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The flow of fluids in channels, pipes, or ducts, as in any other wall-bounded flow (like water along the
hulls of ships or air on airplanes) is hindered by a drag, which increases manyfold when the fluid flow
turns from laminar to turbulent. A major technological problem is how to reduce this drag in order to
minimize the expense of transporting fluids like oil in pipelines, or to move ships in the ocean. It was
discovered that minute concentrations of polymers can reduce the drag in turbulent flows by up to
80%. While experimental knowledge had accumulated over the years, the fundamental theory of drag
reduction by polymers remained elusive for a long time, with arguments raging whether this is a “skin”
or a “bulk” effect. In this Colloquium the phenomenology of drag reduction by polymers is
summarized, stressing both its universal and nonuniversal aspects, and a recent theory is reviewed that
provides a quantitative explanation of all the known phenomenology. Both flexible and rodlike
polymers are treated, explaining the existence of universal properties like the maximum drag
reduction asymptote, as well as nonuniversal crossover phenomena that depend on the Reynolds
number, on the nature of the polymer and on its concentration. Finally other agents for drag reduction

are discussed with a stress on the important example of bubbles.
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theoretical discussions that will form the bulk of this
Colloquium.

It should be stated at the outset that the phenomenon
of drag, which is distinguished from viscous dissipation,
should be discussed in the context of wall-bounded
flows. In homogeneous isotropic turbulence there exists
dissipation (Lamb, 1879), which at every point of the
flow equals v|[VU(r,1)]>, where v, is the kinematic vis-
cosity and U(r,f) is the velocity field as a function of
position and time. The existence of a wall breaks homo-
geneity, and together with the boundary condition U
=0 on the wall it sets a momentum flux from the bulk to
the wall. This momentum flux is responsible for the
drag, since not all the work done to push the fluid can
translate into momentum in the streamwise direction. In
stationary condition all the momentum produced by the
pressure head must flow to the wall. Understanding this
(Lvov et al., 2004) is the first step in deciphering the
riddle of the phenomenon of drag reduction by addi-
tives, polymers, or others, since usually these agents
tend to increase the viscosity. It appears therefore coun-
terintuitive that they would do any good, unless one un-
derstands that the main reason for drag reduction when
polymers or other drag-reducing agents are added to a
Newtonian fluid is caused by reducing the momentum
flux to the wall. The rest of this Colloquium elaborates
on this point and makes it quantitative. The reader
should note that this approach is very different from,
say, the theory of de Gennes (de Gennes, 1990) which is
stated in the context of homogeneous isotropic turbu-
lence, attempting to explain drag reduction by storage
and release of energy by the polymer molecules. Since
this mechanism cannot possibly change the rate of en-
ergy flux (which is determined by the forcing mechanism
on the outer scale of turbulence), we never understood
how this theory explains drag reduction, let alone how it
may provide quantitative predictions. On the other
hand, Lumley had a crucial observation (Lumley, 1969)
which remains valid in any theory of drag reduction in-
cluding ours, i.e., that polymers interact with the turbu-
lence field when their relaxation time is of the order of
eddy turnover times. This insight re-appears below as
the criterion of Deborah number exceeding unity.

Our approach also differs fundamentally from much
that had been done in the engineering community,
where a huge amount of work had been done to identify
the possible microscopic differences between Newtonian
flows and flows with polymers. Little theoretical under-
standing had been gained from this approach; arguments
can include what is the precise mechanism of drag reduc-
tion, and whether this mechanism is carried by hairpin
vortices or other “things” that do the trick. We adhere to
the parlance of the physics community where a theory is
tested by its quantitative predictiveness. We thus base
our considerations on the analysis of model equations
and their consequences. The criterion for validity will be
our ability to describe and understand in a quantitative
fashion all observed phenomena of drag reduction, both
universal and nonuniversal, and the ability to predict the
results of yet unperformed experiments.
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FIG. 1. The channel geometry.

A. Universality of Newtonian mean velocity profile

For concreteness we focus on channel flows, but most
of our observations are equally applicable to other wall-
bounded flows. The channel geometry is sketched in
Fig. 1.

The mean flow is in the x direction, between two par-
allel plates displaced by a distance 2L. The distance
from the lower wall is denoted by y, and the spanwise
direction by z. One takes the length of the channel in
the x direction to be much larger than the distance be-
tween the side walls in z, and the latter much larger than
L. In such a geometry the mean velocity V=(U(r,t)) is
(to a high approximation) independent of either x or z,
but only a function of the distance from the wall, V
=V(y). When a Newtonian fluid flows at large Reynolds
number [cf. Eq. (1.1)] in such a channel, it exhibits in the
near-wall region a universal mean velocity profile. Here
we use the word universal in the sense that any Newton-
ian fluid flowing in the vicinity of a smooth surface will
have the same mean velocity profile when plotted in the
right coordinates. The universality is best displayed in
dimenisonless coordinates, known also as wall units
(Pope, 2000). First, for incompressible fluids we can take
the density as unity p=1. Then we define the Reynolds
number Re, the normalized distance from the wall y™,
and the normalized mean velocity V*(y*) as follows:

Re=IL\p'Llvy, y"=yRel/lL, V*=VNp'L.
(1.1)

Here p’ is the fixed pressure gradient p’ =-dp/dx. The
universal profile is shown in Fig. 2 with solid circles
[simulations of De Angelis et al. (2003)] open circles (ex-
periments) and a black continuous line [theory by L'vov
et al. (2004)]. This profile has two distinct parts. For y*
<6 one observes the viscous sublayer where

Vi =y", (1.2)

(see, e.g., Pope, 2000), whereas for y*=30 one sees the
celebrated universal von Karméan log law of the wall
which is written in wall units as

y =6

Vi(y*) = kg Iny* + By, for y*=30. (1.3)

The law (1.3) is universal, independent of the nature of
the Newtonian fluid; it had been a shortcoming of the
theory of wall-bounded turbulence that the von Kdrman
constant kg =~ 0.436 and the intercept Bx ~6.13 had been
only known from experiments and simulations (Monin
and Yaglom, 1979; Zagarola and Smits, 1997). Some re-
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FIG. 2. (Color online) Mean normalized velocity profiles as a
function of the normalized distance from the wall. The data
points (solid circles) from numerical simulations of De Angelis
et al. (2003) and the experimental points (open circles) (War-
holic et al., 1999) refer to Newtonian flows. The solid line is a
theoretical formula developed by L'vov et al. (2004). The red
data points (squares) (Virk 1975) represent the maximum drag
reduction (MDR) asymptote. The dashed red curve represents
the log law (1.5) which was derived from first principles by
Benzi, De Angelis, et al. (2005). The blue filled triangles
(Rollin 1972) and green open triangles (Rudd, 1969) represent
the crossover, for intermediate concentrations of the polymer,
from the MDR asymptote to the Newtonian plug.

cent progress on this was made by Lo et al. (2005).

Having observed the universal profile for the mean
velocity, it is easy to see that any theory that seeks to
understand drag reduction by a change in viscosity (de
Gennes, 1990) is bound to fail, since the universal profile
is written in reduced coordinates, and a change in the
viscosity can result only in a reparametrization of the
profile. Indeed, drag reduction must mean a change in
the universal profile, such that the velocity V* in re-
duced coordinates exceeds the velocity V* predicted by
Eq. (1.3).

B. Drag reduction phenomenology

Here we detail some of the prominent features of drag
reduction (Virk, 1975), all of which must be explained by
a consistent theory. Turbulence is characterized by the
outer scale L where energy is injected into the system,
and by the Kolmogorov viscous scale 7 below which vis-
cous dissipation dominates over inertial terms, and the
velocity field becomes essentially smooth. Now the poly-
mers are molecular in scale, and for all realistic flows the
polymer size is much smaller than this viscous scale (cf.
Sec. III.A for some actual numbers for a typical poly-
mer). How is it then that the polymers can interact at all
with the turbulent degrees of freedom? This question
was solved by Lumley (1969) who argued that it is the

Rev. Mod. Phys., Vol. 80, No. 1, January—March 2008

polymer relaxation time 7, the time that characterizes
the relaxation of a stretched polymer back to its coiled
equilibrium state, which is comparable to a typical eddy
turnover time in the turbulent cascade. This matching of
time scales allows an efficient interaction between turbu-
lent fluctuations and the polymer degrees of freedom.
With the typical shear rate S(y) one forms a dimension-
less Deborah number

De(y) = 7S(y). (1.4)

When De exceeds the order of unity, the polymers begin
to interact with the turbulent flow by stretching and tak-
ing energy from the turbulent fluctuations (cf. Sec. III.A
for a derivation of this). We show below that this mecha-
nism of Lumley is corroborated by all the available data.
What we explain is how the polymers stretch, a process
that must increase the viscosity, nevertheless, the drag
reduces.

1. The universal maximum drag reduction asymptote

One of the most significant experimental findings
(Virk, 1975) concerning turbulent drag reduction by
polymers is that in wall-bounded turbulence (like chan-
nel and pipe flows) the velocity profile (with polymers
added to the Newtonian fluid) is bounded between the
von Kdarman’s log law (1.3) and another log law which
describes the maximal possible velocity profile (maxi-
mum drag reduction, MDR),

Vi(yt) = K{,l In y* + By, (1.5)

where «y' ~11.7 and By ~-17. This law, discovered ex-
perimentally by Virk (1975) (and hence the notation «y),
is also claimed to be universal, independent of the New-
tonian fluid and the nature of the polymer additive, in-
cluding flexible and rodlike polymers (Virk et al., 1997).
This log law, like von Karman’s log law, contains two
phenomenological parameters. L'vov et al. (2004)
showed that in fact this law contains only one parameter,
and can be written in the form

Vi(y') = K{,l In(exyy™) for y" =12, (1.6)

where e is the basis of the natural logarithm. The deep
reason for this simplification will be explained below.
For sufficiently high values of Re, sufficiently high con-
centration of the polymer c,, and length of polymer
(number of monomers N,,), the velocity profile in a chan-
nel is expected to follow the law (1.6). Needless to say,
the first role of a theory of drag reduction is to provide
an explanation for the MDR law and for its universality.
We explain below that the reason for the universality of
the MDR is that it is a marginal state between a turbu-
lent and a laminar regime of wall-bounded flows. In this
marginal state turbulent fluctuations almost do not con-
tribute to the momentum and energy balance, and the
only role of turbulence is to extend the polymers in a
proper way. This explanation can be found in Sec. III,
including an a priori calculation of the parameter «y.
For finite Re, finite concentration c,, and finite number
of monomers Np, one expects crossovers that are non-
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universal; in particular such crossovers depend on the
nature of the polymer, whether it is flexible or rodlike.

2. Crossovers with flexible polymers

When the drag reducing agent is a flexible polymer,
but the concentration ¢, of the polymer is not suffi-
ciently large, the mean velocity profiles exhibit a cross-
over back to a log law which is parallel to the law (1.3),
but with a larger mean velocity (i.e., with a larger value
of the intercept By); see Fig. 2. The region of this log law
is known as the “Newtonian plug.” The position of the
crossovers are not universal in the sense that they de-
pend on the nature of the polymers and flow conditions.
The scenario is that the mean velocity profile follows the
MDR up to a certain point after which it crosses back to
the Newtonian plug. The layer of y* values between the
viscous layer and the Newtonian plug is referred to as
the elastic layer. A theory for these crossovers is pro-
vided below, cf. Sec. V.

Another interesting experimental piece of informa-
tion about crossovers was provided by Choi et al. (2002).
Here turbulence was produced in a counter-rotating
disks apparatus, with A-DNA molecules used to reduce
the drag. The Reynolds number was relatively high (the
results below pertain to Re~1.2x10° and the initial
concentrations ¢, of DNA were relatively low [results
employed below pertain to ¢,=2.70 and c,=1.35 weight
parts per million (wppm)]. During the experiment DNA
degrades; fortunately the degradation is very predict-
able: double stranded molecules with 48 502 base pairs
(bp) in size degrade to double stranded molecules with
23100 bp. Thus, invariably, the length N, reduces by a
factor of approximately 2, and the concentration ¢, in-
creases by a factor of 2. The experiment followed the
drag reduction efficacy measured in terms of the per-
centage drag reduction defined by

Tn—-T
%DR:% X 100,
N

(1.7)

where Ty and Ty are the torques needed to maintain the
disk to rotate at a particular Reynolds number without
and with polymers, respectively. The main experimental
results which are of interest are summarized in Fig. 3.

We see from the experiment that both initially (with
undegraded DNA) and finally (with degraded DNA) the
%DR is proportional to c,. Upon degrading, which
amounts to decreasing the length N, by a factor of ap-
proximately 2 and simultaneously increasing c,, by factor
of 2, %DR decreases by a factor of 4. Explanations of
these findings can be found in Sec. V.B.

3. Crossovers with rodlike polymers

A flexible polymer is a polymer that is coiled at equi-
librium or in a flow of low Reynolds number, and it
undergoes a coil-stretch transition at some value of the
Reynolds number (see below for details). A rodlike
polymer is stretched a priori, having roughly the same
linear extent at any value of the Reynolds number.
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FIG. 3. %DR in a counter-rotating disks experiment with
N-DNA as the drag reducing polymer. Note that the %DR is
proportional to ¢,. When the length N, reduces by a factor of
2 and, simultaneously, ¢, increases by factor of 2, the %DR
reduces by a factor of 4.

When the polymers are rodlike and the concentration ¢,
is not sufficiently high, the crossover scenario is differ-
ent. The data in Fig. 4 include both flexible and rodlike
polymers (Escudier et al., 1999). These data indicate that
for large values of Re the mean velocity profile with
flexible polymers [polyacrylamide (PAA)] follows the
MDR until a point of crossover back to the Newtonian
plug, where it becomes roughly parallel to von Karmén'’s
log law. Increasing the concentration results in following
the MDR further until a higher crossover point is at-
tained back to the Newtonian plug. On the other hand,
for rodlike polymers [sodium carboxymethylcellulose
(CMC) and sodium carboxymethylcellulose—xanthan
gum blend (CMC/XG)] the data shown in Fig. 4 indicate
a different scenario. Contrary to flexible polymers, here,
as a function of the concentration, one finds mean veloc-
ity profiles that interpolate between the two asymptotes
(1.3) and (1.5), reaching the MDR only for large concen-
trations. A similar difference in the behavior of flexible
and rodlike polymers when plotting the drag as a func-
tion of Reynolds number was reported by Virk et al
(1997).

Clearly, an explanation of these differences between
the way the MDR is attained must be a part of the
theory of drag reduction, cf. Sec. VI. We reiterate that
these crossovers pertain to the situation in which Re is
large, but ¢, is too small.

Another major difference between the two classes of
polymers is found when Re is too small, since then rod-
like polymers can cause drag enhancement, whereas flex-
ible polymers never cause drag enhancement. The latter
are either neutral or cause drag reduction. The best way
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FIG. 4. Typical velocity profiles taken from Escudier et al.
(1999). Dashed line notes the von Karman law (1.3), while the
MDR (1.6) is shown as the continuous line. In all cases the
mean velocity follows the same viscous behavior for y*<10.
After that the scenario is different for flexible and rodlike
polymers. The typical behavior for the former is presented by
the open triangles, which follow the MDR up to a crossover
point that depends on the concentration of the polymer and on
the value of Re. The rodlike behavior is exemplified by the
solid triangles and open squares; the mean velocity profiles
appear to interpolate smoothly between the two asymptotes as
a function of the concentration of the rodlike polymer.

to see the phenomenon of drag enhancement at low Re
with rodlike polymers is to consider the Fanning drag
coefficient defined as

f= n/%pf/z, (1.8)

where 7 is the shear stress at the wall, determined by
the value S(y=0) of the shear at y=0:

7 = prpS(y =0), (1.9)

p and V are the fluid density and the mean fluid through-
put, respectively. Figure 5 presents this quantity as a
function of Re in the traditional Prandtl-Karman coor-
dinates 1/ \}” Vs Re\«‘?, for which once again the Newton-
ian high Re log law is universal, and for which also there
exists an MDR universal maximum (Virk, 1975; Virk et
al., 1996). The straight continuous line denoted by N
presents the Newtonian universal law. Data points below
this line are indicative of a drag enhancement, i.e., an
increase in the dissipation due to the addition of the
polymer. Conversely, data points above the line corre-
spond to drag reduction, which is always bound by the
MDR asymptote represented by the dashed line de-
noted by M. This figure shows data for a rodlike poly-
mer (a polyelectrolyte in aqueous solution at very low
salt concentration) and shows how drag enhancement
for low values of Re crosses over to drag reduction at
large values of Re (Virk et al., 1996; Wagner et al., 2003).
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FIG. 5. The drag in Prandtl-Kdrman coordinates for a low
concentration solution of NaCl in water mixed with the rodlike
polymer PAMH B1120 in a pipe flow, see Virk et al. (1996) for
details. The symbols represent the concentrations in wppm
(weight parts per million) as given.

One of the results of the theory presented below is that
it reproduces the phenomena shown in Fig. 5 in a satis-
factory manner.

We reiterate that with flexible polymers the situation
is very different, and there is no drag enhancement at
any value of Re. The reason for this distinction will be
made clear below as well.

IL. SIMPLE THEORY OF THE VON KARMAN LAW

As an introduction to the derivation of the MDR as-
ymptote for fluids laden with polymers, we remind the
reader first how the von Kdarman log law (1.3) is derived.
The derivation of the MDR will follow closely similar
ideas with the modifications due to the polymers taken
carefully into account.

Wall-bounded turbulence in Newtonian fluids is dis-
cussed (Monin and Yaglom, 1979; Pope, 2000) by consid-
ering the fluid velocity U(r) as a sum of its average (over
time) and a fluctuating part:

U(r,t)=V(y)X + u(r,1). (2.1)
The objects that enter the Newtonian theory are the
mean shear S(y), the Reynolds stress W(y), and the ki-
netic energy density per unit mass K(y):

S(y)=dV(y)dy, W(y)= - uu,),

K(y) =(|u?)2. (2.2)
Note that the Reynolds stress is nothing but the momen-
tum in the streamwise direction x transported by the
fluctuations u, in the direction of the wall; it is the mo-
mentum flux to the wall. Using the Navier-Stokes equa-
tions one can calculate this momentum flux P(y) which
is generated by the pressure head p'=-dp/dx; at a dis-
tance y from the wall this flux is (Pope, 2000)
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P(y)=p'(L-y). (2.3)

We are interested in positions y <L, so that we can ap-
proximate the production of momentum by a constant
p' L. This momentum is then dissipated at a rate yS(y).
This gives rise to the exact momentum balance equation

voS(y)+W(y)=p'L, y<L. (2.4)

The two terms on the left-hand side take their main
roles at different values of y. For y close to the wall the
viscous term dominates, predicting that S(y)=p’L/,.
This translates immediately to Eq. (1.2), the mean veloc-
ity profile close to the wall.

Away from the wall the Reynolds stress dominates,
but all that can be learned is that W(y) = const, which is
not enough to predict the velocity profile. We need now
to invoke a second equation that describes the energy
balance.

Directly from the Navier-Stokes equations one can
compute the rate of turbulent kinetic energy production
by the mean shear; it is W(y)S(y) [see, for example, Pope
(2000)], and the energy dissipation E, at any point, E,
=v{|Vu(r,?)|?). The energy dissipation is estimated dif-
ferently near the wall and in the bulk (L'vov et al., 2004).
Near the wall the velocity is smooth and we can estimate
the gradient by the distance from the wall, and thus £,
~vyaK(y)/y?, where a is a dimensionless coefficient of
the order of unity. Further away from the wall the flow is
turbulent, and we estimate the energy flux by K(y)/(y),
where 7(y)=y/ b\/Fy) is the typical eddy turnover time
at a distance y from the wall, and b is another dimen-
sionless coefficient of the order of unity. Putting things
together yields the energy balance equation

{Vo% + b\—K}K(y) =W»)S»y), (2.5)

y Y
where the first term is dominant near the wall and the
second in the bulk. The interpretation of this equation is
similar to the momentum balance equation except that
the latter is exact; the first term on the left-hand side is
the viscous dissipation, the second is the energy flux to
the wall, and the right-hand side is the production.

To close the problem, the balance equations need to
be supplemented by a relation between K(y) and W(y).
Dimensionally these objects are the same, and therefore
in the bulk [where one uses dimensional analysis to de-
rive the second term of Eq. (2.5)] we expect that these
objects must be proportional to each other. Indeed, ex-
periments and simulations (Virk, 1975; Ptasinski et al.,
2001) corroborate this expectation and one writes (L'vov
et al., 2004; L’vov, Pomyalov, and Tiberkevich, 2005)

W(y) = cRK(y), (2.6)

with ¢y being apparently y independent outside the vis-
cous boundary layer. To derive the von Kdrman log law
we now assert that in the bulk the first term on the left-
hand side of Eq. (2.5) is negligible, we then use Eq. (2.6)
together with the previous conclusion that W(y)=const
to derive immediately S(y)ec1/y. Integrating yields the
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von Kdrman log law. Note that on the face of it we have
three phenomenological parameters, i.e., a, b, and cy. In
fact, in the calculation of the mean velocity they appear
in two combinations which can be chosen as kg and By
in Eq. (1.3). Nevertheless, it is not known how to com-
pute these two parameters a priori. Significantly, we ar-
gue below that the slope of the MDR can be computed
a priori, cf. Sec. II1.C.

III. THE UNIVERSALITY OF THE MDR

To study the implications of adding small concentra-
tions of polymers into wall-bounded turbulent flows we
need a model that reliably describes modifications in the
hydrodynamic equations that are induced by polymers.
In the present section we are aiming at the universal,
model independent properties of drag reduction, and
therefore any reasonable model of polymers interacting
with hydrodynamics which exhibits drag reduction
should also lead to the universal properties. We begin
with the case of flexible polymers.

A. Model equations for flows laden with flexible polymers

To give a flavor of the type of polymers most com-
monly used in experiments and technological applica-
tions of drag reduction we present the properties of
polyethylene oxide (N X[-CH,-CH,-O], known as
PEO). The typical number N of monomers ranges be-
tween 10* and 10°. In water solution in equilibrium this
polymer is in a coiled state, with an end-to-end distance
po of about 107 m. When fully stretched the maximal
end-to-end distance p,, is about 5x 10~ m. The typical
mass concentration used is between 10 and 1000 wppm.
The viscosity of the water solution increases by a factor
of 2 when PEO is added with a concentration of
280 wppm. Note that even the maximal value p,, is much
smaller than the typical Kolmogorov viscous scale, al-
lowing us to model the turbulent velocity around such a
polymer as a fluctuating homogeneous shear.

Although the polymer includes many monomers and
therefore many degrees of freedom, it was shown (Flory,
1953; de Gennes, 1979; Bird et al., 1987; Beris and Ed-
wards, 1994) that the most important degree of freedom
is the end-to-end distance, allowing the simplest model
of the polymer to be a dumbbell of two spheres of radius
a and negligible mass, connected by a spring of equilib-
rium length p, characterized by a spring constant k. This
model allows an easy understanding of the coil-stretch
transition under a turbulent shear flow. If such a dumb-
bell is stretched to length p,, the restoring force k(p,
—po) is balanced by the Stokes force 6mavdp,/dt (recall
that the fluid density was taken as unity). Thus the re-
laxation time 7 of the dumbbell is 7=6mav,/k. On the
other hand, in the presence of a homogeneous shear S,
the spring is stretched by a Stokes force 6mav,Sp,. Bal-
ancing the stretching force with the restoring force (both
proportional to p, for p,>p), one finds that the coil-
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stretch transition is expected when S7>1. In fact, a free
polymer will rotate under a homogeneous shear, making
this argument a bit more involved. Indeed, one needs a
fluctuating shear s in order to stretch the polymer, lead-
ing finally to the condition

De ~ n{(s?) > 1. (3.1)

To obtain a consistent hydrodynamic description of
polymer laden flows one needs to consider a field of
polymers instead of a single chain. In a turbulent flow
one can assume that the concentration of polymers is
well mixed, and approximately homogeneous. Each
chain still has many degrees of freedom. However, as a
consequence of the fact that the most important degree
of freedom for a single chain is the end-to-end distance,
the effects of the ensemble of polymers enters the hy-
drodynamics in the form of a conformation tensor
R;(r,t) which stems from the ensemble average of the
dyadic product of the end-to-end distance of the poly-
mer chains (Bird et al., 1987; Beris and Edwards, 1994),
R.s=(papp). A successful model that had been em-
ployed frequently in numerical simulations of turbulent
channel flows is the so-called FENE-P model (Bird et al.,
1987), which takes into account the finite extensibility of
the polymers:

JR U 20)
ZraB UVIR .= —2R R =B
a + UV Ras ar, T Ry

1
~ IP(rORs - P00.p),  (3.2)

P(r,0) = (py, = )/ (P = Ry (3.3)
The finite extensibility is reflected by the Peterlin func-
tion P(r,t) which can be understood as an ensemble av-
eraging correction to the potential energy k(p—p)?/2 of
individual springs. For hydrodynamicists this equation
should be evident: think about magnetohydrodynamics,
and the equations for the magnetic field n. Write down
the equations for the diadic product n,ng; the inertial
terms will be precisely the first line of Eq. (3.2). Of
course, the dynamo effect would then tend to increase
the magnetic field, potentially without limit; the role of
the second line in the equation is to guarantee that the
finite polymer will not stretch without limit, and the Pe-
terlin term guarantees that when the polymer stretches
close to the maximum there will be rapid exponential
decay back to equilibrium values of the trace of R. Since
in most applications p,,>p, the Peterlin function can
also be written approximately as P(r,t)~1/(1-yR,,),
where y=p,2 In its turn the conformation tensor ap-
pears in the equations for fluid velocity U,(r,f) as an
additional stress tensor:

oU
&t“ +(UV)Uy=-V,p+ VU, +V,T,,

(3.4)
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v, | P(r,t)
Top(r,t) = —7’_2 3

Po

Raﬂ(r,t) - 5aﬁ . (35)

Here v, is a viscosity parameter which is related to the
concentration of the polymer, i.e., v,/ vy~ c,, where ¢, is
the volume fraction of the polymer. We note, however,
that the tensor field can be rescaled to remove the pa-

rameter 7y in the Peterlin function Ra,;: YR .5, with the
only consequence of rescaling the parameter v, accord-
ingly. Thus the actual value of the concentration is open
to calibration against the experimental data. Also, in
most numerical simulations, the term Pp,’R is much
larger than the unity tensors in Egs. (3.2) and (3.5).
Therefore in the theoretical development below we use
the approximation

(3.6)

We note that the conformation tensor always appears
rescaled by p%. For notational simplicity we absorb pg
into the definition of the conformation tensor, and keep
the notation R,g for the renormalized, dimensionless
tensor.

Considering first homogeneous and isotropic turbu-
lence, the FENE-P model can be used to demonstrate
the Lumley scale discussed above. In homogeneous tur-
bulence one measures the moments of the velocity dif-
ference across a length scale r’, and, in particular, the
second order structure function

! /)
Sy =\ Wer+r'n-Uwnl- = ),

where the average (---) is performed over space and
time. This quantity changes when the simulations are
done with the Navier-Stokes equations, on the one hand,
and with the FENE-P equations, on the other hand; see
De Angelis et al. (2005). The polymers decrease the
amount of energy at small scales. The reduction starts
exactly at the theoretical estimate of the Lumley scale,
shown with an arrow in Fig. 6. A more detailed analysis
of the energy transfer (De Angelis et al., 2005) showed
that energy flows from large to small scales and at the
Lumley scale a significant amount of energy is trans-
ferred to the potential energy of the polymers by in-
creasing R,,. This energy is eventually dissipated when
polymers relax their length back to equilibrium. In con-
tradistinction to the picture offered by de Gennes
(1990), simulations indicate that the energy never goes
back from the polymers to the flow; the only thing that
polymers can do is to increase the dissipation. This is a
crucial statement underlying the challenge of developing
a consistent theory of drag reduction. In isotropic and
homogeneous conditions the effect of the polymer is just
to lower the effective Reynolds number which, of
course, cannot explain drag reduction.

The FENE-P equations were also simulated on the
computer in a channel or pipe geometry, reproducing
the phenomenon of drag reduction found in experiments
(Dimitropoulos et al., 1998, 2005; Ptasinski et al., 2001;
Benzi et al., 2006). The most basic characteristic of the

Top~ v,PR o5/ 705

(3.7)
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FIG. 6. Second-order structure function S,(r) for homoge-
neous and isotropic turbulence. Two cases are represented:
with polymers (line with symbols) and without polymer
(dashed line). The Lumley scale is indicated by an arrow. The
numerical simulations with polymers are performed using a
1283 resolution with periodic boundary conditions. The energy
content for scales below the Lumley scale is reduced indicating
a significant energy transfer from the velocity field to the poly-
mer elastic energy.

phenomenon is the increase of fluid throughput in the
channel for the same pressure head, compared to the
Newtonian flow. This phenomenon is demonstrated in
Fig. 7. As one can see, the simulation is limited com-
pared to experiments; the Reynolds number is relatively
low, and the MDR is not attained. Nevertheless, the
phenomenon is there.

At any rate, once we are convinced that the FENE-P
model exhibits drag reduction, it must also reproduce
the universal properties of the phenomenon, and in par-
ticular the MDR. We show that this is indeed the case,
but also that all crossover nonuniversal phenomena can
be understood using this model. If we were not inter-

FIG. 7. Mean velocity profiles for the Newtonian and for the
viscoelastic simulations with Re=125 (Benzi et al., 2006). Solid
line, Newtonian. Dashed line, viscoelastic. Straight lines repre-
sent a log law with the classical von Kdrman slope. Notice that
in this simulation the modest Reynolds number results in an
elastic layer in the region y*<?20.
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ested in the crossover phenomena, we could directly use
the large concentration limit of the FENE-P model,
which is the limit P=1 where the model identifies with
the harmonic dumbbell model known also as the
Oldroid-B model.

B. Derivation of the MDR

In this section we review the theory that shows how
the new log law (1.6) comes about when polymers are
added to the flow. In the next section we explain why
this law is universal and estimate the parameters from
first principles.

As before, we proceed by taking the long time aver-
age of Eq. (3.4), and integrating the resulting equation
along the y coordinate. This produces an exact equation
for the momentum balance:

W S+ “2(PR, () =p' (L ). (3.8)
The interpretation of this equation is as before, but we
have a new term which is the rate at which momentum is
transferred to the polymers. Near the wall it is again
permissible to neglect the term p’y on the right-hand
side for y<L. One should not be surprised with the
form of Eq. (3.8); the new term could only be the one
that is appearing there, since it must have an x-y sym-
metry, and it simply stems from the additional stress ten-
sor appearing in Eq. (3.4). The derivation of the energy
balance equation is more involved, and had been de-
scribed by L'vov et al. (2005a) and Benzi et al. (2006).
The final form of the equation is

K3/2 K( )

av(); + bT + C4Vp<Ryy>y—§1 =WS, (3.9)
where ¢, is a dimensionless coefficient of the order of
unity. This equation is in its final form, ready to be ana-
lyzed further. Equation (3.8) needs to be specialized to
the vicinity of the MDR, which is only obtained when
the concentration ¢, of polymers is sufficiently high,
when Re is sufficiently high, but also when the Deborah
number De is sufficiently high. L’vov et al. (2005a) and
Benzi et al. (2006) showed that when these conditions
are met,

(PR,,) = c\(R,,)ST, (3.10)

where c¢; is another dimensionless coefficient of the or-
der of unity. Using this result in Eq. (3.8) we end up with
the momentum balance equation

W(y) + 1S(y) + c1v(Ry)(0)S(y) =p'L, y<L.
(3.11)

The substitution (3.10) is important for what follows that
we discuss it a bit further. When the conditions discussed
above are all met, polymers tend to be stretched and
well aligned with the flow, such that the xx component of
the conformation tensor must be much larger than the
xy component, with the yy component being the small-
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est, tending to zero with De—o. Since De is the only
dimensionless number that can relate the various com-
ponents of (R;), we expect that (R,)~De(R,,) and
(Ry,)~De(R,,). Indeed, a calculation (L'vov et al,
2005a) showed that in the limit De — o the conformation
tensor attains the following universal form:

2De? De 0
(Ry=(Ry,,)| De 1 0 for De>1, (3.12)
0 0 C

where C is of the order of unity. We concluded that R,
is much larger than any other component of the confor-
mation tensor, but it plays no direct role in the phenom-
enon of drag reduction. Rather R, , which is much
smaller, is the most important component from our
point of view. We can thus rewrite the two balance equa-
tions derived here in the suggestive form:

v(y)S+W=p'L, (3.13)
K 3/2
av(y) > +b—=WS, (3.14)
y y
where d=ac,/c; and the effective viscosity v(y) is
v(y) = c1v(R,,). (3.15)

Note that for the purpose of deriving the MDR we can
neglect the bare viscosity compared to the effective vis-
cosity contributed by polymers.

Exactly like in the Newtonian theory one needs to add
a phenomenological relation between W(y) and K(y)
which holds in the elastic layer,

W(y) = c;K(y),

with ¢, an unknown coefficient of the order of unity.
At this point one asserts that the “dressed” viscous
term dominates the inertial term on the left-hand side of
the balance equations (3.13) and (3.14). From the first of
these we estimate v(y)~p'L/S(y). Plugged into the sec-
ond of these equations this leads, together with Eq.
(3.16), to S(y)=const/y, where const is a combination of
the unknown coefficients appearing in these equations,
and therefore is itself an unknown coefficient of the or-
der of unity. The important thing is that the theory pre-
dicts a new log law for V(y), the slope of which we show
to be universal in the next subsection. Before doing so it
is important to realize that if S(y)=const/y, our analysis
indicates that the effective viscosity »(y) must grow out-
side the viscous layer linearly in y, »(y)~y. If we make
the self-consistent assumption that v is negligible in the
log-law region compared to v,(R,,), then this prediction
appears in contradiction with what is known about the
stretching of polymers in the channel geometry, where it
had been measured that the extent of stretching de-
creases as a function of the distance from the wall. The
apparent contradiction evaporates when we recall that
the amount of stretching is dominated by R, which is
indeed decreasing. To see this note that Eq. (3.12) pre-
dicts that R, ~2De?R,, = S(y)S(y)R,,*1/y. At the same

(3.16)
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FIG. 8. (Color online) Comparison of the DNS data (Sibila
and Baron, 2002) for mean profiles of R,, and 10R,,, the com-
ponents of the dimensionless conformation tensor, with ana-
lytical predictions. In our notation ITj= vopRﬁmR,»j/ Tpqu.
Squares, DNS data for the streamwise diagonal component
R,,, that according to our theory has to decrease as 1/y with
the distance to the wall. Solid line, the function 1/y*. Open
circles, DNS data for the wall-normal component 10R,,, for
which we predicted a linear increase with y* in the log-law
turbulent region. Dashed line: linear dependence, *y*.

time R,, increases linearly in y. Both predictions agree
with what is observed in simulations, see Fig. 8.

The simplicity of the resulting theory, and the corre-
lation between a linear viscosity profile and the phenom-
enon of drag reduction, raises the natural question: Is it
enough to have a viscosity that rises linearly as the func-
tion of the distance from the wall to cause drag reduc-
tion? To answer this question one can simulate the
Navier-Stokes equations with proper viscosity profiles
(discussed below) and show that the results are in semi-
quantitative agreement with the corresponding full
FENE-P direct numerical simulations (DNS). Such
simulations were done (De Angelis ef al., 2004) in a do-
main 27L X2L X 1.27L, with periodic boundary condi-
tions in the streamwise and spanwise directions, and
with no slip conditions on walls that were separated by
2L in the wall-normal direction. An imposed mass flux
and the same Newtonian initial conditions were used.
The Reynolds number Re (computed with the centerline
velocity) was 6000 in all runs. The y dependence of the
scalar effective viscosity was close to being piecewise
linear along the channel height, namely, v=1y, for y<y;,,
a linear portion with a prescribed slope for y;<y=<y,,
and again a constant value for y, <y < L. For numerical
stability this profile was smoothed out as shown in Fig. 9.
Included in the figure is the flat viscosity profile of the
standard Newtonian flow.

In Fig. 10 we show the resulting profiles of Vj(y) vs y*.
The line types are chosen to correspond to those used in
Fig. 9. The decrease of the drag with the increase of the
slope of the viscosity profiles is obvious. Since the slopes
of the viscosity profiles are smaller than needed to
achieve the MDR asymptote for the corresponding Re,
the drag reduction occurs only in the near-wall region
and the Newtonian plugs are clearly visible.
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FIG. 9. The Newtonian viscosity profile and four examples of
close to linear viscosity profiles employed in the numerical
simulations. Solid line, run N; — —, run R; ---, run S; ——, T;
—-+-—run U.

The conclusion of these simulations appears to be that
one can increase the slope of the linear viscosity profile
and gain further drag reduction. The natural question
that comes to mind is whether this can be done without
limit such as to reduce the drag to zero. Of course this
would not be possible, and here lies the clue for under-
standing the universality of the MDR.

C. The universality of the MDR: Theory

The crucial new insight that will explain the universal-
ity of the MDR and furnish the basis for its calculation is
that the MDR is a marginal flow state of wall-bounded
turbulence: attempting to increase S(y) beyond the
MDR results in the collapse of the turbulent solutions in
favor of a stable laminar solution with W=0 (Benzi, De
Angelis, et al., 2005). As such, the MDR is universal by
definition, and the only question is whether a polymer
(or other additive) can supply the particular effective
viscosity v(y) that drives Egs. (3.13) and (3.14) to attain
the marginal solution that maximizes the velocity pro-
file. We expect that the same marginal state will exist in
numerical solutions of the Navier-Stokes equations fur-
nished with a y-dependent viscosity v(y). There will be

FIG. 10. The reduced mean velocity as a function of the re-
duced distance from the wall. The line types correspond to
those used in Fig. 9.
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no turbulent solutions with velocity profiles higher than
the MDR.

To see this explicitly, we first rewrite the balance
equations in wall units. For constant viscosity [i.e., »(y)
=), Egs. (3.13)-(3.16) form a closed set of equations
for S*=Svyy/p’'L and W*=W/p'L in terms of two di-
mensionless constant 8" =a\K/W (the thickness of the
viscous boundary layer) and xx =b/c3; (the von Kédrmén
constant). Newtonian experiments and simulations agree
well with a fit using 6" ~6 and kg ~0.436 (see the con-
tinuous line in Fig. 2 which shows the mean velocity
profile using these very constants). Once the effective
viscosity »(y) is no longer constant we expect ¢y to
change (cy—cy) and consequently the two dimension-
less constants will change as well. We denote the new
constants as A and k¢, respectively. Clearly one must
require that for v(y)/vy—1, A— 8" and kc— kg. The
balance equations are now written as (Benzi, De Ange-
lis, et al., 2005)

vyt + Wy =1, (3.17)
A2 v’%

vy —mr——==5", (3.18)
y& o Koy

where v*(y*)=w(y*)/v,. Now substituting S* from Eg.
(3.17) into Eq. (3.18) leads to a quadratic equation for
VW*. This equation has a zero solution for W* (laminar
solution) as long as v*(y*)A/y*=1. Turbulent solutions
are possible only when v*(y*)A/y*<1. Thus at the edge
of existence of turbulent solutions we find v*xy* for
y*>1. This is not surprising, since it was observed above
that the MDR solution is consistent with an effective
viscosity which is asymptotically linear in y*. It is there-
fore sufficient to seek the edge solution of the velocity
profile with respect to linear viscosity profiles, and we
rewrite Egs. (3.17) and (3.18) with an effective viscosity
that depends linearly on y* outside the boundary layer
of thickness 5"

[1+aly"— &)]S" + W =1, (3.19)
2 w+

[+ ab -9, W g (3.20)
y* Kcy

We now endow A with an explicit dependence on the
slope of the effective viscosity v*(y), A=A(a). Since drag
reduction must involve a decrease in W, we expect the
ratio a’K/W to depend on a, with the constraint that
A(a)— 6" when a—0. Although A, &%, and « are all
dimensionless quantities, physically A and &* represent
(viscous) length scales (for the linear viscosity profile
and for the Newtonian case, respectively) while o' is
the scale associated to the slope of the linear viscosity
profile. It follows that a8" is dimensionless even in the
original physical units. It is thus natural to present A(«)
in terms of a dimensionless scaling function f(x),
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FIG. 11. The solution for 10VW* (dashed line) and y*S* (solid
line) in the asymptotic region y*> &, as a function of a. The
vertical solid line a=1/26"=1/12 which is the edge of turbu-
lent solutions; since VW* changes sign here, to the right of this
line there are only laminar states. The horizontal solid line
indicates the highest attainable value of the slope of the MDR
logarithmic law 1/ky=12.

Ala) = 6'f(ad"). (3.21)

Obviously, f(0)=1. In the Appendix we show that the
balance equations (3.19) and (3.20) (with the prescribed
form of the effective viscosity profile) have a nontrivial
symmetry that leaves them invariant under rescaling of
the wall units. This symmetry dictates the function A(«)
in the form

Ala) = (3.22)

1-ast
Armed with this knowledge we can now find the maxi-
mal possible velocity far away from the wall, y*> 6"
There the balance equations simplify to

aytST+Wh=1, (3.23)

aA*(a) + \J"W/KC =y*S*. (3.24)

These equations have the y*-independent solution for
VWt and y*S*:

2
\r’%: — i + \/<i> +1- azAz(a),
2KC ZKC

y*8* = aA2(a) + Wk (3.25)

By using Eq. (3.25) (see Fig. 11), we obtain that the edge
solution (W*—0) corresponds to the supremum of y*S*,
which happens precisely when a=1/A(a). Using Eq.
(3.22) we find the solution a=«,,=1/26". Then y*S*
=A(a,,), giving ky'=26". Using the estimate 6*=~6 we
get the final prediction for the MDR. Using Eq. (1.6)
with xy'=12, we get

Vi(y*) ~12Iny* - 17.8. (3.26)

This result is in close agreement with the empirical
law (1.5) proposed by Virk. The value of the intercept on
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the right-hand side of Eq. (3.26) follows from Eq. (1.6)
which is based on matching the viscous solution to the
MDR log law in L'vov et al. (2004). We now also have
justification for this matching: the MDR is basically a
laminar solution that can match smoothly with the vis-
cous sublayer, with continuous derivative. This is not
possible for the von Kérmén log law which represents
fully turbulent solutions. Note that the numbers appear-
ing in Virk’s law correspond to §"=5.85, which is well
within the error bar on the value of this Newtonian pa-
rameter. Note that we can easily predict where the
asymptotic law turns into the viscous layer upon the ap-
proach to the wall. We consider an infinitesimal W* and
solve Eqgs. (3.17) and (3.18) for S* and the viscosity pro-
file. The result, as before, is v*(y)=A(a,,)y*. Since the
effective viscosity cannot fall bellow the Newtonian limit
v'=1 we see that the MDR cannot go below y*
=A(a,,)=26". We thus expect an extension of the viscous
layer by a factor of 2, in good agreement with the ex-
perimental data.

Note that the result W*=0 should not be interpreted
as W=0. The difference between the two objects is the
factor of p'L, W=p'LW*. Since the MDR is reached
asymptotically as Re— o, there is enough turbulence at
this state to stretch the polymers to supply the needed
effective viscosity. Indeed, our discussion is similar to
the experimental remark by Virk (1975) that close to the
MDR asymptote the flow appears laminar.

In summary, added polymers endow the fluid with an
effective viscosity v(y) instead of v, There exists a pro-
file of v(y) that results in a maximal possible velocity
profile at the edge of existence of turbulent solutions.
That profile is the prediction for the MDR. In particular,
we offer a prediction for simulations: direct numerical
simulations of the Navier-Stokes equations in wall-
bounded geometries, endowed with a linear viscosity
profile (De Angelis et al., 2004), will not be able to sup-
port turbulent solutions when the slope of the viscosity
profile exceeds the critical value that is in correspon-
dence with the slope of the MDR.

IV. THE ADDITIVE EQUIVALENCE: THE MDR OF
RODLIKE POLYMERS

In this section we address the experimental finding
that rigid rodlike polymers appear to exhibit the same
MDR (1.6) as flexible polymers (Virk et al., 1997). Since
the bare equations of motion of rodlike polymers differ
quite significantly from those of flexible polymers, one
needs to examine the issue carefully to understand this
universality, which was termed by Virk additive equiva-
lence. The point is that in spite of the different basic
equations, when conditions allow attainment of the
MDR, the balance equations for momentum and energy
are identical in form to those of the flexible polymers
(Benzi, Ching, et al., 2005; Ching et al., 2006). The differ-
ences between the two types of polymers arise when we
consider how the MDR is approached, and crossovers
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back to the Newtonian plugs, all issues that are consid-
ered below.

A. Hydrodynamics with rodlike polymers

The equation for the incompressible velocity field
U(r,t) in the presence of rodlike polymers has a form
isomorphic to Eq. (3.4),

U
—+U-VU=y,AU-Vp+V -0,

P (4.1)

but with another o= 0, playing the role of an extra
stress tensor caused by polymers.

The calculation of the tensor o for rigid rods by Doi
and Edwards (1988) used realistic assumptions that the
rodlike polymers are massless and have no inertia. In
other words, rodlike polymers are assumed to be at all
times in local rotational equilibrium with the velocity
field. Thus the stress tensor does not have a contribution
from rotational fluctuations against the fluid, but rather
only from velocity variations along the rodlike object.
Such variations lead to “skin friction,” and this is the
only extra dissipative effect that is taken into account
(Brenner, 1974; Hinch and Leal, 1975, 1976; Manhart,
2003). The result of these considerations is the following
expression for the additional stress tensor:

T = 6v,n,n,(nn;S;j), rodlike polymers, (4.2)

where v, is the polymeric contribution to the viscosity at
vanishingly small and time-independent shear; v, in-
creases linearly with the polymer concentration, making
it an appropriate measure for the polymer’s concentra-
tion. The other quantities in Eq. (4.2) are the velocity

gradient tensor

Sup = U Jox,, (4.3)

and n=n(r,t) is a unit (n-n=1) director field that de-
scribes the polymer’s orientation. Notice that for flexible
polymers Eq. (3.6) for T, is completely different from
Eq. (4.2). The difference between Egs. (4.2) and (3.6) for
the additional stress tensor in the cases of rodlike and
flexible polymers reflects their very different micro-
scopic dynamics. For flexible polymers the main source
of interaction with turbulent fluctuations is the stretch-
ing of polymers by the fluctuating shear s. This is how
energy is taken from the turbulent field, introducing an
additional channel of dissipation without necessarily in-
creasing the local gradient. In the rodlike polymer case
dissipation is only taken as the skin friction along rod-
like polymers. Bearing in mind all these differences it
becomes even more surprising that the macroscopic
equations for the mechanical momentum and kinetic en-
ergy balances are isomorphic for the rodlike and flexible
polymers, as demonstrated below.

B. The balance equations and the MDR

Using Eq. (4.2) and Reynolds decomposition (2.1),
with the definition R;=n;n;, we compute
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<a-xy> = 6Vp<nyRijSij> = 6Vp[S<R)25y> + <nyRijsij>]-
(4.4)

Now we make use of the expected solution for the con-
formation tensor in the case of large mean shear. In such
flows we expect a strong alignment of rodlike polymers
along the streamwise direction x. Then the director com-
ponents n, and n, are much smaller than n,~1. For
large shear we can expand n, according to

——

nxzvl—n/%—nizl—%(n§+n§). 4.5)

This expansion allows us to express all products
RapRea=nanpnng in terms that are linear in R, up to

third order terms in n,~n,. In particular,

Re~1-2(Ry+R..), Riy ~TRy,. (4.6)

With Eq. (4.6) the first term on the right-hand side of
Eq. (4.4) can be estimated as

6v,5(R3,) =11, (RS, & =6. (4.7)

The estimate of the second term on the right-hand side
of Eq. (44) needs further calculations which can be
found in Benzi, Ching, et al. (2005) and Ching et al.
(2006), with the result that it is of the same order as the
first one. Finally we present the momentum balance
equation in the form

VQS +Cq Vp<Ryy>S + W:p,L. (48)

Another way of writing this result is in the form of an
effective viscosity,

v(y) S+ W=p'L, (4.9)

where the effect of the rodlike polymers is included by
the effective viscosity »(y):

u(y) = v+ (R, (4.10)

We see that despite the different microscopic stress ten-
sors, the final momentum balance equation is the same
for the flexible and the rodlike polymers. Additional cal-
culations by Benzi, Ching, et al. (2005) showed that the
energy balance equation attains the precisely the same
form as Eq. (3.14). Evidently this immediately translates,
via the theory of the previous sections, to the same
MDR by the same mechanism, and therefore the addi-
tive equivalence.

V. NONUNIVERSAL ASPECTS OF DRAG REDUCTION:
FLEXIBLE POLYMERS

In this section we return to the crossover phenomena
described in Secs. I.B.2 and 1.B.3 and provide the theory
(Benzi, L’vov, et al., 2004) for their understanding. First,
we refer to the experimental data in Fig. 3.

A. The efficiency of drag reduction for flexible polymers

When there exist crossovers back from the MDR to
the Newtonian plugs the mean velocity profile in the
flexible polymer case consists of three regions (Virk,
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oo log y*

FIG. 12. (Color online) Schematic mean velocity profiles. Re-
gion 1, y* <y\,, viscous sublayer. Region 2, y* > yy, logarithmic
layer for the turbulent Newtonian flow. Region 3, y{<y*
<yy=(1+Q)y\, MDR asymptotic profile in the viscoelastic
flow. Region 4, y* > yy,, Newtonian plug in the viscoelastic flow.

1975): a viscous sublayer, a logarithmic elastic sublayer
(region 3 in Fig. 12) with the slope greater then the New-
tonian one, Eq. (1.5), and a Newtonian plug (region 4).
In the last region the velocity follows a log law with the
Newtonian slope, but with some velocity increment AV*:

VH(y") = kg Iny* + B + AV*, (5.1)
Note that we have simplified the diagram for the sake of
this discussion: the three profiles Egs. (1.2), (1.3), and
(1.5) intercept at one point y*=yy=xy'=11.7=26*. In
reality the Newtonian log law does not connect sharply
with the viscous solution V*=y*, but rather through a
crossover region of the order of &'

The increment AV* which determines the amount of
drag reduction is in turn determined by the crossover
from the MDR to the Newtonian plug (see Fig. 12). We
refer to this crossover point as yy. To measure the qual-
ity of drag reduction one introduces (Benzi, L’vov, et al.,
2004) a dimensionless drag reduction parameter

+

0=2Y_1. (5.2)
YN

The velocity increment AV™* is related to this parameter

as follows:

AV = (i) = i HIn(yy/yR) = BIn(1 + Q). (5.3)
Here B=xy'— kg =9.4. The Newtonian flow is then a
limiting case of the viscoelastic flow corresponding to
0=0.

The crossover point yy, is nonuniversal, depending on
Re, the number of polymers per unit volume c,, the
chemical nature of the polymer, etc. According to the
theory in the last section, the total viscosity of the fluid
viot(y) =vp+v,(y*) [where v,(y*) is the polymeric contri-
bution to the viscosity which is proportional to (R,,)] is
linear in y* in the MDR region:
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Vialy) = vy Iy N <yt <y (5.4)
When the concentration of polymers is small and Re is
large enough, the crossover to the Newtonian plug at yy,
occurs when the polymer stretching can no longer pro-
vide the necessary increase of the total fluid viscosity. In
other words, in that limit the crossover is due to the
finite extensibility of the polymer molecules. Obviously,
the polymeric viscosity cannot be greater than v, ;..
which is the viscosity of the fully stretched polymers.
Thus the total viscosity is limited by v+ v, n. Equating

Yo+ V) max and v, (yy) gives us the crossover position
(5.5)

It follows from Eq. (5.2) that the drag reduction param-
eter is determined by

y(/ = yItI(VO + v, max)/VO‘

(5.6)

At this point we need to relate the maximum poly-
METIC VISCOSity ¥, n,y to the polymer properties. To this
aim we estimate the energy dissipation due to a single,
fully stretched, polymer molecule. In a reference frame
comoving with the polymer’s center of mass the fluid
velocity can be estimated as u=rVu (the polymer’s cen-
ter of the mass moves with the fluid velocity due to neg-
ligible inertia of the molecule). The friction force ex-
erted on the ith monomer is estimated using Stokes law
with du; being the velocity difference across a monomer,

(5.7)

where ¢ is an effective hydrodynamic radius of one
monomer (depending on the chemical composition) and
r; is the distance of the ith monomer from the center of
the mass. In a fully stretched state r;= & (the monomers
are aligned along a line). The energy dissipation rate
(per unit volume) is equal to the work performed by the
external flow

¢, small, Re large.

0= Vp maX/VO’

F; = povy&éu; = povoéri Vu,

dE =~ & X
s Cp% Fiéu; = p0V0§3cpr(Vu)2
= Po¥p max(Vu)z' (58)
We thus can estimate v, a4
Yy max = WEC,N. (5.9)
Finally, the drag reduction parameter Q is given by
0= §3CPN13), c, small, Re large. (5.10)

This is the central theoretical result of Benzi, L’vov, et al.
(2004), relating the concentration ¢, and degree of poly-

merization N, to the increment in mean velocity AV via
Eq. (5.3).

B. Drag reduction when polymers are degraded

The main experimental results are summarized in Fig.
3. Note that in this experiment the flow geometry is
rather complicated: with counter-rotating disks the lin-
ear velocity depends on the radius, and the local Rey-
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FIG. 13. (Color online) Drag reduction efficiency %DR as
function of the drag reducing parameter Q for different cen-
terline Reynolds numbers Re: 1.2X 105, 1.2x10° and 1.2
X107 (from top to bottom).

nolds number is a function of the radius. The drag re-
duction occurs, however, in a relatively small near-wall
region, where the flow can be considered as a flow near
the flat plate. Thus one considers (Benzi, L'vov, et al.,
2004) an equivalent channel flow—with the same Re and
a half-width L of the order of height/radius of the cylin-
der. In this plane geometry the torques in Eq. (1.7)
should be replaced by the pressure gradients py y:

PN =Dy

PN

%DR = X 100. (5.11)

In order to relate % DR with the drag reduction param-
eter O, one rewrites Eq. (5.1) in natural units,

V(y) = \p' LI In(y\p'Livg) + B + AV*].  (5.12)

To find the degree of drag reduction one computes py,
and py keeping the centerline velocity V(L) constant.
Defining the centerline Reynolds number as Re, we re-
write

V(L)L

Yo

=Re[xg' InRe + Bg + AV*]. (5.13)
This equation implicitly determines the pressure gradi-
ent and therefore the %DR as a function of Q and Re.
The set of Egs. (5.3) and (5.13) is readily solved numeri-
cally, and the solution for three different values of Re is
shown in Fig. 13. The middle curve corresponds to Re
=1.2x10°, which coincides with the experimental condi-
tions (Choi et al., 2002). One sees, however, that the de-
pendence of % DR on Re is rather weak.

One important consequence of the solutions shown in
Fig. 13 is that for small Q (actually for Q0 <0.5 or % DR
<20), %DR is approximately a linear function of Q. The
experiments (Choi et al., 2002) lie entirely within this
linear regime, in which we can linearize Eq. (5.13) in
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AV™, solve once for py, and once for py (using AV*=0).
Computing Eq. (5.11) we find an approximate solution
for the %DR:

280

%DR = —
Ky ln(ReN) + BK

X 100. (5.14)

Here Rey is the friction Reynolds number for the New-
tonian flow, i.e., the solution of Eq. (5.13) for AV*=0.

It is interesting to note that while the % DR depends
on the Reynolds number, the ratio of different %DR’s
does not [to O(Q)]:

1
% DRM Q(l) V;)max

%DR? 0@~ @

p max

(5.15)

This result, together with Eq. (5.9), rationalizes com-
pletely the experimental finding of Choi et al. (2002)
summarized in Fig. 3. During the DNA degradation, the
concentration of polymers increases by a factor of 2,
while the number of monomers N, decreases by the
same factor. This means that % DR should decrease by a
factor of 4, as is indeed the case.

The experimental results pertain to high Re and small
¢, Where we can assert that the crossover results from
exhausting the stretching of polymers such that the
maximal available viscosity is achieved. In the linear re-
gime relevant to this experiment the degradation has a
maximal effect on the quality of drag reduction Q, lead-
ing to the precise factor of 4 in the results shown in Fig.
3. Larger values of the concentration of DNA will ex-
ceed the linear regime as is predicted by Fig. 13; then the
degradation is expected to have a smaller influence on
the drag reduction efficacy. It is worthwhile to test the
predictions of this theory also in the nonlinear regime.

C. Other mechanisms for crossover

Having any reasonable model of polymer laden flows
at our disposal we can address other possibilities for the
saturation of drag reduction. We expect a crossover
from the MDR asymptote back to the Newtonian plug
when the basic assumptions on the relative importance
of the various terms in the balance equations lose their
validity, i.e., when (i) turbulent momentum flux W be-
comes comparable with the total momentum flux p'L,
or when (ii) turbulent energy flux hK*?/y becomes of
the same order as turbulent energy production WS. In
fact, it was shown (Benzi et al., 2006) using the FENE-P
model that both these conditions give the same cross-
over point

_ mp'L
v (P)

(5.16)

Note that 7(y)=7/(P(y)) is the effective nonlinear poly-
mer relaxation time. Therefore condition (5.16) can be
also rewritten as
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Syv)m(yy) =1. (5.17)

In writing this equation we use the fact that the cross-
over point belongs also to the edge of the Newtonian
plug where S(y)=+\p'L/y. The left-hand side of this
equation is simply the local Deborah number (the prod-
uct of local mean shear and local effective polymer re-
laxation time). Thus the crossover to the Newtonian
plug ocurrs at the point where the local Deborah num-
ber decreases to ~1. We expect that this result is correct
for any model of elastic polymers, not only for the
FENE-P model considered here.

To understand how the crossover point yy, depends on
the polymer concentration and other parameters, one
needs to estimate mean value of the Peterlin function
(P). Following Benzi et al. (2006) we estimate the value
of (P) as

1
~1-HR)’

where (R)=(R,,+R,,+R_)~(R+2R,,) and y~1/p;,
(for simplicity we disregard py). We know from before
that

(R = (SDXR
and therefore at the crossover point (5.17)

Ry =(R (R)=(R

(P) (5.18)

) (5.19)

yy>’ yy>'

The dependence of (R,,) on y in the MDR region fol-
lows from Egs. (3.11), since

r/r_
y\p'L

Vp

Then at the crossover point y=yvy
1

(P)= ————.

1= yyw\p'Llv,

Substituting this estimate into Eq. (5.16) gives the final
result

Crp'L

—_— . 5.20
1+9p'L7lv, (520

yv=

Here C is constant of the order of unity. Finally, intro-
ducing a dimensionless concentration of polymers

&=, (5.21)
Yo
one can write denominator in Eq. (5.20) as
'L 1p'L D
1+7p_7:1+~_p 7-=1+~—e,
Vp Cp Vo Cp
where
"L
De=2%T (5.22)
Yo

is the (global) Deborah number. Then for the dimen-
sionless crossover point yi,=yy\p'L/v, one obtains
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FIG. 14. The mean velocity profiles for flexible polymer addi-
tives with =1, 5, 10, 20, 50, 100, and 500 from below to above.
Note that the profile follows the MDR until it crosses over
back to the Newtonian plug.

CDe

— (5.23)
1+ De/é,

yv=
This prediction can be put to direct test when ¢, is
very large, or equivalently in the Oldroyd-B model (Bird
et al., 1987) where P=1 (Benzi, Ching, et al., 2004). In-
deed, in numerical simulations when the Weissenberg
number was changed systematically [cf. Yu et al. (2001)],
one observes the crossover to depend on De in a man-
ner consistent with Eq. (5.23). The other limit when ¢, is
small is in agreement with the linear dependence on ¢,
predicted in Eq. (5.10).
We thus reach conclusions about the saturation of
drag reduction in various limits of the experimental con-
ditions, in agreement with experiments and simulations.

VI. CROSSOVER PHENOMENA WITH RODLIKE
POLYMERS

A. The attainment of the MDR as a function of concentration

At this point we return to the different way that the
MDR is approached by flexible and rodlike polymers
when the concentration of the polymer is increased. As
discussed above, in the case of flexible polymers the
MDR is followed until the crossover point y, already
discussed in great detail. The rodlike polymers attain the
MDR only asymptotically, and for intermediate values
of the concentration the mean velocity profile increases
gradually from the von Kdrman log law to the MDR log
law.

This difference can be fully understood in the context
of the present theory. The detailed calculation address-
ing this issue was presented by Ching et al. (2006). The
results of the calculation, presented as the mean velocity
profiles for increasing concentration of the two types of
polymers, are shown in Figs. 14 and 15. Note the differ-
ence between these profiles as a function of the polymer
concentration. While the flexible polymer case exhibits
the feature (Virk, 1975; Virk et al., 1997) that the velocity
profile adheres to the MDR until a crossover to the



240 Procaccia, L’vov, and Benzi: Collogquium: Theory of drag reduction by ...

80

60

20

0 1 10 100 1000

FIG. 15. The mean velocity profile for rodlike polymer addi-
tives with »=1, 5, 10, 20, 50, 100, 500, 1000, 5000, and 10 000
from below to above. Note the typical behavior expected for
rodlike polyemrs, i.e., the profile diverges from the von
Kérman log law, reaching the MDR only asymptotically.

Newtonian plug is realized, the rodlike case presents a
“fan” of profiles which only asymptotically reach the
MDR. We also notice that the flexible polymer matches
the MDR faithfully for relatively low values of v
=,/ 1), whereas the rodlike case attains the MDR only
for much higher values of ». This result is in agreement
with the experimental finding of Wagner et al. (2003) and
Bonn et al. (2005) that the flexible polymer is a better
drag reducer than the rodlike analog.

The calculation of Ching et al. (2006) allows a
parameter-free estimate of the crossover points yy, from
the MDR to the Newtonian plug in the case of flexible
polymers. The resulting estimate reads

yh =12+ 0.1, (6.1)

These estimates agree well with the numerical results in
Fig. 14. No such simple calculation is available for the
case of rodlike polymers since there is no clear point of
departure for small .

We note that the higher efficacy of flexible polymers
cannot be easily related to their elongational viscosity as
measured in laminar flows. Some studies (den Toonder
et al., 1995; Wagner et al., 2003; Bonn et al., 2005), pro-
posed that there is a correlation between the elonga-
tional viscosity measured in laminar flows and the drag
reduction measured in turbulent flows. We find here that
flexible polymers do better in turbulent flows due to
their contribution to the effective shear viscosity, and
their improved capability in drag reduction stems simply
from their ability to stretch, something that rodlike poly-
mers cannot do.

B. Crossover phenomena as a function of the Reynolds
number

Finally, we address the drag enhancement by rodlike
polymers when the values of Re are too small, see Fig. 5.
The strategy of Amarouchene et al. (2007) was to de-
velop an approximate formula for the effective viscosity
in the case of rodlike polymers that interpolates prop-
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erly between low and high values of Re. For that pur-
pose we discuss the high Re form of v, derive the form
for low value of Re, and then offer an interpolation for-
mula.

Even for intermediate values of Re one cannot ne-
glect y in the production term p’(L—y) in the momen-
tum balance equation. Keeping this term the momentum
balance equation becomes, in wall units,

+

y
1+ V;Ryy)S+ +Wr=1- Re’ (6.2)
where v, = v,/ v
The energy balance equation remains as before,
K+ (K+)3/2
WSt ~a*(1 + y;zfeyy)(yT)2 +b = (6.3)

As was explained above, Egs. (6.2) and (6.3) imply that
polymers change the properties of flows by replacing the
viscosity by

v=1+ V;Ryy. (64)

In the fully developed turbulent flow with rodlike poly-
mers, when Re is very large, Benzi, Ching, et al. (2005)
showed that R, depends on K* and S™:

K*
Ryy = (y+S+)2 .

Benzi, Cheng, et al. (2005) argued that for large Re, K*
grows linearly with y* and thus the viscosity profile is
linear.

Next consider low Re flows. According to Eq. (6.4),
the value of v depends on v; and R,. The value of V;
is determined by the polymer properties such as the
number of monomers, their concentration etc., and thus
V; should be considered as an external parameter in the
equation. The value of R, on the other hand, depends
on the properties of the flow. In the case of laminar flow
with a constant shear rate, ie., K*'=W*=0 and S*
=const, it was shown theoretically by Doi and Edwards
(1988) that

21/3

(6.5)

R (6.6)

wT De23”
Thus, the effective viscosity is reduced if § is increased,
and therefore the rodlike polymer solution is a shear-
thinning liquid. Naturally, the value of De changes with
Re. To clarify this dependence we consider the momen-
tum equations (2.4) at y=0 in the Newtonian case,

V()S :p,L. (67)
Usually in experiments the system size and the working
fluid remain the same. Therefore v, and L are constants
and Re depends on p’ L only. According to Eq. (1.1), Re,
grows as Vp'L and therefore

De = %Re2 (6.8)

by Eq. (6.7). Putting into Eq. (6.6), we have
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various values of v,.

(6.9)

v=1+ V;@ ,

where N =1,/ yL? is a constant.

In the case of intermediate Re, we need an interpola-
tion between Egs. (6.5) and (6.6). To do this note that
when y* is small, the solution of Egs. (2.6), (6.2), and
(6.3), result in Wr=K*=0 in the viscous sublayer. This
implies that the flow cannot be highly turbulent in the
viscous sublayer. Thus, it is reasonable to employ Eq.
(6.6) as long as y* is small. On the other hand, as the
upper bound of y* is Re, when y™ is large, it automati-
cally implies that Re is large. The laminar contribution is
therefore negligible as it varies inversely with Re. The
effective viscosity due to the polymer is dominated by
the turbulent estimate, Eq. (6.5). To connect these two
regions we simply use the pseudosum:

+ K+ + K+
V=1+Vp W-’-WT)Z =g+vp(y+T)2,
where g=1+v/A\/Re*3. One can see that the limits for
both high and low Re are satisfied.

The form of Eq. (6.10) for v was incorporated into
the balance equations which were analyzed and solved
self-consistently by Amarouchene et al. (2007); one of
the most interesting results, which can be directly com-
pared to the data in Fig. 5, refers to the drag reduction
as a function of concentration for rodlike polymers, pre-
sented in Prandtl-Kdarmdan coordinates. Results of the
theoretical predictions are shown in Fig. 16, and the
qualitative agreement with experimental observations is
obvious.

Another interesting comparison with experimental
findings is available from Amarouchene et al. (2007)
where the percentage of drag enhancement and reduc-
tion were measured as a function of v,. Quantitative
comparison needs a careful identification of the material

(6.10)
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FIG. 17. (Color online) Percentage drag reduction as a func-
tion of Re for two values of the concentration of the rodlike
polymer. Symbols are results of experiments and solid lines are
theory, cf. Amarouchene et al. (2007).

parameters in the theory and experiment, and was de-
scribed by Amarouchene et al. (2007). Figure 17 shows
the comparison of the percentage of drag reduction (en-
hancement) between the theoretical predictions and ex-
perimental results. The two data sets shown pertain to
¢,=250 and 500 wppm. The agreement between theory
and experiment is satisfactory.

VII. DRAG REDUCTION BY BUBBLES

In order not to give the impression that polymers are
the only additives that can reduce the drag, or that they
provide the only technologically preferred method, we
discuss briefly drag reduction by other additives like sur-
factants and bubbles Gyr and Bewersdorff (1995). Gen-
erally speaking, the understanding of drag reduction by
these additives lags behind what had been achieved for
polymers. The importance of drag reduction by bubbles
cannot be, however, overestimated; for practical applica-
tions in the shipping industry the use of polymers is out
of the question for economic and environmental rea-
sons, but air bubbles are potentially very attractive
(Kitagawa et al., 2005).

The theory of drag reduction by small concentrations
of minute bubbles is relatively straightforward, since un-
der such conditions the bubbles only renormalize the
density and the viscosity of the fluid, and a one-fluid
model suffices to describe the dynamics (L’vov et al.,
2005b). The fluid remains incompressible, and the equa-
tions of motion are basically the same as for a Newton-
ian fluid with renormalized properties. The amount of
drag reduction under such conditions is, however, lim-
ited. But when the bubbles increase in size, the one-fluid
model loses its validity since the bubbles become dy-
namical in the sense that they are no longer Lagrangian
particles, their velocity is no longer the fluid velocity at
their center, and they begin to fluctuate under the influ-
ence of local pressure variations. The fluctuations of the



242 Procaccia, L’vov, and Benzi: Collogquium: Theory of drag reduction by ...

bubbles are of two types: (i) the bubbles are no longer
spherical, distorting their shape according to the pres-
sure variations, and (ii) the bubbles can oscillate radially
(keeping their spherical shape) due to the compressibil-
ity of the gas inside the bubble. The first effect was stud-
ied numerically using the “front tracking” algorithm of
Kawamura and Kodama (2002) and Lu et al. (2005).
However, the results indicate either a drag enhancement
or a limited and transient drag reduction. This leads one
to study the possibility of explaining bubbly drag reduc-
tion by bubble oscillations. Indeed, a theoretical model
proposed by Legner (1984) successfully explained the
bubbly drag reduction by relating turbulent viscosity in
the bubbly flow to the bulk viscosity of the bubbles.
While the bulk viscosity is important only when the
bubbles are compressible, it is important and interesting
to see how and why it affects the charactistics of the
flow. Here we review how drag reduction is caused by
bubbles when bubble oscillations are dominant. Finally,
we compare our finding with the results of Legner
(1984), showing that a nonphysical aspect of that theory
is removed, while good agreement with experiment is
retained.

A. Average equations for bubbly flows: The additional stress
tensor

Dealing with bubbles, we cannot set the fluid density
to unity any longer and we must display it explicitly.
Here a Newtonian fluid with density p is laden with
bubbles of vanishingly small density, and radius R which
is much smaller than the outer scale of turbulence L.
The volume fraction of bubbles C is taken sufficiently
small such that direct interactions between bubbles can
be neglected. In writing the governing equations for the
bubbly flow we assume that the length scales of interest
are larger than the bubble radius. Later we distinguish,
however, between the case of microbubbles whose ra-
dius is smaller than the Kolmogorov scale 7 and bubbles
whose radius is of the order of 7 or slightly larger. For
length scales larger than the bubbles one writes
(Biesheuvel and Wijngaarden, 1984; Sanghai and Didwa-
nia, 1993; Zhang and Prosperetti, 1994)

ou
p(l—C)[;+U-VU]:—Vp+V-0'+CV T,
(7.1)

d1-0C)
ot

+V-(1-OU=0. (7.2)

In these equations, U is the velocity of the carrier fluid,
and

oU;, odU;
2 (?X] (7)(1‘

Here uy=pvy. The effect of the bubbles appears in two
ways, one through the normalization of the fluid density,
p— p(1-C), and the second is via the extra stress tensor
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7. Note that in the case of polymers we accounted only
for the additional stress tensor since the actual volume
fraction of polymers is minute, typically less than 107, A
typical value of the bubbles volume fraction is 0.05 or
even more, and cannot be neglected.

The evaluation of the extra stress tensor 7 is tedious.
There are a number of forces acting on bubbles, but
following Lo et al. (2006) we neglect gravity and the lift
force. Lo et al. (2006) found that the add-mass force due
to bubble oscillations and the add-mass force due to
bubble acceleration are of the same order of magnitude.
The viscous forces were, of course, taken into account.
The result is of the following form:

r=p{li(w-U)-(w-U) - RR-3R*)I
1w -U)(w-U) + s pyot,

Here I is the unit tensor and w is the bubble velocity

(7.4)

which differs from the carrier velocity U. R stands for
the rate of change of the bubble radius R. The relative
importance of the various terms in 7 depends on the
values of Re and also on the so-called Weber number,
which is defined as

plw - UPR
ma—

The Weber number is the ratio of the kinetic energy of
the fluid associated with the bubble motion over the sur-
face energy of the bubble itself due to surface tension 7.
When We<1 the bubbles can be considered as rigid
spheres. If We is sufficiently large, the bubbles begin to
deform and oscillate; this contributes a significant con-
tribution to 7. In the following section we show that this
can be crucial for drag reduction.

For very small bubbles (microbubbles) of very small
density the last term in 7, i.e., uyS, which is the viscous
contribution, is the only one that survives. In this case
the bubble contribution to the stress tensor can be com-
bined with o in Eq. (7.1), resulting in the effective vis-
cosity given by

We = (7.5)

treir=(1+30)u. (7.6)

The study of drag reduction under this renormalization
of the viscosity and the density was presented by L'vov
et al. (2005b) with the result that drag reduction can be
obtained by putting the bubbles out of the viscous sub-
layer and not too far from the wall. The amount of drag
reduction, is however, rather limited in such circum-
stances.

B. Balance equations in the turbulent boundary layer

At this point we apply the formalism detailed above
to the question of drag reduction by bubbles in a station-
ary turbulent boundary layer with plain geometry. This
can be a pressure driven turbulent channel flow or a
plain Couette flow, which is close to the circular Couette
flow realized by van den Berg et al. (2005). As before, we
take the smallest geometric scale to be 2L, the unit vec-
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tor in the streamwise and spanwise directions to be X
and Z, respectively, and the distance to the nearest wall
to be y<L. The variables that enter the analysis are
modified by the density, except for the mean shear,
which remains as in Eq. (2.2). The turbulent kinetic en-
ergy density is modified to read

= 3p(1 = C)uP), (7.7)
and the Reynolds stress
W= -p(1 - C)u,uy). (7.8)

1. Momentum balance

From Eq. (7.1) we derive the exact equation for the
momentum balance by averaging and integrating in the
usual way, and find the following for y<<L:

pP = oS + W+ C(7yy). (7.9)

Here P is the momentum flux toward the wall.

For C=0, Eq. (7.9) is the usual Eq. (2.4) satisfied by
Newtonian fluids. To expose the consequences of
bubbles we notice that the diagonal part of the bubble
stress tensor 7 [the first line on the right-hand side of Eq.
(7.4)] does not contribute to Eq. (7.9). The xy compo-
nent of the off-diagonal part of 7 is given by the second
line in Eq. (7.4). Define the dimensionless ratio

<(Wx B Ux)(wy - Uy)>
Auey) '

For later purposes it is important to assess the size and
sign of £, which was analyzed by Lo et al. (2006), and
shown that for small values of Re, { is small. On the
other hand, for large Re the fluctuating part of w is
closely related to the fluctuating part of u. The relation
is

(= (7.10)

w—U~=~2u. (7.11)

This implies that {=~2 and is positive definite, as we in-
deed assume below. With this definition we can simplify
the appearance of Eq. (7.9):
1+C(-1)
1-C '

with u. defined by Eq. (7.6).

PP = pessS + (7.12)

2. Energy balance

Next, we consider the balance of turbulent energy in
the log layer. In this region, the production and dissipa-
tion of turbulent kinetic energy are almost balanced.
The production can be calculated exactly, WS. The dis-
sipation of the turbulent energy is modeled by the en-
ergy flux which is the kinetic energy K(y) divided by the
typical eddy turn over time at a distance y from the wall,
which is +p(1-C)y/ byK, where b is a dimensionless
number of the order of unity. Thus the flux is written as
bK¥?/y\p(1-C). The extra dissipation due to the
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bubble is C(7;s;), where s;;=du;/dx;. In summary, the
turbulent energy balance equation is then written as

bIC3/2
Vp(1-C)y

As usual, the energy and momentum balance equations
do not close the problem, and we need an additional
relation between the objects of the theory, and define cp
in a manner following Eq. (2.6):

W=cik.

+ Clrys) = WS, (7.13)

ij

(7.14)

Clearly, lime_,ocp=cyn and for small C (noninteracting
bubbles) ¢33« C. Considering that in numerical simu-
lations of the incompressible bubbly flow (Lance et al,
1991; Bellakhel et al, 2004) that cp is slightly smaller
than its Newtonian counterpart, we can write

g =ck(1-B0), (7.15)
with positive coefficient B of the order of unity. We are
not aware of direct measurements of this form in bubbly
flows, but it appears natural to assume that the param-

eter B is y independent in the turbulent log-law region.

C. Drag reduction in bubbly flows

In this section we argue that bubble oscillations are
crucial in enhancing the effect of drag reduction. This
conclusion is in line with the experimental observation
of van den Berg ef al. (2005) where bubbles and glass
spheres were used under similar experimental condi-
tions. Evidently, bubble deformations can lead to the
compressibility of the bubbly mixture. This is in agree-
ment with the simulation of Ferrante and Elgobashi
(2004) where a strong correlation between compressibil-
ity and drag reduction was found.

To make the point clear we start with the analysis of
the energy balance equation (7.13). The additional stress
tensor 7;, Eq. (7.4), has a diagonal and an off-diagonal
part. The off-diagonal part has a viscous part that is neg-
ligible for high Re. The other term can be evaluated
using the estimate (7.11), leading to a contribution to
(7;8;j) written as

<%(w -U)(w - U):Vu> ~ 2uu:Vu). (7.16)

The expression on the right-hand side is the spatial tur-
bulent energy flux which is known to be very small in the
log layer compared to the production term on the right-
hand side of Eq. (7.13). We will therefore neglect the
off-diagonal part of the stress tensor in the energy equa-
tion. The analysis of the diagonal part of the stress de-
pends on the bubble oscillations and we therefore dis-
cuss separately oscillating bubbles and rigid spheres.

1. Drag reduction with rigid spheres

Consider first situations in which R=0. This is the case
for bubbles at small We, or when bubbles are replaced
by some particles which are less dense than the carrier
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fluid (van den Berg et al., 2005). When the volume of the
bubbles is fixed, the incompressibility condition for the
Newtonian fluid is unchanged, and s;=0. The diagonal
part of 7, Eq. (7.4), due to the incompressibility condi-
tion s;;=0, has no contribution to (7;s;;). As a result the
discussion following Eq. (7.16) the term due to the extra
stress tensor can be neglected and the energy balance
equation is then unchanged compared to the Newtonian
fluid. Note that the momentum balance equation is, nev-
ertheless, affected by the bubbles. Putting Eq. (7.14) into
Eq. (7.13), we have after simple algebra

Szyzc%

b2

W=p(1-C) (7.17)

To assess the amount of drag reduction we consider an
experiment (Kitagawa et al., 2005) in which the velocity
profile (and thus S) is maintained fixed. Drag reduction
is then measured by the reduction in the momentum flux
P. Substituting Eq. (7.17) into Eq. (7.12) in which one
can neglect .S, and replacing S(y)y=1/ g, we find

_p1-C+L0)c

P
ki b?

(7.18)

If there are no bubbles (C=0), the Newtonian momen-
tum flux Py reads

6
_ PCN

Py= .
N K5 b?

(7.19)

The percentage of drag reduction can be defined as

Py-P 1-C+¢0)c8
%DR = LN :1_( 6§ )Ch
PN CN

~(1-¢+3P)C. (7.20)
At small Re, {=0 and the amount of drag reduction in-
creases linearly with C. If Re is very large we expect ¢
~2, and then the drag is enhanced. This result is in good
agreement with the experimental data of van den Berg
et al. (2005). Indeed, the addition of glass beads with
density less than water caused drag reduction when Re
is small, whereas at Re~10° the drag was slightly en-
hanced.

2. Drag reduction with flexible bubbles

If the value of We is sufficiently large such that R
# 0, the velocity field is no longer divergenceless. Also,
to evaluate the extra stress tensor one needs the explicit
dynamical equation for the bubble radius. This equation
was provided by Zhang and Prosperetti (1994), and was
analyzed carefully by Lo et al. (2006). Using the results
of the analysis in Eq. (7.4) one can simplify the extra
stress tensor (for calculating the correlation (7;s;;)) to the
form
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r=p[3uV -ul + 5(w - U)(w-U)]. (7.21)

The extra turbulent dissipation due to the bubble is
(7;8;- In light of the smallness of the term in Eq. (7.16)
we find

<Tijsij> = <§/.LS,2L . (722)

The term %,usizi is of the same form as the usual dissipa-

tion term us;s; and therefore we write this as

i
P| u|3/2 ]C3/2
-0y

where A is an empirical constant. Finally, the energy
equation becomes

b(1-C)+ACK™
pV1-C y

As we derived Eq. (7.19), we again specialize the situ-
ation to an experiment in which S is constant, and com-
pute the momentum flux

_(1-0P-C+0) 5

(Gushy=A (7.23)

=WS. (7.24)

P . (7.25)

A 2 272
(1 ~C+ —c) b
b
The degree of drag reduction is then
1-0*(1-C+(C 6
%DR=1- I U=CrL )<C—B> (7.26)
N

A 2
1-C+—C
( b )

Note that A is an unknown parameter that depends on
We, and so its value is different in different experiments.
The percentage of drag reduction for various values of A
are shown in Fig. 18 where we chose @=2 and for sim-
plicity we estimate cz=cy. One sees that for a=2 and
A=0 (where the latter is associated with rigid bubbles),
we only find drag enhancement. For small values of A,
or small amplitudes of oscillations, small concentrations
of bubbles lead (for @=2) to drag enhancement, but
upon increasing the concentration we find modest drag
reduction. Larger values of A lead to considerably large
degrees of drag reduction. For A=0.15, the result agrees
reasonably with Legner’s theory which predicts % DR
~1-5(1-C)?/4 (Legner, 1984). Note that according to
Legner, there should be considerable drag enhancement
when C=0. This is of course a nonsensical result that is
absent in our theory. For A=0.8, % DR =~4C for small C.
This is the best fit to the experimental results reported
by Kitagawa et al. (2005).

VIII. SUMMARY AND DISCUSSION

We reviewed drag reduction by polymers and bubbles.
Quite generally, we have shown that drag reduction can
be understood in great detail using only a few equations
that govern the budgets of energy and momentum. Both
polymers and bubbles open up an additional channel for
dissipation, and thus pose a fundamental riddle: Why do
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FIG. 18. Predicted values of drag reduction with =2 and dif-
ferent values of A. Dashed line reproduces the predictions of
Legner’s theory which suffer from an unphysical drag enhance-
ment at C=0. For A=0 (rigid spheres) we find only increasing
drag enhancement as a function of C. For small values of A we
have first a slight drag enhancement, and then modest drag
reduction. For large values of A, associated with strong bubble
oscillations, we find significant values of drag reduction.

they reduce the drag? The answer in all cases is funda-
mentally the same: the same agents reduce the momen-
tum flux from the bulk to the wall, and this is the main
effect leading to drag reduction. The reduction in the
momentum flux overwhelms the increased dissipation.
We stressed above, and we reiterate here, that this
mechanism depends on the existence of a wall which
breaks the translational symmetry. Drag reduction must
be discussed in the context of wall-bounded flows to
make complete sense. Of course, additives may influ-
ence also the spectrum of turbulent fluctuations in ho-
mogeneous and isotropic turbulence, but this is another
story, quite independent of drag reduction.

One should make a great distinction between the two
cases. The phenomenon of drag reduction by polymers
exhibits interesting universal features which are shared
even by flexible and rodlike polymers. These features
are the most prominent experimental results that re-
quire theoretical understanding. We have shown that the
MDR has a special significance in being an edge solution
of turbulent flows. Trying to increase the reduction of
drag behind what is afforded by the MDR would relami-
narize the flow. This may be the central theoretical in-
sight that is offered in this Colloquium, providing a
simple and intuitive meaning to the nature of the MDR.
This explains why flexible and rodlike polymers have the
same MDR, even though they approach the MDR in
distinctly different ways.

Once the theory was put forth to explain the universal
aspects of drag reduction by polymers, it became also
clear that it can easily explain, in considerable quantita-
tive detail, also the nonuniversal aspects, including
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crossovers due to small concentrations of polymers, low
values of Re, and the small number of monomers in the
polymer chains. We trust that this detailed understand-
ing can help in designing and optimizing the use of poly-
mers in practical applications of drag reduction.

On the other hand, the case of bubbles exhibits much
less universality, since the placement of the bubbles with
respect to the wall and their actual density profile have
crucial consequences regarding their efficacy as drag re-
ducers. The main conclusion of our study is that bubble
oscillations can contribute decisively to drag reduction
in turbulent flows. In agreement with the experimental
findings of van den Berg et al. (2005), we find that rigid
bubbles tend to drag enhance, and the introduction of
oscillations whose amplitude is measured by the param-
eter A (Fig. 18) increases the efficacy of drag reduction.
The main drawback of the present study is that the
bubble concentration was taken uniform in the flow. In
reality a profile of bubble concentration may lead to
even stronger drag reduction if placed correctly with re-
spect to the wall. A consistent study of this possibility
calls for the consideration of buoyancy and the self-
consistent solution of the bubble concentration profile.
Such an effort must await future progress.

Note added in proof

An article by Ryskin in 1987 (Ryskin, 1987) offered a
theory that claimed to give a quantitative explanation
for such experiments as were available then. We have
not discussed this work here because we believe it does
not satisfactorily describe the essential “make or break”
observations that a theory should address.

An acceptable theory of drag reduction by flexible
polymers must explain a few crucial observations: (1) the
universality of the maximum drag reduction asymptote
(MDR) and the parameters that characterize it, (2) the
nonuniversal crossovers to the Newtonian plug when the
Reynolds number, the Debora number, or the length of
the polymers are not large enough. In addition, the
theory should explain the very different approach to the
universal maximum drag reduction asymptote (which re-
mains universal) when flexible polymers are changed by
rigid ones.

The Ryskin paper estimated the increase in the effec-
tive viscosity due to the polymers by means of a single
number vy, see his Eq. (2). However, the only way to
explain the drag reduction phenomenology discussed in
this Colloquium—for example, the MDR as a new log
law with parameters different than the classical von
Karman law—is with an effective viscosity that increases
linearly with the distance from the wall. The present dis-
cussion has used Prandtl units, wherein the kinematic
viscosity is scaled to unity, so overall changes in the vis-
cosity as a number cannot change the von Karman log
law. To achieve the needed results it is necessary to em-
ploy a hydrodynamic model of the polymer interaction
with the fluid, be it the FENE-P model or any other
reasonable model.
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APPENDIX: THE HIDDEN SYMMETRY OF THE
BALANCE EQUATIONS

Consider the following identity:
i) =1+aly"=8)=[1+aly* -8+ a(d- 5]

a

g(ﬁ)(y —5)],

(A1)

=g(5){1 +

where
g=1+a(s5-75, (A2)

Next, introduce newly renormalized units using the ef-
fective viscosity g(9), i.e.,

5= 6.

+

t— Y

Y Wi= W+,

¢ _9

5 St=8"9(5
@ ° g 8(9).

(A3)

In terms of these variables the balance equations are
rewritten as

[1+ a(y*— 6918+ Wi=1, (A4)
. A? ['w#
[+ ayt - 52 W g (A5)
y KKy

These equations are isomorphic to Egs. (3.19) and (3.20)
with &* replaced by &*. The ansatz (3.21) is then replaced
by A(a)=56g(8)"'f(as*). This form is dictated by the fol-
lowing considerations: (i) A(a)— é* when a—0, (ii) all
lengths scales in rescaled units are divided by g(4), and
thus the prefactor in front of f becomes 6"/g(), and (iii)
ad* in Eq. (3.18) is now replaced in Eq. (A5) by ad,
leading to the new argument of f. Since the function
A(a) cannot change due to the change of variables, the
function A(a) should be identical to that given by Eq.
(3.21):
5" 2

6 fladh) g(6)f(a5 ).
Using the explicit form of g(48), Eq. (A2), and choosing
(formally first) 6=6*=0 we find that f(£&)=1/(1-¢). It is
easy to verify that this is indeed the solution of the
above equation for any value of &, and therefore the
unique form of Eq. (3.22).

(A6)
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