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Topological quantum computation has emerged as one of the most exciting approaches to constructing
a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter
whose quasiparticle excitations are neither bosons nor fermions, but are particles known as
non-Abelian anyons, meaning that they obey non-Abelian braiding statistics. Quantum information is
stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate
operations that are necessary for quantum computation are carried out by braiding quasiparticles and
then measuring the multiquasiparticle states. The fault tolerance of a topological quantum computer
arises from the nonlocal encoding of the quasiparticle states, which makes them immune to errors
caused by local perturbations. To date, the only such topological states thought to have been found in
nature are fractional quantum Hall states, most prominently the »=5/2 state, although several other
prospective candidates have been proposed in systems as disparate as ultracold atoms in optical
lattices and thin-film superconductors. In this review article, current research in this field is described,
focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological
quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments
to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer.
Both the mathematical underpinnings of topological quantum computation and the physics of the
subject are addressed, using the w=5/2 fractional quantum Hall state as the archetype of a
non-Abelian topological state enabling fault-tolerant quantum computation.
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I. INTRODUCTION

In recent years, physicists’ understanding of the quan-
tum properties of matter has undergone a major revolu-
tion, precipitated by surprising experimental discoveries
and profound theoretical revelations. Landmarks in-
clude the discoveries of the fractional quantum Hall ef-
fect and high-temperature superconductivity, and the ad-
vent of topological quantum field theories. At the same
time, new potential applications for quantum matter
burst on the scene, punctuated by the discoveries of
Shor’s factorization algorithm and quantum error cor-
rection protocols. Remarkably, there has been a conver-
gence between these developments. Nowhere is this
more dramatic than in topological quantum computa-
tion, which seeks to exploit the emergent properties of
many-particle systems to encode and manipulate quan-
tum information in a manner that is resistant to error.

It is rare for a new scientific paradigm, with its atten-
dant concepts and mathematical formalism, to develop
in parallel with potential applications, with all of their
detailed technical issues. However, the physics of topo-
logical phases of matter is not only evolving alongside
topological quantum computation but is even informed
by it. Therefore this review must necessarily be rather
sweeping in scope, introducing the concepts of non-
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Abelian anyons and topological quantum computation,
their interconnections, and how they may be realized in
physical systems, particularly in several fractional quan-
tum Hall states. [For a popular account, see Collins
(2006); for a slightly more technical one, see Das Sarma,
Freedman, et al. (2006).] This exposition will take us on a
tour extending from knot theory and topological quan-
tum field theory to conformal field theory and the quan-
tum Hall effect to quantum computation and all the way
to the physics of gallium arsenide devices.

The body of this paper is composed of three parts:
Secs. II-IV. Section II is rather general, avoids technical
details, and aims to introduce concepts at a qualitative
level. Section II should be of interest, and should be
accessible, to all readers. In Sec. III we describe the
theory of topological phases in more detail. In Sec. 1V,
we describe how a topological phase can be used as a
platform for fault-tolerant quantum computation. The
second and third parts are probably of more interest to
theorists, experienced researchers, and those who hope
to conduct research in this field.

Section II.A.1 begins by discussing the concept of
braiding statistics in 2+ 1 dimensions. We define the idea
of a non-Abelian anyon, a particle exhibiting non-
Abelian braiding statistics. Section II.A.2 discusses how
non-Abelian anyons can arise in a many-particle system.
We then review the basic ideas of quantum computation
and the problems of errors and decoherence in Sec.
II.B.1. We explain in Sec. II.B.2 how non-Abelian statis-
tics naturally leads to the idea of topological quantum
computation, and explain why it is a good approach to
error-free quantum computation. In Sec. II.C, we de-
scribe the non-Abelian quantum Hall systems which are
the most likely arena for observing non-Abelian anyons
(and hence for producing a topological quantum com-
puter). Section II.C.1 gives a review of quantum Hall
physics. Section II.C.2 introduces non-Abelian quantum
Hall states. This section also explains the importance of
numerical work in this field for determining which quan-
tum Hall states are non-Abelian. Section II.C.3 de-
scribes some of the proposed interference experiments
which may be able to distinguish Abelian from non-
Abelian quantum Hall states. Section II.C.4 shows how
qubits and elementary gates can be realized in a quan-
tum Hall device. Section II.C.5 discusses some of the
engineering issues associated with the physical systems
where quantum Hall physics is observed. In Sec. I1.D we
discuss some of the other, non-quantum-Hall, systems
where it has been proposed that non-Abelian anyons
(and hence topological quantum computation) might oc-
cur.

Sections III and IV are written to be accessible to the
broadest possible audiences, but they might be some-
what harder going than Sec. II. Section III introduces
the theory of topological phases in detail. Topological
quantum computation can become a reality only if some
physical system “condenses” into a non-Abelian topo-
logical phase. In Sec. 111, we describe the universal low-
energy, long-distance physics of such phases. We also
discuss how they can be experimentally detected in the
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quantum Hall regime, and when they might occur in
other physical systems. Our focus is on a sequence of
universality classes of non-Abelian topological phases,
associated with SU(2), Chern-Simons theory, described
in Sec. III.A. The first interesting member of this se-
quence, k=2, is realized in chiral p-wave superconduct-
ors and in the leading theoretical model for the v=5/2
fractional quantum Hall state. Section III.B shows how
this universality class can be understood with conven-
tional BCS theory. In Sec. III.C, we describe how the
topological properties of the entire sequence of univer-
sality classes (of which k=2 is a special case) can be
understood using Witten’s connection between Chern-
Simons theory and the Jones polynomial of knot theory.
In Sec. III.D, we describe an alternate formalism for
understanding the topological properties of Chern-
Simons theory, namely, through conformal field theory.
The discussion revolves around the application of this
formalism to fractional quantum Hall states and explains
how non-Abelian quantum Hall wave functions can be
constructed with conformal field theory. The Appendix
gives an introduction to conformal field theory. In Sec.
IIL.LE, we discuss the gapless edge excitations which nec-
essarily accompany chiral [i.e., parity- (P-) and time-
reversal- (7-) violating] topological phases. These exci-
tations are useful for interferometry experiments, as
discussed in Sec. IILF. Finally, in Sec. II1.G, we discuss
topological phases that do not violate parity and time-
reversal symmetries. These phases emerge in models of
electrons, spins, or bosons on lattices which could de-
scribe transition metal oxides, Josephson junction ar-
rays, or ultracold atoms in optical lattices.

In Sec. IV, we discuss how quasiparticles in topologi-
cal phases can be used for quantum computation. We
first discuss the case of SU(2),, which is the leading can-
didate for the v=5/2 fractional quantum Hall state. We
show in Sec. IV.A how qubits and gates can be manipu-
lated in a gated GaAs device supporting this quantum
Hall state. We discuss why quasiparticle braiding alone
is not sufficient for universal quantum computation and
how this limitation of the »=5/2 state can be circum-
vented. Section IV.B discusses how topological compu-
tations can be performed in the simplest non-Abelian
theory that is capable of universal topological quantum
computation, the so-called Fibonacci anyon theory. In
Sec. IV.C, we show that the SU(2), theories support uni-
versal topological quantum computation for all integers
k except k=1,2,4. In Sec. IV.D, we discuss the physical
processes that will cause errors in a topological quantum
computer.

Finally, we conclude in Sec. V. We discuss questions
for the immediate future, primarily centered on the v
=5/2 and 12/5 fractional quantum Hall states. We also
discuss a broader set of questions relating to non-
Abelian topological phases and fault-tolerant quantum
computation.
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II. BASIC CONCEPTS

A. Non-Abelian anyons

1. Non-Abelian braiding statistics

Quantum statistics is one of the basic pillars of the
quantum mechanical view of the world. It is the prop-
erty that distinguishes fermions from bosons: the wave
function that describes a system of many identical par-
ticles should satisfy the proper symmetry under the in-
terchange of any two particles. In three spatial dimen-
sions and one time dimension [(3+1)D] there are only
two possible symmetries—the wave function of bosons is
symmetric under exchange while that of fermions is an-
tisymmetric. One cannot overemphasize, of course, the
importance of the wave function symmetry, which is the
root of the Pauli principle, superfluidity, the metallic
state, Bose-Einstein condensation, and a long list of
other phenomena.

The limitation to one of two possible types of quan-
tum symmetry originates from the observation that a
process in which two particles are adiabatically inter-
changed twice is equivalent to a process in which one of
the particles is adiabatically taken around the other.
Since, in three dimensions, wrapping one particle all the
way around another is topologically equivalent to a pro-
cess in which none of the particles move at all, the wave
function should be left unchanged by two such inter-
changes of particles. The only two possibilities are for
the wave function to change by a =+ sign under a single
interchange, corresponding to the cases of bosons and
fermions, respectively.

We can recast this in path integral language. Suppose
we consider all possible trajectories in 3+1 dimensions
which take N particles from initial positions R;, R,,...,
Ry at time ¢; to final positions Ry, R,,..., Ry at time #;. If
the particles are distinguishable, then there are no topo-
logically nontrivial trajectories, i.e., all trajectories can
be continuously deformed into the trajectory in which
the particles do not move at all (straight lines in the time
direction). If the particles are indistinguishable, then the
different trajectories fall into topological classes corre-
sponding to the elements of the permutation group Sy,
with each element of the group specifying how the initial
positions are permuted to obtain the final positions. To
define the quantum evolution of such a system, we must
specify how the permutation group acts on the states of
the system. Fermions and bosons correspond to the only
two one-dimensional irreducible representations of the
permutation group of N identical particles.'

Two-dimensional systems are qualitatively different
from those in three (and higher dimensions) in this re-
spect. [For a pedagogical review, see Stern (2008).] A
particle loop that encircles another particle in two di-

1Higher—dimensional representations of the permutation
group, known as “parastatistics,” can always be decomposed
into fermions or bosons with an additional quantum number
attached to each particle (Doplicher et al., 1971, 1974).
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mensions cannot be deformed to a point without cutting
through the other particle. Consequently, the notion of a
winding of one particle around another in two dimen-
sions is well defined. Thus, when two particles are inter-
changed twice in a clockwise manner, their trajectory
involves a nontrivial winding, and the system does not
necessarily come back to the same state. This topologi-
cal difference between two and three dimensions, first
realized by Leinaas and Myrheim (1977) and Wilczek
(1982a), leads to a difference in the possible quantum
mechanical properties for quantum systems when par-
ticles are confined to (2+1)D (see also Goldin et al.,
1981 and Wu, 1984). [As an aside, we mention that in
(1+1)D quantum statistics is not well defined since par-
ticle interchange is impossible without one particle going
through another, and bosons with hard-core repulsion
are equivalent to fermions.]

Suppose that we have two identical particles in two
dimensions. Then, when one particle is exchanged in a
counterclockwise manner with the other, the wave func-
tion can change by an arbitrary phase,

‘ﬂ(rer) - €wlﬁ(l‘1,l‘2). (1)

The phase need not be merely a = sign because a second
counterclockwise exchange need not lead back to the
initial state but can result in a nontrivial phase:

lﬂ(l‘l,l'z) - e2i0w(r1,r2) . (2)

The special cases #=0, 7 correspond to bosons and fer-
mions, respectively. Particles with other values of the
statistical angle 6 are called anyons (Wilczek, 1990). We
refer to such particles as anyons with statistics 6.

We now consider the general case of N particles,
where a more complex structure arises. The topological
classes of trajectories which take these particles from
initial positions R, R,,..., Ry at time ¢; to final positions
Ry, R,,..., Ry at time {; are in one-to-one correspon-
dence with the elements of the braid group By. An ele-
ment of the braid group can be visualized by thinking of
trajectories of particles as world lines (or strands) in (2
+1)-dimensional space-time originating at initial posi-
tions and terminating at final positions, as shown in Fig.
1. The time direction will be represented vertically on
the page, with the initial time at the bottom and the final
time at the top. An element of the N-particle braid
group is an equivalence class of such trajectories up to
smooth deformations. To represent an element of a
class, we draw the trajectories on paper with the initial
and final points ordered along lines at the initial and
final times. When drawing the trajectories, we must be
careful to distinguish when one strand passes over or
under another, corresponding to a clockwise or counter-
clockwise exchange. We also require that any intermedi-
ate time slice must intersect N strands. Strands cannot
“double back,” which would amount to particle creation
or annihilation at intermediate stages. We do not allow
this because we assume that the particle number is
known. (We consider particle creation and annihilation
later when discussing field theories of anyons and, from
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FIG. 1. Graphical representation of elements of the braid
group. Top: The two elementary braid operations ¢ and o, on
three particles. Middle: Shown here 0,0 # 010,; hence the
braid group is non-Abelian. Bottom: The braid relation [Eq.
()] 0,01.10=01,10707,1.

a mathematical perspective, when discussing the idea of
a “category” in Sec. IV.) Then, the multiplication of two
elements of the braid group is the successive execution
of the corresponding trajectories, i.e., the vertical stack-
ing of the two drawings. (As may be seen from the fig-
ure, the order in which they are multiplied is important
because the group is non-Abelian, meaning that multi-
plication is not commutative.)

The braid group can be represented algebraically in
terms of generators o;, with 1<i<N-1. We choose an
arbitrary ordering of the particles 1,2,... N2 o; is a
counterclockwise exchange of the ith and (i+1)th par-
ticles. o' is therefore a clockwise exchange of the ith
and (i+1)th particles. The o;’s satisfy the defining rela-
tions (see Fig. 1),

o,0;=0j0; for li-jl=2,

0;0,,10;=0;,10,0;1 forlsisn-1. (3)

The only difference from the permutation group Sy is
that o?#1, but this makes an enormous difference.
While the permutation group is finite, the number of
elements in the group |Sy|=N!, the braid group is infi-
nite, even for just two particles. Furthermore, there are
nontrivial topological classes of trajectories even when
the particles are distinguishable, e.g., in the two-particle
case those trajectories in which one particle winds
around the other an integer number of times. These to-
pological classes correspond to the elements of the
“pure” braid group, which is the subgroup of the braid
group containing only elements that bring each particle

2Choosing a different ordering would amount to relabeling
elements of the braid group, as given by conjugation by the
braid that transforms one ordering into the other.
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back to its own initial position, not the initial position of
other particles. The richness of the braid group is the
key fact enabling quantum computation through quasi-
particle braiding.

To define the quantum evolution of a system, we
specify how the braid group acts on the states of the
system. The simplest possibilities are one-dimensional
representations of the braid group. In these cases, the
wave function acquires a phase 26 when one particle is
taken around another, analogous to Egs. (1) and (2). The
special cases =0, are bosons and fermions, respec-
tively, while particles with other values of # are anyons
(Wilczek, 1990). These are straightforward many-particle
generalizations of the two-particle case considered
above. An arbitrary element of the braid group is repre-
sented by the factor e"% where m is the total number of
times that one particle winds around another in a coun-
terclockwise manner (minus the number of times that a
particle winds around another in a clockwise manner).
These representations are Abelian since the order of
braiding operations is unimportant. However, they can
still have quite rich structure since there can be n, dif-
ferent particle species with parameters 6,,, where a,b
=1,2,...,n,, specifying the phases resulting from braid-
ing a particle of type a around a particle of type b. Since
distinguishable particles can braid nontrivially, i.e., 6,,
can be nonzero for a#b as well as for a=b, anyonic
“statistics” is better understood as a kind of topological
interaction between particles.

We now turn to non-Abelian braiding statistics, which
are associated with higher-dimensional representations
of the braid group. Higher-dimensional representations
can occur when there is a degenerate set of g states with
particles at fixed positions Rj, R,,..., R,. We define an
orthonormal basis ¢,, a=1,2,...,g, of these degenerate
states. Then an element of the braid group—say oy,
which exchanges particles 1 and 2—is represented by a
g X g unitary matrix p(o;) acting on these states,

Vo— [P(U'l)]aﬁlﬂﬁ- 4)

On the other hand, exchanging particles 2 and 3 leads to

Vo — [P(O'z)]aﬁ'lfﬁ- (5)

Both p(oy) and p(o) are (g X g)-dimensional unitary ma-
trices, which define unitary transformation within the
subspace of degenerate ground states. If p(o) and p(o)
do not commute, [p(oy)]udp(02) ], # [p(02)laglp(a) gy,
the particles obey non-Abelian braiding statistics. Unless
they commute for any interchange of particles, in which
case the particles’ braiding statistics is Abelian, braiding
quasiparticles will cause nontrivial rotations within the
degenerate many-quasiparticle Hilbert space. Further-
more, it will essentially be true at low energies that the
only way to make nontrivial unitary operations on this
degenerate space is by braiding quasiparticles around
each other. This statement is equivalent to a statement
that no local perturbation can have nonzero matrix ele-
ments within this degenerate space.
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A system with anyonic particles will generally have
multiple types of anyons. For instance, in a system with
Abelian anyons with statistics 6, a bound state of two
such particles has statistics 46. Even if no such stable
bound state exists, we may wish to bring two anyons
close together while all other particles are much further
away. Then the two anyons can be approximated as a
single particle whose quantum numbers are obtained by
combining the quantum numbers, including the topo-
logical quantum numbers, of the two particles. As a re-
sult, a complete description of the system must also in-
clude these “higher” particle species. For instance, if
there are #=7/m anyons in the system, then there are
also =4m/m,97/m,...,(m—1)?m/m. Since the statistics
parameter is well defined only up to 2w, 6O=(m
—1)?m/m=+m/m for m even and m+m/m for m odd.
The formation of a different type of anyon by bringing
together two anyons is called fusion. When a
statistics-7/m particle is fused with a statistics-(—a/m)
particle, the result has statistics #=0. It is convenient to
call this the “trivial” particle. As far as topological prop-
erties are concerned, such a boson is as good as the ab-
sence of any particle, so the trivial particle is also some-
times called the “vacuum.” We often denote the trivial
particle by 1.

With Abelian anyons that are made by forming suc-
cessively larger composites of m/m particles, the fusion
rule is n2a/mX k2 m/m=n+k)*m/m. (We use aXb to
denote a fused with b.) However, for non-Abelian
anyons, the situation is more complicated. As with ordi-
nary quantum numbers, there might not be a unique
way of combining topological quantum numbers (e.g.,
two spin-1/2 particles could combine to form either a
spin-0 or a spin-1 particle). The different possibilities are
called the different fusion channels. This is usually de-
noted by

ba X =2 Noybe, (6)

which represents the fact that, when a particle of species
a fuses with one of species b, the result can be a particle
of species c if Ni, #0. For Abelian anyons, the fusion

multiplicities N, =1 for only one value of ¢ and NZ;:
for all ¢’ #c. For particles of type k with statistics 6
=mk*/m, i.e., N:;;,=5k+kr’ku. For non-Abelian anyons,
there is at least one a,b such that there are multiple
fusion channels ¢ with Nj, #0. In the examples that we
consider, N¢,=0 or 1, but there are theories for which

°,>1 for some a,b,c. In this case, a and b can fuse to
form ¢ in Ny, >1 different distinct ways. We use a to
denote the antiparticle of particle species a. When a and
a fuse, they can always fuse to 1 in precisely one way,
Le., N}lﬁzl; in the non-Abelian case, they may or may
not be able to fuse to other particle types as well.

The different fusion channels are one way of account-
ing for the different degenerate multiparticle states. We
see how this works in one simple model of non-Abelian
anyons, discussed in Sec. III. As discussed in Sec. III,
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this model is associated with “Ising anyons” (which are
so named for reasons that will clear in Secs. III.D and
IIL.E), SU(2),, and chiral p superconductors. There are
slight differences between these three theories, relating
to Abelian phases, but these are unimportant for the
present discussion. This model has three different types
of anyon, which can be variously called 1,0, ¢ or 0,%,1.
(Unfortunately, the notation is confusing because the
trivial particle is called “1” in the first model but “0” in
the second; however, we avoid confusion by using bold-
faced 1 to denote the trivial particle.) The fusion rules
for such anyons are

oXo=1+4¢, oXy=0, YyXy=1,

1Xx=x forx=1,0,¢. (7)

[Translating these rules into the notation of SU(2),, we
see that these fusion rules are similar to the decomposi-
tion rules for tensor products of irreducible SU(2) rep-
resentations, but differ in the important respect that 1 is
the maximum spin so that %X %:0+1, as in the SU(2)
case, but %X 1:% and 1X1=0.] Note that there are two
different fusion channels for two o’s. As a result, if there
are four o’s which fuse together to give 1, there is a
two-dimensional space of such states. If we divided the
four o’s into two pairs, by grouping particles 1,2 and 3,4,
then a basis for the two-dimensional space is given by
the state in which 1,3 fuse to 1 or 1,3 fuse to ¢ (2,4 must
fuse to the same particle type as do 1,3 in order that all
four particles fuse to 1). We call these states W; and ¥ ;
they are a basis for the four-quasiparticle Hilbert space
with total topological charge 1. (Similarly, if they all
fused to give ¢, there would be another two-dimensional
degenerate space; one basis is given by the state in which
the first pair fuses to 1 while the second fuses to ¢ and
the state in which the opposite occurs.)

Of course, our division of the four ¢’s into two pairs
was arbitrary. We could have divided them differently,
say, into the pairs 1,3 and 2,4. We thereby obtain two

different basis states ¥ and \ffl,, in which both pairs fuse
to 1 or to ¢, respectively. This is a different basis in the
same two-dimensional space. The matrix parametrizing
this basis change (see also the Appendix) is called the F

matrix: ‘f’a=Fab‘Pb, where a,b=1,¢. There should really
be six indices on F if we include indices to specify the
four particle types, [F/¥],,, but we have dropped these
other indices since i=j=k=I[=0¢ in our case. The F ma-
trices are sometimes called 6j symbols since they are
analogous to the corresponding quantities for SU(2) rep-
resentations. Recall that, in SU(2), there are multiple
states in which spins j, j,, and j; couple to form a total
spin J. For instance, j; and j, can add to form j;,, which
can then add with j; to give J. The eigenstates of (j;,)?
form a basis of the different states with fixed ji, j, j3»
and J. Alternatively, j, and j; can add to form j,3, which
can then add with j; to give J. The eigenstates of (j,3)?
form a different basis. The 6j symbol gives the basis
change between the two. The F matrix of a system of
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anyons plays the same role when particles of topological
charges i,j,k fuse to total topological charge /. If i and j
fuse to a, which then fuses with k to give topological
charge /, the different allowed a’s define a basis. If j and
k fuse to b and then fuse with i to give topological
charge /, this defines another basis, and the F matrix is
the unitary transformation between the two bases.
States with more than four quasiparticles can be under-
stood by successively fusing additional particles, as de-
scribed in Sec. III.A. The F matrix can be applied to any
set of four consecutively fused particles.

The different states in this degenerate multianyon
state space transform into each other under braiding.
However, two particles cannot change their fusion chan-
nel simply by braiding with each other, since their total
topological charge can be measured along a far distant
loop enclosing the two particles. They must braid with a
third particle in order to change their fusion channel.
Consequently, when two particles fuse in a particular
channel (rather than a linear superposition of channels),
the effect of taking one particle around the other is mul-
tiplication by a phase. This phase resulting from a coun-
terclockwise exchange of particles of types a and b
which fuse to a particle of type c is called R‘C‘b. In the
Ising anyon case, as derived in Sec. III and the Appen-
dix, R{7=e"™8, R77=3"% R{¥=-1, R]"=i. For an ex-
ample of how this works, suppose that we create a pair
of o quasiparticles out of the vacuum. They will neces-
sarily fuse to 1. If we take one around another, the state
will change by a phase e~™3. If we take a third o quasi-
particle and take it around one, but not both, of the first
two, then the first two will now fuse to ¢, as shown in
Sec. III. If we now take one of the first two around the
other, the state will change by a phase €™,

In order to fully specify the braiding statistics of a
system of anyons, it is necessary to specify (i) the particle
species, (ii) the fusion rules N¢,, (iii) the F matrices, and
(iv) the R matrices. In Sec. IV, we introduce the other
sets of parameters, namely, the topological spins ©, and
the § matrix, which, together with the parameters i-iv
above, fully characterize the topological properties of an
anyon system. Some readers may be familiar with the
incarnation of these mathematical structures in confor-
mal field theory (CFT), where they occur for reasons
explained in Sec. III.D; we review these properties in
the CFT context in the Appendix.

Quasiparticles obeying non-Abelian braiding statis-
tics, or simply non-Abelian anyons, were first considered
in conformal field theory by Moore and Seiberg (1988,
1989) and in Chern-Simons theory by Witten (1989).
They were discussed in discrete gauge theories and
linked to the representation theory of quantum groups
by Bais (1980) and Bais et al. (1992; Bais, van Driel, et
al., 1993; Bais, Morozov, et al., 1993). They were dis-
cussed in a more general context by Fredenhagen et al.
(1989) and Frohlich and Gabbiani (1990). The properties
of non-Abelian quasiparticles make them appealing for
use in a quantum computer. But, before discussing this,
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we review how they could occur in nature and then the
basic ideas behind quantum computation.

2. Emergent anyons

The preceding considerations show that exotic braid-
ing statistics is a theoretical possibility in (2+1)D, but
they do not tell us when and where they might occur in
nature. Electrons, protons, atoms, and photons are all
either fermions or bosons even when they are confined
to move in a two-dimensional plane. However, if a sys-
tem of many electrons (or bosons, atoms, etc.) confined
to a two-dimensional plane has excitations which are lo-
calized disturbances of its quantum mechanical ground
state, known as quasiparticles, then these quasiparticles
can be anyons. When a system has anyonic quasiparticle
excitations above its ground state, it is in a topological
phase of matter. (A more precise definition of a topologi-
cal phase of matter is given in Sec. III.)

We now describe how anyons might arise as an emer-
gent property of a many-particle system. Consider the
ground state of a (2+1)-dimensional system of electrons,
whose coordinates are (rq,...,r,). We assume that the
ground state is separated from the excited states by an
energy gap (i.e., it is incompressible), as in fractional
quantum Hall states in 2D electron systems. The lowest-
energy electrically charged excitations are known as
quasiparticles or quasiholes, depending on the sign of
their electric charge. (The term quasiparticle is also used
in a generic sense to mean both quasiparticle and quasi-
hole as in the previous section.) These quasiparticles are
local disturbances to the wave function of electrons cor-
responding to a quantized amount of total charge.

We now introduce into the system’s Hamiltonian a
scalar potential composed of many local “traps,” each
sufficient to capture exactly one quasiparticle. These
traps may be created by impurities, by small gates, or by
the potential created by tips of scanning microscopes.
The quasiparticle’s charge screens the potential intro-
duced by the trap and the quasiparticle-tip combination
cannot be observed by local measurements from far
away. We denote the positions of these traps by
(Ry,...,Ry), and assume that these positions are well
spaced from each other compared to the microscopic
length scales. A state with quasiparticles at these posi-
tions can be viewed as an excited state of the Hamil-
tonian without the trap potential or, alternatively, as the
ground state in the presence of the trap potential. When
we refer to the ground state(s) of the system, we often
refer to multiquasiparticle states in the latter context.
The quasiparticles’ coordinates (Ry,...,R;) are param-
eters both in the Hamiltonian and in the resulting
ground state wave function for electrons.

We are concerned with the effect of taking these qua-
siparticles around each other. We imagine making the
quasiparticles’ coordinates R=(R;,...,R;) adiabatically
time dependent. In particular, we consider a trajectory in
which the final configuration of quasiparticles is a per-
mutation of the initial configuration (i.e., at the end, the
positions of quasiparticles are identical to the intial po-
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sitions, but some quasiparticles may have interchanged
positions with others). If the ground state wave function
is single valued with respect to (Ry,...,Ry), and if there
is only one ground state for any given set of R;’s, then the
final ground state to which the system returns after the
winding is identical to the initial one, up to a phase. Part
of this phase is the dynamical phase, which depends on
the energy of the quasiparticle state and the length
of time for the process. In the adiabatic limit, it is
Jdt E[R(1)]. There is also a geometric phase which does
not depend on how long the process takes. This Berry
phase is (Berry, 1984)

a:zgﬁ dR - ((R)|Ve|#(R)), ®)

where |#(R)) is the ground state with the quasiparticles
at positions R and the integral is taken along the trajec-
tory R(¢). It is manifestly dependent only on the trajec-
tory taken by the particles and not on how long it takes
to move along this trajectory.

The phase « has a piece that depends on the geometry
of the path traversed (typically proportional to the area
enclosed by all of the loops), and a piece 6 that depends
only on the topology of the loops created. If 6+ 0, then
the quasiparticle excitations of the system are anyons. In
particular, if we consider the case where only two quasi-
particles are interchanged clockwise (without wrapping
around any other quasiparticles), 6 is the statistical angle
of the quasiparticles.

There were two key conditions to our discussion
above of the Berry phase. The single valuedness of the
wave function is a technical issue. The nondegeneracy of
the ground state, however, is an important physical con-
dition. In fact, most of this paper deals with the situation
in which this condition does not hold. We consider sys-
tems in which, once the positions (R, ...,R}) of the qua-
siparticles are fixed, there remain multiple degenerate
ground states [i.e., ground states in the presence of
a potential that captures quasiparticles at positions
(Ry,...,Ry)], which are distinguished by a set of internal
quantum numbers. For reasons that will become clear
later, we refer to these quantum numbers as “topologi-
cal.”

When the ground state is degenerate, the effect of a
closed trajectory of the R;’s is not necessarily a phase
factor. The system starts and ends in ground states, but
the initial and final ground states may be different mem-
bers of this degenerate space. The constraint imposed by
adiabaticity in this case is that the adiabatic evolution of
the system is confined to the subspace of ground states.
Thus it may be expressed as a unitary transformation
within this subspace. The inner product in Eq. (8) must
be generalized to a matrix of such inner products:

m,, = <wa(R)|VR|¢b(R)>, (9)

where |¢,(R)), a=1,2,...,g, are the g degenerate
ground states. Since these matrices at different points
R do not commute, we must path order the integral in
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order to compute the transformation rule for the state
l;ba_>Mab‘r//ba where

M, = Pexp(z’ﬂg dR- m)

2 51 Sp-1 .
=" dslf dsy -+ f ds,{R(sy)
n=0 Jo 0 0

’ maal[R(sl)] Tt R(Sn) : manb[R(sn)]}a (10)

with R(s), s €[0,27], the closed trajectory of the par-
ticles, and the path-ordering symbol P is defined by the
second equality. Again, the matrix M, may be the prod-
uct of topological and nontopological parts. In a system
in which quasiparticles obey non-Abelian braiding sta-
tistics, the nontopological part will be Abelian, that is,
proportional to the unit matrix. Only the topological
part will be non-Abelian.

The requirements for quasiparticles to follow non-
Abelian statistics are then, first, that the N-quasiparticle
ground state is degenerate. In general, the degeneracy
will not be exact, but it should vanish exponentially as
the quasiparticle separations are increased. Second, the
adiabatic interchange of quasiparticles applies a unitary
transformation on the ground state, whose non-Abelian
part is determined only by the topology of the braid,
while its nontopological part is Abelian. If the particles
are not infinitely far apart, and the degeneracy is only
approximate, then the adiabatic interchange must occur
faster than the inverse of the energy splitting (Thouless
and Gefen, 1991) between states in the nearly degener-
ate subspace (but still more slowly than the energy gap
between this subspace and the excited states). Third, the
only way to make unitary operations on the degenerate
ground state space, so long as the particles are kept far
apart, is by braiding. The simplest (albeit uninteresting)
example of degenerate ground states may arise if each of
the quasiparticles carried a spin 1/2 with a vanishing g
factor. If that were the case, the system would satisfy the
first requirement. Spin-orbit coupling may conceivably
lead to the second requirement being satisfied. Satisfy-
ing the third one, however, is much harder, and requires
the subtle structure described below.

The degeneracy of N-quasiparticle ground states is
conditioned on the quasiparticles being well separated
from one another. When quasiparticles are allowed to
approach one another too closely, the degeneracy is
lifted. In other words, when non-Abelian anyonic quasi-
particles are close together, their different fusion chan-
nels are split in energy. This dependence is analogous to
the way the energy of a system of spins depends on their
internal quantum numbers when the spins are close to-
gether and their coupling becomes significant. The split-
ting between different fusion channels is a means for a
measurement of the internal quantum state, a measure-
ment that is of importance in the context of quantum
computation.
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B. Topological quantum computation

1. Basics of quantum computation

As the components of computers become smaller and
smaller, we are approaching the limit in which quantum
effects become important. One might ask whether this
is a problem or an opportunity. The founders of quan-
tum computation (Manin, 1980; Feynman, 1982, 1986;
Deutsch, 1985; and most dramatically, Shor, 1994) an-
swered in favor of the latter. They showed that a com-
puter which operates coherently on quantum states has
potentially much greater power than a classical com-
puter (Nielsen and Chuang, 2000).

The problem that Feynman had in mind for a quan-
tum computer was the simulation of a quantum system
(Feynman, 1982). He showed that certain many-body
quantum Hamiltonians could be simulated exponentially
faster on a quantum computer than on a classical com-
puter. This is an important potential application of a
quantum computer, since it would enable us to under-
stand the properties of complex materials, e.g., to ex-
plain solve high-temperature superconductivity. Digital
simulations of large-scale quantum many-body Hamilto-
nians are hopeless on classical computers because of the
exponentially large Hilbert space. A quantum computer,
using the physical resource of an exponentially large
Hilbert space, may also enable progress in the solution
of lattice gauge theory and quantum chromodynamics,
thus shedding light on strongly interacting nuclear
forces.

In 1994 Peter Shor found an application of a quantum
computer which generated widespread interest not just
inside but also outside the physics community (Shor,
1994). He invented an algorithm by which a quantum
computer could find the prime factors of an m-digit
number in a length of time ~m? log m log log m. This is
much faster than the fastest known algorithm for a clas-
sical computer, which takes ~exp(m!?) time. Since
many encryption schemes depend on the difficulty of
finding the solution to problems similar to finding the
prime factors of a large number, there is an obvious ap-
plication of a quantum computer that is of great basic
and applied interest.

The computation model set forth by these pioneers of
quantum computing [and refined by DiVincenzo (2000)]
is based on three steps: initialization, unitary evolution,
and measurement. We assume that we have a system
with Hilbert space H. We further assume that we can
initialize the system in some known state |¢). We uni-
tarily evolve the system until it is in some final state
U(t)|¢x). This evolution will occur according to some
Hamiltonian H(¢) such that dU/dt=iH(t)U(t)/h. We re-
quire that we have enough control over this Hamil-
tonian so that U(f) can be made to be any unitary trans-
formation that we desire. Finally, we measure the state
of the system at the end of this evolution. Such a process
is called quantum computation (Nielsen and Chuang,
2000). The Hamiltonian H(¢) is the software program to
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be run. The initial state is the input to the calculation,
and the final measurement is the output.

The need for versatility, i.e., for one computer to effi-
ciently solve many different problems, requires the con-
struction of the computer out of smaller pieces that can
be manipulated and reconfigured individually. Typically,
the fundamental piece is taken to be a quantum two-
state system known as a “qubit,” which is the quantum
analog of a bit. (Of course, one could equally well take
general “dits,” for which the fundamental unit is some
d-state system with d not too large.) While a classical bit,
i.e., a classical two-state system, can be either 0 or 1 at
any given time, a qubit can be in one of the infinitely
many superpositions a|0)+b|1). For n qubits, the state
becomes a vector in a 2"-dimensional Hilbert space, in
which the different qubits are generally entangled with
one another.

The quantum phenomenon of superposition allows a
system to traverse many trajectories in parallel, and de-
termine its state by their coherent sum. In some sense
this coherent sum amounts to a massive quantum paral-
lelism. It should not, however, be confused with classical
parallel computing, where many computers are run in
parallel, and no coherent sum takes place.

The biggest obstacle to building a practical quantum
computer is posed by errors, which invariably happen
during any computation, quantum or classical. For any
computation to be successful, one must devise practical
schemes for error correction which can be effectively
implemented (and which must be sufficiently fault toler-
ant). Errors are typically corrected in classical comput-
ers through redundancies, i.e., by keeping multiple cop-
ies of information and checking against these copies.

With a quantum computer, however, the situation is
more complex. If we measure a quantum state during an
intermediate stage of a calculation to see if an error has
occurred, we collapse the wave function and thus de-
stroy quantum superpositions and ruin the calculation.
Furthermore, errors need not be merely a discrete flip of
|0) to [1), but can be continuous: the state a|0)+b|1) may
drift, due to an error, to the state —al0)+be'?|1) with
arbitrary 6.

In spite of these difficulties, error correction is pos-
sible for quantum computers (Shor, 1995; Calderbank
and Shor, 1996; Steane, 1996a; Gottesman, 1998;
Preskill, 2004). One can represent information redun-
dantly so that errors can be identified without measuring
the information. For instance, if we use three spins to
represent each qubit, |0)—|000), [1)—]|111), and the
spin-flip rate is low, then we can identify errors by
checking whether all three spins are the same (here we
represent an up spin by 0 and a down spin by 1). Sup-
pose that our spins are in the state «|000)+g|111). If the
first spin has flipped erroneously, then our spins are in
the state a|100)+8|011). We can detect this error by
checking whether the first spin is the same as the other
two; this does not require us to measure the state of the
qubit [“We measure the errors, rather than the informa-
tion.” (Preskill, 2004)]. If the first spin is different from
the other two, then we just need to flip it. We repeat this
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process with the second and third spins. So long as we
can be sure that two spins have not erroneously flipped
(i.e., so long as the basic spin-flip rate is low), this pro-
cedure will correct spin-flip errors. A more elaborate
encoding is necessary in order to correct phase errors,
but the key observation is that a phase error in the o,
basis is a bit-flip error in the o, basis.

However, the error correction process may itself be a
little noisy. More errors could then occur during error
correction, and the whole procedure will fail unless the
basic error rate is small. Estimates of the threshold error
rate above which error correction is impossible depend
on the particular error correction scheme, but fall in the
range 10#-107° (see, e.g., Aharonov and Ben-Or, 1997;
Knill et al., 1998). This means that we must be able to
perform 10*-10° operations perfectly before an error
occurs. This is a stringent constraint, and it is presently
unclear if local qubit-based quantum computation can
ever be made fault tolerant through quantum error cor-
rection protocols.

Random errors are caused by the interaction between
the quantum computer and the environment. As a result
of this interaction, the quantum computer, which is ini-
tially in a pure superposition state, becomes entangled
with its environment. This can cause errors as follows.
Suppose that the quantum computer is in the state |0)
and the environment is in the state |E,) so that their
combined state is |0)|E,). The interaction between the
computer and the environment could cause this state to
evolve to a|0)|Ey)+ B|1)|E,), where |E,) is another state
of the environment (not necessarily orthogonal to |E)).
The computer undergoes a transition to the state |1) with
probability | 8|*. Furthermore, the computer and the en-
vironment are now entangled, so the reduced density
matrix for the computer alone describes a mixed state,
e.g., p=diag(|a|?,|8|?) if (Ey|E;)=0. Since we cannot
measure the state of the environment accurately, infor-
mation is lost, as reflected in the evolution of the density
matrix of the computer from a pure state to a mixed
one. In other words, the environment has caused deco-
herence. Decoherence can destroy quantum information
even if the state of the computer does not undergo a
transition. Although whether or not a transition occurs
is basis dependent (a bit flip in the o, basis is a phase flip
in the o, basis), it is a useful distinction because many
systems have a preferred basis, for instance, the ground
state |0) and excited state |1) of an ion in a trap. Suppose
the state |0) evolves as above, but with a=1, =0 so that
no transition occurs, while the state |1)|E,) evolves to
|1)|E{) with (E{|E;)=0. Then an initial pure state (a|0)
+b|1))|Ey) evolves to a mixed state with density matrix
p=diag(|al?,|b|?). The correlations in which our quantum
information resides is now transferred to correlation be-
tween the quantum computer and the environment. The
quantum state of a system invariably loses coherence in
this way over a characteristic time scale T,,. It was uni-
versally assumed until the advent of quantum error cor-
rection (Shor, 1995; Steane, 1996a) that quantum compu-
tation is intrinsically impossible since decoherence-
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induced quantum errors cannot be corrected in any real
physical system. However, when error-correcting codes
are used, the entanglement is transferred from the quan-
tum computer to ancillary qubits so that the quantum
information remains pure while the entropy is in the
ancillary qubits.

Of course, even if the coupling to the environment
were completely eliminated, so that there were no ran-
dom errors, there could still be systematic errors. These
are unitary errors which occur while we process quan-
tum information. For instance, we may wish to rotate a
qubit by 90° but might inadvertently rotate it by 90.01°.

From a practical standpoint, it is often useful to divide
errors into two categories: (i) errors that occur when a
qubit is processed (i.e., when computations are per-
formed on that qubit), and (ii) errors that occur when a
qubit is simply storing quantum information and is not
being processed (i.e., when it is acting as a quantum
memory). From a fundamental standpoint, this is a bit of
a false dichotomy, since one can think of quantum infor-
mation storage (or quantum memory) as a computer
that applies the identity operation over and over to the
qubit (i.e., leaves it unchanged). Nonetheless, the prob-
lems faced in the two categories might be quite differ-
ent. For quantum information processing, unitary errors,
such as rotating a qubit by 90.01° instead of 90°, are an
issue of how precisely one can manipulate the system.
On the other hand, when a qubit is storing information,
one is more concerned about errors caused by interac-
tions with the environment. This is instead an issue of
how well isolated one can make the system. As shown
below, a topological quantum computer is protected
from problems in both of these categories.

2. Fault tolerance from non-Abelian anyons

Topological quantum computation is a scheme for us-
ing a system whose excitations satisfy non-Abelian
braiding statistics to perform quantum computation in a
way that is naturally immune to errors. The Hilbert
space H used for quantum computation is the subspace
of the total Hilbert space of the system comprised of the
degenerate ground states with a fixed number of quasi-
particles at fixed positions. Operations within this sub-
space are carried out by braiding quasiparticles. As dis-
cussed above, the subspace of degenerate ground states
is separated from the rest of the spectrum by an energy
gap. Hence, if the temperature is much lower than the
gap and the system is weakly perturbed using frequen-
cies much smaller than the gap, the system evolves only
within the ground state subspace. Furthermore, that
evolution is severely constrained, since it is essentially
the case (with exceptions that we discuss) that the only
way the system can undergo a nontrivial unitary
evolution—that is, an evolution that takes it from one
ground state to another—is by having its quasiparticles
braided. The reason for this stability is that any local
perturbation [such as the electron-phonon interaction
and the hyperfine electron-nuclear interaction, two ma-
jor causes for decoherence in nontopological solid state

Rev. Mod. Phys., Vol. 80, No. 3, July—September 2008

spin-based quantum computers (Witzel and Das Sarma,
2006) has no nontrivial matrix elements within the
ground state subspace. Thus the system is rather im-
mune from decoherence (Kitaev, 2003). Unitary errors
are also unlikely since unitary transformations associ-
ated with braiding quasiparticles are sensitive only to
the topology of the quasiparticle trajectories, and not to
their geometry or dynamics.

A model in which non-Abelian quasiparticles are uti-
lized for quantum computation starts with the construc-
tion of qubits. In sharp contrast to most realizations of a
quantum computer, a qubit here is a nonlocal entity,
comprised of several well-separated quasiparticles, with
the two states of the qubit being two different values for
the internal quantum numbers of this set of quasiparti-
cles. In the simplest non-Abelian quantum Hall state,
which has Landau-level filling factor v=5/2, two quasi-
particles can be put together to form a qubit (see Secs.
II.C.4 and IV.A). Unfortunately, as discussed in Secs.
IV.A and IV.C, this system turns out to be incapable of
universal topological quantum computation using only
braiding operations; some unprotected operations are
necessary in order to perform universal quantum com-
putation. The simplest system that is capable of univer-
sal topological quantum computation is discussed in Sec.
IV.B; it utilizes three quasiparticles to form one qubit.

As mentioned above, to perform a quantum compu-
tation one must be able to initialize the state of qubits at
the beginning, perform arbitrary controlled unitary op-
erations on the state, and then measure the state of qu-
bits at the end. We now address each of these in turn.

Initialization may be performed by preparing the
quasiparticles in a specific way. For example, if a
quasiparticle-antiquasiparticle pair is created by “pull-
ing” it apart from the vacuum (e.g., pair creation from
the vacuum by an electric field), it will begin in an initial
state with the pair necessarily having conjugate quantum
numbers (i.e., the “total” quantum number of the pair
remains the same as that of the vacuum). This gives us a
known initial state to start with. It is also possible to use
measurement and unitary evolution (both discussed be-
low) as an initialization scheme—if one can measure the
quantum numbers of some quasiparticles, one can then
perform a controlled unitary operation to put them into
any desired initial state.

Once the system is initialized, controlled unitary op-
erations are performed by physically dragging quasipar-
ticles around one another in some specified way. When
quasiparticles belonging to different qubits braid, the
state of the qubits changes. Since the resulting unitary
evolution depends only on the topology of the braid that
is formed and not on the details of how it is done, it is
insensitive to wiggles in the path, resulting, e.g., from
scattering of the quasiparticles by phonons or photons.
Determining which braid corresponds to which compu-
tation is a complicated but eminently solvable task, dis-
cussed in Sec. IV.B.3.

Once the unitary evolution is completed, there are
two ways to measure the state of the qubits. The first
relies on the fact that the degeneracy of multiquasipar-
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FIG. 2. (Color online) A quantum Hall analog of a Fabry-
Perot interferometer. Quasiparticles can tunnel from one edge
to the other at either of two point contacts. To lowest order in
the tunneling amplitudes, the backscattering probability, and
hence the conductance, is determined by the interference be-
tween these two processes. The area in the cell can be varied
by means of a side gate S in order to observe an interference
pattern.

ticle states is split when quasiparticles are brought close
together (within some microscopic length scale). When
two quasiparticles are brought close together, for in-
stance, a measurement of this energy (or a measurement
of the force between two quasiparticles) measures the
topological charge of the pair. A second way to measure
the topological charge of a group of quasiparticles is by
carrying out an Aharanov-Bohm-type interference ex-
periment. We take a “beam” of test quasiparticles, send
it through a beam splitter, send one partial wave to the
right of the group to be measured and another partial
wave to the left of the group, and then reinterfere the
two waves (see Fig. 2). Since the two different beams
make different braids around the test group, they will
experience different unitary evolution depending on the
topological quantum numbers of the test group. Thus
the reinterference of these two beams will reflect the
topological quantum number of the group of quasiparti-
cles enclosed.

This concludes a rough description of the way a topo-
logical quantum computation is to be performed. While
the unitary transformation associated with a braid de-
pends only on the topology of the braid, one may be
concerned that errors could occur if one does not return
the quasiparticles to precisely the correct position at the
end of the braiding. This apparent problem, however,
is evaded by the computations, which correspond to
closed world lines that have no loose ends: when the
computation involves creation and annihilation of a
quasiparticle-quasihole pair, the world line is a closed
curve in space-time. If the measurement occurs by bring-
ing two particles together to measure their quantum
charge, it does not matter precisely where they are
brought together. Alternatively, when the measurement
involves an interference experiment, the interfering par-
ticle must close a loop. In other words, a computation
corresponds to a set of links rather than open braids,
and the initialization and measurement techniques nec-
essarily involve bringing quasiparticles together in some
way, closing up the trajectories and making the full pro-
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cess from initialization to measurement completely to-
pological.

Due to its special characteristics topological quantum
computation intrinsically guarantees fault tolerance, at
the level of “hardware,” without “software”-based error
correction schemes that are essential for nontopological
quantum computers. This immunity to errors results
from the stability with respect to local perturbations. In
nontopological quantum computers, qubits are local,
and operations on them are local, leading to a sensitivity
to errors induced by local perturbations. In a topological
quantum computer qubits are nonlocal and operations—
quasiparticle braiding—are nonlocal, leading to an im-
munity to local perturbations.

Such immunity to local perturbation gives topological
quantum memories protection from errors due to the
interaction with the environment. However, note that
topological quantum computers are also immune to uni-
tary errors due to imprecise gate operation. Unlike
other types of quantum computers, operations that can
be performed on a topological quantum computer
(braids) naturally take a discrete set of values. As dis-
cussed above, when one makes a 90° rotation of a spin-
based qubit, for example, it is possible that one will mis-
takenly rotate by 90.01°, thus introducing a small error.
In contrast, braids are discrete: a particle either is taken
around another or it is not. There is no way to make a
small error by having slight imprecision in the way qua-
siparticles are moved. (Taking a particle only part of the
way around another particle rather than all of the way
does not introduce errors so long as the topological class
of the link formed by the particle trajectories, as de-
scribed above, is unchanged.)

Given the stability of ground states, and their insensi-
tivity to local perturbations that do not involve excita-
tions to excited states, one may ask then which physical
processes do cause errors in such a topological quantum
computer. Due to the topological stability of the unitary
transformations associated with braids, the only error
processes that we are concerned with are processes that
might cause us to form the wrong link, and hence the
wrong computation. Certainly, one must keep track of
the positions of all quasiparticles in the system during
the computation and assure that one makes the correct
braid to do the correct computation. This includes not
just the “intended” quasiparticles that we need to ma-
nipulate for our quantum computation, but also any
“unintended” quasiparticle that might be lurking in our
system without our knowledge. Two possible sources of
these unintended quasiparticles are thermally excited
quasiparticle-quasihole pairs and randomly localized
quasiparticles trapped by disorder (e.g., impurities, sur-
face roughness, etc.). In a typical thermal fluctuation, for
example, a quasiparticle-quasihole pair is thermally cre-
ated from the vacuum, braids with existing intended
quasiparticles, and then gets annihilated. Typically, such
a pair has opposite electrical charges, so its constituents
will be attracted back to each other and annihilate.
However, entropy or temperature may lead the quasi-
particle and quasihole to split fully apart and wander
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freely through part of the system before coming back
together and annihilating. This type of process may
change the state of qubits encoded in intended quasipar-
ticles, and hence disrupt the computation. Fortunately,
as shown in Sec. IV.B, there is a whole class of such
processes that do not in fact cause error. This class in-
cludes all of the most likely such thermal processes to
occur: including when a pair is created, encircles a single
already existing quasiparticle, and then reannihilates, or
when a pair is created and one of the pair annihilates an
already existing quasiparticle. For errors to be caused,
the excited pair must braid at least two intended quasi-
particles. Nonetheless, the possibility of thermally ex-
cited quasiparticles wandering through the system creat-
ing unintended braids and thereby causing error is a
serious one. For this reason, topological quantum com-
putation must be performed at temperatures well below
the energy gap for quasiparticle-quasihole creation so
that these errors will be exponentially suppressed.

Similarly, localized quasiparticles that are induced by
disorder (e.g., randomly distributed impurities, surface
roughness, etc.) are another serious obstacle to over-
come, since they enlarge the dimension of the subspace
of degenerate ground states in a way that is hard to
control. In particular, these unaccounted-for quasiparti-
cles may couple by tunneling to their intended counter-
parts, thereby introducing dynamics to what is supposed
to be a topology-controlled system, and possibly ruining
the quantum computation. We further note that, in
quantum Hall systems (as discussed in the next section),
slight deviations in density or magnetic field will also
create unintented quasiparticles that must be avoided.

Finally, note that while non-Abelian quasiparticles are
natural candidates for the realization of topological qu-
bits, not every system where quasiparticles satisfy non-
Abelian statistics is suitable for quantum computation.
For this suitability it is essential that the set of unitary
transformations induced by braiding quasiparticles is
rich enough to allow for all operations needed for com-
putation. The necessary and sufficient conditions for
universal topological quantum computation are dis-
cussed in Sec. IV.C.

C. Non-Abelian quantum Hall states

A necessary condition for topological quantum com-
putation using non-Abelian anyons is the existence of a
physical system where non-Abelian anyons can be
found, manipulated (e.g., braided), and conveniently
read out. Several theoretical models and proposals for
systems having these properties have been introduced
(Fendley and Fradkin, 2005; Freedman et al, 2005a;
Levin and Wen, 2005b; Kitaev, 2006), and in Sec. IL.D we
mention some of these possibilities. Despite the theoret-
ical work in these directions, the only real physical sys-
tems where there is even indirect experimental evidence
that non-Abelian anyons exist are quantum Hall systems
in two-dimensional electron gases (2DEGs) in high mag-
netic fields. Consequently, we devote a considerable part
of our discussion to putative non-Abelian quantum Hall
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systems which are also of great interest in their own
right.

1. Rapid review of quantum Hall physics

A comprehensive review of the quantum Hall effect is
well beyond the scope of this article and can be found in
the literature (Prange and Girvin, 1990; Das Sarma and
Pinczuk, 1997). This effect, realized for two-dimensional
electronic systems in a strong magnetic field, is charac-
terized by a gap between the ground and excited states
(incompressibility); a vanishing longitudinal resistivity
p=0, which implies a dissipationless flow of current;
and the quantization of the Hall resistivity to py,
=(1/v)h/e* with v an integer (the integer quantum Hall
effect) or a fraction (the fractional quantum Hall effect).
These values of the two resistivities imply a vanishing
longitudinal conductivity o,,=0 and a quantized Hall
conductivity o,,=ve’/h.

To understand the quantized Hall effect, we begin by
ignoring electron-electron Coulomb interactions; then
the energy eigenstates of the single-electron Hamil-
tonian in a magnetic field Hy=(1/2m)[p;,—e/cA(x,)T?
break up into an equally spaced set of degenerate levels
called Landau levels. In symmetric gauge, A(x)= %B XX,
a basis of single particle wave functions in the lowest
Landau level (LLL) is ¢,,(z)=2" exp(~|z|>/4¢}), where
z=x+iy. If electrons are confined to a disk of area A
pierced by magnetic flux BA, then there are Ng
=BA/®y=BAe/hc states in the lowest Landau level
(and in each higher Landau level), where B is the mag-
netic field; /, ¢, and e are, respectively, Planck’s constant,
the speed of light, and the electron charge; and ®,
=hc/e is the flux quantum. In the absence of disorder,
these single-particle states are degenerate. When the
chemical potential lies between the wth and (v+1)th
Landau levels, the Hall conductance takes the quantized
value o,,=ve*/h while o,,=0. The two-dimensional
electron density #n is related to v via n=veB/hc. In the
presence of a periodic potential and/or disorder (e.g.,
impurities), the Landau levels broaden into bands. How-
ever, except at the center of a band, all states are local-
ized when disorder is present (see Das Sarma and Pinc-
zuk, 1997; Prange and Girvin, 1990, and references
therein). When the chemical potential lies in the region
of localized states between the centers of the wth and
(v+1)th Landau bands, the Hall conductance again
takes the quantized value (rxyzvezl h while o,,=0. The
density will be near but not necessarily equal to veB/hc.
This is known as the integer quantum Hall effect (since v
is an integer).

The neglect of Coulomb interactions is justified when
an integer number of Landau levels is filled, so long as
the energy splitting between Landau levels, 7w,
=heB/mc, is much larger than the scale of the Coulomb
energy, e’/ {,, where £,=\hc/eB is the magnetic length.
When the electron density is such that a Landau level is
only partially filled, Coulomb interactions may be im-
portant.
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In the absence of disorder, a partially filled Landau
level has a highly degenerate set of multiparticle states.
This degeneracy is broken by electron-electron interac-
tions. For instance, when the number of electrons is N
=Ng/3, i.e.,, v=1/3, the ground state is nondegenerate
and there is a gap to all excitations. When electrons in-
teract through Coulomb repulsion, the Laughlin state

1

V=[l(z;-2)° exp(— > |zi|2/4€02) (11)

i>j [

is an approximation to the ground state (and is the exact
ground state for a repulsive ultra-short-ranged model in-
teraction; see, e.g., Haldane in Prange and Girvin, 1990).
Such ground states survive even in the presence of dis-
order if it is sufficiently weak compared to the gap to
excited states. More delicate states with smaller excita-
tion gaps are therefore seen only in extremely clean de-
vices, as described in Sec. I1.C.5 However, some disorder
is necessary to pin the charged quasiparticle excitations
which are created if the density or magnetic field is
slightly varied. When these excitations are localized,
they do not contribute to the Hall conductance, and a
plateau is observed.

Quasiparticle excitations above fractional quantum
Hall ground states, such as the »=1/3 Laughlin state
(11), are emergent anyons as described in Sec. I1.A.2.
An explicit calculation of the Berry phase, along the
lines of Eq. (8), shows that quasiparticle excitations
above the v=1/k Laughlin states have charge e/k and
statistical angle 0=m/k (Arovas et al., 1984). The charge
is obtained from the nontopological part of the Berry
phase, which is proportional to the flux enclosed by a
particle’s trajectory times the quasiparticle charge. This
is in agreement with a general argument that such qua-
siparticles must have fractional charge (Laughlin, 1983).
The result for the statistics of the quasiparticles follows
from the topological part of the Berry phase; it is in
agreement with strong theoretical arguments which sug-
gest that fractionally charged excitations are necessarily
Abelian anyons (see Wilczek, 1990, and references
therein). Definitive experimental evidence for the exis-
tence of fractionally charged excitations at v=1/3 has
accumulated. (Goldman and Su, 1995; De Picciotto et al.,
1997; Saminadayar et al., 1997). The observation of frac-
tional statistics is much more subtle. First steps in that
direction have been reported (Camino et al., 2005) but
are still debated (Godfrey et al., 2007; Rosenow and Hal-
perin, 2007).

The Laughlin states, with v=1/k, are the best under-
stood fractional quantum Hall states, both theoretically
and experimentally. To explain more complicated ob-
served fractions, with v not of the form v=1/k, Haldane
and Halperin (Haldane, 1983; Halperin 1984; Prange
and Girvin, 1990) used a hierarchical construction in
which quasiparticles of a principal v=1/k state can then
themselves condense into a quantized state. In this way,
quantized Hall states can be constructed for any odd-
denominator fraction »—but only for odd-denominator
fractions. These states all have quasiparticles with frac-
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tional charge and Abelian fractional statistics. Later, it
was noticed by Jain (Jain, 1989; Heinonen, 1998) that the
most prominent fractional quantum Hall states are v
=p/(2p+1), which can be explained by noting that a sys-
tem of electrons in a high magnetic field can be approxi-
mated by a system of auxiliary fermions, called “com-
posite fermions,” in a lower magnetic field. If the
electrons are at v=p/(2p+1), then the lower magnetic
field seen by composite fermions is such that they fill an
integer number of Landau levels v'=p. [See Lépez and
Fradkin (1991) and Halperin et al. (1993) for field-
theoretic implementations.] Since the latter state has a
gap, one can hope that the approximation is valid. The
composite fermion picture of fractional quantum Hall
states has proven to be qualitatively and semi-
quantitatively correct in the LLL (Murthy and Shankar,
2003).

Systems with filling fraction »>1 can be mapped to
V' <1 by keeping the fractional part of v and using an
appropriately modified Coulomb interaction to account
for the difference between cyclotron orbits in the LLL
and those in higher Landau levels (Prange and Girvin,
1990). This involves the assumption that the inter-
Landau-level coupling is negligibly small. We note that
this may not be a particularly good assumption for
higher Landau levels, where the composite fermion pic-
ture is less successful.

Our confidence in the picture described above for the
v=1/k Laughlin states and the hierarchy of odd-
denominator states that descend from them derives
largely from numerical studies. Experimentally most of
what is known about quantum Hall states comes from
transport experiments—measurements of the conduc-
tance (or resistance) tensor. While such measurements
make it reasonably clear when a quantum Hall plateau
exists at a given filling fraction, the nature of the plateau
(i.e., the details of the low-energy theory) is extremely
hard to discern. Because of this difficulty, numerical
studies of small systems (exact diagonalizations and
Monte Carlo) have played a prominent role in providing
further insight. Indeed, even Laughlin’s original work
(Laughlin, 1983) on the v=1/3 state relied heavily on
accompanying numerical work. The approach taken was
the following. One assumed that the splitting between
Landau levels is the largest energy in the problem. The
Hamiltonian is projected into the lowest Landau level,
where, for a finite number of electrons and a fixed mag-
netic flux, the Hilbert space is finite dimensional. Typi-
cally, the system is given periodic boundary conditions
(i.e., is on a torus) or else is placed on a sphere; occa-
sionally, one works on a disk, e.g., to study edge excita-
tions. The Hamiltonian is then a finite-sized matrix
which can be diagonalized by a computer so long as the
number of electrons is not too large. Originally, Laugh-
lin examined only three electrons, but modern comput-
ers can handle sometimes as many as 18 electrons. The
resulting ground state wave function can be compared to
a proposed trial wave function. Throughout the history
of the field, this approach has proven to be powerful in
identifying the nature of experimentally observed quan-
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tum Hall states when the system in question is deep
within a quantum Hall phase, so that the associated cor-
relation length is short and the basic physics is already
apparent in small systems.

There are several challenges in using such numerical
work to interpret experiments. First, there is always the
challenge of extrapolating finite-size results to the ther-
modynamic limit. Second, simple overlaps between a
proposed trial state and an exact ground state may not
be sufficiently informative. For example, it is possible
that an exact ground state will be adiabatically con-
nected to a particular trial state, i.e., the two wave func-
tions represent the same phase of matter, but the over-
laps may not be very high. For this reason it is necessary
to also examine quantum numbers and symmetries of
the ground state, as well as the response of the ground
state to various perturbations, particularly the response
to changes in boundary conditions and in the flux.

Another difficulty is the choice of Hamiltonian to di-
agonalize. One may think that the Hamiltonian for a
quantum Hall system is just that of 2D electrons in a
magnetic field interacting via Coulomb forces. However,
the small but finite width (perpendicular to the plane of
the system) of the quantum well slightly alters the effec-
tive interaction between electrons. Similarly, screening
(from any nearby conductors, or from inter-Landau-
level virtual excitations), in-plane magnetic fields, and
even various types of disorder may alter the Hamil-
tonian in subtle ways. To make matters worse, one may
not even know all the physical parameters (dimensions,
doping levels, detailed chemical composition, etc.) of
any particular experimental system accurately. Finally,
Landau-level mixing is not small because the energy
splitting between Landau levels is not much larger than
the other energies in the problem. Thus it is not even
clear that it is correct to truncate the Hilbert space to
the finite-dimensional Hilbert space of a single Landau
level.

In the case of robust states, such as the v=1/3 state,
these subtle effects are unimportant; the ground state is
essentially the same irrespective of these small devia-
tions from the idealized Hamiltonian. However, in the
case of weaker states, such as those observed between
v=2 and 4 (some discussed below), it appears that small
changes in the Hamiltonian can indeed affect the result-
ing ground state. Therefore a valuable approach is to
guess a likely Hamiltonian, and search a space of
“nearby” Hamiltonians, slightly varying the parameters
of the Hamiltonian, to map out the phase diagram of the
system. These phase diagrams suggest the technological
possibility that detailed numerics will allow us to engi-
neer samples with just the right small perturbations so as
display certain quantum Hall states more clearly (Man-
fra et al., 2008; Peterson and Das Sarma, 2008).

2. Possible non-Abelian states

The observation of a quantum Hall state with an
even-denominator filling fraction (Willett et al., 1987),
the v=5/2 state, was the first indication that not all frac-
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tional quantum Hall states fit the above hierarchy (or
equivalently composite fermion) picture. Independently,
it was recognized (Fubini, 1991; Fubini and Lutken,
1991; Moore and Read, 1991) that conformal field
theory gives a way to write a variety of trial wave func-
tions for quantum Hall states, as described in Sec. I11.D.
Using this approach, the so-called Moore-Read Pfaffian
wave function was constructed (Moore and Read, 1991):

1
)H (2= 2)" exp(— > lzi|2/4602)-

i~ Zj/li<j

\prf = Pf(

(12)

The Pfaffian is the square root of the determinant of an
antisymmetric matrix or, equivalently, the antisymme-
trized sum over pairs:

1 1 1
Pf( >=A< ) (13)
Z/—Zk 71323324

For m even, this is an even-denominator quantum Hall
state in the lowest Landau level. Moore and Read (1991)
suggested that its quasiparticle excitations would exhibit
non-Abelian statistics (Moore and Read, 1991). This
wave function is the exact ground state of a three-body
repulsive interaction; as discussed below, it is also an
approximate ground state for more realistic interactions.
This wave function is a representative of a universality
class which has properties that are discussed in detail in
this paper. In particular, the quasiparticle excitations
above this state realize the second scenario discussed in
Egs. (9) and (10) in Sec. II.A.2. There are 2" states
with 2n quasiholes at fixed positions, thereby establish-
ing the degeneracy of multiquasiparticle states which is
required for non-Abelian statistics (Nayak and Wilczek,
1996). Furthermore, these quasihole wave functions can
also be related to conformal field theory (as discussed in
Sec. III.D), from which it can be deduced that the
2"-1_dimensional vector space of states can be under-
stood as the spinor representation of SO(2n); braiding
particles i and j has the action of a 7/2 rotation in the i-j
plane in R?* (Nayak and Wilczek, 1996). In short, these
quasiparticles are essentially Ising anyons (with the dif-
ference an additional Abelian component to their statis-
tics). Although these properties were uncovered using
specific wave functions which are eigenstates of the
three-body interaction for which the Pfaffian wave func-
tion is the exact ground state, they are representative of
an entire universality class. The effective field theory for
this universality class is SU(2) Chern-Simons theory at
level k=2 together with an additional Abelian Chern-
Simons term (Fradkin et al., 1998, 2001). Chern-Simons
theory is the archetypal topological quantum field
theory (TQFT), and is discussed in Sec. III. As de-
scribed, Chern-Simons theory is related to the Jones
polynomial of knot theory (Witten, 1989); consequently,
the current through an interferometer in such a non-
Abelian quantum Hall state gives a direct measure of
the Jones polynomial for the link produced by the qua-
siparticle trajectories (Fradkin et al., 1998)!
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One interesting feature of the Pfaffian wave function
is that it is the quantum Hall analog of a p +ip supercon-
ductor: the antisymmetrized product over pairs is the
real-space form of the BCS wave function (Greiter et al.,
1992). Read and Green (2000) showed that the same to-
pological properties mentioned above are realized by a
(p+ip)-wave superconductor, thereby cementing the
identification between such a paired state and the
Moore-Read state. Ivanov (2001) computed the braiding
matrices by this approach (see also Stern et al., 2004;
Stone and Chung, 2006). Consequently, we are able to
discuss (p +ip)-wave superconductors and superfluids in
parallel with the »=5/2 quantum Hall state, although
the experimental probes are significantly different.

As discussed below, these theoretical developments
garnered greater interest when numerical work (Morf,
1998; Rezayi and Haldane, 2000) showed that the
ground state of systems of up to 18 electrons in the N
=1 Landau level at filling fraction 1/2 is in the univer-
sality class of the Moore-Read state. These results re-
vived the conjecture that the lowest Landau level (N
=0) of both spins is filled and inert, and electrons in the
N=1 Landau level form the analog of the Pfaffian state
(Greiter et al., 1992). Consequently, it is the leading can-
didate for the experimentally observed v=>5/2 state.

Read and Rezayi (1999) constructed a series of non-
Abelian quantum Hall states at filling fraction v=N
+k/(Mk+2) with M odd, which generalize the Moore-
Read state in a way discussed in Sec. III. These states
are referred to as the Read-Rezayi 7, parafermion states
as discussed in Sec. IIL.D. Recently, a quantum Hall
state was observed experimentally with »=12/5 (Xia et
al., 2004). It is suspected (see below) that the v=12/5
state may be (the particle-hole conjugate of) the Zj;
Read-Rezayi state, although it is also possible that 12/5
belongs to the conventional Abelian hierarchy as the
2/5 state does. Such an option is not possible at v=5/2
as a result of the even denominator.

In summary, it is well established that, if the observed
v=>5/2 state is in the same universality class as the
Moore-Read Pfaffian state, then its quasiparticle excita-
tions are non-Abelian anyons. Similarly, if the v=12/5
state is in the universality class of the 7; Read-Rezayi
state, its quasiparticles are non-Abelian anyons. There is
no direct experimental evidence that the v=5/2 state is
in this particular universality class, but there is evidence
from numerics, as discussed below. There is even less
evidence in the case of the »=12/5 state. In Secs. I1.C.3
and II.C.4, we discuss proposed experiments that could
directly verify the non-Abelian character of the v=5/2
state and mention their extension to the v=12/5 case.
Both of these states, as well as others (e.g., Ardonne and
Schoutens, 1999; Simon, Reyazi, Cooper, et al., 2007),
were constructed on the basis of deep connections be-
tween conformal field theory, knot theory, and low-
dimensional topology (Witten, 1989). Using methods
from these different branches of theoretical physics and
mathematics, we explain the structure of the non-
Abelian statistics of the »=5/2 and 12/5 states within

Rev. Mod. Phys., Vol. 80, No. 3, July—September 2008

the context of a large class of non-Abelian topological
states. We show in Sec. III.C that this circle of ideas
enables us to use the theory of knots to understand ex-
periments on non-Abelian anyons.

Below we discuss numerical results for v=5/2,12/5,
and other candidates.

a. 5/2 state

The v=5/2 fractional quantum Hall (FQH) state is a
useful case history for how numerics can elucidate ex-
periments. This incompressible state is easily destroyed
by the application of an in-plane magnetic field (Eisen-
stein et al., 1990). At first it was assumed that this im-
plied that the 5/2 state is spin unpolarized or partially
polarized, since the in-plane magnetic field presumably
couples only to the electron spin. Careful finite-size nu-
merical work changed this perception, leading to our
current belief that the 5/2 FQH state is in the universal-
ity class of the spin-polarized Moore-Read Pfaffian
state.

In rather pivotal work (Morf, 1998), it was shown that
spin-polarized states at v=5/2 have lower energy than
spin-unpolarized states. Furthermore, it was shown that
varying the Hamiltonian slightly caused a phase transi-
tion between a gapped phase that has high overlap with
the Moore-Read wave function and a compressible
phase. The proposal put forth was that the most impor-
tant effect of the in-plane field is not on electron spins.
Instead, it is the slight alteration of the shape of the
electron wave function perpendicular to the sample
which, in turn, slightly alters the effective electron-
electron interaction, pushing the system over a phase
boundary and destroying the gapped state. Further ex-
perimental work showed that the effect of the in-plane
magnetic field is to drive the system across a phase tran-
sition from a gapped quantum Hall phase into an aniso-
tropic compressible phase (Lilly et al., 1999a; Pan, Du, et
al., 1999). Further numerical work (Rezayi and Haldane,
2000) then mapped out a full phase diagram showing the
transition between gapped and compressible phases and
showing that the experimental systems lie exceedingly
close to the phase boundary. The correspondence be-
tween numerics and experiment has been made more
quantitative by comparisons between the energy gap ob-
tained from numerics and the one measured in experi-
ments (Morf et al., 2002; Morf and d’ Ambrumenil, 2003).
This case has been further strengthened by the applica-
tion of the density-matrix renormalization group
(DMRG) method to this problem (Feiguin, Rezayi, et
al., 2008).

One issue worth considering is possible competitors to
the Moore-Read Pfaffian state. Experiments have al-
ready told us that there is a fractional quantum Hall
state at v=5/2. Therefore our job is to determine which
of the possible states is realized there. Serious alterna-
tives to the Moore-Read Pfaffian state fall into two cat-
egories. On the one hand, there is the possibility that the
ground state at v=>5/2 is not fully spin polarized. If it
were completely unpolarized, the so-called (3, 3, 1) state
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(Halperin, 1983; Das Sarma and Pinczuk, 1997) would be
a possibility. However, Morf’s numerics (Morf, 1998) and
a variational Monte Carlo study (Dimov et al., 2008) in-
dicate that an unpolarized state is higher in energy than
a fully polarized state. This can be understood as a con-
sequence of a tendency toward spontaneous ferromag-
netism; however, a partially polarized alternative (which
may be either Abelian or non-Abelian) to the Pfaffian is
not ruled out (Dimov et al., 2008). Second, even if the
ground state at v=5/2 is fully spin polarized, the Pfaffian
is not the only possibility. It was noticed that the Pfaffian
state is not symmetric under a particle-hole transforma-
tion of a single Landau level (which in this case is the
N=1 Landau level, with the N=0 Landau level filled and
assumed inert), even though this is an exact symmetry of
the Hamiltonian in the limit that the energy splitting
between Landau levels is infinity. Therefore there is a
distinct state, the anti-Pfaffian (Lee, Ryu, ef al, 2007,
Levin et al., 2007), which is an equally good state in this
limit. Quasiparticles in this state are also essentially
Ising anyons, but they differ from Pfaffian quasiparticles
by Abelian statistical phases. In experiments, Landau-
level mixing is not small, so one or the other state is
lower in energy. On a finite torus, the symmetric combi-
nation of the Pfaffian and the anti-Pfaffian will be lower
in energy, but as the thermodynamic limit is approached,
the antisymmetric combination will become equal in en-
ergy. This is a possible factor that complicates the ex-
trapolation of numerics to the thermodynamic limit. On
a finite sphere, particle-hole symmetry is not exact; it
relates a system with 2N -3 flux quanta to a system with
2N+1 flux quanta. Thus the anti-Pfaffian would not be
apparent unless one looked at a different value of the
flux. To summarize, the only known alternatives to the
Pfaffian state—partially polarized states and the anti-
Pfaffian—have not really been tested by numerics, ei-
ther because the spin polarization was assumed to be
0% or 100% (Morf, 1998) or because Landau-level mix-
ing was neglected.

With this caveat in mind, it is instructive to compare
the evidence placing the v=5/2 FQH state in the
Moore-Read Pfaffian universality class with the evi-
dence placing the v=1/3 FQH state in the correspond-
ing Laughlin universality class. In the latter case, there
have been several experiments (Goldman and Su, 1995;
De Picciotto et al., 1997; Saminadayar et al., 1997) which
have observed quasiparticles with electrical charge e/3,
in agreement with the prediction of the Laughlin univer-
sality class. In the case of the »=5/2 FQH state, we do
not yet have the corresponding measurements of the
quasiparticle charge, which should be e/4. However, the
observation of charge e/3, while consistent with the
Laughlin universality class, does not uniquely fix the ob-
served state in this class (see, e.g., Wdjs, 2001; Simon,
Rezayi, Cooper, et al., 2007). Thus much of our confi-
dence derives from the (99% or better) overlap between
the ground state obtained from exact diagonalization for
a finite-size 2D system with up to 14 electrons and the
Laughlin wave function. In the case of the v=5/2 FQH
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state, the corresponding overlap (for 18 electrons on the
sphere) between the »=>5/2 ground state and the Moore-
Read Pfaffian state is impressive (~80% ). This can be
improved by modifying the wave function at short dis-
tances without leaving the Pfaffian phase (Moller and
Simon, 2008). However, on the torus, as mentioned
above, the symmetric combination of the Pfaffian and
the anti-Pfaffian is a better candidate wave function in a
finite-size system than the Pfaffian itself (or the anti-
Pfaffian). Indeed, the symmetric combination of the
Pfaffian and the anti-Pfaffian has an overlap of 97% for
14 electrons (Rezayi and Haldane, 2000).

To summarize, the overlap is somewhat smaller in the
5/2 case than in the 1/3 case when particle-hole symme-
try is not accounted for, but only slightly smaller when it
is. This is an indication that Landau-level mixing—which
will favor either the Pfaffian or the anti-Pfaffian—is an
important effect at v=5/2, unlike at v=1/3. Moreover,
Landau-level mixing is likely to be large because the 5/2
FQH state is typically realized at relatively low magnetic
fields, making the Landau level separation energy rela-
tively small.

Given that potentially large effects have been ne-
glected, it is not too surprising that the gap obtained by
extrapolating numerical results for finite-size systems
(Morf et al., 2002; Morf and d’Ambrumenil, 2003) is
larger than the experimentally measured activation gap.
Also, the corresponding excitation gap obtained from
numerics for the v=1/3 state is much larger than the
measured activation gap. The discrepancy between the
theoretical excitation gap and the measured activation
gap is a generic problem of all FQH states, and may be
related to poorly understood disorder effects and
Landau-level mixing.

Finally, it is important to mention that several numeri-
cal works in the literature have raised some questions
about the identification of the observed 5/2 FQH state
with the Moore-Read Pfaffian (Toke and Jain, 2006;
Wojs and Quinn, 2006; Toke et al, 2007). Considering
the absence of a viable alternative (apart from the anti-
Pfaffian and partially polarized states, which were not
considered by these authors), it seems unlikely that
these doubts will continue to persist, as more thorough
numerical work indicates (Moller and Simon, 2008;
Peterson and Das Sarma, 2008).

b. 12/5 state

While our current understanding of the 5/2 state is
good, the situation for the experimentally observed 12/5
state is more murky, although the possibilities are even
more exciting, at least from the perspective of topologi-
cal quantum computation. One (relatively dull) possibil-
ity is that the 12/5 state is essentially the same as the
observed v=2/5 state, which is Abelian. However, Read
and Rezayi proposed in their work on non-Abelian gen-
eralizations of the Moore-Read state (Read and Rezayi,
1999) that the 12/5 state might be (the particle-hole con-
jugate of) their Z; parafermion [or SU(2) level 3] state.
This is an exciting possibility because, unlike the non-
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Abelian Moore-Read state at 5/2, the 7; parafermion
state would have braiding statistics that allow universal
topological quantum computation.

The initial numerics by Read and Rezayi (1999) indi-
cated that the 12/5 state is close to a phase transition
between the Abelian hierarchy state and the non-
Abelian parafermion state. Recent work by the same
authors (Rezayi and Read, 2006) has mapped out a de-
tailed phase diagram showing for what range of param-
eters a system should be in the non-Abelian phase. It
was found that the non-Abelian phase is not “far” from
the results that would be expected from most real ex-
perimental systems. This again suggests that (if the sys-
tem is not already in the non-Abelian phase). we may be
able to engineer slight changes in an experimental
sample that would push the system over the phase
boundary into the non-Abelian phase.

Experimentally, little is known about the 12/5 state.
Indeed, a well-quantized plateau has only ever been
seen in a single published (Xia et al., 2004) experiment.
Furthermore, there is no experimental information
about spin polarization (the non-Abelian phase should
be polarized whereas the Abelian phase could be either
polarized or unpolarized), and it is not at all clear why
the 12/5 state has been seen, but its particle-hole conju-
gate, the 13/5 state, has not (in the limit of infinite Lan-
dau level separation, these two states will be identical in
energy). Nonetheless, despite the substantial uncertain-
ties, there is a great deal of excitement about the possi-
bility that this state will provide a route to topological
quantum computation.

c. Other quantum Hall states

The most strongly observed fractional quantum Hall
states are the composite fermion states v=p/(2p+1), or
are simple generalizations of them. There is little debate
that these states are likely to be Abelian. However,
there are a number of observed exotic states whose ori-
gin is not currently agreed upon. An optimist may look
at any state of unknown origin and suggest that it is a
non-Abelian state. Indeed, non-Abelian proposals have
been made for a variety of states of uncertain origin
including 3/8, 4/11, 8/3, and 7/3 (Scarola et al., 2002;
Wojs et al., 2006; Jolicoeur, 2007; Simon, Rezayi, Cooper,
et al., 2007; Simon et al., 2007a). Of course, other more
conventional Abelian proposals have been made for
each of these states too (Wojs and Quinn, 2002; Chang
and Jain, 2004; Goerbig et al., 2004; Lopez and Fradkin,
2004; Wojs et al., 2004). For each of these states, there is
a great deal of research left to be done, both theoretical
and experimental, before any sort of definitive conclu-
sion is reached.

In this context, it is worthwhile to mention another
class of quantum Hall systems where non-Abelian
anyons could exist, namely, bilayer or multilayer 2D sys-
tems (Greiter et al., 1991; He et al., 1991, 1993; Das
Sarma and Pinczuk, 1997). More work is necessary in
investigating the possibility of non-Abelian multilayer
quantum Hall states.
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3. Interference experiments

While numerics give useful insight about the topologi-
cal nature of observed quantum Hall states, experimen-
tal measurements will ultimately play the decisive role.
So far, little has been directly measured experimentally
about the topological nature of the v=5/2 state, and
even less is known about other putative non-Abelian
quantum Hall states such as v=12/5. In particular, there
is no direct experimental evidence for the non-Abelian
nature of the quasiparticles. The existence of a degener-
ate, or almost degenerate, subspace of ground states
leads to a zero-temperature entropy and heat capacity,
but those are hard to measure experimentally. Further-
more, this degeneracy is just one requirement for non-
Abelian statistics to occur. How then does one demon-
strate experimentally that fractional quantum Hall
states, particularly the »=5/2 state, are indeed non-
Abelian?

The fundamental quasiparticles (i.e., the ones with the
smallest electrical charge) of the Moore-Read Pfaffian
state have charge e/4 (Moore and Read, 1991; Greiter et
al., 1992). The fractional charge does not uniquely iden-
tify the state—the Abelian (3, 3, 1) state has the same
quasiparticle charge—but a different value of the mini-
mal quasiparticle charge at v=5/2 would rule out the
Pfaffian state. Hence the first important measurement is
the quasiparticle charge, which was done more than ten
years ago in the case of the v=1/3 state (Goldman and
Su, 1995; De Picciotto et al., 1997; Saminadayar et al.,
1997).

If the quasiparticle charge is shown to be e/4, then
further experiments which probe the braiding statistics
of the charge e/4 quasiparticles will be necessary to pin
down the topological structure of the state. One way to
do this is to use a mesoscopic interference device. Con-
sider a Fabry-Perot interferometer, as depicted in Fig. 2.
A Hall bar lying parallel to the x axis is put in a field
such that it is at filling fraction v=>5/2. It is perturbed by
two constrictions, as shown in the figure. The two con-
strictions introduce two amplitudes for interedge tunnel-
ing ;5. To lowest order in t; ,, the four-terminal longitu-
dinal conductance of the Hall bar is

Gp o |ty +]6* + 2 Re{t; 1'%} (14)

For an integer Landau filling, the relative phase ¢ may
be varied either by a variation of the magnetic field or
by a variation of the area of the “cell” defined by the
two edges and the two constrictions, since that phase is
270/ P, with ®=BA the flux enclosed in the cell, A the
area of the cell, and ®, the flux quantum. Thus, when
the area of the cell is varied by means of a side gate
(labeled S in the figure), the backscattered current
should oscillate.

For fractional quantum Hall states, the situation is dif-
ferent (de C. Chamon et al., 1997). In an approximation
in which the electronic density is determined by the re-
quirement of charge neutrality, a variation of the cell
area varies the flux it encloses and keeps its bulk Landau
filling unaltered. In contrast, a variation of the magnetic
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field changes the filling fraction in the bulk, and conse-
quently introduces quasiparticles in the bulk. Since the
statistics of the quasiparticles is fractional, they contrib-
ute to the phase ¢. The backscattering probability is
then determined not only by the two constrictions and
the area of the cell they define, but also by the number
of localized quasiparticles that the cell encloses. By vary-
ing the voltage applied to an antidot in the cell (the gray
circle in Fig. 2), we can independently vary the number
of quasiparticles in the cell. Again, however, as the area
of the cell is varied, the backscattered current oscillates.

For non-Abelian quantum Hall states, the situation is
more interesting (Fradkin et al., 1998; Das Sarma et al.,
2005; Bonderson, Kitaev, ef al., 2006; Bonderson, Shten-
gel, et al., 2006; Chung and Stone, 2006; Stern and Hal-
perin, 2006). Consider the case of the Moore-Read
Pfaffian state. For clarity, we assume that there are lo-
calized e/4 quasiparticles only within the cell (either at
the antidot or elsewhere in the cell). If the current in Fig.
2 comes from the left, the portion of the current that is
backreflected from the left constriction does not encircle
any of these quasiparticles, and thus does not interact
with them. The part of the current that is backscattered
from the right constriction, on the other hand, does en-
circle the cell, and therefore applies a unitary transfor-
mation on the subspace of degenerate ground states.
The final state of the ground state subspace that is
coupled to the left backscattered wave |&)) is then differ-
ent from the state coupled to the right partial wave

U| &y). Here U is the unitary transformation that results
from the encircling of the cell by the wave scattered
from the right constriction. The interference term in the
four-terminal longitudinal conductance, the final term in
Eq. (14), is then multiplied by the matrix element

(&|U|&):
G o |uf? + |6 + 2 Re{£ e &)| Ul &)} (15)

In Sec. I1I, we explain how (£|U|&) can be calculated by
several different methods. Here we give a brief descrip-
tion of the result.

For the Moore-Read Pfaffian state, which is believed

to be realized at v=5/2, the expectation value (& | U| &)
depends first and foremost on the parity of the number
of e/4 quasiparticles localized in the cell. When that
number is odd, the resulting expectation value is zero.
When that number is even, the expectation value is non-
zero and may assume one of two possible values that
differ by a minus sign. As a consequence, when the num-
ber of localized quasiparticles is odd, no interference pat-
tern is seen, and the backscattered current does not os-
cillate with small variations of the area of the cell. When
that number is even, the backscattered current oscillates
as a function of the area of the cell.

A way to understand this result is to observe that lo-
calized quasiparticles in the cell can be viewed as being
created in pairs from the vacuum. Suppose that we want
to have N quasiparticles in the cell. If N is odd, then we
can create (N+1)/2 pairs and take one of the resulting
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quasiparticles outside the cell, where it is localized. Fus-
ing all N+1 of these particles gives the trivial particle,
since they were created from the vacuum. Now consider
what happens when a current-carrying quasiparticle tun-
nels at one of the two point contacts. If it tunnels at the
second one, it braids around the N quasiparticles in the
cell [but not the (N+1)th, which is outside the cell]. This
changes the fusion channel of the N+1 localized quasi-
particles. In the language introduced in Sec. II.A.1 each
e/4 quasiparticle is a o particle. An odd number N of
them can only fuse to o; fused now with the (N+1)th,
they can give either 1 or . Current-carrying quasiparti-
cles, when they braid with the N in the cell, toggle the
system between these two possibilities. Since the state of
the localized quasiparticles has been changed, such a
process cannot interfere with a process in which the
current-carrying quasiparticle tunnels at the first junc-
tion and does not encircle any of the localized quasipar-
ticles. Therefore localized quasiparticles “measure”
which trajectory is taken by current-carrying quasiparti-
cles (Overbosch and Bais, 2001; Bonderson et al., 2007).
If N is even, then we can create (N+2)/2 pairs and take
two of the resulting quasiparticles outside of the cell. If
the N quasiparticles in the cell all fuse to the trivial par-
ticle, then this is not necessary; we can just create N/2
pairs. However, if they fuse to a neutral fermion ¢, then
we need a pair outside the cell which also fuses to ¢ so
that the total fuses to 1, as it must for pair creation from
the vacuum. A current-carrying quasiparticle picks up a
phase depending on whether the N quasiparticles in the
cell fuse to 1 or .

The Fabry-Perot interferometer depicted in Fig. 2 al-
lows also for the interference of waves that are backre-
flected several times. For an integer filling factor, in the
limit of strong backscattering at the constrictions, the
sinusoidal dependence of the Hall bar’s conductance on
the area of the cell gives way to a resonancelike depen-
dence: the conductance is zero unless a Coulomb peak
develops. For the v=5/2 state, again, the parity of the
number of localized quasiparticles matters: when it is
odd, the Coulomb blockade peaks are equally spaced;
when it is even, the spacing between the peaks alter-
nates between two values (Stern and Halperin, 2006).

The Moore-Read Pfaffian state, which is possibly re-
alized at v=5/2, is the simplest of the non-Abelian
states. The other states are more complex, but also
richer. The geometry of the Fabry-Perot interferometer
may be analyzed for these states as well. In general, for
all non-Abelian states, the conductance of the Hall bar
depends on the internal state of the quasiparticles local-
ized between constrictions—i.e., the quasiparticle to
which they fuse. However, only for the Moore-Read
Pfaffian state is the effect quite so dramatic. For ex-
ample, for the the 73 parafermion state, which is possibly
realized at v=12/5, when the number of localized qua-
siparticles is larger than 3, the fusion channel of quasi-
particles determines whether the interference is fully vis-
ible or suppressed by a factor of —¢~2 [with ¢ the golden
ratio (\s’§+1)/ 2] (Bonderson, Shtengel, et al, 2006;
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FIG. 3. (Color online) If a third constriction is added between
the other two, the cell is broken into two halves. We suppose
that there is one quasiparticle (or any odd number) in each
half. These two quasiparticles (labeled 1 and 2) form a qubit
which can be read by measuring the conductance of the inter-
ferometer if there is no backscattering at the middle constric-
tion. When a single quasiparticle tunnels from one edge to the
other at the middle constriction, a o, or NOT gate is applied to
the qubit.

Chung and Stone, 2006). The number of quasiparticles,
on the other hand, affects only the phase of the interfer-
ence pattern. Similar to the case of v=5/2, here too the
positions of Coulomb blockade peaks on the two-
parameter plane of area and magnetic field reflect the
non-Abelian nature of quasiparticles (Ilan et al., 2008).

4. A fractional quantum Hall quantum computer

We now describe how the constricted Hall bar may be
utilized as a quantum bit (Das Sarma et al., 2005). To
that end, an even number of e/4 quasiparticles should be
trapped in the cell between constrictions, and a new,
tunable, constriction should be added between the other
two so that the cell is broken into two cells with an odd
number of quasiparticles in each (see Fig. 3). One way to
tune the number of quasiparticles in each half is to have
two antidots in the Hall bar. By tuning the voltage on
the antidots, we can change the number of quasiholes on
each. Assume that we thereby fix the number of quasi-
particles in each half of the cell to be odd. For concrete-
ness, take this odd number to be 1 (i.e., assume that we
are in the idealized situation in which there are no qua-
siparticles in the bulk, and one quasihole on each anti-
dot). These two quasiholes then form a two-level system,
i.e., a qubit. This two-level system can be understood in
several ways, discussed in Sec. III. In brief, the two
states correspond to whether the two o’s fuse to 1 or ¢
or, in the language of chiral p-wave superconductivity,
the presence or absence of a neutral (“Majorana”) fer-
mion; or, equivalently, to the fusion of two quasiparticles
carrying the spin-1/2 representation of an SU(2) gauge
symmetry in the spin-0 or spin-1 channels.

The interference between the ¢; and ¢, processes de-
pends on the state of the two-level system, so the qubit
can be read by a measurement of the four-terminal lon-
gitudinal conductance

G |tn]* + |6o]* £ 2 Re{t; e}, (16)
where the = comes from the dependence of (| U| &) on
the state of the qubit, as discussed in Sec. II1.

The purpose of the middle constriction is to allow us
to manipulate the qubit. The state may be flipped, i.e., a
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o, or NOT gate can be applied, by the passage of a single
quasiparticle from one edge to the other, provided that
its trajectory passes between the two localized quasipar-
ticles. This is a simple example of how braiding causes
nontrivial transformations of multiquasiparticle states of
non-Abelian quasiparticles, discussed in Sec. III. If we
measure the four-terminal longitudinal conductance G,
before and after applying this NOT gate, we observe dif-
ferent values according to Eq. (16).

For this operation to be a NOT gate, it is important
that a single quasiparticle (or any odd number) tunnels
from one edge to the other across the middle constric-
tion. In order to regulate the number of quasiparticles
that pass across the constriction, it may be useful to have
a small antidot in the middle of the constriction with a
large charging energy so that only a single quasiparticle
can pass through at a time. If we do not have good con-
trol over how many quasiparticles tunnel, then it will be
random whether an even or odd number of quasiparti-
cles tunnel across; half of the time, a NOT gate will be
applied and the backscattering probability (hence the
conductance) will change, while the other half of the
time, the backscattering probability is unchanged. If the
constriction is pinched down to such an extreme that the
5/2 state is disrupted between quasiparticles, then when
it is restored there will be an equal probability for the
qubit to be in either state.

This qubit is topologically protected because its state
can be affected only by a charge-e/4 quasiparticle braid-
ing with it. If a charge-e/4 quasiparticle winds around
one of the antidots, it effects a NOT gate on the qubit.
The probability for such an event can be small because
the density of thermally excited charge-e/4 quasiparti-
cles is exponentially suppressed at low temperatures,
ng,~exp[-A/(2T)]. The simplest estimate of the error
rate I' (in units of the gap) is then of activated form:

T'/A ~ (TIA)e™2/CD, (17)

The most favorable experimental situation (Xia et al.,
2004) considered by Das Sarma et al. (2005) has A
~500 mK and 7~5 mK, producing a low error rate
~107'3. This should be taken as an overly optimistic es-
timate. A more definitive answer is more complicated
since there are multiple gaps which can be relevant in a
disordered system. Furthermore, at low temperatures,
we expect quasiparticle transport to be dominated by
variable-range hopping of localized quasiparticles rather
than thermal activation. Indeed, the crossover to this
behavior may already be apparent (Pan, Xia, et al,
1999), in which case the error suppression will be con-
siderably weaker at the lowest temperatures. Although
the error rate, which is determined by the probability for
a quasiparticle to wind around the antidot, is not the
same as the longitudinal resistance, which is the prob-
ability for it to go from one edge of the system to the
other, the two are controlled by similar physical pro-
cesses. A more sophisticated estimate would require a
detailed analysis of the quasiparticle transport proper-
ties that contribute to the error rate. In addition, this
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error estimate assumes that all trapped (unintended)
quasiparticles are kept far from the quasiparticles which
we use for our qubit, so that they cannot exchange to-
pological quantum numbers with our qubit via tunnel-
ing. We comment on the issues involved in more de-
tailed error estimates in Sec. IV.D.

The device envisioned above can be generalized to
one with many antidots and therefore many qubits.
More complicated gates, such as a controlled-NOT
(CNOT) gate, can be applied by braiding quasiparticles. It
is not clear how to braid quasiparticles localized in the
bulk—perhaps by transferring them from one antidot to
another in a kind of “bucket brigade.” This is an impor-
tant problem for any realization of topological quantum
computing. However, as discussed in Sec. IV, even if this
were solved, there would still be the problem that braid-
ing alone is not sufficient for universal quantum compu-
tation in the v=>5/2 state (assuming that it is the Moore-
Read Pfaffian state). One must either use some
unprotected operations (just two, in fact) or else use the
v=12/5, state if it turns out to be the 7; parafermion
non-Abelian state.

5. Physical systems and materials considerations

As seen in the device described in the previous sec-
tion, topological protection in non-Abelian fractional
quantum Hall states hinges on the energy gap (A) sepa-
rating the many-body degenerate ground states from the
low-lying excited states. This excitation gap also leads to
the incompressibility of the quantum Hall state and the
quantization of the Hall resistance. Generally speaking,
the larger the size of this excitation gap compared to the
temperature, the more robust the topological protection,
since thermal excitation of stray quasiparticles, which
varies as exp[—A/(27)], could lead to errors.

It must be emphasized that the relevant 7 here is the
temperature of electrons (or more precisely, quasiparti-
cles) and not that of the GaAs-AlGaAs lattice surround-
ing the 2D electron layer. Although the surrounding
bath temperature could be lowered to 1 mK or below
using adiabatic demagnetization in dilution refrigera-
tors, the 2D electrons themselves thermally decouple
from the bath at low temperatures, and it is difficult to
cool the 2D electrons below 7=20 mK. It will be a great
boost to hopes for topological quantum computation us-
ing non-Abelian fractional quantum Hall states if the
electron temperature can be lowered to 1 mK or even
below, and serious efforts are currently under way in
several laboratories with this goal.

Unfortunately, the excitation gaps for the expected
non-Abelian fractional quantum Hall states are typically
small (compared, for example, with the v=1/3 fractional
quantum Hall state). The early measured gap for the 5/2
state was around A~25 mK (Willett et al., 1987), but
steady improvement in materials quality, as measured by
the sample mobility, has considerably enhanced this gap.
In the highest-mobility samples currently available, A
=~600 mK (Choi et al., 2008). Indeed, there appears to be
a close connection between the excitation gap A and the

Rev. Mod. Phys., Vol. 80, No. 3, July—September 2008

mobility (or the sample quality). Although the details of
this connection are not well understood, it is empirically
well established that enhancing the 2D mobility invari-
ably leads to larger measured excitation gaps. In particu-
lar, an empirical relation A=Ay—I", where A is the mea-
sured activation gap and A, is the ideal excitation gap
with I' the level broadening arising from impurity and
disorder scattering, has often been discussed (see, e.g.,
Du et al., 1993). Setting the mobility u=e7/m, with 7 the
zero-field Drude scattering time, we can write (an ap-
proximation of) the level broadening as I'=£A/(27), indi-
cating I'~ ! in this simple picture, and therefore in-
creasing the mobility should steadily enhance the
operational excitation gap, as is found experimentally. It
has been pointed out (Morf et al., 2002) that, if I is re-
duced, a FQH gap of 2-3 K may be achievable in the
5/2 FQH state. Much less is currently known about the
12/5 state, but recent numerics (Rezayi and Read, 2006)
suggest that the maximal gap in typical samples will be
quite a bit lower than for 5/2.

It is also possible to consider designing samples that
would inherently have particularly large gaps. First, the
interaction energy (which sets the overall scale of the
gap) is roughly of the 1/r Coulomb form, so it scales as
the inverse of the interparticle spacing. Doubling the
density should therefore increase the gaps by roughly
40%. Although there are efforts under way to increase
the density of samples (Willett et al., 2007), there are
practical limitations to how high a density one can ob-
tain since, if one tries to overfill a quantum well with
electrons, the electrons will no longer remain strictly two
dimensional (i.e., they will start filling higher subbands,
or they will not remain in the well at all). Second, as
discussed in Sec. 11.C.2, since the non-Abelian states ap-
pear generally to be sensitive to the precise parameters
of the Hamiltonian, another possible route to increased
excitation gap would be to design the precise form of the
interelectron interaction [which can be modified by well
width, screening layers, and particularly spin-orbit cou-
pling (Manfra et al., 2007)] so that the Hamiltonian is at
a point in the phase diagram with maximal gap. With all
approaches for redesigning samples, however, it is cru-
cial to keep the disorder level low, which is a difficult
challenge.

Note that a large excitation gap (and correspondingly
low temperature) suppresses thermally excited quasipar-
ticles but does not preclude stray localized quasiparticles
which could be present even at 7=0. As long as their
positions are known and fixed, and as long as they are
few enough in number to be sufficiently well separated,
these quasiparticles would not present a problem, as one
could avoid moving other quasiparticles near their posi-
tions, and one could then tailor algorithms to account
for their presence. If the density of stray localized qua-
siparticles is sufficiently high, however, this would no
longer be possible. Fortunately, these stray particles can
be minimized by one of the methods discussed above to
keep the energy gap large—by improving the mobility of
the 2D electron sample on which the measurements (i.e.,
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the computation operations) are carried out. Improve-
ment in the mobility leads to both the enhancement of
the excitation gap and the suppression of unwanted qua-
siparticle localization by disorder.

We emphasize, however, the extremely high quality of
the current samples. Current “good” sample mobilities
are in the range (10-30)x10°cm?/Vs. To give the
reader an idea of how impressive this is, we note that
under such conditions, at low temperatures, the mean
free path for an electron may be a macroscopic length of
0.1 mm or more. (Compare this to, say, copper at room
temperature, which has a mean free path of tens of na-
nometers or less.)

Nonetheless, further technique and design improve-
ment fit molecular-beam epitaxy (MBE) may be needed
to push low-temperature 2D electron mobilities to 100
X 10° cm?/V s or above for topological quantum compu-
tation to be feasible. At lower temperatures, T
<100 mK, phonon scattering is strongly suppressed
(Stormer et al., 1990; Kawamura and Das Sarma, 1992),
and therefore there is essentially no intrinsic limit to the
2D electron mobility, since extrinsic scattering associ-
ated with impurities and disorder can, in principle, be
eliminated through materials improvement. In fact,
steady materials improvement in modulation-doped 2D
GaAs-AlGaAs heterostructures grown by the MBE
technique has enhanced the 2D electron mobility from
10* cm?/V sec in the early 1980s to 30 X 10° cm?/V sec in
2004, a three orders of magnitude improvement in ma-
terials quality in roughly 20 years. Indeed, the vitality of
the entire field of quantum Hall physics is a result of
these amazing advances. Another factor of 2-3 improve-
ment in the mobility seems possible (Pfeiffer, 2007), and
may be needed for the successful experimental observa-
tion of non-Abelian anyonic statistics and topological
quantum computation.

D. Other proposed non-Abelian systems

This review focuses on the non-Abelian anyonic prop-
erties of certain fractional quantum Hall states (e.g., v
=5/2,12/5, etc. states) in two-dimensional semiconduc-
tor structures, mainly because theoretical and experi-
mental study of such (possibly) non-Abelian fractional
quantized Hall states is a mature subject, dating back to
1986, with many concrete results and ideas, including a
proposal (Das Sarma et al., 2005) for the construction of
qubits and a NOT gate for topological quantum compu-
tation (described in Sec. I1.C.4 and in Sec. IV). But there
are several other systems that are potential candidates
for topological quantum computation, and we briefly
discuss these systems in this section. Indeed, the earliest
proposals for fault-tolerant quantum computation with
anyons were based on spin systems, not the quantum
Hall effect (Kitaev, 2003).

First, we emphasize that the most crucial necessary
condition for carrying out topological quantum compu-
tation is the existence of appropriate “topological mat-
ter,” i.e., a physical system in a topological phase. Such a
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phase of matter has suitable ground state properties and
quasiparticle excitations manifesting non-Abelian statis-
tics. Unfortunately, the necessary and sufficient condi-
tions for the existence of topological ground states are
not known even in theoretical models. We note that the
topological symmetry of the ground state is an emergent
symmetry at low energy, which is not present in the mi-
croscopic Hamiltonian of the system. Consequently,
given a Hamiltonian, it is difficult to determine if its
ground state is in a topological phase. It is certainly no
easier than showing that any other low-energy emergent
phenomenon occurs in a particular model. Except for
exactly solvable models (see, e.g., Levin and Wen 2005b;
Kitaev, 2006), described in Sec. I11.G, topological ground
states are inferred on the basis of approximations and
guesswork. On the other hand, if topological states exist
at all, they will be robust (i.e., their topological nature
should be fairly insensitive to local perturbations, e.g.,
electron-phonon interaction or charge fluctuations be-
tween traps). For this reason, we believe that, if it can be
shown that some model Hamiltonian has a topological
ground state, then a real material which is described ap-
proximately by that model is likely to have a topological
ground state as well.

One theoretical model that is known to have a non-
Abelian topological ground state is a (p +ip)-wave super-
conductor (i.e., a superconductor where the order pa-
rameter is of p,+ip, symmetry). As described in Sec.
II1.B, vortices in a superconductor of p+ip pairing sym-
metry exhibit non-Abelian braiding statistics. This is a
reincarnation of the physics of the Pfaffian state (be-
lieved to be realized at the v=5/2 quantum Hall pla-
teau) in zero magnetic field. Chiral p-wave superconduc-
tivity or superfluidity is currently the most transparent
route to non-Abelian anyons. As discussed below, there
are multiple physical systems that may host such a rein-
carnation. The Kitaev honeycomb model (see also Sec.
II1.G) (Kitaev, 2006) is a different model which gives rise
to the same physics. In it, spins interact anisotropically
such that their Hilbert space can be mapped onto that of
a system of Majorana fermions. In various parameter
ranges, the ground state is in either an Abelian topologi-
cal phase or a non-Abelian one in the same universality
class as a p+ip superconductor.

Chiral p-wave superconductors, like quantum Hall
states, break parity and time-reversal symmetries, al-
though they do so spontaneously, rather than as a result
of a large magnetic field. However, it is also possible to
have a topological phase that does not break these sym-
metries. Soluble theoretical models of spins on a lattice
have been constructed that have P, T-invariant topologi-
cal ground states. A simple model of this type with an
Abelian topological ground state, called the “toric
code,” was proposed by Kitaev (2003). Even though it is
not sufficient for topological quantum computation be-
cause it is Abelian, it is instructive to consider this model
because non-Abelian models can be viewed as more
complex versions of it. It describes s=1/2 spins on a
lattice interacting through the following Hamiltonian
(Kitaev, 2003):
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H=-1,2 A~ 2 F,. (18)
i p

This model can be defined on an arbitrary lattice. The
spins are assumed to be on the links of the lattice: A;
=Il,.n07, where N(i) is the set of spins on links «
which touch the vertex i, and F,=1l,.,0}, where p is a
plaquette and « € p are the spins on the links comprising
the plaquette. This model is exactly soluble because the
Ajs and F,’s all commute with each other. For any
J1,J,>0, the ground state |0) is given by A,|0)=F,|0)
=|0) for all i, p. Quasiparticle excitations are sites A;[0)
=—|0) or plaquettes p at which F,[0)=—[0). A pair of
excited sites can be created at i and i’ by acting on the
ground state with I, 0oy, where the product is over the
links in a chain C on the lattice connecting i and i’. Simi-
larly, a pair of excited plaquettes can be created by act-
ing on the ground state with connected II, ;o7 where

the product is over the links crossed by a chain C on the
dual lattice connecting the centers of plaquettes p and
p'. Both types of excitation are bosons, but when an
excited site is taken around an excited plaquette, the
wave function acquires a minus sign. Thus these two
types of bosons are relative semions.

The toric code model is not realistic, but it is closely
related to more realistic models, such as the quantum
dimer model (Klein, 1982; Rokhsar and Kivelson, 1988;
Chayes et al., 1989; Moessner and Sondhi, 2001; Nayak
and Shtengel, 2001). The degrees of freedom in this
model are dimers on the links of a lattice, which repre-
sent a spin singlet bond between the two spins on either
end of a link. The quantum dimer model was proposed
as an effective model for frustrated antiferromagnets, in
which the spins do not order, but instead form singlet
bonds that resonate among the links of the lattice—the
resonating valence bond (RVB) state (Anderson, 1973;
1987; Baskaran et al., 1987; Kivelson et al., 1987) which,
in modern language, we would describe as a specific re-
laization of a simple Abelian topological state (Balents
et al., 1999, 2000; Senthil and Fisher, 2000, 2001a; Moess-
ner and Sondhi, 2001). While the quantum dimer model
on the square lattice does not have a topological phase
for any range of parameter values (the RVB state is the
ground state only at a critical point), the model on a
triangular lattice does have a topological phase (Moess-
ner and Sondhi, 2001).

Levin and Wen (2005a, 2005b) constructed a model
which is a non-Abelian generalization of Kitaev’s toric
code model. It is an exactly soluble model of spins on
the links (two on each link) of the honeycomb lattice
with three-spin interactions at each vertex and twelve-
spin interactions around each plaquette, described in
Sec. III.G. This model realizes a non-Abelian phase that
supports Fibonacci anyons, which permits universal to-
pological quantum computation (and generalizes to
other non-Abelian topological phases). Other models
have been constructed (Fendley and Fradkin, 2005;
Freedman et al., 2005a), which are not exactly soluble
but have only two-body interactions and can be argued
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to support topological phases in some parameter regime.
However, there is still a considerable gap between mod-
els that are soluble or quasisoluble and models that
might be considered realistic for some material.

Models such as the Kitaev and Levin-Wen models are
deep within topological phases; there are no other com-
peting states nearby in their phase diagram. However,
simple models such as the Heisenberg model or exten-
sions of the Hubbard model are not of this form. The
implication is that such models are not deep within a
topological phase, and topological phases must compete
with other phases, such as broken symmetry phases. In
the quantum dimer model (Rokhsar and Kivelson, 1988;
Moessner and Sondhi, 2001), for instance, an Abelian
topological phase must compete with various crystalline
phases which occupy most of the phase diagram. This is
presumably one obstacle to finding topological phases in
more realistic models, i.e., models that give an approxi-
mate description of some concrete physical system.

There are several physical systems—apart from frac-
tional quantum Hall states—that might be promising
hunting grounds for topological phases, including transi-
tion metal oxides and ultracold atoms in optical traps.
The transition metal oxides have an advantage: we al-
ready know that they give rise to collective phenomena
such as high-7, superconductivity, colossal magnetore-
sistance, stripes, and thermoelectricity. Unfortunately,
their physics is difficult to unravel both theoretically and
experimentally for this very reason: there are often
many different competing phenomena in these materi-
als. This is reflected in the models that describe transi-
tion metal oxides. They tend to have many closely com-
peting phases, so that different approximate treatments
find rather different phase diagrams. There is a second
advantage to the transition metal oxides, namely, that
many experimental techniques have been developed to
study them, including transport, thermodynamic mea-
surements, photoemission, neutron scattering, X-ray
scattering, and NMR. Unfortunately, however, these
methods are tailored for detecting broken-symmetry
states or for giving a detailed understanding of metallic
behavior, not for uncovering a topological phase. Never-
theless, this is such a rich family of materials that it
would be surprising if there were not a topological phase
hiding there (whether we find it is another matter).
There is one particular material in this family, Sr,RuO,,
for which there is evidence that it is a chiral p-wave
superconductor at low temperatures, 7.~1.5 K (Kid-
wingira et al., 2006; Xia et al., 2006). Half quantum vor-
tices in a thin film of such a superconductor would ex-
hibit non-Abelian braiding statistics (since Sr,RuQ, is
not spin polarized, one must use half quantum vortices,
not ordinary vortices). However, half quantum vortices
are usually not the lowest-energy vortices in a chiral
p-wave superconductor, and a direct experimental obser-
vation of the half vortices themselves would be a mile-
stone on the way to topological quantum computation
(Das Sarma Nayak, et al., 2006).

The current status of research is as follows. Three-
dimensional single crystals and thin films of Sr,RuQOy4
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have been fabricated and studied. The superconductivity
of these samples has been studied by many experimental
probes, with the goal of identifying the symmetry of the
Cooper pair. There are many indications that support
the identification of Sr,RuOy4 as a p,+ip, supercon-
ductor. First, experiments that probe the spins of the
Cooper pair indicate triplet pairing (Mackenzie and
Maeno, 2003). Such experiments probe the spin suscep-
tibility through measurements of the NMR Knight shift
and of neutron scattering. For singlet spin pairing, the
susceptibility vanishes at zero temperature, since the
spins retain a zero polarization state in order to form
Cooper pairs. In contrast, the susceptibility remains fi-
nite for triplet pairing, and this is indeed the observed
behavior. Second, several experiments that probe time-
reversal symmetry have indicated that it is broken, as
expected from a p+ip superconductor. These experi-
ments include muon spin relaxation (Mackenzie and
Maeno, 2003) and the polar Kerr effect (Xia et al., 2006).
In contrast, magnetic imaging experiments designed to
probe the edge currents that are associated with a super-
conductor that breaks time reversal symmetry did not
find the expected signal (Kirtley et al., 2007). The ab-
sence of this signal may be attributed to the existence of
domains of p+ip interleaved with those of p—ip. In
summary, Sr,RuQy is likely to be a three dimensional
p+ip superconductor, which may open the way for real-
ization of a two-dimensional superconductor that breaks
time-reversal symmetry.

The other promising direction to look for topological
phases, ultracold atoms in traps, also has several advan-
tages. The Hamiltonian can often be tuned by, for in-
stance, tuning the lasers which define an optical lattice
or by tuning through a Feshbach resonance. For in-
stance, there is a specific scheme for realizing the Hub-
bard model (Jaksch and Zoller, 2005) in this way. At
present there are relatively few experimental probes of
these systems, as compared with transition metal oxides
or even semiconductor devices. However, some avail-
able probes give information that cannot be measured in
electronic systems. Furthermore, new probes for cold
atom systems are being developed at a remarkable rate.

There are two different schemes for generating topo-
logical phases in ultracold atomic gases that seem prom-
ising at the current time. The first is the approach of
using fast-rotating dilute Bose gases (Wilkin et al., 1998)
to make quantum Hall systems of bosons (Cooper et al.,
2001). Here the rotation plays the role of an effective
magnetic field, and the filling fraction is given by the
ratio of the number of bosons to the number of vortices
caused by rotation. Experimental techniques (Abo-
Shaecer et al., 2001; Bretin et al., 2004; Schweikhard et al.,
2004) have been developed that can give large rotation
rates, and filling fractions can be generated which are as
low as v=500 (Schweikhard et al., 2004). While this is
sufficiently low that all of the bosons are in a single Lan-
dau level (since there is no Pauli exclusion, »>1 can still
be a lowest-Landau-level state), it is still predicted to be
several orders of magnitude too high for interesting to-
pological states to be realized. Theoretically, the inter-
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esting topological states occur for »<<10 (Cooper et al.,
2001). In particular, evidence is strong that v=1, should
it be achieved, would be the bosonic analog of the
Moore-Read state, and slightly less strong evidence sug-
gests that v=3/2 and 2 would be the Read-Rezayi states,
if the interboson interactions were appropriately ad-
justed (Rezayi et al., 2005; Cooper and Rezayi, 2007). In
order to access this regime, either rotation rates will
need to be increased substantially or densities will have
to be decreased substantially. While the latter sounds
easier, it then results in all interaction scales being cor-
respondingly lower, and hence implies that the tempera-
ture would have to be lower also, which again becomes a
challenge. Several other works have proposed using
atomic lattice systems where manipulation of param-
eters of the Hamiltonian induces effective magnetic
fields and should also result in quantum Hall physics
(Mueller, 2004; Popp et al., 2004; Sgrensen et al., 2005).

The second route to generating topological phases in
cold atoms is the idea of using a gas of ultracold fermi-
ons with a p-wave Feschbach resonance, which could
form a spin-polarized chiral p-wave superfluid (Gurarie
et al., 2005). Preliminary studies of such p-wave systems
have been made experimentally (Gaebler et al., 2007)
and, unfortunately, it appears that the decay time of the
Feshbach bound states may be so short that thermaliza-
tion is impossible. Indeed, recent theoretical work
(Levinsen et al., 2007) suggests that this may be a generic
problem and additional tricks may be necessary if a
p-wave superfluid is to be produced in this way.

We note that both the v=1 rotating boson system and
the chiral p-wave superfluid would be quite closely re-
lated to the putative non-Abelian quantum Hall state at
v=5/2 (as is Sr,RuO,). However, there is an important
difference between a p-wave superfluid of cold fermions
and the v=5/2 state. Two-dimensional superconductors,
as well as superfluids in any dimension, have a gapless
Goldstone mode. Therefore there is the danger that the
motion of vortices may cause the excitation of low-
energy modes. Superfluids of cold atoms may, however,
be good test grounds for the detection of localized Ma-
jorana modes associated with localized vortices, as those
are expected to have a clear signature in the absorption
spectrum of rf radiation (Tewari, Das Sarma, Nayak, et
al., 2007), in the form of a discrete absorption peak
whose density and weight are determined by the density
of vortices (Grosfeld et al., 2007). One can also realize,
using suitable laser configurations, Kitaev’s honeycomb
lattice model [Eq. (58)] with cold atoms on an optical
lattice (Duan et al., 2003). Zhang et al. (2007) showed
how to braid anyons in such a model.

A major difficulty in finding a topological phase in
either a transition metal oxide or an ultracold atomic
system is that topological phases are hard to detect di-
rectly. If the phase breaks parity and time-reversal sym-
metries, either spontaneously or as a result of an exter-
nal magnetic field, then there is usually an experimental
handle through transport, as in the fractional quantum
Hall states or chiral p-wave superconductors. If the state
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does not break parity and time-reversal symmetry, how-
ever, there is no “smoking gun” experiment, short of
creating quasiparticles, braiding them, and measuring
the outcome.

Any detailed discussion of the physics of these “alter-
native” topological systems is beyond the scope of the
current review. We refer the readers to the existing lit-
erature on these systems for details. In Sec. III (espe-
cially Sec. III.G), however, we discuss soluble models
that support topological phases because many of their
mathematical features elucidate the underlying structure
of topological phases.

III. TOPOLOGICAL PHASES OF MATTER AND NON-
ABELIAN ANYONS

Topological quantum computation is predicated on
the existence in nature of topological phases of matter.
In this section, we discuss the physics of topological
phases from several different perspectives, using a vari-
ety of theoretical tools. The reader interested primarily
in the application of topological phases to quantum
computation can skim this section and still understand
Sec. IV. However, a reader with a background in con-
densed matter physics and quantum field theory may
find it enlightening to read a more detailed account of
the theory of topological phases and the emergence of
anyons from such phases, with explicit derivations of
some of the results mentioned in Sec. II and used in Sec.
IV. These readers may find topological phases interest-
ing in and of themselves, apart from possible applica-
tions.

Topological phases, the states of matter which support
anyons, occur in many-particle physical systems. There-
fore we use field theory techniques to study these states.
A canonical example of a field theory for a topological
phase is Chern-Simons theory. We use this theory to il-
lustrate the general points we make about topological
phases. In Sec. V, we make a few comments about the
problem of classifying topological phases, and how this
example, Chern-Simons theory, fits in the general classi-
fication. In Sec. III.A, we give a more precise definition
of a topological phase and connect this definition with
the existence of anyons. We also introduce Chern-
Simons theory, discussed throughout Sec. III as an ex-
ample of the general structure discussed in Sec. III.A. In
Sec. II1.B, we discuss a topological phase that is superfi-
cially rather different but, in fact, will prove to be a
special case of Chern-Simons theory. This phase can be
analyzed using the formalism of BCS theory. In Sec.
II1.C, we further analyze Chern-Simons theory, giving an
account of its topological properties, especially the
braiding of anyons. We describe Witten’s work (Witten,
1989) connecting Chern-Simons theory with the knot
and link invariants of Jones and Kauffman (Jones, 1985;
Kauffman, 1987). We show how the latter can be used to
derive the properties of anyons in these topological
phases. In Sec. II1.D, we describe a complementary ap-
proach by which Chern-Simons theory can be under-
stood: through its connection to conformal field theory.
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We explain how this approach can be fruitful in connec-
tion with fractional quantum Hall states. In Sec. IILE,
we discuss the gapless excitations which must be present
at the edge of any chiral topological phase. Their physics
is intimately connected with the topological properties
of the bulk and, at the same time, is directly probed by
transport experiments in quantum Hall devices. In Sec.
ITLLF, we apply knowledge gained about the properties
of Chern-Simons theory to the interferometry experi-
ments that we discussed in Sec. II.C.3. Finally, in Sec.
IT1.G we discuss a related but different class of topologi-
cal phases which can arise in lattice models and may be
relevant to transition metal oxides or “artificial” solids
such as ultracold atoms in optical lattices.

Interesting work which is only partially reviewed here
may be found in Jackiw and Rebbi (1976); Schwarz
(1978); Fradkin and Kadanoff (1980); Su et al. (1980);
Goldstone and Wilczek (1981); Jackiw and Schrieffer
(1981); Laughlin (1981, 1988a, 1988b); Su and Schrieffer
(1981); Tsui et al. (1982); Wilczek (1982b); Tao and Wu
(1984); Fateev and Zamolodchikov (1985); Niu et al.
(1985); Cardy (1986); Zhang and Das Sarma (1986); Boe-
binger et al. (1987); Girvin and MacDonald (1987);
Kalmeyer and Laughlin (1987); Frohlich and Marchetti
(1988,1989, 1991); Sutherland (1988); Willett et al. (1988);
Aneziris et al. (1989); Bonesteel (1989, 2000); Chen et al.
(1989); Fetter et al. (1989); Kivelson (1989); Read (1989,
2003); Read and Chakraborty (1989); Alford et al
(1990); Dijkgraaaf and Witten (1990); Kivelson and
Rokhsar (1990); Imbo and March-Russell (1990); Imbo
et al. (1990); Rokhsar (1990); Verlinde (1990); Wen (1990,
1991a); Wen and Niu (1990); Balatsky and Fradkin
(1991); Lo and Preskill (1993); Kauffman and Lins
(1994); Lee and Oh (1994); Mudry and Fradkin (1994a,
1994b); Blanchet et al. (1995); Morf and d’Ambrumenil
(1995); Bonesteel et al. (1996); Koulakov et al. (1996);
Milovanovi¢ and Read (1996); Steane (1996b, 1996c);
Henley (1997); Ortalano et al. (1997); Balents et al. (1998,
2002); Bouwknegt and Schoutens (1999); Cappelli et al.
(1999); Kitaev et al. (1999); Lilly et al. (1999b); Misguich
et al. (1999); Moessner et al. (1999); Pan et al. (1999);
Jacob and Mathieu (2000, 2002); Ardonne et al. (2001);
Freedman (2001, 2003); Harrow (2001); Senthil and
Fisher (2001b); Ardonne (2002); Eisenstein et al. (2002);
Fendley et al. (2002, 2007b); loffe et al. (2002); Motru-
nich and Senthil (2002); Senthil and Motrunich (2002);
Freedman, Kitaev, et al. (2003); Freedman, Nayak, et al.
(2003); Mochon (2003, 2004); Motrunich (2003); Dougot
et al. (2004, 2005); Stern et al. (2004); Freedman et al.
(2005b); Marzuoli and Rasetti (2005); Bergholtz et al.
(2006); Feldman and Kitaev (2006); Georgiev and Geller
(2006); Hou and Chamon (2006); Pachos (2006, 2007);
Seidel and Lee (2006); Semenoff and Sodano (2006,
2007); Wan et al. (2006, 2007); Ardonne and Schoutens
(2007); Brennen and Pachos (2007); Chen and Hu (2007);
Chung and Stone (2007); Dyakonov (2007); Lee et al.
(2007); Miller et al. (2007); Oshikawa et al. (2007);
Pfeiffer (2007); Simon et al. (2007b); Tewari et al. (2007,
2008); Bishara and Nayak (2008); Bishara et al. (2008);
Dean et al. (2008); Fiete et al. (2008); Zhang et al. (2008).
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A. Topological phases of matter

In Sec. IT of this paper, we used the term topological
phase as being essentially synonymous with any system
whose quasiparticle excitations are anyons. However, a
precise definition is the following. A system is in a topo-
logical phase if, at low temperatures and energies and
long wavelengths, all observable properties (e.g., corre-
lation functions) are invariant under smooth deforma-
tions (diffeomorphisms) of the space-time manifold in
which the system lives. Equivalently, all observable
properties are independent of the choice of space-time
coordinates, which need not be inertial or rectilinear.
(This is the “passive” sense of a diffeomorphism, while
the first statement uses the active sense of a transforma-
tion.) By “at low temperatures and energies and long
wavelengths,” we mean that diffeomorphism invariance
is violated only by terms that vanish as
~max(e 27 e /€ for some nonzero energy gap A and
finite correlation length & Thus topological phases have,
in general, an energy gap separating the ground state(s)
from the lowest excited states. Note that an excitation
gap, while necessary, is not sufficient to ensure that a
system is in a topological phase.

The invariance of all correlation functions under dif-
feomorphisms means that the only local operator that
has nonvanishing correlation functions is the identity.
For instance, under an arbitrary change of space-time
coordinates x—x'=f(x), the correlations of a scalar
operator ¢(x) must satisfy (0;]¢(x1)B(xz)- - p(x,)[0;)
=(0;|p(x])p(x3) -~ p(x,)|0;),  which  implies  that
(0} p(x1) (x) -~ b(x,)[0)=0 unless ¢(x)=c for some
constant c. Here |0;) and [0;) are ground states of the
system (which may or may not be different). This prop-
erty is important because any local perturbation, such as
the environment, couples to a local operator. Hence
these local perturbations are proportional to the iden-
tity. Consequently, they cannot have nontrivial matrix
elements between different ground states. The only way
in which they can affect the system is by exciting the
system to high energies, at which diffeomorphism invari-
ance is violated. At low temperatures, the probability
for this is exponentially suppressed.

The preceding definition of a topological phase may
be stated more compactly by simply saying that a system
is in a topological phase if its low energy effective field
theory is a topological quantum field theory (TQFT),
i.e., a field theory whose correlation functions are invari-
ant under diffeomorphisms. Remarkably, topological in-
variance does not imply trivial low-energy physics.

1. Chern-Simons theory

Consider the simplest example of a TQFT, Abelian
Chern-Simons theory, which is relevant to the Laughlin
states at filling fractions v=1/k, with k an odd integer.
Although there are many ways to understand the
Laughlin states, it is useful for us to take the viewpoint
of a low-energy effective theory. Since quantum Hall
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systems are gapped, we can describe the system by a
field theory with few degrees of freedom. To this end, we
consider the action

k
SCS:E f d*r dte"**a,d,a,, (19)

where k is an integer and e is the antisymmetric tensor.
Here a is a U(1) gauge field and the indices u, v, and p
take the values O (for the time direction), 1 and 2 (space
directions). This action represents the low-energy de-
grees of freedom of the system, which are purely topo-
logical.

The Chern-Simons gauge field a in Eq. (19) is an
emergent degree of freedom which encodes the low-
energy physics of a quantum Hall system. Although, in
this particular case, it is related to the electronic charge
density, we will also consider systems in which emergent
Chern-Simons gauge fields cannot be related in a simple
way to the underlying electronic degrees of freedom.

In the presence of an external electromagnetic field
and quasiparticles, the action takes the form

1
S=S8cs— f d*r dt(;T €A ., + jf}’@) , (20)

where ji is the quasiparticle current, jj’=p9 is the qua-
siparticle density, j9°=(j{?,;3?) is the quasiparticle spatial
current, and A , is the external electromagnetic field. We
assume that quasiparticles are not dynamical, but in-
stead move along some fixed classically prescribed tra-
jectories which determine /. The electrical current is

ju=LIA = (112m) "3, (21)

Since the action is quadratic, it is completely solvable,
and one can integrate out the field a, to obtain the re-
sponse of the current to the external electromagnetic
field. The result of such a calculation is the quantized
Hall conductivity o,,=0 and o, =(1/k)e*/h.

The equation of motion obtained by varying a, is the
Chern-Simons constraint:

(k12m)V X a=jP+ (1/2m)B. (22)

According to this equation, each quasiparticle has
Chern-Simons flux 27/k attached to it (the magnetic
field is assumed fixed). Consequently, it has electrical
charge 1/k, according to Eq. (21). As a result of the
Chern-Simons flux, another quasiparticle moving in this
Chern-Simons field picks up an Aharonov-Bohm phase.
The action associated with taking one quasiparticle
around another is, according to Eq. (20), of the form

1
Ederdtj-a:kadr-a, (23)
c

where Q is the charge of the quasiparticle and the final
integral is the Chern-Simons flux enclosed in the path.
[The factor of 1/2 on the left-hand side is due to the
action of the Chern-Simons term itself which, according
to the constraint Eq. (22), is —1/2 times the Aharonov-
Bohm phase. This is canceled by a factor of 2 coming
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from the fact that each particle sees the other’s flux.]
Thus the contribution to a path integral ¢5cs gives an
Aharonov-Bohm phase associated with moving a charge
around the Chern-Simons flux attached to the other
charges. The phases generated in this way give the qua-
siparticles of this Chern-Simons theory #=m/k Abelian
braiding statistics.>

Therefore an Abelian Chern-Simons term implements
Abelian anyonic statistics. In fact, it does nothing else.
An Abelian gauge field in 2+1 dimensions has only one
transverse component; the other two components can be
eliminated by fixing the gauge. This degree of freedom is
fixed by the Chern-Simons constraint (22). Therefore a
Chern-Simons gauge field has no local degrees of free-
dom and no dynamics.

We now turn to non-Abelian Chern-Simons theory.
This TQFT describes non-Abelian anyons. It is analo-
gous to the Abelian Chern-Simons described above, but
different methods are needed for its solution, as de-
scribed in this section. The action can be written on an
arbitrary manifold M in the form

k 2
Scslal=—1 trlanda+-anana
k 17 2 b
= . et P(giava% + gfqbgaia;}ai). (24)

In this expression, the gauge field takes values in the Lie
algebra of the group G. f,. are the structure constants
of the Lie algebra which are ¢, for the case of SU(2).
For the case of SU(2), we thus have a gauge field a‘-’ﬂ,
where the underlined indices run from 1 to 3. A matter
field transforming in the spin-j representation of the
SU(2) gauge group will couple to the combination ajx,,
where x, are the three generator matrices of su(2) in the
spin-j representation. For gauge group G and coupling
constant k (called the “level”), we denote such a theory
by Gy. In this paper, we are primarily concerned with
SU(2), Chern-Simons theory.

To see that Chern-Simons theory is a TQFT, note that
the Chern-Simons action (24) is invariant under all dif-
feomorphisms of M to itself, f: M — M. The differential
form notation in Eq. (24) makes this manifest, but it can
be checked in coordinate form for x*— f*“(x). Diffeo-
morphism invariance stems from the absence of the met-
ric tensor in the Chern-Simons action. Written out in
component form, as in Eq. (24), indices are, instead, con-
tracted with e*.

>The Chern-Simons effective action for a hierarchical state is
equivalent to the action for the composite fermion state at the
same filling fraction (Blok and Wen, 1990; Read, 1990; Wen
and Zee, 1992). It is a simple generalization of Eq. (19) which
contains several internal gauge fields ”Z (with n=1,2,...), cor-
responding to in essence the action for the different species of
particles (either the different levels of the hierarchy or the
different composite fermion Landau levels).
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Before analyzing the physics of this action (24), we
make two observations. First, as a result of the presence
of e, the action changes sign under parity or time-
reversal transformations. In this paper, we concentrate
on topological phases that are chiral, i.e., that break par-
ity and time-reversal symmetries. These are phases that
can appear in the fractional quantum Hall effect, where
the large magnetic field breaks P and T symmetrias.
However, we also discuss nonchiral topological phases in
Sec. III.G, especially in connection which topological
phases emerging from lattice models.

Second, the Chern-Simons action is not quite fully
invariant under gauge transformations a,— ga #g’l
+ gaﬂg‘l, where g: M — G is any function on the mani-
fold taking values in the group G. On a closed manifold,
it is invariant only under “small” gauge tranformations.
Suppose that the manifold M is the three-sphere S°.
Then, gauge transformations are maps S°— G, which
can be classified topologically according to its homotopy
m3(G). For any simple compact group G, m3(G)=7, so
gauge transformations can be classified according to
their “winding number.” Under a gauge transformation
with winding m,

Scs[a] — Scs[a] + 2mkm (25)

(Deser et al., 1982). While the action is invariant under
“small” gauge transformations, which are continuously
connected to the identity and have m =0, it is not invari-
ant under “large” gauge transformations (m # 0). How-
ever, it is sufficient for exp(iS) to be gauge invariant,
which will be the case as long as we require that the
level k be an integer. The requirement that the level k
be an integer is an example of the highly rigid structure
of TQFTs. A small perturbation of the microscopic
Hamiltonian cannot continuously change the value of k
in the effective low-energy theory; only a perturbation
that is large enough to change k by an integer can do
this.

The failure of gauge invariance under large gauge
tranformations is also reflected in the properties of
Chern-Simons theory on a surface with boundary, where
the Chern-Simons action is gauge invariant only up to a
surface term. Consequently, there must be gapless de-
grees of freedom at the edge of the system whose dy-
namics is dictated by the requirement of gauge invari-
ance of the combined bulk and edge (Wen, 1992), as
discussed in Sec. IILE.

To unravel the physics of Chern-Simons theory, it is
useful to specialize to the case in which the space-time
manifold M can be decomposed into a product of a
spatial surface and time, M =3, X R. On such a manifold,
Chern-Simons theory is a theory of the ground states of
a topologically ordered system on 2. There are no ex-
cited states in Chern-Simons theory because the Hamil-
tonian vanishes. This is seen in ay=0 gauge, where the
momentum canonically conjugate to a; is —(k/4m)a,,
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and the momentum canonically conjugate to a, is
(k/47)a, so that

H= (k/47T)tr(a2(90a1 —aq (?0(12) -L=0. (26)

Note that this is a special feature of an action with a
Chern-Simons term alone. If the action had both a
Chern-Simons and a Yang-Mills term, then the Hamil-
tonian would not vanish, and the theory would have
both ground and excited states with a finite gap. Since
the Yang-Mills term is subleading compared to the
Chern-Simons term [i.e., irrelevant in a renormalization
group (RG) sense], we can forget about it at energies
smaller than the gap and consider the Chern-Simons
term alone.

Therefore when Chern-Simons theory is viewed as an
effective field theory, it can only be valid at energies
much smaller than the energy gap. As a result, it is pres-
ently unclear whether Chern-Simons theory has any-
thing to say about the properties of quasiparticles—
which are excitations above the gap—or whether those
properties are part of the universal low-energy physics
of the system (i.e., are controlled by the infrared RG
fixed point). Nevertheless, as we see in a moment, it
does and they are.

Although the Hamiltonian vanishes, the theory is still
not trivial because one must solve the constraint which
follows by varying a,. For the sake of concreteness, we
specialize to the case G=SU(2). Then the constraint
reads

€07 + 1b¢qaS =0, (27)

where i,j=1,2. The left-hand side of this equation is the
field strength of the gauge field af, where ¢=1,2,3 is an
su(2) index. Since the field strength must vanish, we can
always perform a gauge transformation so that af=0 lo-
cally. Therefore this theory has no local degrees of free-
dom. However, for some field configurations satisfying
the constraint, there may be a global topological ob-
struction which prevents us from making the gauge field
zero everywhere. Clearly, this can happen only if ¥ is
topologically nontrivial.

The simplest nontrivial manifold is the annulus, which
is topologically equivalent to a sphere with two punc-
tures. Following Elitzur et al. (1989) [see also Wen and
Zee (1998) for a similar construction on the torus], we
take coordinates (r,¢) on the annulus, with r;<r<r,,
and let 7 be time. Then we can write a,= gapg’l, where

g(r’ ¢,t) — eiw(r,(b,t)ei((/)/k))\(t)’ (28)

where w(r,®,t) and \(f) take values in the Lie algebra
su(2) and w(r,,t) is a single-valued function of ¢. The
functions w and A are the dynamical variables of Chern-
Simons theory on the annulus. Substituting Eq. (28) into
the Chern-Simons action, we see that it now takes the
form
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1
S=— f dt tr(AofY), (29)
21

where Q(r,1) =f(2)”d¢[w(r1 ,d,t)—w(ry, ¢,1)]. Therefore
is canonically conjugate to N. By a gauge transformation,
we can always rotate N and () so that they are along the
3 direction in su(2), i.e., A=A;7°, Q=Q;7°3. Since it is
defined through the exponential in Eq. (28), ()5 takes
values in [0,27]. Therefore its canonical conjugate s is
quantized to be an integer. From the definition of \ in
Eq. (28), we see that N\3=\;+2k. However, by a gauge
transformation given by a rotation around the 1 axis, we
can transform N ——\. Hence the independent allowed
values of A\ are 0,1,... k.

On the two-punctured sphere, if one puncture is of
type a, the other puncture must be of type a. (If the
topological charge at one puncture is measured along a
loop around the puncture—e.g., by a Wilson loop, see
Sec. III.C—then the loop can be deformed so that it
goes around the other puncture, but in the opposite di-
rection. Therefore the two punctures necessarily have
conjugate topological charges.) For SU(2), a=a, so both
punctures have the same topological charge. Therefore
the restriction to only k+1 different possible allowed
boundary conditions \ for the two-punctured sphere im-
plies that there are k+1 different quasiparticle types in
SU(2), Chern-Simons theory. As described in later sec-
tions, these allowed quasiparticle types can be identified
with the j=0,1/2,...,k/2 representations of the SU(2),
Kac-Moody algebra.

2. TQFTs and quasiparticle properties

We continue with our analysis of Chern-Simons
theory in Secs. III.C and III.D. Here we make some
general observations about TQFTs and the topological
properties of quasiparticles. We turn to the n-punctured
sphere, 3=8%\P,UP,U---UP,, i.e., the sphere S? with
the points Py, P,,...,P, deleted, which is equivalent to
n—1 quasiparticles in the plane (the nth puncture be-
comes the point at ). This allows us to study the topo-
logical properties of quasiparticle excitations purely
from ground state properties. To see how braiding
emerges in this approach, it is useful to note that diffeo-
morphisms should have a unitary representation on the
ground state Hilbert space (i.e., they should commute
with the Hamiltonian). Diffeomorphisms that can be
smoothly deformed to the identity should have a trivial
action on the Hilbert space of the theory since there
are no local degrees of freedom. However, “large” dif-
feomorphisms could have a nontrivial unitary represen-
tation on the theory’s Hilbert space. If we take the
quotient of the diffeomorphism group by the set of dif-
feomorphisms which can be smoothly deformed to the
identity, then we obtain the mapping class group. On the
n-punctured sphere, the braid group B,_; is a subgroup
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of the mapping class group.® Therefore if we study
Chern-Simons theory on the n-punctured sphere as we
did for the two-punctured sphere above, and determine
how the mapping class group acts, we can learn all infor-
mation about quasiparticle braiding. We do this by two
different methods in Secs. III.C and II1.D.

One extra transformation in the mapping class group,
compared to the braid group, is a 27 rotation of a punc-
ture or particle relative to the rest of the system (a Dehn
twist). If we consider particles with a finite extent, rather
than point particles, then we must consider the possibil-
ity of such rotations. For instance, if the particles are
small dipoles, then we can represent their world lines as
ribbons. A Dehn twist then corresponds to a twist of the
ribbon. Thickening a world line into a ribbon is called a
framing. A given world line has multiple choices of
framing, corresponding to how many times the ribbon
twists. A framing is essential in Chern-Simons theory
because flux is attached to charge through the constraint
(22) and (27). By putting the flux and charge at opposite
edges of the ribbon, which is a short-distance regulariza-
tion of the theory, we associate a well-defined phase to a
particle trajectory. Otherwise, we would not know how
many times the charge went around the flux.

Any transformation acting on a single particle can
only result in a phase; the corresponding phase is called
the twist parameter ®,. Often, one writes ©,=e?™"a,
where 4, is called the spin of the particle.5 (One must,
however, be careful to distinguish this from the actual
spin of the particle, which determines its transformation
properties under the three-dimensional rotation group
and must be half integral.) However, /4, is well defined
even if the system is not rotationally invariant, so it is
usually called the fopological spin of the particle. For
Abelian anyons, it is just the statistics parameter, 6
=2ih,.

The ground state properties on arbitrary surfaces, in-
cluding the n-punctured sphere and the torus, can be

“The mapping class group is nontrivial solely as a result of the
punctures. In particular, any diffeomorphism that moves one
or more puncture around other punctures cannot be deformed
to the identity; conversely, if two diffeomorphisms move the
same punctures along trajectories that can be deformed into
each other, then the diffeomorphisms themselves can also be
deformed into each other. These classes of diffeomorphisms
correspond to the braid group which is, in fact, a normal sub-
group. If we took the quotient of the mapping class group by
the Dehn twists of n—1 of the punctures—all except the point
at infinity—we would be left with the braid group B5,,_;.

3If a is its own antiparticle, so that two a’s can fuse to 1, then
R{= i@:, where the minus sign is acquired for some particle
types a which are not quite their own antiparticles but only up
to some transformation that squares to —1. This is analogous to
the fact that the fundamental representation of SU(2) is not
real but pseudoreal. Consequently, a spin-1/2 particle ¢, and
antiparticle ¢#" can form a singlet *'¢,, but two spin-1/2
particles can as well, ¢,4,i(a,)*", where o, is the antisymmet-
ric Pauli matrix. When some quantities are computed, an extra
factor of (iO'y)2:—1 results. This = sign is called the
Froebenius-Schur indicator. (See, for instance, Bantay, 1997.)
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built up from more primitive vector spaces in the follow-
ing way. An arbitrary closed surface can be divided into
a collection of three-punctured spheres which are glued
together at their boundaries. This is called a “pants de-
composition” because of the topological equivalence of
a three-punctured sphere to a pair of pants. Therefore
the three-punctured sphere plays a fundamental role in
the description of a topological phase. Its Hilbert space
is denoted by V¢, if a, b, and ¢ are the particle types at
the three punctures. If the a and b punctures are fused, a
two-punctured sphere will result. From the above analy-
sis, it has a one-dimensional vector space if both punc-
tures have topological charge ¢ and a zero-dimensional
vector space otherwise. The dimension of the Hilbert
space of the three-punctured sphere is given by the fu-
sion multiplicity Ny, =dim(Vy,) which appears in the fu-
sion rule ¢, X ¢, =2 N;, &.. The Hilbert space on a sur-
face obtained by gluing together three-punctured
spheres is obtained by tensoring together V’s and sum-
ming over the particle types at the punctures where glu-
ing occurs. For instance, the Hilbert space on the four-
punctured sphere is given by V§,,=®.V;, Vi; the
Hilbert space on the torus is Vype=®,V{, V3. (If one of
the particle types is the vacuum, then the corresponding
puncture can be removed; the three-punctured sphere is
then actually only two-punctured. Gluing two of them
together end to end gives a torus. This is one way of
seeing that the degeneracy on the torus is the number of
particle types.)

The Hilbert space of the n-punctured sphere with
topological charge a at each puncture can be construc-
ted by sewing together a chain of (n—2) three-punc-
tured spheres. The resulting Hilbert space is Vi,,_a
:éBbl_VZ;V%I-“ ob. .. A simple graphical notation for a
set of basis states of this Hilbert space is given by a
fusion chain (similar to the fusion tree discussed in the
Appendix):

a a a a a a

. bn—4| bn—3| a .

The first two a’s on the far left fuse to b;. The next a
fuses with b; to give b,. The next a fuses with b, to
give b3, and so on. The different basis vectors in this
Hilbert space correspond to the different possible al-
lowed b;s. The dimension of this Hilbert space is
NoiNe - Nay =(NJZ (N (N)j . On the right-
hand side of this equation, we suggested that the fusion
multiplicity N, can be viewed as a matrix (N,);, associ-
ated with quasiparticle species a. We denote the largest
eigenvalue of the matrix N, by d,. Then the Hilbert
space of M quasiparticles of type a has dimension ~d,’l”‘2
for large M. For this reason, d, is called the quantum
dimension of an a quasiparticle. It is the asymptotic de-
generacy per particle of a collection of a quasiparticles.
For Abelian particles, d,=1 since the multiparticle Hil-
bert space is one dimensional (for fixed particle posi-
tions). Non-Abelian particles have d,> 1. Note that d,, is
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not, in general, an integer, which is symptomatic of the
nonlocality of the Hilbert space: it is not the tensor
product of d,-dimensional Hilbert spaces associated lo-
cally with each particle.

This nonlocality is responsible for the stability of this
degenerate ground state Hilbert space. Not only the
Yang-Mills term, but all possible gauge-invariant terms
that we can add to the action (24), are irrelevant. This
means that adding such a term to the action might split
the ~d1aw_2-dimensional space of degenerate states in a
finite-size system, but the splitting must vanish as the
system size and particle separations go to infinity. In fact,
we can make an even stronger statement than that. All
ground state matrix elements of gauge-invariant local
operators such as the field strength squared F/-‘WF“”‘J van-
ish identically because of the Chern-Simons constraint.
Therefore the degeneracy is not lifted at all in perturba-
tion theory. It can only be lifted by nonperturbative ef-
fects (e.g., instantons or quantum tunneling), which
could cause a splitting ~e~¢", where g is inversely pro-
portional to the coefficient of the Yang-Mills term.
Therefore the multiquasiparticle states are degenerate
to within exponential accuracy. At finite temperatures,
one must also consider transitions to excited states, but
the contributions of these will be ~e2/7. Furthermore, if
we add a time-dependent (source) term to the action,
these properties would remain preserved so long as the
frequency of this term remains small compared with the
gap.

Aside from the n-punctured spheres, the torus is the
most important manifold for considering topological
phases. Although not directly relevant to experiments,
the torus is important for numerical simulations since
periodic boundary conditions are often the simplest
choice. As noted above, the ground state degeneracy on
the torus is equal to the number of quasiparticle species.
Suppose one can numerically solve a Hamiltonian on
the torus. If it has a gap between its ground state(s) and
lowest energy excited states, then its ground state degen-
eracy is an important topological property of the state—
namely, the number of quasiparticle species. A simple
physical understanding of this degeneracy can be ob-
tained in the following way. Suppose that we have a sys-
tem of electrons in a topological phase. If we consider
the system on the torus, then the electrons must have
periodic boundary conditions around either generator of
the torus (i.e., around either handle), but the quasiparti-
cles need not. In the Abelian v=1/m fractional quantum
Hall state, for instance, it is possible for a quasiparticle
to pick up a phase ¢>™"™ in going around the meridian
of the torus, where n can take any of the values n
=0,1,...,m—-1; electrons would still have periodic
boundary conditions since they are made up of m qua-
siparticles. Indeed, all m of these possibilities occur, so
the ground state is m-fold degenerate.

To make this a little more precise, we introduce op-
erators 77 and 7, which create a quasiparticle-quasihole
pair, take the quasiparticle around the meridian or lon-
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gitude, respectively, of the torus and annihilate them
again. Then 7 and T, must satisfy

Tz_l T]—l T2T1 — 627Tl/m , (30)

because 7, 'T; amounts to a contractible quasiparticle-
quasihole loop, as does T, ' T,; by alternating these pro-
cesses, we cause these loops to be linked. The quasipar-
ticle trajectories in space-time (which can be visualized
as a thickened torus) are equivalent to a link between
two circles (the Hopf link): the first quasiparticle-
quasihole pair is pulled apart along the meridian (7});
but before they can be brought back together (7,'), the
second pair is pulled apart along the longitude (7). Af-
ter the first pair is brought back together and annihilated
(T{l), the second one is too (Tzfl). In other words, the
phase on the right-hand side of Eq. (30) is the phase
obtained when one quasiparticle winds around another.
This algebra can be represented on a vector space of
minimum dimension m. We call the states in this vector
space |n), n=0,1,...,m-1. Then

T1|n> — eZm’n/m|n>’

T,|n) =|(n + 1)mod m). (31)

These m states correspond to n=0,1,...,m—1 quanta of
flux threaded through the torus. If we cut along a merid-
ian and open the torus into an annulus, then these states
would have flux n threaded through the hole in the an-
nulus and charge n/m at the inner boundary of the an-
nulus (and a compensating charge at the outer bound-
ary). We can instead switch to a basis in which 75 is
diagonal by a discrete Fourier transform. If we write
/iy =(1/\m)="} ™M ), then |fi) is an eigenstgate of
T, with eigenvalue ¢*™"™ 1In this basis, T, is an off-
diagonal operator that changes the boundary conditions
of quasiparticles around the longitude of the torus. In
non-Abelian states, a more complicated version of the
same thing occurs, as discussed for the case of Ising
anyons in Sec. III.B. Different boundary conditions
around the meridian correspond to different possible
quasiparticle types which could thread the torus (or,
equivalently, could be present at the inner boundary of
the annulus if the torus were cut open along a meridian).
One can switch to a basis in which the boundary condi-
tions around the longitude are fixed. The desired basis
change is analogous to the discrete Fourier transform
given above and is given by the § matrix or modular §
matrix of the theory. Switching the longitude and merid-
ian is one generator of the mapping class group of the
torus; the § matrix expresses how it acts on the ground
state Hilbert space. The elements of the S matrix are
closely related to quasiparticle braiding. By following a
similar construction to the one with 7; and 7, above,
one can see that S, is equal to the amplitude for creat-
ing aa and bb pairs, braiding a and b, and annihilating
again in pairs. This is why, in an Abelian state, the ele-
ments of the S matrix are all phases (up to an overall
normalization which ensures unitarity), e.g., S,
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=(1/\Vm)e*™nn'/m in the example above. In a non-
Abelian state, the different entries in the matrix can
have different magnitudes, so the basis change is a little
more complicated than a Fourier transform. Entries can
even vanish in the non-Abelian case since, after ¢ and b
have been braided, @ and a may no longer fuse to 1.

In the case of Ising anyons on the torus [SU(2),],
there are three ground states. One basis is [1,,), |0,,),
|40, corresponding to the different allowed topological
charges which would be measured at the inner boundary
of the resulting annulus if the torus were cut open along
its meridian. An equally good basis is given by eigen-
states of topological charge around the longitude: [1,),
lo), |¢n). As we see at the end of the next section, the
basis change between them is given by

1 1 1
2 2 2
1 1
S = \Tz 0 —E (32)
1 1 1
2 2 2

The S matrix not only contains information about braid-
ing, but also about fusion, according to Verlinde’s for-
mula (Verlinde, 1988) (for proof, see Moore and Seiberg,
1988, 1989):

S axS bxPcx

N¢, = E 5, (33)

Consequently, the quantum dimension of a particle of
species a is

d,=S1./511- (34)

The mathematical structure encapsulating these braid-
ing and fusion rules is a modular tensor category
(Walker, 1991; Turaev, 1994; Kassel, 1995; Bakalov and
Kirillov, 2001; Kitaev, 2006). A category is composed of
objects and morphisms, which are maps between the ob-
jects that preserve their defining structure. The idea is
that one can learn more about the objects by under-
standing the morphisms between them. In our case, the
objects are particles with labels (which specify their spe-
cies) as well as fixed configurations of several particles.
The morphisms are particle trajectories, which map a set
of labeled partices at some initial time to a set of labeled
particles at some final time. A tensor category has a ten-
sor product structure for multiplying objects; here this is
simply the fact that one can take two well-separated
(and historically well-separated) collections of particles
and consider their union to be a new “tensor-product”
collection. Since we consider particles in two dimen-
sions, the trajectories are essentially the elements of the
braid group, but they include the additional possibility
of twisting. (Allowing twists in the strands of a braid
yields a braided ribbon category.) We further allow the
trajectories to include the fusion of two particles (so that
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we now have a fusion category). Morphisms can there-
fore be defined by specifying 0, V,, R, and F.

Why is it necessary to invoke category theory simply
to specify the topological properties of non-Abelian
anyons? Could the braid group not be the highest level
of abstraction that we need? The answer is that, for a
fixed number of particles n, the braid group B, com-
pletely specifies their topological properties (perhaps
with the addition of twists ®, to account for the finite
size of the particles). However, we need representations
of B, for all values of n that are compatible with each
other and with fusion (of which pair creation and anni-
hilation is the special case of fusion to the vacuum). So
we really need a more complex—and much more tightly
constrained—structure. This is provided by the concept
of a modular tensor category. The F and R matrices play
important roles. The F matrix can essentially be viewed
as an associativity relation for fusion: we could first fuse
i with j, and then fuse the result with k; or we could fuse
i with the result of fusing j with k. The consistency of
this property leads to a constraint on the F matrices
called the pentagon equation. (An explicit example of
the pentagon equation is worked out in Sec. IV.B.) Con-
sistency between F and R leads to a constraint called the
hexagon equation. Modularity is the condition that the S
matrix be invertible. These self-consistency conditions
are sufficiently strong that a solutlon to them completely
defines a topological phase

An equivalent alternative to studying punctured sur-
faces is to add nondynamical charges that are coupled to
the Chern-Simons gauge field. Then the right-hand side
of the constraint (27) is modified and a nontrivial gauge
field configuration is again obtained which is equivalent
to that obtained around a puncture. In the following sec-
tions, we discuss the Hilbert spaces of SU(2), Chern-
Simons theory, either on the n-punctured sphere or in
the presence of nondynamical sources. These discussions
enable us to compute the braiding and fusion matrices.
The nontrivial quasiparticle of SU(2); is actually Abe-
lian so we do not discuss this “trivial” case. The next
case, SU(2),, is non-Abelian and may be relevant to the
v=5/2 fractional quantum Hall state. It can be under-
stood in several different ways, which express its under-
lying free Majorana fermion structure. Quantum compu-
tation with Majorana fermions is described in Sec. IV.A.
In the next section, we explain this structure from the
perspective of a superconductor with p+ip pairing sym-
metry. Although this description is elegant, it cannot be
generalized to higher k. Therefore in the two sections
after that, we describe two different approaches to solv-
ing SU(2), Chern-Simons theory for general k. We reca-
pitulate the case of SU(2), in these other languages and
also describe the case of SU(2);. The latter has quasipar-
ticles in its spectrum which are Fibonacci anyons, a par-

6Modulo details regarding the central charge c¢ at the edge.
e>™<8 can be obtained from the topological spins, but not ¢
itself.
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ticularly beautiful non-Abelian anyonic structure which
allows for universal topological quantum computation.
It may also underlie the observed v=12/5 fractional
quantum Hall state. More details of the Fibonacci
theory are given in Sec. IV.B.

B. Superconductors with p +ip pairing symmetry

In this section, we discuss the topological properties of
a superconductor with p+ip pairing symmetry following
Read and Green (2000). This method is the most el-
ementary way in which a non-Abelian topological state
can emerge as the ground state of a many-body system.
This non-Abelian topological state has several possible
realizations in various two-dimensional systems: p+ip
superconductors, such as Sr,RuO, [although the non-
Abelian quasiparticles are half quantum vortices in this
case (Das Sarma, Nayak, er al., 2006)]; p +ip superfluids
of cold atoms in optical traps (Gurarie et al., 2005; Tew-
ari, Das Shrma, Nayak, et al., 2007); the A phase [espe-
cially the A; phase (Leggett, 1975; Volovik, 1994)] of
He films; and the Moore-Read Pfaffian quantum Hall
state (Moore and Read, 1991). The last of these is a
quantum Hall incarnation of this state: electrons at fill-
ing fraction v=1/2 are equivalent to fermions in zero
field interacting with an Abelian Chern-Simons gauge
field. When the fermions pair and condense in a p+ip
superconducting state, the Pfaffian quantum Hall state
forms (Greiter et al., 1992). Such a state can occur at %
=2+% if the lowest Landau level (of both spins) is filled
and inert, and the first excited Landau level is half filled.

Ordinarily, one makes a distinction between the fer-
mionic quasiparticles (or Bogoliubov—de Gennes quasi-
particles) of a superconductor and vortices in a super-
conductor. This is because, in terms of electron
variables, the former are relatively simple while the lat-
ter are rather complicated. Furthermore, the energy and
length scales associated with the two are different in the
weak-coupling limit. However, fermionic quasiparticles
and vortices are different types of quasiparticle excita-
tions in a superconductor—i.e., different types of local-
ized disturbances above the ground state. Therefore we
refer to them both as simply quasiparticles and use the
terms Bogoliubov—de Gennes or fermionic when refer-
ring to the former. In a p +ip superconductor, the quasi-
particles which exhibit non-Abelian statistics are flux
hc/2e vortices.

1. Vortices and fermion zero modes

Suppose that we have a system of fully spin-polarized
electrons in a superconducting state of p,+ip, pairing
symmetry. The mean field Hamiltonian for such a super-
conductor is
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H-= f dr " (1)ho(r) + % f dr dr'[D*(x,x")i(x") if(x)

+D(r,r )y (0 ()] (35)

with the single-particle term ho=—(1/2m)V>~u and
complex p-wave pairing function

D(r,x") = A((r +1")/2)(idy — dy) 8(x —1'). (36)

The dynamics of A is governed by a Landau-
Ginzburg-type Hamiltonian and will be discussed later.
The quadratic Hamiltonian (36) may be diagonalized by
solving the corresponding Bogoliubov—de Gennes equa-
tions (BdG) equations,

(u . ) ) ho é{A(r),&x Tig,)
e N
u(r)
X (v(r) ) . (37)

The Hamiltonian then takes the form

H=FEy+ > ETiI, (38)
E

where FTEE Jdr{ug(r)y(x) +ve(r)yf (r)] is the creation op-
erator formed by the positive-energy solutions of the
Bogoliubov—-de Gennes equations and Ej is the ground
state energy. For the ground state of the Hamiltonian
(36) to be degenerate in the presence of several vortices
(which are the most interesting quasiparticles in this
theory) it is essential that the BAG equations have solu-
tions with eigenvalue zero in this situation.

Before searching for zero eigenvalues of Eq. (38) in
the presence of vortices, however, we focus on a uniform
superconductor, where A is a constant. Read and Green
(2000) retained only the potential part of A, which for a
uniform superconductor is a constant —u. With this sim-
plification, a BdG eigenstate with momentum k has en-

ergy
Ep =2 + A%k (39)

The ground state of Eq. (36) is the celebrated BCS wave
function, written here in an unnormalized form,

) =11 (1 + %clch) [vac) = exp(E %clcik) [vac),
k

K k Uk
(40)

|”k|2> 1( M )
(|Uk|2 2\" " VP + | Ak “41)

are the BCS coherence factors. The wave function (40)
describes a coherent state of an undetermined number
of Cooper pairs, each in an internal state of angular mo-
mentum €=-1. Its projection onto a fixed even number
of particles N is carried out by expanding the exponent
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in Eq. (40) to the (N/2)th order. When written in first-
quantized language, this wave function describes a prop-
erly antisymmetrized wave function of N/2 Cooper
pairs, each in an internal state

gr) = >, Kk, (42)

k Uk

In first-quantized form the multiparticle BCS wave func-
tion is then of the Pfaffian form of an antisymmetric
matrix whose i—j element is g(r;—rj), an antisymme-
trized product of pair wave functions

Wpes = Pllg(r; - l‘j)]
= Alg(r; —1y)g(rs —1g) -+~ g(ry_y —1p)] (43)

with A an antisymmetrization operator.

The function g(r) depends on the sign of w, since the
small-k behavior of vy/uy depends on that sign. When
u>0, we have g(r)=1/(x+iy) in the long-distance limit
(Read and Green, 2000). If we assume that this form
holds for all distances, the Pfaffian wave function ob-
tained is identical to the Moore-Read form discussed
below in connection with the Ising model and the v
=5/2 quantum Hall state in Sec. ITL.D [see Egs. (12) and
(92)]. The slow decay of g(r) implies a weak Cooper
pairing. (But it does not imply that the state is gapless.
One can verify that electron Green’s functions all decay
exponentially for any nonzero u.) When u<0 the func-
tion g(r) decays much more rapidly with r, generically in
an exponential way, such that the Cooper pairs are
strongly bound. Furthermore, there is a topological dis-
tinction between the x>0 and p <0 phases. The distinc-
tion, discussed by Read and Green (2000), implies that,
despite the fact that both states are superconducting, the
p#>0 and p <0 states must be separated by a phase tran-
sition. [In the analogous quantum Hall state, both states
are characterized by the same Hall conductivity but are
separated by a phase transition, and are distinguished by
their thermal Hall conductivities (Read and Green,
2000).] Indeed, from Eq. (39) we see that the gap van-
ishes for a uniform p +ip superconductor with u=0. The
low-energy BdG eigenstates at this second-order phase
transition point form a Dirac cone.

For every solution (u,v) of the BdG equations with
energy E, there is a solution (v*,u*) of energy —E. A
solution with u=v* therefore has energy zero. We soon
consider situations in which there are multiple zero-
energy solutions (u,—,uj), i=1,2,....If we denote the cor-
responding operators by v; [see Eq. (47) below], then
they satisfy

Y= (44)
Equation (44) is the definition of a Majorana fermion
operator.

We now consider the BAG equations in the presence
of vortices when the bulk of the superconductor is in the
pu>0 phase. As usual, a vortex is characterized by a
point of vanishing A, and a 277 winding of the phase of A
around that point. In principle we should, then, solve the
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BdG equations in the presence of such a nonuniform A.
However, we can, instead, solve them in the presence of
a nonuniform w, which is much simpler. All we need is
to make the core of the superconductor topologically
distinct from the bulk, i.e., a puncture in the supercon-
ductivity. Making <0 in the core is just as good as
taking A to zero, as far as topological properties are con-
cerned. Therefore we associate the core of the vortex
with a region of © <0, whereas the bulk is at ©>0. Thus
there is a u=0 line encircling the vortex core. This line is
an internal edge of the system. We consider the dynam-
ics of edge excitations in Sec. IIL.E, but here we simply
show that a zero-energy mode is among them.

The simplest situation to consider is that of azimuthal
symmetry, with the polar coordinates denoted by r and
0. Imagine the vortex core to be at the origin, so that
A(r, 0)=|A(r)|e*, Here () is the phase of the order pa-
rameter along the 6=0 line, a phase which will play an
important role later in our discussion. Assume that the
©=0 line is the circle r=r(, and write

p(r) = Ah(r), (45)

with A(r) large and positive for large r, and Aa(r) <0 for
r<ry; therefore the electron density will vanish for r
<ry. Such a potential defines an edge at r=r(. There are
low-energy eigenstates of the BAG Hamiltonian that are
spatially localized near r=0 and are exponentially decay-
ing for r— oo:

, r e—i0/2
5E(r, 0) = €7 exp<- f h(r’)dr’)( i ) (46)
0

The spinor on the right-hand side points in a direction in
pseudospin space that is tangent to the r=r circle at 6.
This wave function describes a chiral wave propagating
around the edge, with angular momentum € and energy
E=A{/ry. Since the flux is an odd multiple of Ac/2e, the
Bogoliubov quasiparticle (46) must be antiperiodic as it
goes around the vortex. However, the spinor on the
right-hand side of Eq. (46) is also antiperiodic. There-
fore the angular momentum ¢ must be an integer, € € 7.
Consequently, a flux sc/2e vortex has an ¢ =0 solution,
with energy E=0. (Conversely, if the flux through the
vortex were an even multiple of c/2e, € would be a half
integer, € € 7+ %, and there would be no zero mode.) The
operator corresponding to this zero mode, which we call
v, can be written in the form

- % f A Fr)eP2(r) + Fr(r)e™y(1)].  (47)
N

Here F(r)=exp[[yh(r')dr']e""%2. Since each yis an equal
superposition of electron and hole, it is overall a charge-
less, neutral fermion operator.

When there are several well separated vortices at po-
sitions R;, the gap function near the ith vortex takes the
form A(r)=|A(r)|exp(i6;+iQ);), with #=arg(r-R;) and
0;=3;,; arg(R;—R;). There is then one zero-energy so-
lution per vortex. Each zero-energy solution v; is local-
ized near the core of its vortex at R;, but the phase ();
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that replaces () in Eq. (47) depends on the position of all
vortices. Moreover, the dependence of the Majorana op-
erators 7; on the positions R; is not single valued.
While for any E # 0 the operators I'}; and T'j; are con-
ventional fermionic creation and annihilation operators,
the s are not. In particular, for E#0 we have (T'})?
=I'2=0, but the zero-energy operators follow (with a
convenient choice of normalization) =1. The two
types of fermion operator share the property of mutual
anticommutation, i.e., the y’s satisfy {y;, y,}=24.

2. Topological properties of p +ip superconductors

The existence of the ;s implies a degeneracy of the
ground state. Counting the number of degenerate
ground states should be done with care. A pair of con-
ventional fermionic creation and annihilation operators
span a two-dimensional Hilbert space, since their square
vanishes. This is not true for a Majorana operator. Thus,
to count the degeneracy of the ground state when 2N,
vortices are present, we construct “conventional” com-
plex (Dirac) fermionic creation and annihilation opera-
tors,

= (Vi +iyng)/2, (43)

= (%= iyng)/2- (49)

These operators satisfy ;Diz: (¢j)2:0 and thus span a two-
dimensional subspace of degenerate ground states asso-
ciated with these operators. Overall, the system has 2o
degenerate ground states. If the fermion number is fixed
to be even or odd, then the degeneracy is 2V0~!. There-
fore the quantum dimension of a vortex is d = \2 or, in
the notation introduced in Sec. II.A.1 for Ising anyons,
d,= \5.

For any two vortices i and j, we can associate a two-
state system. If we work in the basis of iy;y; eigenstates,
then iv,y; acts as o, with eigenvalues =1, while v, and v;
act as o, and o,. (However, it is important to keep in
mind that Majorana fermions 7y, and 7, anticommute
with y; and y;, unlike operators associated with different
spins, which commute.) The two eigenvalues iy,y;= 1
are the two fusion channels of two fermions. If we form
the Dirac fermion #=(y;+iy;)/2, then the two iy,y
eigenstates have ¢'¢y=0,1. Therefore we call these fu-
sion channels 1 and #. (One is then tempted to refer to
the state for which '¢=1 as a filled fermion, and to the
" y=0 state as an empty fermion. Note, however, that
the eigenvalue of ¢ has no bearing on the occupation
of single-particle states.)

Of course, the pairing of vortices to form Dirac fermi-
ons is arbitrary. A given pairing defines a basis, but one
can transform to a basis associated with another pairing.
Consider four vortices with corresponding zero modes
Y1,V2, V3, Ys- The F matrix transforms states from the
basis in which i7y;y, and i3y, are diagonal to the basis in
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which iy, y, and iy,y; are diagonal. Since iy, y4 acts as o,
on an i7y;7y, eigenstate, the F matrix is just the basis
change from the o, basis to the o, basis:

1(1 1
=l ) (50)
v -

We refer to this type of non-Abelian anyon by the name
“Ising anyons”; this is the model introduced in Sec.
I1.A.1. The reason for the name will be explained in Sec.
IILE.

In a compact geometry, there must be an even number
of vortices (since a vortex carries half a flux quantum,
and the number of flux quanta penetrating a compact
surface must be an integer). In a noncompact geometry,
if the number of vortices is odd, the edge has a zero-
energy state of its own, as shown in Sec. IILE.

Now, we examine what happens to the Majorana op-
erators and to the ground states as vortices move. The
positions of the vortices are parameters in the Hamil-
tonian (36). When they vary adiabatically in time, the
operators vy; vary adiabatically in time. In principle,
there are two sources for this variation—the explicit de-
pendence of v, on the positions and the Berry phase
associated with the motion. The choice of phases taken
at Eq. (47) is such that the Berry phase vanishes, and the
entire time dependence is explicit. The non-single-
valuedness of the phases in Eq. (47) implies then that a
change of 27 in ), which takes place when one vortex
encircles another, does not leave the state unchanged.

As vortices adiabatically traverse trajectories that
start and end in the same set of positions (Ivanov, 2001;
Stern et al., 2004), there is a unitary transformation U
within the subspace of ground states that takes the initial
state |(t=0)) to the final one |(t=T)),

[t =T))=Uly(t=0)). (51)

Correspondingly, the time evolution of the operators v;
is

[ Fg(r

Yt=T)=Uy(t=0)U". (52)

By reading the time evolution of vy; from their explicit
form (47), we can determine U up to a phase. Indeed,
one expects this Abelian phase to depend not only on
the topology of the trajectory but also on its geometry,
especially in the analogous quantum Hall case, where
there is an Aharonov-Bohm phase accumulated as a re-
sult of the charge carried by the quasiparticle.

When vortex i encircles vortex i+1, the unitary trans-
formation is simple: both y; and v,,; are multiplied by
—1, with all other operators unchanged. This is a conse-
quence of the fact that when the order parameter
changes by a phase factor 2w, fermionic operators
change by a phase w. Exchange trajectories, in which
some of the vortices trade places, are more complicated,
since the phase changes of (), associated with a particu-
lar trajectory do not only depend on the winding num-
bers, but also on the details of the trajectory and on the
precise definition of the cut of the function arg(r) where
its value jumps by 2.



1116 Nayak et al.: Non-Abelian anyons and topological quantum ...

The simplest example is the interchange of two vorti-
ces. Inevitably, one of the vortices crosses the branch cut
line of the other vortex. We can place the branch cuts so
that a counterclockwise exchange of vortices 1 and 2
transforms ¢;—c¢, and c¢,——c; while a clockwise ex-
change transforms ¢; — —c, and ¢, —c¢; (Ivanov, 2001).

This may be summarized by writing the representa-
tion matrices for the braid group generators (Nayak and
Wilczek, 1996; Ivanov, 2001):

p(a;) = el MV Vi1, (53)

where 6 is the Abelian part of the transformation. The
two eigenvalues ivy;y;,;= + 1 are the two fusion channels
1 and ¢ of a pair of vortices. From Eq. (53), we see that
the R matrices satisfy Rj7=iR{" (i.e., the phases of tak-
ing two o particles around each other differ by i depend-
ing on whether they fuse to ¢ or 1). It is difficult to
obtain the Abelian part of the phase using the methods
of this section, but we derive it by other methods in Secs.
III.C and IIL.D. The non-Abelian part of Eq. (53), i.e.,
the second factor on the right-hand side, is the same
as a 7/2 rotation in the spinor representation of SO(2n)
[see Nayak and Wilczek (1996), for details]. The fact that
braiding enacts only 7r/2 rotations is the reason why this
type of non-Abelian anyon does not enable universal
topological quantum computation, as discussed in Sec.
Iv.

According to Eq. (53), if a system starts in a ground
state |gs,) and vortex j winds around vortex j+1, the
system’s final state is ¥;¥;,1 |gs,). Writing this out in terms
of the original electron operators, we have

(Cje(i/Z)Qj 4 c;e—(i/2)0j)(cj+1 D01 4 ¢l o= 20)| g5

j+1
(54)
where c]m annihilates a particle in the state F(r-R;) and
cj(Pl creates a particle in the state F(r-R;,;) localized

close to the cores of the jth and (j+1)th vortices, respec-
tively. Equation (54) seemingly implies that the motion
of the jth vortex around the (j+1)th vortex affects the
occupations of states close to the cores of the two vorti-
ces. This is in contrast, however, to the derivation lead-
ing to Eq. (54), which explicitly assumes that vortices are
kept far enough from one another so that tunneling be-
tween vortex cores may be disregarded.

This seeming contradiction is analyzed in Stern et al.
(2004), where it is shown that the unitary transformation
(54) does not affect the occupation of the core states of
the j,j+1 vortices, because all ground states are com-
posed of superpositions in which the core states have a
probability of one-half to be occupied and one-half to be
empty. The unitary transformation within the ground
state subspace does not change that probability. Rather,
they affect phases in the superpositions. Using this point
of view it is then possible to show that two ingredients
are essential for the non-Abelian statistics of the vorti-
ces. The first is the quantum entanglement of the occu-
pation of states near the cores of distant vortices. The
second ingredient is familiar from (Abelian) fractional
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statistics: the geometric phase accumulated by a vortex
traversing a closed loop.

Therefore we conclude that, for p-wave superconduct-
ors, the existence of zero-energy intravortex modes
leads, first, to a multitude of ground states, and, second,
to a particle-hole symmetric occupation of the vortex
cores in all ground states. When represented in an
occupation-number basis, a ground state is a superposi-
tion that has equal probability for the vortex core to be
empty or occupied by one fermion. When a vortex
traverses a trajectory that encircles another vortex, the
phase it accumulates depends again on the number of
fluid particles it encircles. Since a fluid particle is, in this
case, a Cooper pair, the occupation of a vortex core by a
fermion, half a pair, leads to an accumulation of a phase
of m relative to the case when the core is empty. And
since the ground state is a superposition with equal
weights for the two possibilities, the relative phase of
introduced by the encircling might in this case transform
the system from one ground state to another.

Now consider the ground state degeneracy of a p+ip
superconductor on the torus. We define, following
Oshikawa et al. (2007) (see also Chung and Stone, 2007),
the operators A; and A, that create a pair of
Bogoliubov—-de Gennes quasiparticles, take one around
the meridian or longitude of the torus, respectively, and
annihilate them again. We then define B; and B, as op-
erators that create a vortex-antivortex pair, take the vor-
tex around the meridian or longitude of the torus, re-
spectively, and annihilate them. B; increases the flux
through the hole encircled by the longitude of the torus
by one-half of a flux quantum while B, does the same
for the other hole. These operators satisfy the commu-
tation relations [A;,A,]=0 and AB,=-B,A,, A,B;
=—BA,. We can construct a multiplet of ground states
as follows. Since A; and A, commute and square to 1,
we can label states by their A; and A, eigenvalues 1.
Let |1,1) be the state with both eigenvalues equal to 1,
ie., Ay1,1)=A,[1,1)=|1,1). Then B4|1,1)=|1,-1) and
B,|1,1)=|-1,1). Suppose we now try to apply B, to
By|1,1)=|1,-1). This will create a vortex-antivortex pair;
the Majorana zero modes 7y, and v, associated with the
vortex and antivortex will be in the state |0) defined by
(¥,+17v,)|0)=0. When the vortex is taken around the lon-
gitude of the torus, its Majorana mode will be multiplied
by -1: y,——1v,. Now, the vortex-antivortex pair will no
longer be in the state |0), but will instead be in the state
|1) defined by (y,-iv,)|1)=0. Consequently, the vortex-
antivortex pair can no longer annihilate to the vacuum.
When they fuse, a fermion is left over. Therefore
B,B;|1,1) does not give a new ground state (and, by a
similar argument, neither does B;B,|1,1)). Conse-
quently, a p+ip superconductor has only three ground
states on the torus. A basis in which B is diagonal is
given by (|1,1)+|1,-1))/y2, with eigenvalue +1, and |
—1,1), with eigenvalue O (since there is zero amplitude
for By|-1,1) in the ground state subspace). They can be
identified with the states |1,,), |#,), and |o,,) in Ising
anyon language. Meanwhile, B, is diagonal in the basis
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(I1,1)£|-1,1))/+2, |1,-1). By changing from one basis
to the other, we find that the S matrix given in the pre-
vious section follows.

The essential feature of chiral p-wave superconduct-
ors is that they have Majorana fermion excitations which
have zero-energy modes at vortices (and gapless excita-
tions at the edge of the system; see Sec. III.E). The Ma-
jorana character is a result of the superconductivity,
which mixes particle and hole states; the zero modes and
gapless edge excitations result from the chirality. Majo-
rana fermions arise in a different way in the Kitaev hon-
eycomb lattice model (Kitaev, 2006):

H=-J, X ooi-J, 2 olo)-J, 2 oo}, (55)

x links y links z links

where the z links are the vertical links on the honey-
comb lattice, and the x and y links are at angles +7/3
from the vertical. The spins can be represented by Ma-
jorana fermions b*, b”, b, and c¢ according to oy —ibxc],
o;‘—lbyc o7 =ibjc; so long as the constraint b;bbic;=1is
satisfied. Then the Hamiltonian is quartic 1n Ma]orana
fermion operators, but the operators b}‘bx, bJYby , bfbi
commute with the Hamiltonian. Therefore we take their
eigenvalues as parameters uy=b/'by, with a=x, y, or z
appropriate to the jk link. These parameters can be var-
ied to minimize the Hamiltonian, which describes Majo-
rana fermions hopping on the honeycomb lattice:

i
H= ZE tjkc/'cka (56)
jk

where 1;,=2J ,u;; for nearest-neighbor j,k and zero oth-
erwise. For different values of /s, the £ s take different
values. The topological properties of the corresponding
¢; bands are encapsulated by their Chern number (Ki-
taev, 2006). For a certain range of J,’s, a P, T-violating
perturbation gives the Majorana fermions a gap in such
a way as to support zero modes on vortexlike excitations
(plaquettes on which one u is reversed in sign). These
excitations are identical in topological character to the

vortices of a p+ip superconductor discussed above.

C. Chern-Simons effective field theories, the Jones polynomial,
and non-Abelian topological phases

1. Chern-Simons theory and link invariants

In the previous section, we saw a extremely simple
and transparent formulation of quasiparticle braiding
properties for a particular non-Abelian topological state
which, as we see later in this section, is equivalent to
SU(2), Chern-Simons theory. It describes the multiqua-
siparticle Hilbert space and the action of braiding opera-
tions in terms of free fermions. Most non-Abelian topo-
logical states are not so simple, however. In particular,
SU(2), Chern-Simons theory for k>2 does not have a
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free fermion or boson descrip‘[ion.7 Therefore in the
next two sections, we discuss these field theories using
more general methods.

Even though its Hamiltonian vanishes and it has no
local degrees of freedom, solving Chern-Simons theory
is still a nontrivial matter. The reason is that it is difficult
in a non-Abelian gauge theory to disentangle the physi-
cal topological degrees of freedom from the unphysical
local gauge degrees of freedom. There are essentially
two approaches. Each has its advantages, and we de-
scribe them both. One is to work entirely with gauge-
invariant quantities and derive rules governing them;
this is the route pursued in this section. The second is to
pick a gauge and simply calculate within this gauge,
which we do in the next section (Sec. II1.D).

Consider SU(2); non-Abelian Chern-Simons theory:

k 2
Scslal = EJ tr(a/\da+§a/\a/\a). (57)
M

We modify the action by the addition of sources j*¢ ac-
cording to £— L+1tr(j-a). We take the sources to be a
set of particles on prescribed classical trajectories. The
ith particle carries the spin-j; representation of SU(2).
As shown in Sec. IIILA, there are only k+1 allowed rep-
resentations; later in this section, we see that, if we give
a particle a higher-spin representation than j=k/2, then
the amplitude will vanish identically. Therefore j; must
be in an allowed set of k+1 possibilities: 0,1/2, ... ,k/2.
The functional integral in the presence of these sources
can be written in terms of Wilson loops W, [a] which
are defined as follows. The holonomy U ][a] 1s an SU(2)
matrix associated with a curve v. It is defined as the
path-ordered exponential integral of the gauge field
along the path y:

U,lal= Pexp( 3E a‘Tc- dl)
* 2
= E dslf dsy -

“ f " s, [ Hsy) - a% (y{s) T -
0

X ').’(sn) : aq”(V(Sn))Tq”], (58)

where P is the path-ordering symbol. The Lie algebra
generators 7¢ are taken in the spin-j representation.
¥(s), s €[0,27], is a parametrization of y; the holonomy
is independent of the parametrization. The Wilson loop
is the trace of the holonomy:

It is an open question whether there is an alternative de-
scription of an SU(2), topological phase with k>2 in terms of
fermions or bosons which is similar to the p+ip chiral super-
conductor formulation of SU(2),.
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W, la]l=tr(U, [a]). (59)

We consider the simplest case, in which the source is a
quasiparticle-quasihole pair of type j which is created
out of the ground state, propagated for a period of time,
and then annihilated, returning the system to the ground
state. The amplitude for such a process is given by

(0[0),, = f Da eScsllW, [a]. (60)

Here vy is the space-time loop formed by the trajectory
of the quasiparticle-quasihole pair. The Wilson loop was
introduced as an order parameter for confinement in a
gauge theory because this amplitude measures the force
between the quasiparticle and the quasihole. If they
were to interact with a confining force V(r)~r, then the
logarithm of this amplitude would be proportional to the
the area of the loop; if they were to have a short-ranged
interaction, it would be proportional to the perimeter of
the loop. However, Chern-Simons theory is independent
of a metric, so the amplitude cannot depend on any
length scales. It must simply be a constant. For j=1/2,
we call this constant d. As the notation implies, it is, in
fact, the quantum dimension of a j=1/2 particle. As
shown below, d can be determined in terms of the level
k, and the quantum dimensions of higher-spin particles
can be expressed in terms of d.

We also consider the amplitude for two pairs of qua-
siparticles to be created out of the ground state, propa-
gated for some time, and then annihilated, returning the
system to the ground state:

(0[0),.prjr = f Da eScslIW,, [alW ., 1 [a]. (61)

This amplitude can take different values depending on
how vy and 9y’ are linked, as in Fig. 4(a) vs Fig. 4(b). If the
curves are unlinked the integral must give d?, but when
they are linked the value can be nontrivial. In a similar
way, we formulate the amplitudes for an arbitrary num-
ber of sources.

It is useful to think about the history in Fig. 4(a) as a
two-step process: from t=-o to t=0 and from =0 to ¢
=, (The two pairs are created at some time <0 and
annihilated at some time ¢>0.) At r=0", the system is in
a four-quasiparticle state. [Quasiparticles and quasiholes
are topologically equivalent if G=SU(2), so we use
“quasiparticle” to refer to both.] We us call this state ¢

dAl= [ patow, fawy,ld
a(x,0)=A(x)

0
X exp(f dtf d’x LCS>, (62)

where y_ and ¥’ are the arcs given by y(r) and v/(¢) for
1<0. A(x) is the value of the gauge field on the =0
spatial slice; the wave functional y{A] assigns an ampli-
tude to every spatial gauge field configuration. For G
=SU(2) and k>1, there are actually two different four-
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FIG. 4. The functional integrals that give (a) (x|p(03)|x), (b)
(X1, (© (p(a2)|x), and (d) (xlp(o3")]x).

quasiparticle states: if particles 1 and 2 fuse to the iden-
tity field j=0, then particles 3 and 4 must as well; if par-
ticles 1 and 2 fuse to j=1, then particles 3 and 4 must as
well. These are the only possibilities. (For k=1, fusion to
j=11is not possible.) Which one the system is in depends
on how the trajectories of the four quasiparticles are
intertwined. Although quasiparticles 1 and 2 were cre-
ated as a pair from the vacuum, quasiparticle 2 braided
with quasiparticle 3, so 1 and 2 may no longer fuse to the
vacuum. Shortly, we show an example of a different
four-quasiparticle state.

We now interpret the =0 to t= history as the con-
jugate of a t=— to =0 history. In other words, it gives
us a four-quasiparticle bra rather than a four-
quasiparticle ket:

X*[A] = Da(x,t)W,/P,-[a]er[a]

a(x,0)=A(x)

X exp(foc dlf d*x ﬁcs)- (63)
0

In the state |y), quasiparticles 1 and 2 fuse to form the
trivial quasiparticle, as do quasiparticles 3 and 4. Then
we interpret the functional integral from ¢t=-o to t=% as
the matrix element between the bra and the ket:

(Xl = f Da *cSIW, ; [a]W,, ; [al. (64)

Now, observe that |#) is obtained from |x) by taking
quasiparticle 2 around quasiparticle 3, i.e., by exchang-
ing quasiparticles 2 and 3 twice, |¢)=p(d3)|x). Hence
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umwﬂm=fpaﬂmwwmdﬂwwyﬂ (65)

In this way, we compute the entries of the braiding ma-
trices p(o;) by computing functional integrals such as the
one on the right-hand side of Eq. (65). Note that we
normalize the state |y) by computing Fig. 4(b), which
gives its matrix element with itself.

Consider now the state p(o,)|x), in which particles 2
and 3 are exchanged just once. It is depicted in Fig. 4(c).
Similarly, the state p(agl)|¢> is depicted in Fig. 4(d).
From the figure, we see that

Xlp(o)x) =d, (66)

(Xlp(a3x) =4, (67)

since both histories contain a single unknotted loop.
Meanwhile,

(xlxy=d*. (68)

Since the four-quasiparticle Hilbert space is two di-
mensional, p(c,) has two eigenvalues \; and \,, so that

p(a) = (A +Xp) + Nhop(a!) = 0. (69)
Taking the expectation value in the state |y), we find

d— (N +N\)d> + MAd =0, (70)
so that

d=1T+NMN)/ (N +Ny). (71)

Since the braiding matrix is unitary, A\; and \, are
phases. The overall phase is unimportant for quantum
computation, so we need only a single number. In fact,
this number can be obtained from self-consistency con-
ditions (Freedman et al., 2004). However, the details of
the computation of A; and \, are technical and require a
careful discussion of framing; the result is (Witten, 1989)
that Ny =—e=372k+2) \, =¢m2(k+2) These eigenvalues are
simply R(l)/z’m:)\l, R}/z’m:)\z. Consequently,

d =2 cos(m/(k +2)) (72)

and

-112 12
q

p(o) —q"plo;) =q-q7", (73)
where g=-e™**? (see Fig. 18). Since this operator
equation applies regardless of the state to which it is
applied, we can apply it locally to any given part of a
knot diagram to relate the amplitude to the amplitude
for topologically simpler processes, as shown below
(Kauffman, 2001). This is an example of a skein relation;
in this case, it is the skein relation which defines the
Jones polynomial. In arriving at this skein relation, we
retrace the connection between Wilson loops in Chern-
Simons theory and knot invariants made by Witten
(1989). In this paper, Witten showed that correlation
functions of Wilson loop operators in SU(2), Chern-
Simons theory are equal to corresponding evaluations of
the Jones polynomial, which is a topological invariant of
knot theory (Jones, 1985):
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fDa W, anlal "'Wyn,(l/z)[a]eiscs[a]Z Vi(g). (74)

V1(q) is the Jones polynomial associated with the link
L=vy,U--- Uy, evaluated at g=—e™**? using the skein
relation (73). Note that we assume here that all quasi-
particles transform under the j:% representation of
SU(2). The other quasiparticle types can be obtained
through the fusion of several j=1/2 quasiparticles, as
discussed in Sec. III.C.2.

2. Combinatorial evaluation of link invariants and
quasiparticle properties

The Jones polynomial (Jones, 1985) V;(g) is a formal
Laurent series in a variable g which is associated with a
link L=y, U+ U y,. It can be computed recursively us-
ing Eq. (73). We illustrate how this is done by showing
how to use a skein relation to compute a related quan-
tity called the Kauffman bracket K;(q) (Kauffman,
1987), which differs from the Jones polynomial by a nor-
malization:

Vi(q) = () (- ¢"*)""K, (q), (75)

where w(L) is the writhe of the link. (The Jones polyno-
mial is defined for an oriented link. Given an orienta-
tion, each crossing can be assigned a sign +1; the writhe
is the sum over all crossings of these signs.) The link L
embedded in three-dimensional space (or, rather, three-
dimensional space-time in our case) is projected onto
the plane. This can be done faithfully if we are careful to
mark overcrossings and undercrossings. Such a projec-
tion is not unique, but the same Kauffman bracket is
obtained for all possible 2D projections of a knot (we
will see an example of this below). An unknotted loop O
is given the value Ko(q)=d=-q—q '=2cos w/(k+2).
For notational simplicity, when we draw a knot, we ac-
tually mean the Kauffman bracket associated to this
knot. Hence we write

O-¢ (76)

The disjoint union of n unknotted loops is assigned the
value d".

The Kauffman bracket for any given knot can be ob-
tained recursively by repeated application of the follow-
ing skein relation which relates it with the Kauffman
brackets for two knots, both of which have one fewer
crossing according to the rule:

With this rule, we can eliminate all crossings. At this
point, we are left with a linear combination of the Kauff-
man brackets for various disjoint unions of unknotted
loops. Adding up these contributions of the form d”
with their appropriate coefficients coming from the re-
cursion relation (77), we obtain the Kauffman bracket
for the knot with which we started.

+ q71/2 v '
e (77)
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FIG. 5. The Kauffman bracket is invariant under continuous
motions of the arcs and therefore independent of the particu-
lar projection of a link to the plane.

We see how this works with a simple example. First,
consider the two arcs that cross twice in Fig. 5. We as-
sume that these arcs continue in some arbitrary way and
form closed loops. By applying the Kauffman bracket
recursion relation in Fig. 5, we see that these arcs can be
replaced by two arcs which do not cross.

In Sec. I1.C.3, we use these methods to evaluate some
matrix elements relevant to interference experiments.

Now, we consider the two fusion channels of a pair of
quasiparticles in detail. When the two quasiparticles fuse
to the trivial particle, as 1 and 2 did above, we depict
such a state, which we call |0), as 1/ V’E times the state
yielded by the functional integral (62) with a Wilson line
that looks like U because two quasiparticles which are
created as a pair out of the ground state must necessarily
fuse to spin O if they do not braid with any other par-
ticles. (The factor 1/+d normalizes the state.) Hence we
project any two quasiparticles onto the j=0 state by
evolving them with a history which looks like

1V
H() — E .
A (78)

On the right-hand side of this equation, we mean a func-
tional integral between two times #; and #,. The func-
tional integral has two Wilson lines in the manner indi-
cated pictorially. On the left-hand side, we suggest that
evolving a state through this history can be viewed as
acting on it with the projection operator IT,=[0)0|.

However, the two quasiparticles could instead be in
the state |1), in which they fuse to form the j=1 particle.
Since these states must be orthogonal, (01)=0, we must
get identically zero if we follow the history (78) with a
history that defines a projection operator II; onto the j
=1 state:

1V

m- || -1

4N (79)

It is easy to see that, if this operator acts on a state

which is given by a functional integral that looks like U,
the result is zero.

The projection operators 1y, II;, which are called

Jones-Wenzl projection operators, project a pair of a
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@ R '

FIG. 6. The elements of the F matrix obtained by computing
matrix elements between kets in which 1 and 2 have a definite
fusion channel and bras in which 1 and 4 have a definite fusion
channel.

quasiparticles onto the two natural basis states of their
qubit. In other words, we do not need to introduce new
types of lines in order to compute the expectation values
of Wilson loops carrying j=0 or 1. We can denote them
with pairs of lines projected onto either of these states.
Recall that a j=1/2 loop had amplitude d, which was the
quantum dimension of a j=1/2 particle. Using the pro-
jection operator (79), we see that a j=1 loop has ampli-
tude d?>~1 (by connecting the top of the line segments to
the bottom and evaluating the Kauffman bracket).
One can continue in this way to construct projection
operators which project m lines onto j=m/2. This pro-
jection operator must be orthogonal to the j
=0,1,3/2,2,...,(m—1)/2 projection operators acting on
subsets of the m lines, and this condition is sufficient to
construct all Jones-Wenzl projection operators recur-
sively. Similarly, the quantum dimensions can be com-
puted through a recursion relation. At level k, we find
that quasiparticles with j>k/2 have quantum dimen-
sions which vanish identically (e.g., for k=1, d=1 so the
quantum dimension of a j=1 particle is d>~1=0). Con-
sequently, these quasiparticle types do not occur. Only
j=0,1/2,...,k/2 occur.

The entries in the F matrix can be obtained by graphi-
cally computing the matrix element between a state in
which, for instance, 1 and 2 fuse to the vacuum and 3
and 4 fuse to the vacuum and a state in which 1 and 4
fuse to the vacuum and 2 and 3 fuse to the vacuum,
which is depicted in Fig. 6(a). (The matrix element in
this figure must be normalized by the norms of the top
and bottom states to obtain the F-matrix elements.) To
compute the matrix element between a state in which 1
and 2 fuse to the vacuum and 3 and 4 fuse to the vacuum
and a state in which 1 and 4 fuse to j=1 and 2 and 3 fuse
to j=1, we compute the diagram in Fig. 6(b). For k=2,
we find the same F matrix as for Ising anyons in Sec.
I1L.B.

We now consider the ground state properties of the
SU(2), theory on the torus. As above, we integrate the
Chern-Simons Lagrangian over a three-manifold M
with boundary 2, i.e., M =2, X (-%,0], in order to obtain
a t=0 state. The boundary %, is the spatial slice at t=0.
For the torus, 3 =72, we take M to be the solid torus,
M=5'%D?, where D? is the disk. By foliating the solid
torus, we obtain earlier spatial slices. If there are no
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(a)

(©)

FIG. 7. Chern-Simons theory on the torus. (a) Different de-
generate ground states on the torus are given by performing
the functional integral with longitudinal Wilson loops carrying
spin j=0,1/2,...,k/2. (b) Meridional Wilson loops are con-
tractible; they do not give new ground states. (c) The corre-
sponding bras have Wilson lines in the exterior solid torus. (d)
S-matrix elements are given by evaluating the history obtained
by combining a bra and ket with their linked Wilson lines.

quasiparticles, then there are no Wilson lines terminat-
ing at 3. However, the functional integral can have Wil-
son loops in the body of the solid torus as in Fig. 7(a).
These correspond to processes in the past, <0, in which
a quasiparticle-quashole pair was created, taken around
the meridian of the torus and annihilated. The Wilson
loop can be in any of the k+1 allowed representations
j=0,1/2,...,k/2; in this way, we obtain k+1 ground
state kets on the torus (we show shortly that they are all
linearly independent). Wilson loops around the meridian
are contractible [Fig. 7(b)], so they can be evaluated by
taking their Kauffman bracket; they multiply the state
by d;. Evidently, these Wilson loop operators are diago-
nal in this basis. Bras can be obtained by integrating the
Chern-Simons Lagrangian over the three-manifold M’
=3 X[0,%)=5°\S! X D2, i.e., the exterior of the torus.
Wilson loops in the exterior torus are now contractible if
they are parallel to a longitude but nontrivial if they are
around the meridian, as shown in Fig. 7(c). Again, we
obtain k+1 ground state bras in this way. The matrix
elements between these bras and kets (appropriately
normalized such that the matrix product of a bra with its
conjugate ket is unity) are the entries in the S matrix,
which is precisely the basis change between the longitu-
dinal and meridional bases. A matrix element can be
computed by evaluating the corresponding picture. The
ab entry in the § matrix is given by evaluating the Kauft-
man bracket of the picture in Fig. 7(d) (and dividing by
the normalization of the states). This figure makes the
relationship between the S matrix and braiding clear.
Finally, we comment on the difference between
SU(2), and Ising anyons, which we have previously de-
scribed as differing only slightly from each other (see
also the end of Sec. IIL.LE). The effective field theory for
Ising anyons contains an additional U(1) Chern-Simons
gauge field, in addition to an SU(2), gauge field (Fradkin
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et al., 1998, 2001). The consequences of this difference
are that ®,=¢"™"® while @;,=¢7>"8; R{7=¢"™"8 while
R(1)/2,1/2:_e—37ri/8; Rzoze37ri/8 while R}/2,1/2:em'/8; [Fgcro]ab
=—[F}3"*17],,. The rest of the F matrices are the same,
as are the fusion multiplicities N, and the S matrix. In
other words, the basic structure of the non-Abelian sta-
tistics is the same in the two theories, but there are some
minor differences in the U(1) phases which result from
braiding. Both theories have threefold ground state de-
generacy on the torus; the Moore-Read Pfaffian state
has ground state degeneracy 6 because of an extra U(1)
factor corresponding to the electrical charge degrees of
freedom.

Of course, in the k=2 case we already obtained these
results by the method of the previous section. However,
this approach has two advantages: (i) once Witten’s re-
sult (74) and Kauffman’s recursion relation (77) are ac-
cepted, braiding matrix elements can be obtained by
straightforward high-school algebra; (ii) the method ap-
plies to all levels k, unlike free Majorana fermion meth-
ods, which apply only to the k=2 case. There is an added
bonus, which is that this formalism is closely related to
the techniques used to analyze lattice models of topo-
logical phases, discussed in a later section.

D. Chern-Simons theory, conformal field theory, and
fractional quantum Hall states

1. The relation between Chern-Simons theory and conformal
field theory

Now, we consider Chern-Simons theory in a particular
gauge, namely, the holomorphic gauge (to be defined
below). The ground state wave function(s) of Chern-
Simons theory can be obtained by performing the func-
tional integral from the distant past, t=—%, to time =0
as in the previous section:

0
HAKx)] = Da(x,t)exp(f dtf d2x£CS>.
a(x,0)=A(x) —o© 3
(80)

For the sake of concreteness, we consider the torus X
=T? for which the space-time manifold is M =(-%,0]
X T?=S8'X D?. We assume that there are no Wilson
loops (either contained within the solid torus or termi-
nating at the boundary). If x and y are coordinates on
the torus (the fields will be subject to periodicity require-
ments), we write z=x+i7y. We can then change to coor-
dinates z and 7 and, as usual, treat a7 and a% as indepen-
dent variables. Then we take the holomorphic gauge
a3=0. The field a? only appears in the action linearly, so
the functional integral over a% may be performed, yield-
ing a § function:
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k 2
128 — b
fDa eXpL‘ﬂ'J’Dszl " (afﬁ,ﬂ?\ + 3fabcazavai>:|

= f Daﬁ(ﬁ-})exp((k/%r)

o eija;’&zaf> , (81
X

where i,j=t,z. Here j‘g:r?ia;?—r?ja?+ieqbga?a§’ are the spa-

tial components of the field strength. There are no other
cubic terms in the action once a; has been eliminated (as
is the case in any such gauge in which one of the com-
ponents of the gauge field vanishes). The constraint im-
posed by the & function can be solved by taking

al=9,UU™", (82)

where U is a single-valued function taking values in the
Lie group. Substituting this into the right-hand side of
Eq. (81), we find that the action which appears in the
exponent in the functional integral takes the form

ok
dw ) pavg

k

4w ) pryst

+tr(qUU ' U3;U )]

étr[g,UU ' 9(;UU™)]

elf[tr(ﬂlUU_lz?gz?jUU_l)

_ L i gte(a.U-La-
g szs16’[é’]tr(<?,U 9.U)

+tr(z9iUU_1c9jUﬂiU_])]
k

=— J tr(9,U19:U)
477 T2

k A -1 -1 -1
+ e'r(9, UU 9,UU " UU™).
127 J p2y gt

(83)

The Jacobian which comes from the & function 5(f?j) is
canceled by that associated with the change of integra-
tion variable from Da to DU. In the final line, the first
term has been integrated by parts while the second term,
although it appears to be an integral over the 3D mani-
fold, depends only on the boundary values of U (Wess
and Zumino, 1971; Witten, 1983). This is the Wess-
Zumino-Witten (WZW) action. What we learn from Eq.
(83), then, is that, in a particular gauge, the ground state
wave function of (2+1)D Chern-Simons theory can be
viewed as the partition function of a (2+0)-dimensional
WZW model.

For positive integer k, the WZW model is a 2D con-
formal field theory which, in the SU(2) case, has Vira-
soro central charge c=c=3k/(k+2). (For a review of
some of the basics of conformal field theory, see the Ap-
pendix and references therein.) However, in computing
properties of the Chern-Simons theory from which we
have derived it, we couple only to a,=d,U-U™'; i.e., only
to the holomorphic or right-moving sector of the theory.
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Thus it is the chiral WZW model which controls the
ground state wave function(s) of Chern-Simons theory.

If we follow the same strategy to calculate the Chern-
Simons ground state wave function with Wilson lines or
punctures present, then we end up with a correlation
function of operators in the chiral WZW model trans-
forming under the corresponding representations of
SU(2). (Strictly speaking, it is not a correlation function,
but a conformal block, which is a chiral building block
for a correlation function. While correlation functions
are single valued, conformal blocks have the nontrivial
monodromy properties that we need, as discussed in the
Appendix.) Therefore following Elitzur et al. (1989) and
Witten (1989), we have mapped the problem of comput-
ing the ground state wave function (in 2+0 dimensions)
of Chern-Simons theory, which is a topological theory
with a gap, to the problem of computing a correlation
function in the chiral WZW model (in 1+1 dimensions),
which is a critical theory. This is a bit peculiar since one
theory is gapped while the other is gapless. However, the
gapless degrees of freedom of the WZW model for the
t=0 spatial slice are pure gauge degrees of freedom for
the corresponding Chern-Simons theory. [In the similar
situation of a surface 3 with boundary, however, the cor-
responding conformally invariant (1+1)D theory de-
scribes the actual dynamical excitations of the edge of
the system, as discussed in Sec. ITL.E.] Only the topologi-
cal properties of the chiral WZW conformal blocks are
physically meaningful for us.

More complicated topological states with multiple
Chern-Simons fields and, possibly, Higgs fields (Fradkin
et al., 1998, 1999, 2001) correspond in a similar way to
other chiral rational conformal field theories (RCFTs)
which are obtained by tensoring or cosetting WZW
models. (RCFTs are those CFTs that have a finite num-
ber of primary fields—see the Appendix for the defini-
tion of a primary field—under some extended chiral al-
gebra which envelopes the Virasoro algebra; a Kac-
Moody algebra in the WZW case; and, possibly, other
symmetry generators.) Consequently, it is possible using
algebraic techniques of rational conformal field theory
to compute the ground state wave functions for a large
class of topological states of matter. The quasiparticles
of the topological state correspond to the primary fields
of the chiral RCFT. (It is a matter of convenience
whether one computes correlation functions with a pri-
mary field or one of its descendants since their topologi-
cal properties are the same. This is a freedom which can
be exploited, as described below.)

The conformal blocks of an RCFT have one property
that is particularly useful for us, namely, they are holo-
morphic functions of the coordinates. This makes them
excellent candidate wave functions for quantum Hall
states. We identify primary fields with quasiparticles of
the quantum Hall state, and compute the corresponding
conformal block. However, there is one important issue
that must be resolved: a quantum Hall wave function is
normally viewed as a wave function for electrons (qua-
siparticle positions, by contrast, are usually viewed as
collective coordinates specifying a given excited state).
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Where are electrons in our RCFT? Electrons have
trivial braiding properties. When one electron is taken
around another, the wave function is unchanged, except
for a phase change which is an odd integral multiple of
2. More importantly, when any quasiparticle is taken
around an electron, the wave function is unchanged
apart from a phase change that is an integral multiple of
2. Therefore the electron must be a descendant of the
identity. In other words, the RCFT must contain a fer-
mionic operator by which we can extend the chiral alge-
bra. This new symmetry generator is essentially the elec-
tron creation operator—which is therefore a descendant
of the identity under its own action. Not all RCFTs have
such an operator in their spectrum, so this is a strong
constraint on RCFTs which can describe quantum Hall
states. If we are interested, instead, in a quantum Hall
state of bosons, as could occur with ultracold bosonic
atoms in a rotating optical trap (Cooper et al., 2001),
then the RCFT must contain a bosonic field by which we
can extend the chiral algebra.

A RCFT correlation function of N, electron operators
therefore corresponds to the Chern-Simons ground state
wave function with N, topologically trivial Wilson lines.
From a purely topological perspective, such a wave func-
tion is as good as a wave function with no Wilson lines,
so the Wilson lines would seem superfluous. However, if
the descendant field which represents the electron op-
erator is chosen cleverly, then the wave function with N,
Wilson lines may be a “good” trial wave function for
electrons in the quantum Hall regime. Indeed, in some
cases, one finds that these trial wave functions are the
exact quantum Hall ground states of simple model
Hamiltonians (Greiter et al., 1991; Moore and Read,
1991; Blok and Wen, 1992; Wen and Wu, 1994; Ardonne
and Schoutens, 1999; Read and Rezayi, 1999). In the
study of the quantum Hall effect, however, a wave func-
tion is good if it is energetically favorable for a realistic
Hamiltonian, which is beyond the scope of the underly-
ing Chern-Simons theory, which itself knows only about
braiding properties. It is unexpected that the trial wave
functions obtained from Chern-Simons theory are often
found to be good from this energetic perspective, which
is a reflection of how highly constrained quantum Hall
wave functions are, and how central these braiding prop-
erties are to their physics. We emphasize, however, that
a wave function obtained in this way will not be the
exact ground state wave function for electrons with Cou-
lomb interactions. In some cases it might not even have
particularly high overlap with the ground state wave
function, or have good energetics. The one thing that it
does capture is the topological structure of a particular
universality class.

2. Quantum Hall wave functions from conformal field theory

Ideally, the logic that would lead us to a particular
RCFT would be as follows, as displayed in Fig. 8. One
begins with the experimental observation of the quan-
tized Hall effect at some filling fraction v (shown at the
top). We know that the Hamiltonian for the system is
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2D Electrons in B field:

Observation of FQHE %erics

Trial Wavefunctions
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Low Energy Theory

FIG. 8. How one arrives at a low-energy theory of the quan-
tum Hall effect. At the top, one begins with the experimental
observation of the quantized Hall effect. At the bottom, we
know the low-energy theory should be of Chern-Simons form.
One would like to be able to “integrate out” high-energy de-
grees of freedom directly to obtain the low-energy theory, as
shown by the dotted line, but must instead take a more circui-
tous route.

simply that of 2D electrons in a magnetic field, and at
the bottom we know the form of the low-energy theory
should be of Chern-Simons form. One would like to be
able to “integrate out” high-energy degrees of freedom
directly to obtain the low-energy theory. Given the low-
energy Chern-Simons effective field theory, one can pass
to the associated RCFT, as described above. With the
RCFT in hand, one can construct wave functions, as de-
scribed below. Indeed, such a procedure has been
achieved for Abelian quantum Hall states (Zhang et al.,
1989; Lopez and Fradkin, 1991). In some special non-
Abelian cases, progress in this direction has been made
(Wen, 1991b, 1999).

For most non-Abelian theories, however, the situation
is not so simple. The RCFT is obtained through inspired
guesswork (Moore and Read, 1991; Blok and Wen, 1992;
Ardonne and Schoutens, 1999; Read and Rezayi, 1999;
Cappelli et al., 2001; Simon, Rezayi, Cooper, et al., 2007).
One may try to justify it ex post facto by solving for the
properties of quasiholes of a system with some unrealis-
tic (e.g., involving three-body or higher interactions) but
soluble Hamiltonian. The degeneracy can be established
by counting (Nayak and Wilczek, 1996; Read and
Rezayi, 1996; Read, 2006). The braiding matrices can be
obtained by numerically computing the Berry integrals
for the given wave functions (Tserkovnyak and Simon,
2003) or by using their connection to conformal field
theory to deduce them (Moore and Read, 1991; Nayak
and Wilczek, 1996; Gurarie and Nayak, 1997; Slinger-
land and Bais, 2001). One can then deduce the Chern-
Simons effective field theory of the state either from the
quasiparticle properties or from the associated confor-
mal field theory with which both it and the wave func-
tions are connected.
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We now show how such wave functions can be con-
structed through some examples. In the Appendix, we
review some rudiments of conformal field theory.

a. Wave functions from CFTs

Our goal is to construct a LLL. FQH wave function
W(zy,...,zy) Which describes an electron fluid in a cir-
cular droplet centered at the origin. ¥ must be a homo-
geneous antisymmetric analytic function of z,’s, indepen-
dent of z;’s apart from the Gaussian factor, which we
frequently ignore (see Sec. I1.C.1). If we consider the
FQHE of bosons, we need W to instead be symmetric.
The filling fraction » of a FQH wave function ¥ is given
by v=N/Ng, where N is the number of electrons and Ng,
is the number of flux quanta penetrating the droplet
(Prange and Girvin, 1990). In the LLL, Ng is given by
the highest power of z occurring in V.

We also frequently need the fact that in an incom-
pressible state of filling fraction v, multiplying a wave
functon by a factor I1,(z;—w)™ pushes a charge vm away
from the point w. This can be understood (Laughlin,
1983) as insertion of m flux quanta at the point w, which
via Faraday’s law creates an azimuthal electric field,
which then via the Hall conductivity transfers charge vm
away from the point w.

Our strategy will be to choose a particular chiral
RCFT, pick an “electron” field ¢, in this theory (which,
by the reasoning given above, must be a fermionic gen-
erator of the extended chiral algebra of the theory), and
write a ground state trial wave function Wy for N elec-
trons as

\I,gs = <¢e(zl) t lpe(ZN»- (84)

The field ¢, must be fermionic since the quantum Hall
wave function on the left-hand side must be suitable for
electrons. Not all RCFTs have such a field in their spec-
trum, so this requirement constrains our choice. This re-
quirement also ensures that we obtain a wave function
which has no branch cuts; in particular, there will only be
one conformal block on the right-hand side of Eq. (84).
We must do a little more work in choosing , so that
there are no poles either on the right-hand side of Eq.
(84). As discussed above, the correlation function on the
right-hand side of Eq. (84) is a ground state wave func-
tion of Chern-Simons theory with N, trivial topological
charges at fixed positions z;,25,...,2n -

Of course, there is not a unique choice of RCFT, even
at a given filling fraction. Therefore there are different
fractional quantum Hall states that can be constructed in
this way. Which fractional quantum Hall state is ob-
served at a particular v is determined by comparing the
energies of the various possible competing ground
states. Having a good wave function is, by itself, no guar-
antee that this wave function describes the physical sys-
tem. Only a calculation of its energy gives real evidence
that it is better than other possible states.

The reason for introducing this complex machinery
simply to construct a wave function becomes clearer
when we consider quasihole wave functions, which are
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Chern-Simons ground state wave functions with N,
trivial topological charges and N, nontrivial topological
charges. In general, there are many possible quasihole
operators, corresponding to the different primary fields
of the theory, so we must consider Ngpi, Ny, --- > Nghm
numbers of quasiholes if there are m primary fields.
Each different primary field corresponds to a different
topologically distinct type of “defect” in the ground
state. (As in the case of electrons, we are free to choose
a descendant field in place of the corresponding primary
field since the two have identical topological properties
although the wave function generated by a descendant
will be different from that generated by its primary.)
Suppose that we focus attention on a particular type of
quasiparticle which, in most cases, will be the quasipar-
ticle of minimal electrical charge. Then we can write a
wave function with quasiholes at positions wy,...,w,, as

\I'(Wl Tt WM) = <¢qh(W1) Tt lzbqh(WM) lﬂe(Zl) T we(ZN»a
(85)

where ¢, is the corresponding primary field. Since ¢, is
a primary field and ¢, is a descendant of the identity, we
are guaranteed that ¢, and ¢, are local with respect to
each other, i.e., taking one field around another can only
produce a phase that is a multiple of 2. Consequently,
the wave function ¥ remains analytic in the electron
coordinates z; even after the fields ¢g(w1): - gn(war)
have been inserted into the correlation function.

One important feature of the conformal block on the
right-hand side of Eq. (85) is that yy,(w,) and #,(z;) are
on roughly the same footing—they are both fields in
some conformal field theory (or, equivalently, they are
both fixed sources coupled to the Chern-Simons gauge
field). However, when intepreted as a wave function on
the left-hand side of Eq. (85), the electron coordinates z;
are the variables for which the wave function gives a
probability amplitude while the quasihole coordinates
w, are merely some parameters in this wave function. If
we normalize the wave function differently, we multiply
by an arbitrary function of the w,’s. However, the par-
ticular normalization that is given by the right-hand side
of Eq. (85) is particularly convenient, as shown shortly.
Note that since the quasihole positions w; are merely
parameters in the wave function, the wave function need
not be analytic in these coordinates.

b. Quasiparticle braiding

The branch cuts in quasihole positions w, are due to
the fact that there may be a vector space of conformal
blocks corresponding to the right-hand side of Eq. (85).
In such a case, even when the quasihole positions are
fixed, there are several possible linearly independent
wave functions. These multiple degenerate states are
necessary for non-Abelian statistics, and they will ge-
nerically mix when the quasiholes are dragged around
each other.

However, there is still a logical gap in the above rea-
soning. The wave functions produced by a RCFT have
the correct braiding properties for the corresponding
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Chern-Simons ground state wave function built into
them through their explicit monodromy properties. As a
result of the branch cuts in the conformal blocks as a
function of w,’s, when one quasihole is taken around
another, the wave function ¥® transforms into M W~
where the index a=1,2,...,g runs over the g different
degenerate n-quasihole states. However, when viewed as
quantum Hall wave functions, their quasiparticle braid-
ing properties are a combination of their explicit mono-
dromy and the Berry matrix which is obtained from

eYap="P exp<§ dﬁ(\lf"W‘; ‘I"B>> S (86)

where V¢, a=1,2,...,g, are the g different degenerate
n-quasihole states and P is the path-ordering symbol. In
this equation, z;’s are integrated over in order to com-
pute the inner product, but w,’s are held fixed, except
for the one that is taken around some loop.

Strictly speaking, the effect of braiding is to transform
a state according to W — e!%sMP¥7, By changing the
normalization of the wave function, we can alter e!¥es
and MP”. Only the product of the two matrices on the
right-hand side of this equation is gauge invariant and
physically meaningful. When we presume that the braid-
ing properties of this wave function are given by those of
the corresponding CFT and Chern-Simons theory, we
take it to be equal to MP? and ignore e'?e8, This can be
correct only if vy, vanishes up to a geometric phase pro-
portional to the area for a wave function given by a CFT
conformal block. In the case of the Laughlin states, it
can be verified that this is indeed correct by repeating
the Arovas-Schrieffer-Wilczek, calculation (Arovas et
al., 1984) with the Laughlin state normalized according
to the quasihole position dependence given by the cor-
responding CFT (see below) (Blok and Wen, 1992). This
calculation rests upon Laughlin’s plasma analogy (1983).
For other, more complex states, it is more difficult to
compute the Berry matrix. A version of a plasma anal-
ogy for the Moore-Read (MR) Pfaffian state was con-
structed in Gurarie and Nayak (1997); one could thereby
verify the vanishing of the Berry matrix for a two-
quasihole state and, with some further assumptions, for
four and higher multiquasihole states. A direct evalua-
tion of the integral in Eq. (86) by the Monte Carlo
method (Tserkovnyak and Simon, 2003) established that
it vanishes for MR Pfaffian quasiholes. The effect of
Landau level mixing on statistics has also been studied
(Simon, 2008). Although there has not been a complete
proof that the CFT Chern-Simons braiding rules are
identical to those of the wave function, when it is inter-
preted as an electron wave function [i.e., there has not
been a complete proof that Eq. (86) vanishes when the
wave function is a CFT conformal block], there is evi-
dence for the MR Pfaffian state, and it is almost cer-
tainly true for many other states as well. We therefore
take it as a given that we can simply read off the braid-
ing properties of the wave functions constructed below.
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c. The Laughlin state

We now consider wave functions generated by the
simplest CFT, the chiral boson. Suppose that the chiral
boson has compactification radius \%, so that ¢=¢
+2m/m. The U(1) Kac-Moody algebra and enveloping
Virasoro algebra can be extended by the symmetry gen-
erator ¢/, Since the dimension of this operator is 7/2,
it is fermionic for odd m and bosonic for even m. The
primary fields of this extended chiral algebra are of the
form e™#"™ with n=0,1,...,m—1. They are all of the
fields that are not descendants and are local with respect
to ¢» (and to the Kac-Moody and Virasoro genera-
tors), as may be seen from the operator product expan-
sion (OPE) (see the Appendix):

ei(b(z)\%eind)(())/\% ~ " ei(mmm(o)/\% 4o (87)

When z is taken around the origin, the right-hand side is
unchanged. It is convenient to normalize the U(1) cur-
rent as j=(1/\Vm)d¢; then the primary field ¢”#"™ has
charge n/m. We take ,=e/®™ as our electron field
(which has charge 1) and consider the resulting ground
state wave function according to Eq. (84). Using Eq.
(A7) we find

\I,gs =(We(z1) - elzn)) = ]._[ (z;- Zj)m- (88)
i<j
It is now clear why we have chosen this CFT. To have
W, given by correlators of a vertex operator of the form
€'“¢? analytic (no branch cuts or poles) we must have a?
=m a nonnegative integer, and m must be odd to obtain
an antisymmetric wave function (or even for symmetric).
We recognize WV, as the v=1/m Laughlin wave function.
The astute reader will notice that the correlator in Eq.
(88) violates the neutrality condition discussed in the
Appendix and so it should actually have zero value. One
fix for this problem is to insert (by hand) into the cor-
relator a neutralizing vertex operator at infinity,
e IN#z==)im  \which then makes Eq. (88) valid (up to a
contant factor). Another approach is to insert an opera-
tor that smears the neutralizing background over the en-
tire system (Moore and Read, 1991). This approach also
results in the neglected Gaussian factors reappearing.
We ignore these neutralizing factors for simplicity. From
now on, we drop the Gaussian factors from quantum
Hall wave functions, with the understanding that they
result from including a smeared neutralizing back-
ground.
The quasihole operator must be a primary field; the
primary field of minimum charge is ¢/#\". Using Eq.
(A7), Eq. (85) yields

M N M
W(wy, ..., wy) = H (w; - W;)l/mH H (z;— Wj)q’gs-

i<j i=1 j=1
(89)

As mentioned above, the factor Il(z;-w) “pushes”
charge away from the position w, leaving a hole of
charge precisely Q= +e¢/m. The first term on the right of
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Eq. (89) results from the fusion of quasihole operators
with each other, and shows the fractional statistics of the
quasiholes. Adiabatically taking two quasiholes around
each other results in a fractional phase of 27/m. This
statistical term appears automatically in the wave func-
tion given by this CFT.

d. Moore-Read Pfaffian state

In the Ising CFT (see the Appendix), we use i(z) as
the electron field (Moore and Read, 1991). The ¢ fields
can fuse together in pairs to give the identity (since ¢
X ¢y=1) so long as there are an even number of fields.
However, when we take two ¢ fields close to each other,
the OPE tells us that

lim #(z;) lﬂ(Zj) ~1(z; - Zj) (90)
ZiﬂZj
which diverges as z;—z; and is therefore unacceptable
as a wave function. To remedy this problem, we tensor
the Ising CFT with the chiral boson CFT. There is now
an operator e'®™ by which we can extend the chiral
algebra. (If m is even, this symmetry generator is fermi-
onic; if m is odd, it is bosonic.) As before, we take this
symmetry generator to be our electron field. The corre-
sponding primary fields are of the form e™®\m,
gel@m)d2im and  yendm  where n=0,1,...,m—1.
Again, these are determined by the requirement of lo-
cality with respect to the generators of the chiral alge-
bra, i.e., that they are single valued when taken around a
symmetry generator, in particular the electron field
Ye'®™. For instance,
Wz) ei¢(z)\% o(0) £l 2n1)(0)2 \m
- Z-l/za(o)znn/2ei[2(n+m)+1]¢(0)/\%+
_ ZnO_(O)ei[z(n+m)+1]¢>(0)/\%’ (91)
and similarly for the other primary fields.
Using our new symmetry generator as the electron

field, we obtain the ground state wave function accord-
ing to Eq. (84):

\I}gs =(lzy) -+ l/’(ZN»H (z;- Zj)m

i<j

= Pf( ! )H (Zi - Zj)m (92)

Zi— Zj/ i<y

[see, e.g., Di Francesco et al. (1997) for calculation of this
correlation function]. Here, m even gives an antisym-
metric wave function and m odd gives a symmetric wave
function. For m=2 (and even N), Eq. (92) gives the
Moore-Read Pfaffian wave function [Eq. (43) with g
=1/z and two Jastrow factors attached].

To determine the filling fraction of our newly con-
structed wave function, we need only look at the expo-
nent of the Jastrow factor in Eq. (92). Recall that the
filling fraction is determined by the highest power of any
z (see Sec. III.D.1). There are m(N-1) factors of z; in
the Jastrow factor. The Pfaffian has a factor of z; in the
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denominator, so the highest power of z; is m(N-1)-1.
However, in the thermodynamic limit, the number of
factors scales as mN. Thus the filling fraction is v=1/m.

We now consider quasihole operators. As in the
Laughlin case we consider the primary fields g,
=e™?"_Similar arguments as in the Laughlin case show
that the n=1 case generates the Laughlin quasihole of
charge Q=+e/m. However, we have other options for
our quasihole, which have smaller electrical charge. The
primary field oe’#*" has charge Q=+e/2m. We then
obtain the wave function according to Eq. (85),

W(wy, ..., wy) =(a(wy) - o(w,)flz1) - lzn))
M
X H (Wi _ Wj)1/2m
i<j

N M N
<ITTI (z;- W_,')UZH (zi=2z)™. (93)

i=1 j=1 i<j

Using the fusion rules of the o fields [see Eq. (7), as
well as Fig. 22 and Table II in the Appendix], we see that
it is impossible to obtain 1 from an odd number of o
fields. We conclude that quasiholes ¢, can only occur in
pairs. Then consider the simplest case of two quasiholes.
If there is an even number of electrons, the  fields fuse
in pairs to form 1, and the remaining two quasiholes
must fuse to form 1 also. As discussed in Eq. (A3) the
OPE of the two o fields will then have a factor of (w;
—w,)"8. In addition, the fusion of the two vertex opera-
tors e/?2\" results in the first term in the second line of
Eq. (93), (w;—w,)"*"_ Thus the phase accumulated by
taking the two quasiholes around each other is —27/8
+2m/4m.

On the other hand, with an odd number of electrons
in the system, ¢’s fuse in pairs, but leave one unpaired .
The two ¢’s must then fuse to form a ¢ which can then
fuse with the unpaired ¢ to give the identity [see Eq.
(A3)]. In this case, the OPE of the two o fields will give
a factor of (w;—w,)*%. Thus the phase accumulated by
taking the two quasiholes around each other is 67/8
+2/4m.

In the language of Sec. III.B, when there is an even
number of electrons in the system, all of these are paired
and the fermion orbital shared by the quasiholes is un-
occupied. When an odd electron is added, it “occupies”
this orbital, although the fermion orbital is neutral and
the electron is charged (we can think of the electron’s
charge as screened by the superfluid).

When there are many quasiholes, they may fuse to-
gether in many different ways. Thus even when the
quasihole positions are fixed there are many degenerate
ground states, each corresponding to a different confor-
mal block (see the Appendix). This degeneracy is pre-
cisely what is required for non-Abelian statistics. Braid-
ing the quasiholes around each other produces a
rotation within this degenerate space.

Fusing 2m o fields results in 2”~! conformal blocks, as
seen by examining the Bratteli diagram of Fig. 22 in the
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Appendix. When two quasiholes come together, they
may fuse to form either 1 or ¢. As above, if they come
together to form 1 then taking the two quasiholes
around each other gives a phase of —27/8+2m/4m. On
the other hand, if they fuse to form ¢ then taking them
around each other gives a phase of 273/8+2m/4m.

These conclusions can be illustrated in the cases of
two and four quasiholes. For the case of two quasiholes,
the correlation function (93) can be evaluated to give
(Moore and Read, 1991; Nayak and Wilczek, 1996) (for
an even number of electrons)

W(wiwy) = 1 (z- z0)?
j<k

(Zj— wi)(zx = wo) + Zjr 2y
<j— 2k

X Pf( ) , (94)

where wi,=w;—w,. For simplicity, we specialize to the
case m=2; in general, there would be a prefactor
(wyp)4"=18 When the two quasiholes at w; and w, are
brought together at the point w, a single-flux-quantum
Laughlin quasiparticle results, since two ¢’s can only

(2 = w1)(zj = w3) (2 = wo) (2 = wy) + (j = k)

fuse to the identity in this case, as expected from the
above arguments:

\pqh(w) = H (Zj - Zk)ZH (z;— W)Pf(

<k i

). (95)
Zj— 2k

The situation becomes more interesting when we con-
sider states with four quasiholes. The ground state is
twofold degenerate (see the Appendix). If there is an
even number of electrons (which fuse to form the iden-
tity), we are then concerned with the {(cooo) correlator.
As discussed in the Appendix, two orthogonal confor-
mal blocks can be specified by whether 1 and 2 fuse to
form either 1 or . The corresponding wave functions

obtained by evaluating these conformal blocks are
(Nayak and Wilczek, 1996)

\I}(l,i//) _ M 7 /_\I, 96
= 1+ \&)],2( (13)(24) £ VX (14)(23)), (96)

where x=w4wy3/wi3woy. [Note that we have taken a
slightly different anharmonic ratio x than in Nayak and
Wilczek, (1996) in order to make Eq. (96) more compact

than Egs. (7.17) and (7.18) of Nayak and Wilczek,
(1996).] In this expression,

W (13)04) = I1 (zj— Zk)ZPf(

j<k =X

and

(zj = wi(z; = wy)(zx = wa)(z = w3) + (j = k)

) 97)

Yapey =11 (z;- zk)sz(

j<k Zj—Zk

Suppose now that the system is in the state WU,
Braiding 1 around 2 or 3 around 4 simply gives a phase
(which is R{” multiplied by a contribution from the Abe-
lian part of the theory). However, if we take w, around
w3, then after the braiding, the system will be in the state
W as a result of the branch cuts in Eq. (96). Now, 1 and
2 will instead fuse together to form ¢, as expected from

TABLE I. Summary of CFT wave-function correspondences
discussed here. In all cases M=0. Odd (even) M represents a
Fermi (Bose) wave function.

State CFT v e Yyn
Laughlin Boson ﬁ i\ M el M

M _ . s . T
Read Ising i et T gl
75 RR 7, parafermion m YO VB g (i dI3M2T)
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) . (98)

the general argument in Eq. (A6). Thus the braiding
yields a rotation in the degenerate space. The resulting
prediction for the behavior under braiding for the
Moore-Read Pfaffian state is in agreement with the re-
sults obtained in Secs. III.B and III.C.

e. 73 Read-Rezayi state (briefly)

We follow a completely analogous procedure with
a CFT which is the tensor product of the Z; parafer-
mion CFT with a chiral boson (see Tables I and II).
As before, the electron operator is a product of a
chiral vertex operator from the bosonic theory with
an operator from the parafermion theory. The simplest
choice is ,=yye'*. We would like this field to be
fermionic so that it can be an electron creation oper-
ator by which we can extend the chiral algebra
(i.e., so that the electron wave function has no
branch cuts or singularities). (See the Appendix for
the notation for parafermion fields.) The fusion rules
for ¢, in the 75 parafermion CFT are ¢4 X ; ~ ¢, but
1 Xy X ~1 so that the correlator in Eq. (84) is
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TABLE II. Conformal data for three CFTs. The primary
fields of each CFT are listed with their conformal dimension as
well as the fusion table and central charge. In addition, every
CFT has an identity field 1 with dimension A=0 which fuses
trivially with any field (1 X ¢;=¢; for any ¢;). Note that fusion
tables are symmetric so only the lower part is given. In the
Ising CFT the field ¢ is frequently denoted as e. This fusion
table indicates the nonzero elements of the fusion matrix N,

For example, in the 73 CFT, since oy X o,=1+¢, N €

(71()'2
=1, and NCl 2—0 for all ¢ not equal to 1 or e.
Chiral Bose Vertex: Ising CFT: (¢ =1/2)
A x || e A |x|v| o

eloed 052/2 et ei(uﬂ‘i)@ W 1/2 W1

o||1/16] |o|lo|1+ ¥

Z3z Parafermion CFT: (¢ = 4/5)

A X || || o1 oo €

il 2/3 | ||

’l;’)g 2/3 ’1’1’)2 1 'd)l

o1 ||1/15] |o1|| € |o2|o2 + ¢

o9||1/15| |og|lor| e | 1+€ |o1+ 4o

e|l2/5 € ||loz|or|o1 +WYaloe + 1|1+ €

only nonzero if N is divisible by 3. From the OPE,
we obtain i(z1)¥(z2) ~ (z1-22)"? ¢, so in order to
have the wave function analytic, we must choose «
=Vym+2/3 with m=0 an integer (m odd results in an
antisymmetric wave function and even results in sym-
metric). The filling fraction in the thermodynamic limit
is determined entirely by the vertex operator /%, result-
ing in v=1/a?=1/(m+2/3).

The ground state wave function for N=3n electrons
takes the form

\Pgs(zl, e aZ3n)
=l -z
i<j
XS{ IT  xos(Zarens oo sZarenZakss - Z3s+3)},
o=r<s<n

(99)

where m must be odd for electrons, S means the sym-
metrization over all permutations, and

Xrs = (Z3r+1 - 13s+1)(Z3r+1 - Z3s+2)(z3r+2 - Z3s+2)

X(23p42 — Z35+1) -

(100)

With the electron operator in hand, we can determine
the primary fields of the theory. The primary field of
minimum electrical charge is ,,=0¢'?3* To see that

73543) *** (23p43 = 23543) (23043 —
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(b)
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FIG. 9. Examples of the Bratelli diagrams. (a) Bratteli diagram
for fusion of multiple o7 fields in the Z; parafermion CFT. (b)
Bratteli diagram for Fibonacci anyons.

this field is local with respect to ¢, (i.e., there should be
no branch cuts for the electron coordinates z;), observe
that o(W)ihy(2)~(z—w)"Py and €7 (w)e'*(2)~ (z

w)!3. Constructing the full wave function [as in Eq.
(85) and analogous to Eq. (93)] the fusion of e/#*® (from
Ygn) With e“® (from ,) generates a factor of II,(z;
—w)!3, We conclude that the elementary quasihole has
charge Q= +ev/3.

The general braiding behavior for the Z; parafermions
has been worked out by Slingerland and Bais (2001). It is
trivial, however, to work out the dimension of the de-
generate space by examining the Bratteli diagram Fig.
9(a) (see the Appendix for explanation of this diagram).
For example, if the number of electrons is a multiple of
3 then they fuse together to form the identity. Then, for
example, with six quasiholes one has five paths of length
5 ending at 1 (hence a five-dimensional degenerate
space). However, if, for example, the number of elec-
trons is 1 mod 3, then electrons fuse in threes to form 1
but there is one ¢; left over. Thus the quasiholes must
fuse together to form ¢, which can fuse with the leftover
Yy to form 1. In this case, for example, with four-
quasiholes there is a two-dimensional space. It is easy to
see that (if the number of electrons is divisible by 3) the
number of blocks with n quasiparticles is given by the
n—1st Fibonacci number, denoted Fib(n—1) defined by
Fib(1)=Fib(2)=1 and Fib(n)=Fib(n—-1)+Fib(n-2) for
n>2.

E. Edge excitations

When a system in a chiral topological phase has a
boundary (as it must in any experiment), there must be
gapless excitations at the boundary (Halperin, 1982;
Wen, 1992). To see this, consider the Chern-Simons ac-
tion on a manifold M with boundary dM (Elitzur et al.,
1989; Witten, 1989), Eq. (24). The change in the action
under a gauge transformation, a,— ga #g’1+ gﬂ#g’l, is

Scslal — Scslal + iJ tr(g~'dg na). (101)
47 ) 4m

In order for the action to be invariant, we fix the bound-
ary condition so that the second term on the right-hand
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side vanishes. For instance, take the boundary condition
(a§)jsp=0, where x, and x; are coordinates on the
boundary of M and x, is the coordinate perpendicular
to the boundary of M. Then the action is invariant un-
der all transformations that respect this boundary condi-
tion, i.e., that satisfy dyg=0 on the boundary. We sepa-
rate these into gauge and global symmetries. Functions
g: M — G satisfying gj;,,=1 are the gauge symmetries of
the theory. (They necessarily satisty dyg=0 since x; is a
coordinate along the boundary.) Meanwhile, functions
fiM— G which are independent of x, are global sym-
metries of the theory. Representations of this global
symmetry form the spectrum of edge excitations of the
theory. The distinction between gauge and global trans-
formations is that a gauge transformation can leave the
t=0 state unchanged while changing the state of the sys-
tem at a later time ¢. Since it is therefore not possible for
a given initial condition to uniquely define the state of
the system at a later time, all physically observable
quantities must be invariant under the gauge transfor-
mation. By contrast, a global symmetry, even if it acts
differently at different spatial points, cannot leave the ¢
=0 state unchanged while changing the state of the sys-
tem at a later time 7. A global symmetry does not pre-
vent the dynamics from uniquely defining the state of
the system at a later time for a given initial condition.
Therefore physically observable quantities need not be
invariant under global transformations. Instead, the
spectrum of the theory can be divided into representa-
tions of the symmetry.

With this boundary condition, the natural gauge
choice for the bulk is af=0. We then transform the
Chern-Simons functional integral into the chiral WZW
functional integral following the steps in Eqs. (81)—(83)
(Elitzur et al., 1989):

k
S=—
4 ) m

tr(aoU_lﬂ] U)

+ L (102)

VA —1 —1 —1
0 Me”“ tr(9,UU"'3,UU " 9, UU™).

Note the off-diagonal form of the quadratic term [analo-
gous to the z—z form in Eq. (83)], which follows from
our choice of boundary condition. This boundary condi-
tion is not unique, however. The topological order of the
bulk state does not determine the boundary condition. It
is determined by the physical properties of the edge.
Consider, for instance, the alternative boundary condi-
tion (af+vaf);sr=0 for some constant v with dimensions
of velocity. With this boundary condition, the quadratic
term in the Lagrangian will now be tr{(dy+vd;) U 6, U]
and the edge theory is the chiral WZW model with non-
zero velocity.

It is beyond the scope of this paper to discuss the
chiral WZW model in any detail (for more details, see
Knizhnik and Zamolodchikov, 1984; Gepner and Witten,
1986; Gepner and Qiu, 1987). However, there are a few
key properties that we list now. The chiral WZW model
is a conformal field theory. Therefore, although there is
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a gap to all excitations in the bulk, there are gapless
excitations at the edge of the system. The spectrum of
the WZW model is organized into representations of the
Virasoro algebra and is further organized into represen-
tations of the G, Kac-Moody algebra. For the sake of
concreteness, we consider the case of SU(2),. The
SU(2), WZW model contains primary fields ¢;, trans-
forming in the j=0,1/2,1,...,k/2 representations.
These correspond to the allowed quasiparticle species:
when the total topological charge of all quasiparticles in
the bulk is j, the edge must be in the sector created by
acting with the spin-j primary field on the vacuum.

The Gj case is a generalization of the U(1),, case,
where g=e'? and the WZW model reduces to a free chi-
ral bosonic theory:

s= f dx(3, + v0,) $dyb. (103)
4

[In Sec. III.A, we used k for the coefficient of an Abe-
lian Chern-Simons term; here we use m to avoid confu-
sion with the corresponding coupling of the SU(2)
Chern-Simons term in situations in which both gauge
fields are present.] The primary fields are e”%, with n
=0,1,...,m—1. (The field ¢™? is either fermionic or
bosonic for m odd or even, respectively, so it is not a
primary field, but is rather included as a generator of an
extended algebra.) A quantum Hall state will always
have such a term in its edge effective field theory; the
U(1) is the symmetry responsible for charge conserva-
tion and gapless chiral excitations (103) carry the quan-
tized Hall current.

Therefore we see that chiral topological phases, such
as fractional quantum Hall states, must have gapless chi-
ral edge excitations. Furthermore, the conformal field
theory that models the low-energy properties of the
edge is the same conformal field theory that generates
ground state wave functions of the corresponding
Chern-Simons action. This is clear from the fact that the
two derivations [Eqgs. (83) and (102)] are virtually iden-
tical. The underlying reason is that Chern-Simons theory
is a topological field theory. When it is solved on a mani-
fold with boundary, it is unimportant whether the mani-
fold is a fixed-time spatial slice or the world sheet of the
system’s edge. In either case, Chern-Simons theory re-
duces to the same conformal field theory (which is an
example of “holography”). One important difference,
however, is that, in the latter case, a physical boundary
condition is imposed and there are real gapless degrees
of freedom. (In the former case, the CFT associated with
a wave function for a fixed-time spatial slice may have
apparent gapless degrees of freedom which are an arti-
fact of a gauge choice, as discussed in Sec. III.D.)

The WZW models do not, in general, have free field
representations. One well-known exception is the
equivalence between the SU(N); X U(1)y chiral WZW
model and N free chiral Dirac fermions. A somewhat
less well-known exception is the SU(2), chiral WZW
model, which has a representation in terms of three free
chiral Majorana fermions. Before discussing this repre-
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sentation, we first consider the edge excitations of a p
+ip superconductor, which supports Ising anyons, which
in turn differ from SU(2), only by a U(1) factor.

We solve the Bogoliubov—-de Gennes Hamiltonian
(38) with a spatially varying chemical potential, as done
in Sec. III.B. However, instead of a circular vortex, we
consider an edge at y=0:

w(y) = Ah(y),

with h(y) large and positive for large y, and h(y) <O for
y<0; therefore the electron density will vanish for y
large and positive. Such a potential defines an edge at
y=0. There are low-energy eigenstates of the BdG
Hamiltonian which are spatially localized near y=0:

(104)

y
58 (x) ~ k¥ CXP(— f h()")d)") ¢o, (105)
0

with (;’)0:(}) an eigenstate of ¢*. This wave function de-
scribes a chiral wave propagating in the x direction lo-
calized on the edge, with wave vector k=FE/A. A more
complete solution of the superconducting Hamiltonian
in this situation would involve self-consistently solving
the BAG equations, so that both the density and the gap
A(y) would vanish for large positive y. The velocity of
the chiral edge mode would then depend on how sharply
h(y) varies. However, the solutions given above with
fixed constant A are sufficient to show the existence of
the edge mode.
If we define an edge fermion operator ¥(x),

y
(x) = eXp(— J h(y’)dy’>
0

X D (de™ by + e gpy).

k>0

The fermion operators i satisfy # =i, so (x)
=3, e’ is a real Majorana field, y(x)=14"(x). The edge
Hamitonian is

ﬂedge = E Unklﬂ/ilﬂk = f dx lﬂ(x)(— ivnax)w(x), (106)

k>0

where the edge velocity v=A. The Lagrangian density
takes the form

'Cfermion = ilﬂ(x)(&z + Unax) lﬂ(x)

The 2D Ising model can be mapped onto the problem
of (nonchiral) Majorana fermions on a lattice. At the
critical point, the Majorana fermions become massless.
Therefore the edge excitations are the right-moving chi-
ral part of the critical Ising model. (This is why the vor-
tices of a p+ip superconductor are called Ising anyons.)
However, the edge excitations have nontrivial topologi-
cal structure for the same reason that correlation func-
tions of the spin field are nontrivial in the Ising model:
while fermions are free, the Ising spin field is nonlocal in
terms of fermions, so its correlations are nontrivial. The
Ising spin field o(z) inserts a branch cut running from

(107)
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Z=v,x+it to infinity for the fermion ¢. This is precisely
what happens when a flux-(hc/2e) vortex is created in a
p+ip superconductor.

The primary fields of the free Majorana fermion are 1,
o, and ¢ with respective scaling dimensions 0, 1/16, and
1/2, as discussed in Sec. III.D. When there is an odd
number of flux-(hc/2e) vortices in the bulk, the edge is
in the 0(0)|0) sector. When there is an even number, the
edge is in either the |0) or ¢(0)|0) sector, depending on
whether there is an even or odd number of fermions in
the system. So long as quasiparticles do not go from the
edge to the bulk, or vice versa, however, the system re-
mains in one of these sectors and all excitations are free
fermion excitations built on top of the ground state in
the relevant sector.

However, when a quasiparticle tunnels from the edge
to the bulk (or through the bulk), the edge goes from
one sector to another—i.e., it is acted on by a primary
field. Hence, in the presence of a constriction at which
vortices of fermions can tunnel from one edge to an-
other, the edge Lagrangian of a p+ip superconductor is
(Fendley et al., 2007a)

S= J dex[‘Cfermion(‘//a) + £fermion(l//b)]

+fd77\¢i¢a¢b+JdT7\a‘fa0'b, (108)

where a and b denote the two edges (we have dropped
all irrelevant terms, e.g., descendant fields). In other
words, although the edge theory is a free theory in the
absence of coupling to the bulk or to another edge
through the bulk, it is perturbed by primary fields when
quasiparticles can tunnel to or from the edge through
the bulk. The topological structure of the bulk con-
strains the edge through the spectrum of primary fields.

As discussed in Sec. III.D, the edge of the Moore-
Read Pfaffian quantum Hall state is a chiral Majorana
fermion together with a free chiral boson ¢ for the
charge sector of the theory. As in the case of a p+ip
superconductor, the primary fields of this theory deter-
mine how the edge is perturbed by the tunneling of qua-
siparticles between two edges through the bulk (Fendley
et al., 2006, 2007a):

S= f dT(J dx[’cedge('ﬁaa ¢a) + ['edge(‘pbv ¢b)]
+ N7z 08{ 3,(0) = by (0)IN2} + Ny githathy
+ N\1140,(0) 05 (0)cos{[ ¢,(0) — ¢b(0)]/2\6}>- (109)

The most relevant coupling is Ny, so the tunneling of
charge-(e/4) quasiparticles dominates the transport of
charge from one edge to the other at the point contact.
[The tunneling of charge-(e/2) quasiparticles makes a
subleading contribution while the tunneling of neutral
fermions contributes only to thermal transport.] At low
enough temperatures, this relevant tunneling process
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causes the point contact to be pinched off (Fendley et al.,
2006, 2007a; Feiguin, Fendley, ef al., 2008), but, at tem-
peratures that are not too low, we can treat the tunnel-
ing of e/4 quasiparticles perturbatively and neglect other
tunneling operators. Of course, the structure of the edge
may be more complex than the minimal structure dic-
tated by the bulk analyzed here. This depends on the
details of the confining potential defining the system
boundary, but, at low enough temperatures, the picture
described here should still apply. Interesting information
about the non-Abelian character of the Moore-Read
Pfaffian state can be obtained from the temperature de-
pendence of the tunneling conductance (Fendley et al.,
2006, 2007a) and from current noise (Bena and Nayak,
2006).

Finally, we return to SU(2),. The SU(2), WZW model
is a triplet of chiral Majorana fermions, i, ,, {3—i.e.,
three identical copies of the chiral Ising model. This trip-
let is the spin-1 primary field (with scaling dimension
1/2). The spin-1/2 primary field is roughly ~o0,03 with
dimension 3/16 (a more precise expression involves the
sum of products such as ojo,u3, where w is the Ising
disorder operator dual to o). This is one of the primary
differences between the Ising model and SU(2),: o is a
dimension 1/16 field, while the spin-1/2 primary field of
SU(2), has dimension 3/16. Another way to understand
the difference between the two models is that the SU(2),
WZW model has two extra Majorana fermions. The pair
of Majorana fermions can be viewed equally well as a
Dirac fermion or, through bosonization, as a free chiral
boson, which has U(1) symmetry. Thus the Ising model is
often written as SU(2),/U(1) to signify that the the U(1)
chiral boson has been removed. [This notion can be
made precise with the notion of a coset conformal field
theory (Di Francesco et al., 1997) or by adding a U(1)
gauge field to the 2D action and coupling it to a U(1)
subgroup of the SU(2) WZW field g (Gawedzki and Ku-
piainen, 1988; Karabali et al., 1989). The gauge field has
no Maxwell term, so it serves only to eliminate some of
the degrees of freedom, namely, the U(1) piece.] As dis-
cussed in Sec. III.C, these differences are also mani-
fested in the bulk, where they lead to differences in the
Abelian phases which result from braiding but do not
change the basic non-Abelian structure of the state.

On the other hand, the edge of the Moore-Read Pfaff-
ian quantum Hall state is a chiral Majorana fermion to-
gether with a free chiral boson ¢ which carries the
charged degrees of freedom. So we restore the chiral
boson that we eliminated in passing from SU(2), to the
Ising model, with one important difference. The com-
pactification radius R (i.e., the theory is invariant under
¢— ¢d+2mR) of the charged boson need not be the same
as that of the boson that was removed by cosetting. For
the special case of bosons at v=1, the boson is, in fact, at
the right radius. Therefore the charge boson can be fer-
mionized so that there is a triplet of Majorana fermions.
In this case, the edge theory is the SU(2), WZW model
(Fradkin et al., 1998). In the case of electrons at v=2
+1/2, the chiral boson is not at this radius, so the edge
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theory is U(1), X Ising, which is not quite the SU(2),
WZW model.

F. Interferometry with anyons

In Sec. II we described an interference experiment
that is designed to demonstrate the non-Abelian statis-
tics of quasiparticles in the v=5/2 state. We start by re-
turning to this experiment, and using it as an exercise for
the application of the calculational methods reviewed
above. We then generalize our analysis to arbitrary
SU(2), non-Abelian states and describe other experi-
ments that share the same goal.

In the experiment described in Sec. II, a Fabry-Perot
interference device is made of a Hall bar perturbed by
two constrictions (see Fig. 2). The backscattered current
is measured as a function of the cell area enclosed by the
two constrictions and of the magnetic field. We assume
that the system is at v=5/2 and consider interference
experiments which can determine if electrons are in the
Moore-Read Pfaffian quantum Hall state.

Generally speaking, the amplitude for backscattering
is a sum over trajectories that wind the cell € times, with
€£=0,1,2,... an integer. The partial wave that winds the
cell € times winds the n quasiparticles localized inside
the cell € times. From the analysis in Sec. III.B, if elec-
trons are in the Pfaffian state, the unitary transformation
that the tunneling quasiparticle applies on the wave
function of the zero-energy modes is

n ¢
(U= [e’“%q %] , (110)
i
where 7y;’s are the Majorana modes of the localized bulk
quasiparticles, vy, is the Majorana mode of the quasipar-
ticle that flows around the cell, and «, is an Abelian
phase calculated below.

The difference between the even and odd values of n,

which we described in Sec. II, is evident from Eq. (110)

when we look at the lowest order, €=1. For even n, ﬁ,, is
independent of y,. Thus each tunneling quasiparticle ap-
plies the same unitary transformation on the ground
state. The flowing current then measures the operator

U, (more precisely, it measures the interference term,
which is a Hermitian operator; from that term the value

of 0n may be extracted). In contrast, when n is odd the

operator ﬁn depends on y,. Thus a different unitary op-
eration is applied by every incoming quasiparticle.
Moreover, the different unitary operators do not com-
mute, and share no eigenvectors. Thus their expectation
values average to zero, and no interference is observed.
This analysis holds in fact for all odd values of €.

The phase «,, is composed of two parts. First, the qua-
siparticle accumulates an Aharonov-Bohm phase of
2me*®/hc, where e*=e/4 is the quasiparticle charge for
v=5/2 and ® is the flux enclosed. And, second, the tun-
neling quasiparticle accumulates a phase as a conse-
quence of its interaction with the n localized quasiparti-
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cles. When a charge-(e/4) object goes around n flux
tubes of half a flux quantum each, the phase it accumu-
lates is nw/4.

Altogether the unitary transformation (120) has two
eigenvalues. For even n, they are (+i)"/?. For odd n, they
are (+i)"Y2 The backscattered current assumes the
following form (Stern and Halperin, 2006):

Iy = 2 I, cos? mnqz—-r cos m(¢+ n4_77 + ?>, (111)

m=0

where 7i=n for n even, and 7i=n+1 for n odd. The mth
term of this sum is the contribution from a process that
loops around m times, which vanishes if n and m are
both odd.

We can restate this analysis using the CFT description
of the Moore-Read Pfaffian state. Charge-(e/4) quasi-
particles are associated with the operator ce’®"8. The
fusion of n such quasiparticles is

1,
einqﬁ/v‘g X3,

g,

(112)

where either of the first two is possible for even n, and
the last is the outcome of the fusion for odd #. In order
to determine the effect of braiding an incoming quasi-
particle around the n bulk ones, we consider the possible
fusion channels of one quasiparticle with Eq. (122). The
fusion of the bosonic factors (i.e., the electrical charge) is

em¢(zl)/\f§ei¢<z2>/\f§ _ ei(n+1)¢(zl)/\s§(zl _ Zz)—n/S. (113)

Thus, when the incoming quasiparticle, at coordinate z,,
encircles the bulk ¢ times, it accumulates a phase of
27X (n/8) X €=nf/4 purely as a result of the U(1) part
of the theory. Now consider the neutral sector. The fu-
sion of the o operator depends on the state of the bulk.
When the bulk has total topological charge 1, the fusion
is trivial, and does not involve any accumulation of
phases. When the bulk has total topological charge i,
the fusion is

0(z5) X (z)) — olzy) X (21— 29) 2, (114)

and an extra phase of 7€ is accumulated when the in-
coming quasiparticle winds the bulk quasiparticles €
times. When the bulk has total topological charge o, i.e.,

when 7 is odd, the non-Abelian fusion rule applies [see
Eq. (A3)], and

o(z1) X 0lzy) — (21— 22) B[ + (21 - 222 (z))].
(115)

Since the probability for the two fusion outcomes is
equal,® for any odd € we get two interference patterns
that are mutually shifted by #, and hence mutually can-
cel one another, while for even € we get an extra phase

8This follows from N}m:NZa: 1.
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FIG. 10. Using the recursion relation (77), we can evaluate

(Xlp(a3)]x).

of €m/4. Altogether, this reproduces the expression
(111).

Now consider the same calculation using the relation
between Chern-Simons theory and the Jones polyno-
mial. For simplicity, just compute the current due to a
single backscattering and neglect multiple-tunneling
processes, which can be computed in a similar way. The
elementary quasiparticles have j=1/2. These are the
quasiparticles that will tunnel at the point contacts, ei-
ther encircling the bulk quasiparticles or not. (Other
quasiparticles will give a subleading contribution to the
current because their tunneling amplitudes are smaller
and less relevant in the RG sense.) First, consider the
case in which there is a single j=1/2 quasiparticle in the
bulk. The backscattered current is

s = Iy + I; Re[e'*(x|p(a3) | )] (116)

The matrix element on the right-hand side is given by
evaluation of the link in Fig. 4(a) (Fradkin et al., 1998;
Bonderson, Kitaev, et al., 2006) (up to a normalization of
the bra and ket; see Sec. III.C). The matrix element is
between a state |y), the state in which 1 and 2 fuse to the
trivial particle as do 3 and 4 and the state p(o’%)| x). The
former is the state in which the tunneling quasparticle
(gp 3) does not encircle the bulk quasiparticle (qp 2); the
latter is the state in which it does. The matrix element
between these two states determines the interference.

Using the recursion relation (77) as shown in Fig. 10,
we obtain

(Xp(D)|x) = (g +q "d?> +2d =~ d*+2d. (117)

For k=2, d= \5, and so this vanishes. Consequently, the
interference term in Eq. (116) also vanishes, as found
above by other methods. The case of an arbitrary odd
number of quasiparticles in the island is similar.

Now consider the case in which there are an even
number of quasiparticles in the island. For the sake of
simplicity, we consider the case in which there are two
quasiparticles in the bulk, i.e., a qubit. The pair can fuse
to either j=0 or j=1. In the former case, it is clear that
no phase is acquired [see Fig. 11(a)]. In the latter case,
the recursion rule (77) gives us a —1, as depicted in Fig.
11. This difference allows us to read out the value of a
topologically protected qubit (Das Sarma et al., 2005).

What happens if the qubit is in a superposition of j
=0 and j=1? The interference measurement causes the
tunneling quasiparticles to become entangled with the
bulk quasiparticle (Overbosch and Bais, 2001; Freedman
et al., 2006; Bonderson et al., 2007). When the integrated
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(G J-0

FIG. 11. We can obtain the result of taking a j=1/2 quasipar-
ticle around a qubit from the two diagrams. In (a) The qubit is
in the state 0, while in (b) it is in state 1. These diagrams are
similar to the left-hand side of Fig. 10, but with the loop on the
right replaced by a loop with (a) j=0 or (b) j=1.

current is large enough that many quasiparticles have
tunneled and equilibrated at the current leads, the j=0
and j=1 possibilities will have decohered. The measure-
ment will see one of the two possibilities with corre-
sponding probabilities.

The experiment that we analyzed above for v=5/2
may also be analyzed for other non-Abelian states. The
computation using knot invariants can be immediately
adapted to other SU(2), states by replacing d=12 with
d=2cos m/(k+2). We calculate the value of the Hopf
link as in Figs. 10 and 11, with one of the loops corre-
sponding to the tunneling quasiparticle and the other
loop corresponding to the total topological charge of the
bulk quasiparticles. The result can be written in the
more general form (Bonderson, Shtengel, et al., 2006):

Ibs(a) :IO+Il|Mab|COS(IB+ 011};), (118)
where M, is defined in terms of the S matrix:
My = SapS11/S1251, (119)

and M,,=|M,|e!%>. Equation (118) gives the current
due to a quasiparticles if the quasiparticles in the bulk
fuse to b. If the contribution of j=1/2 quasiparticles
dominates, as in the v=5/2 case, then we should set
a:% in this equation. For the level k=3 case, taking
a=3, |Myp|=1 for b=0,3 while |M,,|=¢2 for b=3,1,
where ¢ is the golden mean, ¢=(1++5)/2. (In Z; para-
fermion language, b :O,% corresponds to the fields 1, ¢ ,
while bz%,l corresponds to the fields o7 ,,¢€.)

Finally, we analyze the operation of an interferometer
using the edge theory (109). The preceding discussion
assumed that the current is carried by noninteracting
anyonic quasiparticles. However, the edge is gapless and,
in general, does not even have well-defined quasiparti-
cles. Therefore a computation using the edge theory is
more complete. The expected results are recovered
since they are determined by the topological structure of
the state, which is shared by both the bulk and the edge.
However, the edge theory also enables one to determine
the temperature and voltage dependences of /j,/;,... in
Egs. (111) and (116) (Bishara and Nayak, 2007; Fid-
kowski, 2007; Ardonne and Kim, 2008). As is discussed
in these papers, at finite temperature, interference will
not be visible if the two point contacts are further apart
than the thermal length scale L, where L@lszT(%
+1Uﬁ , if the charged and neutral mode velocities are v,
and v,. Another important feature is that the interfer-
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ence term (when it is nonvanishing) is oscillatory in the
source-drain voltage while the [, term has a power-law
dependence.

The assumption that the edge and the bulk are well
separated is crucial to the above calculations of interfer-
ence, but in practice this may not be the case. When
there is bulk-edge tunneling one might imagine that a
quasiparticle moving along the edge may tunnel into the
bulk for a moment and thereby evade encircling some
localized quasiparticles, thus smearing out any interfer-
ence pattern. The first theoretical steps toward analyzing
this situation have been taken by Overbosch and Wen
(2007) and Rosenow et al. (2008), where tunneling to a
single impurity is considered. Surprisingly, it is found
that the interference pattern is full strength in both the
strong- as well as the weak-tunneling limits.

While the experiment described for the v=5/2 state
does not require precise determination of n, as it is only
its parity that determines the amplitude of the interfer-
ence pattern, it does require that the number n does not
fluctuate within the duration of the experiment. Gener-
ally, fluctuations in n would be suppressed by low tem-
perature, large charging energy, and diminished tunnel
coupling between the bulk and the edge. However, when
their suppression is not strong enough, and » fluctuates
over a range much larger than 1 within the time of the
measurement, two signatures of the non-Abelian statis-
tics of quasiparticles survive, at least as long as the char-
acteristic time scale of these fluctuations is much longer
than the time between backscattering events. First, any
change in n would translate to a change in the backscat-
tered current, or the two-terminal conductance of the
device. Hence fluctuations in #» would introduce current
noise of the telegraph type, with a unique frequency de-
pendence (Grosfeld et al., 2006). Second, fluctuations in
n would suppress all terms in Eq. (111) other than those
where m=4k with k an integer. Thus the backscattered
current will have a periodicity of one flux quatum @,
and the visibility of flux oscillations, for weak back-
scattering, will be I4/IOOCI(3).

A similar relation holds also for another type of inter-
ference experiment, in which the interferometer is of the
Mach-Zehnder type, rather than the Fabry-Perot type.
[A Mach-Zehnder interferometer has already been con-
structed in the integer quantum Hall regime (Ji et al,
2003).] If we are to describe the Mach-Zehnder interfer-
ometer in a language close to that we used for the
Fabry-Perot one, we should note the following impor-
tant differences. First, no multiple-backscattering events
are allowed; and, second, since the area enclosed by the
interfering partial waves now encompasses the inner
edge, the quantum state of the encircled area changes
with each tunneling quasiparticle. Thus it is not surpris-
ing that the outcome of an interference experiment in a
Mach-Zehnder geometry will be very close to that of a
Fabry-Perot experiment with strong fluctuations in #.
The telegraph noise in the Fabry-Perot case (Grosfeld et
al., 2006) becomes shot noise in the Mach-Zehnder case.
Remarkably (Feldman et al., 2007), the effective charge
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extracted from that noise carries a signature of the non-
Abelian statistics: as the flux is varied, the charge
changes from e/4 to about 3e.

Other than interference experiments, there are sev-
eral proposals for experiments that probe certain aspects
of the physics of non-Abelian states. The degeneracy of
the ground state in the presence of vortices may be
probed (Grosfeld and Stern, 2006) by the consequences
of its removal: when the filling factor is v=5/2+ € with
€<<1, quasiparticles are introduced into the bulk of the
system, with a density proportional to e. For a clean
enough sample and a low enough density, quasiparticles
form a lattice. In that lattice, the Majorana zero modes
of different quasiparticles couple by tunneling, and the
degeneracy of the ground states is removed. The sub-
space of multiply degenerate ground states is then re-
placed by a band of excitations. The neutrality of the
Majorana modes is removed too, and the excitations
carry a charge that is proportional to their energy. This
charge causes these modes to weakly couple to an exter-
nally applied electric field, and provides a mechanism
for a dissipation of energy, with a characteristic depen-
dence on the wave vector and frequency of the electric
field. Since the tunnel coupling between neighboring
quasiparticles depends exponentially on their separa-
tion, this mechanism will be exponentially sensitive to
the distance of the filling factor from 5/2 (Grosfeld and
Stern, 2006).

G. Lattice models with P,T-invariant topological phases

Our discussion of topological phases has revolved
around fractional quantum Hall states because these are
the only ones known to occur in nature [although two-
dimensional *He-A (Leggett, 1975; Volovik, 1994) and
Sr,RuO,4 may join this list (Kidwingira et al., 2006; Xia et
al., 2006)]. However, there is nothing inherent in the
definition of a topological phase that consigns it to the
regime of high magnetic fields and low temperatures.
Indeed, highly idealized models of frustrated magnets
also show such phases, as discussed in Sec. I.D. Of
course, it is an open question whether these models have
anything to do with any real electronic materials or their
analogs with cold atoms in optical lattices, i.e., whether
the idealized models can be adiabatically connected to
more realistic models. In this section, we do not attempt
to answer this question but focus, instead, on under-
standing how these models of topological phases can be
solved. As we show, their solubility lies in their incorpo-
ration of the basic topological structure of the corre-
sponding phases.

One way in which a topological phase can emerge
from some microscopic model of interacting electrons,
spins, or cold atoms is if the low-lying degrees of free-
dom of the microscopic model can be mapped to the
degrees of freedom of the topological phase in question.
As we show in Sec. II1.C, these degrees of freedom are
Wilson loops (59). Loops are the natural degrees of free-
dom in a topological phase because the topological
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charge of a particle or collection of particles can only
be determined, in general, by taking a test particle
around the particle or collection in question. Therefore
the most direct way in which a system can settle into a
topological phase is if the microscopic degrees of free-
dom organize themselves so that the low-energy degrees
of freedom are loops or, as we show below, string nets
(in which we allow vertices into which three lines can
run). As described below, the Hilbert space of a non-
chiral topological phase can be described roughly as a
Fock space for loops Freedman et al. (2004). Wilson loop
operators are essentially creation or annihilation opera-
tors for loops. The Hilbert space is spanned by basis
states, which can be built up by acting with Wilson loop
operators on the state with no loops, i.e., |y U= U1v,)
=Wly,)---Winll@) is analagous to |k, *,ky)
= - ak |0). An important difference is that states in
the topologlcal theory must satisfy extra constraints in
order to correctly represent the algebra of the operators
W[ y]. If we write an arbitrary state |¥) in the basis given
above, Y[y U---Uvy,]=(¥|yU---Uwy,), then the
ground state(s) of the theory are linearly independent,
W[y, U Uy,] satisfying some constraints.

In fact, we have seen an example of this in Sec. IL.D:
Kitaev’s toric code model (18). We now represent the
solution in a way which makes the emergence of loops
clear. We color every link of the lattice on which the spin
points up. Then, the first term in Eq. (18) requires that
there be an even number of colored links emerging from
each site on the lattice. In other words, the colored links
form loops which never terminate. On the square lattice,
loops can cross, but they cannot cross on the honeycomb
lattice; for this reason, we find it more convenient to
work on the honeycomb lattice. The second term in the
Hamiltonian requires that the ground state satisfy three
further properties: the amplitude for two configurations
is the same if one configuration can be transformed into
another by (i) deforming some loop without cutting it,
(ii) removing a loop that runs around a single plaquette
of the lattice, or (iii) cutting open two loops that ap-
proach each other within a lattice spacing and rejoining
them into a single loop (or vice versa), which is called
surgery. A vertex at which the first term in the Hamil-
tonian is not satisfied is an excitation, as is a plaquette
at which the second term is not satisfied. The first type
of excitation acquires a —1 when it is taken around the
second.

The toric code is associated with the low-energy phys-
ics of the deconfined phase of Z, gauge theory (Fradkin
and Shenker, 1975; Kogut, 1979; see also Senthil and
Fisher, 2000) for strongly correlated electron systems.
This low-energy physics can be described by an Abelian
BF theory (Hansson et al., 2004):

1 N 1 1
S:7—T e, € da\ = Scs a+§e - Scs a—ze .
(120)

. 18 usually denoted b, and €*"™3,a,=1/2€*"Mf,,, hence
the name “BE.” Note that this theory is nonchiral. Un-
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der a combined parity and time-reversal transformation,
e, must change sign, and the action is invariant. This is
important since it enables the fluctuating loops de-
scribed above to represent the Wilson loops of the gauge
field a,,. In a chiral theory, it is not clear how to do this
since a; and a, do not commute with each other. They
cannot both be diagonalized; we must arbitrarily choose
one direction in which Wilson loops are diagonal opera-
tors. It is not clear how this will emerge from some mi-
croscopic model, where we would expect that loops
would not have a preferred direction, as shown above in
the toric code. Therefore we focus on nonchiral phases,
in particular, the SU(2), analog of Eq. (120) (Cattaneo et
al., 1995):

S=8k(a+e) - Skg(a—e)

=— [ trleanf+-enrene].
4 3

We call this theory doubled SU(2);, Chern-Simons
theory (Freedman et al., 2004).

We want a microscopic lattice model whose low-
energy Hilbert space is composed of wave functions
W[y, U---Uy,] which assign a complex amplitude to a
given configuration of loops. The model must differ
from the toric code in the constraints that it imposes on
these wave functions. The corresponding constraints for
Eq. (121) are essentially the rules for Wilson loops that
we discussed in Sec. III.C (Freedman et al., 2004). For
instance, ground state wave functions should not give
the same amplitude for two configurations if one con-
figuration can be transformed into another by removing
a loop which runs around a single plaquette of the lat-
tice. Instead, the amplitude for the former configuration
should be larger by a factor of d=2 cos 7/(k+2), which
is the value of a single unknotted Wilson loop. Mean-
while, the appropriate surgery relation is not the joining
of two nearby loops into a single one, but instead the
condition that, when k+1 lines come close together, the
amplitudes for configurations in which they are cut open
and rejoined in different ways satisfy some linear rela-
tion. This relation is essentially the requirement that the
j=(k+1)/2 Jones-Wenzl projector should vanish within
any loop configuration, as expected since a Wilson loop
carrying the corresponding SU(2) representation should
vanish.

The basic operators in the theory are Wilson loops
W[ y] of the gauge field a‘fL in Eq. (121) in the fundamen-
tal (j=1/2) representation of SU(2). A Wilson loop in a
higher-j representation can be constructed by taking 2;j
copies of a j=1/2 Wilson loop and using the appropriate
Jones-Wenzl projector to eliminate the other represen-
tations which result in the fusion of 2j copies of j=1/2. If
the wave function satisfies the constraint mentioned
above, then it will vanish identically if acted on by a j
>k/2 Wilson loop.

These conditions are of a topological nature, so they
are most natural in the continuum. In constructing a lat-
tice model from which they emerge, we have a certain

(121)
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amount of freedom in deciding how these conditions are
realized at the lattice scale. Depending on our choice of
short-distance regularization, the model may be more or
less easily solved. In some cases, an inconvenient choice
of short-distance regularization may actually drive the
system out of the desired topological phase. Loops on
the lattice prove not to be the most convenient regular-
ization of loops in the continuum, essentially because,
when d is large, the lattice fills up with loops which then
have no freedom to fluctuate (Freedman er al., 2004).
Instead, trivalent graphs on the lattice prove to be a
better way of proceeding [and, in the case of SU(3), and
other gauge groups, trivalent graphs are essential
(Turaev and Viro, 1992; Kuperberg, 1996)]. The most
convenient lattice is the honeycomb lattice, since each
vertex is trivalent. A trivalent graph is a subset of links
on the honeycomb lattice such that no vertex has only a
single link from the subset emanating from it. Zero, two,
or three links can emanate from a vertex, corresponding
to vertices which are not visited by the trivalent graph,
vertices through which a curve passes, and vertices at
which three curves meet. We penalize energetically ver-
tices from which a single colored link emanates. The
ground state will not contain such vertices which will be
quasiparticle excitations. Therefore, the ground state
W[I'] assigns a complex amplitude to a trivalent graph I'.

Such a structure arises in a manner analogous to the
loop structure of the toric code: if we have spins on links
of the honeycomb lattice, then an appropriate choice of
interaction at each vertex requires that colored links (on
which the spin points up) form a trivalent graph. We
note that links can be given a further labeling, although
we will not discuss this more complicated situation in
detail. Each colored link can be assigned a j in the set
1/2,1,...,k/2. Uncolored links are assigned j=0. Rather
than spin-1/2 spins on each link, we take spin k/2 on
each link, with S,=-k/2 corresponding to j=0, S,
=—k/2+1 corresponding to j=1/2, etc. (or, perhaps, we
consider models with rather different microscopic de-
grees of freedom). In this case, we require that links
around each vertex should satisfy the branching rules of
SUQR): lj1=jol=jz<min(j; +j,,k/2—j;—j,). The case de-
scribed in the previous paragraph, without the addi-
tional j label, could be applied to the level k=1 case,
with colored links carrying j=1/2, or to level k=3, with
colored links carrying j=1, as discused further below. A
trivalent graph represents a loop configuration in the
manner depicted in Fig. 12(a). One nice feature is that
the Jones-Wenzl projections are enforced on every link
from the start, so no corresponding surgery constraint is
needed.

If we want a lattice model to be in the doubled SU(2);
universality class, which has quasiparticle excitations
that are Fibonacci anyons, then its Hamiltonian should
impose the following: all low-energy states should have
vanishing amplitude on configurations that are not triva-
lent graphs, as defined above; and the amplitude for a
configuration with a contractible loop should be larger
than the amplitude for a configuration without this loop
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FIG. 12. Pictorial representation of the terms in the Hamil-
tonian of Levin and Wen. (a) j/2 parallel lines projected onto
representation j are represented by j on a link. (b) The
plaquette terms add a representation j loop. This can be trans-
formed back into a trivalent graph on the lattice using the F
matrix.

by d=2 cos(m/5)=¢d=(1+ \5)/2 for a closed, contractible
loop. These conditions can be imposed by terms in the
Hamiltonian which are more complicated versions of the
vertex and plaquette terms of Eq. (18). It is furthermore
necessary for the ground state wave function(s) to assign
the same amplitude to any two trivalent graphs which
can be continuously deformed into each other. However,
as mentioned above, surgery is not necessary. The
Hamiltonian takes the form (Levin and Wen, 2005b; see
also Turaev and Viro, 1992)

k/2

H=-1,2 A;-1,2 2 F).

p j=0

(122)

Here and below, we specialize to k=3. The degrees of
freedom on each link are s=1/2 spins; s,= +% is inter-
preted as a j=1 colored link, while szz—% is interpreted
as a j=0 uncolored link. The vertex terms impose the
triangle inequality [j,—jo|=j3<min(j;+j5,3—j;—j,) on
the three j’s on links neighboring each vertex. For Fi-
bonacci anyons (see Sec. 4.2), which can only have j
=0,1, this means that if links with j=1 are colored, then
the colored links must form a trivalent graph, i.e., no
vertex can have only a single up spin adjacent to it.
(There is no further requirement, unlike in the general
case, in which there are additional labels on the trivalent
graph.)

The plaquette terms in the Hamiltonian are compli-
cated in form but their action can be understood in the
following way. We imagine adding to a plaquette a loop
v carrying representation j and require that the ampli-
tude for the new configuration W[I"U y] be larger than
the amplitude for the old configuration by a factor of d;.
For Fibonacci anyons, the only nontrivial representation
is j=1; we require that the wave function change by a
factor of d=¢ when such a loop is added. If the
plaquette is empty, then “adding a loop” is simple. We
have a new trivalent graph with one extra loop. If the
plaquette is not empty, however, then we need to specify
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how to add the additional loop to the occupied links. We
draw the new loop in the interior of the plaquette so that
it runs alongside the links of the plaquette, some of
which are occupied. Then we use the F matrix, as de-
picted in Fig. 12(b), to recouple links of the plaquette
(Levin and Wen, 2005b; see also Turaev and Viro, 1992).
This transforms the plaquette so that it is now in a su-
perposition of states with different j’s, as depicted in Fig.
12(b); the coefficients in the superposition are sums of
products of elements of the F matrix. The plaquette
term commutes with the vertex terms since adding a
loop to a plaquette cannot violate the triangle inequality
[see Fig. 12(a)]. Clearly, vertex terms commute with each
other, as do distant plaquette terms. Plaquette terms on
adjacent plaquettes also commute because they add
loops to the link which they share. (This is related to the
pentagon identity, which expresses the associativity of
fusion.) Therefore the model is exactly soluble since all
terms can be simultaneously diagonalized. Vertices with
a single adjacent colored link (i.e., monovalent vertices)
are non-Abelian anyonic excitations carrying j=1 under
the SU(2) gauge group of aj in Eq. (121). A state at
which the plaquette term in Eq. (122) is not satisfied is a
non-Abelian anyonic excitation carrying j=1 under the
SU(2) gauge group of ¢}, (or, equivalently, aj, flux).

One interesting feature of the ground state wave func-
tion W[I'] of Eq. (122), and of related models with loop
representations (Freedman et al, 2004; Fendley and
Fradkin, 2005; Fidkowski et al., 2006), is their relation to
the Boltzmann weights of statistical mechanical models.
For instance, the norm squared of the ground state of
(122), satisfies |W[I']|?=e"P¥, where BH is the Hamil-
tonian of the (g=¢+2)-state Potts model. More pre-
cisely, it is the low-temperature expansion of the (g=¢
+2)-state Potts model extrapolated to infinite tem-
perature B=0. The square of the ground state of the
toric code (18) is the low-temperature expansion of the
Boltzmann weight of the (g=2)-state Potts model ex-
trapolated to infinite temperature S=0. On the other
hand, the squares of the ground states |W[y;, U -+ U v,]|>
of loop models (Freedman et al., 2004) are equal to the
partition functions of O(n) loop gas models of statistical
mechanics, with n=d?. These relations allow one to use
known results from statistical mechanics to compute
equal-time ground state correlation functions in a topo-
logical ground state, although the interesting ones are
usually of operators which are nonlocal in the original
quantum-mechanical degrees of freedom of the model.

It is also worth noting that a quasi-one-dimensional
analog has been studied (Bonesteel and Yang, 2007;
Feiguin, Trebst, et al, 2007). It is gapless for a single
chain and has an interesting phase diagram for ladders.

Finally, we note that the model of Levin and Wen is
artificial looking. However, a model in the same univer-
sality class might emerge from simpler models (Fid-
kowski et al., 2006). Since Eq. (122) has a gap, it will be
stable against small perturbations. In the case of the
toric code, it is known that even fairly large perturba-
tions do not destabilize the state (Trebst et al., 2007).
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FIG. 13. A system with n quasihole pairs (held at pairs of
antidots, depicted as shaded circles) supports n qubits. Addi-
tional antidots (hatched) can be used to move quasiparticles.

This brings to a close our survey of the physics of
topological phases. In Sec. IV, we consider their applica-
tion to quantum computing.

IV. QUANTUM COMPUTING WITH ANYONS

A. v=5/2 qubits and gates

A topological quantum computer is constructed using
a system in a non-Abelian topological phase. A compu-
tation is performed by creating quasiparticles, braiding
them, and measuring their final state. In Sec. I1.C.4, we
saw how a qubit could be constructed with the v=5/2
state and a NOT gate applied. In this section, we discuss
some ideas about how a quantum computer could be
built by extending these ideas.

The basic feature of the Ising TQFT and its close rela-
tive SU(2),, which we exploit for storing quantum infor-
mation, is the existence of two fusion channels for a pair
of o quasiparticles, o X o~1+ . When the fusion out-
come is 1, we say that the qubit is in the state |0); when
it is ¢, the state is |1). When there are 2n quasiparticles,
there is a 2""!-dimensional space of states. (This is how
many states there are with total topological charge 1;
there is an equal number with total topological charge
) We use this 2"~!-dimensional space to store quantum
information; the most straightforward way to do so is to
view it as n—1 qubits.

Generalizing the construction of Sec. I1.C.4 to many
pairs of antidots, we envision (Freedman et al., 2006) an
(n—1)-qubit system which is a Hall bar with 2n antidots
at which quasiholes are pinned, as in Fig. 13.

The NOT gate discussed in Sec. I1.C.4 did not require
us to move the quasiparticles comprising the qubit, only
additional quasiparticles brought in from the edge.
However, to implement other gates, we need to move
the quasiparticles on the antidots. In this figure, we have
also depicted additional antidots which can be used to
move quasiparticles from one antidot to another (e.g., as
a “bucket brigade”); see, for instance, Simon (2000). If
we exchange two quasiparticles from the same qubit,
then we apply the phase gate U=e™"*diag(R{”, R}’ [the
phase in front of the matrix comes from the U(1) part of
the theory]. However, if the two quasiparticles are from
different qubits, then we apply the transformation
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1 0 0 -

U:i/— 0 1 -i O (123)
V21 0 - 1 0
-i 0 0 1

to the two-qubit Hilbert space.

By coupling two qubits in this way, a CNOT gate can be
constructed. Suppose that we have four quasiparticles.
Then, the first pair can fuse to either 1 or ¢, as can the
second pair. Naively, this is four states but, in fact, it is
really two states with total topological charge 1 and two
states with total topological charge . These two sub-
spaces cannot mix by braiding the four quasiparticles.
However, by braiding our qubits with additional quasi-
particles, we can mix these four states. (In our single-
qubit NOT gate, we did this using quasiparticles from the
edge.) Therefore, following Georgiev (2006), we con-
sider a system with six quasiparticles. Quasiparticles 1
and 2 will be qubit 1; when they fuse to 1 or ¢, qubit 1 is
in state |0) or |1). Quasiparticles 5 and 6 will be qubit 2;
when they fuse to 1 or ¢, qubit 2 is in state |0) or [1).
Quasiparticles 3 and 4 soak up the extra ¢, if necessary
to maintain total topological charge 1 for the entire six-
quasiparticle system. In the four states |0, 0), |1, 0), |0, 1),
and |1, 1), the quasiparticle pairs fuse to 1,1,1, to ¢, .1,
to 1,¢,4, and to 1,4, respectively.

In this basis, p(dy), p(03), p(os) are diagonal, while
p(o») and p(oy) are off diagonal [e.g., p(oy) is Eq. (123)
rewritten in the two-qubit-six-quasiparticle basis]. By di-
rect calculation [e.g., by using p(o;) =e™#%7%+1], it can be
shown (Georgiev, 2006) that

[
o = O
o O O
—_ O O

p(05' 04030105040%") = (124)

0010

which is simply a controlled-NOT (CNOT) operation.

One can presumably continue in this way, with one
extra pair of quasiparticles, which is used to soak up an
extra ¢ if necessary. However, this is not a particularly
convenient way of proceeding since various gates will be
different for different numbers of particles: the CNOT
gate above exploited the extra quasiparticle pair which
is shared equally between the two qubits acted on by the
gate, but this will not work in the same way for more
than two qubits. Instead, it would be easier to encode
each qubit in four quasiparticles. If each quartet of qua-
siparticles has total topological charge 1, then it can be
in either of two states since a given pair within a quartet
can fuse to either 1 or . In other words, each quasipar-
ticle pair comes with its own spare pair of quasiparticles
to soak up its ¢ if necessary.

Unfortunately, the SU(2), phase of matter is not ca-
pable of universal quantum computation, i.e., the trans-
formations generated by braiding operations are not suf-
ficient to implement all possible unitary transformations
(Freedman et al., 2002a, 2002b). The reason for this
shortcoming is that, in this theory, braiding of two par-
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ticles has the effect of a 90° rotation (Nayak and Wilc-
zek, 1996) in the multiquasiparticle Hilbert space. Com-
posing such 90° rotations will clearly not allow one to
construct arbitrary unitary operations (the set of 90° ro-
tations form a finite closed set).

However, we do not need to supplement braiding with
much in order to obtain a universal gate set. All that is
needed is a single-qubit /8 phase gate and a two-qubit
measurement. One way to implement these extra gates
is to use some nontopological operations (Bravyi, 2006).
First, consider the single-qubit phase gate. Suppose qua-
siparticles 1, 2, 3, 4 comprise the qubit. The states |0) and
[1) correspond to 1 and 2 fusing to 1 or ¢ (3 and 4 must
fuse to the same as 1 and 2, since the total topological
charge is required to be 1). If we bring quasiparticles 1
and 2 close together, then their splitting will become ap-
preciable. We expect it to depend on the separation r as
AE(r)~e™™¢ where r is the distance between quasipar-
ticles and c is some constant with dimensions of velocity.
If we wait a time T, before pulling the quasiparticles
apart again, then we apply the phase gate (Freedman et
al., 2006) Up=diag(1,e*E7Tp). If the time T and dis-
tance r are chosen so that AE(r)T,=m/4, then, up to an
overall phase, we apply the phase gate

e—Tri/S 0
Unsg = 0 B8

We note that, in principle, by measuring the energy
when the two quasiparticles are brought together, the
state of the qubit can be measured.

The other gate that we need for universal quantum
computation is the nondestructive measurement of the
total topological charge of any four quasiparticles. This
can be done with an interference measurement. Suppose
we have two qubits which are associated with quasipar-
ticles 1, 2, 3, 4 and quasiparticles 5, 6, 7, 8, and we mea-
sure the total topological charge of 3, 4, 5, 6. The inter-
ference measurement is of the type described in Sec.
I1.C.3: edge currents tunnel across the bulk at two points
on either side of the set of four quasiparticles. Depend-
ing on whether the four quasiparticles have total topo-
logical charge 1 or ¢, the two possible trajectories inter-
fere with a phase +1. We can thereby measure the total
parity of two qubits. (For more details, see Freedman et
al., 2006.)

Neither of these gates can be applied exactly, which
means surrendering some of the protection we have
worked so hard to obtain and we need some software
error correction. However, it is not necessary for the /8
phase gate or the two-qubit measurement to be ex-
tremely accurate in order for error correction to work.
The former needs to be accurate to within 14% and the
latter to within 38% (Bravyi, 2006). Thus the requisite
quantum error correction protocols are not particularly
stringent.

An alternate solution, at least in principle, involves
changing the topology of the manifold on which the qua-
siparticles live (Bravyi and Kitaev, 2001). This can be
realized in a device by performing interference measure-

(125)
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ments in the presence of moving quasiparticles (Freed-
man et al., 2006).

However, a more elegant approach is to work with a
non-Abelian topological state which supports universal
topological quantum computation through quasiparticle
braiding alone. In the next section, we give an example
of such a state and how quantum computation can be
performed with it. In Sec. IV.C, we sketch the proof that
a large class of such states is universal.

B. Fibonacci anyons: A simple example that is universal for
quantum computation

One of the simplest models of non-Abelian statistics is
known as the Fibonacci anyon model, or golden theory
(Freedman et al., 2002a; Preskill, 2004; Bonesteel et al.,
2005; Hormotzi et al., 2007). In this model, there are only
two fields: the identity (1) as well as a single nontrivial
field usually called 7 which represents the non-Abelian
quasiparticle. (Note that there is no field representing
the underlying electron in this simplified theory.) There
is a single nontrivial fusion rule in this model,

(126)

which results in the Bratteli diagram given in Fig. 9(b).
This model is particularly simple in that any cluster of
quasiparticles can fuse to only 1 or 7.

The j=0 and 1 quasiparticles in SU(2); satisfy the fu-
sion rules of Fibonacci anyons. Therefore if we omit the
j=1/2 and 3/2 quasiparticles from SU(2);, we have Fi-
bonacci anyons. This is perfectly consistent since half-
integral j will never arise from the fusions of integral j’s;
the model with only integer spins can be called SO(3);
or, sometimes the even part of SU(2);. As a result of the
connection to SU(2)3, sometimes 1 is called g-spin 0 and
7is called g-spin 1 (see Hormozi et al., 2007). 75 parafer-
mions are equivalent to a coset theory SU(2);/U(1).
This can be realized with an SU(2); WZW model in
which the U(1) subgroup is coupled to a gauge field
(Gawedzki and Kupiainen, 1988; Karabali et al., 1989).
Consequently, 7; parafermions have the same fusion
rules as SU(2);; there are some phase differences be-
tween the two theories which show up in the R and F
matrices. In the 75 parafermion theory, the field e that
results from fusing o with ¢, satisfies the Fibonacci fu-
sion rule Eq. (126), i.e., eX e=1+e.

As with the 75 parafermion model described above,
the dimension of the Hilbert space with n quasiparticles
[i.e., the number of paths through the Bratteli diagram
Fig. 9(b), terminating at 1] is given by the Fibonacci
number Fib(n—1); hence the name Fibonacci anyons.
And similarly the number terminating at 7 is Fib(n).
Therefore the quantum dimension of the 7 particle is the
golden mean dT:¢E(1+\e"§)/ 2 (from which the theory
receives the name “golden theory”). The Fibonacci
model is the simplest known non-Abelian model that is
capable of universal quantum computation (Freedman et
al., 2002a). [In the next section, the proof will be de-
scribed for SU(2)5, but the Fibonacci theory, which is its

X 7=1+T7,
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FIG. 14. The three possible states of three Fibonacci particles,
shown in several common notations. The “quantum number”
of an individual particle is 7. In the parentheses and ellipse
notation (middle), each particle is shown as a black dot, and
each pair of parentheses or ellipse around a group of particles
is labeled at the lower right with the total quantum number
associated with the fusion of that group. Analogously, in the
fusion tree notation (right) we group particles as described by
the branching of the tree, and each line is labeled with the
quantum number corresponding to the fusion of all particles in
the branches above it. For example, on the top line the two
particles on the left fuse to form 1 which then fuses with the
remaining particle on the right to form 7. As discussed in Sec.
IV.B.3, three Fibonacci particles can be used to represent a
qubit. The three possible states are labeled (far left) as the
logical |0}, |1), and |N) (noncomputational) of the qubit.

even part, is also universal.] It is thus useful to study this
model in detail. Many principles described here will gen-
eralize to other non-Abelian models. We note that a de-
tailed discussion of computing with the Fibonacci model
has also been given by Hormozi et al. (2007).

1. Structure of the Hilbert space

An important feature of non-Abelian systems is the
detailed structure of the Hilbert space. A given state in
the space will be described by a “fusion path,” or “fusion
tree” (see the Appendix). For example, using the fusion
rule (126) or examining the Bratteli diagram we see that
when two 7 particles are present, they may fuse into two
possible orthogonal degenerate states—one in which
they fuse to form 1 and one in which they fuse to form 7.
A convenient notation (Bonesteel et al., 2005) for these
two states is |(+,+);) and |(+,+) ). Here each - represents a
particle. From the fusion rule, when a third is added to
two particles already in the 1 state [i.e., in |(-,+);)] it
must fuse to form 7. We denote the resulting state as
[((+,+)1,+),»=|0). But if the third is added to two in the 7
state, it may fuse to form either 7 or 1, giving the two
states |(('9 ')7" ')T> = |1> and |((', ')Tv ')1> = |N>’ respec-
tively. (The notations |0), |1), and |N) will be discussed
further below.) Thus we have a three-dimensional Hil-
bert space for three particles, shown using several nota-
tions in Fig. 14.

In the previous example, and in Fig. 14, we have cho-
sen to fuse particles together starting at the left and go-
ing to the right. It is, of course, also possible to fuse
particles in the opposite order, fusing the two particles
on the right first, and then fusing with the particle fur-
thest on the left last. We can correspondingly denote the
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three resulting states as |(+,(-,*)1), |¢.(-,+),),), and
|(+,(+,+).)1). The space of states that is spanned by fusion
of non-Abelian particles is independent of the fusion
order. However, different fusion orders result in a differ-
ent basis set for that space. This change of basis is pre-
cisely that given by the F matrix. For Fibonacci anyons it
is easy to see that

|("(" .)T)1> = |(('s ° )1" ')1>’

since in either fusion order there is only a single state
that has total topological charge 1 (the overall quantum
number of a group of particles is independent of the
basis). However, the other two states of the three-
particle space transform nontrivially under change of fu-
sion order. As described in the Appendix, we can write a
change of basis using the F matrix as

oo 000 = ST )0,
]

(127)

(128)

where i,j,k take the values of the fields 1 or 7. (This is
just a rewriting of a special case of Fig. 23.) Clearly from
Eq. (127), F{'" is trivially unity. However, the 2 X2 ma-
trix F7'" is nontrivial,

= () (2 )
F'rl FTT V(Z')l _d)

Using this F matrix, one can translate between bases
that describe arbitrary fusion orders of many particles.
For the Fibonacci theory (Preskill, 2004), it turns out
to be easy to calculate the F matrix using a consistency
condition known as the pentagon equation (Moore and
Seiberg, 1988, 1989; Fuchs, 1992; Goméz et al., 1996).
This condition says that one should be able to make
changes of basis for four particles in several ways and
get the same result in the end. As an example, consider

|("("('a ° )1)7’)1> = | ( )19 )1)1>
= (5 )1 ) p 0,

where both equalities, as in Eq. (127), can be deduced
from the fusion rules alone. For example, in the first
equality, given (on the left-hand side) that the overall
quantum number is 1 and the rightmost two particles are
in a state 1, then (on the right-hand side) when we fuse
the leftmost two particles they must fuse to 1 such that
the overall quantum number remains 1. On the other
hand, we can also use the F matrix [Eq. (128)] to write

(129)

(130)

[CYCACRED MY I
= Fl(,(C5 )1 )0 + Frl (o2 ) 2) Do)
= Fa (G (5 )0 m )0 + Frf (GG +) D 5 )1
—2(F11F1,+F17F77)|((( )i * ) e 1) (131)

Comparison to Eq. (130) yields F;(Fy+F,)=0 and
FiuFu+Fi,F1=1. This, and other similar consistency
identities, along with the requirement that F be unitary
completely fix the Fibonacci F matrix to be precisely
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that given in Eq. (129) (up to a gauge freedom in the
definition of the phase of the basis states).

2. Braiding Fibonacci anyons

As discussed in the Introduction, for non-Abelian sys-
tems, adiabatically braiding particles around each other
results in a unitary operation on the degenerate Hilbert
space. Here we determine which unitary operation re-
sults from which braid. We start by considering what
happens to two Fibonacci particles when they are
braided around each other. It is known (Fuchs, 1992)
that the topological spin ®, of a Fibonacci field 7is 0,
=¢?mAr= 4™ (Note that A, is also the dimension of the
€ field of the 7Z; theory; see the Appendix.) With this
information, we use the OPE (see the Appendix) as in
Sec. III.D above to determine the phase accumulated
when two particles wrap around each other. If the two 7
fields fuse together to form 1, then taking the two fields
around each other clockwise results in a phase —8/5
=2m(-2A,) whereas, if the two fields fuse to form 7, tak-
ing the two fields around each other results in a phase
—47/5=2m(-A,). Note that a Fibonacci theory with the
opposite chirality can exist too (an “antiholomorphic
theory”), in which case one accumulates the opposite
phase. A particularly interesting nonchiral (or “achiral”)
theory also exists, which is equivalent to a combination
of two chiral Fibonacci theories with opposite chiralities.
In Sec. III.G, we discussed lattice spin models (Levin
and Wen, 2005b) which give rise to a nonchiral (or
achiral) theory that is equivalent to a combination of
two chiral Fibonacci theories with opposite chiralities.
We will not discuss these theories further here.

Once we have determined the phase accumulated for
a full wrapping of two particles, we then know that
clockwise exchange of two particles (half of a full wrap-
ping) gives a phase of +47/5 if the fields fuse to 1 or
+2/5 if the fields fuse to 7. Once again we resort to
consistency conditions to determine these signs. In this
case, we invoke the so-called hexagon identities (Moore
and Seiberg, 1988, 1989; Fuchs, 1992) which in essence
assure that the rotation operations are consistent with
the F matrix, i.e., that we can rotate before or after
changing bases and get the same result. (Indeed, one
way of proving that A =2/5 is by using this consistency
condition.) We thus determine that the R matrix is given
by

R|(-, )y = e 4™B|(+, +)y), (132)

R|G, )y == e, ) ),

ie., RL =e#™" and R7 =-¢>™">. Using the R matrix, as
well as the basis-changing F matrix, we determine the
unitary operation that results from performing any braid
on any number of particles. As an example, consider
three particles. The braid group is generated by o and
o, (see Fig. 15). As discussed above, the Hilbert space of
three particles is three dimensional as shown in Fig. 14.

(133)
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FIG. 15. Three-particle braids. Top: The two elementary braid
operations oy and o, on three particles. Bottom: Using these
two braid operations and their inverses, an arbitrary braid on
three strands can be built. The braid shown is 0'2010'10'510510'1.

We use Egs. (132) and (133) to determine that the uni-
tary operation corresponding to the braid o is given by

|0y e~dmi/s g 0 |0)
Iy | — 0 —e A0 1)
IN) 0 0 |- ) UIN

plo1) (134)

where we have used the shorthand notation (see Fig.
14) for the three-particle states. Evaluating the effect
of o, is less trivial. Here we first make a basis change
(using F) in order to determine how the two right-
most particles fuse. Then we make the rotation using

R and finally undo the basis change. Symbolically, we

write p(oy)=F'RF, where R rotates the two right-
most particles. To be more explicit, consider what
happens to the state |0). First, we use Eq. (128) to
write [0)=Fyy|C-,(-,+)) )+ FalC,(-,+)),). Rotating the
two right particles then gives e *™PF;|(-,(s,+)1).
—e 2™BSF1(+,(-,+),),), and then we transform back to the
original basis using the inverse of Eq. (128) to yield
p(02)|0)=([F Ty ™ Fyy = [F 11,6 2™F )|0)+ ([F 14
X_efélﬂ'i/SFn_ [Fhl]T7672ﬂi/5FTl)|l> — _efm'/S/ ¢|0> _ ied‘rr/lO/
Ve¢|1). Similar results can be derived for the other two
basis states to give

_ e—m’/S/d) _ ie—iﬂ'/lO/\/E 0
ploy) =| —ie ™™g —1/¢ 0
0 0 | _ 6—27Ti/5

(135)

Since the braid operations o and o, (and their inverses)
generate all possible braids on three strands (see Fig.
15), we can use Egs. (134) and (135) to determine the
unitary operation resulting from any braid on three
strands, with the unitary operations built from the el-
ementary matrices p(oq) and p(o,) in the same way that
the complicated braids are built from the braid genera-
tors o7 and o,. For example, the braid o,o1010;, lcrglal
shown in Fig. 15 corresponds to the unitary matrix
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p((rl)p(a'gl)p(oil)p(()'l)p(al)p(a'z) (note that the order is
reversed since the operations that occur at earlier times
are written to the left in conventional braid notation, but
on the right when multiplying matrices together).

3. Computing with Fibonacci anyons

Now that we know many properties of Fibonacci
anyons, we show how to compute with them. First, we
need to construct our qubits. An obvious choice might
be to use two particles for a qubit and declare the two
states |(-,+);) and |(+,+),) to be the two orthogonal states
of the qubit. While this is a reasonably natural looking
qubit, it turns out not to be convenient for computa-
tions. The reason for this is that we want to do single-
qubit operations (simple rotations) by braiding. How-
ever, it is not possible to change the overall quantum
number of a group of particles by braiding within that
group. Thus, by braiding the two particles around each
other, we can never change |(-,+);) to |(+,+),). To remedy
this problem, it is convenient to use three quasiparticles
to represent a qubit as suggested by Freedman et al
(2002a) [many other schemes for encoding qubits are
also possible (Freedman et al., 2002a; Hormozi et al.,
2007)]. Thus we represent the two states of the qubit as
the |0) and |1) states shown in Fig. 14. The additional
state |[N) is a “noncomputational” state. In other words,
we arrange that at the beginning and end of our compu-
tations there is no amplitude in this state. Any ampli-
tude that ends up in this state is known as “leakage er-
ror.” We note, however, that the braiding matrices p(o)
and p(o,) are block diagonal and therefore never mix
the noncomputational state |N) with the computational
space |0) and |1) (this is just another way to say that the
overall quantum number of the three particles must re-
main unchanged under any amount of braiding). There-
fore braiding the three particles gives us a way to do
single-qubit operations with no leakage.

In Sec. IV.C, we describe a proof that the set of braids
has a “dense image” in the set of unitary operations for
the Fibonacci theory. This means that there exists a
braid that corresponds to a unitary operation arbitrarily
close to any desired operation. The closer one wants to
approximate the desired unitary operation, the longer
the braid typically needs to be, although only logarith-
mically so (i.e., the necessary braid length grows only as
the logarithm of the allowed error distance to the target
operation). The problem of finding braids that corre-
spond to desired unitary operations, while apparently
complicated, turns out to be straightforward (Bonesteel
et al., 2005; Hormozi et al., 2007). One simple approach
is to implement a brute force search on a (classical) com-
puter to examine all possible braids (on three strands)
up to some certain length, looking for a braid that hap-
pens to generate a unitary operation close to some de-
sired result. While this approach works well for search-
ing short braids (Bonesteel et al., 2005; Hormozi et al.,
2007), the job of searching all braids grows exponentially
in the length of the braid, making this scheme unfeasible
if one requires high-accuracy long braids. Fortunately,
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FIG. 16. (Color online) Construction of a two-qubit gate from
a certain three-particle braid. Time flows from left to right in
this picture. In the top we construct a braid on three strands by
moving only the blue (dark) particle, which has the same effect
as interchanging the two green (light) strands. Using this same
braid (bottom) then constructs a controlled rotation gate. If the
state of the upper (control) qubit is |0), i.e., the control pair is
in state 1, then the braid has no effect on the Hilbert space (up
to a phase). If the upper (control) qubit is in the state |1) then
the braid has the same effect as winding two of the particles in
the lower qubit. Figure from Bonesteel et al., 2005.

20-1

there is an iterative algorithm by Solovay and Kitaev
(see Nielsen and Chuang, 2000) which allows one to put
together many short braids to efficiently construct a long
braid arbitrarily close to any desired target unitary op-
eration. While this algorithm does not generally find the
shortest braid for performing some operation (within
some allowed error), it does find a braid that is only
polylogarithmically long in the allowed error distance to
the desired operation. Furthermore, the (classical) algo-
rithm for finding such a braid is only algebraically hard
in the length of the braid.

Having solved the single-qubit problem, now imagine
we have multiple qubits, each encoded with three par-
ticles. To perform universal quantum computation, in
addition to being able to perform single-qubit opera-
tions, we must also be able to perform two-qubit entan-
gling gates (Nielsen and Chuang, 2000; Bremner et al.,
2002). Such two-qubit gates will necessarily involve
braiding together (physically “entangling”) the particles
from two different qubits. The result of Freedman et al.
(2002a) generally guarantees that braids exist corre-
sponding to any desired unitary operation on a two-
qubit Hilbert space. However, finding such braids is now
a much more formidable task. The full Hilbert space for
six Fibonacci particles (constituting two qubits) is now
13 dimensional, and searching for a desired result in
such a high-dimensional space is hard even for a power-
ful classical computer. Therefore the problem needs to
be tackled by divide-and-conquer approaches, building
up two-qubit gates out of simple braids on three par-
ticles (Bonesteel et al., 2005; Hormozi et al., 2007). A
simple example of such a construction is sketched in Fig.
16. First, in Fig. 16(a), we consider braids on three
strands that move [“weave” (Simon ef al., 2006)] only a
single particle, the blue or dark particle in the figure,
through two stationary particles, the green or light par-
ticles in the figure. We search for such a braid whose
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action on the Hilbert space is equivalent to exchanging
the two stationary (green or light) particles twice. Since
this is now just a three-particle problem, finding such a
braid, to arbitrary accuracy, is computationally tractable.
Next, for the two-qubit problem, we label one qubit the
control [blue in Fig. 16(b)] and another qubit the target.
We take a pair of particles from the control qubit (the
control pair) and weave them as a group through two of
the particles in the target, using the same braid we found
for the three-particle problem. Now, if the quantum
number of the control pair is 1 (i.e., control qubit is in
state |0)), then any amount of braiding of this pair will
necessarily give just an Abelian phase (since moving 1
around is like moving nothing around). However, if the
quantum number of the control pair is 7 (i.e., the control
qubit is in state [1)), then we can think of this pair as
equivalent to a single 7 particle, and we will cause the
same nontrivial rotation as in Fig. 16(a) above (crucially,
this is designed to not allow any leakage error). Thus we
have constructed a “controlled-rotation” gate, where the
state of the target qubit is changed only if the control
qubit is in state |1), where the rotation that occurs is
equivalent to exchanging two particles of the target qu-
bit as shown in Fig. 16(b). The resulting two-qubit con-
trolled gate, along with single-qubit rotations, makes a
universal set for quantum computation (Bremner et al.,
2002). More conventional two-qubit gates, such as the
controlled-NOT (CNOT) gates, have also been designed
using braids (Bonesteel ef al., 2005; Hormozi et al., 2007).

4. Other theories

The Fibonacci theory is a particularly interesting
theory to study, not only because of its simplicity, but
also because of its close relationship (see the discussion
at the beginning of Sec. IV.B) with the 7Z; parafermion
theory—a theory thought to describe (Rezayi and Read,
2006) the observed quantum Hall state at v=12/5 (Xia et
al., 2004). It is not hard to show that a given braid will
perform the same quantum computation in either theory
(Hormozi et al., 2007), up to an irrelevant overall Abe-
lian phase. Therefore the Fibonacci theory and the asso-
ciated braiding may be physically relevant for fractional
quantum Hall topological quantum computation in high-
mobility 2D semiconductor structures.

However, there are many other non-Abelian theories
which are not related to Fibonacci anyons. Nonetheless,
for arbitrary non-Abelian theories, many themes dis-
cussed in this section continue to apply. In all cases, the
Hilbert space can be understood via fusion rules and an
F matrix; rotations of two particles can be understood as

a rotation R operator that produces a phase dependent
on the quantum number of the two particles; and one
can always encode qubits in the quantum number of
some particles. If we want to do single-qubit operations
by braiding particles within a qubit (in a theory that al-
lows universal quantum computation), we always need
to encode a qubit with at least three particles (some-
times more). To perform two-qubit operations, we al-
ways need to braid particles constituting one qubit with
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FIG. 17. The entire gate set needed in a state supporting uni-
versal quantum computation.

the particles constituting another qubit. It is always the
case that any unitary operation that can be achieved by
braiding n particles around each other with an arbitrary
braid can also be achieved by weaving a single particle
around n—1 others that remain stationary (Simon et al.,
2006) [note that we implicitly used this fact in construct-
ing Fig. 15(a)]. So long as the state is among the ones
known to have braid group representations with dense
images in the unitary group, as described in Sec. IV.C, it
will be able to support universal quantum computation.
Finally, we note that it seems to always be true that the
practical construction of complicated braids for multiqu-
bit operations needs to be subdivided into more man-
ageable smaller problems for the problem to be trac-
table.

C. Universal topological quantum computation

As we saw in Sec. IV.A, even if the v=5/2 state is
non-Abelian, it is not non-Abelian enough to function as
a universal quantum computer by simply braiding
anyons. However, in Sec. IV.B, we described Fibonacci
anyons which we claimed were capable of supporting
universal topological quantum computation. In this sec-
tion, we sketch a proof of this claim within the context
of the more general question: which topological states
are universal for quantum computation or, in starker
terms, for which topological states is the entire gate set
required to simulate an arbitrary quantum circuit to ar-
bitrary accuracy simply that depicted in Fig. 17 (see also
Kauffman and Lomonaco, 2004, 2007). The discussion of
this section is more mathematical than the rest of the
paper and can be skipped on the first reading.

In other words, the general braid is composed of cop-
ies of a single operation (depicted in Fig. 17) and its
inverse. (Actually, as we see “positive braids” will prove
to be sufficient, so there is no necessity to ever use the
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inverse operation.) Fibonacci anyons, discussed in Sec.
IV.B, are an example that have this property. In this
section, we see why.

For the sake of concreteness, assume that we use a
single species of quasiparticle, called o. When there are
n o’s at fixed positions zy,...,z,, there is an exponen-
tially large [~(d,)"-dimensional] ground state subspace
of Hilbert space. We call this vector space V. Braiding
o’s produces a representation p, characteristic of the to-
pological phase in question, p,:B,—U(V,) from the
braid group on n strands into the unitary transforma-
tions of V,,. We do not care about the overall phase of
the wave function, since only the projective reduction in
PU(V,) has physical significance. [PU(V,,) is the set of
unitary transformations on V,, with two transformations
identified if they differ only by a phase.] We want to
enact an arbitrary unitary transformation, so p(B,,)
should be dense in PU(V,), i.e., dense up to a phase. By
“dense” in PU(V,)), we mean that the intersection of all
closed sets containing p(53,) should be PU(V,). Equiva-
lently, it means that an arbitrary unitary transformation
can be approximated, up to a phase, by a transformation
in p(B,) to within any desired accuracy. This is the con-
dition that our topological phase must satisfy.

For a modestly large number (=7) of o’s, it was shown
(Freedman et al., 2002a, 2002b) that the braid group rep-
resentations associated with SU(2) Chern-Simons theory
at level k#1,2,4 are dense in SU(V, ;) [and hence in
PU(V,,,)]. With only a small number of low-level and
small-anyon-number exceptions, density was shown for
almost all SU(N),.

These Jones-Witten (JW) representations satisfy a key
“two-eigenvalue property” (TEVP), discussed below, de-
rived in this SU(N) setting from the Hecke relations,
and corresponding to the HOMFLY polynomial [see, for
instance, Kauffman (2001), and references therein]. The
analysis was extended with similar conclusions by
Larsen et al. (2005) to the case where the Lie group G is
of type B, C, or D and braid generators have three ei-
genvalues, corresponding to the Birman-Murakami-
Wenzi algebra and the two-variable Kauffman polyno-
mial. For JW representations of the exceptional group at
level k, the number of eigenvalues of braid generators
can be composite integers (such as 4 for G,) and this has
so far blocked attempts to prove density for these JW
representations.

In order to perform quantum computation with
anyons, there are many details needed to align the topo-
logical picture with the usual quantum-circuit model
from computer science. First, qubits must be located in
the state space V. Since V,, has no natural tensor fac-
toring (it can have prime dimension) this alignment
(Freedman er al, 2002a) is necessarily somewhat
inefficient;” some directions in V,, are discarded from the

9Actually, current schemes use approximately half the theo-
retical number of qubits. One finds «log,(dim V,,) computa-
tional qubits in V,,, for a=(log, )" 1=0.48, ¢=(1++5)/2.

Rev. Mod. Phys., Vol. 80, No. 3, July—September 2008

- q = ¢ -4qD

FIG. 18. Jones skein relation [see Eq. (73)].

computational space and so we must always guard
against unintended leakage into the discarded direc-
tions. A possible research project is how to adapt com-
putation to the Fibonacci space (see Sec. IV.B) rather
than attempting to find binary structure within V,. A
somewhat forced binary structure was explained in Sec.
IV.B in connection with encoding qubits into SU(2)5, as
done for level 2 in Sec. IVA. (A puzzle for readers.
Suppose we write integers out as Fibonacci numerals: 0
cannot follow 0, but 0 or 1 can follow 1. How do you do
addition and multiplication?) However, we will not dwell
on these issues but instead go directly to the essential
mathematical point: How, in practice, does one tell
which braid group representations are dense and which
are not, i.e., which ones are sufficient for universal topo-
logical quantum computation and which ones need to be
augmented by additional nontopological gate opera-
tions?

We begin by noting that the fundamental skein rela-
tion of Jones’ theory is as in Fig. 18. [see Eq. (73) and
the associated relation for the Kauffman bracket (77)].
This is a quadratic relation in each braid generator o;
and by inspection any representation of o; will have only
two distinct eigenvalues g*? and —¢'2. It turns out to be
rare to have a representation of a compact Lie group H,
where H is densely generated by elements o; with this
eigenvalue restriction. This facilitates the identification
of the compact closure H=image(p) among the various
compact subgroups of U(V,,).

Definition IV.1. Let G be a compact Lie group and V a
faithful, irreducible, unitary representation. The pair
(G,V) has the two eigenvalue property (TEVP) if there
exists a conjugacy class [g] of G such that (1) [g] gener-
ates a dense set in G, and (2) for any g [g] g actson V
with exactly two distinct eigenvalues whose ratio is not
-1.

Let H be the closed image of some Jones representa-
tion p:B,— U(V,). We would like to use Fig. 18 to assert
that the fundamental representation of U(V,) restricted
to H, call it 0, has the TEVP. All braid generators o; are
conjugate and, in nontrivial cases, the eigenvalue ratio is
—q # —1. However, we do not yet know if the restriction
is irreducible. This problem has been solved by a series
of technical lemmas by Freedman et al. (2002a). Using
the TEVP, it is shown first that the further restriction to
the identity component H,, is isotipic and then irreduc-
ible. This implies that H, is reductive, so its derived
group [H,,H,] is semisimple and, it is argued, still satis-
fies the TEVP. A final (and harmless) variation on H is

to pass to the universal cover H':= [M]. The pulled
back representation ¢’ still has the TEVP and we are



1144 Nayak et al.: Non-Abelian anyons and topological quantum ...

T

) @

dim =5 ct o

FIG. 19. The charge on the dotted circle can be 1 or 7, provid-
ing the qubit.

finally in a situation, namely, irreducible representations
of semisimple Lie groups of bounded dimension, where
we can hope to apply the classification of such represen-
tations (McKay and Patera, 1981) to show that our mys-
terious H' is none other than SU(V,,). If this is so, then it
will follow that the preceding transformations H— H,,

—[Hy,Hy|—[H,,H,] did nothing (beyond the first ar-
row, which may have eliminated some components of H
on which the determinant is a nontrivial root of unity).

In general, getting the answer (to the question of
which Jones representations are projectively dense) out
of the classification requires some tricky combinatorics
and rank-level (Freedman et al., 2002b) duality. Here we
are content with solving the easiest nontrivial case. Con-
sider six Fibonacci anyons 7 with total charge=1. The
associated Vg=(>=2 qubits® noncomputational C are
shown in Fig. 19.

In coordinates, p takes the braid generators (projec-
tively) to these operators:

-1
q
o> -1 , q= e—2m/5’
q
e q —
< _al]
q+1 g+1
Bl 1
T g+l q+1
gy —> g _ 2B]
q+1 q+1 ’
Bl 1
T g+l q+1
q

where [3]=g+g~'+1 and o, for i=3,4,5, are similar.
See Funar (1999) for details.

The closed image of p is HC U(S5), so our irreducible
representation 6’ of H’', coming from U(5)’s fundamen-
tal, is exactly five dimensional (we do not yet know the
dimension of H'). From McKay and Patera (1981), there
are four five-dimensional irreducible representations,
which we list by rank: (1) rank=1: (SU(2),4m); (2)
rank=2: (Sp(4),m,); (3) rank=4: (SU(5),m;), i=1,4.

Suppose x € SU(2) has eigenvalues « and B in .
Then under 4, it will have o/, i+j=4 (i,j=0) as
eigenvalues, which are too many (unless a/B=-1). In
case 2, since 5 is odd, every element has at least one real
eigenvalue, with the others coming in reciprocal pairs.
Again, there is no solution. Thus the TEVP shows that
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we are in case 3, i.e., that H'=SU(5). It follows from
degree theory that [H,, Hy]=SU(5) and from this we get
the desired conclusion: SU(5)C HC U(5).

We have not yet explained in what sense the topologi-
cal implementations of quantum computations are effi-
cient. Suffice it to say that there are (nearly) quadratic
time algorithms due to Kitaev and Solvay (Nielsen and
Chuang, 2000) for finding the braids that approximate a
given quantum circuit. In practice, brute force, load-
balanced searches for braids representing fundamental
gates should yield accuracies on the order of 107> (within
the “error threshold”). Note that these are systematic,
unitary errors resulting from the fact that we are enact-
ing a unitary transformation which is a little different
from what an algorithm may ask for. Random errors,
due to decoherence, are caused by uncontrolled physical
processes, as discussed in the next section.

D. Errors

As discussed in Sec. I1.B.2, small inaccuracies in the
trajectories along which we move our quasiparticles are
not a source of error. The topological class of quasipar-
ticles” trajectories (including undesired quasiparticles)
must change in order for an error to occur. Therefore, to
avoid errors, one must keep careful track of all quasipar-
ticles in the system and move them so that the intended
braid is performed. As mentioned in Sec. II1.B.2, stray
thermally excited quasiparticles could form unintended
braids with quasiparticles of our system and cause errors
in the computation. Fortunately, as mentioned in Sec.
I1.B.2, there is a large class of such processes that actu-
ally do not result in errors. We discuss the two most
important of these.

Perhaps the simplest such process that does not cause
errors is when a quasiparticle-quasihole pair is thermally
(or virtually) excited from the vacuum, one of the two
excited particles wanders around a single quasiparticle
in our system and then returns to reannihilate its partner
[see Fig. 20(a)]. For the sake of argument, imagine that
our initial computational system is a pair of quasiparti-
cles in state j. At some time #; (marked by X in the
figure), we imagine that a quasiparticle-quasihole pair
becomes excited from the vacuum. Since the pair comes
from the vacuum, it necessarily has overall quantum
number 1 (i.e., fusing these particles back together gives
the vacuum 1). Thus the overall quantum number of all
four particles is j. (In the above notation, we could draw
a circle around all four particles and label it j). We then
imagine that one of our newly created quasiparticle
wanders around one quasiparticle of our computational
system as shown in the figure. Using F matrices or braid-
ing matrices &, we could compute the full state of the
system after this braiding operation. Importantly, how-
ever, the overall quantum number j of all four particles
is preserved.

Now at some later time ¢, the two created particles
reannihilate each other and are returned to the vacuum
as shown by the second X in Fig. 20(a). It is crucial to
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FIG. 20. Two processes involving excited quasiparticle-
quasihole pairs that do not cause errors in a topological quan-
tum computation. (a) In the process shown on the left, a
quasiparticle-quasihole pair is excited at time #; (marked by an
X); one of these particles wraps around a quasiparticle of our
computational system, and then comes back to its partner and
reannihilates at a later time #). When the pair is created it
necessarily has the identity quantum number 1 of the vacuum,
and when it annihilates, it also necessarily has this vacuum
quantum number. As a result the quantum number of the com-
putational system is not changed by this process. (b) In the
process shown on the right, a quasiparticle-quasihole pair is
excited at time #; (marked by X); one of these particles anni-
hilates an existing quasiparticle of our computational system at
a later time f,, and leaves behind its partner to replace the the
annihilated quasiparticle of the computational system. Again,
when the pair is created, it necessarily has the identity quan-
tum number 1 of the vacuum. Similarly, the annihilating pair
has the quantum number of the vacuum. As a result, the two
particles remaining in the end have the same quantum num-
bers as the two initial quantum numbers of the computational
system.

point out that, in order for two particles to annihilate,
they must have the identity quantum number 1 (i.e., they
must fuse to 1). The annihilation can therefore be
thought of as a measurement of the quantum number of
these two particles. The full state of the system then
collapses to a state where the annihilating particles have
quantum number 1. However, the overall quantum num-
ber of all four particles must remain in the state j. Fur-
ther, in order for the overall state of the four particles to
be j and the two annihilating particles to be 1, the two
other (original) particles must have quantum number j.
Thus, as shown in the figure, the two original quasipar-
ticles must end up in their original state j once the cre-
ated particles are reannihilated. Similarly, if the original
particles had started in a superposition of states, that
superposition would be preserved after the annihilation
of the two excited particles. (Note that an arbitrary
phase might occur, although this phase is independent of
the quantum number j and therefore is irrelevant in the
context of quantum computations.)

Another important process that does not cause errors
is shown in Fig. 20(b). In this process, one member of a
thermally excited quasiparticle-quasihole pair annihi-
lates with one particle in our computational system,
leaving behind its partner as a replacement. Again, since
both the created pair and annihilating particles have the
same quantum numbers as the vacuum, it is easy to see
(using similar arguments as above) that the final state of
the two remaining particles must be the same as that of
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the original two particles; thus no errors are caused so
long as the new particle is used as a replacement for the
annihilated quasiparticle.

The fact that the two processes described above do
not cause errors is essential to the notion of topological
quantum computation. Since the created quasiparticles
need not move very far in either process, these processes
can occur very frequently, and can even occur virtually
since they could have low total action. Thus it is crucial
that these likely processes do not cause errors. The sim-
plest processes that can actually cause error would re-
quire a thermally (or virtually) created quasiparticle-
quasihole pair to braid nontrivially with at least two
quasiparticles of our computational system. Since it is
assumed that all quasiparticles that are part of our sys-
tem are kept far from each other, the action for a pro-
cess that wraps a (virtually) created quasiparticle around
two different particles of our system can be arbitrarily
large, and hence these virtual processes can be sup-
pressed. Similarly, it can be made unlikely that thermally
excited quasiparticles will wrap around two separate
particles of our system before reannihilating. Indeed,
since in two dimensions a random walk returns to its
origin many times, a wandering quasiparticle may have
many chances to reannihilate before it wraps around
two particles of our computational system and causes
errors. Nonetheless, in principle, this process is a serious
consideration and has the potential to cause errors if too
many quasiparticle-quasihole pairs are excited.

The probability for these error-causing processes is
naively ~e 2?7 (thermally excited quasiparticles) or
~e AL (virtual quasiparticles), where T is the tempera-
ture, A is the quasiparticle energy gap, L is the distance
between the quasiparticles comprising a qubit, and v is a
characteristic velocity. However, transport in real sys-
tems is, in fact, more complicated. Since there are differ-
ent types of quasiparticles, the gap measured from the
resistance may not be the smallest gap in the system. For
instance, neutral fermionic excitations in the Pfaffian
state SU(2), may have a small gap, thereby leading to a
splitting between the two states of a qubit if the two
quasiparticles are too close together. Second, in the pres-
ence of disorder, the gap will vary throughout the sys-
tem. Processes that take advantage of regions with small
gaps may dominate the error rate. Furthermore, in a
disordered system, variable-range hopping, rather than
thermally activated transport, is the most important pro-
cess. Localized quasiparticles are an additional compli-
cation. If they are truly fixed, then they can be corrected
by software, but if they drift during the course of a cal-
culation, they are a potential problem. In short, quasi-
particle transport, even ordinary electrical transport, is
complicated in semiconductor quantum Hall systems. A
complete theory does not exist. Such a theory is essen-
tial for an accurate prediction of the error rate for topo-
logical quantum computation in non-Abelian quantum
Hall states in semiconductor devices and is an important
future challenge for solid state theory.
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FIG. 21. A conjectural view of relative computational com-
plexity

V. FUTURE CHALLENGES FOR THEORY AND
EXPERIMENT

Quantum mechanics represented a huge revolution in
thought. It was such a stretch of the imagination that
many great minds and much experimental information
were required to put it into place. Now, 80 years later,
another collaborative effort is afoot to revolutionize
computation by a particularly rich use of quantum me-
chanics. The preceding information revolution, which
was based on the transistor, rested on the one-electron
physics of semiconductors. The revolution that we advo-
cate will require the understanding and manipulation of
strongly interacting electron systems. Modern con-
densed matter physics has powerful tools to analyze
such systems: renormalization group, conformal field
theory, Bethe ansatz, dualities, and numerics. Even with-
out the quantum computing connection, many of the
most interesting problems in physics lie in this direction.
Prominent here is the problem of creating, manipulat-
ing, and classifying topological states of matter.

There is a second “richness” in the connection be-
tween quantum mechanics and computation. The kind
of computation that will emerge is altogether new. While
the silicon revolution facilitated the same arithmetic as
was done on the abacus, the quantum computer will
compute in superposition. We have some knowledge
about what this will allow us to do. Select mathematical
problems (factoring, finding units in number fields,
searching) have efficient solutions in the quantum
model. Many others may succumb to quantum heuristics
[e.g., adiabatic computation (Farhi et al., 2000)], but we
will not know until we can play with real quantum com-
puters. Some physical problems, such as maximizing 7',
within a class of superconductors, should be advanced
by quantum computers, even though, viewed as math
problems, they lie even outside class NP (i.e., they are
very hard). A conjectural view of relative computational
complexity is shown in Fig. 21.

But, before we can enter this quantum computing
paradise, there are fundamental issues of physics to be
tackled. The first problem is to find a non-Abelian topo-
logical phase in nature. The same resistance to local per-
turbation that makes topological phases astonishing
(and, we hope, useful) also makes them somewhat co-
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vert. An optimist might hope that they are abundant and
that we are merely untutored and have trouble noticing
them. At present, our search is guided primarily by a
process of elimination: we have focused our attention on
those systems in which the alternatives do not occur—
either quantum Hall states for which there is no pre-
sumptive Abelian candidate or frustrated magnets which
do not order into a conventional broken-symmetry state.
What we need to do is observe some topological prop-
erty of the system, e.g., create quasiparticle excitations
above the ground state, braid them, and observe how
the state of the system changes as a result. In order to do
this, we need to be able to (i) create a specified number
of quasiparticles at known positions, (ii) move them in a
controlled way, and (iii) observe their state. All of these
tasks are difficult, but not impossible.

It is instructive to see how these difficulties are mani-
fested in the case of quantum Hall states and other pos-
sible topological states. The existence of a topological
phase in the quantum Hall regime is signaled by the
quantization of the Hall conductance. This is a special
feature of those chiral topological phases in which there
is a conserved current J, (e.g., an electrical charge or
spin current). Topological invariance and P, T violation
permit a nonvanishing correlation function of the form

<J,U,(Q)JV(_ C])) = CG}LV)\q}\’ (136)

where C is a topological invariant. If the topological
phase does not break P and 7 or if there is no conserved
current in the low-energy effective field theory, then
there will not be such a dramatic signature. However,
even in the quantum Hall context, in which we have an
advantage thanks to the Hall conductance, it is still a
subtle matter to determine which topological phase the
system is in.

As described, we used theoretical input to focus our
attention on the v=5/2 and 12/5 states. Without such
input, the available phase space is too large and signa-
tures of a topological phase are too subtle. One benefit
of having a particular theoretical model of a topological
phase is that experiments can be done to verify other
(i.e., nontopological) aspects of the model. By corrobo-
rating the model in this way, we gain indirect evidence
about the nature of the topological phase. In the case of
the v=5/2 state, the Pfaffian model wave function
(Moore and Read, 1991; Greiter et al., 1992) for this
state is fully spin polarized. Therefore measuring the
spin polarization at v=5/2 confirms this aspect of the
model, thereby strengthening our belief in the the model
as a whole—including its topological features (see Tracy
et al., 2007, for such a measurement at v=1/2). In the
case of Sr,RuQy, the p+ip BCS model predicts a non-
zero Kerr rotation (Xia et al., 2006). This is not a topo-
logical invariant, but when it is nonzero and the super-
conducting order parameter is known to be a spin
triplet, we infer a nonzero spin quantum Hall effect
(which is a topological invariant but is more difficult to
measure). Thus nontopological measurements can teach
us a great deal when we have a particular model in
mind.
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In frustrated magnets, one reduces the complex many-
dimensional parameter space in the following way: one
focuses on systems in which there is no conventional
long-range order. Although it is possible for a system to
be in a topological phase and simultaneously show con-
ventional long-range order (quantum Hall ferromagnets
are an example), the absence of conventional long-range
order is often used as circumstantial evidence that the
ground state is “exotic” (Coldea et al., 2003; Shimizu et
al., 2003). This is a reasonable place to start, but in the
absence of a theoretical model predicting a specific to-
pological state it is unclear whether the ground state is
expected to be topological or merely exotic in some
other way (see below for a further discussion of this
point).

While theoretical models and indirect probes can help
to identify strong candidates, only the direct measure-
ment of a topological property can demonstrate that a
system is in a topological phase. If, as in the quantum
Hall effect, a system has been shown to be in a topologi-
cal phase through the measurement of one property
(e.g., the Hall conductance), then there is still the prob-
lem of identifying which topological phase. This requires
the complete determination of all of its topological
properties (in principle, the quasiparticle species, their
topological spins, fusion rules, and R and F matrices).
Finding nontrivial quasiparticles is the first step. In the
quantum Hall regime, quasiparticles carry electrical
charge (generally fractional). Through capacitive mea-
surements of quasiparticle electric charges (Goldman
and Su, 1995) or from shot noise measurements (De Pic-
ciotto et al., 1997; Saminadayar et al., 1997), one can
measure the minimal electric charges and infer the al-
lowed quasiparticle electric charges. The observation of
charge-(e/4) quasiparticles by either of these methods
would be an important step in characterizing the v
=5/2 state. Detecting charged quasiparticles capacita-
tively or through noise measurements necessitates gated
samples: antidots and/or point contacts. In the case of
delicate states such as v=5/2, this is a challenge; we do
not want the gates to reduce the quality of the device
and excessively degrade the robustness of the states.
Even if this proves not to be surmountable, it only solves
the problem of measuring charged quasiparticles; it does
not directly help us with nontrivial neutral quasiparticles
(such as those that we believe exist at v=5/2).

Again, a particular theoretical model of the state can
be helpful. In the case of the toric code, an excited
plaquette or 7, vortex (see Secs. II.D and III.G) is a
neutral spinless excitation and therefore difficult to
probe. However, when such a phase arises in models of
superconductor—-Mott insulator transitions, 7, vortices
can be isolated by going back and forth through a direct
second-order phase transition between a topological
phase and a superconducting phase (Senthil and Fisher,
2001a). Consider a superconductor in an annular geom-
etry with a single half-flux quantum vortex through the
hole in the annulus. Now suppose that some parameter
can be tuned so that the system undergoes a second-
order phase transition into an insulating state which is a
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topological phase of the toric code or 7, variety. Then
the single vortex ground state of the superconductor will
evolve into a state with a 7, vortex in the hole of the
annulus. The magnetic flux will escape, but the Z, vortex
will remain. (Eventually, it will either quantum tunnel
out of the system or, at finite temperature, be thermally
excited out of the system. It is important to perform the
experiment on shorter time scales.) If the system is then
taken back into the superconducting state, the 7, vortex
will evolve back into a superconducting vortex; the flux
must be regenerated, although its direction is arbitrary.
Although Senthil and Fisher considered the case of a 7,
topological phase, other topological phases with direct
second-order phase transitions into superconducting
states will have a similar signature. On the other hand,
in a nontopological phase, there will be nothing left in
the insulating phase after the flux has escaped. There-
fore, when the system is taken back into the supercon-
ducting phase, a vortex will not reappear. The effect de-
scribed above is not a feature of the topological phase
alone, but depends on the existence of a second-order
quantum phase transition between this topological state
and a superconducting state. However, in the circum-
stance that such a transition does exist between two such
phases of some material, this experiment can definitively
identify a topologically nontrivial neutral excitation. In
practice, the system is not tuned through a quantum
phase transition but instead through a finite-
temperature one; however, so long as the temperature is
much smaller than the energy gap for a 7, vortex, this is
an unimportant distinction. This experiment was per-
formed on an underdoped cuprate superconductor by
Wynn et al. (2001). The result was negative, implying
that there is not a topological phase in the low-doping
part of the phase diagram of that material, but the ex-
perimental technique may still prove to be a valuable
way to test some other candidate material in the future.
It would be interesting and useful to design analogous
experiments which could exploit the possible proximity
of topological phases to other long-range ordered states
besides superconductors.

Even if nontrivial quasiparticles have been found,
there is still the problem of determining their braiding
properties. In the quantum Hall case, we described in
Secs. II.C.3 and IIL.F how this can be done using quasi-
particle tunneling and interferometry experiments. This
requires even more intricate gating. However, even
these difficult experiments are the most concrete that we
have, and they work only because these states are chiral
and have gapless edge excitations—and therefore have
nontrivial dc transport properties—and because charged
anyons contribute directly to these transport properties.
Neutral quasiparticles are an even bigger challenge. Per-
haps they can be probed through thermal transport or
even, if they carry spin, through spin transport.

As shown in Sec. II.C.3, Abelian and non-Abelian in-
terference effects are qualitatively different. Indeed, the
latter may actually be easier to observe in practice. It is
striking that quasiparticle interferometry, which sounds
like an application of topological phases, is studied as a
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basic probe of the state. The naive logical order is re-
versed: to see if a system is in a topological phase, we
say (ironically) “shape the system into a simple com-
puter and if it computes as expected, then it must have
been in the suspected phase.” This is a charming inver-
sion, but it should not close the door on the subject of
probes. It is, however, important to pause and note that
we now know the operational principles and methodol-
ogy for carrying out quasiparticle braiding in a concrete
physical system. It is therefore possible that non-
Abelian anyons will be observed in the quantum Hall
regime in the near future. This is truly remarkable. It
would not close the book on non-Abelian anyons, but
open a new chapter and encourage us to look for non-
Abelian anyons elsewhere even while trying to build a
quantum computer with a quantum Hall state.

One important feature of non-Abelian anyons is that
they generally have multiple fusion channels. These dif-
ferent fusion channels can be distinguished interfero-
metrically, as discussed in Secs. II.C.3 and IIL.F. This is
not the only possibility. In ultracold neutral atom sys-
tems, they can be optically detected (Grosfeld et al.,
2007; Tewari, Das Sarma, Nayak, et al., 2007), in the case
of states with Ising anyons. Perhaps, in a solid, it will be
possible to measure the force between two anyons. Since
the two fusion channels have different energies when
the anyons are close together, there will be different
forces between them depending on how the anyons fuse.
If an atomic force microscope can “grab” an anyon in
order to measure this force, perhaps it can also be used
to drag one around and perform a braid.

Thus we see that new ideas would be helpful in the
search for non-Abelian topological phases. It may be the
case that each physical system, e.g., FQHE, cold atoms,
Sr,Ru0O, films, etc., may be suited to its own types of
measurements, such as the ones described above and in
Secs. I1.C.3 and IIL.F, but general considerations, such as
topological entropy (Kitaev and Preskill, 2006; Levin
and Wen, 2006), may inform and unify these investiga-
tions. Another difficulty is that, as mentioned above, we
are currently searching for non-Abelian topological
phases in those systems in which there is an absence of
alternatives. It would be far better to have positive a
priori reasons to look at particular systems.

This state of affairs points to the dire need for general
principles, perhaps of a mathematical nature, which tell
us when a system is likely to have a topological phase.
Equivalently, can we define the necessary conditions for
the existence of a topological phase with non-Abelian
quasiparticle statistics? For contrast, consider the case of
magnetism. Although there is a great deal which we do
not know about magnetism, we do know that we need
solids containing ions with partially filled d or f shells.
Depending on the effective Coulomb interaction within
these orbitals and their filling fractions, we understand
how various mechanisms such as exchange and superex-
change can lead to effective spin-spin interactions which,
in turn, can lead to ferromagnetism, antiferromagnetism,
spin-density waves, etc. We need a comparable under-
standing of topological phases. One direction, described
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in Sec. III.G, is to analyze models in which the interac-
tions encode some combinatorial relations, such as those
associated with string nets or loop gases (Fendley and
Fradkin, 2005; Freedman et al., 2005a; Levin and Wen,
2005b; Fidkowski et al., 2006; Fendley, 2007). However,
we only have a few examples of microscopic interactions
which give rise to these intermediate-scale structures.
We need more general guidelines which enable us to
look at a given Hamiltonian and determine if it is likely
to have a non-Abelian topological phase; a more de-
tailed analysis or experimental study could then be car-
ried out. This is an important direction for future re-
search because, although nature has given us the
quantum Hall regime as a promising hunting ground for
topological phases, the energy scales are very low. A
topological phase in a transition metal oxide might have
a much larger gap and therefore be much more robust.

An important problem on the mathematical side is a
complete classification of topological phases. In this re-
view, we have focused on a few examples of topological
phases: those associated with SU(2), Chern-Simons
theory, especially the k=2,3 cases. These are part of a
more general class associated with an arbitrary semi-
simple Lie group G at level k. Another class is associ-
ated with discrete groups, such as phases whose effective
field theories are lattice gauge theories with discrete
gauge group. New topological phases can be obtained
from both of these by coset constructions and/or tensor-
ing together different effective field theories. However, a
complete classification is not known. With a complete
classification in hand, if we were to observe a topological
phase in nature, we could identify it by comparing it
against the list of topological phases. Since we have ob-
served relatively few topological phases in nature, we
have not needed a complete classification. If, however,
many more are lurking, waiting to be observed, then a
complete classification could be useful in the way that
the closely related problem of classifying rational con-
formal field theories has proved useful in understanding
classical and quantum critical points.

We refer here, and throughout this article, to topologi-
cal phases as defined in Sec. III (and which we recapitu-
late below). There are many other possible exotic phases
which share some characteristics of topological phases,
such as the emergence of gauge fields in their low-
energy theories (Wen, 2004), but do not satisfy all crite-
ria. These do not appear to be useful for quantum com-
putation.

Finally, the three-dimensional frontier must be men-
tioned. Most theory (and experiment) pertains to 2D or
quasi-2D systems. In 3+1 dimensions, even the underly-
ing mathematical structure of TQFTs is quite open.
Little is known beyond finite group gauge theories. For
example, we do not know if quantum information can
(in the thermodynamic limit) be permanently stored at
finite temperature in any three-dimensional system. [Ac-
cording to Dennis et al. (2002), this is possible in 4+1
dimensions, not possible in 2+1 dimensions, and is an
open question in 3+1 dimensions.] The case of 2+1 di-
mensions has been the playground of anyons for
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30 years. Will looplike “particles” in 3+1 dimensions be
as rich a story 30 years from now?

It is fitting to end this review with a statement of the
definition of a topological phase: the ground state in the
presence of multiple quasiparticles or in a nontrivial to-
pology has a stable degeneracy which is immune to weak
(but finite) local perturbations. Note that the existence
of an excitation gap is not needed as a part of this defi-
nition although the stability of the ground state degen-
eracy to local perturbations almost always necessitates
the existence of an excitation gap. We have three com-
ments about this definition. (i) Incompressible FQH
states satisfy our definition and they are, so far, the only
experimentally established topological phases. (ii) The
existence of a topological phase does not, by itself, en-
able topological quantum computation—one needs qua-
siparticles with non-Abelian braiding statistics, and for
universal topological quantum computation, these quasi-
particles’ topological properties must belong to a class
which includes SU(2),, with k=3,5,6,7,8,9,..., as dis-
cussed. (iii) Possible non-Abelian quantum Hall states,
such as v=5/2 and 12/5, are the first among several pos-
sible candidates, including Sr,RuO,, which has been
shown to be a chiral p-wave superconductor (Kidwingira
et al., 2006; Xia et al., 2006), and p-wave paired cold
atom superfluids.

Note added in proof

Dolev et al. (2008) have recently measured the low-
frequency current noise (“shot noise”) at a point contact
in the v=5/2 state. They find the noise to be consisent
with charge-e/4 quasiparticles, and inconsistent with
e/2. A quasiparticle charge of e/4 is consistent with
paired states at v=5/2, including both the Moore-Read
(Pfaffian) state and the anti-Pfaffian state, and also Abe-
lian paired states. sdfgsdfgsdfg

In another recent experiment, Radu er al. (2008) mea-
sured the dependence on voltage and temperature of the
tunneling current at a point contact in the v=5/2 state.
They find that the current is well fit by the form /

=T*F(e*V/kgT) where e*=e/4, and the exponent « and
scaling function F(x) appear to be consistent with pre-
dictions based on the anti-Pfaffian state, although it is
premature to rule out other possible states.

In a recent paper, Peterson ef al. (2008) have per-
formed finite-system exact diagonalization studies which
find the correct ground state degeneracy on the torus at
v=5/2 and also observe the expected degeneracy be-
tween Pfaffian and anti-Pfaffian states. The key new in-
gredient in their calculation is the inclusion of the effects
of the finite thickness of the 2D layer which also appears
to enhance the overlap between the non-Abelian states
and the exact numerical finite-system wave function at
v=>5/2.

The first two papers provide the first direct experi-
mental evidence in support of the 5/2 state being non-
Abelian while the third paper strengthens the case from
numerics.
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APPENDIX: CONFORMAL FIELD THEORY FOR
NONEXPERTS

We consider chiral conformal field theories (CFTs) in
two dimensions. Chiral means that all of our fields will
be functions of z=x+iy only and not functions of zZ. [For
a good introduction to CFT, see Belavin ef al. (1984) and
Di Francesco et al. (1997)].

1. OPE

To describe a CFT we give its “conformal data,” in-
cluding a set of primary fields, each with a conformal
dimension A, a table of fusion rules of these fields, and a
central charge ¢ (which we will not need here, but is
fundamental to defining each CFT). Data for three CFTs
are given in Table II.

The operator product expansion (OPE) describes
what happens to two fields when their positions ap-
proach each other. We write the OPE for two arbitrary
fields ¢; and ¢; as

lim ¢(z)(w) = 2 Cii(z = w) 4 by (w),

—w k

(A1)

where the structure constants C% are only nonzero as
indicated by the fusion table. [We assume that all fields
¢y are primary fields. So-called “descendant” fields,
which are certain types of “raising operators” applied to
the primary fields, can also occur on the right-hand side,
with the dimension of the descendant being greater than
that of its primary by an integer. Since we are concerned
only with leading singularities in the OPE, we ignore
descendants. For all CFTs considered, the coefficient of
the primary on the right-hand side will not vanish, al-
though this can happen (Ardonne and Schoutens, 2007).]
Note that the OPE works inside a correlator. For ex-
ample, in the Z; parafermion CFT (see Table II), since
o X iy =¢€, for arbitrary fields ¢; we have

lim{¢py(z1) -+ dp(zp) 01 (2) thy(w))

I—w

~ (2= w2y (z0) - pulza)ew)).  (A2)

In addition to the OPE, there is also an important
“neutrality” condition: a correlator is zero unless all
fields can fuse together to form the identity field 1. For
example, in the Z; parafermion field theory (¢ri)#0

since i, X ¢y =1, but (i 41)=0 since iy X =y # 1.
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2. Conformal blocks

We look at what happens when a fusion has more than
one possible result. For example, in the Ising CFT, o
X o=1+. Using the OPE, we have

lim o(w))o(w,) ~ V(wy —w)'® + (wy — wy) By,

(A3)

where we neglected the constants ij If we consider
(o), the neutrality condition picks out only the first
term in Eq. (A3) where the two ¢’s fuse to form 1. Simi-
larly, (oo results in the second term of Eq. (A3) where
the two o’s fuse to form ¢ which then fuses with the
additional ¢ to make 1.

Fields may also fuse to form the identity in more
than one way. For example, in the correlator
(o(wy)a(wy)a(ws)a(w,)) of the Ising CFT, the identity is
obtained via two possible fusion paths—resulting in two
different so-called “conformal blocks.” On the one
hand, one can fuse o(w,) and o(w,) to form 1 and simi-
larly fuse o(ws3) and o(w,) to form 1. On the other hand,
one can fuse o(w;) and o(w,) to form ¢ and fuse o(w;)
and o(wy) to form ¢, and then fuse the two resulting ¢
fields together to form 1. The correlator generally gives
a linear combination of the possible resulting conformal
blocks. We thus think of such a correlator as living in a
vector space rather than having a single value. (If we
instead choose to fuse 1 with 3, and 2 with 4, we obtain
two blocks that are linear combinations of the ones
found by fusing 1 with 2 and 3 with 4. The resulting
vector space, however, is independent of the order of
fusion.) Crucially, transporting the coordinates w;
around each other makes a rotation within this vector
space.

To be clear about the notion of conformal blocks, look
at the explicit form of the Ising CFT correlator,

lim{c(0)o(z)o(1)o(w)) =a,F, +a_F_, (A4)
F.(z) ~[wz(1-2)]"81 = V’T—z, (A5)

where a, and a_ are arbitrary coefficients. [Equations
(A4) and (AS) are results of calculations not given
here (Di Francesco et al., 1997).] When z—0 we have
F.~z7"8 whereas F_~ 7>, Comparing to Eq. (A3) we
conclude that F, is the result of fusing o(0) X o(z) —1
whereas F_ is the result of fusing (0) X o(z) — ¢. As z is
taken in a clockwise circle around the point z=1, the
inner square root changes sign, switching F, and F_.
Thus this “braiding” (or “monodromy”) operation trans-
forms,

)=o)
a_ 1 0/\a_

Having a multiple-valued correlator (i.e., multiple con-
formal blocks) is a result of having such branch cuts.

(A6)
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FIG. 22. Bratteli diagram for fusion of multiple o fields in the
Ising CFT.

Braiding the coordinates (w’s) around each other results
in the correlator changing values within its allowable
vector space.

A useful technique for counting conformal blocks is
the Bratteli diagram. In Fig. 22 we give the Bratteli dia-
gram for the fusion of multiple o fields in the Ising CFT.
Starting with 1 at the lower left, at each step moving
from the left to the right, we fuse with one more o field.
At the first step, the arrow points from 1 to o since 1
X o=0. At the next step o fuses with o to produce either
¢ or 1 and so forth. Each conformal block is associated
with a path through the diagram. Thus to determine the
number of blocks in {oooo) we count the number of
paths of four steps in the diagram starting at the lower
left and ending at 1.

3. Changing bases

As mentioned above, the space spanned by the con-
formal blocks resulting from the fusion of fields is inde-
pendent of the order of fusion (which field is fused with
which field first). However, fusing fields together in dif-
ferent orders results in a different basis for that space. A
convenient way to denote fusion of fields in a particular
order is by using fusion tree diagrams as shown in Fig.
23. Both diagrams show the fusion of three initial fields
®i» ¢j, and ¢ The diagram on the left shows ¢; and ¢,
fusing together first to form ¢, which then fuses with ¢;
to form ¢,,. One could equally well have chosen to fuse
together ¢; and ¢; together first before fusing the result
with ¢;, as shown on the right of Fig. 23. The math-
ematical relation between these two bases is given in the
equation shown in Fig. 23 in terms of the so-called F
matrix (for “fusion”), which is an important property of
any given CFT or TQFT. An example of using the F
matrix is given in Sec. IV.B.

¢ i P

o= qE[Frir{k]pq

Pm

FIG. 23. Basis states obtained by fusing fields together de-
pends on the order of fusion (although the space spanned by
these states is independent of the order). The F matrix con-
verts between the possible bases.
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4. The chiral boson

A particularly important CFT is obtained from a free
Bose field theory in 1+1 dimension by keeping only the
left-moving modes (Di Francesco et al., 1997). The free
chiral Bose field ¢(z), which is a sum of left-moving cre-
ation and annihilation operators, has a correlator
(H(2)p(z"))=-In(z—z'). We then define the normal or-
dered chiral vertex operator :/“#?:, which is a confor-
mal field. Note that we will typically not write the nor-
mal ordering indicators as ::. Since ¢ is a free field,
Wick’s theorem can be used to obtain (Di Francesco et
al., 1997)

MMHJ~WWmm=m%—Em¢amawg

i<j

=1 (z;—z) (A7)

i<j
(strictly speaking this identity holds only if the neutrality
condition X;;=0 is satisfied, otherwise the correlator
vanishes).
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