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The recent success in quantum annealing, i.e., optimization of the cost or energy functions of complex
systems utilizing quantum fluctuations is reviewed here. The concept is introduced in successive steps
through studying the mapping of such computationally hard problems to classical spin-glass problems,
quantum spin-glass problems arising with the introduction of quantum fluctuations, and the annealing
behavior of the systems as these fluctuations are reduced slowly to zero. This provides a general
framework for realizing analog quantum computation.
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I. INTRODUCTION

The use of quantum-mechanical tunneling through
classically localized states in annealing of glasses has
opened up a new paradigm for solving hard optimization

problems through adiabatic reduction of quantum fluc-
tuations. This topic will be introduced and reviewed
here.

Consider the example of a ferromagnet consisting of
N small interacting magnetic elements: the spins. For a
macroscopic sample, N is very large: on the order of the
Avogadro number. Assume that each spin can be in ei-
ther of two simple states: up or down. Also, the pairwise
interactions between spins are such that the energy of
interaction �potential energy �PE�� between any pair of
spins is negative �smaller� if both the spins in the pair are
in the same state and positive �larger� if their states dif-
fer. Thus, the collective energy of the N-spin system
�given by the Hamiltonian H� is minimum when all spins
are aligned in the same direction, all up or all down,
giving complete order. We call these two minimum-
energy configurations the ground states. The rest of the
2N configurations are called excited states. The plot of
the interaction energy for the whole system with respect
to the configurations is called the potential-energy–
configuration landscape, or simply the potential-energy
landscape �PEL�. For a ferromagnet, this landscape has
a smooth double-valley structure �two mirror-symmetric
valleys with the two degenerate ground states, all up and
all down, at their respective bottoms�. At zero tempera-
ture the equilibrium state is the state of minimum poten-
tial energy, and the system resides stably at the bottom
of either of the two valleys. At finite temperature, ther-
mal fluctuations allow the system to visit higher-energy
configurations with some finite probability �given by the
Boltzmann factor� and thus the system also spends time
in other parts of the PEL. The probability that a system
is found in a particular macroscopic state depends not
only on the energy of the state �as at zero temperature�,
but also on its entropy. The thermodynamic equilibrium
state corresponds to the minimum of a thermodynamic
potential called the free energy F, given by the differ-
ence between the energy of the state and the product of
its entropy and the temperature. At zero temperature,
the minimum of the free energy coincides with the mini-
mum for energy and one gets the highest order �magne-
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tization�. As the temperature is increased, the contribu-
tion of the entropy is magnified and the minimum of the
free energy is shifted more and more toward states with
lower and lower order or magnetization, until at �and
beyond� some transition temperature Tc the order dis-
appears completely. For antiferromagnetic systems, the
spin-spin pair interactions are such that the energy is
lower if the spins in the pair are in opposite states, and
higher if their states are same. For antiferromagnets one
can still define a sublattice order or magnetization and
the PEL still has a double-well structure as in a ferro-
magnet for short-range interactions. The free energy
and the order-disorder transition also show identical be-
havior as observed for a ferromagnet.

In spin glasses, where different spin-spin interactions
are randomly ferromagnetic or antiferromagnetic and
frozen in time �quenched disorder�, the PEL becomes
extremely rugged; various local and global minima
trapped between potential-energy barriers appear. The
ruggedness and degeneracies in the minima come from
the effect of frustration or competing interactions be-
tween spins; none of the spin states on a cluster or a
plaquette is able to satisfy all interactions in the cluster.
The locally optimal state for spins in the cluster is there-
fore degenerate and frustrated.

Similar situations occur for multivariate optimization
problems such as the traveling salesman problem �TSP�.
Here a salesman has to visit N cities placed randomly on
a plane �country�. Of the N ! /N distinct tours passing
through each city once, only a few correspond to the
minimum �ground-state� travel distance or travel cost.
The rest correspond to higher costs �excited states�. The
cost function, when plotted against different tour con-
figurations, gives a similar rugged landscape, equivalent
to the PEL of a spin glass �henceforth we use the term
PEL to also mean cost-configuration landscapes�.

Obviously, an exhaustive search for the global mini-
mum of a rugged PEL requires an exponentially large
�or higher� number �in N� of searches �2N and N! order
of searches for an N-spin spin glass and an N-city TSP,
respectively�. The computational effort or time for such
searches is therefore generally not bounded by any poly-
nomial in the problem size N. Alternatively, a gradual
energy or cost dissipative dynamics �annealing� with
Boltzmann-like thermal fluctuations or some noise fac-
tor �in order to move beyond the local minima� in the
PEL may help deep enough minima to be reached more
easily. This simulated thermal annealing scheme is now
considered to be a successful technique. However, the
technique often fails if barrier heights between minima
diverge �or become very high�, as in the case of a spin
glass, due to frequent trapping of the system in such
local minima �glassy behavior�. If the barriers are very
narrow, quantum-mechanical fluctuations �fluctuations
in a quantum observable due to its noncommutativity
with the Hamiltonian of the system� can assist in tunnel-
ing through them, thereby leading to successful quantum
annealing �see Fig. 1�. We introduce these ideas in detail
here through successive steps:

�i� The physics of classical spin glasses has already

contributed to our knowledge of the landscape structure
of the energy or thermodynamic potential and that of
the unusually slow �glassy� dynamics of many-body sys-
tems in the presence of frustration and disorder. Map-
ping of computationally hard problems, such as the trav-
eling salesman problem, etc., to classical spin-glass
models also helped in understanding their complexity.

�ii� The ground- �and some low-lying-� state structures
of frustrated random systems in the presence of quan-
tum fluctuations have also been studied in the context of
quantum spin glasses. It has been shown that, because of
the possibility of tunneling through barriers in the
potential-energy landscape, quantum fluctuations can
help the dynamics to be “more ergodic” than the dy-
namics induced by classical fluctuations and thus lead to
better exploration of the landscape. Ergodicity here
means memory loss of the initial state in the course of
evolution �weak ergodicity� and convergence to a sta-
tionary distribution irrespective of the initial state
�strong ergodicity�. The nature of these quantum phase
transitions in such systems has also been extensively
studied. These studies �Sec. II.D� provide knowledge of
the phase diagram and the location of the quantum criti-
cal point or phase boundary which is crucial for choosing
the proper quantum kinetic terms and the annealing
path �Secs. III.A and III.B�.

�iii� The most natural connection between the para-
digm of classical spin glasses and hard optimization
problems comes through a widely used and well-
established optimization technique, namely, the simu-
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FIG. 1. �Color online� To optimize the cost function of a com-
putationally hard problem �such as the ground-state energy of
a spin glass or the minimum travel distance for a traveling
salesman problem�, one has to get out of a shallower local
minimum such as the configuration C �spin configuration or
travel route� to reach a deeper minimum C�. This requires
jumps or tunnelinglike fluctuations in the dynamics. Classically,
one has to jump over the energy or cost barriers separating
them, while quantum mechanically one can tunnel through
them. If the barrier is high enough, thermal jumping becomes
very difficult. However, if the barrier is narrow enough, quan-
tum tunneling often becomes quite easy.
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lated annealing algorithm as discussed earlier. The pos-
sibility of quantum tunneling through classically
impenetrable barriers, as indicated by studies of quan-
tum spin glasses, naturally suggests an elegant and often
more effective alternative to simulated annealing.

In quantum annealing, one has a classical Hamil-
tonian �or a multivariate cost function viewed as the
same� to be optimized, to which one adds a �noncom-
muting� quantum kinetic term and reduces it from a high
initial value to zero eventually. This reduction, when
done completely adiabatically, assures that the ground
state of the classical glass is reached at the end, assuming
that there is no crossing of energy levels with the ground
state in the course of evolution, and provided that the
starting state was the ground state of the initial Hamil-
tonian. To start with, the tunneling field is much higher
than the interaction term, so the ground state �a uniform
superposition of all classical configurations� is trivially
realizable. Simulations demonstrate that quantum an-
nealing can occasionally help reach the ground state of a
complex glassy system much faster than done using ther-
mal annealing �discussed later in Sec. III�. An experi-
ment comparing classical and quantum annealing for a
spin glass also shows that the relaxations in the course of
quantum annealing are often much faster than those
during the corresponding classical annealing, as dis-
cussed in Sec. III.D. What makes quantum annealing
fundamentally different from classical annealing is the
nonlocal nature �Sec. III� and its higher tunneling ability
�Secs. II.D and III.C�.

Quantum annealing thus permits a realization of ana-
log quantum computation, which is an independent and
powerful complement to digital quantum computation,
where discrete unitary transformations are implemented
through quantum logic gates.

II. OPTIMIZATION AND ANNEALING

A. Combinatorial optimization problems

The occurrence of multivariate optimization problems
is ubiquitous in our life, wherever one has to choose the
best bargain from a host of available options that de-
pend on many independent factors. In many cases, such
a task can be cast as a problem of minimizing a given
cost or energy function H�S1 ,S2 , . . . ,SN� with respect to
N variables S1 ,S2 , . . . ,SN �sometimes subject to some
constraints�. The task is to find a set of values for these
variables �a configuration� for which the function H��Si��
has the minimum value �cf. Fig. 1�. In many important
optimization problems, the set of feasible configurations
from which an optimum is to be chosen is a finite set �for
finite N�. In such a case, we say that the problem is
combinatorial in nature. If the variables Si are discrete
and each takes a finite number of values, then the prob-
lem is a combinatorial one. Moreover, certain problems
with continuous variables �such as linear programming
problems� can also be reduced to combinatorial prob-
lems �Papadimitriou and Steiglitz, 1998�. Here we focus
on this type of optimization problem, and assume that

we have to minimize H��Si�� with respect to the discrete
set of variables Si.

An optimization problem is said to belong to the class
P �P for polynomial�, if it can be solved in polynomial
time �i.e., the evaluation time varies as some polynomial
in N� using polynomially �in N, again� bound resources
�computer space, processors, etc.�. The existence of such
a polynomial bound on the evaluation time is sometimes
interpreted as the “easiness” of the problem. However,
many important optimization problems seem to fall out-
side this class, such as the traveling salesman problem
�see Sec. II.C.2�.

There is another important class of problems which
can be solved in polynomial time by nondeterministic
machines. This class is the nondeterministic polynomial
�NP� class �Garey and Johnson, 1979�. P is included
completely in the NP class, since a deterministic Turing
machine is a special case of nondeterministic Turing ma-
chines. Unlike a deterministic machine, which takes a
specific step deterministically at each instant �and hence
follows a single computational path�, a nondeterministic
machine has a host of different “allowed” steps at its
disposal at every instant. At each instant it explores all
allowed steps and if any one of them leads to the goal,
the job is considered to be done. Thus it explores in
parallel many paths �whose number varies roughly expo-
nentially with time� and checks if any one of them
reaches the goal.

Among the NP problems, there are certain problems
�known as NP-complete problems� which are such that
any NP problem can be “reduced” to them using a poly-
nomial algorithm. The famous 3-SAT problem �see Sec.
III.A.3� is a representative of the class. This roughly
means that, if one has a routine to solve an NP-complete
problem of size N, then using that routine one can solve
any NP problem at the cost of an extra overhead in time
that varies only polynomially with N. Problems in this
class are considered to be hard, since so far a general
nondeterministic machine cannot be simulated by a de-
terministic Turing machine �or any sequential computer
with polynomially bound resources� without an expo-
nential growth of execution time. In fact, it is widely
believed �though not proved yet� that it is impossible to
do so �i.e., P�NP� in principle. However, assuming this
to be true, one can show that there are indeed problems
in the NP class that are neither NP complete nor P
�Garey and Johnson, 1979�.

B. Statistical mechanics of the optimization problems and
thermal annealing

There are some excellent deterministic algorithms for
solving certain optimization problems exactly �Pa-
padimitriou and Steiglitz, 1998; Hartmann and Rieger,
2002�. These algorithms are, however, small in number
and are strictly problem specific. For NP or harder prob-
lems, only approximate results can be found using these
algorithms in polynomial time. These approximate algo-
rithms too are also strictly problem specific, in the sense
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that, if one can solve a certain NP-complete problem up
to a certain approximation using some polynomial algo-
rithm, that does not ensure that one can solve all other
NP problems using the same algorithm up to the said
approximation in polynomial time.

Exact algorithms being scarce, one has to look for
heuristic algorithms, which are algorithms based on cer-
tain intuitive moves, without any guarantee on either the
accuracy or the run time for the worst case instance.
However, these algorithms are generally easy to formu-
late and are effective in solving most instances of the
intended problems. A general approach toward formu-
lating such approximate heuristics may be based on sto-
chastic �randomized� iterative improvements. The most
common starting point in this family is the local minimi-
zation algorithm. In this algorithm one starts with a ran-
dom configuration C0 and makes some local changes in
the configuration following some prescription �stochastic
or deterministic� to generate a new configuration C1 and
calculates the corresponding change in the cost. If the
cost is lowered by the change, then the new configura-
tion C1 is adopted. Otherwise the old configuration is
retained. Then in the next step a new local change is
attempted again, and so on. This reduces the cost
steadily until a configuration is reached that minimizes
the cost locally. This means that no further lowering of
cost is possible by changing this configuration using any
of the prescribed local moves. The algorithm essentially
stops there. But generally, in most optimization prob-
lems �as in spin glasses�, there occur many local minima
in the cost-configuration landscape and they are mostly
far above the global minimum �see Fig. 1�. It is likely
that the algorithm therefore gets stuck in one of them
and ends up with a poor approximation. One can then
start afresh with some new initial configuration and end
up with another local minimum. After repeating this
several times, each time with a new initial configuration,
one may choose the best result from them. But a much
better idea would be to somehow get out of shallow
local minima. One can introduce some fluctuations or
noise in the process so that the movement is not always
toward lower-energy configurations, but there is also a
finite probability to go to higher-energy configurations
�the higher the final state energy, the lower the probabil-
ity to move there�, and consequently chances appear to
get out of the shallow local minima. Initially, strong
fluctuations are adopted �i.e., the probability to go to
higher-energy configurations is relatively high� and
slowly the fluctuations are reduced until finally they are
turned off completely. In the meantime the system gets a
fair opportunity to explore the landscape more exhaus-
tively and settle into a reasonably deep cost or energy
minimum. Kirkpatrick et al. �1983� suggested an elegant
method: A fluctuation is implemented by introducing an
“artificial” temperature T into the problem such that the
transition probability from a configuration Ci to a con-
figuration Cf is given by min�1,exp− ��if /T��, where �if
=Ef−Ei, with Ek denoting the cost or energy of the con-
figuration Ck. A corresponding Monte Carlo dynamics is
defined, say, based on detailed balance, and the thermal

relaxation of the system is simulated. In the course of
simulation, the noise factor T is reduced slowly from a
high initial value to zero, following some annealing
schedule. At the end of the simulation one is expected to
end up with a configuration whose cost is a reasonable
approximation of the globally minimum one. If the tem-
perature is decreased slowly enough, say,

T�t� � N/ln t , �1�

where t denotes the cooling time and N is the system
size, then the global minimum is attained with certainty
in the limit t→� �Geman and Geman, 1984�. Even
within a finite time and with a faster cooling rate, one
can achieve a reasonably good approximation �a crystal
with only a few defects� in practice. This simulated an-
nealing method is now used extensively by engineers for
devising real-life optimization algorithms. We refer to
this as classical annealing �CA�, to distinguish it from
quantum annealing �QA� which employs quantum fluc-
tuations. It is important to note that, although in this
type of stochastic algorithm the system has many differ-
ent steps with their corresponding probabilities at its dis-
posal, it finally takes up a single one, chosen, say, by
tossing coins, and thus finally follows a single �stochasti-
cally selected� path. Hence it is not equivalent to a non-
deterministic machine, where all allowed paths are
checked in parallel at every time step.

As mentioned already, many combinatorial optimiza-
tion problems can be cast into the problem of finding the
ground state of some classical �spin-glass-like� Hamil-
tonian H��Si��. One can therefore analyze the problem
using statistical mechanics to apply physical techniques
like simulated annealing. If one naively takes the num-
ber of variables N as the size, then the entropy and the
energy are often found to scale differently with N and
applying standard thermodynamic arguments becomes
difficult. One needs to scale temperature and some other
quantities properly with N so that one can talk in terms
of concepts like free-energy minimization, etc. More-
over, the constraints present in the problems are often
difficult to take into account.

C. Spin glasses and optimization

1. Finding the ground states of classical spin glasses

As mentioned already, the difficulty faced by a physi-
cally motivated optimization heuristic �one that follows
physical relaxation dynamics, classical or quantum, to
search for the solution� in finding the solution of a hard
optimization problem is similar to that faced by a glassy
system in reaching its ground state. In fact, finding the
ground state of a spin glass is an important class of com-
binatorial optimization problem, which includes an NP-
complete problem �Barahona, 1982�, and many other ap-
parently different ones �such as the traveling salesman
problem� can be recast in this form. Hence, we discuss
here the nature of the spin-glass phase and the difficulty
in reaching its ground state.
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The interaction energy of a typically random and frus-
trated Ising spin glass �Binder and Young, 1986; Dot-
senko, 2001; Nishimori, 2001� may be represented by a
Hamiltonian of the form

H = − �
i�j

N

JijSiSj, �2�

where Si denote the Ising spins and Jij the interactions
between them. The Jij’s here are quenched variables
which vary randomly in both sign and magnitude follow-
ing some distribution ��Jij�. The typical distributions are
the �zero-mean� Gaussian distribution of positive and
negative Jij values,

��Jij� = A exp�−
Jij

2

2J2	 , �3�

and the binary distribution,

��Jij� = p��Jij − J� + �1 − p���Jij + J� , �4�

with probability p of having a +J bond, and 1−p of hav-
ing a −J bond. Two well-studied models are the
Sherrington-Kirkpatrick �SK� model �Sherrington and
Kirkpatrick, 1975� and the Edwards-Anderson �EA�
model �Edwards and Anderson, 1975�. In the SK model
the interactions are infinite ranged and for the sake of
extensivity �for the rules of equilibrium thermodynamics
to be applicable, the energy should be proportional to
the volume, or its equivalent that defines the system
size� one has to scale J
1/�N, while in the EA model,
the interactions are between nearest neighbors only. For
both of them, however, ��Jij� is Gaussian; A
= �N /2�J2�1/2 for normalization in the SK model.

Freezing �temperatures below Tc� is characterized by
some nonzero value of the thermal average of the mag-
netization at each site �local ordering�. However, since
the interactions are random and competing, the spatial
average of single-site magnetization �below Tc� is zero.
Above Tc, both the spatial and temporal averages of the
single-site magnetization vanish. A relevant order pa-
rameter for this freezing to occur is therefore

q =
1

N�
i

N

�Si
T
2 �5�

�with the overbar denoting the average over disorders
�the distribution of Jij� and �¯
T denoting the thermal
average�. Here q�0 for T�Tc, while q=0 for T�Tc. As
shown in the following, the existence of a unique order
parameter q indicates ergodicity.

In the spin-glass phase �T�Tc�, the whole free-energy
landscape is divided �cf. Fig. 1� into many valleys �local
minima of the free energy� separated by high free-
energy barriers. Thus the system, once trapped in a val-
ley, remains there for a long time. The spins of such a
confined system are allowed to explore only a restricted
�and correlated� part of the configuration space, and
thus “freeze” with a magnetization that characterizes the
state �valley� locally.

To date two competing pictures continue to represent
the physics of the spin glasses. The mean-field picture of
replica symmetry breaking is valid for infinite-ranged
spin-glass systems like the SK spin glass. In this picture,
below the glass transition temperature Tc, the barriers
separating the valleys in the free-energy landscape actu-
ally diverge �in the limit N→��, giving rise to a diverg-
ing time scale for the confinement of the system in any
such valley once the system gets there somehow. This
means there is a loss of ergodicity in the thermal dynam-
ics of the system at T�Tc. Thus one needs a distribution
P�q� of order parameters, instead of a single order pa-
rameter, to characterize the whole landscape, as emerges
naturally from the replica symmetry-breaking ansatz of
Parisi �1980�. To be a bit more quantitative, imagine that
two identical replicas �having exactly the same set of
Jij’s� of a spin-glass sample are allowed to relax ther-
mally below Tc, starting from two different random
�paramagnetic� initial states. Then these two replicas �la-
beled by 	 and 
, say� will settle in two different valleys,
each characterized by a local value of the order param-
eter and the corresponding overlap parameters q	
,
which have a sample-specific distribution

PJ�q� = �
	,


e−�F	+F
�/T��q − q	
� ,

P�q� =� �
i�j

dJij��Jij�PJ�q� . �6�

Here the subscript J denotes a particular sample with a
given realization of quenched random interactions �Jij’s�
between spins, and finally, by averaging PJ�q� over the
disorder distribution ��J� in Eq. �2� or �3�, one gets P�q�.
Physically, P�q� gives the probability distribution for the
two pure states to have an overlap q, assuming that the
probability of reaching any pure state 	 starting from a
random �high-temperature� state is proportional to the
thermodynamic weight exp�−F	� of the state 	.

The other picture of the physics of spin glasses is due
to the droplet model of short-range spin glasses �Bray
and Moore, 1984; Fisher and Huse, 1986�, where there is
no divergence in the typical free-energy barrier height,
and the relevant time scale is taken to be that of crossing
the free-energy barrier of formation of a typical droplet
of same �all up or all down� spins. Based on a certain
scaling ansatz, this picture leads to a logarithmically de-
caying �with time� self-correlation function for the spins
below the freezing temperature Tc.

The validity of the mean-field picture �of replica sym-
metry breaking� in the context of real-life spin glasses,
where interactions are essentially short range, is far from
settled �see, e.g., Marinari et al., 1998; Moore et al., 1998;
Krzakala et al., 2001; Gaviro et al., 2006�. However, the
effective Hamiltonian �cost function� for many other op-
timization problems may contain long-range interactions
and may even show the replica symmetry-breaking be-
havior shown in the graph partitioning problem �Fu and
Anderson, 1986�. Of course, no result of QA for such a
system �for which replica symmetry breaking is shown
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explicitly� has been reported yet. The successes of QA
reported so far are mostly for short-range systems. Thus
the scope of quantum annealing in those long-range sys-
tems still remains an interesting open question.

2. The traveling salesman problem

In the traveling salesman problem, there are N cities
placed randomly in a country, with a definite metric to
calculate the intercity distances. A salesman has to make
a tour to cover every city and finally come back to the
starting point. The problem is to find the tour of mini-
mum length. An instance of the problem is given by a
set �dij ; i , j=1,N�, where dij indicates the distance be-
tween the ith and jth cities, or equivalently the cost for
going from the former to the latter. We mainly focus on
the results of the symmetric case, where dij=dji. The
problem can be cast into a form where one minimizes an
Ising Hamiltonian under some constraints, as shown be-
low. A tour can be represented by an N�N matrix T
with elements either 0 or 1. In a given tour, if the city j is
visited immediately after visiting city i, then Tij=1 or
else Tij=0. Generally, an additional constraint is im-
posed that each city has to be visited once and only once
in a tour. Any valid tour with the above restriction may
be represented by a T matrix whose each row and each
column has one and only one element equal to 1 and the
rest are all 0’s. For a symmetric metric, a tour and its
reverse have the same length, and it is more convenient

to work with an undirected tour matrix U= 1
2 �T+ T̃�,

where T̃, the transpose of T, represents the reverse of
the tour given by T. Clearly, U must be a symmetric
matrix having two and only two distinct entries equal to
1 in every row and every column, with no two rows or
two columns identical. In terms of the Uij’s, the length of
a tour can be represented by

H =
1
2 �

i,j=1

N

dijUij. �7�

One can rewrite the above Hamiltonian in terms of Ising
spins Sij’s as

HTSP =
1
2 �

i,j=1

N

dij
�1 + Sij�

2
, �8�

where Sij=2Uij−1 are the Ising spins. The Hamiltonian
is similar to that of noninteracting Ising spins on an
N�N lattice, with random fields dij on the lattice points
�i , j�. The frustration is introduced by the global con-
straints on the spin configurations in order to conform
with the structure of the matrix U discussed above. The
problem is to find the ground state of the Hamiltonian
subject to these constraints. There are N2 Ising spins,
which can assume 2N2

configurations in the absence of
any constraint, but the constraint here reduces the num-
ber of valid configurations to the number of distinct
tours, which is �N ! � /2N.

Two distinct classes of the TSP are mainly studied,
one with a Euclidean dij in finite dimensions �where the
dij are strongly correlated through triangle inequalities,
which means that, for any three cities A, B, and C, the
sum of any two of the sides AB, BC, and CA must be
greater than the remaining one�, and the other with ran-
dom dij in infinite dimension.

In the first case, N cities are uniformly distributed
within a hypercube in a d-dimensional Euclidean space.
Finding a good approximation for large N is easier in
this case, since the problem is finite ranged. Here a
d-dimensional neighborhood is defined for each city, and
the problem can be solved by dividing the whole hyper-
cube into a number of smaller pieces and then searching
for the least path within each smaller part and joining
them back together. The correction to obtain the true
least path will be due to the unoptimized connections
across the boundaries of the subdivisions. For a suitably
made division �not too small�, this correction will be on
the order of the surface-to-volume ratio of each division,
and thus will tend to zero in the N→� limit. This
method, known as “divide and conquer,” forms a rea-
sonable strategy for solving approximately such finite-
range optimization problems �including finite-range spin
glasses� in general. In the second case, the dij’s are as-
signed completely randomly, with no geometric �e.g.,
Euclidean� correlation between them. The problem in
this case becomes more like a long-range spin glass. A
self-avoiding walk representation of the problem has
been made using an m-component vector field, and the
replica analysis has been done �Mezard et al., 1987� for
finite temperature, assuming the replica-symmetry an-
satz to hold. Moreover, true breaking of ergodicity may
occur only in infinite systems, not in any finite instance
of the problem. The results, when extrapolated to zero
temperature, do not disagree much with the numerical
results �Mezard et al., 1987�. The stability of a replica-
symmetric solution has not yet been proven for the low-
temperature region. However, the numerical results for
thermal annealing, for instance of size N=60–160,
yielded many near-optimal tours, and the corresponding
overlap analysis shows a sharply peaked distribution,
whose width decreases steadily with increase in N. This
indicates the existence of a replica-symmetric phase for
the system �Mezard et al., 1987�.

An analytical bound on the average �normalized by
N1/2� value of the optimal path length per city ��� calcu-
lated for the TSP on a two-dimensional Euclidean plane
has been found to be 5/8���0.92 �Bearwood et al.,
1959�. Careful scaling analysis of the numerical results
obtained indicates the lower bound to be close to 0.72
�Percus and Martin, 1996; Chakraborti and Chakrabarti,
2000�.

Simulated �thermal� annealing of a Euclidean TSP on
a square having length N1/2 �which render the average
nearest-neighbor distance independent of N� has been
reported �Kirkpatrick et al., 1983�. In this choice of
length unit, the optimal tour length per step ��� be-
comes independent of N for large N. Thermal annealing

1066 Arnab Das and Bikas K. Chakrabarti: Colloquium: Quantum annealing and analog …

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



rendered �
0.95 for N up to 6000 cities. This is much
better than what is obtained by the so-called greedy heu-
ristics �where, at some city in a step, one moves to the
nearest city not in the tour in the next step� for which
�
1.12 on average. Later we see �Sec. III.A� that quan-
tum annealing can do even better than thermal anneal-
ing in the context of the random TSP.

To summarize, when cast as an energy minimization
problem, combinatorial optimization problems may ex-
hibit glassy behavior during thermal annealing. Even
replica-symmetry-breaking behavior may be observed
�as in the case of the graph partitioning problem; see Fu
and Anderson, 1986�, since the underlying Hamiltonian
need not be short ranged, and the constraints can bring
frustration into the problem. One can conclude that
thermal annealing or other heuristics would not be able
to solve such problems easily to a good approximation
within reasonable time. Moreover, almost nothing can
be said about the time required to solve the worst case
instance exactly. Specifically, in some cases, where good
solutions are thermodynamically insignificant in number
and there is no monotonic gradient toward them, the
entropy might make a classical search exponentially dif-
ficult, although the landscape might still remain com-
pletely ergodic. Later we see that quantum searches can
bring improvements in such cases �see Sec. III.B and
Fig. 4�.

D. Quantum spin glasses and annealing

In QA one adds a kinetic �tunneling� term to the in-
teraction part of the classical glass Hamiltonian. The ob-
ject that results is called a quantum spin glass. Knowl-
edge of the phase diagram for a quantum spin glass is
important for its annealing, as it provides an idea of the
location of the quantum critical points on the phase dia-
gram, and thus offers a guideline to choosing the proper
kinetic terms �that maintain a sizable gap� and the suit-
able annealing paths �see Secs. III.A and III.B�.

In quantum spin glasses �Chakrabarti, 1981; Ishii and
Yamamoto, 1985; Ye et al., 1993; Bhatt, 1998; Sachdev,
1999; Rieger, 2005�, the order-disorder transition �i.e.,
from the frozen phase to the high-kinetic-energy phase,
termed the paraphase� can be driven by thermal as well
as quantum fluctuations. Quantum spin glasses can be of
two types: vector spin glasses, where the quantum fluc-
tuations cannot be adjusted by changing some labora-
tory field, and classical spin glasses perturbed by some
quantum tunneling term, where quantum fluctuations
are controlled through, say, a transverse laboratory field.

Since the amount of the quantum fluctuations is ad-
justable, the transverse Ising spin glass �TISG� model is
perhaps the simplest model in which quantum effects in
a random system can and have been studied extensively
and systematically �Chakrabarti et al., 1996�. Here we
focus only on the TISG, since reducing quantum fluctua-
tions is the key feature required for quantum annealing.

Interest in the zero-temperature quantum spin-glass
phases in TISG models have been complemented all
along by experimental studies in several systems that

have been shown to be represented by the transverse
field Ising model �TIM�. The recent discovery that the
compound material LiHoxY1−xF4 with the magnetic Ho
ion concentration x=0.167 �Wu et al., 1991, 1993; Aeppli
and Rosenbaum, 2005; see also Brooke et al., 2001; Si-
levitch et al., 2007� accurately represents a random long-
range transverse Ising system has led to renewed inter-
est. Here the strong spin-orbit coupling between the
spins and host crystals restricts the effective “Ising”
spins to alignment either parallel or antiparallel to the
specific crystal axis. An applied magnetic field, trans-
verse to the preferred axis, flips the Ising spins. This
feature, together with the randomness in the spin-spin
interaction, makes it a unique TISG-like system. Most
interestingly, it has been shown that, in spite of the pres-
ence of all three ingredients—frustrations, randomness,
and long-range �dipolar� interactions—that are neces-
sary for the formation of a spin glass, the spin-glass
phase of LiHoxY1−xF4 is destroyed by any finite trans-
verse field �Schechter and Laflorencie, 2006�. This indi-
cates the effectiveness of quantum tunneling in the ex-
ploration of a rugged PEL with formidable potential-
energy barriers. The TISG model described here is given
by the Hamiltonian

H = − �
i�j

N

JijSi
zSj

z − ��
i

N

Si
x, �9�

where � denotes the tunneling strength at each site and
the Jij’s are distributed randomly following the distribu-
tion ��Jij� given by Eq. �3� or �4�. Generally, we denote
the strength of the quantum kinetic term by �.

The particular interest in such a quantum spin-glass
system comes from the possibility of the much faster
crossing of the high barriers occurring in the potential-
energy landscapes of the classical spin glasses by means
of quantum tunneling induced by the transverse field,
compared to that done thermally by scaling such barri-
ers with the temperature. The phase transitions in quan-
tum spin glasses can be driven by both thermal and
quantum fluctuations as mentioned before, and the equi-
librium phase diagrams also indicate how the optimized
solution �in the SG phase� can be obtained by tuning of
either the temperature T or tunneling field �, or both.
We show later �in the context of quantum annealing�
that reaching the phase by tuning � may often be more
advantageous than by tuning T.

The short-range version of this TISG model was first
studied by Chakrabarti �1981�, and the long-range ver-
sion, discussed here, was first studied by Ishii and Yama-
moto �1985�. Several analytical studies have been made
to obtain the phase diagram of the transverse Ising SK
model �Miller and Huse, 1993�. The problem of a SK
glass in a transverse field becomes a nontrivial one due
to the presence of noncommuting spin operators in the
Hamiltonian. This leads to a dynamical frequency-
dependent self-interaction for the spins.

One can study an effective-spin Hamiltonian for the
SK model in a transverse field within the mean-field
framework easily. The spin-glass order parameter in a
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classical SK model is given by a random mean field h�r�
having a Gaussian distribution �see Binder and Young,
1986�,

q = �
−�

+�

dr e−r2/2 tanh2�hz�r�/T�, hz�r� = J�qr + hz,

�10�

where hz denotes the external field �in the z direction�,
with the mean field h�r� also in the same direction. In
the presence of the transverse field, as in Eq. �9�, h�r�
has components in both the z and x directions,

h� �r� = − hz�r�ẑ − �x̂, h�r� = �hz�r�2 + �2, �11�

and one replaces the ordering term tanh2�h�r� /T� in Eq.
�10� by its component ��hz�r� � / �h�r� � �2tanh2��h�r� � /T� in
the z direction. Setting hz=0 and q→0, one gets the
phase boundary equation as �see Chakrabarti et al.,
1996�

�

J
= tanh��

T
	 . �12�

This gives �c�T=0�=J=Tc��=0� and a phase diagram
qualitatively similar to the experimental one shown in
Fig. 2.

Several Monte Carlo studies have been performed for
the SK spin-glass model in the transverse field by apply-
ing the Suzuki-Trotter formalism �see Appendix A.1�,
mapping a d-dimensional quantum Hamiltonian to an
effective �d+1�-dimensional anisotropic classical Hamil-
tonian �see also Hatano and Suzuki, 2005�. The partition
function gives the effective classical Hamiltonian in the
Mth Trotter approximation as

H = �
i�j

N

�
k

M

KijSikSjk − �
i

N

�
k

M

KSikSik+1, �13�

with

Kij =
Jij

MT
, K =

1
2

ln coth� �

MT
	 , �14�

where Sik denotes the Ising spin defined on the lattice
site �i, k�, i denoting the position in the original SK
model and k that in the additional Trotter dimension.
Although the equivalence between classical and quan-
tum models holds exactly in the limit M→�, one can
always make an optimum choice for M. The equivalent
classical Hamiltonian has been studied using the stan-
dard Monte Carlo technique. Numerical estimates of the
phase diagram, etc., have been reviewed by Bhatt �1998�
and Rieger �2005�. Ray et al. �1989� took ��J, and their
results indicated a sharp lowering of Tc���. Such a sharp
fall of Tc��� with large � is obtained in almost all theo-
retical studies of the phase diagram of the model �Miller
and Huse, 1993; Ye et al., 1993; see also Bhatt, 1998, and
Rieger, 2005�. Quantum Monte Carlo �Alvarez and
Ritort, 1996� as well as real-time Schrödinger evolution
�the true dynamics given by the time-dependent
Schrödinger equation� studies of SK spin glasses in
transverse field have been made �Lancaster and Ritort,
1997�.

In the Hamiltonian for the EA spin glass in the pres-
ence of a transverse field, given by Eq. �9�, the random
interactions are restricted to the nearest neighbors and
satisfy a Gaussian distribution with zero mean and vari-
ance J, as given by Eq. �3�. Here the variation of corre-
lations in the equivalent �d+1�-dimensional classical
model agreed well �Guo et al., 1994� with the scaling fit
with a unique order parameter and a critical interval
corresponding to a phase diagram whose features are
similar to those discussed above �see also Chakrabarti
et al., 1996; Bhatt, 1998; Rieger, 2005�.

As discussed earlier in this section, LiHoxY1−xF4 with
x=0.167 provides a spin-glass system for which the ex-
ternal magnetic field transverse to the preferred axis
scales as the square root of the tunneling field � in Eq.
�9�. With increasing transverse field, the glass transition
temperature decreases monotonically, as shown in Fig. 2.

A quantum tunneling term allows for overlap between
two classically localized states and the dynamics near the
ground states of such glasses show better ergodicity
properties. In order to investigate this aspect of quan-
tum spin glasses, one can study the overlap distribution
function P�q� given by Eq. �6�.

If the ergodicity is recovered, at least for a part of the
phase diagram, the above function should tend to a delta
function form, peaking at some finite value of the order
parameter q in the thermodynamic limit. In the
paraphase the distribution becomes a delta function at
q=0 for the infinite system. In spite of several investiga-
tions �see, e.g., Ray et al., 1989; Thirumalai and Kirk-
patrick, 1989; Goldschmidt and Lai, 1990; Chakrabarti
et al., 1996; Kim and Kim, 2002� the question of replica-
symmetry restoration in spin glasses by quantum fluc-
tuations is not settled yet. However, slow withdrawal
�see Eq. �16� for the characteristic slowness� of the tun-
neling field in these quantum spin glasses can help in

FIG. 2. Phase diagram of LiHo0.167Y0.833F4 according to dy-
namical �filled circles� and nonlinear susceptibility measure-
ments �open circles�. Filled squares indicate the freezing
boundary obtained from ac susceptibility measurements. From
Wu et al., 1993.
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annealing the system close to the ground state of the
classical spin glass eventually, as described in the next
section.

III. QUANTUM ANNEALING

In the previous sections we have seen how thermal
fluctuations can be utilized to devise fast heuristics to
find an approximate ground state of a glassy system, or
equivalently a near-optimal solution to the combinato-
rial problem, whose cost-configuration landscape has
glassy behavior due to the occurrence of many local
minima. There are two aspects of an optimization prob-
lem which might render thermal annealing an ineffective
one. First, in a glassy landscape, there may exist high-
cost or -energy barriers around local minima which do
not correspond to a reasonably low cost �see Fig. 1�. In
the case of infinite-range problems, these barriers might
be proportional to the system size N, and thus diverge in
thermodynamic limit. Thus many unsatisfactory local
minima might occur, any of which can trap the system
for a long time �which actually diverges in the thermo-
dynamic limit for infinite-range systems� in the course of
annealing. The second problem is the entropy itself. The
number of configurations grows fast with the number of
variables �roughly exponentially; n Ising spins can be in
2n configurations�, and a classical system can assume
only one configuration at a time; unless there is a gradi-
ent that broadly guides the system toward the global
minimum from any point in the configuration space, the
search has to involve visiting a substantial fraction of
configurations. Thus a PEL without a guiding gradient
poses a problem which is exponential or higher order in
complexity �depending on how the size of the configura-
tion space scales with the system size N�, and the CA
algorithms can do no better than a random search algo-
rithm. This is the case for the golf-course-type potential-
energy landscape, where there is a sharp potential mini-
mum on a completely flat PEL �see Sec. III.B, Fig. 4�.
One can imagine that quantum mechanics might have
solutions to both these problems, at least to some extent.
This is because quantum mechanics can introduce clas-
sically unlikely tunneling paths even through very high
barriers if they are narrow enough �Ray et al., 1989; see
also Apolloni et al., 1989, 1990�. This can solve the er-
godicity problem to some extent, as discussed earlier.
Even in places where ergodicity breaking does not take
place in the true sense, once the energy landscape con-
tains high enough barriers �especially for infinite-ranged
quenched interactions�, quantum tunneling may provide
much faster relaxation to the ground state �Martoňák
et al., 2002; Santoro et al., 2002; see also Santoro and
Tosatti, 2007; Somma et al., 2007�. In addition, a
quantum-mechanical wave function can delocalize over
the whole configuration space �i.e., over the potential-
energy landscape� if the kinetic energy term is high
enough. Thus it can actually “see” the whole landscape
simultaneously at some stage of annealing. These two
aspects can be expected to improve the search process
when employed properly. In fact, such improvements

can be achieved in certain situations, though quantum
mechanics is not a panacea for all such problems as er-
godicity breaking, spin-glass behavior, etc., and certainly
has its own inherent limitations. What is intriguing is the
fact that the limitations due to the quantum nature of an
algorithm are inherently different from those faced by
its classical counterpart, and thus it is not yet clear in
general which is better when. Here we discuss results
regarding quantum heuristics and some of their general
aspects that are understood so far. For more detailed
reviews of the subject we refer the reader to articles by
Das and Chakrabarti �2005� and Santoro and Tosatti
�2006�.

Some basic aspects of QA can be understood from the
simple case of QA in the context of a double-well po-
tential �Battaglia, Stella, et al., 2005; Stella et al., 2005�.
Typically a particle in a double well consisting of a shal-
lower but wider well and a deeper but narrower well is
annealed �it is likely that the deeper well, i.e., the target
state, is narrower, otherwise searching becomes easier
even classically�. The kinetic energy �inverse mass� is
tuned from a very high value to zero linearly within a
time �. For a very high value of initial kinetic energy, the
wave function, which is the ground state, is delocalized
more or less over the whole double well. As kinetic en-
ergy is reduced but still quite high, the ground state cor-
responds to a more pronounced peak on the shallower
minimum, since it is wider. This is because at this stage,
to obtain the minimal �ground-state� energy, it is more
effective to minimize the kinetic energy by localization
over a wider space, rather than minimizing the potential
energy by localizing in the deeper well. However, as the
kinetic energy is reduced further, the potential energy
term dominates, and the ground state has a taller peak
around the deeper minimum. The evolving wave func-
tion can roughly follow this ground-state structure all
the way and finally settle to the deeper minimum if the
annealing time � is greater than �c. When ���c the wave
function fails to tunnel from its early state localized in
the shallower well to the deeper well as the kinetic en-
ergy is decreased. This result is qualitatively the same
for both real-time and quantum Monte Carlo annealing,
except for the fact that the �c’s are different in the two
cases.

The realization of QA consists of employing adjust-
able quantum fluctuations into the problem instead of a
thermal one �Amara et al., 1993; Finnila et al., 1994; Ka-
dowaki and Nishimori, 1998�. In order to do that, one
needs to introduce an artificial quantum kinetic term
��t�Hkin, which does not commute with the classical
Hamiltonian HC representing the cost function. The co-
efficient � is the parameter that controls the quantum
fluctuations. The total Hamiltonian is thus given by

Htot = HC + ��t�Hkin. �15�

The ground state of Htot is a superposition of the eigen-
states of HC. For a classical Ising Hamiltonian of the
form �2�, the corresponding total quantum Hamiltonian
might have the form �9�, where HC=−�i�jSi

zSj
z and

1069Arnab Das and Bikas K. Chakrabarti: Colloquium: Quantum annealing and analog …

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008



Hkin=−�i
NSi

x. Initially � is kept high so that Hkin domi-
nates and the ground state is trivially a uniform super-
position of all classical configurations. One starts with
that uniform superposition as the initial state, and slowly
decreases � following some annealing schedule, eventu-
ally to zero. If the process of decreasing is slow enough,
the adiabatic theorem of quantum mechanics �Sarandy
et al., 2004� assures that the system will always remain at
the instantaneous ground state of the evolving Hamil-
tonian Htot. When � is finally brought to zero, Htot will
coincide with the original classical Hamiltonian HC and
the system will be found in its ground state, as desired.
The special class of QA algorithms where strictly quasis-
tationary or adiabatic evolutions are employed are also
known as quantum adiabatic evolution algorithms
�Farhi, Goldstone, Gutmann, et al., 2000, 2001�.

Two important questions are how to choose an appro-
priate Hkin and how slow the evolution needs to be in
order to assure adiabaticity. According to the adiabatic
theorem of quantum mechanics, for a nondegenerate
spectrum with a gap between the ground state and first
excited state, adiabatic evolution is assured if the evolu-
tion time � satisfies the following condition:

� �
��Htot

˙ 
�max

�min
2 , �16�

where

��Htot
˙ 
�max = max

0
t
�
����0�t��dHtot

ds
��1�t���	 ,

�min
2 = min

0
t
�
��2�t��, s = t/�, 0 
 s 
 1, �17�

��0�t�
 and ��1�t�
 are, respectively, the instantaneous
ground state and the first excited state of the total
Hamiltonian Htot, and ��t� is the instantaneous gap be-
tween the ground-state and first excited-state energies
�see Sarandy et al., 2004�. One may wonder whether, on
entering the ordered phase ����c� from the paraphase
����c� in the course of annealing, the gap � may vanish
at the phase boundary ��=�c� in the N→� limit. In fact,
in such a case, QA cannot help in finding the ground
state of an infinite system. However, for any finite
sample, this gap is unlikely to vanish for a random sys-
tem, and QA may still work.

However, it is impossible to follow, even for finite N,
the evolution of a full wave function in a classical com-
puter using polynomial resources in general, since it re-
quires tracking the amplitudes of all basis vectors �all
possible classical configurations�, whose number grows
exponentially with system size N. Such an adiabatic evo-
lution may be realized within polynomial resources only
if one can employ a quantum-mechanical system itself to
mimic the dynamics. However, one may employ quan-
tum Monte Carlo methods to simulate some dynamics
�not the real-time quantum dynamics� to sample the
ground state �or a mixed state at low enough tempera-
ture� for a given set of parameter values of the Hamil-
tonian. Annealing is done by reducing the strength � of

the quantum kinetic term in the Hamiltonian from a
very high value to zero following some annealing sched-
ule in the course of simulation. In the case of such a
Monte Carlo annealing algorithm, there is no general
bound on success time � such as the one provided by the
adiabatic theorem for true Schrödinger evolution an-
nealing. Here we separately discuss the results of real-
time QA and Monte Carlo QA. Apart from these qua-
sistationary quantum annealing strategies, where the
system always stays close to some stationary state �or
low-temperature equilibrium state�, there may be cases
where quantum scatterings �with tunable amplitudes�
are employed to anneal the system �Das et al., 2005�.

A. Quantum Monte Carlo annealing

In quantum Monte Carlo annealing, one may employ
either a finite- �but low-� temperature algorithm or a
zero-temperature algorithm. Most Monte Carlo QAs
�Das and Chakrabarti, 2005; Santoro and Tosatti, 2006�
are done using a finite-temperature Monte Carlo
method, namely, the path-integral Monte Carlo �PIMC�,
since its implementation is somewhat simpler than that
of other zero-temperature Monte Carlo methods.

Among the other zero-temperature Monte Carlo
methods used for annealing are the zero-temperature
transfer-matrix Monte Carlo �see the chapter by Das
and Chakrabarti in Das and Chakrabarti, 2005� and the
Green’s function Monte Carlo �Santoro and Tosatti,
2006� methods. However, these algorithms suffer se-
verely from different drawbacks, which renders them
much slower than PIMC algorithms in practice.

The Green’s function Monte Carlo algorithm effec-
tively simulates the real-time evolution of the wave
function during annealing. But to perform the algo-
rithms sensibly often requires guidance that depends on
a priori knowledge of the wave function. Without this
guidance it may fail miserably �Santoro and Tosatti,
2006�. But such a priori knowledge is unlikely to be
available in the case of random optimization problems,
and hence so far the scope for this algorithm seems to be
very restricted.

The zero-temperature transfer-matrix Monte Carlo
method, on the other hand, samples the ground state of
the instantaneous Hamiltonian �specified by the given
value of the parameters at that instant� using a projec-
tive method, where the Hamiltonian matrix itself �a suit-
able linear transformation of the Hamiltonian that con-
verts into a positive matrix, in practice� is viewed as the
transfer matrix of a finite-temperature classical system
of one higher dimension �Das and Chakrabarti, 2005�.
But the sparsity of the Hamiltonian matrix for systems
with local kinetic energy terms leaves the classical sys-
tem highly constrained and thus difficult to simulate ef-
ficiently for large system sizes.

The PIMC algorithm has so far been mostly used for
QA. The basic idea of this method rests on the Suzuki-
Trotter formalism �see Appendix A.1�, which maps the
partition function of a d-dimensional quantum Hamil-
tonian H onto that of an effective classical Hamiltonian
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Heff in d+1 dimensions. Quantum annealing of a Hamil-
tonian Htot using the PIMC method consists of mapping
Htot to its equivalent classical one and simulate it at
some fixed low temperature so that thermal fluctuations
are low. Quantum fluctuations are reduced from some
very high initial value to zero finally through reduction
of � in the course of simulation. Clearly, the simulation
dynamics is not the true Schrödinger evolution of the
system, and also it cannot simultaneously see the whole
configuration space as does a delocalized wave function.
It experiences the landscape locally and makes moves as
in a classical system. The first attempt at quantum an-
nealing using the PIMC method was made by Kadowaki
and Nishimori �1998� for solving the TSP, and extensive
use of the technique to explore a multitude of problems
has been made by Santoro and Tosatti �2006�. Here we
discuss some PIMC quantum annealing results for a few
different systems.

1. A short-range spin glass

Quantum annealing of an EA spin glass in two dimen-
sions �square lattice� using a transverse field �see Eq. �9��
for large lattice size �up to 80�80� using the PIMC tech-
nique turns out to be much more efficient compared to
thermal annealing �CA� of the same system in finding
the approximate ground state �Martoňák et al., 2002;
Santoro et al., 2002�. The quantity that is measured is the
residual energy �res���=E���−E0, with E0 the true
ground-state energy of the finite system1 and E��� the
final energy of the system after reducing the transverse
field strength � linearly with time � from some large
initial value to zero. Here � is a fictitious time given by
the number of Monte Carlo steps.

Classically, for a large class of frustrated disordered
system it can be shown, using general arguments, that
the residual energy decreases following some power law
in the logarithm of the annealing time �, namely, �res

�ln ��−�, with �
2 �Huse and Fisher, 1986�. In PIMC
simulations, the partition function of a d-dimensional
quantum system is mapped to an equivalent �d+1�-
dimensional classical system �this is known as Suzuki-
Trotter mapping�. The effective �d+1�-dimensional sys-
tem is obtained by replicating the classical part of the
original system �say, the Ising interaction part of the
transverse Ising system without the transverse field
term� with all its interactions �including the disorder�
intact along the extra higher dimension. The coupling
between the spins in different replicas depends on the
quantum kinetic term in the original d-dimensional sys-
tem.

The PIMC annealing results show, however, that the
quantum effect �taken into account through Suzuki-
Trotter mapping� does not change the relaxation behav-
ior of �res���. But a dramatic improvement in evaluation

time is still achieved, since it turns out that the value of
the exponent � can be much higher ��=6� for QA than
the Huse-Fisher bound of �
2 for classical annealing.
This is an improvement in computational time if one
thinks in terms of the changes in � required to improve
�res equally by some appreciable factor in the corre-
sponding cases of classical and quantum annealing. An
interesting asymptotic comparison for the results of QA
and CA for an 80�80 lattice shows that, to reach a cer-
tain value of �res, PIMC QA would take one day of CPU
time �for the computer used� whereas CA would take
about 30 years �Martoňák et al., 2002; Santoro et al.,
2002�. The result would not be much different in this
case if the real-time Schrödinger evolution were fol-
lowed, as has been argued using the Landau-Zener cas-
cade tunneling picture �Martoňák et al., 2002; Santoro
et al., 2002�.

Landau-Zener tunneling theory gives as an estimate
the probability of tunneling nonadiabatically from a
lower to a higher level when the system encounters an
avoided level crossing between levels during time evolu-
tion. Let the gap between two energy levels �a�t�
 and
�b�t�
 of a time-dependent Hamiltonian vary linearly
with time �gap �=�t� and encounter an avoided level
crossing. Here the levels are energy levels of the classi-
cal part of the Hamiltonian �say, the potential-energy
levels of an Ising model�. Let the system evolve in such a
way that the characteristic time it spends while passing
through the crossing region is �. Let there be a quantum
tunneling field � that induces transitions between levels.
Then if the system evolved is at the lower branch �a

before encountering the avoided level crossing, the
probability that it continues to the higher branch �b

while passing through the crossing decreases with the
time � as P���=exp�−� /���, where ��=��� /2��min

2 , with
�min the minimum value of the gap attained at the
avoided level crossing. For spin-glass-like systems with
nonzero gap, by treating multiple level crossings, each
with small �, as a cascade of independent Landau-Zener
tunneling one may argue that the residual energy varies
as �res
�ln ��−�Q, where �Q is greater than the bound �

2 for thermal annealing, and might be as high as 6
�Martoňák et al., 2002; Santoro et al., 2002�.

2. The traveling salesman problem

Quantum annealing of the TSP with a random metric
�i.e., the distance dij between ith and the jth cities is
chosen randomly� in infinite dimension using the PIMC
algorithm was also found to be more efficient than CA
in finding an approximately minimal tour �Martoňák et
al., 2004�. An N-city tour in a random TSP can be rep-
resented by a configuration of N2 constrained Ising
spins, and the tour length, i.e., Hc, by the Hamiltonian
�8�. Now, to do the annealing, one needs to introduce a
set of moves �spin-flip operations� that satisfies the con-
straints. Classically, one important class of moves is the
two-opt moves, which, starting from a valid tour, can
generate all possible tours without generating any in-

1Calculated by the spin-glass server using the so-called
branch-and-cut algorithms; see http://www.informatik.uni-
koeln.de/lsjuenger/research/spinglass/.
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valid link. Let a valid tour contain two links i→ j and
k→ l. A two-opt move may consist of removing those
two links and establishing the following links: i→k and
j→ l �here i denotes the ith city�. Classical annealing of
the Hamiltonian can be done by restricting the Monte
Carlo moves within the two-opt family only. However,
for the quantum case, one needs to design a special
transverse field �noncommuting spin-flip term� to en-
force the constraints. The constraint can be realized by a
spin-flip term of the form S�k,i


+ S�l,j

+ S�j,i


− S�l,k

− , where the

operator Si,j
− flips down �+1→−1� the Ising spins Sij

z and
Sji

z when they are in the +1 state, and similarly for the
flip-up operators Si,j

+ . However, to avoid the Suzuki-
Trotter mapping with these complicated kinetic terms,
a relatively simple kinetic term of the form Hkin

=−��t���i,j
�S�i,j

+ +H.c.� is used for the quantum to classi-

cal mapping. The Monte Carlo moves were restricted
within the two-opt family to avoid invalid tours. The
results were tested on the instance of a printed circuit
board with N=1002. PIMC QA was seen to do better
than the CA and also much better than the standard
Lin-Kernighan algorithm, as shown in Fig. 3. The relax-
ation behavior of the residual path length for the TSP
�see Fig. 3� is found to be quite similar to that of the 2D
EA glass discussed earlier �see Battaglia, Stella, et al.,
2005�. This indicates that a random TSP also has a spin-
glass-like potential-energy landscape, as has already
been hinted by the replica-analysis study of the problem
discussed earlier �Sec. II.C.2�. In that case the Landau-
Zener tunneling picture would also be applicable for the
TSP, and little improvement can be expected by follow-
ing the real-time Schrödinger dynamics instead of
Monte Carlo methods.

There are cases where PIMC QA is not as successful
as CA. An example �discussed below� of such a problem
belongs to the class of K-satisfiability problem �or

K-SAT�. In a K-SAT problem, there is a given Boolean
function, which is the Boolean sum �connected by logical
OR operations� of a number of clauses, each of which is
a Boolean product �connected by logical AND opera-
tions� of K Boolean variables �binary variables taking
values 0 or 1 only� taken randomly from a given set of p
variables �the same variable may occur in various
clauses simultaneously�. Given such a function, the task
is to find an assignment for the Boolean variables for
which the number of violated clauses �the clauses as-
signed the 0 value� is minimum. Studies on this class of
problem are extensive and even include the connection
between its hardness and satisfiability-unsatisfiability
phase transition �Monsasson et al., 1999�. Remarkable
progress has been made in formulating faster algorithms
for solving it �see Mezard et al., 1987; Hartmann and
Rieger, 2002� based on these understandings.

But in the case of the random 3-SAT problem �K-SAT
problem with K=3� using a linear schedule for decreas-
ing �, PIMC QA gives much worse results than CA
�Battaglia, Santoro, and Tosatti, 2005�. Both CA and
PIMC QA are worse than ad hoc local search heuristics
like WALKSAT. In applying the PIMC QA in image res-
toration, on the other hand, the performance is exactly
the same as that of CA �Inoue, 2005�. Even for a particle
in a simple double-well potential, it seems that with na-
ive Monte Carlo moves, PIMC QA can produce results
that are much worse than one could obtain from real-
time Schrödinger evolution of the system. There is, in
fact, no general prescription for choosing the right
moves that will work, unless one has a precise idea
about the PEL of the problem. The choice of the kinetic
term to be introduced into the problem is somewhat ar-
bitrary, but the performance of the algorithm depends
crucially on it. It has been found that a relativistic ki-
netic term can do a better job than a nonrelativistic one
in the case of a particle in a double-well potential
�Battaglia, Stella, et al., 2005�. PIMC QA also suffers
from difficulty in calculating the Suzuki-Trotter equiva-
lent of the quantum Hamiltonian with an arbitrary ki-
netic term designed to satisfy the constraints of the
problem �Martoňák et al., 2004�. The constraints may be
taken care of while making Monte Carlo moves, but that
may not always produce the expected results. Finally,
the presence of finite temperature in the problem does
not allow one to focus exclusively on the role of quan-
tum fluctuations in the problem. Above all, like any
other Monte Carlo method, PIMC QA is going to do
worse if there are only a few reasonably good approxi-
mate solutions, and there is no overall gradient in the
landscape to guide toward them.

3. Random field Ising model: How the choice of kinetic term
improves annealing results

QA algorithms enjoy an extra flexibility which is not
available to a thermal annealing algorithm. A QA algo-
rithm can have a host of choices for its kinetic term. A
good choice can bring about much improvements. This
point has been illustrated by Suzuki et al. �2007� for QA
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FIG. 3. �Color online� Average residual excess length found
after CA and QA for a total time � �in MC steps�, for the N
=1002 instance pr1002 of the TSPLIB. The dashed horizontal
line represents the best out of 1000 runs of the Lin-Kernighan
algorithm. QA is clearly faster than CA. From Battaglia,
Stella, et al., 2005.
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of the random field Ising model, by introducing a ferro-
magnetic transverse field interaction, in addition to the
conventional single-spin-flip transverse field term �as
present in the Hamiltonian �9��.

The Hamiltonian of the random-field Ising model with
the standard single-spin-flip transverse term is given by

H�t� = HC + Hkin
�1� , �18�

where

HC = − J�
�ij


N

Si
zSj

z − �
i=1

N

hi
zSi

z, �19�

hi
z is the on-site random field, assuming values +1 or −1

with equal probabilities, �ij
 denotes the sum over near-
est neighbors on a two-dimensional square lattice, and

Hkin
�1� = − ��t��

i=1

n

Si
x. �20�

The result of QA in such a system is not satisfactory
when J is much larger than hi

z �Sarjala et al., 2006�. If a
ferromagnetic transverse term of the form

Hkin
�2� = − ��t��

�ij


N

Si
xSj

x �21�

is added to the Hamiltonian �18�, the result of QA is
seen to improve considerably �Suzuki et al., 2007�. This
happens �as indicated by exact diagonalization results on
small systems� because the ferromagnetic transverse
field term effectively increases the gap between the
ground state and the first excited state and thus de-
creases the characteristic time scale for the system. This
is an example of how one can utilize the flexibility in
choosing the kinetic term in QA to formulate faster al-
gorithms. This also indicates how knowledge of the sys-
tem’s phase diagram, the position of the quantum critical
point in particular �where the gap tends to vanish�, helps
in choosing additional kinetic terms and thus allows for
finding annealing paths that can avoid, to some extent,
the regions of very low gap.

B. Quantum annealing using real-time adiabatic evolution

QA is basically the analog version of quantum com-
putation. As for conventional analog quantum computa-
tion, the hardware realization of adiabatic quantum an-
nealing is rather problem specific. But once realized, it
follows the real-time Schrödinger evolution, whose exact
simulation is always intractable �the run time grows ex-
ponentially with the system size� for classical computers
and often also even for digital quantum computers �see
Nielsen and Chuang, 2000�. The annealing behavior with
the real-time Schrödinger evolution is hence an impor-
tant issue and may show features distinctly different
from any Monte Carlo annealing discussed so far.

The first analog algorithm was formulated by Farhi
and Gutmann �1998� for solving Grover’s search prob-
lem. Grover �1997� showed that a quantum-mechanical

search can reduce an O�N� classical search time to
O��N� in finding a marked item from an unstructured
database. In the analog version, the problem was to use
quantum evolution to find a given marked state among
N orthonormal states. The algorithm was formulated in
the following way. There were N mutually orthogonal
normalized states, the ith state denoted by �i
. Among all
of them, only one, say, the wth one, has energy E�0 and
the rest all have zero energy. Thus the state �w
 is
“marked” energetically and the system can distinguish
it. Now the question is how fast the system can evolve
under a certain Hamiltonian so that starting from an
equal superposition of the N states one reaches �w
. It
was shown �Farhi and Gutmann, 1998� that if the system
evolves under a time-independent Hamiltonian of the
form

Htot = E�w
�w� + E�s
�s� , �22�

where

�s
 =
1

�N
�
i=1

N

�i
 , �23�

no improvement over Grover’s �N speedup is possible.
Later, the problem was recast in the form of a spatial
search �Childs and Goldstone, 2004�, where there is a
d-dimensional lattice and the basis state �i
 is localized at
the ith lattice site. As before, the on-site potential en-
ergy E is zero everywhere except at �w
, where it is 1.
The objective is to reach the marked state starting from
the equal superposition of all the �i
’s. The kinetic term
is formulated through the Laplacian of the lattice, which
effectively introduces uniform hopping to all nearest
neighbors from any given lattice sites, and is kept con-
stant. The model is in essence an Anderson model �San-
toro and Tosatti, 2006� with only a single-site disorder of
strength O�1�. Grover’s speedup can be achieved for d
�4 with such a Hamiltonian and no further improve-
ment is possible. The algorithm succeeds only near the
critical value of the kinetic term �i.e., at the quantum
phase transition point�. An adiabatic quantum evolution
algorithm for Grover search was formulated in terms of
an orthonormal complete set of l-bit Ising-like basis vec-
tors, where the potential energy of a given basis vector
�among 2l� is 1, and for the rest it is 0. The kinetic term
is the sum of all single-bit-flip terms �like the transverse
field term in Eq. �9��. It connects each basis vector to
those that can be reached from it by a single-bit flip. The
kinetic term is reduced from a high value to zero follow-
ing a linear schedule. A detailed analysis in light of the
adiabatic theorem showed that one cannot even retrieve
Grover’s speedup by sticking to the global adiabatic con-
dition with fixed evolution rate as given by Eq. �16�. This
occurs because the minimum value of the gap varies as
�min
2.2−l/2 �Farhi et al., 2000�, and since the spin-flip

kinetic term is local, the numerator ��Htot
˙ 
� of the adia-

batic factor �see Eq. �16�� is at best O�l�. However, Grov-
er’s speedup can be recovered if the condition of adia-
baticity is maintained locally �for more on nonlinear
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annealing schedule, see also Farhi et al. �2002b� and
Morita �2007�� at every instant of the evolution and the
rate is accelerated accordingly whenever possible �Ro-
land and Cerf, 2001�. Adiabatic QA following real-time
Schrödinger evolution for satisfiability problems also
gives a different result �for smaller system size, though�
compared to that obtained using PIMC QA. Adiabatic
QA of an NP-complete problem, namely, the exact
cover problem �as described below� has been studied for
small systems, where a quadratic system-size depen-
dence was observed �Farhi, Goldstone, Gutmann, et al.,
2001�. In this problem the basis vectors are the complete
set of 2l orthonormal l-bit basis vectors, denoted by
��z1
 �z2
¯ �zl
�; each zi is either 0 or 1. The problem
consists of a cost function HC which is the sum of many
three-bit clause functions hCl�zi ,zj ,zk�, each acting on
arbitrarily chosen bits zi, zj, and zk. The clause function
is such that hCl�zi ,zj ,zk�=0 if the clause Cl is satisfied by
the states �zi
, �zj
, and �zk
 of the three bits, or else
hCl�zi ,zj ,zk�=1. The cost Hamiltonian is given by HC
=�ClhCl. Thus if a basis state ��zi�
 dissatisfies p clauses,
then HC � �zi�
=p � �zi�
. The question is whether there ex-
ists a basis vector that satisfies all clauses for a given HC.
There may be many basis vectors satisfying a clause. All
the basis vectors will be the ground state of HC with zero
eigenvalue. If the ground state has a nonzero eigenvalue
�it must be a positive integer then� then it represents the
basis with the lowest number of violated clauses, the
number given by the eigenvalue itself. The total Hamil-
tonian is given by

Htot�t� = �1 −
t

�
	Hkin +

t

�
HC, �24�

where Hkin is again the sum of all single-bit-flip opera-
tors. The initial state at t=0 is taken to be the ground
state of Hkin, which is an equal superposition of all basis
vectors. The system then evolves according to the time-
dependent Schrödinger equation up to t=�. The values
of � required to achieve a preassigned success probabil-
ity are noted for different system sizes. The result
showed a smooth quadratic system-size dependence for
l
20 �Farhi, Goldstone, and Gutmann, 2002b�. which is
quite encouraging �since it seems to give a polynomial
time solution for an NP-complete problem for small sys-
tem size�, but does not really assure a quadratic behav-
ior in the asymptotic �l→ � � limit.

Quadratic relaxation behavior ��res
1/��, �
2� was
reported by Suzuki and Okada �2005a� for real-time
adiabatic QA �employing the exact method for small
systems and the density-matrix renormalization group
�DMRG� technique for larger systems �see Suzuki and
Okada, 2005b�� of a one-dimensional tight-binding
model with random site energies and also for a random-
field Ising model on a 2D square lattice. In the first case,
the kinetic term was due to hopping between nearest
neighbors, while in the second case it was simply the
sum of single-spin-flip operators as given by Eq. �9�.
Wave-function annealing results using a similar DMRG

technique for a spin glass on a ladder have been re-
ported by Rodriguez-Laguna �2007�.

It has been demonstrated that for finite-ranged sys-
tems, where the interaction energy can be written as a
sum of interaction energies involving few variables,
quantum adiabatic annealing and thermal annealing
may not differ much in efficiency. However, for prob-
lems with spiky �very high but narrow� barriers in the
PEL �which must include infinite-range terms in the
Hamiltonian, since in finite-range systems barrier
heights can grow at best linearly with barrier width�,
quantum annealing does much better than CA �Farhi et
al., 2002a�, as argued by Ray et al. �1989�. Quantum adia-
batic evolution has been employed earlier to study the
SK spin glass in a transverse field; stationary character-
istics over a range of the transverse field are calculated
by varying the transverse field adiabatically �Lancaster
and Ritort, 1997�.

It has been argued so far that the advantage of quan-
tum annealing derives mainly from the fact that quan-
tum tunneling can penetrate through very high but nar-
row barriers, which are hard to jump over thermally. In
this way the cost-configuration landscapes are more ac-
cessible to local moves. This is a key feature that works
even in the case of quantum Monte Carlo methods such
as PIMC QA, where one samples only a small section of
the configuration space. However, another advantage
that quantum mechanics provides is the ability to
“sense” the whole configuration space simultaneously
through a delocalized wave function. This sensing is
greatly handicapped by the presence of random disorder
in the system, because the wave function tends to local-
ize in many places, often unable to pick up the deepest
well distinctly. This feature may be utilized in searching
a golf-course-like PEL, namely, a flat landscape with
very deep and narrow wells occurring very rarely. If
there is only one deep well, the problem is the spatial
version of Grover’s problem. As we have seen, if the
depth � of the well is O�1� �independent of N�, then no
more than O��N� speedup can be achieved. This can be
interpreted as the inability of an exceedingly large sys-
tem to sense a given small imperfection. One might want
to make the depth of the well large enough that it can-
not be scaled away as the system size is increased.

We first consider the case where the well depth varies
as �
�N, where � is constant. For a well depth of this
order for a spatial search at infinite dimension �the ki-
netic term is infinite ranged� one gets a stunning result:
The evolution time that guarantees any given probabil-
ity of success becomes independent of N �Das, 2007; see
Fig. 4�. However, if � scales as �
N�, with ��1, then
the speedup is lost again—a consequence of quantum-
mechanical nonadiabaticity. We formulate the problem
in the following way. As in the case of a spatial search
discussed above, we denote the state localized at the ith
site by �i
. All sites except �w
 have zero on-site potential
energy, while �w
 has an on-site potential well of depth
��t�. The system is embedded in infinite dimensions and
thus there is a uniform tunneling term � between any
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two sites. To perform quantum annealing, we evolve ��t�
from zero to its final value �0, keeping � fixed at some
moderate constant value. The total Hamiltonian is given
by

Htot = − �0�1 − t/���w
�w� − � �
i,j;i�j

�i
�j� . �25�

The time-dependent eigenproblem can be solved for
the above Hamiltonian. It can be shown exactly that if
�0
�N then, in the N→� limit, the adiabatic factor

��Htot
˙ 
�max

�min
2 �t�



�

4�2 , �26�

which means that the run time becomes independent of
N, and the ground state has O�1� overlap with the target
state �w
. We also confirm it numerically by evaluating
�min, which is the minimal � required for obtaining a
success probability P��w
�=0.33 for different N through
many decades. Here we have chosen a moderate con-
stant �, and have evolved the well depth � with time.
The evolution is computed by solving the time-
dependent Schrödinger equation numerically, and �min is
obtained with an accuracy of 10−4 by employing a bisec-
tion scheme. The results �Fig. 4�a�� show that P��w
�
tends to become independent of N as N becomes larger
and larger. This is completely in accordance with the
analytical result �see Eq. �26��.

The relaxation behavior for large N for a given an-
nealing time � depends on the value of � �see Fig. 4�b��.
If � is too small, the system takes a longer time to feel
the changes in the landscape, and hence the adiabatic
relaxation requires a longer time �the adiabatic factor

becomes larger; see Eq. �26��. On the other hand, if � is
too large, the ground state itself is quite delocalized, and
hence the final state, though closer to the ground state,
has again a small overlap with the target state �w
. The
result is best for �=0.5. For higher and lower values of
�, the results are worse, as shown in Fig. 4�b�. The re-
laxation behavior is linear with the annealing time �.

C. Annealing of a kinetically constrained system

The adiabatic theorem of quantum annealing assures
convergence of a quantum algorithm when one starts
with the initial �trivial� ground state of the Hamiltonian
and evolves slowly enough so that the system is always
in the ground state of the instantaneous Hamiltonian.
However, the benefit of tunneling may be extended even
in cases where one does not precisely know the eigen-
state of the initial Hamiltonian �say, for a given un-
known PEL� and hence is unable to start with it. One
might rather start with a wave packet �a superposition of
many eigenstates of the Hamiltonian� that explores the
potential-energy landscape. Quantum tunneling will still
allow it to move more easily through the PEL than a
classical particle if the landscape has many high but nar-
row barriers. A semiclassical treatment of such a nonsta-
tionary annealing has been discussed in the context of a
kinetically constrained system �KCS� �Das et al., 2005�.

Here we demonstrate the effectiveness of quantum
annealing in the context of certain generalized kineti-
cally constrained systems �KCS� �Fredrickson and
Andersen, 1984�. KCSs are simple model systems having
trivial ground-state structures and static properties, but
complex relaxation behavior due to explicit constraints
introduced in the dynamics of the system. These systems
are important in understanding how much of the slow
and complex relaxation behavior of a glass can be attrib-
uted to its constrained dynamics alone, ignoring any
complexity of its energy landscape structure. In KCSs
one can view the constraints as being represented by
infinitely-high-energy barriers appearing dynamically.

We now discuss quantum annealing in the context of a
KCS, which can be represented by a generalized version
of the East model �Jackle and Eisinger, 1991�, a one-
dimensional KCS. We also compare the results with
those of thermal annealing in the same system. The
original East model is a one-dimensional chain of non-
interacting classical Ising �“up-down”� spins in a longitu-
dinal field h, say, in a downward direction. The ground
state of such a system is, trivially, all spins down. A ki-
netic constraint is introduced in the model by applying
the restriction that the ith spin cannot flip if the �i−1�th
spin is down. Such a kinetic constraint essentially
changes the topology of the configuration space, since
the shortest path between any two configurations differ-
ing by one or more forbidden flips is increased due to
the blockage of the “straight” path consisting of direct
flips with dissimilar spins. Further, the constraint be-
comes more limiting as more spins turn down, as occurs
in the late approach to equilibrium. As a result, the re-

FIG. 4. �Color online� �a� Numerical verification of the N in-
dependence on the minimum time �min to achieve success
probability P��w
�=0.33. Initially, the system is delocalized
equally over all sites and evolves with time according to the
time-dependent Schrödinger equation with the Hamiltonian
�25�. As expected from the exact analytical result for the adia-
baticity condition, it is seen that �min becomes independent of
N. �b� Variation of final probability P��w
� of finding the state
�w
 with annealing time � for different final values of �, for
N=106.
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laxation processes have to follow more complex and
lengthier paths, giving rise to an exponentially large time
scale �
e1/T2

; Jackle and Eisinger, 1991�.
In the Das model �Das et al., 2005� there is a chain of

asymmetric double wells �each with infinite boundary
walls�, each having a particle localized within it. The
asymmetry is due to the energy difference of 2h between
the two wells of a double well. The particle in one of the
two �asymmetric� wells can change its location to the
other well stochastically, due to either the thermal or
quantum fluctuations present in the system. The gener-
alized kinetic constraint is introduced by assuming that,
if the particle in the �i−1�th double well resides in the
lower of the two wells, then there appears a barrier of
height � and width a between the two wells of the ith
double well. In this situation the particle in the ith
double well has to cross the barrier in order to change its
location from one well to the other. On the other hand,
if the particle of the �i−1�th double well is in its upper
well, there is no such barrier to cross for the particle to
go from one well to the other. Following the approxi-
mate mapping done in the case of a symmetric double
well �Chakrabarti et al., 1996�, this model can be ap-
proximately represented by a generalized version of the
East model, where each Ising spin is in a local longitu-
dinal field h in the downward direction. The spin at the
ith site sees a barrier of height � and width a between its
two energy states when the �i−1�th spin is down, while
no such barrier occurs for the ith spin when the �i−1�th
spin is up. This kinetic constraint is the same in both
cases irrespective of whether the dynamics is classical or
quantum.

When the dynamics of the particle is due to quantum
fluctuations, the tunneling probabilities come from the
following semiclassical picture of a particle scattering in
a double well with infinitely remote outer boundaries. If
a particle is put in one of the wells of such a double well
with some kinetic energy �actually the expectation
value� �, then it will eventually be scattered by the sepa-
rator �a barrier or step� between the two wells. In such a
scattering, there is a finite probability P that the particle
manages to go to the other well. We calculate P from the
simple picture of a particle scattering by one-
dimensional potentials as described below. In the ther-
mal case we take simple Boltzmann probabilities for
crossing the same barriers. The minimum of the energy
of the Ising chain �equivalent to the potential energy of
the chain for the double wells� trivially corresponds to
the state with all spins down, i.e., aligned along the lon-
gitudinal field h �where all particles are in their respec-
tive lower wells�. To reach the ground state in the quan-
tum case, we start with a large initial value of � and then
reduce it following an exponential schedule given by �
=�0 exp�−t /�Q�. Here t denotes the time and �Q sets the
effective time scale of annealing. At zero temperature
the slow spin-flip dynamics occurs only due to the tun-
neling �kinetic energy� term � and hence the system
ceases to have any relaxation dynamics in the limit �
→0. The barriers are characterized by a height � and a

width a, with the barrier area g=�a. Similarly, in the
thermal case, we start with a high initial temperature T0
and reduce it, eventually following an exponentially de-
creasing temperature schedule given by T
=T0 exp�−t /�C�, with �C the time constant for the ther-
mal annealing schedule. Here, when the �i−1�th spin is
down, the flipping probability for the ith spin is

exp�−� /T�. Otherwise, it flips with probability P=1 if
it was in the up state and with Boltzmann probability
P=exp�−h /T� if it was in the down state. Here, in the
quantum case, the probability of crossing the barrier de-
pends on g so that the barrier width a plays a role, while
in the thermal case only � sets the crossing time scale,
irrespective of a.

In the simulation �Das et al., 2005�, N Ising spins �Si
= ±1, i=1, . . . ,N� were taken on a linear chain with pe-
riodic boundary conditions. The initial spin configura-
tion is taken to be random, so that the magnetization
m= �1/N��iSi is practically negligible �mi�0�. We then
start with a tunneling field �0 and follow the zero-
temperature �semiclassical� Monte Carlo scheme as
mentioned above, using the spin-flip probabilities P ap-
propriate for four cases I–IV. Each complete run over
the entire lattice is taken as one time unit and, as time
progresses, � is decreased from its initial value �0 ac-
cording to �=�0e−t/�Q. The results of thermal and quan-
tum annealing are compared in Fig. 5 for the same order
of initial value and time constant for � and T �the bar-
rier height � is 1000 in both cases, and g is 100 in the
quantum annealing case, or equivalently the barrier
width a is on the order of 0.1�. It is observed that to
achieve a similar degree of annealing �attaining a certain
final magnetization mf�, starting from the same disor-
dered configuration, one requires much smaller �Q com-

FIG. 5. Comparison between classical and quantum annealing
for a chain of 5�104 spins �for the same initial disordered
configuration with mi
10−3�. We show results for �Q=1.8
�102 �quantum� and �C=106 �classical� with h=1; a lower �C
would not produce substantial annealing. Starting from the
same initial values �0=T0=100 �and g=100 in the quantum
case�, we observe that classical annealing requires about 107

steps, whereas quantum annealing takes about 104 steps to
achieve the same final order mf
0.92.
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pared to �C; typically, �C
103��Q for equivalent an-
nealing �for similar optimal values of final order mf

0.92�. For annealing with final order mf
1, we find
�C
104�Q. This comparison depends on the barrier
characteristics �the value of g�.

D. Experimental realization of quantum annealing

Brooke et al. �1999� showed experimentally �see also
Aeppli and Rosenbaum, 2005� that the relaxation be-
havior in reaching deep inside the glass phase in Fig. 6
depends on the path chosen. A TISG, realized by a
sample of LiHo0.44Y0.56F4 in a laboratory transverse field
���, was taken from a high-temperature paramagnetic to
a low-temperature glassy phase following two separate
paths in the �-T plane �see Fig. 6�. Along the classical
path of cooling �CA�, the transverse field was zero
throughout, and was switched on only after reaching the
final temperature. Quantum cooling �QA�, on the other
hand, was done in the presence of a high transverse
field, which was lowered only on reaching the final tem-
perature. As the sample is cooled, spectroscopy of the
sample at different temperatures �during both CA and
QA� was done to reveal the distribution of the spin re-
laxation time scales. The QA produced states whose re-
laxation was up to 30 times faster than those produced
by the CA at low temperature �see Aeppli and Rosen-
baum, 2005�. This indicates that quantum tunneling is

much more effective in exploring the configuration
space in the glassy phase than thermal jumps �as indi-
cated in Fig. 1�. An experimental realization of quantum
adiabatic annealing for three-bit instances of the MAX-
CUT problem using the NMR technique has also been
reported �see Steffen et al., 2003�. Here the smoothly
varying time-dependent Hamiltonian was realized by
quantum simulation �see Nielsen and Chuang, 2000�,
where a smooth time evolution was achieved approxi-
mately �Trotter approximation� through applying a se-
ries of discrete unitary operations. The results indicate
the existence of an optimal run time of the algorithm.

IV. CONVERGENCE OF QUANTUM ANNEALING
ALGORITHMS

Here we briefly summarize some results derived by
Morita and Nishimori �2006, 2007� on the convergence
of QA algorithms for TIM systems. The results are valid
for both the quantum Monte Carlo and the real-time
Schrödinger evolution versions of QA.

The Hamiltonian here is the same as given in Eq. �9�
with a time dependence in the transverse field �=��t�.
No assumption regarding either the nature of the distri-
bution of Jij or the spatial dimensionality is required. In
order to perform QA at temperature T using the PIMC
algorithm, one constructs the Suzuki-Trotter equivalent
�see Appendix A.1� �d+1�-dimensional classical system
of the d-dimensional quantum system, and the resulting
�classical� system is simulated using a suitable inhomo-
geneous Markov chain. The transverse field ��t� is tuned
from a high value to zero in the course of the simulation.
It can be shown that at the end of the simulation the
final distribution converges to the ground state of the
classical part of the Hamiltonian irrespective of the ini-
tial distribution �strong ergodicity� if

��t� � MT tanh−1� 1

�t + 2�2/RL	 , �27�

where M is the number of Trotter replicas in the
�d+1�-dimensional Suzuki-Trotter equivalent system.
Here R and L are constants depending on the system
size N, the spin-flip dynamics appointed for the simula-
tion, the temperature T, etc. For large t the bound re-
duces to

��t� � MT
1

�t + 2�2/RL . �28�

It is remarkable that, in contrast to the inverse logarith-
mic decay of temperature required for convergence of
CA �see Eq. �1��, QA requires only a power-law decay of
the transverse field. In this sense, quantum annealing is
much faster than the classical annealing for TIM. A
similar result can be derived for the more general
Hamiltonian �see Morita and Nishimori, 2006�. How-
ever, the advantage gained here does not change the
complexity class of an NP-complete problem, since RL
is on the order of N and hence the convergence time is
thus still exponential in N.

FIG. 6. �Color online� Experimental realization of QA and
CA in LiHo0.44Y0.56F4 illustrated on its phase diagram on the
plane of temperature T and transverse field � �measured by
the magnitude of the external laboratory field in kOe�. The
material behaves as a conventional ferromagnet in the region
labeled FM, and shows slow relaxation in the glassy domain-
wall state labeled G. The two paths of relaxations from an
initial point A to a final point C on the phase diagram are
shown by arrow-headed lines. Along the classical path A→B
→C �dashed arrow� the transverse field is not applied until the
end, so that relaxations observed are purely thermal, whereas,
along the quantum path A→D→C �continuous arrow�, there
is a segment where the temperature is small enough and the
transverse field is high, so that fluctuations are mainly quantum
mechanical. Relaxations observed along the quantum path are
often found to be much faster than those observed along the
classical path at low enough temperature. From Aeppli and
Rosenbaum, 2005.
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For real-time Schrödinger dynamics at T=0, the
bound for the decay of the transverse field is again of the
form

��t� � ��t�−1/�2N−1�, �29�

where � is exponentially small in N for large N. Al-
though the dynamics of PIMC QA and real-time
Schrödinger evolution are completely different, the
power-law bound on the annealing schedule is strikingly
similar.

V. QUANTUM QUENCHING

Instead of annealing, one can quench a system by re-
ducing the transverse field from �i ���c� to �f ���c� and
follow the relaxation dynamics after that. Here �c de-
notes the quantum critical point for the system. This can
help to prepare a state of the system with substantial
order in a short time. Recently, quantum quenching dy-
namics in different systems, in particular for sudden
quenching across a quantum critical point, have been
studied extensively �Sengupta et al., 2004; Calabrese and
Cardy, 2006; Das et al., 2006; Mukherjee et al., 2007; Sen-
gupta et al., 2008�. The �exact� results for the after-
quench dynamics, following a sudden quench of an
infinite-range Ising model in transverse field �Das et al.,
2006, see Appendix B�, are shown in Fig. 7. The results
indicate that for a purely quantum system �small S�, one
might reach a nonstationary oscillatory state with a sub-
stantial value for the long-time average �over the largest
time scale� of order ���Si

z�2�t�
 if the quenching is done
from �i��c to �f=�c /2. Thus one gets a state �though
nonstationary� which has considerable order, in just one-
step quenching. However, if the quenching is carried out

with a high but finite rate, one ends up reaching an ex-
cited state with topological defects �see Kibble, 1976;
Zurek, 1985; Sengupta et al., 2008�.

VI. SUMMARY AND DISCUSSIONS

Unlike gate-based quantum computers �see, e.g., Ek-
ert and Jozsa, 1996; Nielsen and Chuang, 2000; Galindo
and Martin-Delgado, 2002�, annealing of a physical sys-
tem toward the optimal state �encoded in the ground
state of the final Hamiltonian� in the classical limit natu-
rally achieves analog quantum computation. As dis-
cussed here, utilization of quantum-mechanical tunnel-
ing through classically localized states in annealing of
glasses has opened up this new paradigm for analog
quantum computation of hard optimization problems
through adiabatic reduction of quantum fluctuations.

We reviewed the recent success in annealing, or opti-
mizing, the cost functions of complex systems, utilizing
quantum fluctuations rather than thermal fluctuations
�see Santoro and Tosatti, 2006, for a more technical re-
view�. As mentioned, following the early indication by
Ray et al. �1989� and the pioneering demonstrations,
theoretically by Amara et al. �1993�, Finnila et al. �1994�,
Kadowaki and Nishimori �1998�, Farhi, Goldstone, Gut-
mann, et al. �2001�, and Santoro et al. �2002�, and experi-
mentally by Brooke et al. �1999�, the quantum annealing
technique has now emerged as a successful technique for
optimization of complex cost functions. The literature
exploring its success and also its limitations is also con-
siderably developed at present.

These concepts are introduced through discussions on
the mapping of such hard problems to classical spin-
glass problems, discussions on quantum spin glasses, and
consequent annealing. The physics of classical spin
glasses �see Sec. II� offers us knowledge of the energy or
the thermodynamic potential and their landscape struc-
tures. Mapping of computationally hard problems like
the TSP, etc., to their corresponding classical spin-glass
models also helped in understanding their complexity
�Sec. II.C�. The time scale for tunneling through an en-
ergy barrier quantum mechanically involves not only the
height of the barrier, but also its width; the narrower the
barrier, the faster the tunneling �for constant height�.
Thermal fluctuations, on the other hand, see only the
barrier height. This reduction of tunneling time with bar-
rier width helps in relaxing a quantum system much
faster in some cases. This leads to quantum annealing, a
framework for constructing general heuristics to find ap-
proximate solutions of hard optimization problems.
While simulated annealing employs the strategy of slow
cooling, physical or in simulations, to find the ground
state of glassy systems, quantum annealing employs
quantum fluctuations �see Sec. III�. As mentioned, this
effectively reduces Planck’s constant to zero in order to
reach the classically optimized �minimum cost� state.
This reduction, when done completely adiabatically,
guarantees that the system will be found in the ground
state of the classical glass at the end �provided there is
no crossing of energy levels with the ground state in the

FIG. 7. �Color online� Long-time average �see Appendix A�
O= ��Stot

z �2
 as a function of �f /J for different S. The solid,
dotted, dash-dotted, and dashed lines represent, respectively,
the results for S=50, 100, 200, and 500. O peaks around �f /J
=0.25 and the peak value decreases with increasing S. For all
plots we have chosen �i /J=2. From Das et al., 2006.
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course of evolution, and one has started initially with the
ground state of the Hamiltonian�. This has already been
realized experimentally �see Sec. III.D�, where faster re-
laxation toward the ground state is achieved by reducing
the external field �inducing changes in the tunneling
field�, rather than by reducing the temperature. In this
way analog quantum computation is realized through a
novel route. Recently, an equivalence between the adia-
batic QA and standard gate-based quantum computa-
tion has also been established �Aharonov et al., 2007;
Mizel et al., 2007�.
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APPENDIX A

1. Suzuki-Trotter formalism

Here we illustrate this formalism by applying it to a
TIM having a Hamiltonian

H = − ��
i=1

N

Si
x − �

�i,j�
JijSi

zSj
z � Hkin + HC. �A1�

The canonical partition function of H reads

Z = Tr e−�Hkin+HC�/T. �A2�

Now we apply the Trotter formula

exp�A1 + A2� = lim
M→�

�exp�A1/M�exp�A2/M��M, �A3�

even when �A1 ,A2��0. Applying this formula, Z reads

Z = lim
M→�

�
i

�si��exp�− Hkin/MT�

�exp�− HC/MT��M�si
 . �A4�

Here si represents the ith spin configuration of the
whole system, and the above summation runs over all
such possible configurations denoted by i. Now we intro-
duce M identity operators between the product of M
exponentials in Z, and obtain

Z = lim
M→�

Tr�
k=1

M

�S1,k ¯ SN,k�exp�− Hkin

MT
	

�exp�− HC

MT
	�S1,k+1 ¯ SN,k+1
 ,

and the periodic boundary condition imply SN+1,p=S1,p.
Now,

�
k=1

M

�S1,k ¯ SN,k�exp� 1

MT�
i,j

JijSi
zSj

z	�S1,k+1 ¯ SN,k+1


= exp��
i,j=1

N

�
k=1

M
Jij

MT
Si,kSj,k	 ,

where Si,k= ±1 are the eigenvalues of the Sz operator
�see Hatano and Suzuki, 2005�, and

�
k=1

M

�S1,k ¯ SN,k�exp� �

MT�
i

Si
x	�S1,k+1 ¯ SN,k+1


= �1
2

sinh� 2�

MT
	�NM/2

�exp�1
2

ln coth� �

MT
	�

i=1

N

�
k=1

M

Si,kSi,k+1� ,

giving the effective classical Hamiltonian �14�, equiva-
lent to the quantum one in Eq. �A1�. In the above equa-
tion M should be at on the order of 1/T ��=1� for a
meaningful comparison of the interaction in the Trotter
direction with that in the original Hamiltonian. For T
→0, M→�, and the Hamiltonian represents a system of
spins in a �d+1�-dimensional lattice, because of one ex-
tra label k appearing for each spin variable. Thus, corre-
sponding to each single quantum spin variable Si in the
original Hamiltonian, we have an array of M classical
replica spins Sik. The new �timelike� dimension along
which these classical spins are spaced is known as the
Trotter dimension.

2. Quantum quenching of a long-range TIM

Consider a system of spin-1
2 objects governed by the

Hamiltonian H=−�J /N��i�j
N Si

zSj
z−��i

NSi
x. The Hamil-

tonian can be rewritten as

H = −
J

N
�Stot

z �2 − �Stot
x , �A5�

where Stot
z =�iSi

z, Stot
x =�iSi

x, and a constant
�J /2N��i�Si

z�2=J /8 from H in Eq. �A5�. The above
Hamiltonian can again be cast into the simplified form

H=h� ·Stot
� , where h� =Jmẑ−�x̂, giving the mean-field �ex-

act in this long-range limit� equation

m � �Stot
z 
 =

�h� · ẑ�

�h� �
tanh� �h� �

T
	 =

Jm

2��2 + J2m2

at T=0, and ẑ and x̂ denote unit vectors along the z and
x directions, respectively. This gives m=0 for ���c and
m�0 for ���c=J /2. Since the model is an infinite-
ranged one, the mean-field approximation becomes ex-

act, and one can express S� in terms of its polar compo-

nents as S� =S�sin � cos � , sin � sin � , cos ��, with S the
total angular momentum. One can then utilize the clas-

sical equation of motion dS�

dT =S� �h� . Considering the
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above equation for the z and x components, we get

d�

dt
= � sin � and

d�

dt
= −

J

2
cos � + � cot � cos � .

�A6�

Here we have S=N /2. If the system is now quenched
from above its quantum critical point ���c finally to
�f��c, then one can write �see Das et al., 2006�, equat-
ing the energies of the states with and without any order,
respectively, �f= �J /4�cos2�+�f sin � cos �. Using this,
one gets from Eq. �A6�

d�

dt
=

��f
2 sin2� − ��f − �J/4�cos2��2

sin �
� f��� . �A7�

This has zeros �turning points� at �1=sin−1��1−4�f /J � �
and �2=� /2. One can therefore obtain
��Stot

z �2
= �cos2�
=N /D, where N=��1

�2d� cos2� / f���
=4�8�f�J−2�f� /J and D=��1

�2d� / f���, giving the behavior
shown in Fig. 7.
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