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Conifold geometries have recieved much attention in string theory and string-inspired cosmology
recently, in particular the Klebanov-Strassler background that is known as the “warped throat.” This
paper provides a pedagogical explanation for the singularity resolution in this geometry and
emphasizes its connection to geometric transitions. The first part focuses on the gauge theory dual to
the Klebanov-Strassler background, including the T-dual intersecting branes description. Then, a
connection to the Gopakumar-Vafa conjecture for open-closed string duality is presented and a series
of papers verifying this model on the supergravity level is summarized. An appendix provides
extensive background material about conifold geometries. Special attention is given to their complex
structures and the supersymmetry conditions on the background flux in constructions with fractional
D3-branes on the singular (Klebanov-Tseytlin) and resolved (Pando Zayas—Tseytlin) conifolds are
reevaluated. In agreement with earlier results, it is shown that only the singular solution allows a
supersymmetric flux. However, the importance of using the correct complex structure to reach this

conclusion is emphasized.
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(Becker et al., 2004, 2006; Alexander et al., 2005; Das-
gupta et al., 2006; Knauf, 2007). This paper gives a com-
prehensive overview of the different ideas underlying
geometric transitions and reviews the lengthy supergrav-
ity calculations of the latter references.
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The model of Klebanov and Strassler is based on a
series of papers (Gubser and Klebanov, 1998; Klebanov
and Witten, 1998; Klebanov and Nekrasov, 2000; Kle-
banov and Tseytlin, 2000) generalizing the AdS/CFT cor-
respondence (Gubser et al., 1998; Maldacena, 1998; Wit-
ten, 1998). Instead of the N=4 superconformal field
theory one obtains from considering AdSs X S, theories
with less supersymmetry can be found by taking AdSs
X M?, where M? is some five-dimensional manifold. One
can break conformal invariance by introducing frac-
tional D3-branes instead of (only) D3-branes. These are
objects that wrap compact cycles in the internal mani-
fold and therefore appear effectively three-dimensional.
Once conformal invariance is broken, the gauge theory
exhibits a running coupling. The coupling constant is re-
lated to the NS-NS (Neveu-Schwarz) B field in the string
theory dual. One approaches the far IR limit of the
gauge theory as the radial coordinate in the supergravity
dual approaches zero. The manifold M5 considered in
this model is the base of a conifold, so there is a singu-
larity at r=0. This does not mean that the far IR limit of
the gauge theory is not well defined. On the contrary,
knowledge of the strong-coupling behavior of the dual
super-Yang-Mills (SYM) theory led Klebanov and
Strassler to the following conclusion: since SYM exhibits
gaugino condensation and chiral symmetry breaking
[which breaks the U(1) symmetry down to 7Z,] in the far
IR, the dual string theory background has to be modi-
fied for r—0 in order to reflect this symmetry property.
The singularity is smoothed out, giving a manifold which
looks like the conifold at large radial distances, but ap-
proaches a finite three-sphere at the tip of the cone. This
manifold is called the “deformed conifold” and has pre-
cisely the required symmetry property, i.e., it is only in-
variant under Z,, where the (singular) conifold was in-
variant under a full U(1). We summarize this in Fig. 1.

Gopakumar and Vafa (1999) also considered conifold
geometries, but they were interested in topological
string amplitudes. They showed that the open A model
on the deformed conifold (with a blown-up S°) agrees
with the closed A model on the resolved conifold (with a
blown up $?) on the level of topological string partition
functions. One has to identify the correct parameters
from each theory: roughly speaking, the size of the
three-cycle in the deformed geometry (its complex struc-
ture modulus) is identified with the size of the two-cycle
in the resolved geometry (its Kdhler modulus). Via mir-
ror symmetry, the same can be said for the B model, but
here the roles of deformed and resolved conifold are
exchanged. The connection to the KS model becomes
apparent if one embeds this B model into IIB super-
string theory, as done by Vafa (2001). Before the geo-
metric transition, D5-branes wrap the nonvanishing two-
cycle in the resolved conifold and appear as fractional
D3-branes that carry an N=1 SU(N) SYM.

This seems to be precisely the picture one finds at the
“bottom of the duality cascade” in the KS model: for the
model with N D3 and M fractional D3-branes the gauge
group is SU(N) X SU(N+M) and the RG flow is such
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FIG. 1. The Klebanov-Strassler model.

that one of the theories flows towards strong and the
other towards weak coupling. This translates via Seiberg
duality to an SU(N—M) X SU(N) theory, where the two
gauge group factors now exhibit the opposite running
coupling behavior. Ergo, one can follow a “cascade” of
such Seiberg dualities, where in each step the gauge
group factor drops by M. If N is a multiple of M (we
discuss the more general case in Sec. I1.A.2) all the regu-
lar D3-branes will “cascade away” and the gauge group
becomes SU(M), like in the Vafa setup. The only differ-
ence is that Vafa considers a resolved conifold, whereas
KS started with the singular version. Nevertheless, the
picture they both find in the IR is very similar: Vafa also
argues that in the large M limit the string theory back-
ground is given by a deformed conifold. He gives a more
concise description of this picture: since the topological
string argument was based on an open-closed duality,
there is no equivalent for the D-branes in the dual
closed theory. The geometric transition conjectured by
Vafa is therefore a duality between a background with
D-branes (on which the gauge degrees of freedom
propagate) and a background with only fluxes (where a
geometrical parameter enters into the flux-generated su-
perpotential to give the correct confining IR behavior).
We therefore conclude that the D-branes in the KS
model should also disappear once the singular conifold
is traded against its deformation; see Fig. 2 for compari-
son.

All the transitions discussed so far take either the sin-
gular or resolved conifold to the deformed conifold by
blowing up a nontrivial two-cycle. Thus, what we have
really been discussing is the “conifold transition.” As all
conifold geometries are cones over S?X S3, this can be
depicted as in Fig. 3.
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FIG. 2. Vafa’s model.

Generalizations could be imagined for other mani-
folds that allow for nontrivial two- and three-cycles. In
fact, when trying to confirm Vafa’s picture on the super-
gravity level, we immediately encountered generaliza-
tions of the conifold (Becker et al., 2004). These come
about because under T-duality the original geometry at-
tains a twisting of its fibration structure by the B field.
The resulting manifold is therefore non-Kdhler and we
review its construction in Sec. III.C. The B field is a key
ingredient in the Vafa and KS models, as its radial de-
pendence is what gives rise to the running coupling (Kle-
banov and Nekrasov, 2000). It cannot be avoided when
introducing fractional D3-branes. Therefore either the
ITA or IIB embedding of the geometric transition will
have such a B field and its mirror (or T-dual) will be
non-Kihler.

The outline of this paper is as follows. In Sec. II we
review the Klebanov-Strassler and Gopakumar-Vafa
models. Section II.A explains the gauge theory duals of
regular and fractional D3-branes, as well as the duality
cascade and the singularity resolution via chiral symme-
try breaking. The discussion of Gopakumar and Vafa’s
model, Sec. I1.B, starts with a short review of topological
string theory and states their conjecture. References are
provided for detailed calculations, as they alone would

FIG. 3. The conifold transition. All three geometries share the
base S% X S3, but the S° of the deformed conifold (left) remains
finite. In the conifold transition it can be shrunk to zero size to
give the singular conifold (center), from which blowing up the
$? gives the resolved conifold (right).
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fill an entire paper. We do, however, discuss the embed-
ding of the open-closed duality into superstring theory
and review the derivation of the flux-generated superpo-
tential in Sec. II.C. The IIB and IIA pictures can be
connected to an M-theory background in which the geo-
metric transition manifests itself as a flop; this is called
Vafa’s duality chain in Sec. II.C.2. Both IIB models, the
KS and the Vafa model, have an intuitive description in
T-dual IIA theory, where the conifold background turns
into a pair of NS5-branes. This picture is useful for ob-
serving the gauge theory construction and the unifica-
tion of the geometric transition with the cascading solu-
tion in M-theory (Dasgupta et al., 2001; Dasgupta, Oh,
and Tatar 2002; Dasgupta, Oh, et al., 2002). We review
the arguments in Sec. II1.D before we summarize the su-
pergravity analysis of the duality chain in Sec. III. We
walk the reader through the main steps, as there appear
some nontrivial issues along the way, but we try to be as
nontechnical as possible.

An extensive appendix summarizes known facts about
conifold geometries. In Appendix A.4 we give the
choice of complex structures that make all three coni-
fold metrics Ricci flat and Kihler and we use this in
Appendix A.5 to evaluate the supersymmetry require-
ments for known supergravity solutions for fractional
D3-branes on conifold geometries. We agree with earlier
results of Cvetic et al. (2003) that the KS model on the
singular conifold preserves supersymmetry, whereas the
Pando Zayas and Tseytlin (2000) solution for D5-branes
wrapped on the resolution of the conifold does not.

II. EVIDENCE FOR GEOMETRIC TRANSITIONS
A. Gauge theory argument from Klebanov-Strassler

In the Klebanov-Strassler model (Klebanov and
Strassler, 2000) a configuration of N D3-branes and M
fractional D3-branes on a singular conifold geometry is
considered. The D3-branes sit at the singular point of
the conifold, while the fractional branes arise from
wrapping M D5-branes on the vanishing two-cycle of the
conifold. The gauge theory on the branes is nonconfor-
mal, and in the IR is given by an SU(M) theory which
exhibits chiral symmetry breaking and gaugino conden-
sation, suggesting that the correct dual of the gauge
theory in the IR limit is a deformed conifold. In this
section we review the argument for this duality from the
Klebanov-Strassler model. We begin by constructing the
gauge theory of the Klebanov-Witten model in which no
fractional branes are present and the gauge theory is
conformal, and then proceed to the nonconformal case
corresponding to the presence of wrapped D5-branes.

1. The Klebanov-Witten model

First consider the Klebanov-Witten model (Klebanov
and Witten, 1998) in which a stack of D3-branes is
placed at the tip of a conifold (see Fig. 4). As in the
original scenario of the AdS/CFT conjecture, we expect
a duality between the gauge theory on the branes and
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N D3 branes

(a) The Klebanov—Witten model

N D3 branes

M wrapped D5 branes

(b) The Klebanov—Strassler model

FIG. 4. Comparing the Klebanov-Witten and Klebanov-
Strassler setups.

the gravity theory, found by taking the near-horizon
limit. The near-horizon geometry in this case is AdSs
X T where T! is the base of the conifold, a Sasaki-
Einstein manifold. The reader not familiar with conifold
geometries should consult the Appendix for more de-
tails. It is the coset space [SU(2) X SU(2)]/U(1) and has
topology S?Xx S (as shown in Fig. 3). The metric of 71!
was found by Candelas and de la Ossa (1990) and is
given by

dz%q’l = %(dlﬂ'F COS 01d¢1 + COS 62d¢2)2

++ > (d& +sin® 6d4)), (2.1)
i=12
so that the metric on the (singular) conifold is
ds?>=dr* + rszZTl,l. (2.2)

The conifold is a noncompact Calabi-Yau manifold.
Note that although the conifold is singular, the super-
gravity solution for the configuration of N D3-branes at
the tip is given by

ds®> = H'2(r)ds3 o5 + H2()(dr? + Pd3%,)  (2.3)
and is nonsingular everywhere since H(r)=1+L*/r*
with L*=4mgN(a')>.

We would like to study the gauge theory on the D3-
branes. To do this we will use the symmetries of the
conifold to find a convenient set of coordinates that can
be promoted to fields. We will thus construct a gauge
theory with exactly the conifold symmetries and find the
correct gauge theory on the branes by adding, first, one
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D-brane and then generalizing to the case where there is
a stack of N D3-branes on the conifold tip. We begin by
rewriting the defining equation for the conifold (A2),

P +z5+25+25=0, z;eC* (2.4)

as
det Zl‘]‘:O, (25)

where Z;=(1/ \E)Eno{}zn, with ¢” the Pauli matrices for
n=1,2,3 and o*=11. The defining equation for the coni-
fold is now det Z=0, where we have a choice of
coordinates'

73+ 124
z-|

21— 12 ) (AlBl AB,
21 +T1Zyp —Z3+124

). (2.6)
AxBy A3B,

As explained in Appendix A.1, the conifold is invariant
under SO(4) =SU(2) X SU(2), where SO(4) acts on the z;
in Eq. (2.4) and the SU(2)s act on the i and j indices in
Eq. (2.5), respectively. In addition, there is a U(1) sym-
metry under which all the z; in Eq. (2.4) are rotated by
the same phase. It is easy to see that the metric (2.1)
possesses the same symmetries. Each SU(2) acts on one
{6;, b, ¢} [where ¢ in Eq. (2.1) is given by ¢ — ] while
the U(1) symmetry corresponds to invariance under
shifts in ¢. To find the gauge theory we will consider
D3-branes on this space and study the low-energy field
theory of the modes localized on the brane. The moduli
space of vacua of this theory should be exactly N copies
of the manifold—in this case the conifold—modulo the
action of the permutation group (since the D3-branes
are identical). The global symmetry group of the gauge
theory on the D3-branes will therefore be SU(2)
X SU(2) X U(1).

The coordinates A; and B}, i,j=1,2 give a useful pa-
rametrization of the conifold. The A; are rotated into
each other under one SU(2) and the B; transform under
the other. As they stand, these coordinates represent
eight real degrees of freedom. However, in describing
the conifold using A,A,, B, and B, we have invariance
under

Ai_))\Ai’ A e C,

1
We fix the magnitude and phase of \ separately. To fix
the magnitude, we impose

|AL[* + |A,)* = [By* = | By = 0. (2.8)

This removes one degree of freedom.” To fix the phase,
we have to divide by U(1), which means we make the
identifications

The main references for this section are Klebanov and Wit-
ten (1998); Klebanov and Strassler (2000); and Strassler (2005).
A recent useful reference is Klebanov and Murugan (2007).

’It is then by further dividing by the scale invariance that one
obtains the base, see Eq. (A4).
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Ll
Ai e Ai’

(2.9)

leaving six degrees of freedom. In other words, no more
conditions are required in order for these coordinates to
give a complete description of the conifold. Thus, we
have arrived at a description of the conifold given by the
four coordinates A;,B; and the magnitude constraint
(2.8), subject to the identifications (2.9). This description
is equivalent to the equation of the conifold given by Eq.
(2.5).

Next, we turn to the gauge theory. We can formulate
the field theory in terms of A; and B; because they have
the symmetries we want; we promote them to chiral su-
perfields. Consider then an N'=1 supersymmetric theory

~ e tap.
B] e B],

with U(1) gauge group and chiral superfields fli,l}j with

i,j=1,2, such that the Ai have charge 1 and the Bj have
charge —1. The superpotential is given by

W=\ det(AlB]) = )\(A1E1A2é2 _A132A2é1)7 (210)

which preserves SU(2) XSU((2) X U(1)g. The D-term
condition for supersymmetry is given by D=0, where
D=-32[qiAA;+q5B/B]+§, (2.11)
l
with £ the coefficient of the Fayet-Iliopoulos term and g,
the U(1) charge of the relevant field. When £ is zero® this
is exactly our conifold constraint (2.8). The moduli space
of vacua is found by dividing by the gauge group U(1)
which is equivalent to imposing Eq. (2.9). Now we claim
that, for a single D3-brane on a conifold, the gauge
theory whose moduli space exactly matches the conifold
is in fact given by a gauge group U(1) X U(1), so the
fields now have charges (1,—1) and (-1,1), respectively,
under the two U(1) groups. The two D-term conditions
[one for each U(1)] both yield Eq. (2.8). The superpo-
tential (2.10) is unchanged and zero, so there are no
F-term conditions
aw
Fi=-—=0,
JA;
and this theory’s moduli space is the conifold.

When we place instead of a single brane a stack of N
D3-branes on the conifold, the gauge group becomes®
SU(N) X SU(N) so the superpotential no longer van-
ishes. The superpotential is given by

W=\ trdet(A;B)), (2.12)

where the trace is now necessary because the superfields
carry a gauge index for each U(N) and should therefore

be treated as matrices. The A and B fields are now bi-

In fact &# 0 corresponds to a resolved conifold, as discussed
by Klebanov and Murugan (2007).

4A«:tually it is U(N) X U(N) but the U(1) factors decouple in
the IR.
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fundamental fields transforming in the (N ,N) and (N,N)
representations of the gauge groups, respectively. To-
gether with the D-term conditions and the gauge invari-
ance they give a description of the moduli space which
matches the description of the conifold in terms of A
and B arrived at above. The F-term equations

BiA;By~ B,AB =0,

AléjAZ_AZBjAl=O> (213)

together with the D-term conditions (2.11), can be

shown to have a solution if and only if A and B can be
simultaneously diagonalized (Strassler, 2005). In this
case the superpotential vanishes, giving exactly Eq. (2.5).
The theory flows to a nontrivial infrared fixed point
(Klebanov and Witten, 1998). We have seen how the
symmetry group SU(2)XSU(2)XU(1) acts on A;,B,;.
The U(1) global symmetry of the conifold manifests as
what is called a U(1)z symmetry in the gauge theory,
under which

(A;,B)) — e"(A,B)). (2.14)

The R-charges of the fields A; and B; are found by im-
posing conformal invariance’ and are equal to 1/2. This
leads to an R-charge of 2 for the superpotential, as re-
quired. The extra U(1) symmetry expressed in Eq. (2.9)
is referred to in the gauge theory as baryonic symmetry.

2. The duality cascade

Having discussed the Klebanov-Witten model in de-
tail, we are now in a position to study the Klebanov-
Strassler model (Klebanov and Strassler, 2000). As
shown in Fig. 4, the difference between the two setups is
that in the configuration considered by Klebanov and
Strassler there are M D5-branes wrapping the vanishing
two-cycle of the conifold. These are effectively D3-
branes with fractional charge, called fractional branes.
Their effect is to render the dual gauge theory noncon-
formal, with many interesting consequences.

This setup was studied by Gubser and Klebanov
(1998) and Klebanov and Nekrasov (2000), where the
running of the gauge coupling was found. An exact so-
lution, including backreactions, was given by Klebanov
and Tseytlin (2000), but the details of the duality cas-
cade, chiral symmetry breaking, and confinement were
elucidated in Klebanov and Strassler (2000), which we
follow closely here. A comprehensive review is given by
Strassler (2005).

Consider first the gravity theory. The fractional branes
are magnetic sources for the three-form field strength
(F5 is the Hodge dual of F;=dC)

5Setting the B functions equal to zero yields anomalous di-
mensions —1/2 for the fields, and one can make use of the
relation dim O=1+ %70:3R@/2 for an operator O to solve for
the R-charges.
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F3=Maos, (2.15)
where
w3 = sdi A (sin 6,d6) A dpy —sin 6,d6, A dby)
+3d ¢ Adgy A (cos 6; sin 6,d6,
+sin 6; cos 6,d ;) (2.16)

is the three-form dual to the nontrivial three-cycle of the
conifold. In addition there are N units of five-form flux
due to the D3-branes, but the total five-form RR
(Ramond-Ramond) field strength also has a contribution
from the NS-NS B-field, which is necessarily present in
the supergravity solution:

Fs=dC,+ By A F;, (2.17)

B,=3g,Mw, 1n<r1>. (2.18)
0

Here wzz%(sin 0,d 0 ndp—sin 6,db6,Ad¢,) is the two-

form on the two-cycle wrapped by the DS5s and ry is

some UV scale.

From the gauge theory point of view, the presence of
the M fractional branes changes the gauge group6 from
SU(N) X SU(N) to SUN+M) X SU(N). The field con-
tent is still given by four chiral superfields A; and B,
while the superpotential is given by Eq. (2.12). However,
the relative gauge coupling depends on B, and therefore
on r (Klebanov and Nekrasov, 2000; Klebanov and
Tseytlin, 2000):

11 1“ 5 1]
1 1 -
g% g% 8s 52 2

According to the usual AdS/CFT dictionary, r maps to
the renormalization-group (RG) scale in the dual gauge
theory. Thus, this theory is no longer conformal.

The gauge couplings 1/g% and 1/ g% flow in opposite
directions. Facing a divergence in one we can continue
by performing a Seiberg duality transformation (Seiberg,
1995), under which we obtain an SU(N)XSU(N-M)
theory which resembles closely the theory we started
with. We can see this by noting the running of the five-
form flux under which the D3-branes are charged [Eq.
(2.17)]. Since Cy is oriented along the world-volume of
the D3-branes in the 0123 directions, we can write the
self-dual five-form

(2.19)

ﬁ5 = fs + *fs
in terms of
Fs=N(r)vol(T").

Here we used w,A w;~vol(TH!) and defined

See Gubser and Klebanov (1998); Klebanov and Nekrasov
(2000); and Klebanov and Tseytlin (2000). An easy way to un-
derstand this generalization is given in the brane construction
discussion in Sec. II.D.
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3 r
N(r)=N+ —g.M? ln(—).

2 ro
So the number of colors in the theory has become a
scale-dependent quantity. N(r) will decrease in units of
M, i.e., the running gives rise to a flow under which
SU(N+M) X SU(N)— SU(N) X SU(N-M). This process
will continue until the gauge group is SU(2M) X SU(M)
or SU(M), corresponding to a situation in which only the
M fractional D3-branes remain—the five-form flux has
decreased to zero indicating that the N D3-branes have
“cascaded away.” The process is called a duality cascade,
since the SU(N) and SU(N— M) theories are related by a
Seiberg duality (Seiberg, 1995).

3. Chiral symmetry breaking and deformation of the conifold

When N-kM approaches zero a more careful analysis
is needed; the cascade must stop because negative N is
physically nonsensical. At sufficiently small r the solu-
tion becomes singular. By studying the far IR of the
gauge theory, Klebanov and Strassler argued that this
singularity is removed by the IR dynamics, via a gluino
condensate which breaks the anomaly-free 7,y
R-symmetry in the theory to Z,. The expectation value
acquired by the gaugino condensate maps to the defor-
mation parameter of the conifold: x in Eq. (A15). Thus,
the singularity is removed in the gravity picture by blow-
ing up the S° of 71!

Although the metric of the KS setup has a continuous
U(1)g symmetry, the full supergravity solution is only
invariant under a Z,,; subgroup of this, under which

(A;,B) — (Ai,B,')eXP< Zmn) (2.20)

4M

and the superpotential rotates by e>™"¥.

The theory has a moduli space with M independent
branches in the IR. To see this, we probe the space with
a single additional D3-brane. Since in the far IR the
five-form field strength has cascaded to zero and only
the M fractional D3-branes remain, the gauge group is
SUM+1)XSU(1) or SUM+1). The fields are A; and
Bj, i,j=1,2, in the M+1 and M+1 representations, and
the superpotential is of the form of Eq. (2.12). We can
write this in terms of the gauge invariant N;=A;B;,
which one can think of as a meson.

At low energy the theory is described by the Affleck-
Dine-Seiberg superpotential (Affleck et al., 1984)

I A3IMH ] 1/(M-1)
Niij[SikEjl

to which the only solutions for a supersymmetric
vacuum are

WL = )\NiijISiijl + (M - 1)|:

o 2A3M+1
(NN e*e)™ = NER (2.21)
In other words, the theory in the far IR has a moduli
space with M independent branches. The 7,y
R-symmetry permutes these branches, rotating
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NNy e by 2™, so the R-symmetry is spontaneously
broken from 7,,, to Z,. Thus, the gaugino condensate is
responsible for the chiral symmetry breaking. To see
how this symmetry breaking smooths out the singularity
in the IR, see Sec. II.A.1 in which we promoted coordi-
nates to chiral superfields. We now go the other way,
using N;; to find a coordinate description of the geom-
etry in terms of the gauge theory fields. In the classical
theory, det N;;=0, which should be compared to Eg.
(2.5). In this case the probe brane is moving on the sin-
gular conifold. However, as we have seen in the
Klebanov-Strassler model the field theory in the IR
gives

A3M+1 \ 1M
)

Thus the probe brane moves not on the singular but on
the deformed conifold, where the deformation is given
by the gaugino condensate responsible for chiral symme-
try breaking. It is the deformed conifold which gives the
correct moduli for the field theory and which is the cor-
rect background geometry for the supergravity solution
that is dual to the gauge theory in the far IR.

It was pointed out by Gubser et al.(2004) that the IR
of the KS background should be thought of as the next-
to-last step of the cascade. Studying the field theory dual
to this SU(2M) X SU(M), one finds that baryonic opera-
tors, instead of mesonic ones as for mobile D3-branes,
acquire a vacuum expectation value. This background is
therefore said to lie on the baryonic branch.

B. Open-closed duality

A different perspective on geometric transitions
comes from topological string theory. Gopakumar and
Vafa (1999) conjectured a duality between an open and a
closed topological string theory that live on different
backgrounds. The connection to the Klebanov-Strassler
model became apparent after Vafa (2001) embedded this
duality into superstring theory. We only review the argu-
ments and refer the reader to the original work (Ber-
shadsky et al., 1994; Gopakumar and Vafa, 1999; Vafa,
2001) or other reviews (Neitzke and Vafa, 2004; Auckly
and Koshkin, 2007) for details. Here we define topologi-
cal string amplitudes and explain the difference between
open and closed topological string theories. The reader
familiar with topological string theory may want to skip
ahead to the Gopakumar-Vafa conjecture explained in
Sec. II.B.2.

1. Topological sigma models and string theory

Throughout this section we restrict ourselves to the
case H;=0. We follow the review by Neitzke and Vafa
(2004); see, e.g., Eguchi and Yang (1990); Witten (1988a,
1988b); and Marino (2005) for details.

String theory is intrinsically linked to sigma models.
We can view string theory as the description of a two-
dimensional world-sheet 3 propagating through a ten-
dimensional target space M. The sigma model that de-
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scribes this theory deals with maps ¢:%— M. These
maps can be promoted to chiral superfields ® that have
¢ in their lowest component and obey the two-
dimensional sigma model action

S=-1 f drdod*§[g;(®) + B;(®)|D*®'D, D/, (2.23)

with indices i,j=1,...,d parametrizing the target space
and

d
D,=—+ip"0,0,,
a6*

(2.24)

where p* is a two-dimensional y matrix and 6, a two-
component Grassmann-valued spinor. Chiral superfields

are defined by D*®'=0. Written in terms of N'=1 super-
fields, this action has explicit A'=1 supersymmetry. In
the case H=dB=0 it has further nonmanifest supersym-
metry if and only if the target space is Kéhler (Zumino,
1979).

Considering a sigma model that contains not only chi-
ral but also twisted chiral superfields, one can find addi-
tional supersymmetry with H # 0 even if the target is not
Kihler. This was proposed by Gates et al. (1984) more
than 20 years ago and has recently found an embedding
in generalized complex geometry (Hitchin, 2003). It
turns out that the target manifolds in this model define a
(twisted) generalized Kéhler structure (Gualtieri, 2003).
Stimulated by this new mathematical language, there
has been tremendous progress in defining generalized
(topological) sigma models (Kapustin and Li, 2004; Lind-
strom et al., 2005, 2007; Bredthauer et al., 2006; Pestun,
2007).

Topological string theory integrates not only over all
maps ¢ but also over all metrics on 3; this is often called
a sigma model coupled to two-dimensional gravity. Clas-
sically, the sigma model action depends only on the con-
formal class of the metric, so the integral over metrics
reduces to an integral over conformal (or complex)
structures on 3.

The sigma model (2.23) with Kihler target can be
made topological by a procedure called “twisting” (Wit-
ten, 1988b), which basically shifts the spin of all opera-
tors by 1/2 their R-charge. There are two conserved su-
percurrents for the two world-sheet supersymmetries
that are nilpotent

(G*?=0, (2.25)

so one might be tempted to use these as BRST opera-
tors and build cohomologies of states, but they have spin
3/2. The twist shifts their spin by half their R-charge to
obtain spin 1 operators:

Snew = Sold + %(L (2.26)

where ¢ is the U(1) R-charge of the operator in ques-
tion. Classically, the theory has a vector U(1),, symmetry
and an axial U(1), symmetry. Twisting by U(1), gives
the so-called A model; twisting by U(1), gives the B
model. The U(1), might suffer from an anomaly unless
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¢1(M)=0, which leads to the requirement that the target
must be a Calabi-Yau manifold for the B model. One
could now define Q=G" or Q=G and use this nilpotent
operator as a BRST operator, i.e., restrict one’s attention
to observables which are annihilated by Q.

Before doing so we note a special feature of A
=(2,2) supersymmetry. Since left and right movers basi-
cally decouple, we can split any of the operators G* into
two commuting copies, one for left and one for right
movers. In terms of complex coordinates we denote the
left movers as holomorphic G* and the right movers as
antiholomorphic G*. This makes the (2,2) supersymme-
try more apparent. Now twisting can be defined for left
and right movers independently and we obtain in prin-
ciple four models, depending on which we choose as
BRST operators:

A model: (G*,G*), B model: (G*,G),

A model: (G~,G7), B model: (G~,G%).

Of these four models, only two are actually indepen-

dent, since the correlators for A (B) and for A (B) are

related by complex conjugation. So we ignore A and B
in the following.
Starting with this setup, one can now discuss observ-

ables in topological theories. It turns out that Q+Q in
the A model reduces to the differential operator d=4d
+don M, i.e., the states of the theory lie in the de Rham
cohomology. A “physical state” constraint requires
states to be in H')(M) only, which corresponds to de-
formations of the Kihler structure on M. One can also
show that correlators are independent of the complex
structure modulus of M, since the corresponding opera-
tors are Q exact (they decouple from the computation of
string amplitudes).

In the B model the relevant cohomology is that of d
with values in A*(TM), i.e., the observables are (0,1)-
forms with values in the tangent bundle 7M. These cor-
respond to complex structure deformations. One can
also show that in this case correlation functions are in-
dependent of Kdhler moduli. So each of the two topo-
logical models depends only on half the moduli,

A model on M: depends on Kéhler moduli of M;

B model on M: depends on complex structure
moduli of M.

In this sense both models describe topological theories
because they only depend on the topology of the target,
not its metric. It can also be shown that the relevant
path integral fe™5 simplifies tremendously compared to
ordinary field theories. The path integral localizes on
Q-invariant configurations. These are simply constant
maps ¢:%— M with d¢=0 for the B model and holo-
morphic maps d¢=0 for the A model. In this sense the B
model is simpler than the A model, because the string
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world-sheet “reduces to a point” on M; its correlation
functions are those of a field theory on M. They com-
pute quantities determined by the periods of the holo-
morphic three-form Q3% which are sensitive to com-
plex structure deformations.

The holomorphic maps in the A model are called
“world-sheet instantons.” Each world-sheet instanton is
weighted by

exp(f (]+iB)),
o

where t=J+iB € H*(M,C) is the complexified Kéhler pa-
rameter and C is the image of the string world-sheet in
M. Summing over all instantons makes this theory more
complicated than the B model, but only in the sense that
it is not local on M and does not straightforwardly re-
duce to a field theory on M. In summary, the A-model
moduli are complexified volumes of two-cycles, while
the B-model moduli are the periods of ().

We now discuss the relation of these topologically
twisted sigma models to string theory. As mentioned
previously, string theory sums not only over all possible
maps ¢:2— M, as discused for the sigma models above,
but also over all possible metrics on . The latter actu-
ally reduces to a sum over the moduli space of genus g
Riemann surfaces. The topological string free energy is
then defined as a sum over all genera

F=2 g *F,, (2.27)

§=0

with the string coupling g, and F, the amplitude for a
fixed genus g. The string partition function is given by
Z=exp F.

The relevant quantities for the topological string
theory are therefore the genus g partition functions. Al-
ready at genus zero one finds much interesting informa-
tion about M. In the A model the genus zero free energy
is

Fy= f J AJ AJ + instanton corrections. (2.28)
M

The first term corresponds to the classical contribution
of the world-sheet theory: it gives the leading order con-
tribution in which the string world-sheet reduces to a
point. The instanton term contains a sum over all ho-
mology classes H,(M,7) of the image of the world-sheet,
each weighted by the complexified area, and a sum over
“multiwrappings” in which the map X — M is not one to
one.

To define the genus zero free energy in the B model
requires more effort. We already noted that the relevant
moduli are periods of Q e H3(M,C). This cohomology

can be decomposed as
H=H'e H>' ¢ H'? o H". (2.29)

For a Calabi-Yau threefold the Hodge numbers are
given by h*?=h"3=1, because there is one unique holo-



Rhiannon Gwyn and Anke Knauf: Conifolds and geometric transitions 1427

morphic three-form, and h>'=h"2. Therefore H*(M,C)
has real dimension 24!?+2. It is customary to choose a
symplectic basis of three-cycles A’ and B; with intersec-
tion numbers

A'NA'=0, B;NB;=0, A'NB;=4, (2.30)

with i,j=1,...,h"?+1. One can then define homoge-
neous coordinates on the moduli space of complex struc-
ture deformations by

X'i= J Q.
Ai

This gives h'?+1 complex coordinates, although the
moduli space only has dimension 42, This overcounting
is due to the fact that () is only unique up to overall
rescaling, so the same is true for the coordinates defined
this way. Therefore they carry the name “homogeneous
coordinates.” There are also h'?+1 periods over B
cycles

ﬁi = f Q
Bi

Due to the relation between A and B cycles, there must
be a relation between the periods. In other words, we

(2.31)

(2.32)

can express F; as a function of X/:

F,= Fy(X). (2.33)

One can prove that these satisfy an integrability condi-
tion,

J a9
—F1= gt (2.34)

which allows us to define a new function F via

A d
Fi:_»F.

X (2.35)

This function is actually the genus zero free energy of
the B model. It is simply given by

F=1ixF. (2.36)

In general, the sum over all world-sheet configura-
tions is too hard to carry out explicitly. There are never-
theless some tools that enable one to calculate topologi-
cal string amplitudes. For example, mirror symmetry
between the A and B models can be used to compute
amplitudes in the model of choice (usually the B model
since it does not obtain instanton corrections) and then
extrapolating the result to the mirror theory. We are
more interested in a duality between open and closed
strings, which enables one in principle to calculate the
free energy at all genera for a particular class of non-
compact geometries, e.g., conifolds. To describe open to-
pological strings we must explain what we mean by to-
pological branes that appear as boundaries of .

A D-brane corresponds to a boundary condition for X
that is BRST invariant. In the A model this implies that
the boundary should be mapped to a Lagrangian
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submanifold’ L of M. If we allow open strings to end on
L, we say that the D-branes are wrapped on L. Having a
stack of N D-branes on L corresponds to including a
weighting factor N for each boundary.

D-branes carry gauge theories in physical string
theory (we use “physical” for the target space perspec-
tive to distinguish it from toplogical string theory). The
same is true for topological branes. In the A model it
turns out that one can actually compute the exact string
field theory, which is again a topological theory: U(N)
Chern-Simons theory (Witten, 1986, 1995). Its action in
terms of the U(N) gauge connection A is given by

S:f Tr(AAdA+3AAARA). (2.37)
L
This action might still obtain instanton corrections, but
Witten (1995) showed that in the special case where L
=53 there are none. This is fascinating, because the S° in
the deformed conifold (which is also 7%S?) is such a La-
grangian submanifold.

In physical superstring theory, D-branes are sources
for RR fluxes. So under what quantity are topological
branes charged? The only fluxes available are the
Kéhler two-form J and the holomorphic three-form (.
Wrapping a topological brane on a Lagrangian subspace
L of M (in the A model) creates a flux through a two-
cycle C which “links” L. This link means that C=4S for
some three-cycle S that intersects L once, so C is homo-
logically trivial in M, although it becomes nontrivial if
considered as a cycle in M\L. This implies that [~/=0
since J is closed and C trivial.

Wrapping N branes on L has the effect of creating a
Kéhler flux through C

J J=Ng;,
C

because the branes act as a § function source for the
two-form, i.e., J is no longer closed on L, but dJ
=Ng,8(L). Similarly, a B-model brane on a holomorphic
two-cycle Y induces a flux of ) through the three-cycle
linking Y. In principle we could also wrap branes on
zero-, four-, or six-cycles in the B model, but there is no
field candidate those branes could be charged under.
This suggests a privileged role for two-cycles.

(2.38)

2. The Gopakumar-Vafa conjecture

After all these preliminaries we are now ready to ex-
plain the geometric transition on conifolds. This is a du-
ality between open and closed topological strings (it has
been shown that they give rise to the same string parti-

"This means L has half the dimension of M and the Kihler
form restricted to L vanishes or in other words it is an isotro-
pic submanifold of maximal dimension (half of that of the am-
bient Calabi-Yau manifold). However, a more generic condi-
tion that allows for a nonflat gauge field on the brane was
derived by Kapustin and Li (2003).



1428 Rhiannon Gwyn and Anke Knauf: Conifolds and geometric transitions

tion function) which has profound physical conse-
quences. The dual gauge theory from the open string
sector is N=1 SYM in d=4. The IR dynamics of this
gauge theory can be obtained either from the open or
from the closed string sector. In this sense, both string
theory backgrounds are dual; they compute the same
superpotential because they have the same topological
string partition function. The key to this duality in the
gauge theory is to identify parameters from the open
string theory with parameters from the closed string
theory. In the IR it will be the gluino condensate which
is identified with either the Kidhler or complex structure
modulus of the closed or open string theory background.

The geometric transition in question (Gopakumar and
Vafa, 1999) considers the A model on the deformed co-
nifold 7+S°. As noted by Witten (1995), the exact parti-
tion function of this theory is simply given by U(N)
Chern-Simons theory. The closed A model on this geom-
etry is trivial, because it has no Kédhler moduli. But the
T+:S3 contains a Lagrangian three-cycle L=S> on which
we can wrap branes in the open A model. This creates a
flux Ng, of J through the two-cycle C which links L, in
this case C=52. It is thus natural to conjecture that this
background is dual to a background with only flux
through this two-cycle. The resolved conifold is the logi-
cal candidate for this dual background as it looks asymp-
totically like the deformed conifold, but has a finite S? at
the tip of the cone. This led Gopakumar and Vafa to the
following conjecture:

The open A model on the deformed conifold T+S> with
N  branes  wrapping the S is dual to
the closed A model on the resolved conifold
O(=1)® O(=1) = CPY, where the size of the CP! is deter-
mined by t=Ng,.

There are no branes anymore in the dual geometry;
there is simply no three-cycle which they could wrap.
The passage from one geometry to the other is called a
“geometric transition” or “conifold transition” in this
case. The agreement of the partition function on both
sides was shown by Gopakumar and Vafa (1999) for ar-
bitrary 't Hooft coupling A=Ng, and to all ordersin 1/N.
In this sense, this duality is an example of a large N
duality as suggested by 't Hooft: for large N holes in the
Riemann surface of Feynman diagrams are “filled in” or
“condensed,” where one takes N— o with g, fixed. Go-
pakumar and Vafa (1999) matched the free energy F, at
every genus g via the identification of the 't Hooft cou-

pling

iN = Ng, (open) < i\ =t (closed), (2.39)

where ¢ is the complexified Kihler parameter of the §?
in the resolved conifold and identification of the t Hooft
coupling for open strings is dictated by the Chern-
Simons theory on S°.
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Beyond that, it was also shown that coupling to grav-
ity (to the metric®) and the Wilson loops take the same
form for the open and closed theories. The two topologi-
cal string theories described here correspond to the dif-
ferent limits A\ — 0 and A — 0, but they are conjectured to
describe the same string theory (with the same small g,)
only on different geometries.

C. The Vafa model

1. Embedding the Gopakumar-Vafa model in superstrings and
superpotential

This scenario has an embedding in physical type ITA
string theory. Starting with N D6-branes on the S3 of the
deformed conifold we find a dual background with flux
through the S? of the resolved conifold. The Calabi-Yau
manifold breaks 3/4 of the supersymmetry (which leaves
eight supercharges), therefore the theory on the world-
volume of the branes has N'=1 supersymmetry (the
branes break another half). There is a U(N) gauge
theory on the branes [in the low-energy limit of the
string theory the U(1) factor decouples and we have ef-
fectively SU(N)]. As described in the last section, these
wrapped Dbranes create flux and therefore a
superpotential.’” This superpotential is computed from
topological strings, but we need a gauge theory param-
eter in which to express it. The relevant superfield for
N=1 SU(N) is S, the chiral superfield with a gaugino
bilinear in its bottom component. We want to express
the free energy F, in terms of S. Since there will be
contributions from world-sheets with boundaries, we can
arrange this into a sum over holes A:

Fy(S) = ;% FypS". (2.40)

It turns out that the genus zero term computes the pure
gauge theory, i.e., pure SYM. Higher genera are related

to gravitational corrections.
As discussed above, the open topological string theory

is given by Chern-Simons on 7*S%, which has no Kihler
modulus. The superpotential created by the open topo-
logical amplitude of genus zero was found by Vafa
(2001) to be

aFopen(S)
Wwopen — f dP2o—"— +aS+B, (2.41)
with «, B=const and aS the explicit annulus contribution
(h=2).

%It might seem contradictory that there can be a coupling to
the metric when discussing topological models. The classical
Chern-Simons action is independent of the background, but at
the quantum level such a coupling can arise. On the closed side
there are possible IR divergences, anomalies for noncompact
manifolds, that depend on the boundary metric of these
manifolds.

"We set the string coupling g,=1 throughout most of this
section.
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Although the topological model is not sensitive to any
flux through a four- or six-cycle, in the superstring
theory the corresponding RR forms F, and Fg can be
turned on. On the closed string side this corresponds to
a superpotential

Wclosed: J FZ/\ (J+ lB) A (J+ lB)

+ifF4/\(J+zB)+fF6, (2.42)
where J+:B is the complexified Kéhler class, whose pe-
riod over the basis two-cycle gives the complex Kihler
modulus ¢ (of the resolved conifold). According to Vafa
(2001) the topological string amplitude is not modified
by these fluxes. The genus zero topological string ampli-
tude F, determines the size of the four-cycle to be dF,/dt
(Vafa, 2001). If we have M, L, and P units of two-, four-
and six-form flux, respectively, the superpotential yields
after integration

pyelosed — M%" +itL + P. (2.43)
Note that requiring W=0 and J,W=0 fixes P and L in
terms of M and ¢. M is of course fixed by the number of
branes in the open string theory.

This looks similar to the superpotential for the open
theory (2.41). As already discussed the topological string
amplitudes agree,

Jopen _ Fclosed’ (244)

if one identifies the relevant parameters as in Eq. (2.39).
To map the superpotentials onto each other we have to
identify S with ¢ and «, 8 with the flux quantum numbers
iL,P.Itis clear from the gauge theory side that « (or L)
is related to a shift in the bare coupling of the gauge
theory. In particular, to agree with the bare coupling to
all orders we require iL=V/g,, where V is the volume of
the S3 that the branes are wrapped on. This gives an
interesting relation between the size V of the blown up
S3 (open) and the size ¢ of the blown up S? (closed):

(2.45)

This indicates that for small N (N/V <1) the description
with D-branes wrapped on S§* is good (since t—0),
whereas for large N the description with blown up S? is
good (since V——x does not make sense). It should be
clear from our discussion that after the S* has shrunk to
zero size there cannot be any D6-branes in the back-
ground, but RR fluxes are turned on.

We conclude this section with an explicit derivation of
the Veneziano-Yankielowicz superpotential in type IIB
(Cachazo et al., 2001), from the perspective of the closed
string theory. This theory is mirror dual to the ITA sce-
nario discussed above,'” and so the open string theory

(e'—=1)N=const X e7".

19The same result could be obtained in IIA, but the IIB treat-
ment is not complicated by instantons.

Rev. Mod. Phys., Vol. 80, No. 4, October—December 2008

lives on a resolved conifold background and the closed
theory with fluxes lives on the deformed conifold de-
scribed by

4
f=>z-u>=0. (2.46)
i=1
On the deformed conifold there is only one compact A
cycle (the $%) with N units of RR flux and one noncom-
pact B cycle with « units of NS-NS flux. (This is the same
setup as in the KS model where B, also threads through
the noncompact cycle.) We therefore define the super-

field S as the period of the A cycle and its dual period F:

szf Q, ﬁ:f Q. (2.47)
A B
The holomorphic three-form is given by
Q- dzyndzyndzzndzy  dzyndzyandzy
B df B 224
dzyndzond
I AL (2.48)

2\ - -75-73
Viewing the three-cycles A and B as two-spheres
(spanned by a real subspace of z,,z3) fibered over z,
one can integrate () over S2, resulting in a one-form

1 ——
J Q=2 - wldzy. (2.49)
S

27l

The compact A cycle, projected to the z; plane, becomes
an interval (—u, ), so that the A period results in

1 [
S= —f de2—i2=E. (2.50)
2 V= 4

The noncompact B cycle is projected to (u,®). We
therefore introduce a cutoff A; such that

1 (N° 1 <A3 S
=— | " dgNd-pt=—| L -S5+SIn—
2m'L NG m\ 2 T

1
+(’)<—).
Ao

With N units of flux through the A cycle and « units of
flux through the B cycle the flux-generated superpoten-
tial (Vafa, 2001)

sl

2.51)

W= — 272, (N;F; + a;S)) (2.52)
becomes
Wer=N(SInAj+S—1nS) - 2mias. (2.53)

The first and last terms can be combined by replacing Ag
with the physical scale of the theory. This is because « is
related to the bare coupling of the four-dimensional A
=1 SU(N) gauge theory (as discussed in Sec. I1.B.2) via
2mia=87/g?l, but the coupling of V=1 SYM exhibits a
logarithmic running
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8
82(/\0)
The term 3N In Ay—2ima is precisely what shows up as
the coefficient of S in Eq. (2.53). a can therefore be

absorbed into A by introducing the physical scale A and
the superpotential becomes

=3NIn Ay + const. (2.54)

S
WeffZNS<1 —1In _), (255)

AS
which is precisely the Veneziano-Yankielowicz superpo-
tential (Veneziano and Yankielowicz, 1982) suggested
for four-dimensional N=1 SU(N) super-Yang-Mills
theory, where S plays the role of the glueball field. The
vacuum of the theory exhibits all the known phenomena
of gaugino condensation, chiral symmetry breaking, and
domain walls. This is a remarkable result and the first
example where string theory produces the correct super-
potential of a gauge theory.

The discussion of the IR limit deserves a word of cau-
tion. We argued earlier that both the KS and the Vafa
model reach an SU(M) gauge theory. This suggests that
the open string background in Vafa’s scenario is actually
the IR limit of the KS cascade, which then in the far IR
is dual to the closed string background. This is not quite
accurate, as the UV limit of Vafa’s scenario does not
coincide with the UV limit of KS. Instead, it approaches
a (5+1)-dimensional theory. The UV limit of Vafa’s sce-
nario should rather correspond to a Maldacena-Nunez
(2001) (MN) type of solution. However, the MN UV
limit does not quite fit into interpolating scenarios
known as the KS baryonic branch (Papadopoulos and
Tseytlin, 2001; Gubser et al, 2004), which is a one-
parameter family of backgrounds obtained by deforma-
tions of the original KS solution (Butti et al., 2005; Dy-
marsky et al., 2006; Benna et al., 2007). These SU(3)
structure backgrounds are all expected to have a dual
field theory description with vaccum expectation values
of baryonic operators turned on. The MN background,
however, does not share this property (Gubser et al.,
2004). In terms of the interpolating solution of Butti ef
al. (2005), it can only be reached in an infinite limit of
the parameter space and can therefore not be inter-
preted as on the same “branch” as the KS solution.'!
Although we have illustrated various similarities be-
tween the KS cascade and Vafa’s geometric transition,
one should keep this subtle distinction in the UV behav-
ior in mind.

2. Vafa’s duality chain

We summarize the superstring picture of the conifold
transition: In type ITA we start with N D6-branes on the
§3 of the deformed geometry and find as its dual N units
of two-form flux through the S? of the resolved conifold.
In the mirror type IIB, N D5-branes wrapping the S? of
the resolved conifold are dual (in the large N limit) to a

We thank I. Klebanov for discussion on this point.
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G2 holonomy f G2 holonomy
manifold op. > manifold
in M-theory in M-theory
lift descent
ITA D6-branes on cometric IIA fluxes
deformed %ransition on resolved
conifold conifold
mirror mirror
IIB D5-branes on . IIB fluxes
geometric
resolved transition on deformed
conifold conifold

FIG. 5. Vafa’s duality chain. Following the arrows through a
series of mirror symmetries and a flop transition, we can verify
the geometric transition as conjectured for IIA and IIB.

background without D-branes but with the three-form
flux turned on. The geometry after transition is given by
the deformed conifold with blown up S°. In both cases
we have to identify the complex structure modulus of
the deformed conifold with the Kéhler modulus of the
resolved conifold or, roughly speaking, the size of the S°
with the size of the S2.

The type ITA scenario can be lifted to M-theory where
the deformed and resolved conifolds are related by a
flop transition. In seven dimensions both manifolds stem
from a manifold with G, holonomy and symmetry
SU(2) xSU(2) X U(1). Topologically, the manifold in
question is equivalent to a cone over §°x § that has a
U(1) fiber on which one can reduce to d=6. One can

either reduce on a fiber that belongs to an S* of vanish-
ing size (this yields a six-dimensional manifold with

blown up $3, the deformed conifold) or on a fiber that

belongs to an $? of finite size (this gives a finite size $%in
six dimensions, the resolved geometry).'” In other
words, both scenarios are related by an exchange of the

finite-size S with the vanishing S3 which is called a
“flop transition.”

A cone over §3X $3 is given by R* X §3X §% which is

equivalent to R*X §3. The topology of this manifold can
be viewed as (Atiyah et al., 2001)

(d +ud+ i +ul) - (VI +v3+0v5+0)) =V, (2.56)
with u;,v; € R. For V>0 the blown up S? is described by
the u;, and the v, correspond to R*. For V <0 their roles
are exchanged. The flop transition can then be viewed as
a sign flip in V or as an exchange of the two S°. In the
presence of G flux in M-theory the volume V can be
complexified to V+iG, so that even for the transition
point V=0 the singularity is avoided.

Using these arguments, one can follow a “duality
chain,” as depicted in Fig. 5, which leads from D-branes

PFurthermore, modding out by a Z, in both cases gives a
singularity corresponding to N D6-branes or a nonsingular so-
lution with N units of flux, respectively (Atiyah et al., 2001).
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in IIB through mirror symmetry to IIA, then via an
M-theory flop to the closed string side in IIA and back
to IIB via another mirror symmetry. Precisely this chain
was followed by Becker er al. (2004, 2006); Alexander et
al. (2005); Knauf (2007) and will be reviewed in Sec. III.

D. Brane constructions

We saw in Sec. II.A.1 that finding gauge theories on
singular geometries like the conifold can be difficult. A
more intuitive way to arrive at these gauge theories is to
T-dualize the type IIB picture of branes on a conifold
along a direction perpendicular to the branes. As we
shall see, this gives type IIA configurations of branes
suspended between orthogonal NS5-branes, from which
the gauge theory on the branes can be easily deduced as
in the Hanany-Witten setup (Hanany and Witten, 1997).
In addition, lifting these IIA configurations to M-theory
allows one to reproduce the dualities conjectured via
gauge or topological string theory arguments in the KS
and Vafa setups, respectively. This was done by Das-
gupta et al. (2001) for the geometric transition [see also
Hori et al. (1998); Dasgupta, Oh, and Tatar (2002)], and
by Dasgupta, Oh, et al. (2002) for the Klebanov-Strassler
model [following Dasgupta and Mukhi (1999a, 1999b)].
In both cases use was made of Witten’s MQCD (an
M-brane description of QCD) methods (Witten, 1997a,
1997b) based on lifting to M-theory configurations of
D4-branes suspended between NSS5-branes.

In this section we discuss first the brane configuration
dual to string theory on conifold geometries and then in
turn the relevant brane configurations dual to both the
Klebanov-Strassler and the geometric transition (as em-
bedded in type IIB) setups. In the brane configuration
picture, and even more so in the pictures lifted to
M-theory which allow us to track the duality in each
case, we see similarities between the two arguments.
The brane configuration picture is useful for understand-
ing several aspects of the theories in a different way, and
for highlighting deep similarities between the two sce-
narios. However, it has some limitations which should be
kept in mind and which we mention as they arise.

1. The T-dual of a conifold

As shown by Bershadsky et al. (1996) and Hanany and
Urangam (1998), a conifold can be described by two de-
generating tori varying over a P! base. When two
T-dualities are performed, one over a cycle of each
torus, the conifold gives rise to a pair of orthogonal NS5-
branes. A configuration of orthogonal NS5-branes is
also found upon performing a single T-duality along the
U(1) fibration of the conifold, as shown explicitly by
Dasgupta and Mukhi (1999a). To see this, consider the
conifold equation in the form given in Eq. (A24):

(2.57)
4, .5

xy —uv =0.

We can define coordinates in such a way that x=x"+1x
and y=x%+1x’. Here we map 6,, ¢, to x*,x> and 6,, ¢, to
x8,x°. Following the literature, we make the identifica-
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tions x°= ¢ and x”=r for the rest of this section. We per-
form the T-duality along x°. Our reason for adopting this
change of coordinates is that in the dual brane picture
x*,x°,x%, and x” are no longer compact directions.
Upon T-dualizing, the NS5-branes will arise on the
degeneration loci of the fibration (Bershadsky et al,
1996; Uranga, 1999). The fiber degenerates at the coni-
fold singularity, where x=y=u=v=0. A convenient
choice of coordinates allows us to take the fiber as de-

generating to two intersecting complex lines given by

xy=0. (2.58)

In the T-dual picture this curve then defines the intersec-
tion of the two NS5-branes: one extends along x (y=u
=p=0) and the other along y (x=u=v=0). For the de-
formed conifold,

Xy —uv = p?, (2.59)

xy can no longer be zero at the tip but is given by

xy = u?. (2.60)
This gives the intersection curve of the NS5-branes in
the corresponding T-dual picture. In both cases x® and x’
parametrize possible separations between the NS5-
branes. If it is present an NS-NS B field on a vanishing
two-cycle in the conifold picture maps to separation in
x° of the NS5-branes (Karch et al., 1998), while a finite S2
implies a separation in x’ given by the resolution param-
eter.

Dasgupta and Mukhi (1999a, 1999b) and Uranga
(1999) exploited this T-duality for the construction of a
type IIA brane configuration dual to the Klebanov-
Witten and Klebanov-Strassler setups, further studied by
Dasgupta, Oh, and Tatar ef al. (2002) and Dasgupta, Oh,
et al. (2002) where Witten’s MQCD methods were used
to track the conjectured geometric transition via the
M-theory description. This was also applied to Vafa’s
geometric transition [see also Dasgupta et al. (2001)]. A
discussion of the general approach was given by Karch et
al. (1998) where the references for several key results
are provided.

2. The Klebanov-Strassler setup via brane configurations

We begin with the Klebanov-Witten setup and then
proceed to the Klebanov-Strassler scenario and discuss
what becomes of the M fractional D3-branes under the
T-duality. In Sec. II.A.1 we argued that while an N=1
supersymmetric theory with U(1) gauge group repro-
duced the parametrization of the conifold given by the
fields A;,B; and Egs. (2.8) and (2.9), the gauge theory
whose moduli space corresponded to a single D3-brane
on the conifold had gauge group U(1) X U(1) [which
generalized to U(N) X U(N) for N D3-branes]. The ap-
pearance of two gauge group factors can be understood
by T-dualizing the conifold setup in a direction perpen-
dicular to the branes. Under a T-duality along # or x° a
conifold will give rise to a pair of NS5-branes (Dasgupta
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NS5 NS 5
X y

FIG. 6. The IIA brane configuration dual to the Klebanov-
Witten setup.

and Mukhi, 1999a)."* The presence of D3-branes as in
the Klebanov-Witten setup yields a configuration of D4-
branes stretching between these NS5-branes, along the
T-dual direction x°, as shown in Fig. 6.

We label one NS-brane NS5 and the other NS5'. In
Fig. 6, the 0123 and radial directions are suppressed. The
branes are orthogonal: NS5 extends in x and NS5’ ex-
tends in y. The NS5-branes are much heavier than the
D4-branes because they are infinite in all of their world-
volume directions and so they can be treated classically
(Hanany and Witten, 1997; Witten, 1997b). We study the
gauge theory on the D4-branes where the NS5-branes
are considered as fixed and the positions of the D4-
branes parametrize the moduli space of the theory. The
D4-branes have only four infinite directions, so the field
theory living on them is effectively 3+1 dimensional. It
is the same as that living on the D3-branes at the tip of
the conifold in the IIB picture.

As should be clear from Fig. 6, the gauge theory is
easily deduced. The configuration preserves four super-
charges, and therefore describes an N'=1 supersymmet-
ric gauge theory on the D4-branes. Gauge fields trans-

forming as (N,N) or (N,N) in the adjoint representation
correspond to open strings ending on the D4-branes be-
tween the NS5-branes, while matter fields transforming

in the bifundamental representations (N ,N) or (N,N)
correspond to strings stretching between D4-branes on
opposite sides of an NS5-brane. The separation of the
NS5-branes in the x% direction is given by the NS-NS
two-form, and is not specified by the geometry.'* Thus
generically the N D4-branes are broken into two seg-
ments by the NS5-branes, and the gauge group is U(N)
X U(N), as claimed in Sec. II.A.1.

13Explicit calculation at the supergravity level by Dasgupta
and Mukhi (1999a) takes the T-dual of the NS5-brane configu-
ration described and does not exactly reproduce a conifold but
something similar, where x*,x° and x%,x° remain two-planes
instead of the required fibered two-spheres. This means that
the SU(2) X SU(2) global symmetry is not directly visible in the
brane construction. Other arguments, coming from the gauge
theory and the fact that this symmetry is regained in the
M-theory lift nevertheless support the geometrical interpreta-
tion given here (Dasgupta and Mukhi, 1999a).

HAs expected, the separation of the NS5-branes is related to
the coupling(s) of the dual field theory.

Rev. Mod. Phys., Vol. 80, No. 4, October—December 2008

For N'=1 supersymmetry (SUSY) the NS5-branes
must be perpendicular. If NS5’ is rotated in the (x,y)
plane so that they are parallel, the gauge theory on the
D4-branes has N'=2 supersymmetry. In this case, the
D4-branes can move in x (the scalars corresponding to
their fluctuations in these directions fit into the adjoint
representation of A/=2). This is no longer true once
there is a relative rotation of the NS5-branes, since any
separation of the D4-branes in x would lead to twisting
of the D4-branes that would break supersymmetry com-
pletely. When the NS5-branes are perpendicular, there
are no moduli for motion of the D4-branes in the direc-
tions of the NSS5-branes. Furthermore, the angle be-
tween the NSS5-branes serves as a SUSY-breaking pa-
rameter. In fact, this angle (6) is related to the mass of
the adjoint chiral multiplets by w=tan # (Barbon, 1997,
Witten, 1997b; Hori et al., 1998). Thus, the adjoints can
be integrated out of the superpotential when the NS5-
branes are perpendicular, and agreement with the
Klebanov-Witten setup is also found at the superpoten-
tial level (Dasgupta and Mukhi, 1999a). On the other
hand, the D4-branes on either side of each NS5-brane
cannot be split from each other, so the bifundamental
fields remain massless. This T-duality therefore allows us
to rederive the gauge theory dual of the Klebanov-
Witten setup.

To study the brane configuration dual to the
Klebanov-Strassler model we need to know how a frac-
tional D3-brane will transform under a T-duality along a
direction perpendicular to it. In a five-dimensional
space-time, D3-branes and fractional D3-branes are do-
main walls (Gubser and Klebanov, 1998; Gubser, 1999).
There is a jump in the five-form flux when one crosses
them, and this is related in AdS compactifications to the
number of branes on which the gauge theory lives. Thus,
crossing a domain wall corresponds to increasing or de-
creasing the rank of the gauge group in the dual gauge
theory. It is easy to see in the brane configuration setup
dual to the Klebanov-Witten scenario that addition of a
single D3-brane will increase the rank of the gauge
group from SU(N)XSU(N) to SUN+1)XSU(N+1).
However, we will soon see that the M wrapped branes of
the KS model map to D4-branes extended only along
part of x° between NS5 and NS5’ (Karch et al., 1998;
Dasgupta and Mukhi 1999b). Thus, fractional D3-branes
function as exotic domain walls, the crossing of which
will take the gauge group of the dual field theory from
SU(N) X SU(N) to SU(N+1)XSU(N). With the pres-
ence of M wrapped D5-branes, the brane configuration
shown in Fig. 7 results.

The action of the T-duality on the M wrapped DS5-
branes of the KS model can be deduced by noting that
the S? they wrap is the difference in the sense of homol-
ogy between the two S%s which form the base of the U(1)
fibration giving T"!, i.e., $2=5%—55, where the first S? is
parametrized by #; and ¢; and the second is param-
etrized by 6,,¢,. The cohomology H? is given by two-
forms which are closed but not exact. Candidate repre-
sentatives of H? are sin 6,d 6, Ad ¢, +sin 6,d 6, And ¢, both



Rhiannon Gwyn and Anke Knauf: Conifolds and geometric transitions 1433

N
M SU(N+M) xSU(N)

N
NS5 NS5~

FIG. 7. The ITA brane configuration dual to the Klebanov-
Strassler setup.

of which live only on the two §? factors in 7%! and are
independent of the U(1) fiber. One might think that
they are exact, since they can be written as
d(cos 0,d ¢ +cos B,dp,), but these expressions are not
globally defined because ¢; is not well defined at the
poles. Dasgupta and Mukhi (1999b) argue that the term
with the plus sign is actually exact, since it can be written
as d(dyr+cos 0;d ¢, +cos 0,dp,) ~de”, where e’ is one of
the five vielbeins and is globally defined, because ¢ ex-
hibits a shift symmetry. Therefore it is the minus term
which is a representative of the second cohomology:

sin 01d01 A d¢1 —sin 02d02/\d¢)2.

This means that the dual object to the domain wall in
the type ITA picture is something that carries a charge
away from the (x*x°) plane and deposits it on the
(x8,x% plane.”” A D4-brane with one end on NS5 and
the other on NS5’ performs this function. Thus an exotic
domain wall maps under this T-duality into a D4-brane
stretched only part of the way along x°.

Next, we use the brane picture to study the gauge
theory on the D4-branes. The coupling constant of the
gauge theory is determined by the distance between the
branes in x° (Karch et al., 1998; Dasgupta and Mukhi,
1999a, 1999b) which is given by the B field and therefore
matches arguments from Secs. II.A.2 and I1.C.1. For our
product gauge group setup,

Y

=1 (2.61)
g] gs

1 a

—=—, (2.62)
gz 8

where g, and g, are the couplings of the two theories, g
is the string coupling, and /g is the circumference of the
x® circle so that a is the separation between the NS5-
branes. We see that it is exactly the presence of the M
fractional branes that breaks conformal invariance: In
the IIA description, a nonzero B function arises in the
gauge theory when the NS5-branes are bent. This occurs
because the end points of the D4-branes on the NS5-
branes introduce a dependence of a on 6;,¢,. Thus, the
positions of the NS5-branes should really be measured

far from the D4-branes. As shown by Witten (1997b), a

SRecall that 6, ¢, map to x*,x°, and 6,, ¢, map to x%,x°. The
U(1) fiber is ¢ which maps to x® and is the direction in which
we perform the T-duality.
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N+M =

IN+N+M=N-M

FIG. 8. A Seiberg duality transformation in the dual brane
picture. Note that here N=1 and M =2 so in the final picture
two of the branes are actually antibranes (denoted by dashed
lines).

will only have a well-defined limiting value when the
NS5-brane has an equal number of D4-branes on either
side. For the KS brane configuration, this is not the
case—in other words, the branes are bent in r (the only
available direction, suppressed in the figures). This intro-
duces a dependence of a on r, from which one can red-
erive the running of the gauge theory coupling con-
stant(s).

In addition, the duality cascade is also observed in the
brane configuration picture. For an early reference see
Elitzur et al. (1997) and also Uranga (1999). The bending
of the NS5-branes means that, at some point far from
the suspended D4-branes, a will vanish, implying a di-
vergence of one coupling constant. To avoid it one must
move the NSS5-branes, pulling one through the other
around the circle. As NS5’ approaches NS5, the N D4-
branes occupy the entire x°, and the N+ M branes shrink
to zero size. When NS5’ is pulled through NS5, the N
branes double up, while the branes that were originally
between NS5 and NS5’ regrow with the opposite orien-
tation as antibranes. These can partially annihilate the
2N branes, leaving N—M branes on the expanding seg-
ment, as shown in Fig. 8. The system now has a dual
description in terms of a gauge theory with gauge group
SU(N-M) X SU(N), so that moving the branes through
each other corresponds to performing a Seiberg duality.

The branes continue to be bent, so one is led to repeat
the motion around the circle. As in the duality cascade
described in Sec. II.A.3, the process continues until only
the NS5-branes with M D4-branes stretching between
them are left and the gauge group is just SU(M).

To see how this configuration maps to the deformed
conifold, we have to lift it to M-theory. This allows us to
study the nonperturbative dynamics of the theory. The
first such analysis was performed by Witten, for the case
of A/'=2 theories (Witten, 1997b), but it was generalized



1434 Rhiannon Gwyn and Anke Knauf: Conifolds and geometric transitions

to N'=1 by Brandhuber et al. (1997); Witten (1997a); and
Hori et al. (1998) and it is these results which apply most
directly to our case (in particular elliptic A'=1 models).
Both D4- and NSS5-branes map to Mb5-branes in
M-theory, with the D4-branes corresponding to MS5-
branes wrapped on the eleventh dimension x'°. We de-
fine

6
t= exp(— % + zxm),

where R is the radius of the eleventh dimension.'® In the
case that no fractional branes are present, the D4- and
NSS5-branes lift to a configuration with three separate
components. The fully wrapped N D4-branes become
M5-branes wrapping x° and x'° or t. These N toroidal
branes are described by the equations

(2.63)

KN =0,

yN=0, (2.64)

which have to be supplemented with the equations de-
scribing the lifted NS5-branes: y=0, =1 (NS5) and x
=0, t=e ¥R (NS5’). For the brane dual picture at the
bottom of the cascade when the D3-branes have cas-
caded away and the gauge group is just SU(M), the M
suspended (fractional) branes join with the NS5-branes
to become a single object in the M-theory description
(Dasgupta and Mukhi, 1999b). This introduces dynami-
cal effects into the model. This setup for pure N=1 SYM
was studied by Witten (1997a), but in the limit where
x%— . The NS5-branes by themselves would lift to xy
=0, which describes the conifold. The Klebanov-
Strassler configuration of NSS5-branes and fractional
branes lifts to an M5-brane described by Dasgupta, Oh,
et al. (2002) as

xy ={¢,

t=xM, (2.65)

where { e C is some complex parameter. If we now try to
continue the cascade by shrinking the distance x° be-

tween the NS5-branes, we find t:e”‘w, i.e.,  now param-
etrizes a circle. The embedding of the M5-brane into
(x,y,t) must be holomorphic in order for SUSY to be
preserved but as there is no nonconstant holomorphic
map into S, r must be constant. Then Eq. (2.65) be-
comes

xy =¢,

t=t,. (2.66)

This object is exactly the lifted deformed conifold dual
described by Eq. (2.60). The appropriate RR flux arises
from the usual one-form one obtains by dimensional re-

%For our case we should keep in mind that ¢ is not periodic in

x% so we should only use it for a finite range of values.
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FIG. 9. The ITA brane configuration dual to the Vafa setup.

duction of the M-theory lift to ITA on a twisted circle.
The flux is then T-dualized to F; in IIB.

3. The Vafa setup via brane configurations

The duality put forward by Vafa was studied from the
brane configuration point of view by Dasgupta et al.
(2001), Dasgupta, Oh, and Tatar (2002), Dasgupta, Oh, et
al. (2002). We begin with the IIB embedding setup, in
which N D5-branes wrap the finite S of a resolved co-
nifold. Under a T-duality in x%, this maps to a IIA con-
figuration of N D4-branes stretching between two or-
thogonal NS5-branes, similar to the brane configuration
dual of the KS s‘f:tup.17 There are two differences be-
tween the KS and Vafa brane configuration duals. The
NS5-branes in the Vafa setup are also separated in x,
with the separation in x” given by the size of S at the tip
of the conifold, the resolution parameter. More pre-
cisely, the two NS5-branes will be separated along z
=x%+1x” since B, controls the separation in x° (Dasgupta
et al., 2001). In the IR limit, the separation in x® will be
negligible. In addition, the direction along which the D4-
branes stretch between NS5 and NS5’ is noncompact, as
shown in Fig. 9.

Vafa’s geometric transition duality as expressed in the
type IIB embedding can be seen directly in the ITA
brane description (Dasgupta et al., 2001). The easiest
way to track it is “backwards,” beginning with the final
IIB picture of a deformed conifold with fluxes and no
branes and asking what its T-dual (along x°) is. Then we
will shrink the S° to zero size and blow up S?, both in the
ITA brane configuration, and finally T-dualize back to
IIB to find the resolved conifold with wrapped DS5-
branes. Note that the orthogonal NS5-branes described
as T-dual to type IIB string theory on a singular conifold
in Sec. I1.D.1 are coincident in x° and x’. The T-dual of
a deformed conifold consists of two NS5-branes inter-
secting on a curve xy=u’. However, when there is an
RR flux F; through the S° in the IIB picture, the T-dual
will be modified. Since F3 has one component in the
direction of the T-duality (¢ or x°), the IIA picture will
have a two-form flux F, in the x,y directions.'® The geo-

This should not be confused with the mirror ITA embedding
of Vafa’s, in which D6-branes wrap the S3 of a deformed coni-
fold. Any reference to T-duals or T-dualities in this section is to
those along ¢ or x® which take us between the IIB embedding
setup described above and the ITA brane configuration dual
shown in Fig. 9.

®This can be seen from F3=Nw;, where ws is given by Eq.
(2.16).
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metric transition must involve shrinking the S° to zero
size. Then x and y describe vanishing spheres. This im-
plies an infinite flux per unit area, which singularity is
resolved by the creation of a D4-brane. Here F,=dA
couples to the world volume of the NS5-brane through

fAA*d¢:fF2AC4’

where ¢ is one of the periodic scalars on the world-
volume of the NS5. The correct SUSY-preserving source
for C,4 in this case is a D4-brane, which intersects NS5
and NS5’ in the requisite four dimensions. Since we
complete the geometric transition by blowing up the
two-sphere, it must stretch between the NSS5-branes.
Here we see the fundamental connection between the
KS and geometric transition pictures most clearly. The
two directions available for the D4-brane to stretch
along are x® and x’. Growing it in the x° direction only
results in the pretransition Klebanov-Strassler IIA brane
setup, while growing it in the z=x%+1x’ direction gives
exactly the brane configuration dual of the resolved co-
nifold with D5s wrapping the S?. We are able to begin
with the deformed conifold picture in type IIB, T-dualize
it to type IIA and find after the relevant transitions the
T-dual either of the KS picture or of the Vafa picture,
depending on whether the direction in which the dual
NS5-branes are separated is compact or not.

The geometric transition can also be followed in
M-theory (Dasgupta et al., 2001), where the argument
now runs in the opposite direction to that of the previ-
ous paragraph. The pretransition configuration of D4-
branes stretching between orthogonal NS5-branes lifts
to a single M5-brane with a complicated world-volume
structure given by R'3 X3, where ¥ is a complex curve
defined by

(2.67)

xy =¢,

t=xV. (2.68)

This time we shrink S2 to effect the transition, and find
again that ¢t must parametrize a circle and is therefore
constant. This implies xVyN=¢V, ie., 2 —3,, where
t=ty and

(2mk>
xy = {exp .

N

We obtain N degenerate curves which are no longer the
M-theory lift of D4-branes, but correspond to a closed
string background, the deformed conifold. The main dif-
ference between the pretransition setups in M-theory is
that the KS MS5-brane is wrapped on a torus param-
etrized by x%+1x!'” while the M5-brane of the Vafa setup
is wrapped on a cylinder x”+1x'°, at least in the IR.

III. SUPERGRAVITY TREATMENT AND NON-KAHLER
DUALITY CHAIN

In the last section we reviewed three arguments for
geometric transition: one based on gauge theory, one on
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topological strings, and the third on brane constructions
and MQCD methods. The “duality chain” derived by
Atiyah et al. (2001); Vafa (2001), see Fig. 5, suggests a
seemingly straightforward way to verify geometric tran-
sitions on the supergravity level. Exploiting the well-
known fact that mirror symmetry on Calabi-Yau
manifolds (CYs) can be realized (in a certain limit) by
three T-dualities, see Strominger-Yau-Zaslow (SYZ)
(Strominger et al., 1996), and that a T-duality for a given
metric and set of background fields is performed by ap-
plying Buscher’s rules (Buscher, 1987, 1988), one should
be able to explicitly formulate the supergravity solution
corresponding to all links in the above chain. Proving
more subtle than naively expected, this analysis was nev-
ertheless carried out (Becker et al., 2004, 2006; Alex-
ander et al., 2005; Dasgupta et al., 2006; Knauf, 2007) and
we review it here.

The issues that make the supergravity treatment non-
trivial are the following.

e Resolved and deformed conifolds are only approxi-
mately mirror to each other. Whereas the resolved
conifold does indeed admit a 7° fiber for T-dualizing,
the deformed conifold possesses less symmetry. It is
therefore only possible to recover a deformed coni-
fold mirror in the large complex structure limit. This
was discussed by, e.g., Knauf (2007) in Chap. 2.

e Taking the back-reaction of RR and NS-NS fluxes
(or D-branes) into account changes the IIB super-
gravity solution. Instead of D5-branes wrapping a re-
solved conifold, the manifold is only conformally a
Calabi-Yau manifold. The manifold acquires a warp
factor h(r), depending on the radial direction. Strictly
speaking this spoils the SYZ argument, but this prob-
lem can be overcome by working in the “local limit,”
i.e., restricting the metric to a patch over which /(r)
does not vary too much. This approach is inherent to
all references (Becker et al., 2004, 2006; Alexander et
al., 2005; Dasgupta et al., 2006; Knauf, 2007) and we
will comment on its shortcomings.

e We have seen that a supergravity solution like the
Klebanov-Strassler model (with fractional branes)
necessarily contains nontrivial NS-NS flux. Assuming
the SYZ argument still holds and performing
T-dualities along the isometry directions of the re-
solved conifold, the metric and the B field get mixed.
This phenomenon can be used to argue that the mir-
ror of a CY in the presence of NS-NS flux is no
longer CY and it was postulated that these manifolds
are half-flat (Gurrieri et al., 2003).19 It has now been
established (Grana et al., 2004a, 2004b, 2005) that the
most general A'=1 SUSY-preserving backgrounds
are generalized CYs as described by Gualtieri (2003);

YIn contrast to a CY, which is characterized by a closed fun-
damental two-form J and a closed holomorphic three-form
=0, +iQ_, half-flat manifolds only obey d(/AJ)=0 and dQ_
=0, and are therefore a special class of non-Kéhler manifolds
(dJ #0).
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G2 structure a G2 structure
with G-flux in op > with G-flux in
M-theory M-theory
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A

ITA D6 and O6 on cometric ITA fluxes on
“non-Kahler %ransition “non-Kahler
deformed” resolved”
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1IB fluxes
on Kahler
deformed

IIB D5 and
D7/07 on
Kéhler resolved

geometric
transition

FIG. 10. The modified duality. The backgrounds in ITA have to
be replaced by non-Kéhler versions of the deformed and re-
solved conifolds and the M-theory lift does not possess G,
holonomy anymore.

Hitchin (2003); they contain half-flat manifolds as a
subclass. Even if we do not start with a simple torus,
we encounter the same phenomenon of twisted fibers
and the ITA solutions in Fig. 5 have to be replaced by
non-Kihler backgrounds.

e All that said, there remains another problem: no
SUSY-preserving background for D5-branes on the
resolved conifold is known (without other ingredi-
ents). The one derived by Pando Zayas and Tseytlin
(2000) was shown by Cvetic et al. (2003) to break
SUSY completely; we review the argument in Ap-
pendix A.5. This problem was avoided by Becker et
al. (2006); Knauf (2007) by constructing a IIB solu-
tion from F-theory, which in addition to the DS5-
branes contains D7 and O7 planes. Note that this
subtlety is not visible in the local limit and does not
alter the calculations by Becker et al. (2004); Alex-
ander ef al. (2005) much. Nevertheless, the whole
analysis with all fluxes that are consistent with this
orientifold construction was repeated by Knauf
(2007).

To treat these subtleties simultaneously, we first re-
view mirror symmetry d la SYZ and explain the local
limit. After that we describe the orientifold setup used
by Becker et al. (2006); Knauf (2007) and then discuss
the whole duality chain, as depicted in Fig. 10.

A. Mirror symmetry between the resolved and deformed
conifolds

The resolved and deformed conifolds describe asymp-
totically a cone over S?X S°, but the singularity at r=0 is
smoothed out to an S or S°, respectively. The Ricci-flat
Kéhler metric of the resolved conifold was derived by
Candelas and de la Ossa (1990); Pando Zayas and Tseyt-
lin (2000):

ds’ =y di* + %fz(daz+ cos B;d e + cos brdhy)?

7+ 4a?

+ %/(déf+sin2 0,d¢?) + (d6s

+sin? G,dd3), (3.1)
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where (¢, é,») are the usual Euler angles on S2, zZ
=0---4is a U(1) fiber over these two spheres, and ¥ is
a function® of 7 that goes to zero as 7— 0. The constant
a is called the resolution parameter because it produces

a finite size prefactor for the (¢, 6,) sphere at 7=0. This
metric clearly has three isometries related to shift sym-

metries in the coordinates zz, &1, and ¢,. These are the
appropriate Killing directions as the metric was con-
structed to be invariant under SU(2)XSU(2) X U(1)
(Candelas and de la Ossa, 1990); see Appendix A.l and
A.3 for a brief review.

The deformed conifold metric, on the other hand, is
given by (Minasian and Tsimpis, 2000; Ohta and
Yokono, 2000; Papadopoulos and Tseytlin, 2001)

2

—————— + (diy+ cos 0,d
fz(l—ﬂ4/f4) ( lrb 1 ¢1

dsgef: f|:
+ cos ézdéz)z} + %[(sin Edd’ +de)
o W o
+ (sin Bd s +d&B)] + F[COS W(d6,do,
r

— sin 6, sin yd p,d ) + sin Y(sin 6,dp,d 6,

+sin 6,ddrd 6;)], (3.2)

with the deformation parameter u and a similar function
WF). [’ can be read off from Eq. (A19). This metric ex-

hibits the same structure of a 1} fibration over two
spheres, but there are additional cross terms in the last
two lines. We see that the U(1) symmetry associated

with shifts /— i+k is absent. This is not a peculiarity of
our coordinate choice but an inherent property of the
deformed conifold. As discussed in Sec. II.A.2, the de-
formed conifold breaks the U(1) symmetry of the singu-
lar conifold (which the resolved conifold also exhibits).
Clearly, the manifolds cannot be mirrors of each other
in the SYZ sense: one possesses a 7° fibration and the
other one does not. From the point of view of cohomol-
ogy, mirror symmetry implies an exchange of odd and
even cohomologies; more precisely, h'?«hb!. This is
expressed in the exchange of the blown-up two-cycle of
the resolved conifold with the blown-up three-cycle of
the deformed conifold. However, Aganagic et al. (2000);
Hori et al. (2000), made an attempt to find the mirror of
the resolved conifold, and the resulting manifold was
found to differ from the deformed conifold in that some
coordinates are elements of C* instead of C. The mirror
manifold can be described by x;+x,+xxe'+1-uv=0,
where x;e(C* and u,veC and ¢ is the size of the
blown-up $? in the original resolved geometry. The mir-
ror symmetry between the two manifolds only becomes

The function y is related to the Kéhler potential Fas ¥y
=72 3F/or?, and similarly for ¥ below, see Eq. (A11).
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exact in the limit where the size of the $? and S° shrinks
to zero.

The way to realize mirror symmetry via T-duality even
in the absence of isometry directions is to go to the large
complex structure limit (Strominger et al., 1996) that
takes us away from the singular fibers. We can still apply
SYZ if the base is large compared to the 7° fiber. If we

identify (7, 6;,6,) as the base coordinates and (¢, ¢, , b,)
as the coordinates of the 73 fiber in the resolved metric
(3.1), we can T-dualize along the latter.

It was furthermore shown by Becker et al. (2004) that
the large complex structure limit has to be imposed “by

hand,” i.e., the coordinates (91,52) receive a large boost.
This would be a nontrivial manipulation of the metric
that is not guaranteed to preserve the Calabi-Yau prop-
erty, which is why the following analysis will be pre-
sented in local coordinates in which this boost amounts
to a coordinate redefinition. See Chap. 2 of Knauf (2007)
for details; we review the results.

We restrict our analysis to a small neighborhood of

(ro,(2) (1) .(¢2),(61),(62)) by introducing

- 2z
r=r0+ ,? w_<z>+ /_, b
VY Yo
26,
D1 =(D1) + = . 0 =(6)+ =,
V3o sin6y) V%
- 2y
b= () + ,
g g \/ (% + 4a®) sin{6,)
20
02 - <02> + /—22, (3.3)
V(% +4a”)

where ¥, is constant, namely, #(7) evaluated at 7=r,. The
coordinates (r,z,x,y,6;,6,) describe small deviations
from these expectation values and we call them “local
coordinates” henceforth. In these local coordinates the
metric on the resolved conifold takes a simple form (in
lowest order in local coordinates):

ds® = dr* + (dz + Adx + Bdy)?

+(dx*+d@&) + (dy* + d &), (3.4)
where we have defined
A=1 @"0 cot(6y),
Yo
B =\ —— 1o cot(6). (3.5)
(7o + 4a?)

Note that at lowest order in local coordinates these are
simply constants. Dasgupta et al. (2006) showed that at
linear order in r the 6, dependences can be resummed to
give precisely cot 6; instead of cot(#), but for illustrative
purposes we stick to the simplest case of lowest order in
local coordinates in this paper. For later convenience we
define
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a=(1+A%*>+B>»7. (3.6)

The metric (3.4) is easily T-dualized along x, y, and z
(which correspond to the former isometry directions
W, ¢y, d,) with the help of Buscher’s rules (Buscher, 1987,
1988). To illustrate the large complex structure limit,
consider again Eq. (3.4), which can be written as

ds®=dr* + (dz + Adx + Bdy)® + |dx,* + |dx,*,  (3.7)
with the two tori
Xmde+ Tldel, dXdey‘i‘ 7'2d02. (38)

In Eq. (3.4) the complex structures are simply 7 =n=i.
Note that these tori are local versions of the spheres in
Eq. (3.1), since locally a sphere resembles a degenerate

torus.”! The large complex structure limit is then given
by letting
n—i—f, m—i—f, (3.9)

with real and large f;,. With the choice fi=fr=ale one
recovers the mirror metric in type ITA [taking ¢ —0 and
rotating the (y, 6,) torus—see Sec. II.B of Knauf (2007)]

di? = dr* + a”}(dz — aAdx — aBdy)? + a(1 + B?)(dx*
+d6) + a(l + A?)(dy* + d6B) + 2aAB[cos(z)
X(d6,d 0, — dxdy) + sin(z)(dxd 6, + dyd 6,)],

(3.10)

which matches the local limit of a deformed conifold. To
see this, simply rewrite Eq. (3.2) in local coordinates
similar to those of Eq. (3.3) (but A and B will differ).
There is one subtle difference, though: the two spheres
(tori) parametrized by (x,6;) and (y,6,) are not of the
same size as in the CY metric (3.2). Knauf (2007) dis-
cussed how the mirror symmetry becomes exact in the
limit where the resolution and deformation parameters
approach zero, as expected by Hori ef al. (2000); but
since this means having vanishingly small two-or three-
cycles (“close to the transition point”), this is a regime
where the base cannot be large compared to the 72 fiber,
i.e., we cannot expect SYZ to work. This is why the large
complex structure boost by hand became necessary.

B. IIB orientifold and resolved conifold

The SL(2,7) symmetry of IIB string theory has been
proposed to have a geometrical interpretation in terms
of F-theory (Vafa, 1996). Consider an elliptically fibered
Calabi-Yau fourfold K which is a toroidal fiber bundle
over a base B. Even though K is a smooth manifold,
there will be points in the base where the fiber becomes
singular and its complex structure parameter 7 can have
nontrivial monodromy around these points. An F-theory
compactification on K refers to a compactification of
type I1IB on B, where the IIB axion-dilaton \ = y+ie~? is

2The appearance of tori instead of spheres is also consistent
with the dual brane pictures as described in Sec. I1.D.



1438 Rhiannon Gwyn and Anke Knauf: Conifolds and geometric transitions

identified with the geometrical parameter 7(Vafa, 1996).
This leads to orientifolds in IIB (Sen, 1996, 1997); see
Dabholkar (1997) for a detailed review. In our case, the
base B is an orientifold of the resolved conifold*

B

m, (3.11)

where F; indicates the left-moving fermion number, Q
stands for the world-sheet parity operator, and I, is a
target space parity that inverts both coordinates of the
toroidal fiber.

In general, 7 varies over the base resulting in a non-
constant field \. However, there are possible scenarios
that allow for a constant solution of N\ (Dasgupta and
Mukhi, 1996; Sen, 1996, 1997). These solutions are char-
acterized by 24 singularities in the function describing
the elliptic fibration. In the special case where these sin-
gularities appear at four different locations with a mul-
tiplicity of six, A is constant. The singularities are inter-
preted as 24 seven-branes in F-theory and give rise to
four orientifold seven-planes with four D7-branes on top
of each (to cancel their charges), located at the four ori-
entifold fixed points.

If we now wrap D5-branes on the S? of the resolved
geometry, we obtain an intersecting D5/D7-brane sce-
nario on a IIB orientifold. This preserves supersymme-
try because it can form a bound state (Gava et al. 1997).
The bound-state metric was derived by Dasgupta et al.
(2007) and agrees with the local limit used here. We will
not make explicit use of the bound-state description in
order to keep this section illustrative. The metric of the
base B has to resemble the resolved conifold locally, but
globally it will also contain singularities that correspond
to the 7-branes. Adding D5-branes creates warp factors.
To incorporate these effects we make the following ge-
neric ansatz for the base:

ds® = ho(F)di* + hy(F)(d i + cos 0,dp; + cos brd h,)?
+hy(F)d @ + hy(F)sin® 6,d ¢’
+ hy(F)d 65 + hs(F)sin® 6,d d3, (3.12)

which allows, in particular, for the two spheres to be
asymmetric and squashed. This ansatz is motivated by
the idea that in the absence of D-branes and fluxes we
should recover the Kihler metric. Also, for 7— o the
warp factors should approach 1, so we suppress any 6, ,
dependence in the functions 4; although it would not
influence the following local analysis. We again define
local coordinates and absorb the prefactors 4;(7), which
gives the same simple form of the local metric

ds* = dr* + (dz + Adx + Bdy)?
+(dxX+d6) + (dy* + d ),

where we kept the names A and B for the constants, but

(3.13)

22B will not be a Calabi-Yau threefold anymore, since K is a
Calabi-Yau manifold, but it is still Kidhler (Becker et al., 2006).
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they are now more generically defined. Apart from this
redefinition of A and B, the mirror symmetry analysis
will be completely unchanged from Sec. III.A. The mir-
ror is then given by Eq. (3.10), which is the local limit of
a deformed conifold. We show shortly the consistency of
this construction with an orientifold in IIA.

We need our IIB background to be invariant under
the orientifold action, which is given by Q(-1)F LI;;. Since
the IIB background is invariant under Q(-1)fZ, we re-
quire the metric to be invariant under space-time parity
I;; of the two coordinates x; and x; over which the fiber
degenerates. Furthermore, we require the IIA orienti-
fold metric that results after three T-dualities to re-
semble the deformed conifold. This severely restricts the
possibilities for x; and x;.

The choice we adopt is that the F-theory torus is fi-
bered nontrivially over the two-torus (x, ;). This is ac-
tually the only choice that preserves all the symmetries
we require (Becker er al., 2006). The D5-branes are
wrapped on the two-torus (or sphere) given by (y,6,)
[recall from Eq. (3.1) that this is the sphere that remains
finite as 7— 0]. This means that under three T-dualities

T ’

xyz
1IB on —_—.
Q(_ 1)FLIyz 0,

— —— 1IA
Q=D o
We find the following system of D-branes and orienti-
fold planes in type 11B:

D5: o 1 2 3 - - - - 'y 6

D7/07: 0 1 2 3 r z - — y 6

which turns after three T-dualities along x, y, and z into IIA
with

De6: o 1 2 3 - z x - - 6
D6/06: 0 1 2 3 r - x - - 6

One can see that the metric (3.13) is indeed invariant under
1.y, (remember that A contains cot(6;), so it is odd under this
parity) and the mirror will be symmetric under Iy, after we
impose some restrictions on the B-field components.

Note that the D7-branes extend along the noncom-
pact direction r. A similar brane configuration on the
singular conifold was considered by Ouyang (2004), but
it was not constructed from F-theory. ? It was shown
there how strings stretching between D7- and D5-branes
(or D6 and D6) give rise to a global symmetry. It is not a
gauge symmetry because of the large volume factor as-
sociated with the D7-branes extending along the non-
compact direction r. We call the D7- or D6-branes that
originate from F-theory “flavor branes” to distinguish
them from the DS5- or D6-branes that carry the gauge
theory.

“This analysis has recently been extended to the resolved
conifold (Dasgupta et al., 2008)
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C. Mirror symmetry with NS-NS flux and ‘“non-Kihler
deformed conifold”

Having argued that Eq. (3.4) or equivalently Eq. (3.13)
is the correct local metric for D7/O7- and D5-branes on
the resolved conifold, we now turn to the first link in the
duality chain. As mentioned, the mirror symmetry
analysis from Sec. III.A is changed once we take fluxes
into account. The full RR spectrum that is consistent
with the IIB orientifold was studied by Knauf (2007). We
only focus on the NS-NS sector here, as it alone is rel-
evant for the geometry. It should also have become clear
that we can only present a local analysis here, for two
reasons: (1) The mirror symmetry argument between re-
solved and deformed conifold fails globally; and (2) we
do not know the full F-theory solution, in other words,
the functions 4,(7) in Eq. (3.12) remain unknown.

For the NS-NS flux we make the most generic ansatz
that is consistent with our orientifold, with one excep-
tion: we only allow for electric NS-NS flux [magnetic
NS-NS flux leads in general to nongeometrical solutions
(Hellerman et al., 2004; Flournoy et al., 2005; Hull 2005;
Shelton et al., 2005; Dabholkar and Hull 2006)], i.e.,
B-field components that have only one leg along
T-duality directions:**

ByY® = b5 dz Adby + b dx Adby+ by dy Adb).
(3.14)

In general, the coefficients bzgl, bxgz, and by91 can de-
pend on all base coordinates (r, 6, 6,) to preserve the
background’s isometries.

This B field has nontrivial consequences when we per-
form T-dualities along x, y, and z. We will not merely
find a local version of the deformed conifold, but a
manifold with twisted fibers that is clearly the local limit
of a non-Kéhler version of the deformed conifold.

The reason why mirror symmetry with NS-NS field
gives rise to a non-Kihler manifold is easy to illustrate
in the SYZ picture. T-duality mixes the B field and met-
ric. In the presence of NS-NS flux, Buscher’s rules (Bus-
cher, 1987, 1988) read

~ 1 ~ B

Gy=—, G, =2,
vy Gy, wy by

~ G,G,-B,,B

G = G - Mmy = vy ©my> Vy’
M M ny

B =B _ ByGiy =GBy
y22% mv G s

yy
~ G
B, = Eff (3.15)

ZWwithout loss of generality we do not include components
involving dr since components of the three-form field strength
like dr ndx Ad6; can be obtained from d,b,,(r)dr ndx Ad6;.
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so cross terms in the metric are traded against the cor-
responding components in B, and vice versa. Therefore
the T° fibers acquire a twisting by B,-dependent one-
forms under T-duality that we denote by

dx — dx =dx - bxgzdﬁz,
dy —dy=dy—by,db,,

dz —di=dz—-b,db,. (3.16)
This does not mean that dx, etc. are exact; in general the
B field is nonconstant. Apart from this modification, we
perform the same steps as in Sec. III.A: we boost the
complex structure as in Eq. (3.9) and take the limit
e—0.

Then we find the mirror in ITA to be

ds? = dr* + a”'[d% — aAdi — aBdy ] + a(1 + B?)[d 6]
+di]+ a1 + A?)[d 65 + dy*] + 2aAB cos(z)
X[d91d02 — d)?d)?] +2aAB SlH(Z)[d}?dﬁz

+dyde,], (3.17)

with « defined in Eq. (3.6). We therefore conjecture the
local resolved conifold to be mirror dual to a local non-
Kéhler deformed conifold with twisted fibers that make
this metric inherently non-Kéhler.

In the absence of a B field this is a Ké&hler back-
ground, since in this local version all coefficients in the
metric are constants. With a B-field-dependent fibration
the fundamental two-form will in general no longer be
closed because it will depend on derivatives of b;;. A
more thorough analysis of this geometry was attempted
by Knauf (2007), but it remains somewhat incomplete
because we lack the knowledge of a global background.
Strictly speaking, we only know the metric in a small
patch and have no global information about the mani-
fold. We can, however, make some predictions on what
we expect for the global solution, since supersymmetry
imposes restrictions on allowed non-Kéhler manifolds.

We were able to show that this metric admits a sym-
plectic structure, but we were not able to find a half-flat
structure [with quite a generic ansatz for the almost
complex structure, see Chap. 4 in Knauf (2007)]. This is
not in contradiction with the results from Gurrieri et al.
(2003), where the mirror of a torus was found to be half-
flat. Our IIB starting background is not a Calabi-Yau
manifold; it is at best a conformal Calabi-Yau manifold.
Conformal Calabi-Yau manifolds are complex
manifolds,” and there is ample evidence in the
literature—see, e.g., Chuang et al. (2007); Jeschek
(2004)—that the mirror of a complex manifold is sym-
plectic (which can be half-flat at the same time, but does
not have to be). Furthermore, our background includes
RR flux and therefore has to fulfill different SUSY re-

ZThis is obvious from their SU (3) torsion classes. See, e.g.,
Chiossi and Salamon (2002); Lopes Cardoso et al. (2003).
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quirements than a purely geometrical background, i.e., it
does not lift to a manifold with G, holonomy, as half-flat
manifolds do, but only to one with G, structure.

D. Completing the duality chain

With the metric (3.17) we are now ready to follow the
duality chain through the M-theory flop and back to
type 1IB.

1. M-theory lift

Note that there is no longer any NS-NS flux in our IIA
background since it was completely “used up” under
T-duality and became part of the metric, but there is RR
flux, dual to the RR three- and five-forms of the original
IIB background. This flux means that we have to lift the
ten-dimensional solution on a twisted fiber instead of a
circle and that there will be G flux in M-theory. Becker
et al. (2004) and Knauf (2007) showed that the RR flux
does not change during the flop, so we only consider the
RR one-form potential that enters into the 11-
dimensional metric. This potential can be written as

Cy = Adi - Ayd, (3.18)

where A; and A, depend on the assumptions made about
the IIB RR forms in the beginning. [Recall the defini-
tion of the twisted fibers dx, dy, dZ from Eq. (3.16).] As
usual in the presence of a gauge field C; and dilaton ¢
[which remains unchanged under three T-dualities
(Becker et al. 2004; Knauf, 2007)], type IIA on a mani-
fold X is lifted to M-theory on a twisted circle via

ds%\/l = e‘z"%ds%( + e4¢/3(dx11 + C1)2, (3.19)

with x;; parametrizing the extra dimension with radius
R: x11€(0,27R). In the limit R—0 we recover ten-
dimensional ITA theory. The gauge fields in our case
enter into the metric so that it becomes

ds%w =e293dr? + 2o (dz — aAdx — aBdy)?
+e*B(dxy + AydR — Aydy)? + e 2P [a(1 + B?)
X(d6: + d5?) + a(1 + A>)(d & + dy?)]
+e2?22aAB[cos(z)(d6,d 6, — didy) + sin(z)
X (did 6, + djdoy)]. (3.20)

The two fibration terms in the first line are of special
interest. They are similar in structure, even more so if
one introduces new coordinates ¢; and ¥, via

dZ:dlﬂl —d(/lz and dx11:d¢1+d1//2. (321)

This choice is particularly convenient for performing the
flop.

2. Flop

The metric of all three conifold geometries can be
written in terms of two sets of SU(2) left-invariant one-
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forms; see Appendix A.4. In terms of Euler angles on
two S°s these left-invariant one-forms are given as’

o =cos Pd B + sin Y sin 0d ¢,
05 =—sin Yy d 6; + cos Y sin 6,d ¢y,
o3 =di + cos 61d ¢,

3.1 = cos ¢rd 6, — sin iy, sin 6,d s,
3, =—sin ¢»d 6, — cos i, sin hd¢,,

23 = d(ﬁz — COS 02d¢2. (322)
The Calabi-Yau metrics for resolved and deformed co-
nifolds are written in these vielbeins as (with the defini-

tion =iy — i)

2 2
dS(Zief = AZE (O’i - Ei)z + BZE (G'i + Ei)z
i=1 i=1

+ C2(0'3 - 23)2 + Dzd}’z,

2 2
ds%es = AZE (O-i)z + BZE (Ei)z + C‘-'2((7'3 - 23)2
i=1 i=1

+ D%r?, (3.23)
with the coefficients A, B, etc. determined by Kéhler
and Ricci flatness conditions, see Egs. (A30) and (A19).
This clearly shows that the deformed conifold is com-
pletely symmetric under a 7, that acts as o;<2;
whereas the resolved conifold does not have this sym-

metry since A # B.
Both geometries can be lifted to a G, holonomy mani-

fold, a cone over $3X 83, where S3 describes a sphere

with vanishing size at the tip of the cone, whereas S3
remains finite. As described in Sec. II.C.2, the flop cor-

responds to an exchange $3«< S3. In terms of vielbeins,
the flop simply amounts to an exchange o;+ 2, since
each $3 is described by a set of SU(2) left-invariant one-
forms; but note that this also implies that the U(1) fiber
along which one reduces to d=6 is contained in either o3
or X, i.e., it is given by either i, or ¢, but not by x;
=in+ i, as defined in Eq. (3.21).

This discussion was for Calabi-Yau metrics. The “non-
Kihler deformed conifold” found in Sec. III.C does not
have two S%s of the same size. We therefore need to use

2We follow the conventions of Cvetic et al. (2002a, 2002b),
but our notation differs by ¢, — —d;.
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a more general ansatz. Cvetic et al. (2002a, 2002b)
showed that there exists a one-parameter family of
G,-holonomy metrics (that includes the lift of the re-
solved and deformed conifold527) of the form

ds? = dr? + @’[(31 + £01)? + (34 + £0)?] + D20 + 0B)
+ (25— 03) + (35 + g303)°, (3.24)

where ¢ — i, was identified as the eleventh direction by
Cvetic et al. (2002b), i.e., the limit ¢c— 0 corresponds to a
reduction to ten dimensions. This metric has less sym-
metry than the metric in Atiyah et al. (2001), for which
the flop was discussed. Note that the parameter & de-
scribes an asymmetry between the two S? in a deformed
metric. It seems therefore appropriate to adopt this an-
satz for our purposes.

Of course our metric (3.20) does not describe S X 3
principal orbits. Recall that our coordinates x,y,z are
nontrivially fibered due to the B-field components which
entered into the metric. We can nevertheless adopt the
ansatz (3.24) with a different definition of vielbeins:

0 = COSs id ) + sin Y dx,
oy = — sin ,d 0; + cos P dx,
o3 =diy — aAdx,

31 = oS ihd b, —sin hdy,
3, =—sin ¢»d 6, — cos rdy,

23=dip + aBdy. (3.25)

The flop has to be different from the case considered
by Atiyah et al. (2001), since we do not want to exchange
the roles of ¢; and i, but exchange x;; and z as these
are the naturally fibered coordinates in Eq. (3.20). Fur-
thermore, we have the asymmetry factor & so that our
metric does not exhibit the 7, symmetry o, 2, as the
lift of the Calabi-Yau deformed conifold does. As ex-
plained in Sec. III.C of Knauf (2007), the flop in our
conventions corresponds to

03— 23 03+ 23,
a-i—>2i>

Ei—> f(Ui—zi)7

Withzlé =1,2. This results in the following metric after the
flop:

(3.26)

n particular, Cvetic et al. (2002b) solved the differential
equations for the r-dependent coefficients a, b, c, f, g3, and &
and showed that the resulting Kéhler form looks like that for
the resolved conifold. It was not considered how a flop be-
tween resolved and deformed conifolds can be performed.

%Here we used an explicit gauge choice for the RR one-form:
Ci=—aAdx+aBdy.
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aA?

dS2 — €—2¢/3dr2 + e—2¢/3

B2
e (do; + d?)

1

1+ A?

— aAdtaBdy)? + e*?3(dz — aAdi - aBdy)?,
(3.27)

2413

+e (dH% +dy?) + e 2Ba (dxy,

which can now be reduced along the same x;; to the ITA
background after transition.

3. M-theory reduction

Dimensional reduction on the same x;; does not give
the same metric as before the flop. Instead, we find

dsiia = dr* + €%[(dz = b, d6,) — aA(dx — by d b))
— aB(dy — by, d6))]* + C[d6} + (dx
— b,,d6,)*]+ D[d6; + (dy — b, d6;)*], (3.28)
where the fibration structure is given explicitly as a re-
minder that the original IIB B field is contained in this

metric. We introduce another set of symbols for the met-
ric components giving the spheres:

_aA’B’ 1

C_ b :—7
1+ A2 1+ A2

and o' = CD + o?e**(CB* + DA?) (3.29)

in analogy with the definition of A, B, and « in Egs. (3.5)
and (3.6).

This manifold is non-Ké&hler in precisely the same
spirit as the “non-Kéhler deformed conifold” before the
flop (3.17). Comparing it to Eq. (3.13) shows that it also
possesses the characteristic metric of a resolved conifold
(locally). We therefore call this manifold a “non-Kihler
resolved conifold” and claim it to be transition dual to
the metric (3.17). The latter is a manifold with D6-
branes wrapping a three-cycle, whereas the former de-
scribes a blown up two-cycle with fluxes on it.

4. The final mirror

We can now “close the duality chain” by performing
another mirror which takes us back to IIB. We expect to
recover a Kéhler background similar to the Klebanov-
Strassler model (Klebanov and Strassler, 2000), since we
started with a Kéhler manifold in IIB. In principle the
analysis follows the same steps as when T-dualizing the
resolved conifold from IIB to IIA without NS-NS flux in
Sec. IIILA, only now our starting metric is the non-
Kihler version of the resolved conifold (3.28).

T-dualizing this background along x, y, and z is te-
dious but nevertheless straightforward. See Sec. II1.D of
Knauf (2007) for the details. We observe that the same
mechanism that converted the B field into metric cross

terms now serves to restore b,,, b,y , and b,, as the B
X0 TYo 20
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field and the metric is completely free of any B-field-
dependent fibration. The final IIB metric after transition
is

oy
aoCD

+ agaBCe*?dy? + ay(D + a*B%e*?)

X(dx? + Ld &) + ay(C + a?A%e*?)(dy? + d )
+ 2aga?ABe*cos(z)(d0,d 0, — dxdy)

dstp = dr* + [dz + agaADe*®dx

+sin{z)(dxd 6, + dyd 0,)], (3.30)
where we have introduced the “squashing factor”
C-— 2A2 02
A B (3.31)

- ag(D + a?B%e*?)’

We therefore find that the final IIB metric after the
flop (3.30) is not quite a deformed conifold due to the
asymmetry in the (x,#;) sphere or torus. In the local
version presented above it is, of course, Kéhler (all co-
efficients are constant), but we cannot make any state-
ment about the global behavior. Remember that we do
not have the global metric for our starting background
with D7/0O7- and D5-branes.

The cross terms in the metric (3.28) are now converted
into B-field components using the same mechanism of
Buscher’s rules (3.15). One recovers the B field (3.14) we
started with in IIB before the transition. The same holds
true for the RR flux. The flux does not change under
geometric transition (Becker et al., 2004; Knauf, 2007),
confirming the picture advocated by Vafa (2001).

In conclusion, we have shown that we can construct a
new pair of ITA string theory backgrounds that are non-
Kaihler and deviate from the deformed and resolved co-
nifolds in a precise manner: the 7° fibers are twisted by
the B field. They are related by a geometric transition
because their respective lifts to M-theory are related by
a flop. The IIB backgrounds (3.13) and (3.30), on the
other hand, are Kihler and are also transition dual,
based on mirror symmetry.

IV. DISCUSSION

We have presented a supergravity analysis confirming
Vafa’s duality chain, see Fig. 5, with the inclusion of non-
Kéhler manifolds in type IIA. These manifolds are non-
Kéhler due to a twisting of their fibers by the B field that
is introduced via T-duality. Thus, they should fall into
the classification of T-folds (Hull, 2005), where the tran-
sition functions of a manifold are allowed to take values
in the T-duality group O(d,d;Z) or into generalized
complex geometries (Gualtieri, 2003; Hitchin, 2003).
They are only trivial examples though, as we have only
considered T-duality with a B field of (1,1)-type (also
called “electric”). Thus, our backgrounds are still geo-
metric, i.e., true manifolds rather than T-folds, and their
generalized complex structure is not of a mixed type, but
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purely symplectic [as the IIB background we started
with was complex and it is by now well established that
mirror symmetry with electric NS-NS flux connects com-
plex and symplectic manifolds (Jeschek, 2004; Chuang et
al., 2007)]. A symplectic structure was found in terms of
SU(3) torsion classes; see Becker er al. (2006); Knauf
(2007) for details.

We still lack a global description for these manifolds,
as mirror symmetry between the resolved and deformed
conifolds forced us to adopt a local limit. In addition,
there is no known global description for our IIB starting
background: D5-branes wrapped on the resolution of
the conifold. The Pando Zayas-Tseytlin solution (Pando
Zayas and Tseytlin, 2000) suggested for this case explic-
itly breaks supersymmetry, as explained in Appendix
A.5. We circumvented this problem by viewing the IIB
background as an orientifold stemming from F-theory.
This background contains additional D7-branes and O7-
planes, but allows for a supersymmetric background
with D5-branes. We left the ansatz for the fluxes generic,
as long as they are invariant under the orientifold opera-
tion. It would of course be more satisfying to find a glo-
bal background with all these properties and explicitly
confirm its supersymmetry.

Once we introduce additional D7-branes, one may ask
two questions: Can the D5- and D7-branes form a super-
symmetric bound state? And do these branes introduce
additional symmetry into the dual gauge theory? Both
questions have been answered affirmatively; see Das-
gupta et al. (2007) and Becker et al. (2006), respectively.
Dasgupta et al. (2007) found the metric of a D5/D7
bound state on a resolved conifold geometry exactly, in
the sense that all back-reactions neglected in earlier pa-
pers were taken into account. Difficulties inherent in
solving the equations of motion were circumvented by a
U-duality chain which took as its starting point a D1/F1
bound state or (m,n) string. The result matches earlier
conjectures in certain limits, completing the supergravity
description of the Vafa duality chain starting point as
found from the F-theory setup. The 7-branes from
F-theory lead to a global symmetry group depending on
the special degeneration of the F-theory torus over the
base. Becker et al. (2006) argued the symmetry group to
be SU(2)'®. This was due to the fact that in IIB every
orientifold fixed point contributes four D7-branes giving
rise to an SO(8) that is broken by Wilson lines to
SO(4) X SO(4) =SU(2)*. This is consistent with the ITA
orientifold that contains eight fixed points, each accom-
panied by two D6-branes. The symmetry group gener-
ated by eight stacks of D6-branes is therefore SO(4)8
=SU(2)'. Dasgupta and Mukhi (1996) showed that one
can even construct the exceptional gauge groups Eg, E,
and Ejg, which are of particular interest for grand unified
theories (GUTs). The D7-branes do not give rise to a
gauge symmetry because they extend along the noncom-
pact radial direction and therefore suffer from a large-
volume suppression. A similar setup was suggested by
Ouyang (2004), but there the flavor branes did not have
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IIB fluxes on
orientifold of
deformed

IIB D5-branes on
orientifold of
resolved

geometric
transition

T2 T2

Type I D5 on
non-Kahler

geometric
transition?

Type I fluxes on
non-Kéhler

S-duality S-duality

Heterotic SO(32)
NS5 on
non-Kéhler

Heterotic SO(32)
fluxes
on non-Kéhler

geometric
transition?

FIG. 11. The heterotic duality chain. Following the arrows one
can construct non-Kéhler backgrounds in type I and heterotic
theory that are dual to the type IIB backgrounds before and
after transition. This implies that the new backgrounds are also
transition duals in some sense.

an F-theory origin and were treated in a probe approxi-
mation.

The superpotential in our flux backgrounds also re-
mains to be calculated. One remarkable result from Vafa
(2001) was to show that the flux-generated superpoten-
tial does indeed agree (at lowest order) with the
Veneziano-Yankielowicz superpotential for super-Yang-
Mills (SYM) theory. This superpotential receives correc-
tions from field theory (Farrar et al., 1998; Cerdeno et al.,
2003) as well as from string theory considerations
(Dijkgraaf and Vafa, 2002). One issue we would like to
address in the future is whether a generalized superpo-
tential (taking the non-Kéhler structure of the target
manifold into account) might be better suited to repro-
duce these corrections. Furthermore, one should study
the additional global symmetry. The field theory analog
to the Veneziano-Yankielowicz superpotential for an
SU(N) theory with matter is given by the Affleck-Dine-
Seiberg superpotential (Affleck et al., 1984). It would be
interesting to see if we could reproduce this superpoten-
tial [as in the case of a Calabi-Yau orbifold C3/7, X 7Z,
(Imeroni and Lerda, 2003)] or if we would find an exten-
sion to it when including the flux due to D7-branes. We
need the precise supergravity solution to see which
fluxes are actually turned on. In our setup, the charge of
the D7-branes is immediately canceled by the orientifold
planes. We would have to move the orientifold planes
away from the flavor branes to observe their effect. This
would lead to nonperturbative corrections.

Another generalization of our duality chain was sug-
gested by Alexander et al. (2005). One can exploit the
idea of a IIB orientifold to go to the orientifold limit,
i.e., type I. Another S-duality takes us to heterotic
SO(32) and we find two non-Kihler backgrounds that
must in a certain sense be dual to each other, since they
are individually U-dual to the IIB backgrounds for
which we confirmed the geometric transition picture, see
Fig. 11. The orientifold operator we have to choose here
is different from the one used in Sec. III.B and the het-
erotic backgrounds will therefore not resemble non-
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Kihler versions® of conifolds anymore. See Alexander
et al. (2005) or Knauf (2007) for details.

The interpretation of this duality is still unresolved.
Since heterotic string theory does not contain any open
strings, the interpretation as an open-closed duality fails.
We think this is a case where the geometric transition
changes the vector bundle in a way that it requires the
introduction of NSS5-branes as localized sources for
anomaly cancellation (before transition). It would also
be interesting to study the underlying topological (0,2)
theory. Results from Kapustin (2005); Sharpe (2005);
Witten (2005); and Katz and Sharpe (2006) should prove
useful here.

We would also like to gain a better understanding of
how our IIA non-Kihler backgrounds fit into general-
ized complex geometry. We have not explicitly shown
that our manifolds are (twisted) generalized Calabi-Yau
manifolds [i.e., possess a (twisted) closed pure spinor
(Grana et al., 2004a, 2004b, 2005) or have SU(3)
X SU(3) structure; see Grana et al. (2007), and refer-
ences therein], which is the most general condition for
all non-Kidhler backgrounds with fluxes to preserve su-
persymmetry [there is a second pure spinor, which is not
closed, but its derivative is proportional to the RR field
strengths; NS-NS flux and dilaton enter into the
(twisted) d operator]. With much progress having been
made in the field of generalized topological sigma mod-
els (Kapustin and Li, 2004; Lindstrom et al., 2005) and
topological string theory (Kapustin, 2004; Kapustin and
Li, 2005; Pestun, 2007) one could hope to repeat the
analysis of Bershadsky ef al. (1994) on these kinds of
backgrounds and show agreement of the open and
closed generalized topological partition functions. This is
complicated by the fact that we also have RR flux in our
model, whose role in topological string theory is still not
well understood.

To make contact with phenomenology, one would
need to compactify the six-dimensional manifolds men-
tioned here. Since our analysis was performed in a local
limit anyway, it would still hold if the conifold bulk was
cut off and replaced with a compact Calabi-Yau mani-
fold. This is similar in spirit to the cosmological models
working with the “warped Klebanov-Strassler throat.”
Indeed, once we compactify we would also be forced to
introduce extra objects for charge cancellation. If these
were anti-D-branes, we would find ourselves in the
realm of nonsupersymmetric, potentially viable cosmo-
logical models. Another phenomenologically appealing
direction is the study of more realistic gauge groups, like
the standard model or simply QCD, in terms of geomet-
ric transitions. For the future one might hope that open-
closed duality can teach us something about the strong
coupling behavior of confining gauge theories.

»These manifolds are non-Kihler because we perform two
T-dualities before S-dualizing to heterotic. The aim is to “use
up” all the NS-NS field of the IIB theory, so that only RR flux
is left, which becomes NS-NS flux in the heterotic theory and
to convert the D5/D7 system into D5/D9-branes.
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APPENDIX: CONIFOLDS

The (singular) conifold is a cone over a five-
dimensional base and is a Calabi-Yau threefold. There
are two “relatives” of the conifold, in which the singu-
larity has been smoothed out in two different ways: one
is called a “resolved conifold,” with a blown up S? at the
tip of the cone; the other is the “deformed conifold,” in
which the singularity is blown up into an S°. All three
manifolds look asymptotically the same, like a cone over
§? X §3. Their metrics then take the form

ds? = dr? + r’dsg . (A1)
Candelas and de la Ossa (1990) showed that all three
possess a Kéhler metric and are Ricci flat and that one
can pass continuously from one geometry to another.
This is despite the fact that they are topologically differ-
ent, which is seen, e.g., from the Euler numbers: x(S°)
=0, x(point)=1, and x(5%)=2. This transition is called a
“conifold transition” and can be visualized as in Fig. 3.
The deformed conifold on the left approaches the singu-
lar conifold as the S shrinks to zero size and the re-
solved conifold is obtained by blowing up the orthogo-
nal S°.

We now review the symmetry properties and Ricci-flat
Kihler metrics on all three manifolds, as well as discuss
their complex structures. Useful references are Candelas
and de la Ossa (1990); Minasian and Tsimpis (2000);
Pando Zayas and Tseytlin (2000); and Papadopoulos and
Tseytlin (2001).

1. The singular conifold

Just as a two-dimensional cone is embedded in real
three-dimensional space as x*+y?-z%>=0, a real six-
dimensional conifold can be expressed in terms of three
complex coordinates, and is therefore embedded in C* as
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4
>z =0. (A2)
i=1
This describes a surface which is smooth apart from a
singularity at z;=0. The space has an SO(4)~SU(2)
X SU(2) symmetry by which the z; are rotated into each
other, and a U(1) which rotates all z; by the same phase.
There is also a scaling symmetry given by the transfor-
mation z;—1z;,t € C*. By choosing z;=x;+1y;, we can re-
write Eq. (A2) as

4 4

2ay=0, X (7-y)=0. (A3)

i=1 i=1
The x; describe a three-sphere for any y;, with vanishing
radius at y;=0, and the coordinates y; are orthogonally
fibered to them. Therefore, the space is given by T+S°.

To find the base of the conifold we take its intersec-

tion with a three-sphere of radius r:

4 4

2laf=2 () =1, (A4)

i=1 i=1
which removes the scaling symmetry z;— ¢z;. The result-
ing five-dimensional space is a Sasaki-Einstein
manifold™ called 7T%!. Together with Eq. (A3) we see
that Eq. (A4) gives a three-sphere of radius r/+2 param-
etrized by x;, whereas the y; describe a two-sphere fi-
bered over the S°. Since all such fibrations are trivial, the
topology of the base T!! is §2x $3 (Candelas and de la
Ossa, 1990).

T"! also has a coset space description as SU(2)

X SU(2)/U(1). To see this, define

1
w=— S 'z, (A5)
V2 5

with ¢ the Pauli matrices for n=1,2,3 and ¢*=:1 so
1 (z3+1z
W _r< 3+124

21 +lZz

that
21— 12y )
\2 —z3+124)°
Then the defining equation for the conifold (A2) and the
base (A4) can be written as

det W=0, (A6)

tr Wiw=r2 (A7)
By rescaling Z=W/r these become

det Z=0,

trZ'Z=1.

Given a particular solution Z,, say ZO:%(alerz), the
general solution can be written as

OThe base of a Kihler cone is a Sasakian manifold and the
base of a Ricci-flat cone is an Einstein manifold, so the base of
a Calabi-Yau cone is a Sasaki-Einstein manifold.
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Z=LZyR", (A8)
where
a —p k -1
L = . R = _ . (A9)
b a [ k

L,ReSUR) so |a|*+|b|*=|k|*+]{|*’=1. Thus, we have
shown that SU(2) X SU(2) acts transitively on the base.
When (L,R)=(0,07) with

g )
“\0 et?)
Z, is left fixed. This means that we can identify (L,R)
and (LO,RO"), i.e., the base is the coset space SU(2)
X SU(2)/U(1)=8*xS3/U(1) with topology S?x S* and
symmetry group SU(2) X SU(2) X U(1).
We now turn to the discussion of the Kédhler metric on

the singular conifold. The metric on a complex manifold
is Kéhler if and only if it can be written as

8uv= &uavf’

where F is the Kéhler potential. If this potential is to be
invariant under the action of SU(2) X SU(2) it can only
be a function of r%, so

8ur= (0,05 ) F + (0,505 7,

where the prime indicates a derivative with respect to r2.
In terms of W,

ds®> = F' Tr(dW'dW) + F'|Tr W dW|>. (A10)
To find the condition where our metric will be in addi-
tion Ricci flat, we need the Ricci tensor, which takes the

form R,;=4,d;In(det g,,5) on a Kéhler manifold. Define
a function

Wr)=rF, (A11)
then requiring Ricci flatness leads to
yr)=r'". (A12)

After a rescaling r— 7=13/2r*> one recovers a metric of
the form (A1) from Eq. (A10). The metric of the base
has a useful description in terms of Euler angles. Choos-
ing the following parametrization of L and R in Eq.
(A9):

4= cos %ei/zw]wo, K = cos %ei/Z(l//z*%),

b =sin %em(‘“*d’l), [ =sin %ei/z(‘ﬂf@), (A13)

where ¢;, ¢;, 0; are the Euler angles of each SU(2), one
obtains from Eq. (A10)
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2 2
ds2TL1 = %<d¢+ 2 cos 0,-dd>,-)
i=1

2
+ £, (d6 +sin” 6,d?). (A14)
i-1

This form of the metric shows explicitly the two spheres
(6;,¢;) and the U(1) fiber over them, parametrized by
=n+ . We also observe that the U(1) symmetry [dis-
cussed after Eq. (A2)] manifests itself as a shift symme-
try in .

2. The deformed conifold

One way to repair the singularity of a conifold is by
deformation in which the defining equation (A2) near
r=0 is replaced by

4
(A15)
i=1
By taking again the intersection with the three-sphere to
find the base, one finds 2x?=pu’+72, i.., a finite S re-
mains at r=0. This is called a deformed conifold. Note
that the U(1) symmetry of the singular conifold (corre-
sponding to a rotation z,— e'“z; with constant phase «
for all i) is broken to a 7, that sends z;,——z;.

In terms of the matrix W as defined in Eq. (A5) the

deformed conifold is given by

det W=— 22

and as in Eq. (A7) we define a radial coordinate via
r?=Tr(WW). Splitting the z; into real and imaginary
parts we obtain

4 4
rP=2 0y, wi= 200 -y, (Al6)
i=1 i=1
which implies that r ranges from u to o, but it is also
clear that the deformed conifold is still the cotangent
bundle over a three-sphere T+S°, only that the S° has a
minimal size. The S never shrinks to zero. A particular
solution is found to be

N O R
A
W, = (A17)
0o K
2

and the general solution is obtained by setting W
=LW,R'. For r# u the stability group is again U(1). So
for each r# u the surfaces r=const are again S?XS°.
Note, however, that for r=u the matrix W, is propor-
tional to o3 and is invariant under an entire SU(2). Thus,
the “origin” of coordinates = is in fact an SU(2)=5>.

Again we define a Kéhler potential F and $=r2F.
Then the metric is given by Eq. (A10) and the condition
for Ricci flatness becomes (Candelas and de la Ossa
1990)
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Pt = u () +3uty =215 (A18)
This can be integrated and one finds that for r— o the
function ¥ approaches r#?, which agrees with the singu-
lar conifold solution. So asymptotically (for large r) the
two spaces look the same. In terms of Euler angles
(A13) the metric is explicitly given as (Minasian and

Tsimpis, 2000; Papadopoulos and Tseytlin, 2001) [see
also Ohta and Yokono (2000)]

4 2
PN M . dr
A5 = {(rzy - Y)(l ) ?) " 7](#(1 s

1
+ Z(d¢+ cos 6;d ¢, + cos 02d¢2)2>

+ %/[(sin G +de) + (sin BddE + )]
/la
+ 52 [cos (d6,d 6, — sin 0, sin 6,dpdp,)
r

+ sin ¢(sin 6;d p;d 6, + sin 6,dp,d6,)], (A19)

where we would need to rescale r to ensure that ¥ has
dimension 2. Note that even the metric now shows the
absence of the U(1) symmetry formerly associated with
shifts in ¢. As discussed at the beginning of this section,
this is not an accident of the parametrization we chose,
but inherent to the defining equation (A15) of the de-
formed conifold.

3. The resolved conifold

Another way to repair the conifold singularity is to
resolve it by blowing up a two-sphere. Upon defining
new variables

X=2z1+12y, (A20)

y=2,+124, (A21)

U=2z3—124, (A22)

v=24-123, (A23)
the conifold equation (A2) becomes

xy —uv =0. (A24)

This is equivalent to requiring nontrivial solutions to

)6
v y/\&

in which &;,&, are not both zero. So, for (u,v,x,y)#0
(away from the tip), they describe again a conifold; but
at (u,v,x,y)=0 this is solved by any pair (&;,&,). Due to
the overall scaling freedom (&;,&)~ (N&,\E) we can
mod out by this equivalence class and (&;,&,) actually
describe a CP!~ 52 at the tip of the cone. Therefore the
resolved conifold is depicted as O(-1)® O(-1) — CPL
We work in a patch where & /& =N\ is a good inhomoge-
neous coordinate on CP'. Hence

(A25)
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—uN u
o),

—yN Yy
The radial coordinate is defined as in Eq. (A4) and be-
comes

(A26)

P2 =Tr WW=0A, (A27)

with o=|u|?+|y|* and A=1+|\|]%. The Kihler potential K
in this case is not only a function of r?, but

K=F+4a®In A, (A28)

with F a function of 2 and a a constant, the resolution
parameter. This gives the metric on the resolved coni-
fold

- - dn|?
ds* = F' Tr(dW'dW) + F'|Tr W dW|* + 4a2%.
This reduces to the singular conifold metric when a— 0.
We again define y= r2F. Then Ricci flatness requires
Y Wy +4a*) =2r3, (A29)

which can be solved for %(r). In terms of the Euler
angles (A13) with =, + i, this metric was derived by
Pando Zayas and Tseytlin (2000) to be’"

res

ds’.. =¥ dr* + %rz(dw+ cos 0,d ¢y + cos brdp,)?

¥+ 4a?

4 %’(def tsin? ,d¢?) + (6

+sin? 6,d¢3), (A30)

with y=%(r) going to zero like 7> and y=d%/dr’. a is
called the resolution parameter because it determines
the size of the blown up S$? at r=0. This illustrates that
the (6,,¢,) sphere is the only part of the metric that
remains finite as we approach the tip at r=0.

It is convenient to define a new radial coordinate via
p*>=3/2y. Using Eq. (A29), the Ricci-flat metric with ap-
propriate dimensions can be written as

3
ds?, = %pz(d¢+ cos ,d e, + cos hddy)* + %(dﬁf

P>+ 64’
6

+sin® 6,d ) + (d 6 + sin® 6,d 3)

+ k(p)~dp?, (A31)

with x(p)=(p>+9a?)/(p*+6a?). It is interesting that there
is another Kdhler metric on the resolved conifold which
is related to this one by a flop, basically corresponding to
the exchange of the two S2.

31Again we need to rescale the radial coordinate such that y

has dimension 72.
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4. Complex structures of conifolds

In this section we explore a set of vielbeins that does
not only give rise to the Ricci-flat Kéhler metric on all
three conifold geometries, but also makes the closed
Kéhler and holomorphic three-form apparent. We fol-
low the convention of Cvetic et al. (2002b), which is simi-
lar to Papadopoulos and Tseytlin (2001), but note that
the simpler set of vielbeins advocated by Klebanov and
Strassler (2000) and Minasian and Tsimpis (2000) does
not produce a closed holomorphic three-form for the
deformed conifold. For a good introduction on basic
concepts of complex differential geometry see, for ex-
ample, Nakahara (2003).

The vielbeins are deduced from the symmetry group
SU(2) XSU(2). In terms of Euler angles on the corre-
sponding two S, we choose left-invariant one-forms on
the conifold base:

oy =cos 1d by + sin ¢ sin 6;d ¢,
o, =—sin Yy d 6 + cos ¢ sin 61d ¢,
o3 =diy +cos 6;d ¢,

3| = oS Yrd b, + sin i, sin 6,d ¢,
3, = —sin ¢»d 6, + cos i, sin rd s,

23 = dlﬂz + COS 92d¢2.

They satisfy a Maurer-Cartan equation
—i/ 28;k0']~/\ oy and similarly for the %,;. Papadopoulos and
Tseytlin (2001) used only five angles and =, =i/2.
This is sufficient for the six-dimensional conifolds, but
Cvetic et al. (2002b) lifted these geometries to a unified
solution in M-theory. It was shown that all three conifold
geometries give rise to one G, holonomy metric. The
eleventh direction is identified with ¢, — ¢, and therefore
the coordinate choice i+ i»,=¢ and ¢;—¢,=0 can in-
deed be viewed as a dimensional reduction from seven
to six dimensions.

(A32)

dO'i:

2

a. Singular conifold

The one-forms (A32) give rise to vielbeins on the six-
dimensional conifold:

r r
ey =0y, e=-—=0,
V6 V6

r r
3= _,—21, ey= =29,
V6 V6

es= (o343, eq=dr, (A33)
and the metric is diagonal in these vielbeins:
6 2 2 2
ds*=>, eiz =dr’+ 5(dz/f+ > cos Gl«ddai)
i=1 i=1
P
+ 52 (d6} +sin® B,d ¢?). (A34)
i=1

Here we identify /= + ¢»». Note that the odd combi-
nation of ¢;—i» does not appear and we recover the
by-now-familiar structure of the base—an S? fibered
over an S3—although we started out with coordinates
for two S3s.

An (almost) complex structure on this real six-
dimensional manifold is defined by choosing complex
vielbeins

El =eq + ey, (A35)

In terms of these complex vielbeins, the fundamental
two-form J and holomorphic three-form () are defined
as

E2:€3+ Ly, E3:€5+ Leg.

J(l’l): (EIAE1+E2AE2+E3AE3), (A36)

L
2
9(3’0) = El N E2 A E3. (A37)

For the singular conifold their coordinate expressions
are still fairly simple (again, only the even combination

of ¢ and i, appears):

J=- gdr/\ (dif+ cos 6;d ¢, + cos O,dp,) — %(sin 01dpy AdOy +sin 6,dd, A db,),

2

0= %(cos Y—usin )dr A[sin 6,d6, A dpy — sin 0,d Oy A dh, + (d O A db, —sin 6, sin O,d P, A d,)]

3

+ 1r—8(cos Y—vsin Y)[dO; A db, A (dif+ cos Oid e, + cos 6,d,) — sin 6, sin brdd; A dpy A dify

- L(Sin 01d02 A d¢1 —sin 02d01 AN d¢2) AN diﬁ- L(Sin 01 COS 02d62 + COs 01 sin 02d01) AN d¢1 AN d¢2],
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and one can easily show that

d/=0 and dQ=0. (A38)

Together these relations imply that the almost complex
structure is actually integrable, so the closure of the fun-
damental two-form means that this manifold is Kéhler.

For a Kihler manifold the closure of () means further-
more that it is a Calabi-Yau manifold [see, e.g., Chiossi
and Salamon (2002)].

The complex structure induced by these vielbeins is of
course identical with the one from the holomorphic co-
ordinates z; used in Eq. (A2) to define the singular co-

nifold. One finds that, up to a numerical factor, the ho-
lomorphic three-form can be expressed as

Q- le/\dZZ/\dZ3’
24

(A39)

which agrees with the above coordinate expression if the
holomorphic coordinates are parametrized as

x = r?Pe!?U-$1-42) sin L} sin &,
2 2

y = 32214 cog b cos &,

u = rle’?Wd1=92 cos % sin &,

(A40)

0 6
U= r3/2€L/2(¢,//—¢1+¢2) sin ?1 cos _2

We also make use of the coordinate redefinition (A20)
to relate these coordinates to z;:

1
Z1= E(X - y),

1
Zy= 2—L(x + ),

2 62
Q_p(p+ a)

- 67p* + 94>

1
3= E(U +w),

-1
Z4:Z(u_ w).

For practical computations these coordinates are not
very useful, as they are the homogeneous ones. The real
coordinates make the structure of the six-dimensional
manifold much more transparent and the vielbeins serve
as a convenient basis for all sorts of differential forms,
like fluxes.

b. Resolved conifold

The same complex structure (A35) can be used for the
resolved conifold. We only have to scale the vielbeins
according to the metric:

er=a, e,=t0
1 \/8 1 2 \;"6 25

Vp? + 6a° \p? + 6a*
e3=——F= 2, ey=——7= 29,

V6 V6
2 2 2 2

p [p°+9a p~+6a
es=— O3+23), eg= dp,
5 3 p2+6a2( 3 3) 6 24 942 P

(A41)

then the metric remains diagonal and we recover Eq.
(A31) with =i + . The fundamental two-form (A36)
is found to be

J=- gdp/\ (dip+ cos 0;d ¢, + cos brd )
2 2 4 64>
—%sin 01d¢1/\d91—p 6 a sin 02d¢2/\d02

(A42)

and is closed, as is the holomorphic three-form one ob-
tains from Eq. (A37):

(cos —isin )dp A [sin 6,d 0, A dd; —sin 6,dO; A dp, + i(d6; A db, —sin 0; sin O,ddy A d )]

2
+ P 71902 (cos y— i sin [y A dby A (dip+ cos Bid by + cos Brddby) — sin 6, sin Grdby A deby A dif

18

- i(Sin 9]d02 A dd)l — sin 02d01 A d¢2) A dlﬂ— i(Sin 0] COS 02d02 + COs 01 sin 02d01) A d¢1 A d¢2]
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So this complex structure also fulfills the Calabi-Yau
conditions. The corresponding homogeneous holomor-
phic coordinates in this case read

x = (9a%p* + p&)V4e!?W=¢1=4) gin % sin %,

y= (9a2p4 + p6)1/4ei/2(:,//+zf>1+zf>2) cos % cos %’

u=(9a%p* + p°) AP Wt di=4) cos % sin %,

v = (9a%p* + pO) V4P W-d1+42) sin % cos %

They lead to the same holomorphic three-form with the
definition (A39).

c. Deformed conifold

For the deformed conifold the story is more compli-
cated. The metric is not diagonal in the vielbeins (A32)
and we have to define linear combinations of them such
that

|~

Iy
e = (am = BE)), = a0y + ),

F B
e3 = %}’(_ BO’l + aEl), €y = %y(ﬂgz + aEz),

Q:27_8605 Yy—isin ¢
rS

2

Lo -
es= V(PY = D= pr') + Hos +33),

[ 280 _ & 1— A o
N\ r’)+
com (ry ’7)( 4#4 ) Y ar. (Add)
N1 — u'lr

where o?+ %=1 has to hold for the metric to turn out
correctly. With these linear combinations one recovers
Eq. (A19) from

6
ds*=2 e’
i=1

For the metric to also be Ricci flat and Kihler, the co-
efficients @ and B are determined to be

2

" 2%’
The complex structure is defined as in Eq. (A35) and
again gives rise to a Calabi-Yau manifold.
With the choice (A45) the Kéhler form amounts to
650 4s 2 Ao
rytupy-ruy
J=- dr A (dy+ cos 6,d
2P5\1 — il v 141

¥ wt
+ COS 02d¢2) + Z 1- _4(Sin 01d01 AN d¢1
r

+ sin 02d02 A d¢2) 5 (A46)

which is easily shown to be closed (recall that the prime
indicates derivative with respect to r?). The expression
for the holomorphic three-form is

a= N1+ 2P+ 51 -2, B (A45)

2T
dr A (sin 0,d6y A d, —sin 6od6) A deby) + Ls(cos Y- iS sin p)dr A (d6, A db,
¥

2T

22T
—sin 0, sin Gud by A deby) — /;—Sdr A (Sin 6,46, A dgby — sin B0y A deby) + ——[sin 6,d6, A d by A (dif
r r

+ cos bhd ) —sin O,d 6, A depy A (dif+ cos 01ddy)] + T(w cos ¢+ S sin P)[sin 6,d O A ddy A (dif+ cos 0;dpy)
—sin 6,d6, A dd; A (dip+ cos Ord )] + T(S cos y— cvsin Y)[dO; A dO, A(dip + cos 0,d ¢y + cos b,dp,)

— sin 01 sin 02d¢1 A d¢2Ad¢],

where S=\1-u*/r* and T= 9+ (29 -9 (A -u*/rh)/8.
To show that it is indeed closed one needs to make use
of Eq. (A18).

For the deformed conifold we can use the same holo-
morphic coordinates as for the singular conifold (A40),
but the three-form (A39) now reads

0= dZ1/\d22/\dZ3

—Llotan ot (A48)
N
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(A47)

As a side remark, we note that the much simpler viel-
beins from Klebanov and Strassler (2000),

g1 =—sin 0id ¢,
8= dal?
g3 =—sin ¥d 6, + cos ¥ sin 6,d 5,

84=c0s Yd 6, + sin ¢y sin 6,dp,,
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gs=dy+cos 0;d¢p, + cos bd o,

ge=dr, (A49)

will never give a closed holomorphic three-form on the
deformed conifold, even with a genenc ansatz for a lin-
ear combination of these vielbeins.*” In other words,
they are not compatible with the holomorphic coordi-
nates (A40). They do work for the singular and resolved
conifold, because they happen to give the same two- and
three-forms. So there is more than one choice of viel-
beins that allows for a Calabi-Yau metric. However, if
we wish to pass from one geometry to the other, we
prefer to employ a complex structure that allows for all
three of them to be Calabi-Yau manifolds. The set of
vielbeins (A49) was also used by Minasian and Tsimpis
(2000). Caution should therefore be used with their so-
lutions, in particular from the viewpoint of supersymme-

try.

5. Fluxes on conifolds

Having studied the complex structure of conifold ge-
ometries, we can now turn to the question of what types
of fluxes are allowed on them. In type IIB compactifica-
tions the background three-form flux Gy=F3+7H; (7
=Cy+ie ¢ is the axion-dilaton) has to obey a self-duality
condition (Giddings et al., 2002)

*6G3=1G3, (A50)

where #4 indicates the Hodge dual in six dimensions.
Supersymmetry requires G5 to be of type (2,1) and
primitive (Gubser 2000; Grana and Polchinski, 2001),
i.e., that it satisfy G3AJ=0. Cvetic et al. (2003) showed
that the solution of Klebanov and Strassler (2000) for
D5-branes on the singular conifold fulfills these require-
ments, whereas the Pando Zayas-Tseytlin (2000) (PT)
solution for D5-branes on the resolved conifold does
not. The latter has a (1,2) part in addition to the allowed
2,1).

Although we agree with the result obtained by Cvetic
et al. (2003), we question the complex structure they use.
Following Pando Zayas and Tseytlin they take the sim-
plest set of vielbeins that would give the right resolved
metric (A30),” ie.,

€= ﬁrdal, €= ﬁ_ sin 6,d ¢,
V6 V6
\p? + 6a* Vp? + 64> .
€3 = d02, €4 = /g sin 02d¢2,
V6 v

/p2+6a2d
€5=— ,
> p2+9(/l2 P

3This statement was confirmed with MATHEMATICA for arbi-
trary r-dependent coefficients.
BNote that there is a typo in Eq. (6.5) of Cvetic et al. (2003).
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2 2
p [p°+9a
€ =3\ / o 6az(dzp+ cos 6;d¢ + cos 6rd ),

(A51)

and then show that the fluxes from Pando Zayas and
Tseytlin (2000) have not only a (2,1) but also a (1,2) part
with respect to the complex structure:

Elz €1+ L&y, E2=E3+ L€y, E3: €5 + LEg.

Note, however, that this choice is not the right one to
observe the Calabi-Yau property. The choice leads to a
closed fundamental two-form, but the holomorphic
three-form,

p(p* + 6a°)
6\p® + 9a°
—sin 0;d6, Adepy) + (dO; AdO,

—sin 6, sin O,d ¢ A depy) ]

Q=- dp/\[L(Sln 02d01/\d¢2

2
+ %\ﬂpz +9a*[d ) A d6, A (difr+ cos 6yd

+cos O,d¢,) — vsin O sin O,ddp; A ddy, A dif
+ (sin 0;d 6, A dp| — sin 6,d Oy A dhy) A dify
+ (sin 6, cos 6,d 6,

+cos 60, sin 0,d6,) Add; Ad],

lacks the cos y—1sin ¢ terms compared to Eq. (A43). It
is therefore not closed but instead
2
dQ = p(ud AdipA[UdO, A db,
6V p* +9a®
—sin 6, sin 6,d A depy) —
N ey
—sin H]db’z A d¢])] + E\J"pz + 9612[

(Sin 02d 01 AN d¢2

- d01 A dt92 A dlp/\ (COS 01d¢1 + COS 02d¢2)
+ «(sin 6; cos 6,d 0,

+cos 60, sin 6,d6,) Add; A ddy A dip],

which will never vanish. This statement remains true for
the singular conifold, so this complex structure should
not be used for analyzing the KS flux either. We there-
fore believe that care should be taken when using the
analysis of Cvetic et al. (2003).

We can use our knowledge from Appendix A.4 to find
out to which cohomology group the flux from Pando
Zayas and Tseytlin (2000) belongs. The imaginary self-
dual three-form flux G3 F3+1H3 found in Pando Zayas
and Tseytlin (2000) is given by>*

3*This is a solution with constant dilaton, which can therefore
be set to zero, and vanishing axion. Furthermore, there is a
typo in Eq. (4.3) in Pando Zayas and Tseytlin (2000), concern-
ing the sign of F;.
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Hz=dp A[Fi(p)sin 6,d0; A de,

+ F5(p)sin 6,d 0, A d¢h] (A52)
and
F3=P(dy+ cos 6,d ¢, + cos O,dp,)
A (sin 6,d6; A depy —sin 6,d 6, A dehy), (A53)

where P is a constant (to ensure dF3;=0) and Fj(p) and
F}(p) were determined from the equations of motion to
be

(p* + 6a°)

F 3P - .
i) = (0 + 90

9 2 Fé(p) =- 3P
We now use the vielbeins from Appendix A.4.b and in-
vert Eq. (A41) to solve for the coordinate differentials.
We then find the flux in terms of vielbeins

18Pp? + 642

3= /—(C]AEZ/\ES—

Le3/\e4/\e6)
p\Np? +9a?

~ 18P(€3/’\€4/\852—/ Lzel Aej/\%)- (A54)
p\Np~ + 6a“\p~ +9a

The vielbein notation is convenient to see that this flux
is indeed imaginary self-dual® (remarkable since Pando
Zayas and Tseytlin also used the wrong set of vielbeins).
The Hodge dual is found by

) €: It l6€ INERRINTZS

wc(e; Ne; At Ae;
6 i iy iyiy iy ifs1 ig

L
and does not involve any factors of \'§ We use the con-
vention that e1y3456= 3123 ©—=1. With the usual complex
structure (A35) the Pando Zayas-Tseytlin flux becomes

9P
Ga=— : X [(p? +3a?)
3T R+ 98t + 6 P
X(ElAE3AE1—E2AE3AE2)

—3(12(E] /\E] /\E3+E2/\E2/\E3)]. (ASS)

We make several observations: This flux is neither
primitive36 nor is it of type (2,1). It has a (1,2) and a (2,1)
part. With just a (1,2) part present we could have made
this flux supersymmetric by a different choice of com-
plex structure, but as it stands, this flux indeed breaks
supersymmetry, as claimed by Cvetic et al. (2003). Apart
from that, in the limit ¢ —0 the (1,2) part vanishes, the
flux becomes primitive and we recover the singular co-
nifold. This seems to indicate that the resolution param-
eter forbids a supersymmetric supergravity solution for

3The self-duality should be checked with respect to the
warped resolved conifold, but since we consider a three-form
flux on a six-dimensional manifold, the appropriate factors of
the warp factor drop out when taking the Hodge dual.

Since J= E {ENE ;) it follows immediately that JA G; has a
nonvamshmg E\nEynE /\E2/\E3 part that is proportional to

a’.
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wrapped D5-branes on the resolution in the presence of
flux.

We close this section by repeating the flux analysis for
the KS model, which in the region away from the tip
agrees with the singular conifold solution first advocated
by Klebanov and Tseytlin (2000) (KT). Again, we agree
with the result of Cvetic et al. (2003), but we maintain
that a complex structure that allows for a closed holo-
morphic three-form on the singular conifold should have
been used. We use the set (A33) with the same complex
structure as in Eq. (A35). The three-form flux G;=F;
+1H; with

= —(d¢//+ cos Oyd ¢y + cos b,dp,)

A (Sin 01d01 A d¢1 — sin 02d02 A d¢2),

3
H3: dl’/\(Sin 01d01/\d¢1—sin 02d02/\d¢2)
2Mr
becomes
9M
G3 = (El /\E3/\E1 E2/\E3/\E2) (A56)

23

where M indicates the number of fractional D3-branes
in the KT model; see Sec. I1.A.2. It is also easy to check
that this flux is indeed primitive (JAG3=0). Also, the
resulting five-form flux Fs=dC,+ B,AF; can be made
self-dual by choosing

dC4 = d[hil(r)] A de A A dX3 = *10(B2 A F3),

(AS7)

where the ten-dimensional Hodge dual is to be taken
with respect to to the warped metric

ds*=h™"2(r)p*dx ,dx, + BV (r)(dr + rzdszTu).

Thus we have confirmed that the KT model preserves
supersymmetry in the correct complex structure. We
also see that in the limit where the two-cycle in the re-
solved conifold shrinks to zero, the flux in the PT solu-
tion agrees with the singular conifold solution of KT.
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