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Super-resolution, extraordinary transmission, total absorption, and localization of electromagnetic
waves are currently attracting growing attention. These phenomena are related to different physical
systems and are usually studied within the context of different, sometimes rather sophisticated,
approaches. Remarkably, all these seemingly unrelated phenomena owe their origin to the same
underlying physical mechanism, namely, wave interaction with an open resonator. Here we show that
it is possible to describe all of these effects in a unified way, mapping each system onto a simple
resonator model. Such description provides a thorough understanding of the phenomena, explains all
the main features of their complex behavior, and enables one to control the system via the resonator
parameters: eigenfrequencies, Q factors, and coupling coefficients.
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I. INTRODUCTION

Left-handed materials, plasmon-polariton systems,
and localized modes in random media are currently at-
tracting the ever-increasing interest of physicists and en-
gineers. This is due to both the fundamental character of
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the problems and promising applications in photonics,
subwavelength optics, random lasing, etc. There have
been a number of separate investigations and reviews of
these phenomena �see, e.g., Lifshits et al., 1988; Sheng,
1990; Freilikher and Gredeskul, 1992; Bliokh and
Bliokh, 2004; Smith et al., 2004; Eleftheriades and Bal-
man, 2005; Zayats et al., 2005; Ozbay, 2006; Veselago and
Narimanov, 2006; Garcia de Abajo, 2007; Genet and
Ebbesen, 2007; Maier, 2007; Shalaev, 2007�, but no de-
tailed comparison has been attempted in spite of their
deep underlying similarities. Discussing analogies be-
tween these systems and with their simple classical coun-
terparts provides a more unified understanding, new in-
sights, and can be illuminating. There are numerous
examples of fundamental physical phenomena that can
be explained in terms of classical oscillators. Resonators
provide the next-step generalization revealing additional
common features, such as the critical-coupling effect,
crucial for open-wave systems with dissipation. Below,
we describe the complex systems mentioned above and
analyze them in terms of simple resonator models. Note
that here we do not consider microwave and optical
resonators, quantum dots, Mie resonances, impurity
zones in periodic structures, cavities in photonic srystals,
etc. Our goal is to demonstrate that a broad variety of
physical phenomena in systems that do not contain con-
ventional resonant cavities nonetheless can be ad-
equately described in terms of classical resonators.

A. Veselago-Pendry’s “perfect lens”

In 1968, Veselago examined electromagnetic wave
propagation in a virtual medium with simultaneous
negative permittivity and permeability �Veselago, 1967�.
He showed that such a left-handed medium �LHM� was
characterized by an unusual negative refraction: the in-
cident and refracted beams at the interface between the
LHM and ordinary media �hereafter, the vacuum� lie on
the same side of the normal to the interface. This prop-
erty implies that a flat LHM slab can act as a lens form-
ing a three-dimensional �3D� image of the object, as il-
lustrated in Fig. 1. Interest in LHM grew after Pendry’s
paper �Pendry, 2000�, where it was shown that a LHM
slab can act as a perfect lens. Namely, a LHM slab with

permittivity and permeability having the same absolute
value as in the surrounding medium ��=�=−1� forms a
perfect copy of an object: all details of the object, even
smaller than the wavelength of light, are reproduced �for
reviews, see, e.g., Bliokh and Bliokh, 2004; Smith et al.,
2004; Eleftheriades and Balman, 2005; Veselago and Na-
rimanov, 2006; Shalaev, 2007�. In practice, left-handed
materials are artificial periodic structures �metamateri-
als�, and any “perfect lens” will have a finite resolution
limited by the size of the unit cell.

B. Extraordinary optical transmission

Metallic thin films can also provide super-resolution
for the near-evanescent field �Pendry, 2000; Fang et al.,
2005�. But for propagating waves, a metallic layer acts as
a very good mirror: only an exponentially small part of
the radiation can penetrate through it. Surprisingly,
Ebbesen et al. �1998� found that an optically opaque
metal film perforated with a periodic array of
subwavelength-sized holes was abnormally transparent
for certain resonant frequencies or angles of incidence;
see Fig. 2. The energy flux through the film can be or-
ders of magnitude larger than the cumulative flux
through the holes when considered as isolated �for re-
views, see, e.g., Zayats et al., 2005; Garcia de Abajo,
2007; Genet and Ebbesen, 2007�. In addition to its fun-
damental interest, this effect offers applications as tun-
able filters, spatial and spectral multiplexors, etc. �see,
e.g., Sambles, 1998; Lezec et al., 2002�.

C. Total absorption of electromagnetic waves

Total internal reflection �TIR� occurs when an oblique
light beam strikes an interface between two transparent
media, and the refractive index is smaller on the other
side of the interface. For instance, the incident light is
totally reflected from the prism bottom �which is the
TIR surface�, as shown in Fig. 3�a�. A polished silver
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FIG. 1. �Color online� A flat slab of left-handed material can
act as a lens forming a perfect 3D image of any object located
at a distance less than the slab thickness from the surface.

FIG. 2. �Color online� Resonant transparency of a perforated
metal film. A periodically modified �perforated or corrugated�
optically thick metal film becomes essentially transparent for
certain resonant frequencies or angles of incidence.

1202 Bliokh et al.: Colloquium: Unusual resonators: plasmonics, …

Rev. Mod. Phys., Vol. 80, No. 4, October–December 2008



plate is also a good mirror that reflects all incident light,
as shown in Fig. 3�b�. However, when the TIR surface
and the plate are located right next to each other, the
reflected beam can disappear and all the light can be
totally absorbed by the silver plate �Otto, 1968�, as
shown in Fig. 3�c�.

Total absorption can also be observed in the micro-
wave frequency band. When replacing the prism by a
reflecting subwavelength diffraction grating, Fig. 3�d�,
and the silver plate by an overdense plasma �i.e., a
plasma whose Langmuir �plasma� frequency is higher
than the incident wave frequency�, Fig. 3�e�, the same
effect appears: the incident electromagnetic wave can be
totally absorbed by the plasma �Bliokh et al., 2005; Wang
et al., 2006�, Fig. 3�f�, even though both elements act
separately as good mirrors.

D. Localized states

Extraordinary optical transmission and total absorb-
tion can be observed in a quite different system: 1D ran-
dom dielectric media. Although the medium is locally
transparent, the wave field intensity typically decays ex-
ponentially deep into the medium, so that a long enough
sample reflects the incident wave as a good mirror. This
decay occurs because of multiple wave scattering in ran-
domly inhomogeneous media producing a strong
�Anderson� localization of the wave field �Anderson,
1958� �for reviews, see, e.g., Lifshits et al., 1988; Sheng,
1990; Freilikher and Gredeskul, 1992�. A simple mani-
festation of this effect is the almost total reflection of
light from a thick stack of transparencies �Berry and
Klein, 1997�. However, there is a set of resonant fre-
quencies, individual for each random sample, which cor-
respond to a high transmission of the wave through the
sample accompanied by a large concentration of energy
in a finite region inside the sample �Azbel, 1983; Azbel
and Soven, 1983� �see Fig. 4�. Like optical “speckle pat-
terns,” such resonances �localized states� represent a
unique “fingerprint” of each random sample. In active
random media, regions that localize waves are sources of
electromagnetic radiation producing a so-called random

lasing effect, which offers the smallest lasers, just a few
wavelengths in size �Cao et al., 1999; Wiersma, 2000; Mil-
ner and Genack, 2005�. If the sample has small losses,
the resonant transparency can turn into a total absorp-
tion of the incident wave �Bliokh et al., 2006�.

II. CLASSICAL RESONATORS

A. Basic features

The notion of a resonator implies the existence of
eigenmodes localized in space. The localization of
modes is usually achieved by a sandwich-type mirror-
cavity-mirror structure, which is analogous to a
quantum-mechanical potential well bounded by poten-
tial barriers and can be of any nature �see Fig. 5�. In a
closed resonator without dissipation, each mode is char-
acterized by its resonant frequency �energy level� �res
and spatial structure of the field ��r�. The eigenmode
field � can be factorized as

��r,t� = ��t���r� ,

where � is a solution of the harmonic-oscillator equa-
tion,

d2�

dt2 + �res
2 � = 0.

Depending on whether the modes are localized in all
spatial dimensions or not, the resulting spectrum can be
either discrete or continuous.

The resonator can be nonconservative due to internal
dissipation of energy. Furthermore, the barriers can al-
low small energy leakage either from or to the cavity,
e.g., due to “under-barrier” tunneling via evanescent
waves. In such cases, one has to consider the resonator
as an open system with quasimodes characterized by
fuzzy energy levels of a finite width, Fig. 5. The time
dependence of the fields is not purely harmonic any-
more and can be described as an oscillator with damp-
ing,

d2�

dt2 + �resQ
−1d�

dt
+ �res

2 � = 0. �1�

FIG. 3. �Color online� The total absorption of electromagnetic
waves in �a�–�c� optics and �d�–�f� plasma physics. Strikingly,
even though elements �a�, �b� or �d�, �e� act separately as very
good mirrors, their combination can absorb all the incident
radiation �c�, �f�.

random dielectric medium

FIG. 4. �Color online� Resonant wave transmission through a
1D random dielectric sample. The spatial distributions of the
intensity of the resonant �central� and nonresonant �edge�
waves are depicted on the top of the sample, which is displayed
schematically.
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Here the dimensionless Q factor characterizes the total
losses in the resonator,

Q−1 = Qdiss
−1 + Qleak

−1 � 1, �2�

where Qdiss and Qleak are the Q factors responsible for
the dissipation and leakage, respectively. The dimen-
sionless half-width of the resonant peak in the spectrum
is given by

	
 �
	�res

�res
= Q−1.

B. Plane wave interacting with a resonator

The tunneling of an incident plane wave through an
open 1D resonator is characterized by the transmission
and reflection coefficients T and R. The transmittance T

is usually small due to the opaque barriers, but if the
frequency of the incident wave coincides with one of the
eigenmode frequencies, an effective resonant tunneling
occurs. The corresponding transmission coefficient Tres
is given by �Bohm, 1951; Xu et al., 2000; Bliokh et al.,
2006�

Tres =
4Qleak 1

−1 Qleak 2
−1

�Qleak 1
−1 + Qleak 2

−1 + Qdiss
−1 �2 . �3�

Here Qleak 1 and Qleak 2 are the leakage Q factors
�Qleak

−1 =Qleak 1
−1 +Qleak 2

−1 �, which are related to the trans-
mittances T1 and T2 of the two barriers by �Bliokh et al.,
2005�

Qleak 1,2
−1 =

vgT1,2

2 � �res
. �4�

Here vg is the wave group velocity inside the resonator
and � is the resonator cavity length �so that 2� /vg is the
round-trip travel time of the wave inside the cavity�.
Hereafter, we assume �res /vg=k, where k is the wave
number of the resonant wave. Note that total transpar-
ency, Tres=1, is achieved only in a dissipationless sym-
metric resonator, i.e.,

Tres = 1 when Qdiss
−1 = 0, Qleak 1

−1 = Qleak 2
−1 . �5�

The reflection coefficient R is close to unity off-
resonance and is characterized by sharp resonant dips
on-resonance. The resonant reflection coefficient is
given by �Bohm, 1951; Xu et al., 2000; Bliokh et al., 2006�

Rres =
�− Qleak 1

−1 + Qleak 2
−1 + Qdiss

−1 �2

�Qleak 1
−1 + Qleak 2

−1 + Qdiss
−1 �2 . �6�

In contrast to the transmittance �3�, the reflectance �6�
also reaches its minimum value in dissipative asymmet-
ric resonators,

Rres = 0 when Qdiss
−1 = Qleak 1

−1 − Qleak 2
−1 . �7�

This is the so-called critical coupling effect �Xu et al.,
2000�. In the important particular case when the second
barrier is opaque, Qleak 2

−1 =0, Qleak 1
−1 �Qleak

−1 , so that the
total transmittance vanishes, T�0, the reflectance spec-
trum exhibits pronounced resonant dips, with Rres=0, if
the leakage and dissipation Q factors are equal to each
other �see, e.g., Slater, 1950�: Qdiss

−1 =Qleak
−1 . Then, the in-

cident wave is totally absorbed by an open resonator, so
that all the wave energy penetrates into the resonator
and dissipates therein.

C. Coupled resonators

Two resonators can be coupled by the fields penetrat-
ing through the barriers. This system �outside the
critical-coupling regime� can be effectively described by
the coupled oscillators model. When the first �incoming�
resonator is excited by a monochromatic source with
frequency �, the appropriate oscillator equations can be
written as follows:

Bragg reflectors

cavity

subcritical waveguide

cavity

field intensity

wave field

energy level

potential double-barrier

(a)

(b)

FIG. 5. �Color online� Examples of classical and quantum
open quasi-1D resonators. �a� A waveguide segment �cavity� is
surrounded by Bragg-reflecting or subcritical segments �acting
as barriers�. The field inside the resonator can interact with an
external wave field through nonpropagating evanescent modes
in the barriers. A 3D generalization of the top system can be a
cavity inside a photonic crystal in the frequency gap. �b� Any
potential well can represent a quantum resonator. Open reso-
nators are surrounded by finite-width barriers. An incident
particle can effectively tunnel through both energy barriers
when its energy coincides with one of the energy levels in the
cavity �Bohm, 1951�. A characteristic quasimode wave function
is depicted at the bottom.
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d2�in

d�2 + Q−1d�in

d�
+ �in = q�out + f0e−i
�,

d2�out

d�2 + Q−1d�out

d�
+ �out = q�in, �8�

where �in ��out� is the field in the first �second� resonator,
�=�rest and 
=� /�res are the dimensionless time and
frequency, q�1 is the coupling coefficient, and f0 is the
effective exciting force from the incident field. The
steady-state solutions of Eqs. �8� are oscillations with
amplitudes Ain and Aout given by

Ain =
f0�1 − 
2 − i
Q−1�

�1 − 
2 − i
Q−1�2 − q2 ,

Aout =
f0q

�1 − 
2 − i
Q−1�2 − q2 . �9�

Near resonance, �
−1 � �1, the frequency dependen-
cies of these amplitudes at different values of the qQ
factor are shown in Fig. 6. In the figure it can be seen
that when the condition qQ�1 is satisfied, there are two
collective resonant modes with equal field amplitudes in

the two resonators. Their frequencies are shifted from
the eigenfrequency of the oscillators, 
=1, due to losses
and coupling,


res
± = 1 ± 1

2
�q2 − Q−2. �10�

As qQ decreases, the resonant peaks in the spectra are
located near each other and meet when qQ=1. In the
regime qQ
1, there is one peak at 
=1.

The parameter qQ that appears in the model has a
simple physical meaning: it determines whether the two
resonators should be considered as essentially coupled
or isolated. When Q−1�q, the losses are negligible and
the field characteristics are determined by the coupling.
Remarkably, in this case the field intensity in the first
�incoming� resonator is negligible at 
=1, and most of
the energy is concentrated in the second resonator:
Aout�Ain. On the contrary, when the losses prevail over
the coupling, Q−1�q, the incident wave only excites the
first resonator, and the energy is concentrated mostly in
that resonator: Ain�Aout.

1

III. SURFACE PLASMON-POLARITON SYSTEMS

A. Basic features

The interface between materials with different signs
of the permittivity, ��0 and �
0 �or permeability, �
�0 and �
0�, supports surface p- �or s-� polarized
waves, also known as plasmon polaritons �PP�. PP were
discovered in 1957 by Ritche �1957� while studying a
metal-vacuum interface. Renewed interest in plasmon
polaritons comes from their considerable role in con-
temporary nanophysics �Barnes et al., 2003; Zayats et al.,
2005�. The interface between regular ���0, ��0� and
left-handed ��
0, �
0� materials supports PP with an
arbitrary polarization �Ruppin, 2000�.

Plasmon polaritons are electromagnetic waves that
are trapped at the interface, their electromagnetic fields
decaying exponentially deep into both media �Fig. 7�a��.
Hence, the interface forms a peculiar resonator with
eigenmodes that are localized along the normal to the
interface but can propagate freely along the interface.
Spatial eigenfunctions of this resonator have the form

��r� = exp�− �z�z��exp�ik� · r��

1All these properties can be easily seen in our animated simu-
lations at http://dml.riken.jp/resonators/resonators.swf where
three regimes mimicking perfect lenses, enhanced transpar-
ency, and weak coupling �see Sec. III� are given.

FIG. 6. �Color online� Near-resonant transmission of an inci-
dent wave through two coupled open resonators at different
values of qQ. The normalized �i.e., multiplied by the factor
2Q−1� absolute values of the field amplitudes in two resona-
tors, �a� �Ãout� and �b� �Ãin�, are shown. In the dissipationless
case �Qdiss

−1 =0, Q=Qleak�, the transmission coefficient of the
system is given by T= �Ãout�2.
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and are characterized by a dispersion relation k�

=k�
PP���. Here the interface is associated with the z=0

plane, the subscript � indicates vectors within the �x ,y�
plane, and the decay constant �z can take different val-
ues in the two media. The plasmon-polariton resonator
possesses all features that are inherent to usual resona-
tors: eigenfrequency, Q factor, topography of eigenmode
fields, etc. It will be shown below that the identification
of PP as a resonator is more than an analogy, since it
captures the main physical process underlying this phe-
nomenon.

An exponential profile of the PP field suggests that it
can interact with evanescent, nonpropagating fields from
an external source, which are characterized by a purely
imaginary wave-vector component: kz= ± i�z. Further-
more, an incident propagating electromagnetic plane
wave cannot excite the PP resonator, because for propa-
gating waves �PW� k�

PW
� /c, whereas for plasmon po-
laritons k�

PP�� /c. At the same time, evanescent waves

�EW� are characterized by k�
EW�� /c and can excite the

PP resonator. There are methods to convert a propagat-
ing wave into an evanescent one. This allows the inter-
action of light with plasmon polaritons, which has led to
a new branch of physics: plasmonics �see, e.g., Zayats et
al., 2005; Ozbay, 2006; Maier, 2007�.

B. Enhanced transparency of a metal film

Examine the transmission of a plane wave through an
optically thick metal film perforated with small subwave-
length holes, as shown in Fig. 2. Two surfaces of the
smooth metal film can be associated with two identical
PP resonators, coupled by their fields, as shown in Fig.
7�b�. As has been observed, PPs cannot be directly ex-
cited by the incident plane wave; however, PPs can in-
teract through periodic modulations of the surface �Tan
et al., 2000; Bonod et al., 2003; Darmanyan and Zayats,
2003; Dykhne et al., 2003�. The effective interaction of

FIG. 7. �Color online� Schematic diagrams of surface plasmon-polariton �PP� resonators, their interaction with incident waves, and
the corresponding resonators parameters. �a� A vacuum/metal interface supports plasmon modes localized in the z direction and
reflects propagating waves. Propagating and evanescent waves do not interact with each other, and, therefore, there is no energy
leakage from the PP resonator. �b� A metal film represents a system of two PP resonators coupled by their fields. A diffraction
grating �or total internal reflection �TIR� interface, Fig. 3� can transform a propagating wave into an evanescent wave and vice
versa, thereby making the PP resonators open, Qleak

−1 �0. Resonant total transparency can be achieved when the dissipation is
negligible, whereas the coupling is strong enough; cf. Figs. 2 and 6. �c� In the critical-coupling regime, all of the incident wave is
absorbed by the metal or plasma due to intrinsic dissipation, cf. Fig. 3. �d� A slab of an ideal LHM also represents two coupled PP
resonators. There are two essential distinctions as compared to metal films: �i� A LHM is transparent for propagating fields and �ii�
plasmon polaritons are always in resonance with evanescent fields from the source. The latter means that the PP field distribution
corresponds to the 
=1 point in Fig. 6, and the evanescent field energy is concentrated at the output surface in the dissipationless
case. As a result, both propagating and evanescent fields form an exact copy of the source field in the focal point; cf. Fig. 1.
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PPs with light occurs at some resonance frequency �
=�res �or angle of propagation �=�res�, at which their
wave vectors differ by a reciprocal-lattice-vector K,

k�
PP��res� − k�

PW��res� = K . �11�

One can say that the PP wave vector shifted by a
reciprocal-lattice vector acquires a real z component, or
vice versa, the shifted propagating mode becomes eva-
nescent in the z direction. Thus, the periodic structure
can be considered as a mode transformer. �It is worth
remarking that while in microwave electronics such
structures are used for slowing down the eigenmodes,
here we deal with a speedup of the PP eigenmodes.� The
periodic corrugation of the metal surface can be treated
as a diffraction grating placed on the surface. The grat-
ing can be located at a distance d from the smooth sur-
face; it remains coupled with plasmons polaritons by
their field �Bliokh, 2006; Lin et al., 2006�, as shown in
Figs. 7�b� and 7�c�.

Now we make use of the general theory of resonators.
Assuming the dissipation to be negligible, Qdiss=0, the Q
factor of the PP resonator is determined by the energy
leakage from the resonator due to the transformation of
the evanescent waves into the propagating ones,

Qleak
−1 = � exp�− 2�zd� . �12�

Here ��1 is the transformation coefficient at the dif-
fraction grating, and the exponential dependence arises
due to decay of the evanescent field intensity between
the metal surface and grating. The coupling coefficient
between the two PP resonators is determined by the
field of the first resonator acting on the second one,

q = exp�− �z�� , �13�

where � is the film thickness. The dependence of the
transmission coefficient T on the normalized incident
wave frequency 
 is described by Eqs. �8�–�10�, and is
illustrated in Fig. 6�a�. It exhibits two nearby peaks:
Tres=1 at 
=
res

± when Qleak
−1 
q, or one peak Tres
1 at


=1 when Qleak
−1 �q. A characteristic field distribution

for the total transmission is shown in Fig. 7�b�. The cou-
pling parameter decreases as � grows, and the transmis-
sion spectrum T�
� changes as in Fig. 6�a�. The same
dependence of the transmission spectrum on the film
thickness has been obtained by Tan et al. �2000�, Martín-
Moreno et al. �2001�, Dykhne et al. �2003�, Benabbas et
al. �2005�, and by many others concerned with particular
geometries and specific modifications. In fact, all these
features are general properties of two coupled resona-
tors, independent of details.

Thus, light transmission through a perforated �corru-
gated� metal film can be divided into three processes: �i�
transformation of the incident plane wave into an eva-
nescent wave on the first diffraction grating, �ii� resonant
“penetration” of the evanescent field through two
coupled plasmon-polariton resonators, and �iii� reverse
transformation into the propagating wave on the second
grating, Fig. 7�b�. It may seem at first that the larger the
transformation coefficient at the diffraction grating, the

better is the transmission. However, larger transforma-
tion coefficients result in smaller Q factors. When � ex-
ceeds a critical value, the transmission becomes less than
1 and decreases with � �Dykhne et al., 2003�.

C. Critical coupling in optics and plasma physics

In the above model, it is easy to incorporate dissipa-
tion characterized by a small imaginary part of the di-
electric constant, �=��+ i��, by introducing the dissipa-
tion Q factor,

Qdiss
−1 =

��

����
� 1. �14�

The dissipation is negligible only if Qdiss
−1 �min�Qleak

−1 ,q�.
Otherwise, even very small dissipation will drastically
affect the resonance phenomena as it is compared to the
exponentially small parameters �12� and �13�. If Qdiss

−1

�Qleak
−1 , dissipation may substantially suppress the trans-

mission. When Qdiss
−1 �q, dissipation breaks down the

coupling between two PP resonators on either side of
the film, and they can be regarded as essentially inde-
pendent. For the system under consideration, this means
that only the first resonator will be excited by the inci-
dent wave and the metallic film can be considered as a
semi-infinite medium, Fig. 7�c�. In such a case, transmis-
sion through the film vanishes at all frequencies. At the
same time, the resonances show up in the reflection
spectrum, which exhibits sharp dips at some frequencies.
For some critical distance between the diffraction grat-
ing and metal, d=dc, the resonant reflectance drops to
zero, Rres=0, and the incident wave is totally absorbed
by the metal, Fig. 3. This effect can be explained in
terms of the same resonator model: �i� the incident plane
wave transforms into an evanescent mode at the diffrac-
tion grating and �ii� the incident wave excites a PP reso-
nator at the metal surface and is totally absorbed due to
the critical coupling effect, Fig. 7�c�. In our case, the
critical coupling condition, Eq. �7�, reads Qdiss

−1 =Qleak
−1

with Eqs. �12� and �14�. Application of diffraction grat-
ings for the PP resonator excitation is convenient in
plasma experiments. When a properly designed grating
is placed in front of the plasma surface, the reflected
wave vanishes; see Fig. 3, bottom �Bliokh et al., 2005;
Wang et al., 2006�.

An analogous phenomenon in optics is known as frus-
trated total internal reflection �Otto, 1968�. Similar to a
diffraction grating, a total internal reflection interface
can be used for plasmon-polariton excitation on a metal
surface �Kretschmann and Raether, 1968; Otto, 1968�. In
the so-called Otto configuration, a metal is placed a dis-
tance d from the bottom of a prism where light is totally
reflected �top of Fig. 3�. The incident light, with k�

PW


� /c, penetrates into the prism with the wave-vector
projection nk�

PW�� /c �n�1 is the refractive index of
the prism�. The incident light generates an evanescent
wave in vacuum near the bottom and can excite the PP
resonator at a resonance frequency �=�res �or angle of
propagation �=�res�, where
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k�
PP = nk�

PW. �15�

The leakage Q factor of the PP resonator is given by Eq.
�12�, where ��1 is the coefficient of transformation to
the evanescent wave at the bottom of the prism. At a
critical distance d=dc, the reflected light disappears,
which provides evidence of the critical-coupling regime.
Note that when the metal film is so thin that q�Q−1, the
high resonant transparency of the film can be observed
when the identical prism is located symmetrically near
the opposite side of the film �Dragila et al., 1985�. This
configuration is analogous to the above-considered
grating-metal-grating system, Fig. 7�b�.

Total absorption of an incident wave due to the criti-
cal coupling can be used for the simultaneous determi-
nation of both the real and imaginary parts of the metal
�plasma� permittivity. On the one hand, the resonant fre-
quency �res �or the angle of incidence� is determined by
the resonance with the PP mode, which depends on the
real part of the metal permittivity ��. On the other hand,
the critical-coupling distance dc between the prism �grat-
ing� and the metal �plasma� surface depends on the dis-
sipative Q factor �14� related to the imaginary part �� of
the permittivity. Thus, the critical-coupling regime pro-
vides a mapping between ��res ,dc� and ��� ,��� and
makes it possible to retrieve the complex permittivity of
the metal �plasma� via external measurements.

D. Super-resolution of LHM lenses

While a dielectric medium is transparent for propagat-
ing plane waves and a metal surface supports PP evanes-
cent modes, a left-handed material combines both of
these features. Let the source of a monochromatic
electromagnetic field �the object� be located at a dis-
tance d from the surface of a flat slab of an “ideal” LHM
��=�=−1� of width ��d, as shown in Fig. 7�d�. The
source radiates propagating plane-wave harmonics with
k�

PW�� /c, as well as evanescent waves with

k�
EW �

�

c
. �16�

The propagating waves are focused by the LHM slab
and form the image on the opposite side of the slab, Fig.
1. The ideal LHM is perfectly matched with the vacuum
due to the equivalence of their impedances Z=�� /�,
and, therefore, there is no reflected wave in this case.
The image field is almost equal to the source one: all
plane waves reach the focal plane �located at a distance
�−d from the slab� with the same phase as they had in
the source plane. The aberration �imperfection� of the
image might only be caused by the loss of evanescent
harmonics, which are responsible for the subwavelength
details of the object.

Remarkably, even subwavelength information is not
lost in the ideal LHM �Pendry’s� lens. This can be under-
stood if we consider the surfaces of the LHM slab as two
coupled PP resonators, as done to explain the high
transmission of the perforated metallic films. Evanescent

waves from the source excite the first PP resonator. A
distinguishing feature of the PP mode at the ideal LHM/
vacuum interface is that its dispersion relation is pre-
cisely the same as for evanescent modes in the vacuum
�Ruppin, 2000�. This implies that all evanescent waves
�16� are in resonance with the PP resonator on the ideal
LHM surface �Haldane, 2002�. In other words, ���res
and 
�1 for any frequency �the material dispersion is
neglected here�.

The evanescent field distribution can be found from
Eqs. �8� and �9�. The PP resonators at the dissipationless
LHM surface are characterized by an infinite Q factor,

Qleak
−1 = 0, �17�

because there is no leakage from the PP to radiative
modes. We associate the amplitudes Ain and Aout with
the field amplitude at the input and output surfaces of
the slab. Then the effective external force is given by

f0 = A0 exp�− �zd� ,

where A0 is the amplitude of the evanescent field of the
source. The coupling parameter is given by Eq. �13�, the
same as for the metallic film. According to Eqs. �9� with

=1 and Q−1=0 �see also Fig. 6�, the input resonator is
not excited,

�Ain� = 0,

whereas the amplitude at the output is exponentially
large,

�Aout� =
�f0�
q

= �A0�exp�− �z�d − ��� .

In the image half-space, the evanescent field decreases
with the same decrement �z, and at the distance �−d
from the second interface �the total distance from the
source is 2�� it takes on the initial value �Fig. 7�d��

�A�2��� = �A0� .

Since the phases of evanescent waves are not changed
along the z axis, the evanescent fields in the focal plane
precisely reproduce those in the source plane. This
means that the image created by both propagating and
evanescent waves is a perfect copy of the source. Exactly
the same evanescent field distribution in Pendry’s lens
follows from the accurate solution of the Maxwell equa-
tions �see, e.g., Haldane, 2002; Gómez-Santos, 2003�. It
is worth noting that the electromagnetic nature of waves
has not been involved in our consideration of subwave-
length imaging. The same result can be achieved using
other kinds of waves, for example, liquid-surface waves
�Hu et al., 2004�, surface electromagnetic waves propa-
gating along special types of interfaces �Shadrivov et al.,
2004; Kats et al., 2007�, and surface Josephson plasma
waves �Savel’ev et al., 2005� in layered superconductors.

If a small dissipation is present in LHM, it can be
taken into account by introducing the dissipation Q fac-
tor �14� in Eqs. �8� and �9� �here, for simplicity, the per-
meability is assumed to be real�. The destructive effect
of dissipation in the LHM, reducing the image quality, is
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defined by the ratio between the Q factor and the cou-
pling parameter q. When Qdiss

−1 �q, the image aberration
is small. When Qdiss

−1 �q=exp�−�z��, the dissipation is
crucial and practically destroys the penetration of eva-
nescent waves through the LHM slab. This limitation of
the ideality of Pendry’s lens has been discussed by Gar-
cia and Nieto-Vesperinas �2002�, and Nieto-Vesperinas
�2004� using a wave approach. At the same time, the
dissipation affects the propagating waves in a LHM lens
in the same manner as in normal media, because the
LHM slab does not form a resonator for propagating
waves. The dissipation significantly affects the propaga-
tion waves only when Qdiss

−1 � �k��−1�q.

IV. RANDOM MEDIA

A. Resonant tunneling

The resonant transmission of waves through a 1D ran-
dom sample is accompanied by a large concentration of
energy inside the sample, as shown in Fig. 4. Such field
distributions can be regarded as quasimodes of an open
system. Among various localized states, high transpar-
ency accompanies only those modes that are located
near the center of the sample. Localized modes and
anomalous transparency can be explained by the exis-
tence of effective high-Q resonator cavities inside of the
sample. Figure 8 demonstrates the transparencies of dif-
ferent parts of the sample from Fig. 4. It is clearly seen
that the middle section, where the energy was concen-
trated, is almost transparent to the resonant frequencies,
while the side parts are practically opaque to the wave.
Thus, each localized state at a frequency �=�res can be
associated with a typical resonator structure comprised
of an almost transparent segment �“cavity”� bounded by
essentially nontransparent regions �“barriers”� �Bliokh
et al., 2004�. Wave tunneling through such a system can
be treated as a particular case for the general problem of
the transmission through an open resonator. The distin-
guishing feature of the random medium is that there are
no regular walls �the medium is locally transparent in
each point� and transmittances of barriers are exponen-
tially small as a result of Anderson localization. More-

over, different segments of the sample turn out to be
transparent for different frequencies, i.e., each localized
mode is associated with its own resonator.

The resonant tunneling through a random sample can
be described by Eq. �3�, where the barrier transmit-
tances and Q factors are estimated as �Bliokh et al.,
2004�

T1,2 	 exp
−
2L1,2

�loc
�, Qleak 1,2

−1 =
T1,2

2k�
, �18�

and the total leakage Q factor is Qleak
−1 =Qleak 1

−1 +Qleak 2
−1 .

Here L1 and L2 are the distances from the cavity to the
ends of the sample �the barrier lengths� and �loc is the
localization length. The latter is the only spatial scale
responsible for the localization, and the cavity size
should be estimated as ���loc. This simple model dras-
tically reduces the level of complexity of the problem:
the disordered medium with a large number of random
elements can be effectively described now through a few
characteristic scales, namely the localization length, the
wavelength, and the size of the sample. All the main
features and characteristics of the resonances �transmit-
tance, field intensity, spectral half-width, and the density
of states� can be estimated from the resonator model, in
good agreement with experimental data �Bliokh et al.,
2006�. In particular, the perfect resonant transmission
takes place only for a symmetric dissipationless resona-
tor, Eq. �5�, which corresponds to wave localization in
the middle of the sample and a maximal total Q factor.

Note that a long enough sample can contain two or
more isolated transparent regions where the wave field
is localized. These form the so-called “necklace states”
predicted by Lifshits and Kirpichenkov �1979� and Pen-
dry �1987� and observed by Bertolotti et al. �2005� and
Sebbah et al. �2006�. Necklace states can be easily incor-
porated in our general scheme as two or more resona-
tors coupled by their evanescent fields, Eqs. �8�–�10�
�Bliokh et al., 2008�. The coupling coefficient between
the nearest resonators is

q 	 exp
−
�

�loc
� , �19�

where � is the distance between the effective cavities.

FIG. 8. �Color online� The sample in Fig. 4 is now “cut” into three separate segments that are considered independently. It can be
seen that while the right- and left-side segments are practically opaque due to Anderson localization, the central part �where a
large energy concentration has been observed in resonance� happens to be almost transparent for the resonant frequency. This
provides the standard barrier-cavity-barrier resonator structure, which explains the resonant features of the sample at a given
frequency.
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B. Critical coupling

It seems reasonable to assume that dissipation in the
sample material worsens the observability of resonances.
However, surprisingly, small losses can improve the con-
ditions for the detection of localized states. A large
number of resonances, which are not visible in the trans-
mission spectrum, become easily detected in the reflec-
tion spectrum �Bliokh et al., 2006�, Fig. 9. This is clarified
in terms of the critical-coupling phenomenon. If the dis-
sipation Qdiss

−1 , given by Eq. �14�, exceeds the leakage
Qleak

−1 for modes localized in the middle of the sample,

Qdiss
−1 �

1

k�loc
exp
−

L

�loc
� ,

the transmission is strongly suppressed for all frequen-
cies, and T�1. At the same time, the other states lo-
cated closer to the input of the sample and, therefore,
characterized by higher Qleak

−1 can be excited. According
to the critical-coupling condition �7�, the resonant reflec-
tance drops to zero when the dissipation and leakage Q
factors are of the same order. For modes localized in the
first half of the sample, we can set, with exponential
accuracy, Qleak 2

−1 	0, Qleak 1
−1 =Qleak

−1 , so that the critical-
coupling condition reads Qdiss

−1 =Qleak
−1 for the case of a

semi-infinite medium.

The resonator model enables one to find characteristic
parameters of localized states and the sample via exter-
nal measurements of the transmission and reflection co-
efficients �Bliokh et al., 2004, 2006; Scales et al., 2007�.
By measuring resonant and typical off-resonance values
of the transmittance and reflectance, Eqs. �3� and �6�,
along with the resonance spectral half-width, it is pos-
sible to determine �at least to estimate� the localization
length, dissipation factor, position of the localized state,
and its field intensity. Some of these internal quantities
usually cannot be determined via direct measurements,
but are crucial, for example, for the random lasing prob-
lem. For instance, the critical-coupling condition con-
nects the position of the localization region with the dis-
sipation rate in the medium, while the latter can be
determined through the half-width of the resonant deep
in the reflectance.

It should also be noted that random systems consist-
ing of repeated elements of several types can exhibit
transmission resonances of another kind, which are not
accompanied by the energy localization and cannot be
described by the resonator model �see, e.g., Hendricks
and Teller, 1942; Tamura and Nori, 1989, 1990; Kolar et
al., 1991; Nishiguchi et al., 1993a, 1993b�.

V. CONCLUDING REMARKS

The subwavelength resolution of a flat LHM lens, ab-
normal transparency of a perforated metal film, local-
ized states in disordered media, frustrated total internal
refraction, and total absorption of an electromagnetic
wave by an overdense plasma are all phenomena related
to different areas of physics and are characterized by
different spatial scales, from the nanoscale to centime-
ters and larger. In spite of such enormous differences,
the main properties of these phenomena have much in
common with each other and, on a deeper level, with
simple resonator systems. As we have shown, all these
phenomena can be treated in a universal way as wave
transmission through one or two coupled resonators. A
careful mapping between the resonator and the problem
parameters allows one to understand thoroughly the
physical properties of the problem and forecast how the
parameters affect the result.

Of course, accurate descriptions of wave transmission
through complex systems �for example, periodically per-
forated metal films or random media� involve particular
details of a given sample and depend on the geometry of
the periodic structure or the specific realization of the
random process. Nonetheless, fundamental features of
these systems that are independent of details can be re-
vealed only through a unified approach emphasizing the
physical essence of the problem. Resonator models pro-
vide such an approach. In some cases �e.g., for evanes-
cent fields in the LHM lens�, resonator description re-
sults in the exact solution of the problem. Furthermore,
in the case of random media, such a model is the only
formalism that enables one to estimate the parameters
of the individual localized states.

One of the important common features of all resona-

FIG. 9. �Color online� Spectra of �a� the transmittance T and
�b� the reflectance R for various values of the dissipation rate
Qdiss in a random dielectric sample. Although the dissipation is
extremely small, peaks of resonant transmittance disappear
rapidly when the dissipation increases. At the same time,
peaks in 1−R become sharply pronounced and become even
more informative than in the dissipationless case. Resonances
with R=T=0 evidence the critical-coupling regime.
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tor systems is their high sensitivity to internal dissipa-
tion. Even very small dissipation, which has negligible
effects for propagating waves, may drastically modify
the localized resonance states. Usually dissipation de-
stroys the resonant transmission but develops resonant
dips in the reflection spectrum. The reason for this is
that the excitation of a resonator is always accompanied
by a huge field intensity therein, proportional to the Q
factor. The energy dissipated per unit time is determined
by the product of the dissipation rate and the field inten-
sity. Thus, a small dissipation rate is multiplied by a high
Q factor and can be crucial. Also, establishing a one-to-
one correspondence with classical resonator allows us to
retrieve the internal characteristics of an investigated
system using the external response to a probing signal
�incident wave�. In this way, one can determine the com-
plex permittivity of metal or plasma, location and field
intensity of localized states in random medium, etc. Re-
markably, dissipation can be favorable for such pur-
poses, revealing some hidden internal features through
the critical-coupling effect.

To conclude, the central result of this colloquium, i.e.,
the mapping between the resonator and the problems’
parameters, is summarized in Table I. We have consid-
ered only a few, probably more intriguing and nontrivial,
systems allowing the resonator consideration. A more
complete list of such systems would be much longer,
since any wave system with localized modes can be
treated as a generalized resonator. In particular, numer-
ous quantum systems �not considered here� with poten-
tial wells, tunneling, and relaxation could be effectively
treated within the open-resonator framework �see, e.g.,
You and Nori, 2005; Lazarides and Tsironis, 2007; Rakh-
manov et al., 2007; Savel’ev et al., 2007�. Finally, it should
also be noted that for some of the systems considered
above, there exist alternative ad hoc methods of descrip-
tion. For instance, negative refraction and optical cloak-
ing allow a natural representation in the geometrical for-
malism of general relativity �Leonhardt and Philbin,
2006�.
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