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The combination of the compactness of networks, featuring small diameters, and their complex
architectures results in a variety of critical effects dramatically different from those in cooperative
systems on lattices. In the last few years, important steps have been made toward understanding the
qualitatively new critical phenomena in complex networks. The results, concepts, and methods of this
rapidly developing field are reviewed. Two closely related classes of these critical phenomena are
considered, namely, structural phase transitions in the network architectures and transitions in
cooperative models on networks as substrates. Systems where a network and interacting agents on it
influence each other are also discussed. A wide range of critical phenomena in equilibrium and
growing networks including the birth of the giant connected component, percolation, k-core
percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in
spin models placed on networks, synchronization, and self-organized criticality effects in interacting
systems on networks are mentioned. Strong finite-size effects in these systems and open problems and

perspectives are also discussed.
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I. INTRODUCTION

By definition, complex networks are networks with
more complex architectures than classical random
graphs with their “simple” Poissonian distributions of
connections. The great majority of real-world networks,

Rev. Mod. Phys., Vol. 80, No. 4, October—December 2008

including the World Wide Web, the Internet, basic cel-
lular networks, and many others, are complex ones. The
complex organization of these nets typically implies a
skewed distribution of connections with many hubs,
strong inhomogeneity, and high clustering, as well as
nontrivial temporal evolution. These architectures are
quite compact (with a small degree of separation be-
tween vertices), infinitely dimensional (which is a funda-
mental property of various networks) small worlds.

Physicists have intensively studied the structural prop-
erties of complex networks since the end of the 1990s,
but the current focus is essentially on cooperative sys-
tems defined on networks and on dynamic processes
taking place on networks. In recent years, it was re-
vealed that the extreme compactness of networks to-
gether with their complex organization result in a wide
spectrum of nontraditional critical effects and intriguing
singularities. We review the progress made in the under-
standing of the unusual critical phenomena in net-
worked systems.

One should note that the current interest in critical
effects in networks can be explained not only by numer-
ous important applications. Critical phenomena in disor-
dered systems were among the hottest fundamental top-
ics of condensed-matter theory and statistical physics at
the end of the 20th century. Complex networks imply a
new type of strong disorder, almost unknown in con-
densed matter, where fluctuations of structural charac-
teristics of vertices (e.g., the number of neighbors) may
far exceed their mean values. One should add to this
large-scale inhomogeneity, which is significant in many
complex networks, statistical properties of vertices may
strongly differ in different parts of a network.

The first studies of a critical phenomenon in a net-
work were by Solomonoff and Rapoport (1951) and Er-
do6s and Rényi (1959), who introduced classical random
graphs and described the structural phase transition of
the emergence of a giant connected component. These
simplest random graphs were widely used by physicists
as substrates for various cooperative models.

Another basic small-world substrate in statistical me-
chanics and condensed-matter theory is the Bethe lattice
(an infinite regular tree) and its diluted variations. The
Bethe lattice usually allows exact analytical treatment,
and, typically, each new cooperative model is inspected
on this network (as well as on the infinite fully con-
nected graph).

Studies of critical phenomena in complex networks
essentially use approaches developed for these two fun-
damental, related classes of networks: classical random
graphs and the Bethe lattices. In these graphs and many
others, small and finite loops (cycles) are rare and not
essential; the architectures are locally treelike, which is a
simplifying feature that is extensively exploited. One
may say that the existing analytical and algorithmic ap-
proaches already allow one to exhaustively analyze any
locally treelike network and to describe cooperative
models on it. Moreover, the tree ansatz works well even
in numerous situations for loopy and clustered net-
works. We discuss various techniques based on this stan-
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dard approximation. It is these techniques, including, in
particular, the Bethe-Peierls approximation, that are the
main instruments for studying the critical effects in net-
works.

Critical phenomena in networks include a wide range
of issues: structural changes in networks, the emergence
of critical—scale-free—network architectures, various
percolation phenomena, epidemic thresholds, phase
transitions in cooperative models defined on networks,
critical points of diverse optimization problems, transi-
tions in coevolving couples—a cooperative model and its
network substrate, transitions between different regimes
in processes taking place on networks, and many others.
We show that many of these critical effects are closely
related and universal for different models and may be
described and explained in the framework of a unified
approach.

The outline of this review is as follows. In Sec. II, we
describe basic models of complex networks. Section III
contains a discussion of structural phase transitions in
networks: the emergence of the giant connected compo-
nent of a complex random network and various related
percolation problems. In Sec. IV, we describe condensa-
tion phenomena, where a finite fraction of edges, tri-
angles, etc. are attached to a single vertex. Section V
overviews the main critical effects in disease spreading.
Sections VI, VII, and VIII discuss the Ising, Potts, and
XY models on networks. We use the Ising model to in-
troduce the main techniques of analyzing interacting sys-
tems in networks. A comprehensive description of this
analytical apparatus is given by Dorogovtsev et al.
(2007), which also discusses a number of issues omitted
here. Section IX contains a general phenomenological
approach to critical phenomena in networks. In Secs. X
and XI, we discuss the specifics of synchronization and
self-organized criticality on networks. Section XII de-
scribes a number of other critical effects in networks. In
Sec. XIII, we indicate open problems and perspectives
of this field. Note that for a few interesting problems, as
yet uninvestigated for complex networks, we discuss
only the classical random graph case.

II. MODELS OF COMPLEX NETWORKS

In this section, we introduce basic networks, which are
used as substrates for models, and basic terms. For more
details, see the books and reviews of Albert and
Barabasi (2002), Dorogovtsev and Mendes (2002, 2003),
Bollobas and Riordan (2003), Newman (2003a), Pastor-
Satorras and Vespignani (2004), Boccaletti et al. (2006),
Durrett (2006), and Caldarelli (2007).

A. Structural characteristics of networks

A random network is a statistical ensemble, where
each member—a particular configuration of vertices and
edges—is realized with some prescribed probability (sta-
tistical weights). Each graph of N vertices may be de-
scribed by its adjacency N X N matrix (a;), where a;=0 if
edges between vertices i and j are absent, and a;>0
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otherwise. In simple graphs, a;=0,1. In weighted net-
works, the adjacency matrix elements are non-negative
numbers that may be noninteger—the weights of edges.
The simplest characteristic of a vertex in a graph is its
degree g, which is the number of its nearest neighbors.
In physics this is often called connectivity. In directed
graphs, at least some of the edges are directed, and one
should introduce in and out degrees. For random net-
works, a vertex degree distribution P(q) is the first sta-
tistical measure.

The presence of connections between the nearest
neighbors of a vertex i is described by its clustering co-
efficient C(q;)=t;/[q;(q;—1)/2], where ¢, is the number of
triangles (loops of length 3) attached to this vertex and
qi(q;—1)/2 is the maximum possible number of such tri-
angles. Note that, in general, the mean clustering (C)
=2,P(q)C(q) should not coincide with the clustering co-
efficient (transitivity) C=(t;)/{q;(g;—1)/2), which is three
times the ratio of the total number of triangles in the
network and the total number of connected triples of
vertices. A connected triple here is a vertex with its two
nearest neighbors. A triangle can be treated as three
connected triples, which explains the coefficient 3.

A loop (simple cycle) is a closed path visiting each
vertex only once. By definition, trees are graphs without
loops.

For each pair of vertices i and j connected by at least
one path, one can introduce the shortest path length, the
intervertex distance €, the corresponding number of
edges in the shortest path. The distribution of interver-
tex distances P({) describes the global structure of a ran-

dom network, and the mean intervertex distance €¢(N)
characterizes the “compactness” of a network. In finite-

dimensional systems, €(N)~ N We, however, mostly
discuss networks with the small-world phenomenon—

the small worlds, where ¢ increases with the total num-
ber of vertices N more slowly than any positive power,

ie., d=o (Watts, 1999). Typically, in networks, €(N)
~In N (Albert et al., 1999).

Another important characteristic of a vertex (or edge)
is its betweenness centrality (or, which is the same, load),
which is the number of shortest paths between other
vertices that run through this vertex (or edge). In stricter
terms, the betweenness centrality b(v) of vertex v is de-
fined as follows. Let s(i,j) >0 be the number of shortest
paths between vertices i and j. Let s(i,v,j) be the num-
ber of these paths passing through vertex v. Then b(v)
=2,4p25(,0,))/s(i,j). A betweenness centrality distri-
bution is introduced for a random network.

A basic notion is a giant connected component analo-
gous to the percolation cluster in condensed matter. This
is a set of mutually reachable vertices and their intercon-
nections, containing a finite fraction of vertices of an
infinite network. Note that, in physics, the infinite-
network limit, N—oe, is also called the thermodynamic
limit. The relative size of the giant component (the rela-
tive number of its vertices) and the size distribution of
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FIG. 1. Cayley tree (on the left) vs the Bethe lattice (on the
right).

finite connected components describe the topology of a
random network.

B. Cayley tree versus Bethe lattice

Two different regular graphs are extensively used as
substrates for cooperative models. Both are small worlds
if the degree of their vertices exceeds 2. In the (regular)
Cayley tree, explained in Fig. 1, a finite fraction of ver-
tices are dead ends. These vertices form a sharp border
of this tree. There is a central vertex, equidistant from
the boundary vertices. The presence of the border essen-
tially determines the physics of interacting systems on
the Cayley tree.

The Bethe lattice is an infinite regular graph (see Fig.
1). All vertices in a Bethe lattice are topologically
equivalent, and boundaries are absent. Note that, in the
thermodynamic limit, the random regular graphs asymp-
totically approach Bethe lattices (Johnston and Plechac,
1998). The random regular graph is a maximally random
network of vertices of equal degree. The graph is con-
structed of vertices with the same number (degree) of
stubs by connecting pairs of the stubs in all possible
ways.

C. Equilibrium random trees versus growing ones

Remarkably, random connected trees (i.e., consisting
of a single connected component) may or may not be
small worlds (Burda et al., 2001; Bialas et al., 2003). The
equilibrium random connected trees have extremely ex-
tended architectures characterized by the fractal (Haus-

dorff) dimension d,=2, i.e., £(N)~N"2. These random
trees are the statistical ensembles that consist of all pos-
sible connected trees with N labeled vertices, taken with
equal probability; see Fig. 2, left side. The degree distri-
butions of these networks are rapidly decreasing, P(q)
=e'/(g—1)!. However, one may arrive at scale-free de-
gree distributions P(g) ~¢~” by, for example, introduc-
ing special degree-dependent statistical weights of differ-
ent members of these ensembles. In this case, if y=3,
then d; =2, and if 2<y<3, then the fractal dimension is
dy=(y-1)/(y-2)>2.

In contrast to this, growing (causal, recursive) random
connected trees are small worlds. These trees are con-
structed by sequential attachment of new (labeled) ver-
tices; see Fig. 2, right side. The rule of this attachment
or, alternatively, specially introduced degree-dependent
weights for different realizations, determines the result-
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FIG. 2. Statistical ensembles of equilibrium random connected
trees (left-hand side) and growing connected trees (right-hand
side) for N=1,2,3,4. The ensemble of equilibrium trees con-
sists of all possible connected trees of N labeled vertices,
where each tree is taken with the same weight. The ensemble
of growing (causal) trees is the following construction. Its
members are all possible connected trees of size N that can be
made by sequential attachment of new labeled vertices. Each
of these trees of N vertices is taken with the same weight.
Notice that at N=3 one of the labeled graphs of the equilib-
rium ensemble is absent in the ensemble of growing trees. At
N=4, the numbers of isomorphic graphs is indicated in both
ensembles. (By definition, isomorphic graphs differ from each
other only by vertex labels.) Already at N=4 the equilibrium
random tree is less compact, since the probability of realization
of the chain is higher in this case.

ing degree distributions. The mean intervertex distance
in these graphs €~1In N. Thus, even with identical de-
gree distributions, equilibrium and growing random
trees have quite different geometries.

D. Classical random graphs

Two of the simplest models of random networks are
so close (asymptotically coincident in the thermody-
namic limit) that they are together called classical ran-
dom graphs. The Gilbert model, or the G,, model (So-
lomonoff and Rapoport, 1951; Gilbert, 1959), is a
random graph where an edge between each pair of N
vertices is present with a fixed probability p.

Slightly more difficult for analytical treatment is the
Erdos-Rényi model (Erdos and Rényi, 1959), which is
also called the G, model, and is a statistical ensemble
where all members—all possible graphs with a given
numbers of vertices N and edges M—have equal prob-
ability of realization. The relationship between the
Erdos-Rényi and the Gilbert models is given by the fol-
lowing equalities for the mean degree: (q)=2M/N=pN.
If (q)/N—0 as N—oo, a network is sparse, i.e., it is far
more sparse than a fully connected graph. So the Gilbert
model is sparse when p(N — ) —0.

Classical random graphs are maximally random
graphs under a single constraint—a fixed mean degree
(q). Their degree distribution is Poissonian, P(q)

=e~Dg)/q.
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FIG. 3. Distribution of connections and the mean degree of a
randomly chosen vertex (on the left) differ sharply from those
of end vertices of a randomly chosen edge (on the right).

E. Uncorrelated networks with arbitrary degree distributions

We emphasize that in a random network, the degree
distribution of the nearest neighbors Pyyn(g) (or the de-
gree distribution of an end vertex of a randomly chosen
edge) does not coincide with the vertex degree distribu-
tion P(g). In general random networks,

Pan(9) = qP(@Kq),  {(@)nn={q?q) > (q); (1)

see Fig. 3. These simple relations play a key role in the
theory of complex networks.

By definition, in uncorrelated networks correlations
are absent. In particular, there are no correlations be-
tween degrees of the nearest neighbors. That is, the joint
distribution of degrees of the nearest-neighbor vertices
factors into the product

P(q.q") =qP(q)q' P(q")/{q)*. 2)

Thus, the architectures of uncorrelated networks are
determined by their degree distributions. The Erdos-
Rényi and Gilbert models are simple uncorrelated net-
works. Below we list the models of complex uncorre-
lated networks, which are actually very close to each
other in the thermodynamic limit. In this limit, all these
networks are locally treelike (if they are sparse, of
course), with only infinite loops.

1. Configuration model

Direct generalization of the Erdos-Rényi graphs is the
famous configuration model formulated by Bollobas
(1980); see also Bender and Canfield (1978). In graph
theory, these networks are also called random labeled
graphs with a given degree sequence. The configuration
model is the statistical ensemble, whose members are
realized with equal probability. These members are all
possible graphs with a given set {N,=NP(q)}, q
=0,1,2,3,..., where N, is the number of vertices of de-
gree ¢g. In simple terms, the configuration model pro-
vides maximally random graphs with a given degree dis-
tribution P(q).

This construction may also be portrayed in more
graphic terms. (i) Attach stubs (edge halves) to N verti-
ces according to a given sequence of numbers {N,}. (ii)
Pair randomly chosen stubs together into edges. Since
stubs of the same vertex may be paired together, the
configuration model, in principle, allows a number of
loops of length 1 as well as multiple connections. Fortu-
nately, these may be neglected in many problems.

Using Eq. (1) gives z,={(q*)—(q) for the mean number
of the second nearest neighbors of a vertex. That is, the
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mean branching coefficient of the configuration model
and, generally, of an uncorrelated network is

B = z2y/zy = (¢%) = (@)Kg)s 3)

where z;=(g). Consequently, the mean number of the
¢th nearest neighbors of a vertex is z,=z,(z,/21)"". So
the mean intervertex distance is €¢(N)=In N/In(z,/z;)
(Newman et al., 2001).

The distribution of the intervertex distances in the
configuration model is quite narrow. Its relative width
approaches zero in the thermodynamic limit. In other
words, in this limit almost all vertices of the configura-
tion model are mutually equidistant (Dorogovtsev et al.,
2003a). We emphasize that this remarkable property is
valid for a wide class of networks with the small-world
phenomenon.

The configuration model was generalized to bipartite
networks (Newman et al., 2001). By definition, a bipar-
tite graph contains two kinds of vertices, and only verti-
ces of different kinds may be interlinked. In short, the
configuration model of a bipartite network is a maxi-
mally random bipartite graph with two given degree dis-
tributions for two types of vertices.

2. Static model

Direct generalization of the Gilbert model is the static
one (Goh et al, 2001; see also Chung and Lu, 2002,
Soderberg, 2002, and Caldarelli et al., 2002). These are
graphs with a given sequence of desired degrees. The
desired degrees {d;} play the role of “hidden variables”
defined on vertices i=1,2,...,N. Pairs of vertices (ij) are
connected with probabilities p;=1-exp(-dd;/ N(d)).
The degree distribution of the resulting network P(q)
tends to a given distribution of desired degrees at suffi-
ciently large g. It is important that at small enough d; the
probability p;=d;d;/N{(d). The exponential function
keeps the probability below 1 even if d;d;> N{(d), which
is possible if the desired degree distribution is heavy
tailed.

3. Statistical mechanics of uncorrelated networks

It is also easy to generate random networks using a
standard thermodynamic approach; see Burda et al.
(2001), Bauer and Bernard (2002), and Dorogovtsev et
al. (2003b). In particular, assuming that the number of
vertices is constant, one may introduce “thermal” hop-
ping of edges or their rewiring. These processes lead to
relaxational dynamics in the system of edges connecting
vertices. The final state of this relaxation process (an
equilibrium statistical ensemble) may be treated as an
“equilibrium random network.” This network is uncor-
related if the rate or probability of rewiring depends
only on degrees of host vertices and on degrees of tar-
gets, and, in addition, if rewirings are independent. The
resulting diverse degree distributions are determined by
two factors: a specific degree-dependent rewiring and
the mean vertex degree in the network. Note that, if
multiple connections are allowed, this construction is es-
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sentially equivalent to the simple balls-in-boxes (or
backgammon) model (Bialas et al., 1997, 2000), where
the ends of edges (balls) are statistically distributed
among vertices (boxes).

4. Cutoffs of degree distributions

Heavy-tailed degree distributions P(q)=(N(q))/N in
finite networks inevitably end with a rapid drop at large
degrees (the cutoff). Here (N(q)) is the number of verti-
ces of degree ¢ in a random network, averaged over all
members of the corresponding statistical ensemble.
Knowledge of the size dependence on the cutoff posi-
tion g.,(N) is critically important for estimating various
size effects in complex networks. The difficulty is that
the form of g (V) is highly model dependent.

We present here estimates of g.,(/N) in uncorrelated
scale-free networks, where P(g)~¢q~”. The results de-
pend essentially on (i) whether exponent vy is above or
below 3, and (ii) whether multiple connections are al-
lowed in the network.

In the range y=3, the resulting estimates are the
same in networks with multiple connections (Burda et
al., 2001) and without them (Dorogovtsev et al., 2005). In
this range, calculation of a degree distribution taking
into account all members of a statistical network en-
semble leads to g.,(N)~NY2. The total number of
members in an equilibrium network ensemble (e.g., for
the configuration model) is large, say, of the order of N!.
However, in empirical research or simulations, en-
sembles under investigation have rather small numbers
n of members—a whole ensemble may consist of a single
empirically studied map or of a few runs in a simulation.
Often, only a single network configuration is used as a
substrate in simulations of a cooperative model. In these
measurements, a natural cutoff of an observed degree
distribution arises (Cohen et al., 2000; Dorogovtsev et al.,
2001c). Its degree, much lower than N'?| is estimated
from the following condition. In the n studied ensemble
members, a vertex degree exceeding ¢, should occur
once: nN[, ut(N)dq P(q)~1. This gives the actually ob-

Ci

servable cutoff
Geut(N,y=3) ~ (nN)l/(V*U @

if n<N92_ which is a typical situation, and g.,(N,y
=3) ~ N2 otherwise.

In the range 2<y<3, the cutoff depends essentially
on the kind of uncorrelated network. If in an uncorre-
lated network multiple connections are allowed, then
Geut(N,2<y<3)~NY-D_ In uncorrelated networks
without multiple connections, gq(N,2<y<3)~N'"?
<NV (Burda and Krzywicki, 2003), although see
Dorogovtsev et al. (2005) for a different estimate for a
specific model without multiple connections. For discus-
sion of the cutoff problem in the static model in this
range of exponent vy, see Lee et al. (2000).

Seyed-allaei et al. (2006) found that in scale-free un-
correlated networks with exponent y<<2, the cutoff is
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Geut(N,1<y<2)~N"7. They showed that the mean de-
gree of these networks increases with N, namely, (g)
~N@=9l7,

For the sake of completeness, we mention here that in
growing scale-free recursive networks ¢ . (N,y>2)
~ NV (Dorogovtsev et al., 2001c; Krapivsky and
Redner, 2002; Waclaw and Sokolov, 2007). Note that
growing networks are correlated.

F. Equilibrium correlated networks

The simplest correlations in a network are those be-
tween degrees of the nearest-neighbor vertices. These
correlations are described by the joint degree-degree
distribution P(q,q'). If P(q,q’) is not factorized, unlike
equality (2), the network is correlated (Maslov and
Sneppen, 2002; Newman, 2002b).

Networks, that are maximally random under the con-
straint that their joint degree-degree distributions
P(q,q') are fixed, naturally generalize uncorrelated net-
works. That is, only these correlations are present.
These networks are still sometimes analytically treat-
able. In the hierarchy of equilibrium network models,
this is the next higher level, after classical random
graphs and uncorrelated networks with an arbitrary de-
gree distribution. Note that networks with these correla-
tions are still locally treelike in the sparse network re-
gime. In this sense, they may be treated as random
Bethe lattices.

These networks may be constructed in the spirit of the
configuration model. An alternative construction (net-
works with hidden variables) directly generalizes the
static model. These are networks where (i) a random
hidden variable 4; with distribution Pj,(h) is assigned to
each vertex, and (ii) each pair of vertices (ij) is con-
nected by an edge with probability p(h;,h;) (Caldarelli et
al., 2002; Soderberg, 2002; Boguna and Pastor-Satorras,
2003). The resulting joint degree-degree distribution is
determined by P,(h) and p(h,h') functions.

G. Loops in networks

The above-described equilibrium network models
share the convenient locally treelike structure in the
sparse network regime. The number of loops N; with
length L in a network allows us to quantify this property.
We stress that the total number of loops in these net-
works is in fact very large. Indeed, the typical interver-
tex distance ~In N, so that the number of loops with
lengths =In N should be large. On the other hand, there
are few loops of smaller lengths. In simple terms, if the
second moment of the degree distribution is finite in the
thermodynamic limit, then the number of loops of any
given finite length is finite even in an infinite network.
Consequently, the probability that a finite loop passes
through a vertex is quite small, which explains the tree-
likeness.

In more precise terms, the number of loops in uncor-
related undirected networks is given by (Bianconi and
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Capocci, 2003; Bianconi and Marsili, 2005)

N L<<q2>—<q>>L
2L\ {q) ’

which is valid for sufficiently short (at least, for finite)
loops, so that the clustering coefficient C(k)=C=(C)
=({q*)—{q))*/ N{g)* (Newman, 2003b). In addition, there
are exponentially many, In N7 =N, loops of essentially
longer lengths (roughly speaking, longer than the net-
work diameter). These “infinite loops,” as they are
longer than a correlation length for a cooperative sys-
tem, do not violate the validity of the tree approxima-
tion. Moreover, without these loops (in perfect trees)
phase transitions are often impossible, as, e.g., in the
Ising model on a tree. The mean number of loops of
length L passing through a vertex of degree k is N (k)
~[k(k-1)/{g)NI[(L-1)/LIN;_;. With degree distribu-
tion cutoffs represented in Sec. IL.E.4, Eq. (5) leads to
finite A/} in uncorrelated networks with y>3, and to a
large number of loops

Ny~ (172L)(al{g))ENEG="2 (6)

N (5)

for 2<y<3 and (¢?)=aN® 72, where a is a constant.
For the statistics of loops in directed networks, see Bi-
anconi et al. (2008). Note that Egs. (5) and (6) indicate
that even the sparse uncorrelated networks are actually
loopy if y<3. Nonetheless, we suppose that the tree an-
satz still works even in this situation (see following dis-
cussion).

H. Evolving networks

Self-organization of nonequilibrium networks during
their evolution (usually growth) is one of the traditional
explanations of network architectures with a great role
of highly connected hubs. One should also stress that
nonequilibrium networks inevitably have a wide spec-
trum of correlations.

The simplest random growing network is a random
recursive tree defined as follows. The evolution starts
from a single vertex. At each time step, a new vertex is
attached to a random existing one by an edge. The re-
sulting random tree has an exponential degree distribu-
tion.

1. Preferential attachment

To arrive at a heavy-tailed degree distribution, one
may use preferential attachment—vertices for linking
are chosen with probability proportional to a special
function f(q) of their degrees (preference function). In
particular, the scale-free networks are generated with a
linear preference function.

A recursive network growing in the following way is
rather representative. The growth starts with some ini-
tial configuration, and at each time step a new vertex is
attached to preferentially chosen m =1 existing vertices
by m edges. Each vertex for attachment is chosen with
probability proportional to a linear function of its de-
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FIG. 4. Examples of deterministic small worlds: (a) Barabadsi et
al. (2001), (b) Dorogovtsev and Mendes (2002) and Dorogovt-
sev et al. (2002a), (c) Andrade ef al. (2005) and Doye and Mas-
sen (2005), and (d) Jung et al. (2002). The y exponent for each
of these four deterministic graphs is 1+In3/In2=2.585... .

gree, g+ A, where the constant A >-m. In particular, if
A=0 (the proportional preference), this is the Barabadsi-
Albert model (Barabasi and Albert, 1999), where the vy
exponent of the degree distribution is 3. In general, for a
linear preferential attachment, the degree distribution
exponent is y=3+A/m (Dorogovtsev et al, 2000;
Krapivsky et al., 2000).

Among these recursive networks, the Barabdsi-Albert
model is a special case: it has anomalously weak degree-
degree correlations for the nearest neighbors, and so it is
frequently treated as “almost uncorrelated.”

The idea of preferential attachment providing com-
plex network architectures was well explored. The
smooth variations of these diverse structures with vari-
ous model parameters were extensively studied. For ex-
ample, Szabé et al. (2003) described the variations of the
degree-dependent clustering in simple generalizations of
the Barabasi-Albert model.

2. Deterministic graphs

Deterministic graphs often provide the only possibil-
ity for analytical treatment of difficult problems. More-
over, using these graphs, one may mimic complex ran-
dom networks surprisingly well. Figure 4 demonstrates a
few simple scale-free deterministic graphs, which show
the small-world phenomenon and whose discrete degree
distributions have a power-law envelope.

I. Small-world networks

The small-world networks introduced by Watts and
Strogatz (1998) are superpositions of finite-dimensional
lattices and classical random graphs, thus combining
their properties. One of the variations of the Watts-
Strogatz model is explained in Fig. 5: randomly chosen
pairs of vertices in a one-dimensional lattice are con-
nected by shortcuts. There is a smooth crossover from a
lattice to a small-world geometry with an increasing
number of shortcuts. Remarkably, even with extremely
low relative numbers of shortcuts, these networks dem-
onstrate the small-world phenomenon.

Kleinberg (1999, 2000) used an important generaliza-
tion of the Watts-Strogatz model. In the Kleinberg net-
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FIG. 5. A simple variation of the Watts-Strogatz model (Watts
and Strogatz, 1998; Watts, 1999). Adapted from Newman,
2000.

work (the grid-based model with exponent «), the prob-
ability that a shortcut connects a pair of vertices
separated by Euclidean distance r decreases as r~“. The
resulting network geometry depends critically on the
value of the exponent «.

We end this section with a short remark. In solid-state
physics, boundary conditions play an important role. We
stress that as a rule the networks under discussion have
no borders, so the question of boundary conditions is
meaningless here. There are very few exceptions, e.g.,
the Cayley tree.

III. THE EMERGENCE OF A GIANT COMPONENT

This is a basic structural transition in the network ar-
chitecture. Numerous critical phenomena in cooperative
models on networks can be explained by taking into ac-
count the specifics of this transition in complex net-
works. The emergence of a giant connected component
corresponds to the percolation threshold notion in con-
densed matter. The study of random graphs began with
the discovery and description of this transition (So-
lomonoff and Rapoport, 1951; Erdés and Rényi, 1959).
Remarkably, it takes place in sparse networks, at (g)
~ const, which makes this range of mean degrees most
interesting.

A. Tree ansatz

The majority of analytical results for cooperative
models on complex networks were obtained in the
framework of the tree approximation. This ansatz as-
sumes the absence of finite loops in a network in the
thermodynamic limit and allows only infinite loops. The
allowance of the infinite loops is of primary importance
since they greatly influence the critical behavior. Indeed,
without loops, that is, on perfect trees, the ferromagnetic
order, say, in the Ising model, occurs only at zero tem-
perature. Also, the removal of even a vanishingly small
fraction of vertices or edges from a perfect tree elimi-
nates the giant connected component.

The tree ansatz allows one to use the convenient tech-
niques of random branching processes. On the other

Rev. Mod. Phys., Vol. 80, No. 4, October—December 2008

Critical phenomena in complex networks
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FIG. 6. (a) Graphic notation for the probability x that, follow-
ing a randomly chosen edge to one of its end vertices, we
arrive at a finite connected component. (b) Equation (8) or,
equivalently, Eq. (10) in graphic form. (c) Graphic representa-
tion of Eq. (9) and of equivalent Eq. (11) for the relative size S
of the giant connected component.

hand, in the framework of this ansatz, equilibrium net-
works are actually equivalent to random Bethe lattices.

B. Organization of uncorrelated networks

The mathematical solution to the problem of organiz-
ing arbitrary uncorrelated networks as a system of con-
nected components was proposed by Molloy and Reed
(1995, 1998). Callaway et al. (2000) and Newman et al.
(2001) represented and developed these ideas using the
apparatus and language of physics. Here we describe
these fundamental results and ideas in simple terms. We
refer the reader to Newman et al. (2001) and Newman
(2003c) for details of this theory based on the generating
function technique.

1. Evolution of the giant connected component

The theory of uncorrelated networks [we discuss the
configuration model, which is completely described by
the degree distribution P(q) and size N] is based on the
following simplifying features:

(1) The sole characteristic of a vertex in these net-
works is its degree. In any other respect, the ver-
tices are statistically equivalent—there are no bor-
ders or centers, or older or younger vertices in
these models. The same is true for edges.

(i)  The tree ansatz is valid.
(iii) Equations (1) and (2) are valid (see Fig. 3).

Feature (i) allows one to introduce the probability x
that, following a randomly chosen edge to one of its end
vertices, he or she arrives at a finite connected compo-
nent. In stricter terms, choose a random edge; choose its
random end; then x is the probability that after remov-
ing this edge, the chosen end vertex will belong to a
finite connected component. A graphic representation of
x is introduced in Fig. 6(a). The probability that an edge
belongs to one of the finite components is, graphically,

O—O =2 (7)
This is the probability that, by following an edge in any
direction, we arrive at finite trees. Thus 1—x? is a frac-
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tion of edges that are in the giant connected component.
This simple relation enables us to measure x. Using fea-
tures (i), (ii), and (iii) leads to the following self-
consistent equation for x and expression for the prob-
ability 1-S that a vertex belongs to a finite connected
component:

X = E CIP(CI)xq_l

. @ ’ ®

1-8S=> P(q)x1. 9)
q

In particular, Eq. (9) is explained as follows. A vertex
belongs to a finite connected component if and only if
following every emanating edge in the direction from
this vertex we arrive at a finite tree. The probability of
this event is x? for a vertex of degree g. For a randomly
chosen vertex, we must sum over g the products of x4
and the probability P(g). One can see that S is the rela-
tive size of the giant connected component. Figures 6(b)
and 6(c) present and explain these formulas in graphic
form. Note that if P(¢=0,1)=0, then Eq. (8) has the only
solution x=1, and so S=1, i.e., the giant connected com-
ponent coincides with the network. Using the generating
function of the degree distribution ¢(z) == P(k)z9 and
the notation ¢;(z)=¢'(z)/¢'(1)=¢'(2)/{q) gives

x=¢(x), (10)
S=1-¢x). (11)

These relations demonstrate the usefulness of the gener-
ating function technique in network theory. The devia-
tion 1—x plays the role of the order parameter. If Eq. (8)
has a nontrivial solution x <1, then the network has the
giant connected component. The size of this component
can be found by substituting the solution of Eq. (8) or
(10) into Eq. (9) or (11). Remarkably, the resulting S is
obtained by only considering finite connected compo-
nents [which are (almost) surely trees in these networks];
see Fig. 6. Knowing the size of the giant connected com-
ponent and the total number of finite components, one
can find the number of loops in the giant component.
For the calculation of this number, see Lee et al. (2004c¢).
Applying generating function techniques in a similar
way, one may also describe the organization of con-
nected components in the bipartite uncorrelated net-
works; see Soderberg (2002).

Analysis of Eq. (8) shows that an uncorrelated net-
work has a giant connected component when the mean
number of second nearest neighbors of a randomly cho-
sen vertex z,={(q’)—{q) exceeds the mean number of
nearest neighbors: z,>z;. This is the Molloy-Reed cri-
terion,

(@) ~2g)>0 (12)

(Molloy and Reed, 1995). For the Poisson degree distri-
bution, i.e., for the classical random graphs, z,={q)?, and
so the point of emergence of the giant connected com-
ponent is z;=1. In the Gilbert model, this corresponds
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to the critical probability p (N —)=1/N that a pair of
vertices is connected. These relations explain the impor-
tance of the sparse network regime, where this transition
takes place. The Molloy-Reed criterion shows that the
divergence of the second moment of the degree distri-
bution guarantees the presence of the giant connected
component.

Exactly at the point of emergence of the giant con-
nected component, the mean size of a finite component
to which a randomly chosen vertex belongs diverges as
follows:

() =(q)1(2q) (g™ +1 (13)

(Newman et al., 2001). This formula is given for the
phase without the giant connected component. In this
problem, (s) plays the role of susceptibility. Usually, it is
convenient to express the variation of the giant compo-
nent near the critical point and other critical properties
in terms of the deviation of one parameter, e.g., the
mean degree (g), from its critical value, (g).. Usually, the
resulting singularities in terms of (g)—(g). are the same
as in terms of p—p. in the percolation problem on com-
plex networks (p is the concentration of undeleted ver-
tices; see below). Note that, in scale-free networks with
fixed exponent 7y, one may vary the mean degree by
changing the low-degree part of a degree distribution.

2. Percolation on uncorrelated networks

What happens with a network if a random fraction 1
—p of its vertices (or edges) is removed? In this site (or
bond) percolation problem, the giant connected compo-
nent plays the role of the percolation cluster, which may
be destroyed by decreasing p. Two equivalent ap-
proaches to this problem are possible. The first (Cohen
et al., 2000) uses the following idea. (i) Find the degree

distribution of the damaged network, which is P(g)
=Ef:qP(r)C’p‘1(1 —p)"~? for both the site and bond per-
colation. (iig Since the damaged network is obviously

still uncorrelated, Egs. (8) and (9) with this 13(q) describe
the percolation.

The second approach is technically more convenient:
derive direct generalizations of Egs. (8) and (9) with the
parameter p and the degree distribution P(q) of the
original, undamaged network (Callaway et al, 2000).
Simple arguments, similar to those illustrated by Fig. 6,
immediately lead to

x=1-p +p2 qu_l, (14)
. (@
1-S=1-p+p> P(g)x". (15)

q

Although Eq. (14) is valid for both the site and bond
percolation, Eq. (15) is valid only for site percolation.
For the bond percolation problem, use Eq. (9). One can
see that the giant connected component is present when
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3<y<4 y>4

0 P 1

FIG. 7. Effect of the heavy-tailed architecture of a network on
the variation of its giant connected component under random
damage. The relative size of the giant connected component §
is shown as a function of the concentration p of the retained
vertices in the infinite network.

pz2> 21, (16)
that is, the percolation threshold is at
Pe=21/22={@)/(q*) = (@) (17)

So, in particular, p.=1/{q) for classical random graphs,
and p.=1/(g—-1) for random regular graphs. Equations
(16) and (17) show that it is impossible to eliminate the
giant connected component in an infinite uncorrelated
network if the second moment of its degree distribution
diverges—the network is ultraresilient against random
damage or failures (Albert et al, 2000; Cohen et al.,
2000). In scale-free networks, this occurs if y<3. Calla-
way et al. (2000) considered a more general problem,
where the probability p(q) that a vertex is removed de-
pends on its degree. As is natural, the removal of highly
connected hubs from a scale-free network (intentional
damage) effectively destroys its giant connected compo-
nent (Albert et al., 2000; Cohen et al., 2001).

Near the critical point, the right-hand side of Eq. (14)
for the order parameter 1-x becomes nonanalytic if
higher moments of the degree distribution diverge. This
leads to unusual critical singularities in these percolation
problems and to unusual critical phenomena at the
emergence of the giant connected component in net-
works with heavy-tailed degree distributions (Cohen et
al., 2002, 2003a). For the sake of convenience, let the
infinite uncorrelated network be scale-free. In this case,
the critical behavior of the size S of the giant connected
component is as follows (Cohen et al., 2002).

(i)  If y>4,ie., (g°)<oe, then Sxp—p,., which is the
standard mean-field result, also valid for classical
random graphs.

(i) If3<y<4,then Sx(p-p)"r? ie., the B expo-
nent equals 1/(y-3).

(iti)  If y=3, then p,=0 and S=p exp(-2/p{(q)).

(iv) If 2<y<3, then p.=0 and Sxp!*/G-7),

These results are shown in Fig. 7. We stress that the
unusual critical exponents are only a consequence of a
fat-tailed degree distribution, and the theory is essen-
tially of a mean-field nature. Note that we discuss only

unweighted networks, where edges have unit weights.
For percolation on weighted networks, see Braunstein,
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Buldyrev, Cohen, et al. (2003), Braunstein et al. (2004),
and Li et al. (2007), and references therein. In weighted
networks, one can naturally introduce a mean length of
the path along edges with the minimum sum of weights
?Opt. Based on the percolation theory, Braunstein et al.
showed that in the Erdos-Rényi graphs with a wide
weight distribution, the optimal path length €, ~N'".

Numerous variations of percolation on networks may
be considered. In particular, one may remove vertices
from a network with a degree-dependent probability
(Albert et al., 2000; Callaway et al., 2000; Gallos et al.,
2005).

The probability that a vertex of degree g belongs to
the giant connected component is 1-x4 [compare with
Eq. (9)], so that it is high for highly connected vertices.
Here x is the physical root of Eq. (8) for the order pa-
rameter. The degree distribution of vertices in the giant
connected component (GCC) is

Pocc(q) = P@)(1 - x9) / [1 s P(q)xq] NG
q

Therefore at the point of emergence (x — 1) of the giant
connected component, the degree distribution of its ver-
tices is proportional to gP(q). Thus, in networks with
slowly decreasing degree distributions, the giant con-
nected component near its point of creation consists
mostly of vertices with high degrees.

Cohen et al. (2001, 2003a) found that at the emergence
point, the giant connected component does not have a
small-world geometry (that is, with a diameter growing
with the number of vertices N more slowly than any
positive power of N) but a fractal one. Its fractal dimen-
sion (the chemical dimension d; in their notations)
equals dj(y>4)=2 and d,;3<y<4)=(y-2)/(y-3). That
is, the mean intervertex distance in the giant connected
component (of size n) at the point of its disappearance is
large, € ~n. To be clear, suppose that we are destroying
a small world by deleting its vertices. Then precisely at
the moment of destruction, a tiny remnant of the net-
work has a much greater diameter than the original
compact network. It is important that this remnant is an
equilibrium tree with a degree distribution characterized
by exponent y—1. Indeed, recall that in Sec. I1.C we
indicated that equilibrium connected trees have a fractal
structure. So substituting y—1 for vy in the expression for
the fractal dimension of equilibrium connected trees
[Burda et al. (2001), see Sec. IL.C], explains the form of

dy).

3. Statistics of finite connected components

The sizes of largest connected components s depend
on the number of vertices in a network N. Here the
index i=1 is for the largest component, i=2 is for the
second largest component, and so on. In the classical
random graphs, s?(N) with a fixed i and N—o are as
follows [for more details, see Borgs et al. (2001) and Bol-
lobas and Riordan (2003)]: (i) for p<p.(1-CN13),
s"=D(N)~In N; (ii) within the so-called scaling window
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lp—p/<CN13,  sE=D(N)~N?3; (i) for p>p.(1
+CN13), sO(N)~N, s""D(N)~In N (Bollobds, 1984).
Here C denotes corresponding constants and p=(q)/N.

In Sec. IX.B, we present a general phenomenological
approach to finite-size scaling in complex networks. Ap-
plying this approach to scale-free networks with degree
distribution exponent 7y allows one to describe the sizes
of the largest connected components: (i) if y>4, the
same formulas hold as for the classical random graphs;
(ii) if 3< y<4, then s=D(N) ~ N-2/(r-1) within the scal-
ing window |[p—p < CN-(-3/-D (Kalisky and Cohen,
2006), and the classical results hold outside of the scaling
window.

Similarly, one can write

PN =) =p (N) ~ N-0=0D (19)

for the deviation of the percolation threshold in the
range 3<y<4. (Note that p, is well defined only in the
N — oo limit.) We discuss the size effect in networks with
2<y<3in Sec. II1.B.4.

We compare these results with the corresponding for-
mulas for the standard percolation on lattices. If the di-
mension of a lattice is below the upper critical dimen-
sion for the percolation problem, d <d, =6, then

s(i?])(N) — Ndf/d (20)

within the scaling window |p —p.| <const X N~V _Here
dy=(d+2-n)/2=B/v+2~17 is the fractal dimension of
the percolation cluster in the critical point measured in
the d-dimensional space using a box-counting proce-
dure, v is the correlation length exponent, and # is the
Fisher exponent. (The boxes in this box-counting proce-
dure are based on an original, undamaged network.)
Above the upper critical dimension, which is the case for
small worlds, one must replace d in these formulas (and
in scaling relations) by d,, and substitute the mean-field
values of the critical exponents v, 7, and B, namely, use
v:% and 7=0. For networks, the mean-field exponent
B=pB(y), and so, similarly to Hong, Ha, and Park (2007),
we may formally introduce the upper critical dimension
d,(y)=2B/v+2—-n=4B(y)+2 and the fractal dimension
ddy)=Blv+2-n=2p(y)+2.

With the known order parameter exponent S(y) from
Sec. I11.B.2, this heuristic approach gives the fractal di-
mension

di(y=4)=4, dB<y<4)=20y-2)l(y-3) (1)

(Cohen et al., 2003a). Note that this fractal dimension dy
does not coincide with the “chemical dimension” d; dis-
cussed above but rather dy=2d,. Similarly,

d(y=4)=6, d,(3<y<4)=2y-Dl(y-3) (22)

(Cohen et al., 2003a; Hong, Ha, and Park, 2007; Wu,
Lagorio, Braunstein, et al., 2007). With these d,(y) and
d[y), we reproduce the above formulas for finite-size
networks.

The size distribution of connected components in the
configuration model was derived using the generating
function technique (Newman et al, 2001; Newman,
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2007). Let P(s) be the size distribution of a finite com-
ponent to which a randomly chosen vertex belongs and
Q(s) be the distribution of the total number of vertices
reachable following a randomly chosen edge. h(z)
=>P(s)z® and h(z)=Z,Q(s)z° are the corresponding
generating functions. Then

h(z) = zp(h(2)), (23)

hy(z) = z¢1(hy(2)) (24)

(Newman et al., 2001). To get h(z) and its inverse trans-
formation P(s), one should substitute the solution of Eq.
(24) into Eq. (23).

Equations (23) and (24) have an interesting conse-
quence for scale-free networks without a giant con-
nected component. If the degree distribution exponent
is y>3, then in this situation the size distribution P(s) is
also asymptotically a power law, P(s) ~s~(*) (Newman,
2007). To arrive at this result, one must recall that if a
function is a power law, P(k)~k~7, then its generating
function near z=1 is ¢(z)=a(z)+C(1-z)”"!, where a(z)
is an analytic function at z=1, and C is a constant. Sub-
stituting this ¢(z) into Egs. (23) and (24) results in the
nonanalytic contribution ~(1-z)*"2 to h(z). [One must
also take into account that h(1)=h;(1)=1 when a giant
component is absent.] This corresponds to the power-
law asymptotics of P(s). Remarkably, there is a qualita-
tive difference in the component size distribution be-
tween undamaged networks and networks with
randomly removed vertices or edges. In percolation
problems for arbitrary uncorrelated networks, the power
law for the distribution P(s) fails everywhere except a
percolation threshold (see below).

In uncorrelated scale-free networks without a giant
connected component, the largest connected component
contains ~NYr"1 vertices (Durrett, 2006; Janson, 2007),
where we assume y>3. As is natural, this size coincides
with the cutoff k., (N) in these networks.

Near the critical point in uncorrelated scale-free net-
works with a giant connected component, the size distri-
bution of finite connected components to which a ran-
domly chosen vertex belongs is

7)(5) . S—T+1e—x/x*(p), (25)

where s*(p,) —: s*(p) ~ (p—p.) " near p, (Newman et
al., 2001). The size distribution of finite connected com-
ponents is P(s) ~P(s)/s. In uncorrelated networks with
rapidly decreasing degree distributions, Eq. (25) is also
valid in the absence of a giant connected component.
Note that this situation includes randomly damaged
scale-free networks: percolation. The distribution P(s)
near the critical point in undamaged scale-free networks
without a giant component looks as P(s) ~s~ ™! at suffi-
ciently small s, and P(s) ~s~**! at sufficiently large s (y
>3; in this region the inequality y> 7 is valid). The ex-
ponents 7, o, and B satisfy the scaling relations 7—1
=op+1=0d,/2=d,/d;. We stress that the mean size of a
finite connected component, i.e., the first moment of the
distribution P(s), is finite at the critical point. A diver-
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gent quantity (and an analog of susceptibility) is the
mean size of a finite connected component to which a
randomly chosen vertex belongs,

()= 2 sP(s) ~ [p-p 7, (26)

where ¥ is the “susceptibility” critical exponent. This ex-
ponent does not depend on the form of the degree dis-
tribution. Indeed, the well-known scaling relation y/v
=2-mn with v=% and 7=0 substituted leads to y=1
within the entire region y>3.

The resulting exponents for finite connected compo-
nents in the scale-free configuration model are as fol-
lows: (i) for y>4, the exponents are T:%, 0':%, y=1,
which are also valid for classical random graphs; (ii) for
3<y<4, 7=2+1/(y-2), o=(y-3)/(y-2), y=1 (Cohen
et al., 2003a).

The situation in the range 2 <<y< 3 is not so clear. The
difficulty is that in this interesting region, the giant con-
nected component disappears at p=0, i.e., only with the
disappearance of the network itself. Consequently, one
cannot separate “critical” and noncritical contributions,
and so scaling relations fail. In this range, (iii) i.e., for
2<y<3, (s)xp, 7=3, 0=3-v. Note that the last two
values imply a specific cutoff of the degree distribution,
namely, gq,~ N2

In principle, the statistics of connected components in
the bond percolation problem for a network may be ob-
tained by analyzing the solution of the p-state Potts
model (Sec. VII) with p=1 placed on this net. Lee et al.
(2004c) realized this approach for the static model.

The correlation volume of a vertex is defined as

V=2 zi)b’, (27)
=0

where z, is the number of the €th nearest neighbors of
vertex i and b is a parameter characterizing the decay of
correlations. The parameter b may be calculated for spe-
cific cooperative models and depends on their control
parameters; see Sec. VI.C.4. In particular, if b=1, the
correlation volume is reduced to the size of a connected
component. We estimate the mean correlation volume in
the uncorrelated network with the mean branching co-

efficient B=2,/z,: V~3,(bB)¢ (assume that the network

has the giant connected component). So V(N— ) di-
verges at and above the critical value of the parameter,
b.=1/B. At the critical point, V(b,))=3%,1~1In N. Since
B'™ ~ N, we obtain V~ N"CBM B for b>p  Thus, as b
increases from b, to 1, the exponent of the correlation
volume grows from 0 to 1.

The correlation volume takes into account remote

neighbors with exponentially decreasing (if b<1)
weights. A somewhat related quantity (the mean num-

ber of vertices at a distance less than a€(N) from a ver-
tex, where a=1) was analyzed by Lépes et al. (2007) in
their study of limited path percolation. This number is of
the order of N° where the exponent 6=d(a,B)<1.
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4. Finite-size effects

Practically all real-world networks are small, which
makes the factor of finite size important. For example,
empirically studied metabolic networks contain about
10° vertices. Even the largest artificial net (the World
Wide Web, whose size will soon approach 10'' Web
pages) shows qualitatively strong finite-size effects May
and Lloyd, 2001; Dorogovtsev and Mendes, 2002;
Boguiid et al., 2004). To understand the strong effect of
finite size in real scale-free networks, one must recall
that the exponent y=<3 in most of them, that is, the
second moment of a degree distribution diverges in the
infinite network limit.

Note that the tree ansatz may be used even in this
region (y<3), where the uncorrelated networks are
loopy. The same is true for at least the great majority of
interacting systems on these networks. The reason for
this surprising applicability is not yet clear.

We now demonstrate the “poor man’s approach” to
percolation on a finite-size (uncorrelated) network with
v<3, where p.(N—»)—0. To be specific, we find the
size dependence of the percolation threshold, p.(N). The
idea of this estimate is quite simple. We use Eq. (17),
which was derived for an infinite network, but with the
finite network’s degree distribution substituted. Then, if
the cutoff of the degree distribution is g.,~N"?, we
arrive at

PN2<y<3)~NGP2  p(N,y=3)~1/InN.
(28)

These relations suggest the emergence of noticeable per-
colation thresholds even in large networks. In other
words, the ultraresilience against random failures is ef-
fectively broken in finite networks.

Calculations of other quantities for percolation (and
for a wide circle of cooperative models) on finite nets
are analogous. Physicists, unlike mathematicians, rou-
tinely apply estimates of this sort to various problems
defined on networks. Usually, these intuitive estimates
work but evidently demand thorough verification. Un-
fortunately, a strict statistical mechanics theory of finite-
size effects for networks is technically hard and was de-
veloped only for special models; see Sec. IV.A. For a
phenomenological approach to this problem, see Sec.
IX.B.

5. k-core architecture of networks

The k-core of a network is its largest subgraph whose
vertices have degree at least k (Chalupa et al., 1979; Bol-
lobds, 1984). In other words, each of the vertices in the
k-core has at least k nearest neighbors within this sub-
graph. The notion of the k-core naturally generalizes the
giant connected component and offers a more compre-
hensive view of the network organization. The k-core of
a graph may be obtained by the “pruning algorithm,”
which looks as follows (see Fig. 8). Remove from the
graph all vertices of degrees less than k. Some of the
remaining vertices may now have fewer than k edges.
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FIG. 8. Construction of the 3-core of a graph. First we remove
vertices 1, 2, and 4 together with their links because they have
degrees smaller than 3. In the obtained graph, vertex 3 has
degree 1. By removing it, we get the 3-core of the graph.

Prune these vertices, and so on until no further pruning
is possible. The result, if it exists, is the k-core. Thus, a
network is hierarchically organized as a set of succes-
sively enclosed k-cores, similarly to a Russian nesting
doll—“matrioshka.” Alvarez-Hamelin et al. (2006) used
this k-core architecture to produce a set of visualizations
of diverse networks.

k-core (bootstrap) percolation implies the breakdown
of the giant k-core at a threshold concentration of verti-
ces or edges removed at random from an infinite net-
work. Pittel et al. (1996) found the way to analytically
describe the k-core architecture of classical random
graphs. Fernholz and Ramachandran (2004) mathemati-
cally proved that the k-core organization of the configu-
ration model is asymptotically exactly described in the
framework of a simple tree ansatz.

We now discuss the k-core percolation in the configu-
ration model with degree distribution P(g) using argu-
ments based on the tree ansatz (Dorogovtsev et al.,
2006a, 2006b; Goltsev et al., 2006). The validity of the
tree ansatz is nontrivial since in this theory it is applied
to a giant k-core that has loops. Note that in treelike
networks, (k=3)-cores (if they exist) are giant—finite
(k=3)-cores are impossible. In contrast to the giant con-
nected component problem, the tree ansatz applied to
higher k-cores fails far from the k-core point of emer-
gence. We assume that a vertex in the network is present
with probability p=1-Q. In this locally treelike net-
work, the giant k-core coincides with the infinite
(k—1)-ary subtree. By definition, the m-ary tree is a tree
where all vertices have branching at least m.

Let the order parameter in the problem R be the
probability that a given end of an edge of a network is
not the root of an infinite (k—1)-ary subtree. (Of course,
R depends on k.) An edge is in the k-core if both ends of
this edge are roots of infinite (k—1)-ary subtrees, which
happens with the probability (1-R)?. In other words,

(1 R)2 B number of edges in the k-core

, 29
number of edges in the network @9

which expresses the order parameter R in terms of ob-
servables. Figure 9 graphically explains this and the fol-
lowing two relations. A vertex is in the k-core if at least
k of its neighbors are roots of infinite (k—1)-ary trees.
So, the probability M, that a random vertex belongs to
the k-core (the relative size of the k-core) is given by
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FIG. 9. Diagrammatic representation of Egs. (29)-(31). (a)
Graphic notations for the order parameter R and for 1-R. (b)
The probability that both ends of an edge are in the k-core,
Eq. (29). (¢) Configurations contributing to M, which is the
probability that a vertex is in the k-core, Eq. (30). The symbol
V indicates that there may be any number of nearest neighbors
that are not trees of infinite (k—1)-ary subtrees. (d) A graphic
representation of Eq. (31) for the order parameter. Adapted
from Goltsev et al., 2006.

My=p > X P(q)CIRT"(1-R)", (30)

n=k q=n

where Cl=gq!/(q—n)!n!. To obtain the relative size of
the k-core, one must substitute the physical solution of
the equation for the order parameter into Eq. (30). We
write the equation for the order parameter, noticing that
a given end of an edge is a root of an infinite (k—1)-ary
subtree if it has at least k—1 children that are roots of
infinite (k—1)-ary subtrees. Therefore,

o]

|- R=p E E(i+1)P(i+1)

CIR™(1-R)". (31)
n=k-1 i=n 21

This equation differs strongly from that for the order
parameter in the ordinary percolation; compare with Eq.
(14). The solution of Eq. (32) at k=3 indicates a quite
unusual critical phenomenon. The order parameter (and
also the size of the k-core) has a jump at the critical
point like a first-order phase transition. On the other
hand, it has a square root critical singularity,

R.—Rox[p—p k)] o My — My,; (32)

see Fig. 10. This intriguing critical phenomenon is often
called a hybrid phase transition (Parisi and Rizzo, 2006;
Schwartz et al., 2006) Equations (32) are valid if the sec-
ond moment of the degree distribution is finite. Other-
wise, the picture is similar to what we observed for or-
dinary percolation. In this range, the k-cores, even of
high order, practically cannot be destroyed by the ran-
dom removal of vertices from an infinite network.

The 2-core of a graph can be obtained from the giant
connected component of this graph by pruning dangling



1288 Dorogovtsev, Goltsev, and Mendes:

1_
0.8
0.6:
x :
s |
0.4-;
024k=7 s ‘s L4 3
0 0.2 0.4 0.6

FIG. 10. Relative sizes of the k-cores M, in classical random
graphs with the mean degree z;=10 versus the concentration
O=1-p of randomly removed vertices. Adapted from Dor-
ogovtsev et al., 2006a.

branches. At k=2, Eq. (31) for the order parameter is
identical to Eq. (14) for the ordinary percolation. There-
fore, the creation point of the 2-core coincides with that
of the giant connected component, and the phase tran-
sition is continuous. According to Eq. (30), the size M,
of the 2-core is proportional to (1-R)? near the critical
point, and so it is proportional to the square of the size
of the giant connected component. This gives M,
«(p-p,)? if the degree distribution decays rapidly.

In stark contrast to ordinary percolation, the emer-
gence of (k>2)-cores is not related to the divergence of
corresponding finite components, which are absent in
treelike networks. Then, is there any divergence associ-
ated with this hybrid transition? The answer is yes. To
unravel the nature of this divergence, we introduce a
new notion. The k-core’s corona is a subset of vertices in
the k-core (with their edges) that have exactly k nearest
neighbors in the k-core, i.e., the minimum possible num-
ber of connections. One may see that the corona itself is
a set of disconnected clusters. Let N, be the mean total
size of corona clusters attached to a vertex in the k-core.
It turns out that it is N, (p) that diverges at the creation
point of the k-core,

Ncrn(p) * [p _pc(k)]_1/2 (33)

(Goltsev et al., 2006; Schwartz et al., 2006). Moreover,
the mean intervertex distance in the corona clusters di-
verges by the same law as N, (p) (Goltsev et al., 2006).
It looks as if the corona clusters “merge together” ex-
actly at the k-core percolation threshold and simulta-
neously disappear together with the k-core, which does
not exist at p>p.(k).

Similarly to the mean size of a cluster to which a ver-
tex belongs in ordinary percolation N, plays the role of
susceptibility in this problem; see Schwartz et al. (2006)
for more details. The exponent of the singularity in Eq.
(33), namely, %, dramatically differs from the standard
mean-field value of exponent y=1 (see Sec. III.B.3). At
this point, it is appropriate to mention a useful associa-
tion. Recall the temperature dependence of the order
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FIG. 11. Relative size of the k-cores vs k in several networks.
O, M| calculated neglecting correlations, using the degree dis-
tribution of Internet router network, N=190000. Adapted
from Dorogovtsev et al., 2006a. A, measurements for the au-
tonomous system network [Cooperative Association for Inter-
net Data Analysis (CAIDA) map], N=8542. Adapted from
Alvarez-Hamelin et al., 2008. @, results for a maximally ran-
dom scale-free (y=2.5) network of 10° vertices, and M, for a
similar network but with a given strong clustering, C=0.71.
Adapted from Serrano and Boguia, 2006a.

parameter m(7) in a first-order phase transition. In nor-
mal thermodynamics, metastable states cannot be real-
ized. Nonetheless, consider the metastable branch of
m(T). One can find that near the end (7)) of this branch,
m(T)=m(T,)+const X [Ty—T]"?, and the susceptibility
x(T)<(Ty—T)""2. Compare these singularities with
those of Egs. (32) and (33). The only essential difference
is that, in contrast to the k-core percolation, in the ordi-
nary thermodynamics this region is not approachable.
Parallels of this kind have already been discussed by
Aizenman and Lebowitz (1988).

Using Egs. (30) and (31), we can find the k-core sizes
M, in the range 2 <<y<3,

Myc=p!"O(qylk) 11, (34)

where g, is the minimal degree in the scale-free degree
distribution (Dorogovtsev et al., 2006a). The exponent of
this power law agrees with the observed one in a real-
world network—the Internet at the autonomous system
level and the map of routers (Kirkpatrick, 2005; Carmi,
Havlin, Kirkpatrick, et al., 2006; Alvarez-Hamelin et al.,
2008). In the infinite scale-free networks of this kind,
there is an infinite sequence of k-cores (34). These cores
all have a practically identical architecture—their degree
distributions asymptotically coincide with the degree
distribution of the network in the range of high degrees.

The finiteness of networks restricts the k-core se-
quence with maximum number kj, for the highest k-core.
Dorogovtsev et al. (2006a, 2006b) and Goltsev et al.
(2006) estimated k;, substituting empirical degree distri-
butions into the equations for uncorrelated networks.
Unfortunately, the resulting k; turned out to be several
(three) times smaller than the observed values (Carmi et
al., 2007; Alvarez-Hamelin et al., 2008). Later Serrano
and Boguiia (2006a, 2006c) arrived at a more realistic kj,,
taking into account high clustering (see Fig. 11). (They
simulated a maximally random network with a given de-
gree distribution and a given clustering.) There is also
another way to diminish kj,: random damaging first de-
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stroys the highest k-core, then the second highest, and so
on.

C. Percolation on degree-degree correlated networks

In a random network, let only pair correlations be-
tween nearest-neighbor degrees be present. Then this
network has a locally treelike structure, and one can
analyze the organization of connected components
(Newman, 2002b; Boguiid et al, 2003b; Vizquez and
Moreno, 2003). The network is completely described by
the joint degree-degree distribution P(q,q’), see Sec.
ILF (and by N). It is convenient to use a conditional
probability P(q'|q) that if an end vertex of an edge has
degree g, then the second end has degree ¢g'. In uncor-
related networks, P(q'|q)=q'P(q')/{q) is independent
of g. Obviously, P(q'|q)={q)P(q,q")/qP(q). The impor-
tant quantity in this problem is the probability x, that if
an edge is attached to a vertex of degree ¢, then, follow-
ing this edge to its second end, we will not appear in the
giant connected component. For the sake of brevity, we
discuss only the site percolation problem, where p is the
probability that a vertex is retained. For this problem,
equations for x, and an expression for the relative size
of the giant connected component take the following
form:

x,=1-p+pX P(q'|g)(x,)" ", (35)
q’

1-S=1-p+p> P(q)(x,)1 (36)
q

(Véazquez and Moreno, 2003), which naturally general-
izes Egs. (14) and (15). Solving the system of equations
(35) gives the full set {x,}. Substituting {x,} into Eq. (36)
provides S. Newman (2002b) originally derived these
equations in a more formal way, using generating func-
tions, and numerically solved them for various networks.
The resulting curve S(p) was found to depend signifi-
cantly on the type of correlations—whether the degree-
degree correlations were assortative or disassortative.
Compared to an uncorrelated network with the same
degree distribution, the assortative correlations increase
the resilience of a network against random damage,
while the disassortative correlations diminish this resil-
ience. See Noh (2007) for a similar observation in an-
other network model with correlations.

Equation (35) shows that the emergence of the giant
connected component is a continuous phase transition.
The percolation threshold is found by linearizing Eq.
(35) for small y,=1-x,, which results in the condition
241Cyq1y4 =0, where the matrix elements C,,=-3,,
+p(q'—1)P(q'|q). With this matrix, the generalization of
the Molloy-Reed criterion to the correlated networks is
the following condition: if the largest eigenvalue of the
matrix C,, is positive, then the correlated network has a
giant connected component. The percolation threshold
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may be obtained by equating the largest eigenvalue of
this matrix to zero. In uncorrelated networks, this re-
duces to criterion (17).

Interestingly, the condition of ultraresilience against
random damage does not depend on correlations. As in
uncorrelated networks, if the second moment {(g°) di-
verges in an infinite network, the giant connected com-
ponent cannot be eliminated by random removal of ver-
tices (Boguna et al., 2003b; Vazquez and Moreno, 2003).
Simple calculations show that the mean number z, of
the second nearest neighbors of a vertex in a degree-
degree correlated network diverges simultaneously with
(g%. Tt is this divergence of z, that guarantees the ul-
traresilience.

Percolation and optimal shortest path problems were
also studied for weighted networks with correlated
weights (Wu, Lagorio, Braunstein, et al., 2007).

D. The role of clustering

The statistics of connected components in highly clus-
tered networks, with numerous triangles (i.e., the clus-
tering coefficient C does not approach zero as N — ), is
a difficult and poorly studied problem. An important
step to resolving this problem has been made by Serrano
and Boguna (2006a, 2006b, 2006c). They studied con-
structions of networks with given degree distributions
and given mean clusterings of vertices of degree g, C(q).
It turns out that only if C(q)<1/(g-1) is it possible to
build an uncorrelated network with a given pair of char-
acteristics: P(q) and C(g). Since clustering of this kind
does not induce degree-degree correlations, the regime
C(q)<1/(g-1) was conventionally called “weak cluster-
ing.” [When C(q)<1/(q-1), then the number of tri-
angles based on an edge in the network is one or zero.]
On the other hand, if C(g) is higher than 1/(¢g—1) at
least at some degrees (“strong clustering”) then the con-
structed networks necessarily have at least correlations
between the degrees of the nearest neighbors.

Serrano and Boguiida (2006a, 2006b, 2006c) made a
simplifying assumption that triangles in a network can-
not have joint edges and neglected long loops. This as-
sumption allowed them to use a variation of the “tree
ansatz.” In particular, they studied the bond percolation
problem for these networks. The conclusions of this
work are as follows:

(1) If the second moment of the degree distribution is
finite, weak clustering makes the network less re-
silient to random damage—the percolation
threshold (in terms of Q=1-p, where Q is the
fraction of removed edges) decreases; see Fig. 12.
In contrast, strong clustering moves the percola-
tion threshold in the opposite direction, although
small damage (low Q) noticeably diminishes the
giant connected component.

(i)  If the second moment of the degree distribution
diverges, neither weak nor strong clustering can
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FIG. 12. (Color online) Bond percolation on unclustered and
strongly and weakly clustered scale-free networks. The expo-
nent y=3.5. The relative size S of the giant connected compo-
nent is shown as a function of the concentration Q=1-p of
removed edges. From Serrano and Boguiid, 2006c.

destroy the giant connected component in an in-
finite network.

Newman (2003b) proposed a different approach to
highly clustered networks. He used the fact that a one-
mode projection of a bipartite uncorrelated network has
high clustering, while the original bipartite network has
a locally treelike structure. (In this projection, two ver-
tices of, say, type 1, are nearest neighbors if they have at
least one joint vertex of type 2.) This feature allows one
to describe properties of the clustered one-partite net-
work with a tunable clustering and a tunable degree dis-
tribution by applying the tree ansatz to the bipartite net-
work. For details (applications to percolation and
epidemic processes) see Newman (2003b).

E. Giant component in directed networks

The structure of the giant connected component in
uncorrelated directed networks was studied by Dor-
ogovtsev et al. (2001a). By definition, edges of directed
networks are directed, so that the configuration model is
described by the joint in- and out-degree distribution
P(q;,q,). Directed networks have a far more complex
organization and topology of the giant connected com-
ponents than undirected ones. This organization may in-
clude specifically interconnected giant subcomponents
with different points of emergence. Applying the tree
ansatz, they found the emergence points of various giant
components and obtained their sizes for an arbitrary
P(q;,q,); see also Schwartz et al. (2002). For a more de-
tailed description of the giant components in directed
networks, see Serrano and De Los Rios (2007).

Boguiia and Serrano (2005) generalized this theory to
uncorrelated networks that contain both directed and
undirected connections. These networks are character-
ized by a distribution P(q,q;,q,), where q, q;, and g, are
the numbers of undirected, in-directed, and out-directed
connections of a vertex, respectively.
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The exponents of the critical singularities for transi-
tions of the emergence of various giant connected com-
ponents in directed networks were -calculated by
Schwartz et al. (2002). Note that, although the in and out
degrees of different vertices in these networks are un-
correlated, there may be arbitrary correlations between
in and out degrees of the same vertex. The critical expo-
nents, as well as the critical points, essentially depend on
these in- and out-degree correlations.

F. Giant component in growing networks

The intrinsic large-scale inhomogeneity of nonequilib-
rium (e.g., growing) networks may produce a surprising
critical phenomenon. Large-scale inhomogeneity means
the difference between properties of vertices according
to their age. This difference usually makes the “old”
part of a growing network more “dense” than the
“young” one.

Callaway et al. (2001) found an unexpected effect in
the emergence of the giant connected component al-
ready in a simple model of the growing network. In their
model, the network grows due to two parallel processes:
(i) there is an inflow of new vertices with unit rate, and
(ii) there is an inflow of edges with rate b, which inter-
connect randomly chosen vertex pairs. The rate b plays
the role of the control parameter. As one might expect,
the resulting degree distribution is simple—exponential.
Inspection of this network when it is already infinite
shows that it has a giant connected component for b
>b,, where b, is some critical value. Remarkably, the
emergence of the giant connected component in this net
strongly resembles the Berezinskii-Kosterlitz-Thouless
(BKT) phase transition in condensed matter (Berezin-
skii, 1970; Kosterlitz and Thouless, 1973). Near the criti-
cal point, the relative size of the giant connected com-
ponent has the specific BKT singularity

S o exp(— const/ \b-b,). (37)

Note that in an equilibrium network with the same de-
gree distribution, § would be proportional to the small
deviation b—b,. The singularity (37), with all derivatives
vanishing at the critical point, implies an infinite-order
phase transition.

Normally, the BKT transition occurs at the lower criti-
cal dimension of an interacting system, where critical
fluctuations are strong, e.g., dimension 2 for the XY
model. Most of the known models with this transition
have a continuous symmetry of the order parameter,
so the discovery of the BKT singularity in infinite-
dimensional small worlds, that is, in the mean-field re-
gime, was somewhat surprising. The mean size of a finite
connected component to which a vertex belongs in this
network was also found to be nontraditional. This char-
acteristic (an analogy of susceptibility) has a finite jump
at this transition and not a divergence generic for equi-
librium networks and disordered lattices.

Dorogovtsev et al. (2001b) analytically studied a much
wider class of growing networks with an arbitrary linear
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preferential attachment (which may be scale-free or ex-
ponential) and arrived at similar results. In particular,
they found that the constant and b, in Eq. (37) depend
on the rules of the growth. Looking for clues and paral-
lels with the canonical BKT transition, they calculated
the size distribution of connected components Pi(s)
characterizing correlations. The resulting picture looks
as follows.

e The distribution P,(s) slowly (in a power-law fashion)
decays in the whole phase without the giant con-
nected component, and this distribution rapidly de-
creases in the phase with the giant connected
component.

This picture is in stark contrast to the equilibrium net-
works, where

e the distribution P(s) slowly decays only at the emer-
gence point of the giant connected component (if a
network is non-scale-free; see Sec. II1.B.3).

In this respect, the observed transition in growing net-
works strongly resembles the canonical BKT transitions,
where the critical point separates a phase with rapidly
decreasing correlations and a “critical phase” with cor-
relations decaying in a power-law fashion. (Note, how-
ever, the inverted order of phases with a power-law de-
cay and with a rapid drop in these transitions.)

This phase transition was later observed in other
growing networks with exponential and scale-free de-
gree distributions [only for some of these networks; see
Lancaster (2002), Coulomb and Bauer (2003), Krapivsky
and Derrida (2004), Bollobas and Riordan (2005), and
Durrett (2006)]. Moreover, even ordinary “equilibrium”
bond percolation considered on special networks has the
same critical phenomenon. For example, (i) grow an in-
finite random recursive graph (at each time step, add a
new vertex and attach it to m randomly chosen vertices
of the graph), and (ii) consider the bond percolation
problem on this infinite network. We emphasize that the
attachment must be only random here. It is easy to see
that the resulting network may be equivalently prepared
by using a stochastic growth process that leads to the
BKT-like transition. Similar effects were observed on
the Ising and Potts models placed on growing networks;
see Sec. VL.F.1. A more realistic model of a growing
protein interaction network where a giant connected
component emerges with the BKT-type singularity was
described by Kim et al. (2002).

Various percolation problems on deterministic (grow-
ing) graphs may be solved exactly. Surprisingly, percola-
tion properties of deterministic graphs are similar to
those of their random analogs. For detailed discussion of
these problems, see Dorogovtsev et al. (2002a), Dor-
ogovtsev (2003), and Rozenfeld and ben-Avraham
(2007).

G. Percolation on small-world networks

We consider a small-world network based on a
d-dimensional hypercubic lattice (N= L% with random
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shortcuts added with probability ¢ per lattice edge. Note
that in this network, in the infinite network limit, there
are no finite loops including shortcuts. All finite loops
are only of lattice edges. This fact allows one to apply
the usual tree ansatz to this loopy network. In this way,
Newman et al. (2002) obtained the statistics of connected
components in the bond percolation problem for two-
dimensional small-world networks. Their qualitative
conclusions are also valid for bond and site percolation
on one-dimensional (Newman and Watts, 1999a, 1999b;
Moore and Newman, 2000a, 2000b) and arbitrary-
dimensional small-world networks.

In the spirit of classical random graphs, at the perco-
lation threshold point p, there must be one end of a
retained shortcut per connected component in the lattice
substrate. In stricter terms, this condition is 2d¢p,
=1/{ny)(p.), i.e., the mean density of the ends of short-
cuts on the lattice substrate must be equal to the mean
size (ng) of a connected component (on a lattice) to
which a vertex belongs. In the standard percolation
problem on a lattice, (ny)(p) = (p.o—p)~?, where p., and ¥
are the percolation threshold and the “susceptibility”
critical exponent in the standard percolation. So the per-
colation threshold is displaced by

Pco—Pc™ ¢1W (38)

if ¢ is small (Warren et al., 2003). For example, for bond
percolation on the two-dimensional small-world net-
work, p.,=1/2 and y=43/18=2.39.... The mean size of
a connected component to which a random vertex be-
longs is also easily calculated,

(n) = (noY/(1 = 2d¢p(ng)) = (p.—p)", 39)

so that its critical exponent equals 1, as in classical ran-
dom graphs. The other percolation exponents also coin-
cide with their values for classical graphs. In general, this
claim is equally valid for other cooperative models on
small-world networks in a close environment of a critical
point.

Ozana (2001) described the entire crossover from the
lattice regime to the small-world one and finite-size ef-
fects by using scaling functions with dimensionless com-
binations of the three characteristic lengths: (i) L, (ii) the
mean Euclidean distance between the neighboring
shortcut ends &, =1/(2d¢p)"?, and (iii) the usual corre-
lation length & for percolation on the lattice. For an
arbitrary physical quantity, X(L)=L*f(&./L,&/L),
where x and f(,) are the scaling exponent and function.
In the case of L — o, this gives X =&, &g(&w/&), where
v, z, and g( ) are other scaling exponents and function.
This scaling is equally applicable to many other coopera-
tive models on small-world networks.

H. k-clique percolation

A possible generalization of percolation was put for-
ward by Derényi et al. (2005). They considered percola-
tion on the complete set of k-cliques of a network. The
k-clique is a fully connected subgraph of k vertices. Two



1292 Dorogovtsev, Goltsev, and Mendes: Critical phenomena in complex networks

k-cliques are adjacent if they share k—1 vertices. For
example, the smallest nontrivial clique, the 3-clique, is a
triangle, so that two triangles must have a common edge
to allow the “3-percolation.”

In fact, Derényi et al. (2005) described the emergence
of the giant connected component in the set of the
k-cliques of a classical random graph—the Gilbert
model. The k-clique graph has vertices (k cliques) and
edges—connections between adjacent k-cliques. The to-
tal number of k-cliques equals approximately
Nkp*«=D2/k1 The degree distribution of this graph is
Poissonian, and the mean degree is {(g)=Nkp*~!, which
may be much less than the mean degree in the Gilbert
model, Np.

Since the sparse classical random graphs have few (k
=3)-cliques, this kind of percolation obviously implies a
dense network with a divergent mean degree. Applying
the Molloy-Reed criterion to the k-clique graph gives
the emergence point of the k-clique giant connected
component

1
pk)N = ij<’<-2>/<’<-” as N — (40)

[for more details, see Palla et al. (2007)].

The emergence of the giant connected component in
the k-clique graph looks quite standard so that its rela-
tive size is proportional to the deviation [p-p (k)] near
the critical point. On the other hand, the relative size S
of the (k=3)-clique giant connected component in the
original graph (namely, the relative number of vertices in
this component) evolves with p in a quite different man-
ner. This component emerges abruptly, and for any p
above the threshold p.(k) it contains almost all vertices
of the network: Si[p <p.(k)]=0 and S;[p>p.(k)]=1.

IV. CONDENSATION TRANSITION

Numerous models of complex networks show the fol-
lowing phenomenon. A finite fraction of typical struc-
tural elements in a network (motifs)—edges, triangles,
etc.—turn out to be aggregated into an ultracompact
subgraph with diameters much smaller than the diam-
eter of this network. In this section, we discuss various
types of condensation.

A. Condensation of edges in equilibrium networks

1. Networks with multiple connections

We start with rather simple equilibrium uncorrelated
networks, where multiple connections, loops of length
one, and other arbitrary configurations are allowed.
There exist a number of more or less equivalent models
of these networks (Burda et al., 2001; Bauer and Ber-
nard, 2002; Berg and Léssig, 2002; Dorogovtsev et al.,
2003b; Farkas et al., 2004). In many respects, these net-
works are equivalent to an equilibrium non-network sys-
tem (balls statistically distributed among boxes) so that
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they can be easily treated. On the other hand, the balls-
in-boxes model has a condensation phase transition (Bi-
alas et al., 1997; Burda et al. 2002).

We can arrive at uncorrelated networks with complex
degree distribution in various ways. Here we mention
two equivalent approaches to networks with a fixed
number N of vertices.

(1) (i) Similar to the balls-in-boxes model, one can
define the statistical weights of the random en-
semble members in the following factorized form:
Hﬁilp(qi) (Burda et al., 2001) where the one-vertex
probability p(g) is the same for all vertices (or
boxes) and depends on the degree of a vertex. If
the number of edges L is fixed, these weights ad-
ditionally take into account the following con-
straint: 2,q;=2L. With various p(q) (and the mean
degree (g)=2L/N) we can obtain various complex
degree distributions.

(i) (i) A more “physical,” equivalent approach is as
follows. A network is treated as an evolving sta-
tistical ensemble, where edges permanently
change their positions between vertices (Dor-
ogovtsev et al., 2003b). After relaxation, this en-
semble approaches a final state—an equilibrium
random network. If the rate of relinking factors
into the product of simple, one-vertex-degree
preference functions f(g), the resulting network is
uncorrelated. For example, one may choose a ran-
dom edge and move it to vertices i and j selected
with probability proportional to the product
f(g)f(q;). The form of the preference function and
(q) determines the distribution of connections in
this network.

It turns out that in these equilibrium networks scale-
free degree distributions can be obtained only if f(g) is a
linear function. Furthermore, the value of the mean de-
gree plays a crucial role. If, say, f(q)=g+1-y as g — o,
then three distinct regimes are possible. (i) When the
mean degree is lower than some critical value ¢, [which
is determined by the form of f(g)], the degree distribu-
tion P(q) is an exponentially decreasing function. (ii) If
(9)=q., then P(q)~ q~" is scale-free. (iii) If (¢)>q,, then
one vertex attracts a finite fraction of all connections, in
sum, L.,=N({g)—q.)/2 edges, but the other vertices are
described by the same degree distribution as at the criti-
cal point. In other words, at {(g)>q,, a finite fraction of
edges are condensed on a single vertex. One can show
that it is exactly one vertex that attracts these edges and
not two or three or several. Notice the large number of
one-loop structures and multiple connections attached
to this vertex. We emphasize that a scale-free degree
distribution without condensation occurs only at one
point—at the critical mean degree. This is in contrast to
networks growing under the mechanism of the preferen-
tial attachment, where linear preference functions gen-
erate scale-free architectures for a wide range of mean
degrees.
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One can arrive at the condensation of edges in a quite
different way. Following the work of Bianconi and
Barabdsi (2001), who applied this idea to growing net-
works, let few vertices, or even a single vertex, be more
attractive than others. Let, for example, the preference
function for this vertex be gf(q), where f(q) is the pref-
erence function for the other vertices, and g>1 is a con-
stant characterizing the relative “strength” or “fitness”
of this vertex. It turns out that when g exceeds some
critical value g., a condensation of edges on this strong
vertex occurs (Dorogovtsev and Mendes, 2003).

2. Networks without multiple connections

If multiple connections and one-loop structures are
forbidden, the structure of the condensate changes cru-
cially. This problem was analytically solved by Dor-
ogovtsev, Mendes, Povolotsky, et al. (2005). The essential
difference from the previous case is only in the structure
of the condensate. It turns out that in these networks, at
(9)>q., a finite fraction of edges, involved in the con-
densation, link together a relatively small, highly inter-
connected core of N, vertices, N,(N)<N. This core,
however, is not fully interconnected, i.e., it is not a
clique. (i) If the degree distribution P(q) of this network
decreases more slowly than any stretched exponential
dependence, e.g., the network is scale-free, then N,
~N'Y2, (i) In the case of a stretched exponential P(gq)
~exp(—const X g%), 0<a<1, the core consists of

Nh ~ N(2—a)/(3—a) (41)

vertices, that is, the exponent of Nj,(N) is in the range
(1/2,2/3). The connections inside the core are distrib-
uted according to the Poisson law, and the mean degree
~N/N,, varies in the range from ~N/N"2~N'? to
NN/N2/3 _ N1/3.

In the framework of traditional statistical mechanics,
one can also construct networks with various correla-
tions (Berg and Lissig, 2002), directed networks (Angel
et al., 2006), and many others. Derényi et al. (2004), Far-
kas et al. (2004), and Palla et al. (2004) constructed a
variety of network ensembles, with statistical weights of
members proportional to TI; exp[-E(g;)], to where E(q)
is a given one-vertex degree function—“energy,” as they
called it. In particular, in the case E(g)=-const X ¢ In g,
they numerically found an additional, first-order phase
transition. They studied a variation of the maximum ver-
tex degree gnax in a network. As (g) reaches g, a con-
densation transition takes place, and ¢,.x approaches
the value ~N(g), i.e., a finite fraction of all edges. Re-
markably, at some essentially higher mean degree, g,
Gmax Sharply (with hysteresis) drops to ~N'2. That is, the
network demonstrates a first-order phase transition
from the condensation (“star”) phase to the fully con-
nected graph regime.
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B. Condensation of triangles in equilibrium nets

The condensation of triangles in network models was
observed in the work of Strauss (1986). Strauss proposed
the exponential model, where statistical weights of
graphs are

W(g) = exp[— > BnEn(g)} . (42)

Here E,(g) is a set of some quantities of a graph g, a
member of this statistical ensemble, and B, is a set of
some positive constants. Note that many current studies
of equilibrium networks are based on the exponential
model. Strauss included the quantity E5(g), that is, the
number of triangles in the graph g taken with the minus
sign, in the exponential. This term leads to the presence
of a large number of triangles in the network. On the
other hand, they turn out to be inhomogeneously dis-
tributed over the network. By simulating this (small)
network, Strauss discovered that all triangles merge to-
gether forming a clique (fully connected subgraph) in
the network—the condensation of triangles.

Burda et al. (2004a, 2004b) analytically described and
explained this nontrivial phenomenon. We now discuss
the idea and results of their theory. The number of edges
L and the number of triangles 7 in a network are ex-

pressed in terms of its adjacency matrix A, namely, L
=Tr(A2)/2! and T=Tr(A%)/3!. The partition function of
the Erd6s-Rényi graph is simply Zo=3;8(Tr(A%)-2L),
where the sum is over all possible adjacency matrices.
Following Strauss, the simplest generalization of the

Erdos-Rényi ensemble, favoring triangles, has the fol-
lowing partition function:

Z = &(Tr(A% -2L)eC Tr(A}/3! _ Z(eC Tr(A3)/3z>0’
A
(43)

where the constant G quantifies the tendency to have
many triangles and (- --); denotes the averaging over the
Erdos-Rényi ensemble. Equation (43) shows the form
of the partition function for the canonical ensemble,
i.e., with fixed L. In the grand canonical formulation,

it looks more invariant: Z,.=2; exp[-C Tr(flz)/ 2!
+G Tr(A3)/ 3!] (here we do not discuss the constant C).
In fact, based on this form, Strauss (1986) argued that

with L/N finite and fixed, there exists a configuration
where all edges belong to a fully connected subgraph

and Tr(A% ~ N32> N. Therefore, as N — o, for any posi-
tive interaction constant G, the probability of realization
of such a configuration should go to 1, which is the
stable state of this theory.

The situation, however, is more delicate. Burda et al.
showed that apart from this stable condensation state,
the network has a metastable, homogeneous one. These
states are separated by a barrier, whose height ap-
proaches infinity as N—o. In large networks (with suf-
ficiently small G), it is practically impossible to approach
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FIG. 13. Mean number of triangles (7) as a function of the
parameter G in the metastable state of the network of N=2
vertices for three values of the mean degree (q)=2,4,8. The
dots are results of a simulation, and the lines are theoretical
curves (T)=({g)*/6)exp(G) = N. The rightmost dot in each set
corresponds to the threshold value G,({g)) above which the
network quickly approaches the condensation state with (7)
~ N32. From Burda et al., 2004a.

the condensation state if we start evolution (relaxation)
from a homogeneous configuration. (Recall that Strauss
numerically studied very small networks.)

Assuming small G, Burda et al. used the second equal-
ity in Eq. (43) to make a perturbative analysis of the
problem. They showed that in the perturbative phase
the mean number of triangles is (T)=({g)*/6)exp(G),
where (g) is the mean degree of the network; see Fig. 13.
In this regime, the number of triangles may be large,
(TY=N. Above the threshold G,({q),N)=aln N+b,
where the coefficients a and b depend only on (g), the
system easily jumps over the barrier and quickly ap-
proaches the condensation state.

Burda et al. (2004b) generalized this theory to net-
works with complex degree distributions using the par-

tition function Z=3;8(Tr(A2%)-2L)eC Tr(A3>HfV p(q)),
where g; is the degree of vertex i and the weight p(q) is

given. In an even more general approach, Tr(A%) in the
exponential should be replaced by a more general per-

turbation S (,21). Note that a different perturbation
theory for the exponential model was developed by Park
and Newman (2004a, 2004b).

C. Condensation of edges in growing networks

Bianconi and Barabési (2001) discovered the conden-
sation phase transition in networks, growing under the
mechanism of preferential attachment. In their inhomo-
geneous network, the preference function of vertices
had a random factor (fitness) g;f(¢g;) distributed accord-
ing to a given function p(g). They indicated a class of
sufficiently long-tailed distributions p(g), for which an
infinitely small fraction of vertices (maximally fitted
ones) attracts a finite fraction of edges. In fact, this con-
densation may be obtained even with a single, more fit-
ted vertex (j): gi+j=1, g=g>1 (Dorogovtsev and
Mendes, 2001). In this case, the condensation on this
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vertex occurs in large networks of size t>j if g exceeds
some critical value g,.

Suppose that the network is a recursive graph, and the
preference function f(q) is linear. Then g.=y,—1, where
v is the exponent of the degree distribution of this net-
work with all equal vertices (g=1). Note that if the de-
gree distribution is exponential (y,— ), gc— , and the
condensation is impossible. If g<g,, the degree distribu-
tion of the network is the same as in the pure network.
On the other hand, the phase with the condensate g
> g, has the following characteristics. (i) A finite fraction
of edges dx(g—g,.) is attached to the fittest vertex. (ii)
The degree distribution exponent increases: y=1+g
> . (iii) In the entire condensation phase, relaxation to
the final state (with the fraction d of edges in the con-
densate) is slow, of a power-law kind: d,-(t)—d~t‘(g‘gc)/g.
Here dj(#) is a condensed fraction of edges at time ¢.

Bianconi and Barabasi called this phenomenon the
Bose-Einstein condensation based on evident parallels
(in fact, this term was also applied to condensation in
equilibrium networks, the balls-in-boxes model, and
zero-range processes). We emphasize the completely
classical nature of this condensation.

V. CRITICAL EFFECTS IN DISEASE SPREADING

The epidemic spreading in various complex networks
was extensively studied in recent years, and it is impos-
sible to review in detail and even cite numerous works
on this issue. In this section, we explain only basic facts
about the spread of diseases in networks, discuss rela-
tions to other phenomena in complex networks, and de-
scribe several recent results. The reader may refer to
Pastor-Satorras and Vespignani (2003, 2004) for a com-
prehensive introduction to this topic.

A. The SIS, SIR, SI, and SIRS models

Four basic models of epidemics are widely used: the
SIS, SIR, SI, and SIRS models; see Nasell (2002). S de-
notes susceptible, I infective, and R recovered (or re-
moved). In the network context, vertices are individuals
which are in one of these three (S,I,R) or two (S,]) states,
and infections spread from vertex to vertex through
edges. Note that an ill vertex can infect only its nearest
neighbors: S—1.

The SIS model describes infections without immunity,
where recovered individuals are susceptible. In the SIR
model, recovered individuals are immune forever, and
do not infect. In the SI model, recovery is absent. In the
SIRS model, the immunity is temporary. The SIS, SIR,
and SI models are particular cases of the more general
SIRS model. We touch upon only the first three models.

Here we consider a heuristic approach of Pastor-
Satorras and Vespignani (2001, 2003). This (a kind of
mean-field) theory describes fairly well the epidemic
spreading in complex networks. For a stricter approach,
see Newman (2002a), Kenah and Robins (2007), and ref-
erences therein.
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Let a network have only degree-degree correlations,
and so it is defined by the conditional probability
P(q'|q); see Sec. III.C. Consider the evolution of the
probabilities i,(), s,(¢), and r,(¢) that a vertex of degree
q is in the I, S, and R states, respectively. For example,
i,(t)= (number of infected vertices degree q) /NP(q). As
is natural, i (t)+s,()+7,()=1. Let N be the infection
rate. In other words, a susceptible vertex becomes in-
fected with the probability N (per unit time) if at least
one of the nearest neighbors is infected. Remarkably, A
is the only parameter in the SIS and SIR models—other
parameters can be easily set to 1 by rescaling. Here we
list evolution equations for the SIS, SIR, and SI models.
For derivations, see Boguiid et al. (2003b). However, the
structure of these equations is so clear that one can eas-
ily explain them to himself or herself, exploiting obvious
similarities with percolation.

The SIS model. In this model, infected vertices be-
come susceptible with unit rate, r,(£)=0, s,(t)=1-i,().
The equation is

dig() . , T
4= =~ iy(0) + M[1 = i (012 P(q' |9 (). (44)
dt 4

The SIR model. In this model, infected vertices be-
come recovered with unit rate. Two equations describe
this system:

d—rd"? =1i,(1),

di 'q
_l:}% =—i,(0) + Nq[1 - iq(t)]z q7P(q'|q)iq,([)_
q’
(45)

Note the factor (g’ —1)/q’ in the sum. This ratio is due
to the fact that an infected vertex in this model cannot
infect back its infector, and so one of the g’ edges is
effectively blocked.

The SI model. Here infected vertices are infected for-
ever, s,(t)=1~i,(7), and the dynamics is described by

d';'l r_ 1
ldit) =\q[1 - (0]X - " P(q'|q)ig (2) (46)
q/

[compare with Eq. (45)]. This simplest model has no epi-
demic threshold. Moreover, in this model, A may be set
to 1 without loss of generality.

If a network is uncorrelated, substitute P(q'|q)
=q'P(q’)/{q) into these equations. It is convenient to
introduce ®=2,,(q"-1)P(q")i,{q) (for the SIR model)
or O=3,q'P(q')i,{(q) (for the SIS model) and then
solve a simple equation for this degree-independent
quantity. We stress that the majority of results on epi-
demics in complex networks were obtained using only
Egs. (44)-(46). Note that one can also analyze these
models assuming a degree-dependent infection rate A\
(Giuraniuc et al., 2006).
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B. Epidemic thresholds and prevalence

The epidemic threshold . is a basic notion in epide-
miology. The fractions of infected and recovered (or re-
moved) vertices in the final state are defined as i()
=3,P(q)i,(t—») and r(®)=2,P(q)r,(t—=), respec-
tively. Below the epidemic threshold, i()=r()=0. In
epidemiology, the fraction i(f) of infected vertices in a
network is called prevalence. On the other hand, above
the epidemic thresholds, (i) in the SIS model, i(,\
>\5") is finite, and (ii) in the SIR model, i(sc,A>\5'®)
=0 and r(OO,)\>)\§IR) is finite.

Linearization of Eqs. (44)-(46) readily provides the
epidemic thresholds. The simplest SI model on any net-
work has no epidemic threshold—all vertices are in-
fected in the final state, i,(t—)=1. Here we only dis-
cuss results for uncorrelated networks Pastor-Satorras
and Vespignani (2001, 2003); for correlated networks,
see Bogunad et al. (2003b). One can easily check that the
SIS and SIR models have the following epidemic thresh-
olds:

NIS=(@)g?. AR =(a)/(g®) - (a)).- “7)

Notice the coincidence of A3™® with the percolation
threshold p. in these networks, Eq. (17). (Recall that for
bond and site percolation problems, p. is the same.) This
coincidence is not occasional—strictly speaking, the SIR
model is equivalent to dynamic percolation (Grass-
berger, 1983). In simpler terms, the SIR model, with re-
spect to its final state, is practically equivalent to the
bond percolation problem [see Hastings (2006) for a dis-
cussion of some difference; see also discussions in Kenah
and Robins (2007) and Miller (2007)]. Equation (47)
shows that general conclusions for percolation on com-
plex networks are also valid for the SIS and SIR models.
In particular, (i) the estimates and conclusions for p.
from Secs. II1.B.2-II1.B.4 are valid for the SIS and SIR
models (replace p. by A3 or \S™®), and the finite-size
relations also work; and (ii) the estimates and conclu-
sions for the size S of the giant connected component
from these sections are also valid for i(«) in the SIS
model and for r(») in the SIR model, i.e., for preva-
lence.

In particular, Pastor-Satorras and Vespignani (2001)
discovered that in uncorrelated networks with diverging
{(q%) the epidemic thresholds approach zero value, but a
finite epidemic threshold is restored if a network is finite
(May and Lloyd, 2001; Pastor-Satorras and Vespignani,
2002a; Boguna et al., 2004). Similar to percolation, the
same condition is valid for networks with degree-degree
correlations (Boguiid et al., 2003a; Moreno and Vazquez,
2003).

The statistics of outbreaks near an epidemic threshold
in the SIR model is similar to that for finite connected
components near the point of emergence of a giant com-
ponent. In particular, at an (SIR) epidemic threshold in a
network with a rapidly decreasing degree distribution,
the maximum outbreak scales as N> and the mean out-
break scales as N'? (Ben-Naim and Krapivsky, 2004). (In
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the SIS model, the corresponding quantities behave as N
and N'2.) These authors also estimated the duration of
epidemic outbreaks. At a SIR epidemic threshold in
these networks, the maximum duration of an outbreak
scales as N'3, the average duration scales as In N, and
the typical duration is of the order of 1.

Interestingly, some of the results on the disease
spreading on complex networks were obtained before
those for percolation; see Pastor-Satorras and Vespig-
nani (2001). For example, they found that in the SIS and
SIR models on the uncorrelated scale-free network with
degree distribution exponent y=3 the final prevalence is
proportional to exp[-g({g))/\]. Here g({g)) depends
only on the mean degree. That is, all derivatives of the
prevalence over \ equal zero at this specific point (recall
the corresponding result for percolation). Furthermore,
Boguiid and Pastor-Satorras (2002) carried out numeri-
cal simulations of the SIS model on the growing network
of Callaway et al. (2001) and observed prevalence pro-
portional to exp(—const/\VA—\.), i.e., the Berezinskii-
Kosterlitz-Thouless singularity.

Disease spreading was also studied in many other net-
works. For example, for small-world networks, see
Moore and Newman (2000a), Newman (2002a), Newman
et al. (2002), and references therein. For epidemics in
networks with high clustering, see Newman (2003b), Pe-
termann and De Los Rios (2004), and Serrano and Bo-
guna (2006a). A popular topic is various immunization
strategies; see Dezsd and Barabdsi (2002), Pastor-
Satorras and Vespignani (2002b, 2003), Cohen et al.
(2003b), Gallos Liljeros, Argyrakis, et al. (2007), and
many other works.

Note that the excitation of a system of coupled neu-
rons in response to external stimuli, in principle, may be
considered similarly to the disease spreading. Excitable
networks with complex architectures were studied by
Kinouchi and Copelli (2006), Copelli and Campos
(2007), and Wu, Xu, and Wang (2007).

C. Evolution of epidemics

Equations (44)-(46) describe the dynamics of epidem-
ics. We discuss this dynamics above an epidemic thresh-
old, where epidemic outbreaks are giant, that is, they
involve a finite fraction of vertices in a network (Moreno
et al., 2002; Barthelemy et al, 2004, 2005; Vazquez,
2006a, 2006b). The demonstrative SI model is easy to
analyze. A characteristic time scale of the epidemic out-
break can be obtained in the following way (Barthelemy
et al., 2004, 2005). Let the initial condition be uniform,
i(t=0)=ij. Then in the range of short times, the preva-
lence i(1)==, P(q)i,(t) rises according to the law

i) iy {9’ —(a)
v (g —{(q)

(e"™=1) (48)

with the time scale
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FIG. 14. Evolution of the average fraction of infected vertices
in the SIR model on the Barabési-Albert network of 10° ver-
tices for various initial conditions. At =0, randomly chosen
vertices of a given degree g are infected. The spreading rate is
A=0.09, which is above the epidemic threshold of this finite
network. From Moreno et al., 2002.

T={(g)\(g*) - (). (49)

Thus 7 decreases with increasing {(g?). As is natural, the
law (48) is violated at long times, when i(f) ~1. Expres-
sions for 7in the SIS and SIR models are qualitatively
similar to Eq. (49).

Notice some difference between the SIR and SIS (or
SI) models. In the SIS and SI models, the fraction of
infected vertices i(f) grows monotonously with time until
it approaches the final stationary state. Conversely, in
the SIR model, i(f) shows a peak (outbreak) at 1~ 7 and
approaches zero value as t— . As a result of heteroge-
neity of a complex network, the epidemic outbreaks de-
pend strongly on initial conditions, actually on a first
infected individual. Figure 14 shows how the average
fraction of infected vertices evolves in the SIR model
placed on the Barabdsi-Albert network if the first in-
fected individual has exactly g neighbors (Moreno et al.,
2002). The spreading rate is supposed to be above the
epidemic threshold. If g is large, then the outbreak is
massive with high probability. On the other hand, if g is
small, then as a rule the infection disappears after a
small outbreak, and the probability of a giant outbreak
is low.

When (g?) diverges (y=<3), Eqs. (48) and (49) are not
applicable. Vazquez (2006a) considered disease spread-
ing in this situation on a scale-free growing (or causal)
tree. Actually he studied a variation of the SI model,
with an average generation time 7'z~ 1/\. In this model,
he analytically found

di(t)/dt o (max1e~TG, (50)

where €,,,(N) is the diameter of the network (the maxi-
mum intervertex distance). He compared this depen-
dence with numerical simulations of the SI model on a
generated network and a real-world one (the Internet at
the autonomous system level). He concluded that Eq.
(50) provides a reasonable fitting to these results even in
rather small networks.
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VI. THE ISING MODEL ON NETWORKS

The Ising model, named after the physicist Ernst
Ising, is an extremely simplified mathematical model de-
scribing the spontaneous emergence of order. Despite its
simplicity, this model is valuable for verification of gen-
eral theories and assumptions, such as scaling and uni-
versality hypotheses in the theory of critical phenomena.
It is important that many real systems can be approxi-
mated by the Ising model. The Hamiltonian of the
model is

H:_Ejijaijsisj_EHiSis (51)

i<j

where the indices i and j numerate vertices on a net-
work, i,j=1,2,...,N. a;; is an element of the adjacency
matrix: a;=1 or 0 if vertices i and j are connected or
disconnected, respectively. Network topology is encoded
in the adjacency matrix. In general, couplings J;; and lo-
cal fields H; can be random parameters.

What kind of a critical behavior might one expect if
we put the Ising model on the top of a complex net-
work? Is it the standard mean-field-like behavior? A na-
ive answer is yes because a complex network is an
infinite-dimensional system. Indeed, it is generally ac-
cepted that the critical behavior of the ferromagnetic
Ising model on a d-dimensional lattice at d>4 is de-
scribed by the simple mean-field theory, which assumes
that an average effective magnetic field H+Jz;M acts on
spins, where M is an average magnetic moment and z;
=(g) is the mean number of the nearest neighbors. An
equation

M = tanh(BH + BJz;M) (52)

determines M. This theory predicts a second-order fer-
romagnetic phase transition at the critical temperature
Typ=Jz; in zero field with the standard critical behav-
iorr M~ 7, x=dM/dH~ |77, where 7=Tys-T, B
=1/2, and y=1. First investigations of the ferromagnetic
Ising model on the Watts-Strogatz networks revealed
the second-order phase transition (Barrat and Weigt,
2000; Gitterman, 2000; Herrero, 2002; Hong, Kim, and
Choi, 2002). This result agreed qualitatively with the
simple mean-field theory.

Numerical simulations of the ferromagnetic Ising
model on a growing Barabdsi-Albert scale-free network
(Aleksiejuk et al., 2002) demonstrated that the critical
temperature 7T increases logarithmically with increasing
N: T.(N)~In N. Therefore, in the thermodynamic limit,
the system is ordered at any finite 7. The simple mean-
field theory fails to explain this behavior. Analytical in-
vestigations (Dorogovtsev et al, 2002b; Leone et al.,
2002) based on a microscopic theory revealed that the
critical behavior of the ferromagnetic Ising model on
complex networks is richer and extremely far from that
expected from the standard mean-field theory. They
showed that the simple mean-field theory does not take
into account the strong heterogeneity of networks.
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FIG. 15. A cluster on a graph. Within the Bethe-Peierls ap-
proach, we choose a cluster consisting of spin i and its nearest
neighbors (closed circles). Cavity fields ¢;; (vertical arrows)
take into account interactions with remaining spins (dotted
lines and open circles). H; is a local field. Arrows along edges
show fields created by neighboring spins at vertex i.

Here we look first at exact and approximate analytical
methods [for a comprehensive description of these
methods, see Dorogovtsev et al. (2007)] and then con-
sider critical properties of ferromagnetic, antiferromag-
netic, and spin-glass Ising models on complex networks.

A. Main methods for treelike networks

1. Bethe approach

The Bethe-Peierls approximation is one of the most
powerful methods for studying cooperative phenomena
(Domb, 1960). It was proposed by Bethe (1935) and then
applied by Peierls (1936) to the Ising model. This ap-
proximation gives a basis for developing a remarkably
accurate mean-field theory. What is important is that it
can be successfully used to study a finite system with a
given quenched disorder. The list of current applications
of the Bethe-Peierls approximation includes solid-state
physics and information and computer sciences (Pearl,
1988), for example, image restoration (Tanaka, 2002), ar-
tificial vision (Freeman et al., 2000), decoding of error-
correcting codes (McEliece et al., 1998), combinatorial
optimization problems (Mézard and Zecchina, 2002),
medical diagnosis (Kappen, 2002), and social models.

Consider the Ising model Eq. (51) on an arbitrary
complex network. In order to calculate the magnetic
moment of a spin S;, we must know the total magnetic
field H,('t) which acts on this spin. This gives M;=(S,)
=tanh(BH'"), where B=1/T. H" includes both a local
field H; and fields created by nearest-neighboring spins.
The spins interact with their neighbors, who in turn in-
teract with their neighbors, and so on. As a result, in
order to calculate H'", we have to account for all spins in
the system. Bethe and Peierls proposed to take into ac-
count only interactions of a spin with its nearest neigh-
bors. Interactions of these neighbors with remaining
spins on a network were included in “mean fields.” This
simple idea reduces the problem of N interacting spins
to a problem of a finite cluster.

Consider a cluster consisting of a central spin §; and
its nearest neighbors Sj; see Fig. 15. The energy of this
cluster is
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FIG. 16. Diagrammatic representation of Eq. (57). An outgo-
ing message h;; from vertex i to vertex j is determined by the
local field H; and incoming messages to i excluding the mes-
sage from j.

Hy=- 2 I;SS;-HSi— 2 &uS;. (53)
jeN(i) jeN(i)

where N(i) represents all vertices neighboring vertex i.
Interactions between spins je N(i) are neglected. They
will be approximately taken into account by the fields
¢y;- These fields are called cavity fields within the cavity
method (Mézard and Parisi, 2001). The cavity fields must
be determined in a self-consistent way.

It is easy to calculate the magnetic moments of spins
in the cluster. The magnetic field Hl(-’) acting on i is

HY=Hi+ 2 hy, (54)
jeN()

where hj; is an additional field created by a spin §; at
vertex i (see Fig. 15),

tanh Bhj; = tanh BJ;; tanh By, (55)

In turn, the field Hj(f) acting on spin j is
H = ¢y + hy, (56)

where the additional field 4;; is created by the central
spin i at vertex j. This field is related to the additional
fields in Eq. (55) as follows:

tanh Bh;; = tanh BJ;; tanh[ﬁ(Hi + > hm,-)], (57)

me NG\

where N(i)\j represents all vertices neighboring vertex i,
except j. In the framework of the belief-propagation al-
gorithm (Sec. VI.A.2), the additional fields ;; are called
messages. Using this term, we can interpret Eq. (57) as
follows (see Fig. 16). An outgoing message sent by spin i
to neighbor j is determined by incoming messages that
spin i receives from other neighbors m e N(i), except j.
Note that if vertex i is a dead end, then from Eq. (57) we
obtain that the message h;; from i to the only neighbor j
is determined by a local field H,,

tanh gh;; = tanh BJ;; tanh(BH,). (58)

We can choose a cluster in which §; is the central spin.
The field H](-’) is given by the same Eq. (54). Comparing
Eq. (54), where | replaces i, with Eq. (56), we obtain
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on=Hi+ 2 hpy (59)
meN(i)\y

Equations (54)-(59) establish relations between the
fields {h;;} and {¢;;}. All we need is to solve Eq. (57) and
find messages {/;} in a graph. Apart from the local mag-
netic moments, the Bethe-Peierls approximation allows
one to find a spin correlation function and the free en-
ergy. These formulas can be found in Dorogovtsev et al.
(2007).

The Bethe-Peierls approach is exact for a treelike
graph and the fully connected graph. It leads to the same
equations as the cavity method and the exact recursion
method; see Sec. VI.B. This approach is approximate for
graphs with loops due to spin correlations induced by
loops. However, even in this case, it usually leads to re-
markably accurate results. The approach can be im-
proved using the Kikuchi cluster variation method
(Kikuchi, 1951; Domb, 1960; Yedidia et al., 2001). How
large are loop corrections to the Bethe-Peierls approxi-
mation? There is no clear answer to this question. Sev-
eral methods have been proposed for calculating loop
corrections (Yedidia et al., 2001; Montanari and Rizzo,
2005; Chertkov and Chernyak, 2006a, 2006b; Parisi and
Slanina, 2006; Rizzo et al., 2007); however, this problem
is still unsolved.

a. Regular Bethe lattice

The Bethe-Peierls approach gives an exact solution of
the ferromagnetic Ising model in a uniform magnetic
field on a regular Bethe lattice with a coordination num-
ber g (Baxter, 1982). In this case, all vertices and edges
on the lattice are equivalent; therefore, M;=M and h;
=h. From Egs. (54) and (57), we obtain

M = tanh(BH + Bqh), (60)

tanh Bh = tanh BJ tanh(BH + BBh). (61)

The parameter B=¢g—-1 on the right-hand side is the
branching parameter.

At H=0, the model undergoes the standard second-
order phase transition at a critical point in which
B tanh B/=1, which gives the critical temperature

Tp=2J/0[(B + 1)/(B —1)]. (62)

In the limit g>1, the critical temperature 7Ty tends to
Tgp, i.€., the simple mean-field approach Eq. (52) be-
comes exact in this limit. At the critical temperature T
=Tgp, the magnetic moment M is a nonanalytic function
of H: M(H)~ H'Y.

b. Fully connected graph

The Bethe-Peierls approximation is exact for the fully
connected graph. Consider the spin-glass Ising model
with random interactions |J;]« N~ on the graph (the
Sherrington-Kirkpatrick model). The factor N2 gives a
finite critical temperature. To leading order in N, Egs.
(54) and (57) lead to a set of equations for magnetic

moments M,
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M= tanh( 81 + 30, ~ 73 S (1= M),
j j

(63)

These are the TAP (Thouless-Anderson-Palmer) equa-
tions (Thouless et al., 1977), which are exact in the ther-
modynamic limit.

2. Belief-propagation algorithm

The belief-propagation algorithm is an effective nu-
merical method for solving inference problems on sparse
graphs. It was originally proposed by Pearl (1988) for
treelike graphs. Among its numerous applications are
computer vision problems, decoding of high perfor-
mance turbo codes, and many others; see Frey (1998)
and McEliece et al. (1998). Empirically it was found that
it works surprisingly well even for graphs with loops.
Yedidia et al. (2001) discovered that the belief-
propagation algorithm coincides with the minimization
of the Bethe free energy. This discovery renewed inter-
est in the Bethe-Peierls approximation and related
methods (Pretti and Pelizzola, 2003; Hartmann and
Weigt, 2005; Mooij and Kappen, 2005). Recent progress
in the survey propagation algorithm, which was pro-
posed to solve some difficult combinatorial optimization
problems, is a good example of interference between
computer science and statistical physics (Mézard and
Zecchina, 2002; Mézard et al., 2002; Braunstein and
Zecchina, 2004).

In this section, we give a physical interpretation of the
belief-propagation algorithm applied to the Ising and
other physical models on a complex network.

We start with the Ising model on a graph. Consider a
spin i. Choose one of its nearest neighbors, say, a spin
j € N(i). We define a parameter u;;(S;) as the probability
to find spin i in a state S; under the following conditions:
(i) spin i interacts only with spin j while other neighbor-
ing spins are removed and (ii) a local magnetic field H; is
zero. We normalize w;(S;) as follows: Zg_.u;(S)=1.
For example, if w;(+1)=1 and w;;(~1)=0, then the spin j
permits the spin state S;=+1 and forbids the spin state
S;=-1. Similarly, we define probabilities u,,;(S;) for other
neighboring spins 7 € N(i)). We assume that the prob-
abilities w;(S;) for all je N(i) are statistically indepen-
dent. Strictly speaking, this assumption holds true only
in a treelike graph. For a graph with loops, this approach
is approximate. In the belief-propagation algorithm, the
probabilities w;(S;) are traditionally called messages (do
not mix with the messages in the Bethe-Peierls ap-
proach).

Search for an equilibrium state using an iteration al-
gorithm. We start from an initial set of nonequilibrium
normalized probabilities {M]('?)(Si)}' Choose two neigh-
boring vertices i and j. Using the initial probabilities, we
can calculate a probability to find a spin j in a state S;
under the condition that the state §; is fixed. This prob-
ability is proportional to the product of independent
probabilities that determine the state S;. First, we have

j
the product of all incoming messages wu,; (S;) from

Rev. Mod. Phys., Vol. 80, No. 4, October—December 2008

n

FIG. 17. Diagrammatic representation of the belief-
propagation update rule. Arrows show incoming messages to a
vertex j. A factor exp(BH;S;) is shown as the closed circle. A
solid line between j and i shows a factor exp(B/;S;S;). The
double line is a new (outgoing) message from j to i.

nearest-neighboring spins n of j, except i, because its
state is fixed. This is II,, . N(,')\,'MS})(S]-). Second, we have a
probabilistic factor exp(BH;S;) due to a local field H;.
Third, we have a probabilistic factor exp(B8/;;S;S;) due to
the interaction between i and j. Summing the total prod-
uct of these factors over two possible states S;=+1, we
obtain a new probability,

A D PSS T pO(S) = wh™(S)), (64)
=1 neN(\

where A is a normalization constant. This equation is
the standard update rule of the belief-propagation algo-
rithm. Its diagrammatic representation is shown in Fig.
17. We assume that the update procedure converges to a
fixed point ui™"(S;) — w;(S;). Sufficient conditions for
convergence of the belief-propagation algorithm to a
unique fixed point have been derived by Ihler et al
(2005) and Mooij and Kappen (2005). This fixed point
determines an equilibrium state of the Ising model on a
given graph. Indeed, we can write w;(S;) in a general
form as

wji(S;) = exp(Bh;;S;)/(2 cosh Bhy), (65)

where h;; is some parameter. Inserting Eq. (65) into Eq.
(64), we obtain that the fixed-point equation is exactly
the recursion equation (57) in the Bethe-Peierls ap-
proach. This demonstrates a close relationship between
the belief-propagation algorithm and the Bethe-Peierls
approximation. Calculations of local magnetic moments
and the Bethe free energy have been described by Dor-
ogovtsev ef al. (2007).

One can apply the belief-propagation algorithm to a
practically arbitrary physical model with discrete (Potts
states) or continuous (many component vectors) local
parameters x;. Introduce local energies E;(x;) and pair-
wise interaction energies Ej(x;,x;). A generalized fixed-
point equation is

A e PHPERED T ) = w). (66)
X neN(j\i

where A is a normalization constant. If x; is a continuous

variable, then we integrate over x; instead of summing.

In particular, one can show that for the Potts model, this

equation leads to an exact recursion equation (Dor-

ogovtsev et al., 2007).
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3. Annealed network approach

In this subsection, we describe an improved mean-
field theory that accounts for heterogeneity of a complex
network. Despite its simplicity, this approximation gives
surprisingly good results in the critical region.

The main idea of the annealed network approach is to
replace a model on a complex network by a model on a
weighted, fully connected graph. Consider the Ising
model Eq. (51) on a graph with the adjacency matrix a;
We replace a;; by the probability that vertices i and j
with degrees q, and g; are connected. For the configura-
tion model, this probability is ¢; q;/z;N, where z,=(q).
We obtain the Ising model on the fully connected graph,

Han = LS Jiqiq;S:S; 2 H,s;, (67)
lel<]

where ¢g; plays the role of a “fitness” of vertex i. The
resulting fully connected graph with these inhomoge-
neous fitnesses approximates the original complex net-
work. Assuming that couplings J;; are finite and using
the exact equation (63), we find magnetic moments,

M; —tanh(ﬂH + &E JijaiM ) (68)

Note that this set of equations is exact for the model (67)
in the limit N—. For the ferromagnetic Ising model
with J;;=J in zero field, i.e., H;=0 for all i, the magnetic
moment M, is given by

Mi = tanh(ﬁ]qiMw), (69)

where we introduced a weighted magnetic moment M,
=(z2;N)"'2;q;M;, which is a solution of the equation
1
M, = Z—E P(q)q tanh(BIqM,,). (70)
1gq

Equations (69) and (70) were first derived by Bianconi
(2002) for the Barabasi-Albert network. They give an
approximate mean-field solution of the ferromagnetic
Ising model on an uncorrelated random complex net-
work.

The effective model (67) undergoes a continuous
phase transition at a critical temperature 7./J=z,/z,
+1, which approaches the exact critical temperature, Eq.
(81), at z,/z;>1. The annealed network approach gives
correct critical behavior of the ferromagnetic Ising
model. It shows that at 7" near 7. the magnetic moment
M;xq;M,, for degree g; not too large in agreement with
the microscopic results in Sec. VI.C.2. However, this ap-
proach gives wrong results for a cooperative model on
an original network with z,/z;—1, i.e., near the emer-
gence point of the giant connected component. The ap-
proach predicts a nonzero 7, contrary to the exact one,
which tends to 0. At T=0, the annealed network ap-
proximation gives the average magnetic moment M=1.
The exact calculations in Sec. VI.C.2 give M <1 due to
the existence of finite clusters with zero magnetic mo-
ment.
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B. The Ising model on a regular tree

The Ising model (51) on a regular tree can be solved
using the exact recursion method developed for Bethe
lattices and Cayley trees (Baxter, 1982). Recall that by
definition a Cayley tree is a finite tree while a Bethe
lattice is infinite (see Sec. II.B). We show that, even in
the thermodynamic limit, thermodynamic properties of
the ferromagnetic Ising model on a regular Cayley tree
differ from those for a regular Bethe lattice.

1. Recursion method

Consider the ferromagnetic Ising model on a regular
Cayley tree; see Fig. 1 in Sec. II.LB. Any vertex can be
considered as a root of the tree. This enables us to write
a magnetic moment M; of spin i and the partition func-
tion Z as follows:

2 SePtisi T gu(S), (71)
S;=x1 jeN(®)
Z=2 S [T gi(sS). (72)
Si=+1 jeN()

Here g;(S;) is a partition function of subtrees growing
from vertex j, under the condition that the spin state S; is
fixed,

gii(Sy) = {SE : exp[ BJ;;S:S; — BH (S, D] (73)
Here H;({S,,}) is the interaction energy of spins, includ-
ing spin j, on the subtrees except the edge (ij). The ad-
vantage of a regular tree is that we can calculate the
parameters g;;(S;) at a given vertex i using the following
recursion relation:

gii(Sy) = E exp(BJiS:S; + BH;S)) H gmj(Sj)-
=1 meN()\i

(74)

Note that this equation is equivalent to Eq. (64) at the
fixed point within the belief-propagation algorithm. In
order to show this, we introduce a parameter

hj; = (T/2)In[g;(+ 1)/g;(—= 1)] (75)

and obtain M;=tanh[(BH;+BZ;h;;)]. According to the
Bethe-Peierls approach in Sec. VI.A.1, the parameter A;;
has the meaning of the additional field (message) cre-
ated by vertex j at nearest-neighboring vertex i. These
fields satisfy the recursion equation (57). In turn, Eq.
(58) determines messages that go out of boundary spins
of a given tree. Starting from the boundary spins and
using Eq. (57), we can calculate one by one all fields &;;
on the Cayley tree and then find thermodynamic param-
eters of the Ising model.

2. Spin correlations

Using the recursion method, one can calculate the
spin correlation function (S;S;) for two spins that are at a
distance €; from each other. We consider the general
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case in which couplings J;; on a Cayley tree are arbitrary
parameters. In zero field, (S;S;) is equal to a product of
parameters tanh BJ;; along the shortest path connecting i
to j,

-1

(Si5p=11 tanh B, ... (76)

m=0
Here the index m numerates vertices on the shortest
path, m=0,1,...,€;, where m=0 corresponds to vertex i
and m={;; corresponds to vertex j (Mukamel, 1974; Falk
1975; Harris, 1975). This function coincides with a corre-
lation function of an Ising spin chain (Bedeaux et al.,
1970), and spin correlations on a treelike graph have a
one-dimensional character.

An even-spin correlation function (S,S,,...,S,,) can
also be calculated and presented as a product of pairwise
correlation functions (Falk, 1975; Harris, 1975). Odd-
spin correlation functions are zero in zero field.

3. Magnetic properties

The free energy of the ferromagnetic Ising model with
Jij=J>0 in zero magnetic field, H=0, on a regular Cay-
ley tree was calculated by Eggarter (1974),

F=-TL In(2 cosh gJ), (77)

where L is the number of edges. Moreover, this is the
exact free energy of an arbitrary tree with L edges. F is
an analytic function of 7. Hence there is no phase tran-
sition even in the limit N— in contrast to a regular
Bethe lattice. The magnetization is zero at all tempera-
tures except 7=0. Muller-Hartmann and Zittartz (1974)
revealed that the ferromagnetic Ising model on a regular
Cayley tree with a branching parameter B=g—1=2 ex-
hibits a new type of phase transition that is seen only in
the magnetic field dependence of the free energy. The
free energy becomes a nonanalytic function of magnetic
field H>0 at temperatures below the critical tempera-
ture Tgp given by Eq. (62),
F(T,H)=F(T,H=0)+ >, a,(T)H*
=1

+A(T)H" + O(H*), (78)

where a,(7T) and A(T) are temperature-dependent coef-
ficients. The exponent « depends on T: x=In B/In(B1),
where r=tanh B8/. The exponent increases smoothly
from 1 to « as temperature varies from 0 to Tgp; see Fig.
18. F(T,H) is a continuous function of H at T=Tgp. All
derivatives of F with respect to H are finite. Therefore,
the phase transition is of the infinite order in contrast to
the second-order phase transition on a regular Bethe
lattice; see Sec. VI.LA.1. As T decreases below Tgp, the
singularity in F is enhanced. The leading nonanalytic
part of F has a form H?|In H]| at critical temperatures T
given by tB'"Y?'=1, which leads to T\ <T,<---<T,
=Tgp. The zero-field susceptibility x(7) diverges as (1
—?B)™! at T=T,. Note that this divergence does not
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FIG. 18. Exponent « vs T for the ferromagnetic Ising model
on the regular Cayley tree with degree g=3. The critical tem-
peratures 7, are shown by dotted lines.

mean the appearance of spontaneous magnetization.
Magnetic properties of the Ising model on a regular
Cayley tree were studied by von Heimburg and Thomas
(1974), Matsuda (1974), Falk (1975), Melin et al. (1996),
and Stosic et al. (1998).

Insight into the origin of the critical points 7} and Tgp
may be gained by considering local magnetic properties
of the Cayley tree. Apply a small local magnetic field
AH; on a vertex i. Due to ferromagnetic coupling be-
tween spins, this field induces a magnetic moment
AM(i)=BV(i)AH; in a region around i, where V(i) is a
so-called correlation volume that determines a size of
likely ferromagnetic correlations around i (see Sec.
VI.C.4). An exact calculation of V(i) shows that the cor-
relation volume of the central spin diverges at 7=Tgp in
the infinite size limit N— . The central spin has long-
ranged ferromagnetic correlations with almost all spins
except for spins at a finite distance from the boundary.
The correlation volume of a boundary spin diverges at a
lower temperature 7=T;<Tgp simultaneously with the
zero-field susceptibility x(7)=N7'Z,8V(i). Therefore,
long-ranged spin correlations only cover the whole sys-
tem at T<Tj.

A specific structure of the Cayley tree leads to the
existence of numerous metastable states (Melin ef al.,
1996), which do not exist on a Bethe lattice. These states
have a domain structure (see Fig. 19) and are stable with
respect to single-spin flips. In order to reverse all spins in
a large domain, it is necessary to overcome an energy
barrier that is proportional to the logarithm of the do-
main size. Therefore, a state with large domains will re-
lax slowly to the ground state.

C. The ferromagnetic Ising model on uncorrelated networks

Here we show how strong the influence of network
topology is on the critical behavior of the ferromagnetic
Ising model. We show that when increased, network het-
erogeneity changes the critical behavior (the ferromag-
netic phase transition becomes less sharp) and simulta-
neously increases the critical temperature. We also
discuss spin correlations and finite-size effects.
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FIG. 19. Domains of flipped spins in the ferromagnetic Ising
model on a regular Cayley tree. Filled and open circles repre-
sent spins up and down. Double lines shows “frustrated” edges
connecting antiparallel spins.

1. Derivation of thermodynamic quantities

The microscopic theory of the ferromagnetic Ising
model on uncorrelated random networks was developed
using the exact recursion method (Dorogovtsev et al.,
2002b), which is equivalent to the Bethe-Peierls approxi-
mation, and the replica trick (Leone et al., 2002).

Consider the Ising model with couplings J;=/>0 in
uniform magnetic field H;=H within the Bethe-Peierls
approach; see Sec. VI.LA.1. A thermodynamic state of
this model is completely described by additional fields
(messages) created by spins. In a complex network, due
to intrinsic heterogeneity, the fields are random param-
eters. We introduce a distribution function W (%) of mes-
sages hji W(h)=(1/Nzy)Z;;6(h—h;), where Nz is the
normalization constant. If we assume the self-
averageness, then, in the limit N— o, the average over a
graph is equivalent to the average over a statistical net-
work ensemble.

A self-consistent equation for W(k) follows from the
recursion equation (57) (see also Fig. 16 in Sec. VL.A.1),

W(h) =, %ql)q J 5(;1 - Ttanhlltanh BJ
q

q-1 q-1
X tanh(,BH+ I hm) D 11 w,)dn,,.

m=1 m=1
(79)

First, this equation assumes that all incoming messages
{h,,} are statistically independent. This assumption is
valid for an uncorrelated random network. Second, an
outgoing message A is sent along a chosen edge by a
vertex of degree g with the probability P(q)q/z;. If we
know W(4), we can find the free energy and other ther-
modynamic parameters [see Dorogovtsev et al. (2007)].
For example, the average magnetic moment is

q q
M=2 P(q) f tanh(ﬁH +B2 hm> II v,)dn,,.
q

m=1 m=1

(80)
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2. Phase transition

In the paramagnetic phase at zero field H=0, Eq. (79)
has a trivial solution: W(h)=48(h), i.e., all messages are
zero. A nontrivial solution (which describes a ferromag-
netically ordered state) appears below a critical tem-
perature T,

T,= 21/ 1n(ﬁ>. 81)
2 — X

This is the exact result for an uncorrelated random net-
work (Dorogovtsev et al., 2002b; Leone et al., 2002).

The critical temperature 7. can be found from a “na-
ive” estimate. As noted in Sec. VI.A.1, the critical tem-
perature Tgp, Eq. (62), is determined by the branching
parameter rather than the mean degree. In a complex
network, the branching parameter fluctuates from edge
to edge. The average branching parameter B may differ
remarkably from the mean degree z;. For the configura-
tion model, inserting the average branching parameter
B=z,/z; into Eq. (62), we obtain Eq. (81). If the param-
eter z, tends to zy, then 7.—0. This is not surprising,
because at the percolation threshold we have z,=z;, and
the giant connected component disappears.

A general analytical solution of Eq. (79) for the distri-
bution function W(A) is unknown. A correct critical be-
havior of the Ising model at T near 7. can be found
using an effective-medium approximation,

q-1
> = (q-Dh+0(q"), (82)
m=1

where h=[hV(h)dh is the average field, which can be
found self-consistently (Dorogovtsev et al., 2002b). This
approximation takes into account the most “dangerous”
highly connected spins. The ansatz (82) is equivalent to

W(h)~ 8(h—h) (Leone et al., 2002). At lower tempera-
tures, a finite width of W (/&) becomes important.

The ferromagnetic Ising model on uncorrelated ran-
dom networks demonstrates three classes of universal
critical behavior:

(i) The standard mean-field critical behavior in net-
works with a finite fourth moment (g*) (scale-free
networks with the degree distribution exponent 7y
>35).

(ii) A critical behavior with nonuniversal critical expo-
nents depending on a degree distribution in net-
works with divergent (g*), but a finite second mo-
ment (g?) (scale-free networks with 3 < y<5).

(iii) An infinite-order phase transition in networks with
a divergent second moment {g?), but a finite mean
degree (q) (scale-free networks with 2 <y<3).

The corresponding critical exponents (M~ 78, 8C
~ 7% y~ 77 are reported in Table I. Evolution of the
critical behavior with increasing heterogeneity is shown
schematically in Fig. 20. Notice that the Ising model on a
regular random network demonstrates the standard
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TABLE 1. Critical behavior of the magnetization M, the spe-
cific heat 6C, and the susceptibility y in the Ising model on
networks with a degree distribution P(q) ~q~? for various val-
ues of exponent y. 7=1-T/T..

M SC(T<T, X
v=35 7?2 Jump at 7T, 71
y=5 2/(In 7112 1/In 7!
3<y<s Aly-3) A5-91(y-3)
y=3 e 2TKa) T2e~4Ta) 71
2<y<3 T-1G-) T-(r-1/G-»)

mean-field critical behavior in the infinite size limit
(Scalettar, 1991). The corresponding exact solution is
given in Sec. VI.A.l.a.

The conventional scaling relation between the critical
exponents takes place at y>3,

a+2B+y=2. (83)

Interestingly, the magnetic susceptibility x has universal
critical behavior with =1 when (g?)<, i.e., at y>3.
This agrees with the scaling relation y/v=2-# if we in-
sert the standard mean-field exponents: v:% and the
Fisher exponent 7=0; see Sec. IX.B. When 2 <y<3, the
susceptibility y has a paramagnetic temperature depen-
dence, y>«1/T, at temperatures 7T=J despite the system
being in the ordered state.

At T<T, the ferromagnetic state is strongly hetero-
geneous because the magnetic moment M; fluctuates
from vertex to vertex. The ansatz (82) enables us to find
an approximate distribution function of M;,

= y>>1
o
=

4<y<5

FIG. 20. Schematic representation of the critical behavior of
the magnetization M (dotted lines), the magnetic susceptibility
x (dashed lines), and the specific heat C (solid lines) for the
ferromagnetic Ising model on uncorrelated random networks
with a degree distribution P(q)~¢g~". (a) y>1, the standard
mean-field critical behavior. A jump of C disappears when vy
— 5. (b) 4<y<5, the ferromagnetic phase transition is of sec-
ond order. (c) 3<y=<4, the transition becomes of higher order.
(d) 2<y<3, the transition is of infinite order, and 7.—o as
N — .
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FIG. 21. Distribution function Y(M) of magnetic moments M
in the ferromagnetic Ising model on the Erdds-Rényi graph
with mean degree z;=>5 (dashed line) and scale-free graphs
with y=4 and 3.5 (solid and dotted lines) at T close to T, Bh
=0.04.

N
LS s - py = 2L
Niz Bh(1 — M?)

where the function g(M) is a solution of an equation

(84)

M(g)=tanh(Bhq). Near T,, low-degree vertices have a
small magnetic moment, M(q)~q|T.-T|">*<1, while

hubs with degree ¢>T/h>1 have M(q)~1. The func-
tion Y(M) is shown in Fig. 21. Note that the distribution
of magnetic moments in scale-free networks is more in-
homogeneous than in the Erdos-Rényi graphs. In the
former case, Y(M) diverges at M—1. A local magnetic
moment depends on its neighborhood. In particular, a
magnetic moment of a spin neighboring a hub may differ
from a moment of a spin surrounded by low-degree ver-
tices (Giuraniuc et al., 2006).

At T=H=0, the exact distribution function ¥ (%) con-
verges to a function with two delta peaks,

W(h)=x8h)+ (1 -x)6(h—-J), (85)

where the parameter x is determined by an equation
describing percolation in networks; see Sec. III.B.1.
Equation (85) tells us that in the ground state, spins,
which belong to a finite cluster, have zero magnetic mo-
ment while spins in a giant connected component have
magnetic moment 1. The average magnetic moment is
M=1-%,P(q)x9. This is exactly the size of the giant con-
nected component of the network.

3. Finite-size effects

When 2<y=3, a dependence of T, on the size N is
determined by the finite-size cutoff g, (N) of the degree
distribution in Sec. IL.E.4. We obtain

In N

anf at y=3 (86)

T(N)~ _

(y- 2)211613uty(N)
BG-yy-1

(Bianconi, 2002; Dorogovtsev et al., 2002b; Leone ef al.,
2002). These estimates agree with the numerical simula-
tions of Aleksiejuk et al. (2002) and Herrero (2004). No-

at2 < y<3 (87)
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tice that Herrero used the cutoff g, (N)~N'?, which
leads to T,.~ N* with the exponent z=(3-7)/7.

4. Ferromagnetic correlations

Consider spin correlations in the ferromagnetic Ising
model in the paramagnetic state. Recall that the corre-
lation length ¢ of spin correlations in a finite-
dimensional lattice diverges at T,.. In contrast, in an un-
correlated random complex network, the correlation
length £ is finite at any 7. Indeed, according to Eq. (76),
the correlation function C((f):(SiSj) decays exponen-
tially with distance €={¢;: C(€)=e "¢, where the coher-
ence length é=1/|Intanh BJ|#0 at T#0. Moreover,
spin correlations have a one-dimensional character de-
spite the fact that a complex network is an infinite-
dimensional system. Strictly speaking, this is valid at dis-

tances € <€(N)~In N when a network is treelike.

In complex networks, the so called correlation volume
rather than ¢ plays a fundamental role; see also Sec.
I11.B.3. We define a correlation volume V(i) around a
spin i as follows:

N
V(i) = 2 ai(SS)). (88)
j=1

The volume determines the size of likely ferromagnetic
fluctuations around the spin. In the paramagnetic phase,
V(i) is expressed through local network characteristics:
V(i)=27_z,(i)t, where t=tanh BJ, z,(i) is the number
of vertices that are at a distance ¢ from vertex i, and
7o(i)=1. The average correlation volume V is related
with the total magnetic susceptibility,
N ©

V()= > 7' = Ty, (89)
i=1 =0

V=

Z|=

where z, is the average number of €th nearest neighbors
of a vertex on a given network: z,=N"'2,z,(i). The av-

erage correlation volume V diverges as In N in the criti-
cal point of a continuous phase transition. The diver-
gence condition of the series in Eq. (89) leads to the
equation B tanh 8J=1, where B=lim,_limy_.[z,]"
is the average branching parameter of the network. This
criterion for the critical point is valid for any treelike
network (Lyons, 1989), including networks with degree-
degree correlations, growing networks, etc. B=1 corre-
sponds to the emergence point of the giant connected
component. At B<1, a network consists of finite clus-
ters, the correlation volume is finite at all 7, and there is
no phase transition.

Using Eq. (89), we can calculate y in the paramagnetic
phase. In the configuration model of uncorrelated ran-
dom networks, we have z,=z,(z,/z;)¢"!. This gives

Tx=V=1+z1t/(1 - z,t/zy). (90)

So x diverges as |T—T,|™".
Equation (76) for the correlation function (S;S;) is not
valid for scale-free networks with 2<<y<3 due to nu-
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merous loops. Dorogovtsev, Goltsev, and Mendes (2005)
found that in these networks the pair correlation func-
tion (S,S;) between the second and more distant neigh-
bors vanishes in the limit N— . Only pair correlations
between nearest neighbors are observable.

5. Degree-dependent interactions

Giuraniuc et al. (2005, 2006) studied analytically and
numerically a ferromagnetic Ising model on a scale-free
complex network with a topology-dependent coupling:
J;=Jz*(q,q)~*, where a constant J>0, x is a tunable
parameter, and ¢; and g; are degrees of neighboring ver-
tices i and j. They demonstrated that the critical behav-
ior of the model on a scale-free network with degree
distribution exponent 7 is equivalent to the critical be-
havior of the ferromagnetic Ising model with a constant
coupling J on a scale-free network with renormalized
degree distribution exponent y'=(y—u)/(1—-pu). There-
fore, the critical exponents can be obtained, replacing y
by ' in Table I. Varying u in the range [2—,1] allows
us to explore the whole range of the universality classes
represented in Table 1. For example, the ferromagnetic
Ising model with J;;=J on a scale-free network with y
=3 undergoes an infinite-order phase transition while
the model with degree-dependent coupling for u=1/2
undergoes a second-order phase transition with the criti-
cal behavior corresponding to y'=5.

D. The Ising model on small-world networks

The phase transition in the ferromagnetic Ising model
on small-world networks resembles that in the percola-
tion problem for these nets; see Sec. II1.G. This system
was studied by Barrat and Weigt (2000), Gitterman
(2000), Pekalski (2001), and many others. Here we dis-
cuss small-world networks based on one-dimensional
lattices, with a fraction p of shortcuts. We estimate the
critical temperature 7.(p) assuming for simplicity only
nearest-neighbor interactions in the one-dimensional
lattice. One may see that if p is small, this network has a
locally treelike structure. At small p, the mean branch-
ing parameter in this graph is B=1+cp+O(p?), where ¢
is some model-dependent constant. Substituting B into
Eq. (62), we arrive at

where J is the ferromagnetic coupling. Barrat and Weigt
(2000) arrived at this result using the replica trick. Exact
calculations of Lopes et al. (2004) confirmed this for-
mula.

Far from the critical temperature, the thermodynamic
quantities of this system are close to those of the
d-dimensional substrate lattice. However, in the vicinity
of the critical temperature, the ordinary mean-field pic-
ture is valid. Two circumstances naturally explain these
traditional mean-field features. (i) In the range of small
p, the small-world networks effectively have a locally
treelike structure (short loops due to the lattice are not
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essential). (i) The small-world networks have rapidly
decreasing degree distributions. As explained, this archi-
tecture leads to the traditional mean-field picture of
critical phenomena. The region of temperatures around
T.(p), where this mean-field picture is realized, is nar-
rowed as p decreases. Lopes et al. (2004) obtained the
specific heat as a function of temperature and p and
showed that its jump at the critical point approaches
zero as p—0. Roy and Bhattacharjee (2006) demon-
strated numerically that the Ising model on the Watts-
Strogatz network is self-averaging in the limit N— oo,
1.e., the average over this ensemble is equivalent to the
average over a single Watts-Strogatz network. With in-
creasing network size N, the distributions of the magne-
tization, the specific heat, and the critical temperature of
the Ising model in the ensemble of different realizations
of the Watts-Strogatz network approach the ¢ function.
The size dependence of these parameters agrees with
the finite scaling theory in Sec. IX.B.

Hastings (2003) investigated the Ising model on the
d-dimensional small world. He found that for any d the
shift of the critical temperature is T.(p)—T.(p=0) ~p'?,
where ¥ is the susceptibility exponent at p=0, x(T,p
=0)~|T-T.0)|"?. Compare this shift with the similar
shift of the percolation threshold in the same network;
see Sec. III.G. Simulations of Herrero (2002) and Zhang
and Novotny (2006) confirmed this prediction.

In their simulations, Jeong et al. (2003) studied the
Ising model with specific interactions placed on the or-
dinary one-dimensional small-world network. In their
system, the ferromagnetic interaction between two
neighboring spins, say, spins i and j, is |i—j|™® |i—j| is a
distance measured along the chain. Surprisingly, a phase
transition was revealed only at @=0; no long-range order
for «>0 was observed at any nonzero temperature.
Chatterjee and Sen (2006) performed numerical simula-
tions of the ferromagnetic Ising model placed on a one-
dimensional small-world network, where vertices, say,
i and j, are connected by a shortcut with probability
~|i—jI=* (Kleinberg’s network; see Sec. ILI). They ob-
served a phase transition at least at «<<1. In both these
studies, the small sizes of simulated networks made it
difficult to arrive at reliable conclusions. On the other
hand, these two systems were not studied analytically.

E. Spin-glass transition on networks

Despite years of effort the understanding of spin
glasses is still incomplete. The nature of the spin-glass
state is well understood for the infinite-range
Sherrington-Kirkpatrick model (Binder and Young,
1986; Mézard et al., 1987) The basic property of the spin-
glass model is that a large number of pure thermody-
namic states with nonzero local magnetic moments M;
spontaneously emerge below a critical temperature. This
corresponds to replica-symmetry breaking.

Investigations of a spin-glass Ising model on treelike
networks began soon after the discovery of spin glasses.
Viana and Bray (1985) proposed the so-called dilute
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Ising spin-glass model, which is equivalent to the Ising
model on the Erdos- Rényi graph [for a review of early
investigations see Mézard and Parisi (2001)]. Most stud-
ies considered a spin glass on random regular and
Erdos-Rényi networks. A spin glass on a complex net-
work only recently drew attention.

Here we first review recent studies of the spin-glass
Ising model on complex networks. Then we consider a
pure antiferromagnetic Ising model, which becomes a
spin glass when placed on a complex network, and we
discuss the relationships of this model with famous NP-
complete problems (MAX-CUT and vertex cover).

1. The Ising spin glass

The spin-glass state arises due to frustrations. Frustra-
tions in the Sherrington-Kirkpatrick model and a spin-
glass model on a finite-dimensional lattice are due to
numerous finite loops. Uncorrelated random networks
have a treelike structure in the thermodynamic limit.
How do frustrations appear in this case? It turns out that
frustrations in these networks are due to numerous long
loops of typical length O(In N); see Sec. I1.G.

Early investigations of a spin glass on a Bethe lattice
assumed that there is only one pure thermodynamic
state, and the replica symmetry is unbroken. This as-
sumption led to unphysical results such as, for example,
a negative specific heat. Much evidence has been accu-
mulated indicating that a spin-glass state may exist in the
spin-glass Ising model on a Bethe lattice (Mézard and
Parisi, 2001), meaning that this model has many pure
thermodynamic states at low temperatures. In order to
obtain a complete description of a spin-glass state, it is
necessary to solve the recursion equation (57), which is
exact in the thermodynamic limit, and find the distribu-
tion function W (4) of the messages for every pure state
a. It is a difficult mathematical problem that is equiva-
lent to searching for a solution with replica-symmetry
breaking. In order to find an approximate solution, a
one-step replica-symmetry breaking approximation was
developed (Mézard and Parisi, 2001; Pagnani et al., 2003;
Castellani et al., 2005) This approximation assumes that
a space of pure states has a simple cluster structure (a set
of clusters). Numerical simulations of the spin-glass Ising
model on a random regular network demonstrated that
this approximation gives better results than the replica-
symmetric solution. A similar result was obtained for the
Watts-Strogatz network (Nikoletopoulos et al., 2004).
Unfortunately, the space of pure states is probably more
complex, and a solution with a complete replica-
symmetry breaking is necessary.

The exact critical temperature of the spin-glass transi-
tion Tgg on a treelike complex network can be found
without the replica trick. The criterion of this transition
is the divergence of the spin-glass susceptibility,
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N

N
1
XsG = Nﬁl 121 (S:S)°. (92)

Using Eq. (76) for the correlation function (S;S;), we find
that ygg diverges at a critical temperature T deter-
mined by

BJ tanh*(Bsg/ ) P(J;)dJ;;=1, (93)

where B is the average branching parameter.

If the distribution function P(J;) is asymmetric, and
the mean coupling J=[J iiP(J;j)dJ;; is larger than a critical
value, then a ferromagnetic phase transition occurs at a
critical temperature 7. higher than 7Tsg. The criterion of
the ferromagnetic phase transition is the divergence of
the magnetic susceptibility y,

At a multicritical point, we have T,=Tsg. Equations (93)
and (94) generalize the results obtained by the replica
trick and other methods for different uncorrelated ran-
dom networks (Viana and Bray, 1985; Thouless, 1986;
Baillie et al., 1995; Kim et al., 2005; Mooij and Kappen,
2005; Ostilli, 2006a, 2006b).

It is well known that, in the Sherrington-Kirkpatrick
model, ferromagnetism and spin glass coexist at low

temperatures if J exceeds a critical value. This is a mixed
state. Castellani et al. (2005) studied the spin-glass Ising
model on a random regular graph with degree g and a
random coupling J;;, which takes values +J with prob-
abilities (1+p)/2. They found that at T=0, the system is
in the mixed state if pp<p<p.q). In particular, p.(q
=3)=5/6, and pc(q)~1nq/v‘5 at g>1. At p<pp, the
ground state is a nonmagnetic spin-glass state. Liers et
al. (2003) numerically studied the spin-glass model with
a Gaussian coupling J;;. No mixed state was observed in
contrast to Castellani et al. (2005).

Kim et al. (2005) studied the Ising spin-glass model
with J;;= +J on an uncorrelated scale-free network using
the replica-symmetric perturbation approach of Viana
and Bray (1985). It turned out that for the degree expo-
nent 3<y<4 the critical behavior of the spin-glass or-
der parameter at T near T differs from the critical
behavior of the Sherrington-Kirkpatrick model. For the
paramagnetic-ferromagnetic phase transition, a devia-
tion from the standard critical behavior takes place at
y<5 similarly to the ferromagnetic Ising model in Sec.
VI.C.2. At 2<y<3, critical temperatures of the ferro-
magnetic and spin-glass phase transitions approach in-
finity in the thermodynamic limit. These transitions be-
come of infinite order.

2. The antiferromagnetic Ising model and MAX-CUT problem

The antiferromagnetic (AF) Ising model becomes
nontrivial on a complex network. As shown, the model
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FIG. 22. Partition of vertices in a graph into two sets consisting
of § and N-S vertices, and K edges (solid lines) in the cut.
Dotted lines show edges inside the sets.

is a spin glass. We also discuss here a mapping of the
ground-state problem onto the MAX-CUT problem.
Consider the pure AF model on a graph,

J
E= 52 aijSiSj, (95)
i

where J>0. The search for the ground state is equiva-
lent to coloring a graph in two colors (colors correspond
to spin states S=+1) in such a way that no two adjacent
vertices have the same color. First consider a bipartite
network, which is a network without odd loops. It is
obvious that this network is 2-colorable. The ground-
state energy of the AF model on a bipartite graph is
Ey=-JL, where L is the total number of edges in the
graph. An uncorrelated complex network with a giant
connected component cannot be colored with two colors
due to numerous odd loops. So the ground-state energy
E, of the AF model on a random graph is higher than
—JL due to frustrations produced by odd loops.

The ground-state problem can be mapped to the
MAX-CUT problem, which belongs to the class of NP-
complete optimization problems. Divide vertices of a
graph (of N vertices and L edges) into two sets in such a
way that the number K of edges that connect these sets
is maximum; see Fig. 22. If we define spins at vertices in
one set as spins up and spins in the other set as spins
down, then the maximum cut gives a minimum energy
E, of the AF model. Indeed, K edges between two sets
connect antiparallel spins and give a negative contribu-
tion —J/K into E,. The remaining L—-K edges connect
parallel spins and give a positive contribution J(L—K).
The ground-state energy E,=J(L-2K) is minimum
when K is maximum.

The maximum cut of the Erd0s-Rényi graph with high
probability is

K.=max K = L/2 + AN\z, + o(N) (96)

for mean degree z;>1 (Kalapala and Moore, 2002; Cop-
persmith ef al., 2004). Here A is a constant with lower
and upper bounds 0.26<<A < VIn 2/2=~0.42. Recall that
L=z;N/2. For the estimation of K, see Dorogovtsev et
al. (2007). Thus the ground-state energy is

EyN =-2JA\z,. (97)

The fraction of “frustrated” edges, i.e., edges that con-
nect “unsatisfied” parallel spins, is (L-K.)/L=1/2
—2A/\z;. Thus almost half of the edges are frustrated.
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a) b)

e

FIG. 23. Vertex cover of a graph. (a) Open circles form a mini-
mum vertex cover of the graph. Every edge has at least one
end point that belongs to the vertex cover. The closed circles
form the maximum independent set of the graph. (b) The
complement of the same graph (we add the missing edges and
remove the already existing edges). Closed circles form the
maximum clique.

This result is valid not only for classical random graphs
but also for arbitrary uncorrelated random networks.

Interestingly, the lower bound of the ground-state en-
ergy Eq. (97) is quite similar to the lower bound for the
ground-state energy of the random energy model by
Derrida (1981). This model approximates to spin glass in
any dimensions. Replacing the mean degree z; in Eq.
(97) by degree of a D-dimensional cubic lattice, 2D, we
obtain the ground-state energy of Derrida’s model:
Ey/N=-J\2D In2."

Despite the seeming simplicity, the pure AF model on
complex networks is not well studied. We assume that
this model is the usual spin glass. Spin-glass behavior
was observed in numerical simulations of the model on
the Barabadsi-Albert network (Bartolozzi et al., 2006).

In order to measure the bipartivity of real-world net-
works (professional collaborations, on-line interactions,
and so on), Holme et al. (2003) proposed to put the an-
tiferromagnetic Ising model on the top of a network and
calculate a fraction of edges between spins with opposite
signs in the ground state. The larger this fraction is, the
closer the network is to bipartite. This procedure is
equivalent to finding the maximum cut of the graph. It
allows one to reveal the bipartite nature of seemingly
one-partite networks. Note that only their one-mode
projections are usually studied, while most of the real-
world networks are actually multipartite.

3. Antiferromagnet in a magnetic field, the hard-core gas
model, and vertex covers

Here we discuss relations between an antiferromag-
netic Ising model, the hard-core gas model, and the ver-
tex cover problem on classical random graphs. On com-
plex networks, these problems are poorly studied.

a. The vertex cover problem

This problem is one of the basic NP-complete optimi-
zation problems. A vertex cover of a graph is a set of
vertices with the property that every edge of the graph
has at least one end point that belongs to this set. In
general, there are many different vertex covers. We look
for a vertex cover of a minimum size; see Fig. 23. Weigt
and Hartmann (2000) proposed a vivid picture for this

'We are grateful to M. Ostilli for attracting our attention to
this fact.
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problem: “Imagine you are director of an open-air mu-
seum situated in a large park with numerous paths. You
want to put guards on crossroads to observe every path,
but in order to economize cost you have to use as few
guards as possible.”

Find the size of a minimum vertex cover of the Erdos-
Rényi graph of N vertices, L=z;N/2 edges, and mean
degree z;. We denote the number of vertices in a vertex
cover as N,.=xN. The parameter x can be interpreted as
the probability that a randomly chosen vertex is cov-
ered, i.e., it belongs to the vertex cover. An edge can be
between every pair of vertices with the same probability.
So the probability that a randomly chosen edge connects
two vertices that do not belong to the vertex cover is
(1-x)%. With the conjugate probability 1—(1-x)>=2x(1
—x), an edge has at least one covered end point. There
are ( A],Vv C) ways to choose N, vertices from N vertices.
Only a small fraction of the partitions, [2x(1-x)]", are
vertex covers. Thus the number of possible vertex covers
is

mvc(x) = (]i]\] )[2)6(1 - x)]L = eNE(X)- (98)

vc

The threshold fraction x.. is determined by the condition
E(x,)=0. The condition gives x.z;)=1-21Inz;/z;
+O(Inln z;) at z;>1. The exact asymptotics was found
by Frieze (1990). At x <x,, with high probability there is
no vertex cover of size xN<x.N, while at x>x, there
are exponentially many different covers of size xN
>x.N. The appearance of many vertex covers looks like
a phase transition at the threshold parameter x=x,.

The exact threshold x.(z;) and the number of mini-
mum vertex covers were calculated for the Erdos-Rényi
graph using a hard-core model (see below) and the rep-
lica method (Weigt and Hartmann, 2000; Weigt and
Zhou, 2006) The replica-symmetric solution gives an ex-
act result in the interval 1<z ;<e,

x(z1) =1 -[2W(zy) + W(z,)?*1/2z4, (99)

where W(x) is the Lambert function defined by
Wexp (W)=x. The same result was derived by Bauer
and Golinelli (2001a, 2001b) using the leaf algorithm.
Note that the giant connected component of the Erdos-
Rényi graph disappears at z;<<1. The presence of the
replica symmetry indicates that, in the interval 1<z
<e, one can interchange a finite number of covered and
uncovered vertices in order to receive another minimum
vertex cover. Many nontrivial minimum vertex covers
appear at mean degrees z;>e. The replica symmetry is
broken and Eq. (99) is not valid. For this case, the
threshold x.(z;) and the degeneracy of the minimum ver-
tex cover were calculated using the one-step replica-
symmetry breaking by Weigt and Hartmann (2000, 2001)
and Zhou (2003). The typical running time of an algo-
rithm for finding a vertex cover at z;=<e is polynomial
while the time grows exponentially with the graph size at
z1>e (Barthel and Hartmann, 2004).
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The vertex cover problem on correlated scale-free
networks was studied by Vdzquez and Weigt (2003). It
turned out that an increase of likewise degree-degree
correlations (assortative mixing) increases the computa-
tional complexity of this problem in comparison with an
uncorrelated scale-free network having the same degree
distribution. If the assortative correlations exceed a criti-
cal threshold, then many nontrivial vertex covers appear.

Interestingly, the minimum vertex cover problem is
equivalent to another NP-hard optimization problem—
the maximum clique problem. Recall that a clique is a
subset of vertices in a given graph such that each pair of
vertices in the subset is linked. In order to establish the
equivalence of these two optimization problems, it is
necessary to introduce the notion of the complement or
inverse of a graph. The complement of a graph G is a

graph G with the same vertices such that two vertices in

G are connected if and only if they are not linked in G.
In order to find the complement of a graph, we must add
the missing edges, and remove the already existing
edges. One can prove that vertices, which do not belong

to the maximum clique in G, form the minimum vertex
cover in Gj see Fig. 23.

A generalization of the vertex cover problem to hy-
pergraphs can be found in Mézard and Tarzia (2007).

b. The hard-core gas model

Treat uncovered vertices as particles, so that we assign
a variable v=1 for uncovered and v=0 for covered ver-
tices. Hence there are X,,=N-N,. particles on the
graph. We also introduce a repulsion between particles
such that only one particle can occupy a vertex (the ex-
clusion principle). A repulsion energy between two
nearest-neighboring particles is />0. Then we arrive at
the so-called hard-core gas model with the energy

J
E=22 agvv, (100)
L]

where a;; are the adjacency matrix elements. If the num-
ber of particles is not fixed, and there is a mass exchange
with a thermodynamic bath, then we add a chemical po-
tential x> 0. This results in the Hamiltonian of the hard-
core gas model: H=E-puZY, v

One may see that searching for the ground state is
exactly equivalent to the minimum vertex cover prob-
lem. In the ground state, particles occupy uncovered ver-
tices. Their number is equal to (1-x,)N, where x, is the
fraction of vertices in the minimum vertex cover. The
ground-state energy is Ey=0 because configurations in
which two particles occupy two nearest-neighboring ver-
tices are energetically unfavorable. In other words, par-
ticles occupy the maximum subset of vertices in a given
graph such that no two vertices are adjacent. In graph
theory, this subset is called the maximum independent
set; see Fig. 23. Unoccupied vertices form the minimum
vertex cover of the graph. Thus finding the minimum
vertex cover (or, equivalently, the maximum indepen-
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FIG. 24. Phase diagram of the antiferromagnetic Ising model
Eq. (101) at T=0. P, F, and M denote paramagnetic, ferromag-
netic, and mixed (spin-glass) phases, respectively. At mean de-
gree z;>e, in the mixed phase, ferromagnetism and spin-glass
order coexist.

dent set) of a graph is equivalent to finding the maxi-
mum clique of the complement of this graph.

c. Antiferromagnet in a random field
Consider the following antiferromagnetic Ising model:
7 N
E=>20a;S8,8;- > S;H;+JL (101)
2% i=1
(Zhou, 2003, 2005). Here />0 and H;=-Jq, is a degree-
dependent local field, where g; is the degree of vertex i.
L is the number of edges in a graph. The negative local
fields force spins to be in the state —1; however, the an-
tiferromagnetic interactions compete with these fields.
Consider a spin S; surrounded by g; nearest neighbors
J in the state S;=-1. The energy of this spin is

(J E S]'—Hl')Si:O X Sl:0
jeN()

(102)

in any state S;==1. Therefore, this spin is effectively
free. Positions of “free” spins on a graph are not
quenched. If one of the neighboring spins flips up, then
the state S;=—1 becomes energetically favorable.

Apply a small uniform magnetic field u, 0<pu<<J. At
T=0, all free spins are aligned along u, i.e., they are in
the state +1. One can prove that the spins S=+1 occupy
vertices that belong to the maximum independent set,
while the spins S=-1 occupy the minimum vertex cover
of a given graph. For this, make the transformation S§;
=2v;,—1, where »;=0,1 for spin states *1, respectively.
Then the antiferromagnetic model Eq. (101) is reduced
to the hard-core gas model where the external field u
corresponds to the chemical potential of the particles.
All pure ground states have the same energy E,=0 and
the same average magnetic moment M=1-2x_, but cor-
respond to different nontrivial minimum vertex covers.

The exact mapping of the antiferromagnetic model
Eq. (101) onto the vertex cover problem leads to the
zero-temperature phase diagram shown in Fig. 24. This
model is in a paramagnetic state at small degree 0<<z4
<1 because the network is below the percolation thresh-
old and consists of finite clusters. Above the percolation
threshold, at 1 <z; <e, the ground state is ferromagnetic
with an average magnetic moment M=1-2x.(z;), where
x.(zy) is given by Eq. (99). The replica symmetry is un-
broken at z; <e. Many pure states appear spontaneously
and the replica symmetry is broken at z;>e. In this case,
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FIG. 25. Deterministic fully connected graph (Costin et al.,
1990), which is equivalent to the asymmetric annealed net-
work. The values of the Ising coupling are shown on the edges.

this model is in a mixed phase in which ferromagnetism
and spin-glass order coexist, H;>—-H+(q—2n)J.

F. The Ising model on growing networks

In this section, we assume that a spin system on a
growing network approaches equilibrium much faster
than the network changes, and the adiabatic approxima-
tion works. We discuss the following circle of problems:
a network is grown to an infinite size and then the Ising
model is placed on it.

1. Deterministic graphs with BKT-like transitions

As is natural, the use of deterministic graphs facili-
tates the analysis of any problem. Surprisingly, very of-
ten results obtained in this way appear to be qualita-
tively similar to conclusions for models on random
networks. Various graphs similar to those shown in Fig.
4 allow one to effectively apply the real-space
renormalization-group technique. For example, An-
drade and Herrmann (2005) studied the Ising model on
the graph shown in Fig. 4(c) (the Apollonian network)
and observed features typical for the Ising model on a
random scale-free network with exponent y<3.

More interestingly, the Ising model on some determin-
istic graphs shows the BKT-like singularities, which were
already discovered in the 1990s by Costin et al. (1990)
and Costin and Costin (1991). In a network context,
their model was studied by Bauer et al. (2005). This net-
work substrate is an asymmetric annealed network,
which is actually an annealed version of the random re-
cursive graph. Vertices are labeled i=0,1,2,...,t,asin a
growing network. Each vertex, say, vertex i, has a single
connection of unit strength to “older” vertices. One end
of this edge is solidly fixed at vertex i, while the second
end frequently hops at random among vertices
0,1,...,i—1, which means the specific asymmetric an-
nealing. The resulting network is equivalent to the fully
connected graph with a specific large-scale inhomogene-
ity of the coupling; see Fig. 25.

The ferromagnetic Ising model on this network is de-
scribed by the Hamiltonian

t
H=- 2 ﬁ_EHisi’

o<i<jst J =0

(103)

where H; are local magnetic fields. The mean-field
theory, exact for this Hamiltonian, indicates the pres-
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FIG. 26. Magnetization profile for the ferromagnetic Ising
model on the graph shown in Fig. 25. i labels vertices starting
from the “oldest” one, and ¢ is the network size. Curve 1 is
valid both for 7<7. with an arbitrary homogeneous applied
field H and for T>T,., H+0. Curve 2 describes the profile
when an external field is applied to a single spin, while T
>T.. The arrow indicates the point of application of the local
magnetic field. The mean magnetic moment of this vertex is
distinct from others.

ence of a phase transition in this system. Figure 26 shows
an inhomogeneous distribution of the magnetization
m(i) over the network. Only in the normal phase, with-
out field, does m(i)=0. Otherwise, the oldest spin turns
out to be strictly directed, m(i=0)=1, and the profile
is nonanalytic: m(i)=1-const X (i/1)*T. Earlier, Cou-
lomb and Bauer (2003) observed a resembling effect
studying a giant connected component in random grow-
ing networks. The full magnetization M(7T) demon-
strates the BK'T-type behavior near the phase transition,

T T.
M(T) o« exp >N7 -7/
c

Note that the BKT singularity, Eq. (104), and the specific
nonanalyticity of m(i) at i=0 are closely related.

The  distribution of the linear response
3,0m(i)/ 0H,| - to a local magnetic field, also called the
distribution of correlation volumes, in this model is simi-
lar to the size distribution of connected components in
growing networks with the BKT-like transition. The dis-
tribution has a power-law decay in the whole normal
phase. Exactly the same decay has the distribution of
correlations  am(i)/ dHj|_ in this phase (Khajeh et al.,
2007).

We may generalize the inhomogeneity of the interac-
tion in the Hamiltonian to a power law, «j~%, with an
arbitrary exponent. (For brevity, we omit the
normalization—the sum of the coupling strengths must
grow proportionally to the size of the network.) One
may show that in this model, the BKT singularity exists
only when a=1. For a>1, phase ordering is absent at
any nonzero temperature as in the one-dimensional
Ising model, and for 0<a <1, there is a quite ordinary
second-order transition.

Compare this picture with the well-studied ferromag-
netic Ising model for a spin chain with regular long-
range interactions <«|i—j|~* [see Luijten and Blote
(1997)]. In this model, (i) for «>2, T,.=0, similar to the
one-dimensional Ising model; (ii) at «=2, there is a tran-
sition resembling the BKT one; and (iii) for 1<a<2,
there is a transition at finite 7.. One may see that in both

(104)
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models, there exist boundary values of exponent a,
where BKT-kind phenomena take place. In simple
terms, these special values of « play the role of lower
critical dimensions. (Recall that the BKT transitions in
solid-state physics occur only at a lower critical dimen-
sion.) These associations show that the BKT singulari-
ties in these networks are less unexpected than one may
think at first glance.

Khajeh et al. (2007) solved the g-state Potts model on
this network and, for all g=1, arrived at results similar
to the Ising model, i.e., g=2. Recall that g=1 corre-
sponds to the bond percolation model, and that the tra-
ditional mean-field theory on lattices gives a first-order
phase transition if g>2. Thus, both the first- and
second-order phase transitions transformed into the
BKT-like one on this network.

Hinczewski and Berker (2006) found another deter-
ministic graph, on which the Ising model shows the
BKT-like transition, so that this singularity is widespread
in evolving networks with large-scale inhomogeneity.

2. The Ising model on growing random networks

There is still no analytical solution of the Ising model
on growing random networks. Aleksiejuk er al. (2002)
and numerous others simulated the Ising model on the
specific Barabdsi-Albert network, where degree-degree
correlations are virtually absent. The resulting picture is
similar to the Ising model on an uncorrelated scale-free
network with degree distribution exponent y=3. In gen-
eral, the growth results in a wide spectrum of structural
correlations, which may dramatically change the phase
transition.

Based on known results for the percolation (the one-
state Potts model), see Sec. IIL.F, we expect the follow-
ing picture for the Ising model on recursive growing
graphs. If each new vertex has a single connection, the
recursive graph is a tree, and ferromagnetic ordering
takes place only at zero temperature. Now let a number
of connections of new vertices be greater than 1, so that
these networks are not trees. (i) If new vertices are at-
tached to randomly chosen ones, there will be the
Berezinskii-Kosterlitz-Thouless critical singularity. (ii) If
the growth mechanism is preferential attachment, then
the critical feature is less exotic, and more similar to that
for uncorrelated networks.

VII. THE POTTS MODEL ON NETWORKS

The Potts model is related to a number of outstanding
problems in statistical and mathematical physics (Baxter,
1982; Wu, 1982). The bond percolation and the Ising
model are only particular cases of the p-state Potts
model. The bond percolation is equivalent to the one-
state Potts model [Kasteleyn and Fortuin (1969); Fortuin
and Kasteleyn (1972); see also Lee et al. (2004¢c)]. The
Ising model is exactly the two-state Potts model. Here
we first look at critical properties of the Potts model and
then consider its applications for coloring a random
graph and extracting communities.
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A. Solution for uncorrelated networks

The energy of the Potts model with p states is

E=- %2 J 50— H2 801, (105)
ij i

where 8, 5=0,1if a# B and a= B, respectively. Each ver-

tex i can be in any of p states: ¢;=1,2,...,p. The mag-

netic field H >0 distinguishes the state «=1. The « com-

ponent of the magnetic moment of vertex i is defined as

follows:

M = (8,00~ DI(p—1).

In the paramagnetic phase at zero magnetic field, ME”‘)
=0 for all @. In an ordered state, M'® #0.

Exact equations for magnetic moments of the Potts
model on a treelike complex network were derived by
Dorogovtsev et al. (2004) using the recursion method,
which as demonstrated is equivalent to the Bethe-Peierls
approximation and the belief-propagation algorithm. It
was shown that the ferromagnetic Potts model with uni-
form couplings (/;=/>0) on the configuration model
has the critical temperature

B+p-1
Tp=J / In| —— |,
B-1

where B=2z,/z; is the average branching parameter. In-
terestingly, Tp has different meanings for p=1,2 and p
=3. In the case p=1, the critical temperature 7p deter-
mines the percolation threshold. When p=2, T is equal
to the exact critical temperature Eq. (81) of the ferro-
magnetic phase transition in the Ising model (it is only
necessary to rescale J—2J). For p=3,Tp gives the lower
temperature boundary of the hysteresis phenomenon at
the first-order phase transition.

(106)

(107)

B. A first-order transition

In the standard mean-field theory, the ferromagnetic
Potts model with J;;=J>0 undergoes a first-order phase
transition for all p =3 (Wu, 1982). In order to study criti-
cal properties of the Potts model on a complex network,
we need to find effective fields (messages) acting on
Potts spins [see Dorogovtsev et al. (2007)], which is dif-
ficult to do analytically. An approximate solution based
on the ansatz (82) was obtained by Dorogovtsev et al.
(2004). It turned out that in uncorrelated random net-
works with a finite second moment {(g?) (which corre-
sponds to scale-free networks with y>3), a first-order
phase transition occurs at a critical temperature 7, for
p=3. In the region Tp<T<T,, two metastable thermo-
dynamic states with magnetic moments M=0 and M
# 0 coexist. This leads to hysteresis phenomena that are
typical for a first-order phase transition. At T<<Tp, only
the ordered state with M # 0 is stable. When 7 tends to 3
from above, T, increases while the jump of the magnetic
moment at the first-order phase transition tends to zero.
The influence of the network heterogeneity becomes
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FIG. 27. Magnetic moment M vs T for the ferromagnetic Potts
model on an uncorrelated scale-free network with average de-
gree z;=10. Leftmost curves, y=4; rightmost curves, y=3.5.
Numerical simulations and exact numerical solution (Ehrhardt
and Marsili, 2005) are shown by crosses and solid lines. Dotted
lines, an approximate solution (Dorogovtsev et al., 2004). Ver-
tical lines, the lower-temperature boundary 7p of the hyster-
esis region. From Ehrhardt and Marsili, 2005.

dramatic when 2 < y<3 and the second moment (g?) di-
verges: instead of a first-order phase transition, the
p-state Potts model with p=3 undergoes an infinite-
order phase transition at the critical temperature
T.(N)/J=z,/(zyp)>1, similarly to the Ising model in
Sec. VI.C.2. In the limit N—oc, the Potts model is or-
dered at any finite 7.

Ehrhardt and Marsili (2005) used a population dynam-
ics algorithm to find the effective fields for uncorrelated
scale-free networks. The exact numerical calculations
and numerical simulations of the Potts model confirmed
that a first-order phase transition occurs at p =3 when
v>3. Results obtained by Ehrhardt and Marsili (2005)
are represented in Fig. 27, where they are compared
with the approximate solution. The approximate solu-
tion gives poor results for vertices with small degree. For
graphs with a large minimum degree (say, g,=10), the
approximate solution agrees well with the exact calcula-
tions and numerical simulations.

A simple mean-field approach to the Potts model on
uncorrelated scale-free networks was used by Igl6i and
Turban (2002). Its conclusions deviate essentially from
the exact results. Karsai et al. (2007) studied the ferro-
magnetic large-p state Potts model on evolving networks
and described finite-size scaling in these systems.

C. Coloring a graph

Coloring random graphs is a remarkable problem in
combinatorics (Garey and Johnson, 1979) and statistical
physics (Wu, 1982). Given a graph, we want to know if
this graph can be colored with p colors in such a way
that no two neighboring vertices have the same color. A
famous theorem states that four colors are sufficient to
color a planar graph, such as a political map (Appel and
Haken, 1977a, 1977b). Coloring a graph is not only
beautiful mathematics but also has important applica-
tions. Good examples are scheduling of registers in the
central processing unit of computers, frequency assign-
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ment in mobile radios, and pattern matching. Coloring a
graph is a NP-complete problem. The time needed to
properly color a graph grows exponentially with graph
size.

How many colors do we need to color a graph? Intu-
itively it is clear that any graph can be colored if we have
a large enough number of colors p. The minimum
needed number of colors is called the chromatic number
of the graph. The chromatic number is determined by
the graph structure. It is also interesting to find the num-
ber of ways one can color a graph.

The coloring problem was extensively investigated for
classical random graphs. There exists a critical degree ¢,
above which the graph becomes uncolorable by p colors
with high probability. This transition is the so-called
p-COL-UNCOL transition. Only graphs with average
degree z;=(q)<c, may be colored with p colors. For
larger z;, we need more colors. In order to estimate the
threshold degree c, for the Erdos-Rényi graph, one can
use the so-called first-moment method (annealed com-
putation, in other words). Suppose that p colors are as-
signed randomly to vertices. This means that a vertex
may have any color with equal probability 1/p. The
probability that two ends of a randomly chosen edge
have different colors is 1-1/p. We can color N vertices
of the graph in p" different ways. However, only a small
fraction (1—1/p)’ of these configurations have the prop-
erty that all L=z,;/N/2 edges connect vertices of different
colors. Hence the number of p-colorable configurations
is

N(zy) =pN(1 - 1/p)" = exp[NE(p)].

If E(p)=0, then with high probability there is at least
one p-colorable configuration. At p>1, this condition
leads to the threshold average degree ¢,~2p Inp—Inp.
The exact threshold ¢,~2p Inp—Inp+o(1) was found
by Luczak (1991); see also Achlioptas et al. (2005).

The coloring problem was reconsidered using meth-
ods of statistical mechanics of disordered systems, and a
complex structure of the colorable phase was revealed
(Mulet et al., 2002; Braunstein, Mulet, Pagnani, et al.,
2003; Krzakata et al., 2004; Mézard et al., 2005). They
found that the colorable phase itself contains several dif-
ferent phases. These studies used the equivalence of this
problem to the problem of finding the ground state of
the Potts model, Eq. (105), with p states (colors) and
antiferromagnetic interactions J;=-J/<0 in zero field.
Within this approach, the graph is p-colorable if in the
ground state the end points of all edges are in different
Potts states. The corresponding ground-state energy is
E=0. The degeneracy of this ground state means that
there are several ways of coloring a graph. In the case of
a p-uncolorable graph, the ground-state energy of the
antiferromagnetic Potts model is positive due to a posi-
tive contribution from pairs of neighboring vertices hav-
ing the same color. These studies showed that if the
mean degree z; is sufficiently small, then it is easy to find
a solution of the problem using usual computational al-
gorithms. In these algorithms, colors of one or several

(108)
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FIG. 28. Schematic phase diagram and structure of solutions
for coloring Erd6s-Rényi graphs in p-colors vs the average de-
gree z;. (i) 21 <cy 4, solutions form one large connected cluster
without frozen variables (open circle). (i) ¢, <z1<cy, in ad-
dition to a large cluster, small disjoint clusters with frozen vari-
ables (black circles) appear. They include, however, an expo-
nentially small fraction of solutions. (iii) ¢;<z;<c,, solutions
are arranged in exponentially many clusters of different sizes
with and without frozen variables. Exponentially many clusters
without frozen variables dominate. (iv) ¢.<z;<c,, there are a
finite number of statistically dominating large clusters. These
clusters do not contain frozen variables. (v) ¢, <z;<c,, domi-
nating clusters contain frozen variables. Above c,, a graph is
p-uncolorable. ¢, coincides with the 2-core point of emer-
gence. ¢y, ¢, and ¢, correspond to so-called clustering, conden-
sation, and rigidity (freezing) transitions, respectively. Adapted
from Zdeborova and Krzakata, 2007.
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randomly chosen vertices are changed one by one. For
example, the Metropolis algorithm gives an exponen-
tially fast relaxation from an arbitrary initial set of ver-
tex colors to a correct solution (Svenson and Nordahl,
1999). On the other hand, for higher mean degrees (of
course, still below c,), these algorithms can approach a
solution only in nonpolynomial times—computational
hardness. The computational hardness is related to the
presence of a hierarchy of numerous “metastable” states
with a positive energy, which can dramatically slow
down or even trap any simple numerical algorithm.

The mentioned works focused on the structure of the
solution space for coloring a graph. (A solution here is a
proper coloring of a graph.) This structure was found to
qualitatively vary with the mean degree. In general, the
space of solutions is organized as a set of disjoint
clusters—pure states. Each of these clusters consists of
solutions that can be approached from each other by
changing colors of only o(N) vertices. On the other
hand, to transform a solution belonging to one cluster
into a solution in another cluster, we have to change
colors of O(N) vertices, i.e., of a finite fraction of verti-
ces. Clearly, if a network consists of only bare vertices
(z1=0), the space of solutions consists of a single cluster.
However, above some threshold value of a mean degree,
this space becomes highly clustered. The structure and
statistics of these clusters at a given z; determine
whether the coloring problem is computationally hard or
not.

The statistics of clusters in a full range of mean de-
grees was obtained by Krzakata er al. (2007) and Zde-
borova and Krzakata (2007). Their results indicate a
chain of topologically different phases inside the color-
able phase; see Fig. 28. An important notion in this kind
of problems is a frozen variable. (A variable here is a
vertex.) By definition, a frozen variable (vertex) has the
same color in all solutions of a given cluster. Figure 28
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demonstrates that clusters with frozen variables statisti-
cally dominate in the range ¢, <z;<c,. Remarkably, the
computational hardness was observed only in this re-
gion, although the replica-symmetry breaking was found
in the essentially wider range ¢;<z;<c,,.

Coloring of the Watts-Strogatz small-world networks
was studied numerically by Walsh (1999). He found that
it is easy to color these networks at small and large den-
sities of shortcuts p. However, it is hard to color them in
the intermediate region of p.

D. Extracting communities

It is a matter of common experience that a complex
system or a data set may consist of clusters, communi-
ties, or groups. A common property of a network having
a community structure is that edges are arranged denser
within a community and sparser between communities.
If a system is small, we can reveal a community structure
by eye. For a large network we need a special method
(Newman, 2003a). Statistical physics can provide useful
tools for this purpose. In particular, the Potts model has
interesting applications that range from extracting spe-
cies of flowers, collective listening habits, communities
in a football league, and a search for groups of configu-
rations in a protein-folding network.

Reichardt and Bornholdt (2004, 2006) proposed to
map the communities of a network onto the magnetic
domains forming the ground state of the p-state Potts
model. In this approach, each vertex in the network is
assigned a Potts state @=1,2,...,p. Vertices that are in
the same Potts state « belong to the same community a.
The authors used the following Hamiltonian:

1 A<
H=- _2 aijaa- a T _E ns(ns - 1)» (109)
2% 205

where a;; are the elements of the adjacency matrix of the
network and #; is the number of vertices in the commu-
nity a, i.e., n;=2;6, ,. The number of possible states p is
chosen large enouéh to take into account all possible
communities. A is a tunable parameter. The first sum in
Eq. (109) is the energy of the ferromagnetic Potts model.
It favors merging vertices into one community. The sec-
ond repulsive term is minimal when the network is par-
titioned into as many communities as possible. In this
approach, the communities arise as domains of aligned
Potts spins in the ground state that can be found by
Monte Carlo optimization.

At A=1 the energy Eq. (109) is proportional to the
modularity measure Q, namely, H=-QL, where L is the
total number of edges in the network. Thus the ground
state of the model Eq. (109) corresponds to the maxi-
mum modularity Q. The modularity measure was intro-
duced by Clauset et al. (2004) and Newman and Girvan
(2004). For a given partition of a network into commu-
nities, the modularity is the difference between the frac-
tion of edges within communities and the expected frac-
tion of such edges under an appropriate null model of
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the network (a random network model assuming the ab-
sence of a modular structure),

Lexp
Q:§< L ) EE(“Z/ pz])

a ij

Here L, and L are the numbers of edges within com-
munity « in the network and in its null model, respec-
tively; p;; is the probability that vertices i and j are con-
nected in the null model. Reichardt and Bornholdt
(2004, 2006) used the configuration model as the null
model, i.e., p;;=q;q;/2L, where q; and g; are degrees of
vertices i and j, respectively. Tuning N\ and p, one can
find a partition of a given network into communities
such that a density of edges inside communities is maxi-
mal when compared to one in a completely random net-
work. If, however, the size distribution of communities is
sufficiently broad, then it is not easy to find an optimal
value of the parameter \. Searching for small communi-
ties and the resolution limit of this method have been
discussed by Kumpula ez al. (2007). Interestingly, finding
the partition of a complex network into communities,
such that it maximizes the modularity measure, is a NP-
complete problem (Brandes et al., 20006).

Reichardt and Bornholdt (2004, 2006) applied the
Potts model Eq. (109) to study a community structure of
real-world networks, such as a U.S. college football net-
work and a large protein-folding network.

Guimera et al. (2004) proposed another approach to
the problem of extracting communities based on a spe-
cific relation between the modularity measure Q and the
ground-state energy of a Potts model with multiple in-
teractions.

(110)

VIII. THE XY MODEL ON NETWORKS

The XY model describes interacting planar rotators.
The energy of the XY model on a graph is
H:—gE a;j cos(6; - 6)), (111)
ij

where a;; are the elements of the adjacency matrix of the
graph, 6; is the phase of a rotator at vertex i, and J is the
coupling strength. Unlike the Ising and Potts models
with discrete spins, the XY model belongs to the class of

models with continuous symmetry.

A one-dimensional XY model has no phase transition.
On a two-dimensional regular lattice, this model (/> 0)
undergoes the unusual Berezinskii-Kosterlitz-Thouless
phase transition. On a d-dimensional lattice at d >4 and
the fully connected graph (Antoni and Ruffo, 1995), the
ferromagnetic phase transition in the XY model is of

second order with the standard mean-field critical expo-
nents.

A. The XY model on small-world networks

There were a few studies of the XY model on complex
networks. Kim et al. (2001) carried out Monte Carlo
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FIG. 29. p-T phase diagram of the ferromagnetic XY model
on the Watts-Strogatz network. p is the fraction of shortcuts. D
and O denote the disordered and ordered phases, respectively.
The inset shows that the critical temperature is well approxi-
mated by a function 0.41 In p+2.89. From Kim et al., 2001.

simulations of the ferromagnetic XY model on the
Watts-Strogatz small-world network generated from a
ring of N vertices. They measured the order parameter
r=|N713; exp(i6))|. Using the standard finite-size scaling
analysis, they showed that the phase transition appears
even at a tiny fraction of shortcuts, p. The transition is of
second order with the standard mean-field critical expo-
nent ,8:% (similar to the phase transition in the Ising
model in Sec. VI.D). The phase diagram of the XY
model is shown in Fig. 29. There is no phase transition at
p=0 because the system is one dimensional. Surpris-
ingly, the dependence of the critical temperature 7, on p
was well fitted by a function T,.(p)/J=0.411np+2.89 in
contrast to T.(p)/J=1/|In p| for the Ising model. The dy-
namical Monte Carlo simulations of Medvedyeva et al.
(2003) confirmed the mean-field nature of the phase
transition.

B. The XY model on uncorrelated networks

An exact solution of the XY model on treelike net-
works, in principle, can be obtained in the framework of
the belief propagation algorithm; see Eq. (66). Another
analytical approach based on the replica theory and the
cavity method was developed by Coolen et al. (2005) and
Skantzos et al. (2005); see also Skantzos and Hatchett
(2007) for the dynamics of a related model. We study
here the XY model, using the annealed network ap-
proximation from Sec. VI.A.3. In this way, for the con-
figuration model, we obtain the XY model with a
degree-dependent coupling on the fully connected
graph,

Hyp = - 2 4,9, cos(6; - 6)). (112)

Nz lz<]

This model is solved exactly using a weighted complex
order parameter, fe“”:EjA:’ 19;€"%/ Nz;. The phase ¢ deter-
mines the direction along which rotators are spontane-
ously aligned. 7 is a solution of an equation,
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1 1,(7q )
- —> P(q) gL
’ ZE D47 Gapr)

where I(x) and I;(x) are the modified Bessel functions.
An analysis of Eq. (113) shows that the ferromagnetic
XY model has the same critical behavior as the ferro-
magnetic Ising model. The critical temperature of the
continuous phase transition is 7,.=J{g?)/2z;. The critical
temperature is finite in a complex network with a finite
second moment {g°), and diverges if (g*) — . In the lat-
ter case, the XY model is in the ordered state at any
finite 7. The annealed network approximation predicts
that the XY model on the Watts-Strogatz small-world
network has the standard mean-field critical behavior.
This agrees with the simulations by Kim et al. (2001) and
Medvedyeva et al. (2003).

(113)

IX. PHENOMENOLOGY OF CRITICAL PHENOMENA IN
NETWORKS

Why do critical phenomena in networks differ so
much from those in usual substrates and what is their
common origin? Why do all investigated models demon-
strate universal behavior when (g?) diverges? In order to
answer these questions and analyze results of simula-
tions and experiments from a general point of view, we
need a general theory that is not restricted by specific
properties of any model.

In the phenomenological approach, the origin of inter-
actions and the nature of interacting objects are irrel-
evant. In this section, we consider a phenomenological
theory of cooperative phenomena in networks proposed
by Goltsev et al. (2003). This theory is based on concepts
of the Landau theory of continuous phase transitions
and leads to the conclusion that the universal critical
behavior in networks is determined by two factors: (i)
the structure of a network and (ii) the symmetry of a
given model.

A. Generalized Landau theory

Consider a system of interacting objects. Interactions
or links between these objects form a net. We assume
that some kind of order can emerge. This ordered phase
may be characterized by some quantitative characteristic
x while it will vanish in a disordered phase above a criti-
cal point. We also assume that the thermodynamic po-
tential ® of the system is not only a function of the order
parameter x but also depends on the degree distribution,

O(x,H)=-Hx+ D, P(q)p(x,gx).
q

(114)

Here H is a field conjugated with x. Equation (114) is
not obvious a priori. The function ¢(x,gx) can be con-
sidered as a contribution of vertices with g connections.
There are arguments in favor of this assumption. Con-
sider the interaction of an arbitrary vertex with g neigh-
boring vertices. In the framework of a mean-field ap-
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proach, g neighbors with a spontaneous “moment” x
produce an effective field gx acting on this vertex.
We impose only general restrictions on ¢(x,y):

(i) ¢(x,y) is a smooth function of x and y and can be
represented as a series in powers of both x and y.
Coefficients of this series are functions of tempera-
ture 7 and field H or another pair of relevant con-
trol parameters.

(i) P(x,H) is finite for any finite average degree (g).

A network topology affects analytical properties of ®.
If the distribution function P(g) has a divergent moment
(gP), then we have

p-1
O(x,H)=—- Hx + E fuxX+ xPs(x),
n=2

(115)

where s(x) is a nonanalytic function. The specific form of
s(x) is determined by the asymptotic behavior of P(q) at
g>1. It is the nonanalytic term that can lead to a devia-
tion from the standard mean-field behavior.

Following Landau, we assume that near the critical
temperature the coefficient f, can be written as a(T
—T,), where a is chosen to be positive for the stability of
the disordered phase. The stability of the ordered phase
demands that either f3>0 or, if f3=0, then f;>0. The
order parameter x is determined by the condition that
®d(x,H) is minimum: d®(x,H)/dx=0.

If the degree distribution exponent vy is noninteger,
then the leading nonanalytic term in ®(x) is x”~1. If y is
integer, then the leading nonanalytic term is x”~!|In x|.
Interestingly, this nonanalyticity resembles that of the
free energy for the ferromagnetic Ising model in a mag-
netic field on a Cayley tree; see Sec. VL.B.

We now take into account a symmetry of the system.
When ®(x,H)=®(-x,—H) and the coefficient f, is posi-
tive, we arrive at the critical behavior that describes the
ferromagnetic Ising model on equilibrium uncorrelated
random networks in Sec. VI.C.2. In a network with
(g*y<<, a singular term in ® is irrelevant, and we have
the usual x* Landau theory, which leads to the standard
mean-field phase transition. The singular term x”~! be-
comes relevant for 2< y<5 (this term is x*[In x| at y=5).
Critical exponents are given in Table I. At the critical
point 7=T,, the order parameter x is a nonanalytic func-
tion of H: xxH"Y? where 8(y>5)=3 and 83<y<5)
=vy-2.

If the symmetry of the system permits odd powers of x
in @ and f; is positive, then the phenomenological ap-
proach gives a critical behavior that was found for per-
colation on uncorrelated random networks in Sec.
III.B.2. Note that when y>4, a singular term x»! is
irrelevant. The term becomes relevant for 2 < y<4 (this
term is x3[In x| at y=4).

At 2<y=<3, the thermodynamic potential has a uni-
versal form, independent of the symmetry,



Dorogovtsev, Goltsev, and Mendes: Critical phenomena in complex networks 1315

®(x,H) = — Hx + Cx> - Ds(x), (116)

where s(x)=x?[In x| for y=3 and s(x)=x""! for 2<y<3.
We can choose CoT? and D« T; then the phenomeno-
logical theory gives the correct temperature behavior of
the ferromagnetic Ising model.

When f3<0 (or f;,<0 if f3=0), the phenomenological
theory predicts a first-order phase transition for a finite
(g*). This corresponds to the ferromagnetic Potts model
with p =3 states; see Sec. VII.

The phenomenological approach agrees with the mi-
croscopic theory and numerical simulations of the ferro-
magnetic Ising, Potts, XY, spin-glass, Kuramoto, and the
random-field Ising models, percolation, and epidemic
spreading on various uncorrelated random networks.
These models have also been studied on complex net-
works with different clustering coefficients, degree cor-
relations, etc. It seems that these characteristics are not
relevant, or at least not essentially relevant, to critical
behavior. When the tree ansatz for complex networks
gives exact results, the phenomenology leads to the
same conclusions. In these situations, the critical fluctua-
tions are Gaussian. We suggest that the critical fluctua-
tions are Gaussian in all networks with the small-world
effect, as is natural for infinite-dimensional objects.

B. Finite-size scaling

Based on the phenomenological theory, one can find
scaling exponents for finite-size scaling phenomena in
complex networks. Let ®(m,7,H,N) be a thermody-
namic potential per vertex, where 7is the deviation from
a critical point. According to the standard scaling hy-
pothesis (in its finite-size scaling form), in the critical
region

N®(m,7,H,N) = f,(mN*, TN’ ,HN?), (117)

where fy(a,b,c) is a scaling function. Note that there is
exactly N on the left-hand side of this relation and not
an arbitrary power of N. Formally substituting
®(m,7,H)=Amm?>+Bm*Y — Hm, one can find exponents
x, y,and z. As explained, A may be (i) min(4,y—1), as in
the Ising model, or (ii) min(3,y—1), as in percolation.
This naive substitution, however, does not allow one to
obtain a proper scaling function, which must be analyti-
cal, as is natural. The derivation of the scaling function
demands more rigorous calculations.

As a result, for the two classes of theories listed
above, we arrive at the following scaling forms of the
order parameter:

N N7, N**H) for y=5,
N f(N'37.N**H) for y= 4,

m(r,H,N) = { (L18)

(119)

and for smaller 3<y<5 (i) or 3<y<4 (ii), m scales as
m(m,H,N) = Nfl/(%l)f(N(y%)/(yfl)T’N(H)/(%l)H)'

(120)

Hong, Ha, and Park (2007) obtained these scaling rela-
tions (without field) using other arguments and con-
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firmed them simulating the Ising model on the static and
configuration models of uncorrelated networks. Their
idea may be formally reduced to the following steps.
Recall a relevant standard scaling relation from the
physics of critical phenomena in lattices. The standard
form is usually written for dimension d lower than the
upper critical dimension d,,. Rewrite this scaling relation
for d>d,: substitute d, for d and use the mean-field
values of the critical exponents, which should be ob-
tained as follows. For networks, in this relation, formally
substitute VZ% for the correlation length exponent and
1n=0 for the Fisher exponent, using the susceptibility ex-
ponent y=v(2—n)=1, exponent B=p(y) (see Sec. IX.A),
and

d,(y) =2A(9)/[A(y) - 2] (121)
(Hong, Ha, and Park, 2007). This procedure allows one
to derive various scaling relations. We have used it in
Sec. II1.B.3.

Finite-size scaling of this kind works in a wide class of
models and processes on networks. Hong, Ha, and Park
(2007) also applied these ideas to the contact process on
networks. Earlier, Kim et al. (2001) and Medvedyeva et
al. (2003) studied the finite-size scaling by simulating the
XY model on the Watts-Strogatz network. In their work
they investigated the dynamic finite-size scaling. In the
framework of our phenomenology, we can reproduce
their results and generalize them to scale-free networks.
Assume the relaxational dynamics of the order param-
eter: dm/dt=—dd(m)/dm. In dynamical models, the scal-
ing hypothesis also implies the scaling time variable
a1 =tN~°, which means that the relaxation time diverges
as N* at the critical point. For brevity, we find only the
form of this scaling variable, which actually resolves the
problem. In terms of scaling variables, the dynamic
equation for the order parameter must not contain N.
With this condition, passing to the scaling variables mN*
and tN~° in the dynamic equation, we get s=y, which
means time scales with N exactly in the same way as 1/ 7.
For the indicated two classes of theories, (i) and (ii), the
time scaling variable is of the following form:

in theory (i), for y=5, teu=tN""2,

in theory (ii), for y=4, ty=tN"13, (122)

and

in theory (i), for 3 <y <5,
and in theory (ii), for 3 <y <4,

— tN-(r-3/(-1)

L scal —

(123)

Finally, we recommend that the reader see Gallos,
Song, Havlin, et al. (2007) for the finite-size scaling in
scale-free networks with fractal properties. For descrip-
tion of these networks, see Song et al. (2005, 2006, 2007)
and Goh et al. (2006).
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X. SYNCHRONIZATION ON NETWORKS

The emergence of synchronization in a system of
coupled individual oscillators is an intriguing phenom-
enon. Nature gives many well-known examples: syn-
chronously flashing fireflies, crickets that chirp in unison,
two pendulum clocks mounted on the same wall syn-
chronizing their oscillations, synchronous neural activity,
and many others. Different dynamical models were pro-
posed to describe collective synchronization; see Stro-
gatz (2000, 2003), Pikovsky et al. (2001), Acebrén et al.
(2005), and Boccaletti et al. (2006).

Extensive investigations were aimed at searching for
network architectures that optimize synchronization.
First (mostly numerical) studies of various dynamical
models have revealed that the ability to synchronize can
be improved in small-world networks (Gade and Hu,
2000; Lago-Fernandez et al., 2000; Jost and Joy, 2001;
Barahona and Pecora, 2002; Hong, Choi, and Kim, 2002;
Wang and Chen, 2002). On the other hand, an opposite
effect was observed in synchronization dynamics of
pulse-coupled oscillators (Guardiola et al., 2000), where
homogeneous systems synchronize better.

We consider here the effect of the network topology
on the synchronization in the Kuramoto model and a
network of coupled dynamical systems. These two mod-
els represent two different types of synchronization phe-
nomena. One can find the discussion of this effect for
coupled map lattices in Gade and Hu (2000), Jost and
Joy (2001), Atay et al. (2004), Lind et al. (2004), Grinstein
and Linsker (2005), and Huang et al. (2006), for net-
works of Hodgkin-Huxley neurons in Lago-Ferndndez et
al. (2000) and Kwon and Moon (2002); for pulse-coupled
oscillators in Denker et al. (2004) and Timme et al.
(2004); and for the Edwards-Wilkinson model in Kozma
et al. (2004).

A. The Kuramoto model

The Kuramoto model is the classical paradigm for the
spontaneous emergence of collective synchronization
(Kuramoto, 1984; Strogatz, 2000; Acebron et al., 2005).
The model describes collective dynamics of N coupled

phase oscillators with phases 6,(f), i=1,2,...,N, running
at natural frequencies w;,
N
9,‘: a)i+J2 aj Sin(9]~— al‘), (124)

=1

where a;; is the adjacency matrix of a network. J is the
coupling strength. The frequencies w; are distributed ac-
cording to a distribution function g(w). It is assumed that
g(w) is unimodular and symmetric about its mean fre-
quency (). It is convenient to use a rotating frame and
redefine 6,— 6;— Q¢ for all i. In this frame, we can set the
mean of g(w) to be zero. The state of oscillator j can be
characterized by a complex exponent exp(i6;), which is
represented by a vector of unit length in the complex
plane; see Fig. 30.
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FIG. 30. Schematic view of phases in the Kuramoto model. (a)
Incoherent phase. Unit length vectors representing individual
states are randomly directed in the complex plane. (b) Coher-
ent phase. The individual states condense around a direction .

The Kuramoto model is solved exactly for the fully
connected graph (all-to-all interaction), i.e., a;=1 for all
i # j, with rescaling /—J/N. When J <J, there is no col-
lective synchronization between the rotations of indi-
vidual oscillators. Nonetheless, some finite clusters of
synchronized oscillators may exist. Collective synchroni-
zation between oscillators emerges spontaneously above
a critical coupling J,. if N—«. The global state of the
model is characterized by the following average:

1 N
r(t)e" = NE e, (125)

j=1

where r(f) is the order parameter that measures the
phase coherence and (¢) is the average phase. Simula-
tions show that if we start from any initial state, then at
J<J. in the incoherent phase r(f) decays to a tiny jitter
of the order of O(N~2). On the other hand, in the co-
herent phase (/>J.), the parameter r() decays to a finite
value r(t—)=r<1. At J near J., the order parameter
roc |J-J |P with B=1. In the original frame, y{7) rotates
uniformly at the mean frequency (). Substituting Eq.
(125) into Eq. (124) gives

6, = w; +Jrsin(yy— 6). (126)

The steady solution of this equation shows that at J
>J. a finite fraction of synchronized oscillators emerges.
These oscillators rotate coherently at frequency () in the
original frame. In the rotating frame, their phases are
locked according to sin 6;= w;/Jr if |w]<Jr. Here we set
#=0. Other oscillators, having individual frequencies
|| >Jr, are “drifting.” Their phases are changed non-
uniformly in time. The order parameter r satisfies the
following self-consistent equation:
Jr
r= J V1 — 0?17’ g(w)dw, (127)
-Jr
which gives the critical coupling J,=2/mg(0). Note that
the order of the synchronization phase transition in the
Kuramoto model depends on the distribution g(w). In
particular, it can be of first order if the natural frequen-
cies are uniformly distributed (Tanaka et al., 1997).

The Kuramoto model on finite networks and lattices
shows synchronization if the coupling is sufficiently
strong. Is it possible to observe collective synchroniza-
tion in the Kuramoto model on an infinite regular lat-
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tice? There is no synchronization in a one-dimensional
system with a short-ranged coupling. According to
Hong, Park, and Choi (2004, 2005), phase and frequency
ordering is also absent in two-dimensional (d=2) lat-
tices; frequency ordering is possible only in three-, four-,
and higher-dimensional lattices, while phase ordering is
possible only when d >4. The value of the upper critical
dimension for the Kuramoto model is still under discus-
sion (Acebrén et al., 2005). Simulations in Hong, Chaté,
Park, et al. (2007) indicate the mean-field behavior of the
Kuramoto model at d>4.

B. Mean-field approach

The Kuramoto model was recently investigated nu-
merically and analytically on complex networks of dif-
ferent architectures. Here we look first at analytical
studies and then discuss simulations, though the model
was first studied numerically by Hong, Choi, and Kim
(2002).

Unfortunately, no exact results for the Kuramoto
model on complex networks have been obtained yet. A
finite mean degree and strong heterogeneity of a net-
work make it difficult to find an analytical solution of
the model. Ichinomiya (2004, 2005) and Lee (2005) de-
veloped a simple mean-field theory that is equivalent to
the annealed network approximation in Sec. VI.A.3. Us-
ing this approximation, we arrive at the Kuramoto
model with a degree-dependent coupling on the fully
connected graph,

N
éi: w; + _12 qj Sin(Gj— 01)

J
g (128)
NZ1j:1

This effective model can be solved exactly. Introducing a
weighted order parameter

N
- 1 )
()" = — q;e'Y, (129)
Nle:l
one can write Eq. (128) as follows:
6 = w; + Jig; sin(— 6,). (130)

The steady solution of this equation shows that in the
coherent state oscillators with individual frequencies
|w;| <J7q, are synchronized. Their phases are locked and
depend on vertex degree: sin 6;,=w;/J7q;, where we set
=0. This result shows that hubs with degree g;>1 syn-
chronize more easy than oscillators with low degrees.
The larger the degree ¢, the larger the probability that
an individual frequency w; of an oscillator i falls into the
range [—J7q;,J7q;]. Other oscillators are drifting. 7 is a
solution of the equation

- P(q)qf”" o e
r_Eq‘, 2 (qu)zg() '

-Jrq

(131)

Spontaneous synchronization with 7>0 emerges above
the critical coupling,
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Jo=22,/mg(0)q?), (132)

which depends strongly on the degree distribution. J, is
finite if the second moment (g?) is finite. Note that at a
fixed mean degree z;, J. decreases (i.e., the network syn-
chronizes easily) with increasing (g*)—increasing het-
erogeneity. Similar to percolation, if the moment (g?)
diverges (i.e., 2<<y=<3), the synchronization threshold J.
is absent, and the synchronization is robust against ran-
dom failures. In finite networks, the critical coupling is
finite, JC(N)ml/qiljty(N), and determined by the size-
dependent cutoff g, (N) in Sec. ILE.4.

Another important result, which follows from Eq.
(131), is that the network topology strongly influences
the critical behavior of the order parameter 7. Lee (2005)
found that the critical singularity of this parameter is
described by the standard mean-field critical exponent
,8:% if an uncorrelated network has a finite fourth mo-
ment (g%, i.e., y>5. If 3<y<35, then B=1/(y-3). Note
that the order parameters r, Eq. (125), and 7, Eq. (129),
have the same critical behavior. Thus, with fixed z;, the
higher the heterogeneity of a network, the better its syn-
chronizability and the smoother the phase transition.
The critical behavior of the Kuramoto model is similar
to the ferromagnetic Ising model in Sec. VI.C and con-
firms the phenomenological theory described in Sec. IX.
A finite-size scaling analysis of the Kuramoto model in
complex networks was carried out by Hong, Park, and
Tang (2007). Within the mean-field theory, they found
that the order parameter 7 has finite-size scaling behav-
ior,

F=NPfJ-J )N, (133)
with the critical exponent 8 found above. Remarkably,
the critical exponent v is different from that of the Ising
model in Sec. IX.B, namely, T/:% at y>5, and v
=(2vy-5)/(y-3) at 4<y<5, and v=(y-1)/(y-3) at 3
< y<4. Simulations of the Kuramoto model agree with
these analytical results (Hong, Park, and Tang, 2007).

The mean-field theory of synchronization considered
above is valid if the average degree z; is sufficiently
large. In order to improve this approach, Restrepo et al.
(2005) introduced a local order parameter at vertex n,
rpetn=3, a,.e’, and found it using intuitive argu-
ments. In their approach, the critical coupling J. is in-
versely proportional to the maximum eigenvalue \,,, of
the adjacency matrix a;. However, in an uncorrelated
random complex network, A, is determined by the cut-
off g (N) of the degree distribution, \p.=~gql2(N)
(Chung et al., 2003; Dorogovtsev et al., 2003; Krivelevich
and Sudakov, 2003). In scale-free networks (y< ), the
cutoff diverges in the limit N—o. Therefore, this ap-
proach predicts J.=0 in the thermodynamic limit even
for a scale-free network with y>3 in sharp contrast to
the approach of Ichinomiya (2004) and Lee (2005).

Oh et al. (2007) studied the Kuramoto model with
asymmetric degree-dependent coupling Jq; "a;; instead
of Ja; in Eq. (124) using the mean-field theory. They
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FIG. 31. (Color online) Synchronization patterns of Erdds-
Rényi (ER) and scale-free (SF) networks for several values of
coupling N\ (or J in our notations). From Gémez-Gardenes et
al., 2007a.

found that tuning the exponent 7z changes the critical
behavior of collective synchronization. On scale-free
networks, this model has a rich phase diagram in the
plane (7, 7). In the case n=1, the critical coupling J. is
finite even in a scale-free network with 2<<y<3 con-
trary to J,=0 for the symmetric coupling, which corre-
sponds to »=0. Note that the influence of the degree-
dependent coupling is similar to the effect of degree-
dependent interactions on the phase transition in the
ferromagnetic Ising model; see Sec. VI.C.5.

C. Numerical study of the Kuramoto model

The Kuramoto model was investigated numerically on
various networks. Hong, Choi, and Kim (2002) studied
this model on the Watts-Strogatz network generated
from a one-dimensional regular lattice. They observed
that collective synchronization emerges even for a tiny
fraction of shortcuts p, which cause the one-dimensional
lattice to be a small world. The critical coupling J, is well
approximated as J (p) ~2/mg(0)+ap~!, where a is a con-
stant. As one might expect, the synchronization phase
transition is of second order with the standard critical
exponent 8=0.5.

The evolution of synchronization in the Kuramoto
model on the Erdos-Rényi and scale-free networks was
recently studied by Gomez-Gardefies et al. (2007a,
2007b). They solved numerically Eq. (124) for N=1000
coupled phase oscillators and demonstrated that (i) the
synchronization on a scale-free network (y=3) appears
at a smaller critical coupling J. than the one on the
Erdos-Rényi network (with the same average degree as
the scale-free network), and (ii) the synchronization
phase transition on the Erdos-Rényi network is sharper
than the transition on the scale-free network. This criti-
cal behavior agrees qualitatively with the mean-field
theory. Gomez-Gardeiies et al. (2007a, 2007b) calculated
a fraction of synchronized pairs of neighboring oscilla-
tors for several values of the coupling J and revealed an
interesting difference in the synchronization patterns be-
tween the Erdos-Rényi and scale-free networks; see Fig.
31. In a scale-free network, a central core of synchro-
nized oscillators formed by hubs grows with J by absorb-
ing small synchronized clusters. In contrast, in the
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Erdos-Rényi network numerous small synchronized
clusters homogeneously spread over the graph. As J ap-
proaches J, they progressively merge together and form
larger clusters.

Moreno and Pacheco (2004) numerically studied the
Kuramoto model the Barabasi-Albert network of size
N=5x10* They found that the critical coupling is finite,
though small. Surprisingly, the measured critical expo-
nent was close to the standard mean-field value, 8~0.5,
contrary to an infinite-order phase transition and zero J,
predicted by the mean-field theory in the limit N— .
The reason for this discrepancy is unclear.

A community (modular) structure of complex net-
works has a strong effect on synchronization. In such
networks, oscillators inside a community are synchro-
nized first because edges within a community are ar-
ranged denser than edges between communities. On the
other hand, intercommunity edges stimulate the global
synchronization. The role of network motifs for the syn-
chronization in the Kuramoto model was first studied
numerically by Moreno et al. (2004). Oh et al. (2005)
solved numerically the dynamical equations (124) with
the asymmetric degree-dependent coupling Jq;laij for
two real networks—the yeast protein interaction net-
work and the Internet at the autonomous system level.
These networks have different community structures. In
the yeast protein network, communities are connected
diversely, while in the Internet, communities are con-
nected mainly to North America. It turned out that for a
given coupling J, the global synchronization for the yeast
network is stronger than that for the Internet. These
numerical calculations showed that the distributions of
phases of oscillators inside communities in the yeast net-
work overlap each other. This corresponds to the mutual
synchronization of the communities. In contrast, in the
Internet, the phase distributions inside communities do
not overlap; the communities are coupled weaker and
synchronize independently. A modular structure pro-
duces a similar effect on synchronization of coupled-
map networks (Huang et al., 2006).

Arenas et al. (2006a, 2006b) showed that the evolution
of a synchronization pattern reveals different topologi-
cal scales at different time scales in a complex network
with nested communities. Starting from random initial
conditions, highly interconnected clusters of oscillators
synchronize first. Then larger and larger communities do
the same up to the global coherence. Clustering pro-
duces a similar effect. McGraw and Menzinger (2007)
studied numerically the synchronization on the
Barabasi-Albert networks of size N=1000 with low and
high clustering coefficients [networks with a high cluster-
ing coefficient were generated using the method pro-
posed by Kim (2004)]. They found that in a clustered
network the synchronization emerges at a lower cou-
pling J than a network with the same degree distribution
but with a lower clustering coefficient. However, in the
latter network the global synchronization is stronger.

Timme (2006) simulated the Kuramoto model on di-
rected networks and observed a topologically induced
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transition from synchrony to disordered dynamics. This
transition may be a general phenomenon for different
types of dynamical models of synchronization on di-
rected networks.

Synchronization of coupled oscillators in the Kura-
moto model to an external periodic input, called a pace-
maker, was studied for lattices, Cayley trees, and com-
plex networks by Yamada (2002), Kori and Mikhailov
(2004, 2006), and Radicchi and Meyer-Ortmanns (2006).
This phenomenon is called entrainment. The pacemaker
is assumed to be coupled with a finite number of vertices
in a given network. Entrainment appears above a critical
coupling strength J.. Kori and Mikhailov (2004) showed
that J, increases exponentially with increasing the mean
shortest path distance £ from the pacemaker to all ver-
tices in the network, i.e., J,,~ e*. In a complex network,
L is proportional to the mean intervertex distance ¢(N),
which, in turn, is typically proportional to In N; see Sec.
ILA. This leads to J,~ N”, where b is a positive expo-
nent. It was shown that frequency locking to the pace-
maker depends strongly on its frequency and the net-
work architecture.

D. Coupled dynamical systems

Consider N identical dynamical systems. An indi-
vidual system is described by a vector dynamical vari-
able x;(¢), i=1,...,N. The individual dynamics is gov-
erned by x;=F(x;), where F is a vector function. These
dynamical systems are coupled by edges and their dy-
namics can be described by

x;=F(x;) - 7> L;H(x), (134)
j

where J is the coupling strength and H(x;) is an output
function that determines the effect of vertex j on the
dynamics of vertex i. The network topology is encoded
in the Laplacian matrix L;=q;5;—a;, where a; is the
adjacency matrix and g; is the degree of vertex i. The
Laplacian matrix is a zero-row-sum matrix, i.e., %;L;=0
for all i. This property has the following consequence.
Any solution of §=F(s) is also a solution of Eq. (134),

x;=s(?), i.e., dynamical systems evolve coherently.

1. Stability criterion

We use the spectral properties of L in order to deter-
mine the stability of the fully synchronized state against
small perturbations, x;=s(t)+ 7. The Laplacian has non-
negative eigenvalues that can be ordered as 0=\ <M\,
<---<M\p. The zero eigenvalue corresponds to the uni-
form eigenfunction, ﬂo)zl for all i (the synchronized
state). The remaining eigenfunctions fg") with A=\, are
transverse to ﬁo). Representing a perturbation as a sum
of the transversal modes, 7,=2,-,.7 i”), we find the
master stability equation from Eq. (134),
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i =[DF(s) — aDH(s)] 7, (135)

where a=J\. DF and DH are the Jacobian matrices. If
the largest Lyapunov exponent A(«) of this equation is
negative, then the fully synchronized state is stable
(Pecora and Carroll, 1998). A(«a) is called the master sta-
bility function. This function is known for various oscil-
lators such as Rdssler, Lorenz, or double-scroll chaotic
oscillators. Equation (135) is valid if the coupling matrix
L;; is diagonalizable. A generalization of the master sta-
bility equation for nondiagonalizable networks (i.e., for
the case of a nonsymmetric coupling matrix) is given by
Nishikawa and Motter (2006a, 2006b).

Thus we have the following criterion for the stability:
the synchronized state is stable if and only if A(J\,) <0
for all n=2,...,N. In this case, a small perturbation 7,
converges to zero exponentially as t—oc. The condition
A(UN)=A(0)<0 determines the dynamical stability of
the solution s(¢) to the individual dynamics.

Usually, the function A(«) is negative in a bound re-
gion a; < a<a,. Therefore, a network is synchronizable
if simultaneously J\,>aq and J\y<a,. This is equiva-
lent to the following condition:

)\N/)\z < az/a] (136)

(Barahona and Pecora, 2002). Note that A\, and Ay are
completely determined by the network topology, while
aq and a, depend on the specific dynamical functions F
and H. The value of a,/« typically ranges from 5 to 100
for various chaotic oscillators. The criterion Eq. (136)
implies the existence of the interval (a;/\,, @,/ \y) of the
coupling strength J where the synchronization is stable.
The smaller the eigenratio Ay/\,, the larger this interval
and the better the synchronizability. If J<a;/\,, then
modes with small eigenvalues A < «;/J break down syn-
chronization. If /> a,/\y, then modes with large eigen-
values A > a,/J lead away from the synchronized state.

The spectrum of the Laplacian on the fully connected
graph is simple: ;=0 and \,=---=Ay=N. The eigenra-
tio Ay/\, is equal to 1, which corresponds to the highest
possible synchronizability. In the d-dimensional cubic
lattice of side length /=N"“  the minimum eigenvalue \,
of the Laplacian is small: \, /2. On the other hand, the
largest eigenvalue Ay is finite: N\y~d. Therefore, the
eigenratio A\y/\, diverges as N—oo, which means that
complete synchronization is impossible in an infinite
d-dimensional lattice (Wang and Chen, 2002; Hong,
Kim, Choi, et al., 2004). Only a finite lattice can be syn-
chronized.

2. Numerical study

Synchronization of coupled dynamical systems on
various complex networks has been extensively studied
numerically. It turned out that the random addition of a
small fraction of shortcuts p to a regular cubic lattice
leads to a synchronizable network (Barahona and
Pecora, 2002; Wang and Chen, 2002; Hong, Kim, Choi, et
al., 2004). For example, a ring of N vertices with short-
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FIG. 32. Ratio Ay/\, vs the fraction of shortcuts p for the
Watts-Strogatz network generated from a ring. Adapted from
Hong et al., 2004.

cuts is always synchronizable if N is sufficiently large.
The shortcuts sharply decrease the ratio Ay/\, (see Fig.
32) until the network becomes synchronizable. The heu-
ristic reason for this effect lies in the fact that adding
shortcuts leads to the Watts-Strogatz network with the
small-world effect. The average shortest path between
two vertices chosen at random becomes small compared
to the original regular lattice. In other words, the small-
world effect improves the synchronizability of the Watts-
Strogatz network compared with a regular lattice.

Synchronization is also enhanced in other complex
networks. One can show that the minimum eigenratio
AN/\, is achieved for the Erdos-Rényi graph. In scale-
free networks, the eigenratio A\y/\, increases with de-
creasing degree distribution exponent v, and the syn-
chronizability becomes worse. This effect was explained
by the increase of heterogeneity (Nishikawa et al., 2003;
Motter et al., 2005a, 2005b). A suppression of synchroni-
zation related to the increase of the load on vertices was
found. Importantly, the eigenratio Ay/\, increases with
N. Kim and Motter (2007) [see also Motter (2007)] found
that the largest eigenvalue Ay in an uncorrelated scale-
free network is determined by the cutoff of the degree
distribution: A\y=q.,+1. The eigenvalue \, is nearly size
independent and ensemble averageable. (The last state-
ment means that as N— the ensemble distribution of
\, converges to a peaked distribution.) This leads to

An/\, ~ min[ NVO-D NV2]; (137)

see Sec. II.LE.4. Therefore, it is difficult or even impos-
sible to synchronize a large scale-free network with suf-
ficiently small y. These analytical results agree with nu-
merical calculations of the Laplacian spectra for
uncorrelated scale-free networks.

Another way to enhance synchronization is to use a
network with asymmetric or weighted couplings. Motter
et al. (2005a, 2005b, 2005c) considered an asymmetric
degree-dependent coupling matrix g; "L;; instead of L
in Eq. (134), where 7 is a tunable parameter. Their nu-
merical and analytical calculations demonstrated that if
n=1, then in a given network topology the synchroniz-
ability is maximum and does not depend on the network
size. In this case, the eigenratio \y/\, is insensitive to
the form of the degree distribution. Interestingly, in a
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random network the eigenvalues N\, and \y of the nor-
malized Laplacian matrix q;lL,-j achieve 1 as N\,=1
—0(1/\"@) and )\N=1+O(1/\s’@) in the limit of a large
mean degree (g)>1 (Chung, 1997). Therefore in this
limit the eigenratio N\y/\, is close to 1, and the system is
close to the highest possible synchronizability.

Note that apart from synchronization, network spec-
tra have numerous applications to structural properties
of networks and processes in them. For results on La-
placian spectra of complex networks and their applica-
tions, see Chung (1997), Dorogovtsev et al. (2003), Kim
and Motter (2007), Motter (2007), and references
therein.

Chavez et al. (2005) found that further enhancement
of synchronization in scale-free networks can be
achieved by scaling the coupling strength to the load of
each edge. Recall that the load /; of an edge ij is the
number of shortest paths that go through this edge.
They replaced the Laplacian L; with a zero-row-sum
matrix with off-diagonal elements —/;;/ Zjen, lj, where a
is a tunable parameter. This weighting procedure used
global information of network pathways. Chavez et al.
(2005) demonstrated that by varying the parameter «,
one may efficiently get better synchronization. Similar
improvement was obtained using a different, local
weighting procedure based on the degrees of nearest
neighbors (Motter et al., 2005c). In networks with inho-
mogeneous couplings between oscillators, the intensity
of a vertex is defined as the total strength of input cou-
plings. Zhou et al. (2006) showed that the synchroniz-
ability in weighted random networks is enhanced as ver-
tex intensities become more homogeneous.

The effect of degree correlations in a network on syn-
chronization of coupled dynamical systems was revealed
by Bernardo et al. (2007). They studied assortatively
mixed scale-free networks. Their degree correlated net-
works were generated using the method proposed by
Newman (2003d). They showed that disassortative mix-
ing (connections between high-degree and low-degree
vertices are more probable) enhances synchronization in
both weighted and unweighted scale-free networks com-
pared to uncorrelated networks. However, synchroniza-
tion in a correlated network depends on the weighting
procedure (Chavez et al., 2006).

Above we showed that the fully connected graph
gives optimal synchronization. However, this graph is
“cost is no object” and uncommon in nature. Which
other architectures maximize the synchronizability of
coupled dynamical systems? Nishikawa and Motter
(2006a, 2006b) came to the conclusion that the most op-
timal networks are directed and nondiagonalizable.
Among the optimal networks, they found a subclass of
hierarchical networks, with the following properties: (i)
these networks embed an oriented spanning tree (i.e.,
there is a node from which all other vertices of the net-
work can be reached by following directed links); (ii)
there are no directed loops; and (iii) the total sum of
input couplings at each vertex is the same for all verti-
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FIG. 33. Examples of graphs with optimal synchronizability:
(a) a fully connected graph, (b) a directed star, and (c) a hier-
archical directed random graph.

ces. Examples of optimal network topologies are shown
in Fig. 33.

XI. SELF-ORGANIZED CRITICALITY PROBLEMS ON
NETWORKS

In this section, we discuss avalanche processes in mod-
els defined on complex networks and related phenom-
ena.

A. Sandpiles and avalanches

The sandpile dynamics on the Erdos-Rényi random
graphs has been studied by Bonabeau (1995) and others,
but no essential difference from high-dimensional lat-
tices was found. Goh et al. (2003) and Lee et al. (2004a,
2004b) investigated a variation of the Bak-Tang-
Wiesenfeld (BTW) model on scale-free uncorrelated
networks and observed an effect of the network archi-
tecture on the self-organized criticality (SOC) phenom-
enon. We now discuss these results.

The model is defined as follows. For each vertex i, a
threshold a;=¢; " is defined, where 0= =<1, so that a;
=<g¢;. A number of grains at vertex i is denoted by #;.

(i) A grain is added to a randomly chosen vertex i,
and /; increases by 1.

(i1) If the resulting h;<a;, go to (i). On the other hand,
if h;=a;, then h; is decreased by [q;], the smallest
integer greater than or equal to a;. That is, h;—h;
—[a;]. These [a;] toppled grains jump to [g;] ran-
domly chosen nearest neighbors of vertex i: h;
—>l/lj+1.

(iii) If for these [a;] vertices the resulting /;<a;, then
the “avalanche” process finishes. Otherwise, verti-
ces with hj=a; are updated in parallel (!), hj—>[aj],
their randomly chosen neighbors receive grains,
and so on until the avalanche stops. Then repeat
().

Note that the particular, “deterministic” case of 7=0,
where all nearest neighbors of an activated vertex re-
ceive grains (as in the BTW model), essentially differs
from the case of >0, where [a;]<g;.

As is usual in SOC problems, the statistics of ava-
lanches was studied as follows: the size distribution
P,(s) ~s~7 for the avalanches (the “size” here is the total
number of toppling events in an avalanche) and the dis-
tribution P,(f) ~t? of their durations. [The distribution
of the avalanche area (the number of vertices involved)
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is similar to Py(s).] Taking into account the treelike
structure of uncorrelated networks, one can see that (i)
an avalanche in this model is a branching process, ava-
lanches are trees; (ii) the duration of an avalanche ¢ is
the distance from its root to its most remote vertex; and
(iii) the standard technique for branching processes is
applicable to this problem.

The basic characteristic of the avalanche tree is the
distribution of branching, p(g). According to Goh et al.
(2005) and Lee et al. (2004a, 2004b), p(q)=pi(q)p2(q).
The first factor is the probability that g—1<a=<gq, that
is, g grains will fall from a vertex in the act of toppling.
p2(q) is the probability that before the toppling, the ver-
tex has exactly g—1 grains. The assumption that the dis-
tribution of /4 is homogeneous gives the estimate p,(q)
~1/q. As for p;(g), one must take into account that (i)
the degree distribution of an edge end is gP(q)/{g), (ii)
P(q)~q™?, and (iii) a=q'"7. As a result, p;(q)
~q~-1=m/0=n_ Thus, the distribution of branching is
p(q)qu(Hn)/(lfn)Eq*V'. One can see that if p,(q)
=1/q, then =, gp(q)=1.

Goh et al. (2003) and Lee et al. (2004a, 2004b) applied
the standard technique to the branching process with
this p(q) distribution and arrived at power-law size and
duration distributions, which indicate the presence of a
SOC phenomenon for the assumed threshold a=q'~".
They obtained exponents 7and 8. With these exponents,
one can easily find the dynamic exponent z=(5-1)/
(7—1) (the standard SOC scaling relation), which in this
case coincides with the fractal dimension of an ava-
lanche. The results are as follows. There is a threshold
value, y,=3-», which separates two regimes:

if y>3-7, thenr=3 6=z=2, (138)
-2
if2<y<3-7 thenr=——"1
y-1-79
1=
s=z=1"""17 (139)
v—2

It is easy to understand these results for the fractal di-
mension of an avalanche, z. One may check that this z
coincides exactly with the fractal dimension of equilib-
rium connected trees with the degree (or branching) dis-

tribution equal to p(q) ~q7"'; see Sec. I.C.

For a numerical study of the BTW model on small-
world networks, see de Arcangelis and Herrmann
(2002). The BTW model is one of numerous SOC mod-
els. There were a few studies of other SOC models on
complex networks. For example, for the Olami-Feder-
Christensen model on various networks, see Caruso et
al. (2006, 2007), and for a Manna-type sandpile model on
small-world networks, see Lahtinen et al. (2005). The
Bak-Sneppen model on networks has been studied by
Kulkarni et al. (1999), Moreno and Vazquez (2002), Lee,
Hong, and Lee (2005), and Masuda et al. (2005).
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B. Cascading failures

Devastating power blackouts are in the list of most
impressive large-scale accidents in artificial networks. In
fact, a blackout is a result of an avalanche of overload
failures in power grids. A simple though representative
model of a cascade of overload failures was proposed by
Motter and Lai (2002). The load of a vertex in this
model is betweenness centrality—the number of the
shortest paths between other vertices, passing through
the vertex see Sec. II.LA. Note that frequently the be-
tweenness centrality is simply called load (Goh et al,
2001).

For every vertex i in this model, a limiting load (ca-
pacity) is introduced,

C;i= (1 + Cl’)bol‘, (140)
where by, is the load (betweenness centrality) of this ver-
tex in the undamaged network. The constant «=0 is a
tolerance parameter showing how much an initial load
can be exceeded. A cascading failure in this model looks
as follows.

(i) Delete a vertex. This leads to the redistribution of
loads of the other vertices: by, — by,

(i) Delete all overloaded vertices, that is, the vertices
with b),>c;.

(iii) Repeat this procedure until no overloaded vertices
remain.

In their simulations of various networks, Motter and
Lai measured the ratio G =Ny, /N, where N and N,
are, respectively, the original number of vertices in a
network and the size of its largest connected component
after the cascading failure. (Assume that the original
network coincides with its giant connected component.)
Resulting G(a) depend on (i) the architecture of a net-
work, (ii) the parameter «, and (iii) characteristics of the
first failing vertex, e.g., on its degree.

In a random regular graph, for any >0, G is 1, and
only if a=0 will the network be completely destroyed,
G=0. On the other hand, in networks with heavy-tailed
degree distributions, G depends strongly on the degree
(load) of the first removed vertex. Motter and Lai used a
scale-free network with y=3 in their simulation. We
briefly discuss their results. a=0 gives G=0 for any start-
ing vertex in any network, while a— o results in G=1.
The question is actually about the form of the monoto-
nously growing curve G(a). When the first removed ver-
tex is chosen at random, the cascade is large (G strongly
differs from 1) only at small «, and G(«) rapidly grows
from 0O to 1. If the first vertex is chosen from ones of the
highest degrees, then G gently rises with «, and cascades
may be giant even at rather large a.

Lee, Goh, Kahng, et al. (2005) numerically studied the
statistics of the cascades in this model defined on a scale-
free network with 2<y=<3 and found that there is a
critical point a.~0.15. At a<a,, there are giant ava-
lanches, and at a> «., the avalanches are finite. They
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observed that at the critical point the size distribution of
avalanches has a power-law form P(s) ~s~", where expo-
nent 7=2.1(1) in the range 2 < y<3.

This model can be generalized as follows: @ may be
defined as a random variable; instead of betweenness
centrality other characteristics may be used, etc. [see
Motter (2004) or, for a model with overloaded links,
Moreno et al. (2003) and Bakke et al. (2006)]. Note that
there are other approaches to cascading failures. For ex-
ample, Watts (2002) proposed a model where, in simple
terms, cascading failures were treated as a kind of epi-
demic outbreak.

C. Congestion

Here we only touch upon basic models of jamming
and congestion proposed by physicists. Ohira and Sawa-
tari (1998) put forward a simple model of congestion.
Originally it was defined on a lattice but it can be gen-
eralized to arbitrary network geometries.

The vertices in this model are of two types—hosts and
routers. Hosts send packets at some rate \ to other (ran-
domly chosen) hosts, so that every packet has its own
target. Each packet passes through a chain of routers
storing and forwarding packets. There is a restriction:
the routers can forward not more than one packet per
time step. The routers are supposed to have infinite
buffer space, where a queue of packets is stored. The
packet at the head of the queue is sent first. A router
sends a packet to its neighboring router, which is the
closest to the target. If there occur more than one such
router, then one of them is selected by special rules. For
example, one may choose the router with the smallest
flow of packets through it.

In their simulations Ohira and Sawatari studied the
average time a packet needs to reach its target versus
the packet injection rate A. It turned out that this time
rises above some critical value A, which indicates tran-
sition to the congestion phase. These observations sug-
gest that it is a continuous transition, without a jump or
hysteresis. The obvious reason for this jamming transi-
tion is the limited forwarding capabilities of routers—
one packet per time step.

Solé and Valverde (2001) investigated this transition in
the same model. They numerically studied the time-
series dynamics of the number of packets at individual
routers, and found a set of power laws at the critical
point. In particular, they observed a 1/f-type power
spectrum of these series and a power-law distribution of
queue lengths. [Similar critical effects were found in an
analytically treatable model of traffic in networks with
hierarchical branching; see Arenas et al. (2001).] They
proposed the following idea. Since the traffic is most
efficient at A, the Internet self-organizes to operate at
criticality. This results in various self-similar scaling phe-
nomena in the Internet traffic.

These ideas became the subject of criticism from com-
puter scientists (Willinger et al., 2002). This criticism was
from discoverers of the scaling properties for Internet
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traffic (Leland et al, 1994). They wrote, “self-similar
scaling has been observed in networks with low, me-
dium, or high loads, and any notion of a magical load
scenario where the network has to run at critical rate A,
to show self-similar traffic characteristics is inconsistent
with the measurements.” They listed alternative reasons
for these self-similar phenomena. This criticism was, in
fact, aimed at a wide circle of self-organized criticality
models for various aspects of the real Internet, proposed
by physicists. Willinger et al. stressed that these models
“are only evocative; they are not explanatory.” In their
definition, an evocative model “can reproduce the phe-
nomenon of interest but does not necessarily capture
and incorporate the true underlying cause.” On the
other hand, an explanatory model “also captures the
causal mechanisms (why and how, in addition to what).”
Ask yourself, how many explanatory models of real net-
works were proposed?

Guimera et al. (2002) developed an analytical ap-
proach in which search and congestion problems were
interrelated. In their simple theory, the mean queue
length at vertices of a network was related to a search
cost in this network. The latter is the mean number of
steps needed to find a target vertex. In this approach,
minimizing the mean queue length is reduced to mini-
mizing the search cost. This approach was used to find
optimal network architectures with minimum conges-
tion.

Echenique ef al. (2005) introduced a model of network
traffic with a protocol allowing one to prevent and re-
lieve congestion. In their model, routers forward pack-
ets, taking into account the queue lengths at their neigh-
bors. That is, a packet is sent to the neighboring router j,
which has the minimum value

8 =ht;+(1-h). (141)
Here € is the length of the shortest path from router j
to the target of the packet, ¢; is the queue length at the
router, and the parameter /4 is in the range O0sh=<1.
Echenique et al. performed numerical simulations using
the map of a real Internet network, but their results
should also be valid for other architectures. As an order
parameter for congestion, they used the ratio p=(the
number of packets that have not reached their targets
during the observation)/(the total number of packets
generated during this time period). It turned out that if
the parameter /4 is smaller than 1, then the transition to
the congestion phase occurs at an essentially higher rate
N\.. Furthermore, when A <1, the order parameter
emerges with a jump as in a first-order phase transition,
while at ~=1 the transition resembles a usual second-
order phase transition; see Fig. 34. Remarkably, the lo-
cations of these transitions, as well as the curves p(\),
coincide at the studied values £=0.95,0.75,0.5. On the
other hand, the congestion p at #<<1 is much higher than
at h=1 at the same N> \_. The routing protocol of Ech-
enique et al. was explored and generalized in a number
of studies. For one possible generalization, see Liu et al.
(2006) and Zhang et al. (2007).
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FIG. 34. Order parameter p vs the packet injection rate N for
various A using the model of Echenique et al (2005). From
Echenique et al., 2005.

Another approach to network traffic, treating this
process in terms of specific diffusion of packets, was de-
veloped by Tadi¢ and Thurner (2004); Tadic et al. (2004,
20006); see also Wang et al. (2006). The theory of this kind
of traffic was elaborated on by Fronczak and Fronczak
(2007). Danila et al. (2006) studied routing based on local
information. They considered “routing rules with differ-
ent degrees of congestion awareness, ranging from ran-
dom diffusion to rigid congestion-gradient driven flow.”
They found that the strictly congestion-gradient driven
routing easily leads to jamming. Carmi, Cohen, and
Dolev (2006) presented a physical solution to the prob-
lem of effective routing with minimal memory resources.
Toroczkai and Bassler (2004) investigated the influence
of network architectures on the congestion. Helbing et
al. (2007) described the generation of oscillations in net-
work flows. Rosvall er al. (2004) discussed how to use
limited information to find the optimal routes in a net-
work. For the problem of optimization of network flows,
see also Gourley and Johnson (2006), and references
therein.

XII. OTHER PROBLEMS AND APPLICATIONS

In this section, we review a number of critical effects
and processes in networks, which have been omitted in
the previous sections.

A. Contact and reaction-diffusion processes

1. Contact process

The contact process (Harris, 1974) is in a wide class of
models exhibiting nonequilibrium phase transitions, for
example, the SIS model of epidemics, which belong, to
the directed percolation universality class (Grassberger
and de la Torre, 1979); see Hinrichsen (2000). The con-
tact process on a network is defined as follows. An initial
population of particles occupies vertices in a network.
Each vertex can be occupied by only one particle (or be
empty). At each time step ¢, a particle on an arbitrary



1324 Dorogovtsev, Goltsev, and Mendes: Critical phenomena in complex networks

chosen vertex either (i) disappears with a probability p
or (ii) creates with the probability 1—p a new particle at
an arbitrary chosen unoccupied neighboring vertex.

We introduce an average density p,(t) of particles at
vertices with degree g. The time evolution of p,(7) is
given by the mean-field rate equation,

d
_’;‘It(_t) = _ppq(t) + (1 _p)q[l - pq(t)]

P(q'lq)
q/

X pgr(D) , (142)

q

where P(q’|q) is the conditional probability that a ver-
tex of degree g is connected to a vertex of degree q’
(Castellano and Pastor-Satorras, 2006a). The first and
second terms in Eq. (142) describe the disappearance
and emergence of particles, respectively, at vertices with
degree g. The factor 1/q’ shows that a new particle is
created with the same probability at any (unoccupied)
nearest-neighboring vertex of a vertex with degree ¢'.
Recall that in uncorrelated networks, P(q’|q)
=q'P(q")/{q)-

Equation (142) shows that if the probability p is larger
than a critical probability p., then any initial population
of particles disappears at t— %, because particles disap-
pear faster than they are created. This is the so-called
absorbing phase. When p <p,, an initial population of
particles achieves a state with a nonzero average density,

p= 2 P(q)p,(t — ) * €°, (143)
q

where e=p.—p. This is the active phase. In the configu-
ration model of uncorrelated random networks, the
critical probability pcz% does not depend on the degree
distribution while the critical exponent 8 does. In net-
works with a finite second moment (g?), we have g=1. If
(q*)— o, then B depends on the asymptotic behavior of
the degree distribution at g>1. If the network is scale-
free with 2 < y=<3, the exponent Bis 1/(y—2). This criti-
cal behavior occurs in the infinite size limit, N—. In a
finite network, p is small but finite at all p>0 and it is
necessary to use finite-size scaling theory.

Ha et al. (2007) and Hong, Ha, and Park (2007) ap-
plied the mean-field finite-size scaling theory to the con-
tact process on finite networks; see Sec. IX.B. They
showed that near the critical point p, the average density
p behaves as p(e,N)=N"P7f(eN'"), where f(x) is a scal-
ing function; the critical exponent B is the same as
above. The critical exponent v depends on degree distri-
bution: ¥(y>3)=2 and ¥2<y=<3)=(y-1)/(y-2). They
carried out Monte Carlo simulations of the contact pro-
cess on the configuration model of uncorrelated scale-
free networks with size up to N=10". These simulations
agreed well with the predictions of the mean-field scal-
ing theory, in contrast to earlier calculations of Castell-
ano and Pastor-Satorras (2006a, 2007).

Based on the phenomenological theory of equilibrium
critical phenomena in complex networks (Sec. IX.A),
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Hong, Ha, and Park (2007) proposed a phenomenologi-
cal mean-field Langevin equation that describes the av-
erage density of particles in the contact process on un-
correlated scale-free networks near the critical point,

dp()ldt = ep— bp? — dp”' + pn(1), (144)

where %(¢) is the Gaussian noise, and b and d are con-
stants. Note that the contact process contains the so-
called multiplicative noise \s“;n(t), in contrast to an equi-
librium process with a thermal Gaussian noise [see
Hinrichsen (2000)]. Neglecting noise in Eq. (144), in the
steady state one can obtain the critical behavior of p and
finite-size scaling behavior for the relaxation rate; sec
Sec. IX.B. As is natural, when a degree distribution is
rapidly decreasing, this finite-size scaling coincides with
scaling for the contact process on high-dimensional lat-
tices (Liibeck and Janssen, 2005).

The time evolution of the average density p(f) was
studied by Castellano and Pastor-Satorras (2006a, 2007)
and Hong, Ha, and Park (2007). When p # p,, in an infi-
nite network, an initial population of particles exponen-
tially relaxes to a steady distribution. The relaxation
time ¢, is finite. At the critical point p=p, the character-
istic time ¢, diverges, and an initial distribution decays as
p(t)~t7% The exponent =1 for an uncorrelated com-
plex network with a finite second moment {(g?), and @
=1/(y-2) for a scale-free network with 2<y<3. In a
finite network, ¢.(N) is finite even at the critical point.
Castellano and Pastor-Satorras (2008) found that

te ~ (N(gY/g™)'"? (145)

in an uncorrelated network with (g?)<e. Note that
when exponent y>3, the phenomenological approach
based on Eq. (144) also leads to ¢, N'. The size depen-
dence of 7, in the range 2 < y<3, where (g?) depends on
N, is still under discussion; see Castellano and Pastor-
Satorras (2007) and Hong, Ha, and Park (2007).

Giuraniuc et al. (2006) considered the contact process
with a degree-dependent rate of emergence of particles
assumed to be proportional to (q,q;)™, where u is a tun-
able parameter, and g; and g; are degrees of neighboring
vertices. Using a mean-field approximation that is
equivalent to the annealed network approximation, they
showed that this degree-dependent rate changes the
critical behavior of the contact process in scale-free net-
works. The result is a shift the degree distribution expo-
nent y to y'=(y—w)/(y-1). This effect is similar to the
Ising model with degree-dependent interactions in Sec.
VI.C.5. For finite-size scaling in contact processes with
this degree-dependent rate of emergence, see Karsai et
al. (20006).

2. Reaction-diffusion processes

Reaction-diffusion processes on uncorrelated random
complex networks were studied by Colizza et al. (2007).
Consider the following process for particles of two types,
A and B. In an initial state, particles are distributed ran-
domly over vertices of a network. There may be an ar-
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FIG. 35. Relative density of particles B vs the total density of
A and B particles in the reaction-diffusion model in scale-free
networks at w/A=2. Rightmost curves (A particles are nondif-
fusing): stars, N=10% y=3; closed diamonds, N=10% y=2.5;
open circles, N= 10%, y=2.5. Leftmost curves (both A and B
particles are diffusing, y=2.5): open squares, N=10?; closed
squares, N =10% open triangles, N =107, Adapted from Colizza
et al., 2007.

bitrary number of these particles at any vertex. Suppose
that only particles at the same vertex may react and
transform to other particles. The rules of this transfor-
mation are the following:

(i) Each particle B can spontaneously turn into an A
particle at the same vertex at a rate u: B— A.

(ii) Particles A and B can transform into two B par-
ticles at the same vertex at a rate \: A+B —2B.

(iii) Particles B can hop to neighboring vertices at the
unit rate.

These reactions preserve the total number of particles
in the system. The steady state of this process depends
strongly on a supposed behavior of particles A.

If A particles are nondiffusing and the total density of
A and B particles p is smaller than the critical density
p.=p/N\, then B particles disappear in the limit t— o
(this is the absorbing phase). At p>p,, there is a non-
zero density of B particles pg in the steady state (this is
the active phase); see Fig. 35. Colizza et al (2007)
showed that p, and the critical behavior do not depend
on the degree distribution.

If A particles can also hop, then the phase transition
into the active phase occurs at a degree-dependent criti-
cal density p.={q)’u/{g*)\. In networks with divergent
(@), p. is zero in the limit N —; see Fig. 35. A similar
disappearance of the critical threshold was observed in
percolation and the spread of diseases.

Network topology strongly affects the dynamics of the
diffusion-annihilation process. This process is defined in
the following way. Identical particles diffuse in a net-
work. If two particles are at the same vertex, they anni-
hilate (A+A— @). Catanzaro et al. (2005) within the
mean-field theory showed that in infinite uncorrelated
random networks, the average density of particles p(t)
decreases as “ at long times, where the exponent a=1
for a network with a finite second moment {(g?), and «
=1/(y-2) for an uncorrelated scale-free network with
degree distribution exponent 2<<y<3 (i.e., with diver-
gent {g”)). However, in a finite scale-free network, there
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is a crossover to traditional mean field behavior 1/¢ at
time t>1.(N), where the crossover time ¢.(N) increases
with increasing N. Thus the non-mean-field behavior
with a=1/(y-2) may be observed only in a sufficiently
large network [see ben-Avraham and Glasser (2007) for
a discussion of kinetics of coalescence, A+A — A, and
annihilation, A+ A — @, beyond the mean-field approxi-
mation in the Bethe lattice]. This agrees with numerical
simulations of Gallos and Argyrakis (2004) and Catan-
zaro et al. (2005).

B. Zero-range processes

The zero-range process describes nonequilibrium dy-
namics of condensation of interacting particles in lattices
and networks. This process is closely related to the balls-
in-boxes model (Bialas ef al., 1997) and equilibrium net-
work ensembles (Burda et al., 2001; Dorogovtsev et al.,
2003b; Angel et al., 2005, 2006) discussed in Sec. IV.A.
For a review on several applications of this model, see
Evans and Hanney (2005).

In the zero-range process, identical particles hop be-
tween vertices on a graph with a rate u(n), which de-
pends on the number of particles n at the vertex of de-
parture. The total number of particles is conserved. In
fact, an interaction between particles on the same vertex
is encoded in the function u(n). The case u(n)>xn corre-
sponds to noninteracting particles. If u(n) increases
faster than n, then we deal with local repulsion. If u(n)
decreases with #n, then it assumes local attraction. Emer-
gence of condensation depends on the hop rate u(n) and
the network structure.

The system evolves from an initial distribution of par-
ticles to a steady state. Under certain conditions, con-
densation of a finite fraction of particles occurs onto a
single vertex. Note that this nonequilibrium phase tran-
sition occurs even in a one-dimensional lattice. In the
steady state, the distribution of particles over vertices
can be found exactly. The probability that vertices i
=1,2,...,N are occupied by ny,n,,...,ny particles is

N
P(nl,nz, ,nN):AHfi(ni), (146)
i=1

where A is a normalization constant, the function fi(n)
=[I' _, [w;/u(m)] for n=1, and f;(0)=1 (Evans and
Hanney, 2005). The parameters w; are the steady-state
weights of a single random walker that moves on a given
network. In simple terms, the frequency of visits of the
walker to a vertex is proportional to its weight. The
weights satisfy w;=2; 0;Tj;, where Tj; is a rate of particle
hops from vertex j to neighboring vertex i. Using Eq.
(146), one can find an exact mean occupation number of
vertices.

First consider a homogeneous system where all verti-
ces have the same degree. Condensation is absent if
u(n—»)—o. In the steady state, all vertices have the
same average occupation number (the so-called fluid
phase). Condensation occurs if u(n) decays asymptoti-
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cally as u(«)(1+b/n) with b>2. In this case, the steady
state with condensate emerges when the concentration
of particles p is larger than a critical concentration p,
determined by the function u(n). In the condensed
phase, a finite fraction of particles, p—p., occupies a
single vertex chosen at random. All other vertices are
occupied uniformly with the mean occupation number
pe- If u(n—)=0, then p.=0.

The zero-range process in uncorrelated scale-free net-
works with degree distribution exponent y>2 was stud-
ied by Noh (2005) and Noh et al. (2005). They considered
the case in which the function u(n)=n° A particle can
hop with the same probability to any nearest-
neighboring vertex, i.e., the transition probability Tj
=1/q;, where gq; is the degree of departure vertex i. In
this case, w;=¢;. It was shown that if §>5,=1/(y-2),
then the steady state is the fluid phase at any density of
particles. If 6<¢,, then the critical concentration p,.=0.
At p>0, in the steady state, almost all particles are con-
densed not at a single vertex but a set of vertices with
degrees exceeding q.=[q.(N)]'"?%. These vertices
form a vanishingly small fraction of vertices in the net-
work as N— . Note that these results were obtained for
the cutoff g, (N)=N""D [see the discussion of g, (N)
in Sec. ILLE.4]. When 6=0, then q.=¢q.,(N) and all par-
ticles condense at a vertex with the highest degree
qeu(N). See Tang et al. (2006) for specifics of condensa-
tion in a zero-range process in weighted scale-free net-
works.

The steady state in the zero-range process on a scale-
free network is completely determined by the degree
distribution. The topological structure plays no role (i.e.,
it does not matter whether vertices are arranged in a
finite-dimensional system or form a small world). It is
assumed that the network structure may influence relax-
ation dynamics of the model, unfortunately no exact re-
sults are known. Noh (2005) studied the evolution of an
initial distribution of particles to the steady state and
estimated the relaxation time 7. In an uncorrelated ran-
dom scale-free network, the relaxation time is 7~ N?,
where z=7/(y—1)-46, while in clustered scale-free net-
works, this exponent is z=1-4. This estimate agrees
with the numerical simulations by Noh (2005) and Noh
et al. (2005). Note that the scaling relation 7~ N? is also
valid for a d-dimensional lattice. In this case, the expo-
nent z depends on both the dimension d and the prob-
ability distribution of hopping rates. In particular, z=2
for a (d>?2)-regular lattice (Evans and Hanney, 2005).

In a finite network, the condensate at a given vertex
exists a finite time 7,,(N). After “melting” at this vertex,
the condensate appears at another vertex, then at an-
other one, and so on. For a homogeneous network, such
as a random regular graph, Ty~ N?' > 7~ N?, where z’
> z. Bogacz et al. (2007a,2007b) and Waclaw et al. (2007)
argued that in heterogeneous systems the typical melting
time of the condensate 7,,(N) increases exponentially
with N, i.e., 7,,(N)~eV, in contrast to a homogeneous
system. The zero-range process slowly relaxes to the
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condensed phase in comparison to the relaxation time to
the equilibrium state in the ferromagnetic Ising model.
(The relaxation time of the Ising model is finite at all
temperatures except the critical one, at which it scales
with N as N*; see Sec. IX.B.) As soon as the condensate
is formed, it exists for an exponentially long time at a
vertex of the network: 7, ~eN> 7~ N7,

C. The voter model

According to Sood and Redner (2005), “the voter
model is perhaps the simplest and most completely
solved example of cooperative behavior.” In this model,
each vertex is in one of two states—spin up or spin
down. In the vertex update version of the model, the
evolution is defined as follows. At each time step, (i)
choose a vertex at random and (ii) ascribe to this vertex
the state of its randomly chosen neighbor.

The evolution in the voter model starts with some ran-
dom configuration of up and down spins, say, with a frac-
tion of n, spins up. One can see that this evolution is
determined by random annihilation of chaotic interfaces
between “domains” with up and down spins. In a finite
system, there is always a chance that the system will
reach an absorbing state, where all spins are up (or
down). However, on the infinite regular lattices of di-
mensionality greater than 2, the voter model never
reaches the absorbing states, staying in the active state
forever. For the voter model on finite regular lattices of
dimensionality greater than 2, the mean time to reach
consensus is 7y~ N (ben-Avraham et al., 1990; Krapiv-
sky, 1992). Here N is the total number of vertices in a
lattice.

On the other hand, the infinite one-dimensional voter
model evolves to consensus. Castellano et al. (2003) and
Vilone and Castellano (2004) studied the voter model on
the Watts-Strogatz small-world networks and found that
even a small concentration of shortcuts makes consensus
unreachable in infinite networks. This is quite natural,
since these networks are infinite-dimensional objects.

It is important that the average fraction of spins up n
conserves in the voter model on regular lattices, i.e.,
n(t)=ny=const. Here averaging is over all initial spin
configurations and over all evolution histories. Suchecki
et al. (2005a, 2005b) found that on random networks, n(f)
is not conserved. Instead, the following weighted quan-
tity is conserved:

=2, —qP(Q)<q>

n(q) , (147)
q

where n(q) is the average fraction of spins up among
vertices of degree g. Thus, 7i(t)=ry=const, where 7,
=7(t=0). Note that 7 is actually the probability that an
end vertex of a randomly chosen edge is in state up.
Based on this conservation, Sood and Redner (2005)
arrived at the following physical picture for the voter
model on uncorrelated complex networks. Consensus is
unreachable if these networks are infinite. In finite net-
works, the mean time to reach consensus is finite. The
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evolution consists of two stages. The first is a short initial
transient to an active state where, at any particular evo-
lution history, the fraction of vertices of a given degree
with spin up is approximately 7. In the slow second
stage, coarsening develops, and the system has an in-
creasing chance to approach consensus. The mean time
to reach consensus is

2
N

<q2>[(1 —ig)In(1 — 71g) " + i In 7iy'].

(148)

™ =

The theory of Sood and Redner gives (a) 7y~ N for un-
correlated networks with a converging second moment
of a degree distribution; (b) 7y~ N/In N in the case of
the degree distribution P(g)~q~>; and (c) 7y growing
slower than N if {(g?) diverges, i.e., if the degree distri-
bution exponent is less than 3. In the last case, this size
dependence (a power of N with exponent less than 1) is
determined by a specific model-dependent cutoff of the
degree distribution, g (N).

Interestingly, in the second version of the voter model
(edge update) the average fraction of up vertices is con-
served as well as the mean magnetization. In the edge
update voter model, at each time step an end vertex of a
randomly chosen edge adopts the state of the second
end. In this model, the evolution of the system on a
complex network is qualitatively the same as on high-
dimensional regular lattices, and 7y~ N (Suchecki et al.,
2005a, 2005b).

Other basic types of spin dynamics have also been
widely discussed. Castellano et al. (2005) studied a differ-
ence between the voter dynamics and the Glauber-
Metropolis zero-temperature dynamics on networks
(Castellano and Pastor-Satorras, 2006b; Zhou and Lip-
owsky, 2005). In the Glauber-Metropolis dynamics ap-
plying the Ising model at zero temperature, at each time
step, a randomly chosen spin gets an energetically favor-
able value, +1 or —1. In contrast to the evolution due to
the interface annihilation in the voter model, in the
Glauber-Metropolis dynamics domain walls shorten di-
minishing surface tension. Svenson (2001) showed nu-
merically that, in infinite random networks, the Glauber-
Metropolis dynamics of the Ising model at zero
temperature does not reach the ground state.
Héggstrom (2002) rigorously proved that this is true at
least in the case of the Gilbert model of classical random
graphs. Thus, this kind of dynamics can result in consen-
sus only in finite networks, as in the voter model. None-
theless, Castellano et al. found that the voter and
Glauber-Metropolis dynamics provide markedly differ-
ent relaxation of spin systems on random networks. For
the Glauber-Metropolis dynamics, the time dependence
of the probability that a system does not yet reach con-
sensus essentially deviates from exponential relaxation,
typical for the voter dynamics.

For detailed discussion of the voter model on complex
networks in the context of opinion formation, see Wu
and Huberman (2004). For other nonequilibrium phe-
nomena in complex networks modeling social interac-
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tions, see Klemm et al. (2003), Antal et al. (2005), and
Baronchelli et al. (2007).

A few numerical studies were devoted to nonequilib-
rium phase transitions in the ferromagnetic Ising model
on directed complex networks with possible application
to processes in social, economic, and biological systems.
In the directed Ising model, interactions between spins
are asymmetric and directed, and a Hamiltonian formu-
lation is impossible. Each spin is affected only by those
of its nearest-neighboring spins, which are connected to
this spin by outgoing edges. Using a directed Watts-
Strogatz network generated from a square lattice,
Sanchez et al. (2002) found that a ferromagnetic phase
transition in this system is continuous at a sufficiently
small density of the shortcuts. This transition, however,
becomes first order above a critical concentration of the
shortcuts. Lima and Stauffer (2006) carried out simula-
tions of the ferromagnetic Ising model on a directed
Barabasi-Albert network at 7=0 and found that differ-
ent dynamics algorithms lead to different final states of
the spin system. These first investigations demonstrated
a strong influence of a directed network structure on the
nonequilibrium dynamics. However, these systems are
not yet understood.

D. Coevolution models

We discussed systems in which a cooperative model
does not influence its network substrate. Holme and
Newman (2006) described an interesting contrasting
situation, in which an evolving network and interacting
agents on it strongly influence each other. The model of
Holme and Newman, in essence, is an adaptive voter
model and may be formulated as follows. There is a
sparse network of N vertices with a mean degree (g).
Each vertex may be in one of G states—opinions, where
G is a large number (which is needed for a sharp phase
transition). Vertices and connections evolve: at each
time step, choose a random vertex i in state g;. If the
vertex is isolated, do nothing. Otherwise, (i) with prob-
ability ¢, reattach the other end of a randomly chosen
edge of vertex i to a randomly chosen vertex with the
same opinion g; or (i) with probability 1— ¢, ascribe the
opinion g; to a randomly chosen nearest neighbor j of
vertex i. Due to process (i), vertices with similar opinions
become connected—agents influence the structure of
the network. Due to process (ii), opinions of neighbors
change—the network influences agents.

Suppose that the initial state is the classical random
graph with vertices in random states. Let the mean de-
gree be greater than 1, so that the giant connected com-
ponent is present. This system evolves to a final state
consisting of a set of connected components, with all
vertices in each of the components being in coinciding
states—internal consensus. Of course, vertices in differ-
ent connected components may be in different states. In
their simulation, Holme and Newman studied the struc-
ture of this final state at various values of the parameter
¢. In more precise terms, they investigated the resulting
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size distribution P(s) of the connected components.

If ¢=0, the connections do not move, and the final
network coincides with the original one, that is, with a
network containing a giant connected component. This
giant component is destroyed by process (i) if the prob-
ability ¢ is sufficiently high, and at ¢~ 1, the network is
segregated into a set of finite connected components,
each one of about N/G vertices. It turns out that at the
critical value ¢.=®.({(q),N/G) there is a sharp transi-
tion, where the giant connected component disappears.
At the critical point, P(s) seems to have a power-law
form with a nonstandard exponent. There is a principal
difference from the usual emergence of the giant con-
nected component in random networks—in this evolving
system, the phase transition is nonequilibrium. In par-
ticular, this transition depends on the initial state of the
system. We expect that models of this kind will attract
much interest in the future; see Zimmermann et al.
(2004), Caldarelli et al. (2006), Ehrhardt et al. (2006), Gil
and Zanette (2006), Zanette (2007), Gross and Blasius
(2008), and Kozma and Barrat (2008). Allahverdyan and
Petrosyan (2006) and Biely et al (2007) considered
somewhat related problems where spins at vertices and
edges interacted with each other.

XIII. SUMMARY AND OUTLOOK
A. Open problems

We indicate a few directions of particular interest
among those discussed in this paper. The first one is the
synchronization in the Kuramoto model on complex net-
works, for which there is no solid theory. The second
direction is the coevolving networks and interacting sys-
tems defined on them (Holme and Newman, 2006;
Pacheco et al., 2006). We did not discuss a number of
interesting NP optimization problems that were studied
using tools of statistical physics but were considered
only for classical random graphs. Among them, there
were sparse graph error-correcting codes [see Montanari
(2005), and references therein], phase transitions in ran-
dom satisfiability problems (Mézard et al., 2002; Mertens
et al., 2003; Achlioptas et al., 2005; Krzakata et al., 2007)
and combinatorial auctions (Galla et al., 2006). Note that
the coloring graph problem and minimum vertex covers
were also not analyzed for complex networks. Finally,
we add the difficult but doable problem of finding a
replica-symmetry breaking solution for a spin glass on a
complex network.

Real-life networks are finite, loopy (clustered), and
correlated. Most of them are out of equilibrium. A solid
theory of correlation phenomena in complex networks
must take into account finite-size effects, loops, degree
correlations, and other structural peculiarities. We de-
scribed two successful analytical approaches to coopera-
tive phenomena in infinite networks. The first was based
on the tree ansatz, and the second was the generaliza-
tion of the Landau theory of phase transitions. What is
beyond these approaches? Several first methodical stud-
ies aiming at strict accounting for loops were performed
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recently; see Montanari (2005), Montanari and Rizzo
(2005), and Chertkov and Chernyak (2006a, 2006b). The
approximations and loop expansions proposed were not
applied to complex networks, and is a tool for future
work. It is still unknown when and how loops change
cooperative phenomena in complex networks. The tree
ansatz usually fails in finite networks. In this respect, the
problem of a finite-size network is closely related to the
problem of loops. It is technically difficult to go beyond
intuitive estimates of finite-size effects demonstrated in
Sec. II1.B.4 and the finite-size scaling conjecture. The
strict statistical mechanics theory of finite networks is
still not developed.

Despite some interesting results, cooperative models
on growing networks are poorly understood. As a rule, it
is still impossible to predict the type of critical phenom-
enon in an interacting system of this kind. The effect of
structural correlations in a complex network on collec-
tive phenomena is also not well studied.

B. Conclusions

We have reviewed recent progress in critical phenom-
ena in complex networks. In more precise terms, we
have considered critical effects in a wide range of coop-
erative models placed on various networks and network
models. We have demonstrated a number of diverse
critical effects and phenomena, which greatly differ from
those in lattices. It turns out, however, that each of these
phenomena in networks, in principle, can be explained
in the framework of a unified approach. This unified
view has been presented in this paper.

We have shown that, in simple terms, the appearance
of critical phenomena is determined by the combination
of two factors—the small-world effect and a strong het-
erogeneity and complex architecture of networks. The
compactness of networks leads to Gaussian critical fluc-
tuations, and in this respect the theory of phase transi-
tions in networks is even simpler than in low-
dimensional lattices. On the other hand, the complex
organization of connections makes these critical phe-
nomena far more rich and strayed from those predicted
by the traditional mean-field theories.

It was claimed that “the study of complex networks is
still in its infancy” (Newman, 2003a). Now the time has
come of age. Nonetheless, we have indicated a wide
circle of open problems and challenging issues. We stress
that in contrast to the impressive progress in under-
standing the basic principles and nature of the critical
phenomena in networks, progress in the application of
these ideas to real-world networks is rather modest.
There is much to be done in this direction.

Complex networks are ultimately compact, maximally
disordered, and heterogeneous substrates for interacting
systems. These network systems are among the funda-
mental structures of nature. The phenomena and pro-
cesses in these highly nontraditional systems differ re-
markably from those in ordered and disordered lattices
and fractals. This is why the study of these intriguing
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effects will lead to a new understanding of a wide circle
of natural, artificial, and social systems.
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