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Matter at high density and low temperature is expected to be a color superconductor, which is a
degenerate Fermi gas of quarks with a condensate of Cooper pairs near the Fermi surface that induces
color Meissner effects. At the highest densities, where the QCD coupling is weak, rigorous
calculations are possible, and the ground state is a particularly symmetric state, the color-flavor locked
�CFL� phase. The CFL phase is a superfluid, an electromagnetic insulator, and breaks chiral symmetry.
The effective theory of the low-energy excitations in the CFL phase is known and can be used, even
at more moderate densities, to describe its physical properties. At lower densities the CFL phase may
be disfavored by stresses that seek to separate the Fermi surfaces of the different flavors, and
comparison with the competing alternative phases, which may break translation and/or rotation
invariance, is done using phenomenological models. We review the calculations that underlie these
results and then discuss transport properties of several color-superconducting phases and their
consequences for signatures of color superconductivity in neutron stars.
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I. INTRODUCTION

A. General outline

The study of matter at ultrahigh density is the “con-
densed matter physics of quantum chromodynamics.” It
builds on our understanding of the strong interaction,
derived from experimental observation of few-body pro-
cesses, to predict the behavior of macroscopic quantities
in many-body systems where the fundamental particles
of the standard model—quarks and leptons—become
the relevant degrees of freedom. As in conventional
condensed matter physics, we seek to map the phase
diagram and calculate the properties of the phases.
However, we are in the unusual position of having a
sector of the phase diagram where we can calculate
many properties of quark matter rigorously from first
principles. This sector is the region of “asymptotically
high” densities, where quantum chromodynamics is
weakly coupled. We will review those rigorous results
and describe the progress that has been made in building
on this solid foundation to extend our understanding to
lower and more phenomenologically relevant densities.
Quark matter occurs in various forms, depending on the
temperature T and quark chemical potential � �see Fig.
1�. At high temperatures �T��� entropy precludes any
pattern of order and there is only quark-gluon plasma
�QGP�, the phase of strongly interacting matter that has
no spontaneous symmetry breaking, and which filled the
Universe for the first microseconds after the big bang.
Quark-gluon plasma is also being created in small, very
short-lived, droplets in ultrarelativistic heavy ion colli-
sions at the Relativistic Heavy Ion Collider at
Brookhaven National Laboratory.

In this review we concentrate on the regime of rela-
tively low temperatures, T��, where we find a rich va-
riety of spontaneous symmetry breaking phases. To cre-

ate such material in nature requires a piston that can
compress matter to supernuclear densities and hold it
while it cools. The only known context where this might
happen is in the interior of neutron stars, where gravity
squeezes the star to an ultrahigh density state where it
remains for millions of years. This gives time for weak
interactions to equilibrate, and for the temperature of
the star to drop far below the quark chemical potential.
We do not currently know whether quark matter exists
in the cores of neutron stars. One of the reasons for
studying color superconductivity is to improve our un-
derstanding of how a quark matter core would affect the
observable behavior of a neutron star, and thereby re-
solve this uncertainty.

When we speak of matter at the highest densities, we
always take the high density limit with up, down, and
strange quarks only. We do so because neutron star
cores are not dense enough �by more than an order of
magnitude� to contain any charm or heavier quarks, and
our ultimate goal is to gain insight into quark matter at
densities that may be found in nature. For the same rea-
son we focus on temperatures below about 10 MeV,
which are appropriate for neutron stars that are more
than a few seconds old.

As we explain in some detail, at low temperatures and
the highest densities we expect to find a degenerate liq-
uid of quarks, with Cooper pairing near the Fermi sur-
face that spontaneously breaks the color gauge symme-
try �‘‘color superconductivity’’�. Speculations about the
existence of a quark matter phase at high density go
back to the earliest days of the quark model for hadrons
�Ivanenko and Kurdgelaidze, 1965; Boccaletti et al.,
1966; Pacini, 1966; Itoh, 1970; Carruthers, 1973�, and the
possibility of quark Cooper pairing was noted even be-
fore there was a comprehensive theory of the strong in-
teraction �Ivanenko and Kurdgelaidze, 1969, 1970�. Af-
ter the development of quantum chromodynamics
�QCD�, with its property of asymptotic freedom �Gross

liq
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nuclear
superfluid
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FIG. 1. �Color online� A schematic outline for the phase dia-
gram of matter at ultrahigh density and temperature. The CFL
phase is a superfluid �like cold nuclear matter� and has broken
chiral symmetry �like the hadronic phase�.
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and Wilczek, 1973; Politzer, 1973�, it became clear that a
quark matter phase would exist at sufficiently high den-
sity �Collins and Perry, 1975; Baym and Chin, 1976;
Chapline and Nauenberg, 1976, 1977; Kislinger and
Morley, 1976; Freedman and McLerran, 1977, 1978� and
the study of quark Cooper pairing was pioneered by
Barrois and Frautschi �Barrois, 1977, 1979; Frautschi,
1978�, who first used the term ‘‘color superconductivity,’’
and by Bailin and Love �Bailin and Love, 1979, 1984�,
who classified many of the possible pairing patterns.
Iwasaki and Iwado �Iwasaki, 1995; Iwasaki and Iwado,
1995�, performed mean-field calculations of single-flavor
pairing in a Nambu–Jona-Lasinio �NJL� model, but it
was not until the prediction of large pairing gaps �Alford
et al., 1998; Rapp et al., 1998� and the color-flavor locked
�CFL� phase �Alford, Rajagopal, and Wilczek, 1999� that
the phenomenology of color-superconducting quark
matter became widely studied. At present there are
many reviews of the subject from various stages in its
development �Bailin and Love, 1984; Hsu, 2000; Rajago-
pal and Wilczek, 2000; Alford, 2001; Hong, 2001; Nar-
dulli, 2002; Reddy, 2002; Schäfer, 2003b; Ren, 2004;
Rischke, 2004; Buballa, 2005a; Huang, 2005; Shovkovy,
2005; Alford and Rajagopal, 2006�, and the reader may
wish to consult them for alternative presentations with
different emphases. As these reviews make clear, the last
decade has seen dramatic progress in our understanding
of dense matter. We are now able to obtain, directly
from QCD, rigorous and quantitative answers to the ba-
sic question: What happens to matter if you squeeze it to
arbitrarily high density? In Sec. IV we show how QCD
becomes analytically tractable at arbitrarily high density:
the coupling is weak and the physics of confinement
never arises, since long-wavelength magnetic interac-
tions are cut off, both by Landau damping and by the
Meissner effect. As a result, matter at the highest densi-
ties is known to be in the CFL phase, whose properties
�see Sec. II� are understood rigorously from first prin-
ciples. There is a well-developed effective field theory
describing the low energy excitations of CFL matter �see
Sec. V�, so that at any density at which the CFL phase
occurs, even if this density is not high enough for a
weak-coupling QCD calculation to be valid, many phe-
nomena can nevertheless be described quantitatively in
terms of a few parameters, via the effective field theory.

It should be emphasized that QCD at arbitrarily high
density is more fully understood than in any other con-
text. High energy scattering, for example, can be treated
by perturbative QCD, but making contact with observ-
ables brings in poorly understood nonperturbative phys-
ics via structure functions and/or fragmentation func-
tions. Or, in quark-gluon plasma in the high-temperature
limit much of the physics is weakly coupled but the low-
est energy modes remain strongly coupled with nonper-
turbative physics arising in the non-Abelian color-
magnetic sector. We will see that there are no analogous
difficulties in the analysis of CFL matter at asymptotic
densities.

If the CFL phase persists all the way down to the
transition to nuclear matter then we have an exception-

ally good theoretical understanding of the properties of
quark matter in nature. However, less symmetrically
paired phases of quark matter may well intervene in the
intermediate density region between nuclear and CFL
matter �Sec. I.E�. We enumerate some of the possibili-
ties in Sec. III. In principle this region could also be
understood from first principles, using brute-force nu-
merical methods �lattice QCD� to evaluate the QCD
path integral, but unfortunately current lattice QCD al-
gorithms are defeated by the fermion sign problem in
the high-density low-temperature regime �Schmidt,
2006�.1 This means we have to use models or try to de-
rive information from astrophysical observations. In Sec.
VI we sketch an example of a Nambu–Jona-Lasinio
model analysis within which one can compare some of
the possible intermediate-density phases suggested in
Sec. I.E. We finally discuss the observational approach,
which involves elucidating the properties of the sug-
gested phases of quark matter �Secs. VI.C and VII�, and
then finding astrophysical signatures by which their pres-
ence inside neutron stars might be established or ruled
out using astronomical observations �Sec. VIII�.

B. Inevitability of color superconductivity

At sufficiently high density and low temperature it is a
good starting point to imagine that quarks form a degen-
erate Fermi liquid. Because QCD is asymptotically
free—the interaction becomes weaker as the momentum
transferred grows—the quarks near the Fermi surface
are almost free, with weak QCD interactions between
them. �Small-angle quark-quark scattering via a low-
momentum gluon is no problem because it is cut off by
Landau damping, which, together with Debye screening,
keeps perturbation theory at high density much better
controlled than at high temperature �Pisarski and
Rischke, 1999a; Son, 1999�.� The quark-quark interac-
tion is certainly attractive in some channels, since we
know that quarks bind together to form baryons. As we
now argue, these conditions are sufficient to guarantee
color superconductivity at sufficiently high density.

At zero temperature, the thermodynamic potential
�which we loosely refer to as the “free energy”� is
�=E−�N, where E is the total energy of the system, �
is the chemical potential, and N is the number of fermi-
ons. If there were no interactions then the energy re-
quired to add a particle to the system would be the
Fermi energy EF=�, so adding or subtracting particles
or holes near the Fermi surface would cost zero free
energy. With a weak attractive interaction in any chan-
nel, if we add a pair of particles �or holes� with the quan-

1Condensation of Cooper pairs of quarks has been studied on
the lattice in two-color QCD �Hands et al., 1999, 2006; Kogut et
al., 1999, 2000, 2001, 2002; Nishida et al., 2004; Alles et al.,
2006; Fukushima and Iida, 2007�, for high isospin density
rather than baryon density �Son and Stephanov, 2001; Split-
torff et al., 2001; Kogut and Sinclair, 2002�, and in NJL-type
models �Hands and Walters, 2004�.
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tum numbers of the attractive channel, the free energy is
lowered by the potential energy of their attraction.
Many such pairs will therefore be created in the modes
near the Fermi surface, and these pairs, being bosonic,
will form a condensate. The ground state will be a su-
perposition of states with different numbers of pairs,
breaking the fermion number symmetry. This argument,
originally developed by Bardeen, Cooper, and Schrieffer
�BCS� �Bardeen et al., 1957�, is completely general and
can be applied to electrons in a metal, nucleons in
nuclear matter, 3He atoms, cold fermionic atoms in a
trap, or quarks in quark matter.

The application of the BCS mechanism to pairing in
dense quark matter is in a sense more direct than in its
original setting. The dominant interaction between elec-
trons in a metal is the repulsive Coulomb interaction,
and it is only because this interaction is screened that
the attraction mediated by phonons comes into play.
This means that the effective interactions that govern
superconductivity in a metal depend on band structure
and other complications and are difficult to determine
accurately from first principles. In contrast, in QCD the
“color Coulomb” interaction is attractive between
quarks whose color wave function is antisymmetric,
meaning that superconductivity arises as a direct conse-
quence of the primary interaction in the theory. This has
two important consequences. First, at asymptotic densi-
ties where the QCD interaction is weak we can derive
the gap parameter and other properties of color super-
conducting quark matter rigorously from the underlying
microscopic theory. Second, at accessible densities
where the QCD interaction is stronger the ratio of the
gap parameter to the Fermi energy will be much larger
than in conventional BCS superconducting metals. Thus
superconductivity in QCD is more robust, both in the
theoretical sense and in the phenomenological sense,
than superconductivity in metals.

It has long been known that, in the absence of pairing,
an unscreened static magnetic interaction results in a
“non-Fermi-liquid” �Holstein et al., 1973; Baym et al.,
1990; Nayak and Wilczek, 1994; Polchinski, 1994;
Chakravarty et al., 1995; Vanderheyden and Ollitrault,
1997; Brown et al., 2000a; Boyanovsky and de Vega,
2001a, 2001b; Manuel, 2000a, 2000b; Gerhold et al.,
2004; Ipp et al., 2004, 2006�. However, in QCD the mag-
netic interaction is screened at nonzero frequency �Lan-
dau damping� and this produces a particularly mild form
of non-Fermi-liquid behavior, as described in Sec. V.A.2.
In the absence of pairing but in the presence of interac-
tions, there are still quark quasiparticles and there is still
a “Fermi surface,” and the BCS argument goes through.
This argument is rigorous at high densities, where the
QCD coupling g is small. The energy scale below which
non-Fermi-liquid effects would become strong enough
to modify the quasiparticle picture qualitatively is para-
metrically of order exp�−const/g2� whereas the BCS gap
that results from pairing is parametrically larger, of or-
der exp�−const/g� as we shall see in Sec. IV. This means
that pairing occurs in a regime where the basic logic of
the BCS argument remains valid.

Since pairs of quarks cannot be color singlets, the
Cooper pair condensate in quark matter will break the
local color symmetry SU�3�c, hence the term ‘‘color su-
perconductivity.’’ The quark pairs play the same role
here as the Higgs particle does in the standard model:
the color-superconducting phases can be thought of as
Higgs phases of QCD. Here the gauge bosons that ac-
quire a mass through the process of spontaneous sym-
metry breaking are the gluons, giving rise to color
Meissner effects. It is important to note that quarks, un-
like electrons, have color and flavor as well as spin de-
grees of freedom, so many different patterns of pairing
are possible. This leads us to expect a panoply of differ-
ent possible color superconducting phases.

As discussed in Sec. II, at the highest densities we can
achieve an ab initio understanding of the properties of
dense matter, and we find that its preferred state is the
CFL phase of three-flavor quark matter, which is unique
in that all the quarks pair �all flavors, all colors, all spins,
all momenta on the Fermi surfaces� and all the non-
Abelian gauge bosons are massive. The suppression of
all the infrared degrees of freedom of the types that
typically indicate either instability toward further con-
densation or strongly coupled phenomena ensures that,
at sufficiently high density, the CFL ground state, whose
only infrared degrees of freedom are Goldstone bosons
and an Abelian photon, is stable. In this regime, quanti-
tative calculations of observable properties of CFL mat-
ter can be done from first principles; there are no re-
maining nonperturbative gaps in our understanding.

As the density decreases, the effect of the strange
quark mass becomes more noticeable, imposing stresses
that may modify the Cooper pairing and the CFL phase
may be replaced by other forms of color superconduct-
ing quark matter. Furthermore, as the attractive interac-
tion between quarks becomes stronger at lower densi-
ties, correlations beyond the two-body correlation that
yields Cooper pairing may become important, and at
some point the ground state will no longer be a Cooper-
paired state of quark matter, but something quite differ-
ent. Indeed, by the time we decrease the density down
to that of nuclear matter, the average separation be-
tween quarks has increased to the point that the inter-
actions are strong enough to bind quarks into nucleons.
It is worth noting that quark matter is in this regard
different from Cooper-paired ultracold fermionic atoms
�to be discussed in Sec. III.I�. For fermionic atoms, as
the interaction strength increases there is a crossover
from BCS-paired fermions to a Bose-Einstein conden-
sate �BEC� of tightly bound, well-separated, weakly in-
teracting diatoms �molecules�. In QCD, however, the
color charge of a diquark is the same as that of an anti-
quark, so diquarks will interact with each other as
strongly as quarks, and there will not be a literal analog
of the BCS/BEC crossover seen in fermionic atoms. In
QCD, the neutral bound states at low density that are
�by QCD standards� weakly interacting are nucleons,
containing three quarks not two.

We work with Nc=3 colors throughout. In the limit
Nc→� with fixed �QCD �i.e., fixed g2Nc�, Cooper pairing
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is not necessarily energetically preferred. A strong com-
petitor for the large-Nc ground state is the chiral density
wave �CDW�, a condensate of quark-hole pairs, each
with total momentum 2pF �Deryagin et al., 1992�. Quark-
hole scattering is enhanced by a factor of Nc over quark-
quark scattering, but, unlike Cooper pairing, it only uses
a small fraction of the Fermi surface, and in the case of
short range forces the CDW phase is energetically fa-
vored in one-dimensional systems, but not in two or
more spatial dimensions �Shankar, 1994�. However, in
QCD in the large Nc limit the equations governing the
CDW state become effectively one dimensional because
the gluon propagator is not modified by the medium, so
the quark-hole interaction is dominated by almost col-
linear scattering. Since pairing gaps are exponentially
small in the coupling but medium effects only vanish as
a power of Nc, the CDW state requires an exponentially
large number of colors. It is estimated that for
��1 GeV, quark-hole pairing becomes favored over
Cooper pairing when Nc�1000 �Shuster and Son, 2000�.
Recent work �McLerran and Pisarski, 2007� discusses as-
pects of physics at large Nc at lower densities that may
also be quite different from physics at Nc=3.

Before turning to a description of CFL pairing in Sec.
II and less symmetrically paired forms of color super-
conducting quark matter in Sec. III, we discuss some
generic topics that arise in the analysis of color-
superconducting phases: the gap equations, neutrality
constraints, the resultant stresses on Cooper pairing, and
the expected overall form of the phase diagram.

C. Quark Cooper pairing

The quark pair condensate can be characterized in a
gauge-variant way by the expectation value of the one-
particle-irreducible quark-quark two-point function, also
known as the anomalous self-energy,

�	ia

 	jb

� � = Pijab

� � . �1�

Here 	 is the quark field operator, color indices 
 ,�
range over red, green, and blue �r ,g ,b�, flavor indices i , j
range over up, down, and strange �u ,d ,s�, and a ,b are
the spinor Dirac indices. The angle brackets denote the
one-particle-irreducible part of the quantum-mechanical
ground-state expectation value. In general, both sides of
this equation are functions of momentum. The color-
flavor-spin matrix P characterizes a particular pairing
channel, and � is the gap parameter which gives the
strength of the pairing in this channel. A standard BCS
condensate is position independent �so that in momen-
tum space the pairing is between quarks with equal and
opposite momentum� and a spin singlet �so that the gap
is isotropic in momentum space�. However, as we will
see later, there is good reason to expect non-BCS con-
densates as well as BCS condensates in high-density
quark matter.

Although Eq. �1� defines a gauge-variant quantity, it is
still of physical relevance. Just as electroweak symmetry
breaking is most straightforwardly understood in the

unitary gauge where the Higgs vacuum expectation
value is uniform in space, so color superconductivity is
typically analyzed in the unitary gauge where the quark
pair operator has a uniform color orientation in space.
We then relate the gap parameter � to the spectrum of
the quarklike excitations above the ground state �“qua-
siquarks”�, which is gauge invariant.

In principle, a full analysis of the phase structure of
quark matter in the �-T plane would be performed by
writing down the free energy �, which is a function of
the temperature, the chemical potentials for all con-
served quantities, and the gap parameters for all pos-
sible condensates, including the quark pair condensates
but also others such as chiral condensates of the form

�	̄	�. We impose neutrality with respect to gauge
charges �see Sec. I.D� and then within the neutral sub-
space we minimize the free energy with respect to the
strength of the condensate:

��

��
= 0,

�2�

��2 
 0. �2�

We have written this gap equation and stability condi-
tion somewhat schematically since for many patterns of
pairing there will be gap parameters with different mag-
nitudes in different channels. The free energy must then
be minimized with respect to each of the gap param-
eters, yielding a coupled set of gap equations. The solu-
tion to Eq. �2� with the lowest free energy that respects
the neutrality constraints discussed below yields the fa-
vored phase.

D. Chemical potentials and neutrality constraints

Why do we describe “matter at high density” by intro-
ducing a large chemical potential � for quark number
but no chemical potentials for other quantities? The an-
swer is that this reflects the physics of neutron stars,
which are the main physical arena that we consider.
First, on the long time scales relevant to neutron stars,
the only global charges that are conserved in the stan-
dard model are quark number and lepton number, so
only these can be coupled to chemical potentials �we
discuss gauged charges below�. Second, a neutron star is
permeable to lepton number because neutrinos are so
light and weakly interacting that they can quickly escape
from the star, so the chemical potential for lepton num-
ber is zero. Electrons are present because they carry
electric charge, for which there is a nonzero potential. In
the first few seconds of the life of a neutron star the
neutrino mean free path may be short enough to sustain
a nonzero lepton number chemical potential, see, for
instance, Kaplan and Reddy �2002�; Berdermann et al.
�2004�; Laporta and Ruggieri �2006�; Ruester et al.
�2006�, but we will not discuss that scenario.

Stable bulk matter must be neutral under all gauged
charges, whether they are spontaneously broken or not.
Otherwise, the net charge density would create large
electric fields, making the energy nonextensive. In the
case of the electromagnetic gauge symmetry, this simply
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requires zero charge density, Q=0. The correct formal
requirement concerning the color charge of a large lump
of matter is that it should be a color singlet, i.e., its wave
function should be invariant under a general color gauge
transformation. However, it is sufficient for us to impose
color neutrality, meaning equality in the numbers of red,
green, and blue quarks. This is a less stringent constraint
�singlet⇒neutral but neutral⇒” singlet� but the projec-
tion of a color neutral state onto a color singlet costs no
extra free energy in the thermodynamic limit �Amore
et al., 2002�. �See also Elze et al. �1983, 1984�.� In general
there are eight possible color charges, but because the
Cartan subalgebra of SU�3�c is two dimensional it is
always possible to transform to a gauge where all
are zero except Q3 and Q8, the charges associated
with the diagonal generators T3= 1

2diag�1,−1,0� and
T8= 1

2�3diag�1,1 ,−2� in �r ,g ,b� space �Buballa and
Shovkovy, 2005; Rajagopal and Schmitt, 2006�. In this
review, we only discuss such gauges. So to impose color
neutrality we need only require Q3=Q8=0.

In nature, electric and color neutrality are enforced by
the dynamics of the electromagnetic and QCD gauge
fields, whose zeroth components serve as chemical po-
tentials coupled to the charges Q ,Q3 ,Q8, and which are
naturally driven to values that set these charges to zero
�Iida and Baym, 2001; Alford and Rajagopal, 2002; Ger-
hold and Rebhan, 2003; Kryjevski, 2003; Dietrich and
Rischke, 2004�. In an NJL model with fermions but no
gauge fields �see Sec. VI� one has to introduce the
chemical potentials �e, �3, and �8 by hand in order to
enforce color and electric neutrality. The neutrality con-
ditions are then

Q =
��

��e
= 0,

Q3 = −
��

��3
= 0,

Q8 = −
��

��8
= 0. �3�

�Note that we define an electrostatic potential �e that is
coupled to the negative electric charge Q, so that in typi-
cal neutron star conditions, where there is a finite den-
sity of electrons rather than positrons, �e is positive.�

Finally we should note that enforcing local neutrality
is appropriate for uniform phases, but there are also
nonuniform charge-separated phases �“mixed phases”�,
consisting of positively and negatively charged domains
which are neutral on average. These are discussed fur-
ther in Sec. III.H.

E. Stresses on BCS pairing

The free energy argument that we gave in Sec. I.B for
the inevitability of BCS pairing in the presence of an
attractive interaction relies on the assumption that the
quarks that pair with equal and opposite momenta can

each be arbitrarily close to their common Fermi surface.
However, as we will see in Sec. II, the neutrality con-
straint, combined with the mass of the strange quark and
the requirement that matter be in beta equilibrium,
tends to pull apart the Fermi momenta of the different
flavors of quarks, imposing an extra energy cost
�“stress”� on the formation of Cooper pairs involving
quarks of different flavors. This raises the possibility of
non-BCS pairing in some regions of the phase diagram.

To set the stage here, we discuss a simplified example:
consider two massless species of fermions, labeled 1 and
2, with different chemical potentials �1 and �2, and an
attractive interaction between them that favors cross-
species BCS pairing with a gap parameter �. It will turn
out that to a good approximation the color-flavor locked
pairing pattern contains three such sectors, so this ex-
ample captures the essential physics we encounter in
later sections. We define the average chemical potential
and the stress parameter

�̄ =
1
2

��1 + �2� ,

�� =
1
2

��1 − �2� . �4�

As long as the stress �� is small enough relative to �,
BCS pairing between species 1 and 2 can occur, locking
their Fermi surfaces together and ensuring that they oc-
cur in equal numbers. At the Chandrasekhar-Clogston
point �Chandrasekhar, 1962; Clogston, 1962�, where
��=� /�2, the two-species model undergoes a first-order
transition to the unpaired phase. At this point BCS pair-
ing still exists as a locally stable state, with a completely
gapped spectrum of quasiparticles. When �� reaches �

the spectrum becomes gapless at momentum p= �̄, indi-
cating that cross-species BCS pairing is no longer fa-
vored at all momenta �Alford et al., 2004b�. If the two
species are part of a larger pairing pattern, the
Chandrasekhar-Clogston transition can be shifted, and
we will see that in the two-species subsectors of the CFL
pattern it is shifted to ��
�. The onset of gaplessness is
therefore the relevant threshold for our purposes, and it
always occurs at ��=�, independent of the larger con-
text in which the two flavors pair. This follows from the
fact that BCS pairing only occurs if the energy gained
from turning a 1 quark into a 2 quark with the same
momentum �namely, �1−�2� is less than the cost of
breaking the Cooper pair formed by these quarks, which
is 2� �Rajagopal and Wilczek, 2001�. Thus the 1-2 Coo-
per pairs are energetically stable �or metastable� as long
as ����. A more detailed treatment of this illustrative
example can be found in Alford and Wang �2005�.

This example uses massless quarks, but it can easily be
modified to include the leading effect of a quark mass
M. A difference in the masses of the pairing quarks also
stresses the pairing, because it gives them different
Fermi momenta at the same chemical potential, so the
quarks in a 1-2 Cooper pair, which have equal and op-
posite momenta, will not both be close to their Fermi
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energies. The leading-order effect is easily calculated,
since for a quark near its Fermi surface it acts like a shift
in the quark chemical potential by −M2 / �2�̄� �given that
Fermi momentum pF	 �̄ to this order�.

Returning from our toy model to realistic quark mat-
ter, the quark flavors that are potentially relevant at neu-
tron star densities are the light up �u� and down �d�
quarks, with current masses mu and md that are
�5 MeV, and a medium-weight flavor, the strange �s�
quark, with current mass ms�90 MeV. Their effective
“constituent” masses in the vacuum are hundreds of
MeV larger, but are expected to decrease with increas-
ing quark density. We refer to the density-dependent
constituent masses as Mu,d,s and typically neglect Mu and
Md. As our toy model has illustrated, however, the
strange quark mass Ms will contribute to stresses on
cross-flavor pairing, and those stresses will become more
severe as the density �and hence �̄� decreases. This will
be a major theme of this review.

F. Overview of the quark matter phase diagram

Figure 1 shows a schematic phase diagram for QCD
that is consistent with what is currently known. Along
the horizontal axis the temperature is zero, and the den-
sity is zero up to the onset transition where it jumps to
nuclear density, and then rises further with increasing �.
Neutron stars are in this region of the phase diagram,
although it is not known whether their cores are dense
enough to reach the quark matter phase. Along the ver-
tical axis the temperature rises, taking us through the
crossover from a hadronic gas to the quark-gluon
plasma. This is the regime explored by high-energy
heavy-ion colliders.

At the highest densities we find the color-flavor
locked color-superconducting phase,2 in which the
strange quark participates symmetrically with the up and
down quarks in Cooper pairing. This is described in
more detail in Secs. II, IV, and V. It is not yet clear what
happens at intermediate density, and in Secs. III and VI
we discuss the factors that disfavor the CFL phase at
intermediate densities and survey the color supercon-
ducting phases that have been hypothesized to occur
there.

Various aspects of color superconductivity at high
temperatures have been studied, including the phase
structure �see Sec. VI.A�, spectral functions, pair-
forming and -breaking fluctuations, possible precursors
to condensation such as pseudogaps, and various collec-
tive phenomena �Abuki et al., 2002; Kitazawa et al.,
2002, 2004, 2008; Voskresensky, 2004; Fukushima and
Iida, 2005; Kitazawa, Koide, et al., 2005, Kitazawa, Kuni-
hiro, and Nemoto, 2005; Hatsuda et al., 2006; Yamamoto

et al., 2007�. However, this review centers on quark mat-
ter at neutron star temperatures, and throughout Secs. II
and III we restrict ourselves to the phases of quark mat-
ter at zero temperature. This is because most of the
phases that we discuss are expected to persist up to criti-
cal temperatures that are well above the core tempera-
ture of a typical neutron star, which drops below 1 MeV
within seconds of its birth before cooling down through
the keV range over millions of years.

II. MATTER AT THE HIGHEST DENSITIES

A. Color-flavor locked (CFL) quark matter

Given that quarks form Cooper pairs, the next ques-
tion is who pairs with whom? In quark matter at suffi-
ciently high densities, where the up, down, and strange
quarks can be treated on an equal footing and the dis-
ruptive effects of the strange quark mass can be ne-
glected, the most symmetric and most attractive option
is the color-flavor locked phase, where quarks of all
three colors and all three flavors form conventional
zero-momentum spinless Cooper pairs. This pattern, an-
ticipated in early studies of alternative condensates for
zero-density chiral symmetry breaking �Srednicki and
Susskind, 1981�, is encoded in the quark-quark self-
energy �Alford, Rajagopal, and Wilczek, 1999�

�	i

C�5	j

�� � �CFL�� + 1��i

�j

� + �CFL�� − 1��j

�i

�

= �CFL�
�A�ijA + �CFL���i

�j

� + �j

�i

�� . �5�

The symmetry breaking pattern is

�SU�3�c��U�1�B�SU�3�L�SU�3�R

��U�1�Q�

→SU�3�c+L+R

��U�1�Q̃�

� Z 2 .

�6�

Color indices 
 ,� and flavor indices i , j run from 1 to 3,
Dirac indices are suppressed, and C is the Dirac charge-
conjugation matrix. Gauge symmetries are in square
brackets. �CFL is the CFL gap parameter. The Dirac
structure C�5 is a Lorentz singlet and corresponds to
parity-even spin-singlet pairing, so it is antisymmetric in
the Dirac indices. The two quarks in the Cooper pair are
identical fermions, so the remaining color+flavor struc-
ture must be symmetric. The dominant color-flavor com-

ponent in Eq. �5� transforms as �3̄A , 3̄A�, antisymmetric
in both. The subdominant term, multiplied by �, trans-
forms as �6S ,6S�. It is almost certainly not energetically
favored on its own �all the arguments in Sec. II.A.5 for
the color triplet imply repulsion for the sextet�, but in
the presence of the dominant pairing it breaks no addi-
tional symmetries, so � is in general small but not zero
�Alford, Rajagopal, and Wilczek 1999; Pisarski and
Rischke, 1999c; Shovkovy and Wijewardhana, 1999;
Schäfer, 2000a�.

1. Color-flavor locking and chiral symmetry breaking

A particularly striking feature of the CFL pairing pat-
tern is that it breaks chiral symmetry. Because of color-
flavor locking, chiral symmetry remains broken up to

2As explained in Sec. I.A, we fix Nf=3 at all densities to
maintain relevance to neutron star interiors. Pairing with arbi-
trary Nf has been studied �Schäfer, 2000a�. For Nf a multiple of
3 one finds multiple copies of the CFL pattern; for Nf=4,5 the
pattern is more complicated.
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arbitrarily high densities in three-flavor quark matter.
The mechanism is quite different from the formation of

the �	̄	� condensate that breaks chiral symmetry in the
vacuum by pairing left-handed �L� quarks with right-
handed �R� antiquarks. The CFL condensate pairs L
quarks with each other and R quarks with each other
�quarks in a Cooper pair have opposite momentum, and
zero net spin, hence the same chirality� and so it might
naively appear chirally symmetric. However, the Kro-
necker deltas in Eq. �5� connect color indices with flavor
indices, so that the condensate is not invariant under
color rotations, nor under flavor rotations, but only un-
der simultaneous, equal and opposite, color and flavor
rotations. Color is a vector symmetry, so the compensat-
ing flavor rotation must be the same for L and R quarks,
so the axial part of the flavor group, which is the chiral
symmetry, is broken by the locking of color and flavor
rotations to each other �Alford, Rajagopal, and Wilczek,
1999�. Such locking is familiar from other contexts, in-
cluding the QCD vacuum, where a condensate of quark-
antiquark pairs locks SU�3�L to SU�3�R breaking chiral
symmetry ‘‘directly,’’ and the B phase of superfluid 3He,
where the condensate transforms nontrivially under ro-
tations of spin and orbital angular momentum, but is
invariant under simultaneous rotations of both.

The breaking of chiral symmetry is associated with
an expectation value for a gauge-invariant order param-

eter with the structure 	̄	̄		 �see Sec. V�. There is also
a subdominant “conventional” chiral condensate

�	̄	�� �	C�5	� �Schäfer, 2000a�. These gauge-invariant
observables distinguish the CFL phase from the QGP,
and if a lattice QCD algorithm applicable at high density
ever becomes available, they could be used to map the
presence of color-flavor locking in the phase diagram.

We also expect massless Goldstone modes associated
with chiral symmetry breaking �see Secs. II.A.4 and V�.
In the real world there is small explicit breaking of chiral
symmetry from the current quark masses, so the order
parameters will not go to zero in the QGP, and the
Goldstone bosons will be light but not massless.

2. Superfluidity

The CFL pairing pattern spontaneously breaks the ex-
act global baryon number symmetry U�1�B, leaving only
a discrete Z2 symmetry under which all quark fields
are multiplied by −1. There is an associated gauge-
invariant six-quark order parameter with the flavor and
color structure of two Lambda baryons, ���� where
�=�abc�ijk	i

a	j
b	k

c . This order parameter distinguishes
the CFL phase from the QGP, and there is an associated
massless Goldstone boson that makes the CFL phase a
superfluid �see Sec. V.C.2�. The vortices that result when
CFL quark matter is rotated have been studied by
Forbes and Zhitnitsky �2002�; Iida and Baym �2002�;
Balachandran et al. �2006�; Nakano et al. �2007�.

3. Gauge symmetry breaking and electromagnetism

As explained above, the CFL condensate breaks the
SU�3�c�SU�3�L�SU�3�R symmetry down to the diago-
nal group SU�3�c+L+R of simultaneous color and flavor
rotations. Color is a gauge symmetry, and one of the
generators of SU�3�L+R is the electric charge, which gen-
erates the U�1�Q gauge symmetry. This means that the
unbroken SU�3�c+L+R contains one gauged generator,
corresponding to an unbroken U�1�Q̃ which consists of a
simultaneous electromagnetic and color rotation. The
rest of the color group is broken, so by the Higgs mecha-
nism seven gluons and one gluon-photon linear combi-
nation become massive via the Meissner effect. The or-

thogonal gluon-photon generator Q̃ remains unbroken,

because every diquark in the condensate has Q̃=0. The
mixing angle is cos �
g /�g2+4e2 /3 where e and g are
the QED and QCD couplings. Because e�g the angle is

close to zero, meaning that the Q̃ photon is mostly the
original photon with a small admixture of gluon.

The Q̃ photon is massless. Given small but nonzero

quark masses, there are no gapless Q̃-charged excita-
tions; the lightest ones are the pseudoscalar pseudo-
Goldstone bosons �± and K± �see Secs. II.A.4 and V�, so
for temperatures well below their masses �and well be-
low the electron mass �Shovkovy and Ellis, 2003�� the

CFL phase is a transparent insulator, in which Q̃-electric
and magnetic fields satisfy Maxwell’s equations with a
dielectric constant and index of refraction that can be
calculated directly from QCD �Litim and Manuel, 2001�,

n = 1 +
e2 cos2 �

9�2

�2

�CFL
2 . �7�

�This result is valid as long as n−1�1.� Apart from the

fact that n�1, the emergence of the Q̃ photon is an
exact QCD-scale analog of the TeV-scale spontaneous
symmetry breaking that gave rise to the photon as a
linear combination of the W3 and hypercharge gauge
bosons, with the diquark condensate at the QCD scale
playing the role of the Higgs condensate at the TeV
scale.

If one could shine a beam of ordinary light on a lump
of CFL matter in vacuum, some would be reflected and

some would enter, refracted, as a beam of Q̃ light. The
reflection and refraction coefficients are known �Manuel
and Rajagopal, 2002� �see also Alford and Good �2004��.
The static limit of this result is relevant: if a volume of
CFL matter finds itself in a static magnetic field as
within a neutron star, surface currents are induced such
that a fraction of this field is expelled via the Meissner

effect for the non-Q̃ component of Q, while a fraction is

admitted as Q̃ magnetic field �Alford et al., 2000b�. The
magnetic field within the CFL volume is not confined to
flux tubes, and is not frozen as in a conducting plasma:
CFL quark matter is a color superconductor but it is an
electromagnetic insulator.
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All Cooper pairs have zero net Q̃ charge, but some

have neutral constituents �both quarks Q̃ neutral� and
some have charged constituents �the two quarks have

opposite Q̃ charge�. The Q̃ component of an external
magnetic field will not affect the first type, but it will
affect the pairing of the second type, so external mag-
netic fields can modify the CFL phase to the so-called
magnetic CFL �MCFL� phase. The MCFL phase has a
different gap structure �Ferrer et al., 2005, 2006� and a
different effective theory �Ferrer and de la Incera,
2007b�. The original analyses of the MCFL phase were

done for rotated magnetic fields B̃ large enough that all
quarks are in the lowest Landau level; solving the gap

equations at lower B̃ shows that the gap parameters in
the MCFL phase exhibit de Haas–van Alphen oscilla-

tions, periodic in 1/ B̃ �Noronha and Shovkovy, 2007;
Fukushima and Warringa, 2008�.

4. Low-energy excitations

The low-energy excitations in the CFL phase are the
eight light pseudoscalars arising from broken chiral sym-
metry, the massless Goldstone boson associated with su-

perfluidity, and the Q̃ photon. The pseudoscalars form
an octet under the unbroken SU�3� color+flavor sym-

metry, and can naturally be labeled according to their Q̃
charges as pions, kaons, and an �. The effective La-
grangian that describes their interactions, and the QCD
calculation of their masses and decay constants will be
discussed in Sec. V. We shall find, in particular, that even
though the quark-antiquark condensate is small, the
pion decay constant is large, f���.

The symmetry breaking pattern �6� does not include
the spontaneous breaking of the U�1�A “symmetry” be-
cause it is explicitly broken by instanton effects. How-
ever, at large densities these effects become arbitrarily
small, and the spontaneous breaking of U�1�A will have
an associated order parameter and a ninth pseudo-
Goldstone boson with the quantum numbers of the ��.
This introduces the possibility of a second type of vorti-
ces �Son et al., 2001; Forbes and Zhitnitsky, 2002�.

Among the gapped excitations, we find the quark-
quasiparticles which fall into an 8 � 1 of the unbroken
global SU�3�c+L+R, so there are two gap parameters �1
and �8. The singlet has the larger gap �1= �2+O�����8.
We also find an octet of massive vector mesons, which
are the gluons that have acquired mass via the Higgs
mechanism. The symmetries of the three-flavor CFL
phase are the same as those one would expect for three-
flavor hypernuclear matter, and even the pattern of
gapped excitations is remarkably similar, differing only
in the absence of a ninth massive vector meson. It is
therefore possible that there is no phase transition be-
tween hypernuclear matter and CFL quark matter
�Schäfer and Wilczek, 1999c�. This hadron-quark conti-
nuity can arise in nature only if the strange quark is so
light that there is a hypernuclear phase, and this phase is
characterized by proton-�−, neutron-�0, and �+-�− pair-

ing, which can then continuously evolve into CFL quark
matter upon further increasing the density �Alford,
Berges, and Rajagopal, 1999�.

5. Why CFL is favored

The dominant component of the CFL pairing pattern

is the color 3̄A, flavor 3̄A, and Dirac C�5 �Lorentz scalar�.
There are many reasons to expect the color 3̄A to be
favored. First, this is the most attractive channel for
quarks interacting via single-gluon exchange which is the
dominant interaction at high densities where the QCD
coupling is weak. Second, it is also the most attractive
channel for quarks interacting via the instanton-induced
’t Hooft interaction, which is important at lower densi-
ties. Third, qualitatively, combining two quarks that are
each separately in the color-3 representation to obtain a

diquark that is a color-3̄A lowers the color-flux at large
distances. And, fourth, phenomenologically, the idea
that baryons can be modeled as bound states of a quark
and a color-antisymmetric diquark, taking advantage of
the attraction in this diquark channel, has a long history
and has had a recent renaissance �Jaffe, 1977;
Anselmino et al., 1993; Close and Tornqvist, 2002; Jaffe
and Wilczek, 2003; Selem and Wilczek, 2006�.

It is also easy to understand why pairing in the
Lorentz-scalar channel is favorable: it leaves rotational
invariance unbroken, allowing for quarks at all angles on
the entire Fermi sphere to participate coherently in the
pairing. Many calculations have shown that pairing is
weaker in channels that break rotational symmetry �Al-
ford et al., 1998, 2003; Iwasaki and Iwado, 1995; Schäfer,
2000b; Schmitt et al., 2002; Buballa et al., 2003�. There is
also a rotationally invariant pairing channel with nega-
tive parity described by the order parameter �	C	�. Per-
turbative gluon exchange interactions do not distinguish
between positive and negative parity diquarks, but non-
perturbative instanton induced interactions do, favoring
the positive parity channel �Alford et al., 1998; Rapp et
al., 1998, 2000�.

Once we have antisymmetry in color and in Dirac in-
dices, we are forced to antisymmetrize in flavor indices,
and the most general color-flavor structure that the ar-
guments above imply should be energetically favored is

�	i

C�5	j

�� � �
�A�ijB�B
A. �8�

CFL pairing corresponds to �B
A=�B

A, and this is the only
pattern that pairs all the quarks and leaves an entire
SU�3� global symmetry unbroken. The 2SC pattern is
�B

A=�3
A�B

3 , in which only u and d quarks of two colors
pair �Barrois, 1979; Bailin and Love, 1984; Alford et al.,
1998; Rapp et al., 1998�, see Sec. III.A. As long as the
strange quark mass can be neglected �the parametric cri-
terion turns out to be �CFL�Ms

2 /�, see Sec. III.B� cal-
culations comparing patterns of the structure �8� always
find the CFL phase to have the highest condensation
energy, making it the favored pattern. This has been
confirmed in weak-coupling QCD calculations valid at
high density �Shovkovy and Wijewardhana, 1999; Evans
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et al., 2000; Schäfer, 2000a�, in the Ginzburg-Landau ap-
proximation �Iida and Baym, 2001�, and in many calcu-
lations using Nambu–Jona-Lasinio models �Alford,
Berges, and Rajagopal, 1999; Alford, Rajagopal, and
Wilczek, 1999; Schäfer and Wilczek, 1999c; Rapp et al.,
2000; Malekzadeh, 2006�. In the high-density limit where
��Ms

2 /� and ��� we can expand in powers of � /�
and explicitly compare CFL to 2SC pairing. The CFL
condensation energy is �8�8

2+�1
2��2 /4�2, which is

12�CFL
2 �2 /4�2 when ��1 �see Sec. II.A.4�, whereas the

condensation energy in the 2SC phase is only
4�2SC

2 �2 /4�2. We shall see later that the 2SC gap param-
eter turns out to be larger than the CFL gap parameter
by a factor of 21/3, so up to corrections of order � the
CFL condensation energy is larger than that in the 2SC
phase by a factor of 3�2−2/3. At lower densities the con-
densation energies become smaller, and we cannot ne-
glect negative Ms

4 terms which are energy penalties in-
duced by the neutrality requirement. Their coefficient is
larger for CFL than for 2SC, partly �but usually not com-
pletely� canceling the extra condensation energy—see
Fig. 3 and Sec. III.A.

B. Intermediate density: Stresses on the CFL phase

As noted in Sec. I.E, BCS pairing between two species
is suppressed if their chemical potentials are sufficiently
different. In real world quark matter such stresses arise
from the strange quark mass, which gives the strange
quark a lower Fermi momentum than the down quark at
the same chemical potentials � and �e, and from the
neutrality requirement, which gives the up quark a dif-
ferent chemical potential from the down and strange
quarks at the same � and �e. Once flavor equilibrium
under weak interactions is reached, we find that all three
flavors prefer to have different Fermi momenta at the
same chemical potentials. This is illustrated in Fig. 2,

which shows the Fermi momenta for different species of
quarks.

In the unpaired phase �Fig. 2, left panel�, the strange
quarks have a lower Fermi momentum because they are
heavier, and to maintain electrical neutrality the number
of down quarks is correspondingly increased. To lowest
order in the strange quark mass, the separation between
the Fermi momenta is �pF=Ms

2 /4�, so the splitting be-
comes larger as the density is reduced, and smaller as
the density is increased. The phase space at the Fermi
surface is proportional to �2, so the resultant difference
in quark number densities is nd−nu=nu−ns��2�pF

��Ms
2. Electrons are also present in weak equilibrium,

with �e=Ms
2 /4�, so their charge density is parametri-

cally of order �e
3�Ms

6 /�3��Ms
2, meaning that they are

unimportant in maintaining neutrality.
In the CFL phase all colors and flavors pair with each

other, locking all their Fermi momenta together at a
common value �Fig. 2, right panel�. This is possible as
long as the energy cost of forcing all species to have the
same Fermi momentum is compensated by the pairing
energy that is released by the formation of Cooper pairs.
Still working to lowest order in Ms

2, we can say that para-
metrically the cost is �2�pF

2 �Ms
4, and the pairing energy

is �2�CFL
2 , so we expect CFL pairing to become disfa-

vored when �CFL�Ms
2 /�. In fact, the CFL phase re-

mains favored over the unpaired phase as long as �CFL


Ms
2 /4� �Alford and Rajagopal, 2002�, but already be-

comes unstable against unpairing when �CFL�Ms
2 /2�

�see Sec. III.B�. NJL model calculations �Alford and Ra-
jagopal, 2002; Abuki et al., 2005; Alford, Kouvaris, and
Rajagopal, 2005; Blaschke et al., 2005; Fukushima et al.,
2005; Rüster et al., 2005� find that if the attractive inter-
action were strong enough to induce a 100 MeV CFL
gap when Ms=0 then the CFL phase would survive all
the way down to the transition to nuclear matter. Oth-
erwise, there must be a transition to some other quark
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FIG. 2. �Color online� Illustration of the splitting apart of the Fermi momenta of the various colors and flavors of quarks. In the
unpaired phase, requirements of neutrality and weak interaction equilibration cause separation of the Fermi momenta of the
various flavors. The splittings increase with decreasing density, as � decreases and Ms��� increases. In the 2SC phase, up and down
quarks of two colors pair, locking their Fermi momenta together. In the CFL phase, all colors and flavors pair and have a common
Fermi momentum.
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matter phase: this is the non-CFL region shown sche-
matically in Fig. 1. When the stress is small, the CFL
pairing can bend rather than break, developing a con-
densate of K0 mesons, described in Sec. II.C. When the
stress is larger, however, CFL pairing becomes disfa-
vored. A comprehensive survey of possible BCS pairing
patterns shows that all of them suffer from the stress of
Fermi surface splitting �Rajagopal and Schmitt, 2006�, so
in the intermediate-density non-CFL region we expect
more exotic non-BCS pairing patterns. In Sec. III we
give a survey of possibilities that have been explored.

C. Kaon condensation: The CFL-K0 phase

Bedaque and Schäfer �2002� showed that when the
stress is not too large �high density�, it may simply
modify the CFL pairing pattern by inducing a flavor ro-
tation of the condensate. This modification can be inter-
preted as a condensate of ‘‘K0’’ mesons. The K0 meson
carries negative strangeness �it has the same strangeness
as an s̄ quark�, so forming a K0 condensate relieves the
stress on the CFL phase by reducing its strangeness con-
tent. At large density, kaon condensation occurs for
Ms�m1/3�2/3, where m is mass of the light �u and d�
quarks. At moderate density the critical strange quark
mass is increased by instanton contribution to the kaon
mass �Schäfer, 2002a�. Kaon condensation was initially
demonstrated using an effective theory of the Goldstone
bosons, but with some effort can also be seen in an NJL
calculation �Buballa, 2005b; Forbes, 2005�. The CFL-K0

phase is a superfluid; it is a neutral insulator; all its quark
modes are gapped �as long as Ms

2 / �2�����; and it
breaks chiral symmetry. In all these respects it is similar
to the CFL phase. Once we turn on small quark masses,
different for all flavors, the SU�3�c+L+R symmetry of the
CFL phase is reduced by explicit symmetry breaking to

just U�1�Q̃�U�1�Ỹ, with Ỹ a linear combination of a di-
agonal color generator and hypercharge. In the CFL-K0

phase, the kaon condensate breaks U�1�Ỹ spontaneously.
This modifies the spectrum of both quarks and Gold-
stone modes, and thus can affect transport properties.

III. BELOW CFL DENSITIES

As discussed in the Introduction �end of Sec. I.A� and
above �Sec. II.B�, at intermediate densities the CFL
phase suffers from stresses induced by the strange quark
mass, combined with beta-equilibration and neutrality
requirements. It can only survive down to the transition
to nuclear matter �occurring at quark chemical potential
�=�nuc� if the pairing is strong enough: roughly
�CFL
Ms��nuc�2 /2�nuc, ignoring strong interaction cor-
rections, which are presumably important in this regime.
It is therefore quite possible that other pairing patterns
occur at intermediate densities, and in this section we
survey some of the possibilities that have been sug-
gested.

Figure 3 shows a comparison of the free energies of
some of these phases. We have chosen �CFL=25 MeV,

so there is a window of non-CFL pairing between
nuclear density and the region where the CFL phase
becomes stable. �For stronger pairing, �CFL�100 MeV,
there would be no such window.� The curves for the
CFL, 2SC, gCFL, g2SC, and crystalline phases �, CubeX,
and 2Cube45z� are obtained from an NJL model as de-
scribed in Sec. VI. The curves for the CFL-K0 and me-
son supercurrent �curCFL-K0� phases are calculated
using the CFL effective theory with parameters chosen
by matching to weak-coupling QCD, as described in
Sec. V, except that the gap was chosen to match
�CFL=25 MeV. The phases displayed in Fig. 3 are dis-
cussed in the following sections.

A. Two-flavor pairing: The 2SC phase

After CFL, 2SC is the most straightforward less sym-
metrically paired form of quark matter, and was one of
the first patterns to be analyzed �Bailin and Love, 1979,
1984; Barrois, 1979; Alford et al., 1998; Rapp et al.,
1998�. In the 2SC phase, quarks with two out of three
colors �red and green, say� and two out of three flavors,
pair in the standard BCS fashion. The flavors with the
most phase space near their Fermi surfaces, namely, u
and d, are the ones that pair, leaving the strange and
blue quarks unpaired �middle panel of Fig. 2�. Accord-
ing to NJL models, if the coupling is weak then there is
no 2SC region in the phase diagram �Steiner et al., 2002�.
This can be understood by an expansion in powers of
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FIG. 3. �Color online� Free energy of various phases of dense
three-flavor quark matter, assuming �CFL=25MeV. The homo-
geneous phases are CFL and 2SC, their gapless analogs gCFL
and g2SC, and the kaon-condensed phase CFL-K0. The true
ground state must have a free energy below that of the gCFL
phase, which is known to be unstable. The inhomogeneous
phases are curCFL-K0, which is CFL-K0 with meson supercur-
rents, and 2PW, CubeX, and 2Cube45z, which are crystalline
color superconducting phases. The transition from CFL-K0 to
curCFL-K0 is marked with a dot. In the condensate is a sum of
only two plane waves. CubeX and 2Cube45z involve more
plane waves, their condensation energies are larger but less
reliably determined, so their curves should be assumed to have
error bands comparable in size to the difference between
them.
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Ms, which finds that the CFL→2SC transition occurs at
the same point as the 2SC→unpaired transition, leaving
no 2SC window �Alford and Rajagopal, 2002� �this is the
situation in Fig. 3�. However, NJL models with stronger
coupling leave open the possibility of a 2SC window in
the “non-CFL” region of the phase diagram �Rüster et
al., 2005; Abuki and Kunihiro, 2006�. �These calculations
have, to date, not included the possibility of meson cur-
rent or crystalline color superconducting phases, dis-
cussed below, that may prove more favorable.�

The 2SC pairing pattern, corresponding to �B
A=�3

A�B
3

in Eq. �8�, is �	i

C�5	j

����2SC�ij3�
�3, where the symme-
try breaking pattern, assuming massless up and down
quarks, is

�SU�3�c� � SU�2�L � SU�2�R � U�1�B � U�1�S

��U�1�Q�

→ �SU�2�rg� � SU�2�L � SU�2�R � U�1�B̃ � U�1�S

��U�1�Q�˜ �9�

using the same notation as in Eq. �6�. The unpaired mas-
sive strange quarks introduce a U�1�S symmetry. The
color SU�3�c gauge symmetry is broken down to an
SU�2�rg red-green gauge symmetry, whose confinement
distance rises exponentially with density, as
�−1 exp�const�� / �g��� �Rischke et al., 2001� �see also
Ouyed and Sannino �2001�; Casalbuoni, Gatto, et al.
�2002��. An interesting feature of 2SC pairing is that no
global symmetries are broken. The condensate is a sin-
glet of the SU�2�L�SU�2�R flavor symmetry, and baryon

number survives as B̃, a linear combination of the origi-
nal baryon number and the broken diagonal T8 color
generator. Electromagnetism, originally a linear combi-
nation of B, S, and I3 �isospin�, survives as an unbroken

linear combination Q̃ of B̃, S, and I3. 2SC quark matter
is therefore a color superconductor but is neither a su-
perfluid nor an electromagnetic superconductor, and
there is no order parameter that distinguishes it from the
unpaired phase or the QGP �Alford et al., 1998�. With
respect to the unbroken U�1�Q̃ gauge symmetry, the 2SC
phase is a conductor, not an insulator, because some of

the ungapped blue and strange quarks are Q̃ charged.

B. Unstable gapless phases

As noted in Sec. II.B, and as can be seen in Fig. 3, the
CFL phase becomes unstable when �	 1

2Ms
2 /�CFL. At

this point the pairing in the gs-bd sector suffers the in-
stability discussed in Sec. III.E, and it becomes energeti-
cally favorable to convert gs quarks into bd quarks �both

near their common Fermi momentum�.3 If we restrict
ourselves to diquark condensates that are spatially ho-
mogeneous, the result is a modification of the pairing in
which there is still pairing in all color-flavor channels
that characterize CFL, but gs-bd Cooper pairing ceases
to occur in a range of momenta near the Fermi surface
�Alford, Kouvaris, and Rajagopal, 2004b, 2005; Fuku-
shima et al., 2005�. In this range of momenta there are
bd quarks but no gs quarks, and quark modes at the
edges of this range are ungapped, hence this is called a
gapless phase �“gCFL”�. Such a phenomenon was first
proposed for two flavor quark matter �“g2SC”� �Shovk-
ovy and Huang, 2003�, see also Gubankova et al. �2003�.
It has been confirmed in NJL analyses such as those by
Alford et al. �2004a�; Alford, Jotwani, et al. �2005�; Al-
ford, Kouvaris, and Rajagopal �2005�; Rüster et al. �2004,
2005�; Abuki et al. �2005�; Fukushima et al. �2005�; Abuki
and Kunihiro �2006� which predict that at densities too
low for CFL pairing there will be gapless phases.

In Fig. 3, where �CFL=25 MeV, we see the transition
from CFL to gCFL at Ms

2 /�	2�CFL=50 MeV. �It is in-

teresting to note that, whereas the CFL phase is a Q̃

insulator, the gCFL phase is a Q̃ conductor because it
has a small electron density, balanced by unpaired bu
quarks from a very thin momentum shell of broken
bu-rs pairing; the CFL→gCFL transition is the analog
of an insulator-to-metal transition at which a “band”
that was unfilled in the insulating phase drops below
the Fermi energy, making the material a metal.� The
gCFL phase then remains favored beyond the value
Ms

2 /�	4�CFL=100 MeV at which the CFL phase would
become unfavored relative to completely unpaired
quark matter �Alford and Rajagopal, 2002�.

However, it turns out that in QCD the gapless phases,
both g2SC �Huang and Shovkovy, 2004b; Giannakis and
Ren, 2005a�, and gCFL �Casalbuoni, Gatto, Mannarelli,
et al., 2005; Fukushima, 2005� are unstable at zero tem-
perature. �Increasing the temperature above a critical
value removes the instability; the critical value varies
dramatically between phases, from a fraction of an MeV
to of order 10 MeV �Fukushima, 2005�.� The instability
manifests itself in an imaginary Meissner mass mM for
some of the gluons. mM

2 is the low-momentum current-
current two-point function, and mM

2 /g2�2 �where the
strong interaction coupling is g� is the coefficient of the
gradient term in the effective theory of small fluctua-
tions around the ground-state condensate, so a negative
value indicates an instability towards spontaneous
breaking of translational invariance �Reddy and Rupak,
2005; Fukushima, 2006; Hashimoto, 2006; Huang, 2006;
Iida and Fukushima, 2006�. Calculations in a simple two-

3The onset of gaplessness occurs at the � at which
1
2 ��bd−�gs�=�CFL, as explained in Sec. I.E. Note that in the
CFL phase �bd−�gs=Ms

2 /�, twice its value in unpaired quark
matter because of the nonzero color chemical potential
�8�Ms

2 /� required by color neutrality in the presence of CFL
pairing �Alford and Rajagopal, 2002; Steiner et al., 2002�.
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species model �Alford and Wang, 2005� show that gap-
less charged fermionic modes generically lead to imagi-
nary mM.

The instability of the gapless phases indicates that
there must be other phases of even lower free energy
that occur in their place in the phase diagram. The na-
ture of those phases is not reliably determined at
present; likely candidates are discussed below.

C. Crystalline color superconductivity

The Meissner instability of the gCFL phase points to a
breaking of translational invariance, and crystalline
color superconductivity represents a possible resolution
of that instability. The basic idea, first proposed in con-
densed matter physics by Larkin and Ovchinnikov
�1965� and Fulde and Ferrell �1964� hence the term
‘‘LOFF phases’’ and analyzed more recently in the con-
text of color superconductivity �Alford, Bowers, and Ra-
jagopal, 2001; Bowers and Rajagopal, 2002; Casalbuoni
and Nardulli, 2004�, is to allow the different quark fla-
vors to have different Fermi momenta, thus accommo-
dating the stress of the strange quark mass, and to form
Cooper pairs with nonzero momentum, each quark lying
close to its respective Fermi surface. The price one must
pay for this arrangement is that only fermions in certain
regions on the Fermi surface can pair. Pairs with non-
zero momenta chosen from some set of wave vectors qa
yield condensates that vary in position space like
�a exp�iqa ·x�, forming a crystalline pattern whose Bra-
vais lattice is the set of qa.

Analyses to date have focused on u-d and u-s pairing,
neglecting pairing of d and s because the separation of
their Fermi momenta is twice as large �Fig. 2�. If the �ud�
condensate includes only pairs with a single nonzero
momentum q, this means that in position space the con-
densate is a single plane wave and means that in mo-
mentum space pairing is allowed on a single ring on the
u Fermi surface and a single ring on the opposite side of
the d Fermi surface. The simplest “crystalline” phase of
three-flavor quark matter that has been analyzed �Casal-
buoni, Gatto, Ippolito, et al., 2005; Mannarelli et al.,
2006b� includes two such single-plane wave condensates
�“2PW”�, one �ud� and one �us�. The favored orientation
of the two q’s is parallel, keeping the two “pairing rings”
on the u Fermi surface �from the �us� and �ud� conden-
sates� as far apart as possible �Mannarelli et al., 2006b�.
This simple pattern of pairing leaves much of the Fermi
surfaces unpaired, and it is much more favorable to
choose a pattern in which the �us� and �ud� condensates
each include pairs with more than one q vector, thus
more than one ring and more than one plane wave.
Among such more realistic pairing patterns, the two that
appear most favorable have either four q’s per conden-
sate that together point at the eight corners of a cube in
momentum space �“CubeX”� or eight q’s per condensate
that each point at the corners of separate cubes, rotated
relative to each other by 45° �“2Cube45z”� �Rajagopal
and Sharma, 2006b�. It has been shown that the chromo-

magnetic instability is no longer present in these phases
�Ciminale et al., 2006�. The free energies of the 2PW,
CubeX, and 2Cube45z phases as calculated within an
NJL model �see Sec. VI� are shown in Fig. 3. The calcu-
lation is an expansion in powers of �� /�pF�2 which in the
CubeX and 2Cube45z phases turns out to be of order
1 / 10 to 1 / 4. According to results obtained in a calcula-
tion done to third order in this expansion parameter, the
CubeX and 2Cube45z condensation energies are large
enough that one or the other is favored over a wide
range of Ms

2 /�, as illustrated in Fig. 3. The uncertainty in
each is of the same order as the difference between
them, so one cannot yet say which is favored, but the
overall scale is plausible �one would expect condensa-
tion energies an order of magnitude bigger than that of
the 2PW state�. We discuss crystalline color supercon-
ductivity in Sec. VI.

D. Meson supercurrent (“curCFL-K0”)

Kaon condensation alone does not remove the gapless
modes that occur in the CFL phase when Ms becomes
large enough, but it does affect the number of gapless
modes and the onset value of Ms. In the CFL-K0 phase,
the electrically charged �bs� mode becomes gapless at
Ms

2 /�	8� /3 �compared to 2� in the CFL phase�, and
the electrically neutral �bd� mode becomes gapless for
Ms

2 /�	4� �Kryjevski and Schäfer, 2005; Kryjevski and
Yamada, 2005�. �In an NJL model analysis �Forbes,
2005�, the charged mode in the CFL-K0 phase becomes
gapless at Ms

2 /�	2.44� for �=25 MeV as in Fig. 3�. The
gapless CFL-K0 phase has an instability which is similar
to the instability of the gCFL phase. This instability can
be viewed as a tendency towards spontaneous genera-
tion of Goldstone boson �kaon� currents �Schäfer, 2006;
Kryjevski, 2008�. The currents correspond to a spatial
modulation of the kaon condensate. There is no net
transfer of any charge because the Goldstone boson cur-
rent is counterbalanced by a backflow of ungapped fer-
mions. The meson supercurrent ground state is lower in
energy than the CFL-K0 state and the magnetic screen-
ing masses are real �Gerhold et al., 2007�. Because the
ungapped fermion mode is electrically charged, both the
magnitude of the Goldstone boson current needed to
stabilize the phase and the magnitude of the resulting
energy gain relative to the phase without a current are
very small. Goldstone boson currents can also be gener-
ated in the gCFL phase without K0 condensation. In this
case gauge invariance implies that the supercurrent state
is equivalent to a single plane-wave LOFF state, but the
analyses can be carried out in the limit that the gap is
large compared to the magnitude of the current �Ger-
hold and Schäfer, 2006�. This analysis is valid near the
onset of the gCFL phase, but not for larger mismatches,
where states with multiple currents are favored.
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E. Single-flavor pairing

If the stress due to the strange quark mass is large
enough then there may be a range of quark matter den-
sities where no pairing between different flavors is pos-
sible, whether spatially uniform or inhomogeneous.
From Fig. 3 we estimate that this will occur when
Ms

2 /��CFL�10, so it requires a large effective strange
quark mass and/or small CFL pairing gap. The best
available option in this case is Cooper pairing of each
flavor with itself. Single-flavor pairing may also arise
among the strange quarks in a 2SC phase, since they are
not involved in two-flavor pairing. We discuss these
cases separately below.

To maintain fermionic antisymmetry of the Cooper
pair wave function, single-flavor pairing phases have to
either be symmetric in color, which greatly weakens or
eliminates the attractive interaction, or be symmetric in
Dirac indices, which compromises the uniform participa-
tion of the whole Fermi sphere. As a result, they have
much lower critical temperatures than multiflavor
phases such as the CFL or 2SC phases, perhaps as large
as a few MeV, more typically in the eV to many keV
range �Alford et al., 1998, 2003; Schäfer, 2000b; Schmitt
et al., 2002; Buballa et al., 2003; Schmitt, 2005�.

Matter in which each flavor only pairs with itself has
been studied using NJL models and weakly coupled
QCD. These calculations agree that the energetically fa-
vored state is color-spin-locked �CSL� pairing for each
flavor �Bailin and Love, 1979; Schäfer, 2000b; Schmitt,
2005�. CSL pairing involves all three colors, with the
color direction of each Cooper pair correlated with its
spin direction, breaking SU�3�c�SO�3�rot→SO�3�c+rot.
The phase is isotropic, with rotational symmetry surviv-
ing as a group of simultaneous spatial and color rota-
tions. Other possible phases exhibiting spin-one, single-
flavor, pairing include the polar, planar, and A phases
described by Schäfer �2000b�; Schmitt �2005� �for an NJL
model treatment see Alford et al. �2003��. Some of these
phases exhibit point or line nodes in the energy gap at
the Fermi surface, and hence do break rotational sym-
metry.

If 2SC pairing occurs with strange quarks present, one
might expect the strange quarks of all three colors to
undergo CSL self-pairing, yielding an isotropic “2SC
+CSL” pattern. However, the 2SC pattern breaks the
color symmetry, and in order to maintain color neutral-
ity a color chemical potential is generated, which splits
the Fermi momentum of the blue strange quarks away
from that of the red and green strange quarks. This is a
small effect, but so is the CSL pairing gap, and NJL
model calculations indicate that the color chemical po-
tential typically destroys CSL pairing of the strange
quarks �Alford and Cowan, 2006�. The system falls back
on the next best alternative, which is spin-one pairing of
the red and green strange quarks.

Because their gaps and critical temperatures can
range as low as the eV scale, single-flavor pairing phases
in compact stars would appear relatively late in the life
of the star, and might cause dramatic changes in its be-

havior. For example, unlike the CFL and 2SC phases,
many single-flavor-paired phases are electrical supercon-
ductors �Schmitt et al., 2003�, so their appearance could
significantly affect the magnetic field dynamics of the
star.

F. Gluon condensation

In the 2SC phase �unlike in the CFL phase� the mag-
netic instability arises at a lower value of the stress on
the BCS pairing than that at which the onset of gapless
pairing occurs. In this 2SC regime, analyses done using a
Ginzburg-Landau approach indicate that the instability
can be cured by the appearance of a chromoelectric con-
densate �Gorbar, Hashimoto, and Miransky, 2006; Gor-
bar, Hashimoto, et al., 2006; Gorbar et al., 2007; Hash-
imoto and Miransky, 2007�. The 2SC condensate breaks
the color group down to the SU�2�rg red-green sub-
group, and five of the gluons become massive vector
bosons via the Higgs mechanism. The new condensate
involves some of these massive vector bosons, and be-
cause they transform nontrivially under SU�2�rg it now
breaks that gauge symmetry. Because they are electri-
cally charged vector particles, rotational symmetry is
also broken, and the phase is an electrical supercon-
ductor. Alternatively, it has been suggested �Ferrer and
de la Incera, 2007a� that the gluon condensate may be

inhomogeneous with a large spontaneously induced Q̃
magnetic field.

G. Secondary pairing

Since the Meissner instability is generically associated
with the presence of gapless fermionic modes, and the
BCS mechanism implies that any gapless fermionic
mode is unstable to Cooper pairing in the most attrac-
tive channel, one may ask whether the instability could
be resolved without introducing spatial inhomogeneity
simply by “secondary pairing” of the gapless quasiparti-
cles, which would then acquire their own gap �s �Huang
and Shovkovy, 2003; Hong, 2005�. Furthermore, there is
a mode in the gCFL phase whose dispersion relation is
well approximated as quadratic, �� �k−const�2, yielding
a greatly increased density of states at low energy �di-
verging as �−1/2�, so its secondary pairing is much stron-
ger than would be predicted by BCS theory: �s�G2 for
an effective four-fermion coupling strength G, as com-
pared with the standard BCS result ��exp�−const/G�
�Hong, 2005�. This result is confirmed by an NJL study
in a two-species model �Alford and Wang, 2006�, but the
secondary gap �s was found to be still much smaller than
the primary gap �p, so it does not generically resolve the
magnetic instability �in the temperature range �s�T
��p, for example�.

H. Mixed phases

Another way for a system to deal with stress on its
pairing pattern is to form a mixed phase, which is a
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charge-separated state consisting of positively and nega-
tively charged domains which are neutral on average.
The coexisting phases have a common pressure and a
common value of the charge chemical potential which is
not equal to the neutrality value for either phase
�Ravenhall et al., 1983; Glendenning, 1992�. The size of
the domains is determined by a balance between surface
tension �which favors large domains� and electric field
energy �which favors small domains�. Separation of
color charge is expected to be suppressed by the very
high energy cost of color electric fields, but electric
charge separation is quite possible, and may occur at the
interface between color-superconducting quark matter
and nuclear matter �Alford, Rajagopal, et al., 2001� and
an interface between quark matter and the vacuum �Al-
ford et al., 2006; Jaikumar, Reddy, and Steiner, 2006�, as
it occurs at interfaces between nuclear matter and a
nucleon gas �Ravenhall et al., 1983�. Mixed phases are a
generic phenomenon, since, in the approximation where
Coulomb energy costs are neglected, any phase can al-
ways lower its free energy density by becoming charged
�this follows from the fact that free energies are concave
functions of chemical potentials�. In this approximation,
if two phases A and B can coexist at the same pressure
with opposite charge densities then such a mixture will
always be favored over a uniform neutral phase of either
A or B. For a pedagogical discussion, see Alford, Kou-
varis, and Rajagopal �2005�. Surface and Coulomb en-
ergy costs can cancel this energy advantage, however,
and have to be calculated on a case-by-case basis.

In quark matter it has been found that as long as we
require local color neutrality such mixed phases are not
the favored response to the stress imposed by the
strange quark mass �Alford et al., 2004a, 2004b�. Phases
involving color charge separation have been studied
�Neumann et al., 2003� but it seems likely that the energy
cost of the color-electric fields will disfavor them.

I. Relation to cold atomic gases

An interesting class of systems in which stressed su-
perconductivity can be studied experimentally is trapped
atomic gases in which two different hyperfine states
�“species”� of the atom pair with each other �Giorgini et
al., 2007�. This is a useful experimental model because
the stress and interaction strength are both under ex-
perimental control, unlike quark matter where one
physical variable ��� controls both the coupling strength
and the stress. The atomic pairing stress can be adjusted
by changing the relative number of atoms of the two
species �“polarization”�. The scattering length of the at-
oms can be controlled using Feshbach resonances, mak-
ing it possible to vary the strength of the interatomic
attraction from weak �where BCS pairing occurs�
through the unitarity limit �where a bound state forms�
to strong �Bose-Einstein condensation of diatomic mol-
ecules�.

The theoretical expectation is that, in the weak cou-
pling limit, there will be BCS pairing as long as ��, the
chemical potential difference between the species, is

small enough. The BCS phase is unpolarized because
the Fermi surfaces are locked together. A first-order
transition from BCS to crystalline �LOFF� pairing is ex-
pected at ��=�0 /�2, where �0 is the BCS gap at ��=0;
then at ��c a continuous transition to the unpaired
phase �Chandrasekhar, 1962; Clogston, 1962; Fulde and
Ferrell, 1964; Larkin and Ovchinnikov, 1965�. For the
single plane wave LOFF state ��c�0.754�0, but for
multiple plane wave states ��c may be larger.

Experiments with cold trapped atoms near the unitary
limit �strong coupling� have seen phase separation be-
tween an unpolarized superfluid and a polarized normal
state �Partridge et al., 2006; Shin et al., 2006; Zwierlein et
al., 2006�. If one ignores the crystalline phase �perhaps
only favored at weak coupling �Mannarelli et al., 2006a;
Sheehy and Radzihovsky, 2006, 2007�� this is consistent
with the theoretical expectation for the BCS regime: the
net polarization forces the system to phase separate,
yielding a mixture of BCS and unpaired phases with ��
fixed at the first order transition between them �Be-
daque et al., 2003; Carlson and Reddy, 2005�. It remains
an exciting possibility that crystalline superconducting
�LOFF� phases of cold atoms may be observed: this may
require experiments closer to the BCS regime.

In the strong coupling limit the superfluid consists of
tightly bound molecules. Adding an extra atom requires
energy �. For 
��

� the atomic gas is a homogeneous
mixture of an unpolarized superfluid and a fully polar-
ized Fermi gas, so the system is a stable gapless super-
fluid. This means that in strong coupling polarization can
be carried by a gapless superfluid, whereas in weak cou-
pling even a small amount of polarization leads to the
appearance of a mixed BCS/LOFF phase. It is not
known what happens at intermediate coupling, but one
possibility is that the gapless superfluid and the LOFF
phase are connected by a phase transition �Son and
Stephanov, 2006�. This transition would correspond to a
magnetic instability of the gapless superfluid.

IV. WEAK-COUPLING QCD CALCULATIONS

We have asserted in Secs. I and II that at sufficiently
high densities it is possible to do controlled calculations
of properties of CFL quark matter directly from the
QCD Lagrangian. We describe how to do such calcula-
tions in this section. We focus on the calculation of the
gap parameter, but also discuss the critical temperature
Tc for the transition from the CFL phase to the quark-
gluon plasma and the Meissner and Debye masses that
control color-magnetic and color-electric effects in the
CFL phase. Phenomena that are governed by the mass-
less Goldstone bosons and/or the light pseudo-
Goldstone bosons are most naturally described by first
constructing the appropriate effective theory and then, if
at sufficiently high densities, calculating its parameters
directly from the QCD Lagrangian. We defer these
analyses to Sec. V.

Although the weak coupling calculations that we de-
scribe in this section are only directly applicable in the
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CFL phase, we present them in a sufficiently general
formalism that they can be applied to other spatially
homogeneous phases also, including, for example, the
2SC and CSL phases. These phases can be analyzed at
weak coupling either simply by ansatz or by introducing
such a large strange quark mass that CFL pairing is dis-
favored even at enormous densities. Such calculations
provide insights into the properties of these phases, even
though they do not occur in the QCD phase diagram at
high enough densities for a weak coupling approach to
be applicable. To keep our notation general, we refer to
the gap parameter as �; in the CFL phase, �CFL
�.

We shall see that at weak coupling the expansion pa-
rameter that controls the calculation of log�� /�� is at
best g, certainly not g2. �The leading term is of order
1/g; the log g and g0 terms have also been calculated.
The O�g log g� and O�g� terms are nonzero, and have
not yet been calculated. Beyond O�g�, it is possible that
fractional powers of g may arise in the series.� We there-
fore expect the weak coupling calculations to be quanti-
tatively reliable only at densities for which g����1,
which corresponds to densities many orders of magni-
tude greater than that at the centers of neutron stars.
Indeed, it has been shown �Rajagopal and Shuster, 2000�
that some of the O�g� contributions start to decline in
magnitude relative to the g0 term only for g����0.8
which corresponds, via the two-loop QCD beta function,
to ��108 MeV meaning densities 15 to 16 orders of
magnitude greater than those at the centers of compact
stars. The reader may therefore be tempted to see this
section as academic. From a theoretical point of view, it
is exceptional to have an instance where the properties
of a superconducting phase can be calculated rigorously
from a fundamental short-distance theory, making this
exploration a worthy pursuit even if academic. From a
practical point of view, the quantitative understanding
that we derive from calculations reviewed in this section
provides a completely solid foundation from which we
can extrapolate downwards in �. The effective field
theory described in Sec. V gives us a well-defined way of
doing so as long as we stay within the CFL phase, mean-
ing that we can come down from �
108 MeV all the
way down to ��Ms

2 / �2�CFL�. Finally, we gain qualita-
tive insights into the CFL phase and other color super-
conducting phases, insights that guide our thinking at
lower densities.

The QCD Lagrangian is given by

L = 	̄�i��D� + �̂�0 − m̂�	 − 1
4Ga

��G��
a . �10�

Here 	 is the quark spinor in Dirac, color, and flavor

space, i.e., a 4NcNf-component spinor, and 	̄
	†�0. The
covariant derivative acting on the fermion field is
D�=��+ igTaA�

a , where g is the strong coupling con-
stant, A�

a are the gauge fields, Ta=�a /2 �a=1, . . . ,8� are
the generators of the gauge group SU�3�c, and �a are
the Gell-Mann matrices. The field strength tensor is
Ga

��=��A�
a−��A�

a +gfabcA�
bA�

c with the SU�3�c structure
constants fabc. The chemical potential �̂ and the quark

mass m̂=diag�mu ,md ,ms� are diagonal matrices in flavor
space. If weak interactions are taken into account flavor
is no longer conserved and there are only two chemical
potentials, one for quark �baryon� number, �, and one
for electric charge, �e. At the very high densities of in-
terest in this section, the constituent quark masses are
essentially the same as the current quark masses mu, md,
and ms meaning that we need not distinguish between
them. Furthermore, at asymptotic densities we can ne-
glect even the strange quark mass, so throughout most
of this section we set mu=md=ms=0.

If the coupling is small then the natural starting point
is a free Fermi gas of quarks. In a degenerate quark gas
all states with momenta p�pF= ��2−mq

2�1/2 are occu-
pied, and all states with p
pF are empty. Because of
Pauli blocking, interactions mainly modify states in the
vicinity of the Fermi surface. Since the Fermi momen-
tum is large, typical interactions between quarks near
the Fermi surface involve large momentum transfer and
are governed by the weak coupling g���. Interactions in
which quarks scatter by only a small angle involve only a
small momentum transfer and are therefore potentially
dangerous. However, small momenta correspond to
large distances, and medium modifications of the ex-
changed gluons are therefore important. In a dense me-
dium, electric gluons are Debye screened at momenta
q�g�. The dominant interaction for momenta below
the screening scale is due to unscreened, almost static,
magnetic gluons. In a hot quark-gluon gas, interactions
between magnetic gluons become nonperturbative for
momenta less than g2T. This phenomenon does not take
place in a very dense quark liquid, and gluon exchanges
with arbitrarily small momenta remain perturbative. On
a qualitative level this can be attributed to the absence
of Bose enhancement factors in soft gluon propagators.
A more detailed explanation will be given in Sec. V.A.2.
The unscreened magnetic interactions nevertheless
make the fluid a “non-Fermi liquid” at temperatures
above the critical temperature for color superconductiv-
ity. We discuss this also in Sec. V.A.2, where we shall see
that these non-Fermi-liquid effects do not spoil the basic
logic of the BCS argument that diquark condensation
must occur in the presence of an attractive interaction,
but are crucial in the calculation of the gap that results.

A. Gap equation

As discussed in Sec. I.B, any attractive interaction in a
many-fermion system leads to Cooper pairing. QCD at
high density provides an attractive interaction via one-
gluon exchange. In terms of quark representations of
SU�3�c, the attractive channel is the antisymmetric anti-

triplet 3̄A, appearing by “pairing” two color triplets:

3 � 3= 3̄A � 6S. Consequently, only quarks of different
colors form Cooper pairs. There is an induced pairing in
the symmetric sextet channel 6S. However, this pairing is
much weaker �Alford, Berges, and Rajagopal, 1999, Al-
ford, Rajagopal, and Wilczek, 1999; Pisarski and
Rischke, 1999c; Shovkovy and Wijewardhana, 1999;
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Schäfer, 2000a�, and we largely neglect it in the follow-
ing. As in an electronic superconductor, Cooper pairing
results in an energy gap in the quasiparticle excitation
spectrum. Its magnitude at zero temperature � is crucial
for the phenomenology of a superconductor. In addition,
it also sets the scale for the critical temperature Tc of the
phase transition which can be expected to be of the
same order as � �in BCS theory, Tc=0.57��. Over the
course of the next five sections, we discuss the QCD gap
equation, which is used to determine both � and Tc.

Our starting point is the partition function

Z =� DAD	̄D	eiS, �11�

with the action S=�d4xL and the Lagrangian �10�. In the
following we only sketch the derivation of the gap equa-
tion. Details following the same lines can be found in
Pisarski and Rischke �1999b, 2000a�; Manuel �2000b�,
Schmitt et al. �2002�, Rischke �2004�, Schmitt �2004,
2005�.

We begin by introducing Nambu-Gorkov spinors. This
additional two-dimensional structure proves convenient
in the theoretical description of a superconductor or a
superfluid, see, for instance, Abrikosov et al. �1963�; Fet-
ter and Walecka �1971�. It allows for the introduction of
a source that couples to quark bilinears �as opposed to
quark-antiquark bilinears�. Spontaneous symmetry
breaking is realized by taking the limit of a vanishing
source. The Nambu-Gorkov basis is given by

� = � 	

	C
�, �̄ = �	̄,	̄C� , �12�

where 	C=C	̄T is the charge conjugate spinor, obtained
by multiplication with the charge conjugation matrix
C
 i�2�0. In a free fermion system, the new basis is a
pure doubling of degrees of freedom with the inverse
fermion propagator consisting of the original free propa-
gators,

S0
−1 = ��G0

+�−1 0

0 �G0
−�−1 � , �13�

where �G0
±�−1�X ,Y�
−i�i����±��0���4��X−Y�. Here

and in the following capital letters denote four-vectors,
e.g., X
�x0 ,x�. The effect of a nonzero diquark conden-
sate can now be taken into account through adding a
suitable source term to the action and computing the
effective action  as a functional of the gluon and fer-
mion propagators D and S �Miransky et al., 2001; Abuki,
2003; Takagi, 2003; Rischke, 2004; Rüster and Rischke,
2004; Schmitt, 2004�:

 �D,S� = − 1
2Tr log D−1 − 1

2Tr�D0
−1D − 1�

+ 1
2Tr log S−1 + 1

2Tr�S0
−1S − 1� +  2�D,S� .

�14�

This functional is called the 2PI effective action since the
contribution  2�D ,S� consists of all two-particle irreduc-
ible diagrams �Luttinger and Ward, 1960; Baym, 1962;

Cornwall et al., 1974�. This formalism is particularly suit-
able for studying spontaneous symmetry breaking in a
self-consistent way. The ground state of the system is
obtained by finding the stationary point of the effective
action. The stationarity conditions yield Dyson-
Schwinger equations for the gauge boson and fermion
propagators,

D−1 = D0
−1 + ! , �15a�

S−1 = S0
−1 + � , �15b�

where the gluon and fermion self-energies are the func-
tional derivatives of  2 at the stationary point,

! 
 − 2
� 2

�D
, � 
 2

� 2

�S
. �16�

Writing the second of these equations as
 2�S�= �1/4�Tr��S�, we can then use the Dyson-
Schwinger equation �15b� to evaluate the fermionic part
of the effective action at the stationary point, obtaining
the pressure

P = 1
2Tr log S−1 − 1

4Tr�1 − S0
−1S� . �17�

We return to this expression for the pressure in Sec.
IV.C.

Here we proceed to analyze the Dyson-Schwinger
equation �15b� for the fermion propagator. We denote
the entries of the 2�2 matrix � in Nambu-Gorkov
space as

� 
 ��+ "−

"+ �− � , �18�

where the off-diagonal elements are related via
"−=�0�"+�†�0. One can invert the Dyson-Schwinger
equation formally to obtain the full fermion propagator
in the form

S = �G+ F−

F+ G− � , �19�

where the fermion propagators for quasiparticles and
charge conjugate quasiparticles are

G± = ��G0
±�−1 + �± − "#��G0

#�−1 + �#�−1"±�−1, �20�

and the so-called anomalous propagators, typical for a
superconducting system, are given by

F± = − ��G0
#�−1 + �#�−1"±G±. �21�

They can be thought of as describing the propagation of
a charge-conjugate particle �i.e., a hole� with propagator
��G0

−�−1+�−�−1 that is converted into a particle with
propagator G+, via the condensate "+. �Or, a particle
that is converted into a hole via the condensate.� The
essence of superconductivity or superfluidity is the exis-
tence of a difermion condensate that makes the quasi-
particle excitations superpositions of elementary states
with fermion number . . . ,−5 ,−3,−1, 1, 3, 5,…; we see the
formalism accommodating this phenomenon here.

1471Alford et al.: Color superconductivity in dense quark matter

Rev. Mod. Phys., Vol. 80, No. 4, October–December 2008



We approximate  2 by only taking into account two-
loop diagrams. Upon taking the functional derivative
with respect to S, this corresponds to a one-loop self-
energy �. We show � diagrammatically in Fig. 4. We
argue later that this approximation is sufficient to calcu-
late log�� /�� up to terms of order g0. Upon making this
approximation, the gap equation takes the form shown
in the lower panel of Fig. 4, namely,

"+�K� = g2�
Q

��Ta
TF+�Q���TbD��

ab�K − Q� , �22�

in momentum space, where D��
ab�K−Q� is the gluon

propagator.
Note that in the derivation of the gap equation we

have assumed the system to be translationally invariant.
This assumption fails for crystalline color superconduct-
ors, see Sec. VI. There has been some work on analyzing
a particularly simple crystalline phase in QCD at asymp-
totically high densities and weak coupling �Leibovich et
al., 2001�, but the formalism we are employing does not
allow us to incorporate it into our presentation and, any-
way, this subject remains to date largely unexplored.

B. Quasiparticle excitations

Before we proceed with solving the gap equation, it is
worthwhile to derive the dispersion relations for the fer-
mionic quasiparticle excitations in a color supercon-
ductor. That is, we suppose that the gap parameter�s� �
have been obtained in the manner that we describe be-
low and ask what are the consequences for the quasipar-
ticle dispersion relations. Based on experience with or-

dinary superconductors or superfluids, we expect �and
find� gaps in the dispersion relations for the fermionic
quasiparticles. We may also expect that in some color
superconducting phases, quasiparticles with different
colors and flavors, or different linear combinations of
color and flavor, differ in their gaps and dispersion rela-
tions. Indeed, some gaps may vanish or may be nonzero
only in certain directions in momentum space.

The quasiparticle dispersion relations are encoded
within the anomalous self-energy "+, defined in Eq. �18�,
which satisfies the gap equation �22�. We assume that "+

can be written in the form

"+�K� = �
e=±

��e��K�M�k
�e�, �23�

where M is a matrix in color, flavor, and Dirac space,

and �k
�e�
�1+e�0� · k̂� /2 are projectors onto states of

positive �e= + � or negative �e=−� energy. The corre-
sponding gap functions are denoted as ��e��K� and will
be determined by the gap equation. Here and in the
following the energy superscript is denoted in parenthe-
ses to distinguish it from the superscript that denotes
components in Nambu-Gorkov space. In our presenta-
tion we assume that M is momentum independent, cor-
responding to a condensate of Cooper pairs with angular
momentum J=0, but the formalism can easily be ex-
tended to allow a momentum-dependent Mk as re-
quired, for example, in the analysis of the CSL phase
and we also quote results for this case. Note that in Eq.
�23� we are assuming that every nonzero entry in M is
associated with the same gap functions ��e�; the formal-
ism would have to be generalized to analyze phases in
which there is more than one independent gap function,
as, for example, in the gCFL phase.

We analyze color superconducting phases whose color,
flavor, and Dirac structure takes the form

Mij

� = �A

B�
�A�ijB�5, �24�

where the �5 Dirac structure selects a positive parity
condensate, where, as described in Secs. I and II, the
antisymmetric color matrix is favored since QCD is at-
tractive in this channel and the antisymmetric flavor ma-
trix is then required, and where � is a 3�3 matrix. We
note that because the full flavor symmetry is the chiral
SU�3�L�SU�3�R symmetry, the matrix � is actually a
pair ��L ,�R�. In this section we assume �R=�L. The
case �R��L, which corresponds to a meson condensate
in the CFL phase, is discussed in Sec. V.C.

The excitation spectrum is given by the poles of the
propagator S in Eq. �19�. �We shall see that the diagonal
and off-diagonal entries in S have the same poles.� It will
turn out that the Hermitian matrix MM† determines
which quasiparticles are gapped and determines the ra-
tios among the magnitudes of �possibly� different gaps.
It is convenient to write this matrix via its spectral rep-
resentation

=

Σ =

⎛
�����������������⎝

� �

� �

⎞
�����������������⎠

FIG. 4. Quark self-energy and gap equation from QCD. Up-
per panel: Diagrammatic representation of the quark self-
energy in Nambu-Gorkov space. Curly lines correspond to the
gluon propagator D. The quasiparticle propagators G+ and G−

are denoted by double lines with an arrow pointing to the left
and right, respectively. The anomalous propagators F± in the
off-diagonal entries are drawn according to their structure
given in Eq. �21�: thin lines correspond to the term ��G0

#�−1

+�#�−1, while the cross-hatched and hatched circles denote the
gap matrices "+ and "−, respectively. Lower panel: The QCD
gap equation �22� is obtained by equating "+ with the lower
left entry of the self-energy depicted in the upper panel �the
other off-diagonal component yields an equivalent equation
for "−�.
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MM† = �
r

�rPr, �25�

where �r are the eigenvalues and Pr the projectors onto
the corresponding eigenstates.

The final preparation that we must discuss prior to
computing the propagator is that we approximate the
diagonal elements of the quark self-energy as �Brown et
al., 2000c; Manuel, 2000b; Gerhold and Rebhan, 2005�

�± � �0�k
�±� g2

18�2k0 log
48e2mg

2

�2k0
2 , �26�

where mg
2=Nfg

2�2 /6�2 is the square of the effective
gluon mass at finite density, and e is the Euler constant.
Equation �26� is the low energy approximation to the
one-loop self-energy, valid for k0���mg, for the posi-
tive energy �e= + � states. Taking the low energy approxi-
mation to �± and neglecting the self-energy correction
to the negative energy states will prove sufficient to de-
termine log�� /�� up to order g0.

With all the groundwork in place, we now insert G0, �
from Eq. �26�, and " from Eq. �23� into Eqs �20� and
�21�, and hence Eq. �19�, and use Eq. �25� to simplify the
result. We find that the diagonal entries in the fermion
propagator S are given by

G± = ��G0
#�−1 + �#��

e,r

Pr�k
�#e�

�k0/Z�e��k0��2 − ��k,r
�e��2 , �27�

while the anomalous propagators are

F+�K� = − �
e,r

�0M�0Pr�k
�−e���e�

�k0/Z�e��k0��2 − ��k,r
�e��2 , �28a�

F−�K� = − �
e,r

M†Pr�k
�e����e��*

�k0/Z�e��k0��2 − ��k,r
�e��2 . �28b�

In writing these expressions, we have defined the wave-
function renormalization factor

Z�+��k0� 
 �1 +
g2

18�2 log
48e2mg

2

�2k0
2 �−1

, �29�

for the positive energy e=+ components, originating
from the self-energy �27�. �By neglecting the negative
energy contribution to �± in Eq. �26�, we are setting
the negative energy wave-function renormalization
Z�−��k0�=1.� We have furthermore defined

�k,r
�e� 
 ��ek − ��2 + �r
��e�
2. �30�

The rth quasiparticle and antiquasiparticle energies are
then given by solving k0=Z�e��k0��k,r

�e� for k0. To leading
order in g, wave-function renormalization can be ne-
glected and the quasiparticle and antiquasiparticle ener-
gies are given by the �k,r

�e� themselves. We see from Eq.
�30� that the antiparticles have �
�—in fact, for k near
� they have ��2�. They therefore never play an impor-
tant role at high density. This justifies our neglect of the
negative energy �± and hence of Z�−�; and, it justifies the
further simplification that we henceforth employ, setting
the antiparticle gap to zero, ��−�=0, and denoting
�
��+�. We also use the notation Z�k0�
Z�+��k0� and
�k,r
�k,r

�+�. We then see that the minimum value of �k,r
occurs at the Fermi surface, where k=�, and is given by
��r� which is conventionally referred to as the gap,
again neglecting wave-function renormalization. We see
that although we must solve the gap equation in order to
determine the magnitude of the gap parameter �, as we
will do in Secs. IV.D and IV.E, the ratios among the
actual gaps in the quasiparticle spectra that result are
determined entirely by the �r’s, namely, the eigenvalues
of MM†.

We close this section by evaluating the pattern of qua-
siparticle gaps explicitly for the CFL and 2SC phases.
We list the order parameters �A

B, eigenvalues �r, and
corresponding projectors Pr for these two phases in
Table I. In the CFL phase, one finds the eigenvalues
�1=4 with degeneracy Tr�P1�=1 and �2=1 with degen-
eracy Tr�P2�=8. This means that all nine quasiparticles
are gapped. There is an octet with gap �, and a singlet
with gap 2�. The octet Cooper pairs are gu-rd, bd-gs,
bu-rs, as well as two linear combinations of the three
quarks ru-gd-bs. �Here, gu refers to a green up quark,
etc.� The singlet Cooper pair with twice the gap is the
remaining orthogonal combination of ru-gd-bs. In the
2SC phase, on the other hand, we find four quasiparti-
cles with �1=1 and hence gap � and 5 quasiparticles
with �2=0 that are unpaired. The gapped quasiparticles
involve the first two colors, red and green, and the first
two flavors, up and down. The Cooper pairs have color-
flavor structure ru-gd and gu−rd. �Note that all these
color-flavor combinations depend on the chosen basis of
the color and flavor �anti�triplets. This basis is fixed by
Eq. �24�; applying color �flavor� rotations to �
�A ��ijB�
would change the basis and yield different, physically
equivalent, color-flavor combinations for the 2SC and
CFL phases.�

TABLE I. Color-flavor structure of CFL and 2SC phases: Order parameters �A
B, eigenvalues �r of the

matrix MM†, and corresponding projectors Pr, derived from Eq. �25�. Color �flavor� indices are
denoted 
, �, �i , j�.

Phase �A
B �1 �2 �P1�
�

ij �P2�
�
ij

CFL �A
B 4 �onefold� 1 �eightfold� �


i ��
j /3 �
��ij−�


i ��
j /3

2SC �A3�B3 1 �fourfold� 0 �fivefold� ��
�−�
3��3���ij−�i3�j3� �
3��3�i3�j3
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The formalism of this section can easily be applied to
patterns of pairing in which Mk depends on the direc-
tion of the quark momentum k. Such phases arise if the
Cooper pairs carry total angular momentum J=1. This
allows for pairing between quarks of the same flavor, as
discussed in Sec. III.E. Depending on the specific struc-
ture of Mk, the eigenvalues �r may become momentum
dependent and lead to nodes in the gap function along
certain directions in momentum space.

C. Pressure and condensation energy

We can now return to Eq. �17� for the pressure
P �equivalently, the thermodynamic potential since
�=−P� for a color superconductor and use the results of
Sec. IV.B to evaluate it for a superconducting phase of
the form �24�. We first substitute Eqs. �27� and �28� for
the fermion propagator �19� into the pressure �17�. In
order to obtain a result that is valid at both nonzero and
zero temperature, it is then convenient to switch to Eu-
clidean space and perform the sum over Matsubara fre-
quencies. Upon doing the trace over Nambu-Gorkov,
color, flavor, and Dirac space we find

P = �
e,r
� d3k

�2��3Tr�Pr�

���k,r
�e� + 2T log�1 + e−�k,r

�e� /T� −
�r
�
2

2�k,r
�e� tanh� �k,r

�e�

2T
�� .

�31�

Including the effects of wave-function renormalization
would modify this expression at order g. In most con-
texts, we only consider the pressure �31� at zero tem-
perature. In this case, with �r Tr�Pr�=NcNf,

P = NcNf
�4

12�2 + �P , �32�

where we denote the pressure difference of the color-
superconducting phase compared to the unpaired phase
by �P. If we make the simplifying assumption �corrected
in the next section� that the gap function is a constant in
momentum space in the vicinity of the Fermi surface, we
find the easily interpretable result

�P =
�2

4�2�
r

Tr�Pr��r�
2. �33�

At T=0 this quantity is the condensation energy density
of the color-superconducting state. The fact that �P
0
implies that the superconducting state is favored relative
to the normal phase. We observe that �P is proportional
to the sum of the energy gap squared of the rth branch,
multiplied by the corresponding degeneracy Tr�Pr�.

We can use the result �33� to understand how to com-
pare the favorability of different patterns of color super-
conducting pairing: the phase with lowest free energy
�highest �P� is favored. As an example, in the CFL
phase �P= ��2 /4�2��8�1+1�4��CFL

2 while in the 2SC
phase �P= ��2 /4�2��4�1+0�5��2SC

2 suggesting that the

CFL phase is favored. �We make this conclusion firm in
Sec. IV.E, where �CFL is smaller than �2SC but only by a
factor of 21/3. This factor will also turn out to be deter-
mined entirely by the �r’s and Tr�Pr�’s.�

In principle, in order to generalize the conclusion that
the CFL phase is favored one has to compare the con-
densation energies of all possible phases described by
the order parameter M in Eq. �24�. This is difficult be-
cause � is an arbitrary complex 3�3 matrix. At
asymptotic densities, however, we can neglect the
strange quark mass and treat the quarks as degenerate
in mass. The resulting SU�3�c�SU�3�f symmetry simpli-
fies the task. �f is L or R for �L or �R.� The matrix �
transforms under color-flavor rotations as �→UT�V
with U�SU�3�c, V�SU�3�f. This means that two order pa-
rameters � and UT�V describe the same physics. Now
note that for any � there exists a transformation �U ,V�
such that UT�V is diagonal. Therefore we need consider
only diagonal matrices �. Choosing all diagonal ele-
ments to be nonzero corresponds to the maximum num-
ber of gapped quasiparticles. Hence, once we show that
�2SC is not much larger than �CFL it is easy to under-
stand that the CFL phase with �=1, yielding an order
parameter that is invariant under the largest possible
subgroup of the original symmetries, is the ground state
at asymptotically large densities.

At lower densities, the flavor symmetry is explicitly
broken by the mass of the strange quark �the symmetries
are further broken by different chemical potentials due
to neutrality constraints�. In this case, the above argu-
ment fails and nondiagonal matrices � become possible
candidates for the ground state �Malekzadeh, 2006; Ra-
jagopal and Schmitt, 2006�

D. Weak coupling solution of the gap equation

We are now in a position to solve the QCD gap equa-
tion �22� for an order parameter with a given matrix
structure M. The matrix structure of the gap equation
�22� is handled by multiplying both sides of the equation
by M†�k

�+� and taking the trace over color, flavor, and
Dirac indices.

The gap equation is sensitive to gluon modes with
small momentum �p�mg� and even smaller energy
�p0�p3 /mg

2�p�, meaning that medium effects in the
gluon propagator have to be taken into account. In the
low momentum limit, the gluon propagator takes on the
standard hard-dense loop approximation form �Braaten
and Pisarski, 1992�, which is given in Eqs. �36� and �37�
upon simplifying it as appropriate for p0�p. In order to
obtain log�� /�� to order g0, it suffices to keep only the
leading terms in the propagator in the p0�p limit. We
work in Coulomb gauge. Gauge independence of the
gap in a generalized Coulomb gauge was established by
Pisarski and Rischke �2002�, and formal proof of gauge
invariance was given by Gerhold and Rebhan �2003�;
Hou et al. �2004�. The gap equation reads
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�k,r =
g2

4 � d3q

�2��3�
s

Z��q,s�
�q,s

�q,s
tanh� �q,s

2T
�

� �D��p�T 00
s �k,q� + Dt�p,�q,s,�k,r�T t

s�k,q�� ,

�34�

where we have abbreviated P
K−Q and have denoted
the gap function on the quasiparticle mass shell by
�k,r
���k,r ,k�. We have denoted the traces over color,
flavor, and Dirac space by

T ��
s �k,q� 
 −

Tr���Ta
T�0Mq�0Ps�q

�−���TaMk
†�k

�+��

Tr�MkMk
†�k

�+��
,

�35�

and T t
s�k ,q�
−��ij− p̂ip̂j�T ij

s �k ,q�. The two terms inside
the square brackets in Eq. �34� correspond to the contri-
butions from electric and magnetic gluons. The domi-
nant contribution comes from almost static gluons with
p0�p. The static electric and almost static magnetic
gluon propagators give

D��p� 

2

p2 + 3mg
2 , �36�

Dt�p,�,��� 

p4

p6 + Mg
4�� + ���2 + ��� → − ��� , �37�

where Mg
2
�3� /4�mg

2. With the gap equation now stated
fully explicitly, all that remains is to solve it.

We can solve Eq. �34� for the zero temperature gap �
on the Fermi surface. Or, we can solve for T in the
�→0 limit, thus obtaining the critical temperature Tc.
Solving for �, we find that it has a weak coupling expan-
sion of the form

log��

�
� = −

b−1

g
− b̄0 log�g� − b0 − ¯ . �38�

In our treatment of the fermion propagator, the gluon
propagator, and in our truncation of the self-energy in
Fig. 4 to one loop �for example, neglecting vertex renor-
malization� we have been careful to keep all effects that
contribute to b0, but we have neglected many that con-
tribute at order g log g and g. The formalism that we

have presented can be used to evaluate b̄−1, b̄0, and b0,
and the results are described in Sec. IV.E.

Before turning to quantitative results, it is worth
highlighting the origin and the importance of the
leading −1/g behavior in Eq. �38�, namely, that
�� /���exp�−const/g�. If in the gap equation of Fig. 4
we were to replace the exchanged gluon by a contact
interaction, we would obtain a gap equation of the form

� � g2� d$
�

�$2 + �2
�39�

with $
k−�. This always has the solution �=0; to seek
nonzero solutions, we cancel � from both sides of the
equation. Then, if � were 0, the remaining integral

would diverge logarithmically at small $. Therefore we
find a nonzero � for any positive nonzero g no matter
how small, with ��exp�−const/g2�. This is the original
BCS argument for superconductivity as a consequence
of an attractive interaction at a Fermi surface. However,
once we restore the gluon propagator the argument is
modified. The crucial point is that magnetic gluon ex-
change is an unscreened long-range interaction, meaning
that the angular integral will diverge logarithmically at
forward scattering in the absence of any mechanism that
screens the magnetic interaction. The gap equation
therefore takes the form

� � g2� d$
�

�$2 + �2
d�

�2

��2 + �2 , �40�

where � is the angle between the external momentum k
and the loop momentum q and where � is some quantity
with the dimensions of mass that cuts off the logarithmic
collinear divergence of the angular integral. In the su-
perconducting phase this divergence will at the least be
cut off by the Meissner effect, which screens gluon
modes with p�� �since the Cooper pairs have size 1/��
giving ���. This yields ��g2��log ��2 and hence a
nonzero gap ��exp�−const/g�. This consequence of the
long-range nature of magnetic gluon exchange was first
discovered by Barrois �1979�. However, pursuing the ar-
gument as just stated yields the wrong value of the con-
stant b−1; it was Son who realized that the collinear di-
vergence is cut off by Landau damping at a larger value
of the angle � than that at which the Meissner effect
does so. Loosely speaking, Landau damping leads to
����mg

2�1/3%�. Son was then able to calculate the co-
efficients of the 1/g term and the logarithm in Eq. �38�
�Son, 1999�. The calculation of the constant b0 was initi-
ated by Schäfer and Wilczek �1999d�; Hong et al. �2000�;
Hsu and Schwetz �2000�; Pisarski and Rischke �2000a,
2000b� and completed by Brown et al. �2000b�; Wang
and Rischke �2002�. Higher order terms are expected to
be of order g log g, order g, and at higher order still may
contain fractional powers and logarithms of g, see Sec.
V.A.2.

The �� /���exp�−const/g� behavior means that the
color superconducting gap is parametrically larger at
�→� than it would be for any four-fermion interaction.
Furthermore, asymptotic freedom ensures that 1/g���2

increases logarithmically with �, which means that
exp�−const/g���� decreases more slowly than 1/� at
large �. We can therefore conclude that � increases with
increasing � at asymptotically large �, although of
course � /� decreases.

We conclude this section by deriving the correct
value of the coefficient b−1, namely the constant in
�� /���exp�−const/g�. This coefficient turns out to be
independent of the spin-color-flavor structure M, and it
is therefore simplest to present its derivation in the 2SC
phase, in which there is only one gap parameter
�k
�k,r=1, �k
�k,r=1. The leading behavior of the gap is
completely determined by magnetic gluon exchanges.
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We can also approximate the trace term by its value in
the forward direction Tt�k ,q��Tt�k ,k�=2/3 and set the
wave-function renormalization Z�q0�=1 �in the forward
limit we also find T00�k ,q��Tt�k ,q��. Carrying out the
angular integrals in the gap equation gives

�k =
g2

18�2 � dq
�q

�q

1
2

log� �2


�q
2 − �k

2
� . �41�

Son observed that at this order we can replace the loga-
rithm by max�log�� /�k� , log�� /�q��. Introducing loga-
rithmic variables x=log�2� / �$k+�k�� with $k= 
k−�
, the
integral equation �41� can be written as a differential
equation

���x� = −
g2

18�2��x� , �42�

with the boundary conditions ��0�=0 and ���x0�=0.
Here x0=log�2� /�� determines the gap on the Fermi
surface. The solution is

��x� = � sin� gx

3�2�
�, � = 2� exp�−

3�2

�2g
� , �43�

and thus b−1=3�2 /�2. We conclude that in the weak
coupling limit the gap function is peaked near the Fermi
surface, with a width that is much smaller than � but
much larger than �. Had we not set Z�q0�=1, the x de-
pendence of ��x� would be more complicated than the
simple sinusoid in Eq. �43�, but the conclusion remains
unchanged �Wang and Rischke, 2002�.

E. Gap and critical temperature at weak coupling

The gap on the Fermi surface of a color supercon-
ductor at zero temperature can be written as

� = �g−b̄0e−b0 exp�−
3�2

�2g
� , �44�

to order g0 in the weak coupling expansion of log�� /��.
We have derived the coefficient b−1 in the exponent
above, starting from a simplified version of the gap
equation �34�, with no wave-function renormalization
and a simplified gluon propagator. Upon restoring these
effects, analysis of the gap equation �34� yields

g−b̄0e−b0 = g−5512�4� 2

Nf
�5/2

e−b0�e−de−&. �45�

In the following we define and explain the origin of each
term in this equation; we will not present a complete
derivation.

• The factor g−5 and the numerical factor in Eq. �45�
are due to large angle magnetic as well as electric
gluon exchanges and are independent of the pattern
of pairing in the color superconducting phase, i.e.,
independent of M.

• The factor

e−b0� = exp�−
�2 + 4

8
� � 0.177 �46�

arises from the wave-function renormalization factor
Z�q0� in Eq. �26� �Brown et al., 2000b; Wang and
Rischke, 2002� and is also independent of M and
hence the same for all color superconducting phases.

• The factors that we have written as e−de−& are differ-
ent in different color superconducting phases. The
factor e−d is due to the angular structure of the gap.
For the J=0 condensates whose gap equation we
have derived, e−d=1. Upon redoing the angular in-
tegrals for spin-1 condensates, we find that they are
strongly suppressed �Schäfer, 2000b; Schmitt et al.,
2002; Schmitt, 2005�. For spin-1 pairing patterns in
which quarks of the same chirality form Cooper
pairs, d=6. A smaller suppression occurs when
quarks of opposite chirality pair, d=4.5. Superposi-
tions of these states yield values of d between these
limits. Regardless, perturbative QCD predicts spin-1
gaps to be two to three orders of magnitude smaller
than spin-0 gaps.

• The factor e−& depends on M, the color-flavor-spin
matrix that describes the pattern of pairing in a par-
ticular color superconducting phase. In a phase in
which MM† has two different eigenvalues �1 and
�2, describing Tr�P1� and Tr�P2� quasiparticles, re-
spectively, we find

& =
1
2

�Tr�P1� �1 log �1 + Tr�P2� �2 log �2�
�Tr�P1� �1 + Tr�P2� �2�

, �47�

where the angular brackets denote an angular aver-
age �trivial for J=0 phases�. In the CFL phase, �1
=1 and Tr�P1�=8 while �2=4 and Tr�P2�=1, mean-
ing that there are eight quasiparticles with gap �
and one with gap 2�. Evaluating Eq. �47�, we find
e−&=2−1/3 in the CFL phase �Schäfer, 2000a�. In the
2SC phase, e−&=1. Note that the ratio �CFL/�2SC is
also 2−1/3 in an NJL model analysis �Rajagopal and
Wilczek, 2000�; this result depends on the structure
of the condensates not on the nature of the interac-
tion. From �CFL/�2SC=2−1/3 we can conclude the
discussion begun in Sec. IV.C, noting now that the
condensation energy in the CFL phase is larger than
that in the 2SC phase by a factor 3�2−2/3.

• We can also determine the admixture of a color sym-
metric condensate in the CFL phase. In this case we
have to use a two-parameter ansatz for the gap and
solve two coupled gap equations. The color-
symmetric gap parameter �6 is parametrically small
compared to the color-antisymmetric gap �3̄,
and the two gap equations decouple. We find
�6 /�3̄=�2 log�2�g /36� which is suppressed by both
the coupling constant g and a large numerical factor.

In evaluating Eqs. �44� and �45�, it suffices at present
to evaluate g at the scale �. The effect of choosing g�a��
with a either some purely numerical constant or some
constant proportional to g or log � is order g, meaning
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that we cannot and need not determine a within our
present calculation of log � to order g0. For a numerical
estimate of the effects of a running g on �, see Schäfer,
�2004�. The effects are not as large as envisioned by
Beane et al. �2001�.

We shall discuss a systematic approach to the calcula-
tion of corrections beyond O�g0� in log�� /�� in Sec.
V.A.2. There are a number of effects that have been
considered, and were shown not to contribute at O�g0�,
but for which the actual size of the O�g� �or higher� cor-
rection is not known. These include vertex corrections
�Brown et al., 2000a�, the imaginary part of the gap func-
tion �Feng et al., 2006; Reuter, 2006�, and the modifica-
tion of the gluon propagator due to the Meissner effect
�Rischke, 2001�.

It is instructive to extrapolate the perturbative results
to lower baryon densities for which the running coupling
constant is not small. Taking ��400–500 MeV, and a
strong coupling constant g�3.5 �note that g=3.56 at �
=400 MeV according to the two-loop QCD beta func-
tion, which of course should not be taken seriously at
these low densities� one obtains ��20 MeV. This is
comparable to �but on the small side of� the range of
typical gaps ��20–100 MeV �Rajagopal and Wil-
czek, 2000� obtained using models in which the interac-
tion between quarks is described via a few model param-
eters whose values are chosen based upon consideration
of zero-density physics, like the NJL models discussed in
Sec. VI or numerical solutions of the Dyson-Schwinger
equations �Nickel, Wambach, and Alkofer, 2006; Mar-
hauser et al., 2007�. This qualitative agreement between
two completely different approaches, one based on us-
ing a model to extrapolate from �=0 to 400–500 MeV
and the other based on applying a rigorous calculation
that is valid for �
108 MeV where the QCD coupling is
weak at �=400–500 MeV, gives us confidence that we
understand the magnitude of �, the fundamental energy
scale that characterizes color superconductivity. Further-
more, the one nonperturbative interaction in QCD
whose contribution to � has been evaluated reliably at
high density, namely that due to the ’t Hooft interaction
induced by instantons, serves to increase �, bringing the
high density computation into even better agreement
with the model-based approaches �Alford et al., 1998;
Rapp et al., 1998, 2000; Berges and Rajagopal, 1999;
Carter and Diakonov, 1999; Schäfer, 2004�.

Finally, we can use the gap equation �34� to extract the
critical temperature Tc. The result is �Brown et al.,
2000b, 2000c; Pisarski and Rischke, 2000a, 2000b;
Schmitt et al., 2002; Wang and Rischke, 2002; Schmitt,
2005�

Tc

�
=

e�

�
e&, �48�

where ��0.577 is the Euler-Mascheroni constant. This
should be compared to the BCS result Tc /�=e� /�
�0.57. We observe that deviations from the BCS ratio
occur in the case of two-gap structures and/or aniso-
tropic gaps. Nevertheless, since e& is of order 1, the criti-

cal temperature is always of the same order of magni-
tude as the zero-temperature gap. We see that for the
2SC phase Tc /� is as in BCS theory, whereas in the CFL
phase this ratio is larger by a factor of 21/3. It therefore
turns out that Tc is the same in the CFL and 2SC phases.

These estimates of Tc neglect gauge field fluctuations,
making them valid only at asymptotic densities. We will
see in Sec. V.B that including the gauge field fluctuations
turns the second order phase transition that we find by
analyzing Eq. �34� into a first order phase transition, and
increases Tc by a factor 1+O�g�, see Eq. �74�.

F. Color and electromagnetic Meissner effect

One of the characteristic properties of a supercon-
ductor is the Meissner effect, the fact that an external
magnetic field does not penetrate into the supercon-
ductor. The external field is shielded by supercurrents
near the interface between the normal phase and the
superconducting phase. The inverse penetration length
defines a mass scale which can be viewed as an effective
magnetic gauge boson mass.

This effect can also be described as the Anderson-
Higgs phenomenon �Anderson, 1963; Higgs, 1964�. The
difermion condensate acts as a composite Higgs field
which breaks all or part of the gauge symmetry of the
theory. The gauge fields acquire a mass from the Higgs
vacuum expectation value, and the would-be Goldstone
bosons become the longitudinal components of the
gauge fields. A well known example in particle physics is
provided by the electroweak sector of the standard
model. The SU�2�L�U�1�Y gauge symmetry of the elec-
troweak standard model is broken down to U�1�Q by the
expectation value of an SU�2� Higgs doublet which car-
ries hypercharge. There are three massive gauge bosons,
the W± and the Z boson. The Z is a linear combination
of the original I3 and Y gauge bosons. The orthogonal
linear combination is the photon, which remains mass-
less because the Higgs condensate is electrically neutral.

The gauge symmetry in QCD is SU�3�c�U�1�Q. Dif-
ferent color superconducting order parameters realize
different Higgs phases. The color gauge group may be
partially or fully broken, and mixing between diagonal
gluons and photons can occur. In the following we con-
centrate on the 2SC and CFL phases and briefly mention
other phases. Our starting point is the one-loop gauge
boson polarization tensor �Rischke, 2000a, 2000b; Son
and Stephanov, 2000a; Litim and Manuel, 2001; Rischke
and Shovkovy, 2002�,

!ab
���P� 


1
2

T

V�
K

Tr� ̂a
�S�K� ̂b

�S�K − P�� , �49�

where
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 ̂a
� 
�diag�g��Ta,− g��Ta

T� for a = 1, . . . ,8,

diag�e��Q,− e��Q� for a = 9.
�

�50�

Here Q is the electric charge matrix Q
=diag�2/3 ,−1/3 ,−1/3�, and e the electromagnetic cou-
pling constant. The polarization function can be defined
as the second derivative of the thermodynamic potential
with respect to an external gauge field. This quantity is
equal to the derivative of the induced charge/current
with respect to the gauge field. Electric charge screening
is governed by the zero momentum limit of the !00 com-
ponent of the polarization tensor. The Meissner effect is
related to a nonvanishing zero momentum limit of the
spatial components !ij. We define the electric �Debye�
and magnetic screening masses as

mD,ab
2 
 − lim

p→0
!ab

00�0,p� , �51a�

mM,ab
2 
 1

2 lim
p→0

��ij − p̂ip̂j�!ab
ij �0,p� . �51b�

A calculation of the full momentum dependence of !��

in the 2SC and CFL phases can be found in Rischke
�2001� and Malekzadeh and Rischke �2006�, respectively.
One result that we need in Sec. V.C is the electric
screening mass for gluons in the CFL phase, which is
given by

mD,aa
2 =

21 − 8 log 2
36

g2�2

�2 . �52�

The numerical factor 21−8 log 2 can be written as
15+ �6−8 log 2�, where the first term comes from dia-
grams in which the gluon couples to two octet quasipar-
ticles and the second from coupling to one octet and one
singlet quasiparticle. The log 2 factor is the log of the
ratio of the singlet and octet gaps.

In the following, we discuss the Meissner masses. Re-
sults for the CFL phase �Rischke, 2000a; Son and
Stephanov, 2000a; Zarembo, 2000; Casalbuoni, Gatto,
and Nardulli, 2001�, and the 2SC phase �Rischke, 2000b;
Casalbuoni, Gatto, et al., 2002� are summarized in Table

II, where we also list the screening masses for the single-
flavor CSL phase �Schmitt et al., 2003, 2004�.

We observe that the chromomagnetic screening
masses are of order g�. This means that the screening
length is much shorter than the coherence length
$=1/�, and color superconductivity is type I, see Sec.
V.B. The fact that the screening masses are independent
of the gap does not contradict the fact that there is no
magnetic screening in the normal phase. Magnetic
screening disappears for energies and momenta larger
than the gap. Therefore if the �→0 limit is taken before
the limit p→0 then the magnetic screening vanishes, as
expected. Of course, magnetic screening masses also
vanish as the temperature approaches Tc.

We also note that mM,ab
2 is a 9�9 matrix, and the

physical masses are determined by the eigenvalues of
this matrix. In the CFL phase, all magnetic gluons ac-
quire the same nonzero mass, reflecting the residual
SU�3�c+L+R. In the 2SC phase, the Meissner masses of
the gluons 1–3 vanish, reflecting the symmetry breaking
pattern SU�3�c→SU�2�c. The unscreened gluons corre-
spond to the generators of the unbroken SU�2�c, as they
only see the first two colors, red and green. Cooper pairs
are red-green singlets and so cannot screen these low
momentum gluons.

In both 2SC and CFL phases, the off-diagonal masses
vanish except for the eighth gluon and the photon,
mM,�8

2 =mM,8�
2 �0. The two-by-two part of the gauge bo-

son mass matrices that describe the eighth gluon and the
photon has one vanishing eigenvalue and one nonzero
eigenvalue. The eigenvectors are characterized by a mix-
ing angle �, given in the last column of Table II. This
angle defines the new gauge fields,

Ã�
8 = cos� A�

8 + sin� A�, �53a�

Ã� = − sin� A�
8 + cos� A�, �53b�

where A�
8 and A� denote the fields for the eighth gluon

and the photon, respectively. The Ã�
8 gauge boson feels a

Meissner effect; it is the analog of the massive Z boson

TABLE II. Zero-temperature Meissner masses mM, rotated Meissner masses m̃M, and gluon/photon mixing angle �. The number
a labels the gluons �a=1, . . . ,8� and the photon �a=9�. All masses are given in units of Nf�

2 /6�2, where Nf=3, 2, 1 in the CFL,
2SC, CSL phases, respectively. We have abbreviated �
�21−8 log 2� /54, 

�3+4 log 2� /27, �
�6−4 log 2� /9. For the one-flavor
CSL phase we denoted the quark electric charge by q. While the rotated photon in the CFL and 2SC phases is massless, the
photon acquires a Meissner mass in the CSL phase.
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in the electroweak standard model. The Ã� gauge bo-
son, on the other hand, experiences no Meissner effect

because the diquark condensate is Q̃ neutral. This is the
photon of the unbroken Abelian U�1�Q̃ gauge symmetry,
consisting of simultaneous color and flavor �i.e., electro-

magnetic� rotations. The Ã� field satisfies Maxwell’s
equations. Because g�e, the mixing angle is very small

and the Ã� photon contains only a small admixture of
the original eighth gluon.

In contrast, J=1 color superconductors show an elec-
tromagnetic Meissner effect �Schmitt et al., 2003, 2004�.
For example, in the CSL phase there is no mixing be-
tween the gluons and the photon, as can be seen in the
last row of Table II. The photon acquires a mass since
the electromagnetic group is spontaneously broken.
Other candidate spin-1 phases, such as the polar, planar,
or A phase, involve mixing but also �except for a one-
flavor system� exhibit an electromagnetic Meissner ef-
fect. This difference in phenomenology of spin-0 vs
spin-1 color superconductors may have consequences in
compact stars �Aguilera, 2007�.

G. Chromomagnetic instability

We have just seen in Sec. IV.F that color supercon-
ductors have nonzero Meissner masses for some gluons
and/or the photon, indicating a color or electromagnetic
Meissner effect. However, as discussed in Sec. III.B, if
the CFL phase is stressed by a nonzero strange quark
mass to the point that Cooper pairs break, the resulting
gapless CFL �gCFL� phase found in analyses that pre-
sume a translationally invariant condensate exhibits
imaginary Meissner masses �Casalbuoni, Gatto,
Mannarelli, et al., 2005; Fukushima, 2005�. This phenom-
enon was first discovered in the simpler gapless 2SC
�g2SC� phase �Huang and Shovkovy, 2004a, 2004b� and
can be understood in either the gCFL or g2SC context
via a simplified analysis involving two quark species only
�Alford and Wang, 2005� introduced in Sec. I.E and pur-
sued here. The negative Meissner mass squared implies
that these phases are unstable toward the spontaneous
generation of currents that break translation invariance.
In this section we review the calculation of the Meissner
mass in a gapless color superconductor.

We have seen in Sec. II that the introduction of a
nonzero strange quark mass combined with the require-
ment that matter be neutral and in beta equilibrium
serve to exert a stress on the CFL pairing that is con-
trolled by the parameter ms

2 / �2��. This stress seeks to
separate the bu and rs Fermi surfaces �and the bd and gs
Fermi surfaces� but in the CFL phase they remain
locked together in order to gain pairing energy �� per
Cooper pair. In the gCFL phase, on the other hand,
there are unpaired bu and bd quarks in regions of mo-
mentum space in which the corresponding rs and gs
states are empty—Cooper pairs have been broken yield-
ing gapless excitations. We can describe the resulting
chromomagnetic instability generically by picking one of

these pairs, calling the quarks 1 and 2, and labeling their
effective chemical potentials �1 and �2. The quasiparti-
cle dispersion relations are then

�k 
 
��k − �̄�2 + �2 ± ��
 , �54�

with the average chemical potential �̄ and the mismatch
in chemical potentials �� as in Eq. �4�. �Note that the
leading effect of the strange mass, �ms

2 / �2��, is included
in the effective chemical potential, meaning that we may
use the massless dispersion relation of Eq. �54�.� For
�1=�2 this yields identical dispersion relations for both
degrees of freedom �and the same with a minus sign for
the corresponding hole degrees of freedom which are
omitted here�. This is the usual situation of BCS super-
conductivity. For �1��2, however, one obtains two dif-
ferent quasiparticle excitations. A qualitative change ap-
pears at ��=�. For ��
� the dispersion relations
become gapless at the two momenta

k± = �̄ ± ���2 − �2, �55�

meaning that there are gapless quasiparticles on two
spheres in momentum space. In the region of momen-
tum space between these two spheres, the states of spe-
cies 1 are filled while those of species 2 are empty: the
1-2 pairing has been “breached” �Gubankova et al.,
2003�. �We have taken ��
0.� This seems a natural way
for the system to respond to the stress �� by reducing
the number of 2 particles relative to the number of 1
particles, albeit at the expense of lost pairing energy. In
the larger gCFL context, such a response serves to alle-
viate the stress introduced by the requirements of neu-
trality and weak equilibrium.

Gapless superconductivity �Alford et al., 2000a� refers
to the circumstance in which two species of fermions are
paired in some regions of momentum space but in a
shell �breach� in momentum space, bounded by two
spherical effective Fermi surfaces, one finds unpaired
fermions of just one of the two species. The term does
not refer to situations in which some fermion species
pair throughout momentum space while others do not
pair at all, as, for example, in the 2SC phase. Nor does it
apply to anisotropic superconductors in which the gap
parameter vanishes in certain directions on the Fermi
surface, as, for example, in some single-flavor color su-
perconductors or in the curCFL-K0 and crystalline color
superconducting phases. The g2SC and gCFL phases are
gapless superconductors, in which the same quarks pair,
yielding a nonzero order parameter �, while simulta-
neously featuring gapless excitations. Such phases turn
out to suffer from the chromomagnetic instability as we
now explain.

The calculation of the Meissner mass can be done
starting from Eq. �49�. At zero temperature, in this
simple context with two fermion species one finds

mM
2 = m0

2�1 −
��'��� − ��

���2 − �2 � , �56�

where m0 is the Meissner mass obtained upon setting
��=0, removing the stress. This expression shows that
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the Meissner mass becomes imaginary if and only if the
spectrum is gapless.

In essence, this is also what happens in the CFL phase
�Casalbuoni, Gatto, Mannarelli, et al., 2005; Fukushima,
2005�. In this case, of course, there are nine gauge
bosons whose Meissner masses were discussed in Sec.
IV.F for the case of pairing in the absence of stress. The
Meissner masses for pairing with mismatched Fermi sur-
faces are complicated and have to be computed numeri-
cally in general. However, the reason for the negativity
of mM

2 is the same as in Eq. �56�: a negative term
��� /���2−�2 appears for ��
�. At the onset of gap-
less modes, ��=�, this term diverges and thus it domi-
nates the Meissner masses at least for �� close to, but
larger than, �. This is the story for gluons A1, A2, but it
turns out that the Meissner masses for the gluons Aa, a
=4–7, at first remain well behaved for values of ��
larger than � before eventually also becoming imaginary
for sufficiently large mismatches. The gluons A3, A8 and
the photon mix with each other. Two of the resulting
new gauge bosons acquire an imaginary mass, just as the
first two gluons. The third combination, AQ̃, remains
massless, as expected from symmetry arguments. �The
mixing between these gauge bosons is a function of the
mismatch and cannot be described by the mixing angle
given in Table II.� Although the details are clearly more
complicated than in the simple two-species model, the
conclusion remains that the chromomagnetic instability
occurs if and only if there are gapless modes.

This statement is not always correct, as the analysis of
the gapless 2SC phase demonstrates �Huang and Shovk-
ovy, 2004a, 2004b; Kiriyama, 2006a, 2006b�. In this
phase, the gluons 1, 2, and 3 are massless for arbitrary
mismatches, reflecting the unbroken SU�2�c. One com-
bination of the eighth gluon with the photon behaves as
in Eq. �56� while the other combination is massless. The
Meissner masses for the gluons 4–7, however, are imagi-
nary for ��
� as before but they are also imaginary in
the parameter region � /�2�����. Hence, the 2SC
phase is unstable in a region where there are no gapless
modes. Possible consequences of this behavior have
been discussed by Gorbar, Hashimoto, et al. �2006� and
have been related to gluon condensation �Gorbar, Hash-
imoto, and Miransky, 2006�.

We also know of an example where gapless pairing
need not be accompanied by an instability. This is a two-
species system where the coupling is allowed to grow so
large that the gap becomes of the order of �̄ and even
larger. In this case, a strong coupling regime has been
identified where the gapless phase is free of the chromo-
magnetic instability �Kitazawa et al., 2006�. See
Gubankova et al. �2006� for a similar analysis in a non-
relativistic system. The scenario in these examples
cannot arise in QCD, since before �̄ drops so low that
���̄, quark matter is replaced by nuclear matter.

The chromomagnetic instability of the gCFL phase
only demonstrates that this phase is unstable; it does not
determine the nature of the stable phase. However, the
nature of the instability suggests that the stable phase

should feature currents, which must be counterpropagat-
ing since in the ground state there can be no net current.
Among the possible resolutions to the instability enu-
merated in Sec. III, two stand out by this argument. In
the meson supercurrent phase of Sec. III.D, discussed
further in Sec. V.F, the phase of the CFL kaon conden-
sate varies in space, yielding a current �Gerhold and
Schäfer, 2006�. Ungapped fermion modes carry a coun-
terpropagating current such that the total current van-
ishes. In the crystalline color superconducting phases of
Sec. III.C, discussed further in Sec. VI, the diquark con-
densate varies in space in some crystalline pattern con-
structed as the sum of multiple plane waves. If the total
current carried by the condensate is nonzero, it is can-
celled by a counterpropagating current carried by the
ungapped fermion modes that are also found in the crys-
talline phases. It is important to note that, in both these
phases, the ungapped modes have different Fermi sur-
face topologies compared to that in the gCFL phase:
they are anisotropic in momentum space, with unpaired
fermions accommodated in one or many “caps” rather
than in spherically symmetric shells. It turns out that in
both these phases, the Meissner masses are real, mean-
ing that these phases do not suffer from a chromomag-
netic instability. This was shown in the meson supercur-
rent phase by Gerhold et al. �2007� and in the crystalline
color superconducting phase by Ciminale et al. �2006�.
We compare the free energies of these phases in Fig. 3.
These two phases have to date been analyzed “in isola-
tion.” It remains to be seen whether, when they are ana-
lyzed in a sufficiently general framework that currents of
either or both types are possible, they are distinct possi-
bilities or different limits of the same more general in-
homogeneous phase.

V. EFFECTIVE THEORIES OF THE CFL PHASE

At energies below the gap the response of supercon-
ducting quark matter is carried by collective excitations
of the superfluid condensate. The lightest of these exci-
tations are Goldstone bosons associated with broken
global symmetries. Effective theories for the Goldstone
modes have a number of applications. They can be used
to compute low temperature thermodynamic and trans-
port properties, and to study the response to perturba-
tions like nonzero quark masses and lepton chemical po-
tentials. Other light degrees of freedom appear near
special points in the phase diagram. Fermion modes be-
come light near the CFL-gCFL transition, and fluctua-
tions in the magnitude of the gap become light near Tc.

Effective field theories can be constructed “top
down,” by integrating out high energy degrees of free-
dom, or “bottom up,” by writing down the most general
effective Lagrangian consistent with the symmetries of a
given phase. In QCD at moderate or low density the
microscopic theory is nonperturbative, and the top down
approach is not feasible. In this case the parameters of
the effective Lagrangian can be estimated using dimen-
sional analysis or models of QCD. If the density is very
large then effective theories can be derived using the top
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down method. However, even in this case it is often
easier to follow the bottom up approach and determine
the coefficients of the effective Lagrangian using match-
ing arguments. Matching expresses the condition that
low energy Green’s functions in the effective and funda-
mental theory have to agree.

Quark matter at very high density is characterized by
several energy scales. In the limit of massless quarks the
most important scales are the chemical potential �, the
screening scale mg, and the pairing gap �. In the weak
coupling limit we have ��mg��. This hierarchy of
scales can be exploited in order to simplify the calcula-
tion of the properties of low energy degrees of freedom
in the color superconducting phase. For this purpose we
introduce an intermediate effective theory, the high den-
sity effective theory �HDET�, which describes quark and
gluon degrees of freedom at energies below mg. This
theory will be described in Secs. V.A.1–V.A.3. Sections
V.B–V.E are devoted to effective theories of the CFL
phase that allow us to determine the physics of its low
energy excitations. As shown in Secs. VII and VIII,
these theories govern the phenomenology of the CFL
phase even at densities not high enough for the weak
coupling calculation of the gap parameter described in
Sec. IV to be reliable. In Sec. V.G we briefly mention
effective field theories for some other color supercon-
ducting phases.

A. High density effective theory

The formalism discussed in Sec. IV can be extended
to include higher orders in the coupling constants and
the effects of nonzero quark masses. It can also be used
to compute more complicated observables, like the dis-
persion relations of collective excitations. In practice
these calculations are difficult because the number of
possible gap structures quickly proliferate, and it is dif-
ficult to estimate the relative importance of corrections
due to the truncation of the Dyson-Schwinger equations,
kinematic approximations, etc., a priori.

There are two, related, strategies for addressing these
issues: effective field theories and the renormalization
group. Within the effective field theory approach we de-
rive an effective Lagrangian for quasiquarks and gluons
near the Fermi surface, together with a power counting
scheme used to determine the magnitude of diagrams
constructed from the propagators and interaction terms
of the theory. This is the strategy described in Secs.
V.A.1–V.A.3.

In the renormalization group approach we consider a
general effective action for quarks and gluons at high
baryon density and study the evolution of the action as
high energy degrees of freedom, energetic gluons and
quarks far away from the Fermi surface, are integrated
out �Polchinski, 1992; Shankar, 1994�. This approach was
applied to QCD with short range interactions by Evans
et al. �1999a, 1999b�; Schäfer and Wilczek �1999b�. In this
case one can show that for typical initial conditions the
color antisymmetric, flavor antisymmetric, J=0, BCS in-
teraction does indeed grow faster than all other terms,

confirming the arguments of Secs. I and II that these are
the channels in which the dominant diquark condensa-
tion occurs. In order to use the renormalization group
approach more quantitatively, one has to deal with the
unscreened long range gluon exchanges, which is more
difficult. Son studied the evolution of the BCS interac-
tion using the hard dense loop gluon propagator as an
input �Son, 1999�. The coupled evolution of static and
dynamic screening and the BCS interaction has not been
solved yet. A general scheme constructing effective ac-
tions by integrating out hard modes was proposed by
Reuter et al. �2004�.

1. Effective Lagrangian

Consider the equation of motion of a free quark with
a chemical potential �:

�� · p − ��	± = E±	±, �57�

where 	± are eigenvectors of �� · p̂� with eigenvalue ±1
and E±=−�±p. If the quark momentum is near the
Fermi momentum, p�pF=�, then the solution 	+
describes a low energy excitation E+�0, whereas
E−�−2� corresponds to a high-energy excitation. In or-
der to construct an effective field theory based on this
observation we define low- and high-energy components
of the quark field �Hong, 2000a, 2000b�

	± = eipFv�x��1 ± � · v̂F

2
�	 , �58�

where vF is the Fermi velocity and v�= �1,vF�. The pref-
actor removes the rapid phase variation common to all
fermions in some patch on the Fermi surface specified
by v̂F. We insert the decomposition Equation �58� into
the QCD Lagrangian and integrate out the 	− field as
well as hard gluon exchanges. This generates an expan-
sion of the QCD Lagrangian in powers of 1/pF. At tree
level, integrating out the 	− fields is equivalent to solv-
ing their equation of motion

	−,L =
1

2pF
�i�� · D	+,L + �0M	+,R� , �59�

where ��
 v̂F�v̂F ·��, ��=�−�� and M is the quark mass
matrix. At O�1/pF� the effective Lagrangian for 	+ is

L = 	+,L
† �iv�D��	+,L −

1

2pF
	+,L

† ��D” ��2 + MM†�	+,L

+ �L ↔ R,M ↔ M†� + ¯ . �60�

The low energy expansion was studied by Schäfer
�2003a�. There are a number of physical effects that have
to be included in order to obtain a well-defined expan-
sion. First, four-fermion operators have to be included.
These operators naturally appear at O�1/pF

2� but their
effects are enhanced by the large density of states
N�pF

2 on the Fermi surface. The most important of
these operators is the BCS interaction
�	�v�	�−v���	†�v��	†�−v���. The coefficient of the BCS
operator was determined by Schäfer �2003a�.
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Because of the large density of states it is also neces-
sary to resume quark loop insertions in gluon n-point
functions. There is a simple generating functional for
these effects, known as the hard dense loop �HDL� ef-
fective action �Braaten and Pisarski, 1992�:

LHDL = −
m2

2 �
v

G�

a v
v�

�v�D��2G��
a . �61�

This is a gauge invariant, but nonlocal, effective La-
grangian. Expanding LHDL in powers of the gauge field
produces 2,3,… gluon vertices. The quadratic term de-
scribes dielectric screening of electric modes and Lan-
dau damping of magnetic modes. Higher order terms
contain corrections to the gluon self-interaction in a
dense medium.

2. Non-Fermi-liquid effects and the gap equation

In this section we analyze the low energy expansion in
the regime ��k0�mg �Schäfer and Schwenzer, 2006�.
This energy range gives the dominant contribution to
the pairing gap and other low energy constants in the
superconducting phase. Since electric fields are screened
the interaction is dominated by the exchange of mag-
netic gluons. The transverse gauge boson propagator is

Dij�K� = −
i��ij − k̂ik̂j�

k0
2 − k2 + iMg

2k0/k
, �62�

where Mg
2= �3� /4�mg

2 and we have assumed that

k0
�k. We observe that the propagator becomes large
in the regime 
k0
�k3 /mg

2. If the energy is small,

k0
�mg, then the typical energy is much smaller than
the typical momentum,

k � �mg
2
k0
�1/3 � 
k0
 . �63�

This implies that the gluon is very far off its energy shell
and not a propagating state. We can compute loop dia-
grams containing quarks and transverse gluons by pick-
ing up the pole in the quark propagator, and then inte-
grate over the cut in the gluon propagator using the
kinematics dictated by Eq. �63�. In order for a quark to
absorb the large momentum carried by a gluon and stay
close to the Fermi surface the gluon momentum has to
be transverse to the momentum of the quark. This
means that the term k�

2 / �2�� in the quark propagator is
relevant and has to be kept at leading order. Equation
�63� shows that k�

2 / �2���k0 as k0→0. This means that
the pole of the quark propagator is governed by the
condition k� �k�

2 / �2��. We find

k� � g2/3�2/3k0
1/3, k� � g4/3�1/3k0

2/3. �64�

In this regime propagators and vertices can be simplified
even further. The quark and gluon propagators are

S
��K� =
i�
�

k0 − k� − k�
2 /2� + i� sgn�k0�

, �65�

Dij�K� =
i�ij

k�
2 − iMg

2k0/k�

, �66�

and the quark gluon vertex is gvi��a /2�. Higher order
corrections can be found by expanding the quark and
gluon propagators as well as the HDL vertices in powers
of the small parameter �
k0 /m.

The regime characterized by Eq. �64� is completely
perturbative, since graphs with extra loops are always
suppressed by extra powers of �1/3 �Schäfer and
Schwenzer, 2006�. The power of � can be found using the
fact that loop integrals scale as �k0k�k�

2 ��k0
7/3, fermion

propagators scale as 1/k� �1/k0
2/3, gluon propagators

scale as 1/k�
2 �1/k0

2/3, and the quark-gluon vertex scales
as a constant. Quark matter in the regime ��k0�m is a
non-Fermi liquid. The excitations are quasiparticles with
the quantum numbers of quarks, but Green’s functions
scale with fractional powers and logarithms of the en-
ergy and the coupling constant �Ipp et al., 2004; Schäfer
and Schwenzer, 2004b; Gerhold and Rebhan, 2005�.

The corrections to Fermi liquid theory do not upset
the logic that underlies the argument that leads to the
BCS instability. For quark pairs with back-to-back mo-
menta the basic one gluon exchange interaction has to
be summed to all orders, but all other interactions re-
main perturbative �Schäfer and Schwenzer, 2006�. The
gap equation that sums the leading order transverse
gluon exchange in the color-antisymmetric channel is

��p0� = − i
2g2

3 � dk0

2�
� dk�

2

�2��2

k�

k�
3 + iMg

2�k0 − p0�

�� dk�

2�

��k0�
k0

2 + k�
2 + ��k0�2 . �67�

This equation is exactly equivalent to Eq. �41�. In par-
ticular, all kinematic approximations that were used to
derive Eq. �41�, like the low energy approximation to the
HDL self-energies and the forward approximation to
the Dirac traces, are built into the effective field theory
vertices and propagators. The effective theory can now
be used to study corrections to the leading order result.
Higher order corrections to the propagators and vertices
of the effective theory modify the kernel of the integral
equation �67�. The resulting correction to the gap func-
tion can be computed perturbatively, without having to
solve the integral equation again, using a method that is
similar to Rayleigh-Schrödinger perturbation theory
�Brown et al., 2000a; Schäfer, 2003a�.

The coefficients b0 and b̄0 introduced in Sec. IV.D can
be determined by matching the four-fermion operators
in the effective theory �Schäfer, 2003a�. The b0 term also
receives contributions from the fermion wave-function
renormalization Z� log�k0�. All other terms give correc-
tions beyond O�g0� in log��0 /��. Vertex corrections
scale as  �k0

1/3 and are suppressed compared to the fer-
mion wave-function renormalization. The analogous
statement in the case of phonon-induced electronic su-
perconductors is known as Migdal’s theorem. Gluon
self-energy insertions beyond the k0 /k� term included in
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the leading order propagator are also suppressed by
fractional powers of the coupling and the gluon energy.

3. Mass terms

A systematic determination of mass corrections to the
high density effective theory is needed for calculations
of the Goldstone boson masses in the CFL phase and in
order to understand the response of the CFL ground
state to nonzero quark masses. Mass terms affect both
the quark propagator and the quark-quark interaction.
From Eqs. �59� and �60� we see that integrating out the
	− field gives a correction to the energy of the 	+ field of
the form MM† / �2pF�. This term can be viewed as an
effective flavor-dependent chemical potential. We also
note that this term is just the first in a tower of operators
that arise from expanding out the energy of a free mas-
sive quark, E= �p2+m2�1/2, for momenta near the Fermi
surface. Higher order terms correspond to additional
corrections to the chemical potential, the Fermi velocity,
and nonlinear terms in the dispersion relation.

There are no mass corrections to the quark-gluon ver-
tex at O�1/pF

2�. There are, however, mass corrections to
the quark-quark interaction. In connection with color
superconductivity we are mainly interested in the BCS
interaction. The diagram shown in Fig. 5 gives �Schäfer,
2002b�

L =
g2

32pF
4 �	i,L

a† C	j,L
b† ��	k,R

c C	l,R
d �

� ����ac���bd�M�ik�M�jl� + �L ↔ R,M ↔ M†� .

�68�

This is the leading interaction that couples the gap equa-
tions for left- and right-handed fermions. We shall also
see that the mass correction to the BCS interaction gives
the leading contribution to the mass shift in the conden-
sation energy, and the masses of the Goldstone bosons.

B. Ginzburg-Landau theory

At zero temperature, fluctuations of the supercon-
ducting state are dominated by fluctuations of the phase
of the order parameter. Near the critical temperature
the gap becomes small and fluctuations of the magnitude

of the gap are important, too. This regime can be de-
scribed using the Ginzburg-Landau theory. Ginzburg
and Landau argued that in the vicinity of a second order
phase transition the thermodynamic potential of the sys-
tem can be expanded in powers of the order parameter
and its derivatives. This method was used successfully in
the study of superfluid phases of 3He.

The Ginzburg-Landau approach was first applied to
color superconductivity by Bailin and Love �1979�. The
problem was revisited by Iida and Baym �2001�, who
included the effects of unscreened gluon exchanges and
charge neutrality. Consider the s-wave color antitriplet
condensate in QCD with three massless flavors. The or-
der parameter can be written as

�	i

C�5	j

�� = �
�A�ijB�A
B , �69�

where �A
B is a matrix in color-flavor space. Note that

here we have included the energy gap into �A
B, in con-

trast to Eq. �24�, where �A
B is dimensionless. We have

fixed the orientations of left- and right-handed conden-
sates. Fluctuations in the relative color-flavor orientation
of the left- and right-handed fermions correspond to the
Goldstone modes related to chiral symmetry breaking,
and will be considered in Sec. V.C. Therefore, the ansatz
�69� implies the assumption that chiral fluctuations near
Tc are small compared to nonchiral gap fluctuations and
fluctuations of the gauge field. The thermodynamic po-
tential can be expanded as

� = �0 + 
 Tr��†�� + �1�Tr��†���2

+ �2 Tr���†��2� + � Tr��� � �†� + ¯ . �70�

The coefficients 
, �i, � can be treated as unknown pa-
rameters, or determined in QCD at weak coupling. The
weak coupling QCD result is �Iida and Baym, 2001�


 = 4N
T − Tc

T
, �1 = �2 =

7&�3�
8��Tc�2N , �71�

� =
7&�3�
8�2Tc

2N , �72�

where N=�2 / �2�2� is the density of states on the Fermi
surface. This result agrees with the BCS result. Using
Eq. �71� we can verify that the ground state is in the CFL
phase �A

B ��A
B. We can also study many other issues, like

the gluon screening lengths, the structure of vortices, the
effects of electric and color neutrality, and the effects of
nonzero quark masses �Iida and Baym, 2002; Iida et al.,
2004, 2005�.

From the study of electronic superconductors, it is
known that the nature of the finite temperature phase
transition depends on the ratio �=� /$ of the screening
length � and the correlation length $. If �
1/�2 the
superconductor is type II, fluctuations of the order pa-
rameter are more important than fluctuations of the
gauge field, and the transition is second order. In a type
I superconductor the situation is reversed, and fluctua-
tions of the gauge field drive the transition first order
�Halperin et al., 1974�.
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FIG. 5. Mass terms in the high density effective theory. The
first diagram shows a O�MM†� term that arises from integrat-
ing out the 	− field in the QCD Lagrangian. The second dia-
gram shows a O�M2� four-fermion operator which arises from
integrating out 	− and hard gluon exchanges.
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In the weak coupling limit, $�1/����1/g� and
color superconductivity is strongly type I. The role of
gauge field fluctuations was studied by Bailin and Love
�1984�; Giannakis and Ren �2003�; Giannakis et al.
�2004�; Matsuura et al. �2004�; Noronha et al. �2006�. The
contribution to the thermodynamic potential is

�fl = 8T� d3k

�2��3�log�1 +
mA

2 �k�
k2 � −

mA
2 �k�
k2 � , �73�

where mA�k� is the gauge field screening mass. In QCD
the momentum dependence of mA cannot be neglected.
The contribution of the fluctuations �fl induces a cubic
term ��3 in the thermodynamic potential which drives
the transition first order. The first order transition occurs
at a critical temperature T

c
* �Giannakis et al., 2004�:

Tc
* − Tc

Tc
=

�2

12�2
g , �74�

where Tc is the critical temperature of the second order
transition obtained upon neglecting the cubic term. Al-
though the result �74� cannot be trusted quantitatively at
accessible densities, say ��400 MeV where g�3.6, it
does make it clear that the phase transition between the
CFL �or 2SC� phase and the quark-gluon plasma will be
strongly first order. Noronha et al. �2006� argued that Eq.
�74� gives the complete O�g� correction to the critical
temperature �see, however, Matsuura et al. �2004��. This
implies that the transition to the color superconducting
phase will occur at a critical temperature that is signifi-
cantly elevated relative to the BCS estimate Tc=0.57�
obtained in Sec. IV.E. The effects of gluon fluctuations
are much more important here than those of photon
fluctuations in a conventional type I superconductor.

C. Goldstone bosons in the CFL phase

1. Effective Lagrangian

In the CFL phase the pattern of chiral symmetry
breaking is identical to the one at T=�=0. This implies
that the effective Lagrangian has the same structure as
chiral perturbation theory. The main difference is that
Lorentz invariance is broken and only rotational invari-
ance is a good symmetry. The effective Lagrangian for
the Goldstone modes is given by �Casalbuoni and Gatto,
1999�

Leff =
f�

2

4
Tr��0��0�† − v�

2 �i��i�
†�

+ �B Tr�M�†� + H.c.� + �A1 Tr�M�†�Tr�M�†�

+ A2 Tr�M�†M�†�

+ A3 Tr�M�†�Tr�M†�� + H.c.� + ¯ . �75�

Here �=exp�i�a�a / f�� is the chiral field, f� is the pion
decay constant, and M is a complex mass matrix. The
fields �a describe the octet of Goldstone bosons

��± ,�0 ,K± ,K0 ,K̄0 ,��. These Goldstone bosons are an
octet under the unbroken SU�3�c+L+R symmetry of the

CFL phase and their Q̃ charges under the unbroken
gauge symmetry of the CFL phase are ±1 and 0 as indi-
cated by the superscripts, meaning that they have the

same Q̃ charges as the Q charges of the vacuum pseu-
doscalar mesons. The chiral field and the mass matrix
transform as �→L�R† and M→LMR† under chiral
transformations �L ,R��SU�3�L�SU�3�R. For the
present, we have suppressed the singlet fields associated
with the breaking of the exact U�1�B and approximate
U�1�A symmetries. We give the effective Lagrangian for
the massless Goldstone boson associated with superflu-
idity �i.e., from U�1�B breaking� below.

The form of the effective Lagrangian follows from the
symmetries of the CFL phase. It is nevertheless useful to
understand how this Lagrangian arises upon integrating
out high energy degrees of freedom. We start from the
high density effective Lagrangian in the presence of a
CFL gap term

L = Tr�	L
† �iv�D��	L� +

�

2
�Tr�X†	LX†	L�

− �Tr�X†	L��2 + H.c.� + �L ↔ R,X ↔ Y� . �76�

Here 	L,R are left- and right-handed quark fields which
transform as 	L→L	LUT and 	R→R	RUT under chiral
transformations �L ,R��SU�3�L�SU�3�R and color
transformations U�SU�3�c. We have suppressed the
spinor indices and defined 		=	
C
�	�, where C is the
charge conjugation matrix. The traces run over color
or flavor indices and X, Y are fields that transform as
X→LXUT and Y→RYUT. We assume that the vacuum
expectation value is �X�= �Y�=1. This corresponds to the
CFL gap term �	i


	j
��
�A�ijA. X, Y parametrize fluctua-

tions around the CFL ground state. Note that fluctua-
tions of the type X=Y correspond to the field � intro-
duced in the previous section.

For simplicity we have assumed that the gap term is
completely antisymmetric in flavor. We first derive the
effective Lagrangian in the chiral limit M=M†=0 and
study mass terms later. We redefine the fermion fields
according to

(L 
 	LX†, (R 
 	RY†. �77�

In terms of the new fields the Lagrangian takes the form

L = Tr�(L
† �iv����(L� − i Tr�(L

† (LXv���� − iA�
T�X†�

+
�

2
�Tr�(L(L� − �Tr�(L��2� + �L ↔ R,X ↔ Y� .

�78�

At energies below the gap we can integrate out the fer-
mions. The fermion determinant generates a kinetic
term for the chiral fields X and Y �Casalbuoni and
Gatto, 1999�:
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L = −
f�

2

2
Tr��X†D0X�2 − v�

2 �X†DiX�2� + �X ↔ Y� .

�79�

For simplicity we have ignored the flavor singlet compo-
nents of X and Y.

The low energy constants f� and v� were calculated by
matching the effective theory to weak coupling QCD
calculations by Son and Stephanov �2000a, 2000b�; see
also Beane et al. �2000�; Rho et al. �2000�; Zarembo
�2000�; Bedaque and Schäfer �2002�. The results are

f�
2 =

21 − 8 log 2
18

�2

2�2 , v�
2 =

1
3

. �80�

The simplest way to derive these results, given the re-
sults already reviewed in Sec. IV.F, is to recall that the
gluon field acquires a magnetic mass due to the Higgs
mechanism and an electric mass due to Debye screening,
and then note that Eq. �79� shows that the electric mass
is mD

2 =g2f�
2, while the magnetic mass is mM

2 =v�
2 mD

2 . This
means that f� and v� are determined by the Debye and
Meissner masses for the gluons in the CFL phase pre-
sented in Sec. IV.F, see Eq. �52� and Table II.

Since the gluon is heavy, it can also be integrated out.
Using Eq. �79� we get

A�
T =

i

2
�X†��X + Y†��Y� + ¯ . �81�

This result can be substituted back into the effective La-
grangian. The result is

Leff =
f�

2

4
Tr��0��0�† − v�

2 �i��i�
†� , �82�

where the Goldstone boson field is given by �=XY†.
This shows that the light degrees of freedom correspond
to fluctuations of the color-flavor orientation of the left-
handed CFL condensate relative to the right-handed
one, as expected since these are the fluctuations associ-
ated with the spontaneously broken global symmetry.

2. U(1)B modes and superfluid hydrodynamics

Finally, we summarize the effective theory for the
U�1�B Goldstone mode. At order O„��)�2

… we get �Son
and Stephanov, 2000a, 2000b�

L =
f 2

2
���0)�2 − v2��)�2� + ¯ , �83�

where the low energy constants f and v are given by

f 2 =
6�2

�2 , v2 =
1
3

. �84�

The field ) transforms as )→)+
 under U�1�B trans-
formation of the quark fields 	→exp�i
�	. Because
U�1�B is an Abelian symmetry, the two derivative terms
do not contain any Goldstone boson self-interactions.
These terms are needed in order to compute transport
properties of the CFL phase. Son noticed that self-

interactions are constrained by Lorentz invariance �of
the microscopic theory� and U�1�B invariance �Son,
2002�. The analogous argument for nonrelativistic super-
fluids has been described by Greiter et al. �1989�. To
leading order in g the effective theory of the U�1�B
Goldstone boson can be written as

L =
3

4�2 ���0) − ��2 − ��)�2�2 + ¯ , �85�

where the omitted terms are of the form �i)k with i
k.
Expanding Eq. �85� to second order in derivatives repro-
duces Eq. �83�. In addition, Eq. �85� contains the leading
three and four boson interactions. Using microscopic
models one can obtain more detailed information on the
properties of collective modes. A calculation of the spec-
tral properties of the ) mode in an NJL model at T=0
and T�0 can be found in Fukushima and Iida �2005�.

The spontaneous breaking of U�1�B is related to su-
perfluidity, and the U�1�B effective theory can be inter-
preted as superfluid hydrodynamics �Son, 2002�. We can
define the fluid velocity as

u
 = −
1

�0
D
) , �86�

where D
)
�
)+ �� ,0� and �0
�D
)D
)�1/2. Note
that this definition ensures that the flow is irrotational,
��u=0. The identification �86� is motivated by the fact
that the equation of motion for the U�1� field ) can be
written as a continuity equation

�
�n0u
� = 0, �87�

where n0=3�0
3 /�2 is the superfluid number density. At

T=0 the superfluid density is equal to the total density
of the system, n= 
dP /d�
�=�0

. The energy-momentum
tensor has the ideal fluid form

T
� = �� + P�u
u� − Pg
�, �88�

and the conservation law �
T
�=0 corresponds to the
relativistic Euler equation of ideal fluid dynamics. We
conclude that the effective theory for the U�1�B Gold-
stone mode accounts for the defining characteristics of a
superfluid: irrotational, nondissipative hydrodynamic
flow.

3. Mass terms

The structure of the mass terms in Eq. �75� is com-
pletely determined by chiral symmetry. The coefficients
B, Ai can be determined by repeating the steps discussed
in the previous section, but keeping the mass terms in
the high density effective theory. In practice it is some-
what easier to compute the coefficients of the chiral La-
grangian using matching arguments. For example, we
noticed that the easiest way to determine f� is to com-
pute the gluon screening mass in the microscopic theory.

In Sec. V.A.3 we showed that XL
MM† / �2pF� and
XR
M†M / �2pF� act as effective chemical potentials for
left- and right-handed fermions, respectively. Formally,
the effective Lagrangian has an SU�3�L�SU�3�R gauge
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symmetry under which XL,R transform as the temporal
components of non-Abelian gauge fields. We implement
this approximate gauge symmetry in the CFL chiral
theory by promoting time derivatives to covariant de-
rivatives �Bedaque and Schäfer, 2002�,

�0� → �0� 
 �0� + i�MM†

2pF
�� − i��M†M

2pF
� . �89�

The mass dependent terms in the quark-quark interac-
tion contribute to the gap and the condensation energy.
In the chiral theory the shift in the condensation energy
due to the quark masses is

E = − B Tr�M� − A1�Tr�M��2 − A2 Tr�M2�

− A3 Tr�M�Tr�M†� + H.c. + ¯ . �90�

The contribution to the condensation energy from the
mass correction to the BCS interaction is shown in Fig.
6. The diagram is proportional to the square of the con-
densate

�	i,L

 C	j,L

� � = �
�A�ijA�
3�2�

g
� �2

2�2� , �91�

with the dependence on the mass matrix M arising from
the contraction of the BCS interaction with the CFL
condensate. We get

�
�A�ijA�Ta�
��Ta����M�ik�M�jl�
��B�klB

= − 4
3 ��Tr�M��2 − Tr�M2�� , �92�

where Ta=�a /2. We note that the four-fermion operator
is proportional to g2 and the explicit dependence of the
diagram on g cancels. We find �Son and Stephanov,
2000a, 2000b; Schäfer, 2002b�

E = −
3�2

4�2 ��Tr�M��2 − Tr�M2�� + �M ↔ M†� . �93�

This result can be matched against Eq. �90�. We find
B=0 and

A1 = − A2 =
3�2

4�2 
 A, A3 = 0. �94�

The result A1=−A2 reflects the fact that the CFL order

parameter is antisymmetric in flavor �pure 3̄� to leading
order in g. Using Eqs. �89� and �94� we compute the
energies of the flavored Goldstone bosons:

E�± = ��± + �v�
2 p2 +

4A

f�
2 �mu + md�ms�1/2

,

EK± = �K± + �v�
2 p2 +

4A

f�
2 md�mu + ms��1/2

,

EK0,K̄0 = �K0,K̄0 + �v�
2 p2 +

4A

f�
2 mu�md + ms��1/2

, �95�

where

��± = #
md

2 − mu
2

2�
, �K± = #

ms
2 − mu

2

2�
,

�K0,K̄0 = #
ms

2 − md
2

2�
. �96�

The mass matrix for the remaining neutral Goldstone
bosons, which mix, can be found in Beane et al. �2000�;
Son and Stephanov �2000a, 2000b�. We observe that the
O�m� terms lead to an inverted mass spectrum with the
kaons being lighter than the pions. This can be under-
stood from the microscopic derivation of the chiral La-
grangian. The Goldstone boson field is �=XY†, and a
mode with the quantum number of the pion is given by

�+��abc�ade�d̄R
b s̄R

c ��uL
d sL

e �. The structure of the field op-
erators suggests that the mass is controlled by �mu
+md�ms. By the same argument the mass of the K+ is
governed by �mu+ms�md, and mK�m�. We also note
that the O�m2� terms split the energies of different
charge states. This can be understood from the fact that
these terms act as an effective chemical potential for
flavor. Explicit calculations in an NJL model reproduce
f� in Eq. �80� and the results �95�, albeit with a different
value of A �Kleinhaus et al., 2007; Ruggieri, 2007�. This
serves as a reminder that in the CFL phase at moderate
densities the effective theory is valid but the values of
coefficients in it may not take on the values obtained by
matching to high density calculations.

In perturbation theory the coefficient B of the Tr�M��
term is zero. B receives nonperturbative contributions
from instantons. Instantons are semiclassical gauge con-
figurations in the Euclidean time functional integral that
induce a fermion vertex of the form �’t Hooft, 1976�

L � G det
f

�	̄L	R� + H.c., �97�

where detf denotes a determinant in flavor space. The
’t Hooft vertex �97� can be written as the product of the

CFL condensate and its conjugate times �	̄	�, meaning
that in the CFL phase Eq. �97� induces a nonzero quark

condensate �	̄	�, as well as Goldstone boson masses

mGB
2 �m�	̄	� / f�

2. The instanton has gauge field
A��1/g, and its action is S=8�2 /g2. The effective cou-
pling G is proportional to exp�−S��exp�−8�2 /g2�,
where g is the running coupling constant at a scale set by
the instanton size *.

�

R

R

L

L

g2MM + .c.H

FIG. 6. Contribution of the O�M2� BCS four-fermion operator
to the condensation energy in the CFL phase. The open
squares correspond to insertions of the anomalous self-energy
�.
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In dense quark matter perturbative gauge field screen-
ing suppresses instantons of size *
1/�, and the effec-
tive coupling G can be computed reliably �Schäfer,
2002a�. Combined with the weak coupling result for
�		�, see Eq. �91�, we get

B = c�3�2�

g
�� �2

2�2��2�8�2

g2 �6�QCD
9

�12 , �98�

where c=0.155 and �QCD is the QCD scale factor. In

terms of B, �	̄	�=−2B and the instanton contribution to
the K0 mass is �mK0

2 =B�md+ms� / �2f�
2� �Manuel and Tyt-

gat, 2000�. In the weak coupling limit, �%�QCD, the in-
stanton contribution is very small. However, because of
the strong dependence on �QCD the numerical value of
B is quite uncertain. Using phenomenological con-
straints on the instanton size distribution, Schäfer
�2002a� concluded that the instanton contribution to the
kaon mass at �=500 MeV is of order 10 MeV.

Finally, we summarize the structure of the chiral ex-
pansion in the CFL phase. Ignoring nonperturbative ef-
fects the effective Lagrangian has the form

L � f�
2�2� �0�

�
�k� ���

�
�l�MM†

��
�m�MM

�2 �n

. �99�

Higher order vertices are suppressed by �� /� whereas
Goldstone boson loops are suppressed by powers of
�� /4�f�. Since the pion decay constant scales as f���,
the effects of Goldstone boson loops can be neglected
relative to higher order contact interactions. This is dif-
ferent from chiral perturbation theory at zero baryon
density. We also note that the quark mass expansion
contains two parameters, m2 /�2 and m2 /��. Since
��� the chiral expansion breaks down if m2���. This
is the same scale at which BCS calculations find a tran-
sition from the CFL phase to a less symmetric state. We
also note that the result for the Goldstone boson ener-
gies given in Eq. �95� contains terms of O�m2 /�2� and
O��m2 /���2�, but neglects corrections of O��m2 /�2�2�.

The effective Lagrangians �75� and �83� describe the
physics of the low momentum pseudo-Goldstone and
Goldstone bosons of the CFL phase at any density. We
have described the weak coupling computation of the
coefficients f�, v�, A1, A2, A3, B, f, and v as well as the
�eff’s in Eq. �96�. With the exception of B, these results
are all expressed simply in terms of �, �, and the quark
masses, with g not appearing anywhere. This suggests
that the range of validity of these results, when viewed
as a function of �, is larger than the range of validity of
the weak coupling calculations on which they are based.
As we decrease the density down from the very large
densities at which the weak coupling calculation of � is
under control, there is no indication that the relations
between the effective theory coefficients and � and �
derived in this section break down. The only sense in
which we lose control of our understanding of the CFL
phase is that we must treat � as a parameter, in terms of
which all the other effective theory coefficients are
known. Since B introduces U�1�A-breaking physics that

is not present at weak coupling and that does not enter
the effective theory through any other coupling, it is not
well-constrained.

D. Kaon condensation

If the effective chemical potential in Eq. �96� becomes
larger than the corresponding mass term in Eq. �95�,
then the energy of a Goldstone boson can become nega-
tive. In the physically relevant case ms%mu�md this
applies in particular to the K0 and the K+. When the
Goldstone boson energy becomes negative the CFL
ground state is reorganized and a Goldstone boson con-
densate is formed. The physical reason is that a nonzero
ms disfavors strange quarks relative to nonstrange
quarks. In normal quark matter the system responds to
this stress by turning s quarks into �mostly� d quarks. In
CFL matter this is difficult, since all quarks are gapped.
Instead, the system can respond by populating mesons
that contain d quarks and s holes.

The ground state can be determined from the effec-
tive potential

Veff =
f�

2

4
Tr�2XL�XR�† − XL

2 − XR
2 �

− A1��Tr�M�†��2 − Tr��M�†�2�� , �100�

where XL=MM† / �2pF�, XR=M†M / �2pF�, and M
=diag�mu ,md ,ms�=diag�m ,m ,ms�. Here we only discuss
the T=0 case. For nonzero temperature effects, in par-
ticular the calculation of the critical temperature of kaon
condensation, see Alford et al. �2008�. The first term on
the right-hand side of Eq. �100� contains the effective
chemical potential

�s 
 − �K0 �
ms

2

2pF
�101�

and favors states with a deficit of strange quarks. The
second term favors the neutral ground state �=1. The
lightest excitation with positive strangeness is the K0 me-
son. We consider the ansatz �=exp�i
�4� which allows
the order parameter to rotate in the K0 direction. The
vacuum energy is

V�
� = f�
2�−

1
2
�ms

2 − m2

2pF
�2

sin2
 + mK0
2 �1 − cos 
�� ,

�102�

where mK0
2 = �4A1 / f�

2�mu�md+ms�+B�md+ms� / �2f�
2�.

Minimizing the vacuum energy we obtain

cos�
� =�1, �s � mK0

mK0
2 /�s

2, �s 
 mK0.� �103�

We conclude that there is a second order phase transi-
tion to a kaon condensed state at �s=mK0. The strange
quark mass breaks the SU�3� flavor symmetry to
SU�2�I�U�1�Y. In the kaon condensed phase this sym-
metry is spontaneously broken to U�1�Q̃. If mu=md, iso-
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spin is an exact symmetry and there are two exact Gold-
stone modes �Schäfer et al., 2001; Miransky and
Shovkovy, 2002� with zero energy gap, the K0 and K+.
Isospin breaking leads to a small energy gap for the K+.

Using the perturbative result for A1, and neglecting
instanton effects by setting B=0, we get an estimate of
the critical strange quark mass. The critical strange
quark mass scales as mu

1/3�2/3. Taking �=500 MeV,
�=50 MeV, mu=4 MeV, and md=7 MeV, we
find ms

crit�68 MeV, a result that corresponds to
mK0

crit=5 MeV. If instanton contributions increase mK0 by
10 MeV, this would increase ms

crit to 103 MeV, corre-
sponding to the onset of kaon condensation depicted in
Fig. 3.

The difference in condensation energy between the
CFL phase and the kaon condensed state is not neces-
sarily small. In the limit �s→� we have sin 
�1 and
V�
�� f�

2�2 /2. Since f�
2 is of order �2 / �2�2� this is an

O�1� correction to the pairing energy in the CFL phase.
Microscopic NJL model calculations of the condensation
energy in the kaon condensed phase can be found in
Buballa �2005b�; Forbes �2005�; Warringa �2006�; Klein-
haus et al. �2007�; Ruggieri �2007�; see also Ebert and
Klimenko �2007�; Ebert et al. �2008�.

The CFL phase also contains a very light flavor neu-
tral mode which can potentially become unstable. This
mode is a linear combination of the � and �� and its
mass is proportional to mumd. Because this mode has
zero strangeness it is not affected by the �s term in the
effective potential. However, since mu ,md�ms this state
is sensitive to perturbative 
sms

2 corrections �Kryjevski et
al., 2005�. The resulting phase diagram is shown in Fig. 7.
The precise value of the tetra-critical point �m* ,m

s
*� de-

pends sensitively on the value of the coupling constant.
At very high density m* is extremely small, but at mod-
erate density m* can become as large as 5 MeV, compa-
rable to the physical values of the up and down quark
mass.

E. Fermions in the CFL phase

A single quark excitation with energy close to � is
long lived and interacts only weakly with the Goldstone
modes in the CFL phase. This means that it is possible
to include quarks in the chiral Lagrangian. This La-
grangian not only controls the interaction of quarks with
pions and kaons, but it also constrains the dependence
of the gap in the fermionic quasiparticle spectrum on the
quark masses. This is of interest in connection with the
existence and stability of the gapless CFL phase �Alford
et al., 2004b�, as discussed in Secs. I.E, II.B, and III.B.

The effective Lagrangian for fermions in the CFL
phase is �Kryjevski and Schäfer, 2005; Kryjevski and Ya-
mada, 2005�

L = Tr�N†iv�D�N� − D Tr�N†v��5�A�,N��

− F Tr�N†v��5�A�,N�� +
�

2
†�Tr�NLNL�

− �Tr�NL��2� − �L ↔ R� + H.c.‡ . �104�

NL,R are left- and right-handed baryon fields in the ad-
joint representation of flavor SU�3�. The baryon fields
originate from quark-hadron complementarity �Alford,
Berges, and Rajagopal, 1999; Schäfer and Wilczek,
1999a�. We can think of N as describing a quark which is
surrounded by a diquark cloud, NL�qL�qLqL�. The
covariant derivative of the nucleon field is given by
D�N=��N+ i�V� ,N�. The vector and axial-vector cur-
rents are

V� = −
i

2
�$��$† + $†��$�, A� = −

i

2
$����†�$ , �105�

where $ is defined by $ 2=�. It follows that $ transforms
as $→L$U†=U$R† with U�SU�3�V. The fermion field
transforms as N→UNU†. For pure SU�3� flavor trans-
formations L=R=V we have U=V. F and D are low
energy constants that determine the baryon axial cou-
pling. In QCD at weak coupling, we find D=F=1/2
�Kryjevski and Schäfer, 2005�.

The effective theory given in Eq. �104� can be derived
from QCD in the weak coupling limit. However, the
structure of the theory is completely determined by chi-
ral symmetry, even if the coupling is not weak. In par-
ticular, there are no free parameters in the baryon cou-
pling to the vector current. Mass terms are also strongly
constrained by chiral symmetry. The effective chemical
potentials �XL ,XR� appear as left- and right-handed
gauge potentials in the covariant derivative of the
nucleon field. We have

D0N = �0N + i� 0,N� ,

 0 = −
i

2
�$��0 + iXR�$† + $†��0 + iXL�$� , �106�

where XL=MM† / �2pF� and XR=M†M / �2pF� as before.
�XL ,XR� covariant derivatives also appear in the axial
vector current given in Eq. �105�.

ms
*

m*

CFL K0

η η+K0

ms
*

m*

FIG. 7. �Color online� Phase structure of CFL matter as a
function of the light quark mass m and the strange quark mass
ms, from Kryjevski et al., 2005. CFL denotes pure CFL matter,
while K0 and � denote CFL phases with K0 and/or � conden-
sation. Solid lines are first order transitions, dashed lines are
second order. Instanton effects have been neglected.
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We now study how the fermion spectrum depends on
the quark mass. In the CFL state we have $=1. For �s
=0 the baryon octet has an energy gap � and the singlet
has gap 2�. The leading correction to this result comes
from the commutator term in Eq. �106�. We find that the
gap of the proton and neutron is lowered, �p,n=�−�s,
while the gap of the cascade particles �− ,�0 is in-
creased, ��=�+�s. As a consequence we find gapless
�p ,n� excitations at �s=�. This result agrees with the
spectrum discussed in Sec. III.B if the identification p

�bu� and n
�bd� is made.

The situation is more complicated when kaon conden-
sation is taken into account. In the kaon condensed
phase there is mixing in the �p ,�+ ,�− ,�−� and
�n ,�0 ,�0 ,�8 ,�0� sectors. For mK0 ��s�� the spectrum
is given by

+p�±�− = �� ±
3
4

�s,

� ±
1
4

�s,� +n�0�0� = �� ±
1
2

�s,

� ,

2� .
� �107�

Numerical results for the eigenvalues are shown in Fig.
8. We observe that mixing within the charged and neu-
tral baryon sectors leads to level repulsion. There are
two modes that become light in the CFL window
�s,2�. One mode is a charged mode which is a linear
combination of the proton and the �+, while the other
mode is a linear combination of the neutral baryons
�n ,�0 ,�0 ,�8 ,�0�. The charged mode becomes gapless
first, at �s=4� /3. Corrections to this result were studied
in the NJL model calculation of Forbes �2005�, which
includes various subleading condensates and obtains
�s=1.22� at �=500 MeV. The neutral mode becomes
gapless only at �s=2�. The most important difference as
compared to the spectrum in the gapless CFL phase

without kaon condensation is that for �s�2� only the
charged mode is gapless.

F. Goldstone boson currents

In Sec. IV.G we showed that gapless fermion modes
lead to instabilities of the superfluid phase. Here we dis-
cuss how these instabilities arise, and how they can be
resolved, in the context of low energy theories of the
CFL state, by the formation of the meson supercurrent
state introduced in Sec. III.D. The chromomagnetic in-
stability is an instability towards the spontaneous gen-
eration of currents, that is to say the spontaneous gen-
eration of spatial variation in the phase of the diquark
condensate. Consider a spatially varying U�1�Y rotation
of the neutral kaon condensate

$�x� = U�x�$KU†�x� , �108�

where $K=exp�i��4� and U�x�=exp�i�K�x��8�. This state
is characterized by nonzero vector and axial-vector cur-
rents, see Eq. �105�. We study the dependence of the
vacuum energy on the kaon current jK=��K. The gradi-
ent term in the meson part of the effective Lagrangian
gives a positive contribution

Em = 1
2v�

2 f�
2 jK

2 . �109�

A negative contribution can arise from gapless fermions.
In order to determine this contribution we have to cal-
culate the fermion spectrum in the presence of a non-
zero current. The relevant couplings are obtained from
the covariant derivative of the fermion field in Eq. �106�
and the D and F terms in Eq. �104�. The fermion spec-
trum is quite complicated. The dispersion relation of the
lowest mode is given approximately by

+l = � +
�l − l0�2

2�
−

3
4

�s −
1
4

v · jK, �110�

where l=v ·p−pF and we have expanded +l near its mini-
mum l0= ��s+v · jK� /4. Equation �110� shows that there is
a gapless mode if �s
4� /3− jK /3. The contribution of
the gapless mode to the vacuum energy is

Eq =
�2

�2 � dl� d�

4�
+l��− +l� , �111�

where d� is an integral over the Fermi surface. The
energy functional Em+Eq was analyzed by Schäfer �2006�
and Kryjevski �2008�. There is an instability near the
point �s=4� /3. The instability is resolved by the forma-
tion of a Goldstone boson current. If electric charge
neutrality is enforced the magnitude of the current is
very small, and there is no tendency towards the genera-
tion of multiple currents. It was also shown that all glu-
onic screening masses are real �Gerhold et al., 2007�. The
situation is more complicated if the neutral fermion
mode becomes gapless, too. In this case the magnitude
of the current is not small, and multiple currents may
appear. This regime corresponds to the portion of the
curCFL-K0 curve in Fig. 3 that is only slightly �invisibly�
below the gCFL curve.
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n Ξ0 Σ0 Λ

Ξ−Σ−

FIG. 8. �Color online� The fermion spectrum in the CFL
phase. For ms=0 there are eight fermions with gap � �set to
25 MeV as in Fig. 3� and one fermion with gap 2� �not shown�.
As discussed in Sec. III, the octet quasiparticles have the SU�3�
and U�1�Q̃ quantum numbers of the octet baryons. Without
kaon condensation gapless fermion modes appear at �s=�
�dashed lines�. With kaon condensation gapless modes appear
at �s=4� /3. �Note that the scale on the horizontal axis is 2�s.�
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G. Other effective theories

Effective Lagrangians have also been been con-
structed for color superconducting phases other than the
CFL phase. The effective theory for the light singlet
axial mode in the 2SC phase can be found in Beane et al.
�2000�. The phonon effective theory in the crystalline
color superconducting phase is discussed in Sec. VI.C.

It is also interesting to study effective theories in
QCD-like theories at large density. Some of these theo-
ries do not have a sign problem and can be studied on
the lattice with algorithms that are available today. Of
particular interest are QCD with Nc=2 colors �Hands et
al., 1999; Kogut et al., 1999, 2000, 2001, 2002; Nishida et
al., 2004; Alles et al., 2006; Fukushima and Iida, 2007�
and QCD at finite isospin density �Son and Stephanov,
2001; Splittorff et al., 2001; Kogut and Sinclair, 2002�.

VI. NJL MODEL COMPARISONS AMONG CANDIDATE
PHASES BELOW CFL DENSITIES

As explained in Sec. II, at sufficiently high densities,
where the up, down, and strange quarks can be treated
on an equal footing and the disruptive effects of the
strange quark mass can be neglected, quark matter is in
the CFL phase. At asymptotic densities, the CFL gap
parameter �CFL and indeed any property of CFL quark
matter can be calculated in full QCD, as described in
Sec. IV. At any density at which the CFL phase arises, its
low energy excitations, and hence its properties and phe-
nomenology, can be described by the effective field
theory of Sec. V, whose form is known and whose pa-
rameters can be systematically related to the CFL gap
�CFL. If we knew that the only form of color supercon-
ducting quark matter that arises in the QCD phase dia-
gram were CFL, there would therefore be no need to
resort to model analyses. However, as discussed in Sec.
III, Ms

2 /��CFL may not be small enough �at �=�nuc
where the nuclear→quark matter transition occurs� for
the QCD phase diagram to be this simple.

Even at the center of a neutron star, � cannot be
larger than about 500 MeV, meaning that the �density
dependent� strange quark mass Ms cannot be neglected.
In concert with the requirement that bulk matter must
be neutral and must be in weak equilibrium, a nonzero
Ms favors separation of the Fermi momenta of the three
different flavors of quarks, and thus disfavors the cross-
species BCS pairing that characterizes the CFL phase. If
CFL pairing is disrupted by the heaviness of the strange
quark at a higher � than that at which color supercon-
ducting quark matter is superseded by baryonic matter,
the CFL phase must be replaced by some phase of quark
matter in which there is less, and less symmetric, pairing.

Within a spatially homogeneous ansatz, the next
phase lower in density is the gapless CFL �gCFL� phase
described in Sec. III.B. However, as described in Sec.
IV.G, such gapless paired states suffer from a chromo-
magnetic instability: they can lower their energy by the
formation of counterpropagating currents. It seems
likely, therefore, that a ground state with counterpropa-

gating currents is required. This could take the form of a
crystalline color superconductor, introduced in Sec.
III.C. Or, given that the CFL phase itself is likely aug-
mented by kaon condensation as described in Secs. II.C
and V.D, it could take the form of the phase described in
Sec. V.F in which a CFL kaon condensate carries a cur-
rent in one direction balanced by a counterpropagating
current in the opposite direction carried by gapless
quark quasiparticles.

Determining which phase or phases of quark matter
occupy the regime of density between hadronic matter
and CFL quark matter in the QCD phase diagram, if
there is such a regime, remains an outstanding chal-
lenge. Barring a major breakthrough that would allow
lattice QCD calculations to be brought to bear despite
the fermion sign problem, a from-first-principles deter-
mination seems out of reach. This leaves two possible
paths forward. First, as described in this section, we ana-
lyze and compare many possible phases within a simpli-
fied few parameter model, in so doing seeking qualita-
tive insight into what phase�s� are favorable. Second, as
described in Sec. VIII, we determine the observable
consequences of the presence of various possible color
superconducting phases in neutron stars, and then use
observational data to rule possibilities out or in.

A. Model, pairing ansatz, and homogeneous phases

We employ a Nambu–Jona-Lasinio �NJL� model in
which the QCD interaction between quarks is replaced
by a pointlike four-quark interaction, with the quantum
numbers of single-gluon exchange, analyzed in mean-
field theory. This is not a controlled approximation.
However, it suffices for our purposes: because this model
has attraction in the same channels as in QCD, its high
density phase is the CFL phase; and, the Fermi surface
splitting effects whose qualitative consequences we wish
to study can be built into the model. Note that we as-
sume throughout that �CFL��. This weak coupling as-
sumption means that the pairing is dominated by modes
near the Fermi surfaces. Quantitatively, this means that
results for the gaps and condensation energies of candi-
date phases are independent of the cutoff in the NJL
model when expressed in terms of the CFL gap �CFL: if
the cutoff is changed with the NJL coupling constant
adjusted so that �CFL stays fixed, the gaps and conden-
sation energies for the candidate crystalline phases also
stay fixed. This makes the NJL model valuable for mak-
ing the comparisons that are our goal. The NJL model
has two parameters: the CFL gap �CFL which param-
etrizes the strength of the interaction and Ms

2 /4�, the
splitting between Fermi surfaces in neutral quark matter
in the absence of pairing. The free energy of candidate
patterns of pairing can be evaluated and compared as a
function of these two parameters.

As a rather general pairing ansatz, we consider

�ud� � �3�
a

exp�2iq3
a · r� ,

1490 Alford et al.: Color superconductivity in dense quark matter

Rev. Mod. Phys., Vol. 80, No. 4, October–December 2008



�us� � �2�
a

exp�2iq2
a · r� ,

�ds� � �1�
a

exp�2iq1
a · r� . �112�

If we set all the wave vectors qI
a to zero, we can use this

ansatz to compare spatially homogeneous phases includ-
ing the CFL phase ��1=�2=�3
�CFL�, the gCFL phase
��3
�2
�1
0�, and the 2SC phase ��3
�2SC;
�1=�2=0�. Choosing different sets of wave vectors will
allow us to analyze and compare different crystalline
color superconducting phases of quark matter.

NJL models of varying degrees of complexity have
been used for a variety of purposes beyond the scope of
this review. For example, whereas we treat �CFL and
quark masses as parameters and use the NJL model to
compare different patterns of pairing at fixed values of
these parameters and �, it is possible instead to fix the
NJL coupling or couplings and then self-consistently
solve for the gap parameters and the �s̄s� condensate as
functions of � �Buballa and Oertel, 2002; Steiner et al.,
2002; Mishra and Mishra, 2004; Blaschke et al., 2005;
Abuki et al., 2005; Rüster et al., 2005; Abuki and Kuni-
hiro, 2006; Warringa, 2006; Ippolito et al., 2007�. Doing
so reintroduces sensitivity to the cutoff in the NJL
model and so does not actually reduce the number of
parameters. Also, these models tend to find rather larger
values of Ms than in analyses that go beyond NJL mod-
els, for example, the analysis using Dyson-Schwinger
equations in Nickel, Alkofer, and Wambach �2006�.
There have also been many investigations of the phase
diagram in the �-T plane in NJL models �either with
�CFL and Ms as parameters or with them solved for self-
consistently� �Berges and Rajagopal, 1999; Schwarz et
al., 1999; Barducci et al., 2004; Rüster et al., 2004, 2005;
Fukushima et al., 2005; Iida et al., 2005; Mishra and
Mishra, 2005; Warringa et al., 2005; Warringa, 2006;
Abuki and Kunihiro, 2006; He et al., 2007; Kashiwa et
al., 2007�. Although many of their features are sensitive
to the cutoff as well as the chosen couplings, these NJL
phase diagrams indicate how rich the QCD phase dia-
gram may turn out to be, as different condensates vanish
at different temperatures. One result that has been ob-
tained using the Ginzburg-Landau approximation as
well as in NJL models and so is of more general validity
is that upon heating the CFL phase at nonzero but small
Ms

2 /�, as T increases �2 vanishes first, then �1, and then
�3 �Iida et al., 2004; Rüster et al., 2004; Fukushima et al.,
2005�. However, it remains to be seen how this conclu-
sion is modified by the effects of gauge-field fluctuations,
which for Ms=0 turn the mean-field Ginzburg-Landau
second order transition into a strong first order phase
transition at a significantly elevated temperature; see
Sec. V.B and Eq. �74�.

We analyze quark matter containing massless u and d
quarks and s quarks with an effective mass Ms. The La-
grangian density describing this system in the absence of
interactions is given by

L0 = 	̄i
�i�”�
��ij − Mij

� + �ij


��0�	�j, �113�

where i , j=1,2,3 are flavor indices and 
 ,�=1,2,3 are
color indices and we have suppressed the Dirac indices,
where Mij


�=�
� diag�0,0 ,Ms�ij is the mass matrix, and
where the quark chemical potential matrix is given by

�ij

� = ���ij − �eQij��
� + �ij��3T3


� +
2
�3

�8T8

�� ,

�114�

with Qij=diag�2/3 ,−1/3 ,−1/3�ij the quark electric-
charge matrix and T3 and T8 the diagonal color genera-
tors. In QCD, �e, �3, and �8 are the zeroth components
of electromagnetic and color gauge fields, and the gauge
field dynamics ensure that they take on values such that
the matter is neutral �Alford and Rajagopal, 2002; Ger-
hold and Rebhan, 2003; Kryjevski, 2003; Dietrich and
Rischke, 2004�, satisfying the neutrality conditions �3�.
In the NJL model, quarks interact via four-fermion in-
teractions and there are no gauge fields, so we introduce
�e, �3, and �8 by hand, and choose them to satisfy the
neutrality constraints �3�. The assumption of weak equi-
librium is built into the calculation via the fact that the
only flavor-dependent chemical potential is �e, ensuring,
for example, that the chemical potentials of d and s
quarks with the same color must be equal. Because the
strange quarks have greater mass, the equality of their
chemical potentials implies that the s quarks have
smaller Fermi momenta than the d quarks in the ab-
sence of BCS pairing. In the absence of pairing, then,
because weak equilibrium drives the massive strange
quarks to be less numerous than the down quarks, elec-
trical neutrality requires a �e
0, which makes the up
quarks less numerous than the down quarks and intro-
duces some electrons into the system. In the absence of
pairing, color neutrality is obtained with �3=�8=0.

The Fermi momenta of the quarks and electrons in
quark matter that is electrically and color neutral and in
weak equilibrium are given in the absence of pairing by

pF
d = � +

�e

3
,

pF
u = � −

2�e

3
,

pF
s =��� +

�e

3
�2

− Ms
2 	 � +

�e

3
−

Ms
2

2�
,

pF
e = �e, �115�

where we have simplified pF
s by working to linear order

in �e and Ms
2. To this order, electric neutrality requires

�e=Ms
2 /4�, yielding

pF
d = � +

Ms
2

12�
= pF

u +
Ms

2

4�
,
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pF
u = � −

Ms
2

6�
,

pF
s = � −

5Ms
2

12�
= pF

u −
Ms

2

4�
,

pF
e =

Ms
2

4�
, �116�

as illustrated in Fig. 2. We see from Eq. �115� that to
leading order in Ms

2 and �e, the effect of the strange
quark mass on unpaired quark matter is instead as if one
reduced the strange quark chemical potential by
Ms

2 / �2��. We make this approximation throughout.
Upon making this assumption, we need no longer be
careful about the distinction between pF’s and �’s, as we
can simply think of the three flavors of quarks as if they
have chemical potentials

�d = �u + 2��3,

�u = pF
u ,

�s = �u − 2��2, �117�

with

��3 = ��2 =
Ms

2

8�

 �� , �118�

where the choice of subscripts indicates that 2��2 is the
splitting between the Fermi surfaces for quarks 1 and 3
and 2��3 is that between the Fermi surfaces for quarks 1
and 2, identifying u, d, s with 1, 2, 3.

As described by Rajagopal and Wilczek �2001�; Alford
and Rajagopal �2002�; Steiner et al. �2002�; Alford et al.
�2004b�, BCS pairing introduces qualitative changes into
the analysis of neutrality. For example, in the CFL phase
�e=0 and �8 is nonzero and of order Ms

2 /�. This arises
because wherever BCS pairing occurs between fermions
whose Fermi surface would be split in the absence of
pairing, the Fermi momenta of these fermions are
locked together. This maximizes the pairing energy gain
while at the same time exacting a kinetic energy price
and changing the relation between the chemical poten-
tials and the particle numbers. This means that the �’s
required for neutrality can change qualitatively as hap-
pens in the CFL example.

The NJL interaction term with the quantum numbers
of single-gluon exchange that we add to the Lagrangian
�113� is

Linteraction = − 3
8��	̄ A�	��	̄ A�	� , �119�

where we have suppressed the color and flavor indices
that we showed explicitly in Eq. �113�, and have contin-
ued to suppress the Dirac indices. The full expression
for  A� is � A��
i,�j=���TA�
��ij. The NJL coupling con-
stant � has dimension −2, meaning that an ultraviolet
cutoff � must be introduced as a second parameter in
order to fully specify the interaction. We define � as

restricting the momentum integrals to a shell around the
Fermi surface, �−�� 
p
��+�.

In the mean-field approximation, the interaction La-
grangian �119� takes on the form

Linteraction = 1
2 	̄��x�	̄T + 1

2	T�̄�x�	 , �120�

where ��x� is related to the diquark condensate by the
relations

��x� = 3
4� A��		T�� A��T,

�̄�x� = 3
4�� A��T�	̄T	̄� A� = �0�†�x��0. �121�

The ansatz �112� can now be made precise: we take

��x� = �CF�x� � C�5, �122�

with the color-flavor part

�CF�x�
i,�j = �
I=1

3

�
qI

a

��qI
a�e2iqI

a·r�I
��Iij. �123�

We have introduced notation that allows for the possi-
bility of gap parameters ��qI

a� with different magnitudes
for different I and for different a. In fact, we only con-
sider circumstances in which ��qI

a�=�I, as in Eq. �112�.
The full Lagrangian, given by the sum of Eqs. �113�

and �120�, is then quadratic and can be written simply
upon introducing the two component Nambu-Gorkov
spinors �12� in terms of which

L =
1
2

�̄�i�” + �” ��x�

�̄�x� �i�” − �” �T�� . �124�

Here �/ 
��0 and � is the matrix �114�.
The propagator corresponding to the Lagrangian

�124� is given by

���x��̄�x��� = � �	�x�	̄�x��� �	�x�	T�x���

�	̄T�x�	̄�x��� �	̄T�x�	T�x���
�

= �iG�x,x�� iF�x,x��

iF̄�x,x�� iḠ�x,x��
� , �125�

where G and Ḡ are the “normal” components of the

propagator and F and F̄ are the “anomalous” compo-
nents. They satisfy the coupled differential equations

�i�” + �” ��x�

�̄�x� �i�” − �” �T��G�x,x�� F�x,x��

F̄�x,x�� Ḡ�x,x��
�

= �1 0

0 1
���4��x − x�� . �126�

We can now rewrite Eq. �121� as

��x� =
3i

4
� A�F�x,x�� A��T,

1492 Alford et al.: Color superconductivity in dense quark matter

Rev. Mod. Phys., Vol. 80, No. 4, October–December 2008



�̄�x� =
3i

4
�� A��TF̄�x,x� A�, �127�

either one of which is the self-consistency equation, or
gap equation, that we must solve.

Without further approximation, Eq. �127� is not trac-
table. It yields an infinite set of coupled gap equations,
one for each ��qI

a�, because without further approxima-
tion it is not consistent to choose finite sets �qI�. When
several plane waves are present in the condensate, they
induce an infinite tower of higher momentum conden-
sates �Bowers and Rajagopal, 2002�. In the next section,
we make a Ginzburg-Landau �i.e., small-�� approxima-
tion which eliminates these higher harmonics.

Of course, an even more dramatic simplification is ob-
tained if we set all the wave vectors qI

a to zero. Still, even
in this case obtaining the general solution with Ms�0
and �1��2��3 is somewhat involved �Alford et al.,
2004b; Alford, Kouvaris, and Rajagopal, 2005; Fuku-
shima et al., 2005�. We shall not present the resulting
analysis of the CFL→gCFL transition and the gCFL
phase here. The free energies of these phases are de-
picted in Fig. 3, and their gap parameters are depicted
below in Fig. 10.

If we simplify even further, by setting Ms=0 and
�1=�2=�3
�CFL, the gap equation determining the
CFL gap parameter �CFL can then be evaluated analyti-
cally, yielding �Bowers and Rajagopal, 2002�

�CFL = 22/3� exp�−
�2

2�2�
� . �128�

We shall see below that in the limit in which
���CFL,����, all results for the myriad possible crys-
talline phases can be expressed in terms of �CFL; neither
� nor � appear. This reflects the fact that in this limit the
physics of interest is dominated by quarks near the
Fermi surfaces, not near �, and so once �CFL is used as
the parameter describing the strength of the attraction
between quarks, � is no longer visible; the cutoff � only
appears in the relation between �CFL and �, not in any
comparison among different possible paired phases. We
are using the NJL model in a specific, limited, fashion in
which it serves as a two parameter model allowing the
comparison among different possible paired phases at a
given �CFL and Ms. NJL models have also been em-
ployed to estimate the value of �CFL at a given � �Alford
et al., 1998; Alford, Rajagopal, and Wilczek, 1999;
Berges and Rajagopal, 1999; Carter and Diakonov, 1999;
Rajagopal and Wilczek, 2000; Rapp et al., 1998�; doing
so requires normalizing the four-fermion interaction by
calculating some zero density quantity like the vacuum
chiral condensate, and in so doing introduces a depen-
dence on the cutoff �. Such mean-field NJL analyses
are important complements to extrapolation down
from an analysis that is rigorous at high density and
hence weak coupling, described in Sec. IV, and give us
confidence that we understand the magnitude of
�CFL�10–100 MeV. This estimate receives further sup-
port from the lattice NJL calculation of Hands and

Walters �2004� which finds diquark condensation and a
�60 MeV gap in an NJL model whose parameters are
normalized via calculation of f�, m�, and a constituent
quark mass in vacuum. With these as inputs, � is then
calculated on the lattice, i.e., without making a mean-
field approximation. With an understanding of its mag-
nitude in hand, we treat �CFL as a parameter, thus mak-
ing our results insensitive to �.

We focus below on the use of the NJL model that we
have introduced to analyze and compare different pos-
sible crystalline phases, comparing their free energies to
that of the CFL phase as a benchmark. The free energy
of the 2SC phase is easily calculable in the same model,
and the free energies of the unstable gapless CFL and
gapless 2SC phases can also be obtained �Alford, Kou-
varis, and Rajagopal, 2005�. These free energies are all
shown in Fig. 3. The free energies of phases with various
patterns of single-flavor pairing have also been calcu-
lated in the same model �Alford et al., 2003�. The NJL
model is not a natural starting point for an analysis of
the kaon condensate in the CFL-K0 phase, but with con-
siderable effort this has been accomplished by Buballa
�2005b�, Forbes �2005�, Warringa �2006�, Kleinhaus et al.
�2007�. The curCFL-K0 phase of Secs. III.D and V.F, in
which the K0 condensate carries a current, has not been
analyzed in an NJL model; but, because the CFL-K0 and
curCFL-K0 phases are continuously connected to the
CFL phase, they can both be analyzed in a model-
independent fashion using the effective field theory de-
scribed in Sec. V. The CFL-K0 and curCFL-K0 curves in
Fig. 3 were obtained as described in Sec. V. It remains a
challenge for future work to do a calculation in which
both curCFL-K0 and crystalline phases are possible, al-
lowing a direct comparison of their free energies within
a single calculation and a study of whether they are dis-
tinct as current results seem to suggest or are instead
different limits of some more general inhomogeneous
color superconducting phase.

B. Crystalline phases

Crystalline color superconductivity �Alford, Bowers,
and Rajagopal, 2001; Bowers et al., 2001; Casalbuoni,
Gatto, et al., 2001; Leibovich et al., 2001; Bowers and
Rajagopal, 2002; Casalbuoni, Fabiano, et al., 2002;
Casalbuoni, Gatto, and Nardulli, 2002; Giannakis et al.,
2002; Kundu and Rajagopal, 2002; Casalbuoni et al.,
2003, 2004; Casalbuoni and Nardulli, 2004; Casalbuoni,
Gatto, Ippolito, et al., 2005; Ciminale et al., 2006;
Mannarelli et al., 2006b� naturally permits pairing be-
tween quarks living at split Fermi surfaces by allowing
Cooper pairs with nonzero net momentum. In three-
flavor quark matter, this allows pairing to occur even
with the Fermi surfaces split in the free energetically
optimal way as in the absence of pairing, meaning that
neutral crystalline phases are obtained in three-flavor
quark matter with the chemical potential matrix �114�
simplified to �=�
� � diag��u ,�d ,�s� with the flavor
chemical potentials given by Eq. �117� �Casalbuoni,
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Gatto, Ippolito, et al., 2005; Mannarelli et al., 2006b; Ra-
jagopal and Sharma, 2006b�, up to higher order correc-
tions that have been investigated by Casalbuoni et al.
�2006�. This is the origin of the advantage that crystalline
color superconducting phases have over the CFL and
gCFL phases at large values of the splitting ��. For ex-
ample, by allowing u quarks with momentum p+q3 to
pair with d quarks with momentum −p+q3, for any p, we
can pair u and d quarks along rings on their respective
Fermi surfaces. In coordinate space, this corresponds to
a condensate of the form �ud���3 exp�2iq3 ·r�. The net
free energy gained due to pairing is then a balance be-
tween increasing 
q3
 yielding pairing on larger rings
while exacting a greater kinetic energy cost. The opti-
mum choice turns out to be 
q3
=���3 with �=1.1997,
corresponding to pairing rings on the Fermi surfaces
with opening angle 67.1° �Alford, Bowers, and Rajago-
pal, 2001�. Pairing with only a single q3 is disadvantaged
because the only quarks on each Fermi surface that can
then pair are those lying on a single ring. This disadvan-
tage can be overcome in two ways. First, increasing �
widens the pairing rings on the Fermi surfaces into pair-
ing bands which fill in, forming pairing caps, at large
enough � �Mannarelli et al., 2006b�. Second, it is possible
to cover larger areas of the Fermi surfaces by allowing
Cooper pairs with the same 
q3
 but various q̂3, yielding
�ud���3�q3

a exp�2iq3
a ·r� with the q3

a chosen from some
specified set �q3

1 ,q3
2 ,q3

3 , . . . �
�q3�. This is a condensate
modulated in position space in some crystalline pattern,
with the crystal structure defined by �q3�. In this two-
flavor context, a Ginzburg-Landau analysis reveals that
the best �q3� contains eight vectors pointing at the cor-
ners of a cube, say in the �±1, ±1, ±1� directions in mo-
mentum space, yielding a face-centered-cubic structure
in position space �Bowers and Rajagopal, 2002�.

This section describes the analysis of three-flavor crys-
talline phases by Rajagopal and Sharma �2006a�. We use
the ansatz given by Eqs. �122� and �123� for the three-
flavor crystalline color superconducting condensate.
This is antisymmetric in color �
 ,��, spin, and flavor �i , j�
indices and is a generalization of the CFL condensate to
crystalline color superconductivity. We set �1=0, ne-
glecting �ds� pairing because the d and s Fermi surfaces
are twice as far apart from each other as each is from the
intervening u Fermi surface. Hence I can be taken to
run over 2 and 3 only. �q2� and �q3� define the crystal
structures of the �us� and �ud� condensates, respectively.
We only consider crystal structures in which all the vec-
tors in �q2� are equivalent to each other, in the sense that
any one can be transformed into any other by a symme-
try operation of �q2�, and the same for �q3�. This justifies
our simplifying assumption that the �us� and �ud� con-
densates are each specified by a single gap parameter
��2 and �3, respectively�, avoiding having to introduce
one gap parameter per q. We furthermore only consider
crystal structures which are exchange symmetric, mean-
ing that �q2� and �q3� can be exchanged by some combi-
nation of rigid rotations and reflections applied simulta-
neously to all vectors in both sets. This simplification,

together with ��2=��3 �an approximation corrected
only at order Ms

4 /�3�, guarantees that we find solutions
with �2=�3.

We analyze and compare candidate crystal structures
by evaluating the free energy ���2 ,�3� for each crystal
structure in a Ginzburg-Landau expansion in powers
of the �’s. This approximation is controlled if
�2 ,�3��CFL,��, with �CFL the gap parameter in the
CFL phase at Ms

2 /�=0. The terms in the Ginzburg-
Landau expansion must respect the global U�1� symme-
try for each flavor, meaning that each �I can only appear
in the combination 
�I
2. �The U�1� symmetries are spon-
taneously broken by the condensate, but not explicitly
broken.� Therefore ���2 ,�3� is given to sextic order by

���2,�3� =
2�2

�2 �P2
2
�2
2 + P3
3
�3
2 +
1
2

��2
�2
4

+ �3
�3
4 + �32
�2
2
�3
2� +
1
3

��2
�2
6

+ �3
�3
6 + �322
�3
2
�2
4 + �233
�3
4
�2
2�� ,

�129�

where we have chosen notation consistent with that used
in the two flavor study of Bowers and Rajagopal �2002�,
which arises as a special case of Eq. �129� if we take �2
or �3 to be zero. PI is the number of vectors in the set
�qI�. The form of the Ginzburg-Landau expansion �129�
is model independent, whereas expressions for the coef-
ficients 
I, �I, �IJ, �I, and �IJJ for a specific crystal struc-
ture are model dependent. We calculate them in the NJL
model described in Sec. VI.A. For exchange symmetric
crystal structures, 
2=
3

, �2=�3
�, �2=�3
�, and
�233=�322.

Because setting one of the three �I to zero reduces
the problem to one with two-flavor pairing only, we can
obtain 
, �, and � via applying the two-flavor analysis
described by Bowers and Rajagopal �2002� to either �q2�
or �q3� separately. Using 
 as an example, we learn that


I = 
�qI,��I� = − 1 +
��I

2qI
log�qI + ��I

qI − ��I
�

−
1
2

log� �2SC
2

4�qI
2 − ��I

2�
� . �130�

Here qI

qI
 and �2SC is the gap parameter for the 2SC
�two-flavor, two-color� BCS pairing obtained with
��I=0 and �I nonzero with the other two gap param-
eters set to zero. Assuming that �CFL��, the 2SC gap
parameter is given by �2SC=21/3�CFL �Schäfer, 2000a�,
see Sec. IV. In the Ginzburg-Landau approximation, in
which �I are assumed small, we must first minimize the
quadratic contribution to the free energy, and only then
investigate the quartic and sextic contributions. Mini-
mizing 
I fixes the length of all the vectors in the set �qI�,
and eliminates the possibility of waves at higher har-
monics, yielding qI=���I with �=1.1997 the solution to
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�1/2�� log���+1� / ��−1��=1 �Alford, Bowers, and Raja-
gopal, 2001�. Upon setting qI=���I, Eq. �130� becomes


I���I� = −
1
2

log� �2SC
2

4��I
2��2 − 1�

� . �131�

Once the qI have been fixed, the only dimensionful
quantities on which the quartic and sextic coefficients
can depend on are ��I �Bowers and Rajagopal, 2002;
Rajagopal and Sharma, 2006b�, meaning that for ex-
change symmetric crystal structures and with ��2=��3

=�� we have �= �̄ /��2, �32= �̄32/��2, �= �̄ /��4, and
�322= �̄322/��4 where the barred quantities are dimen-
sionless numbers which depend only on �q̂2� and �q̂3�
that must be evaluated for each crystal structure. Doing
so requires evaluating one-loop Feynman diagrams with
four or six insertions of �I’s. Each insertion of �I ��I

��
adds �subtracts� momentum 2qI

a for some a. The vector
sum of all these external momenta inserted into a given
one-loop diagram must vanish, meaning that the calcu-
lation consists of a bookkeeping task �determining which
combinations of four or six qI

a’s selected from the sets
�qI� satisfy this momentum-conservation constraint� that
grows rapidly in complexity with the complexity of the
crystal structure, and a loop integration that is nontrivial
because the momentum in the propagator changes after
each insertion. Rajagopal and Sharma �2006b� carried
out this calculation explicitly for 11 crystal structures in
the mean-field NJL model of Sec. VI.A upon making the
weak coupling ��CFL and �� both much less than ��
approximation. Note that in this approximation neither
the NJL cutoff nor the NJL coupling constant appear in
any quartic or higher Ginzburg-Landau coefficient, and
as shown above they appear in 
 only within �CFL.
Hence the details of the model do not matter as long as
one thinks of �CFL as a parameter, kept ��.

It is easy to show that for exchange symmetric crystal
structures any extrema of ���2 ,�3� in ��2 ,�3� space
must either have �2=�3=� or have one of �2 and �3
vanishing �Rajagopal and Sharma, 2006b�. It is also pos-
sible to show that the three-flavor crystalline phases with
�2=�3=� are electrically neutral whereas two-flavor so-
lutions in which only one of the �’s is nonzero are not
�Rajagopal and Sharma, 2006b�. We therefore analyze
only solutions with �2=�3=�. We find that ��� ,�� is
positive for large � for all crystal structures investigated
to date �Rajagopal and Sharma, 2006b�.4 This allows us
to minimize ��� ,�� with respect to �, thus evaluating �
and �.

We begin with the simplest three-flavor “crystal”
structure in which �q2� and �q3� each contain only a
single vector, making the �us� and �ud� condensates each
a single plane wave �Casalbuoni, Gatto, Ippolito, et al.,

2005�. We call this the 2PW phase. Unlike in the more
realistic crystalline phases described below, in this ‘‘crys-
tal’’ the magnitude of the �ud� and �us� condensates are
unmodulated. This simple condensate nevertheless
yields a qualitative lesson which proves helpful in win-
nowing the space of multiple plane wave crystal struc-
tures �Rajagopal and Sharma, 2006b�. For this simple
‘‘crystal’’ structure, all the coefficients in the Ginzburg-
Landau free energy can be evaluated analytically �Casal-
buoni, Gatto, Ippolito, et al., 2005; Mannarelli et al.,
2006b; Rajagopal and Sharma, 2006b�. The terms that
occur in the three-flavor case but not in the two-flavor

case, namely, �̄32 and �̄322, describe the interaction be-
tween the two condensates and depend on the angle �

between q2 and q3. For any angle �, both �̄32 and �̄322
are positive; and, both increase monotonically with �
and diverge as �→�. This divergence tells us that
choosing q2 and q3 precisely antiparallel exacts an infi-
nite free energy price in the combined Ginzburg-Landau
and weak coupling limit in which ���� ,�CFL��,
meaning that in this limit if we chose �=�, we find
�=0. Away from the Ginzburg-Landau limit, when the
pairing rings on the Fermi surfaces widen into bands,
choosing �=� exacts a finite price meaning that � is
nonzero but smaller than that for any other choice of �.
The high cost of choosing q2 and q3 precisely antiparallel
can be understood qualitatively as arising from the fact
that in this case the ring of states on the u quark Fermi
surface that “want to” pair with d quarks coincides pre-
cisely with the ring that “wants to” pair with s quarks
�Mannarelli et al., 2006b�. This simple two plane wave
ansatz has been analyzed upon making the weak cou-
pling approximation but without making the Ginzburg-
Landau approximation �Mannarelli et al. 2006b�. All the
qualitative lessons learned from the Ginzburg-Landau
approximation remain valid and we learn further that
the Ginzburg-Landau approximation always underesti-
mates � �Mannarelli et al., 2006b�.

The analysis of the simple two plane wave ‘‘crystal’’
structure, together with the observation that in more
complicated crystal structures with more than one vector
in �q2� and �q3� the Ginzburg-Landau coefficient �32
��322� is given in whole �in part� by a sum of many two
plane wave contributions, yields one of two rules for
constructing favorable crystal structures for three-flavor
crystalline color superconductivity �Rajagopal and
Sharma, 2006b�: �q2� and �q3� should be rotated with
respect to each other in a way that best keeps vectors in
one set away from the antipodes of vectors in the other
set. The second rule is that the sets �q2� and �q3� should
each be chosen to yield crystal structures which, seen as
separate two-flavor crystalline phases, are as favorable
as possible. The 11 crystal structures analyzed by Raja-
gopal and Sharma �2006b� allow one to make several
pairwise comparisons that test these two rules. There are
instances of two structures which differ only in the rela-
tive orientation of �q2� and �q3� and in these cases the
structure in which vectors in �q2� get closer to the an-

4This is in marked contrast with what happens with only two
flavors �and upon ignoring the requirement of neutrality�. in
that context, many crystal structures have negative � and
hence sextic order free energies that are unbounded from be-
low �Bowers and Rajagopal, 2002�.
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tipodes of vectors in �q3� are disfavored; and, there are
instances where the smallest angle between a vector in
�q2� and the antipodes of a vector in �q3� are the same
for two different crystal structures, and in these cases
the one with the more favorable two-flavor structure is
more favorable. These considerations, together with ex-
plicit calculations, indicate that two structures, which we
denote ‘‘2Cube45z’’ and ‘‘CubeX,’’ are particularly fa-
vorable.

In the 2Cube45z crystal, �q2� and �q3� each contain
eight vectors pointing at the corners of a cube. If we
orient �q2� so that its vectors point in the �±1, ±1, ±1�
directions in momentum space, then �q3� is rotated rela-
tive to �q2� by 45° about the z axis. In this crystal struc-
ture, the �ud� and �us� condensates are each given by the
most favored two-flavor crystal structure �Bowers and
Rajagopal, 2002�. The relative rotation maximizes the
separation between any vector in �q2� and the nearest
antipodes of a vector in �q3�.

We arrive at the CubeX structure by reducing the
number of vectors in �q2� and �q3�. This worsens the
two-flavor free energy of each condensate separately,
but allows vectors in �q2� to be kept farther away from
the antipodes of vectors in �q3�. We have not analyzed
all structures obtainable in this way, but we have found
one and only one which has a condensation energy com-
parable to that of the 2Cube45z structure. In the CubeX
structure, �q2� and �q3� each contain four vectors form-
ing a rectangle. The eight vectors together point toward
the corners of a cube. The two rectangles intersect to
look like an “X” if viewed end-on. The color, flavor, and
position space dependence of the CubeX condensate is
given by

�2
��2ij�cos
2�

a
�x + y + z� + cos

2�

a
�− x − y + z��

+ �3
��3ij�cos
2�

a
�− x + y + z�

+ cos
2�

a
�x − y + z�� , �132�

where a=�3� /q=4.536/��=36.29� /Ms
2 is the lattice

spacing. For example, with Ms
2 /�=100, 150, and

200 MeV the lattice spacing is a=72, 48, and 36 fm. We
depict this condensate in Fig. 9.

In Figs. 10 and 3, we plot � and � versus Ms
2 /� for the

most favorable crystal structures we found, namely, the
CubeX and 2Cube45z structures described above. We
have taken the CFL gap parameter �CFL=25 MeV in
these figures, but they can easily be rescaled to any value
of �CFL�� �Rajagopal and Sharma, 2006b�: if the � and
Ms

2 /� axes are rescaled by �CFL and the energy axis is
rescaled by �CFL

2 . Figure 10 shows that the gap param-
eters are large enough that the Ginzburg-Landau ap-
proximation is at the edge of its domain of reliability.
However, results obtained for the simpler 2PW crystal
structures suggest that the Ginzburg-Landau calculation
underestimates � and the condensation energy and that,

even when it breaks down, it is a good qualitative guide
to the favorable structure �Mannarelli et al., 2006b�. We
therefore trust the result, evident in Fig. 3, that these
crystalline phases are both impressively robust, with one
or the other of them favored over a wide swath of Ms

2 /�
and hence density. We do not trust the Ginzburg-Landau

FIG. 9. �Color online� The CubeX crystal structure of Eq.
�132�, extending from 0 to a /2 in the x, y, and z directions.
Both �2�r� and �3�r� vanish at the horizontal plane. �2�r� van-
ishes on the darker vertical planes, and �3�r� vanishes on the
lighter vertical planes. On the upper �lower� dark cylinders
and the lower �upper� two small corners of dark cylinders,
�2�r�= +3.3� ��2�r�=−3.3��. On the upper �lower� lighter cyl-
inders and the lower �upper� two small corners of lighter cyl-
inders, �3�r�=−3.3� ��3�r�= +3.3��. The largest value of 
�I�r�

is 4�, occurring along lines at the centers of the cylinders. The
lattice spacing is a, taking into account the signs of the conden-
sates; if one looks only at 
�I�r�
, the lattice spacing is a /2.
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FIG. 10. Gap parameter � vs Ms
2 /� for the CFL gap param-

eter �set to 25 MeV at Ms
2 /�=0�, the three gap parameters

�1��2��3 describing �ds�, �us�, and �ud� pairing in the gCFL
phase, and the gap parameters in the crystalline color super-
conducting phases with CubeX and 2Cube45z crystal struc-
tures. Increasing Ms

2 /� corresponds to decreasing density.
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calculation to discriminate between these two structures,
particularly given that although we have a qualitative
understanding of why these two are favorable we have
no qualitative argument for why one should be favored
over the other. We are confident that 2Cube45z is the
most favorable structure obtained by rotating one cube
relative to another. We are not as confident that CubeX
is the best possible structure with fewer than 8+8 vec-
tors. Regardless, the 2Cube45z and CubeX crystalline
phases together make the case that three-flavor crystal-
line color superconducting phases are the ground state
of cold quark matter over a wide range of densities. If
even better crystal structures can be found, this will only
further strengthen this case.

Figure 3 shows that over most of the Ms
2 /� range

where it was once considered a possibility, the gCFL
phase can be replaced by a much more favorable three-
flavor crystalline color superconducting phase. We find
that the two most favorable crystal structures have large
condensation energies, easily 1/3 to 1/2 of that in the
CFL phase with Ms=0, which is 3�CFL

2 �2 /�2. This is at
first surprising, given that the only quarks that pair are
those lying on rings on the Fermi surfaces, whereas in
the CFL phase with Ms=0 pairing occurs over the entire
u, d, and s Fermi surfaces. It can be understood qualita-
tively to a degree once we recall that there are in fact
many rings, and note that as � increases, the pairing
rings spread into bands on the Fermi surfaces, and for �
as large as that we find to be favored these bands have
expanded and filled in, becoming many “polar caps” on
the Fermi surfaces �Mannarelli et al., 2006b�. In addition
to being free energetically favorable, these crystalline
phases are, as far as is known, stable: they do not suffer
from the chromomagnetic instability �Giannakis and
Ren, 2005b; Giannakis et al., 2005; Ciminale et al., 2006;
Gatto and Ruggieri, 2007� and they are also stable with
respect to kaon condensation �Anglani et al., 2007�. In
simplified analog contexts, it has even been possible to
trace the path in configuration space from the unstable
gapless phase �analog of gCFL� downward in free en-
ergy to the stable crystalline phase �Fukushima, 2006;
Fukushima and Iida, 2007�.

Figure 3 also shows that it is hard to find a crystalline
phase with lower free energy than the gCFL phase at the
lower values of Ms

2 /� �highest densities� within the
“gCFL window.” At these densities, however, the calcu-
lations described in Sec. V demonstrate that the gCFL
phase is superseded by the stable CFL-K0 and
curCFL-K0 phases, as shown in Fig. 3.

The three-flavor crystalline color superconducting
phases with CubeX and 2Cube45z crystal structures are
the lowest free energy phases that we know of, and
hence candidates for the ground state of QCD, over a
wide range of densities. Within the Ginzburg-Landau
approximation to the NJL model that we have de-
scribed, one or the other is favored over the CFL, gCFL,
and unpaired phases for 2.9�CFL�Ms

2 /��10.4�CFL, as
shown in Fig. 3. For �CFL=25 MeV and Ms=250 MeV,
this translates to 240���847 MeV. With these choices

of parameters, the lower part of this range of � �higher
part of the range of Ms

2 /�� is certainly superseded by
nuclear matter; and, the high end of this range extends
beyond the ��500 MeV characteristic of the quark
matter at the densities expected at the center of neutron
stars. This qualitative feature persists in the analysis of
Ippolito et al. �2007� in which Ms is solved for rather
than taken as a parameter. If neutron stars do have
quark matter cores, then it is reasonable to include the
possibility that the entire quark matter core could be in a
crystalline color superconducting phase on the list of op-
tions that must ultimately be winnowed by confrontation
with astrophysical observations. �Recall that if �CFL is
larger, say �100 MeV, the entire quark matter core
could be in the CFL phase.� As we show in the next
subsection, crystalline color superconducting quark mat-
ter is rigid, with an enormous shear modulus, while at
the same time being superfluid. This provides a possible
origin for pulsar glitches, as discussed in Sec. VIII.F

C. Rigidity of crystalline color superconducting quark
matter

The crystalline phases of color superconducting quark
matter described in the previous section are unique
among all forms of dense matter that may arise within
neutron star cores in one respect: they are rigid
�Mannarelli et al., 2007�. They are not solids in the usual
sense: the quarks are not fixed in place at the vertices of
some crystal structure. Instead, in fact, these phases are
superfluid since the condensates all spontaneously break
the U�1�B symmetry corresponding to quark number.
We always write the condensates as real. This choice of
overall phase breaks U�1�B, and spatial gradients in this
phase correspond to supercurrents; and yet, we show
that crystalline color superconductors are rigid solids
with large shear moduli. The diquark condensate, al-
though spatially inhomogeneous, can carry supercur-
rents �Alford, Bowers, and Rajagopal, 2001; Mannarelli
et al., 2007�. It is the spatial modulation of the gap pa-
rameter that breaks translation invariance, as depicted
for the CubeX phase in Fig. 9, and it is this pattern of
modulation that is rigid.5 This novel form of rigidity may
sound tenuous upon first hearing, but we shall present
the effective Lagrangian that describes phonons in the
CubeX and 2Cube45z crystalline phases, whose lowest
order coefficients have been calculated in the NJL
model that we employ �Mannarelli et al., 2007�. We then
extract the shear moduli from the phonon effective ac-
tion, quantifying the rigidity and indicating the presence
of transverse phonons. The fact that the crystalline
phases are simultaneously rigid and superfluid means
that their presence within neutron star cores has poten-

5Supersolids �Andreev and Lifshitz, 1969; Chester, 1970; Leg-
gett, 1970; Kim and Chan, 2004a, 2004b; Son, 2005� are another
example of rigid superfluids, but they differ from crystalline
color superconductors in that they are rigid due to the pres-
ence of an underlying lattice of atoms.
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tially observable consequences, as described in Sec.
VIII.F.

The shear moduli of a crystal may be extracted from
the effective Lagrangian that describes phonons in the
crystal, namely, space- and time-varying displacements
of the crystalline pattern. Phonons in two-flavor crystal-
line phases were first investigated by Casalbuoni, Fabi-
ano, et al. �2002�; Casalbuoni, Gatto, and Nardulli
�2002c�. In the present context, we introduce displace-
ment fields for the �ud�, �us�, and �ds� condensates by
making the replacement

�I�
qI

a

e2iqI
a·r → �I�

qI
a

e2iqI
a·�r−uI�r�� �133�

in Eq. �123�. One way to obtain the effective action de-
scribing the dynamics of the displacement fields uI�r�,
including both its form and the values of its coefficients
within the NJL model that we employ, is to begin with
the NJL model of Sec. VI.A but with Eq. �133� and in-
tegrate out the fermion fields. After a lengthy calcula-
tion �Mannarelli et al., 2007�, this yields

S�u� =
1
2 � d4x�

I
�I���

qI
a

�q̂I
a�m�q̂I

a�n���0uI
m���0uI

n�

− ��
qI

a

�q̂I
a�m�q̂I

a�v�q̂I
a�n�q̂I

a�w���vuI
m���wuI

n�� ,

�134�

where m, n, v, and w are spatial indices running over x,
y, and z and where we have defined

�I 

2�2
�I
2�2

�2��2 − 1�
. �135�

Upon setting �1=0 and �2=�3=�,

�2 = �3 
 � =
2�2
�
2�2

�2��2 − 1�
� 0.664�2
�2
 . �136�

S�u� is the low energy effective action for phonons in
any crystalline color superconducting phase, valid to sec-
ond order in derivatives, to second order in the gap pa-
rameters �I, and to second order in the phonon fields uI.
Because we are interested in long wavelength, small am-
plitude, phonon excitations, expanding to second order
in derivatives and in the phonon fields is satisfactory.
More complicated terms will arise at higher order, for
example, terms that couple the different uI’s, but it is
legitimate to neglect these complications �Mannarelli
et al., 2007�. Extending this calculation to higher order in
the Ginzburg-Landau approximation would be worth-
while, however, since as shown in Sec. VI.B this approxi-
mation is at the edge of its domain of reliability.

In order to extract the shear moduli, we need to com-
pare the phonon effective action to the general theory of
elastic media �Landau and Lifshitz, 1981�, which re-
quires introducing the strain tensor

sI
mv 


1
2
� �uI

m

�xv +
�uI

v

�xm� . �137�

We then compare the action �138� to

S�u� =
1
2 � d4x��

I
�
m

*I
m��0uI

m���0uI
m�

− �
I

�
mn

vw

�I
mvnwsI

mvsI
nw� , �138�

which is the general form of the action in the case in
which the effective action is quadratic in displacements
and which defines the elastic modulus tensor �I

mvnw for
this case. In this case, the stress tensor �in general the
derivative of the potential energy with respect to sI

mv� is
given by

-I
mv = �I

mvnwsI
nw. �139�

The diagonal components of - are proportional to the
compression exerted on the system and are therefore
related to the bulk modulus of the crystalline color su-
perconducting quark matter. Since unpaired quark mat-
ter has a pressure ��4, it gives a contribution to the
bulk modulus that completely overwhelms the contribu-
tion from the condensation into a crystalline phase,
which is of order �2�2. We therefore do not calculate
the bulk modulus. On the other hand, the response to
shear stress arises only because of the presence of the
crystalline condensate. The shear modulus is defined as
follows. Imagine exerting a static external stress -I hav-
ing only an off-diagonal component, meaning -I

mv�0 for
a pair of space directions m�v, and all other compo-
nents of - are zero. The system will respond with a
strain sI

nw. The shear modulus in the mv plane is then

�I
mv 


-I
mv

2sI
mv =

1
2

�I
mvmv, �140�

where the indices m and v are not summed. For a gen-
eral quadratic potential with -I

mv given by Eq. �139�, �I
mv

simplifies partially but the full simplification given by the
last equality in Eq. �140� only arises for special cases in
which the only nonzero entries in �mvnw with m�v are
the �mvmv entries, as is the case for all crystal structures
that we consider.

For a given crystal structure, upon evaluating the
sums in Eq. �134� and then using the definition �137� to
compare Eqs. �134�–�138�, we extract expressions for the
� tensor and then for the shear moduli. This analysis,
described by Mannarelli et al. �2007�, shows that in the
CubeX phase

�2 =
16
9

��0 0 1

0 0 0

1 0 0
�, �3 =

16
9

��0 0 0

0 0 1

0 1 0
� , �141�

while in the 2Cube45z phase
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�2 =
16
9

��0 1 1

1 0 1

1 1 0
�, �3 =

16
9

��0 0 1

0 0 1

1 1 0
� . �142�

We shall see in Sec. VIII.F that it is relevant to check
that both these crystals have enough nonzero entries in
their shear moduli �I that if there are rotational vortices
pinned within them, a force seeking to move such a vor-
tex is opposed by the rigidity of the crystal structure
described by one or more of the nonzero entries in the
�I. This has been demonstrated by Mannarelli et al.
�2007�.

We see that all the nonzero shear moduli of both the
CubeX and 2Cube45z crystalline color superconducting
phases turn out to take on the same value,

�CQM = 16
9 � , �143�

with � defined by Eq. �136�. Evaluating � yields

�CQM = 1.18�2�2

= 2.47
MeV
fm3 � �

10 MeV
�2� �

400 MeV
�2

. �144�

From Eq. �144� we first see that the shear modulus is in
no way suppressed relative to the scale �2�2 that could
have been guessed on dimensional grounds; and, second,
we discover that a quark matter core in a crystalline
color superconducting phase is 20–1000 times more rigid
than the crust of a conventional neutron star �Strohm-
ayer et al., 1991; Mannarelli et al., 2007�. Finally, see
Mannarelli et al. �2007� for the extraction of the phonon
dispersion relations from the effective action �134�. The
transverse phonons, whose restoring force is provided
by the shear modulus and which correspond to propa-
gating ripples in a condensation pattern like that in Fig.
9, turn out to have direction-dependent velocities that
are typically a substantial fraction of the speed of light,
in the specific instances evaluated by Mannarelli et al.
�2007� being given by �1/3 and �2/3. This is yet a third
way of seeing that this superfluid phase of matter is rigid
indeed.

VII. TRANSPORT PROPERTIES AND NEUTRINO
PROCESSES

In Sec. VIII we shall discuss how the observation of
neutron star properties constrains the phase structure of
dense quark matter. A crucial ingredient in these analy-
ses are the transport properties as well as neutrino emis-
sivities and opacities of different phases of quark matter.

Using the methods introduced in Sec. V it is possible
to perform rigorous calculations of transport properties
of the CFL phase. The results are parameter-free predic-
tions of QCD at asymptotically large density, and rigor-
ous consequences of QCD expressed in terms of a few
phenomenological parameters �f� ,m� , . . . � at lower den-
sity.

In the case of other color superconducting phases we
perform calculations using perturbative QCD or models

of QCD. For many quantities the results depend mainly
on the spectrum of quark modes, and not on details of
the quark-quark interaction.

A. Viscosity and thermal conductivity

Viscosity and thermal conductivity determine the dis-

sipated energy Ė in a fluid with nonzero gradients of the
velocity v and the temperature T,

Ė = −
�

2
� d3x��ivj + �jvi −

2
3

�ij�kvk�2

− &� d3x��ivi�2 −
�

T
� d3x��iT�2. �145�

The transport coefficients �, &, and � are the shear and
bulk viscosity and the thermal conductivity, respectively.
Equation �145� is strictly valid only for nonrelativistic
fluids. In the case of relativistic fluids there is an extra
contribution to the dissipated energy which is propor-
tional to � and the gradient of � �Landau and Lifshitz,
1987�. In terms of its hydrodynamic properties a super-
fluid can be viewed as a mixture of a normal and a su-
perfluid component characterized by separate flow ve-
locities. The shear viscosity is entirely due to the normal
component, but there are contributions to the bulk vis-
cosity which are related to stresses in the superfluid flow
relative to the normal one �Khalatnikov, 1989; Anders-
son and Comer, 2006; Gusakov, 2007�. In the following
we neglect these effects and interpret vi in Eq. �145� as
the normal fluid velocity.

In neutron stars an important contribution to the bulk
viscosity arises from electroweak effects. In a bulk com-
pression mode the density changes periodically and elec-
troweak interactions may not be sufficiently fast to rees-
tablish weak equilibrium. Weak effects occur on the
same time scale as the oscillation period of the neutron
star and the frequency dependence of the bulk viscosity
is important. We define

&�+� = 2�Ė�� V0

�V0
�2 1

+2 , �146�

where + is the oscillation frequency, �¯� is a time aver-
age, and �V0 /V0 is the fractional change in the volume.
The coefficient & in Eq. �145� is the +→0 limit of &�+�. If
a single weak process is responsible for reestablishing
chemical equilibrium, the frequency dependent bulk vis-
cosity can be written in the form

&�+� = C
�

�2 + +2 . �147�

The prefactor C accounts for the dependence of the
equilibrium densities �e.g., the net difference between
the density of strange and nonstrange quarks if the weak
process changes strangeness� on the respective chemical
potentials, and � is the characteristic inverse time scale
of the flavor changing process. Equation �147� shows
that, for a given +, & has a maximum at �=+. At this
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point the time scale of the microscopic process matches
the one of the external oscillation. If more than one
weak process contributes to reequilibration, Eq. �147�
becomes more complicated �Haensel et al., 2000; Alford
and Schmitt, 2007; Sa’d et al., 2007b�.

1. CFL phase

The normal fluid is composed of quasiparticle excita-
tions. In the CFL phase all quark modes are gapped and
the relevant excitations are Goldstone bosons. At very
low temperature, transport properties are dominated by
the massless Goldstone boson ) associated with the
breaking of the U�1�B symmetry. Using the results in
Sec. V.C.2, we compute the mean-free path l) of the )
due to )↔)+) and )+)↔)+) scattering. Small angle
scattering contributions give rise to l)��4 /T5 �Manuel et
al., 2005� and l)�1 km at T=0.1 MeV, while large angle
scattering contributions yield an even longer l)��8 /T9

�Shovkovy and Ellis, 2002�. The thermal conductivity �
due to ) is given by �Shovkovy and Ellis, 2002�

� =
2�2T3

45v2 l), �148�

where l) is the ) mean-free path between large angle
scatterings and v is the ) velocity from Eqs. �83� and
�84�. For temperatures below �1 MeV the thermal con-
ductivity is very large and macroscopic amounts of CFL
matter are expected to be isothermal. The electric con-
ductivity in CFL matter is dominated by thermal elec-
trons and positrons and was estimated by Shovkovy and
Ellis �2003�.

At low temperatures, the shear viscosity of the CFL
phase is dominated by the ) contribution, which was
computed by Manuel et al. �2005� and is given by

� = 1.3 � 10−4�8

T5 . �149�

The bulk viscosity & vanishes in an exactly scale invari-
ant system. For realistic quark masses the dominant
source of scale breaking is the strange quark mass. The
contribution from the process )↔)+) is �Manuel and
Llanes-Estrada, 2007�

& = 0.011
Ms

4

T
. �150�

We show this contribution in Fig. 11. The other contri-
bution to the CFL bulk viscosity presented in the figure
comes from the process K0↔)+) and was studied
for arbitrary + by Alford et al. �2007�. We observe that
at T�1−10 MeV the bulk viscosity of CFL matter is
comparable to that of unpaired quark matter. For
T�1 MeV, & is strongly suppressed. Depending on the
poorly known value for �m
mK0 −�K0 �here assumed to
be positive, a negative value corresponds to kaon con-
densation�, the pure ) contribution given in Eq. �150�
may dominate over the K0↔)+) reaction at low
enough temperatures. However, for T�0.1 MeV the )
mean-free path is on the order of the size of the star, i.e.,

the system is in the collisionless rather than in the hy-
drodynamic regime, and the result ceases to be meaning-
ful.

Thermal conductivity and viscosities for the CFL-K0

phase have not yet been computed. The existence of a
gapless K0 Goldstone mode in this phase will introduce
new contributions. However, since the CFL results for �
and � are already dominated by a gapless mode, namely,
), modifications to these quantities are not expected to
be significant. The modification to & will be more signifi-
cant, since the kaon contribution to this quantity is al-
ready important in the CFL phase.

2. Other phases

For unpaired, ultrarelativistic three-flavor quark mat-
ter, thermal and electric conductivity as well as shear
viscosity have been computed by Heiselberg and Pethick
�1993�. In the low-temperature limit �in particular,
T�mD with the electric screening mass
mD

2 =Nfg
2�2 / �2�2�� they are

� � 0.5
mD

2


s
2 , -el � 0.01

e2�2mD
2/3


s
2T5/3 , �151�

� � 4.4 � 10−3�4mD
2/3


s
2T5/3 . �152�

These quantities have not yet been computed for par-
tially gapped color superconductors such as the 2SC
phase. The presence of ungapped modes, however, sug-
gests that the results only differ by a numerical factor
from the unpaired phase results.

The dominant flavor changing process that contrib-
utes to the bulk viscosity in unpaired quark matter is the
reaction �Madsen, 1992; Anand et al., 2000�
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FIG. 11. �Color online� Bulk viscosities as functions of tem-
perature for an oscillation period .=2� /+=1 ms. CFL phase:
contribution from the process K0↔)+) for different values of
�m
mK0 −�K0 and contribution from )↔)+), see Eq. �150�.
2SC phase and unpaired quark matter: contribution from the
process u+d↔u+s.
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u + d ↔ u + s . �153�

Other relevant processes are the semileptonic processes
u+e↔d+�e and u+e↔s+�e �Dong et al., 2007; Sa’d et
al., 2007b�.

In a partially gapped phase the bulk viscosity is also
dominated by the process �153�. In the 2SC phase of
three-flavor quark matter, the number of d quarks pro-
duced per unit time and volume  due to Eq. �153� can
be computed from the diagrams shown in Fig. 12. The
combinatorical factors in front of the diagrams are ob-
tained upon counting color degrees of freedom: one can
attach one of three colors to each of the two weak ver-
tices, giving rise to nine possibilities. In the 2SC phase
all blue quarks and all strange quarks are unpaired while
all other modes are paired, see Table I. Consequently,
four of the nine possibilities contain three gapped modes
�red or green for both vertices�, two contain two gapped
modes �red or green for one, blue for the other vertex�,
two contain one gapped mode �blue for one, red or
green for the other vertex�, and one contains only un-
paired modes �blue for both vertices�. Therefore at very
low temperature, T��, where the contributions of
gapped quarks are exponentially suppressed,  is to a
good approximation given by �Madsen, 2000�

 2SC = 1
9 unp for T � � , �154�

since only the one reaction containing only unpaired
modes contributes. The rate  unp was computed by Mad-
sen �1993�.

For larger temperatures, the contribution from
gapped modes cannot be neglected. Each diagram yields
a contribution which �for one direction of the process�
schematically reads

 � �
�ei�
�

�pi�
F��e1�1 + e2�2 − e3�3 − e4�4 + ���

� f�e1�1�f�e2�2�f�− e3�3�f�− e4�4� . �155�

Here �i are the quasiparticle energies, ��=�s−�d, and f
is the Fermi distribution function. F is a function of the
momenta pi and the signs ei= ±1. The sum over the signs
ei is important in a paired system: the process u+d→u
+s not only receives contributions from 2→2 processes,
but also from 3→1 and 1→3 reactions involving pairs
created or absorbed by the condensate.

From the net production rate of d quarks  one ob-
tains the characteristic inverse time scale � needed for
the bulk viscosity in Eq. �147�. For small external vol-
ume oscillations �V0 /V0,  is linear in the resulting os-
cillation in chemical potentials,  =���. Then, �
B�,
where B depends only on the equilibrium flavor densi-
ties. The resulting bulk viscosity as a function of tem-
perature for a typical oscillation frequency + / �2��
=1 ms−1 is shown in Fig. 11. A critical temperature of
Tc=30 MeV is assumed. For low temperatures, the time
scale of the nonleptonic process is much smaller than the
oscillation frequency ��+, implying &��. Conse-
quently, from Eq. �154� we conclude &2SC=&unp/9. For
large temperatures, however, we have �%+ and thus &
�1/�. Consequently, the superconducting phase, which
has the slower rate, has the larger bulk viscosity.

The bulk viscosity has also been computed for two-
flavor quark matter with single-flavor pairing �Sa’d et al.,
2007a�. In this case there are also ungapped modes and
thus the result is similar to the one of the 2SC phase.
The main difference is the lower critical temperature for
single-flavor pairing. As a consequence, these phases are
unlikely to exist for temperatures larger than that at
which the bulk viscosity of the unpaired phase is maxi-
mal. Therefore the bulk viscosity cannot be larger than
that of the unpaired phase.

B. Neutrino emissivity and specific heat

Neutrino emissivity determines the rate at which
quark matter can lose heat via neutrino emission. For
the purpose of studying how neutron stars with ages
ranging from tens of seconds to millions of years cool, as
discussed in Sec. VIII.C, it is appropriate to treat the
matter as completely transparent to the neutrinos that it
emits.

1. CFL phase

In CFL quark matter, all quasifermion modes are
gapped and neutrino emissivity is dominated by reac-
tions involving �pseudo-�Goldstone modes such as

�±,K± → e± + �̄e, �156a�

�0 → �e + �̄e, �156b�

) + ) → ) + �e + �̄e. �156c�

These processes were studied by Jaikumar et al. �2002�
and Reddy et al. �2003b�. The decay rates of the massive
mesons �±, K±, and �0 are proportional to their number
densities and are suppressed by the Boltzmann factor
exp�−E /T�, where E is the energy gap of the meson.
Since the pseudo-Goldstone boson energy gaps are on
the order of a few MeV, the emissivities are strongly
suppressed as compared to unpaired quark matter for
temperatures below this scale. Neutrino emission from
processes involving the ) is not exponentially sup-
pressed, but it involves a large power of T,
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FIG. 12. Contributions to the process u+d→u+s in the 2SC
phase. A gapped fermion is marked with the gap � at the
respective line. �We have omitted �small� contributions from
anomalous propagators.�
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�� �
GF

2T15

f 2�4 , �157�

and is therefore numerically very small. Reddy et al. also
studied the neutrino mean-free path l�. For T
�30 MeV the mean-free path is on the order of 1 m, but
for T�1 MeV, l�
10 km �Reddy et al., 2003b�. In the
CFL-K0 phase, l� is almost the same as in the CFL
phase, while the neutrino emissivity is larger �Reddy et
al., 2003a�.

The specific heat of CFL matter is also dominated by
the ), yielding

cV =
2�2

15v3T3. �158�

This is much smaller than the specific heat of any phase
containing unpaired quarks, as we show below.

2. Other phases

The density of thermally excited ungapped fermions is
proportional to �2T while that of ungapped bosons is T3.
This means that in any degenerate system �T��� un-
gapped fermion modes, if they exist, will dominate the
neutrino rates. In unpaired quark matter the neutrino
emissivity is dominated by the direct Urca processes

u + e → d + �e �electron capture� , �159a�

d → u + e + �̄e �� decay� . �159b�

The radiated energy per unit of time and volume is �Iwa-
moto, 1980�

�� �
457
630


sGF
2T6�e�u�d. �160�

Note that this result is proportional to the strong cou-
pling constant 
s. The tree-level processes for massless
quarks are approximately collinear and the weak matrix
element vanishes in the forward direction. A nonzero
emissivity arises from strong interaction corrections,
which depress quark Fermi momenta relative to their
chemical potentials. Because they do not at the same
time depress the electron Fermi momentum, this opens
up phase space for the reactions �159�. A nonzero emis-
sivity can also arise from quark mass effects, or higher
order corrections in T /�. Since strange quark decays are
Cabibbo suppressed and T /� is small the dominant con-
tribution is likely to be that proportional to 
s, namely,
Eq. �160�. Note that we have not included non-Fermi-
liquid corrections of O„
s log�T�… �Schäfer and Schwen-
zer, 2004a�.

In order to determine the rate at which neutron stars
cool we also need to know the specific heat. In unpaired
quark matter

cV =
NcNf

3
�2T , �161�

where we have again neglected terms of O„
s log�T�…
�Ipp et al., 2004� and assumed the flavor chemical poten-

tials to be equal. We see that the specific heat �158� in
the CFL phase, whose excitations are bosonic, is much
smaller than that in unpaired quark matter.

In the case of 2SC matter, the neutrino emissivity at
low temperature is 1 /3 that of unpaired quark matter.
The 2SC emissivity for arbitrary temperatures can be
found in Jaikumar, Roberts, and Sedrakian �2006�. In
addition to the direct Urca process, neutrino pair pro-
duction

q + q → q + q + �� + �̄� �162�

�q is any quark flavor and � denotes neutrino flavor� has
also been studied �Jaikumar and Prakash, 2001�. The
rate of this process is parametrically smaller than the
direct Urca process for small temperatures �exp�−2� /T�
vs exp�−� /T��, but it may play a significant role for tem-
peratures close to the superconducting phase transition
temperature Tc.

For the LOFF phase similar arguments apply. The
presence of ungapped modes renders its specific heat
�Casalbuoni et al., 2003� and its neutrino emissivity due
to direct Urca processes virtually indistinguishable from
the unpaired phase �Anglani et al., 2006�. However, in-
teresting effects of crystalline structures may be ex-
pected for other cooling mechanisms. This is not unlike
effects in the crust of a conventional neutron star, where,
for instance, electron-phonon scattering as well as Bragg
diffraction of electrons lead to neutrino emission via
bremsstrahlung processes, see Yakovlev et al. �2001�, and
references therein.

The direct Urca processes have also been considered
for the gapless CFL phase. A distinctive feature of this
phase is the fact that the energy of one quark mode is
approximately quadratic in momentum. This implies a
strong enhancement in the specific heat, which leads to
unusually slow cooling at the very small temperatures
when photon emission from the surface dominates the
energy loss �Alford, Jotwani, et al., 2005�. However, the
instability of this phase at small temperatures suggests
that this result is most probably of no relevance for as-
trophysics.

Finally, it is interesting to consider neutrino emission
from single-flavor-paired matter. Single-flavor spin-one
pairing involves small gaps, as well as nodes in the gap
parameter, and the emissivity is expected to be larger
than that of matter with spin-zero pairing. The emissiv-
ity of two-flavor quark matter with �uu� and �dd� pairing
was studied for different spin-one order parameters in
Schmitt et al. �2006� and Wang et al. �2006�. The result
can be written as

�� = 457
630
sGF

2T6�e�u�d� 1
3 + 2

3G��/T�� , �163�

where the u-quark and d-quark gaps are assumed to be
identical. All spin-one phases analyzed by Schmitt et al.
�2006� and Wang et al. �2006� and described by Eq. �163�
contain ungapped modes similar to the 2SC phase.
Therefore, the emissivity at low temperatures is simply
1/3 that of unpaired quark matter. �In the case of color-
spin locking, all excitations become gapped if one takes
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into account nonzero quark masses �Aguilera et al.,
2005; Schmitt et al., 2006� and/or more complicated
structures of the order parameter �Marhauser et al.,
2007�.� The contribution to Eq �163� that arises from
paired quarks is described by the nontrivial function
G�� /T�; see Schmitt et al. �2006� for the explicit form
and numerical evaluation of this function for arbitrary
temperatures. In Table III, we present the behavior of
this function for temperatures much smaller than the
gap, T��, for various single-flavor spin-one color super-
conducting phases. Although this contribution is small
compared to the contribution of the ungapped modes,
we use it to show the effect of different �anisotropic� gap
structures on the parametric behavior of the neutrino
emissivity. We see that, while fully gapped modes lead to
an exponential suppression of the emissivity, nodes in
the gap weaken this suppression to a power law. The
power law depends on the behavior of the gap in the
vicinity of the nodes.

The specific heat can be written as

cV = T��u
2 + �d

2�� 1
3 + 2

3K��/T�� . �164�

We show the suppression function K�� /T� for the spe-
cific heat in Table III. We see that an exponential sup-
pression of the emissivity goes along with an exponential
suppression of the specific heat.

VIII. COLOR SUPERCONDUCTIVITY IN NEUTRON
STARS

Neutron stars are the densest material objects in the
Universe, with masses of order that of the Sun �M�� and
radii of order 10 km. Depending on their mass and on
the stiffness of the equation of state of the material
which they are composed, their central density lies be-
tween �3 and �12 times nuclear saturation density
�n0=0.16 nucleons/ fm3� �Lattimer and Prakash, 2001,
2007�. Neutron stars consist of an outer crust made of a
rigid lattice of positive ions embedded within a fluid of
electrons and �in the inner layer of the crust� superfluid
neutrons �Negele and Vautherin, 1973�. Inside this crust,
one finds a fluid “mantle” consisting of neutrons and

protons, both likely superfluid, and electrons. Determin-
ing the composition of neutron star cores, namely, of the
densest matter in the Universe, remains an outstanding
challenge.6 If the nuclear equation of state is stiff
enough, neutron stars are made of neutrons, protons,
and electrons all the way down to their centers. If higher
densities are reached, other phases of baryonic matter
�including either a pion condensate �Bahcall and Wolf,
1965; Migdal, 1971; Sawyer, 1972; Scalapino, 1972; Baym
and Campbell, 1978�, a kaon condensate �Brown, 1995;
Kaplan and Nelson, 1986� or a nonzero density of one or
several hyperons �Glendenning, 1985�� may result. Or,
neutron star cores may be made of color superconduct-
ing quark matter.

The density at which the transition from baryonic
matter to quark matter occurs is not known; this de-
pends on a comparison between the equations of state
for both, which is not well determined for either.
Roughly, we expect this transition to occur when the
density exceeds one nucleon per nucleon volume, a cri-
terion which suggests a transition to quark matter at
densities �3n0. The question we pose in this section is
how astrophysical observation of neutron stars could de-
termine whether they do or do not contain quark matter
within their cores. We have seen throughout this review
that quark matter at potentially accessible densities may
be in the CFL phase, with all quarks paired, or may be
in one of a number of possible phases in which there are
some unpaired quarks, some of which are spatially inho-
mogeneous. If quark matter does exist within neutron
stars, with their temperatures far below the critical tem-
peratures for these paired phases, it will be in some
color superconducting phase. We shall see that these dif-
ferent phases have different observational conse-
quences, making it possible for a combination of differ-
ent types of observational data to cast light upon the
question of which phase of color superconducting quark
matter is favored in the QCD phase diagram, if in fact
neutron stars do feature quark matter cores.

Before turning to the signatures of quark matter in
neutron star cores, we mention here the more radical
possibility that nuclear matter in bulk is metastable at
zero pressure, with the true ground state of strongly in-
teracting matter in the infinite volume limit being color
superconducting three-flavor quark matter. According to
this ‘‘strange quark matter’’ hypothesis �Bodmer, 1971;
Farhi and Jaffe, 1984; Witten, 1984�, ordinary nuclei ei-
ther are stabilized by virtue of their small size or are
metastable with lifetimes vastly exceeding the age of the
Universe. If this hypothesis is correct, some stars that we
think are neutron stars may be strange stars, made en-
tirely of quark matter �Farhi and Jaffe, 1984; Alcock et
al., 1986; Haensel et al., 1986; Alcock and Olinto, 1988�.

6For review articles on neutron stars as laboratories for un-
derstanding dense matter, see Weber �1999�; Prakash et al.
�2001�; Lattimer and Prakash �2004, 2007�; Yakovlev and
Pethick �2004�; Page and Reddy �2006�; and Weber et al.
�2006�.

TABLE III. Suppression function G��� for neutrino emissivity
in direct Urca processes and suppression function K��� for
specific heat for four spin-one color superconducting phases
�abbreviating �
� /T, and everything in the limit �→��.
While fully gapped modes yield exponential suppression,
nodes in the gap yield power-law suppressions. The gap func-
tions in the polar and A phases differ in the angular direction
in the vicinity of the point nodes. A linear behavior leads to a
stronger suppression than a quadratic behavior.

Phase Gap structure G���� K����

CSL Isotropic �no nodes� � exp�−�2�� �5/2 exp�−�2��
Planar Anisotropic �no nodes� �1/2 exp�−�� �2 exp�−��
Polar Point nodes �linear� �−2 �−2

A Point nodes �quadratic� �−1 �−1
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Strange stars may have a thin crust �of order 100 m
thick� of positive ions suspended above the quark matter
surface by an electric field �Alcock et al., 1986�, or they
may have a comparably thin crust of positive ions em-
bedded within the �negatively charged� outer layer of
the quark matter itself �Alford et al., 2006; Jaikumar,
Reddy, and Steiner, 2006�. They cannot, however, have a
conventional, km thick, crust; and, there are many indi-
cations that neutron stars in fact do have conventional
crusts. For example, the rich phenomenology of x-ray
bursts is understood well only within this setting. More
recent evidence comes from the analysis of the quasi-
periodic oscillations with frequencies in the tens of Hz
detected in the aftermath of magnetar superbursts �Is-
rael et al., 2005; Strohmayer and Watts, 2005, 2006; Watts
and Strohmayer, 2006, 2007�, which can be understood
as seismic oscillations of a conventional neutron star
crust �Strohmayer and Watts, 2005, 2006; Watts and
Strohmayer, 2007� whereas the thin crusts of a strange
star would oscillate at much higher frequencies �Watts
and Reddy, 2007�. Even if most compact stars are neu-
tron stars not strange stars, it remains a logical possibil-
ity that some strange stars exist, meaning that all ordi-
nary neutron stars are metastable. Although possible
this scenario is unlikely, given that merger events in
which strange stars in an inspiralling binary are tidally
disrupted would litter the Universe with small chunks of
quark matter �“strangelets”� and one must then under-
stand why these have not catalyzed the conversion of all
neutron stars to strange stars �Caldwell and Friedman,
1991�. We devote the remainder of this section to the
more challenging task of using observational data to
constrain the more conservative scenario that quark
matter exists only above some nonzero transition pres-
sure, namely, within the cores of conventional neutron
stars.

A. Mass-radius relation

It has long been a central goal of neutron star astro-
physics to measure the masses M and radii R of many
neutron stars to a reasonable accuracy. Mapping out the
curve in the mass-radius plane along which neutron stars
are found would yield a strong constraint on the equa-
tion of state of dense matter. As this program represents
such a large fraction of the effort to use observations of
neutron stars to constrain dense matter physics, we be-
gin by considering its implications for the presence of
quark matter within neutron star cores.

The larger the maximum mass that can be attained by
a neutron star, the stiffer the equation of state of dense
matter, and if stars with masses close to 2M� are found
then the existence of phases with a soft equation of
state, such as baryonic matter with kaon or pion conden-
sation, can be ruled out. However, although the quark
matter equation of state is not known from first prin-
ciples, it may easily be as stiff as the stiffer equations of
state posited for ordinary nuclear matter, and neutron
stars with quark matter cores can in fact reach masses of
order 2M� �Fraga et al., 2001; Baldo et al., 2003; Rüster

and Rischke, 2004; Alford, Braby, et al., 2005; Blaschke
et al., 2007�.

The equation of state for CFL quark matter can be
parametrized to a good approximation as �Alford,
Braby, et al., 2005�

� = − P = −
3

4�2 �1 − c��4 +
3

4�2 �Ms
2 − 4�2��2 + Beff.

�165�

If c were zero, the �4 term would be that for noninter-
acting quarks; c parametrizes the leading effect of inter-
actions, modifying the relation between pF and �. At
high densities, c=2
s /� to leading order in the strong
coupling constant �Baym and Chin, 1976; Freedman and
McLerran, 1977�. Analysis of higher order corrections
suggests that c�0.3 at accessible densities �Fraga et al.,
2001�. Beff can be thought of as parametrizing our lack of
knowledge of � at which the nuclear matter to quark
matter transition occurs. The Ms

2�2 term is the leading
effect of the strange quark mass, and is common to all
quark matter phases. The pressure of a color supercon-
ducting phase with less pairing than in the CFL phase
would have a smaller coefficient of the �2�2 term, and
would also differ at order Ms

4, here lumped into a change
in Beff. Because pairing is a Fermi surface phenomenon,
it only modifies the �2 term, leaving the larger �4 term
untouched. However, it can nevertheless be important
because at accessible densities the �4 term is largely can-
celled by Beff, enhancing the importance of the �2 term
�Lugones and Horvath, 2002; Alford and Reddy, 2003�.
Remarkably, and perhaps coincidentally, if we make the
�reasonable� parameter choices c=0.3, Ms=275 MeV,
and �=100 MeV and choose Beff such that nuclear mat-
ter gives way to CFL quark matter at the relatively low
density 1.5 n0, then over the entire range of higher den-
sities relevant to neutron stars the quark matter equa-
tion of state �165� is almost indistinguishable from the
nuclear equation of state due to Akmal, Pandharipande,
and Ravenhall �APR� �Akmal et al., 1998� that is one of
the stiffest nuclear equations of state in the compendium
by Lattimer and Prakash �2004, 2007�. Neutron stars
made entirely of nuclear matter with the APR equation
of state and neutron stars with a quark matter core with
the equation of state �165� with the parameters just de-
scribed fall along almost indistinguishable curves on a
mass versus radius plot, with the most significant differ-
ence being that the APR equation of state admits neu-
tron stars with maximum mass 2.3M�, whereas the in-
troduction of a quark matter core reduces the maximum
mass slightly, to 2.0M� �Alford, Braby, et al., 2005�.

The similarity between a representative quark matter
equation of state and a representative nuclear equation
of state makes clear that it will be very hard to use a
future determination of the equation of state to discern
the presence of quark matter. However, although the
above numbers should be taken as indicative rather than
definitive, they do suggest that the existence of a neu-
tron star whose mass was reliably determined to be
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2M� would make it hard to envision such a star �and
hence any lighter stars� having a quark matter core of
any appreciable size. Now that the mass of PSR J0751
+1807 has been revised downward from �2.1±0.2�M�

�Nice et al., 2005� to �1.26−0.12
+0.14�M� �Nice and Stairs,

2007�, the heaviest known neutron star orbited by a
white dwarf is PSR J0621+1002, whose mass is
�1.69−0.16

+0.11�M� �Splaver et al., 2002; Nice and Stairs, 2007�.
Also, one of the two pulsars Ter5I and Ter5J �in a globu-
lar cluster� must have a mass that is 
1.68M� at the
95% confidence level �Ransom et al., 2005�, and the
mass of the x-ray pulsar Vela X-1 is above 1.6M� �Barziv
et al., 2001�.

Given our lack of knowledge of the equations of state
for nuclear and quark matter, measuring neutron star
masses and radii alone do not allow us to reach our
goals.

B. Signatures of the compactness of neutron stars

If we could detect gravity waves from neutron stars
spiraling into black holes in binary systems, the gravita-
tional wave form during the last few orbits, when the
neutron star is being tidally disrupted, will encode infor-
mation about the density profile of the neutron star. For
example, upon assuming a conventional density profile,
the gravity wave form encodes information about the
ratio M /R �Faber et al., 2002�, essentially via encoding
the value of the orbital frequency at which tidal defor-
mation becomes significant. This suggests a scenario in
which the presence of an interface separating a denser
quark core from a less-dense nuclear mantle could mani-
fest itself via the existence of two orbital frequency
scales in the wave form, the first being that at which the
outer layers are deformed while the denser quark core
remains spherical and the second being the time at
which even the quark core is disrupted �Alford, Rajago-
pal, et al., 2001�. This idea must be tested in numerical
relativity calculations, and it may turn out to be better
formulated in some other way. For example, perhaps the
gravity wave form can be used to constrain the first few
moments of the density profile, and this information can
then be used to contrast neutron stars with standard
density profiles characterized by a single length scale R
with those which are anomalously compact because they
have a “step” in their density profile. Whatever the best
formulation turns out to be, it seems clear that if LIGO
sees events in which the tidal disruption of a neutron
star occurs within the LIGO bandwidth, the gravity
wave data will constrain the “compactness” of the neu-
tron star, providing information about the density profile
that is complementary to that obtained from a mass-
radius relation.

If there is a step in the density profile at an interface,
LIGO gravity waves may provide evidence for its pres-
ence; but, should a density step be expected if color su-
perconducting quark matter is found in the core of a
neutron star? There are two qualitatively distinct possi-
bilities for the density profile, depending on the surface

tension of the quark matter-nuclear matter interface -.
If - is large enough, there will be a stable, sharp, inter-
face between two phases having different densities �but
the same chemical potential�. If - is small enough, it
becomes favorable instead to form a macroscopic vol-
ume filled with a net-neutral mixture of droplets of
negatively charged quark matter and positively charged
nuclear matter, see Sec. III.H, which allows a continuous
density profile. The distinction between these two sce-
narios has been analyzed quantitatively for the case of a
first order phase transition from nuclear matter to CFL
quark matter �Alford, Rajagopal, et al., 2001�. This is the
simplest possible phase diagram of QCD, with a single
transition between the phases known to exist at nuclear
density and at asymptotically high density. We have seen
earlier that this simple QCD phase diagram is obtained
if �CFL is large enough, allowing CFL pairing to fend off
stresses that seek to split Fermi surfaces, all the way
down in density until the nuclear matter takes over from
quark matter. A sharp interface between the �electrically
insulating� CFL phase and �electrically conducting�
nuclear matter features charged boundary layers on ei-
ther side of the interface, which play an important role
in determining the - above which this step in the density
profile is stable �Alford, Rajagopal, et al., 2001�. The
critical - is about 40 MeV/fm3, lower than dimensional
analysis would indicate should be expected, meaning
that the sharp interface with a density step is more likely
than a mixture of charged components. The increase in
the density at the interface can easily be by a factor of 2.
The critical - above which a sharp interface is favored
has not been evaluated for the case of a first order phase
transition between nuclear matter and color supercon-
ducting phases other than the CFL phase.

It is also possible that the long term analysis of the
binary double pulsar PSR J0737-3039A �Burgay et al.,
2003; Lyne et al., 2004� may yield a measurement of the
moment of inertia of this 1.34 solar mass neutron star
�Kramer et al., 2004, 2006; Morrison et al., 2004; Lat-
timer and Schutz, 2005�. This could be another route to
constraining the compactness of a neutron star, and per-
haps gaining evidence for or against a step in the density
profile of this star.

C. Cooling

The avenues of investigation described so far may
constrain the possible existence of quark matter within
neutron star cores, but they are not sensitive to the dif-
ferences among different color superconducting phases
of quark matter. We turn now to the first of three obser-
vational signatures that have the potential to differenti-
ate between CFL quark matter and other color super-
conducting phases.

Within less than 1 min of its birth in a supernova, a
neutron star cools below about 1 MeV and becomes
transparent to neutrinos. For the next million years or so
it cools mainly via neutrino emission from its interior.
Photon emission from the surface becomes dominant
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only later than that. This means that information about
properties of the interior, in particular its neutrino emis-
sivity and heat capacity, can be inferred from measure-
ments of the temperature and age of neutron stars. Be-
cause all forms of dense matter are good heat
conductors �Shovkovy and Ellis, 2002�, neutron star in-
teriors are isothermal and the rate at which they cool is
determined by the volume integrals over the entire inte-
rior of the local emissivity and the local specific heat.
This means that the cooling tends to be dominated by
the properties of whichever phase has the highest neu-
trino emissivity and whichever phase has the highest
specific heat.

Different forms of dense matter fall into three catego-
ries, ordered by decreasing neutrino emissivity. The first
category includes any phase of matter that can emit neu-
trinos via direct Urca processes, yielding an emissivity
���T6. Examples include unpaired quark matter, phases
of quark matter with some unpaired quarks including
the crystalline phases, and the phases with single flavor
pairing in Table III, baryonic matter containing hyper-
ons, nucleonic matter augmented by either a pion or a
kaon condensate, and even ordinary nuclear matter at
sufficiently high densities that the proton fraction ex-
ceeds about 0.1. For the specific case of unpaired quark
matter, the emissivity is given by Eq. �160� �Iwamoto,
1980, 1982�, which can be written as

�� � �4 � 1025 ergs cm−3 s−1�� 
s

0.5
�� Ms

2/�

100 MeV
�

�� �

500 MeV
�2� T

109 K
�6

, �166�

where we have taken �e=Ms
2 /4�, appropriate for neu-

tral unpaired quark matter. �Note that 
s�0.5 is compa-
rable to the value c�0.3 used in Sec. VIII.A, according
to the lowest order relation c=2
s /�. The 
s /0.5 factor
in Eq. �166� could be replaced by c /0.3.� The emissivity
of other phases of quark matter in which only some
quarks are unpaired, including the crystalline phases, is
reduced relative to Eq. �166�, but only by factors of or-
der unity.

Ordinary nuclear matter at densities not too far above
n0, where the proton fraction is less than 0.1, falls into a
second category in which there is no phase space for
direct Urca processes and neutrino emission occurs only
via modified Urca processes like n+X→p+X+e+� with
X some spectator nucleon, giving the much lower emis-
sivity

��
nm = �1.2 � 1020 ergs cm−3 s−1�� n

n0
�2/3� T

109 K
�8

.

�167�

Neutron stars whose interiors emit neutrinos at this rate,
perhaps modified by effects of nucleon superfluidity,
cool following a family of standard cooling curves �see
Yakovlev et al. �2001, 2005�, Page et al. �2004�, and ref-
erences therein�, taking 105 to 106 years to cool below
108 K.

CFL quark matter constitutes a third category. As de-
scribed in Sec. VII, it is unique among all phases of
dense matter in having an emissivity �T15 that is many
orders of magnitude smaller than Eq. �167�. Further-
more, whereas all other phases of dense matter have a
specific heat �T, in the CFL phase the specific heat is
controlled by bosonic excitations making it �T3. This
means that if a neutron star has a CFL core, the total
neutrino emissivity and the total heat capacity of the star
are both utterly dominated by the contributions of the
outer layers, whether these are made of nuclear matter
or of some phase that admits direct Urca reactions. The
CFL core holds little heat, and emits few neutrinos, but
is a good conductor and so stays at the same tempera-
ture as the rest of the star. The rest of the star controls
how the star cools.

Finally, the single-flavor color superconducting phases
are interesting because they represent a potential tran-
sition from the first to third categories �Aguilera et al.,
2005; Grigorian et al., 2005�: their critical temperatures
are so low that if some quarks can only pair in spin-one
channels, they will not pair until after the star has cooled
through an initial epoch of direct Urca emission; and in
certain cases �Aguilera et al., 2005; Schmitt et al., 2006;
Marhauser et al., 2007� all quarks can be gapped below
the critical temperature for color-spin locked pairing,
meaning that these phases ultimately become like CFL
quark matter, playing no role in the cooling of the star
which at late times will be controlled by the modified
Urca processes in the nuclear matter mantle.

We now describe a possible future path to the discov-
ery of CFL quark matter cores within neutron stars.
Suppose that LIGO detects gravitational waves from the
tidal disruption of a neutron star with some known mass
spiraling into a black hole and, as discussed in Sec.
VIII.B, suppose that evidence is found that the density
profile of the neutron star has a denser core within a less
dense mantle, consistent with the existence of a step in
the density profile. Suppose furthermore that it was un-
derstood by then that neutron stars with that mass cool
following one of the family of standard cooling curves,
meaning that there can be no component of their inte-
rior within which direct Urca processes are allowed at
any time. This combination of observations would rule
out the possibility that the dense core, inside the density
step, contained any of the color superconducting phases
that we have discussed except CFL.

The scenario above may be unlikely because there is
growing evidence that although the cooling of many
neutron stars is broadly consistent with the standard
cooling curves, some fraction of neutron stars cool much
more quickly. Examples of neutron stars that are too
cold for their age include those in the supernova rem-
nants 3C58 and CTA1 �Page et al., 2004; Page and
Reddy, 2006�. A second, less direct, piece of evidence is
provided by an unsuccessful search for the x-ray emis-
sion from a cooling neutron star in 15 other supernova
remnants �Kaplan et al., 2004, 2006; Kaplan, 2007�. Al-
though some of these supernovae may have been Type
IA supernovae which do not produce neutron stars, and
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although some may have produced black holes, it is
likely that many of these supernovae remnants do con-
tain neutron stars. Their nonobservation results in an
upper limit on their temperatures, and in all cases this
upper limit falls below the standard cooling curves. A
third line of evidence comes from neutron stars that un-
dergo transient bouts of accretion �Brown et al., 1998�.
X-ray observations of one of these, SAX J1808.4-3658,
during its quiescent phase yield an upper limit on the
thermal luminosity of the neutron star �Heinke et al.,
2007�. The mean accretion rate averaged over many
transient accretion episodes is known, meaning that the
average accretion heating of the star is known. The fact
that the thermal luminosity is as low as it is means that
the accretion heating of the star must be balanced by
cooling from neutrino emission at a rate that far exceeds
Eq. �167�. The emissivity for unpaired quark matter
�160� is consistent with the data, as are the direct Urca
rates for sufficiently dense nuclear matter and for hy-
peron matter. Pion condensation or kaon condensation
yield emissivities that are proportional to T6 but with
prefactors that are about two orders of magnitude
smaller than that in Eq. �160�, and are ruled out as ex-
planations for the ability of SAX J1808.4-3658 to keep
cool �Heinke et al., 2007�. Similar conclusions can also
be inferred from the �even lower� limit on the quiescent
luminosity of the soft x-ray transient 1H 1905+000
�Jonker et al., 2006, 2007; Chakrabarty, 2007�, although
in this instance the time-averaged accretion rate is not as
well known.

By now it seems clear that some neutron stars cool
much faster than others. It is then reasonable to specu-
late that lighter neutron stars cool following the stan-
dard cooling curve and are composed of nuclear matter
throughout whereas, based on the three lines of evi-
dence above, heavier neutron stars cool faster because
they contain some form of dense matter that can radiate
neutrinos via the direct Urca process. This could be
quark matter in one of the non-CFL color superconduct-
ing phases, but there are other, baryonic, possibilities. If
this speculation is correct, then if neutron stars contain
CFL cores they must be “inner cores,” within an outer
core made of whatever is responsible for the rapid neu-
trino emission.

D. r modes limiting pulsar spins

A rapidly spinning neutron star will quickly slow
down if it is unstable with respect to bulk flows known as
Rossby modes, or r modes, whose restoring force is due
to the Coriolis effect and which transfer the star’s angu-
lar momentum into gravitational radiation �Andersson,
1998; Friedman and Morsink, 1998; Andersson, Kokko-
tas, and Schutz, 1999; Andersson, Kokkotas, and Ster-
gioulas, 1999; Andersson and Comer, 2001�. For any
given interior composition and temperature, above some
critical spin frequency there is an instability which leads
to an exponentially growing r mode. This means that as
a neutron star is spun up by accretion, its spin will be
limited by a value slightly above this critical frequency,

at which the accretion torque is balanced by gravita-
tional radiation from the r mode flows �Bildsten, 1998;
Lindblom et al., 1998; Owen et al., 1998; Andersson,
Kokkotas, and Schutz, 1999; Andersson, Kokkotas, and
Stergioulas, 1999�. From a microphysical point of view,
the r-mode instability is limited by viscous damping: the
greater the damping, the higher the critical spin above
which r modes become unstable. The critical frequency
is controlled by the shear viscosity in some regimes of
temperature �typically lower� and by the bulk viscosity
in others �typically higher�. This means that the exis-
tence of pulsars with a given spin, as well as any obser-
vational evidence for an upper limit on pulsar spins, can
yield constraints on the viscosities of neutron star inte-
riors.

There is observational evidence for a physical limit on
pulsar spins. The fastest known pulsar is a recently dis-
covered radio pulsar spinning at 716 Hz �Hessels et al.,
2006�. However, it is not easy to draw inferences from
the distributions of the spins of the many known radio
pulsars as to whether 716 Hz is close to some physical
limit on the spin frequency because there are significant
observational biases that make it harder to find faster
radio pulsars. The most rapid pulsars are “recycled,”
meaning that they were spun up during an episode of
accretion from a binary companion. During such accre-
tion, a neutron star may be visible as an x-ray pulsar.
The spin frequencies of the 13 known millisecond x-ray
pulsars lie between 270 and 619 Hz. What makes this
significant is first that the episodes of accretion have
long enough durations that they could easily spin a neu-
tron star up beyond 1000 Hz, and second that there are
no selection biases that preclude the discovery of x-ray
pulsars with frequencies as large as 2000 Hz �Chakra-
barty et al., 2003; Chakrabarty, 2004�. Analysis of the
observed distribution of x-ray pulsar spin frequencies
leads to two conclusions: first, the distribution is consis-
tent with being uniform;7 and, second, there is some
physical effect that sets a limit on the allowed spin of a
pulsar which �with 95% confidence� is at 730 Hz or
lower �Chakrabarty et al., 2003; Chakrabarty, 2004�. It is
unlikely that a spin limit in this vicinity can be attributed
to centrifugal breakup of the spinning neutron star: un-

7These data thus rule out a proposal for how small quark
matter cores could have been detected �Glendenning and We-
ber, 2001�. If slowly rotating neutron stars just barely reach
quark matter densities in their center, then rapidly spinning
oblate neutron stars, which have slightly lower central density,
will not contain quark matter. This “spinning out” of a quark
matter core could be detected either by anomalies in braking
indices of radio pulsars that are slowing down �Glendenning et
al., 1997� or by anomalous population statistics of x-ray pulsars
that are being spun up by accretion �Glendenning and Weber,
2001�. Data on x-ray pulsars show no sign of such an effect
�Chakrabarty et al., 2003; Chakrabarty, 2004� indicating that, if
quark matter is present, spinning the star and making it oblate
does not get rid of it. If neutron stars do have quark matter
cores, therefore, the quark matter must occupy a reasonable
fraction of the star.
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less neutron star radii are larger than anticipated, this
‘‘mass shedding limit’’ is significantly higher, above
1 kHz. On the other hand, if the observed limit on pul-
sar spin frequencies is attributed to the onset of the
r-mode instability, the resulting constraint on the viscosi-
ties of neutron star interiors is broadly consistent with
the viscosities of nuclear matter, although this consis-
tency is somewhat loose given the uncertainties in neu-
tron star densities and in their temperatures while they
are being spun up �Andersson, Kokkotas, and Stergiou-
las, 1999; Levin and Ushomirsky, 2001�.

The physics of the r-mode instability definitively rules
out the possibility that accreting x-ray binary pulsars are
strange stars that are composed of CFL quark matter
throughout �Madsen, 2000�. From the results of Sec. VII,
we conclude that CFL quark matter has negligible shear
damping, and significantly smaller bulk viscosity than
nuclear matter. �See Sawyer �1989� and Haensel et al.
�2000, 2001�, for calculations of bulk viscosity in nuclear
matter, Haensel et al. �2002� and Lindblom and Owen
�2002� for baryonic matter containing hyperons, and
Chatterjee and Bandyopadhyay �2007� for baryonic mat-
ter containing a kaon condensate.� A CFL strange star
would therefore have a critical frequency at which the
r-mode instability sets in measured in Hz or fractions of
Hz, in gross disagreement with the data on spin frequen-
cies of both x-ray and radio pulsars.8

It is an interesting question, at present unresolved,
whether the presence of a CFL quark matter core within
an ordinary neutron star introduces unstable r modes at
low spin frequencies. If there is a density step at the
nuclear-CFL interface, there may be oscillation modes
localized near that interface. The question is whether
there are r modes that are sufficiently well localized on
the CFL side of the interface that they are undamped, or
whether the tails of the mode wave functions that extend
into the nuclear matter side of the interface result in
enough damping to prevent the modes from becoming
unstable. Nobody has solved for the r-mode wave func-
tions for a rotating star whose density profile has a step
at an interface, with viscous dissipation occurring on one
side of the interface only.9 If it were to turn out that a
star with a CFL core is even close to as unstable with
respect to r modes as a star that is made entirely of CFL
matter, the existence of pulsars spinning with hundreds
of Hz frequencies would immediately rule out the pos-
sibility that these neutron stars have CFL cores.

E. Supernova neutrinos

The only time when a neutron star emits enough neu-
trinos to be detectable on Earth as a neutrino source is
during the first few seconds after the supernova explo-

sion. The time-of-arrival distribution of supernova neu-
trinos could teach us about possible phase transitions to
CFL quark matter �Carter and Reddy, 2000; Jaikumar et
al., 2002; Reddy et al., 2003a, 2003b; Kundu and Reddy,
2004�. All phases of quark matter and nuclear matter
except CFL have short enough mean-free paths that the
neutrinos detected from a supernova are emitted from a
surface of last scattering called the neutrinosphere, in-
side of which they were diffusing. This surface of last
scattering moves inward to higher densities during the
first seconds after the supernova, as the protoneutron
star cools. Suppose that a volume in the core of the pro-
toneutron star has made a transition into the CFL phase,
in which neutrinos scatter only off Goldstone bosons
which are less numerous �number density �T3 rather
than ��2T for ungapped quark excitations�. As this core
cools, the neutrino mean-free path within a CFL core
becomes longer than in any phase of matter in which
there are unpaired quarks �or nucleons� off which neu-
trinos can scatter. The last supernova neutrinos to arrive
could carry information about conditions when the neu-
trinosphere reaches the CFL core. Perhaps there may
even be enhanced neutrino luminosity at the end of an
otherwise dropping time-of-arrival distribution, as all
those neutrinos that were previously trapped within the
transparent core fly out unimpeded �Carter and Reddy,
2000�. Determining whether this proposed signature can
arise requires implementing the transition to a CFL
core, with its long neutrino mean-free paths, within a
full-fledged simulation of neutrino transport during a su-
pernova.

F. Rigid quark matter and pulsar glitches

The existence of a rigid crystalline color supercon-
ducting core within neutron stars may have a variety of
observable consequences. For example, if some agency
�like magnetic fields not aligned with the rotation axis�
could maintain the rigid core in a shape that has a non-
zero quadrupole moment, gravity waves would be emit-
ted. The LIGO nondetection of such gravity waves from
nearby neutron stars �Abbott et al., 2007� already limits
the possibility that they have rigid cores that are de-
formed to the maximum extent allowed by the shear
modulus �168�, upon assuming a range of possible break-
ing strains, and this constraint will tighten as LIGO con-
tinues to run �Haskell et al., 2007; Lin, 2007�. �The analo-
gous constraint on strange stars that are rigid
throughout was obtained by Owen �2005�.� Perhaps the
most exciting implication of a rigid core, however, is the
possibility that �some� pulsar “glitches” could originate
deep within a neutron star, in its quark matter core.

A spinning neutron star observed as a pulsar gradu-
ally spins down as it loses rotational energy to electro-
magnetic radiation; but, every once in a while the angu-
lar velocity at the crust of the star is observed to increase
suddenly in a dramatic event called a glitch. The stan-
dard explanation �Anderson and Itoh, 1975; Alpar, 1977;
Alpar, Anderson, et al., 1984; Alpar, Langer, and Sauls,
1984; Pines and Alpar, 1985; Epstein and Baym, 1992;

8Strange stars made of unpaired quark matter or of 2SC
quark matter can be consistent with the data �Madsen, 2000�.

9Certain other oscillation modes �‘‘f modes’’ and ‘‘g modes’’�
of a nonrotating neutron star whose density profile includes a
density step have been computed �Sotani et al., 2002�.
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Link et al., 1993; Alpar et al., 1996; Link and Epstein,
1996; Jones, 1997� requires the presence of a superfluid
in some region of the star which also features a rigid
array of spatial inhomogeneities which can pin the vor-
tices in the rotating superfluid. In the standard explana-
tion of pulsar glitches, these conditions are met in the
inner crust of a neutron star which features a neutron
superfluid coexisting with a rigid array of positively
charged nuclei that may serve as vortex pinning sites.
We shall see below that a rigid core made of crystalline
color superconducting quark matter also meets the basic
requirements.

The viability of the standard scenario for the origin of
pulsar glitches in neutron star crusts has recently been
questioned �Link, 2007a, 2007b�. Explaining the issue re-
quires understanding how the basic requirements come
into play in the generation of a glitch. As a spinning
pulsar slowly loses angular momentum over years, since
the angular momentum of any superfluid component of
the star is proportional to the density of vortices the
vortices “want” to move apart. However, if within the
inner crust the vortices are pinned to a rigid structure,
these vortices do not move and after a time this super-
fluid component of the star is spinning faster than the
rest of the star. When the “tension” built up in the array
of pinned vortices reaches a critical value, there is a sud-
den “avalanche” in which vortices unpin, move out-
wards reducing the angular momentum of the super-
fluid, and then repin. As this superfluid suddenly loses
angular momentum, the rest of the star, including in par-
ticular the surface whose angular velocity is observed,
speeds up—a glitch. We see that this scenario requires
superfluidity coexisting with a rigid structure to which
vortices can pin that does not easily deform when vorti-
ces pinned to it are under tension. Recently Link has
questioned whether this scenario is viable because once
neutron vortices are moving through the inner crust, as
must happen during a glitch, they are so resistant to
bending that they may never repin �Link, 2007a, 2007b�.
Link concluded that we do not have an understanding of
any dynamics that could lead to the repinning of moving
vortices, and hence that we do not currently understand
glitches as a crustal phenomenon.

We have seen in Sec. VI.B that if neutron star cores
are made of quark matter but �CFL is not large enough
for this quark matter to be in the CFL phase, then all of
the quark matter core—and hence a significant fraction
of the moment of inertia of the star—may be in one of
the crystalline phases described in Sec. VI.B. By virtue
of being simultaneously superfluids and rigid solids, the
crystalline phases of quark matter provide all the neces-
sary conditions to be the locus in which �some� pulsar
glitches originate. Their shear moduli �144�, namely,

� = 3.96 � 1033 erg/cm3� �

10 MeV
�2� �

400 MeV
�2

�168�

with � the gap parameter in the crystalline phase as in
Fig. 10, make this form of quark matter 20–1000 times

more rigid than the crust of a neutron star �Strohmayer
et al., 1991; Mannarelli et al., 2007�, and hence more than
rigid enough for glitches to originate within them. The
crystalline phases are at the same time superfluid, and it
is reasonable to expect that the superfluid vortices that
will result when a neutron star with such a core rotates
will have lower free energy if they are centered along
the intersections of the nodal planes of the underlying
crystal structure, i.e., along lines along which the con-
densate already vanishes even in the absence of a rota-
tional vortex. A crude estimate of the pinning force on
vortices within crystalline color superconducting quark
matter indicates that it is sufficient �Mannarelli et al.,
2007�. So, the basic requirements for superfluid vortices
pinning to a rigid structure are all present. The central
questions that remain to be addressed are the explicit
construction of vortices in the crystalline phase and the
calculation of their pinning force, as well as the calcula-
tion of the time scale over which sudden changes in the
angular momentum of the core are communicated to the
�observed� surface, presumably either via the common
electron fluid or via magnetic stresses.

Much theoretical work remains before the hypothesis
that pulsar glitches originate within a crystalline color
superconducting neutron star core is developed fully
enough to allow it to confront data on the magnitudes,
relaxation time scales, and repeat rates that characterize
glitches. Nevertheless, this hypothesis offers one imme-
diate advantage over the conventional scenario that re-
lied on vortex pinning in the neutron star crust. It is
impossible for a neutron star anywhere within which ro-
tational vortices are pinned to precess on approximate
year time scales �Sedrakian et al., 1999; Link, 2006,
2007c�, and yet there is now evidence that several pul-
sars are precessing �Stairs et al., 2000; Shabanova et al.,
2001; Chukwude et al., 2003�. Since all neutron stars
have crusts, the precession of any pulsar is inconsistent
with the pinning of vortices within the crust, a require-
ment in the standard explanation of glitches. On the
other hand, perhaps not all neutron stars have crystal-
line quark matter cores—for example, perhaps the light-
est neutron stars have nuclear matter cores. Then, if vor-
tices are never pinned in the crust but are pinned within
a crystalline quark matter core, those neutron stars that
do have a crystalline quark matter core can glitch but
cannot precess while those that do not can precess but
cannot glitch.
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