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Equilibrium phase transitions may be defined as nonanalytic points of thermodynamic functions, e.g.,
of the canonical free energy. Given a certain physical system, it is of interest to understand which
properties of the system account for the presence, or the absence, of a phase transition, and an
investigation of these properties may lead to a deeper understanding of the physical phenomenon.
One possible way to approach this problem, reviewed and discussed in the present paper, is the study
of topology changes in configuration space which are found to be related to equilibrium phase
transitions in classical statistical mechanical systems. For the study of configuration space topology,
one considers the subsets Mv, consisting of all points from configuration space with a potential energy
per particle equal to or less than a given v. For finite systems, topology changes of Mv are intimately
related to nonanalytic points of the microcanonical entropy. In the thermodynamic limit, a more
complex relation between nonanalytic points of thermodynamic functions �i.e., phase transitions� and
topology changes is observed. For some class of short-range systems, a topology change of the Mv at
v=vt was proven to be necessary, but not sufficient, for a phase transition to take place at a potential
energy vt. In contrast, phase transitions in systems with long-range interactions or in systems with
nonconfining potentials need not be accompanied by such a topology change. Instead, for such
systems the nonanalytic point in a thermodynamic function is found to have some maximization
procedure at its origin. These results may foster insight into the mechanisms which lead to the
occurrence of a phase transition, and thus may help to explore the origin of this physical phenomenon.
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PREFACE

It was at the end of the 1990s when the application of
concepts from differential geometry to Hamiltonian dy-
namical systems led to a conjectured connection be-
tween the occurrence of equilibrium phase transitions in
classical Hamiltonian systems and some topological
quantities of configuration space subsets of these sys-
tems. Since then, the interest in this approach and the
number of people working on the topic has increased,
and so has the number of results.

At the time of this writing, an overview of the subject
is difficult to attain. First, the results are scattered
among a considerable number of publications and, sec-
ond, several of the results, although correct, demand a
reinterpretation as a consequence of recent findings and*michael.kastner@uni-bayreuth.de
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developments. The purpose of the present paper is to
assemble from the known results, as far as possible, a
coherent picture of the relation between phase transi-
tions and configuration space topology, and to indicate
new lines of research which might open up from these
concepts.

I. INTRODUCTION

Phase transitions, like the boiling and evaporating of
water at a certain temperature and pressure, are com-
mon phenomena both in everyday life and in almost any
branch of physics. Loosely speaking, a phase transition
brings about a sudden change of the macroscopic prop-
erties of a many-particle system while smoothly varying
a parameter �the temperature or the pressure in the
above example�. Probably the main reason for the un-
abated interest that phase transitions have received al-
ready for more than a century is their omnipresence in
all branches of physics �and also in related fields like
biology or engineering�: be it the formation of stars in
astrophysics, the transition to superconductivity in solid
state physics, or the opening of the DNA helix in bio-
physics, examples of many-particle systems which un-
dergo a phase transition are widespread and of indisput-
able relevance in science.

Phase transitions can occur in both equilibrium and
nonequilibrium systems, but the focus will be exclusively
on the equilibrium case in this exposition. There is a
plethora of books on the subject, ranging from experi-
mental to theoretical and mathematical treatises. Espe-
cially the theory books are to a large extent concerned
with the classification of different types of phase transi-
tion: remarkably, very different physical systems may
show quantitatively identical properties in the vicinity of
the phase transition point, and this fascinating topic of
universality, explained using the renormalization group
theory, has attracted a lot of interest especially in the
1970s and 1980s �Binney et al., 1992; Lesne, 1998�. In the
present paper, instead of discussing the characteristics of
the different types of phase transition, we take one step
back and inquire about the conditions which may lead to
the occurrence of a phase transition in a given system.

The mathematical description of equilibrium phase
transitions is conventionally based either on Gibbs mea-
sures on phase space or on �grand� canonical thermody-
namic functions, relating their loss of analyticity �or, in
other words, the appearance of a singularity� to the oc-
currence of a phase transition.1 A nonanalyticity of a
thermodynamic function leads to a discontinuity or to a

divergence in some derivative of this function, and this is
a typical signature of a phase transition as measured
experimentally. Within the �grand� canonical ensemble
of statistical mechanics, such a nonanalytic behavior can
occur only in the thermodynamic limit, in which the
number of degrees of freedom N of the system goes to
infinity.2 Conceptually, the necessity of the thermody-
namic limit is an objectionable feature: first, the number
of degrees of freedom in real systems, although possibly
large, is finite, and, second, for systems with long-range
interactions, the thermodynamic limit may even be not
well defined. These observations indicate that the theo-
retical description of phase transitions, although very
successful in certain aspects, may not be completely sat-
isfactory.

Apart from this conceptual shortcoming, in the field
of phase transitions there are many problems of applied
nature which are far from being settled. One of those is
the search for sufficient or necessary conditions for
the occurrence of a phase transition. Among the neces-
sary conditions for the occurrence of a phase transition,
there are some of reasonable generality, like the
Mermin-Wagner theorem and its generalizations
�Mermin and Wagner, 1966; Fröhlich and Pfister, 1981;
Fannes et al., 1984� or the theorems on the absence of
phase transitions in certain one-dimensional systems by
van Hove �1950� and by Cuesta and Sánchez �2004�. Yet
improved criteria are of course desirable. Less is
known about conditions sufficient to guarantee a phase
transition to take place. The Peierls argument �Peierls,
1936� or the Fröhlich-Simon-Spencer bound �Fröhlich et
al., 1976� can be used to prove the existence of phase
transitions without explicitly computing a thermody-
namic potential, but their application is model specific
and may be difficult depending on the system of interest.

The above considerations motivate a further study on
the nature of phase transitions, of the underlying mecha-
nisms leading to a nonanalytic point of a thermodynamic
function, and of the conditions under which they can
occur. A classic result identifying such a nonanalyticity
generating mechanism is the seminal theorem of Lee
and Yang, relating the properties of the zeros of the
grand-canonical partition function in the complex fugac-
ity plane to nonanalyticities of the corresponding ther-
modynamic function �Lee and Yang, 1952�. The main
issue of the present paper is to investigate the mecha-
nism which is at the basis of a phase transition using a
different approach, based on concepts from differential
geometry and topology.

This topological approach emerged from the study of
Hamiltonian dynamical systems and is therefore—at
least in its present formulation—applicable to classical
�i.e., nonquantum mechanical� systems. Hamiltonian dy-
namics can be viewed as a geodesic flow on the configu-
ration space, provided the latter is equipped with a suit-

1Standard references in mathematical physics for these two
points of view are by Ruelle �1969� and Georgii �1988�.

2To take this limit was apparently first suggested by Kramers
in 1937.
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able metric.3 By numerical methods, geometric
quantities of such metric spaces of Hamiltonian dynami-
cal systems were studied as a function of energy or tem-
perature in a series of papers �see Casetti et al. �2000�
and Pettini �2007� for reviews�. For a system undergoing
a phase transition in the thermodynamic limit, these
geometric quantities display discontinuous or cusplike
features remarkably close to the transition energy or
temperature. One possible mechanism behind such a
dramatic change of geometric quantities of configuration
space can be a change of its topology, and it was this line
of reasoning which led Pettini and co-workers to conjec-
ture a connection between phase transitions, on the one
hand, and topology changes within a family of certain
configuration space subsets, on the other hand �Caiani et
al., 1997�. Subsequently, such a connection was proven
to hold true for a certain class of systems with short-
range interactions, showing that a topology change is a
necessary condition for a phase transition to take place
�Franzosi and Pettini, 2004, 2007; Franzosi et al., 2007�.
This theorem, for the class of systems covered by its
assumptions, suggests the interpretation of certain topol-
ogy changes as the relevant mechanism behind the gen-
eration of a nonanalyticity in a thermodynamic function,
and it furthermore allows one to exclude the occurrence
of a phase transition when such topology changes are
absent.

The use of concepts from topology to describe a
physical phenomenon is particularly appealing due to
the fact that topology yields a very reductional descrip-
tion: considering only the topology of, say, a surface, a
significant amount of “information” �on curvatures, for
example� is disregarded, and only a small part �like con-
nectivity properties� is kept. If one then succeeds to cap-
ture the essentials of the phenomenon of interest with
the remaining information only, the resulting description
will be an efficient one, and one might hope to get an
unblurred view onto the mechanism which is at the basis
of the phenomenon.

The initial hope that such a topological approach
might provide a unified and completely general descrip-
tion of phase transitions turned out to be overoptimistic.
It was only in the last few years that evidence accumu-
lated, disproving the general validity of the hypothesized
connection between phase transitions and configuration
space topology �Baroni, 2002; Garanin et al., 2004; An-
gelani, Ruocco, and Zamponi, 2005; Hahn and Kastner,
2005�. This observation, perceived as a major setback at
first, appears less dramatic in light of subsequent find-
ings. However, and this was one of the motivations for
writing the present paper, it alters the understanding of

the topological approach to phase transitions, as well as
of several of the results of model calculations reported
in the literature. The aim of the present paper is to re-
view results on the relation between configuration space
topology and analyticity properties of thermodynamic
functions. This relation is found to depend on the physi-
cal situation, in particular on whether the system of in-
terest is finite or infinite and whether the interparticle
interactions are of short range or of long range. The
results may help to deepen the understanding of the ba-
sic mechanisms behind phase transitions in the infinite
system case, and they can explain the peculiar �non�ana-
lyticity properties of microcanonical entropy functions
of finite systems.

The paper is structured as follows: We start by fixing
notations and giving some basic definitions used in the
topological approach to phase transitions in Sec. II.
Since Morse theory provides a suitable mathematical
framework for the study of the topology of the configu-
ration space subsets of interest, a summary of elemen-
tary results of this theory as well as an application to a
statistical mechanical model is given in Sec. III. The re-
lation between certain topology changes and nonanalyt-
icities in thermodynamic functions of finite systems is
discussed in Sec. IV. The rest of the paper is devoted to
the more intricate case of infinite systems. A theorem
rigorously establishing a connection between phase tran-
sitions and topology changes in configuration space is
presented in Sec. V, where also results on the configura-
tion space topology of models beyond this theorem’s as-
sumptions are reviewed. In Sec. VI, the limitations of
the topological approach are explored by studying two
models for which the proposed relation between phase
transitions and configuration space topology turns out to
be invalid. Some proposed sufficiency conditions on the
topology changes, guaranteeing the occurrence of a
phase transition, are critically discussed in Sec. VII. We
conclude the paper with a summary in Sec. VIII.

II. DEFINITIONS AND PRELIMINARIES

Discussing topology and topology changes in the In-
troduction, vague reference was made to certain subsets
of configuration space. It is the aim of the present sec-
tion to fix notations and to define configuration space
subsets and thermodynamic quantities to which refer-
ence will be made throughout.

A. Standard Hamiltonian systems

We consider classical Hamiltonian systems consisting
of N degrees of freedom, characterized by some Hamil-
tonian function

H:�N → R , �2.1�

which maps the phase space �N�R2N onto the reals. For
convenience we assume H to be of the standard form

3Both Hamiltonian dynamics and geodesics of a Riemannian
manifold can be defined by some variational principle: the tra-
jectories of Hamiltonian dynamics are the extrema of the
Hamiltonian action functional, whereas the geodesics of any
Riemannian manifold are given by the extrema of the ar-
clength functional. It is this structural similarity which allows
for a geometric formulation of Hamiltonian dynamics �see
Marsden and Ratiu �1994� or Casetti et al. �2000��.
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H�p ;q� =
1
2

�p,p� + V�q� , �2.2�

where p= �p1 , . . . ,pN� is the vector of momenta and q
= �q1 , . . . ,qN� is the vector of position coordinates.
Masses have been set to unity and �·,·� denotes the usual
scalar product. The potential

V:�N → R �2.3�

maps the configuration space �N�RN onto the reals.
The restriction to Hamiltonian functions of the standard
form �2.2� is convenient, but not essential for the con-
cepts discussed.4 Throughout the paper, we assume �N
to be continuous �in contrast to classical spin models like
the Ising model or the Potts model which have a discrete
configuration space�. This will be important for the kind
of configuration space topology we consider in the fol-
lowing.

B. Configuration space subsets

From the potential function V, we define the family of
subsets �Mv�v�R, where

Mv = V−1�− �,vN� = �q � �N�V�q� � vN� . �2.4�

V−1 gives the preimage of a set under V, hence Mv is the
subset of all points q from configuration space �N for
which the potential energy per degree of freedom
V�q� /N is equal to or less than a given value v. Similarly,
the related family ��v�v�R can be defined, where

�v = V−1�vN� = �q � �N�V�q� = vN� �2.5�

consists of all points q from the configuration space �N
for which the potential energy per degree of freedom
V�q� /N is equal to a given value v. These constant po-
tential energy subsets form the boundaries of the corre-
sponding Mv, i.e.,

�v = �Mv, �2.6�

so that Mv or �v are closely related. It is therefore a
matter of convenience to use one quantity or the other,
depending on the actual situation of interest. The main
topic of this paper is the relation of topology changes of
Mv or �v to nonanalytic points of thermodynamic func-
tions.

C. Thermodynamic functions

Strictly speaking, the notion of a thermodynamic
function should be restricted to functions describing the
equilibrium behavior of systems in the thermodynamic
limit of infinitely many degrees of freedom. For matters
of convenience, we likewise will speak of thermody-
namic functions when referring to their finite system
counterparts.

Regarding their analyticity properties, thermody-
namic functions obtained from different statistical en-
sembles can differ drastically. In this paper we discuss
analyticity properties of microcanonical and canonical
thermodynamic functions.5

1. Microcanonical thermodynamic functions

The microcanonical ensemble provides the framework
for the statistical description of an isolated physical sys-
tem in which the total energy is conserved. The funda-
mental quantity of this ensemble is the Boltzmann en-
tropy or microcanonical entropy as a function of the
energy �per degree of freedom� �,

s̄N��� =
1

N
ln �

�N

dpdq	 �H�p ;q� − N�� , �2.7�

where 	 denotes the Dirac distribution.6 A related quan-
tity is the configurational microcanonical entropy as a
function of the potential energy �per degree of freedom�
v,

sN�v� =
1

N
ln �

�N

dq	 �V�q� − Nv� . �2.8�

2. Canonical thermodynamic functions

The canonical ensemble provides the framework for
the statistical description of a system coupled to an infi-
nitely large heat bath of inverse temperature 
. The fun-
damental quantity of this ensemble is the canonical free
energy

f̄N�
� = −
1

N

ln �

�N

dpdqe−
H�p;q�. �2.9�

A related quantity is the configurational canonical free
energy

fN�
� = −
1

N

ln �

�N

dqe−
V�q�. �2.10�

4For the thermodynamics of phase transitions, a quadratic
form in the momenta as in Eq. �2.2� only leads to a shift in the
free energy �however, see Casetti and Kastner �2007� for a dis-
cussion of this reasoning�. Furthermore, after becoming famil-
iar with the topological concepts and notations, the reader may
convince himself that any critical point qc of the potential V
corresponds to a critical point �0;qc� of a standard Hamil-
tonian function, and that therefore the contribution of a stan-
dard kinetic energy as in Eq. �2.2� to the topological approach
is a trivial one. As a consequence, the results presented remain
valid also for models without a kinetic energy term �which is
the situation typically encountered when studying spin systems
like the Heisenberg model�.

5The extension to further statistical ensembles is
straightforward.

6Here and in the following we define thermodynamic func-
tions always per degree of freedom, which accounts for the
factor 1/N in the definitions.
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3. Relation of microcanonical and canonical thermodynamic
functions

It follows from the definitions �2.7� and �2.9� that mi-
crocanonical entropy and canonical free energy are re-
lated by

f̄N�
� = −
1

N

ln �

R
d�N��exp�N�s̄N��� − 
��� . �2.11�

Similarly, for the configurational thermodynamic func-
tions the relation

fN�
� = −
1

N

ln �

R
d�Nv�exp�N�sN�v� − 
v�� �2.12�

holds. In the thermodynamic limit, using Laplace’s
method for the evaluation of asymptotic integrals
�Bender and Orszag, 1999�, well-known relations of ther-
modynamic functions by means of Legendre-Fenchel
transformations,

− 
f̄��
� = sup
�

�s̄���� − 
�� �2.13�

and

− 
f��
� = sup
v

�s��v� − 
v� , �2.14�

are obtained from Eqs. �2.11� and �2.12�.

D. Nonanalytic points and phase transitions

The main topic of the present paper is the relation
between topology changes within the families �Mv�v�R
or ��v�v�R of configuration space subsets defined in Sec.
II.B, on the one hand, and nonanalytic points of thermo-
dynamic functions, on the other hand.

Definition II.1. A nonanalytic point is a point in the
interior of the domain of a real function at which the
function is not infinitely many times real differentiable.
Synonymously we speak of nonanalyticities of the func-
tion.

Different definitions of thermodynamic phase transi-
tions can be found in the literature, where the most com-
mon ones are based either on the �non�uniqueness of
translationally invariant Gibbs measures on phase space
or on the �non�analyticity of thermodynamic functions.7

Throughout this paper we use the following version of
the latter approach.

Definition II.2. A phase transition is defined as a
nonanalytic point of the canonical free energy fN. The
transition is called discontinuous if the first derivative of
fN is discontinuous, otherwise it is called continuous.

In an older but somewhat misleading terminology, dis-
continuous phase transition are called first-order phase
transitions whereas continuous ones are referred to as
second-order phase transitions.

Computing first and second derivatives of the canoni-
cal free energy, one arrives at experimentally measur-
able quantities like the canonical caloric curve

u�
� =
�

�


fN�
� �2.15�

or the canonical specific heat

c�
� = − 

�

�

	
2�fN�
�

�


 , �2.16�

and the effect of the “order” of the phase transition is
enhanced in the behavior of such derivatives. For ex-
ample, in the presence of a continuous phase transition,
the caloric curve u�
� shows a kink at the transition tem-
perature 
t, whereas a discontinuity in u is observed in
the case of a discontinuous phase transition �hence the
name�. The liquid-vapor transition of water is an ex-
ample of a discontinuous phase transition, whereas the
transition from ferromagnetic to paramagnetic behavior
is a continuous one for many materials.

Note that Definition II.2 of a phase transition and its
order explicitly refers to a particular statistical en-
semble, namely, the canonical one. This situation seems
somewhat unsatisfactory and has been the cause of a
longstanding debate. Since, as mentioned in Sec. II.C,
the analyticity properties of thermodynamic functions
may depend drastically on the statistical ensembles used,
the consequences of this choice of definition are consid-
erable. One can show that the canonical free energy fN
of a system of N degrees of freedom is a smooth func-
tion for all finite N, and hence no phase transitions occur
in finite systems �Griffiths, 1972�. This is in contrast to
the behavior of microcanonical thermodynamic func-
tions like the entropy which can have nonanalytic points
also in the case of a finite number N of degrees of free-
dom. We discuss this issue in Sec. IV.

III. COMPUTATION OF TOPOLOGICAL QUANTITIES

Computations of quantities characterizing the topol-
ogy of the subsets Mv as defined in Eq. �2.4� can be
found in the literature for several statistical physics
models.8 A numerical computation has been reported by
Franzosi et al. �2000�, whereas all other results are ana-
lytic, using methods from Morse theory in most of the
cases. Morse theory plays an important role not only for
the study of model systems, but also for general investi-
gations on the relation between topology and nonanaly-

7For some examples like the Ising model both definitions are
known to coincide, for many others coincidence may be ex-
pected. However, counterexamples can be found as well, like
the case of the Kosterlitz-Thouless phase transition of the two-
dimensional XY model which has a unique translationally in-
variant Gibbs state for all temperatures �Bricmont et al., 1977�.
An introductory discussion has been given by Lebowitz �1999�.

8Such model calculations are reported by Casetti et al. �1999,
2002, 2003�; Franzosi et al. �2000�; Baroni �2002�; Angelani et
al. �2003�; Andronico et al. �2004�; Garanin et al. �2004�; Grinza
and Mossa �2004�; Kastner �2004, 2006a�; Ribeiro Teixeira and
Stariolo �2004�; Angelani, Casetti, et al. �2005�; Risau-Gusman
et al. �2005�; and Kastner and Schnetz �2006�.
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ticities of thermodynamic functions. For these reasons, a
short summary of some basic facts and concepts of this
theory is given.

A. Morse theory

Morse theory establishes a link between the two
mathematical disciplines of topology and analysis. For
an introduction to Morse theory, see Matsumoto �2002�
or Milnor �1963�. For the type of problem we are inter-
ested in, Morse theory allows us to characterize the to-
pology of the configuration space subsets Mv defined in
Eq. �2.4� by studying, by means of elementary analysis,
the critical points9 of the potential V.

We consider a smooth �i.e., infinitely many times dif-
ferentiable� function g :M→R, mapping some
m-dimensional manifold M onto the set of real numbers.
In the context of our exposition, the role of this general
function g will be played by the potential V of a stan-
dard Hamiltonian system as defined in Sec. II.A.

Definition III.1. A point qc�M is called a critical
point of g if the differential dg�qc� at qc�M vanishes.

Definition III.2. A real number gc is a critical value of
g if g�qc�=gc for some critical point qc of g.

With these definitions, we can state a first theorem
relating properties of the function g to the topology of
the subsets

Mt = �q � M�g�q� � t� �3.1�

�defined analogous to the configuration space subsets
Mv in Eq. �2.4��.

Theorem III.3. If g has no critical values in the interval
�a ,b�, then Ma and Mb are homeomorphic, i.e., there
exists a homeomorphism10 mapping Ma onto Mb.

Homeomorphicity is synonymous to topological
equivalence, so Ma and Mb are topologically equivalent,
Ma�Mb, under the above stated conditions: no topology
changes take place within the family �Mt�t��a,b� upon
variation of the parameter t in the interval �a ,b�.

Proof of Theorem III.3. See Chap. 3.1 of Matsumoto
�2002�. �

At least in its standard form, Morse theory applies to
the class of so-called Morse functions.

Definition III.4. A critical point qc of g is nondegener-
ate if the determinant of the Hessian of g at qc is non-
zero.

Definition III.5. A function g :M→R is called a Morse
function if every critical point of g is nondegenerate.

Then Morse theory relates the topology of Mt to the
critical points qc of g and their indices.

Definition III.6. The index of a critical point qc of g is
the number of negative eigenvalues of the Hessian of g
at qc.

Theorem III.7. If the interval �a ,b� contains a single
critical value of g with a single critical point qc, then the
topology of Mb differs from the topology of Ma in a way
which is determined by the index i of the critical point:
Mb is homeomorphic to the manifold obtained from at-
taching to Ma an i-handle, i.e., the direct product of an
i-disk and an �m− i�-disk.

Proof. A proof of this theorem, together with a pre-
cise definition of “attaching a handle,” can be found in
Chap. 3.1 of Matsumoto �2002�. A generalization to criti-
cal values with more than one critical point is straight-
forward and involves the attachment of more than one
handle. �

With Theorems III.3 and III.7, we have transformed
the problem of determining the topology of Mt to the
problem of determining the critical points and critical
indices of the underlying function g, which brings us
back from topology onto the familiar grounds of analy-
sis.

At least in this standard version, the results of Morse
theory apply only to the class of Morse functions speci-
fied in Definition III.5. Conceptually, this is an insignifi-
cant restriction, since Morse functions on M form an
open dense subset of the space of smooth functions on
M �Demazure, 2000�. This means that, if the potential V
of the Hamiltonian system we are interested in is not a
Morse function, we can transform it into a Morse func-

tion V̄ by adding an arbitrarily small perturbation, for
example,

V̄�q� = V�q� + �
i=1

N

hiqi �3.2�

with some small hi�R �i=1, . . . ,N�. For practical pur-
poses, however, adding a perturbation—and thereby de-
stroying a symmetry present in V—may render the ex-
plicit computation of critical points and indices much
more complicated �or even impossible�.

Theorem III.7 asserts that the topology of the mani-
folds Mt is characterized by the critical points and their
indices, but the “information” contained in these
quantities—especially in the case of high-dimensional
manifolds—may be somewhat difficult to handle. A sim-
pler, nonetheless useful characterization of the topology
is given by the Euler characteristic, which can be ex-
pressed by means of Morse numbers �see any textbook
on algebraic topology for a definition of the Euler char-
acteristic for quite general topological spaces, for ex-
ample, Vick �1994��.

Definition III.8. The Morse numbers �i �i=1, . . . ,m� of
a function g on an m-dimensional manifold �or
m-manifold� M are defined as the numbers of critical
points of g with index i.

Theorem III.9. The Euler characteristic � of an
m-manifold M can be expressed as the alternating sum
of the Morse numbers �i of any Morse function on M,

� = �
i=0

m

�− 1�i�i. �3.3�

9Not to be confused with critical points in the theory of phase
transitions and critical phenomena.

10A homeomorphism is a continuous bijection between mani-
folds with continuous inverse.
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Proof. See, for example, Chap. 2, Sec. 9.3 of Fomenko
�1987�. �

An important property of the Euler characteristic � is
that it is a topological invariant, i.e., different values of �
for manifolds M1 and M2 imply that M1 and M2 are
topologically nonequivalent. Hence monitoring the Eu-
ler characteristic of the family �Mv�v�R of configuration
space subsets of some Hamiltonian system under varia-
tion of the parameter v, we may get an impression of the
way the topology of the Mv changes.

B. Model calculation: Mean-field k-trigonometric model

In an explicit calculation, depending on the methods
applied �or applicable�, different quantities characteriz-
ing the topology of the subsets Mv may be obtained.
Typical examples are as follows:

�i� the critical points qc of V and their indices �Defi-
nitions III.1 and III.6�;

�ii� the critical values vc=V�qc� /N at which the topol-
ogy of the Mv changes �Definition III.2�; and

�iii� the Morse numbers �i of the Mv �Definition
III.8�, which, by Theorem III.9, allow one to cal-
culate the Euler characteristic of Mv.

Such results have been reported in the literature for sev-
eral model systems. As an illustrating example, we re-
view results for the critical points and for the Euler char-
acteristic of the mean-field k-trigonometric model.

This model is characterized by the potential

Vk�q� =


Nk−1 �
i1,. . .,ik=1

N

�1 − cos�qi1
+ ¯ + qik

�� , �3.4�

where �0 is some coupling constant and N is the num-
ber of degrees of freedom of the system. The position
coordinates qi� �0,2�� �i=1, . . . ,N� are angular vari-
ables, so that the configuration space has the shape of an
N-dimensional torus. The potential describes a k-body
interaction where k�N, and the interaction is of mean-
field type, i.e., each degree of freedom interacts with
each other at equal strength. For this model, a number
of thermodynamical as well as topological quantities
have been computed by Angelani et al. �2003� and An-
gelani, Casetti, et al. �2005�, the latter ones by making
use of Morse theory.11 Among those results we mention
the following.

�i� In the thermodynamic limit N→�, the mean-field
k-trigonometric model does not show a phase
transition for k=1, whereas it has a phase transi-
tion for k�2. The transition is continuous for k
=2 and discontinuous for all k�3. The potential
energy at which the phase transition occurs is vt
=, where the index t is for transition.

�ii� For any finite N, the ith component of the critical
points qc

m,� of the potential Vk is given by

�qc
m,��i = �mi −

k − 1

k �2� + �	�
j=1

N

mj −
N

2 
��
�mod 2�� , �3.5�

where ��Z, m= �m1 , . . . ,mN�� �0,1�N, and � de-
notes the Heaviside step function. For our pur-
poses it is important to notice that the number of
critical points increases unboundedly with N.
From the critical points and their indices, the Eu-
ler characteristic ��Mv� can be computed.

�iii� In the thermodynamic limit, the critical values

vc
m,� =

1

N
Vk�qc

m,�� �3.6�

become dense on the interval �0,2�. This leads
to a continuously varying �on �0,2�� limiting dis-
tribution

��v� = lim
N→�

1

N
ln���Mv��

= − n�v�ln n�v� − �1 − n�v��ln�1 − n�v�� �3.7�

of the modulus of the Euler characteristic ��Mv�
of Mv, where

n�v� =
1
2
�1 − sgn	1 −

v


�1 −

v

�1/k� �3.8�

�see Angelani, Casetti, et al. �2005� for the deriva-
tion of this result�. It is a remarkable observation
that �, which is a purely topological quantity, al-
ready signals the absence or presence of a phase
transition �see Fig. 1 for a plot of the graph of ��:
In the case of k=1 where the system does not
show a phase transition, � is a smooth function.
For k�2 there is a nonanalytic point of � at v

11Vk as given in Eq. �3.4� is not a Morse function, but, in the
spirit of Eq. �3.2�, it can be perturbed into one; see Angelani,
Casetti, et al. �2005�.

FIG. 1. �Color online� Logarithmic modulus � of the Euler
characteristic of Mv as a function of the potential energy v for
the mean-field k-trigonometric model in the thermodynamic
limit �see Eqs. �3.7� and �3.8��.
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=, which is precisely the value vt of the potential
energy at which the phase transition occurs.

In particular this last observation—together with simi-
lar findings for other models—may serve as a motivation
to study the relation between thermodynamic phase
transitions and the topology of the configuration space
subsets Mv.

C. Numerical computation of topological quantities

Only one numerical study of the configuration space
topology and its relation to phase transitions has been
published to date �Franzosi et al., 2000�. The key idea of
this work is sketched in the following, and the results of
an application to the �4 model on the square lattice are
summarized. As an outlook, a different numerical ap-
proach is sketched for which an application is currently
under way.

1. Euler characteristic via Gauss-Bonnet theorem

A remarkable theorem, found independently by
Gauss and Bonnet, connects geometrical and topological
quantities of manifolds.

Theorem III.10. Let M be a compact, orientable Rie-
mannian manifold of even dimension n without bound-
ary. Then its Euler characteristic ��M� is given by

��M� =
2

�Sn��M
d�K��� , �3.9�

where �Sn� denotes the volume of an n-dimensional unit
sphere and K is the Gauss-Kronecker curvature.

The Gauss-Kronecker curvature is a measure of how
much the normal vector of the manifold at a point �
changes upon infinitesimal variation of �.12 This theo-
rem is remarkable, and useful for our purposes, since it
expresses global topological properties of a manifold in
terms of local geometrical ones. The locality of the
Gauss-Kronecker curvature K allows one to estimate
�apart from a prefactor� the integral in Eq. �3.9� by
implementing some dynamics on M and probing K in
the course of the dynamical evolution.

This method has been proposed and implemented by
Franzosi et al. �2002� for the numerical computation of
the Euler characteristic of the configuration space sub-
sets �v of the �4 model in two dimensions on the square
lattice with nearest-neighbor interactions. This model is
characterized by the potential13

V�
nn�q� = �

i=1

N 	−
1
2

qi
2 +

1
4

qi
4
 − J�

�i,j�
qiqj, �3.10�

where J�R is a coupling constant and the angular
brackets �i , j� denote a summation over all pairs of near-
est neighbors on the square lattice. The first term of the
potential is an on-site potential with the shape of a
double well, and the second term describes a pair inter-
action between each degree of freedom qi�R and its
four nearest neighbors on the lattice. The superscript of
V�

nn serves to distinguish the �4 model with nearest-
neighbor interactions from a similar one with long-range
interactions introduced in Sec. VI.A. For positive values
J�0 of the coupling constant, a parallel orientation of
neighboring degrees of freedom is energetically favor-
able, and the model is known to show a phase transition
from a ferromagnetic phase at low temperatures to a
paramagnetic phase at high temperatures in the thermo-
dynamic limit.

Implementing a Monte Carlo dynamics on �v, Fran-
zosi et al. �2002� computed numerical estimators for the
relative variation of the Euler characteristic ���v� of the
nearest-neighbor �4 model �see their publication for
more details on the implementation�. Their result for a
system of 7�7 lattice sites is reproduced in Fig. 2.

The data suggest that a kink is present in ���v� at a
value of the potential energy per particle v which is very
close to the value of v at which a phase transition takes
place in the thermodynamic limit.

2. Critical points of the potential

Morse theory, as introduced in Sec. III.A, suggests an-
other, straightforward way for the numerical estimation
of topological quantities: Determining numerically the
critical points and their indices of a potential v, one can

12For a precise definition see any introductory text on differ-
ential geometry, e.g., Chap. 3F of Kühnel �2002�

13This definition differs slightly from the one used by Fran-
zosi et al. �2002�, but both models can be mapped onto each
other by a suitable rescaling of J, V, and q.

FIG. 2. Logarithmic modulus � of the Euler characteristic of
�v as a function of the potential energy per degree of freedom
for the nearest-neighbor �4 model on a 7�7 square lattice.
The dotted vertical line marks the potential energy at which a
phase transition takes place in the thermodynamic limit. The
solid line serves as a guide to the eye. From Franzosi et al.,
2000.
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calculate the Euler characteristic of the configuration
space subsets Mv by means of Theorem III.9. Since the
number of critical points in generic models is assumed to
grow exponentially with the number N of degrees of
freedom, this task is computationally very hard, and for
N of order 102 or larger one can expect to find at best a
small fraction of the existing critical points.

Numerical methods for the computation of critical
points of high-dimensional functions have been em-
ployed and tested in the study of the properties of po-
tential energy landscapes of glassy systems, clusters, and
others �Grigera et al., 2002; Wales, 2004�. An application
of these methods to the study of configuration space to-
pology and phase transitions is currently under way.

IV. NONANALYTICITIES IN FINITE SYSTEMS

Before turning to the study of the relation between
configuration space topology and phase transitions, i.e.,
the behavior of thermodynamic functions in the thermo-
dynamic limit, we discuss the somewhat simpler case of
finite systems. The central question addressed in this
section is: What are the differentiability properties of
the thermodynamic functions sN and fN for finite num-
bers N of degrees of freedom?

For the configurational canonical free energy the an-
swer is well known: fN is a smooth function on its entire
domain for all finite values of N �Griffiths, 1972�. For
technical reasons, the microcanonical ensemble has been
used only sporadically for explicit calculations in statis-
tical physics, and little attention has been paid to the
differentiability properties of the configurational micro-
canonical entropy. In this section we investigate the re-
lation between nonanalytic points of sN and critical
points of V �which, in turn, are related to topology
changes of the configuration space subsets Mv�: What is
the effect of a critical point qc of the potential V on the
differentiability of sN at the corresponding critical value
vc=V�qc� /N?

Recently, exact model calculations have been per-
formed which demonstrate that the microcanonical en-
tropy s̄N or the configurational microcanonical entropy
sN of classical statistical physics models can have

nonanalytic points for finite N �Casetti and Kastner,
2006; Dunkel and Hilbert, 2006; Hilbert and Dunkel,
2006; Kastner and Schnetz, 2006�. At least in the case of
smooth potentials V as considered by Kastner and
Schnetz �2006� and Casetti and Kastner �2006� where the
mean-field spherical model was studied, nonanalyticities
of sN show up precisely at the critical values vc of V.

The occurrence of nonanalyticities in sN—though a
surprise even to many researchers working in the field—
can be anticipated from the discussion of a simple one-
dimensional example. Considering a �4 potential on the
real line,

V�q� = −
1
2

q2 +
1
4

q4, �4.1�

the calculation of the configurational microcanonical en-
tropy yields

s1�v� = ln�2��v + 1/4�
��1 + 4v�

�	 1
�1 + �1 + 4v

+
��− v�

�1 − �1 + 4v

� . �4.2�

This function has a nonanalytic point at argument zero,
which is identical to the critical value of V corresponding
to the critical point q=0. From this one-dimensional ex-
ample, it appears plausible that nonanalyticities show up
also at critical values of higher dimensional potentials.
This reasoning is confirmed by the following theorem by
Kastner et al. �2007�.

Theorem IV.1. Let V :G→R be a Morse function with
a single critical point qc of index i in an open region
G�RN. Without loss of generality, we assume V�qc�=0.
Then there exists a polynomial P of degree less than
N /2 such that at v=0 the density of states �N
=exp�NsN� can be written in the form

�N�v� = P�v� +
hN,i�v�

��det�HV�qc���
+ o�vN/2−�� �4.3�

for any ��0. Here HV is the Hessian of V, o denotes
Landau’s little-o symbol for asymptotic negligibility, and

hN,i�v� =
�N��N/2

��N/2� ��− 1��N−i�/2�− v��N−2�/2��− v� for N, i odd

�− 1�i/2v�N−2�/2��v� for i even

�− 1��i+1�/2v�N−2�/2�−1 ln�v� for N even, i odd
� �4.4�

is a universal function.
Proof. For a proof of this theorem, the density of

states is calculated separately below and above the criti-
cal value v=0. By complex continuation it is possible to
subtract both contributions and to evaluate the leading

order of the difference. A detailed proof will be pub-
lished elsewhere. A related, but weaker result has been
given by Spinelli �1999�. �

We see from this theorem that, for all finite system
sizes, a critical point of V produces a nonanalyticity in
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the entropy sN at the corresponding critical value. The
theorem refers to a single critical point, but this condi-
tion can be readily released by considering the union of
regions around several critical points.

Remarkably, the type of nonanalyticity described by
hN,i in Eq. �4.4� does not depend on the precise value of
the index i of the critical point, but only on whether N
and i are odd or even. One can verify that, indepen-
dently of the three cases in Eq. �4.4�, hN,i, and therefore
also the entropy sN, is precisely ��N−3� /2� times continu-
ously differentiable. This result is in agreement with the
nonanalytic behavior of the exact solution for the en-
tropy of the mean-field spherical model as reported by
Kastner and Schnetz �2006�. In other words, sN becomes
“smoother” with increasing number N of degrees of
freedom, and already for moderate N it supposedly will
be impossible to observe such a finite-system nonanaly-
ticity from noisy experimental or numerical data.

V. PHASE TRANSITIONS AND CONFIGURATION SPACE
TOPOLOGY

We have seen in the previous section that, for finite
systems, critical values of the potential V �and hence
topology changes of the configuration space subsets Mv�
are directly related to the occurrence of nonanalytic
points of the configurational microcanonical entropy sN.
For infinite systems, such a straightforward correspon-
dence cannot be expected since, according to Theorem
IV.1, the order of differentiability of sN in the presence
of a finite number of critical points of V diverges when
N→�. Furthermore, from the results on the mean-field
k-trigonometric model reviewed in Sec. III.B, it is obvi-
ous that a relation between topology changes and phase
transitions for the infinite system case has to be subtler:
The number of critical values vc of the potential energy,
where topology changes of the Mv occur, increases un-
boundedly with the number N of degrees of freedom of
the system and becomes dense on the interval �0,2� in
the limit N→�. Since a phase transition in this model
occurs only at one particular value of the potential en-
ergy v=vt, it is clear that there cannot be a one-to-one
relation between phase transitions in infinite systems
and topology changes. Nonetheless, the existence of
some sort of relation is suggested by the singular behav-
ior of the topological invariant � at vt as plotted in Fig.
1. Similar results, i.e., a continuum of topology changes
of the Mv and a nonanalyticity in a quantity character-
izing the topology in the thermodynamic limit, were
found for the mean-field XY model �Casetti et al., 1999,
2002, 2003�. Numerical studies also indicate that the
same features are present in the �4 model on a square
lattice with nearest-neighbor interactions �Franzosi et
al., 2002�.

A. Conjectures

From the results of such model calculations, a general,
but somewhat unspecified “relation” between topology

changes of the Mv and phase transitions was conjec-
tured by Caiani et al. �1997�. Later on, this conjecture
became known as the topological hypothesis, and its for-
mulation gave leeway for different interpretations of its
content.

The results on the mean-field k-trigonometric model,
the mean-field XY model, and the square lattice �4

model cited above might suggest the following formula-
tion.

Conjecture V.1. If, in the thermodynamic limit, the
logarithmic density of the Euler characteristic � of Mv
has a nonanalytic point at v=vt, a phase transition takes
place at the potential energy vt.

A weaker version of such a hypothesis might be for-
mulated as follows.

Conjecture V.2. A topology change within the family
�Mv�v�R at v=vt is a necessary condition for a phase
transition to take place at vt.

We show that neither of these conjectures holds true
for arbitrary statistical systems, and counterexamples
disproving their general validity will be given in Sec. VI.
Nonetheless the conjectures are of interest as they prove
to be correct at least for certain �large and relevant�
classes of systems. In fact, a theorem presented in the
next section asserts that Conjecture V.2 is correct for a
class of models with short-range interactions.

B. Franzosi-Pettini theorem

In 2004, Franzosi and Pettini announced the proof of
a theorem asserting that Conjecture V.2 is correct for a
class of short-range models �Franzosi and Pettini, 2004�.
In the present section we sketch this result, and refer the
reader to Franzosi and Pettini �2004� and Franzosi et al.
�2007� for details. We start with the definitions necessary
to specify the class of models for which the theorem
holds.

As throughout the paper, we consider systems of N
degrees of freedom described by a Hamiltonian of stan-
dard form �2.2�. We assume the potential V, defined on
the continuous configuration space �N, to be subject to a
number of conditions, whose definitions are given in the
following.

Definition V.3. The potential V is of standard form

V�q� = �
i=1

N

��qi� + �
i,j=1

N

cij���qi − qj�� �5.1�

if it consists of an on-site potential � and a pair potential
�, the latter depending only on the Euclidean distance
�·� of the degrees of freedom. For a lattice system the
coefficients cij determine the coupling strength between
the degrees of freedom on different lattice points. For a
fluid �nonlattice� system we typically have cij=1−	i,j,
where 	i,j is the Kronecker symbol.

Definition V.4. The potential V is of short range if
on a lattice: the coefficients cij are nonzero only for i , j
from a finite neighborhood on the lattice;
in a fluid: for large x, ���x�� decreases faster than x−d,
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where d is the spatial dimension of the system.
Definition V.5. The potential V is stable if, for any N

�N and all q��N, there exists a constant B�0 such
that

V�q� � − NB . �5.2�

Definition V.6. The potential V is said to be confining
if Mv as defined in Eq. �2.4� is a compact set for all finite
values of v.

Physically speaking, a particle in a confining potential
cannot escape to infinity at finite energy. Simple one-
dimensional examples of confining, and nonconfining,
potentials are plotted in Fig. 3.

It is well known that for potentials of standard form
which are stable, confining, and of short range, the ther-
modynamic limit of thermodynamic functions like the
configurational microcanonical entropy �2.8� or the con-
figurational canonical free energy �2.10� exists, i. e.,

s��v� = lim
N→�

sN�v� � � �5.3�

and

f��
� = lim
N→�

fN�
� � � �5.4�

�see Ruelle �1969� for a proof of these and related re-
sults for even larger classes of systems�. For this class of
systems, Franzosi and Pettini proved a theorem which
can be phrased as follows.

Theorem V.7. Let V be a potential of standard form
which is smooth, stable, confining, bounded below, and
of short range. If there exists an interval �v1 ,v2� such
that, for any N larger than some constant N0, the
�Mv�v��v1,v2� do not change topology, then in the thermo-
dynamic limit the canonical configurational free energy
fN is at least two times continuously differentiable in the
interval „
�v1� ,
�v2�…, where 
�v1� and 
�v2� are the val-
ues of the inverse temperature corresponding to the po-
tential energies v1 and v2, respectively.

Proof. The proof makes use of the fact that, in an
interval free of critical values of V /N, the configura-
tional entropy sN is smooth for all finite N �which is a
result known from Morse theory�. Then it is shown that
at least the first four derivatives of sN are uniformly
bounded above in N. This implies that s� is three times
continuously differentiable, and therefore f� is two times
continuously differentiable in the corresponding interval

of inverse temperatures. A detailed proof can be found
in Franzosi et al. �2007�. �

Although this theorem does not exclude the possibil-
ity of a discontinuity in some higher derivative of f�, one
would assume that the extension of the theorem to
higher derivatives, though laborious, is straightforward.
Such a generalization to arbitrary derivatives of f�

would assert the correctness of Conjecture V.2 for the
class of potentials covered by the theorem.

Theorem V.7 rigorously establishes a connection be-
tween phase transitions and topology changes of the Mv
for a certain class of systems, which from a conceptual
point of view is a remarkable result. For potentials like
that of a 
-Fermi-Pasta-Ulam chain, having no further
critical points apart from their overall minimum, Theo-
rem V.7 allows one to rigorously exclude the occurrence
of a phase transition. Possibly even more important, for
systems like the �4 model in Eq. �3.10� one may deduce
an upper bound on the transition potential energy vt
from the presence of an upper bound on the critical val-
ues of V.

For the typical models of interest, the critical values vc
of the potential become dense in the thermodynamic
limit, in some cases on an interval, but often on the en-
tire codomain of V /N �like in the case of the mean-field
k-trigonometric model discussed in Sec. III.B�. In that
case, no interval �v1 ,v2�, free of critical points in the
sense specified in Theorem V.7, exists, and no conclu-
sions can be drawn from the theorem. An attempt to
derive a stronger result which sheds light on the relation
between phase transitions and topology changes even in
the presence of �possibly very many� critical points has
been made by Franzosi and Pettini �2007�, and in a
modified form by Kastner et al. �2007�, and the hope is to
understand from these studies how topology might “act”
to produce a nonanalyticity in some thermodynamic
function in the thermodynamic limit.

C. Models not covered by Theorem V.7

Theorem V.7 establishes a necessary relation between
phase transitions and configuration space topology for a
certain class of systems with short-range interactions and
confining potentials. Of course, this result does not ex-
clude the possibility that a phase transition in a long-
range system or in a system with a nonconfining poten-
tial may nonetheless be related to a topology change in
configuration space. In fact, all models for which ana-
lytic calculations of the topology of the Mv have been
reported so far do not meet the assumptions of Theorem
V.7, being either long range, nonconfining, nonsmooth,
or even some combination of these properties. Results
from model calculations reported in the literature are
summarized in Table I, and we notice that for several of
these models which do not comply with the assumptions
of Theorem V.7, a relation between phase transitions
and topology is nonetheless observed, even in the sense

FIG. 3. �Color online� One-dimensional illustrations of confin-
ing and nonconfining potentials. Left, the parabola V�q�=q2 is
confining, as limq→±� V�q�=�. Right, the Morse potential
V�q�= �1−e−q�2 is nonconfining, as limq→� V�q���.
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of the stronger Conjecture V.1. Some other models,
however, disprove the general validity of Conjectures
V.1 and V.2, and we look at these cases in more detail in
Sec. VI.

The above observations, together with Theorem V.7,
can be interpreted in the following way: A change of the
topology of the Mv under variation of the parameter v
is one possible “mechanism” which can lead to a
nonanalyticity in a thermodynamic function. However,
the fact that some of the models listed in Table I are not
in accordance with Conjectures V.1 and V.2 indicates
that a topology change is not the only such mechanism,
and we get to know a second nonanalyticity generating
mechanism in Sec. VI.C. Theorem V.7 then suggests
that, for the—from a physical point of view very
important—class of systems fulfilling its assumptions, a
topology change is the only mechanism available to
cause a nonanalyticity.

VI. LIMITATIONS OF THE RELATION BETWEEN
PHASE TRANSITIONS AND CONFIGURATION SPACE
TOPOLOGY

We have seen in Sec. V.B that, for a certain class of
systems, a topology change in the configuration space
subsets Mv is necessary for a phase transition to take
place at the corresponding energy or temperature. For
some models however, as indicated in Table I, a phase
transition is not necessarily accompanied by a topology
change. These results immediately suggest the following
question.

Which of the restrictions on the class of systems for
which Theorem V.7 holds are mere technicalities which

could be relaxed by more refined methods of proof, and
which ones are really essential?

In the present section we discuss two types of systems
which disprove the general validity of Conjectures V.1
and V.2, thereby showing that at least the short ranged-
ness and the confining property imposed on the poten-
tial V in Theorem V.7 cannot be relaxed in general.

A. Long-range interactions

Systems with long-range interactions are often ne-
glected in standard treatises on statistical mechanics. In
many cases they are even outside the scope of tradi-
tional thermodynamics because, in contrast to the case
of short-range interactions �Definition V.4�, the thermo-
dynamic limit of thermodynamic functions as in Eqs.
�5.3� and �5.4� does not necessarily exist. Furthermore,
the stability of thermodynamic functions, manifest in
their convexity properties, is no longer guaranteed �see
Dauxois et al. �2002� for a review of the dynamics and
thermodynamics of systems with long-range interac-
tions�. This limitation of traditional thermodynamics is
remarkable in regard to the importance of long-range
interactions in physics, most notably in gravitation and
in electrodynamics �at least in the absence of screening
effects�. In this section, we give an example of a long-
range system whose phase transition is not accompanied
by a topology change in configuration space. In Sec.
VI.C we argue that it is precisely due to the above-
mentioned convexity properties of thermodynamic func-
tions that phase transitions in long-range systems are not
necessarily related to topology changes.

TABLE I. Results from calculations of the topology of Mv for some models �for definitions of the models, see the references
indicated�. The abbreviation m.-f. is for mean-field interactions and n.n. is for nearest-neighbor interactions. The columns list
�from left to right� whether the respective model has a phase transition, whether the results on the topology of Mv were obtained
analytically or numerically, whether the potential of the system is short range, smooth, and confining, and whether the results are
in accordance with Conjectures V.1 and V.2.

phase anal./ short- Conj. Conj.
model

trans. num. range
smooth conf.

V.1 V.2
references

m.-f. XY yes anal. no yes yes yes yes (Casetti et al., 1999, 2002, 2003)

m.-f. k-trigon. yes anal. no yes yes yes yes (Angelani et al., 2003, 2005a)

m.-f. spherical yes anal. no yes yes yes yes
(Kastner, 2006a; Kastner and Schnetz, 2006;

Ribeiro Teixeira and Stariolo, 2004)

m.-f. ϕ4 yes anal. no yes yes no no
(Andronico et al., 2004; Baroni, 2002; Garanin

et al., 2004; Hahn and Kastner, 2005)

n. n. spherical yes anal. noa yes yes no yes (Risau-Gusman et al., 2005)

Peyrard-Bishop yes anal. yes yes no no no
(Angelani et al., 2005b; Grinza and Mossa,

2004)

Burkhardt yes anal. yes no no no no (Angelani et al., 2005b; Kastner, 2004)

2d n. n. ϕ4 yes num. yes yes yes (yes)b yes (Franzosi et al., 2000)

1d n. n. XY no anal. yes yes yes — — (Casetti et al., 2003)
a

Although the pair potential of the nearest neighbor spherical model appears to be short-range, an effective long-rangedness is induced

by the spherical constraint.
b
As far as discernable from numerical data.
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The example which we discuss is the mean-field �4

model, defined by the potential

V�
mf�q� = �

i=1

N 	−
1
2

qi
2 +

1
4

qi
4
 −

J

2N
	�

i=1

N

qi
2

�6.1�

with coupling constant J�0. The first term of the poten-
tial is an on-site potential with the shape of a double
well. The second term of V�

mf describes a pair interaction
of mean-field type, i.e., each degree of freedom qi�R is
coupled to each other at equal strength, which is an ex-
treme case of long-range interactions. The choice of an
N-dependent coupling strength −J / �2N�, though ques-
tionable from a physical point of view, guarantees the
existence of the thermodynamic functions in the limit
N→�.

This model is exactly solvable in the sense that, in the
thermodynamic limit, thermodynamic functions like the
configurational microcanonical entropy �Hahn and Kast-
ner, 2005, 2006; Campa and Ruffo, 2006� or the configu-
rational canonical free energy �Ovchinnikov and Onis-
chyk, 1990; Dauxois et al., 2003� can be expressed in
terms of a maximization and a single integration. A con-
tinuous phase transition is found to take place in the
mean-field �4 model, and from the configurational mi-
crocanonical entropy an implicit expression for the po-
tential energy vt at which the transition occurs was de-
rived by Hahn and Kastner �2006�. For large values of
the coupling constant J, an expansion of this implicit
expression yields

vt�J� = aJ2 − 	2a −
1
4

J + O�1� , �6.2�

with a=��3/4� /��1/4�. For our purposes it is important
to note that vt increases unboundedly with J, i.e., the
transition energy can be made arbitrarily large by in-
creasing the coupling constant J.

A study of the topology of the configuration space
subsets Mv of the mean-field �4 model has first been
reported by Baroni �2002� and later, independently and
by different methods, by Garanin et al. �2004�. Looking
for critical points qc satisfying dV�

mf�qc�=0, one can show
that the corresponding critical values

vc =
V�

mf�qc�
N

� 0 �6.3�

are nonpositive for all critical points qc of the potential
V�

mf �see Appendix E of Baroni �2002� for a proof�.
Confronting the results �6.2� and �6.3�, i.e., the un-

bounded growth of the potential energy vt of the phase
transition with the boundedness from above of the criti-
cal values vc of V�

mf, one immediately arrives at the con-
clusion that, for the mean-field �4 model, the phase tran-
sition is not accompanied by a topology change in
configuration space in general �i.e., not for arbitrary cou-
pling constants J�. Hence neither conjecture V.2 nor con-
jecture V.1 on the relation between configuration space
topology and phase transitions hold true for this model.
The mean-field �4 model fulfills, apart from the short

rangedness, all requirements of Theorem V.7. Hence we
conclude that the assumption in Theorem V.7 of the po-
tential being short ranged cannot be relaxed in general.

B. Nonconfining potentials

Particles in a confining potential �Definition V.6� are
restricted to a bounded subset of the configuration space
for any finite value of the energy. Modeling gases or
fluids by potentials of standard form �Definition V.3�, the
pair interaction between particles is typically assumed to
be nonconfining, but the addition of an on-site potential
modeling a container renders the overall potential con-
fining. Nonconfining potentials are of physical interest
for modeling fluctuations of interfaces by means of so-
called solid-on-solid models �Abraham, 1986�. The oc-
currence of a localization-delocalization transition in
these models is a consequence of the nonconfining prop-
erty of the potential. In this section, we discuss a class of
solid-on-solid models with nonconfining potentials, for
which we find phase transitions not accompanied by to-
pology changes in configuration space.

The solid-on-solid models we consider are one-
dimensional lattice models characterized by a potential
of the form

VSOS�q� = J �
i=1

N−1

�qi+1 − qi�n + �
i=1

N

U�qi� �6.4�

with some coupling constant J�0. For the modeling of
physical systems, the parameter n typically has values
n=1 or 2. The position coordinates qi can take on values
from the positive half-line, so that the configuration
space of the model is �N= �R+�N. The pair interaction, in
contrast to the example discussed in Sec. VI.A, is of
short range, being restricted to nearest neighbors on the
lattice. The on-site potential U is a real-valued function
with a single local minimum somewhere on its domain
R+, and it approaches a finite value in the limit of large
arguments,

lim
x→�

U�x� � � �6.5�

�like the nonconfining one-dimensional potential in the
right plot of Fig. 3�. As a consequence of Eq. �6.5�, we
have that the potential VSOS in Eq. �6.4� is also noncon-
fining.

By means of a transfer operator technique �Kramers
and Wannier, 1941�, the thermodynamic limit value of
the configurational canonical free energy f� of the solid-
on-solid model �6.4� can be written as

− 
f��
� = max
i

�ln �i�
�� , �6.6�

where �i are the eigenvalues of the �well-behaved� solu-
tions of the eigenvalue problem
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�
0

�

dy exp−
1
2


U�x� − J
�x − y�n −
1
2


U�y����y�

= ���x� . �6.7�

Equation �6.7� can be transformed into a Schrödinger-
type eigenvalue problem. This mapping is exact for the
case n=1 �Burkhardt, 1981�, whereas it involves a
gradient-expansion approximation for the case n=2 �see
Theodorakopoulos �2003� for details�. For the
Schrödinger-type equation thus obtained, one can argue
that, depending on the values of J and 
, bound state
solutions may or may not exist, and it is this changeover
which corresponds to the occurrence of a phase transi-
tion in the statistical mechanical model. For simple box-
type potentials U, the eigenvalue problem can be solved
analytically �Burkhardt, 1981; Angelani, Ruocco, and
Zamponi, 2005b�, and for these cases the model is found
to undergo a phase transition at some inverse tempera-
ture 
t�J� which is a continuously varying, nontrivial
function of the coupling constant J. Similarly, for arbi-
trary on-site potentials U, a nontrivial dependence on J
of the transition �inverse� temperature 
t as well as of
the corresponding transition potential energy vt is ex-
pected �and corroborated by numerics�.

From the point of view of configuration space topol-
ogy, the class of solid-on-solid models �6.4� is particularly
simple. A complete characterization of the topology of
the Mv has been outlined by Kastner �2004�, and details
are given in the Appendix.14 For any on-site potential U
which is a monotonous function on the intervals �0,xmin�
and �xmin,�� that are left and right to the location xmin of
the unique minimum of U, one finds that two topology
changes take place within the family �Mv�v�R of con-
figuration space subsets. One is located at the ground
state energy v1=U�xmin�, while a second one appears at
v2=limx→�U�x�. Both v1 and v2 are independent of the
value of the coupling constant J. Comparing this finding
with the nontrivial dependence of the transition poten-
tial energy vt as argued above, we observe that phase
transitions in the class of models defined by Eq. �6.4� are
not related to topology changes in configuration space.

Setting n=2 in Eq. �6.4�, the potential VSOS is smooth
and the model fulfills, apart from the confining property,
all requirements of Theorem V.7. We therefore conclude
that the assumption in this theorem of the potential be-
ing confining cannot be relaxed in general.

C. Nonanalyticities from maximization

The examples presented in Secs. VI.A and VI.B dem-
onstrate that, at least for systems with long-range inter-
actions and for systems with nonconfining potentials, a
phase transition is not necessarily accompanied by a to-
pology change in configuration space. In these cases one

might suspect, instead of a topology change, a different
kind of mechanism behind the occurrence of a phase
transition. In this section we argue that for both, the
cases of long-range systems and nonconfining potentials
discussed in Secs. VI.A and VI.B, nonanalyticities in
thermodynamic functions are generated from smooth
functions by means of a maximization mechanism �Kast-
ner, 2006b�.

1. Mean-field �4 model revisited

The long rangedness of the pair potential of a system
has, as mentioned in Sec. VI.A, remarkable conse-
quences on the convexity properties of the thermody-
namic functions. Notably, the �configurational� microca-
nonical entropy of a system with long-range interactions,
in contrast to the short-range case �Landford, 1973; Gal-
lavotti, 1999� is not necessarily concave �Dauxois et al.,
2002; Touchette et al., 2004�.

Definition VI.1. �i� A set A�Rn is called a convex set
if ax+ �1−a�y�A for all x ,y�A, a� �0,1�.

�ii� A function f :A→R defined on a convex set A is
called a convex function if

f„ax + �1 − a�y… � af�x� + �1 − a�f�y� . �6.8�

�iii� If −f is convex, f is called a concave function.
In the case of long-range interactions, a nonanalytic

point of the configurational microcanonical entropy
s��v� can arise from the maximization over one variable
of a smooth, but nonconcave entropy function s̃��v ,m�
of two variables �defined shortly�, and this is precisely
what happens for the mean-field �4 model.

For the mean-field �4 model defined by the potential
�6.1�, an exact calculation of thermodynamic functions is
possible, and large deviation techniques are an elegant
way to perform such a calculation. Hahn and Kastner
�2005, 2006� reported exact results for two related micro-
canonical thermodynamic functions of the mean-field �4

model in the thermodynamic limit: for the configura-
tional microcanonical entropy s��v� as defined in Eqs.
�2.8� and �5.3�, and for the configurational microcanoni-
cal entropy

s̃��v,m� = lim
N→�

1

N
ln �

�N

dq	 �V�q� − Nv�

�	 	�
i=1

N

qi − Nm
 �6.9�

as a function of two variables, namely, the potential en-
ergy v and the magnetization m. The entropy s̃� is found
to have a nonconcave part �Hahn and Kastner, 2005�.
Furthermore, as a consequence of a general result from
large deviation theory �Theorem I.4 in den Hollander
�2000��, s̃� is a smooth function in both its variables.
Applying Laplace’s method for the evaluation of
asymptotic integrals to Eq. �6.9�, one can show that the
entropy functions s��v� and s̃��v ,m� are related by

14This result includes, as a special case, that of Grinza and
Mossa �2004� for the Peyrard-Bishop model, obtained by a dif-
ferent method.
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s��v� = max
m

�s̃��v,m�� . �6.10�

The maximization over m of a smooth and nonconcave
entropy function s̃��v ,m� then may lead to a nonanaly-
ticity in s�.

To illustrate how a nonanalyticity may emerge from a
maximization over one variable of a smooth but noncon-
cave function, it is instructive to consider the following
simple example. The function ḡ1 :R2→R with

ḡ1�v,m� = v − v2 − 2vm2 − m4 �6.11�

is, as is easily verified, a nonconcave function, and its
graph is shown in the plot of Fig. 4 �left�. Maximizing
with respect to the second variable of ḡ1, one obtains the
function

g1�v� = max
m

ḡ1�v,m� = v for v � 0

v − v2 for v � 0,
� �6.12�

which has a nonanalytic point at v=0. In contrast, for a
concave function like

ḡ2�v,m� = v − v2 − 2m2 − m4 �6.13�

�Fig. 4 �right��, a maximization with respect to m yields

g2�v� = max
m

ḡ2�v,m� = v − v2, �6.14�

which is smooth on R.
Similar to the simple examples of the functions ḡ1 and

g1, the nonanalytic point of the entropy s� of the mean-
field �4 model is created from a smooth but nonconcave
entropy s��v ,m� by a maximization with respect to m
�for a plot of the graph of s��v ,m�, see Fig. 5�. We inter-
prete this maximization as the nonanalyticity-generating
mechanism which is at the basis of the phase transition
of the model.

In the thermodynamic limit �if it exists�, the mean-
field approach is exact for many systems with long-range
interactions �see Bouchet and Barré �2005�, and refer-
ences therein for a detailed discussion�. Since the mean-
field variational problem can be written as a maximiza-
tion of a smooth many-variable function, the same can
be done for the entropy of these long-range systems.
The different types of phase transitions which may result
from such a maximization depend on the number of
variables of the entropy function and on the symmetries
present. A complete classification of the various nonana-

lyticities which can occur for an entropy function of two
variables has been worked out by Bouchet and Barré
�2005�.

In models with short-range interactions, the above-
described mechanism cannot occur due to the concavity
�Landford, 1973; Gallavoti, 1999� of entropy functions.
This is the content of the following theorem.

Theorem VI.2. Let s�n��x1 , . . . ,xn� be a smooth, con-
cave entropy function of n variables. Then the corre-
sponding reduced entropy function of n−1 variables,

s�n−1��x1, . . . ,xi−1,xi+1, . . . ,xn� = max
xi

�s�n��x1, . . . ,xn�� ,

�6.15�

is again smooth and concave.
Proof. By elementary calculus or geometric consider-

ations. �
For systems with short-range interactions, this result

rules out the occurrence of nonanalyticities from the
above described maximization mechanism: If s�n� is
smooth, then, as a consequence of its concavity, s�n−1� has
to be smooth as well and no phase transition takes place.
Nonetheless, in short-range models a different type of
maximization can be the origin of a nonanalyticity, and
this is the content of the following section.

2. Solid-on-solid models revisited

For the solid-on-solid models defined by potential
�6.4�, the configurational canonical free energy f� is ex-
pressed in Eq. �6.6� as the logarithm of the largest of the
eigenvalues �i of the eigenvalue problem �6.7�,

− 
f��
� = max
i

�ln �i�
�� , �6.16�

and the nonanalyticities of f� are discussed by studying
the behavior of �i. The �i are expected to be smooth
functions of 
, but they may have crossing points.15 If we

15Related results exist in the perturbation theory of linear
operators. Modifying those to turn this claim into a rigorous
result would be a worthwhile task.

FIG. 4. �Color online� Plots of the graphs of the nonconcave
function ḡ1�v ,m� �left� and of the concave function ḡ2�v ,m�
�right�.

FIG. 5. �Color online� Plot of the graph of the entropy func-
tion s��v ,m� of the mean-field �4 model with coupling constant
J=1.
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assume this claim to be correct, the maximization over
the index i in Eq. �6.16� in the presence of a crossing
point of the largest and the second largest �i is the only
remaining source of a nonanalyticity in f�. For short-
range models like the solid-on-solid models discussed
here, equivalence of statistical ensembles holds. As a
consequence, the entropy s� can be obtained from the
free energy f� by means of a Legendre-Fenchel trans-
form, and the nonanalytic point in f� gives rise to a
nonanalytic point in s�.

D. Two nonanalyticity generating mechanisms

Two counterexamples disproving the general validity
of Conjectures V.1 and V.2 on the relation between
phase transitions and configuration space topology were
presented in Secs. VI.A and VI.B. For these models—
the mean-field �4 model and a solid-on-solid model—we
have shown that nonanalyticities in the thermodynamic
functions may be viewed as arising from the maximiza-
tion over one variable �or one discrete index� of some
smooth function. This maximization can be interpreted
as one possible mechanism generating a nonanalyticity,
whereas �certain� topology changes in the configuration
space subsets Mv are another such mechanism. In prin-
ciple, in a given system any of these mechanism, or even
both, may occur and trigger the occurrence of a phase
transition. Theorem V.7 then asserts that, for the class of
�short-range, nonconfining, etc.� systems fulfilling its as-
sumptions, topology changes are the only nonanalyticity
generating mechanism at ones disposal.

The type of nonanalyticity generating mechanism oc-
curring has notable consequences also for physically rel-
evant quantities: In case of a continuous phase transi-
tion, one can show that generically16 the critical
exponents characterizing the nonanalytic point take on
mean-field values whenever the nonanalyticity was cre-
ated by a maximization as in Eq. �6.10� �see Appendix of
Hahn and Kastner �2005� for details�.

The identification of a second nonanalyticity generat-
ing mechanism does by no means diminish the interest
in the topological approach to phase transitions. The
typical systems of interest in statistical mechanics have
short-range interactions and confining potentials, and an
investigation of the relation of phase transitions and
configuration space topology in such systems is of great
interest. However, for this class of systems analytic cal-
culations of topological quantities seem out of reach,
which underlines the importance in further development
of numerical techniques as in Sec. III.C.

VII. SEARCH FOR A SUFFICIENCY CRITERION

We turn our attention back to the class of short-range
systems for which, according to Theorem V.7, a topology

change within the family �Mv�v�R of configuration space
subsets is necessary for a phase transition to occur at the
corresponding energy or temperature. Although this
theorem indicates that some sort of relation between
phase transitions and configuration space topology
exists, it does not have much to say about the form of
this relation. As pointed out in Sec. V, a topology
change of Mv is not sufficient for a phase transition to
take place, and the obvious question to ask is: Under
which conditions do topology changes give rise to a
phase transition?

This search for a sufficiency criterion, specifying the
relation between phase transitions and topology
changes, may be considered as the big open question in
the field, and from an answer to this question one can
expect to gain insights into the fundamental mechanisms
which are at the origin of a phase transition. No final
answer to this question has been given so far, but some
of the preliminary results are worth mentioning. The fol-
lowing sections discuss several proposals which have
been suggested, more or less explicitly, on the basis of
the few model calculations which are available.

A. Simultaneous attachment of O„N… different handles

Casetti et al. �2003� computed critical points and indi-
ces of the configuration space subsets Mv of the mean-
field XY model with and without an external magnetic
field. This model is characterized by the potential

VXY�q� =
J

2N �
i,j=1

N

�1 − cos�qi − qj�� − h�
i=1

N

cos qi, �7.1�

where J�0 is a coupling constant, h�R is an external
magnetic field, and the coordinates qi� �0,2�� are angu-
lar variables. The potential energy vt at which a phase
transition occurs in this model for h=0 is found to coin-
cide with the only critical value at which the topology of
the Mv involves the simultaneous attachment of
handles17 of O�N� different types. This observation led
Casetti et al. �2003� to the following conjecture.

Conjecture VII.1. A topology change of Mv at some
v=vt which involves the simultaneous attachment of
handles of O�N� different types entails a phase transi-
tion at vt.

However, a counterexample to this conjecture can be
constructed by considering the mean-field XY model in
the presence of an external magnetic field h. In this case,
the model does not show a phase transition, but the
same type of topology changes as in the absence of a
field h.

16Meaning “whenever none of the leading coefficients of a
Taylor expansion of s̄ in the vicinity of the phase transition
point accidentally vanishes.”

17See Theorem III.7 of the present paper or Sec. III of Mat-
sumoto �2002� for the definition of a handle in topology and
for the construction of manifolds by the attachment of handles.

182 Michael Kastner: Phase transitions and configuration space …

Rev. Mod. Phys., Vol. 80, No. 1, January–March 2008



B. Nonanalyticities of the Euler characteristic

In the same paper �Casetti et al., 2003�, a nonanalytic
point in the logarithmic density of the Euler character-
istic ��Mv� of the mean-field XY model at v=vt is re-
ported, and the same feature is observed for the mean-
field k-trigonometric model �see Sec. III.B and Fig. 1�.
These findings suggest the following conjecture.

Conjecture VII.2. A nonanalyticity at v=vt in the
�logarithmic density of the� Euler characteristic of Mv
entails a phase transition at vt.

This is a “sufficiency version” of Conjecture V.1, but it
suffers from the same shortcoming as the—presumably
related—Conjecture VII.1: For nonzero external mag-
netic field, the nonanalyticity in the Euler characteristic
of the mean-field XY model persists, although no phase
transition is present.

C. Nonpurely topological sufficiency conditions

For two different models �i.e., with and without exter-
nal magnetic field�, we have seen that in the presence of
the same kind of topology changes the thermodynamic
properties can differ drastically, and this behavior can be
understood as follows �see Casetti and Kastner �2007�
for a related discussion�.

The potential VXY /N of the mean-field XY model is a
bounded above and below function, and the value vt at
which O�N� different handles are attached simulta-
neously �or at which the Euler characteristic has a
nonanalytic point� equals its upper bound,

vt =
1

N
sup

q��N

VXY�q� . �7.2�

In the absence of an external magnetic field, the configu-
rational microcanonical entropy sN is a monotonously
increasing function, and its slope has a positive lower
bound,

inf
v

�sN�v�
�v

� 0 �7.3�

�see Fig. 6 �left� for a plot of the graph of s��. The point
vt at which O�N� different handles are attached corre-
sponds to the end point of sN at the upper boundary of
its domain. Switching, via Eq. �2.14�, to the canonical
ensemble by considering the Legendre-Fenchel trans-
form of sN, this end point is conjugate to the value 
t
=infv �sN�v� /�v of the inverse temperature, and it is at

this value that a phase transition occurs in the mean-
field XY model.

In contrast, for nonzero external field h, even if arbi-
trarily small, the shape of sN changes drastically. The
plot of sN then looks as shown in Fig. 6 �right�, and its
slope �sN�v� /�v is not anymore bounded below. The
value vt at which O�N� different handles are attached
corresponds to the maximum of sN. Canonically, how-
ever, the temperature at vt is infinite, Tt=1/
t
= ���sN�v� /�v�−1�v=vt

=�. Therefore the corresponding
macrostate is thermodynamically not accessible and the
associated strong topology change does not affect the
thermodynamic behavior of the system.

Taking into account the above considerations, a suffi-
ciency criterion of purely topological nature for the ex-
istence of a phase transition is unlikely to exist. Strong
topology changes in the sense of Conjecture VII.1 or
VII.2 �attachment of handles of O�N� different types or
a nonanalyticity of the Euler characteristic� are reason-
able candidates for being part of a sufficiency criterion,
but—as follows from the discussion of the mean-field
XY model with external magnetic field—apparently
have to be supplemented by a nontopological condition
�presumably comprising some notion of measure on
phase space or configuration space�.18 Note, however,
that in general the influence of measure may be of a
more subtle kind than the infinite-temperature argu-
ment applying to the mean-field XY model.

VIII. SUMMARY

We have reviewed and critically discussed a topologi-
cal approach to phase transitions, investigating the rela-
tion of phase transitions in classical statistical mechani-
cal systems and topology changes of the configuration
space subsets Mv as defined in Eq. �2.4�. For the com-
putation of the topology of the Mv, the mathematical
framework of Morse theory is particularly convenient,

18A sufficiency criterion for the existence of a phase transi-
tion, consisting of a topological part and a probabilistic part,
has been given by Baroni and Casetti �2006� for discrete sym-
metry breaking phase transitions. The probabilistic ingredient
of their theorem is a Peierls-type argument, and the phase
transition to which the criterion refers does in general not take
place at the energy of the topology change considered, so—
although making reference to topology in configuration
space—the criterion in Baroni and Casetti �2006� is not quite in
the spirit of the topological criteria discussed before.

FIG. 6. Configurational microcanonical en-
tropy s��v� of the mean-field XY model in the
thermodynamic limit. In the left plot, which is
for zero external magnetic field, the slope of
s� has a positive lower bound. For an external
magnetic field h=1/2, the graph of s� is
shown in the right plot, and its slope is un-
bounded above and below.
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and we have summarized some of its elementary results
in view of this application.

In finite systems, topology changes of Mv are inti-
mately related to nonanalytic points of the configura-
tional microcanonical entropy sN. Any critical point of a
potential V gives rise to a nonanalytic point of sN�v� at
v=V�qc� /N. The form of the nonanalyticity is specified
in Theorem IV.1, and the order n of the derivative for
which �nsN /�vn becomes discontinuous increases linearly
with N.

In the thermodynamic limit, the relation between
nonanalytic points of thermodynamic functions �i.e.,
phase transitions� and topology changes of Mv is more
intricate. For some class of short-range systems with
smooth, nonconfining, and bounded below potentials, a
topology change of the subsets Mv at v=vt is necessary,
but not sufficient for a phase transition to take place at
vt. In contrast, in systems with long-range interactions or
systems with nonconfining potentials a phase transition
need not be accompanied by such a topology change, as
demonstrated by means of two counterexamples: the
mean-field �and therefore long-ranged� �4 model and
some class of solid-on-solid models with nonconfining
potentials. For such systems, the nonanalytic point in a
thermodynamic function can be viewed as emerging
from a maximization over some smooth function.

In summary, two different mechanisms which cause a
nonanalyticity in a thermodynamic function have been
identified: first, certain topology changes within the fam-
ily �Mv�v�R of configuration space subsets; and, second,
a maximization over one variable of a smooth function
of several variables. Theorem V.7 by Franzosi and Pet-
tini �2004� then asserts that only the former one of these
mechanism can occur in the class of short-range systems
which are in accordance with the theorem’s assumptions.
This is a remarkable finding, since this class of systems
contains the types of the systems which are typically of
interest in statistical physics.

It remains an open task to precisely specify which to-
pology changes entail a phase transition. Several propos-
als for conditions on topology changes of the Mv, alleg-
edly sufficient to guarantee the occurrence of a phase
transition, are discussed, but a final answer to this ques-
tion is still lacking. One may conjecture that such a cri-
terion will not be exclusively of topological character,
but instead may involve some notion of measure or ge-
ometry as well. A solution to this problem will be a ma-
jor step forward towards an understanding of the origin
of phase transitions in classical statistical mechanical sys-
tems.

IX. EPILOG

From the above discussion, it should be obvious to the
reader that the relation of phase transitions to topology
changes in configuration space is not a settled issue, but
a topic of current research activity. Despite its incom-
plete status, one may profit from the study of the results
to date in various ways.

First, the topological approach stimulates the study of
phase transitions from a viewpoint quite different from
the conventional one, and such a change of perspective
may help to deepen the understanding and to inspire
further research activity. In particular for the study of
the relation between phase transitions and the chaoticity
of the underlying dynamics of the system, the topologi-
cal viewpoint may be beneficial �Casetti et al., 2000�.
Again from a conceptual point of view, the topological
approach, at least within the framework of Morse theory
as used throughout the present paper, has remarkable
similarities to the study of glassy systems, biomolecules,
or clusters from the saddle points of their potential en-
ergy landscapes �Wales, 2004�, and one may hope to
profit from these similarities of methods in future inves-
tigations.

Apart from such general and conceptual consider-
ations, early efforts have been seen to bring to fruit dif-
ferential geometrical concepts, and possibly also the re-
lated topological concepts, in physics applications.
Mazzoni and Casetti �2006� considered curvature fluc-
tuations of constant potential energy submanifolds of
minimalistic models of proteins, finding that good fold-
ers may be distinguished from bad folders by studying
the energy dependence of these fluctuations. A connec-
tion between curvature fluctuations and topology
changes in configuration space as described by Casetti et
al. �2000� might then lead to a topological interpretation
of this result.

Last but not least, presenting and advocating a con-
cept applicable to classical statistical mechanical systems
inevitably provokes the question of how an extension to
quantum mechanical systems might look. The obvious
idea would be to study the topology of constant energy
subsets of the underlying Hilbert space �or of some re-
lated projective space�, but to the knowledge of the au-
thor no noteworthy effort along these lines has been
made so far. What may be of related interest is a study
of the topology of constant energy surfaces in the com-
plex projective space of pure quantum states reported
by Brody and Hughston �2001� and Brody et al. �2004�
for quantum mechanical one-particle systems, and one
might take these results as a starting point for a future
investigation of phase transitions in quantum systems
and their relation to state space topology.
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APPENDIX: CONFIGURATION SPACE TOPOLOGY OF
SOLID-ON-SOLID MODELS

In this appendix, a theorem characterizing the topol-
ogy of the configuration space subsets Mv for the class
of solid-on-solid models �6.4� defined and discussed in
Sec. VI.B is proven.

Theorem A.1. Consider the potential
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V�q� = J �
i=1

N−1

�qi+1 − qi�n + �
i=1

N

U�qi� , �A1�

with J�0, n�N, and qi�R+ for all i=1, . . . ,N. The on-
site potential U :R+→R is supposed to have a unique
minimum for some argument xmin, and we define Umin
=U�xmin�. Let U be monotonously decreasing on the in-
terval �0,xmin� and monotonously increasing on �xmin,��.
Furthermore, let limx→� U�x�=U���, which makes V a
nonconfining potential. Under these conditions, the sub-
sets Mv= �q� �R+�N �V�q��vN� fulfill the equivalence
relations

Mv � �� for v � Umin

IN for Umin � v � U�

R+ � IN−1 for U� � v ,
� �A2�

where � denotes homeomorphicity, � is the empty set,
and I= �0,1� the unit interval.

Proof. In a first step, Mv, if not empty, is shown to be
a star convex subset of �R+�N, i.e., there exists a q̃�Mv
such that the line segment from q̃ to any point in Mv is
contained in Mv. This is proven by observing that, for
every q= �q1 , . . . ,qN�� �R+�N and every �� �0,1�, the in-
equality

V„��q − qmin�… = �
i=1

N−1

�nJ�qi+1 − qi�n

�J�qi+1 − qi�
n

+ �
i=1

N

U„��qi − xmin�…
�U�qi−xmin�

� V�q − qmin�

�A3�

holds. Here qmin= �xmin, . . . ,xmin�, and the inequality for
the second term in Eq. �A3� is a consequence of the
monotonicity properties of U. The star convexity of Mv
implies homotopical equivalence to IN �or to an N-ball
BN�, but not necessarily homeomorphicity.

In a second step, the (un)boundedness of Mv is inves-
tigated. This is done, analogously to the treatment by
Grinza and Mossa �2004�, by studying the asymptotic
behavior of V��q� in the limit �→�. As a consequence
of the nonconfining character of U, we find

lim
�→�

V��q� = NU� � � if qi = qj ∀ i ,j = 1, . . . ,N

� else.
�
�A4�

Hence for v=V /N�U�, only configurations q� �R+�N

with finite �Euclidean� norm are accessible, whereas
configurations of arbitrarily large norm can be attained
for v�U�. From this observation it follows that Mv is a
bounded subset of �R+�N for v�U�, and, together with
the star convexity shown above, Mv is found to be ho-
meomorphic to IN. For v�U�, however, Mv is un-
bounded. Since configurations of arbitrarily large norm
can be attained only in a single spatial direction, i. e., in
the vicinity of the �hyper�space diagonal q=��1, . . . ,1�,
��0, we conclude that Mv

b is topologically equivalent to

the product R+� IN−1. With the immediate observation
that Mv=� for v�Umin, the proof of Theorem A.1 is
complete. �
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