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The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped
configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of
interactions that play a crucial role, bringing the gas into a superfluid phase at low temperature. In
these dilute systems, interactions are characterized by a single parameter, the s-wave scattering length,
whose value can be tuned using an external magnetic field near a broad Feshbach resonance. The BCS
limit of ordinary Fermi superfluidity, the Bose-Einstein condensation (BEC) of dimers, and the unitary
limit of large scattering length are important regimes exhibited by interacting Fermi gases. In
particular, the BEC and the unitary regimes are characterized by a high value of the superfluid critical
temperature, on the order of the Fermi temperature. Different physical properties are discussed,
including the density profiles and the energy of the ground-state configurations, the momentum
distribution, the fraction of condensed pairs, collective oscillations and pair-breaking effects, the
expansion of the gas, the main thermodynamic properties, the behavior in the presence of optical
lattices, and the signatures of superfluidity, such as the existence of quantized vortices, the quenching
of the moment of inertia, and the consequences of spin polarization. Various theoretical approaches
are considered, ranging from the mean-field description of the BCS-BEC crossover to
nonperturbative methods based on quantum Monte Carlo techniques. A major goal of the review is
to compare theoretical predictions with available experimental results.
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I. INTRODUCTION

An impressive amount of experimental and theoreti-
cal activity has characterized the past ten years of ultra-
cold atom physics. The first realization of Bose-Einstein
condensation (BEC) in dilute vapors of alkali-metal at-
oms (Anderson et al., 1995; Bradley et al., 1995; Davis et
al., 1995) has in fact opened new stimulating perspec-
tives in this area of research. Most of the studies in the
first years were devoted to quantum gases of bosonic
nature and were aimed at investigating the important
consequences of Bose-Einstein condensation, which, be-
fore 1995, remained an elusive and inaccessible phenom-
enon.

Major achievements of these studies have been,
among others, the investigation of superfluid features,
including the hydrodynamic nature of the collective os-
cillations (Jin et al., 1996; Mewes et al., 1996), Josephson-
like effects (Cataliotti et al., 2001; Albiez et al., 2005),
and the realization of quantized vortices (Matthews et
al., 1999; Madison et al., 2000; Abo-Shaeer et al., 2001);
the observation of interference of matter waves (An-
drews et al., 1997); the study of coherence phenomena in
atom laser configurations (Mewes et al., 1997; Anderson
and Kasevich, 1998; Bloch et al, 1999; Hagley et al.,
1999), the observation of four-wave mixing (Deng et al.,
1999), and of the Hanbury-Brown-Twiss effect (Schelle-
kens et al., 2005); the realization of spinor condensates
(Stenger et al., 1998); the propagation of solitons (Burger
et al., 1999; Denschlag et al., 2000; Khaykovich et al.,
2002; Strecker et al., 2002) and the observation of disper-
sive schoek waves (Dutton et al., 2001; Hoefer et al.,
2006); the transition to the Mott-insulator phase
(Greiner et al., 2002), the observation of interaction ef-
fects in the Bloch oscillations (Morsch et al., 2001), and
of dynamic instabilities in the presence of moving opti-
cal lattices (Fallani et al., 2004); and the realization of
low-dimensional configurations, including the one-
dimensional (1D) Tonks-Girardeau gas (Kinoshita et al.,
2004; Paredes et al, 2004) and the Berezinskii-
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Kosterlitz-Thouless phase transition in 2D configura-
tions (Hadzibabic et al., 2006; Schweikhard et al., 2007).

On the theoretical side, the first efforts were devoted
to implementing the Gross-Pitaevskii theory of weakly
interacting Bose gases in the presence of the trapping
conditions of experimental interest. This nonlinear,
mean-field theory has proven capable of accounting for
most of the relevant experimentally measured quantities
in Bose-Einstein condensed gases such as density pro-
files, collective oscillations, structure of vortices, etc. The
attention of theorists was later focused also on phenom-
ena that cannot be accounted for by the mean-field de-
scription, such as, for example, the role of correlations in
low-dimensional and in fast rotating configurations as
well as in deep optical lattices (for general reviews on
Bose-Einstein condensed gases, see Dalfovo et al., 1999;
Inguscio et al., 1999; Leggett, 2001; Pethick and Smith,
2002; Pitaevskii and Stringari, 2003).

Shortly, the attention of experimentalists and theorists
was also oriented toward the study of Fermi gases. The
main motivations for studying fermionic systems are in
many respects complementary to the bosonic case.
Quantum statistics plays a major role at low tempera-
ture. Although the relevant temperature scale providing
the onset of quantum degeneracy is the same in both
cases, on the order of kpTye,~#*n*?/m, where n is the
gas density and m is the mass of the atoms, the physical
consequences of quantum degeneracy are different. In
the Bose case, quantum statistical effects are associated
with the occurrence of a phase transition to the Bose-
Einstein condensed phase. Conversely, in a noninteract-
ing Fermi gas the quantum degeneracy temperature cor-
responds only to a smooth crossover between a classical
and a quantum behavior. Contrary to the Bose case, the
occurrence of a superfluid phase in a Fermi gas can only
be due to the presence of interactions. From the many-
body point of view, the study of Fermi superfluidity
opens a different and richer class of questions, which
will be discussed in this review paper. Another impor-
tant difference between Bose and Fermi gases concerns
the collisional processes. In particular, in a single-
component Fermi gas, s-wave scattering is inhibited due
to the Pauli exclusion principle. This effect has dramatic
consequences on the cooling mechanisms based on
evaporation, where thermalization plays a crucial role.
This has made the achievement of low temperatures in
Fermi gases a difficult goal that was eventually realized
with the use of sympathetic cooling techniques either
employing two different spin components of the same
Fermi gas or adding a Bose gas component as a refrig-
erant.

The first important achievements of quantum degen-
eracy in trapped Fermi gases were obtained by the
group at JILA (De Marco and Jin, 1999). In these ex-
periments, temperatures on the order of fractions of the
Fermi temperatures were reached by working with two
spin components of “’K atoms interacting with negative
scattering length. According to the Bardeen-Cooper-
Schrieffer (BCS) theory, this gas should exhibit superflu-
idity at sufficiently low temperature. However, due to
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FIG. 1. (Color online) Gallery of molecular
BEC experiments. Bimodal spatial distribu-
tions were observed for expanding gases at
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the extreme diluteness of the gas, the critical tempera-
ture required to enter the superfluid phase was too small
in these experiments. Quantum degeneracy effects were
later observed in °Li Fermi gases (Schreck et al., 2001;
Truscott et al., 2001) using sympathetic cooling between
SLi and the bosonic ’Li isotope. Fermion cooling using
different bosonic species has also proven efficient for
instance, in the case of *’K-*Rb (Roati er al., 2002) as
well as °Li->*Na (Hadzibabic et al., 2003).

It was soon realized that a crucial tool to achieve su-
perfluidity is provided by the availability of Feshbach
resonances. These resonances characterize the two-body
interaction and permit one to change the value and even
the sign of the scattering length by simply tuning an ex-
ternal magnetic field. Feshbach resonances were first in-
vestigated in bosonic sytems (Courteille et al., 1998; In-
ouye et al., 1998). However, inelastic processes severely
limit the possibility of tuning the interaction in Bose
condensates (Stenger et al., 1999). Strongly interacting
regimes of fermionic atoms were achieved by O’Hara et
al. (2002) and Bourdel ef al. (2003) working at the reso-
nance where the scattering length takes a divergent
value. In this case, three-body losses are inhibited by the
Pauli exclusion principle, leading to a greater stability of
the gas (Petrov et al., 2004). The resonant regime, also
called the unitary regime, is peculiar since the gas is at
the same time dilute (in the sense that the range of the
interatomic potential is much smaller than the interpar-
ticle distance) and strongly interacting (in the sense that
the scattering length is much larger than the interpar-
ticle distance). All length scales associated with interac-
tions disappear from the problem and the system is ex-
pected to exhibit a universal behavior, independent of
the details of the interatomic potential. Baker (1999) and
Bertsch (1999) first discussed the unitary regime as a
model for neutron matter based on resonance effects in
the neutron-neutron scattering amplitude [for a recent
comparison between cold atoms and neutron matter, see
Gezerlis and Carlson (2008)]. The critical temperature of
the new system is much higher than in the BCS regime,
on the order of the quantum degeneracy temperature,
which makes the realization of the superfluid phase
much easier. Due to Feshbach resonances, one can also
tune the scattering length to positive and small values.
Here bound dimers composed of atoms of different spin
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are formed and consequently the system, which was
originally a Fermi gas, is transformed into a bosonic gas
of molecules. The possibility of tuning the scattering
length across the resonance from negative to positive
values, and vice versa, provides a continuous connection
between the physics of Fermi superfluidity and Bose-
Einstein condensation, including the unitary gas as an
intermediate regime.

On the BEC side of the Feshbach resonance, mol-
ecules can be created either by directly cooling the gas
at positive values of the scattering length a, or by first
cooling the gas on the BCS side and then tuning the
value of a through the resonance. At low enough tem-
peratures, Bose-Einstein condensation of pairs of atoms
was observed through the typical bimodal distribution of
the molecular profiles (see Fig. 1) (Greiner et al., 2003;
Jochim et al., 2003; Zwierlein et al., 2003; Bourdel et al.,
2004; Partridge et al., 2005). Condensation of pairs was
later measured also on the fermionic side of the reso-
nance (Regal et al., 2004b; Zwierlein et al., 2004). Other
important experiments have investigated the surpris-
ingly long lifetime of these interacting Fermi gases (Cu-
bizolles et al., 2003; Strecker et al., 2003), the release
energy (Bourdel e al, 2004), and the density profiles
(Bartenstein et al., 2004a) along the crossover.

Many relevant experiments have also focused on the
dynamic behavior of these interacting systems, with the
main motivation of exploiting their superfluid nature.
The first observation of anisotropic expansion (O’Hara
et al., 2002) and measurements of collective oscillations
(Bartenstein et al., 2004b; Kinast et al., 2004), although
confirming at low temperatures predictions of the hydro-
dynamic theory of superfluids, cannot be considered
proof of superfluidity since similar behavior is also pre-
dicted in the collisional regime of a normal gas above
the critical temperature. The measurement of the pair-
ing gap observed in radio-frequency excitation spectra
(Chin et al., 2004) was an important step toward experi-
mental evidence of superfluidity, even though it was not
conclusive since pairing correlations are also present in
the normal phase. Convincing proof of superfluidity was
provided by the observation of quantized vortices that
were realized on both sides of the Feshbach resonance
(Zwierlein, Abo-Shaeer, Schirotzek, et al. 2005).

More recent experimental work (Partridge, Li, Kamar,
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et al. 2006; Partridge, Li, Liao, et al., 2006; Zwierlein,
Schirotzek, Schunck, et al., 2006) has been concerned
with the study of spin polarized configurations with an
unequal number of atoms occupying two different spin
states. In particular, the Clogston-Chandrasekar limit,
where the system loses superfluidity, has been experi-
mentally identified at unitarity (Shin et al., 2006). These
configurations provide the unique possibility of observ-
ing the consequences of superfluidity through sudden
changes in the shape of the cloud as one lowers the tem-
perature, in analogy to the case of Bose-Einstein con-
densates (Zwierlein, Schunck, Schirotzek, et al., 2006).
Another rapidly growing direction of research is the
study of Fermi gases in periodic potentials (Modugno et
al., 2003). The first experimental results concern the ef-
fect of the periodic lattice on the binding energy of mol-
ecules across the Feshbach resonance (Stoferle er al.,
2006) and some aspects of the superfluid to Mott insula-
tor transition (Chin er al., 2006). Motivation for investi-
gations in this field is the possibility of implementing an
important model of condensed matter physics, the Hub-
bard Hamiltonian, in analogy to the Bose-Hubbard
counterpart already realized in bosonic systems (Greiner
et al., 2002). Fermi gases in periodic potentials are also
of much interest in the absence of interactions. For ex-
ample, they give rise to long-living Bloch oscillations
that were observed in spin polarized Fermi gase (Roati
et al., 2004).

On the theoretical side, the availability of interacting
Fermi gases with tunable scattering length has stimu-
lated an impressive amount of work. Contrary to the
case of dilute Bose gases, where the Gross-Pitaevskii
equation provides an accurate description of the many-
body physics at low temperature and small densities, an
analog theory for the Fermi gas along the BCS-BEC
crossover is not available. The theoretical efforts started
in the context of superconductors with the work of
Eagles (1969), where it was pointed out that for large
attraction between electrons, the equations of BCS
theory describe pairs of small size with a binding energy
independent of density. A thorough discussion on the
generalization of the BCS approach to describe the
crossover in terms of the scattering length was presented
by Leggett (1980) [see also Leggett (2006)]. This work
concerned ground state properties and was later ex-
tended to finite temperatures by Nozieres and Schmitt-
Rink (1985) and by Sd de Melo et al. (1993) to calculate
the critical temperature for the onset of superfluidity.
These theories describe the properties of the many-body
configurations along the BCS-BEC crossover in terms of
a single parameter related to interactions, the dimen-
sionless combination kpa, where kr is the Fermi wave
vector. In Fig. 2, we report theoretical predictions for the
critical temperature, showing that 7. is on the order of
the Fermi temperature for a wide range of ky|a| values.
For this reason, one often speaks of high-7, Fermi su-
perfluidity (see Table I). Furthermore, the results shown
in Fig. 2 suggest that the transition between BCS and
BEC is indeed a continuous crossover.

The first application of bound pairs to the case of
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FIG. 2. Transition temperature in units of the Fermi energy Ef
as a function of the interaction strength along the BCS-BEC
crossover, calculated using BCS mean-field theory. The dia-
mond corresponds to the theoretical prediction by Burovski et
al. (2006a) based on a quantum Monte Carlo simulation at
unitarity. From Sa de Melo et al., 1993.

Fermi gases with resonant interactions was proposed by
Holland et al. (2001) and Timmermans et al. (2001).
These extensions of the BCS mean-field theory are ap-
proximate, however, and, even at zero temperature, the
solution of the many-body problem along the crossover
is still an open issue. Different methods have been de-
veloped to improve the description of the BCS-BEC
crossover in uniform gases as well as in the presence of
harmonic traps. These methods include the solution of
the four-body problem to describe the interaction be-
tween molecules on the BEC side of the resonance
(Petrov et al., 2004), applications of the BCS mean-field
theory to trapped configurations with the local-density
approximation, extensions of the mean-field approach
using diagrammatic techniques (Pieri et al., 2004; Stajic
et al., 2004; Haussmann et al., 2007), and the develop-
ment of theories based on inclusion of bosonic degrees
of freedom in the Hamiltonian (Ohashi and Griffin,
2002; Bruun and Pethick, 2004; Romans and Stoof,
2006). At the same time, more microscopic calculations
based on quantum Monte Carlo (QMC) techniques have
become available providing results on the equation of
state at zero temperature (Carlson et al., 2003; Astra-
kharchick, Boronat, Casulleras, et al., 2004; Juillet, 2007)
and on the critical temperature for the superfluid transi-
tion (Bulgac et al., 2006; Burovski et al., 2006a; Akkineni
et al., 2007). In addition to the above approaches, aimed
at investigating the equilibrium properties of the system,
a successful direction of research was devoted to the
study of dynamic properties, like the expansion and col-
lective oscillations, by applying the hydrodynamic

TABLE 1. Ratio 7./TF of the transition temperature to the
Fermi temperature in various Fermi superfluids.

T./Tp
Conventional superconductors 102-10"4
Superfluid *He 1073
High-temperature superconductors 1072
Fermi gases with resonant interactions ~0.2
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theory of superfluids to harmonically trapped Fermi
gases (Menotti et al., 2002; Stringari, 2004), pair-breaking
excitations produced in resonant light scattering (T6rmé
and Zoller, 2000), and the dynamic structure factor
(Minguzzi et al., 2001). A large number of theoretical
papers were recently devoted also to study spin polariza-
tion effects, with the aim of revealing the consequences
of superfluidity on the density profiles and on the emer-
gence of new superfluid phases.

Since the number of papers published on the subject
of ultracold Fermi gases is large, we limit the presenta-
tion to some aspects of the problem that naturally reflect
the our main interests and motivations. In particular, we
have tried to emphasis the physical properties where an
explicit comparison between theory and experiment is
available, focusing on the effects of the interaction and
on the manifestations of superfluidity exhibited by these
novel trapped quantum systems. Most of the results pre-
sented in this review are relative to systems at zero tem-
perature where the theoretical predictions are more sys-
tematic and comparison with experiments is more
reliable. A more complete review, covering all directions
of theoretical research, would require a much bigger ef-
fort, beyond the scope of the present paper. Some ad-
vanced topics related to the physics of ultracold Fermi
gases are discussed, for example, in the Proceedings of
the 2006 Enrico Fermi Varenna School (Ketterle et al.,
2007) and in the review article by Bloch et al. (2007).

II. IDEAL FERMI GAS IN HARMONIC TRAP
A. Fermi energy and thermodynamic functions

The ideal Fermi gas represents a natural starting point
for discussing the physics of dilute Fermi gases. In many
cases, the role of interactions can in fact be neglected, as
in the case of spin polarized gases where interactions are
strongly suppressed at low temperature by the Pauli ex-
clusion principle, or treated as a small perturbation.

The ideal Fermi gas in the harmonic potential

1 1 1

Vio = Emwivz + Emwiyz + Emwgzz (1)

is a model system with many applications in different
fields of physics, ranging from nuclear physics to the
more recent studies of quantum dots. For this reason, we
focus mainly on the most relevant features of the model,
emphasizing the large-N behavior where many single-
particle states are occupied and the semiclassical ap-
proach can be safely used. The simplest way to intro-
duce the semiclassical description is to use a local-

density approximation for the Fermi distribution
function of a given spin species,
1
fle,p) = 2)

exp{Blp?/2m + V(1) — pul} +17

where B8=1/kyT and u is the chemical potential fixed by
the normalization condition
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N, being the number of atoms of the given spin species,
which is supposed to be sufficiently large. The semiclas-
sical approach accounts for the Fermi pressure at low
temperatures. In Eq. (3), we have introduced the single-
particle density of states g(€) whose energy dependence
is given by g(e)=€/2(fiwy,)*, where wp,=(w,0,0,)'" is
the geometrical average of the three trapping frequen-
cies. In terms of the density of states, one can easily
calculate the relevant thermodynamic functions. For ex-
ample, the energy of the gas is given by

o=

At T=0, the chemical potential u coincides with the
Fermi energy

ENY = kpTh = (6N,) oy, ()

and the energy takes the value E(O):%EQONU. Equation
(5) fixes an important energy (and temperature) scale in
the problem, analog to Ep=(#%/2m)(67°n,)*” of the uni-
form gas, where n, is the density of a single spin com-
ponent.

It is worth noting that the Fermi energy (5) has the
same dependence on the number of trapped atoms and
on the oscillator frequency wy,, as the critical tempera-
ture for Bose-Einstein condensation given by kzTggc
=0.94% w, N3

An important quantity also to investigate is the re-
lease energy E, defined as the energy of the gas after a
sudden switching off of the confining potential. The re-
lease energy is directly accessible in time-of-flight ex-
periments and, as a consequence of the equipartition
theorem applied to the ideal gas with harmonic confine-
ment, is always E=E/2, where E(T) is the total energy
(4) of the gas. At low T, the energy per particle deviates
from the classical value 3kzT due to quantum statistical
effects as demonstrated in the JILA experiment (De
Marco and Jin, 1999; De Marco et al., 2001) reported in
Fig. 3.

eg(s)
eﬁ(i—,u) (4)

B. Density and momentum distributions

The Fermi energy (5) can be used to define typical
length and momentum scales characterizing the Fermi
distribution in coordinate and momentum space, respec-
tively,

Ph=\2mEY. (6)
The Thomas-Fermi radius (i=x,y,z)
R} = ayo(48N,)'"°

gives the width of the density distribution at 7=0, which
can be calculated by integrating the distribution function
in momentum space,

R
RY = \2E¥Ime?,

Lo/ 0; (7)
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FIG. 3. (Color online) Evidence for quantum degeneracy ef-
fects in trapped Fermi gases. The average energy per particle,
extracted from absorption images, is shown for two-spin mix-
tures. In the quantum degenerate regime, the data agree well
with the ideal Fermi gas prediction (solid line). The horizontal
dashed line corresponds to the result of a classical gas. From
De Marco et al., 2001.

8 N,
1) = 5 RRRY

xttyfz

Qe(mf -GG e

In Eq. (7), ay,=\Vh/mawy,, denotes the harmonic-
oscillator length. The Fermi wave vector

0

pr_ 1 1/6
kjp=="=—(48)"°N 9
F= aho() - )

fixes instead the width of the momentum distribution

8 N(r 2 (32
n(,(p)=;(p%3{1—(f%” . (10)

This result is obtained by integrating the 7=0 distribu-
tion function in coordinate space. Equations (8) and
(10), which are normalized to the total number of par-
ticles N, hold for positive values of their arguments and
are often referred to as Thomas-Fermi distributions.
Equation (10) is the analog of the momentum distribu-
tion (3N,/4mp3)@(1-p>/p%) characterizing a uniform
Fermi gas in terms of the Fermi momentum pp. The
broadening of the Fermi surface with respect to the uni-
form case is the consequence of harmonic trapping.
Note that the value of k% defined above coincides with
the Fermi wave vector k=[671,(0)]"? of a uniform gas
with density n,(0) calculated in the center of the trap. It
is worth comparing Egs. (8) and (10) with the analogous
results for a trapped Bose-Einstein condensed gas in the
Thomas-Fermi limit (Dalfovo et al., 1999). The shapes of
Fermi and Bose profiles do not look different in coordi-
nate space. In both cases, the radius of the atomic cloud
increases with N although the explicit dependence is
slightly different (N' for bosons and N'/® for fermions).
Note, however, that the form of the density profiles has a
deeply different physical origin in the two cases. For
bosons it is fixed by the repulsive two-body interactions,
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while in the Fermi case it is determined by the quantum
pressure.

In momentum space the Bose and Fermi distributions
differ instead in a profound way. First, as a consequence
of the semiclassical picture, the momentum distribution
of the Fermi gas is isotropic even if the trapping poten-
tial is deformed [see Eq. (10)]. This behavior differs
from what happens in the BEC case, where the momen-
tum distribution is given by the square of the Fourier
transform of the condensate wave function and is hence
sensitive to the anisotropy of the confinement. Second,
the width of the momentum distribution of a trapped
Bose-Einstein condensed gas decreases by increasing N
while, according to Egs. (6) and (10), that of a trapped
Fermi gas increases with the number of particles.

It is useful to calculate the time evolution of the den-
sity profile after turning off the trapping potential. For a
noninteracting gas, the distribution function follows the
ballistic law f(r,p,t)=fy(r—pt/m,p), where f is the dis-
tribution function at r=0 given by Eq. (2). By integrating
over p, one can calculate the time evolution of the den-
sity and find the following result for the mean-square
radii:

E(T) 1
N —3mw2(1+w§t2). (11)

(1) =

The asymptotic isotropy predicted by Eq. (11) is a con-
sequence of the absence of collisions during the expan-
sion and reflects the isotropy of the momentum distribu-
tion (10).

III. TWO-BODY COLLISIONS
A. Scattering properties and binding energy

Interaction effects in quantum degenerate, dilute
Fermi gases can be accurately modeled by a small num-
ber of parameters characterizing the physics of two-body
collisions. In the relevant regime of low temperature and
large mean interparticle distance, the spatial range R, of
the interatomic potential is much smaller than both the
thermal wavelength \;=\27A%/mkzT and the inverse
Fermi wave vector k7,

Ry<\p, Ry<kj. (12)

Under the above conditions, the main contribution to
scattering comes from states with an =0 component of
angular momentum, i.e., s-wave states. Another con-
straint comes from the antisymmetry of the wave func-
tion of identical fermions, which excludes s-wave scatter-
ing between spin polarized particles. As a consequence,
only particles with different spin can interact.

In this section, we briefly recall some results of the
theory of elastic scattering in the s-wave channel (see,
e.g., Landau and Lifshitz, 1987).

If one neglects small relativistic spin interactions, the
problem of describing the collision process between two
atoms reduces to the solution of the Schrodinger equa-
tion for relative motion. For positive energy e, the
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s-wave wave function in the asymptotic region r> R, can
be written as (r) = sin[kr+ 8(k)]/r, where r=[r;—r,| is
the relative coordinate of the two atoms, &y(k) is the
s-wave phase shift, and k=2m,e/# is the wave vector of
the scattering wave with m, the reduced mass of the pair
of atoms (m,=m/2 for identical atoms). The s-wave scat-
tering amplitude f;(k)=[—k cot &(k)+ik]™' does not de-
pend on the scattering angle, and when k—0 it tends to
a constant value: fy(k—0)=-a. The quantity a is the
s-wave scattering length, which plays a crucial role in the
scattering processes at low energy. By including terms to
order k? in the expansion of the phase shift &(k) at low
momenta, one obtains the result

1

K=ze—————
folk) a ' = IPR*2 + ik

(13)

defining the effective range R* of interactions. This
length scale is usually on the same order of the range R,
however in some cases, e.g., close to a narrow Feshbach
resonance (see Sec. IIL.B), it can become much larger
than R, providing a new relevant scale. In the limit a
— oo, referred to as the “unitary limit,” the scattering
amplitude (13) at wave vectors k <1/|R*| obeys the uni-
versal law fy(k)=i/k, independent of the interaction.

For positive scattering lengths close to the resonance
(a>R;), shallow s-wave dimers of size a exist whose
binding energy ¢, does not depend on the short-range
details of the potential and is given by

ﬁ2
C2mat

(14)

€ =

The binding energy of two fermionic *’K atoms formed
near a Feshbach resonance was first measured by Regal
et al. (2003) using radio-frequency spectroscopy.

In the many-body treatment of interactions, it is con-
venient to use an effective potential Vg instead of the
microscopic potential V. Different potential models can
be considered as the description of low-energy processes
is independent of the details of V(r). In many applica-
tions one introduces the regularized zero-range pseudo-
potential defined as (Huang and Yang, 1957)

Veal) = gole) 7, 15)

where the coupling constant g is related to the scattering
length by g=2m#h%a/m,. This potential has a range R,
=0 and results in the scattering amplitude f(k)
=—1/(a"'+ik). For a>0, a bound state exists having the
binding energy (14) and corresponding to the normal-
ized wave function

Yp(r) = e \r’%r. (16)

Note that the differential operator (d/dr)r in Eq. (15)
eliminates the singular 1/r short-range behavior of the
wave function. The use of the pseudopotential (15) in
the Schrodinger equation is equivalent to the following
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contact boundary condition imposed on the wave func-
tion ¢(r) (Bethe and Peierls, 1935):

[d(rtﬁ)/dr] 1
rz,// r=0 - a .
Another potential model that will be considered in

connection with quantum Monte Carlo simulations is
the attractive square-well potential defined by

-Vy (r<Ry),

Ver(r) = {O (r>Ry). (18)

(17)

The s-wave scattering parameters can be readily calcu-
lated in terms of the range R, and of the wave vector
Ky=+\2m,V,/h?>. The scattering length is given by a
=Ry[1-tan(KyR,)/(KyRy)] and the effective range by
R*=R,-R}/3a>-1/K3a.

B. Fano-Feshbach resonance

Recent experimental achievements in the field of ul-
tracold Fermi gases are based mainly on the possibility
of tuning the scattering length a, in particular to values
much larger than the mean interatomic distance, by
changing an external magnetic field. This situation exists
near the so-called Fano-Feshbach resonances (Fano,
1961; Feshbach, 1962). These resonances occur when the
energy associated with the scattering process between
two particles (referred to as open channel) becomes
close to the bound state energy of the pair in a different
spin state (closed channel).

If the magnetic moments of the pairs of atoms in the
two channels are different, one can go from a situation
in which the bound state in the closed channel is just
below the threshold of the continuum spectrum in the
open channel to a situation in which the same bound
state is just above threshold.

The transition between the two situations takes place
at some value (denoted by B,) of the magnetic field. In
the absence of coupling, the existence of the bound state
in the closed channel has no effect on the scattering in
the open channel. However, in the presence of small
coupling induced, for example, by exchange interactions,
the scattering length will be large and positive if the
state is below threshold and large and negative in the
opposite case. As a function of the magnetic field B, the
scattering length can be parametrized in the following
form:

A
azabg<1— B BB ), (19)
— Do

where Ap is the width of the resonance and ay, is the
background scattering length away from the resonance.

An important distinction concerns broad and narrow
resonances, which in a Fermi gas involves the compari-
son of kp and the effective range of interactions |R*|.
Broad resonances correspond to k| R*| <1. In this case,
the effective range is irrelevant at the many-body level
and the properties of the gas near the resonance can be
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FIG. 4. Magnetic field dependence of the scattering length in
SLi, showing a broad Feshbach resonance at By=834 G and a
narrow Feshbach resonance at By=543 G (cannot be resolved
on this scale). From Bourdel et al., 2003.

described only in terms of ky|a| (Partridge et al., 2005).
On the contrary, for narrow resonances corresponding
to kz|R*| =1, the effective range is negative and be-
comes a relevant scale of the problem (Bruun, 2004;
Bruun and Pethick, 2004; De Palo et al., 2004).

Most experiments on ultracold fermions make use of
broad Feshbach resonances. This is certainly the case for
the *’K resonance at B;=202 G used in the experiments
at JILA (Loftus et al., 2002) and even more so for the
extremely wide °Li resonance at By=834 G used in the
experiments at Duke (O’Hara et al., 2002), Paris (Bour-
del et al., 2003), Innsbruck (Jochim et al., 2003), MIT
(Zwierlein et al., 2003), and Rice (Partridge et al., 2005).
In both cases, the value of |R*| close to the resonance is
on the order of or smaller than a few nanometers and
therefore ky| R*| =0.01 for typical values of the density.
For the resonance case in °Li, By=543 G was used in-
stead at Rice (Strecker et al., 2003), where estimates give
kr|R*| =1. In Fig. 4, we report the predicted behavior of
the scattering length in °Li as a function of the external
magnetic field showing both the broad and the narrow
resonance. Note that for small values of the external
magnetic field, the scattering length approaches the
value a=0, where °Li atoms are expected to behave as a
noninteracting gas.

C. Interacting dimers

The properties of shallow dimers formed near a Fesh-
bach resonance are important in the physics of ultracold
Fermi gases. Consisting of fermionic atoms, these dimers
are bosonic molecules and interact with each other as
well as with single atoms.

The scattering between atoms and weakly bound
dimers was first investigated by Skorniakov and Ter-
Martirosian (1956) in connection with neutron-deuteron
scattering and, more recently, by Petrov (2003) in the
context of degenerate Fermi gases (see also Brodsky ef
al., 2006; Levinsen and Gurarie, 2006; Taylor et al., 2007
Iskin and Sa de Melo, 2008). The solution of the three-
body Schrodinger equation for a pair of like fermions
interacting with a third particle can be obtained exactly
using the contact boundary condition (17) between par-
ticles with different spin. From the behavior of the scat-
tering solution at large separation distance between the
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dimer and the free atom, one can extract the atom-
dimer scattering length, which is found to be propor-
tional to a,

ayq=1.18a. (20)

Fermi statistics plays a crucial role here since three-body
bound states (Efimov states) are not permitted due to
the Pauli principle.

Petrov et al. (2004) also solved the problem of colli-
sions between two dimers. Using the zero-range ap-
proximation, they calculated the dimer-dimer scattering
length finding the value

aAqq = 0.60a. (21)

The above result was later derived using diagrammatic
techniques by Brodsky et al. (2006) and by Levinsen and
Gurarie (2006). It is worth pointing out that by applying
the Born approximation, one would find the results a,4
=8a/3 and agq=2a (Pieri and Strinati, 20006).

The weakly bound dimers formed near a Feshbach
resonance are molecules in the highest rotovibrational
state. Due to collisions, they can fall into deeper bound
states of size on the order of the interaction range R,. In
this process, a large energy of order #%/mRj} is released
and converted into kinetic energy of the colliding atoms,
which then leave the system. In the case of atom-dimer
collisions, one can estimate the probability for the three
atoms to approach each other within distances ~R,.
This probability is suppressed by the Pauli principle, be-
cause two out of the three atoms have the same spin. A
description of the relaxation process is provided by #,
=—a,gn Ny, Where n, and n, are, respectively, the densi-
ties of atoms and dimers and 7, is the rate of atom
losses. For the coefficient «,q, the following dependence
on a has been obtained (Petrov et al., 2004):

e 2% (ﬁRo/m)(Ro/a)S (22)

with s=3.33. In the case of relaxation processes caused
by dimer-dimer collisions, the coefficient entering the
dimer loss equation r'z,,:—addnlzi satisfies the same law
(22) with s=2.55. It is crucial that both a,q and ayq de-
crease with increasing a. This dependence ensures the
stability of Fermi gases near a Feshbach resonance and
is a consequence of the fermionic nature of atoms. In the
case of bosons, instead, the relaxation time increases
with increasing a and the system becomes unstable ap-
proaching the resonance.

According to the above results, the dimer-dimer relax-
ation rate should dominate over the atom-dimer rate in
the limit Ry/a— 0. Experiments on atom losses both in
potassium (Regal et al., 2004a) and in lithium (Bourdel et
al., 2004) close to the Feshbach resonance give relax-
ation rate constants agqoca~* with values of the exponent
s in reasonable agreement with theory.

An interesting situation takes place in the case of het-
eronuclear dimers, consisting of fermionic atoms with
different masses m; and m,, where m;>m, (see Sec.
IX.D). The theory (Petrov, 2003; Petrov et al., 2005) pre-
dicts that, at mass ratio m/m,=12.3, the exponent s in



Giorgini, Pitaevskii, and Stringari: Theory of ultracold atomic Fermi gases 1223

the dimer-dimer relaxation rate agq>a changes its sign,
violating thus the stability condition of the gas near reso-
nance. For mass ratios larger than 13.6, short-range
physics dominates and the universal description in terms
of the scattering length a is lost.

IV. THE MANY-BODY PROBLEM AT EQUILIBRIUM:
UNIFORM GAS

A. Hamiltonian and effective potential

The ideal gas model presented in Sec. II provides a
good description of a cold spin polarized Fermi gas. In
this case, interactions are in fact strongly inhibited by
the Pauli exclusion principle. When atoms occupy differ-
ent spin states, interactions instead deeply affect the so-
lution of the many-body problem. This is particularly
true at very low temperature where, as discussed in this
section, attractive interactions give rise to pairing effects
responsible for the superfluid behavior.

Consider a two-component system occupying two dif-
ferent spin states hereafter called, for simplicity, spin up
(6=1) and spin down (o=]). We consider the grand
canonical many-body Hamiltonian written in second
quantization as

ﬁ:E fdﬂf’f,(r)(—

h2v?

2
2m,

+ Vgex(r) = ug)\fn,m

+ f drdr' V(r - )PI )P[0 ()P, (r), (23)

where the field operators obey the fermionic anticom-

mutation relations {\ff(,(r),\ffz,(r’)}: 8y 0r—1"). The
one-body potential V. and the two-body potential V
account for the external confinement and for the inter-
action between atoms of different spin, respectively. The

number of atoms N, =[ dr(‘ffj,(r)\ffa(r» as well as the
trapping potentials and the atomic masses of the two
spin species can in general be different. In this section,
we consider the uniform case (V) =V =0) with N,
=N,=N/2 and m;=m =m. The densities of the two spin
components are uniform and the Fermi wave vector is
related to the total density of the gas, n=2n,=2n,,
through kz=(37°n)"3. The density n determines the
Fermi energy

ﬁ2
Ep=kpTp=2 —(3mn) (24)

of the noninteracting gas. In the following, we use the
above definition of Er. Note that in the presence of in-
teractions, the above definition of E differs from the
chemical potential at 7=0.

In our discussion, we are interested in dilute gases
where the range of the interatomic potential is much
smaller than the interparticle distance. Furthermore, we
assume that the temperature is sufficiently small so that
only collisions in the s-wave channel are important. Un-
der these conditions, interaction effects are well de-
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scribed by the s-wave scattering length a (see Sec. IIL.A).
In this regard, one should recall that the gaseous phase
corresponds to a metastable solution of the many-body
problem, the true equilibrium state corresponding in
general to a solid-phase configuration where the micro-
scopic interaction details are important. In Eq. (23), we
have ignored the interaction between atoms occupying
the same spin state, which is expected to give rise only to
minor corrections due to the quenching effect produced
by the Pauli principle.

As already discussed in connection with two-body
physics, a better theoretical understanding of the role
played by the scattering length can be achieved by re-
placing the microscopic potential V with an effective
short-range potential V. The regularized zero-range
pseudopotential has been introduced in Eq. (15). Similar
to the two-body problem, the regularization accounted
for by the term (d/dr)r permits to cure the ultraviolet
divergences in the solution of the Schrodinger equation
that arise from the vanishing range of the pseudopoten-
tial. In general, this regularization is crucial to solve the
many-body problem beyond lowest order perturbation
theory, as happens, for example, in the BCS theory of
superfluidity (Bruun et al., 1999).

The effect of the zero-range pseudopotential is ac-
counted for by the boundary condition (17), which, in
the many-body problem, can be rewritten as (Bethe and
Peierls, 1935; Petrov et al., 2004)

\If(l’l-]- — 0) &« l - 1, (25)
rj a

where r;;=|r;—r/| is the distance between any pair of par-
ticles with different spin (i,j), and the limit is taken for
fixed positions of the remaining N—2 particles and the
center of mass of the pair (i,j). For realistic potentials,
the above short-distance behavior is expected to hold
for length scales much larger than the effective range
|R*| of the interaction and much smaller than the mean
interparticle distance: |[R*| <r;<k'. This range of valid-
ity applies in general to atomic gaslike states with both
repulsive (a>0) and attractive (a <0) interactions. If the
many-body state consists instead of tight dimers with
size a<k;1 described by the wave function (16), the
boundary condition (25) is valid in the reduced range:
|[R*| <r;<a. In any case, at short distances, the physics
of dilute systems is dominated by two-body effects. Un-
der the conditions of diluteness and low temperature
discussed above, the solution of the many-body problem
with the full Hamiltonian (23) is completely equivalent
to the solution of an effective problem where the Hamil-
tonian contains the kinetic energy term and the many-
body wave function satisfies the Bethe-Peierls boundary
condition (25).

An approach that will be considered in this review is
based on microscopic simulations with quantum Monte
Carlo techniques. In this case, the contact boundary con-
ditions (25) are difficult to implement and one must re-
sort to a different effective interatomic potential. A con-
venient choice is the attractive square-well potential
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with range R, and depth V|, defined in Eq. (18) [other
forms have also been considered (Carlson et al., 2003)].
The interaction range R, must be taken much smaller
than the inverse Fermi wave vector, kzRy<<1, in order to
ensure that the many-body properties of the system do
not depend on its value. The depth V|, is instead varied
so as to reproduce the actual value of the scattering
length.

The above approaches enable us to describe the
many-body features uniquely in terms of the scattering
length a. These schemes are adequate if one can neglect
the term in k2 in the denominator of Eq. (13). When the
effective range |R*| of the interatomic potential becomes
on the order of the inverse Fermi wave vector, as hap-
pens in the case of narrow Feshbach resonances, more
complex effective potentials should be introduced in the
solution of the many-body problem (see, e.g., Gurarie
and Radzihovsky, 2007).

B. Order parameter, gap, and speed of sound

The phenomenon of superfluidity in 3D Fermi sys-
tems is associated with the occurrence of off-diagonal
long-range order (ODLRO) according to the asymptotic
behavior (Gorkov, 1958)

Hm(Pi(ry + D)W (r; + 1) (1) (rp) = |[F(r,,r) %,

(26)

exhibited by the two-body density matrix. Assuming
spontaneous breaking of gauge symmetry, one can intro-
duce the pairing field

F(R,s) = (¥ (R +s/2)7,(R - 5/2)) (27)

[notice that ODLRO can be defined through Eq. (26)
also without the symmetry breaking point of view (Yang,
1962)]. The vectors R=(r;+r,)/2 and s=r;-r, denote,
respectively, the center of mass and the relative coordi-
nate of the pair of particles. In a Fermi superfluid,
ODLRO involves the expectation value of the product
of two field operators instead of a single field operator
as in the case of Bose-Einstein condensation. The pair-
ing field in Eq. (27) refers to spin-singlet pairing and the
spatial function F must satisfy the even-parity symmetry
requirement F(R,—-s)=F(R,s), imposed by the anticom-
mutation rule of the field operators.

The use of the Bethe-Peierls boundary conditions (25)
for the many-body wave function ¥ implies that the
pairing field (27) is proportional to 1/s—1/a for small
values of the relative coordinate s. One can then write
the following short-range expansion:

m
47h?

which defines the quantity A(R), hereafter called the or-
der parameter. The above asymptotic behavior holds in
the same range of length scales as the Bethe-Peierls con-
ditions (25). For uniform systems, the dependence on

F(R,s) = A(R)(% - %) +o0(s), (28)
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the center-of-mass coordinate R in Egs. (27) and (28)
drops and the order parameter A becomes constant.
Moreover, in the case of s-wave pairing, the function
(27) becomes spherically symmetric: F=F(s). The pairing
field F(s) can be interpreted as the wave function of the
macroscopically occupied two-particle state. The con-
densate fraction of pairs is then defined according to

1
Neond = % f dS|F(S)|2, (29)

where [ds|F(s)|? is the density of condensed pairs. The
quantity n.,,q is exponentially small for large, weakly
bound Cooper pairs. It approaches instead the value
Meona=1 for small, tightly bound dimers that are almost
fully Bose-Einstein condensed at 7=0.

Another peculiar feature characterizing superfluidity
in a Fermi gas is the occurrence of a gap A,,, in the
single-particle excitation spectrum. At 7=0, this gap is
related to the minimum energy required to add (re-
move) one particle starting from an unpolarized system
according to E(N/2+1,N/2)=E(N/2,N/2)+ pu+A,,p,
Here E(N;,N)) is the ground-state energy of the system
with Ny, particles of 7(]) spin and u is the chemical
potential defined by u=+[EN/2+1,N/2+1)
—E(N/2,N/2)]/2=0E/N. By combining these two rela-
tions, one obtains the following expression for the gap
(see, e.g., Ring and Schuck, 1980):

1
Agap = 5[2E(N/2 +1,N/2) - E(N2+1,N2+1)

— E(N/2,N/2)]. (30)

The gap corresponds to one-half of the energy required
to break a pair. The single-particle excitation spectrum
€ is defined according to E(N/2+1,N/2)
=E(N/2,N/2)+u+e€,, where E(N/2+1,N/2) denotes
the energy of the system with one more (less) particle
with momentum 7ik. Since A, corresponds to the low-
est of such energies E, it coincides with the minimum of
the excitation spectrum. In general, the order parameter
A and the gap A,,, are independent quantities. A direct
relationship holds in the weakly attractive BCS regime
(see Sec. IV.D), where one finds A,,,=A. The role of the
gap in characterizing the superfluid behavior will be dis-
cussed in Sec. VIL.D.

Finally we recall that a peculiar property of neutral
Fermi superfluids is the occurrence of gapless density
oscillations. These are the Goldstone sound modes asso-
ciated with the gauge symmetry breaking and are often
referred to as the Bogoliubov-Anderson modes (Ander-
son, 1958; Bogoliubov et al., 1958). These modes are col-
lective excitations and should not be confused with the
gapped single-particle excitations discussed above. At
small wave vectors, they take the form of phonons
propagating at 7=0 with the velocity

mc*=ndplon (31)

fixed by the compressibility of the gas. The description
of these density oscillations will be presented in Sec.
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VIL.D. The Bogoliubov-Anderson phonons are the only
gapless excitations in the system and provide the main
contribution to the temperature dependence of all ther-
modynamic functions at low temperature (kzpT <Ay,
For example, the specific heat C and the entropy § of
the gas follow the free-phonon law C=35« T3,

C. Repulsive gas

There are important cases in which the many-body
problem for the interacting Fermi gas can be solved in
an exact way. A first example is the dilute repulsive gas.
Interactions are treated by means of the pseudopotential
(15) with a positive scattering length a. Standard pertur-
bation theory can be applied with the small parameter
kra<<1 expressing the diluteness condition of the gas. At
T=0, the expansion of the energy per particle up to qua-
dratic terms in the dimensionless parameter kra yields
the following expression (Huang and Yang, 1957; Lee
and Yang, 1957):

E 3 10 4(11-21In2)

— = —EF<1 + —kpa+

2, ...
N5 9 22 ke )

(32)

in terms of the Fermi energy (24). The above result is
universal as it holds for any interatomic potential with a
sufficiently small effective range |R*| such that n|R*?
<1. Higher-order terms in Eq. (32) will depend not only
on the scattering length a, but also on the details of the
potential (see Fetter and Walecka, 2003). In the case of
purely repulsive potentials, such as the hard-sphere
model, the expansion (32) corresponds to the energy of
the “true” ground state of the system (Lieb et al., 2005;
Seiringer, 2006). For more realistic potentials with an
attractive tail, the above result describes the metastable
gaslike state of repulsive atoms. This distinction is par-
ticularly important in the presence of bound states at the
two-body level, since more stable many-body configura-
tions satisfying the same condition kza<<1 consist of a
gas of dimers (see Sec. IV.E). The weakly repulsive gas
remains normal down to extremely low temperatures
when the repulsive potential produces € >0 pairing ef-
fects bringing the system into a superfluid phase (Kohn
and Luttinger, 1965; Fay and Layzer, 1968; Kagan and
Chubukov, 1988). In the normal phase, the thermody-
namic properties of the weakly repulsive gas are de-
scribed with good accuracy by the ideal Fermi gas
model.

D. Weakly attractive gas

A second important case is the dilute Fermi gas inter-
acting with negative scattering length (kz|a| <1). In this
limit, the many-body problem can be solved both at T
=0 and at finite temperature and corresponds to the fa-
mous BCS picture first introduced to describe the phe-
nomenon of superconductivity (Bardeen, Cooper and
Schrieffer, 1957). The main physical feature is the insta-
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bility of the Fermi sphere in the presence of even an
extremely weak attraction and the formation of bound
states, the Cooper pairs, with exponentially small bind-
ing energy. The many-body solution proceeds through a
proper diagonalization of the Hamiltonian (23) applying
the Bogoliubov transformation to the Fermi field opera-
tors (Bogoliubov, 1958a, 1958b). This approach is non-
perturbative and predicts a second-order phase transi-
tion associated with the occurrence of ODLRO.

Exact results are available for the critical temperature
and the superfluid gap (Gorkov and Melik-Barkhudarov,
1961). For the critical temperature, the result is

2 713
T. - (—) YTre
e T

w2k pa 0.28TF€7T/2kFa, (33)

where y=e¢=1.781, with C the Euler constant. The ex-
ponential, nonanalytical dependence of T, on the inter-
action strength ky|al is typical of the BCS regime. With
respect to the original treatment by Bardeen, Cooper
and Schrieffer (1957), the preexponential term in Eq.
(33) is a factor of ~2 smaller as it accounts for the renor-
malization of the scattering length due to screening ef-
fects in the medium. A simple derivation of this result
can be found in Pethick and Smith (2002).

The spectrum of single-particle excitations close to the
Fermi surface, |k—kp| <kp, is given by

e = VAL + [fvsk - kp P, (34)

where vp=fikp/m is the Fermi velocity, and is minimum
at k=kgp. The gap at T=0 is related to 7. through

A, =

gap kBTC =~ 176kBTC (35)

w
Y
Furthermore, the ground-state energy per particle takes
the form

E E 3A;
= _ normal gag, (36)
N N 8E

where E,oma is the perturbation expansion (32) with a
<0 and the term proportional to Aéap corresponds to the
exponentially small energy gain of the superfluid com-
pared to the normal state.

Since the transition temperature 7, becomes expo-
nentially small as one decreases the value of kg|al, the
observability of superfluid phenomena is a difficult task
in dilute gases. Actually, in the experimentally relevant
case of harmonically trapped configurations, the pre-
dicted value for the critical temperature easily becomes
smaller than the typical values of the oscillator tempera-
ture fiwy,/kp.

The thermodynamic properties of the BCS gas can
also be investigated. At the lowest temperatures kg7
<Ay, they are dominated by the Bogoliubov-Anderson
phonons. However, already at temperatures kT~ Ay,
the main contribution to thermodynamics comes from
fermionic excitations. For more details on the thermo-
dynamic behavior of a BCS gas, see, for example, Lif-
shitz and Pitaevskii (1980). At T= T, the gas, due to the
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small value of T, is still strongly degenerate and the
thermodynamic functions are well described by the
ideal-gas model.

E. Gas of composite bosons

Due to the availability of Feshbach resonances, it is
possible to tune the value of the scattering length in a
highly controlled way (see Sec. IIL.B). For example,
starting from a negative and small value of a it is pos-
sible to increase a, reach the resonance where the scat-
tering length diverges, and explore the other side of the
resonance where a becomes positive and eventually
small. One would naively expect in this way to reach the
regime of the repulsive gas discussed in Sec. IV.C. This is
not the case because, in the presence of a Feshbach reso-
nance, the positive value of the scattering length is asso-
ciated with the emergence of a bound state in the two-
body problem and the formation of dimers as discussed
in Sec. III.C. The size of the dimers is on the order of
the scattering length a and their binding energy is ¢,
=—#2/ma®. These dimers have a bosonic nature, com-
posed of two fermions, and if the gas is sufficiently dilute
and cold, they consequently give rise to Bose-Einstein
condensation. The size of the dimers cannot, however,
be too small, as it should remain large compared to the
size of the deeply bound energy levels of the molecule.
This requires the condition a>|R*|, which, according to
the results of Sec. III.C, ensures that the system of
weakly bound dimers is stable enough and that the tran-
sition to deeper molecular states, due to collisions be-
tween dimers, can be neglected.

The gas of dimers and the repulsive gas of atoms dis-
cussed in Sec. IV.C represent two different branches of
the many-body problem, both corresponding to positive
values of the scattering length (Pricoupenko and Castin,
2004). The atomic repulsive gas configuration has been
experimentally achieved by ramping up adiabatically the
value of the scattering length, starting from the value a
=0 (Bourdel et al., 2003). If one stays sufficiently away
from the resonance, losses are not dramatic and the
many-body state is a repulsive Fermi gas. Conversely,
the gas of dimers is realized by crossing adiabatically the
Feshbach resonance starting from negative values of a,
which allows for a full conversion of pairs of atoms into
molecules, or by cooling down a gas with a fixed (posi-
tive) value of the scattering length.

The behavior of the dilute (kpa<<1) gas of dimers,
hereafter called the BEC limit, is described by the
theory of Bose-Einstein condensed gases available for
both uniform and harmonically trapped configurations
(Dalfovo et al., 1999). In particular, one can evaluate the
critical temperature 7. In the uniform case, this is given
by T.=Q2ah?/ kgm)[n,/ £(3/2)], where n, is the density
of dimers (equal to the density of each spin species) and
{(3/2)=2.612. In terms of the Fermi temperature (24),
one can write
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T,=0.218TF, (37)

showing that the superfluid transition, associated with
the Bose-Einstein condensation of dimers, takes place at
temperatures on the order of T, i.e., at temperatures
much higher than the exponentially small value (33)
characterizing the BCS regime. The chemical potential
of dimers g, is defined through 2u=¢€,+ u, involving
the molecular binding energy €, and the atomic chemical
potential u.

Inclusion of interactions between molecules, fixed by
the dimer-dimer scattering length ayq according to agyq
=0.60a [see Eq. (21)], is provided to lowest order in the
gas parameter ndagd by the Bogoliubov theory for
bosons with mass 2m and density n,=n,. At T=0, the
bosonic chemical potential is given by uy
=2mh%aggny/m. Higher-order corrections to the equa-
tion of state are provided by the Lee-Huang-Yang ex-
pansion (Lee et al., 1957)

£:2+kﬂldd
N 2 6

128
1+ k 2 EL 38
[ 15\/@( Padd) F ( )

here expressed in units of the Fermi energy (24). The
validity of Eq. (38) for a Fermi gas interacting with small
and positive scattering lengths was proven by Leyronas
and Combescot (2007). At very low temperatures, the
thermodynamics of the gas can be calculated using the
Bogoliubov gapless spectrum €,(k) of density excitations

e (k) = tik(ch + B2 k> /16m?) "2, (39)

where cp=\mh?agn,/m? is the speed of Bogoliubov
sound. The single-particle excitation spectrum is instead
gapped and has a minimum at k=0: ek_,O:Agap+k2/2m,
where

|€b|
=7+ (3a,q— agq)

Wﬁzl’l d
gap 2 .

A

(40)

In the above equation, the large binding-energy term
ley| /2=h%/2ma? is corrected by a term that depends on
both the dimer-dimer (ayqq) and the atom-dimer (a,q)
scattering length. This term can be derived from the
definition (30) using for E(N;,N|) an energy functional
where the interactions between unpaired particles and
dimers are properly treated at the mean-field level, the
coupling constant fixed by a,4 and by the atom-dimer
reduced mass. Since a,q=1.18a [see Eq. (20)], the most
important contribution to Eq. (40) comes from the term
proportional to the atom-dimer scattering length.

In the BEC limit, the internal structure of dimers can
be ignored for temperatures higher than the critical tem-
perature since in this regime one has

|lep|lkpT, ~ 1/(kpa)* > 1. (41)

The above condition ensures that at thermodynamic
equilibrium the number of free atoms is negligible, pro-
portional to e%/?¢s8T,
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F. Gas at unitarity

A more difficult problem concerns the behavior of the
many-body system when kz|a| =1, i.e., when the scatter-
ing length becomes larger than the interparticle dis-
tance, which in turn is much larger than the range of the
interatomic potential. This corresponds to the unusual
situation of a gas that is dilute and strongly interacting at
the same time. In this condition, it is not obvious
whether the system is stable or collapses. Moreover, if
the gas remains stable, does it exhibit superfluidity as in
the BCS and BEC regimes? Since at present an exact
solution of the many-body problem for kz|a| =1 is not
available, one has to resort to approximate schemes or
numerical simulations (see Secs. V.A and V.B). These
approaches, together with experimental results, give a
clear indication that the gas is indeed stable and that it is
superfluid below a critical temperature. The limit kg|a|
— is called the unitary regime and was introduced in
Sec. ITII.A when discussing two-body collisions. This re-
gime is characterized by the universal behavior of the
scattering amplitude fy(k)=i/k, which bears important
consequences at the many-body level. As the scattering
length drops from the problem, the only relevant length
scales remain the inverse of the Fermi wave vector and
the thermal wavelength. All thermodynamic quantities
should therefore be universal functions of the Fermi en-
ergy £y and the ratio 7/Tp.

An important example of this universal behavior is
provided by the T=0 value of the chemical potential,

n=(1+PB)Ep, (42)

where B is a dimensionless parameter. This relation fixes
the density dependence of the equation of state, with
nontrivial consequences on the density profiles and on
the collective frequencies of harmonically trapped
superfluids, as discussed in Secs. VI and VII. The value
of B in Eq. (42) has been calculated using fixed-node
quantum Monte Carlo techniques giving the result 8
=-0.58+0.01 (Carlson et al., 2003; Astrakharchik, Bor-
onat, Casulleras, et al., 2004; Carlson and Reddy, 2005).
The most recent experimental determinations are in
good agreement with this value (see Table II in Sec. VI).
The negative value of B implies that at unitarity, inter-
actions are attractive. By integrating Eq. (42), one finds
that the same proportionality coefficient (1+8) also re-
lates the ground-state energy per particle £/N and the
pressure P to the corresponding ideal gas values: E/N
=(1+PB)3Er/5 and P=(1+pB)2nEr/5, respectively. As a
consequence, the speed of sound (31) is given by

c=(1+B) 20 \3, (43)

where vg/ V3 is the ideal Fermi gas value. The superfluid
gap at T=0 should also scale with the Fermi energy.
Fixed-node quantum Monte Carlo simulations yield the
result Ay, =(0.50+0.03) Ef (Carlson er al., 2003; Carlson
and Reddy, 2005). A more recent QMC study based on
lattice calculations (Juillet, 2007) gives for B a result con-
sistent with the one reported above and a slightly
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smaller value for A,,, (see also Carlson and Reddy,
2008).

At finite temperature the most relevant problem, both
theoretically and experimentally, is the determination of
the transition temperature 7., which is expected to de-
pend on density through the Fermi temperature

TC = aTF, (44)

with a a dimensionless universal parameter. Quantum
Monte Carlo methods have been used recently to deter-
mine the value of «. Bulgac, Drut, and Magierski (2006)
and Burovski et al. (2006a) carried out simulations of
fermions on a lattice where the sign problem, typical of
fermionic quantum Monte Carlo methods, can be
avoided. These in principle “exact” studies require an
extrapolation to zero filling factor in order to simulate
correctly the continuum system, and the reported value
of the critical temperature corresponds to «
=0.157+0.007 (Burovski et al., 2006a). Path integral
Monte Carlo simulations, which work directly in the
continuum, have also been performed by Akkinen et al.
(2006) using the restricted path approximation to over-
come the sign problem. The reported value a=0.25 is
significantly higher compared to the previous method.

Since at unitarity the gas is strongly correlated, one
expects a significantly large critical region near 7. Fur-
thermore, the phase transition should belong to the
same universality class, corresponding to a complex or-
der parameter, as the one in bosonic liquid “He and
should exhibit similar features including the characteris-
tic \ singularity of the specific heat.

The temperature dependence of the thermodynamic
quantities is expected to involve universal functions of
the ratio 7/Tr (Ho, 2004). For example, the pressure of
the gas can be written as P(n,T)=P_o(n)fp(T/Tp),
where Py is the pressure at 7=0 and fp is a dimension-
less function. Analogously the entropy per atom takes
the form S§/Nkg=f¢(T/Tp) involving the universal func-
tion fg related to fp by the thermodynamic relation
dfp(x)/dx=xdfs(x)/dx. The above results for pressure
and entropy imply, in particular, that during adiabatic
changes the ratio 7/7Ty remains constant. This implies
that the adiabatic processes, at unitarity, follow the law
Pn~3=const, typical of noninteracting atomic gases.

The scaling laws for the pressure and the entropy also
hold at high temperatures, 7> T, provided that the
thermal wavelength is large compared to the effective
range of interaction, 7i\m/kgzT>|R*|. In this tempera-
ture regime the unitary gas can be described, to first
approximation, by an ideal Maxwell-Boltzmann gas.
Corrections to the equation of state can be determined
by calculating the second virial coefficient B(7) defined
from the expansion of the pressure P=nkzT[1
+nB(T)]. Using the method of partial waves (Beth and
Uhlenbeck, 1937; Landau and Lifshitz, 1980) and ac-
counting for the unitary contribution of the s-wave
phase shift §= = 7/2 when a — +%, one obtains the re-
sult




1228 Giorgini, Pitaevskii, and Stringari: Theory of ultracold atomic Fermi gases

3 7T7L2 3/2
B(T)=- Z<kaT> . (45)

It is worth noting that the negative sign of the second
virial coefficient corresponds to attraction. Equation (45)
takes into account the effects of both Fermi statistics
and interaction. The pure statistical contribution would
be given by the same expression in brackets, but with
the coefficient +1/4 of opposite sign.

V. THE BCS-BEC CROSSOVER
A. Mean-field approach at 7=0

As discussed in Sec. IV.F, there is not at present an
exact analytic solution of the many-body problem along
the whole BCS-BEC crossover. A useful approximation
is provided by the standard BCS mean-field theory of
superconductivity. This approach was first introduced by
Eagles (1969) and Leggett (1980) with the main motiva-
tion to explore the properties of superconductivity and
superfluidity beyond the weak-coupling limit kz|a| <1.
The main merit of this approach is that it provides a
comprehensive, although approximate, description of
the equation of state along the whole crossover regime,
including the limit 1/kra—0 and the BEC regime of
small and positive a. At finite temperature, the inclusion
of fluctuations around the mean field is crucial to pro-
vide a qualitatively correct description of the crossover
(Nozieres and Schmitt-Rink, 1985; Sa de Melo et al.,
1993). In this section, we review the mean-field treat-
ment of the crossover at 7=0, while some aspects of the
theory at finite temperature will be discussed in Sec.
V.C.

The account of the BCS mean-field theory given here
is based on the use of the pseudopotential (15) and fol-
lows the treatment of Bruun et al. (1999). We start by
considering a simplified Hamiltonian without external
confinement and where, in the interaction term of Eq.
(23), only pairing correlations are considered and
treated at the mean-field level,

A ~ V2 A
Hpes=2, f dl“l’jr(f)(— o M)‘l’a(l‘)

- f dr{ A(r){qﬁ(r)q?](r)

1 . ”
_ E(xp;(r)xpj(r»] + Hc} (46)

We also restrict the discussion to equal masses m and to
unpolarized systems: N;=N =N/2. The direct (Hartree)
interaction term proportional to the averages
<\IAI"TL(r)\IAfT(r)) and (\IAII(r)\IAf \(r)) is neglected in Eq. (46) in
order to avoid the presence of divergent terms in the
theory when applied to the unitary limit 1/a—0. The
order parameter A is defined here as the spatial integral
of the short-range potential V(s) weighted by the pairing
field (27),
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A(r) = - f dsV(s) (W | (r +s/2) W, (r - s/2))

=~ g(sF);_- (47)

The last equality, which is obtained using the regularized
potential (15), is consistent with the definition of the or-
der parameter given in Eq. (28). The c-number term
I drA(r)(‘IAf?(r)\IAfI(r))/ 2+H.c. in the Hamiltonian (46)
avoids double counting in the ground-state energy, a
typical feature of the mean-field approach.

The Hamiltonian (46) is diagonalized by the Bogoliu-

bov transformation \ffT(r):Ei[ui(r)&ﬁv;‘(r),@ﬂ, \IAfl(r)
:Ei[ui(r)fgi—vf(r)&ﬂ, which transforms particles into

quasiparticles denoted by the operators &; and ,éi. Since
quasiparticles should also satisfy fermionic anticommu-

tation relations, {&,-,&j,}:{,é,-, ,éj,}:é,«,,-,, the functions u;
and v; obey the orthogonality relation
Jar{u; (r)uj(r)+v;(r)vj(r)]=5; As a consequence of the
Bogoliubov transformations, the Hamiltonian (46) can
be written in the form

Hycs = (Eg— uN) + 2 €@, + B B), (48)
L

which describes a system of independent quasiparticles.
The corresponding expressions for the amplitudes u; and
v; are obtained by solving the matrix equation

( Hy A )(uxr)) i ei(u,m)’ o)
A*(r) —Hy/\vi(r) v(r)
where Hy=—(h?/2m)V?>—pu is the single-particle Hamil-
tonian. The order parameter A(r) is in general a com-
plex, position-dependent function. Equation (49) is
known as the Bogoliubov—de Gennes equation (see de
Gennes, 1989). It can be used to describe both uniform
and nonuniform configurations like, for example, quan-
tized vortices (see Sec. VIII.C) or solitons (Antezza,
Dalfovo, Pitaevskii, et al., 2007).

In the uniform case, the solutions take the simple
u(r)—e®u /\V and v,

form of plane waves
— ety [NV with
1 Nk A
ui=1—vi=5(1+6—k>, ukvkzz—ek. (50)

where 7, =%%k?/2m—u is the energy of a free particle
calculated with respect to the chemical potential. The
spectrum of quasiparticles (g;— ¢g), which are the el-
ementary excitations of the system, has the well-known
form

€= VA? + 72, (51)

and close to the Fermi surface coincides with the result
(34) in the weak-coupling limit with A,,,=A. In this re-
gime, the minimum of €, corresponds to the Fermi wave
vector kr. The minimum is shifted toward smaller values
of k as one approaches the unitary limit and corresponds
to k=0 when the chemical potential changes sign on the
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BEC side of the resonance. Furthermore, one should
notice that while the BCS theory correctly predicts the
occurrence of a gap in the single-particle excitations, it is
unable to describe the low-lying density oscillations of
the gas (Bogoliubov-Anderson phonons). These can be
accounted for by a time-dependent version of the theory
(see, for example, Urban and Schuck, 2006). The

vacuum of quasiparticles, defined by &,]0)=p5,|0)=0,
corresponds to the ground state of the system whose
energy is given by

21,2 2
E0=E(2ﬁvi = ) (52)

The above energy consists of the sum of two terms: the
first is the kinetic energy of the two spin components,
while the second corresponds to the interaction energy.
One should notice that both terms, if calculated sepa-
rately, exhibit an ultraviolet divergence that disappears
in the sum yielding a finite total energy.

The order parameter A entering the above equations
should satisfy a self-consistent condition determined by
the short-range behavior (28) of the pairing field (27).
This function takes the form
dk_e'*s

PP (53)

dk .
F(s)= | ——suwe™ =A :
) f (2m)? KOk 2m° 2¢,

By writing (4ms)~! = [dke™®/(27)3k? and comparing Eq.
(28) with Eq. (53), one straightforwardly obtains

m [ dk ( m_ 1 ) (54)
datta ] Q@R \KK* 2¢)’

where one is allowed to take the limit s —0 since the
integral of the difference in brackets is convergent.
Equation (54), through Eq. (51) of the elementary exci-
tations, provides a relationship between A and the
chemical potential u entering the single-particle energy
Me=h’k*/2m—u. A second relation is given by the nor-

malization condition
2@ » dk ( m)

ED 1= 2, 55

A o= Hl s >

which takes the form of an equation for the density. One
can prove that the density dependence of the chemical
potential arising from the solution of Egs. (54) and (55)
is consistent with the thermodynamic relation pu
=dEy/ N, with E given by Eq. (52).

Result (54) can be equivalently derived starting from
the contact potential g&(r) [rather than from the regular-
ized form (15)] and using the renormalized value

dk m
m)?3 h2k?

1 m

g:477ﬁ2a B

(56)

of the coupling constant, corresponding to the low-
energy limit of the two-body 7" matrix (Randeria, 1995).
In this case, one must introduce a cutoff in the calcula-
tion of the order parameter A=—g(W¥ l\IAfT)
=—g[dkA/2¢€,(2m)?, as well as in the integral in Eq. (56),
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in order to avoid the emergence of ultraviolet diver-
gences.

In the case of weakly attractive gases (kp|a| <1 with
a<0), the chemical potential approaches the Fermi en-
ergy u=FEr and Eq. (54) reduces to the equation for the
gap of standard BCS theory. In the general case, the
value of u and A should be calculated by solving the
coupled equations (54) and (55). By expressing the en-
ergy in units of the Fermi energy Ef, these equations
only depend on the dimensionless parameter 1/kja
which characterizes the interaction strength along the
BCS-BEC crossover. In the following, we refer to Egs.
(54) and (55) as to the BCS mean-field equations.

Analytical results for the energy per particle are ob-
tained in the limiting cases 1/kpa— +% corresponding,
respectively, to the BEC and BCS regimes. In the BCS
limit, the mean-field equations give the result

E, 3 40
—0:—EF(1——4€’T/kFa+ ) (57)
e

while in the BEC limit one finds

E, w3 <5kpa 5(kpa)* )
Lo _ L op 2K ‘e
N 2ma* 5 "\ 9r 5477

While the leading term in the energy per particle is
correctly reproduced in both limits (yielding, respec-
tively, the noninteracting energy 3Ex/5 and half of the
dimer binding energy —#2/2ma?), higher-order terms are
wrongly predicted by this approach. In fact, in the BCS
limit the theory misses the interaction-dependent terms
in the expansion (32). This is due to the absence of the
Hartree term in the Hamiltonian (46). In the BEC limit,
the theory correctly reproduces a repulsive gas of
dimers. However, the term arising from the interaction
between dimers corresponds, in the expansion (58), to a
molecule-molecule scattering length equal to agq=2a
rather than to the correct value ay4q=0.60a (see Sec.
II1.C). Furthermore, the Lee-Huang-Yang correction in
the equation of state of composite bosons [see Eq. (38)]
is not accounted for by the expansion (58).

Finally, at unitarity (1/kpa=0) one finds Ey /N
=(0.59(3E/5), which is 40% larger than the value pre-
dicted by quantum Monte Carlo simulations (see Sec.
IV.F).

It is worth noting that the energy per particle, as well
as the chemical potential, change sign from the BCS to
the BEC regime. This implies that there exists a value of
kra where u=0. This fact bears important consequences
on the gap A,,, characterizing the spectrum (51) of
single-particle excitations. If >0, Ay, coincides with
the order parameter A. This is the case, in particular, of
the BCS regime, where one finds the result

(58)

8 T
Agap:A:?EFexp[m]. (59)
Note that result (59) does not include the Gorkov—
Melik-Barkhudarov [see Egs. (33) and (35)]. At unitarity
one finds (Randeria, 1995) A,,,=A=0.69E;. When u
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<0, the gap is given by Ag,,=vA?+u?. In particular in
the BEC limit, where u=-#2?/2ma®, one finds A
=(16/3m)"2Ep/\kra<|u|. In the same limit, the gap is
given by A, =%?/2ma*+3awnh’n/m.

The momentum distribution of either spin species rny
:(dltTcikT)sz(ldk \» is another direct output of the BCS
mean-field theory. For a given value of kpa along the
crossover, it is obtained from the corresponding values
of w and A through

1
_.2_2 e
o= ts) 0

In the BCS regime, ny coincides approximately with the
step function @(1—-k/kp) characteristic of the noninter-
acting gas, the order parameter A providing only a small
broadening around the Fermi wave vector. By increasing
the interaction strength, the broadening of the Fermi
surface becomes more and more significant. At unitarity,
1/kpa=0, the effect is on the order of kj, consistently
with the size of A proportional to the Fermi energy. In
the BEC regime, ny takes instead the limiting form

4(kpa)®

= 61
7301 + K2a?)? (61)

which is proportional to the square of the Fourier trans-
form of the molecular wave function (16).

It is important to note that at large wave vectors the
momentum distribution (60) decays as ny =m?A?/(h*k*)
for k>m|u|/h. The large-k 1/k* tail has important con-
sequences for the kinetic energy of the system defined as
Eyin=22nch%*k?/2m, which diverges in 2D and 3D. This
unphysical behavior arises from the use of the zero-
range pseudopotential (15), which correctly describes
the region of wave vectors much smaller than the in-
verse effective range of interactions, k<1/|R*|. This be-
havior reflects the fact that the kinetic energy is a micro-
scopic quantity that in general cannot be expressed in
terms of the scattering length.

Finally we discuss the many-body structure of the
ground-state wave function. The BCS ground state, de-
fined as the vacuum state for the quasiparticles & and

ﬁk, can be written explicitly in terms of the amplitudes
uy, vy giving the well-known result

IBCS) = [ (uy + vidf,d’y )00), (62)
k

where |0) is the particle vacuum. It is important to stress
that the BCS mean-field Egs. (54) and (55) can be
equivalently derived from a variational calculation ap-
plied to the state (62) where the grand-canonical energy
is minimized with respect to u,,v,, subject to the nor-
malization constraint u; +v}=1. The BCS state (62) does
not correspond to a definite number of particles. In fact,
it can be decomposed into a series of states having an

even number of particles [BCS)x|0)+Pt|0)+(P)2|0)

+---, where ILA’T:Ekvk/ukaAitTcﬂkl is the pair creation op-
erator. By projecting the state (62) onto the Hilbert

Rev. Mod. Phys., Vol. 80, No. 4, October—December 2008

space corresponding to N particles, one can single out

the component [BCS)y o (P)M2]0) of the series. In coor-
dinate space, this N-particle state can be expressed in

terms of an antisymmetrized product of pair orbitals
(Leggett, 1980)

Wpes(ry, .ory) = AL(ry1 ) dlra) -+ d’(rNTNl)]- (63)

Here A is the antisymmetrizer operator and the function
d(r)=Q2m)~3 [dk(v/uy)e’™®™ depends on the relative co-
ordinate r;;=|r;—r;/| of the particle pair, i (i') denoting
the spin-up (-down) particle. It is worth noting that in
the deep BEC regime, corresponding to |u|=%%/2ma?
> A, the pair orbital becomes proportional to the mo-
lecular wave function (16): d)(r)z(\e"nf,/ e~/ \2mar,
and the many-body wave function (63) describes a sys-
tem where all atoms are paired into bound molecules.
Wave functions of the form (63) are used in order to
implement more microscopic approaches to the many-
body problem (see Sec. V.B).

In conclusion, we have shown how BCS mean-field
theory is capable of giving a comprehensive and qualita-
tively correct picture of the BCS-BEC crossover at T
=0. The quantitative inadequacies of the model will be
discussed in more detail in Sec. V.B.2.

B. Quantum Monte Carlo approach at T=0

1. Method

A more microscopic approach to the theoretical inves-
tigation of the ground-state properties of the gas along
the BCS-BEC crossover is provided by the fixed-node
diffusion Monte Carlo (FN-DMC) technique. This
method is based on the Hamiltonian (23) where, as in
Sec. V.A, we consider uniform and unpolarized configu-
rations of particles with equal masses. A convenient
choice for the effective interatomic potential V(r) con-
sists of using the square-well model (18) where, in order
to reduce finite-range effects, the value of R is taken as
small as nR8:10’6. The depth VO:hZK%/ m of the poten-
tial is varied in the range 0 < Ky R, < 7 to reproduce the
relevant regimes along the crossover. For KoRy</2,
the potential does not support a two-body bound state
and the scattering length is negative. For KyRy> /2,
the scattering length is positive and a molecular state
appears with binding energy ¢,. The value KoRy=m7/2
corresponds to the unitary limit, where |a|=% and ¢,
=0.

In a diffusion Monte Carlo (DMC) simulation, one
introduces the function f(R,7)=y(R)W(R,7), where
V(R,7) denotes the wave function of the system and
¢7(R) is a trial function used for importance sampling.
The function f(R,7) evolves in imaginary time, 7=it/f,
according to the Schrodinger equation
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IR A
ar  2m

+ [EL(R) - Eref]f(Ra T) . (64)

{VRAR,7) - Ve[F(R)AR, D]}

In the above equation, R denotes the position vectors of
the N particles, R=(r,...,ry), E.(R)=¢(R) "' Hyr(R)
denotes the local energy, F(R)=2¢(R) Vg (R) is the
quantum drift force, and E; is a reference energy intro-
duced to stabilize the numerics. The various observables
of the system are calculated from averages over the
asymptotic distribution function f(R,7— ) (for more
details, see, e.g., Boronat and Casulleras, 1994). As an
example, the DMC estimate of the energy is obtained
from

deEL(R)f(R,T—> )
Epmc= . (65)
Jde(R,T—> )

A crucial requirement, which allows for the solution
of Eq. (64) as a diffusion equation, is the positive defi-
niteness of the probability distribution f(R, 7). The con-
dition f(R,7)=0 can be easily satisfied for the ground
state of bosonic systems by choosing both W and ¢
positive definite, corresponding to the nodeless ground-
state function. In this case the asymptotic distribution
converges to f(R,7— ») =y (R)W (R), where W((R) is
the exact ground-state wave function, and the average
(65) yields the exact ground-state energy E,. The case of
fermionic ground states or the case of more general ex-
cited states is different, due to the appearance of nodes
in the wave function V. In this case, an exact solution is
in general not available. An approximate treatment is
provided by the FN-DMC method, which enforces the
positive definiteness of f(R,7) through the constraint
that 7 and ¥ change sign together and thus share the
same nodal surface. The nodal constraint is kept fixed
during the calculation, and the function f(R,7), after
propagation in imaginary time according to Eq. (64),
reaches for large times the asymptotic distribution
fR,7— ©) =t (R)VrN(R), where Wen(R) is an approxi-
mation to the exact eigenfunction of the many-body
Schrodinger equation. It can be proven that, due to the
nodal constraint, the fixed-node energy obtained from
Eq. (65) is an upper bound to the exact eigenenergy for
a given symmetry (Reynolds et al., 1982). In particular, if
the nodal surface of ¢ were exact, then Epyc would
also be exact. The energy calculated in a FN-DMC simu-
lation depends crucially on a good parametrization of
the many-body nodal surface.

Calculations are carried out using a cubic simulation
box of volume V= L? with periodic boundary conditions.
The number of particles in the system ranges typically
from N=14 to 66 and finite-size analysis is performed to
extrapolate the results to the thermodynamic limit. The
most general trial wave function used in studies of ultra-
cold fermionic gases has the form (Carlson et al., 2003;
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Astrakharchik, Boronat, Casulleras, et al., 2004, 2005;
Chang et al., 2004; Chang and Pandharipande, 2005)

Yr(R) = ¥,;(R)¥pcs(R), (66)

where WV, contains Jastrow correlations between all par-
ticles, Wy(R)=II; f,,(Jr;;—1;,r), With r;, the position of
the ith particle with spin o, and the BCS-type wave func-
tion Wpeg is an antisymmetrized product of pair wave
functions of the form (63). The pair orbital ¢(r) is chosen
of the general form

p=a X

ko=k

e+ ¢ (r), (67)

max

where « is a variational parameter and the sum is per-
formed over the plane-wave states satisfying periodic
boundary conditions, k,=27/L(€ X +€,.)+€,,2) (the
{’s are integer numbers), up to the largest closed shell
Kmax =27 (€ +Cmas ,+ €y )2 Occupied by  the
N/2 particles. A convenient functional form of the Ja-
strow correlation terms f,,(r) and the s-wave orbital
¢,(r) has been discussed by Astrakharchik, Boronat, Ca-
sulleras, et al. (2005). The Jastrow function in Eq. (66) is
chosen positive definite, V;(R)=0, and therefore the
nodal surface of the trial function is determined only by
Wpcs.

An important point concerns the wave function Wgg
which can be used to describe both the normal and the
superfluid state. In fact, if one chooses in Eq. (67) ¢(r)
=0, it can be shown (Bouchaud et al., 1988; Bouchaud
and Lhuillier, 1989) that Wycg coincides with the wave
function of a free Fermi gas, i.e., the product of the
plane-wave Slater determinants for spin-up and spin-
down particles. In this case, the trial wave function (66)
is incompatible with ODLRO and describes a normal
Fermi gas similar to the wave function employed in
studying liquid *He at low temperatures (Ceperley et al.,
1977). On the contrary, if ¢ (r)#0, the wave function
(66) accounts for s-wave pairing and describes a super-
fluid gas. In particular, in the deep BEC limit 1/kpa>1,
the choice a=0 and ¢,(r) given by the molecular solu-
tion of the two-body problem in Eq. (67) reproduces the
mean-field wave function (63). As an example, at unitar-
ity, the normal-state wave function [¢(r)=0 in Eq. (67)]
yields the value E/N=0.56(1)3E/5 for the energy per
particle, to be compared with the result E/N
=0.42(1)3E(/5 obtained with the superfluid-state wave
function.

Another important remark concerns the gaslike na-
ture of the many-body state described by the wave func-
tion Wen(R). In the limit of a zero-range interatomic
potential, this state corresponds to the true ground-state
of the system, because bound states with more than two
particles are inhibited by the Pauli exclusion principle
(Baker, 1999). The situation is different for a finite-range
potential. In the case of the square-well potential (18),
one can calculate an upper bound to the ground-state
energy using the Hartree-Fock state  |HF)
:HkskFaALTdLAO). One finds the result (HF|H|HF)/N
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FIG. 5. (Color online) Energy per particle along the BCS-BEC
crossover with the binding-energy term subtracted from E/N.
Symbols: Quantum Monte Carlo results from Astrakharchik,
Boronat, Casulleras, ef al. (2004). The dot-dashed line corre-
sponds to the expansion (32) and the dashed line to the expan-
sion (38), respectively, in the BCS and in the BEC regime. The
long-dashed line refers to the result of the BCS mean-field
theory. Inset: Enlarged view of the BEC regime —1/kpa=-1.
The solid line corresponds to the mean-field term in the expan-
sion (38) and the dashed line includes the Lee-Huang-Yang
correction.

=3Ep/5-mVnR;/3, showing that at large n the interac-
tion energy is unbounded from below and the kinetic
energy cannot prevent the system from collapsing. How-
ever, for realistic short-range potentials having a large
depth V,~#%/mR}, this instability sets in at very high
densities on order nR;~1. Such large density fluctua-
tions are extremely unlikely, so that one can safely ig-
nore this collapsed state when performing the simula-
tions. Thus, for small enough values of R, the gaslike
state corresponding to the wave function Wgy is ex-
pected to describe the ground state of the system with
zero-range interactions.

2. Results

The results of the FN-DMC calculations are reported
in Figs. 5-9. In Fig. 5, we show the energy per particle as
a function of the interaction strength along the BCS-
BEC crossover (Astrakharchik, Boronat, Casulleras, et
al., 2004; Chang et al, 2004). In order to emphasize
many-body effects on the BEC side of the resonance, we
subtract from E/N the two-body contribution ¢,/2 aris-
ing from molecules. Note that ¢, refers to the dimer
binding energy in the square-well potential (18), which
for the largest values of 1/kpa includes appreciable
finite-range corrections compared to —#%/ma®. Never-
theless, no appreciable change is found in the difference
E/N-¢,/2 if the value of R is varied, demonstrating the
irrelevance of this length scale for the many-body prob-
lem. Both in the BCS regime and in the BEC regime,
the FN-DMC energies agree, respectively, with the per-
turbation expansion (32) and (38). In particular, in the
inset of Fig. 5 we show an enlarged view of the results in
the BEC regime indicating good agreement with the
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FIG. 6. (Color online) QMC results of the momentum distri-
bution ny for different values of 1/kpa (solid lines). The dashed
lines correspond to the mean-field results from Eq. (60). Inset:
ny for 1/kpa=4. The dotted line corresponds to the momen-
tum distribution of the molecular state Eq. (61).

a44=0.60a result for the dimer-dimer scattering length as
well as evidence for beyond mean-field effects. In Fig. 5,
we compare the FN-DMC results with the results from
the BCS mean-field theory of Sec. V.A. The mean-field
results reproduce the correct qualitative behavior, but
are affected by quantitative inadequacies.

The quantum Monte Carlo and mean-field results for
the momentum distribution rn, and the condensate frac-
tion of pairs n.,,q are reported in Figs. 6 and 7, respec-
tively (Astrakharchik, Boronat, Casulleras, et al., 2005).
In both cases, the mean-field predictions are in reason-
able agreement with the findings of FN-DMC calcula-
tions. Significant discrepancies are found in the momen-
tum distribution at unitarity (Fig. 6) (see also Carlson et
al., 2003), where the broadening of the distribution is
overestimated by the mean-field theory consistently with
the larger value predicted for the pairing gap. The mo-

condensate fraction

-1/k.a

FIG. 7. (Color online) Condensate fraction of pairs n.,,q [Eq-
(29)] as a function of the interaction strength: FN-DMC results
(symbols), Bogoliubov quantum depletion of a Bose gas with
a4q=0.60a (dashed line), BCS theory including the
Gorkov—Melik-Barkhudarov correction (dot-dashed line), and
mean-field theory using Eq. (53) (solid line).
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FIG. 8. (Color online) QMC results for the pair correlation
function of parallel spins g;(r) for different values of the in-
teraction strength: solid line, 1/kpa=0; dashed line, 1/kpa=1;
dotted line, 1/kpa=4. The thin solid line refers to the nonin-
teracting gas and the thin dotted line is the pair correlation
function of a Bose gas with a44=0.60a and the same density as
the single-component gas corresponding to 1/kpa=4.

mentum distribution in harmonic traps is discussed in
Sec. VI.C.

An important remark concerns the condensate frac-
tion n,,q defined in Eq. (29), which in the BEC regime
should coincide with the Bogoliubov quantum depletion
Neond=1 —8\«"Ta3dd/ 3Wm characterizing a gas of interacting
composite bosons with density n,=n/2 and scattering
length a44=0.60a. This behavior is demonstrated by the
FN-DMC results (Fig. 7), but is not recovered within the
mean-field approximation. At —1/kra~1 on the oppo-
site side of the resonance, the FN-DMC results agree
with the condensate fraction calculated using BCS
theory including the Gorkov-Melik-Barkhudarov cor-
rection. This result is expected to reproduce the correct

103 118 * T % T ¥ T T T ¥ T
N3 ===- 1k a=-1
1\t — 1/k_a=0
218\ F i
h\ 11k a=4

non-interacting

FIG. 9. (Color online) QMC results for the pair correlation
function of antiparallel spins g; (r) for different values of the
interaction strength: dashed line, 1/kpa=-1; solid line, 1/kpa
=0; dotted line, 1/kpa=4. The thin solid line refers to the non-
interacting gas.
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behavior of n.,,q in the deep BCS regime and is signifi-
cantly lower as compared to the mean-field prediction.

Condensation of pairs has been observed on both
sides of the Feshbach resonance by detecting the emer-
gence of a bimodal distribution in the released cloud
after the conversion of atom pairs into tightly bound
molecules using a fast magnetic-field ramp (Regal et al.,
2004b; Zwierlein et al., 2004; Zwierlein, Schunck, Stan, et
al., 2005). The magnetic-field sweep is slow enough to
ensure full transfer of atomic pairs into dimers, but fast
enough to act as a sudden projection of the many-body
wave function onto the state of the gas far on the BEC
side of the resonance. The resulting condensate fraction
is an out-of-equilibrium property, whose theoretical in-
terpretation is not straightforward (Altman and Vish-
wanath, 2005; Perali et al., 2005), but strongly supports
the existence of ODLRO in the gas at equilibrium also
on the BCS side of the Feshbach resonance (negative a)
where no stable molecules exist in vacuum.

Another quantity that can be calculated using the FN-
DMC method is the spin-dependent pair correlation
function (Astrakharchik, Boronat, Casulleras, et al.,
2004; Chang and Pandharipande, 2005) defined as

4 . N B N
8oo(s—5']) = r7<\PZ,(S’)‘PZ(S)‘I’U(S)‘I’or(S’)>- (68)

This function measures the relative probability of find-
ing a particle with equal or opposite spin at distance |s
—s'| from a given particle. The results for gn(r) are
shown in Fig. 8 for different values of the interaction
strength. Note that in all cases g;,(r) must vanish at
short distances due to the Pauli exclusion principle. This
tendency of fermions to avoid each other (antibunch-
ing), as opposed to the bunching effect exhibited by
bosons, has been recently revealed in the experiment by
Jeltes et al. (2007) using helium atoms. In the BCS re-
gime, where the effects of interaction in the 7-T spin
channel are negligible, one expects that the pair correla-
tion function is well described by the noninteracting gas
result g,1(r)=1-9/(kpr)*{sin(kpr)/ kgr—cos(kpr)]*. Quite
unexpectedly, this result holds true even at unitarity.
Only when one approaches the BEC regime does the
effect of indirect coupling, mediated through interac-
tions with the opposite spin component, become rel-
evant and g;(r) deviates significantly from the behavior
of the noninteracting gas. In particular, for the largest
value of 1/kza reported in Fig. 8 (1/kpa=4), we show
the pair distribution function of a gas of weakly interact-
ing bosons of mass 2m, density n/2, and scattering
length a44=0.60a calculated within Bogoliubov theory.
For large distances, r>ag4y, where the Bogoliubov ap-
proximation is expected to hold, one finds remarkable
agreement.

Finally, in Fig. 9, we report the results for the pair
correlation function g |(r). In the 7-| spin channel, inter-
actions are always relevant and give rise to a 1/r diver-
gent behavior at short distances, the coefficient deter-
mined by many-body effects on the BCS side of the
resonance and at unitarity and by the molecular wave
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function in the deep BEC regime. In the latter case, one
finds (kFr)ng \(r)—3m/kpa while at unitarity one finds
(kFr)ng |(r)—2.7. The divergent behavior of the pair
correlation function at short distances gives rise to a siz-
able bunching effect due to interactions in the -| spin
channel, as opposed to the antibunching effect due to
the Pauli principle in the 1-7 spin channel (Lobo, Caru-
sotto, Giorgini, et al., 2006). The function g; (r) has been
the object of experimental studies using spectroscopic
techniques (Greiner et al., 2004; Partridge et al., 2005). In
particular, Partridge et al. (2005) measured the rate of
molecular photoexcitation using an optical probe sensi-
tive to short-range pair correlations. They found thatthe
rate is proportional to 1/kpa in the BEC regime and
decays exponentially in the BCS regime.

Following the proposal by Altman et al. (2004), pair
correlations have also been detected using the atom shot
noise in absorption images (Greiner et al., 2005). The
noise, related to the fluctuations of the column inte-
grated density, is extracted from 2D absorption images
of the atom cloud by subtracting from each image pixel
the azimuthal average of the signal. Crucial is the size of
the effective image pixel (~15 um), which should be
small enough to be sensitive to atom shot noise. Using
this technique, spatial 7-| pair correlations have been
observed on the BEC side of the resonance by compar-
ing pixel to pixel the processed noise images relative to
the two spin components. These images are obtained
immediately after dissociating the molecules through a
rapid sweep of the scattering length across the reso-
nance. Even more spectacular is the observation of non-
local pair correlations between atoms that have equal
but opposite momenta and are therefore detected at dia-
metrically opposite points of the atom cloud in time-of-
flight expansion. These correlations in momentum space
are produced by dissociating the molecules and by al-
lowing the gas to expand before imaging. An important
requirement here, which has currently limited applica-
tion of this technique to the BEC regime, is that the
relative momentum should be significantly larger than
the center-of-mass motion of the pairs, since this latter
requirement would degrade the correlation signal due to
image blurring. This method provides a useful tool for
detecting quantum correlations in many-body systems
(Folling et al., 2005).

C. Other theoretical approaches at zero and finite temperature

Extension of the BCS mean-field approach discussed
in Sec. V.A to finite temperatures requires inclusion of
thermal fluctuations in the formalism (see, e.g., Rand-
eria, 1995). This can be accomplished by expanding the
effective action determining the partition function of the
system to quadratic terms in the order parameter A
(Nozieres and Schmitt-Rink, 1985; S4 de Melo et al.,
1993). The method goes beyond the saddle-point ap-
proximation, which corresponds to the mean-field
theory at 7T=0. The resulting predictions for 7, are
shown in Fig. 2. At unitarity, one finds the value T,
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=0.224T}, which is not far from the most reliable theo-
retical estimate based on quantum Monte Carlo simula-
tions (Burovski et al., 2006a) discussed in Sec. IV.F. In
the BEC regime, the region between the transition tem-
perature 7, and the higher temperature scale 7%
=h?/kgma?, fixed by the molecular binding energy, cor-
responds to the so-called pseudogap regime, where
bound pairs exist but are not “condensed” and form a
normal phase (Chen, Stajic, Tan, et al., 2005). The pres-
ence of pseudogap effects near unitarity has been inves-
tigated by Perali, Pieri, Pisani, er al. (2004) and Stajic et
al. (2004).

Diagrammatic methods based on the 7T-matrix ap-
proach have been proposed to extend the original treat-
ment by Nozieres and Schmitt-Rink (1985) to the
broken-symmetry phase below 7. (Pieri et al., 2004) as
well as to improve it by including higher-order diagrams
(Haussmann, 1993, 1994; Chen, Stajic, Tan, et al., 2005;
Combescot, Leyronas, and Kagan, 2006; Haussmann et
al., 2007). In particular, in the approach by Haussmann
et al. (2007) based on a ladder approximation, the fermi-
onic degrees of freedom are accounted for using inter-
acting Green’s functions determined in a self-consistent
way. This approach applies to arbitrary temperatures
and interaction strengths. At unitarity, it predicts the
value 7.=0.16TF for the transition temperature.

Fully nonperturbative numerical techniques have also
been applied to investigate the thermodynamics at finite
temperature in the unitary regime. They are based on
the auxiliary field (Bulgac, Drut, and Magierski, 2006,
2007) and diagrammatic determinant (Burovski et al.,
2006a, 2006b) quantum Monte Carlo method on a lattice
and the restricted path-integral Monte Carlo method in
the continuum (AKkKineni et al., 2007). Results of these
approaches for the critical temperature and thermody-
namic functions have been discussed in Sec. IV.F, and
the results referring to harmonically trapped configura-
tions are discussed in Sec. VI.D. Lattice quantum Monte
Carlo methods have also been recently applied to inves-
tigate the ground-state properties at unitarity (Lee, 2000;
Juillet, 2007).

An alternative approach to the theoretical treatment
of the BCS-BEC crossover is provided by the two-
channel model (also called the Bose-Fermi model). In
this approach (Friedberg and Lee, 1989) the Hamil-
tonian includes interaction terms involving both fermi-
onic and bosonic degrees of freedom. A thorough ac-
count of the two-channel model can be found in Gurarie
and Radzihovsky (2007). This work discusses the com-
parison with the single-channel Hamiltonian (23) and
predictions of the model in the case of narrow Feshbach
resonances, where the many-body problem can be ex-
actly solved using a perturbative expansion (see also
Diehl and Wetterich, 2006). In the case of broad reso-
nances, this approach reduces to the single-channel
Hamiltonian (23), where interactions are accounted for
with a contact potential fixed by the scattering length.
The two-channel model is thus more general and can
describe situations in which the effective range plays an
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important role. The two-channel model was first intro-
duced in the context of fermions with resonantly en-
hanced interactions by Holland et al. (2001) and Timmer-
mans et al. (2001) and was later developed to describe
properties of the BCS-BEC crossover both at zero
(Bruun and Pethick, 2004; Romans and Stoof, 2006) and
at finite temperature (Ohashi and Griffin, 2002, 2003a;
Diehl and Wetterich, 2006; Falco and Stoof, 2007) as
well as in trapped configurations (Ohashi and Griffin,
2003b).

Analytical methods based on an expansion around
D =4- e spatial dimensions have also been applied to the
unitary Fermi gas both at 7=0 (Nishida and Son, 2006,
2007) and at finite temperature (Nishida, 2007). The
starting point of the method is the observation (Nussi-
nov and Nussinov, 2006) that a unitary Fermi gas in D
=4 behaves as an ideal Bose gas, i.e., that at 7=0 the
proportionality coefficient in Eq. (42) is 1+ 8=0. Results
for the physical case of D=3 are obtained by extrapolat-
ing the series expansion to e=1. A similar approach is
based on a 1/N expansion, where N is the number of
fermionic species (Nikoli¢ and Sachdev, 2007; Veillette et
al., 2007). For N— o, the field-theoretical problem can
be solved exactly using the mean-field theory. Correc-
tions to the mean-field predictions can be calculated in
terms of the small parameter 1/N and the results can be
extrapolated to the relevant case of N=2.

Other theoretical approaches that have been applied
to the physics of the BCS-BEC crossover include the
dynamical mean-field theory (Garg et al., 2005) and the
renormalization-group method (Diehl et al., 2007; Ni-
koli¢ and Sachdev, 2007) and the generalization of the
BCS mean-field theory to include effective mass and
correlation terms within a density-functional approach
(Bulgac, 2007).

VI. INTERACTING FERMI GAS IN A HARMONIC TRAP

The solution of the many-body problem for nonuni-
form configurations is a difficult task involving in most
cases numerical calculations which are more complex
than in uniform matter (an example of this type of nu-
merical studies will be given when discussing the struc-
ture of vortex configurations in Sec. VII.D). However, in
the experimentally relevant case of large systems (N
=10°-107) confined by a harmonic potential, the local-
density approximation (LDA) provides a reliable and
relatively simple description. This approximation, which
is also often referred to as semiclassical or Thomas-
Fermi approximation, profits from knowledge of the
equation of state of uniform matter to infer on the be-
havior of the system in traps.

We also point out that on the BEC side of the reso-
nance, where the interacting Fermi gas behaves like a
gas of weakly interacting dimers, systematic information
is available from our advanced knowledge of the physics
of dilute Bose gases in traps (see, e.g., Dalfovo et al.,
1999). Although the deep BEC regime is not easily
achieved in present experiments with ultracold Fermi
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gases, the corresponding predictions nevertheless pro-
vide a useful reference.

A. Local-density approximation at 7=0: Density profiles

In this section, we consider systems at zero tempera-
ture where the equation of state of the uniform gas is
provided by the density dependence e(n) of the energy
density. The LDA assumes that, locally, the system be-
haves like a uniform gas, so that its energy density can
be expressed as e(n)=nE(n)/N, where E(n)/N is the en-
ergy per atom of uniform matter. The energy of the
trapped system is then written in the integral form

E= J dr{eln(r)] + Vo (r)n(r)}, (69)

and consists of the sum of the internal (also called re-
lease) energy

Erel:JdrE[n(r)] (70)

and of the oscillator energy

Epo = f drVyo(r)n(r) (71)

provided by the trapping potential Vy(r), introduced in
Eq. (1), which is assumed to be the same for both spin
species. Furthermore, we also assume N;=N|. In Egs.
(69)=(71), n(r)=n;(r)+n (r) is the total density profile. Its
value at equilibrium is determined by the variational re-
lation &8(E—pugN)/ n(r)=0, which yields the Thomas-
Fermi equation

o = p[n(e)] + Vio(r), (72)

where wu(n)=de(n)/dn is the local chemical potential de-
termined by the equation of state of the uniform system
and p, is the chemical potential of the trapped gas, fixed
by the normalization condition [drn(r)=N. Equation
(72) provides an implicit equation for n(r).

The applicability of LDA is justified if the relevant
energies are much larger than the single-particle oscilla-
tor energy fw;, ie., if uy>hw; (i=x,y,z). While in the
case of Bose-Einstein condensed gases this condition is
ensured by the repulsive interaction among atoms, in the
Fermi case the situation is different. In fact, due to the
quantum pressure term related to the Pauli principle,
even in the noninteracting case one can apply the
Thomas-Fermi relationship (72) using the density depen-
dence

2
pn) = (3772)2’3;‘—’“”2/3 (73)

for the local chemical potential yielding the equilibrium
profile (8).

Interactions modify the shape and the size of the den-
sity profile. The effects are accounted for with Eq. (72)
once the local chemical potential w(n) is known. A
simple result is obtained at unitarity, where the equation
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of state has the same density dependence (73) as the
ideal gas, apart from the dimensionless renormalization
factor (1+p) [see Eq. (42)]. Dividing Eq. (72) by (1+2)
one finds that the results at unitarity are obtained from
the ideal Fermi gas results by rescaling the trapping fre-
quencies and the chemical potential according to w;
—w,/\1+B and py— po/(1+6). In particular, the den-
sity profile at unitarity takes the same form (8) as in the
ideal gas, with the Thomas-Fermi radii given by the res-
caled law

Ri=(1+ B R = (1+ ) ap24N) 02 (74)
From the above results one also finds En,=(1+8)"2E},
for the oscillator energy (71) of the trapped gas in terms
of the ideal gas value Eﬂoz(3/8)NE}F10 (see Sec. ILLA).

In the BCS regime (a¢ negative and small), the first
correction to the noninteracting density profile (8) can
be calculated using perturbation theory. Interactions are
treated at the Hartree level by adding the term
~4mh?|a|n/2m to Eq. (73) for the local chemical poten-
tial. The resulting density profile is compressed due to
the effect of the attractive interaction and the Thomas-
Fermi radii reduce according to the law

[ 2m0 o( 256 o )
Ri= Vmw%_Ri =35 2knal ). 75)

if k%|a| <1, where k% is the Fermi wave vector (9) of the
noninteracting gas.

Another interesting case is the BEC limit where one
treats the interaction between dimers using the mean-
field term u,=g,m/2 in the equation of state. The cou-
pling constant g,=2mhagy/m is fixed by the molecule-
molecule scattering length a43=0.60a. In this limit, the
density is given by the inverted parabola profile (Dal-
fovo et al., 1999) and the Thomas-Fermi radii reduce to

15 aqq 1/5(1)h
Rizaho(?NZ> —,
o

(76)
w;

In Fig. 10, we show the results for the density profiles
measured in situ in a harmonically trapped Fermi gas at
low temperatures. The plotted profile is the double inte-
grated density n'"(z)=fdxdy n(r), corresponding to the
quantity measured in the experiment (Bartenstein et al.,
2004a). Good agreement between experiment and
theory is found at unitarity, where

N 16 Z2\52
nM(z) = ——(1 - —) ,
R;

77
R, 5w 7

with R, given by Eq. (74). The best fit to the experimen-
tal curve yields the value 8=-0.73"0)3 (Bartenstein et
al., 2004). The attractive nature of interactions at unitar-
ity is explicitly revealed in Fig. 10 through comparison
with the density profile of a noninteracting gas. For a
systematic comparison between experimental and theo-
retical results for the density profiles, see Perali et al
(2004).

A more recent experimental determination of B, also
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FIG. 10. (Color online) Experimental results of the double
integrated density profiles along the BCS-BEC crossover for a
gas of °Li atoms. The results at 850 G correspond to unitarity,
while the results at 809 and 882 G correspond, respectively, to
the BEC and BCS side of the resonance. The continuous curve
at unitarity is the best fit based on Eq. (77). The dashed lines
correspond to the predictions for a noninteracting gas. From
Bartenstein et al., 2004a.

based on the in situ measurement of the cloud radius,
gives the value B=-0.54(5) (Partridge, Li, Kamar, et al.,
2006). These measurements refer to a gas of °Li atoms.
An important result consists in the agreement found
with experiments on “°K atoms, where B was deter-
mined by extrapolating to low temperature the mea-
sured values of the oscillator energy (Stewart e al.,
2006). The fact that the value of B does not depend on
the atomic species considered is further important proof
of the universal behavior exhibited by these systems at
unitarity (see Table II for a list of available experimental
and theoretical results of 3).

B. Release energy and virial theorem

In addition to the in situ density profiles, a valuable
source of information comes from the measurement of

TABLE II. Experimental and theoretical values of the univer-
sal parameter B. The experimental results are taken from (1)
Tarruell et al. (2007), (2) Kinast, Turlapov, Thomas, et al.
(2005), (3) Partridge, Li, Kamar, et al. (2006), (4) Bartenstein et
al. (2004), and (5) Stewart et al. (2006). The theoretical results
are from: (6) Carlson et al. (2003), (7) Astrakharchik, Boronat,
Casulleras, ef al. (2004), (8) Carlson and Reddy (2005), and (9)
Perali et al. (2004).

B
Expt. SLi ENS (1) —0.59(15)
Duke (2) -0.49(4)
Rice (3) —0.54(5)
Innsbruck (4) -0.7370:42
Expt. K JILA (5) -0.5470%
Theory BCS mean field -0.41
QMC (6,7.8) —-0.58(1)
T-matrix (9) -0.545
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the energy after switching off the confining trap (release
energy). This energy consists of the sum of the kinetic
and the interaction term:

Erel = Ekin + Eint’ (78)

and within LDA it is simply given by Eq. (70).

The release energy was first measured along the cross-
over by Bourdel ef al. (2004) on a gas of ®Li atoms. The
most recent experimental determination at unitarity
yields the estimate B=-0.59(15) (Tarruell et al., 2007).
This value agrees with the one extracted from in situ
measurements of the radii (see Table II).

A general relationship between the release energy
(70) and the potential energy (71) can be derived with
the help of the virial theorem. This theorem holds when
the energy density e(n) has a polytropic (power-law) de-
pendence on the density: e(n)<n?"!. The polytropic de-
pendence characterizes the BEC limit, where y=1, as
well as the unitary limit, where y=2/3. The theorem is
derived by applying the number conserving transforma-
tion n(r) — (1+a)’n[(1+ a)r] to the density of the gas at
equilibrium. By imposing that the total energy variation
vanish to first order in «, one gets the result

3 yErel = 2Ehoa (79)

which reduces to E,.=Ey, at unitarity.

C. Momentum distribution

The momentum distribution of ultracold Fermi gases
is an important quantity carrying a wealth of informa-
tion on the role played by interactions. A simple theo-
retical approach for trapped systems is based on the
BCS mean-field treatment introduced in Sec. V.A and
on the local-density approximation (Viverit et al., 2004).
The result is given by the spatial integral of the particle
distribution function (60) of the uniform gas

d
n(k) = f ﬁnkm, (80)

where the r dependence enters through the chemical po-
tential u(r) and the order parameter A(r), which are de-
termined by the local value of the density n(r). The mo-
mentum distribution (k) is calculated for given values
of the interaction strength kOFa. Two limiting cases can be
derived analytically: one corresponds to the noninteract-
ing gas, where ny(r)=0[1-k/kp(r)] depends on the local
Fermi wave vector kg(r)=[37°n(r)]*? and the integral
(80) yields the result (10). The other corresponds to the
deep BEC regime, where, using Eq. (61), one finds the
molecular result n(k)=(a’N/27)/(1+k%*a*)>. A general
feature emerging from these results is the broadening of
the Fermi surface, which, for trapped systems, is caused
both by confinement and by interaction effects.

The momentum distribution has been measured along
the crossover in a series of studies (Regal et al., 2005;
Chen et al., 2006; Tarruell et al., 2007). The accessible
quantity in experiments is the column integrated distri-

bution neg(k,)=/",dkn(k), where k,=vk;+k,. These

Rev. Mod. Phys., Vol. 80, No. 4, October—December 2008

1.0 T T T

g o
o ©

n. (K)(k')’/N
o
=y

o
()

FIG. 11. (Color online) Column integrated momentum distri-
butions of a trapped Fermi gas. The symbols correspond to the
experimental results from Regal et al. (2005) and the lines to
the mean-field results based on Eq. (80) for the same values of
the interaction parameter 1/k%. From top to bottom: 1/k%a
=-71, 1/k%a=0, and 1/k%a=0.59.

experiments are based on the technique of time-of-flight
expansion followed by absorption imaging. A crucial re-
quirement is that the gas must expand freely without any
interatomic force. To this purpose the scattering length
is set to zero by a fast magnetic-field ramp immediately
before the expansion. The measured column integrated
distributions along the crossover from Regal et al. (2005)
are shown in Fig. 11 together with the mean-field calcu-
lations of n, based on Eq. (80) for the same values of
the interaction strength 1/k% (the value of a corre-
sponds here to the scattering length before the
magnetic-field ramp). There is an overall qualitative
agreement between the theoretical predictions and ex-
perimental results. However, the dynamics of the ramp
produces a strong quenching of n., at large momenta
k>k?g, which affects the released kinetic energy E
=2m[dk  k ne(k, )(3h*> /4m). A theoretical estimate
of E, based on the equilibrium distributions, would
predict a large value, on the order of the energy scale
#?/mRj associated with the interatomic potential [see
the discussion in Sec. V.A after Eq. (61)]. On the con-
trary, the measured energies from Regal ef al. (2005) do
not depend on the details of the interatomic potential
because the magnetic-field ramp is never fast enough to
access features on order of the interaction range R,. A
good quantitative agreement for the measured momen-
tum distribution and kinetic energy has been provided
by the approach developed by Chiofalo et al. (2006),
which explicitly accounts for the time dependence of the
scattering length produced by the magnetic-field ramp.

D. Trapped gas at finite temperatures

The local-density approximation (72) for the density
profile can also be successfully used at finite tempera-
ture, where the chemical potential depends on both the
density and the temperature and is defined according to
the thermodynamic relationship u(n,T)=(de(n,T)/dn),,
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where s=nS(n,T)/N is the entropy density. Since the
transition temperature decreases when the density de-
creases, the LDA predicts a sharp spatial boundary be-
tween a superfluid core and a normal external region.
The effect is particularly evident in the BEC regime
where it gives rise to a typical bimodal distribution char-
acterized by a narrow Bose-Einstein condensate of mol-
ecules surrounded by a broader cloud of thermal mol-
ecules. The experimental observation of this bimodal
distribution (Greiner et al., 2003; Zwierlein et al., 2003;
Bartenstein et al., 2004a; Bourdel et al., 2004; Partridge
et al., 2005) represents the most spectacular and direct
evidence for emergence of Bose-Einstein condensation
from an interacting Fermi gas (see Fig. 1). In this BEC
regime, the critical temperature for the superfluid tran-
sition is given by kgTgpc=hwn[Ny/{(3)]'3, where N,
=N/2 is the number of dimers and £(3)=1.202. In terms
of the Fermi temperature (5), this result reads

The = 0.52T", (81)

and should be compared with the corresponding result
(37) in uniform gases. By including interaction effects to
lowest order using a mean-field approach, one predicts a
positive shift of the transition temperature (81), propor-
tional to the dimer-dimer scattering length a4q (Giorgini
et al., 1996). Due to large interaction effects in the con-
densate and thermal cloud, the bimodal structure be-
comes less and less pronounced as one approaches the
resonance and consequently it becomes more difficult to
reveal the normal-superfluid phase transition by looking
only at the density profile.

Once one knows the density profiles of the interacting
Fermi gas as a function of temperature and interaction
strength, one can calculate the various thermodynamic
functions along the crossover using the LDA. For ex-
ample, the release energy and the entropy are given,
respectively, by Eq. (70) and the integral S(7)
=[drs[T,n(r)]. At unitarity, the relevant thermodynamic
functions can be expressed in terms of the universal
functions fp(x) and fg(x) defined in Sec. IV.F, where the
ratio x=T/Tr is replaced by the local quantity
kgT2m/h*[37n(r)]”? (Ho, 2004; Thomas et al., 2005).
Furthermore, a useful result at unitarity, which remains
valid at finite temperature, is the virial relationship E,
=E,, [see Eq. (79)]. Indeed, since the energy has a mini-
mum at constant N and S, by imposing the stationarity
condition at constant 7/n** one immediately finds the
above identity.

The temperature dependence of the thermodynamic
functions in a trapped gas along the crossover has been
calculated in a series of papers using self-consistent
many-body approaches (Perali, Pieri, Pisani, et al., 2004;
Chen, Stajic, and Levin, 2005; Kinast, Turlapov, Thomas,
et al., 2005; Stajic et al., 2005; Hu et al., 2006a, 2006b).
Other studies have been based on quantum Monte
Carlo techniques (Burovski et al., 2006b; Bulgac et al.,
2007). In particular, the transition temperature has been
determined using LDA and Monte Carlo results for uni-
form systems discussed in connection with Eq. (44) of
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Sec. IVF. The reported value is 7,.=0.20(2) E (Burovski
et al., 2006b). Furthermore, the values of the energy and
entropy per particle at the transition point have also
been determined (Bulgac et al., 2007) yielding, respec-
tively, the results [E(7T,.)-E(0)]/N=0.32E; and
S(T,)/Nkg=2.15.

From the experimental point of view, a major diffi-
culty in studying thermodynamic functions is the deter-
mination of the temperature when one cools down the
system into the deeply degenerate regime. In fact, when
the system is very cold, the measurement of the density
profile in the tails, which in general provides a natural
access to T, is not accurate, the number of thermally
excited atoms small. This is not a severe problem in the
deep BCS regime, where the noninteracting Thomas-
Fermi profile fitted to the whole spatial distribution of
the expanded cloud provides a reliable thermometry. In-
stead, in the strongly coupled regime, a model-
independent temperature calibration is difficult to ob-
tain. Useful estimates of the temperatures achievable
through adiabatic transformations along the BCS-BEC
crossover can be obtained using entropy arguments. For
example, starting from an initial configuration in the mo-
lecular BEC regime with temperature 7" and changing
adiabatically the value of the scattering length from
positive to small negative values on the other side of the
Feshbach resonance, one eventually reaches a final tem-
perature in the BCS regime given by (Carr et al., 2004)

e ) )
Tr) fina 4503\ Toec/initial

This relationship has been obtained by requiring that
the entropies of the initial and final regimes, calculated
using the predictions of the degenerate ideal Bose and
Fermi gases, respectively, be the same. The adiabatic
transformation results in a drastic reduction of 7.

Many thermodynamic functions have already been
measured in trapped Fermi gases. Measurements of the
specific heat and a first determination of the critical tem-
perature 7. were reported by Kinast, Turlapov, Thomas,
et al. (2005), who extracted the value T,.=0.27T at uni-
tarity. The value of 7. was determined by identifying a
characteristic change of slope of the measured energy as
a function of temperature and relied on a model-
dependent temperature calibration.

In order to overcome the difficulties directly measur-
ing the temperature, recent experiments have also fo-
cused on the study of relevant thermodynamic relation-
ships. One of these experiments concerns the
verification of the virial relation at unitarity (Thomas et
al., 2005) that has been achieved by measuring indepen-
dently the mean-square radius, proportional to the oscil-
lator energy, and the total energy. The results shown in
Fig. 12 demonstrate that the virial relation is verified
with remarkable accuracy, confirming the universality of
the equation of state at unitarity.

Another experiment concerns measuring the entropy
the trapped gas (Luo et al, 2007). In this experiment,
one starts from a strongly interacting configuration (for
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FIG. 12. Verifying the virial theorem at unitarity in a Fermi
gas of OLi; (x?)/{x*(0)) vs E/E(0) showing linear scaling. Here
(x?) is the transverse mean-square radius, proportional to the
oscillator energy. E is the total energy evaluated as in Kinast,
Turlapov, Thomas, et al (2005). E(0) and (x*(0)) denote
ground-state values. From Thomas et al., 2005.

example, at unitarity) and switches off adiabatically the
interactions bringing the system into a final weakly in-
teracting state, where the measurement of the radii (and
hence of the oscillator energy) is expected to provide a
reliable determination of the entropy. Since entropy is
conserved during the transformation, measuring of the
radii of the final (weakly interacting) sample determines
the entropy of the initial (strongly interacting) configu-
ration. This procedure has been used to measure the
entropy as a function of the energy at unitarity in a gas
of ®°Li atoms. The results are shown in Fig. 13. These
measurements give access to the temperature of the gas
through dE/dS=T. They have been used to study the
thermodynamic behavior near the critical point, which
can be identified as a change in the energy dependence
S(E) of the entropy. This method provides the experi-
mental estimate 7,=0.297 for the critical temperature,
in good agreement with the analysis of the specific heat
(Kinast, Turlapov, Thomas, et al, 2005). Furthermore,
the extracted values of the critical entropy, S(7.)/Nkpg
=2.7(2), and energy per particle, [E(T.)—E(0)]/
N=0.41(5)E, agree reasonably well with the theoretical
estimates reported above.

VII. DYNAMICS AND SUPERFLUIDITY

Superfluidity is one of the most striking properties ex-
hibited by ultracold Fermi gases, analogous to supercon-
ductivity in charged Fermi systems. Among the most no-
ticeable manifestations of superfluidity, one should recall
the absence of shear viscosity, the hydrodynamic nature
of macroscopic dynamics even at zero temperature, the
Josephson effect, the irrotational quenching of the mo-
ment of inertia, the existence of quantized vortices, and
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FIG. 13. (Color online) Measured entropy in a trapped °Li gas
at unitarity vs total energy. The data reveal the occurrence of a
characteristic change of behavior in the slope at [E
—E(0)]/N=0.41Ep, which is interpreted as the signature of the
phase transition to the superfluid regime. The solid lines are
power-law fits below and above the critical point, while the
dashed lines show the extended fits. From Luo et al., 2007.

the occurrence of pairing effects. The possibility of ex-
ploring these phenomena in ultracold gases is providing
a unique opportunity to complement our present knowl-
edge of superfluidity in neutral Fermi systems, previ-
ously limited to liquid *He, where pairing occurs in a
p-wave state. In this section, we first discuss the hydro-
dynamic behavior exhibited by superfluids and its impli-
cations on the dynamics of trapped Fermi gases (expan-
sion and collective oscillations). The last part is devoted
instead to a discussion of pair-breaking effects and Lan-
dau’s critical velocity. Other manifestations of superflu-
idity will be discussed in Sec. VIII.

A. Hydrodynamic equations of superfluids at 7=0

The macroscopic behavior of a neutral superfluid is
governed by the Landau equations of irrotational hydro-
dynamics. The condition of irrotationality is a conse-
quence of the occurrence of off-diagonal long-range or-
der, characterized by the order parameter A(r) [see Egs.
(26)—(28)]. In fact the velocity field is proportional to the
gradient of the phase S of the order parameter according
to

h
v="—VS§. (83)

2m
At zero temperature, the hydrodynamic equations of
superfluids consist of coupled and closed equations for
the density and the velocity field. Actually, due to the
absence of the normal component, the superfluid density
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coincides with the total density and the superfluid cur-
rent with the total current. The hydrodynamic picture
assumes that the densities of the two spin components
are equal and move in phase [n(r,f)=n (r,f)=n(r,1)/2
and v;(r,t)=v(r,f)=v(r,r)]. This implies, in particular,
that the number of particles of each spin species be
equal (N;=N,). In the same picture, the current is given
by j=nv. The equations take the form

J

—n+V-(nv)=0 84

Py (nv) (84)
for the density (equation of continuity) and

J 1
m_v + V(Emvz + u(n) + Vh0> =0 (85)

for the velocity field (Euler’s equation). Here w(n) is the
atomic chemical potential, fixed by the equation of state
for uniform matter. At equilibrium (v=0), Euler’s equa-
tion reduces to the LDA equation (72) for the ground-
state density profile. The hydrodynamic equations (84)
and (85) can be generalized to the case of superfluids of
unequal masses and unequal trapping potentials (see
Sec. IX.C).

Despite the quantum nature underlying the superfluid
behavior, the hydrodynamic equations of motion have a
classical form and do not depend explicitly on the
Planck constant. This peculiarity raises the question of
whether the hydrodynamic behavior of a cold Fermi gas
can be used to probe the superfluid regime. In fact,
Fermi gases above the critical temperature with reso-
nantly enhanced interactions enter a collisional regime
where the dynamic behavior is governed by the same
equations (84) and (85). In this respect, it is important to
stress that collisional hydrodynamics admits the possibil-
ity of rotational components in the velocity field which
are strictly absent in the superfluid. A distinction be-
tween classical and superfluid hydrodynamics is conse-
quently possible only studying the rotational properties
of the gas (see Sec. VIII). We also emphasize that the
hydrodynamic equations of superfluids have the same
form for both Bose and Fermi systems, the effects of
statistics entering only the form of u(n).

The applicability of the hydrodynamic equations is in
general limited to the study of macroscopic phenomena,
characterized by long-wavelength excitations. In particu-
lar, the wavelengths should be larger than the so-called
healing length & The value of ¢ is estimated in the BEC
limit where the Bogoliubov spectrum (39) approaches
the phonon dispersion law for wavelengths larger than
&~ (nagg)™"2. In the opposite BCS regime, the healing
length is fixed by the pairing gap. In fact, the
Bogoliubov-Anderson phonon mode is defined up to en-
ergies of the order fick~Ay,, corresponding to &
~hvp/Agap- In both the BEC and BCS limits, the healing
length becomes larger and larger as kp|la| —0. Near
resonance the only characteristic length is fixed by the
average interatomic distance and the hydrodynamic
theory can be applied for all wavelengths larger than
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FIG. 14. (Color online) Aspect ratio as a function of time dur-
ing the expansion of an ultracold Fermi gas at unitarity. Upper
symbols, experiment; upper line, hydrodynamic theory. For
comparison, also shown are the results in the absence of inter-
actions. Lower symbols, experiment; lower line, ballistic ex-
pansion. From O’Hara et al., 2002.

k;'. In Sec. VILD, we relate the healing length to the
critical Landau velocity and discuss its behavior along
the crossover.

B. Expansion of a superfluid Fermi gas

In most experiments with ultracold atomic gases, im-
ages are taken after expansion of the cloud. These mea-
surements provide information on the state of the gas in
the trap and it is consequently of crucial importance to
have an accurate theory describing the expansion. As
discussed in Sec. II.B, in the absence of interactions the
expansion of a Fermi gas is also asymptotically isotropic
if before the expansion the gas is confined by an aniso-
tropic potential. Deviations from isotropy are conse-
quently an important signature of the role of interac-
tions. In the experiment of O’Hara et al. (2002), the first
clear evidence of anisotropic expansion of a cold Fermi
gas at unitarity was reported (see Fig. 14), opening an
important debate in the community aimed to understand
the nature of these many-body configurations. Hydrody-
namic theory has been extensively used in the past to
analyze the expansion of Bose-Einstein condensed
gases. Recently (Menotti et al, 2002) this theory was
proposed to describe the expansion of a Fermi super-
fluid. The hydrodynamic solutions are obtained starting
from the equilibrium configuration, corresponding to a
Thomas-Fermi profile, and then solving Eq. (85) by set-
ting V,,=0 for r>0. In general, the hydrodynamic equa-
tions should be solved numerically. However, for an im-
portant class of configurations the spatial dependence
can be determined analytically. In fact, if the chemical
potential has the power-law dependence p>*n” on the
density, then the Thomas-Fermi equilibrium profiles
have the analytic form 7y (uy—Vyo)!”, and the scaling
ansatz
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4 [(x Yy z
”(X,y,z,[) = (bxbybz) no(a’ b_y’ b_z> k) (86)
provides the exact solution. The scaling parameters b;
obey the simple time-dependent equations,

w’

b; bilbibybo) 0. (87)
The above equation generalizes the scaling law previ-
ously introduced in the case of an interacting Bose gas
(y=1) (Castin and Dum, 1996; Kagan et al., 1996). From
the solutions of Eq. (87) one can calculate the aspect
ratio as a function of time. For an axially symmetric trap
(o,=wy=w,) this is defined as the ratio between the
radial and axial radii. In terms of the scaling parameters

b;, it can be written as

R _b.(0) o
Z@0) b)) e,

For an ideal gas, the aspect ratio tends to unity, while
the hydrodynamic equations yield an asymptotic value
#1. Furthermore, hydrodynamics predicts a peculiar in-
version of shape during the expansion caused by the hy-
drodynamic forces, which are larger in the direction of
larger density gradients. As a consequence, an initial
cigar-shaped configuration is brought into a disk-shaped
profile at large times and vice versa. One can easily es-
timate the typical time at which the inversion of shape
takes place. For a highly elongated trap (0, > w,), the
axial radius is practically unchanged for short times
since the relevant expansion time along the z axis is
fixed by 1/w,. Conversely, the radial size increases fast
and, for w,t>1, one expects R, (f)~R (0)w, t. One
then finds that the aspect ratio is equal to unity when
wt~1.

In Fig. 14, we show the predictions for the aspect ratio
given by Egs. (87) and (88) at unitarity, where y=2/3,
together with the experimental results of O’Hara et al.
(2002) and the predictions of the ideal Fermi gas. The
configuration shown in the figure corresponds to an ini-
tial aspect ratio equal to R, /Z=0.035. The comparison
strongly supports the hydrodynamic nature of the ex-
pansion of these ultracold Fermi gases. The experiment
was repeated at higher temperatures and found to ex-
hibit a similar hydrodynamic behavior even at tempera-
tures on the order of the Fermi temperature, where the
system cannot be superfluid. One then concludes that
even in the normal phase the hydrodynamic regime can
be ensured by collisional dynamics. This is especially
plausible close to unitarity where the scattering length is
large and the free path of atoms is on the order of the
interatomic distances. The anisotropic expansion exhib-
ited by ultracold gases shares important analogies with
the expansion observed in the quark gluon plasma pro-
duced in heavy ion collisions (see, for example, Kolb et
al., 2001; Shuryak, 2004).

In more recent experiments (Altmeyer et al., 2007b;
Tarruell et al., 2007), the aspect ratio was measured at
the coldest temperatures along the BCS-BEC crossover,

(88)
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FIG. 15. Aspect ratio after expansion from the trap along the
crossover. The solid lines are the hydrodynamic predictions at
unitarity and for a gas in the deep BEC regime. The Fermi
momentum ky corresponds to the value (9). From Altmeyer et
al., 2007b.

at a fixed expansion time. At unitarity, the results (see
Fig. 15) agree well with the hydrodynamic predictions
but, as one moves toward the BCS regime the aspect
ratio becomes closer and closer to unity thereby reveal-
ing important deviations from the hydrodynamic behav-
ior. In the deep BCS regime, the hydrodynamic theory
predicts the same behavior for the time dependence of
the aspect ratio as at unitarity, the equation of state be-
ing characterized by the same power-law coefficient vy
=2/3. The deviations from the hydrodynamic picture
follow from the fact that, since the density becomes
smaller and smaller during the expansion, the BCS gap
becomes exponentially small and the hydrodynamic pic-
ture can no longer be safely applied. Superfluidity is ex-
pected instead to be robust at unitarity since the energy
gap is much larger than the typical oscillator frequency
(whose inverse fixes the time scale of the expansion)
and, as a consequence, pairs cannot easily break during
the expansion.

A case that deserves special attention is the expansion
of the unitary gas for isotropic harmonic trapping. In
this case, an exact solution of the many-body problem is
available (Castin, 2004) without invoking the hydrody-
namic picture. One makes use of the following scaling
ansatz for the many-body wavefunction:

W(ry, ... txnt) = NP2 (x /b, .. enlb),
(89)

where V¥ is the many-body wave function at r=0, b(¢) is
a time-dependent scaling variable, and N(¢) is a normal-
ization factor. Equation (89) exactly satisfies the Bethe-
Peierls boundary condition (25) if one works at unitarity
where 1/a=0. At the same time, for distances larger
than the range of the force where the Hamiltonian coin-
cides with the kinetic energy, the Schrodinger equation

is exactly satisfied by Eq. (89) provided h=w} /b>. One
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finds consequently that the expansion of the unitary gas
is exactly given by the noninteracting law b(7)
=i 2 +1, which coincides with the prediction of the
hydrodynamic equations (87) after setting w;= wy,,.

C. Collective oscillations

The collective oscillations of a superfluid gas provide
a unique source of information, being at the same time
of relatively easy experimental access and relevant the-
oretical importance. At zero temperature the oscilla-
tions can be studied by considering the linearized form
of the time-dependent hydrodynamic equations (84) and
(85), corresponding to small oscillations of the density,
n=ny+ én exp(—iwt), with respect to the equilibrium pro-
file ny(r). The linearized equations take the form

1 p
—Pn=—V -[nov(—“an)}. (90)
m on

In the absence of harmonic trapping, the solutions
correspond to sound waves with dispersion w=cq and, in
a Fermi superfluid, coincide with the Bogoliubov-
Anderson phonons. In the BEC limit, one recovers the
Bogoliubov result c=\mh’agqn,/m? for the sound veloc-
ity, where ayq is the dimer-dimer scattering length and
ng=n/2 is the molecular density. In the BCS limit, one
instead approaches the ideal gas value c=vy/ V3. Finally,
at unitarity one has the result (43).

In the presence of harmonic trapping, the propagation
of sound is affected by the inhomogeneity of the me-
dium. In a cylindrical configuration (w,=0), the sound
velocity can be calculated using the 1D result mcip
=n1pdmp/dnp, where nip=[dxdyn is the 1D density
and the 1D chemical potential up is determined by the
Thomas-Fermi relation w(n)+ Viy,(r,)=up for the ra-
dial dependence of the density profile. One finds
(Capuzzi et al., 2006)

12
dxd
1 f xdyn

— . (91)
m
f dxdy(dul/on)!

Cip =

On the BEC side, where won, one recovers the result
¢ip=c/+2 in terms of the value (31) of uniform systems.
This result was first derived by Zaremba (1998) in the
context of Bose-Einstein condensed gases. At unitarity,
where uxn®3, one finds c;p=13/5¢c. The propagation of
sound waves in very elongated traps was recently mea-
sured by Joseph et al. (2007). The experimental results
are in good agreement with the estimate of ¢, based on
the QMC equation of state and clearly differ from the
prediction of the BCS mean-field theory (see Fig. 16).
In the presence of 3D harmonic trapping, the lowest
frequency solutions of the hydrodynamic equations are
discretized, with their frequencies on the order of the
trapping frequencies. These modes correspond to wave-
lengths on the order of the size of the cloud. First we
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FIG. 16. (Color online) Sound velocity in the center of the trap
measured along the BCS-BEC crossover (symbols). The theory
curves are obtained using Eq. (91) and are based on different
equations of state: BCS mean field (dotted line), quantum
Monte Carlo (solid line), and Thomas-Fermi molecular BEC
with a43q=0.60a (dashed line). The Fermi momentum k. corre-
sponds to the value (9). From Joseph er al.., 2007.

consider the case of isotropic harmonic trapping (w,
=wy=w, = wp,). A general class of divergency free (also
called surface) solutions is available in this case. They
are characterized by the velocity field vV (r'Y,,,), sat-
isfying V-v=0 and corresponding to density variations of
the form (du/dn)dnxr‘Y,,, with Y, the spherical har-
monic function. Using the identity (du/dn)Vny=-VV,,,
at T=0 for the density profile at equilibrium, one finds
that these solutions obey the dispersion law w(€) = \s“?who,
independent of the equation of state, as expected for the
surface modes driven by an external force. This result
provides a useful characterization of the hydrodynamic
regime. The result in fact differs from the prediction
(€)= L€ wy, of the ideal gas model, revealing the impor-
tance of interactions from the hydrodynamic descrip-
tion. Only in the dipole case (€=1), corresponding to the
center-of-mass oscillation, do the interactions not affect
the frequency of the mode.

In addition to surface modes, an important solution is
the £=0, m=0 breathing mode whose frequency can be
found in analytic form if the equation of state is poly-
tropic (uon?). In this case, the velocity field has the
radial form ver and one finds w(m=0)=3y+2w,,. For
v=1, one recovers the well-known BEC result v’gwho
(Stringari, 1996b) while, at unitarity, one finds 2wy,. It is
worth stressing that the result at unitarity keeps its va-
lidity beyond the hydrodynamic approximation. The
proof follows from the same arguments used for the free
expansion in Sec. VILB. In fact, the scaling ansatz (89)
also solves the Schrodinger equation in the presence of
isotropic harmonic trapping (Castin, 2004). The scaling

function in this case obeys the equation bh=w} /b’
~wpob, which admits undamped solutions of the form
b(t)=VA cosayt+ ¢)+B. Here A=|B>-~1 and B (=1)
is proportional to the energy of the system (at equilib-
rium B=1). In a BEC gas, a similar result holds for the
radial oscillation in cylindrical geometry (Kagan et al.,
1996; Pitaevskii, 1996) and the corresponding mode was
experimentally investigated by Chevy et al. (2002).
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FIG. 17. (Color online) Frequency of the radial quadrupole
mode for an elongated Fermi gas in units of the radial fre-
quency (upper panel). The dashed line is the hydrodynamic
prediction 2w, . The lower panel shows the damping of the
collective mode. The Fermi momentum kf corresponds to the
value (9). From Altmeyer et al., 2007a.

In the case of axisymmetric trapping (w,=w,=w,
# w,), the third component #m of the angular momen-
tum is still a good quantum number and one also finds
simple solutions of Eq. (90). The dipole modes, corre-
sponding to the center-of-mass oscillation, have frequen-
cies w, (m==1) and w, (m=0). Another surface solu-
tion is the radial quadrupole mode (m==+2)
characterized by the velocity field v V(x+iy)? and the
frequency

wm=+2)=\20,, (92)

independent of the equation of state. This collective
mode was recently measured by Altmeyer et al. (2007a).
The experimental results (see Fig. 17) show that while
the agreement with the theoretical prediction (92) is
good on the BEC side, including unitarity, as soon as
one enters the BCS regime strong damping and devia-
tions from the hydrodynamic law take place, suggesting
that the system is leaving the superfluid phase. For small
and negative a, the system is actually expected to enter a
collisionless regime where the frequency of the m=+2
quadrupole mode is 2w, apart from small mean-field
corrections (Vichi and Stringari, 1999). Another class of
surface collective oscillations, the so-called scissors
mode, will be discussed in Sec. VIII.A, due to its rel-
evance for the rotational properties of the system.
Different from the surface modes, the m=0 compres-
sional modes depend instead on the equation of state.
For a polytropic dependence of the chemical potential
(mecn?) the corresponding solutions can be derived ana-
lytically. They are characterized by a velocity field of the
form v V[a(x?+y?)+bz?], resulting from the coupling
between the €=2 and 0 modes caused by the deforma-
tion of the trap (Cozzini and Stringari, 2003). In the
limit of elongated traps (w,<w,), the two solutions re-
duce to the radial [w=V2(y+1)w,] and axial [w
=V(3y+2)/(y+1)w,] breathing modes. Experimentally
both modes have been investigated (Bartenstein et al.,
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FIG. 18. (Color online) Frequency of the radial compression
mode for an elongated Fermi gas in units of the radial fre-
quency. The curves refer to the equation of state based on BCS
mean-field theory (lower line) and on Monte Carlo simulations
(upper line). The Fermi momentum kg corresponds to the
value (9). From Altmeyer et al., 2007.

2004b; Kinast et al., 2004; Altmeyer et al., 2007). In Fig.
18, we show the most recent experimental results (Alt-
meyer et al., 2007) for the radial breathing mode. At
unitarity the agreement between theory (10/3w N
=1.83w,) and experiment is remarkably good. It is also
worth noting that the damping of the oscillation is small-
est near unitarity.

When we move from unitarity, the collective oscilla-
tions exhibit other interesting features. Theory predicts
that in the deep BEC regime (y=1) the frequencies of
both the axial and radial modes are higher than at uni-
tarity. Furthermore, the first corrections with respect to
the mean-field prediction can be calculated analytically,
by accounting for the first correction to the equation of
state u,=gn, produced by quantum fluctuations. This is
the so-called Lee-Huang-Yang (LHY) correction [see
Eq. (38)] first derived in the framework of Bogoliubov
theory of interacting bosons. The resulting shifts in the
collective frequencies are positive (Pitaevskii and Strin-
gari, 1998; Braaten and Pearson, 1999). As a conse-
quence, when one moves from the BEC regime toward
unitarity, the dispersion law exhibits a typical nonmono-
tonic behavior, since it first increases, due to the LHY
effect, and eventually decreases to reach the lower value
V10/3w, at unitarity (Stringari, 2004).

In general, the collective frequencies can be calcu-
lated numerically along the crossover by solving the hy-
drodynamic equations once the equation of state is
known (Combescot and Leyronas, 2002; Heiselberg,
2004; Hu et al., 2004; Kim and Zubarev, 2004; Astrakhar-
chick, Combescot, Leyronas, et al., 2005; Bulgac and
Bertsch, 2005; Manini and Salasnich, 2005). Figure 18
shows the predictions (Astrakharchik, Combescot, Ley-
ronas, et al.. 2005) obtained using the equation of state
of the Monte Carlo simulations discussed in Sec. V.B
and the BCS mean-field theory of Sec. V.A. The Monte
Carlo equation of state accounts for the LHY effect
while the mean-field BCS theory misses it, providing a
monotonic behavior for the compressional frequency as
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one moves from the BEC regime to unitarity. Accurate
measurements of the radial compression mode reported
in Fig. 18 confirm the Monte Carlo predictions, provid-
ing an important test of the equation of state and first
evidence for the LHY effect. Note that the LHY effect
is visible only at the lowest temperatures (Altmeyer,
Riedl, Kohstall, et al., 2007) where quantum fluctuations
dominate over thermal fluctuations (Giorgini, 2000).
This explains why previous measurements of the breath-
ing mode failed in revealing the enhancement of the col-
lective frequency above the value 2w, .

The behavior of the breathing modes on the BCS side
of the resonance exhibits different features. Similar to
the case of the quadrupole mode (see Fig. 17), one ex-
pects that the system soon loses superfluidity and even-
tually behaves like a dilute collisionless gas whose col-
lective frequencies are given by 2w, and 2w, for the
radial and axial modes, respectively. Experimentally this
transition is observed for the radial mode (Bartenstein et
al., 2004b; Kinast et al., 2004), where it occurs at about
kpla| ~1. It is also associated with a strong increase on
the damping of the collective oscillation.

The temperature dependence of the collective oscilla-
tions has also been the object of experimental investiga-
tions. Kinast, Turlapov, and Thomas (2005) have shown
that the frequency of the radial compression mode, mea-
sured at unitarity, remains practically constant when one
increases the temperature, suggesting that the system is
governed by the same hydrodynamic equations both at
the lowest temperatures, when the gas is superfluid, and
at higher temperature when it becomes normal. Con-
versely, the damping exhibits a significant temperature
dependence, becoming smaller and smaller as one low-
ers the temperature. This behavior strongly supports the
superfluid nature of the system in the low-temperature
regime. In fact, a normal gas is expected to be less and
less hydrodynamic as one decreases 7" with the conse-
quent increase of the damping of the oscillation. Accu-
rate determination of the damping of the collective os-
cillations can provide useful information on the viscosity
coefficients of the gas whose behavior at unitarity has
been the object of recent theoretical investigations using
universality arguments [see Son (2007), and references
therein].

D. Phonons versus pair-breaking excitations and Landau’s
critical velocity

In Sec. VII.C, we have described the discretized
modes predicted by hydrodynamic theory in the pres-
ence of harmonic trapping. This theory describes cor-
rectly only the low-frequency oscillations of the system,
corresponding to sound waves in a uniform body. When
one considers higher excitations energies, the dynamic
response should also include dispersive corrections to
the phononic branch and the breaking of pairs into two
fermionic excitations. The general picture of excitations
produced by a density probe in the superfluid state can
then be summarized as follows (for simplicity we con-
sider a uniform gas): at low frequency the system exhib-
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its a gapless phononic branch whose slope is fixed by the
sound velocity; at high frequency one expects the emer-
gence of a continuum of excitations starting from a given
threshold, above which one can break pairs. The value
of the threshold frequency depends on the momentum
hq carried by the perturbation. A first estimate is pro-
vided by the BCS mean-field theory discussed in Sec.
V.A, according to which the threshold is given by the
line wy,,=ming(e,+€_), where €, is the energy (51) of a
quasiparticle excitation carrying momentum 7%(q/2+k).
The pair then carries total momentum #q. It is easy to
see that the minimum is obtained for k-q=0, which gives
€,=€_. One can distinguish two cases: ©>0 and ©<0. In
the first case (including the unitary as well as the BCS
regimes) and for fg<2\2mu, the minimum is at
K2k 12m=u—h%g*/8m, so that fiwg,=2A. For u>0 and
ﬁq>2v’%, as well as for © <0 (including the BEC re-
gime), the minimum is at k=0, which leads to Ay,
=2\(h%q*/8m— u)>+ A

The interplay between phonon and pair-breaking ex-
citations gives rise to different scenarios along the cross-
over. In the BCS regime, the threshold occurs at low
frequencies and the phonon branch soon reaches the
continuum of single-particle excitations. The behavior is
quite different in the BEC regime where the phonon
branch extends up to high frequencies. At large mo-
menta, this branch actually loses its phononic character
and approaches the dispersion #2g*/4m, typical of a free
molecule. In the deep BEC limit, the phonon branch
coincides with the Bogoliubov spectrum of a dilute gas
of bosonic molecules. At unitarity, the system is ex-
pected to exhibit an intermediate behavior, the dis-
cretized branch surviving up to momenta on the order of
the Fermi momentum. A detailed calculation of the ex-
citation spectrum, based on a time-dependent formula-
tion of the BCS mean-field equations, is reported in Fig.
19 (Combescot, Kagan, and Stringari, 2006).

Results for the excitation spectrum provide useful in-
sight into the superfluid behavior of the gas in terms of
the Landau criterion according to which a system cannot
give rise to energy dissipation if its velocity, with respect
to a container at rest, is smaller than Landau’s critical
velocity defined by

v.=mingy(hw,/q), (93)

where fiw, is the energy of an excitation carrying mo-
mentum %q. According to this criterion, the ideal Fermi
gas is not superfluid because of the absence of a thresh-
old for single-particle excitations, yielding v.=0. The in-
teracting Fermi gas is instead superfluid in all regimes.
Inserting the results for the threshold frequency derived
above into Eq. (93), one can calculate the critical value
v, due to pair breaking. The result is

m(F)? = VA + u — u, (94)

and coincides, as expected, with the critical velocity cal-
culated by applying directly the Landau criterion (93) to
the single-particle dispersion law ¢, of Eq. (51). In the
deep BCS limit ky|a| —0, corresponding to A< pu, Eq.
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FIG. 19. Spectrum of collective excitations of the superfluid
Fermi gas along the BCS-BEC crossover (thick lines). Energy
is given in units of the Fermi energy. Left: BCS regime (kpa
=-1). Center: unitarity. Right: BEC regime (kpa=+1). The
thin lines denote the threshold of single-particle excitations.
From Combescot, Kagan, and Stringari, 2006.

(94) approaches the exponentially small value v,
=A/hkp. On the BEC side of the crossover, the value
(94) becomes instead larger and larger and the relevant
excitations giving rise to Landau’s instability are no
longer single-particle excitations but phonons and the
critical velocity coincides with the sound velocity: v.=c.
A simple estimate of the critical velocity along the whole
crossover is then given by

v.=min(c,vP). (95)

Remarkably one sees that v, has a maximum near uni-
tarity (see Fig. 20), further confirming the robustness of
superfluidity in this regime. This effect has been recently
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FIG. 20. Landau’s critical velocity (in units of the Fermi veloc-
ity) calculated along the crossover using BCS mean-field
theory. The critical velocity is largest near unitarity. The
dashed line is the sound velocity. From Combescot, Kagan,
and Stringari, 2006.

demonstrated experimentally by moving a one-
dimensional optical lattice in a trapped superfluid Fermi
at tunable velocity (see Fig. 21) (Miller et al., 2007).

The critical velocity allows one to provide a general
definition of the healing length according to ¢=#/muv..
Apart from an irrelevant numerical factor, the length
coincides with the usual definition #/y2mu, of the heal-
ing length in the BEC regime and with the size of Coo-
per pairs in the opposite BCS limit as discussed in Sec.
VIL.A. The healing length provides the typical length
above which the dynamic description of the system is
safely described by the hydrodynamic picture. The
length is smallest near unitarity (Pistolesi and Strinati,
1996), where it is on the order of the interparticle dis-
tance.
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FIG. 21. Measured critical velocity along the BCS-BEC cross-
over. The solid line is a guide to the eye. From Miller et al.,
2007.



1246 Giorgini, Pitaevskii, and Stringari: Theory of ultracold atomic Fermi gases

E. Dynamic and static structure factor

The dynamic structure factor provides an important
characterization of quantum many-body systems (see,
for example, Pines and Nozieres, 1966; Pitaevskii and
Stringari, 2003). At low energy transfer, the structure
factor gives information on the spectrum of collective
oscillations, including the propagation of sound, while at
higher energies it is sensitive to the behavior of single-
particle excitations. In general, the dynamic structure
factor is measured through inelastic scattering experi-
ments in which the probe particle is weakly coupled to
the many-body system so that scattering may be de-
scribed within the Born approximation. In dilute gases it
can be accessed with stimulated light scattering sing two-
photon Bragg spectroscopy (Stamper-Kurn et al., 1999).
The dynamic structure factor is defined by

S(q.0) = Q7' > e PEm|(0] 5p, )P 8w — i), (96)

m,n

where 7q and fiw are, respectively, the momentum and
energy transferred by the probe to the sample, 5pq=pq
—(pg) is the fluctuation of the Fourier component p,
=2exp(-iq-r) of the density operator, w,,=E,,/h
=(E,,—E,)/f are the usual Bohr frequencies, and Q is
the partition function. The definition of the dynamic
structure factor is immediately generalized to other ex-
citation operators like, for example, the spin density op-
erator.

The main features of the dynamic structure factor are
best understood in uniform matter, where the excitations
are classified in terms of their momentum. From the re-
sults of the Sec. VIL.D one expects that, for sufficiently
small momenta, the dynamic structure factor is charac-
terized by a sharp phonon peak and a continuum of
single-particle excitations above the threshold energy
hwy,. Measurements of the dynamic structure factor in
Fermi superfluids can then provide unique information
on the gap parameter. Theoretical calculations of the
dynamic structure factor in the small g regime were car-
ried out using a proper dynamic generalization of the
BCS mean-field approach (Minguzzi et al., 2001; Biichler
et al., 2004). At higher momentum transfer the behavior
will depend crucially on the regime considered. In fact,
for values of ¢ on the order of the Fermi momentum,
the discretized branch no longer survives on the BCS
side of the resonance. At even higher momenta, the the-
oretical calculations of Combescot, Giorgini, and Strin-
gari (2006) have revealed that on the BEC side of the
resonance the response is dominated by a discretized
peak corresponding to the excitation of free molecules
with energy %%q?/4m. This molecularlike peak has been
shown to survive even at unitarity. On the BCS side of
the resonance, the molecular signatures are instead com-
pletely lost at high momenta and the response is very
similar to the one of an ideal Fermi gas.

From the knowledge of the dynamic structure factor,
one can evaluate the static structure factor, given by
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S(q) = ﬁf doS(q.w)=1+n f dr[g(r) —1]e™"™,
N 0

97)

showing that the static structure factor is directly related
to the two-body correlation function g=(g;+g,)/2 dis-
cussed in Sec. V.B. The measurement of S(g) would then
provide valuable information on the correlation effects
exhibited by these systems. The behavior of the static
structure factor along the BCS-BEC crossover has been
calculated by Combescot, Giorgini, and Stringari (2006).

F. Radiofrequency transitions

In Secs. VIL.D and VILE, we have shown that pair-
breaking transitions characterize the excitation spectrum
associated with the density-density response function
and are directly visible in the dynamic structure factor.
Information on pair-breaking effects is also provided by
transitions that outcouple atoms to a third internal state
(Térmi and Zoller, 2000). Experiments using radio-
frequency (RF) excitations have already been performed
in Fermi superfluids (Chin et al., 2004) in different con-
ditions of temperature and magnetic fields. The basic
idea of these experiments is the same as for measuring
the binding energy of free molecules (see Sec. I111.A).

The structure of the RF transitions is determined by
the Zeeman diagram of the hyperfine states in the pres-
ence of an external magnetic field. Starting from a
sample where two hyperfine states (hereafter called 1
and 2) are occupied,one considers single-particle transi-
tions from state 2 (with energy E,) to a third, initially
unoccupied, state 3 with energy E5. The typical excita-
tion operator characterizing these RF transitions has the

form Vgp=\[ dr[z%(r) Jo(r)+H.c.] and does not carry
any momentum. The experimental signature of the tran-
sition is given by the appearence of atoms in state 3 or in
reducing the number of atoms in state 2. In the absence
of interatomic forces,the transition is resonant at the fre-
quency vy;=(E3—E,)/h. If instead the two atoms inter-
act and form a molecule,the frequency required to in-
duce the transition is higher since part of the energy
carried by the radiation is needed to break the molecule.
The threshold for the transition is given by the fre-
quency v=vy+|€,|/h,where |€,| ~#?/ma® is the binding
energy of the molecule (we are assuming here that no
molecule is formed in the 1-3 channel). The actual dis-
sociation line shape is determined by the overlap of the
molecular state with the continuum and is affected by
the final-state interaction between the atom occupying
state 3 and the atom occupying state 1. In particular,the
relationship between the value of the frequency where
the signal is maximum and the threshold frequency de-
pends on the value of the scattering length as; character-
izing the interaction between state 3 and state 1 (Chin
and Julienne, 2005).

For interacting many-body configurations along the
BCS-BEC crossover, a similar scenario takes place. Also
in this case breaking pairs costs energy so that the fre-
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quency shifts of the RF transitions provide information
on the behavior of the gap, although this information is
less direct than in the case of free molecules. The ideal
situation would take place if the interaction between the
final state 3 and the states 1 and 2 were negligible. In this
case, the threshold frequency is provided by

hév=h(v-vy) = -9 u, (98)
where we have considered the most favorable case
where the RF transition excites single-particle states
with zero momentum. Here u is the chemical potential
while ¢, is the quasi-particle excitation energy defined in
Sec. IV.B. Equation (98) reproduces the result £év=|e|
in the deep BEC limit of free molecules where u ap-
proaches the value —|g,|/2. In the opposite BCS regime,
where u— Ep and the single-particle gap Ay, is much
smaller than the Fermi energy, one has hé’v:Aéap/ 2EF.
Proper inclusion of final-state interactions in the calcu-
lation of the RF spectra is a difficult problem (Kinnunen
et al., 2004; He et al., 2005; Ohashi and Griffin, 2005; Yu
and Baym, 20006; Perali ef al., 2008).

Typical experimental results on °Li are shown in Fig.
22, where the observed line shapes are presented for
different values of the temperature along the BCS-BEC
crossover. In °Li the relevant scattering lengths a5 (<0)
and a;, are both large in modulus and final-state inter-
actions cannot be ignored. On the BEC side of the reso-
nance (lowest magnetic field in Fig. 22) one recognizes
the emergence of the typical molecular line shape at low
temperature with the clear threshold effect for the RF
transition.

In the region where kz|a|~ 1, many-body effects be-
come important and change the scenario of the RF tran-
sitions. While at high temperature (upper row in Fig. 22)
the measured spectra still reveal the typical feature of
the free atom transition, at lower temperatures the line
shapes are modified by interactions in a nontrivial way.
This is shown in Fig. 23, where the shift v, =Vpax
— 1,3, defined in terms of the frequency v, where the
RF signal is maximum, is reported for two different val-
ues of Tr. In the deep BEC regime, the value of 6v,,,, is
independent of the density and directly related to the
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atoms at low temperature (much smaller than
Tr). From Chin et al., 2004.

binding energy of the molecule. At unitarity and on the
BCS side it shows a clear density dependence. From
these data one extracts the relationship hdv,,,~0.2EF
at unitarity. The dependence on the density is even more
dramatic in the BCS regime, due to the exponential de-
crease of pairing effects as kp|a| — 0.

Since pairing effects are density dependent and be-
come weaker and weaker as one approaches the border
of the atomic cloud, one cannot observe any gap in Fig.
22 except on the BEC side of the resonance where the
gap is density independent. Spatially resolved RF spec-
troscopy has recently become available at unitarity (Shin
et al., 2007) revealing the occurrence of the gap and
hence opening new perspectives for direct comparison
with the theoretical predictions in uniform matter.

VIII. ROTATIONS AND SUPERFLUIDITY

Superfluidity shows up in spectacular rotational prop-
erties. In fact, a superfluid cannot rotate like a rigid
body, due to the irrotationality constraint (83) imposed
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FIG. 23. Frequency shift 6v,,, measured in ®Li at low tem-
perature as a function of the magnetic field for two different
configurations corresponding to 7r=12 uK (filled symbols)
and 3.6 uK (open symbols). The solid line shows the value
SVmax predicted in the free molecular regime where it is essen-
tially given by the molecular binding energy. From Chin et al.,
2004.
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by the existence of the order parameter. At low angular
velocity, an important macroscopic consequence of su-
perfluidity is the quenching of the moment of inertia. At
higher angular velocities, the superfluid can instead
carry angular momentum via the formation of vortex
lines. The circulation around these vortex lines is quan-
tized. When many vortex lines are created, a regular
vortex lattice is formed and the angular momentum ac-
quired by the system approaches the classical rigid-body
value. Both the quenching of the moment of inertia and
the formation of vortex lines have been the object of
fundamental investigations in the physics of quantum
liquids and have been recently explored in a systematic
way also in dilute Bose-Einstein condensed gases. In this
section, we summarize some of the main rotational fea-
tures exhibited by dilute Fermi gases where first experi-
mental results are already available. In Secs. VIII.A and
VIILB, we discuss the consequences of the irrotational-
ity constraint on the moment of inertia, the collective
oscillations, and the expansion of a rotating gas, while
Sec. VIII.C is devoted to some key properties of quan-
tized vortices and vortex lattices.

A. Moment of inertia and scissors mode

The moment of inertia ® relative to the z axis is de-
fined as the response of the system to a rotational field

~QL, according to {L,)=Q0, where L, is the z compo-
nent of the angular momentum operator and the aver-
age is taken on the stationary configuration in the pres-
ence of the perturbation. For a noninteracting gas
trapped by a deformed harmonic potential, the moment
of inertia can be calculated explicitly. In the small Q
limit (linear response), one finds the result (Stringari
1996a)

N
0= (%) - D)+ )
x Py
+2(wy(y*) — 0 ()], (99)

where the expectation values should be evaluated in the
absence of rotation. This result applies to both bosonic
and fermionic ideal gases. It assumes o, # w,, but admits
a well defined limit when w, — w,. In the ideal Fermi gas,
when the number of particles is large, one can use the
Thomas-Fermi relationships (x?)o1/w? and (y?)=1/w?
for the radii. In this case Eq. (99) reduces to the rigid
value of the moment of inertia,

0, = Nm(x? + y%). (100)

For a noninteracting Bose-Einstein condensed gas at T
=0, where the radii scale according to (x?)«1/w, and
(y»c1/w,, one finds that © —0 as w, — .

Interactions change the value for the moment of iner-
tia of a Fermi gas in a profound way. To calculate ® in
the superfluid phase, one can use the equations of irro-
tational hydrodynamics developed in Sec. VII, by con-
sidering a trap rotating with angular velocity () and
looking for the stationary solution in the rotating frame.

rig
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The equations of motion in the rotating frame are ob-

tained by including the term —Q]:Z in the Hamiltonian.
In this frame, the trap is described by the time-
independent harmonic potential V;, of Eq. (1) and the
hydrodynamic equations admit stationary solutions char-
acterized by the velocity field

v=-—380V (xy), (101)

where v is the irrotational superfluid velocity in the labo-
ratory frame, while 8=(y?—x?)/(y*+x?) is the deforma-
tion of the atomic cloud in the x-y plane. By evaluating

the angular momentum <1:Z>:m Jdr(rXv)n one finds
that the moment of inertia takes the irrotational form

0 = 50, (102)

which identically vanishes for an axisymmetric configu-
ration, pointing out the crucial role played by superflu-
idity. The result for the moment of inertia holds for both
Bose and Fermi superfluids rotating in a harmonic trap.

The moment of inertia behavior at high angular veloc-
ity was investigated in the case of BEC’s by Recati et al.
(2001), who found that, for angular velocities larger than
, /\2 where wi:(w§+ wi)/ 2, the adiabatic increase of
the rotation can sizably affect the value of the deforma-
tion parameter ¢ yielding large deformations even if the
deformation of the trap is small. Physically this effect is
a consequence of the energetic instability of the quadru-
pole oscillation. At even higher angular velocities a dy-
namic instability of the rotating configuration was pre-
dicted by Sinha and Castin (2001), suggesting a natural
route to the nucleation of vortices. These theoretical
predictions were confirmed experimentally (Madison et
al., 2001). Similar predictions have also been made for
rotating Fermi gases (Tonini ef al., 2006).

The irrotational nature of the moment of inertia has
important consequences on the behavior of the so-called
scissors mode. This is an oscillation of the system caused
by the sudden rotation of a deformed trap, which, in the
superfluid case, has frequency (Guery-Odelin and Strin-
gari, 1999)

W= Vw)zc+ wi. (103)

This result should be compared with the prediction of
the normal gas in the collisionless regime where two
modes with frequencies . =|w,+w,| are found. The oc-
currence of the low-frequency mode |wx—wy| reflects the
rigid value of the moment of inertia in the normal phase.
The scissors mode, previously observed in a Bose-
Einstein condensed gas (Marago et al., 2000), was re-
cently investigated in ultracold Fermi gases (see Fig. 24)
along the BCS-BEC crossover (Wright et al., 2007). At
unitarity and on the BEC side of the resonance, one
observes the hydrodynamic oscillation, while when a be-
comes negative and small the beating between the fre-
quencies w,=|w,*w| reveals the transition to the nor-
mal collisionless regime. If the gas is normal, but deeply
collisional as happens at unitarity above the critical tem-
perature, classical hydrodynamics predicts an oscillation
with the same frequency (103) in addition to a low-



Giorgini, Pitaevskii, and Stringari: Theory of ultracold atomic Fermi gases 1249

o) 30]

(O]

T 20 ]

9 | -’

3 “OW'

oy V Y ¥ T4
0 2 4 6 8 0 2 4 6 8

Time (ms)

FIG. 24. (Color online) Time evolution of the angle character-
izing the scissors mode in a Fermi gas at unitarity (left panel)
and on the BCS side of the resonance (right panel). The mea-
sured frequencies agree well with the theoretical predictions
(see text). From Wright er al., 2007.

frequency mode of diffusive nature caused by the viscos-
ity of the fluid. This mode, however, is located at too low
frequencies to be observable. The persistence of the scis-
sors frequency (103) has been observed at unitarity in
the recent experiment of Wright ef al. (2007) even above
T.. This result, together with the findings for the aspect
ratio of the expanding gas and for the radial compres-
sion mode (see discussion in Secs. VIL.LB and VII.C),
confirms that near resonance the gas behaves hydrody-
namically in a wide range of temperatures below and
above the critical temperature. This makes the distinc-
tion between the superfluid and the normal phase based
on the study of the collective oscillations a difficult task.

Promising perspectives to distinguish between super-
fluid and classical (collisional) hydrodynamics are pro-
vided by studying collective oscillations excited in a ro-
tating gas. In fact, in the presence of vorticity VX v#0,
the equations of collisional hydrodynamics contain an
additional term depending on the curl of the velocity
field, which is absent in the equations of superfluid hy-
drodynamics. The resulting consequences on the behav-
ior of the scissors mode have been discussed by Cozzini
and Stringari (2003).

B. Expansion of a rotating Fermi gas

Another interesting consequence of the irrotational
nature of superfluid motion concerns the expansion of a
rotating gas. Suppose that a trapped superfluid Fermi
gas is initially put in rotation with a given value of an-
gular velocity (in practice this can be realized through a
sudden rotation of a deformed trap which excites the
scissors mode). The gas is later released from the trap.
In the plane of rotation the expansion along the short
axis of the cloud will initially be faster than the one
along the long axis, due to larger gradients in the density
distribution. However, different from the hydrodynamic
expansion of a nonrotating gas where the cloud takes at
some time a symmetric shape, in the rotating case the
deformation of the cloud cannot vanish. In fact, due to
the irrotational constraint, this would result in a vanish-
ing value of the angular momentum and hence in a vio-
lation of angular momentum conservation. The conse-
quence is that the angular velocity of the expanding
cloud will increase as the value of the deformation is
reduced, but cannot become too large because of energy
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FIG. 25. (Color online) Aspect ratio vs expansion time of a
unitary gas for different values of the initial angular velocity
Q (in units of the trap frequency w, of the long axis) and of
the gas temperature (parametrized by the energy per particle
E/N). Squares, no angular velocity; solid circles, y/w,=0.40,
E/NEr=0.56; open circles, Qy/w,=0.40, E/NEp=2.1; tri-
angles, Oy/w,=1.12, E/NE=0.56. The dashed, solid, and dot-
ted lines are the results of calculations based on irrotational
hydrodynamics. From Clancy et al., 2007.

conservation. As a result, the deformation parameter
will acquire a minimum value during the expansion but
will never vanish. This nontrivial consequence of irrota-
tionality was first predicted (Edwards et al, 2002) and
observed (Hechenblaikner et al., 2002) in Bose-Einstein
condensed atomic gases. Recently the experiment was
repeated in a cold Fermi gas at unitarity (Clancy et al.,
2007). Figure 25 reports the measured aspect ratio as a
function of the expansion time for different initial values
of the angular velocity. It shows that, if the gas is initially
rotating (lower curves), the aspect ratio never reaches
the value 1 corresponding to a vanishing deformation.
The experimental data are well reproduced by solutions
of the equations of irrotational hydrodynamics (solid
and dotted lines). A remarkable feature is that the same
behavior for the aspect ratio is found not only in the
superfluid regime but also above the critical tempera-
ture, revealing that even in the normal phase the dynam-
ics of the expansion is described by the equations of
irrotational hydrodynamics. The reason is that viscosity
effects are very small in the normal phase and that the
relevant time scales in this experiment are too short to
generate a rigid component in the velocity field.

C. Quantized vortices

The existence of quantized vortices is an important
prediction of superfluidity. Recent experiments have
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FIG. 26. Experimental observation of quantized vortices in a
superfluid Fermi gas along the BCS-BEC crossover (Zwierlein,
Abo-Shaeer, Schirotzek, et al., 2005).

confirmed their existence also in ultracold Fermi gases
along the BCS-BEC crossover (see Fig. 26). In these ex-
periments, vortices are produced by spinning the atomic
cloud with a laser beam and are observed by imaging the
released cloud of molecules, which are stabilized
through a rapid sweep of the scattering length to small
and positive values during the first ms of the expansion.
This technique, which is similar to the one employed to
measure the condensate fraction of pairs (see Sec. V.B),
increases the contrast of the vortex cores and therefore
their visibility.

A quantized vortex along the z axis is associated with
the appearance of a phase in the order parameter [see
Egs. (27) and (28)] of the form exp(i¢), where ¢ is the
azimuthal angle. This yields the complex form

A(r) =A(r,2)exp(ig) (104)

for the order parameter A where, for simplicity, we have
assumed that the system exhibits axial symmetry and
have used cylindrical coordinates. The velocity field v
=(A/2m)V ¢ of the vortex configuration has a tangential
form (v-r,=0) with modulus v=A/2mr,, which in-
creases as one approaches the vortex line, in contrast to
the rigid body dependence v=€ Xr characterizing the
rotation of a normal fluid. The circulation is quantized
according to the rule

Th
ﬁv-dE =—,
m

(105)

which is smaller by a factor of 2 with respect to the case
of a Bose superfluid with the same atomic mass m. Vor-
tices with higher quanta of circulation can also be con-
sidered. The value of the circulation is independent of
the contour radius. This is a consequence of the fact that
the vorticity is concentrated on a single line and hence
deeply differs from the vorticity VX v=2€ of the rigid
body rotation.

The angular momentum carried by the vortex is given
by
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(I:Z> =m f dr(r X v)n(r) :Ng,

(106)
if the vortex line coincides with the symmetry axis of the
density profile. If the vortex is displaced toward the pe-
riphery of a trapped gas, the angular momentum takes a
smaller value. In this case the axial symmetry of the
problem is lost and the order parameter cannot be writ-
ten in the form (104).

A first estimate of the energy of the vortex line is
obtained using macroscopic arguments based on hydro-
dynamics and considering, for simplicity, a gas confined
in a cylinder of radial size R. The energy E, acquired by
the vortex is mainly determined by the hydrodynamic
kinetic energy (m/2)n [ drv?, which yields the following
estimate for the vortex energy:

Nh R
v = 51In—,
4mR I3

E (107)

where we have introduced the core radius ¢ of the vor-
tex on the order of the healing length (see Sec. VIL.D).
The need for inclusion of the core size ¢ in Eq. (107)
follows from the logarithmic divergence of the integral
n [drv? at short radial distances. Equation (107) can be
used to evaluate the critical angular velocity ), for the
existence of an energetically stable vortex line. This
value is obtained by imposing that the change in the

energy E —QCU:Z) of the system in the frame rotating
with angular velocity (), be equal to E,. One finds (),
=(h/2mR?)In(R/¢). By applying this estimate to a har-
monically trapped configuration with Rtg~ R and ne-
glecting the logarithmic term which provides a correc-
tion of order of unity, we find Q./w, =hw, /E,, where
w is the radial frequency of the harmonic potential and
Eh0~mwiR%F is the harmonic-oscillator energy. The
above estimate shows that in the Thomas-Fermi regime,
E..,>hw , the critical frequency is much smaller than
the radial trapping frequency, thereby suggesting that
vortices should be easily produced in slowly rotating
traps. This conclusion, however, does not take into ac-
count the fact that the nucleation of vortices is strongly
inhibited at low angular velocities from the occurrence
of a barrier. For example, in rotating Bose-Einstein con-
densates it has been experimentally shown that it is pos-
sible to increase the angular velocity of the trap up to
values higher than (), without generating vortical states.
Under these conditions, the response of the superfluid is
governed by the equations of irrotational hydrodynam-
ics (see Sec. VIIL.A).

A challenging problem concerns the visibility of the
vortex lines. Due to the smallness of the healing length,
especially at unitarity, they cannot be observed in situ,
but only after expansion. Another difficulty is the re-
duced contrast in the density with respect to the case of
Bose-Einstein condensed gases. Actually, while the or-
der parameter vanishes on the vortex line the density
does not, unless one works in the deep BEC regime. In
the opposite BCS regime, the order parameter is expo-
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nentially small and the density profile is practically un-
affected by the presence of the vortex.

The explicit behavior of the density near the vortex
line as well as the precise calculation of the vortex en-
ergy requires implementation of a microscopic calcula-
tion. This can be carried out following the lines of the
mean-field BCS theory developed in Sec. V.A. While
this approach is approximate, it nevertheless provides a
useful consistent description of the vortical structure
along the whole crossover. The vortex is described by
the solution of the Bogoliubov—-de Gennes Eq. (49) cor-
responding to the ansatz

. . —
u,(r) = u,(r, e ek N2 L,

v,(r) =v,(r e bk \D T, (108)

for the normalized functions u; and v;, where (n,m,k,)
are the usual quantum numbers of cylindrical symmetry
and L is the length of the box in the z direction. The
ansatz (108) is consistent with the dependence (104) of
the order parameter A on the phase ¢. Calculations of
the vortex structure based on the above approach have
been carried out (Nygaard et al, 2003; Machida and
Koyama, 2005; Chien et al., 2006; Sensarma et al., 2006).
A generalized version of the Bogoliubov—de Gennes
equations based on the density-functional theory was
used instead by Bulgac and Yu (2003). An important
feature emerging from these calculations is that, near
the vortex line, the density contrast is reduced at unitar-
ity with respect to the BEC limit and is absent in the
BCS regime.

At higher angular velocities, more vortices can be
formed giving rise to a regular vortex lattice. In this
limit, the angular momentum acquired by the system ap-
proaches the classical rigid-body value and the rotation
is similar to the one of a rigid body, characterized by the
law V X v=2Q. Using result (105) and averaging the vor-
ticity over several vortex lines, one finds VXv
=(mh/m)n,z, where n, is the number of vortices per unit
area, so that the density of vortices n, is related to the
angular velocity ) by n,=2m{}/ wh showing that the dis-
tance between vortices (proportional to 1/yn,) depends
on the angular velocity but not on the density of the gas.
The vortices form thus a regular lattice even if the aver-
age density is not uniform as occurs in the presence of
harmonic trapping. This feature, already pointed out in
Bose-Einstein condensed gases, was confirmed in the re-
cent experiments on Fermi gases (see Fig. 26). It is worth
noting that, due to the repulsive quantum pressure effect
characterizing Fermi gases, one can realize trapped con-
figurations with a large size R, hosting a large number
of vortices N, =R n,, even with relatively small values
of Q. For example, choosing Q=w, /3, w,=w,, and N
=10, one predicts N, ~130 at unitarity, which is signifi-
cantly larger than the number of vortices that one can
produce in a dilute Bose gas with the same angular ve-
locity.

At large angular velocity, the vortex lattice is respon-
sible for a bulge effect associated with the increase of
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the cloud radial size and consequently with a modifica-
tion of the aspect ratio. In fact, in the presence of an
average rigid rotation, the effective potential felt by the
atoms is given by V,,—(m/2)Q%**. The new Thomas-
Fermi radii satisfy the relationship

2 2 2
R, o] -0

2 = 2 >
R7 w;,

(109)

showing that at equilibrium the angular velocity cannot
overcome the radial trapping frequency. This formula
can be used to determine directly the value of () by
measuring the in situ aspect ratio of the atomic cloud.

Important consequences of the presence of vortex
lines concern the frequency of the collective oscillations.
For example, using a sum-rule approach (Zambelli and
Stringari, 1998) it is possible to show that the splitting
Aw between the m=+2 quadrupole frequencies is given
by

€
Av=wm=+2)-wm=-2)=2 12

m(ri)’

where €,=(L_)/N is the angular momentum per particle
carried by the vortical configuration. For a single vortex
line, €, is equal to #/2, while for a vortex lattice €, is
given by the rigid-body value Qm(r*). The splitting
(110), and hence the angular momentum ¢, can be di-
rectly measured by producing a sudden quadrupole de-
formation in the x-y plane and imaging the correspond-

(110)

ing precession ¢=Aw/4 of the symmetry axis angle ¢ of
deformation during the quadrupole oscillation. This pre-
cession phenomenon was observed in the case of Bose-
Einstein condensates containing quantized vortex lines
(Chevy et al., 2000). For a single vortex line, this experi-
ment gives direct access to the quantization of the angu-
lar momentum (106) carried by the vortex, in analogy
with the Vinen experiment of superfluid helium (Vinen,
1961).

In the presence of many vortex lines, the collective
oscillations of the system can be calculated using the
equations of rotational hydrodynamics (Cozzini and
Stringari, 2003). In fact, from a macroscopic point of
view, the vortex lattice behaves like a classical body ro-
tating in a rigid way. For example, in the case of axisym-
metric configurations one finds

wm=+2)=\20> —0>+Q (111)
for the frequencies of the two m==x2 quadrupole
modes, which is consistent with the sum-rule result (110)
for the splitting in the case of a rigid rotation. Other
important modes affected by the presence of the vortex
lattice are the compressional m =0 oscillations resulting
from the coupling of the radial and axial degrees of free-
dom. These modes were discussed in Sec. VII.C in the
absence of rotation. The effect of the rotation in a Fermi
gas was recently discussed by Antezza et al. (2007). In
the centrifugal limit ) — w,, the frequency of the radial
mode approaches the value w=2w, independent of the
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equation of state, while the frequency of the axial mode
approaches the value

(112)

where vy is the coefficient of the polytropic equation of
state (see Sec. VIL.C).

It is finally worth noting that achievement of the cen-
trifugal limit for a superfluid containing a vortex lattice
cannot be ensured on the BCS side of the resonance. In
fact, due to the bulge effect (109), the centrifugal limit is
associated with a strong decrease of the density and
hence, for a <0, with an exponential decrease of the or-
der parameter A. It follows that the superfluid cannot
support rotations with values of () too close to w, and
that the system will exhibit a transition to the normal
phase (Veillette et al., 2006; Zhai and Ho, 2006) [see also
Moller and Cooper (2007) for a recent discussion of the
new features exhibited by the rotating BCS Fermi gas].
If Q becomes too close to w |, superfluidity will be even-
tually lost at resonance and on the BEC side of the reso-
nance because the system enters the quantum Hall re-
gime (for the case of bosons, see, e.g., Cooper et al.,
2001; Regnault and Jolicoeur, 2003).

—_—
w=\Vy+2w,,

IX. SPIN POLARIZED FERMI GASES AND FERMI
MIXTURES

The description of Fermi superfluidity presented in
the previous sections was based on the assumption that
the gas has an equal number of atoms occupying two
different spin states. One can also consider more com-
plex configurations of spin imbalance where the number
of atoms in the two spin states is different (N, # N|) as
well as mixtures of atomic species with different masses
(m;#m)), including Fermi-Fermi and Bose-Fermi mix-
tures. Recent realizations of these novel configurations
are opening new perspectives for both experimental and
theoretical research.

A. Equation of state of a spin polarized Fermi gas

The problem of spin imbalance has an old story in the
context of BCS theory of superconductivity. In super-
conductors, due to the fast relaxation between different
spin states leading to balanced spin populations, the only
possibility to create the asymmetry is to add an external
magnetic field. However, in bulk superconductors this
field is screened by the orbital motion of electrons
(Meissner effect). The situation in superfluid Fermi
gases is more favorable. In fact, in this case the relax-
ation time is long and the numbers of atoms occupying
different spin states can be considered as independent
variables.

Recall that the mechanism of BCS superfluidity, in the
regime of small and negative scattering lengths, arises
from the pairing of particles of different spin occupying
states with opposite momenta, close to the Fermi sur-
face. This mechanism is inhibited by the presence of spin
imbalance, since the Fermi surfaces of the two compo-
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nents do not coincide and pairs with zero total momen-
tum are difficult to form. Eventually, if the gap between
the two Fermi surfaces is too large, superfluidity is bro-
ken and the system undergoes a quantum phase transi-
tion toward a normal state. The existence of a critical
value for the polarization is easily understood by noting
that, at zero temperature, the unpolarized gas is super-
fluid, while a fully polarized gas is normal due to the
absence of interactions. The occurrence of such a tran-
sition was first suggested by Clogston (1962) and Chan-
drasekhar (1962), who predicted the occurrence of a
first-order transition from the normal to the superfluid
state. This transition takes place when the gain in the
grand-canonical energy associated with the finite polar-
ization of the normal phase is equal to the energy differ-
ence between the normal and superfluid unpolarized
states. In the BCS regime, one finds the critical condi-
tion [see Eq. (36)]

Y T v

h= = , (113)
2 \3’5

where A,,,=(2/e)"*Ere™*r is the BCS gap and we

have assumed the spin-down particles as the minority

component. The chemical potential difference 4 in the

above equation plays the role of an effective magnetic

field. In terms of the polarization

N;-N,

EA IR (114)
N+ N,

it can be expressed through h=2FEzP/3, which holds if

P<1. The condition (113) then immediately yields the

critical value of P at which the system phase separates,

/
P = i/_(g)736ﬂ'/2kfa'

= (115)
V8\e

For P> P, the system is normal and corresponds to a
uniform mixture of two spin components well described
by the noninteracting model. For P<P,, the system is in
a mixed state, where the unpolarized BCS superfluid co-
exists with the normal phase which accommodates the
excess polarization. In this mixed state, the chemical po-
tential difference of the normal phase retains the critical
value (113) irrespective of polarization, a decrease in P
occur as an increase in the volume fraction of the super-
fluid phase which eventually occupies the entire volume
for P=0. An important remark concerning the Clogston-
Chandrasekhar condition (113) is that the critical effec-
tive magnetic field % is smaller than the superfluid gap
Agyp- If one had h>A,,,, the above scenario would not
apply because the system would prefer to accommodate
the excess polarization by breaking pairs and creating
quasiparticles. The gapless superfluid realized in this
way would be homogeneous and the transition to the
normal state would be continuous. Such a uniform phase
is indeed expected to occur in the deep BEC regime (see
below).

The physical understanding of polarized Fermi gases
became more complicated when exotic superfluid phases
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were proposed, such as the inhomogeneous Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state (Fulde and
Ferrell, 1964; Larkin and Ovchinnikov, 1964). Other al-
ternative states include the breached pair or Sarma state
(Sarma, 1963; Liu and Wilczek, 2003) and states with a
deformed Fermi surface (Sedrakian et al., 2005). In the
FFLO state, Cooper pairs carry a finite momentum re-
sulting in a spontaneous breaking of translational sym-
metry with a periodic structure for the order parameter
A(x) o cos(gx), where the direction of the x axis is arbi-
trary. The wave vector ¢ is proportional to the difference
of the two Fermi wave vectors q kg —kp with a pro-
portionality coefficient of order unity. The excess
spin-up atoms are concentrated near the zeros of the
order parameter A(x). One can show that in the BCS
limit, the FFLO phase exists for £ <0.754A,,,, corre-
sponding to the small interval of polarization 0<P
<1.13Ay,,/ Ef, and at P>1.13A,,,/ Ey the system is nor-
mal (see, e.g., Takada and Izuyama, 1969). In the deep
BCS regime, this scenario is more energetically favor-
able compared to the Clogston-Chandrasekhar transi-
tion which occurs at P.=1.06A,,,/ Er. The FFLO state is
of interest both in condensed matter physics and in el-
ementary particle physics, even though direct experi-
mental evidence of this phase is still lacking [for recent
reviews, see Casalbuoni and Nardulli (2004) and Comb-
escot (2007)].

In ultracold gases, the BCS regime is not easily
achieved due to the smallness of the gap parameter and
one is naturally led to explore configurations with larger
values of kp|al, where the concept of Fermi surface loses
its meaning due to the broadening produced by pairing.
A major question is whether the FFLO phase survives
when correlations are strong and if it can be realized in
trapped configurations (Mizushima et al., 2005; Sheehy
and Radzihovsky, 2007; Yoshida and Yip, 2007). As a
function of the interaction strength, parametrized by
1/kpa, where kp=[37*(n;+n )] is fixed by the total
density, different scenarios can take place as schemati-
cally shown in Fig. 27 (Hu and Liu, 2006; Iskin and Sa de
Melo, 2006b; Pao et al., 2006; Sheehy and Radzihovsky,
2006, 2007; Son and Stephanov, 2006; Parish et al.,
2007a). An important region of the phase diagram is the
deep BEC regime of small and positive scattering
lengths, where the energetically favorable phase consists
of a uniform mixture of a superfluid gas of bosonic
dimers and a normal gas of spin polarized fermions. In
this regime, one expects that the normal uniform gas
exists only for P=1, corresponding to the fully polarized
ideal Fermi gas. The general problem of an interacting
mixture of bosons and fermions was investigated by Vi-
verit et al. (2000), who derived the conditions of misci-
bility in terms of the densities and masses for the two
components and the boson-boson and boson-fermion
scattering lengths (see Sec. IX.E). In particular, for P
=1 corresponding to a small number of bosonic dimers
in a fully polarized Fermi sea, the relevant condition for
the solubility of the mixture reads [see Eq. (130) below]
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FIG. 27. (Color online) Qualitative phase diagram as a func-
tion of the interaction strength —1/kra and the polarization P.
The circle at unitarity corresponds to the critical value P.
=0.39 discussed in Sec. IX.B. The Fermi wave vector corre-
sponds to the total average density: kp=[37(n;+n)]">. Note
that the possible occurrence of the FFLO phase is not consid-
ered here.

47 a
kp= dd

= Ao (116)
2139 a3,

By using the values a4q=0.60a and a,4=1.18a for the
dimer-dimer and atom-dimer scattering lengths, respec-
tively, one finds that the uniform phase exists for
1/kra>2.1. This Bose-Fermi picture, however, loses its
validity as one approaches the resonance region and
more detailed analyses are needed to understand the
phase diagram of the system close to unitarity (Pilati and
Giorgini, 2008). In the presence of harmonic trapping,
the conditions of phase separation in the BEC regime
change significantly due to the nonuniform effective po-
tentials felt by the two components. The density profiles
of the bosonic dimers and unpaired fermions have been
investigated by Pieri and Strinati (2006) within the local-
density approximation.

Determination of the energetically favorable configu-
ration in the unitary regime of infinite scattering length
is a difficult problem (Carlson and Reddy, 2005). Will the
unpolarized superfluid and the polarized normal gas co-
exist as in the BEC regime or will they separate? Will
the FFLO phase play any role? First experiments car-
ried out with spin imbalanced trapped Fermi gases close
to unitarity suggest the occurrence of a phase separation
between an unpolarized superfluid and a polarized nor-
mal phase (Partridge, Li, Kamar, et al., 2006; Shin et al.,
2006).

Other important questions that will not be addressed
in this review concern the phases of these spin polarized
Fermi gases at finite temperature (Gubbels et al., 2006;
Chien et al., 2007; Parish et al., 2007a) and the occur-
rence of p-wave superfluid phases at very low tempera-
tures (Bulgac et al., 2006).
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B. Phase separation at unitarity

A possible scenario for the equation of state of spin
imbalanced configurations at unitarity is based on the
phase separation between an unpolarized superfluid and
a polarized normal gas similar to the Clogston-
Chandrasekhar transition discussed in Sec. IX.A (Chevy,
2006a; De Silva and Mueller, 2006a; Haque and Stoof,
2006). An important ingredient of this scenario, which is
not accounted for with the mean-field description, is the
proper inclusion of interaction effects in the normal
phase (Chevy, 2006b; Lobo, Recati, Giorgini, et al., 2006;
Bulgac and Forbes, 2007). While there is not at present a
formal proof that the phase-separated state is the most
energetically favorable, the resulting predictions agree
well with recent experimental findings (see Sec. IX.C).

The unpolarized superfluid phase was described in
Secs. IV and V and is characterized, at unitarity, by the
equation of state

Es Spaep.

=3 (117)

where Eg is the energy of the system, N is the total
number of atoms, and Ep=(%?/2m)(37°ngs)*? is the
Fermi energy, where ng=2n,=2n, is the total density of
the gas. Starting from Eq. (117), one can derive the pres-
sure Pg¢=—dE/JV and the chemical potential pug
=JdEg/oN.

As opposed to the superfluid, the normal phase is po-
larized and consequently its equation of state will de-
pend also on the concentration

x=nlny, (118)

which in the following will be assumed to be smaller
than or equal to 1, corresponding to Ny=N,. A conve-
nient way to build the x dependence of the equation of
state is to take the point of view of a dilute mixture
where a few spin-down atoms are added to a noninter-
acting gas of spin-up particles. When x <1, the energy of
the system can be written in the form (Lobo, Recati,
Giorgini, et al., 2006)

E , 3
M:—E}(l—Ax+ﬂx5/3+ )

where Ep;=(#%/2m)(67n;)*? is the Fermi energy of
spin-up particles. The first term in Eq. (119) corresponds
to the energy per particle of the noninteracting gas,
while the term linear in x gives the binding energy of
spin-down particles. Equation (119) assumes that when
we add spin-down particles creating a small finite den-
sity n| they form a Fermi gas of quasiparticles with ef-
fective mass m* occupying, at zero temperature, all
states with wave vector k up to kx =(67°n )" and con-
tributing to the total energy (11§) with the quantum
pressure term proportional to x*3. The interaction be-
tween the spin-down and spin-up particles is accounted
for by the dimensionless parameters A and m/m*. The
expansion (119) should in principle include additional
terms originating from the interaction between quasipar-

(119)
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FIG. 28. Equation of state of a normal Fermi gas as a function
of the concentration x. The solid line is a polynomial best fit to
the QMC results (circles). The dashed line corresponds to the
expansion (119). The dot-dashed line is the coexistence line
between the normal and unpolarized superfluid states and the
arrow indicates the critical concentration x. above which the
system phase separates. For x=1, the energy of both the nor-
mal and superfluid (diamond) states is shown.

ticles and exhibiting a higher-order dependence on x.

The values of the coefficients entering Eq. (119) can
be calculated using fixed-node diffusion Monte Carlo
simulations where one spin-down atom is added to a
noninteracting Fermi gas of spin-up particles. The re-
sults of these calculations are A=0.97(2) and m/m*
=1.04(3) (Lobo, Recati, Giorgini, et al., 2006). The same
value of A was obtained from an exact diagrammatic
Monte Carlo calculation (Prokof’ev and Svistunov, 2008)
and also employing a simple variational approach based
on a single particle-hole wave function (Chevy, 2006b;
Combescot et al., 2007). The prediction of Eq. (119) for
the equation of state is reported in Fig. 28, where we
also show the FN-DMC results obtained for finite values
of the concentration x. It is remarkable to see that the
expansion (119) reproduces the best fit to the FN-DMC
results up to the large values of x where the transition to
the superfluid phase takes place (see discussion below).
In particular, the repulsive term in x>, associated with
the Fermi quantum pressure of the minority species,
plays a crucial role in determining the x dependence of
the equation of state. Note that when x=1 (N;=N,), the
energy per particle of the normal phase is smaller than
the ideal gas value 6Ef,/5, reflecting the attractive na-
ture of the force, but larger than the value in the super-
fluid phase (0.42)6Ef,/5 (see Sec. V.B).

We can now determine the conditions of equilibrium
between the normal and the superfluid phase. A first
condition is obtained by imposing that the pressures of
the two phases be equal,

IEs _OEy

_ BN, (120)
Vs dVy

where Vg and V) are the volumes occupied by the two
phases, respectively. A second condition is obtained by
requiring that the chemical potential of each pair of
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spin-up—spin-down particles be the same in the two
phases. In order to exploit this latter condition, one
takes advantage of the thermodynamic identity gg=(u;
+u)/2 for the chemical potential in the superfluid phase
yielding the additional relation

(9_Es_1<(9EN aEN>

= + (121)
dN ~ 2\ N, " dN,

where we have used u)=dEyN/IN;) for the chemical
potentials of the spin-up and spin-down particles calcu-
lated in the normal phase. Equation (121), combined
with Eq. (120), permits us to determine the critical val-
ues of the thermodynamic parameters characterizing the
equilibrium between the two phases. For example, if ap-
plied to the BCS regime where Eyn=3/5(N,Ep,
+N|Ep|) and ES:Enormal_3NA§ap/8EF [see Eq. (36)],
this approach reproduces the Clogston-Chandrasekhar
condition (113) (Bedaque et al., 2003). At unitarity in-
stead, a calculation based on the QMC values of Ey and
Eg yields the value x,=0.44, corresponding to P.=(1
-x.)/(1+x.)=039, and (ny/ng).=0.73, where ny=n;
+n, is the density of the normal phase in equilibrium
with the superfluid (Lobo, Recati, Giorgini, et al., 2006).
For polarization values larger than P.=0.39, the stable
configuration is the uniform normal phase, while if we
increase the number of spin-down particles (correspond-
ing to a reduction of P) there will be a phase separation
between a normal phase with the concentration x,
=0.44 and a superfluid unpolarized phase. The phase
transition has first-order character consistent with the
critical value h=0.81A,,, smaller than the superfluid gap.
In particular, while the spin-up density is practically con-
tinuous, the density of spin-down particles exhibits a sig-
nificant jump at the transition. Finally we point out that
the parameters characterizing the transition between the
superfluid and normal phases depend in a crucial way on
the many-body scheme employed for the calculation.
For example, if instead of the Monte Carlo results we
use the BCS mean-field theory of Sec. V.A and the non-
interacting expression Ey=3/5(NEp+N Ep)) for the
energy of the normal phase, we would find the very dif-
ferent value x.=0.04 for the critical concentration.

C. Phase separation in harmonic traps at unitarity

The results presented in Sec. IX.B can be used to cal-
culate the density profiles in the presence of harmonic
trapping. We make use of the local-density approxima-
tion, which permits us to express the local value of the
chemical potential of each spin species as

()0 = 1) = Vio(X). (122)

The chemical potentials ,u?( | are fixed by imposing the
proper normalization to the spin-up and spin-down den-
sities and the condition '“(Tj(i)_ Vio(r=Ry())=0 defines
the Thomas-Fermi radii Ry}, of the two species. In our
discussion, we assume isotropic trapping in order to sim-
plify the formalism. A simple scaling transformation per-
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FIG. 29. Radii of the three phases in the trap in units of the
radius R{=ap,,(48N;)° of a noninteracting fully polarized gas.

mits us to also apply the results to the case of anisotropic
trapping.

For small concentrations of spin-down particles (N,
<N,), only the normal state is present and one can ig-
nore the change in u; due to the attraction of spin-down
atoms. In this case, n; reduces to the Thomas-Fermi pro-
file (8) of an ideal gas, whereas n| is a Thomas-Fermi
profile with a modified harmonic potential Vy,— (1
+3A/5)V,,. The confining potential felt by the spin-
down atoms is stronger due to the attraction produced
by the spin-up atoms. One can also calculate the fre-
quency of the dipole oscillation for spin-down particles.
This is given by (i=x,y,z)

) 3
w?lpOIC = w; (1 + —A)ﬂ =1.23w;
5 /m*

(123)

and is affected by both the interaction parameter A and
the effective-mass parameter m/m* entering the expan-
sion (119).

When in the center of the trap the local concentration
of spin-down particles reaches the critical value x,
=0.44 (see Sec. IX.B), a superfluid core starts to nucleate
in equilibrium with a polarized normal gas outside the
superfluid. The radius Rgr of the superfluid is deter-
mined by the equilibrium conditions between the two
phases discussed in the previous section. Toward the pe-
riphery of the polarized normal phase, the density of
spin-down particles will eventually approach a vanishing
value corresponding to R|. For even larger values of the
radial coordinate, only the density of spin-up particles
will be different from zero up to the radius R;. In this
peripherical region, the normal phase corresponds to a
fully polarized, noninteracting Fermi gas.

Using the Monte Carlo equation of state discussed in
Sec. IX.B one finds that the superfluid core disappears
for polarizations P> P"P=0.77 (Lobo, Recati, Giorgini,
et al., 2006). The difference between the critical value
PP and the value P,=0.39 obtained for uniform gases
reflects the inhomogeneity of the trapping potential. In
Fig. 29, we show the calculated radii of the superfluid
and the spin-down and spin-up components as a func-
tion of P. The radii are given in units of the noninteract-
ing radius of the majority component R{=ay,(48N;)".
The figure explicitly points out the relevant features of
the problem. When P—0, one approaches the standard
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FIG. 30. (Color online) Phase separation in an interacting
Fermi gas at unitarity. Normalized central density difference
(circles) and condensate fraction (triangles). From both sets of
data, one can extract the same value ~0.75 for the critical
polarization. From Shin ef al., 2006.

unpolarized superfluid phase where the three radii (Rgp,
Ry, and R)) coincide with the value (1+,8)1/4R(T)20.81R?
[see Eq. (74)]. By increasing P, one observes the typical
shell structure with Rgp<R| <R;. The spin-up radius in-
creases and eventually approaches the noninteracting
value when P—1. The spin-down radius instead de-
creases and eventually vanishes as P— 1. Finally, the ra-
dius Rgr of the superfluid component decreases and van-
ishes for P"P=0.77, corresponding to the disappearance
of the superfluid phase.

The predicted value for the critical polarization is in
good agreement with the findings of the MIT experi-
ments (Shin et al., 2006; Zwierlein, Schirotzek, Schunck,
et al., 2006), where the interplay between the superfluid
and the normal phase was investigated by varying the
polarization P of the gas. The experimental evidence for
superfluidity in a spin imbalanced gas emerges from
measurements of the condensate fraction and vortex
structure in fast rotating configurations (Zwierlein, Schi-
rotzek, Schunck, ef al., 2006). These time-of-flight mea-
surements were performed by rapidly ramping the scat-
tering length to small and positive values after opening
the trap, in order to stabilize fermion pairs and increase
the visibility of the bimodal distribution and of vortices
(see the discussion in Secs. V.B.2 and VIIIL.C). In another
experiment (Shin et al., 2006), the in situ density differ-
ence n;(r)—n (r) was directly measured with phase con-
trast techniques. Phase separation was observed by cor-
relating the presence of a core region with n;—n ;=0
with the presence of a condensate of pairs (see Fig. 30).
At unitarity these results reveal that the superfluid core
appears for P=0.75. An interesting quantity that can be
directly extracted from these measurements is the
double integrated density difference

nP(z) = f dxdy[n'(r) - n(r)], (124)

which is reported in Fig. 31 for a unitary gas with P
=0.58. The figure reveals the occurrence of a character-
istic central region where n'(z) is constant. The physi-
cal origin of this plateau can be understood using the
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FIG. 31. (Color online) Double integrated density difference
measured at unitarity in an ultracold trapped Fermi gas of °Li
with polarization P=0.58 (from Shin et al., 2006). The theoret-
ical curves correspond to the theory of Secs. IX.B and IX.C
based on the local-density approximation (solid line) and pre-
dictions of a noninteracting gas with the same value of P
(dashed line). From Recati et al., 2008.

local-density approximation (De Silva and Mueller,
2006a; Haque and Stoof, 2006): the plateau is a conse-
quence of a core region with n!(r)=n!(r), which is natu-
rally interpreted as the superfluid core. Furthermore, the
value of z where the density exhibits the cusp corre-
sponds to the Thomas-Fermi radius Rgg of the super-
fluid. In the same figure we show the theoretical predic-
tions, based on the Monte Carlo results for the equation
of state of the superfluid and normal phases, which
agree well with the experimental data (Recati et al.,
2008).

The theoretical predictions discussed above are based
on a zero-temperature assumption the local-density ap-
proximation applied to the various phases of the trapped
Fermi gas. While applicability of the LDA seems ad-
equate to describe the MIT data, the Rice experiments
(Partridge, Li, Kamar, et al, 2006), carried out with a
very elongated trap, show that in this case surface ten-
sion effects, not accounted for by LDA, play a major
role. It is possible to prove (De Silva and Mueller, 2006a;
Haque and Stoof, 2006) that the double integrated den-
sity difference, when evaluated within the LDA, should
exhibit a monotonic nonincreasing behavior as one
moves from the trap center. The nonmonotonic struc-
ture of the density observed in the Rice experiment can
be explained through inclusion of surface tension ef-
fects. For a discussion of surface tension and thermal
effects in spin imbalanced configurations, see De Silva
and Mueller (2006b), Partridge, Li, Liao, et al. (2006),
and Haque and Stoof (2007).

Other important questions concern the dynamic be-
havior of these spin polarized configurations. The prob-
lem is interesting since the dynamic behavior of the su-
perfluid is quite different from the normal gas, the latter
likely governed, at very low temperature, by collisionless
kinetic equations rather than equations of hydrodynam-
ics. As a consequence, the role of the boundary separat-
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ing the two phases should be carefully taken into ac-
count for a reliable prediction of the dynamic properties,
such as collective oscillations and expansion.

D. Fermi superfluids with unequal masses

When one considers mixtures of Fermi gases belong-
ing to different atomic species and hence having differ-
ent masses, new interesting issues emerge. One should
point out that even if the masses are different, configu-
rations where the atomic densities of the two compo-
nents are equal result in equal Fermi momenta: kp,
=kp =(37°n)'?, where n=n;+n| is the total density.
This means that the mechanism of Cooper pairing,
where two atoms of different spin can couple to form a
pair of zero momentum, is still valid. At T=0, the BCS
mean-field theory predicts a simple scaling behavior for
the equation of state in terms of the reduced mass of the
two atoms, which holds in the whole BCS-BEC cross-
over. However, in the BCS regime, correlations beyond
the mean-field approximation introduce a nontrivial de-
pendence on the mass ratio in the superfluid gap (Bara-
nov et al., 2008). Furthermore, in the BEC regime, the-
oretical studies of four-fermion systems (Petrov, 2003;
Petrov et al., 2005) emphasize the crucial role of the
mass ratio on the interaction between dimers, resulting
in instabilities if the mass ratio exceeds a critical value
(see Sec. III.C). First quantum Monte Carlo results have
also become available in the crossover, exploring the de-
pendence of the equation of state and the superfluid gap
on the mass ratio (Astrakharchik et al. 2007; von Stecher
et al., 2007). These studies point out significant devia-
tions from the predictions of the BCS mean-field theory.
Important questions also emerge at finite temperature,
where one can conclude that the simple scaling in terms
of the reduced mass cannot hold since, for example, the
BEC transition temperature of composite bosons (see
Sec. IV.E) should depend on the molecular mass, M
=my+m |, rather than on the reduced mass. Other inter-
esting scenarios, not addressed in this review, refer to
the interplay between unequal masses and unequal
populations of the two spin components (see, e.g., Wu et
al., 2006; Iskin and Sa de Melo, 2006b, 2007; Parish et al.,
2007b). The experimental realization of fermionic het-
eronuclear mixtures in the strongly correlated regime is
at present being actively pursued in different laborato-
ries (see, e.g., Wille et al., 2008).

1. Equation of state along the crossover

The BCS mean-field approach developed in Sec. V.A
can be generalized in a straightforward manner to the
case of unequal masses. Starting from the BCS Hamil-
tonian (46), where the single-particle energy term con-
tains now the mass m;() and the chemical potential g},
of the two spin components, one follows the same steps
leading to the gap and number equations (54) and (55).
These equations, as well as Egs. (50) and (51) for the
quasiparticle amplitudes and excitation energies, read
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exactly the same as in the equal mass case, with the only
difference that the atomic mass m should be replaced by
twice the reduced mass,

m—2m, =21 (125)
mT+mL

and that the single-particle energy should be replaced by
m—1*k*14m,— u, where u=(u;+u()/2 is the average
chemical potential. In units of the reduced Fermi energy
W2k,
4m,’

1
r= o (Er+ Ep) = (126)
the resulting values of the chemical potential x and or-
der parameter A, for a given value 1/kza of the interac-
tion strength, are then independent of the mass ratio
my/m,.

At unitarity, dimensionality arguments permit us to
write the energy of the system in the general form
ES/Nzg[l +pB(m;/m|)|E}, where N=N,+N| is the total
number of particles. In the BCS mean-field approach,
the value of B is given by B=-0.41 (see Table II in Sec.
VI). First results based on QMC simulations suggest that
the dependence of B on the mass ratio is very weak
(Astrakharchik et al., 2007). On the contrary, the corre-
sponding value of the superfluid gap A, is significantly
reduced by increasing the mass ratio.

In the BEC regime, the mean-field approach predicts
that the binding energy of the dimers is given by eb
=—h2/2mra2 and that these molecules interact with the
same scattering length as in the symmetric mass case
(agg=2a). While the result for the binding energy is
correct, the actual relationship between ayq and a is
sensitive to the value of the mass ratio, approaching
the value 0.60 when m;=m, (Petrov, 2003; Petrov et
al., 2005).

2. Density profiles and collective oscillations

As in the case of unequal masses, the equation of state
for uniform systems can be used to evaluate the density
profiles of the harmonically trapped configurations. In
the local-density approximation, the chemical potential
of each atomic species varies in space according to the
law (122) where, however, the confining potential is now
spin dependent being related to different magnetic and
optical properties of the two atomic species and should
be replaced by V,,(r)— V] V(r). Since the chemical po-
tential of the superfluid phase is given by the average
ts=(mq+m)/2, the corresponding density is determined
at equilibrium by the Thomas-Fermi relation

pas(n) = o = Vo), (127)

where
‘7 _M ~2 2 ~2 2 ~2 2 128
ho(r) - 4 (w)(x + wyy + Q)ZZ ) ( )

is the average of the trapping potentials. The effective
frequencies @; are given by
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@; = ry)” + my (o )2, (129)
mT + ml

where o) are the oscillator frequencies relative to
VI whereas M =m;+m, denotes the mass of the pair.
If the oscillator lengths of the two atomic components
coincide, i.e., if mTwiT:m sz‘l’ the effective frequencies
(129) take the simplified form d),-:\x’m.

In the superfluid phase, the densities of the spin-up
and spin-down atoms are equal, even if the trapping po-
tentials, in the absence of interatomic forces, give rise to
different profiles. In principle, even if one of the two
atomic species does not feel directly any external poten-
tial (for example, w;=0), it can be trapped due to the
interaction with the other species. At unitarity, one can
show (Orso et al., 2008) that the trapped superfluid con-
figuration is energetically favorable if the condition (1
+B)M/m| <1 is satisfied. This condition is easily fulfilled
if my=m,.

The dynamic behavior of Fermi superfluids with un-
equal masses can be studied by properly generalizing the
equations of hydrodynamics which take the form (84)
and (85) with V,,, replaced by the effective trapping po-
tential (128) and where m is replaced by half of the pair

mass m— M/2. In uniform systems (V},,=0), the equa-
tions give rise to the propagation of sound with the
sound velocity fixed by the thermodynamic relation
Mc*=2ngdug/ dng. In the BCS limit, where the equation
of state approaches the ideal gas expression, the sound
velocity takes the value c=hkp\1/(3m;m)), where kp
=(37°n)'3. At unitarity, the sound velocity is given by
the above ideal gas value multiplied by the factor V1+8.

For harmonically trapped configurations, the hydro-
dynamic equations can be used to study the expansion of
the gas after opening the trap as well as collective oscil-
lations (Orso et al., 2008). The effect of the mass asym-
metry is accounted for through the effective frequencies
(129) as well as through changes in the equation of state
Ms. At unitarity, where the density dependence of the
chemical potential maintains the n*3 power law, the
same results discussed in Sec. VII.C hold with the oscil-
lator frequencies replaced by @;. Note that the effective
frequencies ®; differ in general from either wlT or w}.
Actually in the superfluid phase the two atomic species
cannot oscillate independently, but always move in
phase as a consequence of the pairing mechanism pro-
duced by the interaction.

E. Fermi-Bose mixtures

The problem of quantum degenerate mixtures of a
spin polarized Fermi gas and a Bose gas has been the
subject of considerable experimental and theoretical
work. Particularly interesting are the mixtures where the
interactions between the fermions and bosons are tun-
able by means of a Feshbach resonance. This is the case,
for example, of the “’K-%’Rb system, which has been
extensively investigated by the groups in Florence
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(Modugno et al., 2002; Ferlaino et al., 2006; Zaccanti et
al., 2006; Modugno, 2007) and Hamburg (Ospelkaus, Os-
pelkaus, Humbert, Sengstock, et al., 2006; Ospelkaus,
Ospelkaus, Sengstock, et al., 2006a). In these configura-
tions, the mixture is characterized by a repulsive boson-
boson interaction with scattering length agg=5.3 nm
and a magnetically tunable boson-fermion interaction
parametrized by the scattering length agp. The observa-
tion of both an induced collapse of the mixture for large
negative values of agg and phase separation for large
positive values of agr have been reported.

From the theoretical point of view, these experimental
findings can be understood using a mean-field approach.
The conditions of stability of a Bose-Fermi mixture in
uniform systems at 7=0 have been investigated by Vi-
verit et al. (2000). Depending on the sign of agg, different
scenarios can apply.

If agp<<0, the only relevant condition is determined
by mechanical stability, i.e., by the requirement that the
energy of the mixture must increase for small fluctua-
tions in the density of the two components. Starting
from a mean-field energy functional, which includes to
lowest order interaction effects between bosons and be-
tween fermions and bosons, the linear stability require-
ment fixes an upper limit on the fermionic density np
irrespective of the value ny of the bosonic density

4’77)1/3 agp

1/3 e il
g ( 3 |age| (1 +mp/mp .

mB/mF

(130)

where mp and my denote, respectively, the masses of
bosons and fermions and agg is assumed to be positive
to ensure the stability of the configurations where only
bosons are present. If ny exceeds the upper bound (130),
the system collapses.

If instead agg>0, the uniform mixture can become
unstable against phase separation into a mixed phase
and a purely fermionic one. While the fermionic density
cannot in any case violate the condition (130), for each
value of ny there exists a critical bosonic density ng(ny)
above which the system phase separates. The function
nz(ny) is nontrivial and for a given pair of densities (ny
and np) one has to check whether the phase-separated
configuration is in equilibrium and is energetically favor-
able compared to the uniform mixture. For vanishingly
small bosonic densities ng, the relevant condition for ny
coincides with (130). It is worth noting that the repulsive
agr scenario describes the mixtures of fermions and
composite bosons in the deep BEC regime considered in
Sec. IX.A.

In the presence of harmonic trapping, the conditions
for the collapse and phase separation change. The den-
sity profiles of the two components were investigated by
Mglmer (1998) using the same mean-field energy func-
tional described above in the local-density approxima-
tion. The results are consistent with the scenario of a
collapsed state if ag is large and negative and a phase-
separated state (a core of bosons surrounded by a shell
of fermions) in the opposite regime of large and positive
agr. These two scenarios are in agreement with the fea-
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tures observed in “’K-*’Rb mixtures (Ospelkaus, Ospel-
kaus, Humbert, Sengstock, et al., 2006; Zaccanti et al.,
2006; Modugno, 2007).

Collective oscillations in harmonically trapped Bose-
Fermi mixtures have also been the subject of consider-
able theoretical investigations [see, e.g., the recent work
by Maruyama and Bertsch (2006), and references
therein]. In particular, the monopole (Maruyama et al.,
2005) and the dipole mode (Maruyama and Bertsch,
2006) have been studied at zero temperature using a dy-
namic approach based on the solution of a coupled sys-
tem of time-dependent equations: the Gross-Pitaevskii
equation for bosons and the collisionless Vlasov equa-
tion for fermions. These studies point out the existence
of a characteristic damping in the motion of the fermi-
onic component affecting both types of oscillations.

An important aspect of Bose-Fermi mixtures concerns
boson-induced interactions experienced by the other-
wise noninteracting fermionic atoms. The physical origin
of the induced interactions is the polarization of the
bosonic medium, which acts as an effective potential be-
tween fermions. The density-density response function
of bosons is the relevant quantity to describe this effect
and the induced interaction is thus frequency and wave
vector dependent. At low frequencies and long wave-
lenghts it is always attractive, irrespective of the sign of
agr, it is independent of the density of bosons, and it
reproduces the mechanism of instability discussed in the
paragraph after Eq. (130) (Bijlsma et al., 2000; Viverit et
al., 2000). The physical picture is similar to the effective
attraction between *He atoms in solution in superfluid
“He (Edwards ef al., 1965) and the phonon-induced at-
traction between electrons in ordinary superconductors
[see, for example, de Gennes (1989)].

An additional interest of exploiting heteronuclear
Feshbach resonances (including the Fermi-Fermi mix-
tures considered in Sec. IX.D) is the possibility of creat-
ing polar molecules characterized by long-range aniso-
tropic interactions which are expected to have a
profound impact on the many-body physics (Baranov et
al., 2002). Furthermore, the creation of such hetero-
nuclear molecules in optical lattices (Ospelkaus, Ospel-
kaus, Humbert, Ernst, ef al., 2006) might lead to impor-
tant applications in quantum information processing
(Micheli et al., 2006).

X. FERMI GASES IN OPTICAL LATTICES

The availability of optical lattices has opened new
frontiers of research in the physics of ultracold atomic
gases [for a recent review, see Morsch and Oberthaler
(2006) and Bloch et al. (2007)]. In the case of Fermi
gases, the problem is closely related to the physics of
electrons in metals or semiconductors. However, optical
lattices differ favorably from traditional crystals in many
important aspects. The period of the optical lattice is
macroscopically large, which simplifies the experimental
observation. The lattice can be switched off, and its in-
tensity can be tuned at will. Atoms, contrary to elec-
trons, are neutral and furthermore their interaction is
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tunable due to the existence of Feshbach resonances.
The lattices are static and practically perfect, free of de-
fects. Disorder can be added in a controllable way by
including random components in the optical field. Last,
it is easy to produce one- and two-dimensional struc-
tures.

An atom in a monochromatic electric field feels a
time-averaged potential proportional to the square of
the field amplitude (see, e.g., Pethick and Smith, 2002;
Pitaevskii and Stringari, 2003). It is useful to work suffi-
ciently close to the frequency w, of the absorption line
of an atom, where the force on the atom becomes
strong. The atoms are pulled into the strong-field region
for w<w, (red detuning) and pushed out of it for w
> wq (blue detuning).

One-dimensional periodic potentials can be produced
by a standing light wave. In this case, the potential en-
ergy is written as V,(z)=sEg sin’(Kz), where K is the
wave vector of the laser, Egx=%>K?/2m is the recoil en-
ergy, and s is the dimensionless parameter proportional
to the laser field intensity. Typical values of s in experi-
ments range from 1 to 20. The potential has a period d
=N/2=m/K, where \ is the wavelength of the laser. If
the two counterpropagating laser beams interfere under
an angle 6 less than 180°, the period is increased by the
factor sin(6/2)~!. By using three mutually orthogonal la-
ser beams, one can generate a potential of the form

Vopt(®) = sEg[sin*(Kx) + sin*(Ky) + sin*(Kz)].  (131)

Note that in experiments atoms are trapped by addi-
tional confining potentials, in most cases of harmonic
form. To preserve the effective periodicity of the prob-
lem, the harmonic potential should vary slowly with re-
spect to the period of the lattice. This requires the con-
dition Ep>fiwy,, Which is easily satisfied in experiments.

A. Ideal Fermi gases in optical lattices

1. Fermi surface and momentum distribution

An advantage of experiments with cold fermions is
the possibility of realizing a noninteracting gas by creat-
ing a spin polarized configuration. As explained in Sec.
III.A, the interaction between fermionic atoms with par-
allel spins is in fact negligible.

The quantum-mechanical description of the motion of
a particle in a periodic external field was developed by
Bloch (1928). In 1D, the wave functions have the Bloch
form qun(z):exp(iqzz)uqzn(z) and are classified in terms
of the quasimomentum p_,=%q,, while n is a discrete
number labeling the Bloch band. The values of the wave
vector g, differing by the reciprocal-lattice vector 2K are
physically equivalent and it is therefore enough to re-
strict the values of g, to the first Brillouin zone: —K
<q,<K. The function uqzn(z) is a periodic function of z
with period d. The formalism is straightforwardly gener-
alized to 3D lattices where the eigenstates of the Hamil-
tonian with the potential (131) are products of wave
functions of the Bloch form along the three directions
and are hence classified in terms of the 3D quasimomen-
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FIG. 32. Time-of-flight images obtained after adiabatically ramping down the optical lattice. Image (a) is obtained with N,
=3500 and s=5E%. Images (b)—(e) are obtained with N,=15000 and correspond to s=5E% (b), s=6Eg (c), s=8Ey (d), and s
=12Ej (e). The images show the optical density (OD) integrated along the vertically oriented z axis after 9 ms of ballistic

expansion. From Kohl et al., 2005.

tum p. In a Fermi gas at zero temperature all states with
excitation energy e(p)=FE(p)—E(0) are occupied up to
values such that e(p)= Er, where Ef is the Fermi energy.
The corresponding values of p characterize the Fermi
surface.

Experimentally one can measure the momentum dis-
tribution of these noninteracting configurations by imag-
ing the atomic cloud after release from the trapping po-
tential. In fact, the spatial distribution n(r) of a
noninteracting expanding gas reproduces asymptotically
the initial momentum distribution n(p) according to the
law n(r,t) — (m/t)’n(p=mr/1).

In order to have access to the quasimomentum distri-
bution, a practical procedure consists of switching off
the lattice potential adiabatically so that each state in
the lowest energy band with quasimomentum p is adia-
batically transformed into a state with momentum p.
The condition of adiabaticity requires that the lattice
potential be switched off in times longer than the inverse
of the energy gap between the first and second bands.

The Bloch problem can be solved analytically in the
tight-binding approximation, for large lattice heights.
For a 3D cubic lattice, one finds (p=fq)

€, = 28[sin*(q,d/2) + sin*(q,d/2) + sin*(q,d/2)] (132)

for the dispersion law of single-particle excitations in the
lowest band. The bandwidth 26 decreases exponentially
for large s according to 8=8Egs’*exp(—2\s)/ V7
(Zwerger, 2003), and is inversely proportional to the tun-
neling rate through the barriers. The energy gap be-
tween the first and second bands coincides with the en-
ergy splitting hwopt:ZV";ER between the states in the
harmonic potential produced by the optical potential
(131) around each local minimum. When p— 0, Eq. (132)
takes the simple form €,= p?/2m*, the effective mass re-
lated to the bandwidth by m*=#2/5d?. The explicit de-
pendence of m* on s, including the case of small laser
intensities, was calculated by Kramer et al. (2003).

The dispersion law (132) results from the removal of
the degeneracy between the lowest energy states of each
well produced by the interwell tunneling. This means
that the number of levels in the band is equal to the
number of lattice cells. Then, if one works within the
first Bloch band, the maximum achievable density is
n=1/d°.

Inclusion of harmonic trapping can be accounted for
by introducing the semiclassical distribution function,
which at zero temperature takes the form f(p,r)
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=O[Er—H(p,r)], where Ef is the Fermi energy. In this
equation, p is the quasimomentum variable and H=¢,
+Vio(r), with ¢, given by Eq. (132). Starting from the
distribution function, one can evaluate the quasimomen-

tum (qm) distribution by integrating over r,

nlam(p) =

B (Eoee \3?
- (F—fﬂ) OEr-¢).  (133)

370\ mop,

where wp, <oy is the usual geometrical average of the
harmonic frequencies of the potential Vi, (r) and p is
restricted to the first Brillouin zone.

If the Fermi energy is much smaller than the band-
width 26, one can expand the dispersion law up to terms
quadratic in p. In this case one recovers the same
Thomas-Fermi form (10) holding for the momentum dis-
tribution in the absence of the optical potential, with the
only difference the presence of an effective-mass term
that renormalizes the trapping frequencies. In the oppo-
site regime Ep>26, but for Ep<fiw,, the quasimomen-
tum distribution becomes flat within the first Brillouin
zone, giving rise to a characteristic cubic shape for the
Fermi surface. In this limit, we find

Ep= (ﬁ)”MNgs_

134
32 Ex (134)

The experimental investigation of the Fermi surface in a
3D optical lattice was carried out by Kohl et al. (2005),
who observed the transition from the spherical to the
cubic shape by increasing the intensity of the laser gen-
erating the optical lattice (see Fig. 32). For s=12 [panel
(e) in the figure], corresponding to 6~ 10 nK, the values
of the relevant parameters were Ep=348 nK, fiwy,
=27h 191 Hz=9.2 nK, and N,=15000, so that the con-
ditions fiw,, > Ep>246, needed to reach the cubic shape
for the Fermi surface, were well satisfied in this experi-
ment.

In the same limit Ez>26, the coarse-grained density
distribution takes the constant value n™*=1/d* within
the ellipsoid fixed by the radii (i=x,y,z)

3 1/3
Ri= (—) N3P, (135)

dar i

where d is the periodicity of the laser field. The constant
value of the density reflects the insulating nature of the
system.
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2. Bloch oscillations

Atomic gases confined by optical lattices are well
suited to study Bloch oscillations (these oscillations are
difficult to observe in natural crystals because of the
scattering of electrons by the lattice defects). Consider a
1D optical lattice in the presence of a gravitational field
V.«=—-mgz oriented along the direction of the lattice.
The dynamics of atoms in the lowest band can be de-
scribed in the semiclassical approximation using the ef-
fective single-particle Hamiltonian

2

H(Pal') = ;)_l’; + epz + Vext(r)'

(136)
The Hamilton equation dp,/dt=-0H/dz then yields the
solution p,=mgt. In this problem it is convenient not to
restrict p, to the first Brillouin zone, but to allow p, to
take larger values. Then all observable physical quanti-
ties must be periodic functions of p, with period 2K#.
From the time dependence of p, it follows that these
quantities oscillate in time with frequency wgp=mgd/#.
The periodicity of these Bloch oscillations is ensured by
the periodicity of the optical lattice and the theory is
applicable if wp<wqp.

Bloch oscillations have been observed in Bose gases
both above (Ben Dahan et al., 1996; Cladé et al., 2006;
Ferrari et al., 2006) and below (Anderson and Kasevich,
1998; Morsch et al., 2001) the critical temperature for
Bose-Einstein condensation. A general limitation in the
study of Bloch oscillations with bosons is due to insta-
bilities and damping effects produced by the interac-
tions. Precise measurements have been recently
achieved in a dense BEC gas of *°K, near a Feshbach
resonance which permits one to tune the scattering
length to vanishing values (Roati et al., 2007).

The use of polarized fermions permits us to work with
relatively dense gases because of the absence of s-wave
collisions. In the experiment of Roati et al. (2004), a
Fermi gas of “°K atoms was initially confined in a har-
monic trap so that the external potential takes the form
Vext(®) =Vio(r) —mgz. The quasimomentum distribution
is obtained by integrating the 7=0 distribution function
in all variables except p,,

n(p,) < (Ep— €, )*0(Ep—¢,). (137)
As long as Ej is smaller than 26, the quasimomentum
distribution is localized in a narrow region around p,
=0, while the contrast deteriorates for larger values of
EF.

At t=0, the vertical harmonic confinement is suddenly
switched off and atoms evolve in the presence of the
lattice and gravitational potentials. At the initial time,
the quasimomentum distribution is centered at p,=0.
Then it will later move according to the law n(qm)(pz,t)
=n'9(p_—mgt). When the cloud reaches the edge of the
Brillouin zone K, it reappears on the opposite side and
the quasimomentum distribution acquires a two-peak
character. At t=2/wpg, it regains its initial shape.

Rev. Mod. Phys., Vol. 80, No. 4, October—December 2008

After a given evolution time, the lattice potential is
adiabatically switched off in order to transfer the quasi-
momentum distribution into the momentum one. The
cloud is then imaged after a given time of free expan-
sion. In this experiment, it was possible to observe about
100 Bloch periods. The high precision achievable in the
measurement of Bloch frequencies opens new perspec-
tives in sensitive measurements of weak forces, such as
the Casimir-Polder force between atoms and a solid sub-
strate (Carusotto et al., 2005).

3. Center-of-mass oscillation

In addition to Bloch oscillations, it is also interesting
to study the consequence of the lattice on oscillations of
the gas occurring in coordinate space. In this section, we
focus on the dipole oscillation which can be excited by a
sudden shift of the confining harmonic trap. According
to Kohn’s theorem, dipole oscillations in the absence of
the lattice have no damping and its frequency is equal to
the trap frequency. In a superfluid these oscillations exist
also in the presence of the lattice due to coherent tun-
neling of atoms through the barriers separating consecu-
tive wells. The main consequence of the lattice is a
renormalization of the collective frequency determined
by the effective mass of the superfluid. These oscillations
have been observed in Bose-Einstein condensates (Cat-
aliotti et al, 2001) and are expected to occur also in
Fermi superfluids (Pitaevskii et al., 2005).

The behavior of a noninteracting Fermi gas is very
different (Pezze et al., 2004). To understand the origin of
the differences, consider the simplest case of a one-
dimensional Fermi gas characterized by the dispersion
law €, =26 sin’(p,d/2#) and trapped by the harmonic
potential mwﬁzz/ 2. Atoms with energy smaller than 20
can perform closed orbits in the z-p, phase plane. These
atoms oscillate around the center of the trap. Atoms
with energy higher than 26 perform open orbits, unable
to fully transfer the potential energy into the Bloch en-
ergy €, . They consequently performs small oscillations
in space, remaining localized on one side of the har-
monic potential. As a consequence, if Er>25 the cloud
no longer oscillates around the new center of the trap
but is trapped out of the center and performs small os-
cillations around an offset point, reflecting the insulating
nature of the system.

In order to investigate a three-dimensional case, one
can use the semiclassical collisionless kinetic equation
for the distribution function with the Hamiltonian (136).
The results of the calculations show that, if Ex>26, in
3D the cloud is also not able to oscillate around the new
equilibrium position, but exhibits damped oscillations
around an offset point, similar to the 1D case. The
damping is due to the fact that different atoms oscillate
with different frequencies as a consequence of the non-
harmonic nature of the Hamiltonian. These phenomena
were investigated experimentally using a Fermi gas of
YK atoms (Pezze et al., 2004). In Fig. 33, we show the
observed time dependence of the z coordinate of the
cloud at T=0.3TF, both without and in the presence of
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FIG. 33. Dipole oscillations of a Fermi gas of **K atoms at T
=0.3 T in the presence (solid symbols and solid line) and ab-
sence (open symbols and dashed line) of a lattice with height
s=3. The lines correspond to the theoretical predictions and
the symbols to the experimental results. The horizontal dot-
dashed line represents the trap minimum. From Pezzé et al.,
2004.

the lattice. One clearly sees the offset of the oscillations
as well as their damping.

4. Antibunching effect in the correlation function

The discussion has so far concerned one-body proper-
ties of the gas, such as the momentum distribution and
the density profiles. An interesting feature exhibited by
spin polarized Fermi gases is the occurrence of anti-
bunching effects in the two-body correlation function
[see the discussion on g;(r) in Sec. V.B.2]. This suppres-
sion of the probability of finding two atoms within short
distances is a direct consequence of the Pauli exclusion
principle.

In a recent experiment (Rom et al., 2006), the density
correlation function (n(z,f)n(z’,t)) of a Fermi gas was
measured after expansion from an optical lattice. The
average is taken on different runs of the experiment and
the distributions are integrated along the x,y directions.
The density correlation function, measured at large ex-
pansion times, is proportional to the momentum corre-
lation function (n(p=mz/t)n(p’' =mz'/t)). Due to the pe-
riodicity of the Bloch function u, ,(z), an atom with
quasimomentum p=#q carries momenta with values
h(g+2jK) for all integers j. As a consequence, the same
atom can be found at the points z=%(q+2jK)t/m. Since
the Pauli principle does not allow two fermions to oc-
cupy the same Bloch state, the correlation function
(n(z,tn(z’,t)) should vanish for relative distances which
are integer multiples of 24 Kt/m.

In the experiment of Rom et al. (2006), 40K atoms
were confined at 7/7T;=~0.23 in a 3D optical trap. In the
conditions of the experiment the atoms filled the first
energy band. The key experimental results are pre-
sented in Fig. 34, where the antibunching effect is visible
at |z—z'|=¢=2/Kt/m. Note that at short relative dis-
tances |z—z'|=0 the antibunching effect is masked by
the positive contribution of the autocorrelation term to
the density correlation function (68).
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FIG. 34. (Color online) Density correlation function C(d) mea-
sured after expansion as a function of the distance d=|z-z'| in
a Fermi gas of “°K atoms released from an optical lattice. The
difference C(d)—1 of the correlation function with respect to
its uncorrelated value shows clear evidence of the antibunch-
ing effect at d=€ =2AKt/m. From Rom et al., 2006.
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B. Interacting fermions in optical lattices

The study of interacting Fermi gases in optical lattices
is expected to be a growing field of research. The prob-
lem has so far been approached theoretically using two
different perspectives.

In a first approach, one starts from the two-body
Hamiltonian where interaction effects are accounted for
in terms of a single parameter, the s-wave scattering
length a. Further microscopic details of the interatomic
potential are unimportant provided that the lattice pe-
riod is much larger than the effective range |R*| of the
interaction. The resulting many-body theories are in
most cases well suited to treat the superfluid phase of
the system, but have not been extensively developed so
far to investigate other states, like the Mott insulator or
the antiferromagnetic phase. Basic applications of this
approach concern the study of the dimer formation (see
the next section) and calculation of the BCS critical tem-
perature (Orso and Shlyapnikov, 2005).

A second approach is based on the development of
more phenomenological models, such as the Hubbard
model, extensively employed in solid-state physics. The
Hubbard model is well suited to study novel phases
emerging in the presence of the optical lattice, such as
the Mott insulator and antiferromagnetic phases
(Werner et al., 2005). Key questions are the identification
of the parameters of the model in terms of the micro-
scopic ingredients (the s-wave scattering length and the
intensity of the periodic potential) and its applicability
under extreme conditions, for example, at unitarity,
where the scattering length is much larger than the pe-
riod of the lattice.

A separate class of problems finally concerns the
physics of low-dimensional systems, in particular of 1D
systems, which can be experimentally produced using
optical lattices. This will be discussed in the next section.

From the experimental point of view, the first impor-
tant results on the role of interaction have concerned the
dimer formation in 3D tight lattices (Stoferle et al., 2006)
and the superfluid to Mott-insulator transition (Chin et
al., 2006).
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1. Dimer formation in periodic potentials

In this section, we discuss how the formation of a
dimer is perturbed by the presence of a periodic poten-
tial. The problem is nontrivial because, different like
from free space or harmonic trapping, the two-body
problem cannot be simply solved by separating the rela-
tive and center-of-mass coordinates in the Schrodinger
equation. In particular, the center-of-mass motion affects
the binding energy of the molecule.

The problem of calculating the binding energy for ar-
bitrary laser intensities of 1D lattices was solved by Orso
et al. (2005) (the limit of tight lattices was considered by
Fedichev et al., 2004). Different from free space, where
dimers are created for only positive values of the scat-
tering length, in the presence of the periodic potential
bound dimers also exist for negative values of the scat-
tering length, starting from a critical value a.,<0. When
the laser intensity becomes large, the dimer enters a
quasi-2D regime. In this limit, the two interacting atoms
are localized at the bottom of the same optical well
where, in first approximation, the potential is harmonic
with frequency wp. Then the two-body problem can be
solved analytically yielding, in particular, the value ¢,
=-0.244 % wopt:—0.488\s"sER at unitarity (Petrov et al.,
2000; Idziaszek and Calarco, 2006).

The formation of dimers also affects the tunneling of
particles through the barriers produced by the optical
lattice, particularly the effective mass M* which is de-
fined through the dispersion law E(p,) of a molecule as
1/M*=[#E(p,)/ apﬁ]p _o- As a result, the effective mass
M+ of the dimer is §igniﬁcantly larger than the value
2m*, where m* is the effective mass of a single atom in
the presence of the same lattice potential (see Sec. X.A).
The difference is caused by the exponential dependence
of the tunneling rate on the mass of a tunneling particle.
Near the threshold for molecular formation, M* ap-
proaches the noninteracting value 2m*.

We now discuss the case of a 3D lattice potential of
the form (131). We restrict the analysis to a lattice of
high intensity s. In this case, the atomic pair is confined
near one of the minima of the lattice, where the poten-
tial can be considered harmonic and isotropic with fre-
quency gy and the two-body problem can be solved
analytically (Bush ez al, 1998). A bound state is found
for any value of the scattering length, the binding energy
given by the solution of the following equation:

\/— F(— E[)/zhwopt) _ &P_t, (138)
I'(- eR2liwey—1/2) a

where I is the gamma function and @, =VAi/mwey. The
resulting predictions are shown in Fig. 35. For small and
positive scattering lengths (a <a,p), Eq. (138) yields the
binding energy €,=—-#%%/ma’ relative to free space, while
at unitarity one finds the result €,=-fiwp.

The formation of molecules driven by the presence of
the lattice was observed in the experiment of Stoferle et
al. (2006), where the lattice was formed by three or-
thogonal standing waves and the binding energy was
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FIG. 35. Binding energy of molecules measured with YK at-
oms in a 3D optical lattice. The data correspond to different
intensities of the optical lattice: s=6Eg (triangles), 10Eg
(stars), 15ER (circles), and 22Ey (squares). The solid line cor-
responds to Eq. (138) with no free parameters. At the position
of the Feshbach resonance (a— + ), the binding energy takes
the value €,=~fiw,y. From Stoferle et al., 2006.

measured by radio-frequency spectroscopy. The radio-
frequency pulse dissociates dimers and transfers atoms
in a different hyperfine state which does not exhibit a
Feshbach resonance. Therefore, the fragments after dis-
sociation are essentially noninteracting. The results are
presented in Fig. 35 for different values of s and show
good agreement with theory. In particular, one can
clearly see the existence of bound states for negative
values of @ which would be impossible in the absence of
the lattice.

2. Hubbard model

The Hubbard model (Hubbard, 1963) provides a use-
ful description for atoms in the lowest band of tight lat-
tices. In the simplest version the Hamiltonian has the
form

(@) i

(139)

where the indices i/ and j run over the N, sites of the
cubic lattice and correspond to first-neighbor sites. The
operators 61, (¢;;) are the usual creation (annihilation)
operators of particles with spin o=1,| on the site i,
while ﬁw:éjgém is the corresponding number operator.
The term in the Hamiltonian (139) containing the pa-
rameter ¢ (hopping term) describes the tunneling of at-
oms between sites and plays the role of the kinetic en-
ergy operator. If U=0, this term gives rise to the
dispersion law (132) with 6=2¢. The parameter U de-
scribes the interaction between atoms and can have both
positive and negative sign. Physically this term corre-
sponds to the energy shift produced by the interaction
when two atoms of opposite spin are localized in one of
the lattice sites. The perturbative calculation of the
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shift using the pseudopotential (15) yields U
=(4mh?a/m) [ dr|yy|*, where ¢y is the ground-state wave
function of an atom in the individual potential well. In
the harmonic approximation for the local optical poten-
tial, at large laser intensities, one finds U
=8/ wEgs**Ka. The use of perturbation theory is justi-
fied if the shift is small compared to the optical oscillator
energy |U| <hwgy, or equivalently if |a| <a,y. This con-
dition is equivalent to the requirement that the energy U
is small compared to the gap between the first and sec-
ond bands. For higher values of U, applicability of the
Hubbard model (139) is questionable since in this case
the Hamiltonian should also account for higher bands.

At zero temperature the model is characterized by
two parameters: the ratio u=U/t between the interac-
tion and the hopping coefficients and the average occu-
pancy p=N/N,, which in the first band picture should be
smaller than or equal to 2 due to Fermi statistics. The
phase diagram predicted by the Hubbard model is very
rich, including the superfluid, the Mott insulator, and the
antiferromagnetic phases. It is also worth noting that in
the strong-coupling limit the Hubbard model is equiva-
lent to the Heisenberg model (see, for example, Bloch ef
al., 2007). A detailed discussion of the various phases
available in interacting Fermi gases trapped by a peri-
odic potential is beyond the scope of this work and we
refer the reader to reviews by Georges (2007) and Le-
wenstein et al. (2007).

XI. 1D FERMI GAS

The physical properties of 1D Fermi gases differ in
many interesting aspects from those of their 3D counter-
parts. In practice, to create a one-dimensional gas, atoms
must be confined in a highly elongated harmonic trap,
where the anisotropy parameter \=w,/w, is so small
that the transverse motion is “frozen” to the zero point
oscillation. At zero temperature this condition implies
that the Fermi energy associated with the longitudinal
motion of atoms, Ep=Nfhw,/2, is much smaller than the
separation between the levels in the transverse direc-
tion, Ep<fiw,. This condition requires A<<1/N. Such a
configuration can be realized using a two-dimensional
optical lattice formed by two perpendicular standing-
wave laser fields. If the intensity of the beams is large
enough, the tunneling between the minima of the lattice
is absent and the atoms, confined in different minima,
form an array of independent tubes. In the experiment
by Moritz et al. (2005), the typical number of particles
per tube is less than 100, while A =0.004, thereby ensur-
ing a reasonably safe 1D condition in each tube.

A. Confinement-induced resonance

At low energy, the scattering process between two fer-
mions with opposite spin colliding in a tightly confined
waveguide (w,=0) can be described by the effective 1D
interaction potential
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Vip(z) = gipd2), (140)

where the coupling constant g p is expressed in terms of
the 3D scattering length a and the transverse oscillator
length a |, =vA/mw, (Olshanii, 1998),

2h%a 1

=—F . 141
ma’, 1 - Cala, (141)

81D

Here C=-{(1/2)/y2=1.0326, with {(x) denoting the
Riemann zeta function. The condition of validity for the
effective 1D interaction (140) and (141) is provided by

ka, <1, (142)

where k, is the longitudinal relative wave vector of col-
liding atoms. The coupling constant g;p is resonantly
enhanced for a—a,=a,/C, corresponding to the so-
called confinement-induced resonance (CIR), while it re-
mains finite at the position of the 3D resonance (a
— o) where it takes the negative value gp
=—2#h?/Cma . Positive values of g,p, corresponding to
an effective 1D repulsive potential, are obtained only in
the interval 0<a<a,,. Otherwise g;p<0, correspond-
ing to an effective attraction. If |a| <a,, the coupling
constant takes the limiting form g,p=2%%a/ mai, which
coincides with the result of mean-field theory where the
3D coupling constant g=4mh%a/m is averaged over the
harmonic-oscillator ground state in the transverse direc-
tion [see, e.g., Pitacvskii and Stringari (2003), Chap. 17].

In the region where gp is negative, two atoms can
form a bound state. The wave function of the relative
motion is obtained by solving the 1D Schrodinger equa-
tion with the potential (140) and is given by i(z)
=\ke |, where k= \—me,/h. For the binding energy e,
one finds the result

m
€=~ @giD, (143)
yielding k= (m/2#%)|g,p|. Note that ¢, is the energy of a
dimer relative to the noninteracting ground-state energy
fiw, . The 1D result (143) for the binding energy is valid
under the condition ka , <1, or equivalently |e,| <%, .
The general problem of calculating ¢, in a tightly con-
fined waveguide was solved by Bergeman et al. (2003)
using the pseudopotential (15). A molecular bound state
exists for any value of the scattering length a. Its energy
approaches the free-space result —#%/ma® for a>0 and
a<a,, and the 1D result (143) if <0 and |a|<a,. At
the Feshbach resonance, 1/a=0, these authors find the
universal result €,=-0.67iw | .

These molecular bound states have been observed
with “K in the experiment by Moritz ef al. (2005), where
the binding energy ¢, was measured using radio-
frequency spectroscopy. In Fig. 36, we show the experi-
mental results obtained in highly elongated traps com-
pared with the quasi-1D theoretical predictions of
Bergeman et al. (2003) (see also Dickerscheid and Stoof,
2005). The corresponding results for the molecular bind-
ing energy in 3D configurations are also reported, ex-
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FIG. 36. (Color online) Molecular binding energy measured
with “°K in 1D (solid symbols) and in 3D (open symbols) con-
figurations. The lower line corresponds to the theoretical pre-
diction of Bergeman et al. (2003) without free parameters. The
upper line corresponds to the law —#%/ma’+ finite-range cor-
rections. The vertical dashed line represents the position of the
Feshbach resonance. From Moritz et al., 2005.

plicitly showing the existence of confinement-induced
molecules in the region of negative scattering lengths.

The three- and four-body problems on the atom-
dimer and the dimer-dimer scattering in quasi-1D con-
figurations were solved by Mora et al. (2004, 2005) using
techniques similar to the 3D calculation by Petrov et al.
(2004) discussed in Sec. III.C. In particular, one finds
that the scattering process between 1D dimers with en-
ergy (143) can be described by the contact potential
(140) with the same atom-atom coupling constant gp.
Since g|p<0, the interaction between these dimers is
attractive. Note, however, that the fermionic nature of
the atoms prohibits the formation of bound states with
more than two particles.

B. Exact theory of the 1D Fermi gas

We consider a two-component Fermi gas with equal
populations of spin states (N;=N =N/2) confined in a
tight waveguide of length L. At zero temperature and in
the absence of interactions, all single-particle states
within the “Fermi line” —kp<k<kp are occupied. The
Fermi wave vector

ar
kp=—
F 2”1D

(144)
is fixed by the linear density n;p=N/L and the corre-
sponding Fermi energy is given by Eg=(whnp)*/8m.
The condition (142), allowing for the use of the effective
1D interaction (140) and (141), implies the requirement
nipa, <1. In this case the many-body problem is deter-
mined by the Hamiltonian

szz Ny Ny

h
Hp=--——2> d_z2 +aip X 8zi—2in),

2mi5 i=1 11

(145)
which contains only one dimensionless parameter
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_mgip
ﬁznlD

(146)

Correspondingly, the ground-state energy per atom can
be written in the form
2.2

E _ hnip

——e(y)

147
N 2m (147)

in terms of the dimensionless function e(7y), and analo-
gously for the chemical potential u=d(n;pE/N)/dnp.
From Eq. (146) one notes that the weak-coupling regime
(|y] <1) corresponds to high densities n;p, while the
strong-coupling regime (|y|>1) is achieved at low den-
sities. This is a peculiar feature of 1D configurations,
resulting from the different density dependence of the
ratio of kinetic to interaction energy in 1D (e«n;p) com-
pared to 3D (xn~1?3),

The ground-state energy of the Hamiltonian (145) has
been calculated exactly using Bethe’s ansatz for both re-
pulsive, g;p>0 (Yang, 1967), and attractive, g;p<0
(Gaudin, 1967, 1983), interactions. Some limiting cases
of the equation of state at T=0 are worth discussing in
detail. In the weak-coupling limit, |y| <1, one finds the
perturbative expansion

E(l 4y )
= T+ —= 4 -
IU’ F 772 ’

where the first correction to the Fermi energy E carries
the same sign of y. The above expansion is the 1D ana-
log of Eq. (32) in 3D. In the limit of strong repulsion,
v>1, one finds (Recati et al., 2003b)

161n2 )
+--- .
3y

The lowest-order term in the above expansion coincides
with the Fermi energy of single-component noninteract-
ing gas with a twice as large density (N,=N), consistent
with the expectation that the strong atom-atom repul-
sion between atoms with different spins plays the role in
1D of an effective Pauli principle.

The regime of strong attraction, |y|>1 with y<O0, is
particularly interesting. In this case one finds the follow-
ing expansion for the chemical potential (Astrakharchik,
Blume, Giorgini, et al., 2004):

E 4
M:&"'J(l__""“)’

where ¢, is the binding energy (143) of a dimer. Accord-
ing to the discussion at the end of Sec. XI.A, in this
regime the system is a gas of strongly attractive bosonic
dimers. A crucial point is that the formation of bound
states of these composite bosons is inhibited by the fer-
mionic nature of constituent atoms. In Eq. (150), the
leading term E/4, beyond the molecular binding energy
€5, coincides with half the chemical potential of a gas of
impenetrable bosons (Tonks-Girardeau gas) with density
nip/2 and mass 2m. This peculiar behavior is an ex-
ample of the exact mapping between bosons and fermi-

(148)

p= 4EF<1 - (149)

(150)
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ons exhibited by 1D configurations (Girardeau, 1960).
The consequences of the “Fermi-Bose duality” in 1D,
including the regimes of intermediate coupling and for
both s-wave and p-wave scattering, have been investi-
gated (Cheon and Shigehara, 1999; Granger and Blume,
2004; Girardeau and Olshanii, 2004; Girardeau et al.,
2004; Mora et al., 2005).

The strongly interacting regime, |y|>1, can be
achieved by tuning the effective coupling constant gp.
As in the experiment by Moritz et al. (2005) on 1D mol-
ecules, one makes use of a Feshbach resonance to tune
the scattering length in the region around the value a;,
corresponding to the confinement-induced resonance
where y=+x [see Eq. (141)]. This resonance connects a
BCS-like weakly attractive regime (y negative and
small), corresponding to weakly bound pairs with energy
(143) and size K’1>n1"]1), to a BEC-like regime (y posi-
tive and small) of tightly bound bosonic molecules with
energies of order Aiw, and size much smaller than the
average distance between dimers. These dimers are ex-
pected to behave as a 1D gas of bosons interacting with
a repulsive contact potential (Mora et al., 2005). How-
ever, these tightly bound dimers cannot be described by
the Hamiltonian (145), which, if g;p>0, only describes
the repulsive atomic branch. The occurrence of such a
BCS-BEC crossover in 1D was first suggested by Fuchs
et al. (2004) and Tokatly (2004).

The properties at 7=0 of the 1D Fermi gas with short-
range interactions are considerably different from those
of usual 3D Fermi liquids. Actually, this gas is an ex-
ample of a Luttinger liquid (Luttinger, 1963). The low-
energy properties of this liquid are universal and do not
depend on the details of the interaction, the specific
Hamiltonian (lattice or continuum models), or the statis-
tics of the atoms (Haldane, 1981). The only requirement
is the existence of long-wavelength gapless excitations
with linear dispersion. The Luttinger effective Hamil-
tonian is expressed in terms of the compressibility and
velocity of propagation of these gapless excitations. For
a review on the properties of Luttinger liquids, see, for
example, Voit (1995) and Giamarchi (2004).

Hydrodynamic sound waves (phonons) are predicted
by the Hamiltonian (145). They propagate with the
velocity ¢ determined by the compressibility through
mc?=n,pdu/dn,p. In this case, knowledge of the
equation of state allows for an exact determination of
the effective Luttinger parameters (Recati et al., 2003a).
If y>0, ¢ is larger than the Fermi velocity vg
=mhnp/2m. For example, in the case of strong repul-
sion (y>1) the speed of sound takes the limiting value
c=2v(1-41n2/v). For small values of vy the sound ve-
locity tends to vy, while for y<<0 it becomes smaller than
the Fermi velocity. The inverse compressibility mc?,
however, remains positive, indicating the stability of the
gas even in the strongly attractive regime where one
finds c=vg/2. This is in sharp contrast with the behavior
of a 1D Bose gas with attractive contact interactions,
where the ground state is a solitonlike many-body
bound state (McGuire, 1964).
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The presence of phonons in a Luttinger liquid affects
the long-range behavior of the correlation functions,
fixed by the dimensionless parameter #=2hkg/mc
(Luther and Peschel, 1974; Haldane, 1981). For example,
the one-body density matrix behaves, for |z—z']|
>1/nyp, as

nip sin(vmlD|Z - Z’|)
(n1D|Z _ Z/|)1/77+7]/4 ‘

(WH(2)W,(2") = (151)

For a noninteracting gas »=2 and the one-body density
matrix decays as sin (7np|z—-2z'|)/|z—z'|- This behavior
reflects the presence of the jump from 1 to 0 in the mo-
mentum distribution at the Fermi surface k= +kf. In the
presence of interactions, the correlation function (151)
decreases faster. This implies that the jump at &k disap-
pears and the momentum distribution close to the Fermi
surface behaves as nk—nkFocsgn(kF—k)|kF—k|B, with 3
=1/n+n/4-1>0.

The Hamiltonian (145) also supports spin waves to-
gether with sound waves. For y>0, these spin excita-
tions have a linear dispersion at small wave vectors.
Their velocity of propagation ¢, tends to vy for small
values of vy, but for finite interaction strengths the veloc-
ity is different from the speed of sound c. In the strongly
repulsive regime, one finds the small velocity c,
=vpm/y, to be compared with the corresponding sound
velocity c=2v discussed above. This spin-charge sepa-
ration is a peculiar feature of Luttinger liquids. The pos-
sibility of observing this phenomenon in ultracold gases
was investigated by Recati ef al. (2003a). In the case of
attractive interactions, y<<0, the spin-wave spectrum ex-
hibits a gap A, (Luther and Emery, 1974). This spin gap
is defined according to Eq. (30) and is therefore analo-
gous to the pairing gap in 3D Fermi superfluids. In the
weak-coupling limit |y| <1, the gap is exponentially
small, proportional to \|ylexp(—72/2| y|) (Bychkov et al.,
1966; Krivnov and Ovchinnikov, 1975).

So far we have considered uniform systems. In experi-
ments the gas is confined in the longitudinal z direction
by a harmonic potential. If the average distance between
particles is much smaller than the longitudinal oscillator
length, 1/nyp<a,=Vh/mw, (requiring small enough val-
ues of the trapping frequency w,), one can use the local-
density approximation to calculate the properties of the
trapped system (Astrakharchik, Blume, Giorgini, et al.,
2004). The density profile and the Thomas-Fermi radius
can be obtained as a function of the interaction strength
from the solution of Eq. (72). One can also calculate the
frequency of the lowest compression mode using the hy-
drodynamic theory of superfluids (see Sec. VII.C). Since
wnip in both the weak- and strong-coupling limits, in-
dependent of the sign of interactions [see Eqs. (149) and
(150)], the frequency of the mode tends to 2w, in these
limits. The study of the breathing-mode frequency for
intermediate couplings was carried out by Astra-
kharchik, Blume, Giorgini, et al. (2004).

Another interesting application of the local-density
approximation to trapped 1D configurations is provided
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by the study of spin polarized systems (Orso, 2007). The
ground-state energy of the Hamiltonian (145) can be cal-
culated exactly with unequal spin populations N;# N,
(Gaudin, 1967; Yang, 1967). In the case of attractive in-
teractions, g;p<<0, the T=0 phase diagram always con-
sists of a single phase corresponding to (i) a fully paired
state with a gap in the spin excitation spectrum if N;
=N|, (ii) a noninteracting fully polarized state if N|=0,
and (iii) a gapless partially polarized state if Ny>N,
(Oelkers et al., 2006; Guan et al., 2007). This latter state
is expected to be a superfluid of the FFLO type (Yang,
2001). In harmonic traps, spin unbalanced configurations
result in a two-shell structure: a partially polarized phase
in the central region of the trap and either a fully paired
or a fully polarized phase in the external region depend-
ing on the value of the polarization (Orso, 2007). This
structure is in sharp contrast with the behavior in 3D
configurations, where the unpolarized superfluid phase
occupies the center of the trap and is surrounded by two
shells of partially polarized and fully polarized normal
phases (see Sec. IX.C). One can understand this behav-
ior by noting that the larger densities occurring in the
center of the trap correspond in 1D to a weak-coupling
regime and, consequently, pairing effects are smaller in
the central than in the external region of the trap. The
opposite situation takes place in 3D configurations.

XII. CONCLUSIONS AND PERSPECTIVES

In this review, we have discussed relevant features ex-
hibited by atomic Fermi gases from a theoretical per-
spective. The discussion has pointed out general good
agreement between theory and experiment, revealing
that the basic physics underlying these quantum systems
is now reasonably well understood. The most important
message emerging from these studies is that, despite
their diluteness, the role of interactions in these quan-
tum gases is highly nontrivial, revealing the different fac-
ets of Fermi superfluidity in conditions that are now ac-
cessible and controllable experimentally. The possibility
of tuning the value and even the sign of the scattering
length is actually the key novelty of these systems with
respect to other Fermi superfluids available in con-
densed matter physics. The long sought BCS-BEC cross-
over, bringing the system into a high-7, superfluid re-
gime where the critical temperature is on the order of
the Fermi temperature, can now be systematically inves-
tigated and many theoretical approaches are available to
explore the different physical properties. The situation is
particularly well understood at zero temperature where
important properties of these Fermi gases in harmonic
traps, such as the equilibrium density profiles and values
of the release energy and collective frequencies, can be
calculated in an accurate way using the equation of state
of uniform matter available through quantum Monte
Carlo simulations and employing the local-density ap-
proximation. Other important features that can now be
considered reasonably well understood theoretically and
confirmed experimentally are the momentum distribu-
tion along the crossover, the collisional processes be-
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tween pairs of fermions on the BEC side of the reso-
nance, and the basic properties of Fermi gases in optical
lattices such as Bloch oscillations, the structure of the
Fermi surface, and the binding of molecules. In general,
the most interesting regime emerging from both the the-
oretical and experimental investigations is the unitary
limit of infinite scattering length, where the dilute gas
becomes strongly correlated in conditions of remarkable
stability. In this regime, there are no length scales re-
lated to interactions entering the problem, which conse-
quently exhibits a universal behavior of high interdisci-
plinary interest.

Many important issues remain to be addressed or to
be explored in a deeper and systematic way. A list is
presented below.

Thermodynamics. More theoretical work needs to be
done to determine the transition temperature along the
crossover and the thermodynamic functions below and
above T,.. Very little is known about the temperature
dependence of the superfluid density (Taylor et al., 2006;
AKkKkineni et al., 2007; Fukushima et al., 2007) and its role
on physically observable quantities like, for example, the
propagation of second sound (Taylor and Griffin, 2005;
Heiselberg, 2006; He et al., 2007). Another open ques-
tion remains as to the identification of a good thermom-
etry in these ultracold systems, where the experimental
value of the temperature is often subject to large uncer-
tainties.

Collective modes and expansion. The transition from
the hydrodynamic to the collisionless regime on the BCS
side of the resonance and consequences of the superfluid
transition on the frequencies and the damping of the
collective oscillations, as well as on the behavior of the
aspect ratio during the expansion, still require a better
understanding. This problem raises the question includ-
ing mesoscopic effects in the theoretical description,
which become important when the pairing gap is on the
order of the harmonic-oscillator energy. Also the ques-
tion of the transition at finite temperature between the
hydrodynamic and the collisionless regime in the normal
phase near resonance requires more theoretical and ex-
perimental work. Another important question concerns
the temperature dependence of the viscosity of the gas,
which is in principle measurable through the damping of
collective modes. The problem is particularly interesting
at unitarity where universal behavior is expected to oc-
cur (Son, 2007).

Diabatic transformation of the scattering length. The
experimental information on the condensation of pairs
(Regal et al., 2004b; Zwierlein et al., 2004) and the struc-
ture of vortices (Zwierlein, Abo-Shaeer, Schirotzek, et
al., 2005) along the crossover has been based thus far on
the measurement of the density profiles following the
fast ramping of the scattering length before expansion.
The theoretical understanding of the corresponding pro-
cess is only partial and requires more systematic investi-
gations through implementation of a time-dependent
description of the many-body problem.

Coherence in Fermi superfluids. Although the experi-
mental measurement of quantized vortices has proven
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the superfluid nature of these ultracold gases, coherence
effects have not yet been explored in an exhaustive way.
For example, the implications of the order parameter on
the modulation of the diagonal one-body density in in-
terference experiments remain to be studied. Other rel-
evant topics are the interference effects in the two-body
correlation function (Carusotto and Castin, 2005) and
the Josephson currents (Spuntarelli ez al., 2007).

Rotational properties. The physics of interacting Fermi
gases under rotation in harmonic traps is a relatively
unexplored subject of research, both in the absence and
in the presence of quantized vortices. Questions regard-
ing the difference between the superfluid and the colli-
sional hydrodynamic behavior in rotating configurations,
the Tkachenko modes of the vortex lattice (Watanabe et
al., 2008), and the nature of the phase diagram for rotat-
ing gas at high angular velocity require both theoretical
and experimental investigation.

Spin imbalanced Fermi gases. This subject of research
has attracted a significant amount of work in the past
few years. Many important questions still remain open,
such as the nature of the superfluid phases caused by the
polarization at zero and finite temperature in the differ-
ent regimes along the crossover. Recent experiments
have also raised the question as to the role of surface
tension effects at the interface between the normal and
the superfluid component (De Silva and Mueller, 2006b;
Partridge, Li, Liao, ef al., 2006) and correlation effects in
the spin polarized normal phase (Schunck et al., 2007).

Fermi-Fermi and Fermi-Bose mixtures. A growing ac-
tivity, both on the experimental and on the theoretical
side, is expected to characterize future studies of mix-
tures of different atomic species. The quantum phases of
Fermi-Bose mixtures in optical lattices (Albus et al.,
2003; Lewenstein et al., 2004; Giinter et al., 2006), the
formation of dipolar gases (Ospelkaus, Ospelkaus,
Humbert, Ernst, et al., 2006; Modugno, 2007), and the
superfluid behavior of Fermi-Fermi mixtures of different
atomic masses are important topics for future research.

RF transitions. RF transitions provide valuable infor-
mation on the gap parameter and pairing effects in in-
teracting Fermi gases (Chin et al., 2004; Shin et al., 2007).
Proper inclusion of final-state interactions in the calcu-
lation of the spectral response is a crucial ingredient to
make the analysis of the experimental findings conclu-
sive on a quantitative basis.

Quantum impurities. Investigation of the motion of
impurities added to a trapped quantum gas can open
interesting possibilities for the determination of the vis-
cosity coefficients and for the study of the Landau crite-
rion of superfluidity.

Phase transitions in optical lattices. Recent experi-
ments on the superfluid to Mott-insulator phase transi-
tion (Chin et al., 2006) have stimulated the first theoret-
ical work involving the use of a multiband Hubbard
model (Zhai and Ho, 2007). An important issue is the
behavior of the transition at unitarity where the scatter-
ing length is much larger than the lattice spacing of the
optical potential. Further important topics concern the
study of the various magnetic phases, which can be
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implemented with the geometry and the dimensionality
of the lattice, as well as the role of disorder (Lewenstein
et al., 2007).

p-wave superfluidity. The recent experiment by Gae-
bler et al. (2007) on the production and detection of mol-
ecules in a single-component “’K gas using a p-wave
Feshbach resonance and the measurement of the bind-
ing energy and lifetime of these p-wave molecules opens
new exciting possibilities of realizing p-wave superfluids
with ultracold gases. First theoretical investigations of
the many-body properties of these systems as a function
of the interaction strength predict a much richer phase
diagram compared to s-wave superfluids, including
quantum and topological phase transitions (Cheng and
Yip, 2005; Gurarie et al., 2005; Iskin and S4 de Melo,
2006a; Gurarie and Radzihovsky, 2007).

Low-dimensional configurations. Two- and one-
dimensional configurations of ultracold gases can be eas-
ily produced in laboratories. The experiment by Moritz
et al. (2005) on 1D molecules provides the first example
of a low-dimensional arrangement combined with the
use of a Feshbach resonance. Many interesting features
are expected to take place when the scattering length
becomes larger than the characteristic length of the con-
finement. The properties of the BCS-BEC crossover in
2D and in 1D as well as the physics of Luttinger liquids
in 1D can be addressed by further investigations.
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