CDW-EIS-4B2 methods for the process (163). Further-
more, it would be indispensable to assess the conver-
gence rate in the spectral representation of the Green
function from a second-order propagator. This latter
spectral representation from Martinez et al. (1999) is
inconclusive, as it includes only the two hydrogenlike
ground states centered on the projectile and target
nucleus, without the necessary assessment of the contri-
bution from any of the other, ignored intermediate
states.

Further, as can be seen from Fig. 2, the BCIS-4B and
BDW-4B methods yield similar values for the displayed
total cross sections. These two approximations use nor-
malized scattering wave functions in one channel. The
total cross sections from the BCIS-4B and BDW-4B
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methods are much smaller than those from the CB1-4B
method throughout the energy range under consider-
ation. For example, the difference between the findings
of the BDW-4B and CB1-4B methods increases as the
impact energy is augmented, reaching two orders of
magnitude at 6 MeV. Importantly, the BDW-4B and
BCIS-4B methods are in good agreement with most
of the available experimental data even without any
second-order term from a distorted-wave series. At the
two largest energies (4 and 6 MeV), the BDW-4B and
BCIS-4B methods overestimate the measurement.

It is also instructive to consider the IPM for reaction
(163). According to the IPM, the transition amplitude
for double-electron capture is given as a product of the
amplitudes for single-electron capture. The differential
cross section for double-electron capture in the IPM is
given by

d Q(CDW—IPM) % '
zfdQ _ ivﬂfo dp p1+2w[al(;lDW—3B)(p)]2
2 a(z)
XJo(7p) (—) (165)
sr
where a(CDW gB)(p) is the transition amplitude as a func-

tion of p in the CDW-3B method (Belkic et al., 1979;
Cheshire, 1964) for single-electron capture. The explicit
expression for a (CDW-3B)(5) can be found in the work
of Belki¢ and Salin (1978). The total cross sections

Q(CDW PM) are computed from Eq. (165) by standard in-
tegratlon over p in the interval [0,%]. The results ob-
tained are shown in Table II. These results are in satis-
factory agreement with measurements in the energy
range 0.9-7 MeV (not shown on Fig. 2 to avoid clutter).
Additional computations have been performed in the
CDW-IPM using the Hylleraas wave function (Hyller-
aas, 1929) for the final bound state ¢ and the orbital
of the Roothan-Hartree-Fock (RHF) model (Huzi-
naga, 1961; Roothaan, 1951, 1960) for ¢;, which is ex-
pressed in an analytical form (Clementi and Roetti,

1974). These results, denoted by Q(CDW PV are
shown in Table II together with the Cross sectlons

(CD W-IPM)() computed by means of the orbital of
Hylleraas (1929) for both the initial and final bound
states. It can be seen from this comparison that at lower
and intermediate energies 100—1000 keV the results for
Q<CD WAPM)G@) are smaller than those for Q (CDW-IPM)(D) by
a factor y' = Q\CPWIPMiD), Q(CDW IPM)E) rangmg in the in-
terval [O. 9005fZ] (see the fourth column in Table II).
Such a pattern is precisely reversed at higher energies
from 1 to 7 MeV at which y' =0.90-1.65. The difference
between columns (i) and (ii) from Table II is a well-
known consequence of electronic correlations. Radial
correlations are abundantly present in the RHF orbital
(Clementi and Roetti, 1974), whereas they are ignored in
the Hylleraas wave function. The IPM and the related
independent-event model (IEM) completely ignore the
dynamic correlation effects that make double-charge ex-
change fundamentally different from single-electron
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TABLE II. Theoretical total cross sections Q(CDW_IPM) (cm?3)

as a function of the incident energy E (keV) for double-charge
exchange (163) computed using the CDW-IPM (Belkic et al.,
1994). The results in column (i) stem from the orbital of Hyl-
leraas (1929) for both the initial and final bound states of he-
lium, whereas those in column (ii) are based upon the Hyller-
aas wave function for ¢y and the RHF orbital of Clementi and
Roetti (1974) for ¢;. The fourth column is the ratio of the
numbers in columns (ii) and (i).

Q(CDW IPM) (cm?)

E (keV) (1) (ii) (i)/()

100 4.75[-14] 2.48[-14] 0.52
200 2.00[-15] 1.36[-15] 0.68
300 2.67[-16] 1.98[-16] 0.74
400 5.78[-17] 4.49[-17] 0.78
500 1.64[-17] 1.32[-17] 0.80
600 5.58[-18] 4.61[-18] 0.83
700 2.15[-18] 1.82[-18] 0.85
800 9.15[-19] 7.91[-19] 0.86
900 4.19[-19] 3.70[-19] 0.88
1000 2.05[-19] 1.84[-19] 0.90
1500 1.08[-20] 1.07[-20] 0.99
2000 1.12[-21] 1.20[-21] 1.07
3000 3.68[-23] 4.50[-23] 1.22
4000 2.81[-24] 3.81[-24] 136
5000 3.55[-25] 5.21[-25] 1.47
6000 6.29[-26] 9.84[-26] 1.56
7000 1.42[-26] 2.34[-26] 1.65

transfer. Nevertheless, both the IPM and IEM can be
amended by incorporating static correlations. This has
been shown by Crothers and McCarroll (1987) who used
the IEM within the CDW method (as denoted by CDW-
IEM) to study double-electron capture in the He?*-He
collisions. They included static electron correlation ef-
fects in the target through the wave function of Pluvi-
nage (1950) with the explicit appearance of the interelec-
tronic ry, coordinate. Deco and Griin (1991) used the
CDW-IPM with target static correlation effects included
by means of the configuration interaction (CI) wave
functions.

2. Double-electron capture into excited states

The prediction of the contributions from excited
states requires a convenient description of singly and
doubly excited states of a heliumlike atom (ion). One
possibility is to describe the final state ¢/(s;,5,) by means
of configuration interactions. For these CI functions, the
procedure to calculate the bound-free form factors as
the matrix elements in the CDW-4B method has previ-
ously been devised by Belki¢ and Mancev (1992) in a
general manner, which is applicable to both the ground
and excited states of heliumlike systems. This can be
done by employing a basis set of monoelectronic func-
tions such as Slater-type orbitals (STOs) or hydrogenlike
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orbitals with a nuclear charge Z, (Bachau, 1984; Gayet
et al., 1996). Such functions are particularly convenient
for describing singly or doubly excited states. When the
final state is autoionizing, only the bound component of
@(s1,5,) is kept, since its decay occurs much after the
collision has been completed. The use of these CI wave
functions (Bachau, 1984) within the said procedure of
Belki¢ and Mancev (1992) for bound-free form factors
facilitates the calculation of the matrix elements for the
transition amplitude for double-electron capture into ex-
cited states (Gayet et al., 1996). These latter calculations
were restricted to singly excited states (ls,nl) with n
=<3 and /<n-1 and doubly excited states (2/,2/") with
[,I’<1. Although other singly excited states should be
included, this procedure provides a good indication of
the contribution from excited states relative to the
ground state.

The scattering integrals that appear in the calcula-
tion with excited states are of the type considered by
Nordsieck (1954). Explicit methods that bypass the cum-
bersome and implicit differentiation for calculating the
most general cases of these scalar and vectorial bound-
free form factors were developed in parabolic coordi-
nates (Belkic, 1981, 1983) as well as in spherical ones
(Belkic, 1992).

Total cross sections in the CDW-4B method for
double-electron capture from He by He?" including sev-
eral excited states have been reported by Gayet et al.
(1996). These results are based upon the wave function
of Lowdin (1953) for helium in the entrance channel and
the CI wave function (Bachau, 1984) for the final state in

Q(cm?)

E(MeV)

FIG. 3. Total cross sections Q (cm?) in the CDW-4B method
for the reaction Li**+He(1s?) — Li*(2)+He?* as a function of
the incident energy. The solid curve corresponds to double-
electron capture into the ground and all singly excited states,
whereas the dashed curve corresponds to double-electron cap-
ture into the ground state only (Gayet et al., 1996). The upper
singly chained curve corresponds to the results from the CDW-
IPM for double-electron capture into all states (Gayet et al.,
1994a). Experimental data: @ (Shah and Gilbody, 1985).
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FIG. 4. Total cross sections Q (cm?) in the CDW-4B method
for the reaction B>*+He(1s%) — B3*(3)+He?" as a function of
the incident energy. The solid curve corresponds to double-
electron capture into the ground and all singly excited states,
whereas the dashed curve corresponds to double-electron cap-
ture into the ground state only (Gayet et al., 1996). The upper
singly chained curve represents the results from the CDW-IPM
for double-electron capture into all states (Gayet et al., 1994a).
Experimental data: @ (Hippler et al., 1987).

the exit channel. From the outset, capture into excited
states is not expected to play a significant role in process
(163), because of the dominance of the ground- to
ground-state transition, which is resonant. The explicit
computations of Gayet et al. (1996) confirm this expec-
tation; the sum from all considered final bound states of
helium is very close to the singly chained curve in Fig. 2
from the CDW-4B method for the ground- to ground-
state transition alone. For example, at incident ener-
gies 1, 2, and 5 MeV, the total cross sections (in cm?)
from the ground- to ground-state transition (with the
sum of this contribution and the corresponding
yield from the excited states written in parentheses) are
1.48X1072°(1.97 X 107%%), 1.89x1072%(2.33x107??), and
3.25x1072(3.60 X 1072), respectively. Moreover, the
cross sections due to doubly excited states are smaller
than those for singly excited ones, especially at high im-
pact energies (Gayet et al., 1996; Purkait et al., 2006).
The CDW-4B method used by Gayet et al. (1996) has
also been applied to double-electron capture in the
Li**-He and B>*-He collisions. Here, as anticipated, con-
tributions from the excited states are important (see
Figs. 3 and 4). This occurs because the ground- to
ground-state transitions for the Li**-He and B*-He
double-charge exchange are nonresonant and, therefore,
excited states could yield a sizable contribution. At
smaller impact energies, the main contribution to the
total cross section originates from singly excited states,
while the ground states (1s%)'S provide about 40% of
the total cross section. In all cases, the difference be-
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tween the cross sections for the ground state and the
singly excited states diminishes with the increased im-
pact energy. It is clear that the ground-state contribution
dominates at very high impact energies. The cross sec-
tions for double-excited-state formation are one order of
magnitude smaller than the cross sections for single-
excited-state formation in the investigated energy range.
Furthermore, for the Li**-He and B>*-He collisions, the
contributions from the states (1s3s)'S and (1s3p)'P be-
come of the order of (or even significantly larger than)
the ones from the states (1s2s)'S and (1s2p)'P in the
considered energy region (Gayet et al., 1996). The results
from the CDW-IPM (Gayet et al., 1994a) are also shown
in Figs. 3 and 4. These results correspond to double-
electron capture into all final states of the projectile, and
they are seen to overestimate the experimental data.

The main goal of this subsection is to assess the con-
tribution of excited states. It is found that they can be
important, provided that the investigated transitions are
nonresonant when the target is in the ground state.
Moreover, the inclusion of excited states into the com-
putation can significantly improve agreement between
the CDW-4B method and the experimental data, as in
the case of the Li**-He and B>*-He collisions (Gayet et
al., 1994a). However, this is not the case for the He?*-He
collisions (Gayet et al, 1994a), since the ground- to
ground-state transition in process (163) is dominant due
to resonance. Note that for the formation of H™ in the
H*-He double-charge exchange (Belkic and Mandev,
1992, 1993) there are no excited states in the exit chan-
nel. Hence, it can be concluded that the CDW-4B1
method provides reliable predictions for double-electron
capture at intermediate and high impact energies for the
H*-He, Li**-He, and B>*-He collisions, but not for the
He?*-He collisions, for which an approximate version of
the CDW-4B2 method yields good agreement with ex-
periments (see Fig. 2).

It should be noted that the CDW-4B method can also
be used with multiparameter highly correlated wave
functions, such as those of Byron and Joachain (1966),
Joachain and Vanderpoorten (1970), or Tweed (1972)
that include a number of CI terms ranging from 12 to
108. These latter orbitals are capable of including most
of the radial and angular correlations, despite the fact
that they do not explicitly contain the interelectronic co-
ordinate 7y,. The wave functions of Joachain and Terao
(1991) and Tweed (1972) have been used by Belkic
(1997a, 1997b, 2001, 2004, 2007) for single-electron de-
tachment in the H*-H™ collisions treated within the four-
body distorted-wave formalism.

In order to illustrate the validity of the presented
distorted-wave approximations, we also analyze the dif-
ferential cross sections for double-electron capture in
collisions between the He?* ions and He atoms for reac-
tion (163) at E=1.5 MeV. As stated, for this symmetric
and resonant process there is no post-prior discrepancy.
The differential cross sections obtained using the
BDW-4B method are shown in Fig. 5, where a compari-
son is made with the CB1-4B and BCIS-4B methods, as
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FIG. 5. Differential Cross sections dQ/dQ
=(dQ/dQ),, (cm?/sr) as a function of the scattering angle 6,
for reaction (163) at incident energy E=1.5 MeV. The compu-
tations relate only to the 1s?>— 1s? transition. Theoretical re-
sults: (i) solid curve: the BDW-4B method (Belkic et al., 1994);
(ii) dashed curve: the BCIS-4B method (Belkic, 1993c); (iii)
dotted curve: the CB1-4B method (Belkic, 1993a, 1993b). All
computations have been performed using the one-parameter
Hylleraas wave function for the initial and final bound states of
helium. The computed cross sections are not convolved with
the experimental resolution function. Experimental data (in-
cluding double-electron capture into all bound states of he-
lium): O (Schuch et al., 1991).

well as with the existing experimental data (Schuch et al.,
1991). The CB1-4B, BDW-4B, and BCIS-4B methods
exhibit the proper asymptotic behavior at large interag-
gregate separations in both the entrance and exit chan-
nels. However, unlike the CB1-4B method, the BDW-4B
and BCIS-4B methods take full account of the Coulomb
continuum intermediate states of both electrons in one
channel. Hence, by comparing these two theories with
the CB1-4B method, one could learn about the relative
importance of the intermediate electronic ionization
continua. As seen from Fig. 5, the CB1-4B method
exhibits an unphysical and experimentally unobserved
dip at 6,,=0.112 mrad. This extremely sharp dip is
due to strong cancellation of the opposite contribu-
tions coming from the repulsive (2Zx/R) and attractive
(-Zg!w1—Zg! w,) potentials in Egs. (160) and (161),
where w;=s; or w;=x;,j=1,2 (K=P,T). In a narrow cone
near the forward direction, the cross sections in the
CB1-4B method greatly overestimate the experimental
findings. On the other hand, the BCIS-4B method of
Belkic (1993¢) provides a substantial improvement over
the CB1-4B method. First, in the BCIS-4B method, the
dip in the angular distribution disappears and near the
dip region the angular distribution exhibits only a mini-
mum at 6,,=0.121 mrad, followed by a neighboring
broader maximum, despite the fact that the same pertur-
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bation potential is used as in the CB1-4B method. The
behavior of the angular distribution obtained in the
BDW-4B method is altogether quite similar to that in
the BCIS-4B method.

It should be recalled that the BDW-4B and BCIS-4B
methods differ only in the perturbation potentials, such
that the former contains the scalar product of the two
gradient operators, whereas the latter uses the differ-
ence of the Coulomb potentials. As can be seen from
Fig. 5, the overall agreement of the BDW-4B and the
BCIS-4B methods with the experimental data can be
considered fairly good. Nevertheless, at larger scattering
angles, despite the proper inclusion of the Rutherford
scattering, both the BDW-4B and BCIS-4B methods
yield differential cross sections that are considerably
lower than the corresponding experimental data (Schuch
et al., 1991). Note that the measured findings relate to
double-electron capture into all states of He, whereas
the considered theories account only for the ground- to
ground-state transition (1s*>— 1s?). The main purpose of
Fig. 5 is to demonstrate the influence of electronic inter-
mediate ionization continua onto the differential cross
sections by direct comparison with the results from the
presented four-body theories. None of the theoretical
data displayed in Fig. 5 are folded with the experimental
resolution function. Using Eq. (165), Belkic et al. (1994)
computed differential cross sections in the CDW-IPM
for reaction (163). Their results are in good agreement
with the experimental data at small and intermediate
scattering angles (not shown in Fig. 5 to avoid clutter).
At larger values of 6, this model underestimates the
measurement. The latter theoretical results show some
undulations in the angular distribution at larger scatter-
ing angles (Belkic et al., 1994).

At sufficiently high impact energies, it should be
possible to predict three maxima in the differential
double-capture cross section resulting from different
higher-order contributions as anticipated by Belkic e al.
(1994). Applying purely classical arguments, one expects
to find the customary Thomas double-scattering
peak at the angle 61 =(1/Mp)sin60°=(1/Mp)\3/2
~0.118 mrad=0.0068°. This peak corresponds to two
consecutive events: (i) one electron is captured through
the direct first-order mechanism, and (ii) the other
electron is captured through the Thomas double scat-
tering. The next similar structure should occur at
the angle 62=26!)=(2/Mp)sin 60°=(1/Mp)\3=0.236
mrad=0.0136°. In this case, when both electrons are
treated classically, they are supposed to be in the same
place at the same time to exhibit the cumulative Thomas
double scattering. Each electron first scatters elastically
on the projectile through 60° toward its parent nucleus.
Subsequent scattering of each electron on the target
nucleus is also elastic through the next 60°. The two
electrons are then ejected from the target with the ve-
locity of the projectile in the incident beam direction.
Then the attractive potential between Zp and 2e suffices
to bind these three particles together. These two Tho-
mas peaks have also been analyzed by Martinez et al.
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(1994) within the IPM version of the CDW-EIS method.
Their theoretical results for differential cross sections at
400 MeV show the appearance of the structures at 0&))
and 61%)3, associated with the mentioned intermediate
double-scattering processes.

The third peak can be expected at the angle
620 =(1/Mp\2 sin 45°=(1/Mp)~0.136 mrad=0.0078",
which is situated between 0&)) and 0};)3. This time one
electron (say, e;) is first scattered on the projectile
through 45° toward the other electron e,, acquiring ve-
locity v;=v\2. Then, e, collides with e, elastically and
finds itself deflected through another 45° in the incident
beam direction with velocity vj=v. The consequence of
such an event on e, is manifested in the recoil of this
second electron with speed v,=v through 90° perpen-
dicular to the incident direction. In the final step, e, scat-
ters elastically on the target nucleus through another 90°
with velocity vj=v in the projectile direction. Then both
electrons travel in the incident beam direction and are,
therefore, captured by the projectile. This event, pro-

ducing the peak at 01(:2), represents a genuine third-order

effect. The peak at 0}2& is a pure four-body effect due to
dynamic interelectron correlations. Since these latter

correlations are absent from the IPM, the peak at 0&))
has not been obtained by Martinez et al. (1994) in the
mentioned IPM variant of the CDW-EIS method. In or-
der to adequately describe these higher-order phenom-
ena, it would be most appropriate to use the CB2-4B or
CB3-4B method. In particular, the CB3-4B method
would encounter multidimensional numerical quadra-
tures that could be optimally computed by the Monte
Carlo algorithm VEGAS (Belkic, 1995, 1996, 2001, 2004).

New experimental findings are required at higher im-
pact energies to provide a check of these theoretically
predicted peaks in the angular distributions. In addition
to the experimental results at 1.5 MeV that represent
the first measurement of differential cross sections for
double-electron capture in the He?*-He collisions, there
are also state-selective differential cross sections for the
same reaction at energies 0.25-0.75 MeV (Dorner et al.,
1998, 2000) obtained using a technique known as COL-
TRIMS (cold-target recoil-ion-momentum spectros-
copy). The same COLTRIMS technique has also been
used to measure differential cross sections at impact en-
ergies ranging from 0.75to 1.5 MeV/amu (Dorner,
2005). The COLTRIMS technique offers a unique, albeit
indirect, but nevertheless extremely precise way to de-
termine the final state of the projectile, including its
scattering angles. Instead of the energy losses and scat-
tering angles of the projectile itself, COLTRIMS deter-
mines simultaneously the longitudinal and transverse
momenta of the recoil ion (He?"). Since there are only
two particles in the final state, the momentum change of
the projectile must be compensated exactly by the mo-
mentum change of the recoil ion. Thus analyzing the
longitudinal momentum (in the beam direction) of the
recoil ion is equivalent to the customary translational
spectroscopy of the projectile. Moreover, determination



274 Belki¢, Mancev, and Hanssen: Four-body methods for high-energy ion-atom ...

1 0-17 L
10™

10™

Q(em?)

107 E

10721 L

10% . L
100 300 1000 3000 10000

E(keV)

FIG. 6. Total cross sections Q (cm?) as a function of laboratory
incident energy E (keV) for double-charge exchange in the re-
action 'Li**+*He(1s?) — "Li* + *He?". The theoretical curves
relate only to the 1s?>— 1s? transition. Both the initial and final
heliumlike bound states are described by the one-parameter
orbital of Hylleraas (1929). The CB1-4B method: the prior Q;;
and the post Q;} total cross sections are represented by the
dashed and solid curves, respectively (Belkic, 1993b). Experi-
mental data (including double-electron capture into all bound
states of Li*): O (Shah and Gilbody, 1985).

of the recoil-ion transverse momentum is equivalent to
measuring the scattering angle of the projectile. Al-
though the scattering angle resolution achieved is better
than 107 rad (Dérner et al., 1998, 2000), no structure
from the Thomas-type mechanisms has been found.
However, higher impact energies than those considered
by Dorner et al. (1998, 2000) seem to be necessary to
detect these Thomas peaks unambiguously in the mea-
surements.

Further, we display the results of Belki¢ (1993b) ob-
tained by means of the CB1-4B method for the follow-
ing asymmetric reaction

Li** + *He(15%) — "Lit(1s?) + *He?". (166)

These results for the total cross sections in both the post
and prior versions are depicted in Fig. 6. As can be seen
from this figure, the post cross sections are slightly larger
than the prior ones. The post-prior discrepancy appears
to be somewhat more pronounced at lower than at
higher energies. A comparison between the CB1-4B
method and the experimental data (Shah and Gilbody,
1985) is also shown in Fig. 6. The results from the
CB1-4B method are in satisfactory agreement with the
experimental data. Thus, considering only the 1s*— 1s?
transition, the CB1-4B method compares more favor-
ably with the measurement than the corresponding
CDW-4B method, as evidenced by Figs. 3 and 6. The
total cross sections reported by Purkait et al. (2006) for
process (166) are close to the results from the CB1-4B
method and the experimental data from Fig. 6. Never-
theless, this needs to be reassessed by taking into ac-
count the final excited states, since they have been ne-
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glected by both Belkic¢ (1993c) and Purkait et al. (2006).
Gayet et al. (1994b) have also studied process (166).
They used the first-order CDW-EIS-4B method at im-
pact energies 700-5000 keV, but their total cross sections
underestimate the experimental data from Fig. 6 by two
orders of magnitude [not shown here; see Fig. 2 from
Gayet et al. (1994b)]. This fact and a similar observation,
which we have already made for process (163), indicate
that the CDW-EIS-4B method is inadequate for double-
electron capture in heavy particle collisions.

IV. SIMULTANEOUS TRANSFER AND IONIZATION
A. The CDW-4B method

In this section we consider a process called transfer
ionization, where simultaneous electron capture and
ionization take place

Zp+(Zrier,e)); — (Zpe)y, + Zr+ ex(K). (167)
Here the analysis of the entrance channel is the same as
for the corresponding double-electron capture. There-
fore, we need to focus only on the exit channel for reac-
tion (167). To this end we first determine the distorted
wave & satisfying the following equation (Belkic et al.,
1997a)

(E_H+ Vx - l5)|§?> =- (iﬁ_ Vx)|X];>’

which is obtained from Eq. (97). Choosing the interme-
diate channel potential V, in such a way that the con-
straint

Vx|X;> =0

is automatically satisfied, we have in the limit e— 0"

(168)

(169)

(E-H+V)|&)=0. (170)

Writing ¢ in a factored form similar to the case of Xi

g]: = (pf]g]:, (171)
we arrive at
Gr(eg— Hy—Vp)eoy, + @ (E— e~ Hy— VG
1o -
+ a—lvslgofl VoG + Vi =0, (172)

where a;=Mp/(Mp+1). This equation can be solved
without any further approximation if the model poten-
tial V, is chosen according to (Belkic ef al., 1997a)

vz L) (L) Le 6L
x — &P R 55 x| rp a S](Pfl Xy qul-
(173)

Hence, using the mass limit Mp;>1, Eq. (172) is re-
duced to
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Zr-1 Zr ZpZ;-1)

X1 X2 ri

Ji-o.
(174)

where the independent variables are separated, and this
permits the exact solution. The possible nodes of ¢y
would render V, singular in Eq. (173). In order to bypass
this difficulty, we introduce the symbol ¢ in Eq. (173) to
indicate that V acts only on those functions that contain
@y, in the factored form, as exemplified by Eq. (171). In
other words, symbol o determines the domain of the
definition of operator V,, which is allowed to act only on
a subspace of the complete Hilbert space containing
wave functions with a factored hydrogenlike bound state
@r,- This will be the case if we seek n in a factored form,
such as

(E—Gf—H0+

Gy = Cre5, (X))@ ()@ (ri), (175)
(pgl(fl) =I'(1+ iV})€”V§/2+iql'fl
X F\ (= ivy,1,—iqix, - iqy - X)), (176)
¢7,(X2) = D(1 +ig")em 2+id2s2
X Fy(= il 1, igox, — iqy - X,), (177)
‘P;i(;i) =Ir(1- l'l/l)e—wv"/2+iql--fi
X F (V' 1,~ iqir;—iq; - 1), (178)

where C; is a constant, vy=(Zy-1)a\/qy, {'=Zay/qy,
V'=Zp(Zr-1Dp/q;, and ay=a;=Mp/(Mp+1). The un-
known vectors ¢;, ¢,, and ¢; can be determined by im-
posing the required simultaneous constraints

2 2 2
a4, 4

E-—e=—"-+ ,
2(11 2[12 ZIU,l

(179)

(180)

Then, Eqgs. (179) and (180) together with the relation Ff
=—ar;—b(xX,+X,)/ s, where a=Mp/(Mp+2), b=My/(My
+2), as well as the mass limit Mp ;> 1, lead to

qi- X1+ G Xy +q; ri=—kp rpt KXo

. a-~ - 1.

Gr=—hki+k=—ki+k=p, q=ak;=k;, (181)

2= ! F= Ky
where

p=U+K. (182)

In this way, the distorted wave §]Z =<pf1g]: is obtained as
& =N (ON (vp N~ (v) dypp(sy)
X Fi(=i8,1,—ipx, —ip - X,)

><1F1(— iVT,l,— ivx1 - ll;.fl)
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X Fy(iv,1,— ik, - ikp- 7)), v=Zpvr, (183)

where the function ¢y is defined by Eq. (47) and N7({)
=T'(1+i0)e™?, N-(vy) =T (1 +ivy)e™1?, and {=Z;/p with
vr=(Z7—1)/v. Using Egs. (104), (115), and (183), the ex-
pression for the prior form of the transition amplitude
T;=(&|Uj|x;) becomes

Ty=Npr f f f dR d5, dsezei&@lnéfrmz
XRV(;iaFf)(P;(El)1F1(iVTvlaiUx1 +1iv - Xy)
X F1(i8,1,ipx, +ip - X)[Zp(1/R — 1/s,)
X Fy(ivp,1,ivs) + v - §1) @i(X1,%)
V., @#1,55) -V (Fy(ivp,1ivsy +i0 - 5)
—F,(ivp,1,ivs; +iv - 51)O<Pi(f1,)?2)]
= Tip(7), (184)

where the auxiliary function O(pl_()?l,fz) is given by
(Ei_hi)(PiEOqai(fl’iZ)EO(pi and

R(FiF) = N"(WN*(v), Fy (= iv, Likr; + ik 7))

X\ Fy(— iv,Liks+ ik; - Fp), (185)
I (v €i—EE—EK)3
a=n—-|<- v,
2 v
> . (v g--E\-
18:_7’_ 5+ v, (186)
v

with NPT:(277)_3/2N+(VP)N_*(VT)N_*(é’) and EK:K2/2. In
Eq. (184), we used the relation 12,--7,-+l€f- Ff:&-§l+,é-f1.
The difference €~ (&+E,) = Q from Egs. (186) between
the initial and final electronic energies is also known as
the inelasticity factor, or the Q factor (this is more com-
monly known as the Q factor, but we use the label 0
instead, in order to avoid confusion with cross sections
that are presently denoted by Q). This observable is of
key importance for translational spectroscopy, which
through measurement of the inelasticity factor
determines the energy gain or loss of the scattered pro-
jectiles.

By analogy, the post form of the transition amplitude
Ti} can be derived with the final result (BelkicC et al.,
1997a)

Ti} =Npy J f f d§ dx, d)zzei&x;]ﬁﬁ‘f]—i;?iz
XR () @i(X1,%) 1 Fy (ivp,1,ivsy +iv - 57)
X Fy (i, 1,ipxy +ip - S {[Zp(1/R — 1sy)
+ (Uryy = )] Fy(ivy, Livx, + iv - X1) @p(5)

=V, 07(51) - Vo 1 Fylivy, Livx, +iv - %)}
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= T, (). (187)

Here an important simplification can be made, similarly
to Eq. (129), for double-electron capture, by using the
following eikonal approximation

Rv(;i,;f) = (MPU)ZW- (188)

As before, it can be shown that the phase factor
(upv)?¥=(upv)?#PZ1-D does not contribute to the to-
tal cross sections Qjc The triple-differential cross sec-
tions for simultaneous transfer and ionization can be ob-
tained from

+ + >\ |2 >\ |2
dk 270 270
=fda%@W, (189)
(7)
0
ﬁ<>75— (190)

so that the corresponding total cross sections are given
by

Q;:deQ;(E). (191)
In the above derivation of the transition amplitudes in
the CDW-4B method, the ionized electron e, is de-
scribed by the Coulomb wave

@:(%2) = N7 (D) hi(xy) | Fi (=il 1,— ipx, —ip - X5),

$el) = Qm) e,

where p=k+v, as in Eq. (182). Even though the appro-
priate starting ansatz in the undistorted scattering state
@ is given by the plane wave ¢;(x,) centered on T, the
present four-body analysis establishes a distortion of
¢(x,) via function N™(¢) |F,(-i{,1,—ipx,—ip-x,). This is
a function of the composite electron momentum k+v
=p, and not merely of x, which one would expect in the
corresponding standard first Born approximation. The
presence of the vector v in the momentum of the ejected
electron has physical meaning, which points to the pos-
sibility of a description of the so-called electron capture
to continuum (ECC) with a characteristic cusp in the
emission spectra as has been observed experimentally in
the TI process for the He>* —He collisions (Sarkadi et al.,
2001). Different choices have been made in the litera-
ture for the wave function of the final state of the emit-
ted electron. For example, in the case of ionization of
helium by ion impact, this function has been defined as
the product of the e-P continuum state with the
e-residual-target continuum state (Fainstein et al., 1987,
1988). As such, the fields of P and T act simultaneously
on the electron ejected from helium (the two-center
problem), as in the study of Belkic (1978) in the first
application of the CDW-3B method to ionization of
atomic hydrogen by protons. Note that the final-state
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FIG. 7. Total cross sections Q(cm?) as a function of the labo-
ratory incident energy E(keV/amu) for transfer ionization
*He?* +*He(15%) — *He*(1s) + *He?* +e. The solid curve repre-
sents the post total cross section of the CDW-4B method (Bel-
kiC et al., 1997a). The dashed curve represents the post cross
sections of the CDW-IEM (Dunseath and Crothers, 1991). Ex-
perimental data: [J (Shah ez al., 1989) and O (Shah and Gil-
body, 1985).

wave function of the electron ejected from helium can
contain explicitly the interelectron distance (Pedlow et
al., 2005). Overall, multiple continua represent the main
difficulty in the TI process, since a proper description of
the final state for the ejected electron requires the simul-
taneous influence of the Coulomb potentials due to the
projectile, target, and captured electron to be taken into
account.

The presented prior and post forms 77 and T+ have
a common perturbation Vp(R,s,)=Z p(l/ R- 1/s2) Of
course, considered outside the 7 matrix, the potential
Vp,=—Zpls, represents the direct Coulomb interaction
between e, and Zp. Its asymptotic value V;Z(R) at large
distances s, is given by —Zp/R, since s,— R as R— .
Hence, the term Vp(R,s,) is precisely the difference be-
tween the asymptotic and finite values of the same po-
tential, Vp(R,s,)=V} (R) Ve, (5,). As such, Vp(R,s,) is
a short-range 1nteract10n in accordance with the correct
boundary condition. However, when placed in the 7" ma-
trices (184) or (187), the potential Ve, plays the role of a
perturbation, which causes the capture of the electron
e;. This could occur only through some kind of underly-
ing correlation between e, and e;. For example, a part of
the energy received by the electron e, in its collision
with Zp could be sufficient to accomplish transfer of e;
to the projectile. The post form Tl} contains an addi-
tional term

1 1

AVip=— -,
oy X

(192)

which is completely absent from 7. Through AV, the
dielectronic interaction 1/ry, appears explicitly in Eq.
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FIG. 8. Total cross sections Q(cm?) as a function of laboratory
incident energy E (keV/amu) for transfer ionization *‘He?*
+%He(1s2) — *He*(1s) + *He?" +e¢. The solid and dashed curves
correspond, respectively, to the post and prior cross sections of
the CDW-4B method (Belkic e al., 1997a). Experimental data:
(] (Shah et al., 1989) and O (Shah and Gilbody, 1985).

(187). In combination with the initial and final distorted
functions on both centers Zp and Zr, this dielectronic
interaction describes the Thomas P-e-e scattering. Due
to the perturbation AV),, the cross section in the post
form should be more adequate than its prior counter-
part. The calculation of the matrix elements for TI has
been carried out by Belkic ef al. (1997a). The total cross
sections in the CDW-4B method for transfer ionization
are given in terms of seven-dimensional integrals over
the real variables. The number of integration points is
gradually and systematically increased until convergence
to two decimal places has been reached (Belkic et al.,
1997a).

B. Comparison between theories and experiments for transfer
ionization

To illustrate the validity of the CDW-4B method of
BelkicC et al. (1997a) for the TI process, we examine the
total cross sections for the following symmetric reaction

He?* + He(1s?) — He*(1s) + He> +e. (193)

We also review asymmetric transfer ionization which has
subsequently been studied by Mancev (2001) for the re-
action

Li** + He(1s?) — Li**(1s) + He** +e. (194)

The results for process (193) in the energy interval from
50 to 1000 keV/amu are displayed in Figs. 7 and 8. In
Fig. 7, a comparison is made between the CDW-4B
method (Belkic et al., 1997a) and CDW-IEM (Dunseath
and Crothers, 1991). From a numerical point of view the
CDW-IEM also encounters similar seven-dimensional
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FIG. 9. Total cross sections Q (cm?) as a function of the labo-
ratory incident energy E (keV/amu) for the reaction Li**
+He—Li**+He?>" +e. The solid and dashed curves represent,
respectively, the prior Q;r and post Ql-*f cross sections of the
CDW-4B method (Mancev, 2001) with the complete pertur-
bation potentials. The dotted curve represents a quantum field
method of the second order (Bhattacharyya er al., 1988).
Experimental data: B (Shah and Gilbody, 1985) and @ (Woitke
et al., 1998).

quadratures when dealing with the total cross sections
for a TI process. The main difference between the
CDW-IEM and CDW-4B method is in the electron cor-
relation treatment. The CDW-IEM includes the static-
electron correlations (SEC) in the target using the
bound-state wave function of Pluvinage (1950)

3

@i(x1,X,) = c(k) ;TE*ZT(XHXZ)@*H(”Z

X Fi(1—in',2,2ikr,), (195)

where r,=|x; -X,|, 7' =1/(2k), and c(k) is the normaliza-
tion constant, with k£ being a nonlinear variational pa-
rameter. The corresponding lowest binding energy
€ py=—2.878 for the ground state IS of helium is ob-
tained for k=0.41, in which case c(k)=0.603 366. The
wave function (195) contains two entirely uncorrelated
hydrogenlike wave functions with the unscreened charge
Z multiplied with a corrective ri,-dependent term of
the form exp(—ikry,) (Fi(1-in',2,2ikr,). Another wave
function of helium (Rodriguez and Gasaneo, 2005)
might also be useful here, with the continuum wave
function for the e-e interaction replaced by a simpler
ansatz, which seems equally adequate as that of Pluvi-
nage.

In the CDW-IEM (Dunseath and Crothers, 1991), dy-
namic electron correlations (DEC) are completely ne-
glected, whereas the CDW-4B method explicitly in-
cludes the DEC through the dielectronic interaction
1/r, in the transition T operator. It should be noted that
the SEC can also be fully included in the CDW-4B



278 Belki¢, Mancev, and Hanssen: Four-body methods for high-energy ion-atom ...

method using the corresponding wave function, but it is
ignored in the present illustrations with the purpose of
providing an unambiguous assessment of the DEC
alone. The relative role of the SEC and DEC is other-
wise apparent from the two curves associated with the
CDW-IEM and CDW-4B method displayed in Fig. 7. A
comparison of these two theories with the experimental
data in Fig. 7 clearly shows that the CDW-4B method
represents a substantial improvement over the CDW-
IEM. It can be concluded that the DEC plays a more
important role than the SEC for TI in process (193).
Further, we evaluate the post-prior discrepancy which
arises from the unequal perturbation potentials used in
the T matrices (184) and (187). In Fig. 8, we display the
prior (Q&) and post (Q}) cross sections of the CDW-4B
method (BelkiC et al., 1997a). The prior results in this
figure do not include the correction O, which has been

shown by Belkic er al. (1997a) to be negligibly small. The
comparison in Fig. 8 reveals that the post-prior discrep-
ancy is significant throughout the energy range
50-1000 keV/amu. The post cross sections are larger by
nearly 50% than the prior results at lower energies, with
precisely the opposite pattern at higher energies. Such a
considerable difference can be attributed to the role of
the dielectronic repulsion 1/7,. We recall that the differ-
ence between Q) and Q} is due solely to the potential
AVi,=1/ri,—1/x,, which is present in the post and ab-
sent from the prior cross sections. Also in Fig. 8 the
theoretical cross sections are compared with the experi-
mental data for reaction (193). It can be seen from Fig. 8
that, in contrast to the prior variant Q;C, the post version
Q;rf of the CDW-4B method is in good agreement with
the measurements at impact energies £=80 keV/amu.
At lower energies, the results for Qi} are larger than the
experimental values, as expected, since the CDW-4B
method is a high-energy approximation. The superiority
of the post over the prior version can be attributed to
the electron-electron interaction 1/ry, in the perturba-
tion Uy of the former variant.

The post and prior total cross sections for TI in reac-
tion (194), derived with the full perturbations are plotted
in Fig. 9, where the experimental findings (Shah and Gil-
body, 1985; Woitke et al., 1998) are also displayed. The
CDW-4B method used by Mancev (2001) is found to be
in good agreement with the experimental data. The post
cross sections lie below the prior ones at impact energies
between 100 and 3000 keV/amu, with the reverse be-
havior above 3000 keV/amu. These computations have
been performed for electron transfer to the ground
state. Comparison between the CDW-4B method and
measurements especially at lower impact energies needs
to be reassessed by including a contribution from all ex-
cited states. The theoretical results of Bhattacharyya et
al. (1988) are also depicted in Fig. 9. Their cross sections
have been obtained using a relativistically covariant field
approach via the second-order Feynman diagrams. As
can be seen from Fig. 9, the results from Bhattacharyya
et al. (1988) greatly overestimate the experimental data.
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As shown by Mancev (2001), the prior total cross sec-
tions computed with and without the term Vp(R,s,) dif-
fer from each other by a considerable amount which can
reach 67% at 50-5000 keV/amu. The potential —Zp/s,
from Vp(R,s,) can cause capture of electron e; through
the e;-e, correlation. This points to a potential role of
the SEC in the process (194). As shown above, the
CDW-4B method is in good accordance with the experi-
mental data on TI for the He?*-He and Li**-He colli-
sions. Regarding the total cross sections for the TI in the
H*-He collisions at higher impact energies (not shown),
the CDW-4B method overestimates some of the mea-
sured data (Mergel et al., 1997; Schmidt et al., 2002;
Schmidt, Jensen, et al., 2005; Schmidt, Fardi, et al., 2005),
whereas at intermediate energies satisfactory agreement
is found with the experimental findings of Shah and Gil-
body (1985).

Over the last five years, there has been increasing in-
terest in studying the TI in the H*+He— H+He* +e
collisions (Tolmanov and McGuire, 2000; Mergel et al.,
2001; Popov et al., 2002; Schmidt et al., 2002; Schmidt,
Fardi, et al., 2005; Schmidt, Jensen, ef al., 2005; Schmidt-
Bocking, Mergel, Dorner, et al., 2003; Schmidt-Bocking,
Mergel, Schmidt, et al., 2003; Schmidt-Bocking et al.,
2005; Godunov et al., 2004, 2005; Schoffler et al., 2005).
One of the motivations for these investigations has been
the fact that multiple-differential cross sections for frag-
mentation processes can provide valuable information
on the nature of electronic correlations in atomic sys-
tems. When protons are used as projectiles, a hydrogen
atom is formed in the exit channel. In this case, due to
the absence of postcollisional Coulomb interactions with
the scattered projectile, target correlation effects are ex-
pected to be manifested in a more straightforward man-
ner.

For high impact energies, two qualitatively different
TI mechanisms contribute to the total cross sections by
a comparable amount (Schmidt, Jensen, et al., 2005).
These are the so-called kinematic TI (KTI) and the Tho-
mas TI (TTI) processes. As usual, the Thomas process
can be understood as two consecutive binary collisions,
first by the projectile with one of the target electrons
and second between this latter electron and either the
target nucleus (the Thomas P-e-T scattering) or another
target electron (the Thomas P-e-e scattering). The P-e-e
mechanism was first identified in the experiments of
Pélinkas er al. (1989, 1990) by a coincident detection of
the atomic hydrogen and analysis of the energy and an-
gular distributions of emitted electrons for scattering of
1 MeV protons on helium. These authors (Pdlinkds et
al., 1989, 1990) found a peak in the doubly differential
cross section szif/ dE,dQ, at 6,=90° and E,=600 keV.
In such a P-e-e mechanism, the projectile-electron po-
tential is accompanied by the electron-electron interac-
tion, leaving one of the electrons with a velocity which is
nearly the same as that of the projectile. Since the pro-
jectile is much more massive than the electron, it contin-
ues to move at almost the same velocity as before the
collision. The other electron is emitted into the con-
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tinuum with a momentum magnitude equal to that of
the projectile, but at an angle of 90° with respect to the
direction of the projectile (Briggs and Taulbjerg, 1979;
Horsdal-Pedersen et al., 1986).

Electron capture can proceed via different reaction
channels called kinematic capture and P-e-T capture.
Kinematic capture (also known as the Brinkman-
Kramers or the first Born approximation mechanism) is
mediated by the projectile-electron interaction in the
field of the target ion. In order for the TI to take place,
capture (either kinematic or P-e-T) must be accompa-
nied by an additional process such as shake-off or an
independent ionization of the second electron by the
projectile. In the shake-off process, one electron is re-
moved from the atom by the projectile, whereas the
other electron has a finite probability of ending up in the
continuum. This mechanism becomes important for
small values of Zp/v. Hence, the sudden removal of one
electron can lead to the emission of a second electron
into the continuum. For a transition of the second elec-
tron to one of the excited states, a shake-up process can
occur. Calculations of the probability of these shake pro-
cesses can be carried out by using the so-called sudden
approximation (Shi and Lin, 2002).

In order to distinguish these different reaction chan-
nels in an experiment, the projectile momentum transfer
(both transverse and longitudinal components) must be
measured with an extremely high resolution to within
0.3 a.u., which is about 1073 of the actual projectile mo-
mentum. This is not feasible with standard techniques
such as translational spectroscopy or the like, but it is
achievable by COLTRIMS. Any momentum change of
the projectile must be compensated by summing the mo-
menta of the recoiling ion and emitted electrons. Mea-
suring the impact projectile position on the detector
(with a typical resolution less than 0.1 mm), as well as
the time of flight of the fragments (from the moment of
fragmentation up to the instant when the detector is hit),
it becomes possible to determine the particle momenta
after fragmentation.

Moreover, COLTRIMS can distinguish between the
two TI mechanisms mentioned above, KTT and TTI, by
measuring the longitudinal recoil ion momentum for
each of the TI events (Mergel et al., 1997; Schmidt et al.,
2002; Schmidt, Jensen, et al., 2005; Schmidt, Fardi, et al.,
2005). Namely, for the KTI mechanism, the expected
longitudinal recoil ion momentum, which is determined
by energy- and momentum-conservation laws, is given

by py=—v/2-Q/v. In the case of the TTI mechanism,
the helium nucleus takes no part in the collision, so that
the expected longitudinal recoil-ion momentum for this
mechanism is zero. In principle, the Thomas P-e-e
mechanism could occur with two initially unbound elec-
trons. In other words, this process can proceed even with
the two electrons at rest prior to scattering. With this
latter assumption, the recoil momentum becomes zero,
since the target nucleus does not participate in the pro-
cess and, moreover, the same nucleus is at rest before
the collision.
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Schmidt, Jensen, et al. (2005) have investigated experi-
mentally the TI process in the H*-He collisions in the
earlier inaccessible high-energy range 1.4-5.8 MeV.
They found that for the highest energy (5.8 MeV), the
TTI mechanism yields the dominant contribution to the
total TI cross section. On the other hand, at the lower
end of the energy range considered by Schmidt, Jensen,
et al. (2005), it has been found that the KTI mechanism
is the dominant pathway of the total TI.

Whenever the KTI and TTI processes can be sepa-
rated (Mergel et al., 1997; Schmidt et al., 2002; Schmidt,
Jensen, et al., 2005; Schmidt, Fardi, et al, 2005), it is
possible to extract the quantity Pg=Qxri/(Qsc+ Oxrr)
<1, where Qgc denotes the cross section for single cap-
ture (SC). By definition, Pg can be interpreted as the
probability for the shake-off of the second electron after
the first electron has been captured by the projectile via
the KTI. The Thomas P-e-e part is excluded here since
the continuum electron is obviously not shaken off in
this process. Schmidt, Jensen, et al. (2005) have investi-
gated the shake-off probability Pg as a function of the
projectile velocity, and they found a rather weak de-
crease over the energy range of their measurements,
1.4-5.8 MeV. At higher velocities they approached the
expected shake-off limit of 1.63% which is also found in
the ratio of double and single ionization of He by pho-
tons or protons (Shi and Lin, 2002).

In the experiment of Mergel et al. (1997), a velocity
dependence Q~v~"#! of the total cross section for
the Thomas P-e-e double scattering was found in a
rather limited interval of £=0.3-1.4 MeV. Schmidt et al.
(2002) carried out a measurement on the TI process in
the H"-He collisions at higher energies 2.5-4.5 MeV
and subsequently for an extended energy interval
1.4-5.8 MeV (Schmidt, Jensen, et al., 2005). In the latter
experiment, the total cross section for the TI process has
been estimated to exhibit the asymptotic behavior Q
~p~1078£027 This velocity dependence is in agreement
with the corresponding prediction of the classical model
of Thomas (1927) for the expected asymptotic v~ be-
havior, which has also been predicted by the peaking
approximation of the BK2 model (Briggs and Taulbjerg,
1979). However, these latter two models are valid at v
>v, and as such they are not suitable for a quantitative
comparison with the experimental data of Schmidt et al.
(2002), Schmidt, Jensen, et al. (2005), and Schmidt, Fardi,
et al. (2005). On the other hand, a detailed quantum-
mechanical computation of the cross sections for the TI
by using the RIA-4B of Belkic (1995, 1996) shows excel-
lent agreement with the experimental data of Mergel et
al. (1997) as well as Schmidt et al. (2002), Schmidt,
Jensen, et al. (2005), and Schmidt, Fardi, et al. (2005).
The RIA-4B also predicts the v~!! behavior at suffi-
ciently high energies (Belkic, 2004).

The differential cross sections for TI in the H"+He
— H+He>" +e collisions have been measured by means
of COLTRIMS (Mergel et al., 2001; Schmidt-Bocking,
Mergel, Dorner, et al., 2003; Schmidt-Bocking, Mergel,
Schmidt, et al., 2003) at the impact energies ranging from
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0.15 to 1.4 MeV. The azimuthal scattering angle 6 of the
hydrogen atom was as small as 0.1-0.5 mrad. These
scattering angles are about 100 times smaller than those
from earlier experiments of this type. The experiments
(Mergel et al., 2001; Schmidt-Bocking, Mergel, Dorner,
et al., 2003; Schmidt-Bocking, Mergel, Schmidt, et al.,
2003) found that (i) the ejected electron is predomi-
nantly emitted into the backward direction and always
opposite to the scattered hydrogen atom; (ii) the cap-
tured electron, the recoil He?* ion, and the ejected elec-
tron always share comparable momenta; (iii) the direc-
tion of the maximum ejection is insensitive to the impact
energy, but contains some dependence upon the mo-
mentum transfer. Furthermore, from the final-state mo-
mentum pattern of H, He?*, and e, it is possible to re-
veal a part of the initial momentum wave function,
which is dominated by the non-s> contributions
(Schmidt-Bocking, Mergel, Dérner, et al., 2003; Schmidt-
Bocking, Mergel, Schmidt, et al., 2003). On the basis of
these experimental data, it has been contemplated
(Schmidt-Bocking, Mergel, Dorner, et al., 2003; Schmidt-
Bocking, Mergel, Schmidt, ef al., 2003) that the reaction
H*+He—H+He? +¢ in the range of extremely small
scattering angles 6 can be used for obtaining information
on the structure of the wave function in the momentum
representation. However, this latter idea has become a
subject of some controversy (Popov et al., 2002; Vinitsky
et al., 2005). In particular, the theoretical analysis by
Popov et al. (2002) has questioned the consistency of the
hypothesis of Schmidt-Bocking, Mergel, Dorner, et al.
(2003) and Schmidt-Bocking, Mergel, Schmidt, et al.
(2003) and, therefore, this theme needs further clarifica-
tion.

The most recent development and refinement within
COLTRIMS provide a coincident multifragment imag-
ing technique for eV and sub-eV fragment detection
(Schmidt-Bocking et al., 2005). In the experiments by
Godunov et al. (2005) and Schoffler et al. (2005), transfer
ionization H*+He — H+He?" +e has been examined at
a single proton energy (630 keV) by detecting the ion-
ized electron perpendicularly to the direction of inci-
dence. These authors proposed a simple theoretical
model which could explain qualitatively certain ob-
served effects in the measured triple-differential cross
sections for TI in the H*-He collisions. They pointed out
that the TI process offers a unique opportunity to study
radial and angular correlations in the helium target. Spe-
cifically, angular electron correlations in the ground state
of helium yield a broad peak in the electron emission
spectra in the backward direction relative to the incom-
ing beam. As discussed, the TI event proceeds through
different channels, such as the KTI and TTI. It is known
that these mechanisms are sensitive to the collision en-
ergy. However, the experimentally observed features
(Godunov et al., 2005) are virtually insensitive to the
collision energy. This prompted Godunov et al. (2005) to
assume that the target correlation plays the leading role.
They further argued that the fully differential cross sec-
tions for TI in the H*-He collisions can be used as a
sensitive probe for the target correlation whenever post-
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collisional effects are either nonexistent or negligibly
small. Such conjectures necessitate further theoretical
studies to clarify more fully the role of these correlation
effects in differential cross sections for the TI process.

In addition to simultaneous transfer and ionization in
collisions by protons and other heavier nuclei with a he-
liumlike target, the TT process can also occur when pos-
itrons are used as projectiles. In this case, formation of
positronium takes place with one of the two electrons,
while the other electron from the target is ionized (Nath
and Sinha, 2000). It should be pointed out that in ion-
atom collisions various processes of interest can occur,
for example, simultaneous double capture and ioniza-
tion in the He>*-Ar collisions (Fregenal et al., 2000). A
proper description of such a process necessitates five-
body models which are not the subject of the present
review.

V. SINGLE-ELECTRON DETACHMENT
A. The ECB-4B and the MCB-4B methods

Among ionizing four-body collisions, it is also impor-
tant to illustrate processes with strong static interelec-
tron correlations. To this end, we shall review total cross
sections for single-electron detachment, H*+H — H"*
+H+e. This process has been studied in the four-body
eikonal Coulomb-Born (ECB-4B) method (Gayet,
Janev, and Salin, 1973), the four-body modified
Coulomb-Born (MCB-4B) method (Belki¢, 1997a,
1997b, 2001, 2004, 2007), etc. Since the three-body ver-
sions of these methods will not be discussed, the shorter
acronyms ECB and MCB will be used hereafter for
ECB-4B and MCB-4B, respectively. The 7 matrices in
the prior versions of the ECB and the MCB methods for
single-electron detachment from H~ by H* read as

T = (g IVE¥Ix)
=N"(©) f f f ds dx,dx,e TS DV g (i)
X 1F1(i§,1,ipsl + lﬁ . 51)(051 + l; . 51)7iVP

x V¥, (i),5,); (X =ECB or X =MCB),

1
VEECB) =-—+ VP(R9S2)9
51

1+i(0s; +vsy) -V
VEMCB) = [VP(R,S2) + Lti] + 2 o ,

81 vs1 + J . 6_')1
with  N7(0)=Qm T (1+ie™2, (=1/p, Vu(R,s))
=1/R-1/s,, ui‘Pi:(hi_ei)‘PiEO<pi, §=13f—ﬁi=ﬁ

+U(e—€e—E)/v?, E,=k*/2, 7:0=0, vp=1/v, and p=k
-u, where h; is the target Hamiltonian. Here, the
T-matrix elements Tﬁ}aCB)’ and TﬁMCB)* are written suc-
cinctly via the joint expression TE;Q_ (X=ECB, MCB) to
highlight the similarity between the ECB and MCB
methods. As seen, the only difference between the
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ECB and the MCB methods is in the perturbation
potentials VEECB ) and Vf.MCB ). Otherwise, both
methods have the same initial and final distorted
wave functions xi=q,(x;,%,)eXi"i(vs,+0-5) 7", and
X; =N~(Qer#i®¥10(,), Fy(=i{,1,~ips;—ip-5y). These
functions possess the correct asymptotic behaviors.
However, the initial perturbation in the ECB method is
incorrect, since VEECB) is unrelated to x;. In sharp con-
trast, the above expression for VEMCB) is correct, since it
follows directly and uniquely from the application of the
full Schrodinger operator H-E; to x;, as per definition
of a generic perturbation. Here, H and E; are the total
Hamiltonian and the energy of the whole system in the
initial state, respectively. In computations, Vp(R,s,) is
ignored in V{EP VM) and, additionally,

O,, is neglected in Tf

as well as in
MCB)-
@ f :

B. Comparison between theories and experiments for single-
electron detachment

Total cross sections QEECB)_, computed by Gayet,
Janev, and Salin (1973) using the 2-parameter radially
correlated CI wave function of Silverman et al. (1960)
for H(1s%), overestimate the experimental data by some
2-3 orders of magnitude (see Fig. 10). Moreover, QE}ECB)*
saturates to a constant value at high energies, at vari-
ance with the proper Bethe asymptotic limit, (1/E)In(E).
As shown by Belkic (2001, 2004, 2007), this fundamental
failure of the ECB method remains incurable by en-
hancing the angular correlations in the target CI wave
function via the inclusion of a larger number (N=3-61)
of variational parameters. As to the MCB method, it can
be seen from Fig. 10 that the cross sections Q;}WCB)_ ex-
hibit a remarkably good convergence with the increasing
number (2-61) of the variational parameters in the tar-
get CI wave function. Crucially, the converged results
for N=61 in the MCB method are in excellent agree-
ment with the experimental data at all energies. Further,
with the increasing impact energy E, the cross sections

QEMCB)_ possess the required Bethe limit. Overall, this
brief analysis and the illustration in Fig. 10 illuminate
the critical role of the proper connection between the
perturbation potentials and the corresponding scattering
states. Also for an excellent quantitative agreement be-
tween the MCB method and the experiments, a high
degree of static interelectron correlation (especially an-
gular) is necessary to be included into the CI wave func-
tion of the target, H(1S).

VI. SINGLE-ELECTRON CAPTURE

A. The CDW-4B method
The transition amplitudes within the CDW-4B

method for single-electron capture in the prior and post
versions without (upv)¥4P41-D are (Belkic et al., 1997)
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FIG. 10. Total cross sections Q (cm?) for single-electron de-
tachment from H~(1s%) by H*. Impact energy E (keV) is in the
laboratory reference system. Theories (in the prior versions),
with only H(1s) in the exit channel: the ECB method (Gayet,
Janev, and Salin, 1973) and the MCB method (Belkic, 1997a,
1997b). Integers N with the acronyms ECB and the MCB rep-
resent the numbers of variational parameters in the target CI
wave functions, which are taken from Silverman et al. (1960)
for N=2 as well as N=3 and from Joachain and Terao (1991)
for N=61. Experimental data, with all the final states H(X) in
the exit channel: O (Peart ef al., 1970) and O (Melchert et al.,
1999). The original data of Peart er al. (1970) are for electron
impact, and here they are scaled to the equivalent proton im-
pact energy. The ECB and MCB methods share the same
properly behaving scattering wave functions, but differ sharply
in their initial perturbation potentials V,(.ECB) and VEMCB),
where the former is incorrect, whereas the latter is correct (see
the text). More details are given by Belkic (2007).

Ty= NPTJ f f dR dfldfzei&";l”ﬁ'fl90;1(51)90;2()22)
X 1F1(iVT,1,iUX] +iv- )Z])
X[V p(R,52) @i(X1,%) 1 F(ivp,1,ivsy +iv - 51)
= Vo, @i¥1,%) - Vs Fy(ivp, Livsy +iv - 51)],
(196)
Tiy=Npr f f f dR d% diye ™11, (5), %)) g ()
X 1F1(iVP,1,iUS1 + ll; : ‘S?l){[VP(R’SZ) + AVlZ]

X(:D;l(§l)1F1(iVT’1»ile +iv X)) — Vs190;1(§1)

-

-VX] Filivy, Livx, + iv-xp)}, (197)
1 1 1 1

Vp(R,s5)=Zp| ———], AVip={—-—], (198)
R s oy X

where  Npr=N*(vp)N"(vy), N (vp)=T(1+ivy)e™1?,
N+(VP)=F(1—l'VP)€7TVP/2, VPZZP/U, and VTZ(ZT—l)/U.
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The two momentum transfers « and ,E’ in Egs. (196) and
(197) are defined in Eq. (46). After analytical calculation
using the Nordsieck technique, the expressions for these
two transition amplitudes can be reduced to a three-
dimensional integral, which must be evaluated numeri-
cally, e.g., by means of the standard Gauss-Legendre
quadratures as in the initial study (Belkic et al., 1997)
and in a related subsequent work (Mancev, 1999a).

First, we consider single capture from helium by fast
protons, i.e.,

H* + He(1s?) — H(1s) + He*(1s). (199)

Here, for the initial bound-state wave function ¢;(x;,x,),
we employ the CI orbital (Isls’) of Silverman et al.
(1960)

22 N —ax{—bx —bx|—ax
soi(xl,xZ):;(e B 2 B

N2=2[(ab)™®+ (al2 + b/2)"°].

Despite its simplicity, this open-shell orbital of the he-
lium ground-state wave function includes radial correla-
tions to a large extent, within approximately 95%. The
explicit computations for process (199) include only the
ground-to—ground-state transition of the captured elec-
tron. The contribution from excited states of hydrogen is
taken into account approximately via the n~3 scaling law
of Oppenheimer (1928) with an overall multiplicative
factor 1.202.

1. The Thomas double scattering at all energies

Differential cross sections in the CDW-4B method for
the process (199) without the term (upv)?4PZr-D" are
shown in Fig. 11 highlighting the two Thomas peaks of
the 1st and 2nd kind, which are mediated by the double
scatterings H* —e—He?" and H* —e—e, respectively (Bel-
kic, 2001, 2004). It can be seen that the Thomas peak for
the H*—e—e mechanism is systematically and clearly
present at all impact energies and without any splitting.
At sufficiently high energies, this latter peak is located at
the Thomas critical angle, 6., =0.027 deg. At lower en-
ergies, e.g. 30, 50, and 100 keV (not shown), the Thomas
critical angles for the H*-e—e peak are near 0.040,
0.035, and 0.031 deg, respectively. On the other hand,
the Thomas peak for the H*—e—He?* mechanism ap-
pears clearly only at sufficiently high energies in the
CDW-4B method, where it is always split in the middle,
but this has not been confirmed experimentally. To
check these predictions of the CDW-4B theory, espe-
cially for the H*—e—e mechanism, it would be important
to have the experimental data on dQ/d() for process
(199) with the two separate contributions from the Tho-
mas double scattering of the 1st and 2nd kind. At
present, such measured data are unavailable.

2. Total cross sections

Computations of the post and prior total cross
sections have been carried out at incident energies
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FIG. 11. Differential cross sections (dQ/dQ)., at proton
energies 0.293, 2, and 7.4 MeV in the post version of the
CDW-4B method for single-electron capture from He(1s?)
by H* (Belki¢, 2001, 2004). Dotted curves: the results from
the full perturbation V, summing the contributions from (i)
Y, In @p(5))-V, (i) AVip=1/rp-1/x;, and (i) Vp(R.s))
=1/R-1/s,. Dashed and solid curves: the separate contribu-
tions from (i) and (ii), respectively. To avoid clutter, the contri-
bution from (i) is shown only at 7.4 MeV. Perturbations (i) and
(ii) yield the Thomas double scatterings of the 1st and 2nd
kind, H*—e—He?* (at sufficiently high energies) and H"—e—e
(at all energies). The critical Thomas angle is indicated by the
arrow at 6, =0.027 deg. The H*—e—He?" and the H*—e—e
peaks always appear with and without splitting, respectively. A
dip in the Thomas peak is unphysical, as it has never been
detected experimentally.

ranging from 20 to 20 000 keV (Belkic et al., 1997).
The total cross sections (the post version) as a function
of impact energy are displayed in Fig. 12. The solid
curve obtained by means of the CDW-4B method cor-
responds to the case where the complete perturbation
Vf:V,D(R,s2)+AV12—V11 In ¢;(§1)-€xl is used. A com-
parison with a number of experimental data is also
shown in Fig. 12. As can be seen from this figure, the
CDW-4B method (Belkic¢ et al, 1997) is in excellent
agreement with the available experimental findings. It
should be emphasized that this comparison extends over
three orders of magnitude of the impact energy,
20-20 000 keV, for which the cross sections vary within
12 orders of magnitude, 107’—~10""> cm?. With such a
stringent test, the CDW-4B method is seen in Fig. 12 to
establish its reliability at energies £=70 keV in accor-
dance with Eq. (164).

In order to determine the relative importance of the
dynamic correlations, the post total cross sections in the
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FIG. 12. Total cross sections Q (cm?) for single-electron cap-
ture from helium by protons as a function of laboratory impact
energy obtained by means of CDW-4B method (Belkic et al.,
1997). The wave function of Silverman et al. (1960) is used for
the initial bound state. The solid and dashed curves correspond
to the cases where the potential AV, is included and excluded
from the complete perturbation V/, respectively. Experimental
data: V (Schryber, 1967), A (Shah et al., 1989), O (Shah and
Gilbody, 1985), ® (Horsdal-Pedersen et al., 1983), & (Berkner
et al., 1965), A (Williams, 1967), ¥ (Martin et al., 1981), and ¢
(Welsh et al., 1967).

CDW-4B method used without the potential AV, from
the complete perturbation V; are plotted in Fig. 12
(dashed curve). It can be observed from this figure that
dynamic electron correlations are essential, since exclu-
sion of the relevant term AV, yields the results that
significantly underestimate the experimental data at all
energies above 100 keV. These theoretical findings pro-
vide evidence for the importance of the dynamic corre-
lations, especially at high impact energies.

The difference between the post and prior results with
the complete perturbations V; and V/is small, such that
this post-prior discrepancy does not exceed 15% (Belkic¢
et al., 1997). However, keeping only the scalar product of
the gradient operators in the following way

Vi=- Vxl In @i()zlva) ’ VSI’ Vf% - Vsl In @;(51) : Vxl,
(200)

a very large post-prior discrepancy has been reported
(Belkic et al., 1997). It should be noted that all earlier
computations by the CDW method before the work of
Belkic ef al. (1997) were based exclusively upon the ap-
proximation (200).

The CDW-4B method has also been applied to other
processes, such as the He?*-He and H*-Li* collisions,
with the main purpose of determining whether elec-
tronic correlations remain important (Mancev, 1999a).
Here the total cross sections obtained for the He**-He
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collisions by means of the one-parameter wave function
(Hylleraas, 1929) and the two-parameter radially corre-
lated function (Silverman et al., 1960) are very close to
each other. Although the Hylleraas wave function is
less accurate, it includes some crude radial correlations
through the presence of the Slater-screened effective
charge of the target nucleus (e.g., ZeTff=1.6875 for Zr
=2). The prior form (196) does not contain the interelec-
tronic term 1/r,, which accounts for the dynamic corre-
lations. As a result, the prior amplitude and, accordingly,
the prior cross sections are expected to be more sensi-
tive to the accuracy of the initial wave function than the
corresponding results from the post form. This has in-
deed been verified by Mancev (1999a) to be the case.
Nevertheless, this latter effect is less important for the
Li* target due to the higher nuclear charge.

When the term Zp(1/R—1/s,) is neglected in the prior
form, earlier results (Belkic and Janev, 1973; Belkic¢ and
Gayet, 1977; Gayet et al., 1981) were reproduced exactly
for capture into the ground state in terms of the wave
function of Hylleraas (1929) and Silverman et al. (1960).
More recently (Belki¢ et al, 1997; Mancev, 1999a),
the prior total cross sections have been computed with
the complete perturbation potential. Here, the differ-
ence between the contributions from the usual gradient

operators —V-V and its sum with the term Zp(1/R
—1/s,) does not exceed 15% above 30 keV/amu. The
term Zp(1/R—-1/s,) also has a similar influence on the
results obtained in the case of the post formalism. As
stated, the potential —Zp/s, has the asymptotic value
—Zp/R at large distances between Zp and e,. A rela-
tively small contribution from the term Zp(1/R-1/s,)
suggests that for single-electron capture at intermediate
and high energies, the potential —Zp/s, is nearly can-
celed by Zp/R. Therefore, ignoring the two terms
Zp(1/R—-1/s,) does not represent a severe additional ap-
proximation, and this is what has previously been done
(Belki¢ and Janev, 1973; Belki¢ and Gayet, 1977; Gayet
et al., 1981).

The post total cross sections derived with the full per-
turbation according to Eq. (197), as well as without the
terms 1/r,—1/x;, are displayed in Fig. 13, where the
existing experimental data are also plotted for SC in the
He?*-He collisions. The CDW-4B method with the
complete perturbation (solid curve in Fig. 13) is in
good agreement with the available measurements above
150 keV/amu. Neglect of the relevant term for the dy-
namic electron correlation AV,=1/r,—1/x; from Eq.
(197) leads to the results that are shown with the dotted
curve in Fig. 13, and they are seen to underestimate the
experimental findings. Similar to the case of the H*-He
collisions, the difference between these two curves for
the He’*-He scattering becomes more significant at
higher impact energies. This reaffirms the importance of
dynamic electron correlations for single capture, espe-
cially at higher impact energies. In the same figure, com-
parison is made between the results from the CDW-4B
method and the CDW-IEM (with the wave function of
Pluvinage) for the target as obtained by Mancev (1999a)
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FIG. 13. Total cross sections Q (cm?) as a function of labora-
tory incident energy E (keV) for the reaction *He®"
+*He(15%) — *He"(3)+ *He*(1s). The solid and dotted curves
represent the post cross sections Q;} of the CDW-4B method
(Mancev, 1999a) with the complete perturbation potential and
without the potential (1/r,—1/x), respectively. The results of
the CDW-4B method are obtained using the wave function of
Hylleraas (1929) for the ground state of the helium target
atom. The dashed curve represents the results of the CDW-
IEM of Dunseath and Crothers (1991) based upon the Pluvi-
nage wave function with the corresponding theoretical binding
energy. Experimental data: O (DuBois, 1987), V (Shah et al.,
1989), & (Mergel et al., 1995), ® (Shah and Gilbody, 1985), (I
(Pivovar et al., 1961), A (Hvelplund et al., 1976), and B (de
Castro Faria et al., 1988).

and Dunseath and Crothers (1991), respectively. The for-
mulation of Dunseath and Crothers (1991) ignores dy-
namic correlations altogether, and this may be one of the
reasons for its less favorable agreement with the experi-
mental data, as is clear from Fig. 13. Moreover, this
might also indicate that dynamic electronic correlations
in the perturbation potentials that cause the transition
are more important than the static ones in the target
bound-state wave function.

The discrepancy between the post and prior cross sec-
tions in the CDW-4B method depends essentially on the
choice of the ground-state wave function of helium. This
discrepancy is larger for the wave function of Hylleraas
(1929) than for the one of Silverman et al. (1960). In the
case of the wave functions of Hylleraas (1929) and Sil-
verman et al. (1960) the post-prior discrepancy does not
exceed 20% and 5%, respectively, for the He?*-He col-
lisions at energies considered in Fig. 13. For instance, at
impact energies 600, 6000, and 10000 keV, the post-
prior discrepancy for the Hylleraas wave function is
6.2%, 10.8%, and 17.9%, respectively, whereas at the
same energies for the orbital of Silverman et al. (1960)
the discrepancy is 2.2%, 1.2%, and 4.9%, respectively.
Of course, the post-prior discrepancy would not exist if
the exact wave function were known for helium.

The total cross sections from the CDW-4B method for
the reaction

Rev. Mod. Phys., Vol. 80, No. 1, January—March 2008

10"k

10"

g 10
10-10 |
10-21 | _‘
50 100 300 1000
E(keV)

FIG. 14. Total cross sections Q (cm?) as a function of labora-
tory incident energy E (keV) for the reaction H*+Lit(1s?)
—H()+Li**(1s). The solid curve represents the post cross
sections Qi} from the CDW-4B method with the complete per-
turbation potential. The dashed curve represents the results
from the CDW-4B method obtained without the term (1/r,
—1/x;) in Eq. (197). Experimental data: @ (Sewell et al., 1980).

H* +Li*(1s%) — H(3) + 'Li>*(1s) (201)
are shown in Fig. 14, together with the experimental
findings of Sewell ef al. (1980). Unfortunately, their mea-
sured data have been reported only up to 250 keV. As
can be seen, the CDW-4B method (Mancev, 1999a)
slightly underestimates these experimental data.

The classical trajectory Monte Carlo (CTMC) model
has been used by Wetmore and Olson (1988) to describe
the reaction (201), along with a classical model for he-
lium with two active electrons. The CTMC approach
treats all participants in a collision (i.e., the projectile,
the target nucleus, and the two target electrons) as clas-
sical point particles that interact through Coulomb po-
tentials and move according to Newton’s law. However,
such a helium model removes the electron-electron
force and allows each electron to interact with the target
nucleus independently through a separate Coulomb po-
tential. Hence, this version of the CTMC model cannot
provide any information on electron correlation effects.

Charge-exchange reaction (201) has also been consid-
ered theoretically by Ford et al. (1982), where the total
cross sections were computed at impact energies
50-250 keV by means of the perturbative “one-and-
a-half-centered expansion” (POHCE) approximation.
Here the single-particle model was adopted for the tar-
get described through a local, exponentially screened
potential of the type Viy=-2/r—exp(-3.3954r)/r. We
note that there is good agreement between the results of
the CDW-4B and POHCE methods. In contrast, the
cross sections of the CTMC model exhibit a different
trend via a peak around 175 keV (not shown). However,
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such a peak is not present in the corresponding results of
the CDW-4B and POHCE methods, or in the experi-
mental data.

Next, we consider single-electron capture from helium
by the Li** ion

Li** + He — Li%* + He". (202)

This process has been treated previously using various
theoretical approximations (Belkic et al., 1979; Suzuki et
al., 1984; Saha et al., 1985; Belkic, 1989a; Gravielle and
Miraglia, 1995; Busnengo et al., 1996). All these studies
consider the process (202) as an equivalent three-body
problem ignoring correlation effects from the outset.
The contribution from the electron-electron interaction
via the DEC within the CDW-4B method for the
Li**-He collisions has been examined by Mancev (2001).

The post and prior total cross sections of the CDW-4B
method obtained using the one-parameter orbital of
Hylleraas (1929) and the two-parameter wave function
of Silverman et al. (1960) are close, as in the previously
considered systems. Specifically, in the case of the post
form, the difference between the results for these two
wave functions is less than 7%, whereas for the prior
form the post-prior discrepancy is within 16% (Mancev
2001). As mentioned, the prior cross sections are more
sensitive to the accuracy of the initial-state wave func-
tion than the post ones. This is due to the fact that the
expression for the prior amplitude, Eq. (196), does not
contain the interelectron term 1/r,, which explicitly ac-
counts for dynamic correlations.

The theoretical post total cross sections obtained with
the CDW-4B method for single-electron capture to the
ground state in the Li**-He collisions are displayed in
Fig. 15 (solid curve) together with the experimental data
(Shah and Gilbody 1985; Woitke et al., 1998). As can be
seen from this figure, the computed cross sections are
in satisfactory agreement with the experimentally mea-
sured data. The solid curve from the CDW-4B method
lies slightly below the experimental findings, because
these theoretical results include only capture into the
ground state, while the contribution from excited states
is roughly taken into account by an overall multiplying
factor 1.202 from the rule of Oppenheimer (1928). When
the relevant term for dynamic correlations AV, is ig-
nored in Eq. (197), the resulting cross sections are found
to greatly underestimate the experimental data (see the
dashed curve in Fig. 15). This provides direct evidence
that dynamic correlations play an important role for
electron capture in the ground state, especially at higher
impact energies.

By increasing the charge of the projectile, the contri-
bution from capture into excited states becomes more
important. This has been examined by Mancev (2001)
via the extension of the CDW-4B method to encompass

capture to the final excited states
Li** + He(1s?) — Li**(nstp) + He*(1s), (203)

where the values of the quantum numbers n/{; were re-
stricted to 1s, 2s, 2p, 3s, 3p, and 3d. As an illustration,
Mancev (2001) gave the results at energies 60, 800, and
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FIG. 15. Total cross sections Q (cm?) as a function of labora-
tory incident energy E (keV/amu) for the reaction Li**+He
—Li**+He". The solid and dashed curves represent the post
cross sections Q} of the CDW-4B method (Mancev, 2001) with
the complete perturbation potential and without the potential
(1/r1,—1/xy), respectively. The symbol A refers to the post
total cross sections QE obtained from Eq. (204), whereas the
two curves correspond to capture into the ground state and the
contribution from exited states is accounted by 1.202 as an
overall multiplying factor. The results are obtained using the
orbital of Hylleraas (1929) for the ground state of the helium
target atom. Experimental data: B (Shah and Gilbody, 1985)
and @ (Woitke et al., 1998).

4000 keV/amu. The total cross sections Q5 are obtained
via the (ny)~ scaling law (Oppenheimer 1928)

05 =07+ 05 +2.08105.
Here . sz:Eff’mejff oy \there Qife oy AT
selective partial cross sections for capture into the state
determined by the quantum numbers ng, €4, and my. The
results obtained by Mancev (2001) show that the elec-
tronic correlations remain important for the included ex-
cited states. The contribution from the term AV, to the
total cross section for excited states retains a similar
trend relative to that for capture into the ground state.
This can be demonstrated if we compare the post total
cross sections computed with and without the term AV,
and denote the corresponding results by Q;, and Q7.
Then, for the 1s, 25, and 3s states at 4000 keV/amu, the
following values are obtained: Q},/Q7,=4.05, 4.10, and
4.10, respectively. These ratios at 800 keV/amu become
228, 2.24, and 2.21, whereas at 60 keV/amu they are
1.10, 1.66, and 1.48, respectively. The ratios for O,/ 07,
also exhibit similar behavior for other excited states
(Mancev 2001). The values of the total cross sections Qs
computed using Eq. (204) are shown in Fig. 15. As ex-
pected, the contribution from excited states becomes
less important as the impact energy increases. However,

(204)

are the state-
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at lower energies, the theoretical total cross sections Q3
(triangles) notably overestimate the experimental data.
An evaluation of the contribution from the perturbation
term Vp(R,s,) has been done by Mancev (2001) for the
Li**-He collisions. The conclusion was that this contri-
bution is significant (up to 40%).

B. The CDW-BFS (prior BDW-4B) and the CDW-BIS (post
BDW-4B) methods

In this section, we consider certain distorted-wave
methods that include continuum intermediate states of
the captured electron only in one channel (Belkic, 1994;
Mancev, 2003, 2005a, 2005b; Mancev et al., 2003). We
choose the perturbation potential and the distorted
wave of the initial state in the same manner as in the
CDW-4B method

1 1) <
Ui:ZP<___)_ kaln <Pi'ka,
k=1

205
RS (205)

Xi = N*(rp)N* (0)e iy (1, 5,) | Fy(ivp, ivs, +i - )

X\ Fy (= iv, ik, — ik; - 7). (206)

Further, for the final state, we use the wave function (44)
from the CB1-4B method

(207)

where V:ZP(ZT— 1)/0, VP:ZP/U, and Vp= (ZP_ 1)(ZT
—1)/v. With this choice, the prior form of the transition
amplitude can be written as (Belkic, 1994; Mancev, 2003)

Ty =(@7|Uilx7)- (208)

This represents the CDW-BFS method. The explicit ex-
pression for the transition amplitude in the CDW-BFS
method is (Mancev, 2003; Mancev et al., 2003)

®; = op(5)) r(E)e K ivy kK,

Ty=N*(vp) f f f A7 didR FHBT

X L(R)p(51) @7(2)
X [Vp(R,85) 0i(X1,5%,) 1Fy(ivp,1,ivs; + i0 - §)
-V, @i@,5) -V (Fylive,Livs; +i5-§)]. (209)
The function £(R) is
L(R) =[N*(v)I' N*(v) 1Fy (= ivp Liksr; + ik 7))
X\ Fy(=iv,1,ikr; — ik; - 77)
= (kpr;+ kp 1)k = ki 7)™ (rj— o0).

Replacement of Coulomb scattering waves for the rela-
tive motion of heavy particles by their asymptotic forms
has been done previously (McCarroll and Salin, 1967,
Gayet, 1972; Belkic et al., 1979; Belkic, 2001). Here we
resort to the well-known eikonal hypothesis, which as-
sumes that the momentum k; acquires large values. For
heavy-particle collisions, the reduced mass of the whole
system in the entrance channel is very large (u;>1) and,
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hence, k; is large even at very small incident velocities v;
(say, of the order of 0.01 a.u.). Due to their large mass,
heavy projectiles are only slightly deflected from their
initial direction and, therefore, scattering takes place
predominantly in a narrow forward cone, which implies
that IgiZEf. Thus, in the mass limit Mp >1, for the ini-
tial and final heavy-particle velocities v;~k;/w; and vr
~ Ef/ My, We can write v;=uv,=v. This mass limit also jus-
tifies the replacement of 7; by R. Hence, such an eikonal
hypothesis permits a consistent reduction of the function
L(R) to the following simplified form

L(R)= (R -0 - I-é)in(ZT—l)/v(vR Y- I_é)i(Zp—l)(ZT-—l)/v
_ pZiZP(ZT—l)/u(UR 4 5_&)45’

where ¢=(Z7—1)/v. Here the unimportant phase factors
of the unit moduli are ignored. The factor p*ZrZr-D/v
has no influence on the total cross sections and may be
omitted (Belkic et al., 1986).

Further, we can formulate the post form of the transi-
tion amplitude using the wave function of the initial
state from the CB1-4B method

il Frvivy n(kyr i~k 7y)

q’f(”i — ) = q’? = ‘Pi(flvfz)e -

On the other hand, x; and U, will retain the same forms
as in the CDW-4B method

o=l ) ()
LR $2 X1 T2
- Vs] In (PPT(ED)EZ) : Vs]

- sz In (PPT(*;l’-fZ) : sz,

X = opr(51.52)e *IIINT (V)N (vy)
><1F1(— iVT,l,— ivx1 - llj . fl)
X\ Fy(iv,1,— ikgp+ ik 7y,
where @pr(5],%5) = @p(s1) @7(x,). Hence, the post form of

the transition amplitude in the CDW-BIS method is
(Belkic, 1994; Mancev, 2005a, 2005b)

Ty = x; | UA®), (210)

with the following expression for the matrix elements

T=[N-(vp)] f f f di,d5rdR e i (%), %) R
X{Fy(ivy,Livxy +i0 - X)[Vp(R,55) + AV)]
X op(51) 97(F) — 7@V, @p(5)

-

'Vx] 1F1(l.VT,l,l.le+l.l;)‘f1)}, (211)
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R =[N (WIN*(v) |Fy(= iv,Likpr— iky- )
X\ Fy(= i, 1,ikgr; — ik; - 77)
~@WR+0-R)" (R -v-R)"
= (pv)?"(wR + G- R)¥,

where VP(R,Sz):Zp(l/R—l/Sz), AVlzzl/rlz—l/xl, Vi
:ZP(ZT—Z)/U, and §: Vi— V:—ZP/U.

It should be noted that calculation of the angular dis-
tributions dQ;;/d{) becomes particularly convenient in
the CDW-BIS method, when the two-electron target is
neutral as in the case with helium (Z;=2). In this case,

the function R is reduced to R=(vR+v-R)™* without
any overall multiplying p term. Hence, the same algo-
rithm within the CDW-BIS method permits obtaining
both total cross sections (Z,Zp arbitrary) and differen-
tial cross sections (for any Zp and Z;=2), as previously
pointed out by Belki¢ (1994). The CDW-BIS method
contains the term AV, which carries information on dy-
namic correlations. After the analytical calculation out-
lined by Mancev (2005b), the expression for T;; can be
written in terms of a five-dimensional integral.

The matrix elements of the CDW-BFS method can be
reduced to a two-dimensional integral using a similar
technique. Details can be found in the work of Mancev
(2003). As mentioned earlier, the CDW-BIS and CDW-
BFS methods (Mancev 2003, 2005a, 2005b) are, respec-
tively, the same as the post and prior BDW-4B methods
of Belkic (1994), after the appropriate adaptation to
single-electron capture. It should be reemphasized that
introducing these hybrid-type second-order approxima-
tions was motivated mainly by the idea of approximating
the exact wave function in one of the channels by a
simple analytical function that can provide an adequate
description of the principal interaction region. Impor-
tantly, the CDW-BIS and CDW-BFS methods preserve
the correct boundary conditions in both channels.

In order to illustrate the adequacy of the CDW-BIS
and CDW-BFS methods, we consider several collisional
processes. The results obtained by the CDW-BFS
method for the total cross sections in the case of the
rearrangement process

*He?* + *He(1s?) — *He* () + *He*(1s) (212)

are shown in Fig. 16 at energies between 100 keV and
10 MeV. Explicit computations are carried out only for
capture to the ground state (1s). The symbol 3 in
He*(2) means that the results obtained in this way are
multiplied additionally by a factor of 1.202 in order to
include roughly a contribution from all excited states;
namely, the total cross sections are obtained via Qs
=~ Q15152 0> ~1.20201; 1. In Fig. 16, the results of the
CDW-BFS method are compared with those from the
CDW-4B method (Mancev, 1999a). We recall that the
distorting potential U; is the same in the prior CDW-4B
and CDW-BFS methods. Both approximations satisfy
the correct boundary conditions in the entrance and exit
channels. However, unlike the CDW-4B method, the
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FIG. 16. Total cross sections Q (cm?) as a function of
laboratory incident energy E (keV) for the reaction *He”*
+*He(15%) —*He*(3)+*He*(1s). The solid curve represents
the cross sections Q of the CDW-BFS method (Mancev, 2003).
The dashed curve represents the results of the prior form
of the CDW-4B method (Mancev, 1999a). Experimental
data: O (DuBois, 1987), V (Shah e al., 1989), & (Mergel et al.,
1995), @ (Shah and Gilbody, 1985), I (Pivovar et al., 1961), A
(Hvelplund et al., 1976), and B (de Castro Faria et al., 1988).

CDW-BFS method takes full account of the Coulomb
continuum intermediate state of the captured electron
only in the entrance channel. Hence, by comparing these
two theories, we can learn about the relative importance
of the intermediate ionization electron continua. As can
be seen from Fig. 16, the CDW-BFS method provides
similar cross sections as the CDW-4B method at higher
impact energies. However, at lower energies, the results
from the CDW-BFS method are smaller than the corre-
sponding results of the CDW-4B method. This illustrates
the remarkable sensitivity of second-order theories for
single-charge exchange to the role of the electronic ion-
ization continua. Also included in Fig. 16 are the experi-
mental data for comparison with the theory. The CDW-
BFS method is found to be in good agreement with the
majority of measurements throughout the energy range
of overlap. The total cross sections measured by Hvel-
plund et al. (1976) overestimate the theoretical results.

According to the CDW-BIS method, the following ap-
proximation is utilized for the distortion of the initial
scattering state in the entrance channel (Mancev 2005a,
2005b)

Fi= N*(vpe®iTi | Fi(— iv,1,ikgr; — ik; - 77)
= eXp[iEi . f_;l + iVi ln(kiri - lzl‘ . ;t)]
= iR -G - R)™.
A similar eikonal approximation is chosen in the exit

channel within the CDW-BFS method (Mancev, 2003;
Mancev et al., 2003)
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Fy= N*(v)e 577 | F\(ivp |, — ikpry+ ik 7))

= e“kfTH (R + - R)™.

In these expressions for the R-dependent eikonal phases
from both F; and F, the unimportant phases of the unit
moduli are ignored. The factor F; comes from the long-
range Coulomb repulsion between the screened posi-
tively charged nuclei (Zp—1) and (Zy—1) in the exit
channel, whereas F; originates from repulsion between
a bare projectile Zp and the screened target nucleus
(Z7-2) in the entrance channel. We recall that an eiko-
nal phase is a good approximation to the full continuum
wave function only when the third argument of the con-
fluent hypergeometric function involved is sufficiently
large. This is justified for heavy particle collisions even
at quite low impact energies, due to large values of re-
duced masses.

The high-energy behavior of the cross sections in the
CDW-BFS method for the 1s-ngdy capture is given by the
asymptote Q;~v~''"2/. Thus, for capture into the ex-
cited states with />0, at very high energies, the CDW-
BFS method does not give the correct v~!! behavior.
Nevertheless, this deficiency in the asymptotic region
is not of crucial importance at intermediate and some
high energies, prior to the onset of the Thomas
double-scattering mechanism. A similar deficiency in the
asymptotic velocity dependence has also been found in
the case of other one-channel distorted-wave models,
such as the target continuum distorted-wave (TCDW)
method (Dubé, 1983; Crothers and Dunseath, 1987), the
CDW-EIS and CDW-EFS methods (Busnengo et al.,
1995, 1996). The TCDW method, which is designed for
asymmetric collisions (Z;> Zp), uses the wave function
of the CDW-3B method in the final state and the undis-
torted channel wave function in the initial state of the
system. Therefore, the TCDW method is inadequate, as
it neglects the correct boundary condition in the en-
trance channel.

The CDW-BFS method also gives good results for
other collisions, such as single-electron capture in the
H*-He and H*-Li* collisions (Mancev, 2003). The results
of computations for the H*-He collisions in an energy
interval from 40 keV to 15 MeV are shown in Fig. 17,
where we compare the CDW-BFS method with experi-
mental data. As can be secen, the CDW-BFS method is
found to be consistently in excellent agreement with the
available experimental data for the total cross
sections from intermediate to high nonrelativistic
energies. Experimental data do not relate to the
process H*+*He(1s%) — H(S) + *He*(1s), but rather to
H*+*He(1s*) — H(Z)+*He" collisions, where the last
symbol *He* indicates that no information is available
on the postcollisional state of the target remainder “He".
This means that, if a strict comparison with measure-
ment is desired, the theory has to allow for all possible
contributions arising from transitions of the noncap-
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FIG. 17. Total cross sections Q (cm?) as a function of labora-
tory energy E (keV) for the reaction H*+*He(1s) —H()
+*He". The solid curve represents the results from the CDW-
BFS method with the full perturbation potential (Mancev,
2003). The dashed curve represents the results of the CDW-
BFS method obtained without the potential Vp(R,s,)
=Zp(1/R-1/s,). Experimental data: V (Shah et al, 1989), &
(Berkner et al., 1965), O (Schwab et al., 1987), @ (Welsh et al.,
1967), O (Schryber, 1967), ¢ (Shah and Gilbody, 1985), A (Al-
lison, 1958), ¥ (Horsdal-Pedersen et al., 1983), and A (Rudd et
al., 1983). Theory (CC): B (Winter, 1991).

tured electron e, in He™. In practice, however, only ex-
citation and ionization of the He* ion can play a non-
negligible role at high impact energies. In the same
figure, a comparison with the theoretical results of Win-
ter (1991) is given. The computation of the cross sections
given by Winter (1991) was carried out at proton ener-
gies 50, 100, and 200 keV by means of the close coupling
(CC) approximation using a basis of about 50 Sturmian
functions. The full two-electron interaction was in-
cluded. The agreement between the results from the
CDW-BFS and CC methods is quite good. The cross
sections from the CDW-4B method obtained by Belkic¢
et al. (1997) (not shown in Fig. 17 to avoid clutter, but
displayed earlier in Fig. 12) are also in good agreement
with the findings of the CDW-BFS method. Further, it
is found that the interaction Vp(R,s,) contributes
about 9-30% to the total cross section (dashed curve in
Fig. 17).

As to total cross sections in the CDW-BIS method,
computations have been performed by Mancev (2005b)
in the energy interval [20,10000] keV. A comparison be-
tween the CDW-BIS method and numerous experimen-
tal data reveals good agreement. The CDW-BIS method
provides very similar cross sections as the CDW-BFS
method at higher impact energies. However, at lower
energies, the results of the CDW-BIS method are
smaller than the corresponding results of the CDW-BFS
method. Moreover, the CDW-BIS method shows better
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FIG. 18. Differential cross sections (dQ/dQ).,, (cm?/sr) as
a function of the scattering angle 6., (rad) for single-electron
capture in the H*-He collisions at a proton impact energy of
100 keV. Cross sections and scattering angles are in the center-
of-mass system. Solid curve: the results of the CDW-BFS
method with the full perturbation potential (Mancev et al.,
2003). Dashed curve: the results of the CDW-BFS method ob-
tained without the potential Vp(R,s,)=Zp(1/R-1/s,). Experi-
mental data: @ (Martin ef al., 1981).

agreement with measurements than the CDW-BFS
method (Mancev, 2005b).

A more refined test of the validity of theoretical mod-
els is provided by differential cross sections (DCS). The
DCS data from the CDW-BFS method for the H*-He

107§'|'|'|'|'|
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FIG. 19. Differential cross sections (dQ/dQ),,;, (a.u./sr) for
single-electron capture in the H*-He collisions as a function of
the scattering angle 6, (rad) at a proton impact energy of
150 keV. Solid curve: the results of the CDW-BFS method
with the full perturbation potential (Mancev et al., 2003).
Dashed curve: the results of the CDW-BFS method obtained
without the potential Vp(R,s,)=Zp(1/R-1/s,). Experimental
data: B (Mergel et al., 2001).
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FIG. 20. The same as in Fig. 19, except for 200 keV. The ad-
ditional symbols denoted by O represent the experimental
data of Loftager (2002).

collisions at 100 keV are depicted in Fig. 18, together
with the experimental data of Martin ef al. (1981). It is
seen from this figure that there is a very good agreement
between the theory and the measurements. Bross et al.
(1994) have also measured differential cross sections for
single-electron capture in the H*-He collisions at
100 keV, and their results are very close to those of Mar-
tin et al. (1981).

In Figs. 19-21, more DCS data are presented at pro-
ton energies 150, 200, and 300 keV. A comparison is
made between the theory (Mancev et al., 2003) and the
measurements of Mergel et al. (2001). Figures 19 and 20
reveal good agreement between theory and experiment
at 150 and 200 keV. At 300 keV also satisfactory agree-
ment is obtained as shown in Fig. 21. Here at larger
scattering angles the experimental data overestimate the
theoretical results, but otherwise both theory and ex-
periment exhibit quite similar behavior.

10°

T & 7y

(dQ/da), (a.u./sr)
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FIG. 21. The same as in Fig. 20, except for 300 keV.
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FIG. 22. Differential cross sections (dQ/dQ),,;, (a.u./sr) for
single-electron capture in the H*-He collisions as a function of
the scattering angle 6, (rad) at 400 keV. Cross sections and
scattering angles are in the laboratory system. Solid curve: the
results of the CDW-BIS method (Mancev, 2005a, 2005b).
Dashed curve: the CDW-BFS method (Mancev, 2003; Mancev
et al., 2003). Experimental data: B (Mergel et al., 2001) and O
(Loftager, 2002).

The results from the CDW-BIS method for differen-
tial cross sections at 400 and 630 keV for the process
(199) are depicted in Figs. 22 and 23. These figures show
that, at smaller scattering angles, the CDW-BIS and
CDW-BFS methods give similar results and, moreover,

(dQ/d) , (a.u.fsr)

10" ~

0.0000 0.0005 0.0010

8, ,(rad)

0.0015 0.0020

FIG. 23. Differential cross sections (dQ/dQ),,;, (a.u./sr) for
single-electron capture in the H*-He collisions as a function of
the scattering angle 6, (rad) at a proton impact energy of
630 keV. Cross sections and scattering angles are in the labo-
ratory system. Solid curve: the results of the CDW-BIS method
(Mancev, 2005a, 2005b). Dashed curve: the results of the
CDW-BFS method (Mancev, 2003; Mancev et al., 2003). Ex-
perimental data: B (Mergel et al., 2001).
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these are in satisfactory agreement with the experimen-
tal data. In Fig. 22, two sets of experimental findings
(Loftager, 2002; Mergel et al., 2001) are displayed. Mer-
gel et al. (2001) measured the differential cross sections
using COLTRIMS. Different behaviors are obtained in
the CDW-BIS and CDW-BFS methods around the Tho-
mas peak region. When the impact energy increases, the
CDW-BIS method shows the Thomas peak at the same
angle as the CDW-BFS method. However, the presently
considered impact energies are not sufficiently large for
the quoted experiments to detect the Thomas peak in an
unambiguous way. The CDW-BIS method exhibits an
unphysical and experimentally unobserved dip located
after the Thomas peak region. This additional peak is
due to a mutual cancellation among the individual terms
in the perturbation potential Uy At larger scattering
angles, the CDW-BIS method shows good accordance
with the experimental data. This can be attributed to the
inclusion of the interaction potential AV, which de-
scribes dynamic electron correlations. We recall that the
differential cross sections in the CDW-BFS method
are obtained after performing a two-dimensional nu-
merical integration. This is advantageous relative to the
CDW-4B method, in which a five-dimensional quadra-
ture is required for the same purpose when Eq. (136) is
used. Thus far, differential cross sections have not be-
come available in the CDW-4B method. The DCS data
for the H*-He collisions at intermediate and high impact
energies have been reported by Abufager et al. (2005) as
well as by Adivi and Bolorizadeh (2004). Abufager et al.
(2005) used an improved version of the three-body
CDW-EIS method, taking particular care of the repre-
sentation of the bound and continuum target states.
Their method gives a good description of single-electron
capture in the H*-He collisions at intermediate and high
energies, when an appropriate representation of the tar-
get potential is employed. Adivi and Bolorizadeh (2004)
used a second-order model which ignores the correct
boundary conditions and has logarithmic divergence.
Therefore, regarding atomic collisions, their method is
theoretically unfounded (Dollard, 1964; Belkic et al.,
1979) for the same reasons that have been criticized in
the divergent strong potential Born approximation
(Bransden and Dewangan, 1988; Crothers and Dubé,
1993; Dewangan and Eichler, 1994; Belkic, 2001, 2004,
2007). Regarding the Thomas double scattering, despite
considerable theoretical interest, there are only a few
experimental investigations of electron capture in fast
H*-He collisions. The Thomas peak in the DCS at 6,,,=
0.47 mrad has been observed by Horsdal-Pedersen et al.
(1983) at impact energies 2.82, 5.42, and 7.4 MeV. Using
the COLTRIMS technique, Fischer et al. (2006) have re-
ported their DCS data for electron capture at 7.5 and
12.5 MeV in the H*-He collisions. In their experiment,
the Thomas peak is clearly separated. Moreover, the
angle at which the dip occurs between the kinematic and
Thomas single-capture processes is determined with a
higher precision than in the study of Horsdal-Pedersen
et al. (1983).
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C. Electron capture by hydrogenlike projectiles

In this section, we consider single-electron capture in
two types of collisions, such as collisions between hydro-
genlike projectiles and hydrogenlike targets as well as
multielectron targets

(Zp,ey) + (Z1,e5) = (Zpiey,ex) + Zy, (213)
(Zp,e)) + (Zr,ex31es.ey, ... .enia})
— (Zpier.ex) + (Zriles,eq, ... .enia}), (214)

where {e3,ey, ...,ey,o} denotes N noncaptured electrons.
In the case of a multielectron target, we introduce the
following assumptions. All N noncaptured electrons are
considered as passive such that their interactions with
the active electrons e; and e, do not contribute to the
capture process. We also suppose that the passive elec-
trons occupy the same orbitals before and after the col-
lisions (Belkic ef al., 1979). The final state of the target is
ignored in such a frozen-core approximation. In this
model, the passive electrons do not participate individu-
ally in capture of the active electron and this permits the
use of an effective local target potential V7. The transi-
tion amplitudes in the ensuing first Born approximation
with the correct boundary conditions can be written in
either the post or prior form as follows

Tidn) = f j f ds,ds,dR (D;*[VT(xl) + Vil(xy)

=2Vi(R)]®], (215)
T (7 = f f f d5,d%,dR <I>f*<vr<x1)—vr<R)
Zp-1 Z 1
+”———”+—)cp,.+, (216)
R S22 T
- oo . Zp-2(" , ,
@; = yyls1,5)exp| — iky-rp—i ; dZ'VHR') |,
(217)

Zp—1

o] = wp(fl)wf(fz)exp(ilgi Fi—i In(WR - - R)

Zp-1 (%
—i=E f dZ’VT(R’)>,
v _o

where y(s},5,) is the bound-state wave function of the
atomic system (Zp;e,e;), whose binding energy is €.
The hydrogenlike wave function of the (Zp,e;) system is
denoted as ¢p(s,), and the corresponding binding energy
is ep. The initial orbital z,//iT()Zz) of the active electron in
the multielectron target satisfies the following equation

[ V2 Vi(x) - € 1yl (%) = 0. (219)

The post and prior amplitudes (215) and (216) are iden-
tical to each other on the energy shell if (i) ¢/ (x) is a
solution of the eigenvalue problem (219) for a selected

(218)
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model potential V;(x) and (ii) the final bound-state wave
function #(s),s,) is exact. Whenever at least one of
these two conditions is not satisfied, there will be a post-
prior discrepancy.

For a given central field V(x), Eq. (219) can be solved
numerically. Certain realistically screened potentials for
a neutral target atom are appealing, such as those of
Green, Sellin, and Zachor (GSZ) (Green et al., 1969) or
Herman and Skillman (1963) (HS), since they exhibit
two correct asymptotic behaviors (-Z;/x) and
(=1/x) at small and large values of x, respectively. Nev-
ertheless, these atomic model potentials are not practi-
cal within the present distorted-wave formalism, since
they preclude analytical calculation of the Coulomb
phase integrals. However, the standard analytical calcu-
lation of the whole T matrix, e.g., within the CDW
method, can be reestablished by choosing a pure Cou-
lomb potential V(x) =—ZeTff/ x for a multielectron target,
where Z$" is an effective nuclear charge. We proceed in
this way and choose the value of Z5 following Belkic et
al. (1979). This is done by requiring that the energy due
to VT(x):—ZeTff/x, for an electron occupying the orbital
of the principal quantum number #n;, be equal to the
RHF two-parameter orbital energy € (Clementi and
Roetti, 1974), i.e., Z5'=n,(-2eX1F)12, For the initial state
of the active electron in a multielectron target, we em-
ploy the RHF wave function given as a linear combina-
tion of the normalized STOs via

N
PRI = 2 Crxithn () (220)
k=1
(2a )l+2nk Lo R
PGE \/Wr ey, (7, (221)
k .

where C;, and «; are the parameters obtained variation-
ally by Clementi and Roetti (1974) and n, is the orbital
number.

Consistent treatments of electron capture from a mul-
tielectron target by a bare projectile have been per-
formed on ion-atom collisions (Bachau er al., 1988; Bel-
ki¢, 1989a; Decker and FEichler, 1989a; Belki¢ and
Mancev, 1990; Dewangan and Eichler, 1994). A direct
comparison between, e.g., the GSZ and RHF models
shows that total cross sections are only slightly sensitive
to the choice of the target potential. For example, the
magnitude of the difference between the two sets of
charge exchange total cross sections using the GSZ and
RHF models for the H*-C and He?*-Li collisions does
not exceed 15% at intermediate and high energies
within the CB1-3B method (Belki¢ and Mancev, 1990).
A test computation (Belkic, 1989b) of the H*-He charge
exchange demonstrated that the HS potential for the
target yields total cross sections that differ from the
RHF model by at most 12%. Assuming that a similar
conclusion would also hold true for the problems con-
sidered in the present study and bearing in mind the
advantages of analytical calculations, we consider a
model with the Coulomb potential V; and the target
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STOs. As mentioned, the related effective charge Z%"
will be determined following Belkic er al. (1979). A di-
rect consequence of these simplifications is a reduction
of the complicated multielectron process (214) to a more

manageable four-body problem
(Zp,ep) + (ZeTff’ez) — (Zpiey,e)) + ZeTff- (222)

Under these circumstances, the transition amplitudes
(215) and (216) become (Mancev, 1996)

Tin) =Z5" f f f ds,ds,dR (pv)*"r
e 2 1 1
% —iv-S)+iBR, 1 (3 "’ (_ o _)
e lﬂf(sl 52) R x x
X p(S) YR () (R — 5 - R, (223)
Tz_f(;]) = f f f d.;ld)zzdé (pl))ZiVJr €_m'§2+[B-R¢;(§1,§2)
WEEEZN SN
R X1 S2 T
X p(S) YR () (R 5 - R, (224)
where ¢=(Z§"-Zp+1)/v and v=Z5(Zp-2)/v. Here
the usual eikonal approximation is also employed, and
furthermore

ki-Fi+kpFp==0-$,+B-R, B=-17-pv,

B.=vi2+Aev, Ae=ep+e " — .

Using the Nordsieck technique, Mancev (1996) calcu-
lated the matrix elements of the post form Ti}in terms of
two-dimensional real integrals. Evaluation of the prior
form of the transition amplitude is more difficult only
from a numerical point of view; namely, the term 1/r, in
the perturbation potential from Eq. (224) requires an
additional three-dimensional integral in 77, which must
be carried out numerically. Therefore, the prior matrix
elements T}, from Eq. (224) can be reduced to a five-
dimensional quadrature. Following the procedure of
Belki¢ (1993c) for evaluating matrix elements of this
type, Mancev (1996) presented another method of calcu-
lation which yields the basic post matrix element Tff in
the form of a one-dimensional integral over the real
variable belonging to the interval [0,1].

D. Comparison between theories and experiments
for single-electron capture

In this section, we use two and three examples for the
processes (213) and (214), respectively. They are given
by the following rearrangement collisions

H+H—-H +H", (225)

‘Het+ H — *He + H, (226)

Rev. Mod. Phys., Vol. 80, No. 1, January—March 2008

10™ L
10"
10"
10™

ol

107 &

Q(cm?)

107

.

10°

102

g ; Y
20 50 100 500 1500

E(keV)

FIG. 24. Total cross sections Q (cm?) for single-electron cap-
ture in the collisional reaction H+ H— H™+H™" as a function of
incident energy. Solid curve: the CB1-4B method (Mancev,
1995); dashed curve: the first Born approximation (Mapleton,
1960, 1965). Experimental data: @ (McClure, 1968) and O
(Schryber, 1967).

‘He* + *“He — *He + *He", (227)
H+ *He — H™ + *He", (228)
Li** + *He — "Li* + *He™. (229)

The results obtained from the CB1-4B method for the
total cross sections for reaction (225) are shown in Fig.
24 (Mancev, 1995). The wave function for the negative
hydrogen ion is described by means of the 2-parameter
orbital of Silverman et al. (1960). Comparison of these
theoretical results with the experiment is limited to the
data of McClure (1968). His results are the only experi-
mental data available for (225), and they are at the re-
stricted impact energies E=<63 keV. However, in the
same figure, the experimental results of Schryber (1967)
for the reaction H+H, —H™+H," are also plotted. Here
the values for the experimentally determined cross sec-
tions are divided by 2; namely, we assumed that the hy-
drogen molecule could be treated as two isolated H at-
oms (the Bragg sum rule). It can be seen in Fig. 24 that
the agreement between the CB1-4B method and the ex-
perimental data is good. The theoretical curve of Maple-
ton (1960, 1965) in the first Born approximation is also
displayed in Fig. 24. The difference between the CB1-4B
method (Mancev, 1995) and the first Born approxima-
tion used by Mapleton (1960, 1965) is in the Coulomb
phase factors. These phases are completely ignored by
Mapleton (1960, 1965). Such a comparison should pro-
vide valuable information on the importance of the cor-
rect boundary conditions for the problem under study.
Figure 24 shows that the CB1-4B method employed by
Mancev (1995) yields a significant improvement over the
cross sections given by Mapleton (1960, 1965) when
compared with experiments. As expected, Fig. 24 dem-
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FIG. 25. Total cross sections Q (cm?) for single-charge ex-
change in the reaction ‘He*+H— *He+H* as a function of
incident energy. Dashed curve: the CB1-4B method (Mancev,
1995). Solid curve: the CDW-4B method (Mancev, 2007). Both
computations refer to the post forms carried out using the two-
parameter wave function of Silverman ez al. (1960) for helium.
Experimental data: @ (Olson et al., 1977), B (Hvelplund and
Andersen, 1982), and V (Shah and Gilbody, 1995).

onstrates that the logarithmic phase factors play a more
prominent role at lower than at higher impact energies.

In Fig. 25, the theoretical results of Mancev (1996,
2007) from the CB1-4B and CDW-4B methods for pro-
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FIG. 26. Total cross sections Q (cm?) as a function of labora-
tory incident energy for symmetric single-charge exchange
“He*+*He — *He+*He". Dashed curve: the CB1-4B method
(Mancev, 1996, 2007). Solid curve: the CDW-4B method
(Mancev, 2007). Both computations refer to the post forms car-
ried out using the two-parameter wave function of Silverman
et al. (1960) for helium in the exit channel and the RHF wave
function for helium in the entrance channel. Experimental
data: M (Forest et al., 1995), [0 (de Castro Faria et al., 1988) O
(DuBois, 1989), V (Atan et al., 1991), ¥ (Itoh et al., 1980), and
A (Pivovar et al., 1961).
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cess (226) are compared with the experimental data of
Olson et al. (1977). The dashed and solid curves refer,
respectively, to the CB1-4B and CDW-4B methods with
the wave function of Silverman et al. (1960) for helium.
The wave function of Lowdin (1953) for helium yields
very similar cross sections (Mancev, 1996). The agree-
ment between the CB1-4B as well as CDW-4B methods
and the experimental data can be considered as satis-
factory.

The cross sections for charge exchange in the reaction
(227) are depicted in Fig. 26. Despite the fact that there
are many experimental data for the reaction (227), the-
oretical studies are scarce, because of the difficulties
which arise in treating collision systems that are more
complex than a three-body problem. The CB1-4B
method extended to the reaction (227) by Mancev (1996,
2007) provides the first quantum-mechanical description
of this problem. The CB1-4B and CDW-4B methods are
seen in Fig. 26 to be in satisfactory agreement with the
available measurements. At lower impact energies, the
CB1-4B and CDW-4B methods overestimate the experi-
mental findings, as anticipated.

The results of computations using the CB1-4B
method (Mancev, 1996) for the formation of the H™(1s?)
ions in the H-He collisions, i.e., for process (228),
are plotted in Fig. 27. The ground state of the H-~
ion is described by the two-parameter wave function
of Silverman et al. (1960). It should be noted that
the two-electron orbital of Silverman et al. (1960)
gives a bound energy for H™(1s?) below —0.5 a.u. (e
=-0.513328 9 a.u.) which ensures a stable bound state
of the H™ ion. In Fig. 27, the cross sections from the
CB1-4B method are compared with the experimental

Q(cm?)

400 600

[ | B
100 200 1000

E(keV)
FIG. 27. Total cross sections Q (cm?) as a function of labora-
tory incident energy E (keV) for single-charge exchange H
+*He—H +*He". The solid curve is due to the post version of
the CB1-4B method as computed by Mancev (1996) using the
two-parameter wave function of Silverman et al. (1960) for the
negative hydrogen ion H™(1s?) in the exit channel and the

RHF wave function for target helium in the entrance channel.
Experimental data: @ (Schryber, 1967).
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FIG. 28. Total cross sections Q (cm?) as a function of labora-
tory incident energy for asymmetric single-charge exchange
"Li** +*He — "Li*+*He". Dashed curve: the CB1-4B method
(Mancev, 1995). Solid curve: the CDW-4B method (Mancev,
2007). Both computations refer to the post forms carried out
using the two-parameter wave function of Silverman et al
(1960) for the heliumlike ion Li*(1s2) in the exit channel and
the RHF wave function for target helium in the entrance chan-
nel. Experimental data: B (Woitke et al., 1998).

data of Schryber (1967). Agreement between the theory
and the measurement is quite good.

The total cross sections from the CB1-4B (Manceyv,
1995) and CDW-4B (Mancev, 2007) methods for single-
electron capture in the process (229) are given in Fig. 28.
A comparison between these theoretical results and the
experimental data of Woitke ez al. (1998) shows satisfac-
tory agreement.

VII. SIMULTANEOUS TRANSFER AND EXCITIATION

In the second part of this review, we consider resonant
collisions involving, e.g., two hydrogenlike atomic sys-
tems

(Zp.er)i, + (Z1.e2);, = (Zpser.e))s + Zr. (230)

This is a simultaneous transfer and excitation, the TE
process, where a doubly excited (autoionizing) state is
produced in the projectile after capture of the target
electron. Here two processes interfere through the so-
called resonant and nonresonant modes, i.e., the RTE
and NTE modes, respectively. The RTE mode occurs via
capture of the target electron and excitation of the pro-
jectile electron by means of the interaction 1/r, be-
tween the two electrons. The NTE mode appears when
the target electron is transferred by its interaction with
the projectile nucleus, whereas the excitation of the he-
liumlike projectile comes from the interaction of the
projectile electron with the target nucleus (Gayet et al.,
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1997). Reaction (230) is the prototype as the simplest
example of a TE. Of course, the TE can also occur in
more complicated colliding particles, involving, e.g., a
multielectron target. An example is the first experiment
on TE by Tanis et al. (1982) who measured the total
cross sections for the S'3*-Ar collision system.

The doubly excited state of the projectile in the exit
channel of (230) relaxes either by radiative decay via
x-rays emission (TEX) or through the Auger mechanism
(TEA), thus providing two different and complementary
experimental approaches for understanding the TE pro-
cess (Itoh et al., 1985; Justiniano et al., 1987). The first
experimental evidence of the resonant TEX mode
(RTEX) was reported by Tanis et al. (1982). A similar
measurement of the TE via the RTEX mode was subse-
quently made on a molecular target by Schulz et al
(1987). In the theoretical studies by Brandt (1983) and
Feagin et al. (1984), the RTE and NTE were first consid-
ered as two independent modes. However, the basic fea-
tures of the CDW-4B method could obviously provide a
more adequate description of the TE by a natural intro-
duction of the critical interference effects between the
RTE and NTE modes (Bachau et al., 1992; Gayet and
Hanssen, 1992). Furthermore, the CDW-4B method can
be of help in interpreting the experiment of Justiniano et
al. (1987). Here a very asymmetric collisional system
S'3*-H was investigated, where the state (S'4)*" formed
in the exit channel decays via the radiative emission
lines Ka-Ka and Ka-KB which are dominated by the
RTEX mode. The CDW-4B method has been found
(Bachau et al., 1992) to be in good agreement with the
experimental data of Justiniano et al. (1987), as well as
with the results of Brandt (1983). Furthermore, it has
been reported (Bachau e al., 1992) that the interference
between the RTE and NTE modes can be important if
the TE process occurs as the result of a nearly symmetri-
cal collisional system such as He*-H or He*-He. These
two latter collisions involving the TE process have been
studied experimentally (Itoh et al, 1985) and theoreti-
cally (Gayet et al., 1995, 1997; Ourdane et al., 1999). The
latter two theoretical studies used the CDW-4B method.
Here the TE process is observed experimentally through
the TEA mode. Agreement between the experimental
data obtained using the 0° electron spectroscopy tech-
nique and the theoretical cross sections computed by the
CDW-4B method for the TEA mode is not satisfactory.
These theoretical total cross sections showed that some
autoionizing states largely underestimate the corre-
sponding experimental data of Itoh er al. (1985). Such a
discrepancy could be due to competition between direct
and indirect TE. The direct TE is the customary TE,
which we have already defined. The indirect TE is a
process in which forward emitted electrons are gener-
ated through two intermediate channels: (a) direct target
ionization, and (b) simultaneous capture of the target
electron and ionization of the projectile electron. The
direct and indirect TE cannot be distinguished if the
electron ejected from the target is not detected by a
coincident measurement. Subsequently, Ourdane et al.
(1999) revisited this problem using the CDW-4B
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method, but this time with a more consistent description
of the final autoionizing state, by including the adjacent
continuum components in addition to the discrete ones.
Specifically, the final state used by Ourdane et al. (1999)
is described within the atomic resonant structures from
the formalism of Fano (1961).

A. The CDW-4B method for the TE process

As mentioned, the main feature of the CDW-4B
method of key relevance for the TE process is preserva-
tion of the phase relation between the NTE and RTE
modes. The prior transition amplitude for the basic TE
process (230) in the CDW-4B method can be written as
(Gayet and Hanssen, 1992)

Ti}: ;‘f f j dR d?ldfze”gi';ﬁﬂgf;f(ﬂvp)ﬁv
X‘R;(§1’§2)1F1(i1/7;1 [iUX, + 00 - Xy)

L1 Zy Zy\ ..
X{(———+—T—_T>(PP(51)‘PT(XZ)
2 2 Roox

X F(ivp;1;ivs, +10 - 5,) — @p(s1)

X€x2¢T(f2) : Vasz 1Fi(ivpsLiivsy + i5'§2)}, (231)

where Nj=I(1-ivp)[ (1-ivy)e™ D2 pp=(Zp-1)/v,
vp=Zrlv, v=Z(Zp—1)/v. Here the phase factor
(uvp)*" stems from the eikonal approximation to the
relative motion of the heavy particles. As before, this
phase can be omitted for the computation of the total
cross sections (Belkic et al., 1979). Moreover, such an
omission is not limited to total cross sections alone, since
it can be made whenever the integration over 7 has been
carried out. This applies also to cross sections that are
differential in the energy and/or angle or ejected elec-
trons generated by either direct or indirect ionization.
Since only the electron e, is transferred, one has the
usual kinematic relation
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Here €;=€ep+e€r, where €p and ep are the initial elec-
tronic energies of the bound states in the hydrogenlike
systems (Zp,e1); and (Zr,e,),,, respectively. Likewise,
is the final electronic energy of the doubly excited state
of the system (Zp;el,ez);*. Moreover, in Eq. (231) for
T}, the level of approximation made for the excitation
process is similar to the usual first Born approximation,
which is well known to give good results for the excita-
tion process at high impact velocities. More importantly,
the transition amplitude for TE from Eq. (231) contains
a coherent contribution from both the RTE and NTE
modes.
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B. Comparison between theories and experiments

The type of deexcitation (radiative or Auger) occur-
ring after the formation of an autoionizing state via the
TE process depends on the ratio between Zp and Zy.
Specifically, there are two limiting cases: (i) if Zp/Zy
>1, the process is radiative via the TEX mode, and (ii) if
Zpl Zr=1, the deexcitation is an Auger process via the
TEA mode.

1. The TEX mode for radiative decays of asymmetric systems

a. The model of Brandt for the RTEX mode

The first model for the RTEX mode was proposed by
Brandt (1983) along the lines of the dielectronic recom-
bination (DR) process (McLaughlin and Hahn, 1982). In
the DR process, a free electron moving with momentum
p with respect to an ion of nuclear charge Zp is captured

(Zp,e))i+ e, — (Zpsey,er)y, (233)

where i and f are the usual quantum numbers of the
initial and final bound states in the entrance and exit
channels, respectively. The energy conservation for this
process gives p?/ 2+€;=€5, where € and € are the initial
and final electronic binding energies, respectively.
Therefore, the DR process is resonant whenever

p=\2(&~€) =p,. (234)
The difference between the DR process and the RTEX
mode of the TE collision is that the electron e, captured
by the projectile (Zp,e;); is not free, but rather it is
bound to the target with binding energy e7. The model
of Brandt (1983) is especially adapted to the case where
er<g, i.e., for highly asymmetric collisions (Zp> Z7). In
such an approximation, e can be neglected so that the
influence of the target is manifested merely through the
momentum distribution |@;(k)|?, where &;(k) is the wave
function in the momentum space representation. Here k
is the electron momentum in the target frame. In fact, in
the projectile frame, the quasifree electron e, has an en-
ergy distribution that exhibits a very large peak. Follow-
ing McLaughlin and Hahn (1982), the cross section for
the RTEX mode can be written as the standard convo-
lution

QRTEX:de Opr(P)|@i(K), (235)
where Qpgr(p) is the cross section for the DR process,

whereas p is the electron momentum in the projectile
frame

- P

p=k-70. (236)

Here v is the impact velocity in the laboratory frame
whose origin is placed at the target, which is presumed
to be at rest.

While Opgr(p) is strongly peaked around p=p,, the

distribution |@,(k)|? is much broader, with a maximum at
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some k=k,,,. For a collision occurring at a high impact
energy, we have v> k.., in which case Eq. (236) gives

p =\v*-2vk,, (237)
where k, is the projection of the momentum & onto the
velocity v which is itself along the Z axis. In this case,
Eq. (235) becomes

+00
ORrTEX = f dk P(k,)Opr(p), (238)
where P,(k,) is the Compton profile of the target
4+ +® .
Pik,) = f dk, J dk,| (k)| (239)

It is well known that Qpgr(p) is a sharp and narrow func-
tion of width I' around p,, whereas P;(k_) is a much more
slowly varying function. Such a circumstance justifies the
usage of the standard mean-value theorem (Prudnikov et
al., 1981) [also termed the impulse approximation by
Brandt (1983)], in which case the cross section Qrrex
acquires the form

€,+A¢€,/2

de Opr(e), (240)

1
ORrTEX = ;P;(kz,)f

€,—A€,/2

where k, is the value of k, at resonance as in Eq. (234),
and Ae, is an interval around €,. The cross section Qpgr
depends upon & via e=p?/2, where p is given by Eq.
(237). The above integration over the whole resonance
width I" should not depend upon Ag,. This will be the
case if the parameter Ag, is taken to be sufficiently large
relative to the resonance width (Ae,>1"). The model of
Brandt (1983) is expected to be successful in predicting
both the magnitude and the shape of the RTEX cross
section for collisions between multiply charged ions and
light atoms or molecules. This is indeed the case, as il-
lustrated in Figs. 29 and 30. The limitation of this ap-
proximation is the relationship (237), which entails the
condition v > k... Overall, the model of Brandt (1983)
is restricted to asymmetric collisions (Zp>Z;) and, as
such, cannot treat the nonresonant TEX (NTEX) mode.

b. A model for the NTEX modes

In this mode, excitation is produced by interactions
between the projectile electron and target nucleus. Si-
multaneously, capture is due to interactions between the
target electron and projectile nucleus. These two pro-
cesses can be considered as being independent of each
other, provided that the interaction between the two ac-
tive electrons does not play a significant role in the dy-
namics of the collision. In this case the IPM applies, so
that the total cross section for the NTEX mode has been
defined by Brandt (1983) via
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FIG. 29. The Ca'”*-He collisional system. Shown are the
RTEX peaks for these asymmetric collisions (Zp> Z7). Theo-
retical curve (McLaughlin and Hahn, 1982) and experimental
data (circles) (Tanis et al., 1982).

E%X = Qexc—cap = 27Tf Pexc(b)Pcap(b)b db. (241)
0

Here b is the impact parameter, whereas P, (b) and
P,p(b) are the excitation and capture probabilities, re-
spectively. A refinement of this model, still within the
IPM for the NTEX, has been made by Hahn (1989), and
Hahn and Ramadan (1989). This is achieved by consid-
ering that formation of a doubly excited state (say, d) is
followed by a stabilizing radiative decay of d with the
so-called fluorescence yield denoted by w(d). Then the
total cross section for the NTEX mode becomes

Q,,(cm?)

o L1 1 b
1t 2 3 4 5 6

E(100 MeV)

FIG. 30. The Nb3'*-H, collisional system. Shown are the
RTEX peaks for these asymmetric collisions (Zp> Z7). Theo-
retical curve (McLaughlin and Hahn, 1982) and experimental
data (circles) (Tanis et al., 1982).
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FIG. 31. The RTEX and NTEX cross sections for the colli-
sional S13*-He system. Theoretical curves (Hahn, 1989) and
experimental data (circles) (Tanis, 1987). The results shown by
the curve NTEX are multiplied by 3.

ONtEx = 2 o(d)ONTE(). (242)
d
IPM 1 [(fmax -
QNTE(d) = Z_lezf qdq f dk Pi(kz)
9min
X|C(k)P|F(g - k), (243)

where ¢ is the transfer momentum ¢ :Igi—lgf with ¢pin
=Aey/v=(e-€)/v and gp=k;+k~c. Here |C(k)]
and |F(§—k)|* are capture and excitation probabilities,
respectively, whereas P;(k,) is the Compton profile from
Eq. (239). Since |C(k)|* decreases rapidly and |F(g—k)|?
increases with energy, it follows that the product of these
two probabilities should give a peak. Such a peak would
occur at an energy which is lower than the one from the
RTEX mode. Moreover, if the Compton profile is not
too large, the NTEX and RTEX peaks are expected to
be very well separated. Indeed, this is shown in Fig. 31
for the case of the S'3*-He system, for which the two
peaks are seen as being distinctly separated.

C. The CDW-4B method for the TEX modes

For simplicity, we consider the prototype reaction
(230), assuming that both hydrogenlike atomic systems
in the entrance channel are in their ground states (i;
=i,=1s). For such a process, the transition amplitude in
the CDW-4B method is given by Eq. (231) for arbitrary
charges Zp and Z;. In Eq. (231), the autoionizing state
@((s1,5,) can be defined within the well-known Feshbach
formalism (Feshbach, 1962). In this formalism of reso-
nant scattering, a doubly excited state can be described
using a set of hydrogenlike basis functions centered on
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Zp (Bachau, 1984). Such a basis set should be adequate
for heliumlike doubly excited autoionizing states. The
formalism of Feshbach consists of discarding the lowest
orbitals which could lead to an eigenstate below the in-
vestigated doubly excited state. Surely, one such dis-
carded basis function could be the ground state of the
projectile (Zp,ey);, if i; is chosen to be the lowest state of
this hydrogenlike system in the TE process (230). In-
deed, the illustrations for this latter process will be given
only for the ground states (i;=1s,i,=1s) of the colliding
hydrogenlike atoms. Thus, whenever the wave function
¢p(s7) describes the ground state of the (Z p-€1);, system,
this function will be absent from the CI basis set com-
prised of the purely hydrogenlike orbitals with the
nuclear charge Zp, employed to construct @fs;,s,). As
such, the overlap between the ground state ¢p(s;) and
@(s1,5,), as the integral over s, will be equal to zero.
This implies that the interaction Z;/R-1/s, and the

V-V potential operator will not contribute at all to the
matrix element 7}, in Eq. (231). Under these simplifying
conditions, Eq. (231) is reduced to (Bachau et al., 1992)

(1 2z
X Fy(ivpyLsivx, +iv -xz)gof(s1,52)<— _ _T>
' a2 X

X @p(s1)@7(Xp) | Fi(ivp;15ivsy + iv - 55)

=T+ Ty (244)
As mentioned, the phase (uvp)*” is ignored whenever
T; is not used for cross sections that are differential in
the angles of the scattered projectile. The matrix ele-
ments T3y, and T, denote the part of T}, associated
with perturbations 1/r;, and —Z;/x;, respectively. The
remaining integrals in Eq. (244) are of the same type as
those encountered previously by Belkic and Mancev
(1992) for double-charge exchange in the CDW-4B
method. As discussed, for calculating such integrals,
the Nordsieck technique can be used to reduce the
transition amplitude to a triple quadrature which is
subsequently evaluated numerically following the proce-
dure of Belki¢ and Mancev (1992). The same technique
has also been applied by Bachau et al. (1992) to T}, from
Eq. (244).

D. The CDW-4B method for the TE process in asymmetric
collisions

Here the results obtained by means of the CDW-4B
method are compared with the corresponding data from
collisional experiments on the TE process with a mo-
lecular target H, (Justiniano et al., 1987; Schulz et al.,
1987). As usual, it is assumed that the molecule H, can
be considered as two independent H atoms. Thus, an
example of the equivalent four-body collisional system is
(Bachau et al., 1992)
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SB*(1s) + H(1s) — S™(nl,n'l') + H*. (245)

The experimental data just mentioned show that the de-
excitation of the autoionizing state (nl,n’l’) gives spec-
tra with radiative decay lines Ka-Ka, Ka-KB, and
KB-KB. The computations within the CDW-4B method
include the Ka-K« and Ka-Kf lines at impact energies
ranging between 80 and 160 MeV by covering most of
the lowest resonances (LL,LM,LN,...). This energy
range corresponds to a peak in the RTEX mode, as ex-
pected from Eq. (234).

1. The Ka-Ka emission line from S14*

The Ka-Ka emission line is produced by three doubly
excited states (25%)'S, (2p?)'D, and (2p?)'S. The wave
functions of these latter states are obtained using the
code of Bachau (1984). The configuration (2p?) appears
to be the major component among these three states.
The (2p?) state can decay radiatively through the follow-
ing two electric-dipole transitions

Ly a Ly a

(2p) —— (1s5,2p) —— (1s?). (246)

Since the experiments of Schulz et al. (1987) and Jus-
tiniano et al. (1987) were performed with unpolarized
colliding aggregates, there is a probability of 1/4 to find
the S'5*-H system in a definite singlet state. Therefore, a
factor of 1/2 (2X1/4) must be introduced in the calcu-
lations of the cross sections for the Ka-Ka line emission
in addition to the fluorescence yield w(d), which includes
some cascade contributions. Here the extra multiplying
factor of 2 written inside the small parentheses stems
from using the Bragg sum rule to convert the theoretical
results on the SP*-H system to the corresponding ex-
perimental data on the S'3*-H, system for the purpose
of comparison. The contribution of cascades from higher
doubly excited states (KLM,KLN,...) has been ignored
in these computations. Both contributions from the
RTEX and NTEX modes have been coherently included
in the CDW-4B method through the first and second
terms 7.y, and T} in the full transition amplitude 77
from Eq. (244). However, it is expected that for a highly
asymmetric collision with Zp>Z, such as the process
(245), the contribution from the NTEX mode becomes
totally negligible relative to the RTEX mode.

The total cross sections for the reaction (245) are il-
lustrated in Fig. 32 by comparing theory and experi-
ment. The results for the RTEX mode treated by Brandt
(1983) within the IPM are shown by the dashed curve.
The cross sections of a more complete description by the
CDW-4B method used by Bachau et al. (1992) are shown
by a solid curve. These two methods compare favorably
to each other, as well as to the experimental data
of Justiniano et al. (1987). The agreement between the
cross sections QWML (Brandt, 1983) and Q% rx SrEx
(Bachau et al., 1992) is good, as anticipated, due to the
very small influence of NTEX on the process (245). In
particular, the two theories are seen in Fig. 32 to be in
nearly perfect accordance on the left wing of the reso-
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FIG. 32. Total cross sections for production of the Ka-K«
lines from S'#*. Dashed curve: the DR model (Justiniano et al.,
1987). Solid curve: the CDW-4B method (Bachau et al., 1992).
Solid squares: experimental data (Justiniano et al., 1987).

nance peak. On the right wing of the same peak, toward
its high-energy tail, there is a discrepancy between the
IPM and CDW-4B method. At these higher energies,
the IPM is in better agreement with the experimental
result than the CDW-4B method. This may be because
the IPM includes some cascade effects, whereas the
CDW-4B method does not. Such a conjecture is plau-
sible, since Justiniano er al. (1987) have shown that
cascade-based contributions to the TE process are im-
portant at high impact energies.

In Fig. 33, we present the state-selective total cross
sections for the TE process studied using the CDW-4B

10" |

107 E

Q(cm?)

10% |

10% ' ' '
9 10 11 12 13
v(a.u)

FIG. 33. State-selective total excitation cross sections in the
CDW-4B method for the S3*-H system (Bachau et al., 1992).
(252 1s: singly chained curve; (2p?) 1g. doubly chained curve;
2p? 1DO: solid curve; (2p?) 1DJrl: dotted curve; (2p?) 1D715
dashed curve.
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FIG. 34. Total cross sections for production of the Ka-Kpf
lines from S!4*. The solid curve represents the CDW-4B
method (Bachau er al., 1992), and solid squares are the experi-
mental data (Justiniano et al., 1987).

method for substates (\o\() 25*!L,, where M is the
projection of the total momentum L. We observe that
the substate (2p?) 'D, is dominant at v>10 a.u. (E
>80 MeV).

2. The Ka-Kf emission lines from S

The Ka-KB emission in the process (245) is produced
by five important configurations of the autoionizing
state: (2s3s) 'S, (2p3p) 'P, (2p3p) 'D, (2s3d) 'D, and
(2p3p) 'S. Following the preceding case, the cascades
(KLN, KLO,....) have been ignored. In Fig. 34, the re-
sults of the CDW-4B method are displayed together
with the experimental data of Justiniano et al. (1987).
Here we observe satisfactory agreement up to about
130 MeV. The maximum of the experimentally detected
Ka-KpB peak is located at an impact energy around
140 MeV. This peak corresponds to the RTEX mode
induced by the KL M cascade transition. Both this peak
and its high-energy slope are underestimated by the
CDW-4B method due to the neglect of all cascade con-
tributions.

Regarding the Ka-Ka and Ka-KpB emission lines,
which are due primarily to the RTEX mode with the
NTEX mode being negligible, it can generally be con-
cluded that there is good agreement between the
CDW-4B method and the experimental data. This pro-
vides motivation for extending the study to encompass
interference effects between the RTEX and NTEX
modes.

E. Influence of the target charge Z; on the interference
between the RTEX and NTEX modes

In this section, we analyze the dependence of the
cross sections upon the interference effects between the
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FIG. 35. Total cross sections in the CDW-4B method for exci-
tation of the (2p?) ]DO state of S'#* in a collision of S+ with
atomic hydrogen target (Z;=1) (Bachau et al., 1992). Dotted
curve: Qll\gfx; dashed curve: ngx; solid curve: QngOX;
doubly-chained curve: CDW-IPM (Gayet and Hanssen, 1994).
In this process, the RTEX and TEX total cross cross sections
practically coincide with each other, due to a totally negligible
influence of the NTEX mode, ngz(: Qlfgfx (solid and

dashed curves indistinguishable). Here we set 1Dy= 1DO.

RTEX and NTEX modes. This will be discussed for dif-
ferent charges of the target nucleus in the process

S (1) + (Zr,e0); — S™[(2p?) 'Dyl + Z7, (247)
where i=1s. Here the state (2p?) 1D0 is chosen for the
analysis, because this transition gives the largest cross
section, as is clear from Fig. 33 (solid curve). Further-
more, for each value of the selected Z;, computations
have been made in the energy range corresponding to
the peak in the RTEX mode. Another restriction in the
computations is the standard condition for the validity
of the CDW method at those impact energies that satisfy
the inequality (164). As such, the lower limit of the va-
lidity of the CDW method is satisfied at an impact en-
ergy higher than 78 MeV (v=9.9 a.u.) for Z;<7,
128 MeV (v=12.7 a.u.) for Z;=10, and 328 MeV (v
=20.2 a.u.) for Z;=16.

The cross sections for the process (247) treated by the
CDW-4B method are presented in Figs. 35 and 36 for
Zr=1 and 10, respectively (Bachau et al., 1992). The re-
sults for the RTEX, NTEX, and TEX modes are shown
by the dashed, dotted, and solid curves, respectively. The
total process includes the RTEX and NTEX nodes. Re-
call that, according to Eq. (244), the RTEX and NTEX
modes are described by the terms 77y, and T}, respec-
tively. Computations have been carried out for Z;=1, 4,
10, and 16 (Bachau et al., 1992). The results obtained
show that the location of the maximum of the RTEX
peak shifts to larger v with Z; increased, as also implied
by Eq. (234). For example, this latter peak moves from
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FIG. 36. The same as in Fig. 35, except for Z;=10.

v=11.5 a.u. for Z;y=1 (Fig. 35) to v=12.6 a.u. for Z;
=16 (not shown here; see Bachau er al., 1992). It can be
seen in Fig. 35 for Z;=1 that at the energies within the
RTEX peak (8<v=<20a.u.) we have Onrex<ORTEX-
As a consequence, the interference between these two
modes is totally negligible and there is no difference
between the pure RTEX and TEX cross sections, so that
the corresponding curves in Fig. 35 coincide. Figure 35
also confirms that the good agreement between the
DR model (without NTEX) and the CDW-4B method,
as seen earlier in Fig. 32 is not coincidental. For Zr=4
(not shown), although Qnrex is much smaller (by two
orders of magnitude) than Qgrygx, a destructive inter-
ference effect (to within 15%) on the cross sections has
been observed (Bachau et al., 1992).

When Z; increases, the contribution of the NTEX
mode to the total cross section also increases, because its
amplitude appears roughly proportional to Z;, as is
clear from T}, in Eq. (244). As such, the cross section
for the NTEX mode becomes dominant for Z;=10 (Fig.
36) and Z;=16 (Bachau et al., 1992). In these cases, the
shape of the RTEX peak is seen to disappear altogether.
Thus, for production of the (2p?) 1D0 state, the RTEX
and NTEX modes may lead to a destructive interfer-
ence. Overall, for the asymmetric case Zp> Z 1, the TEX
process is essentially dominated by the RTEX mode.
However, for Zp=Z interference effects can become
important.

F. The TEA mode for nearly symmetrical systems: Auger
decay

In the preceding section, the doubly excited state
(S'%)™ produced by a TE process via a collision be-
tween S'3* and H led to a radiative decay. Alternatively,
the same TE process could also be completed when this
doubly excited state decays through the Auger mecha-
nism, i.e., via the TEA mode. This possibility has been
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FIG. 37. The total cross section in the CDW-4B method for
the RTEA, NTEA, and TEA modes of the collision He*(1s)
+H(1s)—He(2s2p 1PO)+H+ (Gayet et al., 1995, 1997). Singly-
chained curve: QOgrtpa. Dashed curve: Ontea.- Solid curve:
Otea. The solid circles are the experimental data (Zouros et
al., 1988) with an error of 30%. According to (164), the
CDW-4B method should be valid above 110 keV/amu, as indi-
cated by the vertical arrow on the abscissa.

investigated by Gayet et al (1995, 1997) using the
CDW-4B method for a He™ projectile on a He or H
target. The total cross sections obtained from the
CDW-4B method are not in quantitative agreement with
the experimental data of Itoh et al. (1985) and Zouros et
al. (1988), as seen in Figs. 37 and 38 for the He*-H col-
lisions. Nevertheless, these theoretical results show in
Figs. 37 and 38 that the interference between the RTEA
and NTEA modes can be important (Gayet et al., 1995,
1997). However, the experimental data for the produc-

2
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10‘21 1 Y f 1 1
40 80 120 160 200

E(keV/amu)

FIG. 38. The same as in Fig. 37, except for the collision
He*(1s)+H(1s) — He(2p® 'Dy) + H*.
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FIG. 39. The same as in Fig. 37, except for the collision
He*(1s)+H(1s) - He(2p? 'Dy+2s2p 'Py)+ H*.

tion of the (2s2p) ' P, state are seen in Fig. 37 as being
largely underestimated by the CDW-4B method. This is
not understood at present. By contrast, a reasonable
agreement between the CDW-4B method and the ex-
perimental data is obtained in the case of the production
of the (2p?) 'D, state (Fig. 38).

It should be noted that the experimental total cross
sections correspond to the integrated contribution of the
two constituent overlapping peaks in the energy spec-
trum of the emitted electron (Zouros et al., 1988). The
integrated sum of such two measured peaks yields good
agreement between theory and experiment (Fig. 39).
Nevertheless, such a comparison might be questionable,
because the (2p?) 1DO cross section is smaller than the
(2s2p) 1P0 cross section in the measurement, whereas
the reverse is true for the theory (solid curve in Figs. 37
and 38). A similar remark is also relevant to the He
target for the (25) 1S, as well as for the (252p) 3PO states
and their sum (Gayet et al., 1995, 1997). The experimen-
tal data of Itoh er al. (1985) and Zouros et al. (1988) were
obtained using the technique of zero-degree electron
spectroscopy, by which the TEA mode and the channel
of direct ionization (DI) were not separated (for simplic-
ity, the DI channel will hereafter encompass both earlier
mentioned mechanisms for ejection of electrons, such as
direct target ionization, as well as simultaneous capture
of the target electron and ionization of the projectile
electron). In other words, these experimentally deter-
mined cross sections do not correspond to the TEA
alone, since they always contain an admixture from the
DI channel. This situation does not match the computa-
tions of Gayet et al. (1995, 1997), who employed the
CDW-4B method with doubly excited states that include
only discrete orbitals. This assumes that all ejected elec-
trons are produced exclusively by autoionizing decays,
i.e., via the Auger effect. However, the emitted electrons
that are measured can be either Auger electrons or elec-
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trons ionized via the DI channel. Therefore, in order to
properly interpret the experiments by Itoh et al. (1985)
and Zouros et al. (1988), an improved model is needed
using a more adequate doubly excited state description,
which takes into account the adjacent continuum orbit-
als in addition to the discrete ones.

This latter task has been undertaken by Ourdane et al.
(1999) who treated the TE process by means of the
CDW-4B method improved by including the DI channel
within the theory of Fano (1961) for a description of
atomic resonant structures. Ourdane et al. (1999) have
investigated a nearly symmetrical four-body system by
supposing that each line of the electron spectrum could
be associated with a single isolated resonance. The ad-
ditional continuum orbitals chosen by Ourdane et al.
(1999) were discretized via a basis set of the STOs, fol-
lowing the procedure of Macias et al. (1988), whereas
pure discrete orbitals were the same as those from
Gayet et al. (1995, 1997). Following this procedure, co-
herence effects between bound and continuum orbitals
were included to a presumably sufficient extent. With
this amelioration, it is reasonable to expect that the im-
proved computation of Ourdane et al. (1999) should give
more adequate cross sections than those of Gayet et al.
(1995, 1997). We return to this point later on. In particu-
lar, it would be important to see whether the CDW-4B
method improved for the DI channel could reproduce
the asymmetric shape profiles in the spectra due to the
(252p) P doubly excited states. Such asymmetries have
been observed experimentally in the measurements of
Itoh et al. (1985).

Specifically, it was suggested by Itoh et al. (1985) that
these asymmetric line shapes stem from an interference
between the TE and ECC. It should also be mentioned
that the role of the DI channel has been assessed for
double-excitation processes studied experimentally by
Bordenave-Montesquieu et al. (1982), as well as by van
der Straten and Morgenstern (1986). An important con-
clusion from these experiments is that the role of inter-
ference among resonances with different origins can sig-
nificantly alter the overall shape of the recorded spectral
profiles.

G. The CDW-4B method for the TEA modes

We now return to the transition amplitude defined by
Eq. (231), but without the term (uvp)*”. As mentioned,
this is justified whenever integration over the transverse
momentum transfer 7 is performed, as in the total cross
sections and the angular or energy distributions of
ejected electrons (Belkic, 1978). Here the main focus
will be on the establishment of the wave function
@(s1,5,) for doubly excited states.

1. Description of the final state

An isolated autoionizing state can be conceived as a
superposition of certain bound and continuum states of
an electron (Fano, 1961). In this case, the final-state
wave function ¢/(s;,s,)= @ E,,s;,5,) becomes depen-
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dent on the electron energy E, near the autoionizing
threshold energy €= E, which is needed to describe the
complete TE process. Then the final state can be written
as

(Pf(Ee»§1a§2) = a(Ee)<‘I’s(Es,§1,§2)

1
+P | dE'VA(E',s,5,)——V(E!
f Y (E,,s SZ)ES—E; ( e))

+ B(Ee)\I’C(ESs‘;l’*;Z)’ (248)

where P denotes the Cauchy principal value of the inte-
gral. Here V(Ey,s,,s,) is the bound component of the
resonant part of the autoionizing state with the corre-
sponding energy Eg, which can be computed as in the
work of Bachau (1984). Likewise ¥ ~(E,,s;,s,) is the ad-
jacent continuum component. In Eq. (248), the function
V(E,) represents the coupling between the bound and
continuum components

V(Ee) = <\I}S(ES’§1>§2) r_ \I,C(Ee’§19§2)>,
12
(E,) . BE)=———
a = —’ = 5
‘ WV(Ee)\r6§+ 1 ‘ \/5§+ 1
E.-E
eg=2——7 Tg=2mV(EyP, (249)

rg ’
where I'g is the width of the autoionizing state of energy
Eg. The normalization of the continuum component
V(E,,s,5,) is achieved on the energy scale, with the
accompanying static exchange approximation. Let the
function V(E,,s;,s,) be represented via

\PC(Ee,§1 ,52) = A[‘Pls(El)QD?M@z)] s

where A is the usual antisymmetrization operator. Here
¢1,(s7) is the discrete orbital for the bound electron in
the He*(ls) ion with binding energy E;,. Likewise,
@7 ,(5,) is the continuum orbital for the Auger electron
with the corresponding energy Eg—Ej,. For the (L, M)
configuration of an autoionizing state, the continuum or-
bital is given by

O (5 = Xpu(s) YH(Sy),

where x;',(s,) is the radial continuum wave function and

(250)

(251)

Y%(sé) is the usual spherical harmonic.

The radial function x{,, can be described by a linear
combination of STOs

Ne
Xi(s2) = xi(s2) = 2 biSi(sy),
=0

Si(sy) =557 exp(- ddbilsy),  j=(L,M), (252)

where N is the total number of the retained continuum
orbitals, and »; is the orbital number. Here the expan-
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sion coefficients bé are determined by a variational pro-
cedure, through a single diagonalization, which yields
both bound states and discretized continuum states. This
can be achieved, e.g., by the algorithm of Macias et al.
(1988). Briefly, in this latter code, the damping coeffi-

l h ical
/7 are cnosen as a geometrlca sequence

i
okl = olilgite 120, ... Ne, j=(L.M),

cients o
(253)

where [k;], a, B, and u are parameters which are fixed
for each studied system. Within the static exchange ap-
proximation, the continuum wave function y;(s,), con-
structed with a set of STOs from Eq. (252), represents a
preparatory step for the subsequent diagonalization
which gives the (No+1) eigenfunctions W (E,,s,5,) and
the corresponding energies E. If the condition E;=0 is
imposed for, e.g., the double-ionization threshold of He,
then the states with E£;>-2 a.u. will lie in the first con-
tinuum range. The nonlinear parameter u allows us to

determine a sequence {agkf]} such that one of the
eigenenergies (say, E,,) matches the energy Eg of the
autoionizing state. This procedure of Macias et al. (1988)
also permits an advantageous and convenient normaliza-
tion for W(E,,,s,,5,) via N=(2/|E,,_1 — E,n.1|)"*>. More-
over, at E,=FEg, the principal value integral can be
evaluated as

1
P | dEVA(E.,s,,5)——V(E|
j e C( el Z)ES_Eé ( e)

_ . 1
=> \PC(Ek’Ssz)TV(Ek)’

(254)
k#m Em k

— Lo 1
V(Ee)=<‘l’s(Es,S1,S2) -

‘I'fc(Ee,s*l,s3>>. (255)
12

The bar over ¥ indicates a continuum state normalized
to unity. Then finally, for E, close to Ejg, an isolated
doubly excited state can be written as

<Pf(Ee,§1,§2) = a(Ee)(\I,S(ES’EI’EZ)

_ 1
WA(E,,S1,5) ——V(E
+k§m ol k’sl’SZ)Em—Ek ( k))

+B(E)Y(Es,51.,5,), E,=Es. (256)

2. Cross sections for the TEA mode

The ionization transition amplitude 7= T;f(Ee,Ge,
¢.,7) is given by Eq. (231) for an ejected electron of
energy E, in the direction (6,,¢,) at a fixed impact en-
ergy E. Note that when the doubly excited state wave

function is described by Egs. (248) and (256), with the

ansatz (250), the interaction Z7/R—-1/s, and the V-V po-
tential operator give nonzero contributions. In such a
case, Eq. (231) must be used because the simplified form
(244) does not hold any longer. For the present purpose,
E, needs to be close to the resonance energy Eg. Then,
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the energy distribution of the emitted -electron
O(E,,0.,¢.)=Q{E,,0,,¢,) can be written in terms of
Tl Ees 0,00, ) as

d’Q;;
AE,, 6, ==L
Qtf( e ea(Pe) dQedEe

J 15| TAEe 8o @ 1)
=| dn

27
Here, for convenience, we write Q(E,,60,,¢,) as a
double rather than a triple differential cross sections,
but the third differential is implicitly present via d(),
=[sin(6,)]d6, de,. The so-called total cross section for
the TEA process, Q;AEj), in the case of an asymmetric
profile resonance of total width I'g, is defined by

2
(257)

Qif(ES) = f dﬂef dEe[Qi](Ee’ O, ®e)
0

- QC(Em 0@5 ‘Pe)]a Qe = (06’ QDe) 5 (258)

where Q(E,,6,,¢,) is the ionization background deter-
mined by interpolation of the smooth electron spectrum
which appears close to the resonance. It is clear that Eq.
(258) will give a non-negligible total cross section only
for values of energy E, located within the narrow range
[Eq-T'g,Eg+I'g]. As mentioned earlier, the cross sec-
tions reported by Itoh et al. (1985) have been measured
using zero-degree electron spectroscopy. This implies
that Q(E,,0,,¢,) must be calculated with 6,=0° and
¢.=0°. As a consequence, the projectile is left in an
s state after autoionization, so that the nonzero contri-
bution from the continuum will stem only from the case
with M=0. Thus, with 6,=0°, ¢,=0°, and M=0, a
simpler notation Q{E,,8,=0°,¢,=0°)=Q,(E,) and
Q((E.,6,=0°,¢,=0°)=0Q((E,) appears more conve-
nient. Under these conditions, Eq. (258) is reduced to

4ar
2L +1

QilEy) = f dEJQ(E,) - Qc(E)],  (259)
0

where L is the total angular momentum of the consid-

ered autoionizing state.

H. Applications of the CDW-4B method improved by the
Feshbach resonance formalism

The concept discussed in the preceding section of a
more realistic description of the TEA process by means
of the CDW-4B method, improved within the Feshbach
formalism for resonances, has been tested by Ourdane et
al. (1999) against the experimental data of Itoh et al
(1985) for the collision

He*(1s) + *He(1s%) — *He"(nl,n’l') + *“He*(1s).
(260)

The following four doubly excited states of He(nl,n'l’)
have been included in the computations: (2s?) 1s,
(2s2p) 3P, (2p? 'D, and (2s2p) 'P. Since the collisional
system (260) is a five-body problem, an additional
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approximation has been made to account for the pres-
ence of the spectator electron in the target. The simplest
way to proceed is to introduce the Slater screening of
He. This amounts first to using Z$'=1.6875 instead of
the bare nuclear charge Z=2 for the helium target. Fur-
ther, in the interaction potential Z;(1/R-1/x;) in Eq.
(231), Z is replaced by an effective charge Zytg. In the
computations of Gayet et al. (1995), Zyre Was taken to
be equal to either 1 or 1.6875. The parameters for the
bound orbitals W¢(Eg,s;,5,) of the doubly excited state
of He™(nl,n'l") have been given by Gayet et al. (1995).
The latter parameters (resonant energies and their
widths) compare favorably with the corresponding theo-
retical results of Bhatia and Temkin (1975). Writing
these latter parameters in parentheses, we have, e.g., for
the autoionizing state *P°, Eg(a.u.)=—0.6834(—0.6929),
['(eV)=0.036(0.0363), whereas for the 'D¢ state, Eg
=-0.6918(-0.7028) and I'(eV)=0.081(0.0729), where the
superscripts o and e stand for odd and even parity of the
state, respectively. Overall, relatively good agreement
(to within 1%) exists between the computations of Our-
dane er al. (1999) and Bhatia and Temkin (1975). The
continuum orbitals of the final state V(E,,s;,5,) have
been discretized by the procedure of Macias et al. (1988).
The ensuing parameters appearing in the configuration
j=(L,0) for a given index i(i=0,...,N) that have been
used in the computations of Ourdane et al. (1999) were
;=287 (n,=L+1, i even) and ;=28 12+ (n,= [
+2, i odd) with B=1.6. The transition amplitude from
Eq. (231) contains two different terms defined by the
Coulomb interaction via the electrostatic potentials

and by the gradient-gradient (V-V) potential operator,
which is the typical dynamic coupling occurring in the
standard CDW method. This latter interaction term con-
tains a contribution from the continuum component
V(E,,s;,5,) which describes the ECC channel. Thus
the ECC effect is included in the CDW-4B method by

the V-V interaction potential operator which couples the
continuum state W (E,,s;,s,) with the initial distorted-
wave function in the integral over s, in Eq. (231). The
matrix elements with the V-V term cause numerical in-
stabilities in the computations from Ourdane et al.
(1999), especially regarding convergence of the dis-
cretized continuum states V(E,,s;,5,). Ourdane et al.
(1999) have estimated that the contribution from the

ECC process (via the said V-V term) is very small and,
as such, it was neglected.

I. Comparison between theories and experiments for electron
spectra close to Auger peaks

1. Electron energy spectrum lines

We first discuss the energy distributions of emitted
electrons in the TE process (260). The theoretical elec-
tron spectra from the CDW-4B method (Ourdane et al.,
1999) are plotted and compared with the corresponding
experimental data (Itoh et al., 1985) in Figs. 4042 in the
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FIG. 40. Zero-degree electron energy spectra at an impact
energy E of 75keV for the collision SHe*(1s)+ *He(1s?)
—He(212I' **'L)+*He*(1s) (Ourdane et al, 1999). The
QRIS states are (259 'S, (2s2p)*P, (2p?) 'D, and
(252p) 'P. The CDW-4B method: solid curve, Zyrp=1; dotted
curve, Znte=1.6875. Solid circles are the experimental data of
Itoh et al. (1985).

energy range 32-42 eV at three impact energies of the
*He* ion: 75, 100, and 500 keV. For a comparison be-
tween the experiment and the CDW-4B method, the
theoretical data have been convoluted using a Gaussian
function of a width equal to the experimental resolution
of the spectrometer (about 0.2 eV). The limitation of the
validity of the standard CDW method for the *He" ion
in the case of reaction (260) is estimated using Eq. (164)
to be about 330 keV (110 keV/amu). Although the im-
pact energies 75 and 100 keV, considered in Figs. 40 and
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FIG. 41. The same as in Fig. 40, except for 100 keV.
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FIG. 42. The same as in Fig. 40, except for 500 keV.

41, are below the validity limit of the CDW method ac-
cording to (164), qualitative agreement between the the-
oretical and experimental results is still obtained consis-
tently. Further, in Figs. 40-42, the results for the two
effective charges mentioned earlier (Zyrg=1 and
1.6875) are shown. It is seen that the choice of this ef-
fective charge can significantly influence the outcomes of
the computations in the CDW-4B method at £=75 and
100 keV (Figs. 40 and 41). In this method, the initial and
final states from the entrance and exit reaction channels
are strongly coupled. As mentioned, this latter coupling,

which is mediated with the V-V interaction potential op-
erator in Eq. (231), is responsible for an enhanced influ-
ence of the continuum intermediate states at lower im-
pact energies. As a consequence, the total cross sections
from the CDW-4B method systematically overestimate
experimental data at lower energies, i.e., below the usual
Massey maximum. This overestimation also occurs in
differential cross sections as is clear from Figs. 40 and
41. However, at high impact energies, e.g., 500 keV,
good agreement between the theoretical and experimen-
tal spectra is obtained, as shown in Fig. 42. Moreover, it
can be seen in Fig. 42 that at high impact energies the
influence of the choice of the effective charge Zyrg is
negligible. Nevertheless, the version of the CDW-4B
method used by Ourdane ef al. (1999) has a limitation: it
considers each line as an isolated resonance, i.e., it ig-
nores overlapping resonances altogether. Therefore, the
continuum of a given excited state has no simple rela-
tionship in magnitude and phase with the continuum ad-
jacent to a doubly excited state. This can lead to certain
problems in the interference between transition ampli-
tudes of any two consecutive autoionizing states. How-
ever, neither interferences between the transition ampli-
tudes of contiguous doubly excited states nor the effects
due to postcollisional interaction (PCI) were evaluated
by Ourdane ef al. (1999) in the CDW-4B method. This is
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the case because the theoretical spectra given in this lat-
ter study are pure sums of contributions from each line
superimposed on top of its own background. The back-
ground contribution has been subtracted from theoreti-
cal cross sections using Eq. (259). This has been done
because the corresponding experimental data were re-
ported by Itoh er al. (1985) with the background sub-
tracted, as well. Of course such a subtraction may lead
to unphysical, i.e., negative cross sections in some parts
of the spectrum. Indeed, this can be seen in Figs. 4042
in both the experiment and the theory. Although overall
good agreement between theory and experiment is ob-
tained in Figs. 4042, it should be noted that the com-
puted lineshapes (especially the 3P lineshape) are very
sensitive to the width which is used in the convolution.
Moreover, there is a slight shift between the theoretical
and experimental resonant energies in Figs. 40-42.

2. Total cross section for the TEA mode

Next, we turn our attention to the total cross sections
for the TE reaction (260). In Figs. 43-46, the corre-
sponding results of Ourdane et al (1999) from the
CDW-4B method are compared with the experimental
data (Itoh et al., 1985) for the following doubly excited
states of helium: (2s2p)'P, (2p®) 'D, (2s?)'S and
(2s2p) 3P. In these cases, for each doubly excited state,
the cross sections in the CDW-4B method have been
obtained by numerical integration of the theoretical pro-
files over a sufficiently wide energy range around the
resonance energy Es. It is clear from Eq. (256) that the
final wave function, for an energy E, around the auto-
ionizing energy Eg, exhibits its dependence upon E, only
in the coefficients a(E,) and B(E,). Therefore, the gen-
eral form of Qi’f(Ee) can be simplified as

Q;f(Ee) = az(Ee)Qd(ES) + a(Ee)B(Ee)Qx(ES)
+ 182(Ee) QC(ES) 5 (261)

where Q.(Eg) is the local continuum contribution (back-
ground) and Q,(Ey) is the total cross section both from
the discrete component Wg(Eg,s;,5,) and from the reso-
nant continuum defined by the principal value integral
in Eq. (254). Moreover, QO (Ejs) is a cross section defined
from the product of the transition amplitudes from
O.Es) and Q4(Ejy). It can be shown that the TEA total
cross section Q;{E) given by Eq. (259) may be written
as

OAEg) = (Qd( Eg) - FSch(ES)> (262)

2L +1
This formula hints at the following two important facts:
(i) The term [47/(2L+1)]Q(Es) which defines the total
TEA cross section is not equivalent to the cross section
Org from Gayet et al. (1997), who employed only the
discrete orbitals. As mentioned, Q/(Es) contains the
same discrete orbitals as those from Gayet et al. (1997)
and the resonant continuum components. (ii) One could
argue that the term I'¢wQ(E)/2 could accidentally can-
cel the contribution from the resonant continuum in
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Q,(Eg) due to the principal value integral. In such a
case, Q;AEs) from Eq. (262) would coincide with Qrg
from Gayet et al. (1997). However, explicit computations
show that such a fortuitous and delicate cancellation
does not occur. Therefore, the improvement of the
CDW-4B method employed by Ourdane et al. (1999)
over the corresponding computations from Gayet et al.
(1997) is genuine. Hence, it is important to examine the
results from Ourdane ef al. (1999) obtained by a numeri-
cal integration of Eq. (259). For the (2s2p)1P0 state,
the result from the CDW-4B method without the cou-
pling between the doubly excited state and the con-
tinuum (Gayet et al., 1997) is much smaller than the ex-
perimental data, as seen in Fig. 43. However, the results
of Ourdane et al. (1999) show good agreement with the
measured cross sections of Itoh er al. (1985), even in the
low-energy range E<<110 keV/amu, i.e., below the va-
lidity limit for the standard CDW method. In this range,
better agreement is obtained with Zyrg=1.6875, which
illustrates a previously mentioned feature, i.e., the
increasing influence of the spectator electron in the tar-
get at smaller impact energies. On the other hand,
ZnTtE=1 gives better agreement with experiment above
110 keV/amu, where the standard CDW method is ex-
pected to be most adequate.

In the case of the (2p2)lD0 state, the theoretical re-
sults are seen in Fig. 44 to overestimate the measured
cross section below 110 keV/amu. Moreover, the
CDW-4B method for Zytg=1 does not reproduce the
experimentally observed dip at 70 keV/amu, but merely
an oscillation appears at 50 keV/amu for Zyrg=1.6875.
However, above 110 keV/amu, the CDW-4B method for
both values of Zypg (Ourdane ef al., 1999) and the mea-
surement (Itoh et al., 1985) are in good agreement within
the experimental uncertainty. In Fig. 44 at £>60 keV
the overall influence of the coupling between the dis-
crete component and adjacent continuum is such that
the resulting cross sections are lowered, and this im-
proves the agreement with the experiment, relative to
the case when the said coupling is ignored (Gayet et al.,
1997).

In an isolated resonance approach, the two above-
mentioned states (P, and 'D) have been studied sepa-
rately. The sum of the two theoretical cross sections for
the states 'P, and 'D, is in good agreement with the
corresponding sum of the experimental data above
110 keV/amu (not shown here, but the situation is simi-
lar to Fig. 39 for the He*-H collisions). Nevertheless, this
theoretical sum is still unable to reproduce the oscilla-
tion from the experimental sum in the range
25-100 keV/amu. Such oscillatory structures might be
due to the interference between the two states 'P, and
1D0, as argued by van der Straten and Morgenstern
(1986), who also pointed out that the dip in the cross
sections for the production of the 'D, state could be the
consequence of the effect of the PCI on the state 'P,. As
already mentioned, the CDW-4B method does not take
the PCI into account. It is also possible that the dis-
cussed oscillatory structure may stem from a combined
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FIG. 43. Total cross sections for the collision 3He*(ls)
+*He(15%) —He(2s2p 'Py)+*He"(1s). The results of the
CDW-4B method (Ourdane et al., 1999): solid curve, Zyrg=1;
dashed curve, Zyrg=1.6875. The results of the CDW-4B
method (Gayet et al., 1995, 1997): singly-chained curve, ZyTg
=1; dotted curve, Zytp=1.6875. Experimental data of Itoh et
al. (1985): solid circles.

effect of both the discrete-continuum coupling and PCI
interferences between the two investigated states.
Similar remarks to those above could also be made for
the S state (Fig. 45). In the range 110-200 keV/amu,
the results of the CDW-4B method used by Ourdane et
al. (1999) are in much better agreement with experiment
than the ones from Gayet et al. (1997). Below the limit of
the validity for the CDW-4B method, as represented by
the arrow, the theoretical results of Ourdane et al. (1999)
largely underestimate the experimental data, which do
not exhibit any oscillatory structure. Since the S state is
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FIG. 44. The same as in Fig. 43, except for *He(2p? 1DO).
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FIG. 45. The same as in Fig. 43, except for 3He(2s2 1S).

well separated in energy from the *P state, the interfer-
ence between the two states is expected to be negligible.
Therefore, the oscillation in theoretical cross sections is
likely to be the result of the discrete-continuum cou-
pling.

Finally, the situation for the 3P0 state (Fig. 46) is com-
parable to that for the 'S state (Fig. 45). As can be seen
from Fig. 46, the CDW-4B method employed by Our-
dane et al. (1999) represents a major improvement in the
high-energy range over the results of Gayet et al. (1997).
In addition, at energies smaller than 110 keV/amu, the
discrepancy between the cross sections given by Our-
dane et al. (1999) and the experimental data is not so
pronounced.
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FIG. 46. The same as in Fig. 43, except for *He(2s2p 3P0)~
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Opverall, the study of the TE process in the He"-He
collisions carried out by Ourdane et al. (1999) has shown
that the adjacent continuum of a low-lying doubly ex-
cited state plays a significant role. This collisional system
appears particularly interesting in two respects: (i) the
target and the projectile nuclear charges are the same,
and this results in interference between competing con-
tributions from the resonant and nonresonant modes;
and (ii) the influence of the electron continuum is strong,
because the final states of helium under consideration
decay mainly through autoionization.

In the applicable energy range (above 110 keV/amu),
the CDW-4B method appears to give reliable predic-
tions for the TEA processes, provided that in the tran-
sition amplitude the wave function of the final doubly
excited state includes both the discrete and adjacent
continuum components. For this case, the theoretical
electron energy spectra near resonances (as well as the
integrated energy profiles) are in better agreement with
the experimental data (Itoh ef al., 1985) than the previ-
ous CDW-4B method obtained with the discrete compo-
nents only (Gayet et al., 1995, 1997). In fact, the results
from the CDW-4B method (Ourdane et al., 1999) depart
from the experimental spectra only at impact energies
where the standard CDW method for single-electron
capture does not apply (below 110 keV/amu in this
case). However, at higher collision energies, the
CDW-4B method successfully reproduces the experi-
mental electron spectra. Furthermore, the good agree-
ment of the integrated energy profiles with experimen-
tally measured cross sections for the TEA process is a
significant improvement over all previous predictions,
which considered the coupling with the adjacent con-
tinuum as a PCI effect. Nevertheless, it should be kept
in mind that both variants of the CDW-4B method
shown in Figs. 43-46 are limited to the framework of
isolated resonances alone. This could advantageously be
overcome by using the Padé-based resonant scattering
theory which treats both isolated and overlapping reso-
nances on the same footing (Belki¢, 2005). In addition,

the continuum-continuum terms (due to the V-V inter-
action operator), which Ourdane et al. (1999) viewed as
negligible, have caused convergence difficulties in the
Feshbach-Fano spectral representation of autoionizing
states. These additional approximations introduced by
Ourdane et al. (1999) into the CDW-4B method should
not seriously affect their main conclusions. Finally, it
should be pointed out that the concept of a pure transfer
and excitation process considered as a simple postcolli-
sional Auger decay of the discrete component of a given
doubly excited state might be misleading. In fact, it has
been argued (Ourdane et al, 1999) that this concept
makes sense only in the limit of a negligible autoioniza-
tion width I's. Of course, one may introduce a so-called
transfer-excitation total cross section by integrating an
electron energy profile, after removal of the ionization
background as seen in Eq. (259). However, in so doing
one must also remember that a hidden contribution
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from the continuum is necessarily included in the final
result, unless I'g=0.

VIII. CONCLUSIONS

A thorough overview of the current status and a cri-
tical assessment of the existing quantum-mechanical
four-body theories for energetic ion-atom collisions are
presented. A proper description of these collisions with
two active electrons, such as the Zp-(Z7;e;,e,); and the
(Zp.e1);-(Z7,e,);, scatterings, requires solution of the
pertinent four-body problems. We have considered a
number of inelastic collisions, and special attention has
been focused on double-electron capture, transfer ion-
ization, transfer excitation, single-electron detachment,
and single-electron capture. We have limited the scope
of this review to intermediate and high nonrelativistic
impact energies. A quantum-mechanical treatment has
been adopted to set the formal theoretical framework
for a description of four-body rearrangement collisions.
After establishing the basic notation, we presented a
derivation of the Lippmann-Schwinger equations, the
Born as well as Dodd-Greider perturbation expansions
with the correct boundary conditions, and the leading
distorted-wave methods for four-body collisions. Subse-
quently, the particular one- and two-electron transitions
in scatterings of completely stripped projectiles on heli-
umlike atomic systems or in collisions between two hy-
drogenlike atoms (ions) were analyzed. The heliumlike
atom (ion) is the simplest many-electron system where
one can investigate the importance of electron correla-
tion effects. The studies reviewed here for He as a target
indicate that dynamic electronic correlations in the per-
turbation potentials are much more important than the
static ones stemming from the target bound-state wave
function. A substantial improvement of most of the four-
body methods over, e.g., the corresponding IPM has
been attributed exclusively to the role of dynamic elec-
tron correlation effects. The main drawback of the IPM,
as well as other related models, is in effectively reducing
the initial four-body problem to the associated three-
body problem. In this procedure, dynamic electron-
electron correlations are completely ignored from the
outset. All four-body theories reviewed here are seen to
naturally incorporate the usual static as well as dynamic
correlation effects of active electrons. In particular, the
static interelectron correlations are shown to be very im-
portant for ionizing collisions, involving H™ as a target,
such as single-electron detachment from H~ by H™.
Moreover, for these latter collisions, an even stronger
emphasis is placed onto the proper connection between
the distorted wave functions and the corresponding per-
turbations, as illustrated within the MCB method, which
agrees excellently with the available experimental data
from the threshold through the Massey maximum to the
Bethe region of high energies. By contrast, ignoring the
said connection, as done in the ECB method, leads to
utterly unphysical total cross sections which overesti-
mate the experimental data by 2-3 orders of magnitude,
and tend to a constant value at high impact energies
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instead of reaching the correct Bethe asymptotic limit.

In the present work, particular emphasis is placed on
the critical importance of preserving the proper Cou-
lomb boundary conditions in both formal four-body
theory and computational practice. This is guided by
common past experience, which has shown that when-
ever such conditions, as the most basic requirements
from the formal scattering theory, are overlooked, se-
vere fundamental problems arise. As a consequence,
models with incorrect boundary conditions are seen as
inadequate for describing experimental findings. The to-
tal scattering wave functions of the four-body theories
presented here satisfy the correct boundary conditions
for both the initial and final asymptotic states. In addi-
tion to long-range Coulomb distortions of plane waves
for relative motion of two charged heavy aggregates, we
account for intermediate ionization continua of elec-
trons in both the entrance and exit channels for the
CDW-4B method or in either the entrance or exit chan-
nel for asymmetric distorted-wave treatments, as in the
BCIS-4B, BDW-4B, CDW-BIS, and CDW-BFS meth-
ods. We recall that in the CB1-4B method electronic
continuum intermediate states are not taken into ac-
count.

Double-electron capture in the collisional systems
considered here has been studied by means of the CB1-
4B, CDW-4B, BDW-4B, and BCIS-4B methods. Unlike
its success in single-electron capture at intermediate and
a wide range of high energies (up to the onset of the
Thomas double scattering), the CB1-4B method, as the
prototype of the first-order theories, is satisfactory for
double-electron capture only at intermediate energies,
and in a limited region of high energies. By contrast, as
the prototype of the second-order theories, the CDW-4B
method, which is excellent for one-electron capture,
continues to be successful for the majority of double-
electron capture processes, as well. This is particularly
true for two-electron capture from He by H*, for which
it is sufficient to include only the ground-to-ground state
transition, due to the absence of the excited states of H™
in the exit channel. Moreover, using the CDW-4B
method for double-electron capture in the Zp-He colli-
sions with Zp=3, it is found that the contribution from
excited states can be important compared to the contri-
bution from the ground state. As such, including excited
states into the computations can improve agreement be-
tween the CDW-4B method and experimental data. Re-
garding double-electron capture in the He?*-He(1s?) col-
lisions, excited states are expected to play a minor role
due to the dominance of the resonant 1s>— 1s® transi-
tion. The CDW-4B method confirms this anticipation,
but it fails to reproduce the majority of the available
experimental data at high energies that are well within
the domain of the validity of this theory for the
He?*-He(1s?) collisions. This has apparently been ame-
liorated in the past by using a crude approximation to
the Green function from the second-order propagator of
a perturbation expansion, which is not of the Dodd-
Greider type. Nevertheless, improved agreement of this
“augmented” CDW-4B method for the two-electron
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transfer in the He**-He(1s?) collisions should be taken
with caution, since the approximate Green function is
merely off-shell and, moreover, only two hydrogenlike
ground states centered on the projectile and target
nucleus are taken into account from the sum over the
discrete and continuous parts of the whole spectrum.
More systematic work is needed for this particular col-
liding system, first by treating the on- and off-shell con-
tributions on the same footing, and second by assessing
the convergence rate in the spectral representation of
the Green function from the second-order term of a cho-
sen perturbation series. As to the BCIS-4B, BDW-4B,
and CDW-EIS-4B methods, they have been applied to
double-electron capture in the He?*-He collisions. At
moderately high energies, relatively good agreement
with experiments is found using the BCIS-4B and the
BDW-4B methods, whereas the CDW-EIS-4B method
fails much more severely than the CDW-4B method for
this collision. This is unexpected given the success of the
CDW-EIS method for single-electron capture at a wide
range of intermediate and high energies. As an attempt
to rescue this unsatisfactory situation, the “augmented”
CDW-EIS-4B method has been used in the past by in-
cluding approximately a second-order term in a pertur-
bation expansion, in precisely the same manner as done
in the “augmented” CDW-4B method. However, this has
not met with success and, therefore, further studies are
needed to clarify the hidden drawbacks of the CDW-
EIS-4B method for double-electron capture. Such stud-
ies are needed in view of a similar inadequacy of the
CDW-EIS-4B method for double-electron capture in the
Li**-He collisions. No such inadequacies are present in
the BDW-4B method, which differs from the CDW-
EIS-4B method only in the independent variables of the
Coulomb logarithmic phase factors. The present work
has also been concerned with analyzing the role of con-
tinuum intermediate states. The net effect of these latter
states is observed to be striking in the case of the sym-
metric resonant double-charge transfer in the He?*-He
collisions at high energies. We have also concluded that
for double-charge exchange the four-body methods pre-
sented here are weakly dependent upon the choice of
bound-state wave functions. By implication, the static
correlations of two electrons bound to the target do not
play a significant role in double-electron capture.
Simultaneous electron transfer and ionization in the
He?*-He and Li**-He collisions have also been studied
with the CDW-4B method. The theoretical results for
the total cross sections for these processes show good
agreement with the available experimental data at inter-
mediate and high impact energies. A number of recent
measurements of the differential and total cross sections
for transfer ionization in fast H*-He collisions require
additional theoretical considerations to achieve full
agreement between theory and experiment.
Single-electron capture has been the subject of inves-
tigations since the early days of quantum mechanics, and
interest in this fundamentally important process has re-
mained steady. In this review, single-charge exchange in
collisions between completely stripped projectiles and
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heliumlike atoms (ions) has been studied. Using the
CDW-4B, CDW-BFS, and CDW-BIS methods, we have
analyzed cross sections for single-electron capture in
different processes (H*-He, He?*-He, H*-Li*, and
Li**-He). The CDW-4B method provides evidence that
dynamic correlations play an important role for electron
capture, especially at higher impact energies for total
and differential cross sections. For differential cross sec-
tions, the dynamic interelectron correlations lead to the
Thomas peak of the 2nd kind, which is mediated by the
Zp—e—e, double scattering. In the CDW-4B method,
the Thomas peak of the 2nd kind appears at all impact
energies without any splitting at the critical Thomas
angle. Remarkably, at high energies, the strength of the
Thomas Zp—e;—e, peak remains very significant and
comparable to that of the Thomas double scattering of
the 1st kind (Zp—e;—Zy). The Thomas Zp—e;—Z peak,
which is appreciable only at sufficiently high energies, is
always split into two subpeaks at the Thomas critical
angle, but the ensuing dip is unphysical, as it has never
been observed experimentally. To test these findings of
the CDW-4B method for single-electron capture involv-
ing heliumlike targets, there is a need for experimental
data that could provide two clearly separated contribu-
tions from the Thomas double scatterings of the 1st and
the 2nd kind. We have found that dynamic interelectron
correlations also remain important for capture into ex-
cited states, as demonstrated in the Li**-He collisions. It
should be noted that the four-body CDW-BIS and
CDW-BFS methods are convenient for computations of
differential cross sections, and in the H*-He collisions
good agreement between these two methods and the
measurements is found at a number of impact energies.
Electron transfer in collisions between two hydrogenlike
atoms (ions) has been investigated by means of the
CB1-4B and CDW-4B methods. As shown, the CB1-4B
and CDW-4B methods can be adapted to investigate
single-electron capture from multielectron targets with
hydrogenlike projectiles. To this end, the initial state of
the target active electron is described by the Roothan-
Hartree-Fock wave function, which reduces the original
multielectron problem to a purely four-body problem.
We can say that all quantum-mechanical boundary-
correct four-body theories presented here are adequate
for a description of single-electron capture in ion-atom
collisions and show systematic agreement with experi-
mental data at intermediate and high impact energies.
We also reviewed a class of resonant collisions with a
focus on simultaneous transfer and excitation. In trans-
fer excitation, two modes have been highlighted: reso-
nant and nonresonant transfer excitation. The inter-
ference between these two modes can be important,
especially for nearly symmetric collisional systems
(He™-H or He*-He). Doubly excited states, which are
produced on the projectile after capture of the target
electron, can be relaxed either by radiative decay or
through the Auger mechanism. These modes and con-
tributions are coherently included in the CDW-4B
method. This is essential to preserve the importance of
the interference phase. For highly asymmetric collisions
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(Zp>Zy), such as the S'3*-H scattering, the radiative
decay in transfer excitation is dominated by the resonant
mode relative to the corresponding nonresonant contri-
bution. The influence of the target charge Z; on the
interference between these resonant and nonresonant
radiative decays within transfer excitation has also been
assessed. It is found that whenever Zp=Z, these latter
interference effects can become important. Further, the
CDW-4B method for transfer excitation in the He*-He
collisions has shown that the adjacent continuum of a
low-lying doubly excited state can play a significant role.
Moreover, within the region of its validity, the CDW-4B
method gives reliable predictions for transfer excitation
via emission of Auger electrons. This is possible, pro-
vided that the transition amplitude in the CDW-4B
method includes the wave function of the final doubly
excited state with both discrete and adjacent continuum
components. For this case, the theoretical electron en-
ergy spectra near resonances (as well as the integrated
energy profiles) are in better agreement with the cor-
responding measurements than the associated predic-
tions of the CDW-4B method based upon the discrete
components alone. The CDW-4B method for transfer-
excitation is limited to isolated resonances because of
the adapted Feshbach-Fano formalism. In reality, the
corresponding experimental data contain both isolated
and overlapping resonances. An improved version of the
CDW-4B method is desired by treating both isolated
and overlapping resonances on the same footing. This is
feasible by using the Padé-based resonant scattering
theory which has been shown to be remarkably success-
ful for spetroscopy.

Finally, we can conclude that most of the presently
analyzed quantum-mechanical four-body methods are
capable of providing adequate results for single- and
double-electron transitions at intermediate and high
energies. Interest in these methods remains steady, and
further progress is expected in their extension to pure
five-body scattering problems, without resorting to the
customary frozen-core approximation, to adequately de-
scribe the existing coincident experiments with three ac-
tive electrons.

In addition to its fundamental importance within few-
body quantum mechanics, the collisional problems re-
viewed here also find significant applications in other
neighboring research fields such as astrophysics, thermo-
nuclear fusion, plasma physics and medical physics,
through particle transport phenomena. This is the case
because the cross sections for the presently studied scat-
tering problems are indispensable as entry data for ac-
curate and reliable Monte Carlo simulations of the pas-
sage of energetic multiply charged light ions through
matter including organic tissue. Such energetic ions de-
posit nearly the total impact energy at the end of their
range via the Bragg peak, and they are neutralized by
single-or multiple-electron capture. Therefore, the stop-
ping power must be determined accurately for the most
appropriate modeling of the passage of these ions
through matter. Such databases are provided by cross
sections from the quantum-mechanical methods studied
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in this review. This represents an added value of para-
mount importance for such methods that go beyond
atomic physics, where they were originally established.
The most prominent example is radiotherapy by ener-
getic light ions such as H*, He?*, ... ,C%. Here, reliable
energy deposition by beam particles in tissue is pre-
dicted by judicious intertwining of powerful Monte
Carlo simulation algorithms with atomic physics data-
bases for cross sections of processes reviewed in the
present work, as well as in the related previous over-
views on extensively studied three-body collisions.

Overall, fast heavy particle collisions are topical again
as greatly stimulated by the recent favorable settlement
of the International Thermonuclear Reactor. Likewise,
high-energy multiply charged ion beams, as a powerful
part of hadron therapy, are increasingly in demand, and
this motivates construction of medical accelerators
worldwide. In these and other important practical appli-
cations, augmented projectile charge enhances signifi-
cantly the probability for two-electron transitions. This,
in turn, influences substantially the overall energy bal-
ance as well as stability of ion plasma, and alters consid-
erably the energy deposition of ion beams in the tra-
versed matter. Such a critical conclusion demands a
thorough revision and update of the customary proce-
dures and stopping power data bases in particle trans-
port physics. This is deemed necessary because the
atomic physics input into the existing major Monte
Carlo algorithms for simulations of the passage of mul-
tiply charged ions through matter is currently based pri-
marily on interactions leading to one-electron transi-
tions, e.g., single ionization, single excitation, etc.
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LIST OF ACRONYMS

BCIS-4B Four-body continuum intermediate
state with the correct boundary condi-
tions

BDW-4B Four-body Born distorted wave

BK1-3B Three-body  first-order =~ Brinkman
Kramers

BK2-3B Three-body second-order Brinkman
Kramers

CB1-3B Three-body first Born with the correct
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CB1-4B

CB2-3B

CB2-4B
CB3-4B
CBn-4B
CC
CDW-3B
CDW-4B
CDW-4B1
CDW-4B2
CDW-BIS
CDW-BFS
CDW-CB1

CDW-EIS

CDW-EIS-4B1

CDW-EIS-4B2

CDW-EFS

CDW-IEM

CDW-IPM

CI
COLTRIMS

CTMC
DCS
DEC
DI

DR
ECB-4B
ECC
GSZ

HS

IA

IEM
IPM
KTI
MCB-4B
NTE
NTEX

PCI

boundary conditions (alternative acro-
nym used in the literature, B1B)
Four-body first Born with the correct
boundary conditions

Three-body second Born with the cor-
rect boundary conditions (alternative
acronym used in the literature, B2B)
Four-body second Born with the correct
boundary conditions

Four-body third Born with the correct
boundary conditions

Four-body nth Born with the correct
boundary conditions

Close coupling

Three-body continuum distorted wave
Four-body continuum distorted wave
Four-body first-order continuum dis-
torted wave

Four-body second-order continuum dis-
torted wave

Continuum distorted wave, Born initial
state

Continuum distorted wave, Born final
state

Continuum distorted wave, boundary-
corrected first Born

Continuum distorted wave, eikonal ini-
tial state

Four-body first-order continuum dis-
torted wave, eikonal initial state
Four-body second-order continuum dis-
torted wave, eikonal initial state
Continuum distorted wave, eikonal fi-
nal state

Continuum distorted wave-independent
event model

Continuum distorted wave, impact pa-
rameter model

Configuration interaction

Cold-target recoil-ion momentum spec-
troscopy

Classical trajectory Monte Carlo
Differential cross section

Dynamical electron correlations

Direct ionization

Dielectronic recombination

Four-body eikonal Coulomb-Born
Electron capture to continuum
Green-Sellin-Zachor

Herman-Skillman

Impulse approximation
Independent-event model
Independent-particle model

Kinematic transfer ionization
Four-body modified Coulomb-Born
Nonresonant transfer excitation
Nonresonant transfer excitation via x
rays (radiative decays)

Postcollisional interaction
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POHCE Perturbative  one-and-a-half-centered
expansion

RIA-3B Three-body reformulated impulse ap-
proximation

RIA-4B Four-body reformulated impulse ap-
proximation

RHF Roothaan-Hartree-Fock

RTE Resonant transfer excitation

RTEX Resonant transfer excitation via x rays

(radiative decays)
SC Single capture

SEC Static electron correlations

SE-3B Three-body symmetric eikonal

STO Slater-type orbital

TE Transfer and excitation

TEA Transfer excitation via Auger mecha-
nism

TEX Transfer excitation via x rays (radiative
decays)

TI Transfer ionization

TCDW Target continuum distorted wave

TTI Thomas transfer ionization
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