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I. Fundamental Properties of Nuclei

§1. CHARGE, WEIGHT (A4)?

F all properties of the nucleus the charge is
by far the most important for atomic
physics. It determines the number of electrons
of an atom in its neutral state, the energy levels
of the atom, its chemical actions; in short, all
the properties of the atom except for very small
corrections such as hyperfine structure, isotope
shift of spectral lines, etc.

It is well known that the charge of any nucleus
is an integral multiple of the charge e of the
proton, let us say Ze. Every integer Z corre-
sponds to a certain chemical element. All ele-
ments corresponding to values of Z from 1 to 92
have been actually found in nature, except the
elements 85 and 87.3 Recently, the elements 93
and probably 94 have been produced by disinte-
gration experiments (F6, F9).

With our present knowledge about atomic
physics, the nuclear charge of an element can be
easily inferred from its chemical or spectroscopic
properties (periodic system). The most direct
measurement of the nuclear charge of an atom
consists, however, in the determination of its
x-ray spectrum, in other words, of the binding
energy of its inner electrons. Another method is
based on the large-angle scattering of a-particles
or protons by the nuclei of the element. It is
less accurate but of great historical importance
because it was this experiment which led
Rutherford to the concept of the nuclear atom
(R15, C4).

The second nuclear quantity, the atomic
weight, was known long before the existence of
nuclei was discovered. Moreover, it was sug-
gested as early as 1813 by Prout that all atomic
weights are integral multiples of the weight of
the hydrogen atom. Later, it was seen that this
rule held more accurately when one-sixteenth of
the atomic weight of oxygen was taken as the
unit. However, some bad exceptions from the
integral—weight—rule remained, e.g., chlorine.

We know now that all the elements not -

2 A letter and a number, e.g., A4, are used for references
to original papers. A list of references is found at the end
of the pag)er.

3The discovery of illinium (61) seems to be still dis-
puted.

conforming to this rule, and, indeed, many of
those apparently conforming, consist of several
isotopes. The nuclei of two isotopic atoms
possess the same charge, but different weight.
Since the charge alone determines the chemical
and spectroscopic properties of the atom, two
isotopes have the same chemical behavior and
(practically) the same spectrum. The atomic
weight of every isotope is very nearly an integer,
while the mixed element which is found in
nature will, of course, in general’ have a non-
integral atomic weight.

The analysis of the isotopic constitution of an
element as well as the determination of the
atomic weights of the single isotopes requires
the use of a mass spectrograph (A4). Mainly
through the work of Aston, we know at present
about 280 different isotopes which occur in
nature, corresponding to about 3 isotopes per
element. The highest number of isotopes for
any single element is found for Sn (10 isotopes).

The atomic weights of the known isotopes run
from 1 (light hydrogen) up to 238 (uranium).
From 1 to 212, there exists at least one isotope
for every integral atomic weight,5 with the only
exception of the atomic weights 5 and 8. In
many cases, the same atomic weight is found for
two isotopes of two different elements; e.g., one
of the isotopes of argon as well as one of the
calcium isotopes has the atomic weight 40.
Such nuclei which have equal atomic weight but
different nuclear charge are called isobars. There
are 44 pairs of such isobars known, excluding
about 10 pairs for which one of the two isobars
is doubtful. In at least two cases, the existence
of three isobars seems to be definitely established
(atomic weight 96 (Zr, Mo, Ru), and atomic
weight 124: tin, tellurium and xenon). The
actual number of existing pairs of isobars is
certainly larger than the number found thus far,
because the isobars in the region of the rare
earths are practically unknown. This is because
it is very difficult to separate the various rare

4 In some cases all the isotopes except one are very rare,
e.ﬁ., the isotopes 17 and 18 of oxygen compared to O,
Then the atomic weight of the natural mixed element is
approximately equal to that of the abundant isotope and
therefore is nearly an integer.

5 Cf. J. Mattauch (M11).
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earths and thus to tell whether a given mass thus: ;3A%, or $A. We shall not do so because
found in the mass spectrograph is an isotope of the charge is uniquely determined by the
the element actually investigated or of another chemical symbol. It need hardly be noted that
rare earth which occurs as an impurity. the upper index is not the exact atomic weight of
The notation accepted for denoting a given the isotope which deviates slightly from an
isotope, consists in putting the atomic weight of integer but the ‘““mass number,” i.e., the integer
the isotope as a superscript on the chemical nearest to the atomic weight.
symbol of the element the isotope belongs to, The atomic weights of the natural elements are
e.g., H?, A%, Te!, Some writers put in addition remarkably independent of the source where the
the nuclear charge in the lower left-hand corner, element is found. This means that the various

TaBLE 1. Known stable isotopes.
A = Atomic weight, Z = Nuclear charge, Ch=Chemical symbol.

A Z Ch A zZ Ch A Z Ch A z Ch A zZ Ch A Z Ch

1 1 H 49 22 Ti 38 Sr 119 50 Sn 156 64 Gd 200 80 Hg

2 1 H 50 22 Ti 88 38 Sr 120 S50 Sn 157 64 Gd 201 80 Hg

3 1 H 24 Mo 89 39 Y 121 51 Sb 158 64 Gd 202 80 Hg

4 2 He 51 23 V 90 40 Zr 122 50 Sn 159 65 Tb 203 81 TI

5 — — 52 24 Cr 91 40 Zr 52 Te 160 64 Gd 204 80 Hg

6 3 Li 53 24 Cr 92 40 Zr 123 51 Sb 161 66 Dy 82 Pb

7 3 Li 54 24 Cr 42 Mo 52 Te 162 66 Dy 205 81 TI

8§ — — 26 Fe 93 41 Cb 124 50 Sn 163 66 Dy 206 82 Pb

9 4 Be 55 25 Mn 94 40 Zr 52 Te 164 66 Dy (U Pb)
10 5 B 56 26 Fe 42 Mo 54 Xe 165 67 Ho 207 82 Pb

11 5 B 57 26 Fe 95 42 Mo 125 52 Te 166 68 Er (AcPb)
12 6 C 58 28 Ni 96 40 Zr 126 52 Te 167 68 Er 208 82 Pb

13 6 C 59 27 Co 42 Mo 54 Xe 168 68 Er (ThPb)
14 7 N 60 28 Ni 44 Ru 127 53 1 169 69 Tu 209 83 Bi

15 7 N 61 28 Ni 97 42 Mo 128 52 Te 170 68 Er 210 84 Po

16 8 O 62 28 Ni 98 42 Mo 54 Xe 171 70 Yb (Ra F)
17 8 O 63 29 Cu 44 Ru 129 54 Xe 172 70 Yb 211 —

18 8 O 64 30 Zn 99 44 Ru 130 52 Te 173 70 Yb 212 8 ThC'
19 9 F 65 29 Cu (43 Ms?) 54 Xe 174 70 Yb 213 83 AcC
20 10 Ne 66 30 Zn 100 42 Mo 131 54 Xe 175 71 C 214 8 RaC’
21 10 Ne 67 30 Zn 44 Ru 132 54 Xe 176 70 Y 215 —

22 10 Ne 68 30 Zn 101 44 Ru 133 55 Cs 72 Hf 216 84 ThA
23 11 Na 69 31 Ga 102 44 Ru 134 54 Xe 177 72 Hf 217 84 AcA
24 12 Mg 70 30 Zn 46 Pd 56 Ba, 178 72 Hf 218 84 RaA
25 12 Mg 32 Ge 103 45 Rh 135 56 Ba 179 72 Hf 219 —

26 12 Mg 71 31 Ga 104 44 Ru 136 54 Xe 180 72 Hf 220 86 ThEm
27 13 Al 72 32 Ge 46 Pd 56 Ba 181 73 Ta 221 86 AcEm
28 14 Si 73 32 Ge 105 46 Pd 137 56 Ba 182 74 W 222 86 RaEm
29 14 Si 74 32 Ge 106 46 Pd 138 56 Ba 183 74 W 223 —

30 14 Si 34 Se 483 Cd 139 57 La 184 74 W 224 8 ThX
31 15 P 75 33 As 107 47 Ag 140 58 Ce 185 75 Re 225 88 AcX
32 16 S 76 32 Ge 108 46 Pd 141 59 Pr 186 74 W 226 88 Ra

33 16 S 34 Se 48 Cd 142 58 Ce 76 Os 221 —

34 16 S 77 34 Se 109 47 Ag 60 Nd 187 75 Re 228 90 RdTh
35 17 CI 78 34 Se 110 48 Cd 143 60 Nd 188 76 Os 229 90 RdAc
36 18 A 36 Kr 111 48 Cd 144 60 Nd 189 76 Os 230 90 To

37 17 Cl 79 35 Br 112 48 Cd 62 Sm 190 76 Os 231 —

38 18 A 80 34 Se 50 Sn 145 60 Nd 191 77 Ir 232 90 Th

39 19 K 36 Kr 113 48 Cd 146 60 Nd 192 76 Os 233 91 Pa
40 18 A 81 35 Br 49 In (62 Sm) 78 Pt 234 92 UII

20 Ca 82 34 Se 114 48 Cd 147 62 Sm 193 77 Ir 235 92 U?

41 19 K 36 Kr 50 Sn 148 62 Sm 194 78 Pt 236 —
42 20 Ca 83 36 Kr 115 49 In 149 62 Sm 195 78 Pt 237 —
43 20 Ca 84 36 Kr 50 Sn 150 62 Sm 196 78 Pt 238 92 UI
44 20 Ca 38 Sr 116 48 Cd 151 63 Eu 80 Hg
45 21 Sc 8 37 Rb 50 Sn 152 62 Sm 197 79 Au
46 22 Ti 8 36 Kr 117 50 Sn 153 63 Eu 198 78 Pt
47 22 Ti 38 Sr 118 48 Cd 154 62 Sm 80 Hg
48 22 Ti 87 37 Rb* 50 Sn 155 64 Gd 199 80 Hg

Remarks: g-radioactive isotopes have not been included in the table, except Rb*, which is possibly g-active, and Ac C
which has a very weak B-activity besides a strong a-activity. Radioactive a-emitters have generally been included.
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isotopes occur always in about the same ratio in
the natural element. Exceptions from this rule
are hydrogen, lead and, to a very small extent,
boron. The content of heavy hydrogen H?
(deuterium) in H from different sources, varies
from about 1 part in 3500 to 1 in 5000. This
great variation is due to the very large relative
difference in atomic weights. For boron, this
relative difference is, of course, much smaller
than for hydrogen but larger than for most
other elements. The ratio B!° : B! has been
found (B29) to vary from about 1 : 4 to 1 : 3%.
On the other hand, lead in uranium ores is
produced by the radioactive decay of uranium
and is thus, in an ideal case, the pure isotope
Pb20s,

Since every isotope contains its own character-
istic nucleus, the separation of isotopes is very
important for nuclear physics. The most com-
plete separation is achieved in the mass spectro-
graph; the main disadvantage being that ex-
tremely high currents or long times are required
to separate an appreciable amount of an element
into its isotopes. Light and heavy hydrogen can
be separated comparatively easily by repeated
electrolysis of water. Repeated diffusion has
been successful for neon. Repeated chemical
actions, distillations, etc., are all possible meth-
ods but it is hard to obtain more than a partial
separation of the isotopes with their help, except
in the case of hydrogen.

It remains to interpret the rules of (nearly)
integral atomic weights and (exactly) integral
nuclear charge where the latter is always smaller
than the former. The interpretation which sug-
gests itself is that any nucleus consists of
particles of unit atomic weight some of which
are positively charged while others are neutral.
In fact, we know two nuclei of atomic weight
unity, »z., the proton and the neutron (C5), the
first bearing unit positive charge while the second
is neutral. We are thus led to the hypothesis
that every nucleus consists of protons and

neutrons;® (H7, also H2, I1). The total number

of elementary particles, protons and neutrons
together, is then equal to the atomic weight of

¢ This hypothesis has been used for the first time as the
basis of a thorouﬁh nuclear theory by Heisenberg (H7);
however, it had been suggested earlier as a convenient
manner of describing the existing isotopes by Harkins
(H2) and Rutherford.

the nucleus or more exactly to its mass number
4, i.e., the integer nearest to the atomic weight.
The number of protons must be given by the
nuclear charge Z, wherefrom the number of
neutrons follows as being

N=A4-2. 1)

Since for many of the lighter nuclei the number
of neutrons is approximately equal to the
number of protons, it is sometimes useful to
introduce the “isotopic number” I (cf. H2), i.e.,
the excess of the number of neutrons over the
number of protons, viz.,

I=N—-Z=A4-2Z. (2)

§2. ENERGY (A4, AS, BS, B13)

The mass spectrograph has shown that the
atomic weight of every nucleus is approximately
an integer, thus giving support to the hypothesis
that any nucleus is constituted of neutrons and
protons. At the same time, however, the mass
spectrograph revealed that the atomic weights
of separated isotopes are not exactly integers,
e.g., H'=1.00807, Li’=7.0164, Kr8°=79.926 and
T1205=205.037. It is seen that the lightest atoms
have atomic weights M slightly higher, those of
medium atomic weight (from about 20 up to
200) such somewhat lower and the very heaviest
atoms again weights slightly higher than the
next integer 4.

The difference between exact atomic weight
M and “mass number” 4, the so-called ‘‘mass
defect”

—A=A-M 3)
is far outside the experimental error, being for
the lightest atoms about 100 times, for the
heavier ones about 10 times the probable error.
On the other hand, the mass defect is much too
small and depends much too regularly on the
mass number 4 to allow the abandoning of the
rule of integral atomic weights and thus of our
hypothesis about the constitution of the nuclei.
It must therefore be concluded that protons and
neutrons bound together in a nucleus have a
weight different, and more precisely smaller,
than the same number of free protons and
neutrons. This can be interpreted by Einstein’s
law of equivalence of mass and energy, as show-
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ing that the binding of neutrons and protons in a
nucleus decreases the total energy. Thus the
mass defect gives us direct information about
the binding energy of the particles in a nucleus.

This information is extremely useful.” It
serves to determine the total binding energy of
the elementary particles of a nucleus by com-
paring its weight to that of an equal number of
neutrons and protons. It also serves to determine
the binding energy of the last neutron, proton or
a-particle in a nucleus by comparing the weight
of the nucleus to that of another nucleus con-
taining one neutron, proton or a-particle, re-
spectively, less than the given nucleus. In this
way, it can be decided whether a given nucleus
is stable or not. Furthermore, it can be deduced
whether a given nuclear reaction will be endo-
thermic or exothermic, thus providing a great
help to the experimental investigator of nuclear
reactions, etc.

As an example, let us take the nucleus Li®.
Its atomic weight (B13) is 6.01614. The nucleus
consists of three neutrons, of atomic weight
1.00845 each, and three protons (atomic weight
of the hydrogen atom 1.00807). These six
particles together in the free state would have a
weight of 6.04956 which is 0.03342 units more
than the weight of the Li® atom. The binding
energy of Li® is thus 0.03342 ‘‘mass units,” one
mass unit being the energy corresponding,
according to Einstein's law of equivalence, to
one-sixteenth of the mass of the oxygen atom.
To convert this energy into more familiar units,
we note that the energy corresponding to the
mass m, is mc® according to Einstein's law, ¢
being the velocity of light.

Thus 1 mass unit=38.99-10%2-(1/16)- Mo ergs

=1.49-10"% erg,

71t is, in fact, the only point in which our information
about nuclear properties is superior to the information
about atomic properties: The total binding energy of all
the electrons in an atom, which knowledge is quite worth
while, can only be inferred by ing the ive
ionization potentials of the atom, a procedure extremely
hard to carry out with heavy atoms; there is no way of
determining this total binding energy directly. The reason
why the nuclear binding energies show up in the atomic
weights, while the binding energies of the atomic electrons
practically do not, is of course the very large magnitude
of nuclear binding energies, viz., several million electron
volts per nuclear particle compared to about 300,000 elec-
tron volts binding energy of all the electrons in the uranium
atom together.

BETHE AND R. F.
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where Mp=2.64-10"2 gram is the mass of the
oxygen atom O1S,

More useful than ergs are electron volts as
units of nuclear energies, because the kinetic
energies of projectiles used for nuclear disinte-
grations are measured directly in these units.
Let —10e denote the charge of the electron in
international coulombs, so that —e/q is the
electronic charge in absolute electromagnetic
units, and g the conversion factor of international
into absolute coulombs.? Let furthermore pg be
the conversion factor of international into abso-
lute volts; then the energy in international
electron volts corresponding to one mass unit is

*Mop 1078 10-%?

where F=10e/(Mo/16) is the ‘‘Faraday.” With
Birge's values for the constants, we find

1079- (2.9979640.00004)2- 10%

© (964941)(1.00051 -0.00002)
X (0.99995 +:0.00005)%v,

=931.05+£0.15 MV (4)
where MV denotes million electron volts.? (The
greatest uncertainty arises from the conversion
factor q.)

With this conversion factor, we find that the
binding energy of the Li® nucleus, compared to
the free elementary particles, is

0.03342-931.0=31.11 MV.

To assure the stability of Li%, it must also be
lighter than, e.g., H®4He® or H2+He3, or
generally, lighter than the sum of any two nuclei
which between them contain as many neutrons
and protons as Li®%. We find for the atomic
weights:

8 Cf. Birge, Rev. Mod. Phys. 1, 1 (1929).

? It seems to us that a newly introduced abbreviation
should be as short as possible without giving rise to con-
fusion with other abbreviations. It seems unnecessary to
show explicitly in the abbreviation that electron volts are
meant especially since this follows clearly from the text
in any given case. On the other hand, it has always been
customary to denote volts by a capital V, also mega- (or
million) by a capital M, in contrast to “milli"”- (which is
usually denoted by m).
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He!=4.00336 Het= 3.01699
H? =2.01423 H® = 3.01610
6.01759 6.03309
Li=6.01614 Li¢= 6.01614
bind. en.=0.00145 mass unit 0.01685 m.u.
=135 MV =15.69 MV

Thus we see that the Li® nucleus is very stable
against spontaneous disintegration into a He?
and a H?® nucleus, but much less stable against
disintegration into an a-particle and a deuteron.

It has probably been noted that we have
given the atomic weights of all the particles
concerned rather than the nuclear weights. The
atomic weight of an atom of nuclear charge Z
contains, besides the weight of the nucleus, that
of Z orbital electrons (atomic weight of one
electron 0.000548). In ordinary nuclear reactions,
the nuclear charge must always balance up, so
that the atoms produced in the reaction contain
just as many orbital electrons as the atoms
originally present. Thus no error is introduced
in the energy balance of a nuclear reaction if
atomic masses are used instead of nuclear
masses, since the number of electrons contained
in the atomic masses does not change in the
reaction. The same is true in the stability con-
siderations carried out above. A given nucleus
must always be compared to a number of other
nuclei whose total charge is equal to its own
charge.

Even for the energy evolved in radioactive
B-decay, the use of atomic rather than nuclear
masses is legitimate: If a nucleus of charge Z
transforms into one of charge Z+1 plus a
negative electron, the energy set free is obviously
equall® to the mass of the nucleus Z, minus the
sum of the masses of nucleus Z+4+1 and one
electron. Now the atomic weight of atom Z
contains the weight of Z electrons, while the
weight of atom Z+1 contains the weight of one
more electron; thus the difference of the two
atomic weights is equal to the difference of the
nuclear weights minus the mass of one electron,
which is exactly the energy!® set free in the
B-decay. The mass of the neutrino (cf. §39) has
been assumed to be zero.

Only in the case of positron radioactivity the

10 The factor ¢? is omitted.

difference of the weights of original and final
atom does not give immediately the energy set
free. Let us assume that an atom of nuclear
charge Z and atomic weight Mz emits a positron
and thus transforms into an atom Z—1 with
atomic weight Mz_,. Calling the electron mass
m, the masses of the two nuclei are M z—Zm and
Mz_y—(Z—1)m. The energy set free!® is equal
to the difference of these nuclear masses, minus
the mass of the positron emitted, viz.,

E=(Mz—2Zm)—(Mz1—(Z—1)m)—m

=Mz—Mz~1—2m. (5)

The energy evolved is thus equivalent to the
difference of the atomic weights of the two
atoms, minus fwice the mass of an electron, or
0.00110 mass unit. The factor 2 comes in,
because firstly a positron is created, and secondly
one more electron is contained in the atomic
weight Mz than in Mz_,.

It is sometimes useful to define the mass
defect per elementary particle contained in the
nucleus, the so-called packing fraction

P=A/A=(M—-A)/A. 6)

Fig. 1 gives the packing fraction as a function
of the mass number. The packing fractions of
proton and neutron are +0.00807 and +0.00845,
respectively. The packing fraction then decreases
with increasing mass number, indicating stronger
binding of the nuclear particles. P reaches, by
definition, zero for O'¢; then it becomes negative
and almost constant, equal to —0.001 over a
large region. This indicates that the mass defect
and therefore the binding energy of all the nuclei
from O up to Hg is very nearly proportional to
the number of particles in the nucleus, which is
a very important theorem (cf. §7). The total
binding energy of any given nucleus in this
region is

PI{+P7»
ZAH+(A—Z)A,.—AA%A( —PA)

=0.0094 mass units=834 MV, (7)

where Ap, A,, As are the ‘“mass excesses” of
proton, neutron and atom A, as defined in (6);
Py=Apg, P,=A,and P, are the respective pack-
ing fractions; and it has been taken into account
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that the number of protons in atom 4 is approxi-
mately equal to the number of neutrons, thus:
Z~A—Z=3%A. The value of the binding energy
(7) is small compared to the energy correspond-
ing to the nuclear mass (cf. (4)). Therefrom we
may conclude that the velocities of nuclear
particles are small compared to the velocity of
light, so that nonrelativistic quantum mechanics
can be applied to the motion of neutrons and
protons in the nucleus.

§3. Size (G2)

The radii of nuclei range from about 2 or
3-107® cm for the a-particle, up to about
9:10® cm for the uranium nucleus. It seems
that the volume of a nucleus is approximately
proportional to its mass number, so that the
volume per elementary particle is about the
same in every nucleus. Only the very lightest
nuclei seem to be exceptions from this rule.

The size of nuclei has been determined by the
interaction of nuclei with small nuclear entities,
such as proton, neutron, deuteron, a-particle.
If a nucleus and a positively charged particle
are a considerable distance apart, there is an
electrostatic repulsion between them, calculable
from the well-known Coulomb law. However,
when the two particles get closer together, it is
found that deviations from Coulomb’s law set in,
and finally an attractive force is found to exist
between nucleus and external particle. The
existence of this attractive force can be inferred
from the fact that nuclear particles can become
attached to an existing nucleus, forming a new
stable nucleus. The point where the repulsion
changes into an attraction gives a possible
definition of the nuclear radius. It seems that
the specifically nuclear forces between nucleus
and external particle fall off very rapidly when
the distance between the two becomes larger
than the nuclear radius, or, more exactly, the
sum of the radii of nucleus and particle, so that
the Coulomb law holds if the distance is only
just larger than this sum of the radii. Thus the
boundary of a nucleus is quite well defined;
better, at any rate, than the boundary of an
atom.

The interaction between a neutron and nucleus
is, of course, zero at large distances, the neutron
being not subject to electric forces. In this case,

BETHE AND R. F.
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there is only the “specifically nuclear” interaction
which sets in when the distance of the two
particles becomes of the order of the nuclear
radius or smaller.

The most exact determination of nuclear radii
is afforded by the lifetime of radioactive nuclei,
emitting a-rays (cf. Chapter IX). The informa-
tion about the sizes of light nuclei has been
obtained from the scattering of a-particles and
protons in the nuclear fields and from the
probability of nuclear disintegrations as a func-
tion of the energy of the bombarding particles
(Chapter X). Similar results can be obtained
from the scattering of fast neutrons by nuclei
(Chapter XII).

The size of the nuclei is of the order of magni-
tude which one should expect from the binding
energy of the nuclear particles, assuming that
the nucleus consists of protons and neutrons.
The wave-length of a proton or neutron (mass
M) is

N=2mk/Mv=27h(2MEy;n)7}, (8)
where 2% is Planck’s constant, v the velocity
and Ey;, the kinetic energy of the particle. It
is safe to assume that Ey;, is of the same order
of magnitude as the binding energy e of the
particle which is, according to the end of §2,
equal to about 8% MV for atoms of medium
atomic weight. We obtain therefore®

A=\ 2r=h(2Me)*
=1.04-10-27(2-1.66-10-24.8.5-106-1.59- 10-12)~}
=1.55-10"8 cm.

This is of the same order but somewhat smaller
than nuclear radii. X should, indeed, be somewhat
smaller than the nuclear radius because heavier
nuclei contain many protons and neutrons, most
of which must be in excited quantum states.
Their wave functions must then have several
nodes inside the nucleus. Thus the observed
size of nuclei again lends support to the hy-
pothesis that protons and neutrons are the
elementary particles constituting a nucleus.

If we want to apply the considerations cor-
responding to Eq. (8) to electrons, we have to
use the relativistic relation between wave-length

1 For obtaining estimates of the order of magnitude, X is
a much more suitable quantity than the wave-length X.
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and kinetic energy ; viz.,
)&=h/p=}’w[(2mc2+Ekin)Ek;n]'* (9)

(m=electron mass, p=momentum). The radius
of middle-sized nuclei, viz., 5-10~3, is certainly
larger than X according to the foregoing. There-
fore, if we put x=5-10"1, we certainly obtain
too small a value for Eyi,. We find then

Eyin>2mhc/X=1.05-10"2%7.3.101°/5.10~18
=6.3-10"% erg=40 MV.

.

This value is much larger than nuclear binding
energies, and the actual value of Ey;, should be
even bigger. This does not seem plausible and is
thus a strong point against the assumption of
the existence of electrons in the nucleus. A more
rigorous disproof of this assumption will be
given in §38.

§4. Statistics (E1)

Any kind of particles in nature obeys either
the Fermi-Dirac or the Bose-Einstein statistics.
In the first case, the Pauli principle holds for the
particular sort of particles under consideration,
i.e., there can never be two particles of this kind
in the same quantum state. Notable examples
are electrons (positive and negative), protons,
and, as we shall see, neutrons and neutrinos
(839). It seems, in fact, to turn out that every
“elementary’’ particle obeys Fermi statistics.

Particles obeying Bose statistics are allowed
to be in the same quantum state; indeed, they
have even what may be called a preference for
being in the same state. Photons are the most
well-known example ; deuterons, a-particles and
a great many other nuclei also belong to this
category.

The most rigorous and most fruitful definition
of the statistics is based upon properties of the
wave function of a system of particles of a given
kind. Let us suppose we have # identical particles
1, 2, --+, 4, ++-n; then the wave function
describing their motion will be a certain function
Y(xy+ - - x; - x,) depending on the coordinates'?
of the particles. If the coordinates of two
particles are interchanged, e.g., the coordinate x;
of particle j inserted in place of x; and x; in

2x; is meant to symbolize all three coordinates of the
particle 7, and, if the particles have spin, also the spin
coordinate.

place of x;, another function of the coordinates
is obtained. This new function is (a) identical
with the original function, if the particles obey
Bose statistics, (b) identical except for a change
of sign, if the particles obey Fermi statistics.
Functions of kind (a) are called symmetrical in
the particles, such of kind (b) antisymmetrical.
In formulae, we have

R T A
=4yY(xye x50 0 -x50 0+ x,) (Bose statistics),
O R R
= —y(xy:+ +x; - xj - - %) (Fermi statistics).

(10)

The experimental determination of the sta-
tistics of nuclei is based on alternating intensities
in rotational band spectra, most conveniently of
diatomic molecules. The theory of this determi-
nation will be described in §47. It has been
found that the proton obeys Fermi statistics,
the deuteron, the a-particle, the nuclei of N%,
08, etc., Bose statistics, the Li’ nucleus again
Fermi statistics. From the observations the
general rule can be inferred that all nucler with
even atomic weight follow Bose statistics, those of
odd atomic weight Fermi statistics. This is in
accord with the assumption that all nuclei are
composed of protons and neutrons, and that the
neutron has Fermi statistics.

To prove this statement, we have to show that
a system composed of elementary particles each
obeying Fermi statistics, obeys Bose or Fermi
statistics according to whether the number of
elementary particles in the system is even or odd.
We consider two systems (nuclei), « and B, each
containing m elementary particles of one sort
(protons) and % particles of another sort (neu-
trons). We assume that the first m protons and
the first # neutrons constitute the nucleus «
which is situated near the point 7,, the second
set of m protons and » neutrons are bound up
in the second nucleus 8 near 7z This state of
affairs will be described by a certain wave
function depending on the coordinates of all
particles. We now exchange one proton of
nucleus o and one of nucleus 8; when doing
this, the wave function of the whole system is
multiplied by —1 because the protons obey
Fermi statistics. We then exchange another pair
of particles and continue this process until all
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the m protons and 7 neutrons originally con-
stituting nucleus o have been brought to the
point 7 and vice versa. Every exchange multiplies
the wave function by — 1, thus after the exchange
of all m+n particles of nucleus o against the
m—n particles constituting 8 the wave function
has been multiplied by (—1)*". On the other
hand, our process corresponds to an exchange of
the entire nuclei @ and 8. Thus the wave function
is multiplied by (—1)"*" when the coordinates
of our two nuclei are interchanged, which means
that the wave function is symmetrical (anti-
symmetrical) in the coordinates of the two nuclei
if the total number of particles m+» in each
nucleus is even (odd). This is the theorem which
we wanted to prove.

The proof given above is howeyer not quite
rigorous, because it is not possible to construct a
wave function which is antisymmetrical in all
protons and neutrons and which at the same
time assigns definite particles to a definite
nucleus. A rigorous proof has been given by
Ehrenfest and Oppenheimer (E1). It should be
noted that at the time when Ehrenfest and
Oppenheimer’s paper was written, the neutron
had not yet been discovered and it was therefore
believed that nuclei consist of protons and
electrons. Thus the word ‘‘electrons’ in their
paper should be replaced by ‘“neutrons’” through-
out. (If this is done, the contradiction between
theoretical and experimental results concerning
the statistics of N disappears.)

The first use we make of our theorem is to
deduce the statistics of neutrons from the
experimental fact that the proton obeys Fermi
and the deuteron Bose statistics. Assuming the
deuteron to consist of one neutron and one
proton, we must conclude from our theorem
that the neutron follows the Fermi statistics.
Knowing now the statistics of the neutron, we
can predict that any nucleus of even atomic
weight will obey Bose statistics because the total
number of particles, protons and neutrons to-
gether, is equal to the atomic weight, and it is
this total number which determines the sta-
tistics. Similarly, all nuclei with odd atomic
weight must obey Fermi statistics. No exception
has been found to this rule. The nuclei investi-
gated for statistics are H?, H2, Het, Li?, N1, O6,
Na?, P31, S32, CI*¥ and K39,
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The old nuclear theory assumed the nuclei to
consist of protons and electrons. The number of
protons then had to be assumed equal to the
atomic weight A, because only the protons
contributed to the weight, while 4 —Z electrons
had to be assumed in order to neutralize the
charges of 4 —Z protons and leave a resultant
charge of only Z. The total number of particles
was thus 24 —Z and was thus even or odd
according to whether the nuclear charge was
even or odd. Accordingly, all elements with odd
Z, e.g., H and N, should have obeyed Fermi
statistics, irrespective of their atomic weight.
This was in direct contradiction to the experi-
mental result for H2® and N¥ (R7) which
contradiction constituted another strong argu-
ment against the “electron theory” of nuclear
constitution.

§5. SPIN AND MAGNETIC MOMENT
(cf. chapter VIII)

The intrinsic angular momentum (spin) of
nuclei can be determined from hyperfine struc-
ture, molecular ray analysis, depolarization of
resonance radiation, and alternating intensities
in rotational band spectra of molecules. These
methods except for the last also determine the
magnetic moment associated with the spin. A
detailed description of methods and results will
be given in chapter VIII.

The most important result for a general
theory of the nuclei is that the spins of all
nuclei of odd atomic weight seem to be half-
integer multiples of %, while all nuclei of even
atomic weight have integer spin, most of them
probably having spin zero. The total spin of a
nucleus is the resultant of all the angular
momenta of the orbital motions of all particles
inside the nucleus, and of all the spins of the
nuclear particles. The resultant has to be taken
according to the rules of the vector model of
quantum theory. Now the orbital angular mo-
menta are always integers (in units %). Thus the
appearance of half-integer values for the total
spin of some nuclei, must be attributed to half-
integer values for the spins of the individual

nuclear particles.

13 Actually the statistics of deuterons were only deter-
mined after the discovery of the neutron.
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The empirical rule connecting atomic weight
and nuclear spin must thus be interpreted as
showing that both the proton and the neutron
have half-integer spins. In the case of the
protons it can be shown experimentally that the
spin is exactly 3. The neutron spin might, from
experimental evidence, be just as well § as 3.
However, simplicity is a strong argument in
favor of the value 3 which we shall, therefore,
assume throughout this article. It seems to be a
general rule that this value of the spin is true
for all elementary particles known, viz., proton,
neutron, electron (positive and negative) and
neutrino (§39).

If both proton and neutron have spin 3, then
the resultant of the spins of A elementary
particles, neutrons and protons, will be integer
or half-integer according to whether the atomic
weight 4 is even or odd. This conclusion from
the vector model of quantum theory is in accord
with all existing observations. It is analogous
to the statement about the statistics of nuclei in
the preceding paragraph, such that nuclei obey-
ing Bose statistics have integer spins and such
obeying Fermi statistics have half-integer spins.
The two statements are, however, independent
of each other—at least as long as we do not
understand the connection between statistics and
spin of a particle which seems to exist but has
thus far not been explained.

It need hardly be pointed out that the old
nuclear theory which assumed the nuclei to
consist of protons and electrons, faced with
respect to spin a difficulty analogous to that
regarding the statistics. The experimental situa-
tion was even worse in the case of the nuclear
spin, because a great number of spins of nuclei
with even nuclear charge and odd atomic weight
had been measured and were found to be half-
integer in contradiction to the “‘electron theory”
and conforming to the ‘‘neutron theory” of
nuclei, whereas the statistics had actually been
determined for only one nucleus with even 4
and odd Z.

The magnetic moment of the proton has been
determined by Stern and Estermann (E4) and
by Rabi, Kellogg, and Zacharias (R2). It does
not have the value of one nuclear ‘“‘magneton,”

wo=rhe/2Mc=5.02-102 gauss cm® (11)

(M =mass of the proton). my would be the
magnetic moment which would be expected if
Dirac’s theory would hold for protons. The
value actually observed is about 2.9u i.e.,
much greater than the ‘‘theoretical” value u.!%
Attempts to explain this discrepancy will be
explained in §45. It has been proved recently
by Kellogg, Rabi and Zacharias (K3) that the
magnetic moment points in the same direction
as the angular momentum of the proton spin, as
would be expected for a positive charge (for
electrons, the directions of magnetic moment and
spin are opposite).

The magnetic moment of the neutron is
hardly accessible to a direct measurement. It
has to be inferred from the moments of other,
more complex, nuclei. The simplest of these is
the deuteron which consists of one proton and
one neutron. Its spin has been measured and
turns out to be unity. It can safely be assumed
that the deuteron has no orbital angular mo-
mentum in its ground state (§12); thus its
observed angular momentum 1 must be at-
tributed to the spins of the proton and the
neutron in the deuteron. This means that the
spins of proton and neutron are parallel in the
deuteron. Thus the magnetic moment of the
deuteron is the sum of the magnetic moments
of proton and neutron.

The most exact experimental determination of
the magnetic moment of the deuteron is that of
Kalckar and Teller (theory of the method, K1)
and of Farkas, Farkas and Harteck (experiment,
F1). Its basis is the measurement of the velocity
of the conversion of orthohydrogen into para-
hydrogen by the action of paramagnetic gases.
This velocity is, among other things, proportional
to the square of the magnetic moment of the
hydrogen nuclei. By measuring the velocity of
conversion for light hydrogen (H.) and heavy
hydrogen (D:), the ratio of the magnetic mo-
ments of H and D can be determined. The result
is

#D:Mil:l 14 (12)

14 New measurements of Rabi, Kellogg and Zacharias
(private communication).

5 In spite of this fact, the magnetic moment of the pro-
ton is, of course, much smaller than the Bohr magneton
of an electron, pu, =he/2mc=1838u, (m =electron mass).
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with an accuracy of about 5 percent.* The
magnetic moment of the deuteron is also directed
in the same direction as the spin (R4), therefore,
we find

(13)

Mneutron =MD — MH = _%,UH= —2.2}lo.
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Thus the magnetic moment of the neutron has
the direction which would be expected if the
neutron had a negative charge. Its magnitude
is of the same order as the magnetic moment of
the proton.

II. Qualitative Arguments about Nuclear Forces

In the theory of atomic structure, we deal with
electric particles, viz., nucleus and electrons, and
we therefore know the forces acting between
them. The problem of atomic physics has there-
fore not been to determine the forces between
atomic particles but to find out how electrons
move if subjected to a known force. This problem
has been solved by quantum theory.

In nuclear theory we can have confidence that
the quantum theory holds for the motion of the
neutrons and protons in the nucleus. This
assumption is strongly supported by the relation
between size and binding energy of nuclei (cf. §3),
which is just what should be expected from
quantum theory, and also by the success of
actual calculations (chapters III, IV, etc.).
Furthermore, we can safely assume that rela-
tivity corrections are small because the binding
energies are small compared to the energy
corresponding to the rest mass of proton and
neutron (end of §2).

On the other hand, we do not know the forces
between the nuclear particles, with the exception
of the Coulomb repulsion between the protons
in the nucleus, which, however, plays only the
role of a correction (§8). The principal attractive
forces are certainly not electric in nature because
they act upon neutrons which bear no charge.
What the nature of these forces is, how they
depend on the distance of nuclear particles, on
their spin and possibly other quantities, has to
be inferred from experimental data. We shall do
that in this chapter in a qualitative way, and in
later chapters apply the knowledge thus obtained
to special problems which will furnish more
quantitative data on the nuclear forces.

* Note added in proof: Recent experiments of Rabi,
Kellogg and Zacharias seem to show that the ratio of the
moments is smaller, about 1 : 3.5. This corresponds to a
de;tgron moment of 0.85u¢and a neutron moment of about
—2.0u0.

§6. THE RATIO OF ATOoMIC WEIGHT TO
NucLeEArR CHARGE (H7)

When the periodic system was first discovered,
nothing was known about nuclear charge. The
atoms were ordered according to their atomic
weight and this led to the discovery of the
periodic system. This fact alone shows that the
atomic weight is closely connected with the
nuclear charge. Indeed, the known stable isotopes
of any given element do not vary greatly in
atomic weight, the variation being only 10
percent even for an element with so many
isotopes as tin. Thus, to a first approximation,
we may speak of a definite relation between
atomic weight and nuclear charge.

For the light elements, up to about argon,
this relation is very simple indeed. The atomic
weights are very nearly twice as large as the
nuclear charge, e.g., C2, N*, O, etc. Therefore
the number of neutrons N=4—Z in any of
these light nuclei is approximately equal to the
number of protons Z.

This experimental rule must be interpreted as
showing that the largest attractive forces in the
nucleus are forces between neutrons and protons.
If this were not the case, e.g., if two neutrons
would attract each other more strongly than a
neutron and a proton, the most stable nuclei -
would obviously be composed exclusively of
neutrons. We can, of course, not deduce from
our empirical rule that there are no forces
between a pair of neutrons or a pair of protons!®
at all, but if there are such forces, they must be
smaller than the force between a proton and a
neutron.

Our rule N=Z tells us even more about the
forces between like particles (two protons, or

two neutrons). Provided such forces exist at all,

16 We refer here to forces between two protons beside the
Coulomb repulsion.
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they must be very nearly equal, i.e., the force
between two neutrons must be nearly equal to that
between two protons, leaving out the electro-
static repulsion between the latter. For instance,
if the attraction between two protons were
larger than that between two neutrons, the
maximum of stability would not occur for equal
numbers of neutrons and protons but would be
shifted towards a relatively larger number of
protons in the nucleus. Explicitly, if (nn), (pp),
(np) denote the binding energies between two
neutrons, two protons, and one neutron and
one proton, respectively, the energy of a nucleus
containing N neutrons and Z protons would be,
neglecting 1 compared to N and Z:

$N*(nn) +32%(pp) + NZ(pp),

which reaches its maximum, for a given atomic
weight A = N+Z, when

(14a)

(nn) — (bp)
(np) —}(nm) — 3 (pp)

Experimentally, the difference N—Z does, for
the most stable light nuclei, certainly not exceed
10 percent of the nuclear charge Z~%4. Ac-
cording to (14), the difference (nn)— (pp) must
then certainly be smaller than one-tenth of
(np) —%(nn) —3(pp). The most satisfactory as-
sumption from the standpoint of symmetry as
well as from the experimental evidence, is that
the force between two neutrons and that between
two protons are exactly equal—disregarding, of
course, the Coulomb energy between the protons,
and provided there are any forces between like
particles at all.

N—-Z(=A—-22)=34

(14)

§7. SATURATION oF NUCLEAR Forces (H7, M6)

If every particle in the nucleus is supposed to
interact with every other particle, the interaction
energy, and therefore the binding energy holding
the nucleus together, would be roughly pro-
portional to the number of interacting pairs,
i.e., to the square of the number of particles in
the nucleus. If any deviation could be expected
from this law, it would be in the direction of a
more rapid increase of the binding energy with
the number of particles, because with increasing
interaction between them, the particles will draw
closer together, and this will lead to an increase

of the interaction even between a single pair of
particles, making the total binding energy in-
crease faster than 4217

Actually, it is found experimentally that the
mass defects of nuclei, and therefore the binding
energies, increase only linearly with increasing
number of particles (§2). This fact may be
compared to the behavior of a liquid or solid
containing many atoms where the total chemical
binding energy is sensibly proportional to the
number of atoms present.

We therefore try to be guided by the chemical
analogy. How does the proportionality of the
chemical binding energy to the number of atoms
arise? There are essentially three possible reasons
for this, corresponding to the three possible
types of chemical binding : polar binding, homo-
polar binding and van der Waals (polarization)
binding.

The van der Waals type is most clearly realized in the
case of rare gases in the liquid or solid state. Between
any two rare gas atoms, we have an attractive force (van
der Waals force) when the atoms are more than a certain
distance 7o apart. The attractive force falls rapidly, ap-
proximately as =7, when the distance 7 between the atoms
increases. For distances smaller than 7, a strong repulsive
force begins to act which prevents any appreciable inter-
penetration of the two atoms. In the liquid, only near
neighbors have any appreciable interaction, because of
the rapid decrease of the attractive force with increasing
atomic distance. Any given atom thus interacts only with
a small number of neighbors, however large the total
number of atoms may be. On the other hand, the repulsive
forces prevent any increase in density which would allow
more atoms to interact with any given atom. Thus, the
repulsive forces which prevent the interpenetration of
atoms are, in this case, primarily responsible for the
binding energy being proportional to the number of atoms.
However,-it would seem very unsatisfactory to transfer
such a mechanism to nuclei: it would involve the assump-
tion of a force between elementary particles, viz., protons
and neutrons, which would be attractive at large distances
and repulsive at small distances, an assumption which
one would make only very reluctantly. (For particles with
internal structure, such as atoms or the a-particle, the
assumption of such a force is, of course, not objectionable
but results directly from simple assumptions about the
forces between elementary particles.)

The polar binding is realized in salts, e.g., NaCl. Two
unlike atoms (Na and Cl) attract each other with a force

17 The conditions outlined in this paragraph are actually
found for the electrons in atoms. The total binding energy
of all electrons in an atom increases roughly as the 7/3
power of the number of electrons, i.e., faster than Z2 (cf.
e.g., reference S23).
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which decreases very slowly with increasing distance, two
like particles repel each other with a similar force. The
counteraction of these two forces keeps the binding energy
from increasing quadratically with the number of particles,
in spite of the fact that there is appreciable interaction
between far distant ions. The assumption of repulsive
forces between like particles in the nucleus is, however,
impossible for other reasons (§10); this is a fortiori true
for the assumption that these repulsive forces are equal
in magnitude to the attractive forces between neutron and
proton. Thus the analogy to the polar binding must also
be rejected.

The homopolar binding is most clearly repre-
sented by elements like hydrogen. There is
strong binding between two hydrogen atoms.
A third atom, however, would not be strongly
attached to the H; molecule. We say, the H,
molecule is saturated. An assembly of many
hydrogen atoms, e.g., in a drop of liquid hydro-
gen, therefore has an energy approximately equal
to that of the corresponding number of hydrogen
molecules, and therefore proportional to the
number of atoms present. It is true that the
binding energy of a hydrogen droplet will be
slightly greater than that of separated molecules
because of van der Waals forces between the H,
molecules, but they again give an energy pro-
portional to the first power of the number of
atoms.

We thus see that we shall obtain the correct
dependence of nuclear binding energies on the
number of particles in the nucleus, if we assume
forces between the nuclear particles which show
saturation, in much the same way as the forces
of homopolar chemical binding. It is at once
clear that the association of nuclear particles
which will correspond most nearly to a saturated
molecule, is the a-particle. In fact, the binding
energy of the a-particle, as deduced from its
mass defect, is 28 MV, or 7 MV per elementary
particle. The binding energy of the nuclei which
have the highest packing fractions, viz., those
with Z round 30, is 84 MV per elementary
particle. In our analogy, this means that 7 MV
of these 8% are due to the chemical ‘‘binding
energy of the molecule” He?, while the remaining
11 MV are to be attributed to ‘“‘van der Waals”
forces between the a-particles.

The “van der Waals" forces between the
a-particles can, without difficulty, be assumed
analogous to those between rare gas atoms or He
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molecules; i.e., an attraction at larger distances,
falling off very rapidly with increasing distance,
and a repulsion at small distances, giving some-
thing like mutual impenetrability of two a-
particles. A force of this type has actually been
deduced by Heisenberg (§31). The assumptions
will, of course, lead to a binding energy between
a-particles which is approximately proportional
to the number of such particles.

The a-particle contains 2 neutrons and 2
protons. The forces between neutrons and pro-
tons must thus be such that they are saturated
when 2 neutrons and 2 protons are brought
together and are practically nil when a third
proton or neutron is brought into the neighbor-
hood of the first 4 particles. Now 2 neutrons and
2 protons can, on account of Pauli’s principle,
just be placed into the same quantum state as
regards their motion in space, due to the possi-
bility of two different states of spin. We shall
therefore assume that protons and neutrons exert
strong forces upon each other only if they are in
the same, or approximately the same, quantum
state with regard to their motion in space, i.e., if
their wave functions depend in approximately
the same way on the spacial coordinates.

However, we must not assume that the forces
depend critically upon the relative spin of the
two particles. If we did so, e.g., if we would
assume that a proton and a neutron would only
interact strongly when their spins are parallel,
then the nuclear forces would already be satu-
rated in the deuteron (proton plus neutron with
parallel spins). In reality, the binding energy of
the deuteron is only slightly over 2 MV, com-
pared to 28 MV for the a-particle. This shows
that the deuteron can certainly not be regarded
as saturated. The forces between proton and
neutron can therefore depend only shightly, if at
all, upon the relative spin directions of the two
particles.'®

Turning to the mathematical representation
of the interaction, we may again be guided by
the chemical analogy. The forces of homopolar

18 Heisenberg (H7) had originally assumed an inter-
action which was attractive for particles with parallel
spins, repulsive for opposite spins. According to the fore-
going consideration, such an interaction would make the
deuteron a saturated structure. This was pointed out by
Majorana (M6) and the assumed interaction changed
accordingly.
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binding are “exchange’” forces, connected with
the changing places of the electrons from one
atom in the molecules to the other. We know
from the chemical analogy that such exchange
forces show saturation. We therefore assume that
the nuclear forces also have the character of exchange
forces between neutron and proton. Just as in the
case of molecules, but of course not due to the
same mechanism, an electron!® passes from
neutron to proton so that the former neutron is
transformed into a proton and the former proton
into a neutron. This can be considered as an
exchange of the coordinates of neutron and
proton: Thus our “exchange forces’” mean that
neutron and proton interchange their positions
whenever they interact. The mathematical for-
mulation of these ideas will be deferred to §11.

Since this paragraph contains the clue to all
nuclear theory, we want to sum up. The pro-
portionality of nuclear binding energy and num-
ber of particles in the nucleus requires the
assumption of exchange forces between the
nuclear particles which show saturation. The
high binding energy of the a-particle, compared
to the deuteron, requires these forces zof to
show saturation for the deuteron, and therefore
not to depend to any considerable extent upon
the relative spin directions of the interacting
particles.

From our analogy between nuclear and
chemical forces, we can draw a conclusion about
the size of nuclei, as a function of the number of
particles contained in them. We know that the
volume of a droplet of a liquid, or of a solid, is
proportional to the number of atoms contained
in it, each atom occupying about the same
volume. Since the nuclei are held together by
forces similar to chemical forces, we may expect
them also to have a volume proportional to the
number of particles in the nucleus. This is in
agreement with the experimental evidence re-
ferred to in §3.

19 Together with electron, a neutrino must pass over.
The ‘“passage’ is, of course, not meant literally in the
sense that the electron and neutrino are bound in the
neutron and then pass bodily to the proton. We might
assume that electron and neutrino are just ‘“‘created” for
a very short time, of the order e?/mc3=10"2 sec., and are
then reabsorbed. For details see §44.

It remains to be said that no exact propor-
tionality between binding energy and number of
particles is to be expected. Not only will there
be irregular variations depending on the special
structure of any particular nucleus, but also a
regular trend towards slightly increasing binding
energy per particle, with increasing size of the
nucleus. This effect is analogous to the surface
tension of a droplet of a liquid. The atoms on
the surface of the droplet do not receive the full
attraction which atoms in the interior would
receive, and do therefore not contribute their
full share to the binding energy. The same is
true for the particles at the surface of a nucleus.
Since the number of the surface particles, as a
fraction of the total number of particles, de-
creases when the total number increases, we
expect a slight increase of the binding energy
per particle with increasing atomic weight. This

.is actually shown by Fig. 1 which represents the

packing fractions as function of 4.
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Fi1G. 1. Packing fraction as a function of atomic weight.
In order to represent light and heavy atoms in the same
diagram, a logarithmic scale has been chosen for the
absicissa. It is seen that among the light nuclei the a-par-
ticle and its multiples (C!2, 0%) have much smaller pacgiang
fractions than all the other nuclei. (The packing fractions
are expressed in ten-thousandths of a mass unit.)



96 H. A. BETHE AND R. F.

§8. THE ELECTROSTATIC REPULSION OF THE
PROTONS. STABILITY AGAINST a-DECAY
(H7, W2) :

The preceding two paragraphs have led us to
assume (1) that the binding energy of nuclei is
approximately proportional to the number 4 of
the particles in the nucleus and (2) that the
binding energy, for given total number of
particles, is a maximum when neutrons and
protons are present in equal numbers. This can
be expressed by the rough formula

Ey=(Z+N)1—a((N-2)/(N+2))],

where ¢ is the binding energy per particle for a
nucleus containing equally many protons and
neutrons, and a a constant which measures the
dependence of the binding energy on the ‘‘iso-
topic number” I=N—-Z.

a might, in principle, still depend on the total
number of particles, 4. It would not do so,
however, if we assume the binding energy to be
proportional to (14a) for a given value of A.
It is true that (14a) has been derived by as-
suming every particle in the nucleus to interact
with every other particle which is not possible
when the forces show saturation. On the other
hand, the saturation will affect primarily the
dependence of the binding energy on the total
number of particles, rather than that on the
ratio of the numbers of neutrons and protons.
We therefore accept (15) as a preliminary
expression, deferring a more accurate treatment
to chapter V.

In our discussion thus far, we have neglected
the electrostatic forces between the protons.
Taking for the mutual distance of two protons 7
approximately the nuclear radius (cf. §3), i.e.,
about 5-107 cm=2e?/mc? (m=electron mass),
we find for their electrostatic potential energy
e2/r=~imc?*=% MV. This is indeed negligible
compared to the average binding energy per
particle, viz., 82 MV (cf. §2).

However, because of the saturation character
of the specifically nuclear forces the Coulomb
repulsion between the protons becomes impor-
tant for heavy nuclei in spite of its smallness for
a single pair of protons. For the Coulomb force
shows, of course, no saturation. Therefore the
total energy of the Coulomb interaction is
actually equal to the number of pairs of protons

(15)
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in the nucleus, i.e., $Z(Z—1), times the potential
energy of a single proton pair. The latter is in
the average (6/5)¢?/R with R the radius of the
nucleus, if the protons are considered as dis-
tributed uniformly over the nucleus.?* Thus the
total electrostatic energy of the protons is

E,=3$Z%/R (16)

if 1 is neglected in comparison to Z. Since R is
proportional to the cube root of the atomic
weight (cf. §3, and end of §7), and Z proportional
to the atomic weight itself, the electrostatic
energy is proportional to A% On the other
hand, the binding energy E. due to the specifi-
cally nuclear forces is only proportional to the
first power of the atomic weight 4. Thus the
relative importance of the electrostatic forces
increases with increasing atomic weight, roughly
as 423,

The consequences of this are twofold : Firstly,
we shall obtain for heavier nuclei a deviation
from the rule N=Z, in the sense that stable
nuclei contain fewer protons than neutrons,
because the replacement of a proton by a neutron
decreases the electrostatic repulsion and thus
the total energy of the nucleus. This effect is
well-known experimentally : The ratio N/Z, i.e.,
number of neutrons to number of protons,
increases from 1 for light nuclei gradually to
1.6 for uranium.

Secondly, the binding energy per particle will
decrease, on account of the electrostatic forces,
with increasing atomic weight. This effect works
in the opposite direction from the ‘‘surface
tension” discussed at the end of §7. The surface
tension will be more important as long as the
nucleus is still small, therefore we get a decrease
of the packing fraction with increasing atomic

20 [f y=47R3/3 is the volume of the nucleus, 1/v will be
the charge density due to one proton distributed uni-
formly. The electrostatic potential due to this charge den-
sity, at a distance r from the center of the nucleus, is
according to ordinary electrostatics,

Sn( [ [0 Sre(lpe_L)
V(r)—eT( 0—,——+J: T)— > 2R &)

The energy of a second proton, uniformly distributed, in
this potential is

I _(4me\ (1plp, 11 5)
w=tf 4wr’drV(r)-(T) (QR T =65R)
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weight in that region. On the other hand, for
heavy nuclei the electrostatic repulsion between
the protons will be more important so that the
packing fraction rises again towards the end of
the periodic table. This has actually been ob-
served (cf. Fig. 1). For very heavy nuclei, this
rise becomes so pronounced that the nuclei
become unstable against a-disintegration.

The total binding energy of a nucleus is the
difference of the binding energy given in (15)
and the Coulomb repulsion (16). To write the
latter in a suitable form, we put

R=rd}, an

where 7, can be determined from the known radii
of radioactive nuclei: The average of these radii
as determined from the lifetimes of a-decaying
nuclei, is 9:-10~® cm. The average atomic
weight of the nuclei concerned is 222, therefore

70=9-10-15.222-1=1.48-10"% cm  (17a)
and
3 e e2/mc?
— —=0.60mc*
5 7o [
2.80-10-13
=0.307- —MV=0.58 MV. (17b)
1.48-10-13

We shall abbreviate this expression by the letter
7.
Inserting (17), (17b) into (15) and (16), we
obtain for the binding energy
E=Ae¢—ae(Ad—22Z)2 /A —~A—3Z2  (18)

The maximum of this expression for given 4 is
obtained when

206(A —2Z)/A—~A"Z=0

I N—-Z A-2Z «

or —=—=———=-—A41  (18a)
VA VA VA 2ae

I/A=~A%Y (daet+yAY). (18b)

The ratio of the isotopic number I=N—Z to
the nuclear charge Z, is thus proportional to the
two-third power of the atomic weight. This
relation is illustrated by Fig. 2, in which (4 —22)
is plotted against 4, for known stable nuclei.
It can be seen that the observed points fall
near, and on both sides of the solid line.2! That
line represents the relation (18b), with

v/20e=0.0146. (18¢)

This value is so chosen that the line passes

21 For deviations from that line (periodicities) cf. §34.

1 1 L 1
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Fi1G. 2. Existin% isotopes (isobars omitted). Abscissa mass number, ordinate isotopic number. Each dot represents
C

a known isotope

f. Table I). The line gives the empirical relation (18b) between average isotopic number and atomic

weight. Fluctuations of the isotopic number of the existing isotopes around the solid line are clearly shown (cf. §34).
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through Hg?®, for which 4 =200, Z=280, there-
fore (4 —22)/Z=0.50 and

v/206=0.50/(200)¥=0.0146.  (18d)

We may now calculate the total binding energy
of a nucleus whose charge has the “‘most favor-
able” value for the given mass of nucleus. To
do this, we insert the value (18b) for (4 —22)/A4
into (18) and find

Enux(A)=Ae—Aae[vAY/ (daet+vAH)T?
—y AP 2ae/(daet+vAY) T,

Enax(A)=Ae1—ayAl/(4aet+vA4Y)],

(19)

or, denoting by Z4 the “‘most favorable charge”
for the atomic weight 4, we get from (18b)

Emux(d)=Ae—(A—2Z)ac.  (192)

Now the value of ae can be deduced from (17b)
and (18c):

@e=0.58/2-0.0146=20 MV.  (19b)

Inserting this and the observed value of the
binding energy for Hg?® into (19) we can deduce
e. The binding energy can be calculated from
the atomic weight of Hg?%, 200.016, and the
combined weight of 80 protons and 200—80=120
neutrons, which gives (cf. 75a)

E(Hg?°) =120-1.008464-80-1.00807

—200.016=1.645 mass units (19c)
=931-1.645 MV=1530 MV.
Therefore, from (19a) and (19b)
e=(1530+40-20)/200=11.6; MV.  (19d)

This is rather higher than the binding energy
per particle for medium sized nuclei (8.5 MV).
The reason is that the actual binding energy is
reduced due to surface tension as well as due to
the electrostatic repulsion of the protons, and
even for medium sized nuclei both these effects
are quite appreciable and reduce the ‘naive”
binding energy, which would be 11.64, by over
25 percent. For mercury, the observed binding
energy per particle is only 1530/200="7.6; MV,
which is 35 percent less than the binding energy
would be if there were no electrostatic forces.
Thus the electrostatic forces amount to 35 percent of
the ‘‘specifically nuclear’ forces for mercury.
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From (19b) and (19c) we find furthermore
a=20/11.6;,=1.72,

which is quite reasonable (cf. §30, Eq. (185)).

The most interesting question to be answered
approximately by our rough formulae is the
probable energy of a-particles which might be
emitted by radioactive atoms. Of course, we can
only give an ‘‘average” value for this energy
which depends smoothly on the atomic weight
while the actual a-energies vary irregularly from
one radioactive atom to the other, which varia-
tion could only be deduced from a more refined
theory. Let us suppose the a-emitter has a
nuclear charge ‘“‘most favorable” for its atomic
weight; its energy is thus given by (19a). The
nucleus produced in the a-disintegration will
have a charge slightly different (too small) from
the most favorable charge for its weight. But
since the binding energy has, for given 4, a
maximum at Z=2Z,, it varies only quadratically
with the difference Z—Z,. Thus we may assume
that (19a) is very nearly true even for the
product nucleus. Therefore we have:

(1) binding energy of the a-emitter (atomic
weight A, nuclear charge Z4)

E1=A€—'(A ——-ZZA)ae;

(2) binding energy of the product nucleus
(atomic weight 4 —4, nuclear charge ap-
proximately Z4_4)

Ey=(A—4)e—(A—4—2Z4_4)ce
=E,—4et+4aed(4—22Z4)/dA
(20/3)ae+vA?

=E,—4et+4aeyAt——-——;

(4aet+vA1)? (20a)

(3) binding energy of the a-particle

E3z=4¢, where €¢=69 MV;

therefore energy of a would-be-emitted a-
particle

E,=FE;+E;—E1= —4(e—¢)
(20/3)ae+vAtl

+4aeyd i —— .
(daet+vAY?

(20
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For 4 =222 (radon; this atomic weight corre-
sponds approximately to the average for all
radioactive elements) we find, with the values
(17b), (19b), (19d), (20a) for v, a, ¢, €':

E,=—4-4.7;+80-0.58-222%
133+4-0.58-222%

T 6.6 MV.
(80+0.58-2221)2

(20b)

This is indeed fairly close to, but slightly larger
than, the average kinetic energy of the a-
particles emitted by radioactive substances. The
surface effect, which will be discussed in §29, 30,
will decrease the theoretical value (20b) to
3.8 MV.

From (20) it is obvious that a-radioactivity
will, in general, only be possible if the atomic
weight exceeds a certain critical value 4o, which
is determined by E.(4,) =0, or

e—¢

x(5/3+x)
—_—=——-=—=0.275
(14x)? ae 20

with x=+A4.}/4ae. The solution is x=0.176, or
Ay=119. (20c)

Thus nuclei of higher atomic weight than 120
should, in the average, be unstable against
a-decay. ‘‘In the average’” means that the bind-
ing energy of o-particles in nuclei of atomic
weight around 120 should be positive in about
as many causes as it is negative. The stability
limit will be shifted to slightly higher atomic
weights if the “‘surface tension” is taken into ac-
count (§30), but only to 14.7 Why, then, has
actual a-radioactivity only been found for much
highér atomic weights (lowest observed: polo-
nium, 4 =210)? The answer is that the lifetime
of an a-radioactive nucleus becomes extremely
long when the kinetic energy of the a-particle
when emitted is small (chapter IX). Thus a
nucleus is practically stable against a-decay, al-
though not perfectly stable, if the decay energy
is not very large. Indeed, no a-particles of kinetic
energies less than 2 MV have actually been
observed.

This explains why actually only the nuclei
heavier than about 200 have an observable
a-radioactivity. A notable exception is one
samarium isotope, of atomic weight near 140:

In this case, we obviously have a fairly large
deviation of an individual binding energy from
the ‘“‘average’ binding energy prevailing in that
region of atomic weights.

§9. DEUTERON AND a-PARTICLE: THE FORM OF
THE PoOTENTIAL FuNcTiON (W12)

It is known experimentally that the mass
defect of the a-particle is about 13 times as large
as that of the deuteron, viz., 27.7 MV compared
to 2.14 MV. On the other hand, we have proved
in §6 that forces between like particles, if they
exist at all, must be smaller than the forces
between proton and neutron. (In §21 we shall
show that the ratio of these two kinds of forces
is about 2 :3.) Thus we would, from a naive
consideration, expect that the a-particle has only
slightly more than 4 times, and certainly less
than 6 times, the binding energy of the deuteron:
For we have in the deuteron one pair of inter-
acting particles, in the a-particle each of the
two neutrons interacts with each of the two
protons, which gives 4 times the deuteron
interaction.

The solution of this problem has been given
by Wigner (W12). We have to assume that the
forces between neutron and proton are very
strong when the two particles are close together,
but fall off very rapidly when the distance
between them becomes larger than a certain,
small distance a. We thus assume a strong,
short-range force between the two particles.

To make a complete use of such a short range
force, the nuclear particles have to get very
close, more accurately, inside the reach of the
force. If their wave function is to be confined
in that small region, its wave-length must be of
the order of the range of the forces, i.e., very
small. Accordingly, the momentum, and the
kinetic energy of the particles must become
very large; the larger, the smaller the range of
the force. The kinetic energy of the particles in
the deuteron may in this way become even
larger than the potential energy at close dis-
tances; if so, the two particles cannot be confined
within the range of the forces between them;
the particles will actually travel over a larger
region in space, in which way their kinetic
energy may be kept down. But when this is the
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case, also the time during which the particles
actually are near enough to exert a strong
attraction is reduced, and thus the binding
energy will come out quite small compared to
the potential energy between the particles.

If we now take the a-particle, four to five
times the attractive forces are available, while
the number of moving particles is only twice as
large as for the deuteron. Thus it is well con-
ceivable that now the attractive potential will
suffice to overcome the kinetic energy, and to
actually draw the particles into the range of
their mutual forces. Then full use can be made
of the large interaction potential, and the binding
energy will be of the same order of magnitude
as the interaction potential.

This shows that with a deep and narrow hole
representing the potential energy between proton
and neutron, the binding energy (mass defect)
of the a-particle can be made very much larger
than that of the deuteron. Thomas (T2) has
actually shown that the ratio of the mass defects
of H? and H? becomes infinitely large if the range
of the forces is reduced to zero, and at the same
time the magnitude of the potential energy
increased in such a way that .it yields the
observed binding energy of the deuteron (§19).
If the binding energy of H® tends to infinity,
this is, of course, a fortiori true for that of the
a-particle. Thus Thomas’ calculation shows that
any desired value may be obtained for the ratio
of the mass defects of a-particle and deuteron,
by a suitable choice of the range of the forces.

The actual determination of the range of the
forces from the given mass defects requires, of
course, the solution of the Schrédinger equation
for the a-particle and the deuteron. A suitable
form must be assumed for the potential energy
between neutron and proton as a function of the
distance, leaving two parameters free which
determine the width and the depth of the
potential hole (range and magnitude of the force).
Then the Schrédinger equations for H? and He*
have to be solved with this potential. The first
equation, for the deuteron, can easily be solved
rigorously (chapter III). That for the a-particle
has to be treated by approximate methods, e.g.,
by the Ritz method based on the variation
principle. Unfortunately, this method converges
very slowly, so that the results thus far obtained
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are not very certain although much work has
been put into the attempt of solving the problem,
especially by Feenberg (F2, F3). The range of
the forces resulting from his calculations is
about 2-107% cm, i.e., approximately the radius
of a sphere whose volume is equal to the volume
per particle of heavier nuclei, and considerably
less than the radius of the deuteron (4.36-107%
cm, cf. §12). Details of the calculation will be
given in chapter IV. ’

The determination of the analytical form of
the dependence of the nuclear forces upon the
distance between the nuclear particles, is at
present quite hopeless. Any rapidly decreasing
function, whether e—=*, ¢~#r, a rectangular po-
tential hole or a more complicated function
having the same characteristic behavior, will fit
the experimental data equally well as long as no
very accurate calculations of the binding energies
expected for a given force, are available. It has
been suggested (cf. §44) that the potential should
be proportional to some high negative power of
the distance for large 7, and become more or less
constant at small 7. For the present, however,
the potential can be represented by a function
which is most convenient for the integration of
the Schrodinger equation, without introducing
any error comparable to that due to the insuffi-
ciency of our present methods for integrating
that equation.

§10. FOorRCEs BETWEEN LIKE PARTICLES.
Obp anD EveN Isorores (Y1)

The considerations of §§6-8 have given us an
idea about the general dependence of the binding
energy of nuclei upon the atomic weight and the
nuclear charge. Experimental evidence about
this general dependence was used to fix some
constants in the assumed expression for the .
binding energy. However, no reference has been
made to any details in the distribution of known
isotopes.

There is one such detail which is very out-
standing and which strikes one immediately if
one glances at the table of known isotopes
(Table I): While there are 154 isotopes known?®?

22 B-emitting substances have been excluded. The figure
148 includes 16 radioactive a-emitters.
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with even nuclear charge and even atomic
weight, there are only 4 with odd nuclear charge
and even weight, and all of these latter have
atomic weights smaller than 14. In the remainder
of the periodic system, from 4 =14 up to 238,
there is not a single stable isotope with odd
charge and even weight.—The isotopes of odd
atomic weight occupy, as far as their number is
concerned, an intermediate position: There are
106 stable isotopes of this kind well established,
of which 55 have even nuclear charge and 52
odd charge (in addition, 7 a-emitters of odd
atomic weight are known).

What is the reason for the striking difference
between nuclei with even weight and even
charge, and such with even weight and odd
charge? To account for this difference, in fact,
to make any theory of nuclear stability, it is
necessary to know the condition for stability. If
we would accept the, obviously necessary, con-
dition that the removal of any neutron or proton
from the nucleus must require energy, then
practically any pair of values 4, Z would lead to
a stable nucleus. More stringent is the condition
of stability against a-emission (cf. §9) but even
this would allow a wide variety of nuclear
charges for any given atomic weight. Actually,
the most important condition is stability against
B-transformation, i.e., against emission or ab-
sorption of electrons.

The emission of an electron by a nucleus leads
to a new nucleus whose mass number is identical
with that of the original nucleus while its charge
is one unit higher. The B-emission can take
place energetically, if the energy of the original
nucleus is higher than that of the produced
nucleus plus mc? where m is the mass of the
electron; in other words, if the exact atomic
weight of the original nucleus is higher than that
of the nucleus produced in the B-decay (cf. §2).
In stating this condition, the mass of the neutrino
has been assumed equal to zero (cf. §39). Now
the experimental evidence about $-decay seems
to show that, whenever B-decay is energetically
possible, the decay occurs almost always in a
reasonably short time, ranging from fractions of
a second up to a few years. Some notable excep-
tions, primarily radioactive potassium and ru-
bidium, which have lifetimes of the order of 108
years, can be accounted for without serious
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difficulty (§43). We shall thus assume that in
general any substance which is energetically
unstable against 8-decay, will disintegrate in a
time very short compared to the life of the earth,
and will thus not be found among the existing
isotopes in nature. (For the explanation of
exceptions, and the conditions therefore, see §43.)

From the standpoint of nuclear theory, the
nucleus produced in B-disintegraton differs from
the original nucleus by containing one proton
more and one neutron less. So we get the rule:
A nucleus is unstable against $-disintegration, if
the replacement of a neutron in the nucleus by a
proton would make the energy of the corresponding
atom smaller.

A similar rule holds for the replacement of a
proton by a neutron. This replacement is brought
about when the nucleus absorbs an electron, e.g.,
one of the orbital electrons of its own atom.
That such an absorption of external electrons by
a nucleus is possible, can be inferred with
practical certainty from the fact that positron-
emitting radioactive nuclei are known in great
number : The emission of a positron can, accord-
ing to Dirac’s theory, be considered as the
absorption of an electron which has been in a
state of negative energy. If this process is
possible, there is no conceivable reason why
electrons in states of positive energy could not
be absorbed by nuclei. The energetical condition
for such an absorption is obviously that the
energy of the absorbing nucleus, plus the in-
trinsic energy mc® of the absorbed electron, is
larger than the energy of the nucleus produced
by the absorption. Thus a nucleus is unstable
against absorption of electrons if the atomic weight
is decreased when a proton in the nucleus is
replaced by a neutron.

For complete stability, a nucleus must therefore
be lighter than both the two meighboring isobars,
i.e., the two nuclei whose mass number is the
same and whose charge is by one unit less or
greater than that of the given nucleus.

We thus conclude that the energy of any
nucleus with even atomic weight and odd nuclear
charge is larger than that of at least one of its
neighboring isobars, which would have even mass
and even charge. If this theorem can be proved,
it follows at once that all stable nuclei with
even mass must have even charge, in agreement
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with experiment. (Of course, it must also be
proved why the four light nuclei H?, Li% B
and N* are exceptions from the rule.)

Nuclei having even mass and even charge,
obviously contain even numbers of neutrons and
protons. For even mass and odd charge, we
would have an odd number of neutrons as well
as protons. Thus we can express our empirical
rule by saying that even numbers of neutrons
and protons lead to a lower total energy of the
nucleus than odd numbers, in other words that
a pair of neutrons or protons has much the same
function in nuclear physics as closed shells in
atomic physics, insofar as it leads to a specially
low energy of the system. That two neutrons (or
protons) may form a ‘“closed shell,” is plausible
because two particles with opposite spin may
just be placed in exactly the same quantum state
with respect to orbital motion. A third neutron
would have to go into the next higher quantum
state, and would therefore be less strongly bound.
It is true that this rule differs appreciably from
the rule valid in atomic physics where we find
groups of 2(2/41) electron states with the same
n and ! (principal and azimuthal quantum
number) all having sensibly the same energy.
The difference seems to be due to the fact that
in an atom we have practically a central field
which we have not in nuclei. This problem will
be discussed in more detail in chapter VI, where
we shall also show that there is evidence for
other periodicities in the structure of nuclei,
with longer periods than 2, which are more
similar to the electron shells in atoms.

For our present discussion we simply accept
that every state of orbital motion of a proton or
neutron has its own energy, differing from the
energy of all other states, so that two neutrons
or two protons form a “closed shell.” With this
assumption, it is quite simple to prove that no
nucleus containing an odd number of protons
and neutrons can be stable, except in the very
beginning of the periodic system.

Let us take any nucleus of even atomic weight
A and even nuclear charge Z and call it the
standard nucleus; e.g., we might choose Ni®® for
this purpose. In the field of this standard nucleus,
there will be certain energy levels for neutrons
and other levels for protons. By ‘level” or
‘““state’” we refer, in this discussion, to the state
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of orbital motion only, so that each state can
take two particles. The 3Z lowest proton states,
and the 3NV lowest neutron states are occupied
in our standard nucleus. Of the empty states,
either the lowest proton or the lowest neutron
state will be lower. If we construct the nucleus
of atomic weight 441, this nucleus will have
Z+1 protons and N neutrons if the proton state
is the lower of the two, or Z protons and N+1
neutrons if the neutron state is the lower. Both
cases will occur with about equal probability,
therefore we expect that for odd atomic weight
nucler with even charge are about as numerous as
such with odd charge. This is actually true, the
statistics we have mentioned before showed 52
known nuclei with odd weight and odd charge
and 55 stable nuclei with odd weight and even
charge. In the case of our ‘“standard” nucleus
Ni®, the addition of a neutron leads to the
stable nucleus, Ni®’. Now let us add a second
particle to our standard nucleus. If the first
unoccupied neutron level in the standard nucleus
lies lower than the first unoccupied proton level,
the most stable nucleus of weight 4+2 will be
obtained by adding two neutrons to the standard
nucleus so that it has nuclear charge Z. The
addition of one neutron and one proton will lead
to a less stable nucleus (charge Z+1), because
the proton level lies higher. The addition of two
protons will give us a nucleus (charge Z4-2)
which is even less stable. Conversely, if the
proton level is the lower of the two, the most
stable nucleus will be obtained by adding two
protons, a less stable one by adding one proton
and one neutron, and the least stable if we add
two neutrons. Thus in both. cases the most stable
resulting nucleus of atomic weight A-+2, has even
nuclear charge, in one case the same charge Z as
the ‘“standard” nucleus, in the other case, the
charge Z+2. In no case will the nucleus of
charge Z+1 be the most stable. (In ouy case of
Ni®, we know from the first step of adding one
particle that the neutron level lies lower. Thus
we expect the stable nucleus of atomic weight
62 to be nickel again which actually is the case.)

Thus it seems that we have proved our theorem
from a simple consideration about neutron and
proton levels. However, we know that in many
cases isobars exist, i.e., several stable nuclei
having the same atomic weight, and nuclear
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charges usually differing by two units. This
means that, starting from our ‘‘standard nu-
cleus” of weight 4 and charge Z it often happens
that both the addition of two neutrons and the
addition of two protons lead to stable nuclei,
while the addition of one proton and one neutron

" never does. This is quite inexplicable from our
previous considerations, which led us to expect
that the energy of the nucleus of atomic weight
A+42 and charge Z+1 always lies in between
the energies of its isobars with charges Z and
Z+2.

The fact that both the nuclei Z and Z+2 may
have energies lower than the intermediate nu-
cleus Z+1, thus requires a special explanation.
We must obviously assume that there is some
attraction between the two neutrons or the two
protons which we added to the ‘‘standard”
nucleus. With such an attraction, the energies
of the nuclei Z and Z42 become depressed
below the value expected from our previous
considerations which assumed the additional
two particles to move independently from each
other. The attraction between particles of equal
kind therefore allows the existence of two stable
isobars, both with even charges, differing by
two units, while the intermediate nucleus of odd
charge is unstable.

The objection might be raised that the neutron
and the proton, which we have added to the
standard nucleus in order to obtain the nucleus
(A+2, Z+1) should also show an interaction.
In fact, we have even proved (§6) that the
interaction between a neutron and a proton
must be larger than that between a pair of
neutrons or a pair of protons. This would mean
the energy of the nucleus (442, Z+1) would be
more decreased by the interaction of the two
additional particles than that of the nuclei
(A+2, Z) or (A+2, Z+2). From such a reason-
ing, we would therefore conclude that the nucleus
of odd charge and even weight (442, Z+1) is
stable and the nuclei of even charge and weight,
(A+2, Z) and (A+2, Z+2) are not, in contra-
diction to experience.

The fallacy in this argument is due to the fact
that a neutron and a proton interact strongly
only if they are in approximately the same
quantum state, because the forces are ‘“‘satura-
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tion” forces (§7). We know, however, that the
first empty neutron state in the field of our
standard nucleus is quite different from the first
empty proton state. If we add a neutron and a
proton, they will therefore have practically no
interaction. On the other hand, two added neu-
trons (or two protons) will move in the same orbit
and therefore have full interaction, irrespective
of what we assume about the forces between like
particles—i.e., whether they also act only be-
tween particles in the same quantum state, or
between any pair of light particles (cf. §24). Thus
we have accounted for the rule that all stable
isotopes with even weight have even charge, and
also for the existence of isobars of this type.

Our argument shows us, however, also the
reason for the exceptions from that rule: If the
added proton and neutron would move in the
same quantum state, they would have a strong
interaction, and therefore the atom of even
weight and odd charge would be stable. The condi-
tion for this is obviously that equally many
proton states are occupied in the ‘“‘standard”
nucleus as neutron states, in other words, that
the standard nucleus contains exactly equal
numbers of neutrons and protons. This is then
also true for the nucleus which we obtain by
adding a neutron and a proton to the standard
nucleus. Therefore nuclei of even weight and odd
charge will be stable if they contain exactly as many
protons as neutrons. This is true for all the four
stable nuclei of the type, viz., H?, Li¢, B1o, N4, All
these nuclei are very light, in fact, they are the
lightest possible nuclei of their type. Only for
light nuclei, can the number of neutrons be
exactly equal to that of the protons. As soon as
the nuclei get heavier, the Coulomb repulsion
between the protons begins to become appreci-
able and to make the number of neutrons greater
than that of protons in any given nucleus. Then
the existence of nuclei with even weight and odd
charge becomes impossible. This is true already
for the atomic weight 18, for which the nuclear
charge 8 rather than 9 leads to a stable nucleus
(018, not F18),

A convenient way of visualizing the results of
this paragraph is to plot the energy of isobars
(stable and unstable) as a function of their
nuclear charge. If we do this for odd atomic
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Fi16. 3. Schematic graph representing the energy of
isobars of even atomic weight as a function of nuclear
charge Z. The upper parabola contains the nuclei of odd
charge, the lower one those of even charge. The arrows
represent possible g-disintegrations. The two ‘‘even”
nuclei marked S are stable, all the others unstable.

weight, we shall get a smooth curve. The nucleus
nearest to the minimum of that curve will be
the stable nucleus for the given atomic weight.
Chances are equal that this stable nucleus has
even or odd charge.

For even atomic weight, on the other hand, we
obtain two separate curves for nuclei with odd
and such with even charge. We may assume that
each of these curves is smooth. On the lower curve
,(even charge) we find always one, but in many
cases several, stable nuclei, i.e., nuclei which have
less energy than both their neighbors (Fig. 3).

We may try to determine the magnitude of the
forces between like particles from the statistics of
isobars. It is reasonable to assume that the two
curves representing the energies of even charge
and odd charge isobars, are parabolas just shifted
vertically by an amount é. The minimum of the
parabolas will in general lie at a fractional value
of the nuclear charge, Z4. Let us denote by 8 the
difference between Z, and the nearest odd
number; 8 obviously may be any number be-
tween —1 and +1. The curvature of the parabola
may be determined from our general formula (18)
for nuclear energies :

k= —%02E/0Z?= (4daet+~vA3)/A. (21)

AND R. F.

BACHER §10

Then we have for the energies of a nucleus of
weight 4 and charge Z:

E=E(Z4)+x(Z—2Z4)*
E=E(Z)+5+x(Z~Z4)

if Z is even,
if Zisodd; (212)
e.g., for the odd nucleus whose charge is nearest
to ZA :

Eoga=E(Z4)+ 6+ «p? (21b)
for the two even nuclei nearest to Z4:
+ R 2
E even E(ZA)+K(1 +ﬁ) ) (21C)

E-ovon=E(Z4)+x(1—B)%

The conditions that both the even nuclei are
stable, read therefore

6> k(1428) and 6> k(1—28),
or, both conditions in one:
8> k(142|8]). (21d)

To find out the meaning of 3, we remember
that we have proved that the energy of the “odd”
nucleus must be midway between the two even
ones if there are no forces between like particles.
In this case, therefore, we would have

E'oaa=E(Z4)+x(14+5%),

so that, in the absence of forces between like
particles, &’ = k. Therefore the effect of the forces
between like particles is given by

'=b0—8=5—x (21e)

and, according to (21d), we have two stable
isobars if

8> 2|8 (21f)

and only one stable element of atomic weight 4 if

(21g)

To determine the critical value of |8| above
which the existence of isobars becomes im-
possible, we use the statistics of the known iso-
topes of atomic weight between 110 and 140. The
reason for choosing this region is that the ele-
ments of higher atomic weight are not well ex-
plored as regards their isotopic structure, be-
cause they are rare earths, while among the
elements of lower weight too few isobars are
found. Of the 15 even mass numbers from 112 to

8" <2x|B].
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140, 10 are occupied by two isobars,? 5 by one
nucleus only. We thus conclude that Bo=10/15
=2/3 is the critical value for |8| such that for
|8] >Bo only one nucleus of weight 4 is stable
while for |8| <Bo two stable isobars exist. Insert-
ing 4 =125 into (21), we have (cf. 19b)

4-2040.58-25 80+15
(= -
125
8" =2Bok=1.01 MV. (22)

From formula (21f) we can conclude that the
existence of isobars is the more probable the
smaller k. According to (21), k decreases with
increasing atomic weight. Thus we expect the

=0.76 MV

and
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more isobars the heavier the nuclei. This is
actually true, at least up to 4 ~150. In the region
of the rare earths, there are probably a great
number of isobaric pairs yet unknown. For still
higher atomic weight, stability against a-decay
probably also plays an important role so that our
rule cannot be expected to hold.

There is another indication of forces between
like particles from the scattering of protons by
protons (§18). That scattering is not in agree-
ment with the expectation from a purely electro-
static interaction between the protons. Strong
evidence for the forces between like particles
comes also from the quantitative calculations
of the binding energies of H® and He! (§21).

III. Theory of the Deuteron

§11. THE WAVE EQUATIONsS OF HEISENBERG,
WIGNER AND MAjoraNA (H7, W12, M6, B16)

We have shown in §7 that the force between
neutrons and protons must be exchange forces
and must not depend on the relative spin direc-
tions of the two particles. This type of force was
first suggested by Majorana (M6). Earlier,
Heisenberg had suggested saturation forces
which did depend on the relative spins (H7), and
Wigner ordinary forces which did not show
saturation (W12).2¢

Although we have given good evidence for the
Majorana type of force, we want to write down
the wave equations for the two other suggested
types as well. The reasons are on one side to
facilitate comparisons, on the other hand (and
this seems even more important) it seems prob-
able that a small force of the Heisenberg type is
superposed upon the main Majorana force
(cf. §14).

To lead up to the wave equation, we consider again the
chemical analogy. The system most nearly comparable to
a system of a neutron and a proton, is the hydrogen
molecular ion, H,*.% Its wave function is the product of

220One mass number (124) is actually occupied by 3
isobars.

2 Recently, Bartlett (B10) has pointed out that there
is still another type of force, viz., “ordinary” forces de-
pending on the relative spin. These forces would lead to
both the difficulties of the Heisenberg and the Wigner
theory, viz., saturation at H? and too large binding energies
for heavy nuclei.

25 Cf. Handbuch der Physik, Vol. 24/1, p. 524.

an electronic wave function ¢ and a wave function ¢
describing the motions of the two nuclei. ¢ depends on
the distances p, and pg of the (single) electron of the H,*
from the two protons a and 8. ¢ may be either symmetrical
or antisymmetrical with respect to p and pg, and therefore
with respect to the coordinates of the two protons. Since
the protons obey Fermi statistics, ¢ must be antisymmet-
rical in the two protons if ¢ is symmetrical, and vice versa.
We consider in particular those electron states of IHj*
which go over into a hydrogen atom in the ground state,
plus a proton. There are just two states of this type, one
whose eigenfunction ¢ is symmetrical in the two proton
coordinates and one antisymmetrical state. Only the former
leads to binding. The electronic energy of the system may
be written:

V(#)=—-C(r)FA(r), (23)
where C(r) is the Coulomb interaction between a hydrogen
atom in the ground state and a proton at a distance » from
the nucleus of the hydrogen atom, while 4 (r) is the “‘ex-
change integral” which measures how often the electron
changes its place, going over from one proton to the other.
The upper sign in (23) is related to the symmetrical electron
wave function ¢, the lower sign to the antisymmetrical ¢.

The electron energy for fixed nuclear distance » must,
as is well known, be regarded as a potential energy for the
motion of the nuclei in the molecule. That motion is
described by the wave function . For antisymmetrical y
the upper sign in (23) has to be taken, for symmetrical
¢ the lower. We have thus two different Schrodinger
equations for y according to the symmetry of y. We can,
however, formally write them into one, by using the fact
that

Y(rp7a) = +¥(rarg) for symmetrical ¢,

¥(rgra) = — Y(r4rp) for antisymmetrical ¢, (232)

according to the definition of symmetry and antisymmetry
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(rarg are the coordinates of the two nuclei, including spin).
We can thus write the Schrodinger equation:

(B/2M)(Aa+Dp)Y(rars) +E(rars)
= —C(")¥(rarp) +A ()Y (7p7a).

In the second term on the right-hand side the coordinates
of the two nuclei have been interchanged. The term is
equivalent to +A(r)¢(rarg) if ¢ is symmetrical, and
—A(r)y(rarg) if ¢ is antisymmetrical. Any reference to
the electron has disappeared from (23b), therefore we can
take it over directly into nuclear theory.

It must be emphasized at this point that the analogy
to the hydrogen molecular ion must in no way be regarded
as a deduction or justification of the wave equation for
the deuteron. The forces between neutron and proton are
an entirely new phenomenon, not connected in any way
with forces familiar in atomic physics. A particular form
chosen for the interaction between neutron and proton
can therefore only be justified by comparison of the
results deduced from this interaction with experimental
data about nuclei. The theory of the hydrogen molecular
ion serves only to suggest a possible form of the interaction
which leads to saturation of the forces. The analogy to the
H,* has not been introduced because we think the neutron
is in any way comparable to a small hydrogen atom but
only because we know from qualitative considerations
that the nuclear forces show saturation.

(23b)

We now write down the wave equation for a
neutron and a proton, interacting with each
other, in analogy to (23b):

(#/2M) (Az+ A (xs, £a)
+EY(xs, ko) =T (n)y(ko, x5).

M is the mass of the proton which is sensibly the
same as that of the neutron. The first two argu-
ments in the wave function denote the position
and the spin coordinate?® of the proton, the last
two refer to position and spin of the neutron.
|¥(xs, £0) |2 thus means the probability that the
proton is found at the point x (x is, of course, a
vector) with spin s, while the neutron is at the
point £ and has spin ¢. A, and Ag are the Laplacian
operators with respect to the coordinates of
neutron and proton, E the total energy and J(7)
the potential energy as a function of the distance
r=x—§ between proton and neutron. (In com-
paring (24) to (23b), it may be noted that we
have assumed no ‘“ordinary” interaction C(r)
between proton and neutron but only “‘exchange”
interaction A (r)=J(r).)

(24)

.2 As such we may choose the spin component in a given
dlrectiion z, which may have either of the two values +}
or —4%.
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Eq. (24) is that originally proposed by Heisen-
berg. It shows saturation effects (cf. §7) but it
corresponds to an interaction which depends
upon the relative spin directions of proton and
neutron. To see this, we write the wave function
¥ as a product of a function depending on the
positions of the two particles, and a function
depending on spin only:

¥(xs, £0) = o(x£)x(s0).

If the spins of proton and neutron are parallel,
the spin wave function x is symmetrical?’ in the
two spin coordinates s and o, viz.,

(24a)

(24b)

if the spins are antiparallel, s is antisymmetrical,
v12.,

x(os) =x(s0) (parallel spins)

(antiparallel spins). (24c)

Therefore (24) goes over into an equation involv-
ing the ‘“spatial”’ wave function ¢ only:

(#/2M) (A:+A7) o(xE) + E(xt)
=xJ(r)eltx), (25)

the upper sign holding for parallel spin of neutron
and proton, the lower for antiparallel spin. Thus,
if J(r) is negative, we get an attraction between a
neutron and a proton with parallel spins, but a
repulsion for antiparallel spins. If J(7) is posi-
tive, the reverse is true. In any case, the force
between the two particles depends on the relative
spin directions, and saturation is obtained when
a single neutron is bound to a proton, the
neutron spin being parallel or antiparallel to the
proton spin according to the sign of J. A second
neutron could not be bound to the proton but
would even be repelled. The deuteron would be
the “saturated’’ nucleus instead of the a-particle,
in contradiction to experience.

This is avoided in the wave equation of
Majorana (M6)28

(#%/2M) (As+ A (xs, £0) +EY(xs, £o)
=J(r)(&s, xo). (26)
It differs from Heisenberg’s equation in the inter-

action term on the right-hand side: While in
Heisenberg’s equation spatial coordinates as well

x(05) = —x(s0)

27 Cf., e.g., Handbuck der Physik, Vol. 24/1, p. 325.
28 For some difficulty connected with the difference in
mass between proton and neutron, cf. references B27, P6.
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as spin coordinates of neutron and proton are
interchanged in the interaction term, only the
spatial coordinates are interchanged in Major-
ana’s equation. The spin of the proton is s in the
interaction term of (26) as well as on the left-hand
side of that equation, the spin of the neutron is ¢
on both sides of the equation. Therefore, if we
again write the wave function in the form (24a),
we have

Y(&s, x0) = p(£x)x(s0)
Y(xs, £o) = p(xE)x(s0) (26a)
in other words, the same spin function occurs on
both sides of Eq. (26). Irrespective of the relative
spin directions, Eq. (26) therefore reduces to
(#/2M)(8a+Ag) p(xE)
+Ep(xt) =J(r) p(§x).

A negative interaction potential J leads to bind-
ing, for any spin directions.

@7

h2
i=]
Z N

=1 k=1

= i %J(fik)'P(xxSx' .

i=1 k=1

i=1 k=1

For the application to the deuteron, it is con-
venient to separate the motion of the center of
gravity of the deuteron from the relative motion
of the two particles in the deuteron. We are only
interested in the latter. It will be described by a
wave function % which depends upon the relative

NUCLEAR PHYSICS

107

Both Majorana'’s and Heisenberg’s equation
assume ‘‘exchange’ forces which is necessary to
explain the observed ‘saturation” of nuclear
forces (§7). Forces of the ordinary type (the term
‘“‘ordinary forces’ will be used in distinction from
exchange forces) have been assumed by Wigner
(W12). Wigner’s wave equation for the deuteron
thus reads

(B2 M)(As+Ag¥ (s, £o)

+Ey(xs, ko) = J(r)¥(xs, £0), (28)
or, after separation of spin
(72/2M) (A +Ap) o(xE)
+Eq(x) =J(r)o(xt). (28a)

The generalizatioris of the Egs. (24), (26), (28)
to more than two particles are obvious. On the
right-hand side there appear interaction terms
for each pair of particles, similar to those in (24),
(26), (28). Explicitly, we have for a nucleus
containing N neutrons and Z protons:

z v
—’—( Am"l"ZA{k)V’(xlsl' o xiSit s Ewohe c Enon) T EP( s Eroee e )
2M \i=1 k=1

=3 TJ(ri)p®is1e - - Erope - %3550 - - En0y) (Heisenberg), (29a)
cEgSir - Xiope - - Enon) (Majorana),  (29b)
Z N
=3 LI i)Y(®sS1 - X385+ - - Exoke - - Enon) (Wigner). (29¢)
hﬁ
—A E =
Iy u(r) +Eu(r)
+J(r)u(—r) Heisenberg, (30a)
J(r)u(—r) Majorana, (30b)
J(r)u(r) Wigner. (30c)

coordinate r=x—& of the proton with respect to
the neutron. Interchanging the coordinates of the
two particles means replacing r by §—x= —r, in
other words, changing the sign of the relative
coordinates. Then we have for # the wave
equation :

u depends only on the three relative coordinates
r, and A is therefore the ordinary Laplacian
operator in three dimensions. The proton mass M
which appeared in (24) to (29) has been replaced
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by the reduced mass 3M since we are dealing
with relative motion. The signs in (30a) refer to
parallel (4) and antiparallel (—) spins of the
proton and neutron.

§12. GROUND STATE OF THE DEUTERON (B16)

The deuteron plays in nuclear physics the same
role as the hydrogen atom in atomic physics. It
consists of two elementary particles, one proton
and one neutron. It is well known that any two-
body problem can be integrated explicitly if the
force between the two particles is a known func-
tion of the distance of the particles. Thus the
theoretical results about the deuteron are free
from approximations made to simplify the
mathematical treatment. They are, as we shall
see, also to a very large extent independent of the
assumptions we make about details of the force
between neutron and proton, i.e., of the function
J(r) in (30). The theory of the deuteron is thus
more suitable for quantitative comparisons with
experiment, and therefore for a check of the
underlying ideas about nuclear structure, than
any other part of nuclear theory.

Using the Majorana hypothesis about the
forces between neutron and proton, we have
obtained the wave equation

B/ M)AU@)+EU(x)=J(r)U(—1), (30b)

where 7 is the relative coordinate of the proton
with respect to the neutron, 3/ the mass of proton
or neutron and E the energy of the system. If E
is negative, e= — E is the binding energy of the
deuteron.

The potential energy J(7) is spherically sym-
metrical. Therefore (30b) can be separated in
polar coordinates 7, 8, ¢ by putting

U(r) = (ui(7)/7) Pim(8) eime, (31)

where P, is a spherical harmonic which we
assume to be normalized unless otherwise stated.
In (30b) the function U(—r) enters as well as
U(r). If the polar coordinates of the point
r=(x, y, 2) are 7, 0, ¢, then those of the point
—r=(—x, —y, —2) are 7, 7—0, 7+¢. Now it is
easy to show? that

29 Py, (6) is an even or odd function of cos 8, according
to whether /—m is even or odd (see, e.g., Jahnke-Emde,
table of functions, p. 173). Since cos (w—8) = —cos 6, we

have Piu(r—0)=(—1)""P;,(0). Furthermore, em(T+®)
= (—1)meime,
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Pin(m—0)eimx+9) = (—1) 1Py ()eim.  (31a)
Therefore the wave equation for # becomes?®®

R ydiu, 1(4-1)

ﬁ(;— 7%

u;) +Euy=(—1)J(r)u. (32)

If J(7) is assumed to be negative, it is seen that
the right-hand side of (32) corresponds to an
attractive potential energy, if / is even, and to a
repulsive potential, if / is odd. This alternation of
the sign of the force for even and odd /, is a
characteristic feature of exchange forces and
could, in principle, be used to decide whether the
forces acting between neutron and proton are
exchange forces or ordinary ones (§14, refer-
ence W9).

The lowest quantum state will be obtained for
1=0, if we assume J(r) to be negative. Its
eigenfunction obeys the wave equation

Puo/drt=(M/B)(J(#) —E)uo.  (33)

ug is subject to the condition that it vanishes for
small 7 as 7 itself, because otherwise U(r) would,
according to (31), become infinite at small
distances 7. Furthermore, %, must not become
infinite for large 7.

First we shall discuss the behavior of %, quali-
tatively, making very general assumptions about
the interaction potential J(r). We know from the
ratio of the binding energies of a-particle and
deuteron (§9) that J(r) must be very large for
small 7, and must fall off very steeply at larger
distances. We may therefore define a range a of
the force such that | J(7)| is negligible compared
to E if r>a. If 7 is, by a sufficient amount,
smaller than a, |J(r)| will be large compared to
| E|. The behavior of %, up to 7=a will therefore
be determined almost exclusively by J and will
not depend to a large extent upon E. On the
other hand, beyond a the energy E alone will
determine .

Since J(7) is negative and, for the most part of
the region 7<a, absolutely greater than E, the
right-hand side of (33) is negative in this region
and therefore %, is concave towards the 7 axis
(cf. Fig. 4). By integrating (33) up to r=a, we

3 For the algebra involved in the separation of the
Schrédinger equation in polar coordinates, cf. e.g., Hand-
buch der Physik, Vol. 24, 1, p. 275.
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can determine %, and its first derivative u, at
the point »=a. We put

(34)

a is a reciprocal length characteristic for the
potential J(r). According to the foregoing, a does
not depend sensitively on the energy E. Of
course, the sign of a as well as its absolute magni-
tude will depend on the strength of the forces. If,
e.g., J(r) is very small, the curvature of u, will be
very small, and #, will still be increasing when we
arrive at r=a for any negative value of E. In
that case, #,’/uo would be positive, therefore «
negative, and, as we shall see, no stable state
(E<0) of the deuteron would be possible.

For r>a, the potential energy J(r) is sup-
posedly negligible. Therefore Eq. (33) can be
solved immediately. Assuming E to be negative,
3.,

(uo’/uo),z.,, = —.

=€ (35a)
we have d2uo/dr = (Me/h2)uo; (35)
therefore wo=ce—Motrik (36)

because the alternative solution, et 9/t is to
be excluded. ¢ is a coefficient to be determined by
normalization.

At r=a, the two solutions obtained by intetrat-
ing the Schrodinger equation “inside” (r <a) and
“outside’” (r>a) must join smoothly, so that

(uo,/uo)outside= (uul/uo) insides (363)

Uo

o

r

Fi16G. 4. Eigenfunction of the ground state of the deuteron.
Ordinate: 7 times eigenfunction; abscissa: 7. Simple po-
tential hole of width a.
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Now (34) gives us the “inside’” value of uo'/u,
while the outside value follows by differentiating
(36). We have therefore

(Me)i/h=a. 37

The constant « which is directly connected to
the given force field, thus determines the binding
energy e. Or, conversely, we may use the observed
value of € to deduce a and thus to gel some informa-
tion about the forces between meuiron and proton.

If « were negative, i.e., if the force is too weak
(see above), the inside wave function could not be
joined smoothly to an exponentially decreasing
wave function outside, but only to an exponen-
tially increasing function. Such a function being
excluded because of becoming infinite for 7= o,
we find that for negative & no solution with a
positive binding energy e can be found. (For
positive energy E, there is, of course, always a so-
lution which behaves, for » > a, like sin ((ME)*r/#)
or cos ((ME)¥ /%) instead of exponentially. From
the mere existence of the deuteron we can there-
fore conclude that the forces between neutron and
proton must be strong enough to make «a positive,
i.e., to make the curvature of uy(r) large enough
so that %, decreases with increa§ing 7, at r=a.

We can even deduce from this condition a quantitative
estimate of J(r) no matter what the particular dependence
of J on r. We have

ug'" = (M /h*)(J (r)uo+eto).
Integrating over 7 from 0 to a, we find
W) rma = (1)) rmo= M * TPl
+ M f., “uudr. (37b)

(37a)

Now (%¢')rmo=1, if uo is suitably normalized. u, is, for
small 7, proportional to 7 (cf. after Eq. (33)). This rule will
no longer hold exactly for r=a, but it might serve as an
approximation. Then (#¢')sms~ —aa, which is negligible
compared to unity since the range of the forces, @, is sup-
posed to be small compared to the (known) quantity 1/«
(cf. 44a). Furthermore, the last term in (37b) can be
neglected compared to unity, because it is approximately
I Mea? /2 ~}a?e2<K1 (cf. (37)). Therefore, we obtain ap-
proximately

fa ® J(r)rdr = — 2/ M. (37¢)

Actually, we should expect a somewhat larger absolute
value for the integral on the left of (37c), because uo<r.
(In the special case of the rectangular potential hole, we
have, according to (40), j;a.f(r)rdf= —3Voa?= —n2h2/8 M,
which is rather close to (37c).]
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We now discuss the solutions for a few simple
forms of the potential function J(7):
(@) Rectangular hole:

J(r)=—-V, for r<a, g
J()=0 for r>a. (38)
Solution
uo=>bsin [M¥Vo—e)tr/h] for r<a,
0 [MYVo—e)tr/h] (38a)

#uo=cexp [—(Me)}(r—a)/h] for r>a.
Joining solutions:

(00" /t0) insiae = M} (Vo —e) ¥
X cot [M¥(Vo—e)ta/h]
(%0 /#0)outsiae = — (Me)} /B

Therefore
cot [M¥Vo—e)la/h]l=—(¢/Vo—e)t (39)

Since Vo>e (cf. §9), the right-hand side of (39)
is small. Therefore in first approximation

MY Vo—e)la/h=%m+(e/ Vo) +0(e/ V)3,

9a)
oy e\ \? el
() )
Ma?\2 Vo Vot
B Bo\! 4
Vo=———‘-+2( e) +(1-———-)e
4 Ma? Ma® w?
3
+0(————-). (39b)
(n/ Ma?)}
In very rough approximation,
Voa?=n2h2/4 M. (40)

This means that the product of the depth and the
square of the breadth of the potential hole can be
determined from the mere existence of the deu-
teron. For a separate determination of breadth
and depth, it is necessary to consider the binding
energies of other nuclei, e.g., the a-particle, as
well. But whatever the value of a and V,, the
product Voeae? will not differ very much from the
value (40) which is a universal constant. The
smaller the range a of the forces, the more exactly
will (40) be true.

Normalization of the wave function: From
(38a) (39) we have

b=c/sin (M} Vo—e)da/h)=c(Vo/Vo—¢€)}, (41)
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f ugtdr =0
0

+c”f drexp [—2M}(r—a)/h]

“Th—1 cos (2U(Vo—o)hr/B) dr

B . MNVo—e)a
=b2(%a— sin 2 )
4M¥Vo—e)? 2

+ch/2(Me)?
Vo 3
=3c -[-——— +a]. (41a)
Vo—eL (Me)?
Normalizing to unity, we have (cf. 37)
2(Vo—e)\}s % ~4
=(557) ()
Vo (Me)?
2(Vo—e)a\ }
= (—————— (41b)
Vo(1+aa)
and, according to (31), (38a), (41)
Ur)=
(4m)tr
( a )9 sin (M¥(Vo—e)¥r/h)
27(1+aa) 7 '
= ( (41c)
a H Vo—E ]
( _ ) ( ) e—alr—a),
2r(14-aa) Vo
(b) Exponential potential
J(r)=— Vel (42)
We introduce the independent variable
x=g7la (42a)
so that x=1 for 7r=0,x=1/e
for r=a,x=0 for r=o
and d/dr=—(1/a)x(d/dx).
Then the Schrédinger Eq. (33) becomes
d / dug\ Ma®
x—(x—) ———(—Vor+euo=0,
dx\ dx n
(42b)
d*uo 1duy (Ma*Vy1l Ma% 1
e | ) )
dx* «x dx ®ox B ox?
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This is the differential equation for a Bessel
function (cf. Jahnke-Emde, p. 214), its solution is

wuo=cJ p(2M}Volati1xt)
=cJ,(2MV jtak e rI%),
p=2a(Me)}/h

(42c)
(42d)

where

is the order of the Bessel function. At large
distances 7, the argument of the Bessel function is
small so that the first term of the ordinary
expansion of J in a power series is sufficient. We
have then:

¢ f2(MVy)ia

uo=; 3 ) exp [ — (Me)ir/h]

(r>a), (42e)

which is, apart from the constant factor, identical
with (38a). The eigenvalue € is determined by the
condition that #o(r=0) must vanish. For a given
Vo, we have therefore to find p from the condition

To2(MVo)ia/k) =0 (2f)

and then to calculate e from p with the help of
(42d). In order that (42f) has a solution p at all,
it is necessary that V, be greater than a certain
limit. This limit follows readily from the fact that
the first zero x, of J,(x) moves towards smaller
values of x when p decreases. Therefore cer-
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tainly x,>xo. Now the first zero of the Bessel
function of order zero is x¢=2.4048 (Jahnke-
Emde, p. 237). Therefore (42f) has a solution
p only if

2MVo)la/h>2.4048;
Vo> (h2/Ma?)-1.4457. (42g)

If Vo=1.4457 %2/ Ma?, the solution of (42f) will be
$=0 and therefore (cf. 42d) e=0, i.e., just no
binding energy. If the binding energy remains
small compared to Vo, which we have to assume
(cf. §9), then Vymust be only slightly larger than
the value (42g).

Table II gives the values of MVea?4? for
different ranges a of the force.

(c) “Error function” potential

J(r)=—Be~"le, (43)

The solution %, has to be obtained by numerical
integration of the differential equation. As in case
(a) and (b), and in the qualitative discussion,
Ba?> must be larger than a certain universal
constant, in our case 2.65 %#2/M, to give any
binding for the deuteron at all. Table III gives
the relation between MBa?/#* and the range a
according to Feenberg (F2, F3). This table
allows us to determine Ba? if @ is known. Ba?
changes only slightly with changing range of the
forces a.

TaBLE 11. Relation between width a and depth V, of exponential force Voe ! (deuteron energy 2.15 MV).

a= 0 0.5 1.0 L5
p=0 0.228 0.456 0.684
MVea*h 2= 1.446 1.888 2.370 2.890
V=59.5¢"2 310 97 53

2.0 2.5 3.0 <1071 cm
0.912 1.140 1.368 index of Bessel function
3.466 4.039 4.664

35.4 26.5 21.3 MV

TasLE 111. Relation between width a and depth B of “Gaussian” potential Be=r*/** (deuteron energy 2.15 MV).

a (in 1078 cm) 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.25
T=#r/Ma* (MV) © 64.3 41 28.5 20.9 16.1 12.7 10.25 8.10
B/T (pure number) 2.70 3.22 3.37 3.53 3.68 3.84 4.01 4.18 4.40

_ B (MV) © 207 138 100.5 74.8 61.8 51.0 42.8 35.6
B/T* 2.70 3.09 3.20 3.32 3.43 3.55 3.68 3.81 3.97

a 2.5 2.75 3 3.5 4 4.5 5 5.5 6

T 6.56 5.43 4.55 3.35 2.56 2.02 1.64 . 1.35 1.14
B/T 4.62 4.85 5.08 5.55 6.04 6.56 7.13 7.70 8.28

_ B 30.3 26.3 23.1 18.6 15.45 13.2 11.7 10.4 9.4
B/T* 4.14 4.31 4.48 4.84 5.20 5.59 6.02 6.45 6.88

* B represents the Majorana force between proton and neutron, plus half the Heisenberg force (cf. §14, end). This combination enters the theory

of H3, Het and heavier nuclei (§20).
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All our results about the ground state of the
deuteron remain unchanged if we assume either
the Wigner or the Heisenberg interaction between

- neutron and proton instead of the Majorana
force. For the ground state, and indeed for any
S state, U(—r)=U(r) (cf. (31), (31a)) so that
the Wigner equation (30c) and the Majorana
equation (30b) become identical. It 1s only for
odd azimuthal quantum number / that there
exists any difference between the Wigner and the
Majorana theory (cf. 32). The Heisenberg theory
also becomes identical with the Majorana theory,
if we restrict ourselves to states in which the spins
of neutron and proton are parallel, as is the case
for the ground state of the deuteron (experi-
mental value of the deuteron spin =one unit).

In conclusion, we like to emphasize that the
eigenfunction of the ground state outside of the
range of the forces (i.e., for >a) is completely
determined by the binding energy e of  the
deuteron, as is shown by Eq. (36). With the
observed value of that binding energy, viz:

e=2.15 MV (44)
we find
1 n 1.042-10-%7
w (Mo} (1.665-10-742.15-1.59-10-9)}
—4.36-10"% cm. (44a)

1/a may be regarded as the “radius” of the deu-
teron (cf. the wave function (36)). The range of
the forces @ is probably about 2-107** c¢m, which
is considerably smaller than the radius of the
deuteron. We can therefore say that the solution
(36) represents the eigenfunction of the ground
state of the deuteron over the greater part of
space. For this reason, matrix elements, normal-
ization integrals, etc., may be calculated to a
good approximation by assuming (36) to be
valid throughout. Then the normalization in-
tegral becomes

fuozdr = c"’f e rdr=c*/2a=1
0

or uo=(2a)%ee",

U o a\teer
(r)‘(z;r)%r—(zw) r

(44b)

(44c)
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independent of the form of the potential J(7).

In (41c) we have derived the exact normaliza-
tion factor for the special case of a rectangular
hole potential. It differs from that in (44c) by a
factor

(Vo—‘e)i eaa L Otear. (44
————=14+3}ae—0(aa)

Vo 7 (1+aa) ?

(¢/ Vo would be of the order (aa)?.) Thus (44c)
corresponds to putting the range of the forces
equal to zero.

§13. EXCITED STATES OF THE DEUTERON

It can easily be shown that no stable excited
states of the deuteron exist, if we disregard the
spin and make the same assumptions about the
forces as in the preceding section, wiz., strong
forces acting only over a limited range a. For
simplicity, we choose the rectangular hole as
representing the potential.

The following excited states might a priori be expected :
p states (I=1), d states (I=2), etc., or higher s states
=0).

(a) p states: In the Majorana theory there would be
repulsion between proton and neutron, if the angular
momentum of their relative motion is /=1 (cf. 32). For
Wigner forces, and for Heisenberg forces in the case of
antiparallel spins of the two particles, the forces are
attractive. Thus in the Majorana theory which we have
accepted, stable p states of the deuteron are entirely im-
possible. But even in the Wigner theory their impossibility
can be concluded from the known binding energy of the
ground state. We have the wave equation for p states

duy 2 _ﬂ{ (—=Voteu, forr<a,

dr? _r_’ul___h’ €ty for r>a, )
with the solution
u1=b(M—cos kr)
kr
with k=M¥V,—e)i/h, r<a,
. (45a)
Uy =ce = (14+1/ar) with a=(Melt/h, r>a.

We equate the expressions for #;’/ui, obtained from these
two expressions, for r=a:

, (cos ka)/ka+sin ka[1— (ka)~2]

v (sin ka)/ka—cos ka

14 (a0) "+ (aa) 2,
1+ (aa)™
Now we certainly find the minimum V, necessary to give

a bound p state, by putting the binding energy ¢=0 and
therefore a=0. When doing so, the right-hand side of

(45b)
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(45b) becomes —1/a. Therefore putting ka=x, we must
have:

(45¢c)
(45d)

cos x+sin x(x—1/x) = — (sin x/x—~cos x);

Voa? = n?h2/ M.

ka=x=m;

This value is irreconcilable with our previous conclusion
(cf. (40)) that V,a? is only slightly larger than (#2/4)2/ M,
which followed from the fact that V, is large compared to
the binding energy of the deuteron. (From the theory of
the a-particle, a value Voa? of about 442/ M can be deduced,
§21.) We therefore have to conclude that there is no stable
p state of the deuteron even if we assume Wigner forces.

(b) d states. For Wigner forces, s, p and d states form a
monotonous sequence with increasing ‘‘centrifugal force”
1(141)/r2. Therefore, if p states do not exist for Wigner
forces, this is a fortiori true for d states. Since the Majorana
and Wigner equations are identical for d states (/=2),
there is no stable d state in the case of Majorana forces
either.

(c) Higher s states. From (39) it follows that one stable
s state may be found for M*¥(Vo—e)¥a/h between 7/2 and
m, another for M*(Vo—e)la/h between 37/2 and 2, etc.
If the second bound s state is to exist, we must certainly
have

(MVo)ta/h>3w/2; Vear>On2/4)R2/M,  (45e)

which is again impossible for the same reason as excited
p states.

Therefore no excited states of the deuteron exist
which differ from the ground state with respect to
orbital motion.

However, we should expect to find a second
state of the deuteron which differs from the
ground state with respect to the total spin. In the
ground state the spin of the deuteron is 1 unit,
i.e., the spins of proton and neutron are parallel.
We should expect another state with antiparallel
spins of the two particles and therefore total spin
s=0. This second state would be a singlet state in
spectroscopic nomenclature (nondegenerate state,
statistical weight 1), while the ground state is a
triplet state (triply degenerate because of three
possible orientations of the deuteron spin in an
external magnetic field).

If we assume the pure Majorana interaction, the
energies of singlet and triplet state are, in first approxima-
tion, equal. Their difference arises only from the magnetic
interaction between the two spins. We assume the classical
interaction between the magnetic moments

W = pnpp[ (000 )2 — 3(0,1) (0,1) Jr 75, (46)

where p, and p, are the magnetic moments of neutron and
proton, @, and @, the respective spin operators and r the
relative coordinate of the proton with respect to the
neutron. We may write explicitly
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W=pupplon0p:r3(1—3 cos? §)+---]. (46a)

The diagonal matrix element of W with respect to an s
state vanishes because of the dependence of W upon the
angular coordinates 6, ¢ of the point r. The splitting $E
of an s state due to the magnetic spin interaction is there-
fore a second-order effect. By the ordinary Schrodinger
perturbation theory it can be shown that the order of
magnitude of the splitting is about
SE~W2(a)/ Ve (46¢)

where W(a) is some average value of the magnetic inter-
action if the particles are a distance a apart, viz.,

W(a) = pnppa3=2.9-2.0(eh/2Mc)%a 3 =1.5(h/ Mca)?e?/a.

With #/Mc=0.21-10"3, ¢=10"1% and e?/mc?=2.80-10"18
(m=electron mass), we have

W(a)=1.5me? (0.21)2-2.80=0.10 MV,  (46d)
Vo=n%?/4 Ma?=100 MV,
$E =100 volts. (46¢)

Actually, the range of the forces is rather larger than
1:10"8 cm which would make §E even smaller.

We should therefore expect an energy differ-
ence of the order of 100 volts between the singlet
and triplet state of a deuteron, if we assume it
to be due only to magnetic interaction between
the spins, and if we use the classical formula for
this interaction. Experimentally, there is strong
reason to believe that the singlet state lies about
2 million volts higher than the triplet state (§14).
This can apparently not be explained by mag-
netic interaction. We may, however, assume that
the nuclear forces themselves depend to a certain
extent upon the relative spin directions of the
interacting proton and neutron. In other words,
we assume that small Heisenberg forces exist, after
all, besides the principal forces of the Majorana
type.

If J(r) is the “Majorana’’ potential and K(r)
the ‘‘Heisenberg” potential, we have then, ac-
cording to (30)

#/M)AU()+EU() = () =K () U(-1), (47)

where the upper sign holds for a triplet, the
lower for a singlet state. To explain that the
triplet state of the deuteron lies lower than the
singlet state, we have to assume that K is
negative as well as J. The magnitude of K may
be determined by assuming that K is represented
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by a rectangular hole of the same width as J,
such that

K(r)=-V, for r<a,
K(r)=0 for r>a. (47a)
Then we have, analogous to (39)
cot [M¥(Vo+Vi—e)la/h]
= —(e;/Vo— Vi—e)} (triplet state), (47b)

cot [M¥(Vo—Vi—e)la/h]

=—(&/ Vot Vi—e)}
To deduce the numerical value of Vi, we use
the result of the scattering experiments (§14)
that ¢ is very nearly zero, vi2., ¢,~40,000 volts.
Therefore we may neglect ¢ entirely compared
to ¢, (2.15 MV). Then we have, in analogy to
(39b)

Vo— Vi=(n2/4)(h*/ Ma?),

Vot Vi= (x2/4)h?/ Ma2+2¢.} (b Ma?)}

or Vi=(ei/ Ma®)t= (2/7)(Voe)d

(singlet state).

(47¢)

(48)

Since the most probable value for Vo is about
30 MV (§21) and e=2.15 MV, we have

Vi~5 MV. (48a)

The magnitude of the Heisenberg force is of the
order of the geometric mean between the
Majorana potential and the deuteron binding
energy.

§14. SCATTERING OF NEUTRONS BY PROTONS. I:
Cross SectioN (W13, B18, M8, T1)

Closely related to the deuteron problem is the
scattering of neutrons by protons. Here again
we have just two interacting particles, one
proton and one neutron, the only difference
being that the system has positive energy E.
Since all our calculations refer to the relative
motion of the two particles, E is the kinetic
energy of the two particles in a coordinate
system in which the center of gravity of the
particles is at rest (C system). If v is the relative
velocity of the particles, $v will be the velocity
of each particle in the C system, and therefore

E=1M. (49)
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In general, the experimental arrangement will be such that
neutrons of a given velocity v are shot against protons at
rest. The kinetic energy of the neutrons in a coordinate
system which is at rest (R system) is then

E)=}Mv*=2E. (49a)

The velocity of the center of gravity in the R system is jv.
In the scattering process, the neutron may be deflected
by an angle @ in the C system. Then its velocity component
in its original direction of motion will be v cos 6 in the C
system, or 3v(1+cos 6) in the R system. The velocity of
the proton in the C system must be opposite and equal to
that of the neutron, it has therefore the components
—3jvcos 6, jvsin @ parallel and perpendicular to the
direction of motion of the incident neutron, respectively.
The velocity of the proton in the R system has therefore

the components »
v}’ =3v(1—cos 60) =v sin? 16,

vy =4}v sin § =v sin 40 cos 3. (49b)

The angle between the motion of the proton after collision
and that of the neutron before collision is therefore given by

(49c)

If the neutron suffers a small deflection 6, the proton goes
off at right angles. A proton emitted in the direction of the
incident neutron corresponds to a reversal of the motion
of the neutron in the C system (6=180°). The energy of
the recoil proton is

e=3r—13}0.

E'=3}Mv"* =3 Mv? sin? 10=E, cos? ¢; (49d)
therefore the energy of the neutron after collision
E"=E,sin? ¢. (49)

In a head-on collision (¢=0° 6=180°) all the energy is
transferred to the proton. In a soft collision (¢=90°
6~0°) practically no energy is lost by the neutron.

The wave function of two particles interacting
with a central force can always be expanded in a
series of spherical harmonics, iz :

U(r)= Zl‘,cl[u;(r)/r]Pz(cos 0). (50)

We choose the direction of motion of the incident
neutron as axis of our polar coordinate system.
The wave function representing the scattering
of the two particles will obviously have axial
symmetry round that direction, therefore (50)
contains only the ordinary Legendre polynomials
Py(8), not any associated functions P,,(6)e¢
The radial functions %; satisfy the equation

h’(d%, 1(0+1)
M\ dr* 7

uz) +(E—(=1)J(r))u;=0 (32)

if the Majorana theory is accepted.
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Asymptotically for large 7, we may negléct
the terms I(!+41)/7% and J(r) in (32) so that the
solution of (32) is

wi=c sin (kr —}lr+8;) (51)
with k=(ME)}/h=Mv/2h=(3ME\)}/h. (52)

The ‘“‘phase” §; is a constant which has to be
determined by integration of (32). If J(r)=0,
i.e., if no force acts between the two particles,
all §;’s turn out to be zero. The knowledge of
the &;'s is sufficient to determine the scattering
cross section for a given angle 8 (cf. Mott and
Massey, Atomic Collisions, p. 24), viz.:

do=(r/2k%)| ZlZ(Zl+ DPy(6)(e2®—1)[?

Xsin 6d8. (53)

The cross section do is defined as the number of
neutrons scattered per unit time through an
angle between 6 and §+d9, if there is one neutron
crossing unit area per unit time in the incident
beam.

We know (§9, §12) that the forces between
proton and neutron are restricted to a very
small range a of the order of 2-10~1% cm. This is
considerably less than the wave-length of all
neutrons which have been used for scattering
experiments: The fastest neutrons thus far used
for such experiments have an energy of about
Ey=4 MV. The neutron wave-length X is given
by
a1 2
2r & (AME)}

1.04-10~%
T (3-1.66- 1024 1.59- 10~ Ev)}
9.05- 1013
- (EOMV)}
in the systera where the center of gravity of
neutron and proton is at rest, E™" being the

kinetic energy of the neutron, expressed in MV.
For Ey=4 MV, we have

A=\/2r=4.5.10 1 cm, (54a)
which is more than twice the range of the forces,
q.e.d. (We have purposely calculated X=\/2r
rather than X itself, because X is the quantity
which enters directly into the following con-
siderations about the magnitude of the &;’s.)

cm  (54)
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F16. 5. The wave function of a particle of high angular
momentuny (/=4) in a potential field. The wave function
is concave towards the line U;=0 for 7>, convex and
very small for <7, (The axis U;=0 has been omitted
and sl;ould be the continuation of the beginning of the
curve.

From the fact that a<<X, one can easily deduce that all
phases &; will be small except 8,. To see this, we first prove
that any wave function %; becomes small if 7 is small
compared to the ‘‘classical impact parameter” r;=2Xl
=1h/(3Mv) which is the distance at which particles of the
angular momentum /% and the linear momentum }Myv
would pass each other. (3 =reduced mass.) In quantum
mechanics, 7; marks a ‘change in the behavior of the wave
function %;. For r >7,;, u; has the character of a wave, i.e., it
is concave towards the 7 axis, while «; is convex (has expo-
nential character) for <7, (see Fig. §). This follows imme-
diately from (32). We neglect J(r) which we can do for
r>¢, and therefore certainly for »=IX if /520. Of the re-
maining terms, the term —A2%(J+1)u/Mr? in (32) will be
larger than Eu, if

7 <II+1)h/ME=I1(+1)K2. (54b)

This is certainly fulfilled if » <r;=IX. Neglecting accord-
ingly Eu; and Ju;, we have the differential equation

au/dr—[1(1+1)/r* =0 for r<r=IKX,

w=critt for r<n

(54c)
(54d)

whose solution is

(c a constant). Thus u; decreases rapidly with decreasing
r when r becomes smaller than /X. Since the range a of the
potential energy J(r) is supposed to be small compared to
X, these considerations apply certainly for r=a, if only I
is different from zero; i.e., #;(J540) will be very small in
the region where the force J(r) is acting, which minimizes
the effect of the potential J(r) upon the wave function.
Since §; is a measure of that effect, §; must be small. The
case /=0 is an exception because here the ‘‘critical dis-
tance’” 7; would be zero so that our argument does not
apply. (For the quantitative proof of our argument, see

§15.)

In the scattering cross section (53), only the
term J=0 will therefore be important. From
this result, which is based solely on the fact that
the forces between proton and neutron have a
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very small range a, smaller than the neutron
wave-length X, two important conclusions can
be drawn.

(1) The scattering cross section will be inde-
pendent of the angle 6, in other words, the
scattering will be spherically symmetrical in the C
system, i.e., in the system in which the center of
gravity of neutron and proton is at rest.

(2) The total scattering cross section can be
obtained by calculating only the phase &. We
have, putting all &s in (53) except & equal to
zero,

do=2wk™? sin? §, sin 646 (55)

or for the total cross section
o= JSdo=4rk? sin? . (55a)

We defer the discussion of the angular distri-
bution to §15, and begin with the calculation of
8, starting from our treatment of the ground
state of the deuteron. We know that for the
ground state, i.e., for the energy —e, the slope
of the eigenfunction /=0 is given by (34), viz.:

[(1/uo) (dtto/dr) Jra= —a for E=—e (34)

We show first that this relation still holds approximately
for not too large positive values of E, of the order ¢, what-
ever the forces between neutron and proton may be. To
show this, we write down the wave equation for the wave
functions %¢F and uo™¢:
A2ud® [dri+ (M [B?) (E— J(r))uc® =0,
Qug~¢[drr+ (M /7)) (—e— T (r))ug¢=0.
Multiplying the first equation by ue~¢, the second by u,¥,
and subtracting, we have
‘dzqu duy¢
ar " an
or integrated from 0 to a:

due® dug™¢
Iuo-e — gy E-

(55b)

Uo

- R E g (550)

r=a

M a
o Mg X =_E(E+E)j; wuPuo~dr. (55d)

The expression on the left-hand side vanishes for =0,
because #o~¢ as well as #of vanish as 7 itself for small 7
[cf. the remark after Eq. (33)]. Dividing by %o~¢(a¢)u.®(a),
we obtain therefore

(L8 (L
0¢ A7 Jima

uF dr )oea
M E+e a
T Bug-edr.
7 uug(a)uo_¢<a).ﬁuo U~ ar

The integral on the right-hand side is of the order
a-uf(a)us™%(a). It actually is somewhat smaller because
%o~ and %oF vanish at =0 and their value at r=a is prac-
tically equal to their maximum value (cf. the explicit wave

(56)
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function 38a, for » <a). Therefore we put

j;auagug“dr=yauoE(a)ua“(a). (56a)

For the special case of a rectangular potential hole, y=14,
see below. Inserting the value (34) for duo~¢/u¢"‘dr, we
have then

( 1 du® 67

M
) = —a—-‘yh—f(E-f-e).

u® dr /rea

The right-hand side of (57) reaches the value —2a when
E has the value
, e 1( B \}
E NMa'y—; (Maf)

remembering (37). In the case of a rectangular potential
hole we obtain, using (40) ~nd v=14}:

E'=(a/m)(Vee)t.

(58)

(58a)

-If we assume V=30 MV (§21) and take the observed

value e=2.15 MV, we find £’ =10 MV. For energies EKE’
the value of (1/u0)(duo/dr) will be approximately equal to
—a.

Since E is only one-half of the kinetic energy
E, of the neutron, we may put

(1 /uo)(duo/dr) = —

for all neutron energies E, small compared to
2E’=20 MV, i.e., for all neutron energies thus
far available.

Assuming now (57a) to hold, we can easily
calculate 8. For »>a, J(7) is zero so that

d*uy/dri= — (ME/h*)uo= — k2,
(cf. (52)). Therefore
uy=c sin (kr+ &),

(57a)

(510)

where ¢ is a constant. Joining this solution to
the solution for » <a, we have

[(1/uo)(Auto/dr) Jrma=Fk cot (ka+do)= —a, (59)
which yields
8o=4%w+arc tan (a/k) —ka. (59a)

Now we have assumed throughout this section
that the range of the forces @ is small compared
to X=1/k. Therefore we neglect ka in (59a)
and have

cot b= —a/k. (59b)

Inserting this into (55a), we obtain for the total
cross section

oc=4r/(a®+k?) (60)

or, inserting the values of a and & from (37)
and (52):
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o=4rh*/ M(e+3E,), (61)
or, with e=2.15 MV:
0=2.39-10"2%¢/(e+1E,) cm?. (61a)

This value for the cross section is in fair
agreement with experimental determinations for
fast neutrons, considering the difficulty of the
experiment, which is chiefly that of obtaining a
beam of neutrons of well-defined energy. For
Ey=4.3 MV Chadwick (C6) found a cross
section between 0.5 and 0.8-1072¢ cm? compared
to a theoretical value of 1.2:1072¢; for Ey=2.1
MYV the agreement is better, iz., 1.1 to1.5-10~2¢
experimental and 1.6-1072¢ theoretical.®

However, for slow neutrons our formula fails
completely. The experimental cross section, ob-
served by Dunning, Pegram, Fink and Mitchell*
(D4) is about 35-10~2¢ cm?, i.e., more than 14
times as large as our theoretical cross section
(61a) for E,<e Since the theoretical value
depends only upon the binding energy ¢ and not
upon any details about the force between neutron
and proton, this discrepancy looks at first sight
very serious. This is the more true because our
assumption that the range of the forces is small
compared to the wave-length is much better
fulfilled for slow neutrons than for fast ones.

To solve this difficulty, it has been pointed out
by Wigner (private communication) that the
observed binding energy of the deuteron refers
only to the binding of a proton and a neutron
with parallel spins while nothing can be deduced
from it about the interaction of protons and
neutrons with opposite spins. The binding energy
¢’ of a deuteron in a singlet state, i.e., with the
spins of the two constituent particles antiparallel,
may well be assumed to be very small. This
assumption is sufficient to make the probability
that a slow neutron is scattered by a proton with
opposite spin extremely large, according to (61).

Accepting this explanation, we may use the
experimental value of the cross .section to
determine the binding energy €’ of the deuteron
in the singlet state. The cross section for the
scattering of a neutron by a proton with spin

* Note added in proof: Recent experiments of Amaldi and
Fermi give an even larger cross section, viz. about 80-10724
cm?, The reason for this discrepancy is not clear.

3 Dunning, Pegram, Fink and Mitchell give 1.68-10~2

cm? as the cross section for “fast” neutrons from Be+-«
=C1+47 (mixed velocities).
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parallel to that of the neutron, will be given by
(61) ; the cross section for antiparallel spins will
have the same form, only with ¢’ instead of e.
Now it is just 3 times as probable that the spins
of a given neutron and a given proton are
parallel, as that they are antiparallel.? Therefore
the average cross section for the scattering of
neutrons by protons, averaged over the possible
directions of spin, is

4ni21 1 3 1
ot = (——-——+—— ) (62)
M \4€¢+3E, 4¢+iE,
From the observed cross section for E,=0, viz.,
35-1072¢ cm?, and the known value of ¢=2.15
MV, we can deduce

¢ =40,000 ev. (62a)

The binding energy of the singlet state of the
deuteron must therefore be supposed to be very
small, compared to that of the ground (triplet)
state.

Fig. 6 shows the cross section (62) as a function
of the neutron energy Eo. At high energies, the.
difference between (62) and (61) is hardly
noticeable because the binding energies e and ¢’
can be neglected compared to Eo. This explains
why formula (61) was found to agree with

log or
< {30
420
[
ir -‘IO
3
plog el o o o i
Y Y S
T a2z 054 2 5 0 7'
Eo ds
14
43
{ i L .2
-2 -1 i 2

[¢]
log Eo

F16. 6. Scattering of neutrons by protons. Abscissa:
energy in MV, ordinate: cross section; both on a logarith-
mic scale. Solid curve: actual theoretical cross section.
Dotted curve: cross section, if interaction is independent
of the relative spin direction of the particles.

3 [f the spins are parallel, the total spin of the system
(proton+-neutron) is 1 unit. This total spin can orient
itself in three different ways with respect to a given direc-
tion, e.g., the direction of an external field, the three
orientations corresponding to a spin component +1, 0,
or —1 in the given direction. There are therefore three
possible spin states if the two spins are parallel. In the
case of antiparallel spins, the total spin is 0, and only one
quantum state exists.
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experiments about fast neutrons. At about
Ey=2 MV, the actual cross section (62) will
begin to become considerably larger than the
cross section (61) which we would expect if
singlet and triplet state had the same binding
energy. The cross section then increases rapidly
with decreasing neutron energy, reaching half
the “slow neutron value” for E, about 100,000
volts.

The bearing of the large difference between
the binding energies of singlet and triplet state
of the deuteron, upon the problem of nuclear
forces, has been discussed in §13. At this place,
we want only to point out that it cannot be
inferred from the scattering cross section whether
there actually 4s a stable singlet state of the
deuteron. For the formula (60) for the cross
section contains only a? or rather the correspond-
ing quantity for the singlet state which we may
call 82 We can therefore only infer the magnitude
of B from the scattering but not its sign. Only
for positive B will there be a stable singlet state,
for negative 8 the singlet state would be just
unstable. Which of the two alternatives is true,
does not make much difference for the conclu-
sions about the Heisenberg forces drawn in §13,
because there we needed only to use the fact
that |B8|<e. There will, however, be some
difference in the probability for the capture of
slow neutrons by protons (§17) and that effect
may lead to a decision whether the singlet state
is just stable or just unstable.

Another means to decide the sign of the energy
of the singlet level, and at the same time to
test the whole theory, has been pointed out by
Teller (T1). We have assumed that the intensity
of the scattering of neutrons by protons depends
strongly on their relative spin orientations. This
makes the scattering of slow neutrons by para-
hydrogen molecules quite different from that by
orthohydrogen. In the latter case, both protons
in the molecule have their spins parallel to each
other: Therefore a neutron will either be scat-
tered strongly by both the protons, or weakly
by both of them; in either case, the scattered
intensity will be the same for both protons.
Consequently, there will be strong interference
effects, if the wave-length of the neutrons is of
the same order as the distance of the protons in
the H: molecule, which is actually the case for
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neutrons of about thermal energy. The scattered
neutrons will have an angular distribution
identical to that of x-rays of the same wave-
length scattered by a diatomic molecule.

The scattering by parahydrogen will be quite
different: There we have in each molecule one
proton whose spin is parallel to that of the
incident neutron while the spin of the other
proton is opposite. In first approximation, only
the second proton will scatter so that we get no
interference effects. The presence of interference
in the scattering of neutrons by orthohydrogen
and the absence in the scattering by parahydro-
gen would be a direct test of our assumption
about the dependence of the scattering on the
spin orientation.

Now we consider the case of parahydrogen in
second approximation. There will be some scat-
tering from the proton having its spin parallel
to the neutron. The ratio of the amplitudes of
the waves scattered by the ‘“parallel” and by
the “‘antiparallel” proton is for small energy of
the neutron:

a/B=(/e)t=1/T, (62b)

Now if the singlet state is a real bound state,
the phases of the waves scattered by the two
protons will be the same, whereas they will be
opposite if the singlet state is a virtual state.
In the first case, the amplitude of the neutron
wave scattered by a parahydrogen molecule in
the forward direction (i.e., through a very small
angle) will be 8/7 times that scattered by an
isolated proton having its spin opposite to the
neutron; in the second case, the amplitude will
be only 6/7. The ratio of the scattered intensities
in the two cases will therefore be

Oreal singlet state 8\?
Trealsingletutate (_) ~1.8.
6

Ovirtual state

approximately.

(62c)

On the other hand, if we could observe at such
an angle that the difference in path between the
neutrons scattered by the two protons of the
molecule, is equal to half a wave-length, the
ratio of the scattering intensities would be
reversed. Actually, such an angle cannot be
found because the molecules rotate in space.
The result is that the scattering through large
angles should be almost equal in the two cases
(real and virtual singlet state).
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We must now discuss the accuracy of our formulae.
We have made two neglections which both amount to
assuming the range ¢ of the forces to be zero. On one hand,
we have neglected ka in (59a), on the other hand,
yMa(E+e¢)/h? in (57a). It seems in order, to calculate the
necessary corrections to our formulae by using the simple
rectangular hole potential. We have, then, the following
expressions for the wave function

Y=b sin «kr for r<a, (63)
y=csin (kr+8;) forr>a
with k=MVYVo+E)}/h, k=(ME)}/h. (63a)
Joining at r=a yields '
cot (ka+8) = (x/k) cot xa. (63b)

We now use the fact that for the ground state of the
deuteron (cf. (39) (37))

Ko COt xo2= —a
ko=M¥Vo—e)}/h, a=(Me)t/h.
Expanding in powers of &, we have

k= ko+ (e +k2) / 2x0,
k cOt k@ =Ko cot koa—+ 3(a2+k2)ko™!
X (cot koa— Ko sin~2 koa).

(63c)

with (63d)

(63e)

Now cot ke is very small compared to unity, and can
therefore be neglected in the second term of (63e), while

sin? ko is practically 1. Thus:
k cot ka= —a— }(a2+k%)a. (63f)

By using the definition of « and k, this is identical with
(57), if v in that equation is put equal to 3. Inserting (63f)
into (63b), and expanding the left-hand side, we have

cot o— ka(sin §o) 2= —a/k— (a®+k2)a/2k.  (63g)

In the second term on the left, we may insert for cot 8, the
approximate value ~a/k. Then we find

@ o (a2 +k2)a
cot do= —“k+ka(1 +;‘Z) ——2k—~
a (a+k)a
=— k+ 77 (63h)
ind for the cross section
AT e 2T
T T et 50
4 An(14aa), (631)

TR+ (/) —aa(@ k] R
neglecting higher powers of aa than the first. Thus we see
that the cross section is simply multiplied by a constant
factor 14+aa. In accord with the theory of H3® and Het
(§21) we assume the range a to be about 2:10~13 cm.
With the experimental value 1/a=4.36-10"13 cm, we ob-
tain then 14ae=3/2 for the scattering of neutrons by
protons with parallel spin. For opposite spin, the correction
factor would be only 1+4Ba, where g2=Me'/h2%. With
€' =40,000 volts, this gives

1/8=32-10"8 cm (63k)
and 14-Ba=1.06. The correction is thus small for the larger
part of the cross section.
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For extremely high energies, the expansion in powers of
E/V, is, of course, no longer legitimate. If EX3>V,, we can
expand in powers of Vo/E instead. With

v=(MVo)i/h (64a)

we have then
=k+~2/2k;
k=k+~y?/ . (64b)

(x/k) cot ka=cot ka+ }(v/k)*(cot ka—ka sin~? ka).
Therefore, from (63b):
So=—} sin? ka(y/k)*(cot ka—ka sin™? ka)

= (y/2k)ya(l~sin 2ka/2ka). (64c)

The last term may be neglected for large ka, and vya be
put equal to 7/2, according to (40). Thus we find

o= (m/4)(v/k) = (x/4)(Vo/ E)}; (64d)
wy? wd itV
therefore =7 ;;=% % 'Eg (64)

However, in this case also the contribution of the partial
waves with nonvanishing angular momentum contribute
appreciably to the scattering (§15, end).

§15. SCATTERING OF NEUTRONS BY PROTONS.
II: ANGuLAR DistriBUTION (W12, W9, B18)

We have already shown in the preceding
section that the angular distribution of the
neutrons scattered by protons should be practi-
cally spherically symmetrical in a coordinate
system in which the center of gravity of the two
particles is at rest. We shall now discuss the
deviations from spherical symmetry. To do this,
we have to calculate the phases §; in the
scattering formula (53), for /0.

Since we know already these phases to be small, we may
calculate them by a perturbation method. We do this for
the particular case /=1. Let v; denote the wave function
for /=1 in the case of vanishing potential energy J(r),
i.e., the solution of the equation

h?

M
Multiplying (65) by #,, i.e., the wave function for non-
vanishing J, and the Eq. (32) for /=1 by v and sub-
tracting, we have

d*uy d%v,
VU=
dr? dr?

v, 2
(M_;z,,, +Eu, =0, (65)

dr?

M
- h’;](f)%ﬂh. (653.)
We integrate from zero to a very large radius R, remember-
ing that at the lower limit # =0 both the functions #, and v,
vanish (cf. (55d)), and divide by %, (R)v,(R):

R
(L @ _ (L 11/_1) - _%.f; ](f)uﬂ/ldf' (65b)
u, dr) g \vy dr/oap B w(R)ni(R)
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Now at large distances %, as well as v; behave like sine

waves; we put (cf. 51)

) vy=sin (kr— }r) = —cos kr,
#y=—cos (kr+3).

The amplitudes have been assumed unity in both cases,

which can always be achieved by suitable normalization

of #; and v;. We apply (65b) to a point where v; has one
of its maxima, i.e., kR is a multiple of 27. Then

[(1/41) (dur/dr)],—r = — & tan (kR+8) = —k tan §;

(65¢)

S5
[(1/v1)(d:/dr) Trer =0; mivi=1. (65d)
Then from (65b)
tan 6=Mh“2k‘1j;'z](r)uw.dr. (66)

The potential J is only large for » <a. In that region we
know, however, the wave functions #; and »; to be small
[cf. the discussion following Eq. (54)]. This shows that &
must be small. A quantitative estimate may be obtained
by putting #; in the integral equal to #;. The latter func-
tion, i.e., the solution of the wave equation (65) for a free
particle with unit angular momentum, is well known. It is:

vy = —cos kr+sin kr/kr. (66a)

For k<1 we find by expansion:
vy = 3 (k)2 (66b)

Inserting this into (66), we have
b= (1/9) I8 [T (1)rdr. (66e)

The integral can be estimated with the help of Eq. (37c)
which is based upon the fact that a stable state of the
deuteron with comparatively low binding energy exists.
We may estimate

jo‘aJ(r)r‘dr = %ya“j;a](r)rdr =—3ua*h?/M,  (66d)

where u is a constant of the order of magnitude unity.
For the particular case of a rectangular hole potential,
# may be determined by explicit solution of the wave
equation, it turns out to be

12y 3614
u=6(1+;;) e Rt (660)
Inserting (66d) into (66¢) we find
8= —(1/18)u(ka)s. (67)

8, is therefore very small compared to unity, as
long as the wave-length 1/% of the neutron is
large compared to the range of the forces q, i.e.,
as long as the neutron energy is small compared
to the depth V, of the potential hole (cf. (40),
(52)). This is true for any neutrons thus far
available since V) is of the order 30 MV. The
higher §,’s (for 1>1) are, of course, even smaller
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than 6;. A calculation similar to the above yields

(=1
wi(ka)tH

6[5——m‘_—_ (673.)
1232 . (2041)

with u; a constant rather smaller than unity.

In calculating the angular distribution of
scattered neutrons for available velocities, we
may therefore neglect the contributions of all I’s
larger than one, and also neglect 82 Then we
find from (53)

do = (m/2k%) | cos 28— 11 sin 25
+ 648, cos 6|2 sin 646

= (m/2k?)(4 sin? §o
~+1246; sin 248, cos 0) sin 6d0,

do= (27 /k?) sin? §,(14-68; cot & cos 0) sin 620.

(68)

The parenthesis determines the deviation of the
scattering from spherical symmetry. According
to (67), & is negative. Thus we shall find the
scattering backwards (6>90°) greater than the
scattering forwards (0<90°) provided cot & is
positive. If cot § is negative, the reverse will be
the case. Now cot § has been calculated in
(63h). It is obviously negative for small neutron
energies, and positive for high energies. Cot §
vanishes when

a?+k*=2a/a, (69)

or, introducing energies according to (37), (40),
(52)3

LE S e=2(eli2/ Ma?)t = (4/7) (e Vo)L

If neutron and proton have parallel spin, we

have to insert e=2.15 MV, and V, about 30 MV,
so that

(69a)

EL=20 MV.

For opposite spins, the asymmetry is negligible.
Neutrons of energy less than about 20 MV have,
therefore, to be considered as “slow’ as regards
the sign of the deviation from spherically
symmetrical scattering.

To calculate the deviation from spherical
symmetry explicitly, we have to add the cross
sections for parallel and antiparallel spin. From
(60), (62), (68) and (63h) we have

(69b)

3 We introduce the actual kinetic energy Eo of the
neutron, rather than the kinetic energy in the system where
the center of gravity of neutron and proton is at rest.
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3 27 66, cos 6
do=" (1____
4 k2+o? k

X[a—%a(a2+k2)]) sin 0d6

1 2r 66, cos 0

(1
4 242 k

X[ﬁ—%a(ﬂ%kﬂ)]) sin 6d9. (70)

Inserting &, from (67), we find that the asym-
metry can only be appreciable for comparatively
high energies. We therefore neglect'in (70) terms
of the relative order (a/k)% Neglecting also B
compared to oy, we find that the relative asym-
metry

A=[0(0=0)—c(0=n)]/c(6=3%x) (70a)
has a maximum for

k= (3a/4a)(1 — taa) (70b)

corresponding to an energy of about 3 MV.
For this energy, the asymmetry becomes

9 S
Amx=——n(aa)’(1 ——aa) =0.85 percent (71)
48 3

if we put ¢=2-10"13 cm and 1/a=4.4-10"1% cm.
The asymmetry of scattering should therefore,
even at the maximum, not exceed the minute
amount of one percent. Such a small asymmetry
is, with the present methods, quite unobservable.

An appreciable asymmetry in the scattering
should only be found for neutron energies higher
than 20 MV (cf. (69b)), which are at present
unavailable. These high energy neutrons should
preferentially be scattered backwards by protons
(cf. Eq. (68)), quite in contrast to other scatter-
ing processes. This unusual behavior is due to
the exchange type of the forces between neutron
and proton. The scattering process can be
interpreted by saying that the incident particle
actually is only deflected by a small angle but
has, in the process of scattering, changed roles
vith the scattering particle so that it goes off as
a proton if it was a neutron before the collision.

It was first pointed out by Wick that by
observing the asymmetry of the scattering of
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neutrons by protons, one could decide whether
the forces between the particles are of the
“ordinary’” or the ‘exchange” type; e.g., at
high energies one would expect to find the
neutrons to be scattered preferentially in the
forward direction, if ordinary forces act, while
we have seen that they are scattered preferen-
tially backwards by exchange forces. At low
energies, the reverse would be true, because of
the negative sign of cot & in (68). Unfortunately,
the asymmetry of the scattering should be much
too small for the available neutron energies to
allow any decision about the forces.

Our main result is thus that the scattering of
neutrons by protons should, theoretically, be
spherically symmetrical in the coordinate system,
in which the center of gravity of neutron and
proton is at rest. In the ‘“‘ordinary” coordinate
system, in which the proton is initially at rest,
the distribution should be

(72)

i.e., the number of scattered protons per unit
solid angle sin ¢d¢ should have a flat maximum
in the forward direction ¢=0. The experimental
results are highly contradictory. While Chadwick
(C6), Monod-Herzen (M15), Kurie (K15) and
Barton, Mueller and Lampson (unpublished3*
preliminary results in photographic emulsion)
found spherical symmetry within the limits of
their experimental error in accord with theory,
Harkins, Gans, Kamen and Newson (H3) found
many more protons at small angles ¢ with
respect to the incident neutron, than at large
angles. This would mean that large deflections
6 of the neutrons are much more probable than
small ones. This is quite irreconcilable with our
considerations. Thus far, the possible experi-
mental error is still very large. Should, however,
the deviation from spherical symmetry as ob-
served by Harkins and others, be confirmed by
more extensive experiments, it would make our
assumption about the short range of the forces
between neutron and proton quite untenable.
There would then arise a very grave difficulty
in how to explain the large mass defect of the

do=const-sin 6d6 =2 const-sin ¢ cos ¢do,

a-particle as compared to the deuteron.

# We are indebted to Mr. Mueller for communicating
to us these preliminary results, based on the observation
of 105 tracks.



122

Before concluding this section, we want to
calculate the cross section for very high neutron
energies, > V. In this case, we may apply
Born's approximate method for calculating the
scattering cross section which gives

do=(3M)*/2xht
NS U@ T()U(~1)dr|*sin 646, (73)

where U(r) and U’(r) are the wave functions of
incident and scattered neutron, in zero approxi-
mation. It should be noted that U(—r) enters
rather than U(r) because of the exchange nature
of the forces. Denoting the wave vectors of
incident and scattered neutron by k and k’, we
have

U(r)=ei®n,  U'(x)=eik"n),
do=(M2/8xh*) | S J(r)e=1%+k)5d 7|2 sin 640, (73a)

We assume J(r) to depend exponentially?s upon
7, V12, .
J(r)=—Voerla

and obtain by an elementary calculation
2r M2V sin 646
We consider now that (cf. Table II)
(k+k')>=2k*(1+4-cos 6), 2h%*/M=E,,
Vo=Ah?*/Ma?, where A=+ 8.

We have, except for very small values of 1-+cos 8
(of the order Vo/Ey):

do =~ (m/4)a*(Vy/Eo)*(14-cos 6)~*sin 648, (74)

or, using the angle ¢ between the recoil proton
and the incident neutron (¢=%(r—9))

do=(m/64)a*(Vo/E,)*sin~® ¢ cos ¢ sin pde. (74a)

The total cross section is, neglecting higher
powers of Vy/E,:

(73b)

(73c)

(73d)

T (MVoa*\?* wd4? 167 K
(=) = (74b)

T\ m /3 3 ME,
For neutrons of 10° volts energy, this gives a
cross section of 0.68-10-% cm? which is rather
large.

3 The rectangular potential hole gives for do an expres-
sion which is a rapidly oscillating function of (k+k’).
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It was first pointed out by Bhabha (B19) that
the collisions between protons and neutrons of
very high energy have an important application
for cosmic rays. Suppose there are protons of
about 10° volt energy in cosmic rays. Such
protons have a fair chance of knocking a neutron
out of a nucleus they encounter. This neutron
would, due to the exchange character of the
forces, carry away almost all the energy of the
proton. The cross section for the occurrence of
this process in a collision between a proton and,
say, a nitrogen nucleus, may safely be assumed
to be 7 times the cross section for a proton and a
free neutron, because the nuclear binding ener-
gies are small compared to the kinetic energy of
the proton. The cross section becomes thus 3+ 10~28
cm? for N which means that the process should
happen about once per 5 meter water equivalent
of the atmosphere. Cosmic-ray protons would in
this way ‘“become’” neutrons after traversing a
comparatively small amount of air, and become
protons again after going through more air. An
incident proton radiation would therefore be
about half protons half neutrons when reaching
sea level. Moreover, the thickness of matter
required to stop protons of a given energy, would
be doubled by this process, since neutrons suffer
no appreciable energy losses.

§16. PHOTOELECTRIC DISINTEGRATION OF THE
DeureroN (C7, C8, B16, F8, H1)

Chadwick and Goldhaber (C7, C8) have ob-
served that the deuteron can be disintegrated
into a neutron and a proton by the y-rays from
Th C’, of energy hv=2.62 MV. This experiment,
besides being of high interest in itself, gives at the
same time the most exact determination of the
binding energy of the deuteron. For this purpose,
Chadwick and Goldhaber have determined the
number of ions formed by the proton which is
produced in the disintegration. This number
turns out to be about 7200, with an accuracy of,
say, =20 percent. The average energy spent by
the proton in producing one ion in air is cer-
tainly close to 33 volts, which figure holds for the
ionization by a-particles as well as electrons. The
kinetic energy of the proton is therefore 33-7200
= 240,000 volts=+20 percent. The neutron formed
in the disintegration must, because of momentum
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conservation, receive the same energy and go off
in the opposite direction from the proton, since
the momentum of the y-ray quantum is negligible
compared to that of neutron and proton.*® The
kinetic energy of neutron plus proton is thus
2-0.24 MV=0.48 MV, with an accuracy of £20
percent=+£0.10 MV.* Therefore the binding
energy of the deuteron is

€=2.62—0.48+:0.10=2.14£0.10 MV  (75)

a value which we have made use of repeatedly.

From this binding energy, we can also de-
termine the mass of the neutron, since the masses
of both deuteron and proton are known from
Bainbridge’s mass-spectroscopic determinations.
Choosing the values suggested by Bethe (B13),
we have

H?=2.014234-0.0002,
H!'=1.00807,

e=(2.1440.10)/931
=0.00230+0.00010 mass unit,

n'=H?+4e—H'=1.008464-0.0002.

(75a)

The mass of the neutron thus turns out to be
0.00039 mass units=0.3620.20 MV larger than
that of the hydrogen atom. This result is only
based upon the ratio of the atomic weights of
heavy and light hydrogen, as determined by
Bainbridge (BS); it is independent of the abso-
lute value of the atomic weight of, say, deuterium
compared to oxygen. An error in e as large as 0.36
MYV can almost certainly be excluded; thus the
only error which could materially influence the

3% A simple momentum consideration shows that the
energy of the proton should vary from 0.21 MV, if it is
emitted in the direction opposite to the incident y-ray, to
0.27 MV in the forward direction, 0.24 MV being assumed
as the average proton energy.

* Note added in proof: Feather (Nature 136, 467 (1935))
measured the range of the protons and deduced from it a
kinetic energy of 0.18 MV for the protons. The range-
energy relation in present use is likely to give too low
values for the energy (Chapter XV) so that the correct
energy may be about 0.20 MV. This would raise e to
2.22 MV, raise the weight of the neutron to 1.00855, lower
1/a (cf. 44a) to 4.29-1071% cm, lower the numerical factor
in (61a) to 2.31-1072 and the factor in (80) to 1.12-10~26,
Furthermore, in (80b) y—1 should be 0.178 and o
=5.3:10"% cm?, in perfect agreement with the observed
value 5-10728 cm?. However, the finite range of the forces
(paragraph below (80b)) and the addition of the photo-
magnetic effect (81) would again raise the theoretical cross
section for the disintegration of the deuteron to nearly
twice the experimental value, which is just within experi-
mental error.
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difference between the atomic weights of neutron
and proton would be an error in Bainbridge mass
determinations which would have to be much
larger than the probable error deduced from the
internal consistency of his results.?” At present, it
seems more likely that the result (75a) is correct
i.e.,, that the neutron is really considerably
heavier than the hydrogen atom. A free neutron
must then disintegrate spontaneously into a
proton plus an electron (§43), the lifetime being
about a month.

Returning to the disintegration of the deuteron
by v-rays, it is obvious that this effect is closely
analogous to the photoelectric effect in atoms.
The electric field of the y-ray produces an optical
transition of the deuteron from the ground state
to a state of positive energy

E=hyv—e,

(76)

E being the sum of the kinetic energies of proton
and neutron produced in the process. The cross
section for the photoelectric effect is given by the
well-known formula

o=8n%| Mor|%/c, ()]
where M,z is the matrix element of the electric
moment of the deuteron relative to its center of
gravity and in the direction of polarization of the
y-ray, the matrix element referring to the transi-
tion from the ground state to the state of energy
E. (The transition can also be produced by a
magnetic moment, this ‘“magnetic dipole’ photo-
electric effect is, however, small compared to the
‘‘electric dipole” effect discussed here, except for
very low energies E. Cf. the end of this §, and
§17.) Since only the proton has a charge e, and
since its coordinate relative to the center of
gravity of the deuteron is }r, we have

Mypt=13%e S UpzUgdr (77a)

if the y-ray is polarized in the z direction. Here U,
is the wave function of the ground state, as given
in (44c), and Ug is the wave function of the final
state, normalized per unit energy.

From the familiar selection rule for the angular

37 With Aston's recent ‘‘preliminary” determination of
the mass ratio D : H (AS), the neutron mass would come
out as high as 1.0090, i.e., 0.9 MV larger than that of the
hydrogen atom.



124 H. A.
momentum we infer that the final state Ur must
have the angular momentum /=1, i.e., in spectro-
scopic notation, it must be a P state.?® We know,
however, from the discussion in §13 and §15 that
P states are practically uninfluenced by the force
between neutron and proton, provided the range
of the force a is small compared to the wave-
length X=7%/(ME)? corresponding to the state E.
This condition is well fulfilled for our case
(E=0.5 MV, x=9-10"1 cm=4a). Therefore the
wave function for our P state will have the same
form as if the neutron and proton were free, viz. :

Usz=(3/4x)} cos 0(2/x)}dk/dE)}

Xr71(— cos kr—- sin kr/kr). (77b)

Here (3/47)%cos 0 represents the (normalized)
first spherical harmonic. The bracket is the radial
wave function as given in (66a), while the factor
1/r has been introduced in (50). The factor
(2/m)} normalizes the radial wave function “per
unit wave number dk’’* while the factor

(dk/dE)}= (M/2h%k)} (77c)

transforms to normalization per unit energy. We
rewrite (77b):

Upm O(M)! L Re [eir(—i—kn)], (17d)
=—-cos 0{ — ) — Re [e*"(—i—kr)],
ok v/ e

“Re” denoting the real part. We assume the axis
of our polar coordinate system to be parallel z,
so that

g=17 cos 0.

(77€)

Furthermore, we use the fact the wave function
of the ground state is, for the larger part of the
space, represented by (44c). Then we obtain
from (77a)

@ )*h( ) f47r73dr cos? 0—
™

XRe [(—1—kr)e-artik],

Mop'=}e

(78)

cos? 6 is the average of cos? § over all directions in
space, v2., 3. We carry out the integration :

38 More accurately, we may say it to be a 3P state, since
the spin remains unchanged in the photoelectric transition,
and since the ground state is a triplet state.

( 3:8()3 , e.g., Handbuch der Physik, Vol. 24, p. 292, Eq.
4
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Mast'= (6:) m(%[) i
(6:)*7;( )(a2+k2 (az;::)z)

(37) ie (a4

Inserting this into (77), we find for the cross
section

(78a)

8w 2mv M  ak®
= —— (78b)
ﬁz (a2+k2)4
Here we use (76):
hw=2rhv=E+e=h*(a®+k2)/M (78c)
and express a and k in terms of ¢ and E (cf.
(37), (52)):
81r e? B2 Bl

3 e M (E+e)S

(79

Introducing the ratio of the energy of the y-ray

to the binding energy of the deuteron, viz.,

v=hv/e=(E+e)/e (79a)
we have, using (44a)
8r 1 1 (y—1)}
T3
=1.16-10"26(y—1)}y~3 cm?.  (80)

This cross section vanishes for y=1, i.e., if the
energy of the y-ray is just sufficient to produce
disintegration. ¢ then increases slowly with in-
creasing y-ray energy, and reaches a maximum
for y=2, i.e., when the kinetic energy of the
disintegration products E is just as large as the
binding energy ¢ of the deuteron. This maximum
is, according to (80),

Omax = 14.5-10728 cm2. (80a)

For still more energetic vy-rays, the cross section
decreases again.
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For the y-rays of Th C’, we have (see above)
E=0.48 MV, therefore

y—1=E/e=0.224
¢=6.7-10-% cm2. (80b)

The experiments of Chadwick and Goldhaber
give a cross section of 51072 cm? with an un-
certainty of a factor of 2 in either direction. The
agreement between theory and experiment is
therefore satisfactory. .

It must again be emphasized that the theo-
retical formula contains no assumptions except
our usual one that the range of the forces between
neutron and proton is small compared to the
radius of the deuteron. The error introduced by
this assumption is mainly due to the normalizing
factor of the eigenfunction of the ground state,
which should, according to (44d), be multiplied
by the factor 1+3% aa, giving a factor 14+aa=~1.4
to the cross section (cf. H1). (The correction
necessary in the calculation of the matrix element
Mg itself, apart from the change in normaliza-
tion, is very small because the contribution of the
region 7 <a, for which the expressions (44c) and
(77d) fail to hold, to the matrix element is only
of the relative order of magnitude (ka)? ie.,
about 1 percent.) The theoretical cross section
should thus be somewhat greater than (20).

Furthermore, we have neglected the possible
‘“‘photomagnetic” effect, i.e., the transition due
to the magnetic dipole moment (F8). In the
following §, we shall calculate the corresponding
dipole moment Mygme#» (cf. 34). The ratio is
(cf. 78a, 37, 52, 78c, 94)

and

llMoEmagn)Z
T=—
3 MOEel
(o —n)? (E+9)* ()2 -
4 E+¢ EMe

The factor } arises from the fact that each of the
three magnetic substates of the ground state of
the deuteron may be disintegrated by a vy-ray of
given polarization in the photoelectric effect
while only one of the three substates may be
disintegrated photomagnetically (cf. the remarks
after (92b)). For p,—p,=4.9 (cf. §5); E=0.48,
e=2.14, ¢=0.040 and Mc*=931 MV, (81) gives
0.31 or 0.56, according to whether the negative or
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the positive sign holds. (The negative sign stands
if there is a stable singlet state of the deuteron, cf..
§13, §15, §17; the positive sign if there is no such
state.) For Th C’ y-rays, we should therefore add
about 31 percent (or 56 percent) to the cross
section (80b) for the photoelectric disintegration.
For y-rays of smaller energy which are just
capable of producing disintegration, the ratio (81)
would be higher, becoming r=1 for E.= 210,000
or 300,000 volts respectively, according to the
sign standing in (81). If the disintegration
products get less energy than E,, the magnetic
effect will predominate and will cause the cross
section to tend less rapidly to zero with decreas-
ing energy E. The complete formula for the
photoelectric cross section, including electric and
magnetic effect, is

87 e* Kty &E}

"7 he M\ (Etep

(kp—pn)?  Eded(exet)?
} ), (81a)
4 (E4¢)(E+€)Mc?

the minus and plus sign standing according to
whether a stable singlet state of the deuteron
exists or not.

The most important influence of the ‘‘photo-
magnetic”’ effect is that upon the angular distri-
bution of the protons and neutrons produced in
the disintegration of the deuteron. As we have
seen, the photoelectric effect leads to a P state in
the continuous spectrum, more exactly to that P
state which has no angular momentum around
the direction of polarization of the incident
y-ray. In this case, the number of protons (or
neutrons) emitted per unit solid angle should be
proportional to cos? §, 6 being the angle between
the direction of the proton and the polarization
of the y-ray. Averaging over the directions of
polarization of the y-ray, we obtain a distribution
proportional to sin?®, where © is the angle
between the direction of propagation of the y-ray
and the motion of the proton.

On the other hand, the magnetic effect leads
(cf. §17) to a 1S state in the continuous spectrum
of the deuteron, i.e., to a uniform angular distri-
bution of the protons. If 7 is the ratio of prob-
abilities of magnetic to electric effect, we shall
therefore expect the number of protons emitted
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into the solid angle sin ®d0 to be proportional to
¢(0) sin OdO= (sin? O+37) sin BdO. (82)

The magnetic effect can therefore be verified by
observing the number of protons (or neutrons)
projected in the direction of propagation of the
y-ray. This number should vanish if the magnetic
effect were absent. By actually measuring the
number in the forward direction (©=0) as well as
perpendicularly to the y-ray (©=90°) one might
determine the coefficient 7 quantitatively. Insert-
ing 7 into (81), one might then decide which sign
in (81) corresponds to reality, in other words,
whether a stable singlet state of the deuteron
exists ot not.

The disintegration of the deuteron can also be
brought about by electron bombardment of
deuterium. It can be shown (B16) that the
electric field of an electron is approximately as
effective as 1/137 of a light quantum. If the
electron energy W is large compared to the bind-
ing energy e of the deuteron, the cross section is
(B16, Eq. (28))

2
( ) (log ————1 432)
3a2 o2

2

(83)

=2.1. 10"29(]og — 1.432) cm?, (83a)

emc?

where m is the electron mass and log denotes the
natural logarithm. It seems not impossible to
observe this effect. In fact, the disintegration of
the beryllium nucleus was first carried out by
electron bombardment (B21). However, it must
be borne in mind that fast electrons produce a
great number of x-rays (continuous x-ray spec-
trum). These secondary x-rays may be more
effective in producing nuclear disintegrations
than the primary electrons.

The scattering of light by a deuteron has been
calculated (B16). It is found to be smaller than
that by a free proton and is thus hardly ob-
servable.

§17. CAPTURE OF NEUTRONS BY PROTONS
(F8, W3, D4)

Neutrons may be captured by protons with the
emission of a y-ray which carries away the
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surplus energy
hv=E+e= (76a)

[Eo=kinetic energy of the neutron in the
“ordinary’’ coordinate system (R system of §14),
E=kinetic energy in the system in which the
center of gravity of neutron and proton is at rest
(C system of §14).7] This process is the inverse of
the photoelectric disintegration discussed in the
preceding section, and the probabilities of the two
processes are therefore connected by thermo-
dynamic relations.

In each of the two processes we have in the
initial state an incident particle which is in one
case the neutron in the other case the light
quantum. The cross section of any process is,
quite generally, given by the number of the
processes occurring per second, divided by the
incident current. The number of processes per
second is proportional to the square of the
matrix element, and to the number of states of
the final system per unit energy. Now we have in
the final state an outgoing particle, either a light
quantum or a neutron. The number of possible
states of a particle of momentum p and energy E,
per dE and per unit volume, is

1Ei+te.

Axprdp/WdE. (84)
By using the relation
Er=cp2+-mict, (84a)
where E is the energy including the ‘rest”
energy mc?, (84) becomes
4rpE/h3c?. (84b)

If therefore ‘the indices 1 refer to the incident
particle, 2 to the particle produced, the cross
section becomes

o192 ® (PzEz/szl) | M | 2, (85)

M being the matrix element for unit density of
both particles and »; the velocity of the first
particle. The cross section for the reverse
process is

ou® (prF/cPvs) | M |2

The matrix_ elements being the same in both
cases, we have cet. par.

(85a)

oa/o12=pr1E01/ p2Eovs. (86)
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Using the relativistic formula

Ev=pc? (86a)

oo/o1e=p1?/ o> (87)

The cross sections are proportional to the square
of the momenta of the particles produced in the
respective reactions.

However, formula (84) gives only the number
of possible states of motion of the particle pro-
duced. In the case of light quanta, we must
multiply this by a factor 2 because of the two
possible directions of polarization. Furthermore,
we must multiply the cross section of the capture
process by the probability that the spin of the
incident neutron is suitable for capture. Denoting
this probability by g, we have

OTcapture =Zga(Pquuntum)2
O disintegr. Pneu tron
) (hv/c)2 2 (w)’ (88)
=28q =28\ ) >
hk kc

where w=2mv. Using expression (77) for cgisintegr.,
we have

we have

Geapt. = 872g, w3k 23| Mog |2

«(89)

(It should be noted that in (89) Mg is the
matrix element of the electric moment in one
direction, in accord with (77).) Now the reverse
of the photoelectric effect of the deuteron can
occur if the spin of incident neutron is parallel to
the spin of the capturing proton, because this is
the case for the ground state. Therefore g,=%
and, using (78b)

3/w\? wd Me* ak
ac=—(—-) c=41— — —+— (89a)
2\kc ¢ B (a2+k2)"
With (78c) this reduces to
ez h (Eet
T .
Mc® Mc E+e

(90)

0=
The formula (90) for the capture cross section
contains the Compton wave-length of the proton,
#/Mc=2.09-10"% cm (90a)

and the “‘classical proton radius”
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¢t/ Mc2=(1/137) (h/ Mc)

=1.52;-10"%cm. (90b)

As a function of the energy E, the maximum of
the cross section occurs for E=¢ and has the
value

oo = 2r(e2/ Me?) () Mc)

=2.00-10-2 cm?, (90c)

which is extremely small. For slow neutrons
(E<e) the cross section would be even smaller.

On the other hand, it has been observed ex-
perimentally by various authors (W3, D4) that
slow neutrons are absorbed by hydrogen-contain-
ing substances such as water and paraffin. There-
fore there must be another mechanism of capture
which is more efficient than that due to the
electric dipole transition, and particularly so at
low velocity.

The latter fact gives us a valuable clue. The
decrease of the capture cross section (90) with
decreasing neutron energy E is due to the small
amplitude of the p wave function of a slow
neutron at small distances 7 between neutron and
proton. In other words, a slow neutron with
angular momentum /=1 has little chance to get
sufficiently near the proton to be captured. This
would be different if the incident neutron had
zero angular momentum (cf. §§14, 15), i.e., for
‘s neutrons.” In this case, particularly if the
spins of neutron and proton are opposite, we
know that the chance of the neutron coming
sufficiently near to the proton is very large,
resulting in a very large scattering cross section
(§14, end). We shall therefore expect a very large
capture cross section as well, if there is any
process leading to the capture of a neutron with
no angular momentum by a proton having
opposite spin. Such a capture would correspond
to a transition of the system consisting of neutron
and proton, from a 1S state to a S state (ground
state of the deuteron), while the capture process
considered in (90) corresponds to a transition
from a 3P to a S state.

The required mechanism giving rise to the
1S—3S transition is found in the magnetic dipole
radiation. In the transition from a singlet to a
triplet state, the spin of either the proton or the
neutron must change its direction ; the magnetic
moments of neutron and proton will therefore
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have matrix elements referring to that transi-
tion, and this magnetic dipole moment causes the
emission of radiation.

To calculate the transition probability, we
have simply to replace the matrix element of the
electric dipole moment, Mz (cf. 78a) by the
matrix element of the magnetic dipole moment.
We denote by u, and ., the magnetic moments of
neutron and proton, in units of the ‘nuclear
magneton’’

we=eh/2Mc; 91)

then, according to §5, u,=2.9 and p,=—2.0.
Furthermore, we introduce the spin operators ¢,
and o, of proton and neutron so that peu,o,
would be, as to magnitude as well as direction,
the magnetic moment of the proton. Finally, we
introduce the spin wave functions xo and xg for
ground state and excited state, respectively, then
we have

Mopmeer=puof 3 Uoxo(kp0p+pa0s) Upxedr, (92)

the Y denoting summation over the spin co-
o

ordinates of proton and neutron.

The excited state being a singlet state, we have for its
spin function4®

xe=2"a(p)8(n) —a(n)B()], (92a)

p and 7 denoting the spin coordinates of neutron and
proton, respectively. (o means spin parallel to a given
direction 2, f=spin opposite to z.) The ground state has
three substates (triplet) corresponding to spin components
in the z direction of m =1, 0 and —1. The z components
of the spin operators @, and @, in (92) will cause transitions
from the state Ug to the substate M =0 of the ground
state, the ¥ and y components of the magnetic moment
transitions to the substates M=+1. We calculate the
transition produced by ¢,% and ¢.% and have therefore for
the spin wave function of the ground state

xo=2"a(p)B(n)+a(n)8(p)]. (92b)

According to the remark after Eq. (89), we must only
calculate the transition probability due to the magnetic
moment in one direction.

From the definition of the spin wave functions it
follows that

apa(p)=a(p) on’B(n)=—B(n), etc,  (92c)
therefore
x0(4p0p+pn@u) xe = ;[a(p)B(n) +a(n)B(p)]
(up—pa)[a(p)B(n) +a(n)B(p)]. (92d)

4 Cf., e.g., Handbuch der Physik, Vol. 24, 1, p. 372.
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For the summation over the spin coordinates we have to
remember that

Za2(p)BH(n) =ZpA(plai(n)=1;

o (92e)
Za(p)B(p)a(n)B(n) =0
and obtain
X0(4p0 p+1nGn) XE = tip— in (92f)
h
Mog™ == ey = i) S UsUsdr. 93)

For the eigenfunction of the ground state we take, as in
§16, the expression (44c) which is valid for >a. For Ug
we have to insert the wave function corresponding to
energy E, angular momentum /=0 and opposite spin of
proton and neutron, normalized to unit energy. This
function is, according to (50), (51)

Ug=uo/r=(M/k)}sin (kr+3,')/2whr (93a)

where &’ is to be calculated from a formula analogous to
(59a), only with « replaced by 8 since we are dealing with
a singlet state (cf. end of §14). The normalization is
identical to (77d). We have now

M)} —ar |
SUUsdr == ety L i raut)
r r

(2m)inkt
( eido’
m -
a—ik

_ (2a M)}
whk}
_ (2aM)? k cos 80’ +a sin &0’
wihk? a4k
where Im denotes the imaginary part. 8’ is given by (59b)

where, however, « has to be replaced by 8 (singlet state!).
Therefore we have

» (93b)

(2aMk)? a—p
@R E R

It should be noted that this expression is only different
from zero because «#p, i.e., because the forces between
proton and neutron are considerably different according
to whether the spins of the particles are parallel or opposite
(cf. §13, §14). This fact makes the Schrédinger equations
for Uo and Ug different; were this not the case, Up and Ug
would be orthogonal and the integral /S U,Ugdr would
vanish. The capture of neutrons by protons by our mecha-
nism is therefore only due to the dependence of the neutron-
proton force upon spin.

S UUgdr= (93c)

Inserting (93c) into (93), we have

u e( ak \1 a—pB
op™YEn = —

P m _———“(az-{-k?)(ﬂ?—iﬁkg)*(#ﬂ—#")

(99)

We insert this into (89) and consider that only
one in every four neutrons has its spin opposite
to a given proton so that g,=%. Then we find

fat o (= §)(up =)’

MG E B R

(94a)
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By using again (78c) and expressing the «, B, k&
in terms of the energies ¢, ¢/, Ey=}E, this reduces
to

ek (2e)9
ge=m—"—\ —
Mc* Mc\E,

(SF e+ 3ED

95
(4+3E0) Mc? ©3)

#p—ﬂn)z-

The F sign stands according to whether the
singlet state of the deuteron is stable or virtual.

It will be noticed that the capture cross
section increases with decreasing kinetic energy
E, of the neutron. We are therefore particularly
interested in the cross section for very small E,,
3., EyKe. We compare, for this case, the
capture cross section (95) to the cross section for
elastic scattering given in (62). We have

A f\te? €
).
0.1/ BeKer \8Eo/ Fhic te+ e

(dFe'h)?
(Mc*?

(up—pa)2  (95a)

We insert the numerical values p,=2.9, u,=2.0,
e/hic=1/137, Mc?=931 MV, e=2.15 MV, ¢
=0.040 MV. Then, if we express E, in volts,
we find

2 (2.15~10“)*4.92
Oa 8E, 137
2.152(4/2.15F4/0.040)2 {0.00138Eo‘5,

(3-2.15+2.0.040)-9312  0.00227Eq},

the upper value holding if there is a stable
singlet state of the deuteron, the lower, if there
is none. In particular, we may calculate the
ratio « for the case that the neutrons are in
thermal equilibrium with the protons which can
be achieved by multiple scattering (chapter XII,
reference C12). Then in the average, Ey=kT
which is equal to 1/40 volt for room temperature
(T'=290°). In this case

1/118 if there is a stable

singlet state of the deuteron
1/71 if there is no stable

singlet state of the deuteron.

(96a)

K=
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This means that neutrons of thermal velocity
will make, in the average, 71 or 118 elastic
collisions with protons before they are captured.

‘The probability of capture is thus fairly large.

The cross section is 0.5 or 0.3:107%¢ cm? in the
two cases, respectively.

The lifetime 7 of a neutron in a substance
containing hydrogen, such as water, can easily
be calculated. The ‘“number of captures per
second” is, by definition

1/7=Now, (97)

v=(2Eo/M)* being the velocity of the neutrons
and N the number of hydrogen atoms per cubic
centimeter, which is

N=6.73-1022 for H:0.
We have from (95), (97)
2.84-107* sec.,
_ if stable singlet state exists,
77116310~ sec., (972)

if stable singlet state does not exist.

The theory seems to be in sufficient agreement
with experiments of Amaldi and Fermi (F10).
These authors investigated the diffusion of slow
neutrons (absorbable by Cd, energy probably of
the order kT) in paraffin. They inserted Cd
absorbers into a paraffin block, at various
distances from a Rh detector, and observed the
decrease in activity of the detector as a function
of this distance. In this way, Fermi and Amaldi
could determine the average distance which the
neutrons would have traveled had they not been
absorbed in the Cd. The distance was found to be
2 cm. Theoretically, this distance is (F10) equal
to M(3x)~} where A\ is the mean free path for
elastic collisions. With the value of the collision
cross section as determined by Dunning and
others (D4), »iz. ¢=35-102¢ cm? we find
A=0.35 cm and therefore x=100.

The correction to our results for the finite
range of the forces between neutron and proton
amounts to an increase in the capture cross
section proportional to the increase in the elastic
scattering (end of §14) and to a very slight
change of the ratio of the capture cross section
to the elastic cross section, changing the values
in (96a) to 1/113 and 1/75, respectively.
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In conclusion, it might be noted that there
would also be capture of neutrons by protons
with parallel spin, if the singlet state of the
deuteron is stable. The cross section for this
capture which is a 35—1S transition, is however
very small: It is obtained by interchanging e
and ¢ in (95), and is therefore, at low energies
E,, smaller by a factor (¢'/€)%2=1/15,000 than
the capture into the ground state discussed here.

§18. ScATTERING OF PROTONS BY  PROTONS
(W8, T11, P7)

If there is no other interaction between a pair
of protons but the Coulomb repulsion, the
scattering cross section is given by, the Ruther-
ford formula as modified by Mott to take
account of the possibility of exchange of the two
protons. The cross section for a deflection by an
angle between 6 and 6-+4d6 is*

4 1
2may(8) sin 0d6= (—-. +
M?**\sin* 8 cos? 6

cos ((e*/hv) log tan? @)

- )27r 8in 264(26). (99)
sin? 6 cos? 6

20 is the deflection of the incident proton in the
coordinate system in which the center of gravity
of the two protons is at rest (C system, cf.
the beginning of §14), therefore the element of
solid angle in that system is 2 sin 26d(26)
=8r cos 0 sin 6d0. The first term in the bracket
in (99) gives the number of incident protons
deflected by an angle 8 (i.e., 36 in the C system)
according to the Rutherford formula. (Cf. Mott
and Massey, p. 36. Note that in that formula
the reduced mass 3M has to be inserted!) The
second term gives the number of incident protons
deflected by an angle 7/2—6; each of these is
accompanied by a recoil proton at right angles
to its own motion (cf. §14), i.e., making an
angle 6 with the incident beam; these recoil
protons are also counted among the protons
scattered through 6. The last term in the bracket
is the effect of exchange between incident and
scattering proton. We shall be particularly
interested in fast protons, having velocities of

4. Cf. Mott and Massey, Atomic Collisions, p. 75, 76,
Egs. (25), (26).
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the order one-twentieth of the velocity of light
(energy~1 MV); for these, e?/hv<1 and

cos ((e?/#v) log tan? §) ~1 (99a)

unless 6 is very near or /2. We therefore have,
with Ey=}Mv?
et 1 1

D’o(e) =T
E@#\sin* @ cos! 6

1
——-—) cos . (99b)

sin? 6 cos?® @

Actually, experiments of White (W8) and of
Tuve, Heydenburg, and Hafstad do not agree at
all with this formula, but indicate that there are
actually considerably more protons at 45° than
according to (99b). This proves that there is
another force acting besides the Coulomb force.
We have already deduced the existence of a force
between two protons, and more exactly of an
attractive force, from the existence of isobars of
even atomic weight and charge (§10). It seems
reasonable to assume that this force has the
same characteristics as that between neutron
and proton, since they no doubt originate from
the same reason, i.e., we assume the force
between two protons to be also restricted to a
small range @ and to be large inside that range.
Then we can, similarly to the neutron scattering,
conclude that only the partial wave function
!=0 will be materially influenced by the “‘nuclear
forces” between the two protons.

To deduce the scattering including such a
force, we have to calculate the wave function of
the relative motion of the two protons. There
are two cases to distinguish. Either the spins of
the protons are parallel or antiparallel. In the
first case, the wave function of the system will
be symmetrical in the two spins; it must then
necessarily be antisymmetrical in the spatial
coordinates of the proton, since protons obey
the Fermi statistics, i.e., the wave function of a
system of two protons changes sign when both
the spatial and the spin coordinates of the
protons are interchanged. If the spins of the
two protons are opposite, the spatial wave
function will be symmetrical.

Now we have seen in §14, Eq. (32) that a wave
function describing the relative motion of two
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particles, of the form
Y =1uy(7) Pim(cos B)eime

is symmetrical in the coordinates of the two
particles, if / is even, and antisymmetrical if /
is odd. Therefore, for parallel spins of the protons,
the wave function contains only odd azimuthal
quantum numbers /, and will therefore not be
materially influenced by short range forces.
Only for opposite spins of the two protons, i.e.,
only in 1/4 of all cases, will there be an appreci-
able influence of the ‘“‘nuclear’ forces between
the protons, since in this case the wave function
contains the term /=0, which is the only terin
strongly influenced by the nuclear forces. We
can calculate the total wave function including
the nuclear forces by simply calculating the
total wave function without these forces, sub-
tracting from it the part corresponding to /=0
without forces and adding the wave function for
!=0 including the nuclear forces.

We first have to write down, for two protons with
Coulomb interaction between them, a wave function
symmetrical in the spatial coordinates of the protons.
According to Mott and Massey, p. 35, Eq. (16) and p. 72,
an unsymmetrical wave function would be

Y =eiketia log k(r=2) ¢ /( Mv?r sin? 3©)

. gikr—ia log 2kr—ia log sin? 0+im+2ing
(4 ’

(100)
(100a)

r=distance of the two protons, z=difference of their z
coordinates, cos @ =z/r, eo=T(1+ia)/|I'(1+sa)|. The
first term in (100) represents the incident wave, a plane
wave moving in the z direction corrected by a small phase
shift due to the Coulomb field. The second term is the
scattered spherical wave. A symmetrical wave function is

¥(x, ¥, 2) =¢(x, 3, 2)+¥(—=x, —y, —z), (100b)

because changing the sign of all the relative coordinates
X=X1—%2, Y=y1—%s, 2=21—2 of the first proton relative
to the second, corresponds to an interchange of the coordi-
nates of the two protons. Now in (100) only the z coordinate
occurs explicitly, therefore we have to replace z by —3z,
cos ® by —cos ®, and therefore sin? $@=3}(1—cos ©)
by 3(1+4cos ®)=cos? }0®, and then to add the function
thus obtained to (100). The resulting function will repre-
sent two beams of protons proceeding in the positive and
the negative z direction, each containing one proton
per cm3,

Next we consider the part of the wave function (100b)
corresponding to !=0. If we put, as usual, Yo=1v,/7, the
function v, will be a solution of the radial Schrédinger
equation

where a=e/hv, k=Mv/2h,

d@o/drr+ (M /1) 3Eo—e€/r)ve=0, (101)
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which has, for large distances 7, the asymptotic form
(cf. Mott and Massey, p. 33, Eq. (7) for n=0).

vo=2¢'" sin (kr+no—a log 2kr) /kr

= (i/kr) (~ithra log 2hr) 4 gitkrT4am—c log 24n))  (101a)
o is, according to (86), normalized correctly, i.e., in such a
way that the first term in (101a) is the first term (the term
not depending on the angle) of the expansion of the func-
tion (100b) in spherical harmonics.

If a force acts between the two protons at close distances,
the phase of the wave function will be shifted by a certain
amount o, analogous to the case of scattering of neutrons
by protons. Thus the wave function v, has to be replaced by

wo=(2c/kr)eim sin (kr+no—a log 2kr+38,). (101b)

The constant ¢ has to be fixed in such a way that the term
containing e~ is identical with (101a), so that uo—v,
contains only an owufgoing spherical wave, i.e., one pro-
portional to e*¥r, which represents the scattering. This is
achieved by putting c=¢%0 so that

Ug= (i/kr)[e—t'(kr—a log 2!:r)+eb'(kr+TH'lo+ﬂo—ﬂ log ﬂ:r):l.. (101&)
The effect of the force between the two protons is now
simply to replace the function v, (valid for no force) by %,
(which takes the force into account), i.e., to add #o—v, to
the ‘“‘unperturbed” wave function (100b):

V= ‘1’+uo—”n = gikztia log k(r—2) +e—ikz—ia log k(r—z)
1 e2 fe—ia log sin? 40
-gikr—ia log gkr+iT4aing [.._._ (__._.__._
7 M»\ sin? 0@
¢—ie log cos? 10, i 2it
N iebo—1) .
cos? 16 )Hyen-n]- a0
The scattering cross section per unit solid angle (in the C
system) for a given angle @ is equal to the absolute square
of the square bracket. Inserting 2= Mv/2h and neglecting
a log sin? @ because a=¢2/hw<K1, we have

“©-(5) [(Fretaree =)

2

+(22) (—cos 280¢] (1032)

If there were only the Coulomb field, the cross section
¢9(®) would be obtained by putting §o=0. We have there-
fore, with @ =9,

2 \ 21 /74hy\ 2
a(@)—ao(®)=(l—§;;) [(72”) sin’ 8
8hv 1 1
ry sin & cos 8n(sin’ 9—{-55—2—0)] - (103b)

We now consider the fact that only one-quarter of &ll
proton pairs have spin opposite, therefore the additional
cross section (103b) will only be present in 1/4 of all cases.
In the average, we have to add 1/4 of (103b). Furthermore,
we calculate the cross section per unit solid angle in the
ordinary coordinate system, by multiplying (103b) with
4 cos 0 (see after (99)).
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Thus we find for the complete cross section

a(6) =00(6) +cos 8(a(O) —ao(®)),

et 1 1
0(0)=Ezcos 0[ + - (103)

sin*§ cos?f sin2 6 cos? §

2hv sin §ocos & f2hv\?
—_ (-——) sin? Bo].
¢? sin? § cos? § e

The actual magnitude of this expression depends,
of course, upon &. This phase shift o might, of
course, be°quite small. But even then it will
contribute appreciably to (103), since sin? 8, is
multiplied by the very large factor (24v/e?)?
which is 160 for protons of 1 MV energy.
Therefore the scattering of protons by protons
is extremely sensitive to the existence of a force
between the protons other than the Coulomb
force. This is particularly true for angles 6 near
45° where cos 8 as well as sin 0 are comparatively
large. A good measure of the effect of the “nu-
clear” proton-proton forces is therefore the ratio
of the actual scattering observed at 45° and the
scattering following from the Mott formula (99).
This ratio is, for sin? f=cos? §=7%:

a(6) #v LI 7}
= (——sin 60) —2—sin §y cos do+1. (104)
ao(6) ¢ e?

The first experiments on proton-proton scat-
tering were carried out by White (W8). The
protons were accelerated in a cyclotron and their
tracks observed in a hydrogen-filled cloud
chamber. Since the scattering through large
angles is a rare event, and the experimental
arrangement does not yield high intensities of
the incident proton beam, the number of large
deflections observed by White is very small;
e.g., only 5 protons were observed which had
been deflected by more than 40°. Even so, the
experiments seem to show that the scattering
through 45° is many times as probable than
would be expected from (99b). The ratio of
observed scattering to theoretical scattering in
a Coulomb field at 45° is 9 in White's experi-
ments, for an average proton energy of, probably,
about 750 kv.*? The angular distribiition does not

42 White gives 675 kv, this figure being apparently de-
duced from the range of protons with the help of the range-

energy relation of the Cavendish laboratory. This relation
gives too low values for the proton energy.
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agree well with (104) (cf. 97, and calculations of
Serber mentioned by White) which is probably
due to the very small number of data taken by
White.

Much more extensive experiments have been
performed by Tuve, Heydenburg and Hafstad.4?
At 920 kv, they find a ratio of observed scattering
to Coulomb scattering of 4.65 at 40°. An energy
of 920 kv corresponds to a velocity v=0.0445¢
(c=velocity of light) so that %v/e?=137-0.0445
=6.09. Inserting this and the observed ratio 4.65
into (103), we find

5=30.8° (104a) or &=—12.2°. (104b)

Inserting- these values inte (103), the angular
distributions may be found. They are given in
curves A and R in Fig. 7. Curve 4 corresponds
to the positive value of § and therefore (see
below) to an atiractive potential between the
protons, R corresponds to the negative &

20

[

o Mott Scattering
o Attractive Force Scattering
© Repulsive Force Scattering
x Experimental Scattering

o ! —_ 1 L i
20 25° 30° 9 35° 40° 45°

F1G. 7. Scattering of protons by protons. Abscissa:
angle of deflection, ordinate: Number of particles scattered
through an angle between 6 and 8+-d6, divided by sin 26d9.
The scale of the ordinate has been chosen so that the Mott
scattering in the Coulomb field alone has the value unity
at 45°. The theoretical curves are made to agree with the
experiments at 40°. Proton energy =920 kv.

4 We are indebted to Messrs. Tuve, Heydenburg and
Hafstad for communicating their results to us before
publication.
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(repulsive potential). Curve 4 is seen to be very
flat between 30 and 40° while R decreases
continuously with increasing angle 8. Curve R
lies higher than A throughout, except at 45°
where the two curves are made to give the
experimental value, v2., 4.65 times the Coulomb
scattering. The scattering in the pure Coulomb
field, according to the Mott formula (99b), is
represented in curve M; it lies between the
scattering for attractive and repulsive fields for
small 8, but falls, of course, below both of them
for larger deflections. The experimental points
of Tuve, Heydenburg and Hafstad (marked by
crosses) follow between 30° and 45° rather
closely the curve for the attractive potential. At
small angles, the agreement between experi-
mental points and curve 4 is not perfect; the
experimental scattering being too large. However,
it is unmistakable that.curve 4 agrees with the
experimental data very much better than R; and
that the Mott scattering curve M is entirely out
of question.

Thus the scattering of protons by protons
shows conclusively :

(1) There must be a force between two protons besides
the Coulomb force.

(2) This force must be attractive.

(3) Reasonable agreement with experiments is obtained
by assuming the force to have a short range.

We have already come to the conclusions (1)
and (2) in §10 when discussing the even-odd rule
of isotopes. Moreover, the existence of an
attractive force between two protons is shown
by the calculations of the binding energies of
H3, He® and He* (§21). We shall even find that
the quantitative results for the magnitude of
this force as calculated from the binding energies
of H3, He? He*, and from the proton-proton
scattering, agree quite well [see (107), and
(128)].

The existence of a force between two protons
necessitates the assumption of a force between
two meutrons of practically the same strength.
This is shown by the fact that the numbers of
neutrons and protons in light nuclei are equal
(§6) and, even more accurately, by the difference
of the binding energies of H?® and He? (§22).

From (104a), we may calculate a quantity v
which is the analog of the quantities « and 8 for
the neutron-proton scattering (cf. 34). In other
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words, v is defined by
= ((1/140) (duo/df)) re=ay

u, being the partial wave function /=0, and ¢
the range of the forces. We have (cf. 59b)

k cot (kro+ 50) =—y. (105b)

Assuming the range 7, to be very small, we may
neglect k7 compared to 8, For Eq=920 kv, we
have (cf. 54) k=1.06-102 cm~1. With §, given
by (104a), we have therefore

y=—1.06-10" cot 30.8°

(105a)

=—1.78-102 cm™! (105)
or 1/y=5.6-10"13 cm, (105c)
T=#*/M=130 MV. (105d)

v turns out to be negative which shows that
there is no stable energy level of a ‘‘di-proton.”
(From symmetry arguments, we can.then con-
clude that there exists no stable ‘‘di-neutron”
either.) In contrast to the scattering of neutrons
by protons, the sign of v can be determined from
the proton-proton scattering. The reason is that
there is interference between the scattering due
to the Coulomb field and that due to the specifi-
cally nuclear forces. The resultant angular
distribution depends therefore on the sign of &
(cf. the curves 4 and R in Fig. 7).

The “virtual energy level” of the system of
two protons lies, according to (105d), at 1.15
MYV kinetic energy, i.e., appreciably higher than
the singlet level of the deuteron (near zero, cf.
62a) but in the same general region. The force
between two protons is therefore smaller, but
not very much smaller than the force between
neutron and proton (cf. §44).

From (105), (105b), we may deduce the value
of & for other values of the energy. We find,
neglecting kr:

cot So=1/k. (105e)
Inserting this value into (104), we find
r (45°) —a(45°) E,
00(450) C(T+%Eo)
X (Eo—2(TC)¥ (106)

C= Me*/#*=49,800 volts. (106a)

with
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It can be seen from (106) that the ratio R of
“‘excess scattering”’ to Coulomb scattering at 45°
increases rapidly with increasing energy E,, being
about proportional to E, for high energies
(Eo>T) and to Eg? for EyKT. This increase of
R is due to the fact that the Coulomb field gives,
especially for high energies, a particularly low
scattering at 45°, which will be increased by
almost any perturbation of the Coulomb field.
At very low energies, (106) will be negative,
corresponding to a smaller scattering at 45° than
the Coulomb scattering: The reversal of sign
occurs for

Ey=2(TC)=510,000 volts  (106b)

with our values (105d), (106a) for T"and C. The
smallest value of R is obtained for 240,000 volts,
in this case,

(0(45°) /00(45°)) By=0.23 My =0.09, (106c)

i.e., the scattering at 45° should be only one-
eleventh of the Coulomb scattering. For E,=0.74
MV, we find

R=20, o(45°)/00(45°)=3.0, (106d)

which is considerably larger than the results of
Tuve, Heydenburg and Hafstad (R=0.65).

The calculations above should be corrected
for two reasons: Firstly, the wave function in
the Coulomb field is not a plane wave. Therefore
(105b), (105e) hold only approximately. This is
particularly true for small energy of the proton.
The effect of this correction is to make the ratio
R decrease even faster with decreasing energy
E,.
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Secondly, the range of the nuclear forces is
not zero. This fact has the opposite effect on
the change of R with decreasing energy. If we
take for the range of the forces the value derived
in (128), viz.,

2=2.3-10"13 cm (107a)

we have k7;=0.244=14.0°, and therefore instead
of (105):

y=—1.06-10" cot 44.8°
=—1.09-102 cm~! (107b)
T=0.49 MV, (107¢)

i.e., the virtual level lies much nearer to zero.
If we now assume a simple potential hole of
width a and depth

Vo=t%?/M (107d)

we may determine « from the condition (cf. 39)

(k*+k21 cot ([k24+k2]trg)=—v (107¢)

which gives
k=5.94-102 cm™, (107f)
Vo=14.5 MV. (107)

This depth may be compared to the depth of
the hole for a proton and a neutron with opposite
spin, vz., Vo=18.7 MV. (This depth is necessary
to give a quantum state at zero energy.) The
potential energy between two protons is therefore
about 80 percent of that between neutron and
proton of opposite spin, or about 55 percent of
the interaction between neutron and proton of
parallel spin. This agrees satisfactorily with the
result of the theory of H? and He* (Eq. 128).

IV. Theory of H?, He® and He*

§19. TuoMAS’ PROOF OF THE FINITE RANGE OF
NucLeaR Forces (T2)

We have shown in our discussion of the
deuteron that the binding energy and the
physical properties of that nucleus depend
essentially only on a certain combination of the
depth ¥V, and the width @ of the potential hole
representing the interaction between neutron and
proton. The combination involved is approxi-
mately Voa? for details cf. §12. The same
properties of the deuteron can be obtained with
a deep and narrow hole, or with a shallow and

wide hole. To fix depth and width separately,
we have therefore to use the properties of other
nuclei. The most suited for the purpose appear
to be the nuclei immediately following upon the
deuteron in complication, i.e., the nuclei of
mass three H3 and He3, and the a-particle He®.

We have already pointed out in §9 that the
mass defects of these nuclei are very much
larger than that of the deuteron, and that this
fact may be explained by assuming the potential
hole to be deep and narrow (Wigner, W12).
However, no indication could be given at that
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time as to how deep and narrow the hole must
be chosen in order to explain the observed mass
defects. In fact, we cannot even say whether
any finite depth and width of the hole will
suffice to explain the very large mass defect of
the a-particle which is as much as 14 times the
mass defect of the deuteron. It might be neces-
sary to assume an infinitely deep and narrow
hole for that purpose. This point has been
cleared up by Thomas (T1) in favor of the
finite depth and width of the hole. Thomas has
shown that an infinite binding energy would be
obtained for H3 if the hole were assumed to be
infinitely deep and narrow, and if at the same
time the product Vea? were kept constant so
that the binding energy of the deuteron would
retain its observed value. From his calculations,
Thomas estimates that the range a of the forces
cannot be less than 1-10-18 cm. Thomas’ proof
is the more gratifying since we have up to the
present no method for the explicit calculation of
the binding energies of H3 and He* which is at
the same time rigorous and practical for ob-
taining numerical results.

The assumptions of Thomas are very general.
No forces are assumed to act between two
neutrons. This makes the conclusion hold @
Sortiori if there are attractive forces between like
particles, as suggested by the odd-even-rule of
isotopes (§10) and the scattering of protons by
protons (§18) because such forces will lower the
energy of H?® even further. Repulsive forces
between like particles can be considered as ruled
out with certainty by the considerations of §10;
but even small forces of this kind would not
alter Thomas’ conclusions. Finally, the force
between protons and neutrons may be either an
ordinary (Wigner) or an exchange (Majorana)
force.

The method adopted by Thomas is based on
the Schrédinger variation principle. The eigen-
functions inserted into the variational integral
in order to calculate the energy are chosen
symmetrical in proton and neutron whenever
these particles are close enough to interact.
Under these circumstances it does not make any
difference whether the Wigner or Majorana
type of forces is chosen. We shall therefore speak
in the following in terms of ordinary forces, for
simplicity.
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The interaction between proton and neutron
is supposed to vanish if the distance between
them is larger than a certain value a. For r<a,
we assume a potential energy

V(r)=—a¥f(r/a)+0(a?) (108)

f(r/a) is an arbitrary function of its argument
except that it shall give the correct binding
energy of the deuteron. (108) has been chosen
so that Va? stays approximately constant when
a changes, which is necessary to make the binding
energy of the deuteron independent of a (cf.
theory of the deuteron, §12). )

The solution of the wave equation for the
deuteron in the potential (108) will be (cf. §12)

r<a.

y= (0(’): (1083)
where o(r)=Ae o /r for r>a (108b)
with o= Meh?, (108c)

¢ being the binding energy of the deuteron. The
eigenfunction ¢ is of course supposed to be
normalized.

We shall later on need the contribution of the
inner region (r<a) to the “kinetic energy” of
the deuteron, vz.,

T=4r f o(dqo/df)’f’df. (108d)
)

When the range of the forces decreases, the
normalizing factor 4 in (108b) stays almost
constant because the normalization is determined
chiefly by the “outside” part of the wave
function (cf. §12). Therefore ¢(a) increases
about as 1/a, and so will the wave function for
r<a. From our assumption that V retains its
shape (cf. 108) becoming only proportionately
larger with decreasing range a, the same follows
for ¢ so that we may put

e(r)=a"'x(r/a)  (r<a),  (108e)

which makes T'=K/a, (108f)
1

where K=4r | (dx/dx)x*x (108g)
0

is a function depending on the shape of the
potential hole. For the rectangular hole,

K=ar/4. (108h)
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The H3 nucleus consists of one proton (co-
ordinate r;) and two neutrons (coordinates rir,).
The wave equation of H3 is

(B/2M) (A1 A+ Ag)Y

+(E—V(r13) = V(r2))¢=0. (109)
We introduce the relative coordinates
S1=T13=I1—T3; sy=rp—r; (109a)

and suppose that ¢ depends only on these
relative coordinates;i.e., we leave out the motion
of the center of gravity. Then (109) transforms
into

(#/ M) (A~ (divy- grada)y +As)
+(E—V(s1) = V(s2))¥=0, (109b)

where A; and A; now refer to differentiations
with respect to s; and s, rather than r; and r,.
The Schrédinger variation principle equivalent
to (109b) is
E<[Sdrdr* Tt S drdr{(B/ M)[ (grad, ¥)?
+(grad; ¥ -grad: ¥) +(grad: ¥)*]
+LV(s)+ V(s2) W}

This unequality is true if ¢ is any continuous
function of s, s.. If ¢ happens to be the correct
eigenfunction, the ‘“‘equal’” sign stands instead
of the “ <" sign.

The success of the variational method depends
on a good choice of the approximate 'eigen-
function ¢ in (110.) First of all, we shall find
the exact solution of the wave equation (109b)
for the regions in which the potential energy is
zero, i.e., for large distances between the particles
(“outer wave function,” region I). Then we
shall set up a wave function for small distances
51 between first neutron and proton and large
distances s; of the second neutron (region II),
which resembles closely the wave function of the
deuteron, and join it on to the ‘“outer” wave
function. A corresponding function will hold for
small s, and large s, (region III). In region IV
both neutrons are near the proton.

Region I: We assume both s; and s; to be
larger than the range a of the forces. Then the
potential energies V(s;) and V(sy) vanish and
(109b) reduces to

Aw+divy grads Y+Ag = uy
W2 = — ME/.

(111)

with (111a)
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The solution of (111) is
arc cos (s1/s)
¢=3’K0(#S)[———
s1(s2—s.2)}
arc cos (s2/s)
———2—-] (111b)
sa(s2—s2)?
where

=3 (nd+r+ra?) =4(s:— (s1-82)+5:2) (111c)

is, except for the factor 2/3, the sum of the
squares of the three sides of the triangle formed
by the three particles, and Ko(x) is the Hankel
function of imaginary argument and zero order
which vanishes exponentially for large argu-
ments, viz.44:

Ko(x) =3miHy ™ (ix). (111d)

The proof that (111b) is the solution of (111) is
found in Thomas’ paper. We might use (111b)
everywhere provided only s;>a and s;>a. The
region thus defined would, however, not be
convenient for the integration of the variational
integral (110). We shall therefore use (111b)
only if, besides the conditions s;>a and s;>a,
the further condition s>I is fulfilled where !
is an auxiliary length large compared to the
range a of the forces but small compared to 1/u,
the “radius of H3" (definition of region I).

Region II: We assume s;<a, but s>I. In
this region we put

#=Kalus) (9 (5
3’arc cos (sz/s) 2w ]' (112)

Sa(s2—s92)} -5’3—2
where ¢(s) is defined by

arc cos (a/s) 2w
c(s)p(a@) =34—————+— (112a)
a(s?—a?)t  3is?

and ¢ is the solution of the wave equation of the
deuteron (cf. 108a). This choice ensures that y
is approximately a solution of the wave equation
(109b) in region II. Moreover, (112) is chosen
so that it joins smoothly to solution (111b) at
S1i=a.

4“4 Cf. Jahnke-Emde, Tables of Functions, p. 199. The

function K is also known as Macdonald’s Bessel function:
Watson, Theory of Bessel Functions, p. 78.
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Region II1I: s;<a, s >1: Analogous to region II.
Region IV: s<Il. We put

¥(s182) = (s/DYL(U/5)sy, (I/s)s:].  (112b)

This assumption serves merely to keep the
wave function small in region IV.

The integral (110) can then be carried out.
The rather involved calculation is found in
Thomas’ paper. The contribution of region I
(outside) may be reduced to an integral over
the surfaces separating region I from II, III
and IV. The contribution of region IV involves
the kinetic energy of the particles when they are
close together, and is therefore proportional to
K, (108f). Regions II and III each contribute,
of course, the same amount. These contributions
partly cancel the surface integrals over the
surface between II or III and I, which arise
from the outside region I. The net result for
the ratio of the bindirg energies of H? and H? is

|E| 24(27-3~1—1) w2
—>——— —|log pl|?
€ ™ o?

X[H—.O(m) +0(gl)]. (113)

Sign and magnitude of the second and third
term are unknown so that it is necessary to make
them small. This is always possible. We have
only to choose

a/l=6K1; ul=e UK,

(113a)
Then

|E|/e>1.6(ae) 2 K®K—35-4(14+0(5)). (113b)

The factor e2/K°K—3;—% may be rather small if
the second and third term in (113) are large
and necessitate the choice of a small §. However,
8 and K are both independent of a. Therefore it
is always possible to make (113b) as large as
one wishes by choosing a very small range a.
This shows that an infinitely short range of the
forces would lead to an infinite binding energy
of the H3 nucleus. Therefore the range of the
forces between neulron and proton must be finite
though possibly very small. Furthermore to any
(experimentally given) finite ratio of the binding
energies of H® and H?, there must correspond a
definite range a of the forces, when we assume
the shape of the potential function V(7).
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Thomas has also shown that it is impossible
to assume a ‘“é-function” for the potential
energy. Such an assumption would mean that
the wave function of a neutron and a proton
would have a singularity when the two particles
coincide, and would behave about in the fol-
lowing way :

Y(rire) = A (r1412) (1/712—N) +0(712).

The proof is to a large extent analogous to that
for a potential energy with finite but short
range.

The argument is not changed if part of the
binding energy of the deuteron is attributed to
a Heisenberg force (§14). As we shall show in
the next section, only kalf of such a Heisenberg
force would be active in the binding of the H3
nucleus, while the full force is active in the
deuteron. This will make the H? nucleus rela-
tively less stable. However, the only assumption
necessary for Thomas’ proof is that a stable
state of the deuteron exists if the force between
the neutron and proton in the deuteron is the
same as the average force between the proton
and each neutron in H3. This is actually the
case: It follows from the scattering of slow
neutrons by protons (§15) that the deuteron
would have practically #o binding energy if the
force acting were the Majorana minus the
Heisenberg force, while Majorana plus Heisen-
berg force lead to the experimental binding
energy. The Majorana force plus half the
Heisenberg force would therefore give some
binding energy in between, viz., about 50 to 65
percent of the observed binding energy of the
deuteron. This is quite sufficient for the validity
of Thomas’ arguments given in this section.

(114)

§20. CarLcurLaTION OF THE ENERGY OF H3, HE3?
AND HE* FROM THE VARIATION PRINCIPLE
(F2, F3, P8, M9, W1)

The binding energies of the light nuclei H2,
H3, He?, He* are the most suitable quantities to
deduce the nuclear forces from. The procedure
must of course be indirect. A law of force is
assumed, in which one or more parameters are
left arbitrary. The binding energies of the light
nuclei are calculated as functions of the parame-
ters in the interaction force, and these parameters
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are then so determined that the calculated
energies agree with the observed ones.

The binding energies of H?, H3, He?, He* are
sufficient to determine three parameters in the
law of nuclear forces. It might seem four pa-
rameters could be determined from the four
nuclear binding energies. However, the binding
energies of the two nuclei H? and He? are closely
related to each other. H? consists of two neutrons
and one proton, He? of two protons and one

neutron. Now we have assumed throughout this

article that the nuclear forces are symmetrical
in neutrons and protons, i.e., the force between
two protons is exactly the same as between two
neutrons®® except for the Coulomb repulsion.
This means that the energy of He?® must differ
from that of H? just by the Coulomb repulsion
between the two protons. This prediction seems
indeed to be true, although the experimental
evidence is somewhat contradictory (see §22).
Thus He? provides a check of our assumption of
the symmetry of nuclear forces in protons and
neutrons.

There remain then the three nuclei H?, H3
and He* to determine the nuclear forces. It
would therefore be useless to assume a force
containing more than three parameters. Accord-
ingly, we assume that the range of the forces
between like particles is the same as between
neutrons and protons, but that the strengths of
the forces are different. In formulae, we assume
a neutron-proton interaction potential

J(r) = —Be~a (115)

and an interaction potential between like par-
ticles

K(r)=— Ce—re%, (115a)

We have then to determine the common range a
of the forces, and the strengths B and C, re-
spectively, of the two kinds of interactions.

The neutron-proton interaction is assumed to
be of the Majorana exchange type. The nature
of the interaction between the like particles will
be discussed in more detail in §24. For the
present, it may be assumed to be an “ordinary”’
force; the force suggested in §24 will give the
same result for all nuclei up to He*.

With the potentials (115) (115a), the energy

4t would be in accord with this assumption if the
forces between like particles vanish identically.
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of any nucleus could in principle be calculated
exactly from the Schrédinger equation. Actually
the calculation can be carried out explicitly only
for the deuteron. (§12.) Since the deuteron con-
sists of one neutron and one proton, its binding
energy gives us just one relation between the
two constants B and ¢ determining the neutron-
proton force. This relation is given in Table III
for two cases: (a) if the whole binding energy of
the deuteron is due to the ‘““Majorana force”
(115), and (b) if part of the binding energy is
due to a “Heisenberg force” depending on the
relative spins of proton and neutron, as it seems
to follow from the scattering of slow neutrons
by protons (§14).

In the latter case, there is given an “effective’
force B, which is the strength B of the Majorana
force plus one-half the strength of the Heisenberg
force. It is this B which enters the energy of
nuclei containing an even number of neutrons or
an even number of protons or both, at least in
first approximation, i.e., if the Heisenberg force
is small compared to the Majorana force.

In that case, the complete eigenfunction of the H?
nucleus may be written
(1,2, 3) = y(x1, %2, ¥5)ex(1) - 273 [x(2)8(3) —B(2)x(3) ]. (116)
Here the first factor is the positional wave function. The
second is the spin wave function of the proton (particle 1),
whose spin is supposed to be parallel to the z axis. (The
spin function « indicates a spin parallel to 2, 8 a spin
antiparallel to z, cf. 92a.) The last factor is the spin wave
function of the two neutrons (particles 2, 3) whose spins
are of course opposite to each other. The factor 2% stands
for normalization.

Now consider a Majorana potential Vas and a Heisenberg
potential Vx to act between the proton and the neutron 2.
The potential energy operator operated on (116) gives then

(Va+Vu)e
=273 (xax1%3) { Tat (112) (1) [(2)8(3) — B(2)(3) ]
+Jr(ri)e(2)[«(1)8(3)—B(1a(3)]}, (116a)

where Jyg and Jy are the Heisenberg and Majorana poten-
tials as functions of the distance 712. The average value of
the potential energy is then

Zo(Vir+ Vi) edr = S dr(x1x2%s) ¥ (x221%3) Tar (712)
X i?a’(l)[a(Z)ﬂG) —B(2)a(3) T

+ S drg (xrwaws) Y (xax13) Jr (712)
X }§[a’(1)a"(2)ﬁ’(3) —a*(1)ap(2)aB(3)

—aB(1)a?(2)aB(3) —aB(1)aB(2)a?(3)]. (116b)
When we carry out the summation over the spins of all
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three particles, we find two terms contributing unity to
the first sum but only one term in the second, all other
terms vanishing (cf. 92e). Therefore (116b) reduces to

Z2S o(Var+ V) edr
= S dry(x1%2x3) Y (xax1%3) (I +3Tm), (116¢)

which shows that half the Heisenberg interaction is to be
added to the full Majorana term.

It might have been expected that the Heisenberg force
would not contribute at all to the energy of nuclei like H?,
containing only pairs of neutrons. For one might think that
of the two neutrons one would have spin parallel to the given
spin of the proton, the other antiparallel so that the con-
tributions of the Heisenberg forces due to the two neutrons
would cancel each other. The fallacy is due to the use of
the word antiparallel: Two spins are antiparallel only if
the wave function is antisymmetrical in the respective
spin coordinates. In the wave function «(1)8(2), however,
merely the z components of the spins 1 and 2 are anti-
parallel, the spins themselves might still be just as well
parallel as antiparallel, because we can form either of the
two wave functions

274(e(1)8(2) +(2)8(1)),

274a(1)8(2) —(2)8(1)),
the first corresponding to parallel, the second to anti-
parallel spins. The correct reasoning is therefore as follows:
If the components of two spins in a given direction are
parallel, the spins are certainly parallel; if the components
are opposite, it is just as likely that the spins are parallel
as that they are antiparallel. Thus the neutron which has
its spin component parallel to the proton will have just
once the Heisenberg interaction with the latter, while
the neutron whose spin is opposite the proton spin, has no
Heisenberg interaction at all with the proton. Therefore
we get two Majorana interactions and one Heisenberg
interaction in the H? nucleus, or per neutron one Majorana
and one-half Heisenberg term, as we found in (116¢).

Accordingly, the value B of Table III has to
be used for computations of the energies of H?
and He*.

We return to the problem of determining the
binding energy from the given force. While the
Schradinger equation can be integrated explicitly
for the deuteron, this is not the case for the
nuclei H3 and He*. Approximate methods must
be used. The method used most frequently for
similar problems is the Ritz variational method.*®
It gives a definite upper bound for the energy of
any quantum mechanical system, but this upper
bound sometimes converges very slowly towards
the correct energy. The energy of nuclei is,
unfortunately, one of the cases in which this is
true. The reason for this is the very short range

(116d)

©Cf., e.g., Handbuch der Physik, Vol. 24, 1, p. 353.
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of the nuclear forces. We know from the theory
of the deuteron (§12) that the correct wave
function (cf. 38a) changes very rapidly when the
two particles have a distance smaller than the
range @ of their mutual forces, while for large
distances 7>a the wave function varies very
slowly. The same will be true for the correct
wave function of more complicated nuclei: We
shall find a comparatively slow variation of the
wave function in general, and superposed on it a
rapid change whenever two nuclear particles come
close logether. Such a combination of rapidly and
slowly varying functions cannot be easily repre-
sented analytically. In fact, a rather complicated
trial wave function had to be chosen by Thomas
(§19) in order to prove that the binding energy
of H?® tends to infinity when the range of the
forces goes to zero. The use of a wave function
of similar complication for quantitative computa-
tions of the binding energy for a finite range of
the forces would be prohibitively laborious,
especially for more complicated nuclei than H3.
On the other hand, any reasonably simple
analytical expression will be a poor approxima-
tion to the correct wave function, because the
analytical expression will change too rapidly
when the nuclear particles are far away from
each other, and too slowly when they are close
together. This will be particularly true if the
range of the forces is very small. Therefore we
cannot expect any too goobd agreement between
the results of the Ritz variational method and
the experimental binding energies, and we must
expect the discrepancy to become worse with
decreasing range of the forces. (See following,
especially Table IV.)

The first thing to do in applying the variational
method is to choose an approximate wave func-
tion for the system. A sufficiently simple function
for the H?3 nucleus is

v=exp [ —iv(ri2+r1s?) —juras®], (117)
where the subscript 1 denotes the proton, 2 and
3 the two neutrons so that 7, is the distance of
the first neutron from the proton and r; the
distance between the two neutrons. The function
e~1* “ties together” two unlike particles, e~#*
two like particles. Since the forces between unlike
particles are larger, we expect » to be larger than
u. For the a-particle, we choose analogously :
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v=exp [—r(ni?+ni+nid+nsd
—su(re?4rsd)], (117a)

1 and 2 referring to the protons, 3 and 4 to the
neutrons.

With the wave functions (117), (117a) all
integrals occurring in the variational method
can be carried out elementarily ; e.g., for the H?
nucleus we obtain for the kinetic energy

_ 7 SY(ArFAs+As)YdTadTs
T S Wdrd,
=3r2/2M (p+2v),

(117b)

where A; is the Laplacian with respect to the
coordinates of the first particle, and the integrals
have to be extended over all positions of the
second and third particle relative to the first.
The potential energy becomes

_J el =y = b (gt g o g
Epoe =—2B

Serrattra—uratd oy,
_C‘/‘e—r“’ltz"—pq;ﬁ—v(7122+n32)d72d7-3 airo
Se—r it muntdrod
v(v+2u) 3
SR [rwremrmmewrer]
v+2u
. [V+2y+2a_2

]i. (117d)

The form of the integral in the first numerator
in (117c) is due to the Majorana type of the
forces: The particles 1 and 2 are supposed to
interact, we have therefore to multiply the wave
function (117) with the function obtained by
interchanging particles 1 and 2 in (117) instead
of taking the square of (117). The factor 2 in
the first term of (117c) arises from the fact that
we have two neutrons interacting with the proton.

The expressions (117b) (117d) may be simpli-
fied by introducing the abbreviations

o=%(5v+u)a? p=Q2v+4p)/(5v+p)
T=h/Ma?. (113a)

Then the upper bound for the energy of H3
becomes

EXHY) =(2+p)eT—2B[p(4—p)

/(429) *(o/0+1)**— C(pa/pa+1)*2.  (118)
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Similarly, we find for the a-particle
E%(He!) =§(2+p)eT—4B[p(2—p) I
[(o/a+1)¥2=2C(po/po+1)** (119)
with the abbreviations
o=3Qv+wa?,  p=0v+2u)/@v+u) (119a)

(118) and (119) have to be minimized by varying
the parameters p and o.

" We want to carry out the calculations first
without assuming a force between like particles,
in order to obtain an idea about the degree of
approximation afforded by (118), (119). We know
from the preceding section that the eigenvalue
of H?® must tend to minus infinity if we let the
range a of the forces go to zero, i.e., if Band T
in (118) go to infinity, and if at the same time
the relation between B and T is kept such that
the binding energy of the deuteron remains
correct. This must hold a fortiori for Het. We
may reasonably expect the binding energy of
both nuclei to decrease monotonously with
decreasing a.—For very long range of the forces,
the binding energy of H3 will be just twice, that
of He* just four times the binding energy of the
deuteron.

Actually, the minimum of (118) and, to a
lesser extent, that of (119), behave very differ-
ently from these expectations. While for long
range of the forces the result is rather satis-
factory, the minimum of E°(He*) decreases only
very slowly with decreasing range of the forces,
and that of E°(H?®) even ¢ncreases with de-
creasing a¢. This shows that the variational
method becomes increasingly worse with de-
creasing range of the forces, which is to be
expected (see above).

The procedure to determine the minimum of
(118), (119) is the following. First of all, the
minimum with respect to p is determined. The
position of that minimum depends only slightly
on the value of o, and the dependence of the
minimum energy on p is quite negligible.* The
minimum lies at

* When the ratio of the potential energy of the H3
nucleus to its kinetic changes from 1.0 to 1.2, po changes
from 0.735 to 0.765; the coefficient of 7" in (117¢) from
2.735 to 2.765, i.e., about 1.1 percent; the coefficient of B
increases by 1.0 percent; the ratio of the coefficients, which
is the most important quantity determining the binding
energy, rises by 0.12 percent which is quite negligible.
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TABLE IV. Energies of H? and He* as functions of the range of the neutron-proton forces. (All energies in MV, @ in 1073 cm.)

H3 (Egps = —8.3)
E°

Hed(Egpg = —27.6)

T a B o0 Efeen o0 Egin Epot E° Epeen
5 2.86 22.05 0.740 — 1.60 1.080 23.65 32.7 — 9.05

10 2.02 38.4 0.551 — 044 28 0.891 38.95 49.15 —10.2 —15.6

20 1.43 69.4 0.389 + 1.67 +1.0 0.760 66.5 71.9 —-11.4 —-17.4

40 1.01 129.2 (0.25)* + 5.30 +4 0.666 116.5. 129.5 —13.0 —-19.3

80 0.715 245 (0.25)* +12.9 —_— 0.593 207.5 220.0 —12.5 —_—
* The expression (118c) has, for these values of 7', no minimum. 0.25 is the of the mini when it just

$0=0.75, corresponding to u=0.54»

for H3, (118b)
$0=0.92, corresponding to p=0.7»
for Het. (119b)

Inserting these values, (118), (119) reduce to
EO(H3) =2.750To—1.925,B(c/c+1)%2, (118c)
E°(He*)=4.378T¢—3.961 B(s/a+41)%2. (119c)

The minimum of these expressions as functions
of ¢ is found for ¢, which is given by

(ao+1)5/20-0—l
_ (3/2)(1.925:/2.750)B/T for H3,  (118d)
 1(3/2)(3.961/4.378)B/T for Het. (119d)

From these equations, ¢ can easily be determined
for any given ratio

N=B/T= MBa?/12 (118¢)

0o is then inserted in (118c, 119c) and E° calcu-
lated.

The result is shown in Table IV. For § different
ranges of the forces (column 2), the strength of
the force, i.e., the constant B (column 3), is
computed from the theory of the deuteron
(Table III, §12), due account being taken that
part of the binding of the deuteron arises from
Heisenberg forces (cf. above, and §14). For each
pair a, B (or T, B), oo and the total energy is
calculated for H3 and He!. In addition, the
values of the energy derived by Feenberg (F2)
are given; they differ from ours because he
assumed the deuteron binding energy to be
entirely due to Majorana forces.4” Moreover, for
the a-particle the kinetic and potential energy
are given separately, in order to show that both
these quantities increase rapidly when the forces
become stronger and of shorter range.

47 Feenberg corrected for the Heisenberg forces at a
later stage of his calculations.

The result is by no means satisfactory. Even
for the a-particle, the lowest value of the energy
obtainable is —13.0 MV, i.e., only one-half of
the observed binding energy of 28 MV. (Feen-
berg's values are somewhat better, because he
assumed a stronger force for any given value of
the range, for the reason mentioned.) For HS3,
the binding energy disappears completely for
ranges below 2.6-10713 cm. The reason for the
unsatisfactory result is, of course, that our wave
functions (117), (117a) represent a very poor
approximation to the exact eigenfunction if the
range of the force is short.

Feenberg has tried to get a better approxi-
mation by choosing better wave functions: The
best approximation was obtained with the wave
function

‘P=¢0+)\H‘l/01

where ) is a parameter to be varied, ¥, the wave
function (117) and H the Hamiltonian operator,
i.e., the sum of the operators of kinetic and
potential energy. Wave functions of the type
(120) were first introduced for use with the
variational method by Hassé (H6). They often
correct the original wave function ¥, to some-
thing very well approximating the correct one.
In our case, (120) gives an energy of about
E'40.6(E’'— E® where E° is the energy calcu-
lated from (117c) and E’ that following from
Feenberg's “‘method of the equivalent two-body-
problem”” (cf. §21).

A still better result for H® with a variational
method was obtained by Present (P8). He
chose a simple exponential potential Vie~r/e
between neutrons and protons, with ¢=10"13 cm
and V,=97 MV. This value of V, follows from
the theory of the deuteron (Table III), it is not
corrected for Heisenberg forces. No forces are
assumed to act between the two neutrons.
Present assumed furthermore that the inter-

(120)
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action was of the ‘“‘ordinary” (Wigner) rather
than the exchange (Majorana) type (this simpli-
fies calculations and should give a somewhat too
high result for the binding energy). For the
wave function, Present chose a simple expo-
nential times a power series in the distances
between the particles, varying the coefficients
of the terms in the series. With eight terms in
the power series, he obtained a binding energy
of 4.85 MV for the H?® nucleus. The results for
the binding energy obtained with increasing
number of terms in the eigenfunction showed
rapid convergence. He therefore concludes that
the correct binding energy is 4.9:£0.05 MV.
A similar value (about 4.7 MV for a=10"13 cm,
or, in their notation, u=0.5-10% cm™!) was
obtained by Massey and Mohr -(M9) by a
variation calculation using a different expression
for the approximate wave function. Feenberg’s
method of the equivalent two-body problem
which will be described in the following section,
gives, according to Present, 4.5 MV, i.e., again
almost the same binding energy.

In judging these figures, it should be borne in
mind that a binding energy of twice the binding
energy of the deuteron, i.e., 4.3 MV, would be
expected for H? even in the most unfavorable
case, »z., for infinitely long range of the forces.
The actual results found from the calculations
are only very slightly larger than this value, at
the best, by about 15 percent. On the other hand,
the observed binding energy of 8.3 MV is nearly
twice as large as our ‘‘elementary’’ figure 4.3 MV.
This seems to show that a very much shorter
range of the forces would be required in order to
explain the observed mass defect of H3, if we
assume only forces between neutrons and protons
and none between two neutrons. On the other
hand, no range of the forces shorter than 1-10-12
cm seems to be reconcilable with the binding
energies of a-particle and H? (Table V, §21).
We must therefore conclude thal atiractive forces
between two neutrons must exist in order lo explain
the observed mass defects of H?, H®, He*.

This conclusion is strengthened by the fact
that Present has purposely made some neglec-
tions in his calculations which will tend to make
his result for the binding energy too big : Firstly,
he assumed Wigner instead of Majorana forces.
Secondly, he did not take into account the fact
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that part of the binding energy of H2 is due to
Heisenberg forces which will contribute relatively
less to the binding energy of H? (see above).
Thirdly, a range of the forces of 1-10~13 cm
seems already somewhat shorter than can be
reconciled with the theory of the a-particle
(Table V). Present’s conclusion that forces
between neutrons must exist, is also strongly
confirmed by the more extensive calculations
presented in the next section.

The opposite conclusion has been reached by Dolch
(quoted by Weizsicker, W1) also on the grounds of a
variational calculation. The details of Dolch’s calculation
are not yet available, but only some curves representing
the values of B and a in the expression (115) which are
necessary to obtain the correct binding energies of H2, H?
and He!, respectively (Fig. 1 in Weizsicker's paper).
Apparently, the data for H2 have not been obtained by an
exact solution of the Schrédinger equation for that nucleus
but also by a variational method. What the particular
method was, seems rather doubtful. It seems from the
data published that the wave function used was less good
than the simple wave function (121); e.g., for a=1.4-10"18
cm, the wave function (121) gives, according to (121a), the
correct binding energy for the deuteron if B is chosen to
be 87 MV. The value obtained from Dolch’s calculation
for a=1.4-10"8 cm (b=2.0 in Weizsicker’s notation) is
0.100 mass unit=93 MV, i.e., more than from (121).8 Since
the B required to give the observed value for the binding
energy of the deuteron is larger in Dolch’s calculations, his
wave function represents a poorer approximation to the
wave function of the deuteron than even the simple func-
tion (121). On the other hand, his results for H? and Het
seem to be better approximations than those obtained
from (117), (117a) and listed in Table IV. It does not seem
consistent to us to compare a fairly good approximation for
H? and Het* with a very poor approximation for H2. For
these reasons, we cannot follow the conclusions drawn
by Weizsicker and Dolch from Dolch’s calculations, viz.,
that no forces between like particles need to be assumed to
explain the mass defects of H?, H3, Het. *(Moreover, if
Dolch’s calculations are corrected for Heisenberg forces
it becomes even more necessary to assume forces between
like particles.)

From the variational calculations of Present
and of Massey and Mohr we can also conclude
that Feenberg's method of the equivalent two-
body problem (§21) gives an almost correct
result for the binding energy of H? (4.5 MV,
compared to 4.9 MV according to the best
variational calculation of Present). We shall
therefore apply this method with some confidence
to H?® and He* in the next section.

4 We are indebted to Dr. Feenberg for drawing our at-
tention to this point.
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§21. FEENBERG's “EqQuivaLENT Two-Boby
ProBLEM” (F2, F3)

Since the variational method gives, at least
with simple choices for the approximate wave
function, very poor results for the binding energy
of H?® and He?, that method cannot be used for a
determination of the nuclear force constants from
the observed binding energies. A better method
has to be devised. The method used thus far most
extensively is Feenberg’s method of the equiva-
lent two-body problem. A similar method has
been used by Wigner in his first calculation of
the binding energies of He* (W12).

The method of the equivalent two-body prob-
lem cannot be founded rigorously. But it is
about as likely that it gives too low a result for
the binding energy for a given force, as too high
one. Moreover, Present has shown that for H3
the use of a better approximate wave function
with the variation method, gives a binding
energy very nearly equal to that obtained by
the “‘equivalent two-body problem.’”4®

The method proceeds as follows : The variation
method is applied to the deuteron, with the same
type of wave function which was used for H?
and He* (cf. 121). The energy of the deuteron
(cf. 121a) resulting from the variation method
has a form exactly analogous to that found for
energies of the nuclei H3 and He* (cf. 118c, 119c),
only the coefficients being different. The ‘‘vari-
ational energy” of H? would therefore have
exactly the same value as that for H3, if the
constants T and B determining the force were
replaced by some other constants 77 and B’
which are multiples of T and B chosen in such a
way as to make up for the difference in the
coefficients in formulae (118c) and (121a). Next
the exact wave equation of the deuteron is
solved with the new constants 7/ and B’ which
may be called the ‘“‘equivalent force constants”
for the H3 nucleus. The result of the solution of
the deuteron equation with the force constants
T'B’ (‘“equivalent two-body problem”) is as-
sumed as the true energy of the H3 nucleus.

The wave function chosen for the deuteron is

Y=gt (121)

4 The deviation of the result of the equivalent two-body

roblem from that of Present’s refined variational calcu-

ation is only about 6 percent of the difference between the
simple variation method and Present’s calculation.
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with » the distance of proton and neutron.
With this wave function, the energy of the
deuteron resulting from the variation principle is

E'(H?)=4Te¢—B(c/c+1)}, (121a)
g=va’ (121b)

We may write the energy (117c) of H3 in a form
analogous to (121a), viz.,

E'H?*)=3T'0—B'(¢/c+1)}
if we put
T’'=1.833T,

where

(122)

B'=1.925B. (122a)

The method of the equivalent two-body problem
assumes that the energy of the H?® nucleus is
equal to the eigenvalue E’ in the wave equation
(equivalent two-body equation)
(B2/ M)AY+(E'+B'e-m1e" )y =0 (122b)
where (cf. 118a)
a*=r/MT'. (122¢)

The eigenvalue E’ in (122b) may be obtained, without
any further calculation, from Table III in §12. Suppose
we have two equations of the type (122b), one with the
constants E’, B’, o/, T’ and another with the constants

E"”, B",d", T"”. Suppose furthermore that
B'/T'=B"/T" (123)
or in other words
B'a”=B"a". (123a)

Then the ratio of the energies is the same as the ratio of
the potentials, viz.:
E'/B'=E"/B". (123b)

To see this, introduce into (122b) new coordinates which
are a’/a’ times the old ones, thus:

A= (a’/a")*A, (1230)
where A’ denotes the Laplacian with respect to the new

coordinates. Multiplying the resulting equation by (a¢’/a"")?,
we find

(h‘/JW)A"W'F(E'(a’/ll")’+B'(a’/d")’e""'z/“"z)\lf=0 (123d)
which, with (123a) and (123b), is equivalent to
B/ M)A+ (E"+B"e" ")y =0,  (123e)

showing that E"" = E'B" /B’ is the eigenvalue corresponding
to the force field B’ T" if E' is the eigenvalue corresponding
to the force B’T’. Now Table III gives the pairs of values
B''T" which lead to the binding energy E”=—2.14 MV.
From these, we can easily deduce the eigenvalue corre-
sponding to a given pair of force constants B'T’ by use
of (123b).

As an illustration, we want to calculate the energy of H?
for the case T=10 MV. Table I1I gives us as the value B

P =ra"/a’,
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corresponding to this T according to the theory of the
deuteron, B=238.4 MV. From (121a), we find for the force
constants of the two-body problem equivalent to the H3
problem, 7"=18.33 MV, B'=73.9 MV, The ratio of the
two is B’/T'=4.03. We seek in Table III this particular
ratio B”/T" and find listed above it the value 7"'=12.5
MV. This value of T” would lead to a binding energy
—E"=2.14 MV. The binding energy of H3 therefore
becomes —E'=—E"T'/T"=2.14-18.3/12.5=3.13 MV,

The analogous procedure can be carried out for He¢,
only the relation between the equivalent force constants
B'T’ and the given constants of the actual force, B T,
being changed to (cf. 118c, 121a)

T/(He!) =2.919T, B'(Het)=3.961B.  (124)

TABLE V. Energies of H® and He* from the method of the
equivalent two-body problem, as functions of the range of the
forces. (No forces between like particles.) (All energies in
MYV, range a in 1078 cm. Values in parentheses estimated.)

H3 Het
- obs. E=—8.3 obs. E=—27.6

T e B —E’ —Eyeen| —E' C —E —Egeen
5 2.84. 22.05| 2.82 (4.2) |11.05 0.56 10.5 (18.2)

10 2.02 384 3.00 4.5 |14.05 0.72 13.3 24.3
15 1.65 54.0 | 3.12 4.7 [16.7 083159  26.8
20 1.43 694 3.29 4.9 (19.15 093 18.2  29.0
30 1.165 99.3 3.46 5.2 |23.65 1.1022.55 (33.2)
40 1.01 129.2 3.70 5.4 |28.251.24 27.0 —_—
50 0.905 158.3 386 — [32.551.35 31.2 —_
60 0.825 187. 4.02 — |36.5 1.45 35.05 —
80 0.715 245. 430 — |443 1.63 427 —_

Table V gives the result of the calculations
for H® and He* for various ranges a of the force.
The forces between like particles are still as-
sumed to be zero. E’ is the energy derived from
the ‘“‘equivalent two-body problem.” C is the
correction for the Coulomb repulsion of the two
protons in the a-particle (cf. §22), E=E'+4C is
the total calculated energy. In the table the
energies calculated by Feenberg are included,
the difference being again that Feenberg deter-
mined the force constant B for every range a so
that the total binding energy of the deuteron is
accounted for by the Majorana force while we
considered part of it as due to a Heisenberg force.
The differences are seen to be rather large,
Feenberg’s binding energies being, or course,
much larger for any given range a of the forces.

We observe that the binding energy of the
a-particle increases rapidly with decreasing range
of the forces, the experimental value of 27.6 MV
being obtained for

T=415MV, 2=0.99-10"*% cm,

_ (125)
B=133 MV.
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With Feenberg’s assumptions about the origin of
the binding energy of the deuteron, the potential
hole would be much less deep and narrow, viz.,

T=16.8 MV, a=1.56-10"13 cm,

_ (125F)
B=60 MV.

The binding energy of the H? nucleus turns
out to be much smaller than the observed one
(8.3 MV) and to increase only very slowly with
decreasing range. For the range which yields the
experimental value for the binding energy of the
a-particle (T'=41.5 MV) the binding energy of
H2isonly 3.7 MV, i.e., 45 percent of the observed
value. (With Feenberg’s assumptions, it would
be markedly better, »iz., 4.8 MV at T=17 MV,
which, however, is still unsatisfactory.) We must
therefore conclude that either (a) the method
of the equivalent two-body problem, while
satisfactory for the a-particle, gives much too
small binding energies for the H3 nucleus, or (b)
there are additional forces which depress the
energy of H? relatively much more than'that of
the a-particle.

The first possibility can be excluded almost
with certainty, in view of the variational calcu-
lations of Present (cf. end of §20). Therefore we
adopt alternative (b). The additional forces
which we assume are attractive forces between
like particles. This assumption is the more
preferable over assumption (a) since we have
already found other evidence for the forces
between like particles (§10, §18).

The energy of H?® and He* resulting from the
variation method and including forces between
like particles, is given in (118), (119). These two
expressions do not have exactly the same form
as the ‘‘variational energy” of H? given in
(121a). For the last term in (118) as well as
(119) contains (po/po+1)? instead of (¢/c+1)3.
Therefore the method of the equivalent two-body
problem cannot be applied immediately.

Two procedures suggest themselves: (a) We
put simply p=1. In this way, we lose one
parameter in the variation principle and there-
fore impair the result somewhat. The error will,
however, not be serious because the introduction
of forces between like particles tends to equalize
the constants x and » in the wave function and
therefore to bring p closer to one. If the forces
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between like particles were equal to those
between unlike ones, we would have exactly
p=vand p=1. For the ratio of the forces derived
below (Eq. (128)), one finds $=0.94 for H? and
$=0.985 for He* as the values giving the
minimum of the energy.

(b) We introduce a new parameter ¢’ by putting
a=o¢'(14+c(1—7)). (126)

¢ can then be fixed so that the sum of the second and third
term in (118) has the form (2Bf(p)+C)(c¢’/o’+1)%2. This
is achieved by putting approximately

¢=C/(2B+0). (126a)

The minimum of (118) with respect to p occurs then
approximately for

p=1-(B—-C()/22B+C)
and (118) reduces to
2:ITxr’

E(HY) = [3— (ﬂ
+[2B+C-—}B(%)z](a'/u'+1)m. (126c)

(126b)

2B+C,

The results obtained from this equation are almost the
same as from method (a). The constant C, determined in
the way described below from the binding energy of H3
turns out 0.15 MV smaller by method (b) than by method
(a) if we take the range of the forces finally chosen (cf.
T=8 MV). For shorter range, the correction is larger,
being 0.9 MV for T=20 and 1.7 MV for T=30. But these
differences are, of course, very small compared to the
accuracy of the method. For the a-particle the effect of
applying method (b) would be still smaller. We have
applied method (b) in the final calculations, but we shall
now describe the procedure according to method (a).

Putting =1 in (118), (119) and comparing
the result to (121a), we obtain for the parameters
in the equivalent two-body problems:

for H3: T'=2T, B'=2B+C, (127)
for He*: T'=3T, B'=2(2B+C). (127a)

Since we want now to fix {hree constants B, C
and T (T is equivalent to the range of the forces
a), we must use the exact binding energies of all
three nuclei H?, H3 and He*. Therefore we choose
the following procedure: We take a given value
of T. The value of B corresponding to it can be
read directly from Table III, which is based on
the theory of the deuteron. C can then be
determined from the observed binding energy of
the H?® nucleus, viz., E'=8.28 MV =3.87 times
the binding energy of the deuteron. The method
of determination is that described in Egs. (123)
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to (123e): We know that the value T'=2T,
together with the unknown value of B’, must
give the observed binding energy E’'=3.87E,.
Therefore the force constants 7"/ =17"/3.87, and
B'"=B’/3.87, would give exactly the binding
energy of the deuteron. Therefore we have only
to look in Table III for the value 77'=7"/3.87
=2T/3.87, and to find the corresponding value
of B”/T" from the table: This value of B"/T",
multiplied by the given T'=2T, gives the re-
quired value B’ for the H? nucleus. Subtracting
2B from B’, we find that value of C which gives
the correct binding energy of H? (and H?) for
the given value of T'; we may call it C(H3, T).
The same procedure is then carried out for
the a-particle. In this case, a correction has first
to be applied to the observed binding energy to
allow for the Coulomb repulsion of the two
protons (for its determination, see (129b)). The
result of the calculation is another value for C,
2., C(He*, T) which is the value necessary to
give the correct binding energy of He* and H2.

TABLE VI. Strength of the force between like particles
necessary to explain the binding energies of H® and He'.
(Equivalent two-body problem. Energies in MV, a in
1013 cm.)

- H3 Het

T a B B Cc CouL* 1/2 B’ c

5 286 22.05| 62.15 18.05| 0.70 64.7  20.6

7% 233 304 | 81.75 2095| 0.79 81.85 21.05
100 2.02 384 [100.3 235 | 0.86 97.5 207
15 1.65 54.0 (1358 27.8 | 0.96 127.7 19.7
20 143 694 |169.3 30.5 1.05 156.7 17.9
30 1165 99.3 |233.8 35.2 1.18 2114 12.8

* Coulomb energy of the two protons.

It is seen from Table VI that C(H?, T) in-
creases rapidly with decreasing range of the
forces while C(He?, T) stays constant down to
about 1.5:107% cm range and then decreases.
This is due to the fact that the binding energy
of the a-particle may be explained without
having recourse to like-particle forces if we only
assume ¢ =1.00-10"13 cm while the corresponding
calculations for H? (Table V) do not give a
satisfactory result.

We now choose the point where the curves
C(H3, T) and C(He?*, T) cross. The constants of
the force for this point are

T= 7.6 MV, B=30.7 MV,

(128)
C=21.0MV, a= 2.32-10%cm.
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These constants give, according to our method,
the correct binding energies of the three light
nuclei H2, H® and He*.

Feenberg obtained slightly different constants
by assuming in the first part of his calculation
that there are no Heisenberg forces and then
correcting for them afterwards. His values are

B=34 MV, C=21 MV,

(128F)
a=2.17-10"%% cm,
the difference arising from slightly different
experimental values for the binding energies of
H?H3He*.

It must be emphasized that the result (128) is
by no means accurate. There is no way of
estimating the error of the method of the
equivalent two-body problem. It seems that the
value of C (strength of the forces between like
particles) is not as sensitive to errors as the
values of B (force between proton and neutron)
and ¢ (range of the forces). E.g., let us suppose
that the C values for the a-particle are too low
by 2 MV, and those for H? too high by the same
amount. Then the ‘‘crossing point” would be
shifted to T=11.2 MV, B=42 MV, C=22.5 MV,
2=1.91-10"* cm, ie., B would increase by
almost 40 percent, @ would show a corresponding
decrease by almost 20 percent, while C would
change by only 7 percent. The present determi-
nation can therefore not be regarded as final.
However, at least the existence of forces between
like particles seems almost certain, and the order
of magnitude should not be very different from
(128).

Moreover, it is very gratifying that the values
for the force between like particles obtained from
our theory agree almost perfectly wiih those
following from the scattering of protons by protons
(§18). This agreement is very satisfactory and
represents at present the only real check on our
Sfundamental assumpiions about nuclear forces.
That this is so, can be seen as follows: We have
five accurate experimental data at our disposal
in order to fix the constants in the theory of
nuclei, »z., the binding energies of H?H3He*,
the scattering of slow neutrons by protons, and
the scattering of protons by protons. The first
four are needed to fix the four constants: range
of the forces, strength of the Majorana and
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Heisenberg forces between neutron and proton,
and strength of the proton-proton forces. Only
the fifth experimental result is therefore available
for a check of the consistency of our assumptions.

§22. ComparisoN oF H?® anp HE?

We have assumed throughout that the nuclear
forces are symmetrical in neutrons and protons
(§6); i.e., the force between two neutrons is
assumed to be the same as that between two
protons, disregarding the Coulomb force between
the latter. From this point of view, the difference
between the binding energies of H® and He?
should be due entirely to the Coulomb repulsion
between the two protons in He3. A computation
of this effect will give the most direct check of
the assumption of symmietry of the nuclear forces
in neutrons and protons. At the same time, we
may compute the Coulomb energy for the
a-particle, which was needed as a correction to
the calculations in the preceding section (Tables
V and VI).

The Coulomb energy may be calculated very
easily from the wave function (117); the result
is for He3

C.E.=e[2(v+2u) /A (129)
Similarly, we obtain for the a-particle
CE.=e[4(v+pu)/m L (129a)

In order to compute these expressions, we have
to calculate » and u. It seems sufficiently accurate
to put »=p which is very nearly true for our
case (see above). Then we may use (118a)
(119a) to replace »=u by ¢, giving

C.E.=2(et/a)(c/x)}

for both H3 and He!. Now ¢ may be determined
approximately by making the variational energy
of H? and He* a minimum. For H? and g =y this
variational energy is (cf. 118, put p=1):

(129b)

E=3Toc—(2B+C)(s/c+1)%.  (129¢c)
The minimum occurs for
(041)5/0=[(2B+C)/2T . (129d)

For our values of the constants (128), this
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expression has the value 29.0. This gives
¢=0.934, (129¢)
C.E.=0.68 MV. (129f)

A somewhat larger value of the Coulomb
energy may be expected in view of the fact that
the two protons shall be more frequently close
together than would be expected from the wave
function (117), owing to their strong mutual
attraction at close distances. However, it can
be expected that this correction is not very large.

Therefore (129f) should be approximately
equal to the observed difference between the
binding energies of H?® and He? He? being the
heavier nucleus. This difference is given experi-
mentally directly by the difference between the
energies evolved in-the two reactions

H*+H?=H+H'+-Q,,
H24-H2=He*+n'+ Q..

For we may write:

(130)
(130a)

Binding energy of H3=mass of two neutrons+-one pro-
ton—H?3 :
=2n'42H!— (H3+H).
Binding energy of He?
=n'+42H!—He?=2n!+42H!— (He3+4n!).

Therefore difference of binding energies equals
(He*+n') — (H*+H) =0,— Q..  (130b)

‘The reaction energy Qi is very well known from
experiments of Oliphant, Kempton and Ruther-
ford (01), it is

Q2 has been measured by Bonner and Brubaker
(B20) and by Dee and Walton (D1). The latter
authors used the range of recoil He! nuclei set
into motion by the neutrons to determine the
neutron energy, the value of Q. derived from
their measurements is about 2.95 MV (chapter
XVI). This value is rather uncertain because the
ranges of the recoil a-particles are very short,
and lie in a region where the range-energy rela-
tion is not very well established. Bonner and
Brubaker used recoil protons whose range is much
longer and falls into the region where the range-
energy relation is best known. They find

Q:=3.211+0.13 MV. (130d)
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If we decide for this value, the difference of the
binding energies of He® and H?® turns out to be

(He?) — (H?) =Q:—Q:=0.76:0.14 MV (130e)

in close agreement with the calculated value
(129f).

§23. EXCITED STATES OF THE a-PARTICLE
(F4, C17)

Experimental evidence has been obtained by
Crane and Lauritsen (C17) that the a-particle
possesses excited states. The evidence is based
on the fact that y-rays are emitted when protons
fall on Li” nuclei. The reaction taking place is
probably (cf. chapter XVI)

Li"4+H!=He!4He*;

He#*—Het+vy, (131)

where He** denotes an excited a-particle which,
after the nuclear transmutation is completed,
radiates its excitation energy as a y-ray. (Cf.
chapter XIII for arguments against the y-ray
being emitted during the nuclear transmutation
itself.)

The «y-ray spectrum from reaction (131)
appears to be complex. The maximum vy-energy
observed is 16 MV, i.e., nearly the total energy
available in the reaction (17 MV). In addition,
there seem to be some y-rays of smaller energy.
A satisfactory interpretation would be to assume
one excited level of the a-particle at 16 MV above
the ground state, and one or two more excited
states at lower energies, the lowest being perhaps
10 MV above ground. Then the low energy y-rays
would come from transitions between the high
levels, while the energetic y-rays would corre-
spond to transitions from one of the high levels
to the ground state.

a-particles with an excitation energy of 16 MV
would be perfectly stable against disintegration.
For the disintegration which would require least
energy would be into H34H!?, and this process
would require 19.4 MV energy, as calculated
from the masses of H'H?® and He*.

The problem is now whether (one or more)
stable excited states of the a-particle can reason-
ably be expected. Feenberg (F4) has shown that
the answer is affirmative provided the values for
the force constants derived in the preceding
section are anywhere near correct. There are
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probably two or three stable excited states not
very far apart.

One could try to calculate the energy of the
excited states by the variation method. This
method is, however, very troublesome for excited
states® because their wave functions must be
chosen orthogonal to that of the ground state.
Moreover, the variation method did not give
very good results even for the ground state.
Feenberg therefore chose a different method for
the treatment of the excited levels of the a-
particle.?!

The method is based on the so-called sum rules
for the matrix elements of the coordinates. We
introduce the following coordinates

u=r1+r2—r3—r4; V=I;1—1T9;
w=r3—1s; S=31(r;4r12415+41,),

where rir; are the positions of the protons and
rsr,; those of the neutrons. 3u is the vector from
the center of gravity of the two neutrons to that
of the two protons, v the vector from one proton
to the other, w the corresponding vector for the
neutrons, and S the position of the center of
gravity of the a-particle. The 12 Cartesian com-
ponents of these four vectors form an orthogonal
set of coordinates in the configuration space of
the four particles. Accordingly, the Laplacian
operator (kinetic energy) transforms into a sum
of Laplacian operators with respect to the coor-
dinates (132) without any cross terms, thus:

Ar4-Aot-AsH-As=4A,+2A,4+24,+2As. (132a)

We insert this expression into the wave equa-
tion, and then deduce the sum rule for the oscil-
lator strength in the usual way.* If #’ denotes
any Cartesian component of the vector u, and
Uny' its matrix element with respect to the two
states mn of the a-particle, we have for any
state m

(132)

50 Cf. the corresponding calculations for the helium afom,
Handbuch der Physik, Vol. 24/1, p. 364. .

5t Actually, Feenberg has also carried out variation cal-
culations for the excited levels. However, the calculations
were only performed for an ordinary rather than an ex-
change interaction. Moreover, the resulting energy levels
lay not appreciably lower than the upper limit derived
from the sum rule.

* Note added in proof: Feenberg has pointed out that the
sum rules (133), (133a) hold only for ordinary forces. For
Majorana forces, it seems that the upper bound for the
energy turns out much lower than (135). This would make
the existence of stable excited states a certainty.
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Y (En—En) | ttmn |2=28/ M, (133)
Z(En*Em)JvmnIP:Z(En—Em) ‘wmnllz

=2/M, (133a)

the sums including, of course, integrations over
the continuous spectrum. We apply (133) par-
ticularly to the ground state m=0. We denote
by E, the energy of the lowest excited state for
which the matrix element %y’ does not vanish.
Then we have certainly from (133)

(Er—Eo) X |uoa'|2<2082/M.  (133b)
The sum occurring here can be evaluated at
once:

2 w0’ 2= (#") 0o, (133¢)

where (u'*) is the average of #'* over the eigen-
function of the ground state. We obtain therefore

El—Eo<2h2/M(u“)oo. (134)

(134) gives an upper bound for the energy of the
first excited state which involves only the
knowledge of the wave function of the ground
state. We take the wave function (117a) which
may be rewritten

N B (I (134a)

where # is the length of the vector u. Then we
find easily

W) oo=Se " u"du' | fe=""*du’ = 1/(2v). (134b)

From (119a) we find v=1%0/a? if we put p=1
[actual value $=0.985, cf. §21, above Eq. (126)]
so that

E\—Eo<2Wo/Ma?=2Ts  (134c)

(cf. 118a). ¢ may be determined by making the
variational energy of the ground state of the a-
particle, viz. (cf. (119) with p=1)

41Te—2(2B+C)(o/a+1)} (134d)

a minimum. Inserting the values of the constants
(128), this gives
o=1.32,

E;—E,<20.1 MV.

(134e)
(135)

Since the condition for stability against disin-
tegration into H¥4+H! is

E,—E,<19.4 MV, (135a)
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the level E; needs only to be slightly below the
upper limit (135) in order to be stable. Thus the
stability of the state E; seems almost certain.5?

The properties of the level E; may be deduced
from the fact that the coordinate » has a non-
vanishing matrix element between the ground
state (completely symmetrical wave function)
and E,. This has two consequences: Firstly, the
eigenfunction of E; must be symmetrical in the
space coordinates of the protons and in the space
coordinates of the neutrons; this makes the state
a singlet state. Secondly, the eigenfunction must
change sign if the two neutrons are replaced by
the two protons and vice versa which shows that
the function has a nodal plane; it is therefore a
P function. Consequently, the state E, is a P
state.

Two 2P levels are obtained by making the
eigenfunction antisymmetrical in the space coor-
dinates of the two protons, or of the two neutrons.
Calling these ®P levels E; and E;, it follows that
the matrix elements vy’ and w,s’, respectively,
are different from zero. Upper bounds for the
energies E, and E; can be obtained in a way
analogous to E,, v2.,

Ey—Eo </ M@)o, (135b)
@")o0=1/(2u+2v). (135¢)
With u=v, the upper bounds for E, and Ej;
become identical to that for E;. From this fact,
we might conclude that both the levels E; and
E; might be stable. However, since the two
levels have the same symmetry properties, there
will be some “‘interaction’’ between them which
will depress one level and raise the other pos-
sibly above the stability limit.
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With all reservation, we may therefore form
the following tentative picture of the excited
states of the a-particle: There will be a 1P state,
odd in the # coordinate, even in the v and w
coordinates, less than 20 MV above the normal
state. Furthermore, there will be a 3P state even
in #, odd in v or w, which we might expect to lie
lower than the 1P state because of interaction
with the other 3P state. This other 3P state will,
because of the same interaction, probably lie
higher than the 1P state and probably it will not
be stable at all.

We propose to identify the 1P state with the
observed level at 16 MV, the lower 3P state with
a lower level at, perhaps, 10 MV. This choice
seems plausible from the standpoint of selection
rules: Only the coordinate « has an electric dipole
moment attached to it. Allowed optical transi-
tions will therefore lead from a state odd in % to
a state even in « or vice versa. Both the transi-
tions from 1P to .S and to?P are therefore allowed.
The fact that the latter transition is an “‘inter-
combination” should only moderately decrease
the intensity, because the rather strong Heisen-
berg forces (§14) prevent the spin of the a-
particle from being a true quantum number. The
transition 3P —1S must then also occur, because
it is the only way in which a-particles in the 3P
state can get rid of their energy. We therefore
expect three lines, corresponding to the transi-
tions 1P —1S (about 16 MV),3 1P —3P (~6 MV)
and 3P—1S (=~ 10 MV). This seems compatible
with experiments, in view of the small number
of observations made and the large statistical
fluctuations to be expected accordingly.

V. Statistical Theory of Nuclei

§24. THE HARTREE METHOD

In this and the following chapter, we shall use
an approximation to the nuclear problemin which
each particle is, in first approximation, supposed
to move independently of the others. This
method has been introduced into atomic physics

% Feenberg has pointed out that the eigenfunction
(134a) falls off too rapidly for large values of %, the correct
dependence being e~o* rather than e~¥4*, This makes the
calculated value of (%#/*)e too small. A correct wave function
would therefore give a lower value for the upper bound (135).

by Hartree (H4), and has been used in that
domain with great success.

In the Hartree approximation, we assume
certain wave functions i, ¥a--y¢z for each
individual proton, and ¢; - + ¢ for the neutrons.
Each of these wave functions is supposed to be
a function of the position as well as of the spin

8 There is, of course, no theoretical foundation for the
figures. They are chosen to fit the experiments as good as
possible.
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of the respective particles; p; and #; shall stand
for all coordinates (positional and spin) of the
ith proton and neutron, respectively. Then a

i(p1)  Ya(dr)
U=l1(p2) Ya(p2)

vi(ps) Valba)
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wave function of the nucleus as a whole which
satisfies Pauli’s principle, is (cf., e.g., reference
S$22)

The total energy of the nucleus is given, in first approximation, by

E=LS WLV —(#/2M) (Eburt £0,) JWdrY/ S 2%,

where V is the total potential energy as a func-
tion of the coordinates, A,; and A,; are the
Laplacian operators with respect to the coor-
dinates of the neutron ¢ and proton 7, and the
integral has to be extended over all coordinates
of all particles.

The expression (137) actually represents an
upper bound for the energy of the system since
it is well known that the right-hand side of (137)
becomes an absolute minimum if we insert the
correct wave function ¥, instead of ¥ (Schro-
dinger’s variation principle). Of course, if ¥, is
inserted in (137), that equation will give the
correct energy Eo. Thus the correct energy is
always lower than the E calculated from (137)
with an approximate wave function ¥. This has
a very important consequence: If ¥ contains one
or more parameters which are left arbitrary in
the early stages of the calculation, the values of
the parameters should finally be determined in
such a way as to make (137) as small as possible.
This will then make ¥ and E as close approxi-
mations to the correct wave function and energy
as possible with the assumed form of the wave
function (Ritz method). The parameter which
we shall usually introduce into the wave function
and then fix by this minimum condition, is the
nuclear radius, but occasionally more parameters
will be introduced.

Before we evaluate (137), we want to say a
few words about the Hartree approximation in
nuclear physics. It can be said at once that this
approximation will not be as successful in nuclear
theory as in the theory of atoms. The main
reason for this is the saturation type of the
nuclear forces: Any given nuclear particle inter-

¢2(ﬂx) on(n1)
Yz(p2) |- [e1(n2)  pa(ma) on(ng) | (136)
Vz(p2)l lei(ny)  e2(nw) en(ny)
(137

acts essentially only with two particles of the
other kind (§7). Therefore the force between a
given pair of particles will be of the same order
of magnitude as the force exerted by the whole
nucleus on one particle. This is contrary to the
assumptions of the Hartree theory. These are
that in first approximation the total action of the
nucleus on one particle may be represented by
an average field, corresponding to the average
distribution of all other particles over the nu-
cleus. The ‘“correlations” between the different
particles, i.e., the fact that the motion of one
particle is influenced by the instantaneous posi-
tion of the others, is supposed to cause only
small perturbations in the Hartree theory. These
assumptions of the Hartree theory are well satis-
fied in the atomic problem because the force due
to the nucleus, and the force corresponding to
the average charge distribution of the electrons,
are very much stronger than the fluctuations of
the force caused by, say, a close approach of one
other electron to the electron considered. In
nuclear physics, the force on one neutron changes
by 100 percent or more according to whether a
proton happens to be near the neutron or not.
Therefore the correlations between the nuclear
particles will be of extreme importance for any
satisfactory calculation of nuclear energies, and
the Hartree method will afford only a poor ap-
proximation. In spite of these serious objections
against the Hartree method, we are forced to
use it because no better method seems practicable
at the moment.

Proceeding now to the evaluation of the energy
(137), it is useful to assume the eigenfunctions
of the individual particles to be orthogonal and
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normalized. This is most conveniently achieved
by assuming the ¢’s and ¢’s to be the solutions
of certain one-particle wave equations, thus:

(72/2M)A¢i+-(Ei— V) ¢:=0,
(B2/2M)Api+(Wi—Va)0:i=0,

where V, and V, are certain “‘auxiliary poten-
tials’”” which may be chosen suitably so as to
make the energy (137) a minimum.

We assume now the total potential energy V
in (137) to consist of a number of terms corre-
sponding to the interaction of pairs of particles:

(138)

z N z
V=% > Va(ps nk)‘{'%g Ig_}’ik(pi, Pr)

=1 k=1

N
+32% 2 Nulns, ni),
pa

(139)

where V' represents the interaction of a proton
and a neutron, Pj, that between two protons and
N, that between two neutrons. The factors 1/2
stand in order to count each pair only once.

The evaluation of (137) is then straightforward
and similar to the theory of complex atoms
(C13). The result is

z N z N
E=ZlEe+§IW¢—§1fl¢i[2Vpde§f| o2 Vadr

Z N
+2 ZSYHD) er*(m) V(p, m)¥i(p) ox(n)drrdTn

i=1 k=1

z 2
+%§_:l &[fl%(l)lzl%(2)l2P(1,2)dndrz
= S (OPH(2¥:(D¥x(2)P(1, 2)dTid 7]
N N
+%_);1 ’gﬁfl«m(l)lzl ex(2)|2N(1, 2)d7id7s

=S oD e*(2) 0:(1) e:(2)N(1, 2)drid7,]. (140)

The first line contains the kinetic energy of the
particles. The second line represents the effect
of the interaction between unlike particles, the
next two lines the proton and the last two the
neutron interaction. It is seen that exchange
terms appear only in the four last lines which
refer to the interaction between like particles,
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because the terms arise from the antisymmetry
of the wave function with respect to particles of
the same kind.

We now assume that V(p, #) is an interaction
of the Majorana type. In other words, if xs
denote position and spin of the proton, f{¢ the
same quantities for the neutron, then

V(p, m¥i(xs) r(§0) = J(x — §) Yu(Es) gr(wo), (141)

where J is an ordinary function of the distance
between the particles, as treated in chapter III.

The integral signs in (140) imply, of course, a
summation over the spin coordinates as well.
This sum can be carried out if we assume that
each of the functions ¢ and ¢ is the product of
a function which depends only on the space coor-
dinates and one depending only upon spin, which
assumption is always justified as long as the
“auxiliary” potentials V, and V, (cf. 139) do
not depend upon spin. Then the contribution of
the interaction between proton ¢ and neutron k
to (140) becomes

V= SYr0) o) on(x) T (x — £)dxdt,  (141a)

the integral now extending over the space coor-
dinates only.

The interaction between protons contains the
Coulomb interaction and the specific interaction
between like particles discussed in §§10, 18 and 21.
Nothing definite is known about the type of these
forces. Two types suggest themselves: The inter-
action may or may not depend on the relative
orientation of the spins of the particles.* We
decide in favor of the former choice because an
interaction independent of the relative spins
would be essentially equivalent to a Wigner type
force and would therefore lead to difficulties,
giving excessive binding energies for heavy
nuclei®® (§28, V1). We therefore assume

N(1, 2)= —3K(r12) (01 02),
P(1,2)= —3K(r12)(01-05) +€2/712.
The forces neutron-neutron and proton-proton

have been assumed equal, except for the Coulomb
repulsion (cf. §6, 22). ¢ denotes the Pauli spin

(142)

8 Majorana and Heisenberg forces may be expressed in
terms of these two kinds of forces, owing to the antisym-
metry of the wave function with respect to like particles,
reference V1.

% A linear combination of a large force depending on
spin, and a small force independent of spin, cannot be
excluded.
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operator. The factor —} has been inserted in
order to make the interaction of two neutrons
(or protons) with opposite spins equal to +K;
namely, for two such neutrons, we have (with ¢
denoting the resultant e1+ 02, which is zero) :%

(142a)

201-02=0?—0,2—0s’= —6.

K is thus identical with the quantity denoted by
K in (115a)

To evaluate the neutron-neutron interaction
in (140), we first add formally a term k=1
referring to the interaction of a neutron with
itself. This does not change the expression,
because the ‘‘ordinary’” and the ‘‘exchange’
term cancel exactly for k=1<. Then we write each
wave function ¢; as the product of a spatial wave
function #; and a spin wave function, which is &
or B8 according to whether the spin component in
a given direction z is +% or —%. We then take a
particular state g;=wu;a, and consider its inter-
action with the fwo states ¢y =ura and gra=uif.
(ux, may or may not be equal to #;.) Then we have
for the “direct” part of the interaction (first
integral in last line of (140)):

=3/ |u:(1) | 2| ur(2) | 2K (r12)drid7e
T alsi)a(sz) (o1 e2)a(s)alss) (142b)

and
=5 | us(1) |2 ua(2) | 2K (r12)drad s
> a(s1)B(s2) (01 02)a(s1)B(s2)

8182

(142¢)

corresponding to the two states ¢ and gze. Now
the spin wave functions obey the relations:

a.ff=—4,

oya=1p,

go=a, oa=f, ofi=a,

oB=—ia. (142d)
Therefore

(01° o)1) (2) = (1) (2),

(01-02)a(1)B(2) = —a(1)B(2) +2B(1) (2).

Thus the sum over the spin coordinates 55, in
(142b) gives +1, that in (142c) —1. The two

(142e)

% @, is twice the spin angular momentum of particle 1 in
units . The eigenvalue of the square of the angular mo-
mentum is s(s+1) where s=4. Therefore ¢?=4-%-3=3.
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expressions (142b) (142c) are thus equal and
opposite; therefore the ordinary part of the
interaction between the neutrons vanishes, if
we take the interaction potential (142).57

The exchange part (second integral in last line
of (140)) becomes

+1iKu 3 als)alsz) -als)alss)  (143)
and
+ 3K 2 B(s)alsz)

8182

‘[—a(s1)B(s2) +2B(s1)a(sz)]  (143a)

for the interaction of ¢; with ¢ and ¢, re-
spectively. K is the integral

K= Su*(r)u(ra)ui(r)u(rs)

XK (r12)dridre. (143b)
The summation over s;s: gives 1 and 2, respec-
tively, in (143) and (143a), so that both con-
tributions together are just equal to K. Thus
K is the interaction between one neutron 7 and
a pair of neutrons % of opposite spin;.or 3K is
the average interaction between two neutrons

ik. Therefore the total interaction of all neutrons
N N

is § 21 > K, since another factor § comes from
t=1k=1

(140).

For the protons, the same result holds, but
there is to be added the Coulomb repulsion
which gives rise to a ‘“direct’” and to an “ex-
change” term.

Collecting our terms, we may now write for
(140),

E=T+4+V+4+C—-A+F (144)

where T is the kinetic energy, V the contribution
of the forces between protons and neutrons, C
the direct Coulomb interaction between the
protons, 4 the correction to the Coulomb inter-
action because of proton exchange, and F the
contribution of the nuclear forces between like
particles. Explicitly, we have

57 This fact prevents the neutron-neutron interaction
from giving excessive contributions to the binding energy
of heavier nuclei. This is actually the reason for choosing
the particular form (142) for the interaction potential.



§25 NUCLEAR PHYSICSe 153
z N
T= §‘(Ei— S 1¥:|2V d7) +§1(W.’— S il *Vadr), (144a)
z N
V=X "Zf'ﬁi*(xl)\ﬁi(xz) ex*(x2) pu(x1) J (r19)d7rd 7, (144b)
C= él kilf [Wilor) | 2| @r(e) | 2(e2/r12)dTid 7o, (144c)
z 1z
A= gx E;;f%*(xX)\Ps‘(xz)‘Pk*(xz)llfk(xl) (e*/r12)dm:d7s, (144d)
z
F= %Zl kzl./‘\h*(xl)lﬁs(xﬁ)‘h*(xz)\ﬁk(xl)K(hz)d‘nde
N N
+ 12 TS et (x1) ei(we) oi* (w2) or(x1) K (712)dTid 0. (144e)

=1 k=1

A formal simplification of these equations can
be achieved by introducing the total density of
protons and neutrons, 2.,

z N
po(x) = leike(x) [, palx)= Z_:‘[ ei(x) |2, (145)
and Dirac’s ‘“‘mixed densities”

z
pp(xly Xg) = g%*(xl)'h(xz),
- (145a)

N
palx1, x2) = Z:1<Pf*(x1) @i(x2).
Obviously,
po(®, 1) = pp*(x1, ¥2),  pp(%) = py(x, %).

Interchanging the order of summations and
integrations in (144a) to (144e), we have

z N
T=YEA+YXWi— S (Vopp+ Vapa)dr,

i=1 i=1

V=S J(r12) pp(x1%2) pr*(x1062)d 71 72,

(146a)
(146b)

C=3JS(€*/r12) pp(x1) pp(x2)dT1dTs, (146¢)
A=3}S(e2/r12) | pp(2122) | 21 s, (146d)
F=3 S K(ra)(] pp(xrxa) | 2

+ | palx1%2) | Dd71dT2.  (146€)

§25. THE STATISTICAL MODEL. QUALITATIVE
Concrusions (M6)

In the statistical model the eigenfunction of
each individual proton or neutron is supposed
to be that of a free particle »iz., a plane wave.
These eigenfunctions are inserted in (146) and
the energy of the nucleus calculated.

Accordingly, the auxiliary potentials V, and
V. are assumed to have certain constant, nega-
tive values inside a sphere of radius R (nuclear
radius) and to be zero outside that sphere. The
radius R is an arbitrary parameter which has to
be determined in such a way as to make the
nuclear energy a minimum (cf. §24, beginning).
The value of the auxiliary potentials V, and V,
inside the ‘‘nucleus” does not affect the nuclear
energy materially because only the kinetic energy
of the particles and the form of the wave func-
tions enter the formula (146) neither of which
quantities depend upon the value of the auxiliary
potentials except for surface effects (§29).

For the sake of the simplicity of the eigenfunctions it
may be allowable to replace the spherical “box’ for the
nuclear particles by a cubical one having the same volume.
Denoting the length of the cube by / we have

B=47R3/3, l=R(4r/3) (147)
The wave functions in such a box are plane waves
Ty P T Ry S P (147a)

The factor /-3 serves to normalize the functions.
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The components of the whve vectors k; are determined
by the boundary condition for the eigenfunctions at the
boundary of the cube. Neglecting the details of surface
effects we may impose the usual condition

kiy=2m1y /), Ria=2wx,/l, (148)
KkzKyk: being three integers. For each triple of integers xzky«.
there is just one proton state and one neutron state of
either spin direction, so that the total number of neutron
(or proton) states having wave vector components between
k; and k. +dk., k, and k,+-dky, k. and k.+dk. is
ndkidk,dk.=2(l/27) dk.dk,dk., (148a)
the factor 2 arising from the two possible spin directions.
The number of states for which the absolute value of the
wave vector is between % and k+dk, is (cf. 147)
2(1/27)%4 wk?dk = (4/37)R%k2dk. (148b)
The kinetic energy of a particle of wave number % is
T (k) =h%2/2M, (149)
so that the number of neutrons with kinetic energy be-
tween 7" and T'+dT becomes
N(T)dT = (25"2/37) M 3R3T¥T. (149a)
The states of lowest energy will be those for which the
kinetic energy, and therefore the wave number, is smallest.

The number of neutron states having wave numbers
below %, or kinetic energies below Ty, is

o= 27k /1,

N =(4/37)R3 fokok2dk = (4/97) R3¢, (150)

N=(212/97) M} 3R3TH. (150a)

From these equations we may find the maximum wave

number and kinetic energy of the neutrons in the nucleus if
the total number of neutrons is N, viz.,

ko= (97 N/4)IR™, (150b)

To=(97N/4)3h2/2MR2. (150c)

The average kinetic energy per neutron follows from (149a)

T=SNT)TT/ S N(T)dT=%T,. (150d)

T is thus proportional to the 2/3 power of the number of
neutrons, just as To. The total kinetic energy is therefore
proportional to N7 = NsBR-2, All these formulae are
familiar from Fermi statistics. They apply to protons as
well as to neutrons, with only N to be replaced by Z.

We may now proceed to calculate the inter-
action of neutrons and protons (146b), using our
free particle eigenfunctions (147a). We have first
to calculate the mixed density

N N
p(11ra) = T *(r1)Pi(re) =123 gs (v
=1 =1
ko

=1-3(3/4x%) | dk.dk,dk.e™T,

0

(151)

where r=r;—r;. Introducing a polar coordinate

H. A. BETHE AND R. F.

BACHER §25
system in % space with the polar axis parallel to
1, and using (147) again, we have

p(r1rs) = (1/473) fo*2m sin 0d0k2dkei*r cos b
= (1/7%) fikokdk sin kr

= (sin kor — kor cos kor) /7?3 (151a)

This function has a pronounced maximum for
r=0, viz.,

p(riry) =ko¥/372=N/(4rR3/3) (151b)
[cf. (150)]. p(rire) falls off rapidly when kor
becomes larger than unity. This means that there
is practically no correlation between the wave
functions at two points whose distance is con-
siderably larger than 1/ko=X\o/27, where Ao is
the shortest wave-length of any neutron in the
nucleus. Because of (150), 1/ko~3RN-t which
is small compared to the radius of the nucleus
if N is large. The mixed density is therefore only
large if the two points r;,, r, are very close
together compared to the radius of the nucleus.
This is very essential for the validity of the
statistical model: One may reasonably hope that
the actual wave functions of the nuclear par-
ticles resemble plane waves at least over a
limited region of the nucleus even if they differ
widely from plane waves if considered over the
whole nucleus.

A number of important conclusions can be
drawn by inserting (151a) into (146b), even
without assuming a special form of the inter-
action potential J(ri). We only introduce for
convenience-a certain length @ which determines
the width of the potential hole J, and we put

J(r)==Vif(r/a), (152)

where V), is a constant determining the strength
of the interaction. f may be any function; e.g.,
we may take any of the following:

rectangular hole: f(x)=1, for x<1,
fx)=0 for x>1,
exponential function: f(x) =€,

a2
y

Gaussian function: f(x) =e

or a more complicated function. The only
assumptions we make are
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(1) J(r) vanishes at infinity sufficiently rapidly

(2) J(r) does not become infinite at =0 more strongly
than 1/7

(3) a is chosen in such a way that the main drop of the
function f(x) occurs near x=1.

The total potential energy of the neutron-
proton interaction becomes now, according to
(146b) and (151a)

Arri?driaf(ri/a)

0

4
=——R3V,
3

sin kx712— kn?12 COS kn712

1r21‘12s

sin kpria—Ekpria COS kpria

,  (152a)

1!'21’123

where ky and kp are the maximum wave numbers
for neutrons and protons, as given by (150b).
(In case of kp, we have to replace N in (150b)
by Z.) The integral over drdrs in (146b) has
been replaced by an integral over dridy,, i.e.,
we integrate first over the coordinates of particle
2, keeping the position of the first constant,
which is equivalent to integrating over the rela-
tive coordinate ri; (volume element 4w7152d71s).
Since the integrand falls off rapidly for large
distances 7y, the result of this first integration
will not be materially changed if we extend the
range of integration with respect to 7y to infinity.
This extension corresponds to the neglection of
surface effects. Then the result will obviously not
depend upon the position of the first particle ry
so that the integration over dr, gives simply a
factor equal to the volume of the nucleus, viz.,
(4r/3)Rs.

It is convenient to introduce the radius of a
sphere corresponding to the volume occupied by
one particle, vz.,

ro=R(N+Z)-} (153)
and to put accordingly
ri2=rtop; ro/a=a, (153a)
knria=xnp,
kpriz=rxpp, (153b)
with
kp=[97Z/4(N+2) 1% (1530)

ky=[9rN/4(N+2Z)]}
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Then p is our new integration variable while &
is a parameter determining the radius of the
nucleus. o has to be varied such that the total
energy becomes a minimum. (152a) may now be
rewritten:

- ——-(N+Z) - f " Hap)

X (sin kyp—kpp COS Knp)

X (sin kpp—xpp cos kpp)p~4dp. (154)

Since xy and kp depend only upon the ratio
N/Z but not upon the magnitude of either N
or Z, the integral is a function of « and N/Z
only. Similarly, if we introduce the notations
(153), etc., into (150c, d), we have

3 n
T=Tny+Tp=——(Nkn?+Zkp?
S2M

3 n? (91r) o

T 5 2Ma?
In this formula, the kinetic energy has been
written as the number of particles, N+Z, times

a function of N/Z and « only. Therefore, from
(154) and (154a)

E=T+V=(N+Z)F(N/Z, a),

NBI3+ZSI3

(N-{-Z)m 2’ (154a)

(155)

where the function F can be determined when
the interaction potential J, i.e., the function f,
is given.

Making (155) a minimum by varying «, we see:
(1) The value of « corresponding to the minimum
will only depend upon the ratio N/Z but not
upon the number of particles N+4Z. This means,
according to (153, 153a) that the radius of the
nucleus R is, for a given ratio N/Z, proportional
to (N+2)3}; in other words that the volume of the
nucleus is, again for given N/Z, proportional lo
the number of particles contained in it. (2) The
binding energy —E of the nucleus is, for a given
ratio N/Z, proportional to the number of par-
ticles contained in the nucleus. -

These two conclusions are in accord with ex-
periment. In fact, we have assumed exchange
forces to act between neutrons and protons just
in order to account for the two experimental
facts mentioned. (§7.) Thus our calculation
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merely shows that exchange forces are really
suitable for obtaining the desired result.

In making this statement we must bear in
mind that actually we have only shown that the
statistical model applied to a nucleus held to-
gether by exchange forces, leads to a binding
energy proportional to the number of particles.
Apart from the neglection of surface effects, we
have made two assumptions:

(a) the “auxiliary potential energy” Vy and Vp was
supposed to be constant over the nucleus. This led to a
constant density of the particles (cf. (151b)).

(b) the wave functions were supposed to be represent-
able by plane waves over a region of the order of one
wave-length (cf. the remarks after (151b)).

The first assumption is very plausible indeed:
There is no force establishing a correlation
between the positions of the particles and a
fixed point, in contrast, e.g., to the case of
atomic electrons. There also is no long-distance
force between the particles which might establish
differences between the density at different
points. The force upon one particle actually
depends only on the density in its immediate
neighborhood; one given value of the density
will lead to minimum energy; any fluctuations
of the density from point to point in the nucleus
will obviously lead to an increase in energy. A
mathematical proof of the constancy of the
density for a particular case was given by
Majorana (M6).

The second point will, of course, not actually
be fulfilled because of correlations between dif-
ferent particles (§24). However, it can be shown
by a group theoretical argument that, even with
quite general assumptions about the eigen-
functions, the total energy of a nucleus is pro-
portional to the number of particles if exchange
forces act between them.%

We now discuss the quantitative implications
of (154), (154a), (155). The behavior of the in-
tegral in (154) can be easily found for the two
limiting cases a<1 and o>>1. In the first case,
e may replace f(ap) by f(0). Then the integral
may be carried out elementarily and gives

—2J(0)Z if Z<N
V= . akl. (156)
—2J(O)N if Z>N
8 We are indebted to Professor Wigner for this com-
munication.
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If, therefore, the radius of the nucleus is so small
that the average distance of neighboring par-
ticles, 7, is small compared to the range of the
forces, a, then the total potential energy can be
thought of as due to the interaction of each par-
ticle of the sort of which there are fewer in the
nucleus, with two particles of the other sort (one
of each spin direction).® The total potential
energy (156) is independent of « while the kinetic
energy (154a) increases as a2 Therefore the
total energy is certainly positive for sufficiently
small «, and the most favorable value of « is
certainly not a=0.

Similarly, for a very large, we may replace all
factors except f(ap), by their value for very small
p, and obtain

V= ——3NZVo(N+Z)“ff(ap)p2dp

3NZ V, ™ /"\2 /7
w7 00 )
N+4+Z o a/ \a a

=const-a73. o>1. (156a)
Thus, for large «, the potential energy decreases
more rapidly than the kinetic. Therefore the
total energy must be positive for very large a. A
negative total energy, i.e., a resultant binding
energy, can only be obtained for intermediate
values of «, and since all constants are of the
order of magnitude unity, the minimum may be
expected to lie at a value of a near unity. This
means that 7 is of the same order as a. Now #,
is the radius of a sphere whose volume is equal
to the volume occupied by one nuclear particle.
ro is thus of the same order as the distance
between neighboring particles in the nucleus.
We conclude that this distance is about as large
as the radius of action of the nuclear forces. This
conclusion corresponds to reality: The radius of
radioactive nuclei is about 8 to 9-107% cm
(chapter IX), their atomic weight about 220,
therefore 7o=9-10"18.220~!~1.5-10"% cm which
is indeed of the same order of magnitude as the
range of nuclear forces (§21).

59 Formula (156) has, of course, only a meaning if J(0)
is finite. If this is not the case, J(ap) cannot be replaced by
J(0) however small a.
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§26. QUANTITATIVE RESULTS AND LIMITATIONS
OF THE StATISTICAL MODEL (H9, W2, W10)

In order actually to calculate the binding
energy and the nuclear radius, we must make a
special assumption about the form of the

potential J(r). We take (cf. 115)
J(r)= —Be "%, (157)

This potential has been assumed in the
extensive calculations of Feenberg about light
nuclei; therefore the constants B and a are well
known. We have to insert f(ap)=e=*** into
(154). The integrations can then be carried out
explicitly and elementarily, giving

= —B(N+Z)n 3 {[2—x2(nt+n}(2—n)}

+(@2=n)h)] e ttint-a-nhe
—[2—x¥(m = 2=m)i+2—m)h]
X et inb+@-m i | ndys (2[4 (2—n)])

—min—1)x3®(3x[nt— (2—n)t])}, (158)
where®
n=2N/(N+Z2), 2-n=2Z/(N+2Z), (158a)
3/m\ta 3/m1it
x=_(_) _=_(_) Z (158b)
2\3/ ro 2\3/ «

and ®(y) is the Gaussian error integral (cf., e.g.,
Jahnke-Emde, Tables of Functions, p. 97).

If the nucleus contains equally many neutrons
and protons, we have n=1 so that (158) reduces
toﬁl

V=—r"%3B(N+2){2—-3x*
+ @2 =2)e " +rietd(x)},  (159)

while the kinetic energy (154a) may be rewritten :

3 a
T=—-—2(N+2).

10 3o (159a)
a

The most satisfactory procedure would now
be to insert the values for B and o derived from
the theory of light nuclei, and to determine the

60 The old constants xy and «p are related to # by

=(97/8)}2N/N+Z)}=(3/2) (wn/3)}
«n=(97/8)}2N/N+Z)}=(3/2) (xn/ )KP=§(r(2—n)/3)*.

6 This formula was first calculated by Heisenberg
(quoted by Fliigge, F12).
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minimum of V47 and the corresponding value
of x. Unfortunately, the binding energy obtained
in this way is much too small; it is, indeed,
entirely wiped out when due corrections are
made for the Coulomb repulsion of the protons
and the ‘“‘surface effect” (§29).

The values for B and a derived from the theory
of light nuclei are:

(@) B=133MV,  @=0.99-10~ cm,

160
T=#/Mat=42 MV, (160)

if no interaction between like particles is as-
sumed (cf. 125),

and (b) B=41 MV,2 ¢=2.32-10"1 cm,
(160a)
T=17.6 MV,

if the interaction between like particles has the
value derived in (128). According to Table VII,
we get with these constants the following results
in the statistical model :

(a) without interaction between like particles
we have D= MBa?/h*=3.17. For this value of
D, the energy V+T has no minimum at all but
is positive for any value of x.

(b) with interaction between like particles:

D= MBa?*/h*=5.35. Minimum of energy for
x=1.99 70=0.79¢=1.82-10"1% cm.

Minimum energy = —0.067B(N+Z2)
=—27(N+2) MV. (160b)

With the constants under (a), we thus obtain
no binding energy at all, even without correcting
for Coulomb repulsion and surface effect. With
the constants under (b), we find a small binding
energy, about one-quarter of the observed bind-
ing energy for medium weight nuclei. However,
even this small binding disappears when we
correct for Coulomb repulsion and surface effect
(see below).

We must therefore conclude that the statistical
model is quile inadequate for the ireatment of
nuclear binding energies. This is not very sur-
prising in view of the objections raised in §24
against the application of the Hartree method to

62 The figure given is the force between a proton and a
neutron, plus one-half the force between like particles
(B+3C, cf. §28). This combination enters the energy of a
heavy nucleus containing approximately equal numbers of
protons and neutrons (cf. 1’;4).
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the nuclear problem which hold a fortiori for the
statistical method. In view of these objections
we would even go so far as to say that any
expression for the nuclear forces which would
make the nuclear binding energy following from
the statistical model equal to the observed
binding, must certainly give too large. values
for the nuclear forces.

It is of some interest to note that the statistical
model becomes the worse the shorter the range
of the forces. This is due to the fact that the
wave functions will change very rapidly when-
ever the distance between two particles is smaller
than the range of the nuclear forces (cf. §20).
The fact is shown by a comparison of our cases
(a) and (b). We may add that for zero range of
the forces the potential energy (159) does never
exceed 0.73 times the kinetic energy (159a), if
the constant D= MBa?*/#* is taken from the
theory of the deuteron (2.70, cf. Table III).

The value of the statistical model can, ac-
cording to the foregoing, not lie in quantitative
calculations of nuclear binding energies, but lies,
in our opinion, in qualitative results such as those
obtained in the preceding section, and in the
possibility of setting upper limits to the nuclear
forces (§27). Furthermore, we might try to
deduce the dependence of the binding energy on
the atomic weight, on the ratio of the numbers
of neutrons and protons, etc.; but all these
conclusions should be considered as tentative
only.

Obviously, if we want to make use of the
statistical model, we must fix the constants B
and @ ad hoc and must not take the values
derived from the theory of light nuclei. The
constants B and a derived from the statistical
model .are, then, of course not correct; but it
may seem more consistent in drawing conclusions
from that model to fix the constants entering it
also from the statistical model.

To fix the constants B and a, we need two
experimental data. Various data have been used
by different authors; e.g., Heisenberg (H9) used
the mass defects of medium-sized and heavy
nuclei, Wick (W10) used mass defect and radius
of the oxygen nucleus, v. Weizsiacker (W2) the
mass defects of O'® and Hg?. Wick’s method
seems preferable to us because, to a first approxi-
mation, the mass defect per particle should be
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the same for all nuclei, according to the statistical
model. Only the Coulomb repulsion of the
protons and the surface effects should produce
some differences in the mass defects per particle.
Since the surface effect cannot be treated as
satisfactorily as the ‘‘volume” energy, one should
not base the determination of the constants on
quantities which depend sensitively on the
surface effect, as does the difference of the mass
defects of O and Hg?®. The only objection
which could be raised against Wick’s procedure
is that the radius of O is not well known
experimentally. This can be avoided by taking
radius and binding energy of a heavy atom as
standards. In doing so, we get the further
advantage of minimizing the surface effect.

We therefore take radius and binding energy
of Hg?® as standards. Since this nucleus has an
atomic weight just below that of radioactive
nuclei, it seems reasonable to assume a radius
slightly smaller than theirs. We take

Rugo=8-10-1 cm. (161)

The binding energy follows from Aston’s deter-
mination of the atomic weight of Hg, w2,
200.016, and from the atomic weights of proton
and neutron which are 1.00807 and 1.00846,
respectively (cf. (75a)). This gives

Egg0=200.016—(80-1.00807+120-1.00846)
=200.016—201.661
= —1.645 mass units= —1530 MV. (161a)

Per nuclear particle, the binding energy is
—7.6s MV.

From the nuclear radius (161), we can immedi-
ately calculate the kinetic energy of all neutrons
and protons together, which becomes, according
to (150c), (150d), with N=120 and Z=80:

3 3/9m\t K?
T=—(ZTz+NTx) =—(——
5 5\4/ 2MR?

X (Z5/34 N5/%) =2080 MV. (161b)

Here Tz and Ty denote the maximum kinetic
energies for protons and neutrons, which are, for
Hg, 22.2 and 28.9 MV, respectively. The average
kinetic energy of each of the 200 particles is,
according to (161b), 14.9 MV.

The potential energy of the nuclear forces, V,
is obtained from
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E=T+V+C+S, (162)

where C is the potential energy of the Coulomb
repulsion of the protons which is (Eq. (16))

C=3Z%/R=670 MV (162a)

and S is the surface energy which we estimate
(cf. 184)

S=450 MV.

Therefore V= —(1530-+2980+6704-450)
=—5630 MV,

| V|/T=1.89.

The procedure for determining B and a is then
the following : For any value of D= MBa?/#2, we
may determine the minimum of E'=V+T as a
function of x, using (159) and (159a). The value
Xmin for which that minimum occurs, is given as
a function of D in Table VII. (» has been put
equal to 1, corresponding to an equal number of
protons and neutrons.) Inserting xmi, into (159),
(159a) we may find the ratio V/T as a function
of D (fourth line of Table VII). That value of
D which gives the observed ratio V/T, is the
“correct” value of D for the statistical model;
for | V|/T=1.89 we find

D=MBa*/#*=9.6. (164)

The corresponding value of Xpin is 2.70 corre-
sponding to (cf. 158b)

a=0.64:2.707,=1.73r (164a)

and with the observed value R=8-10"% cm:
70=8-10"13.200"1=1.37-10"13 cm, (164b)
'a=2.37-10-1 cm, (164c)
B=#D/Ma?=70 MV. (164d)

(162b)

(163)
(163a)

Thus the range of the nuclear forces turns out
almost identical with that derived by Feenberg
from light nuclei, whereas the depth of the
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potential hole must be chosen about 70 percent
larger than the actual depth in order to bring
the “‘statistical energy’’ into agreement with the
observed nuclear binding energy.

From the table we note that the depth of the
potential hole (fifth line) depends practically
only on the nuclear radius and not on the
observed binding energy. The latter determines
only the range a of the forces.

We may now use our constants to deduce the
dependence of the ‘‘volume energy” V4TI on
the ratio of the numbers of neutrons and protons.
Expanding (158), (158a) in a power series in

n—1=(N—2)/(N+Z) (165)
we have
Vin)= V(1)+i W21
3(m)t N+Z =
X (x?2—14e"2"), (165a)
T(n)=T(1)+ L " (165b)
6Ma* N+2Z

where V(1) and T'(1) are the values of potential
and kinetic energy for n=1, i.e., N=2. Adding
(165a) and (165b), we have for the total energy

E(n)=E(1)+B(N—-2)*/(N+Z). (166)

Inserting the values for x, B and a derived
above for the statistical model, we find

B=39 MV (statistical). (166a)

Inserting, on the other hand, the constants B
and ¢ derived from light nuclei (cf. 160a), and
determining x from that value of ¢ and the
observed 7 (cf. 164b) with the help of (158b),
we have

B=26 MV

(force constants from light nuclei). (166b)

In both cases, the increase of the kinetic energy

TABLE VII. Relation of constants in the statistical model. Potential J(r) = — Be~r*/a?,

D = MBa?*/h? 3.5 4 5 6 7 8 9 10 1
Xmin 1.22 1.56 1.92 2.14 2.34 2.48 2.62 .76 2.90
a/r G.78 0.99 1.22 1.36 1.48 1.57 1.66 1.75 1.84
LVI /T 0.90 1.04 1.25 1.40 1.54 1.67 1.81 1.94 2.08
/LA%/ Mre] 5.8 4.1 3.35 3.25 3.20 3.23 3.25 3.26 3.27
Enin/B(N+2Z) +0.013 —0.008 —0.053 —0.093 —0.127 —0.159 —0.187 —0.213 —0.234
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contributes about 8 MV to the constant 8 while
the main contribution arises from a decrease in
magnitude of the potential energy when the
numbers of neutrons and protons become dif-
ferent.

The value of B has to be compared to the
value derived in §8 from the observed ratio of
the numbers of neutrons and protons in heavy
nuclei (then denoted by a¢, cf. (15), (19b)), viz.,

B=20 MV (semiempirical), (166c)

which is somewhat less than the two theoretical
values (166a), (166b). The agreement is improved
by introducing forces between like particles (§28).

The nuclear radius is also somewhat altered
when the numbers of protons and neutrons are
unequal, because the minimum of V(n)+T(n)
(cf. 165a, b) occurs for a slightly different value
of x than the minimum of V(1)47(1). The
nuclear radius becomes

R=ro(N+2)i[1+0.665(N—Z/N+2)2]. (167)

The correction term containing N—Z is very
small, amounting to only 3% percent even in the
case of uranium (Z=92, N=146).

In concluding this section, we want to mention that
quite analogous results are obtained for the simple ex-
ponential law of force

J(r)=—Be~rla, (168)

which has been the basis of previous investigations of the
statistical model for nuclei by Heisenberg (H9), Wick
(W10) and v. Weizsicker (W2). Instead of (158), we find

Ve — s SB(N+Z) {(n}(2—n)ba?
. 1+a2lni+(Q2—n)iT
=G+ ix[ni+(2—n)1]) log Tl —G—n) T
+2 arctan (x[nt+(2—n)¥])

—2(n—1) arctan (x[nt—(2—n)}])}, (168a)
which for n=1 (N=2) reduces to
Vin=1)=—7"x3B(N+2)

X {x?— (1+1x?) log (1+4x?)
~+arctan 2x} (168b)

a formula first derived by Heisenberg.® Again, we obtain
practically no binding energy if we insert the constants B
and a derived from the theory of light nuclei. The constants
necessary to give the observed binding energy and radius

of the Hg?® atom, are
D=MBa*/i2=6.7, (169)

.

Xmin=1.75; @=0.64-1.75790=1.53-10"1 cm, (169a)
B=118 MV. (169b)

83 Heisenberg (H9) gives the energy per unit volume, i.e.
(168b) divided by the nuclear volume (4x/3)R3-(N+Z).
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These constants are not very different from those obtained
by Wick (B=88 MV, a=1.47-10"8 cm), as is to be ex-
pected since the experimental data used are similar. (The
difference in B arises from the fact that Wick did not
correct for the surface energy which is rather large for his
standard nucleus O%.) Weizsicker found B=184 MV,
a=1.03-10"8 cm, D=4.7;, i.e., a very short range and
very deep hole. Heisenberg’s results deviate from ours to
the other side, viz.,, B=25 MV, a=8-10"1 cm.
The dependence of the energy on the “isotopic number”
I=N-—Z becomes with the exponential potential:
- B N=ZP >
v V(1)+61rx Niz (4x?—log (1+44%),
giving for the constant 8 in (166) a value 42 MV, i.e.,
almost the same as that obtained from the e~"*/s%-po-
tential.

(168c)

§27. D1sPROOF OF ORDINARY FORCES

In this section we want to prove that the
assumption of ordinary forces between neutrons
and protons would lead to binding energies of
heavy nuclei far larger than those observed.
To prove this, we use the statistical model
which certainly gives .a lower bound for the
binding energy.

If we replace the “‘exchange’’ (Majorana) by “‘ordinary”
(Wigner) forces the binding energy of the ground state
of the deuteron would not be influenced at all, and also
that of the a-particle would remain almost unchanged.
Thus we obtain practically the same force constants B and

a as for Majorana forces.
The expressions (144b), (146b) have to be replaced by

Z N
V=3 3 S1v@) 2] ex(xs) |2 (r12)dridre  (170)
t=1k=1
= ST (r12)pp(x1) pu(®2)dT1d7s, (170a)

where pj, is the ordinary proton density as defined in (145).
With the plane wave functions used in the statistical
model, we have obviously

pp(r)=const.=Z/(4wR3/3) pn=N/(47R%/3)
pp=pa=0 (for r>R).

(for r<R),
(170b)

We must carry out the integral in (170a) exactly, i.e., we
must not consider R to be large compared to the range a
of the forces, because this assumption will be contradicted
by the result.

With J(r)=—B'er*la? (171)
the elementary calculation gives
V'=—B'ZN(3/4r)*8x?R~¢
Xj;ﬂndnﬁkrgdrzﬁ:::;rlzdr,zg—r,,’/az 171a)
= —6B'ZNy 8 {r}y*®(y)+2—3y*+e v (32 —2)],
where y=2R/a. (171b)
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For simplicity, we assume an equal number of neutrons
and protons, N=Z. We divide (171a) by the total kinetic
energy T'=(6/5)NTon where Ton is the maximum kinetic
energy per particle as given by (150c), and obtain
| V'/T=(5/3)(x/3)34}(Ma*B' /1?)y~
X {rty®(y)+---}. (171c)

Inserting for Ma?B’/h? the smallest possible value, wiz.,
2.70 (cf. Table 111, §12) we have
| V'|/T>1.504  nty1@(y)+2y~¢

=3y et (y2—2y~) ] (172)
Now we remember that R, and therefore y, is an arbitrary
parameter which has to be chosen so that the total energy
is a minimum. If we therefore choose that value for y which
makes the square bracket of (172) a minimum, we can only
obtain too low a value for the binding energy. The maxi-
mum of the square bracket is obtained for y=2.80 and has
the value 0.288. Thus

| V'|/T>0.43341, (172a)

Thus for 4 >12 the potential energy becomes
larger than the kinetic, even in the poor approxi-
mation obtained by the statistical model. If 4
is much larger than 12, the kinetic energy is
only a small fraction of the potential. But the
potential energy (171a) is of the order of magni-
tude 42B’. In other words, the binding energy
of nuclei of atomic weight greater than, say, 30,
would increase as the square of the atomic
weight, in contradiction to experience (§7).
Moreover, the total binding energy would attain
huge values; e.g., if we insert ¢=2.3-10"1% cm
(cf. 128) and B’=41 MV (cf. 160a), the minimum
of the total energy for uranium is obtained for
y=0.62 and has the value

Ey=(V'+T)y=—366,000 MV. (172b)

This would correspond to a mass defect of the
uranium nucleus of about 380 mass units, i.e.,
about one and a half times the mass of uranium
itself! Since our theoretical value is a lower
limit, the impossibility of the assumption of
“ordinary”’ forces which are attractive over their
whole range, has been established strikingly
enough.

In addition to the very large binding energies, the model
gives much too small nuclear radii. For y is approximately
constant for all values of 4; indeed it even decreases some-
what with increasing 4. The nuclear radius becomes there-
fore independent of 4, and is of the same order as the range
of the forces; e.g., for uranium the radius would turn out
to be about 1.3-1071% c¢m, one-seventh of the observed
radius.
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The Coulomb forces are, of course, unimportant com-
pared to the huge binding energies resulting from our
model and can therefore not alter the conclusions.

Our statement that ordinary forces are impossible,
must, however, be qualified in two respects. Firstly,
“ordinary” forces which are repulsive at very small
distances and attractive at somewhat larger distances can,
of course, not be disproved. Plausibility is the only argu-
ment against the assumption of such forces between
elementary particles. (Cf. §31 where such forces are derived
for the (complex) a-particle.)

Secondly, a small “ordinary” force “in addition to a
large “‘exchange’ force cannot be excluded. We denote by
the “strength” of the “ordinary” force in MV and assume
the range to be the same for ordinary and exchange force.
If we accept the values B and a given in (164c, d) for the
exchange force, we find:

Change of nuclear properties caused by a small addi-
tional ordinary iorce

Atomic weight A= 10 30 100 238
Relative change of nuclear

radius (percent) —~1.70B’ —2.85B’ —4.0 B’ —4.6 B’
Change of binding energy

per particle (MV) 0.63B" 0.87B' 1.078 1.19B’

An “ordinary” force of B’=5 MV might be just tolerable.
It would correspond to a difference between the binding
energies per particle for U8 and Si* of 0.32B’=1.6 MV,
the uranium nucleus having the stronger binding. Such a
difference seems about the highest reconcilable with the
experimental facts. B’ might, of course, be negative and
of about the same magnitude. In any case the “ordinary”
forces must be very small (not more than about 7 percent)
compared to the exchange forces.

§28. FOorCEs BETWEEN LIKE PARTICLES

The total interaction energy due to the forces
between like particles has, according to (146e),
practically the same form as that due to the inter-
action between protons and neutrons. (146b).
Asin §21, we assume the shape of the interaction
potential K for like particles to be the same as
for unlike ones, and the range of the forces to
be the same in both cases, so that

K(r)=—Ce e, (173)
Then we find in analogy to (158):
= — bl I C(N+2) {[4—3x2(ni+ (2= n))]

—[2—atnt]e*nd —[2—a2(2—n)1]

. X e @=mi L i3 nd(xnt)

+@2=-m)d@=2-n)})]},

where x has the same meaning as in (158b).

(173a)
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The value of x which makes T4+ V+F a
minimum, depends only on #=2N/(N+Z), and
upon the force constants MBa?/%#? and M Ca?/#?,
but 7ot upon the total number of particles. This
makes, as in §26, the volume of the nucleus and
the total binding energy proportional to the
number of particles, in agreement with experi-
ence. Quantitatively, for n=3%,

F/V=C/2B. (174)

The total interaction, due to interaction between
like and unlike particles, is therefore pro-
portional® to B+3%C. From the theory of light
nuclei (cf. 128), we obtain

C/2B=0.35. (174a)

Using the values for B, C and a derived in (128),
we found the result (160b) for the binding energy
which is much too small, although the addition
of the interaction between like particles helps
somewhat to increase the binding energy follow-
ing from the statistical model (cf. the result
obtained without forces between like particles,
above Eq. (160b)).

We again determine the constants ad hoc from
the statistical model, as in §26, Eq. (164). The
only alteration necessary is that we must now
make B+3%C as large as B was in §26. Keeping
the ratio B : C as given by the theory of light
nuclei, viz. $C=0.35B, the B of §26, Eq. (164d)
should be reduced by a factor 1/1.35, giving

B=70/1.35=52 MV
C=0.70-52=36 MV
a=2.37-10"1 cm

(175)

(from statistical model, with forces between like
particles equal to 0.70 times the neutron-proton
forces).

The interaction of like particles has some
influence on the dependence of the nuclear
energy on N—Z. As might be expected, the
potential energy of this interaction decreases
(i.e., its absolute magnitude becomes larger)
when the numbers of neutrons and protons be-
come different. The constant 8 defined in (166)
consists now of three parts, arising respectively
from the forces between protons and neutrons,
the forces between like particles, and the kinetic
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energy. For the values of the constants B, a, C
chosen in (175) we have

B=0.44B+-0.397%2/ Mrs*—0.070C

=2348—-1=30 MV, (176)
while the constants (128) would give
=22 MV (176a)

as compared to 39 and 28 MYV, respectively,
when no forces between like particles are as-
sumed (cf. 166a, 166b). The semiempirical value
of §8, iz., 20, is almost identical with (176a).

In addition to the “specific nuclear forces’ be-
tween like particles we have also the electrostatic
repulsion between the protons which we found
responsible for the increase of the ratio N/Z with
increasing atomic weight (§8). We assume the
protons to be uniformly distributed over the
nucleus so that their density is Z/(4wR3/3);
then their interaction, without taking into ac-
count exchange, is (cf. 146c)

C=1322 S (€%/r2) (47 R3/3)"%did e

=3e222/R, (177)

each of the space integrals dmdr; extending over

a sphere of radius R. The result has to be

corrected for exchange (term A, cf. (146d)).

With the expression (151a) for the mixed density,

and with the assumption kR>1 (i.e., large
atomic weight), we obtain®*
o g2 4""’122d1’12
A=-—R}| ——ow—

43 0 712 (7!'27‘123)2
X (Siﬁ kphz—kphz COos k}:fu)z
= e?RSkPAi/s,rZ = 35/32-*5/3"—2/36224/312—1‘ (1 773.)

Expressing R in terms of 7o (cf. 153) we have for
the total effect of the electrostatic forces

C—A=(e*/r)(Z/N+2)V?
X'(%ZS/B__35/37r~—2/32-8/3z) (177b)
= (e2/r0)(Z/N+2Z)}0.600Z53—0.460Z). (177c)

With our value 7o=1.37-10"1% cm, deduced from
experiment, we have

¢/r=1.08 MV. 177d)

8 Weizsicker's expression (W2, Eq. (50)) is too large by
a factor (47 /3)%.
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The exchange term is proportional to the nuclear
charge, and amounts to only about 0.18 MV per
nuclear particle. The first term, which increases
as Z%/3, reaches the value 890 MV for uranium,
i.e., 33 MV per particle in the U nucleus, which
reduces the binding energy of that nucleus by
about one-third (cf. the deduction of the nuclear
forces from the mass defect of Hg in §26).

The Coulomb forces have also some effect on the nuclear
radius. The relative change of the latter due to Coulomb
forces is, using (159), (159a) and putting B=70 MV:

SR/R=+0.60(e?/Bro)Z*A~4/*=0.0092Z24~4/%. (177e)

For uranium, this amounts to 5.3 percent, for Fe® to 2.8
percent. We found in (167) that the radius of uranium
should be increased by 3.5 percent because the numbers of
neutrons and protons are not equal. Altogether, we should
thus expect that the radius of U is (3.5+5.3—2.8) percent
=6 percent larger than would be expected from the radius
of the Fe nucleus, assuming the nuclear volume to be pro-
portional to the number of particles. However, it must be
borne in mind that the nuclear radius cannot easily be
defined to such an accuracy.

§29. Tue Surrace Errect (W2, W10)

Wick (W10) has first pointed out that the
nuclear binding energy will be reduced, especially
for small nuclei, by the existence of a surface of
the nucleus. Particles at the surface interact, in
the average, only with half as many other
particles as do particles in the interior of the
nucleus. The situation is, of course, quite
analogous to the surface tension of liquids.

Weizsicker (W2) has calculated the surface
effect quantitatively. He has shown that the
effect consists of a ‘“classical” and a ‘“quantum
mechanical” part. Classically, we may assume
the nucleus to have a sharp boundary at a
certain distance R from the center. Those
particles which are nearer to the boundary than
the range of the forces a, will then not contribute
their full share to the binding energy. This leads
to an increase of the total energy by an amount
of the relative order a/R (classical surface effect).

In quantum theory, the boundary can never
be sharp, because this would mean an infinite
derivative of all particle wave functions and
consequently an infinite kinetic energy. The
surface layer must thus be spread out over a
certain region of the order of magnitude of one
particle wave-length. The narrower the surface
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region, the larger will be the additional kinetic
energy ; the broader the region, the more will the
total potential energy be reduced in magnitude.
Therefore, there will be an optimum breadth of
the surface layer.

Weizsicker (W2) has calculated the surface
effect by an extension of the statistical model.
If we use the statistical model in its ordinary
form we find no surface effect at all. To see this,
we assume that there is a certain ‘‘auxiliary
potential energy’ U which has a given negative
value — U, inside a sphere of radius R (nuclear
radius) and then rises gradually to zero outside
that sphere. We assume the rise of the potential
to be gradual enough so that the statistical
method is applicable; i.e., we suppose that we
may choose volume elements dr so small that
the potential energy U is sufficiently nearly
constant inside dr, and on the other hand so
large that we may apply the considerations of
§25 to each volume element. This condition
means essentially that the thickness of the
surface layer, i.e., the region in which the
auxiliary potential U changes from — U, to 0,
must be large compared to the wave-length of the
particles in the nucleus.

If this condition is fulfilled, the particle
density at any point r (or in any volume element
dr), as well as the maximum and the average
kinetic energy of the particles at that point, and
the contribution of dr to the total potential
energy are all completely determined by the
value of the ‘“‘auxiliary potential” U at that
point. We have (cf. (150))

p(t) = N/(47R/3) = kunax(x) /37
=(2M[E,— U(r)J47%)%/3a%, (178)

(h2/2M)kmnx2 =FEy— U(r) (1 78&)

is the maximum kinetic energy of any particle
at the point r, E, being the total energy of the
most energetic particle. The average kinetic
energy of the particles at r is
3 h? 35/37r4l3 h?
ax” —

———Fm —p
S2M 10 M

where

213,

(178b)

Multiplying this expression by p, we obtain the
kinetic energy per unit volume.

The mixed density is given by (151a), with
only ko to be replaced by kmax, provided again
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kmax does not change appreciably between the
two points Iy, Iy, i.e., provided the auxiliary
potential changes sufficiently slowly. The con-
tribution to the potential energy per unit volume
can then be calculated similarly to (158) or (159)
if we assume the density of neutrons and protons
to be equal at every point. We have only to
divide (159) by the total nuclear volume
(47w /3)(N+Z)r?, and to express, in the definition
(158b) of x, the quantity 7o by the density p of
protons or neutrons. Since 7, was defined as the
radius of a sphere containing one particle, i.e., in
the average one-half neutron and one-half
proton, we have

(4r/3)rd=3p",

x=(3n2p)1a.

(178c)
(178d)

The lotal energy per volume element dr becomes

dE= —3r~%2a-3B(2—3x*— (2—a)e~*

+rli23@(x) o+ 3558 (R2 /10 M) pPdr.  (178e)

The total energy per particle in the volume ele-
ment dr, viz., dE/(pd7), is, as we know, a mini-
mum if x has the value xnin derived in §26
(Table VII). The value of p corresponding to
%min Will be called the standard density po; it
will be the density in the interior of nuclei. Any
region of the nucleus in which the density p falls
short of its standard value po will increase the
total energy of the nucleus over its value derived
in §26.

From this point of view, the total energy of the
nucleus would attain its minimum value if the
density is po throughout the nucleus, falling to
zero suddenly at the boundary. This minimum
value would be exactly equal to the energy
derived in §26; thus there would be no surface
effect at all, as we mentioned before. However,
in order to make the statistical method appli-
cable, we had to assume that the density varies
slowly at the boundary of the nucleus, more
accurately that is does not drop from po to 0 in
a distance shorter than the wave-length of the
nuclear particles, which is of the order of 7,. If
the density changes too rapidly, the kinetic
energy becomes much larger than its value in the
statistical model.

We therefore assume that the drop of the
density from po to 0 occurs in a layer of a thick-
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ness A\, of the order of magnitude 7. Further-
more, we assume the “‘auxiliary potential” U to
fall off linearly in the surface region. This means,
according to (178), that p varies as the 3/2-power
of the distance from the surface. Denoting by y
the coordinate perpendicular to the surface, we
thus assume

p=0 for y<0,
p=po(y/N)*? for 0<y <A, (179)
p=po for A<y.

It is then easy to calculate the change of the
nuclear energy due to the surface effect. We
denote by S the total surface of the nucleus, by
Q its volume, where Q is defined by

Qpo=N, (179a)

N being the total number of neutrons. T is the
total kinetic energy without surface effect, given
in §26. Then we obtain a decrease of the kinetic
energy®® by

8T = —(4/35)ToSN/Q (179b)
and an increase of the potential energy by

8V =_2xB(N+2Z)(SN/Q) x5~ (3x02—2

+3x02— (3x¢7241)e2"), (179c)
where x, is the value of ¥ making the nuclear
energy a minimum. We insert (cf. 164d, 161b)

S=4rR?, Q=4zR¥/3,  (179d)
B=T0MV, To=15(N+Z) MV,

x0=2.70 (179¢)

and obtain

8T=—51(N+Z)\/R MV,

8V=+48.3(N+Z)\/R MV, (180)
SE=+3.2(N+Z)\/R MV,

or, using (153)
SE=3.2(N+Z)\/ro MV. (180a)

M\/7o should, according to our assumptions, be of
the order of magnitude unity. A considerably
larger value seems necessary to obtain agree-
ment with experiment (cf. §30, especially (185a)).

Weizsicker has tried to determine A\ theoretically. He
supposes that each individual wave function contains an

exponentially decreasing factor near the surface of the
nucleus, but behaves otherwise in the same way as the

6 This is due to the reduced density in the surface layer.
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statistical method assumes. The exponential decay intro-
duces an additional term in the kinetic energy. It is then
assumed that the density corresponding to each individual
state decreases in the same way as the total density.
Obviously the additional term in the kinetic energy will
then be the larger the thinner the surface layer. On the
other hand, the term (179c) is the larger the thicker the
surface layer. The condition that the sum of the two terms
shall be a minimum, leads immediately to a determination
of the thickness of the surface layer and of the additional
surface energy. However, the basic assumption that the
decrease in density at the surface is due to a uniform
decrease of the density due to each individual state, does
not seem to be justified: In reality when we approach the
surface one state after the other ‘“dies out” because its
total energy becomes less than the potential energy at the
given point; and this dying out accounts for the decrease
in density without any exponential decay of the individual
wave functions being necessary. (The exponential tail of
each wave function can be neglected in the statistical
method.)

Fliigge (F12) has used Weizsicker’s method to treat
light nuclei, for which the surface layer cannot be con-
sidered as thin compared to the nuclear radius so that the
distinction of the “interior’’ of the nucleus and the “surface
layer"” is no longer justified. He finds that the mass defects
of all light nuclei from He* to Si?® can be well represented
by Weizsicker’s extension of the statistical method de-
scribed above, the potential energy of the interaction
between and proton being assumed as

J(r) = — Be~rtla
B=85 MV, a=146-10"%cm. (181)

The density of neutrons and protons is supposed to depend
like a Gaussian function on the distance r from the center
of the nucleus, »z.,

with

p(r) =e2riiz, (181a)

where R is the ‘“nuclear radius.” R is not exactly propor-
tional to the cube root of the atomic weight, as it is for
heavy nuclei, but is somewhat larger for light nuclei, vz.,

R=(0.674340.9347%)-10713 cm. (181b)

Accordingly, the volume of light nuclei is larger than
would be expected if the volume were exactly proportional
to the number of particles.

Fliigge has also carried through calculations using a
simple exponential potential, with similar results.

§30. WEIZSACKER’S SEMIEMPIRICAL
ForMULAE (W2)

Since the statistical model does not give satis-
factory results, Weizsicker has proposed a semi-
empirical method for calculating nuclear energies.
The nuclear energy is assumed to have a form
such as is indicated by the statistical method,
and, indeed, by very simple qualitative con-
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siderations. However, in the formula certain
constants are left arbitrary and are determined
from experimental data.

We choose the following form for the fotal
mass (energy) of an atom which is slightly simpler
than Weizsicker's:

M=NM,+ZM,—aAd+B(N-2Z)*/A
+ryAit+§(e?/r0)22A7Y,  (182)
where A is the atomic weight, N and Z the
numbers of neutrons and protons, 74} the
nuclear radius, M, and M, the masses of neutron
and hydrogen atom and afyr, empirical con-
stants. The first two terms in (182) are self-
evident. The third represents the main binding
energy which we know o be proportional to the
number of particles in the nucleus 4, the con-
stant a to be determined empirically.
The fourth term in (182) represents the de-
crease of the binding energy when the numbers

- of protons and neutrons become different; it has

the form derived in §26 from the statistical
model. This form holds, of course, only if
N—Z<«A4; but this condition is fulfilled for all

“existing nuclei.

The fifth term is the surface effect, the last
term the Coulomb repulsion of the protons.
Both these terms have again the form suggested
by the statistical model. The exchange correction
to the electrostatic repulsion (177a) may be con-
sidered as contained in the first term since it is
proportional to Z.

To determine the constants, we proceed in
the following way :

1. We determine 7o from the empirical radii
of radioactive nuclei this gives (cf. 17a, b)

70=1.48-10"18 cm (182a)

2e?/re=0.58 MV. (182b)

2. B is determined so that the most stable

nucleus of atomic weight 200 has the nuclear
charge 80 (Hg?). This gives

3e27Z 1 A
o=z = - |

Sro At 2 2(N—-2)
80 200
= (0.58-—-—0.20)———- MV,
200% 80

B=19.5 MV. (183)
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With this value for B, the most stable nucleus

G

of atomic weight 4 has the ‘‘isotopic number”
0.3(e*/r0)A¥+3(Mp— M)
28+0.3(e?/ro) At '

Li=A(41-0.7)/(134+4Y), (183a)

Ii=(N—-2)4=4

and the mass
Muin(4) =3A(M o+ M,) —ad +v43
A[o.s(eZ/ro)A!— (Mo~ M,)]

2(2840.3(e?/r))AY)
(183b)

3
(e ro) A%~

20
=34 (Mot M) —ad +7A1

135
+0.1454 /F——.
134443

In the last transformation, some very small terms
involving the difference of the masses of neutron
and hydrogen atom have been neglected. The
figures represent energies in MV.

3 and 4. We determine the coefficients « and
7 so that the masses of O'® and Hg?® are correct.
We have for O: atomic weight 16.0000;
8M,+8M,=16.1322.

Difference —0.1322 mass unit=—123.1 MV,
Coulomb energy 0.58-82-16"1=14.7 MV,

The term B(N—Z)2/A vanishes.
Therefore
—16a+16}y= — (123.14+14.7)= —137.8 MV.
(184a)
For Hg?: atomic weight 200.016; 120,

+801,=201.661.

Difference —1.645 mass units=—1532 MV,
Coulomb energy 0.58-802:200~#=633 MV,

B(N—2Z)*/4=19.5-402/200=156 MV.

Therefore
—200a+200%y = — (1532+4633+156)
=—2321 MV. (184b)
From (184a), (184b) we find
a=13.86 MV, y=13.2 MV. (184)

We convert all energies into thousandths of a
mass unit, and insert the constants into (182).
‘Then the excess of the exact atomic weight of an
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atom (4, Z) over the “mass number’ 4 is, in
thousandths of a mass unit:

E=1000(M—A4)=28.0:Z+8.4:N—14.94

+21(N—-2)?/A+4+14.24%40.62522A~%  (185)
or
=—6.6,4+40.414211*/A+14.24%
+0.625224-3, (185a)

where [=N—Z=A4—2Z is the isotopic number.

As Weizsicker has pointed out, this formula
is immediately applicable only to nuclei with
even numbers of neutrons and protons. Nuclei
containing an odd number of either neutrons or
protons have higher mass (less binding energy).
This can be seen by the following argument. The
energy (185a) is, for a given number of protons
Z, very nearly a quadratic function of the
number of neutrons N. Therefore, any further
neutron which may be bound to a given nucleus,
would be bound less strongly than the preceding
neutron. Actually, however, if we have a nucleus
containing an even number of neutrons and
protons, it will always bind #wo additional
neutrons with the same binding energy, because
they both can be bound in the same state.
Therefore, the energy of a nucleus containing an
odd number of neutrons is to be computed by
taking the arithmetic mean between the energies
of the two adjacent nuclei with even numbers of
neutrons. The same is true for nuclei containing
an odd number of protons. The energy of nuclei
with both N and Z odd are to be obtained by
double interpolation. .

Table VIII gives the mass excess for some
nuclei throughout the periodic table in thou-
sandths of mass units. It shows the relative
importance of main energy, surface energy and
Coulomb repulsion. The agreement with experi-
ment is rather satisfactory. The incomplete agree-
ment for the standard O is due to rounding off
in (185).

Table IX gives the mass excess of the known
light nuclei, calculated and observed. The values
derived by Weizsiacker from his semiempirical
formula are also given. They agree somewhat
better with the observed values than ours. The
reason is that Weizsicker adjusted his constants
so that the masses of light nuclei are represented
as well as possible. Weizsicker's formula is
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E=[ = (a8 (822~ N) /4]
X[A4—1—y(4—1)2]

+(3¢2/roA13) (22— 2-432455)  (185b)

with a=1.6, 3=13.9, y=0.6 thousandths of a
mass unit, and 7o=1.26-10"1 cm.

The general trend of the nuclear masses seems
to be represented fairly well by the theoretical
formulae. Notable exceptions are the lightest
nuclei, for which the formulae cannot be ex-
pected to hold, and a marked break near oxygen.
While the experimental energies are in the
average about equal to the theoretical ones up to
0%, and in some instances (Be® C!?) even lower,
they are very much higher than the theoretical
energies for the nuclei between O and Al. The
differences reach 6 to 8 milli-mass units. For still
heavier nuclei, the agreement improves again,
and is almost complete for sulphur. The reason
for all these facts seems to be the completion
of a ‘‘closed neutron shell’” at O (cf. §33).

The differences between the energies of isobars
such as CBNB, N80 OU7F17 etc., seem to agree
well with the experimental values deduced from
the upper limit of 8-ray spectra (§39). In agree-
ment with experiment, B!® turns out to be more
stable than Be!, N1* more stable than CY, but
F!8 Jess stable than O!8.6¢ However, there are also
notable discrepancies, especially for heavier
nuclei of even atomic weight; e.g., the nuclei Si?®
and Al?® should be equally heavy according to
our semiempirical formula, while actually Al%*®
is 5 units heavier, P3° should be 4 units heavier
than Si*® and is actually 6 units heavier, P%#
should be 1 unit lighter than S* and is 2 units
heavier. This shows that our method does not
give a big enough difference between nuclei of
even mass and odd charge and such of even mass
and even charge especially for heavier nuclei. It
therefore points to the necessity of introducing
forces between like particles (§10, 18, 21, 28).

For the lightest nuclei maximum stability is
found for those which contain an integral number
of a-particles (Be?, C2, O'%). For higher atomic
weight these differences in stability gradually

8 This seems to show that the break in the isotope pat-
tern near O (cf. §34) is not connected with the completion
of a closed shell at O, For the latter fact is not represented
in our calculation, while the former comes out automatically
since the greater stability of O compared to F!® is suffi-
cient to explain the change in the isotope pattern.
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TABLE VIII. Masses of some nuclei calculated from the semsi-
empirical formula (185), in thousandths of a mass unit.

Mass Sur-  Cou-
EXcEss TERM FACE LOMI
OF Man IN N-  EN- ToTAL
Atom Consti* ENERGY (N —Z)? ERGY ERGY THEOR. EXP.
O* 41320 —2384 0 901 158 —0.5 0.0
Ao 329 596 8 166 59 -33 -29
K#2 329 —1222 25 268 186 78 —73
Xe™ 1101  —1997 106 372 354 —62 —T71
Hg20 1658 —2980 168 486 680 +16 +16
U8 1953  —3547 257 545 838 452 4-99*

*8.0:Z +8.4sN, i.e., the excess of the masses of the neutrons and
protons contained in the nucleus over the “‘mass number’’ Z+N.

*k Computed from the energies of the a-particles emitted in the
uranium series, and an assumed mass of Pb20¢ of 206.020.

disappear, and the maximum of stability is
shifted towards nuclei containing more neutrons
than protons (compare Be8, Be? Be!? to S%,
S%3, S%). It should be noted that the exceptional
stability of light nuclei containing an integral
number of a-particles is obtained without the
assumption that there are actually a-particles as
secondary units in the nucleus. We have only
made the rather obvious assumption that
neutrons and protons form shells of two, each
shell containing two particles of opposite spin
and equal spatial wave function.

We want to use our empirical formula for a
redetermination of the limit of stability against
a-disintegration (cf. §8). We take the most stable
nucleus of given atomic weight 4, whose energy
is given by (183b). Inserting the values of a and
v from (185), we find for the mass excess of the
most stable nucleus of atomic weight 4 in
thousandths of a mass unit

Enin(4)=—6.654414.24%3

+0.156A45%135/(134+42%).  (186)
The condition for a-instability is
Enin(4) —Enin(4—4)>3.35 (186a)

because 3.35 thousandths of a mass unit is the
mass excess of the helium atom. This gives

—26.6+37.94-340.62541
135-((5/3)- 134+ A1)

>3.35. (186b)
(1344412
This condition is fulfilled for
A>147, (186¢)
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TABLE 1X. Mass excesses of light nuclei calculated from the semiempirical formula (185), in thousandths of a mass unit.

Nu- WEIZ-
cLEUS THEOR. SACKER Exp. | NucL. THEOR. WEiz. Exp. NucL. Tueor. WErz. EXp NucL.  THEOR. WEIz. EXPp.
He? 29.3 13.3 16.4 | Het 10.8 9.6 3.4 | He® 16.8 14.1 — | He® 22.8 186 —
Lis 17.5 153 — | Li¢ 16.5 13.9 16.1 | Li" 15.5 12.7 169 | Li® 25.1 17.6 183
Be” 16.5 13.7 — | Be® 83 1.5 7.0 | Be? 104 10.1 13.9 | Be® 12,5 13. 15.4
B* 12.5 12.1 15.5 | B 10.5 104 14.6 | Bt 85 85 111 | B2 13.2 12.8 16.6
Cu 106 103 142 | C»2 46 3.5 3.7 | Cn 4.7 6.0 6.9 | C4 49 8.5 7.8
N 7.5 8.7 10.0 | N# 4.8 6.5 7.6 | N1 22 43 5.3 | N 46 7.9 7.5
O 5.0 7.4 8.6 | O —-04 04 0.0 | OV —-1.0 1.8 4.0 | O -1.7 34 4.5
Fu 2.4 5.5 7.8 | k8 —0.5 3.1 >55 | Fw —34 04 440 F% —-2.6 5.4
Net? 00 — —— | Ne2 —5.2 =23 —0.2 | Ne2 —6.7 —0.5 | Ne?? —-8.3 —-2.2
Na?? -5.9 —0.3 | Na2 —9.2 -2 Na* -9.2 —0.5
Mg2¢ —10.2 —6.1 | Mg?» —12.2 —6.5 | Mg —14.2 —-7.5
Al —10.8 —-3.5 | AlZ —14.5 —10.5 | Al®  —15.2 —10.0
Siz8 —14.8 —15. Si2® —17.2 —16 Siso —19.6 -17.5
pso —15.7 —11.5 | p» -19.5 —-20 ps2 -21.0 —20.5
Se2 —19.5 -22.5 | S® —224 —23.5 | S*# —25.3 —25.5

Note: All experimental data on nuclei of atomic weight greater than 17, with the exception of F¥ and Ne??, are tentative only. They are based
on the scarce scattered data about transmutations of these heavier elements, and partly only on interpolation. Errors up to about 3 units in the
difference between neighboring elements, and maybe 10 units in the absolute values, seem possible.

i.e., we obtain practically the same condition for
a-instability as in §8 when we neglected the
surface effect. An estimate of the average kinetic
energy of a-particles emitted by radioactive
nuclei is obtained by inserting into the left-hand
side of (186a) an average atomic weight for

radioactive nuclei, say, 226 (radium). Then we
have in satisfactory agreement with the experi-
mental average energy of radioactive a-particles

Qo= Enin(226) — Enin(222)

—3.35=3.8 MV. (186d)

VI. More Detailed Theory of Heavier Nuclei

Not many definite results concerning the
details of the structure of heavier nuclei have yet
been obtained. We shall discuss in this chapter
only a few of the attempts to obtain such a
theory, and only those which we consider likely
to become starting points for future development.

§31. «-PARTICLES AS SUBUNITS OF
Heavier NUCLEI

The following arguments have been given for
the assumption that a-particles exist in heavier
nuclei as subunits:

1. The mass defect per particle is for all
heavier nuclei of the same order of magnitude as
for the a-particle. In other words, when a heavy
nucleus (atomic weight between 20 and 200) is
built up, most of the binding energy is set free
when groups of two neutrons and two protons
are combined into a-particles (27 MV per
a-particle) and only a relatively small additional
energy (about 7 MV per a-particle) is gained
when the a-particles are put together in the
heavy nucleus.

2. The assumption of a-particles as subunits
therefore seems to offer a straightforward method
for a theoretical calculation of the binding energy
of heavier nuclei: Already in ‘‘zero approxi-
mation,” the binding energy of the heavy
nucleus would be the sum of the binding energies
of the a-particles contained in it; and if it can be
shown that a-particles attract each other, there
will be justified hope to arrive at a theoretical
binding energy reasonably near the observed one
in the next approximation. In contrast to this,
the ‘““Hartree” approximation which assumes the
elementary particles to move independently in
the nucleus (§§32 to 35) fails to lead to satisfactory
results for the binding energy, whether it is used
in the crude form of the statistical method
(chapter V) or in the more elaborate one de-
scribed in this chapter (§§35, 36).

3. Among the light nuclei, those which can be
regarded as consisting exclusively of a-particles,
i.e., Be3, C12, O, Ne??, etc., have higher binding
energies per particle than any of their neighbors.

4. Radioactive nuclei emit a-particles.
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However, the last two arguments can easily be
refuted, and in the course of refuting argument 3
we shall come across some strong arguments
against the existence of a-particles as subunits.

Ad 4: This argument is not at all conclusive,
because it can be shown by very simple con-
siderations involving energy and probability
only, that a-particles are the only particles which
can be emitted from heavy radioactive nuclei.
Firstly, the internal energy of the a-particle is
much lower than that of the preceding nuclei
H!, H2, H3, Hed. Therefore a given nucleus Z4
(Z=nuclear charge, 4 =atomic weight) may
have higher energy than the nuclei (Z—2)4-*and
He* together, but will in general have lower
energy than, say, (Z—1)4-3 plus H3. Thus it is
energetically unstable against emission of an
a-particle, but stable against emission of any of
the lighter particles. Of course, the nucleus Z4
will in general be energetically unstable against
the breaking-up into (Z—6)4-12 and C%2, or
(Z—8)4~1% and O if it is unstable against
a-emission. But here the second point, viz., the
probability considerations, set in: It is almost
impossible that such a heavy particle as C®?
“leaks through” the high and broad potential
barrier existing between it and the residual
nucleus (chapter 1X), while the comparatively
light a-particle with its comparatively small
charge may leak through quite easily.

Ad 3: This rule may be explained without
assuming a-particles as subunits. For there are
two main principles governing the structure of
nuclei: Firstly, the overwhelming strength of the
neutron-proton interaction which, for small
atomi¢ weight, makes those nuclei most stable
which contain equally many neutrons and protons
(§6). Secondly, the “‘even-odd rule” (§10) stating
that nuclei are most stable if they contain even
numbers of neutrons and protons, the reason
being the Pauli principle (§30) and probably in
addition attractive forces between like particles
(§10, 18, 21). The nuclei containing exclusively
a-particles are favored by both these points
which explains their particular stability. In fact,
we could even account quantitatively for the
difference between the binding energies of these
nuclei and their neighbors without assuming
a-particles as subunits (§30).
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After having disposed of arguments 4 and 3,
we shall give a more general argument against
a-particles as nuclear subunits. For nuclei heavier
than about 30, the preference for nuclei composed
exclusively of a-particles ceases to exist. The
reason is of course the Coulomb repulsion of the
a-particles; this repulsion makes it necessary
that stable heavy nuclei contain some extra
neutrons as ‘‘mortar’”’ keeping the a-particles
together.

This fact in itsef does not speak against the
existence of a-particles as subunits. However, as
far as the rather scarce experimental evidence
goes, it seems that the binding energy of these
additional neutrons is materially the same as the
interior binding energy of an a-particle per
particle, ie., 7 to 8 MV. If the concept of
a-particles as nuclear subunits were a good
approximation, we would expect that all inter-
actions between a-particles and additional neu-
trons, or between pairs of a-particles, must be
small compared to the internal binding energy of
the a-particle. A binding energy of 8 MV per
additional neutron must correspond to a large
perturbation of the a-particles, so that it becomes
very doubtful to what extent one may speak of
their existence as subunits in nuclei at all. This
holds at least for nuclei which contain a large
number of extra neutrons.

Another argument which points in the same
direction may be drawn from Heisenberg’s
attempt to calculate the interaction between two
a-particles. This interaction will, similarly to
chemical interactions, consist of two parts, the
exchange interaction and the van der Waals
interaction. The exchange interaction is obtained
by averaging the mutual potential energy of all
the individual particles over the unperturbed
eigenfunction of the interacting systems (mole-
cules or a-particles), taking due account of the
Pauli principle. The van der Waals interaction
is connected with a mutual polarization of the
two interacting systems. Now the a-particle is a
“closed-shell”” system, analogous to the rare gzs
atoms in chemistry [i.e., protons and neutrons in
the a-particle fill all places in the lowest quantum
state (1s state)]. Accordingly, the exchange
interaction between two a-particles, or between
an a-particle and an elementary particle, must be
repulsive, just as between a rare gas atom and
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another atom (rare gas or otherwise). The reason
is that the eigenfunction must be antisymmetric
with respect to interchange of a neutron or
proton in the a-particle, and one in the system
interacting with it, because of the Pauli principle.
This introduces nodes into the wave function
which lead to increased total energy. The van
der Waals forces are always attractive.

In molecular theory, the repulsive exchange
forces are very much stronger than the van der
Waals forces at close distances, making molecules
practically impenetrable for each other. On the
other hand, the van der Waals forces extend to
much larger distances. For the exchange forces
exist only if the wave functions of the two
interacting molecules overlap, while the van der
Waals forces are not subject to this condition.
The exchange forces between molecules therefore
fall off exponentially with increasing distance of
the molecules, whereas the van der Waals forces
behave as a power of the distance 7, usually 5.
The reason for the slow decrease of the van der
Waals forces is the very slow decrease of the
force between two individual electrons, viz., €2/7.

In the case of nuclei, the force between
elementary particles falls off very rapidly. We
shall therefore expect the van der Waals forces to
have a range only slightly larger than the
exchange forces. Roughly, we may expect the
range of the exchange forces between two
a-particles to be about equal to the diameter of
the a-particle, while the van der Waals forces will
extend over a distance about equal to that
diameter plus the range of the forces between
neutron and proton. Since the latter is certainly
not larger and probably considerably smaller
than the diameter of the a-particle, the difference
will not be great.

We shall thus obtain an interaction potential
between two a-particles which has the following
characteristics: There will be a strong repulsion
at close distances, a not quite so strong attraction
at slightly larger distances, and the Coulomb
repulsion at great distances. Such a shape of the
potential seems to agree qualitatively with the
scattering of a-particles by a-particles (chapter
X).

Heisenberg has computed the interaction be-
tween two a-particles, assuming a potential
Be—"*/* between a neutron and a proton and no
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interaction between like particles. For each
a-particle a wave function of the form (117a) was
assumed. The result of Heisenberg's calculation
is very surprising: The exchange force acts only
if the two a-particles coincide exactly,%” and the
van der Waals force has the same range as the
neutron-proton force. It does not seem clear
whether this peculiar result is due to the par-
ticular form of interaction potential and wave
functions (Gaussian functions!) or to the ap-
proximations made in Heisenberg's derivation.
Detailed investigation will be needed to clear up
this point.

However, it seems at least certain from
Heisenberg's calculations that both exchange
and van der Waals forces become of the same
order of magnitude as the binding energy of the
a-particle when the two a-particles are close
together. This again seems to be a serious
objection against the a-particle approximation.

It may be asked why the binding between
a-particles is so small if the forces between them
are large. The reason is probably the small region
of space in which there is a large attraction
between them.

It may be mentioned that this peculiar shape of the
interaction between two a-particles as a function of their
distance, would make the. structure of nuclei composed of
a-particles very simple provided the approximation from
a-particles has any sense: Two neighboring a-particles in
a nucleus would in general have a mutual distance falling
inside the “‘trough’ of the interaction potential, i.e., very
near a given value. This means that the structure of nuclei
containing exclusively a-particles could be considered from
a purely geometrical point of view: The 3 a-particles of
C2 would be arranged in an equilateral triangle, the 4 in
O in a tetrahedron, etc. The binding energy (energy of
the respective nucleus compared to the energy of the corre-
sponding number of free a-particles) would then in first
approximation be proportional to the number of pairs of
neighboring a-particles which is 1 for Be$, 3 for C (tri-
angle), 6 for O% (tetrahedron), and 3 more for each addi-
tional a-particle. Experimentally, the mass of Be? is
almost exactly that of two a-particles; thus the mutual
attraction of one pair of o's is not sufficient to overcome
the kinetic energy associated with their relative motion,
the situation being similar to that found in the deuteron

67 Heisenberg assumes that the centers of gravity of the
a-particles are not exactly localized. The interaction be-
tween two a-particles at a fixed distance s is obtained from
his formulae (14), (15), (17) by letting 7 go to infinity.
Then the exchange interaction (15) becomes the Dirac
3-function, while the van der Waals interaction is pro-
portional to e~2r*1e?,
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(cf. Massey and Mohr, M10). The binding energy of the
next a-particle is 0.0067 mass unit (mass of Be®=28.0070,
Het=4.0034, C2=12.0037, binding energy Be?+He!—C2),
of the following 0.0071 mass unit (C4Het—0®), From
our simple picture, we would expect the binding energy
of the fourth a-particle (leading to O%) to be about 50
percent larger than that of the third, because three new
“bonds” are created when the fourth, and only two when
the third a-particle is added. On the other hand, it seems
to be correct that the addition of every further e-particle
sets about the same energy free as the addition of the
fourth, in agreement with expectations from our simple
approximation.

Summarizing, we must say that it can at present not
be decided how much truth is in the assumption of a-
particles as nuclear subunits. Certainly, this assumption
must not be taken literally, and the a-particles undergo
considerable deformations (polarizations) in the nucleus.
On the other hand, the approximation assuming the ele-
mentary particles to move independently (Hartree approxi-
mation) is certainly not correct either, but must be supple-
mented by introducing correlations between the particles
(end of §36). Such correlations would lead at least in the
direction towards the a-particle approximation. The truth
will therefore probably lie between the two extremes, as
Heisenberg (H10) has pointed out. However, it seems to
us that at present the Hartree approximation offers more
prospects for being perfected.

§32. QUANTUM STATES OF INDIVIDUAL PARTICLES
(NEUTRON AND PROTON ‘‘SHELLS’’)
(H10, B9, E3, G13)

The opposite extreme to the assumption of
a-particles as nuclear subunits is that of inde-
pendent motion of the individual protons and
neutrons. This assumption can certainly not
claim more than moderate success as regards the
calculation of nuclear binding energies (§35).
However, it is the basis for a prediction of certain
periodicities in nuclear structure for which there
is considerable experimental evidence (§33, 34).
Also, theindividual-particle-approximation seems
to offer some hope for the development of a
rational theory of nuclear spins in the future
(836).

The procedure in the individual particle-
scheme is very simple: To start with, we assume
a certain “auxiliary potential” which we suppose
to act on each proton and neutron. (The auxiliary
potentials may be chosen different for protons
and neutrons, to account roughly for the elec-
trostatic repulsion between the protons.) We
calculate the wave functions of the individual
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particles in the auxiliary potential. Then we
compute the total kinetic and potential energy of
the nucleus from the wave functions, with the
help of (144), (146).

In ‘“‘zero-order’’ approximation, the energy of
the nucleus will be given by the sum of the
eigenvalues of the individual particles in the
auxiliary potential, provided the latter has been
chosen suitably. This zero-order approximation
will be studied in this section and will lead us to
the prediction of periodicities in nuclear struc-
ture. In the following two sections we shall
discuss the experimental evidence concerning the
periodicity. In §35 and 36, we shall then proceed
to the “first approximation,” in which the energy
of the nucleus is calculated as the average of
kinetic plus potential energy, averaged over the
wave function of the nucleus. We shall also
indicate the probable influence of a second
approximation (§36).

For the zero-order approximation, we need
only know the eigenvalues of the individual
particles in a given auxiliary potential. The first
problem is therefore the suitable choice of an
auxiliary potential. The potential suggesting
itself immediately is the simple potential hole:
The potential is assumed to be — U, inside a
sphere of radius R (nuclear radius) and zero
outside. Such a potential will represent the actual
state of affairs fairly accurately since we know
that the density of nuclear matter is practically
constant inside heavy nuclei; thus the potential
energy of one particle in the field of the nucleus
will also be practically constant.® A still better
approximation may be obtained by letting the
potential go to zero gradually at the edge of the
nucleus, but such refinements seem hardly worth
while at present. Only for light nuclei the simple
potential hole will be unsatisfactory because the
thickness of the ‘“‘surface layer' (§29) in which the
potential goes gradually to zero, is of the same
order as the nuclear radius (Fliigge, F12). There-
fore it seems more appropriate actually to
represent the gradual change in the auxiliary

6 We shall take, in this section, the exact solutions of the
Schrédinger equation in a spherically symmetrical poten-
tial hole. The result will differ considerably from the result
of the statistical method, in which the eigenfunctions were
approximated by plane waves (chapter V).
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potential, which can be done by choosing, e.g.,
an “oscillator’’ potential

U=—Us+3Cr=—Us+3Mu*r* (187)

as the auxiliary potential (Heisenberg, H10).
(w is the frequency of a “classical oscillator’ of
mass M in the potential U.) The oscillator
potential has the additional advantage of
giving very simple wave functions (Hermitian
functions).

(a) We shall first discuss the quantum states
of the individual particles in the oscillator po-
tential (187). The quantum states may be de-
scribed by three quantum numbers 7, #ns, 73,
which are connected to the energies of the
vibrations along the x, y, and z axis, respectively.
The total energy of a particle is

= —Upt+hw(N+3)
N=nm+n,+nz+1.
The eigenfunction of the state ny, #n, 13 is
Y=o ) )@k e) (1870)
p*=Mwr*/h, (187d)

(187a)

with (187b)

with

the dots denoting lower powers in x, ¥ and z,
respectively. In order to compare the results for
the ‘‘oscillator’” potential with those for other
central fields, e.g., the potential hole, the wave
function must be written as a function of » times
a spherical harmonic. This is always possible by
suitable linear combinations of the wave func-
tions (187c¢); e.g., we have:

N=1:¢=ygo=e",
N=2:¢y=yn=e%"pcosb,

=0, 1s level,
=1, 2p level,
and two similar functions yo10 and y¥100
N=3:y1=y200+¥o20+¥o02
=¢ ¥ (p2—(3/2)),
Y2="002— 3 (¥200+¥020)
=e"#"p2((3/2) cos*0—%),

Ys=y¢ue=e#'p?sin? §

1=0, 2s level,

1=2, 3d level,

Xsin 2¢,

and their similar functions Yo1¥101 and

Y200~ Yoz20.
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N=4:Yo0s+¥201+¥oz

}l= 1, 3p level,
=e¥*(p>—(5/2)p) cos 6)

and two similar functions

Yoo — (3/2) (Wa01+o21) 1
=¢~12p3((5/2) cos® 8 1=3, 4f level.
—(3/2) cos O)J

and six similar functions.

We see first of all, that oscillator levels with even
N correspond to odd azimuthal quantum num-
bers I because the wave functions are odd
functions of the coordinates xyz, and vice versa.
There is considerable degeneracy of levels, the
second s level coinciding with the first d level,
etc. The levels are designated by the usual
spectroscopic notation, giving the lowest level of
azimuthal quantum number ! the principal
quantum number #=I/+1 and numbering con-
secutive levels of the same / by successive values
of n. Then n—1 is the total number of nodes of
the wave function, radial and angular together.®
The general relation between the principal
quantum number 7 in polar coordinates, the
azimuthal quantum number ! and the ‘“‘energy
quantum number” N is
N=2n—-1—1. (187e)
This follows from the examples given above. and
can be shown generally.—For a given energy
(given N), we have 3N or 3(N+1) different
quantum levels in the nl scheme, according to
whether N is even or odd. These levels have the
azimuthal quantum numbers /=N—-1, N-3,
N -5, etc., and the principal quantum numbers
n=N, N—1, N—2, etc., respectively. The total
statistical weight of the energy level N is
N(N+1), taking account of the spin (factor 2 in
statistical weight). Thus the weight of the levels
N=1,2,3,4,5,6,7,is 2, 6, 12, 20, 30, 42, 56,
respectively. The total number of quantum
states having an N smaller or equal to Ny, is
2, 8, 20, 40, 70, 112, 168 for No=1 to 7.

# In some theoretical papers on nuclei the lowest level
of any I has been given the principal quantum number 1.
This seems an unhappy choice, in view of the analogy to
atomic spectroscopy.
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() If we take a simple poteniial hole as
auxiliary potential, the wave functions are
spherical harmonics, multiplied by Bessel func-
tions of order /4% of the radius, ! being the
order of the spherical harmonics (azimuthal
quantum number). If the walls of the hole are
infinitely high, the Bessel functions must vanish
for r=R (nuclear radius). If the height of the
walls is finite, this boundary condition has to be
relaced by a more complicated one, involving the
wave function and its derivative.

The order of the energy levels has been worked
out by Elsasser (E3) for infinitely high walls, by
Margenau (M7) for finite walls of a certain
height. The arrangement of the energy levels is
in both cases similar to that for the oscillator
potential, but the ‘“‘accidental degeneracy’ of
levels with different / and the same N which we
found for the oscillator potential, is of course
removed. The oscillator level N splits into levels
with given / and # in such a way that the level of
highest / lies lowest. The arrangement of the
levels is shown in Fig. 8 for the oscillator
potential, the potential hole with infinitely high
walls, and the potential hole of finite depth, just
sufficient to take 58 particles (this is the case
considered by Margenau). The figure shows all
levels below 100%%/MR? in a potential hole of
radius R with infinitely high walls. These levels
are also given in Table X. According to our

TABLE X. Energy levels in potential hole with infinite walls.
Energy in units #2/ MR? where R = radius of hole.

1sT 2ND 3rD ATH 1sT
LEVEL OF AZIMUTHAL QUANTUM NUMBER } LEVEL
! [Des*En** Des. En. Des. En. Des. En. [! [Des. En.
O|ls 493 2s 19.74 3s 44.42 4s 78.96{6| 7i 55.27
1]2p 10.12 3p 29.85 4p 59.45 5p 98.92/7| 8 67.98
2(3d 16.61 4d 41.35 5d 75.96 8| 9% 81.79
3|4f 24.40 5f 54.25 6f 93.83 910/ 96.74
415¢ 33.51 6g 68.49 :
5|6k 43.76 7Th 83.98

* Sgectroscopic designation.
¥k Energy.

scheme, we should expect a successive filling-up
of the quantum states with neutrons and protons.
The first two neutrons (or protons) will go into
the 1s shell, the next six into the 2p shell, etc.
The shells are tabulated in Table XI in the order
of their energy; below each shell the number of
quantum states in it is given (#;); in the third
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TaBLE XI. Successive filling of neutron (or proton) shells in
potential hole with infinitely high walls.

SHELL 1s 2p 3d 25 4f 3p Sg 4d 6h3s Sf Ti 4p8 6

ni 2 6 10 214 6181022214 26 630 18
[i— [y — e

N; 2 6 12 14 618 34 40 6 48

1
Si=XNy2 8 20 344058 92 132 138 186
k=1

line the 7,’s of shells with nearly identical energy
are added (V;); in the last line the N.'s of all
shells up to the one considered are added: The
figures in the last line (S;) therefore represent the
numbers of neutrons (or protons) for which we
would expect a shell (or group of shells of nearly
identical energy) to be completed.

Whenever a shell is completed, we should
expect a nucleus of particular stability. When a
new shell is begun, the binding energy of the
newly added particles should be less than that
of the preceding particles which served to com-
plete the preceding shell. We should thus expect
that the 3rd, 9th, 21st, etc., neutron or proton is
less strongly bound than the 2nd, 8th, 20th.
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Fic. 8. Energy levels in an oscillator potential, in a
potential hole with infinitely high walls, and in a hole
with finite walls. The levels in the infinite hole are drawn
to scale.
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§33. EVIDENCE FOR PERIODICITIES FROM THE
ENERGY OF NUCLEI

We have seen in the preceding section that the

concept of individual quantum states for the
elementary particlesleads to a particular stability
of nuclei containing 2, §, and 20 neutrons (or
protons), because these numbers of neutrons are
just sufficient to fill the 1s, 2p and (3d+ 2s)-shell.
The first number mentioned (2 neutrons, 2
protons) corresponds to the a-particle whose
particular stability is well known but cannot be
used as an argument for our scheme because it
follows from any approximation whatever. The
last number (20 neutrons, 20 protons) leads to
the nucleus Ca*®. Unfortunately no exact data
about nuclear masses are available for such high
atomic weights so that no direct check is possible
concerning the special stability of Ca*. Some
indirect evidence will be mentioned in §34.
There remains thus the nucleus containing 8
neutrons and 8 protons, i.e., O to test the
“shell structure’” hypothesis by means of nuclear
energies. It seems in fact that there is ample
evidence for a particular stability of O'¢, and thus
for the individual-particle approximation.
_ To be free from other fluctuations of the
binding energy, we shall compare the analogous
nuclei He!, Be8, C2, O, Ne®’, etc., all of which
can be considered as containing exclusively
a-particles, and the nuclei which are produced by
adding neutrons and protons to these ‘‘standard”’
nuclei. In Table XII, the masses of analogous
nuclei are given (part (a)), together with the
increase in mass connected with the addition of
one or more particles to the standard nucleus
(part (b)).

By comparing the figures in any one column of
Table XIIb, it is seen immediately that the
figures decrease steadily as we go down the column,
with the sale exception of a marked increase when
going from the C fo the O'® line. This feature
repeats itself in each column of the table. It
means that a given particle or group of particles is
bound the more strongly to a ‘‘standard nucleus”
the heavier that standard nucleus is, but that the
binding ¢o the nucleus O is less strong than lo
C2, This is exactly what we must expect if O
marks the completion of a neutron and proton
“shell”’: All particles added to O'® must go into the
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next outer shell (3d) and will therefore be bound
much less strongly than the preceding particles.
The fact that the decrease in binding energy
from C®2 to O occurs whatever particle or
particles are added to the ‘‘standard nucleus,”
constitutes very strong evidence for the shell-
structure indeed.

It seems worth while to discuss the reliability
of the data underlying the Table X1II, from which
we drew our conclusion. The most reliable data
are those for the addition of 2 neutrons and one
proton to the standard nucleus. The general
downward trend of the mass increase connected
with that addition is unmistakable. The increase
from C* to O'® depends on the mass differences
N1 —C2 and F1*—0'%. These differences are very
well established from transmutation data, and if
there is any error, it can only be in the direction
that N'5—C®2 js actually smaller, or F'®*—01¢
actually larger than the figures given in our table,
changes which would strengthen our point. The
mass differences are based on the reactions
(L4, LS)

N4 H2=Cl24Het (A)
together with N4 H2= N4 H! (B)
and on Fr4+H!=014He! (@)

It is extremely unlikely that a y-ray is connected
with (A). On one hand, C®? probably has no
excited states less than 5.5 MV above the ground
state;’® on the other hand, the assumption that
the a-particles observed in reaction (A) are
associated with a y-ray of as much as 5.5 MV
energy, would conflict severely with a great
number of other transmutation, and with mass
spectroscopic data. Thus y-ray emission, if any,
can only be associated with processes (B) and
(C). In case of (B), this would Jower the mass of
N3, in case of (C), it would raise the mass of F?
The figures given in Table XII are therefore an
upper limit for N'**—C, and a lower limit for
F19—O01$ which makes our conclusion valid a
Sfortiors.

The next most reliable column in Table XII is
that referring to the addition of one neutron. The

70 No lower excited state has been observed. Also it is
very unlikely theoretically that a nucleus of so high binding
energy as C?2 should have any low-lying excited states
(cf. excited states of the a-particle, §23).
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situation is similar to the foregoing case. The
crucial massdifferencesare C* — C2and O —O!S.
Of these, the latter is derived independently from
three different reactions: (C9, N2)

O14-H2=04H}, (D)
O+ H2=F'""+#!, together with
F'0v4¢t, (E)
Ot H2=N"+He?, together with
N“4+He!—O0"+H!. (F)

All three figures check closely, at least if Haxel's
data are used for the second reaction in (F).
It is therefore almost impossible that the data
can be invalidated by y-emission because it is
exceedingly improbable that all three reactions
(D), (E), (F) lead to the same excited state of
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0', (Reaction (D) was used for the actual
determination of the mass difference.)

The difference C3—C®2 may be obtained in
two ways, vz.; (C9, C10, T10)

Ce4H2=CB4H1, (G)
Ci24-H2=N®B+4n!, together with
NBCB4et,  (H)

(G) leads to the figure given in the table, as-
suming no y-rays. (H) leads to a value about
1 MV less for the difference C*—C*?, indicating
that there may be a y-ray of 1 MV associated
with the proton group in (G). This would again
be more favorable to our argument than the
values given in Table XII.

It may thus be said safely that the completion

TasLe XII. (a) Masses of analogous light nuclei.

STANDARD NUCLEUS OBTAINED BY ADDITION TO THE STANDARD NUCLEUS OF
NucLeus 1 NEUTRON 1 PrOTON 2 NEUTRONS 1 NEu. +1 Pro. 2 Neu.+1 Pro.
Het= 4.0034 Het> 5.013 J Li5 (He?®) Li¢= 6.0161 Li’= 7.0170
Bet= 8.0070 Be?= 9.0139 B?= 9.0155F Bel°=10.0154 B1°=10.0152 Bit=11.0117
C2=12.0037 C1=13.0069 N13=13.0100 C1=14.0077E N =14.0076 N15=15.0053
016=16.0000 0v7=17.0040 F17=17.0078 018 =18.0065H F18>18.0065 F19=19.0040
Ne?°=19.9994G Ne2=20.999 J (Na2) Ne2=21.9977 Na?=21.9996F Na?=22.9980E
(b) Mass increase ted with the addition to the standard nucleus of
STANDARD 1 NEUTRON 1 PrROTON 2 NEUTRONS 1 Neu. +1 Pro. 2 NEU. +1 Pro. a-PARTICLE
He! 1.009D —_— — 2.01274 3.01364 4.00364
Bet® 1.00694 1.0085C 2.0084B 2.00824 3.00474 3.99674
Cr 1.00324 1.0063B 2.0040B 2.00394 3.00164 3.99634
Ot 1.00404 1.0078C 2.0065C >2.0065C 3.00404 3.9994C
Ne20 1.000D —_— 1.998C 2.000D 2.999C 3.995D

Explanation of signs used in Table XII: A, B, C, D de-
note decreasing grades of certainty of the values given.
Figures denoted by A are deduced from reliable trans-
mutation data, B from transmutations whose interpreta-
tion is not absolutely certain. C means that at least one
of the masses used is based on mass spectroscopic or band
spectroscopic data or such g-disintegrations for which the
upper limit of the electron energy is not exactly known.
D data are based on estimates. E, F, G, H, J refer to
various ways of obtaining nuclear masses: E =transmuta-
tion whose interpretation is not quite certain, F=g-dis-
integration with unaccurately known upper limit, G =mass
spectroscopic, H=band spectroscopic data, J=estimate
from analogous nuclei. Masses without letter in the first
table are well established by transmutation data.

Special remarks: He® is estimated according to Atkinson
(A6), by comparison with analogous nuclei. C* is obtained
from the reaction N*¥+slow neutrons=C!+protons, Na%
from the reaction Ne*+He!=Na%-+H!. The last reaction

is subject to some doubt, firstly because the measurements
are very old, secondly because Ne consists of three isotopes
and it is not known from which isotope the observed
protons arise. But firstly Ne® is the most abundant
isotope, and secondly there are reasons to believe that the
longest range protons are emitted from Ne?, rather than
Ne2t or Ne?2,—The mass of Ne? itself is obtained by
assuming the ratio of the masses of Ne® and Ne? as deter-
mined mass spectroscopically by Bainbridge, to be correct.
The mass of Ne? is then.estimated by assuming the differ-
ence Ne?—Ne® to be about 0.001 mass unit larger than
Ne2—Ne?, in analogy to O% 7.8 and C@2. 14, For
details of the determination of nuclear masses and refer-
ences to experimental papers, cf. chapter XVII.

Example of calculation: The increase in mass when one
neutron and one proton are added to C®, is equal to the
mass of N, i.e., of the nucleus which is formed by that
addition, minus the mass of C!2. Thus increase =14.0076
—12.0037 =2.0039.
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of a neutron-proton shell at O is established
beyond doubt from the data about nuclear
masses.

§34. PERIODICITIES IN THE EXISTING IsOTOPES
(M11, E3, G13, G3)

If all the isotopes found in nature are repre-
sented in a diagram, preferably plotting the
“isotopic number” I=N—Z against the atomic
weight 4 (Fig. 2), unmistakable breaks are
apparent; e.g., the maximum isotopic number I
does not increase quite smoothly with increasing
A, but seems to ‘‘refrain from increasing’’ up to
a certain 4, and then to jump suddenly by
several units. Bartlett (B9) has first suggested a
connection between these irregularities and the
neutron and proton shells discussed in the
preceding section, while Elsasser (E3) and
Guggenheimer (G13) have worked out some
details.

Before discussing the experimental results, it
is necessary to give a strong warning against
taking the neutron and proton shells too literally.
This has been done very frequently in the past
with the effect of discrediting the whole concept
of neutron and proton shells among physicists.

First of all, the concept of quantum states of
the individual particles is to be regarded as a
zero-order approximation only, which has to be
completed by a consideration of at least one,
preferably two more approximations (§36). This
fact alone shows that the effects connected with
the completion of a shell cannot be too well
marked, and it seems reasonable to expect them
to be the less well marked the greater the number
of particles already in the nucleus. Therefore,
apparent deviations from the simple shell structure
expected should of course be attributed to the
crude approximation used. Under no circumstances
do such deviations justify far reaching ad-hoc
assumptions such as the introduction of negative
protons as building stones of nuclei. There is at
present not a single piece of reasonably well-
founded evidence for the existence of negative
protons in nuclei, but several grave reasons
against this existence.

Secondly, it should be borne in mind that the
filling of individual quantum states is not the
only thing determining nuclear energies. In fact,
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other points have a much stronger influence on,
nuclear energies and stability. These points are:

(a) The general trend of the isotopic number as a func-
tion of the nuclear charge (§8).

(b) The odd-even rule, i.e., the rule that there are no
stable nuclei of odd nuclear charge greater than 7 and
even atomic weight (§10), and that nuclei are most stable
when they contain even numbers of neutrons and protons.

(c) The isobar rule, stating that there exist almost no
pairs of neighboring isobars (§43).

(d) The general trend of the average number of isotopes
per element to increase from light to medium atomic weight
(cf. end of §10) and to decrease again for the heaviest
elements (because of instability against a-decay).

Thirdly, great caution should be applied in
drawing conclusions from the mere existence or
nonexistence of isotopes because there may be
some rare isotopes yet undiscovered, and on the
other hand, some spurious ones among the
reported isotopes (cf. Mattauch, M11).

We shall now discuss the experimental evi-
dence.

(a) Nuclei of odd atomic weight

These nuclei seem to be more suitable for the
detection of irregularities in the increase of the
isotopic number than nuclei of even weight,
because there exists in general only one stable
nucleus for a given odd atomic weight, so that
we may give a definite isobaric number I =4 —2Z
for any value of A. Moreover, there is no
theoretical reason for any preference for even
or odd nuclear charge for these nuclei, and no
such preference seems actually to exist.

Table XIII gives, for each isotopic number
from 1 to 43, the nucleus of maximum atomic
weight observed for the given I. Column 2 gives
the chemical symbol of the nucleus, column 3 its
atomic weight 4(Z). In column 4 we have
calculated the atomic weight A4¢(/+1) which
would correspond to the isotopic number 741
according to formula (18b). If the increase of the
isotopic number were quite regular, we should
expect that all nuclei of odd atomic weight
smaller than 4, should have the isotopic number
I, all nuclei of odd weight larger than 4, the
isotopic number 7+2. Therefore, the greatest
odd number smaller than A, let us say (4o),
should be the heaviest nucleus of isotopic number
I. The difference 64 =A(I)—(A4,) (column 5)
measures the deviation of the isotope scheme
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from regularity: A positive value 64 indicates
that relatively too many protons, a negative
value that too many neutrons are contained in
the respective nucleus.

Leaving out small fluctuations (84 = +£2), we
observe two major and two minor deviations
from a regular increase. The first major fluctua-
tion is an excess of protons (positive §4) in all
nuclei between 4 =75 and about 110, the second
an excess of neutrons (negative §4) in the nuclei
immediately following, viz., from 110 to 140. The
minor deviations are the single nucleus K?*® (too
many protons) and the group from 150 to 180
(slightly too many neutrons, the difference 54
being scarcely significant).

The theoretical sequence of levels of the
individual particles is given in Table XI (§32).
According to that table, we should expect
“closed shell structures” for nuclei containing
2, 8, 20, 34, 40, 58, 92, 132 neutrons or protons.

Of all the fluctuations found experimentally
in the isotope scheme, there is only one which
can readily be explained on the grounds of these
‘“‘closed shells,” viz., the case of K3°. This nucleus
constitutes actually quite a strong piece of
evidence for the completion of a neutron shell
with 20 neutrons. For the isotopic number moves
actually against the general trend, being 3 for
the atomic weight 37 (nucleus CI*?) and dropping
back to 1 for K*. The explanation in the neutron-
shell scheme is that for 4 =39 the nucleus with
isotopic number 3 (A%’) would contain 18 protons
and 21 neutrons, i.e., one neutron outside the
closed shell, which makes the nucleus less stable
than K?* which contains 19 protons and 20
neutrons, all of them inside the (3d, 2s) shell.
For A =37 there is no influence of the completion
of the shell; both the nuclei of isotopic number
1 (A%") and 3 (CI37) would contain only neutrons
in the inner shell, »iz., 19 and 20, respectively.
Therefore A =37 can be considered as ‘“‘regular”
showing that for “regular’” nuclei of this atomic
weight the isotopic number should be 3, and that
the stability of K?® rather than A% really is to be
attributed to an irregularity, v:2., the completion
of a neutron shell.

On the other hand, the two “long periods” in
the isotope scheme do not fit at all to the simple
shell concept. For 4 =110, i.e., the end of the
first period, we have about 48 protons and 62
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TABLE XIII. The isotopic number of nuclei of odd atomic
wetght. (Explanation in text.)

I ELem. A(I) Ao(I+1) 64 | I ELem. A(I) Ao 3A
1 K 39 31 +8 La 139** 151 —12
3 Ti 47 46.5 +2|23(!) Sm 147** 143.5 +4
5 Cu 63 60 +4125 u 151** 151 0
7 Ga 69 72 —2|27 Gd 155 15858 -2
9 Br 79 77.5 42|29 Dy 161 1665 —4
11 Ru 99 92 +8[31 Yb 171 173 -2
13 Pd 105 101.5 <433 Hf 177 179 -2
15 Sn 115* 110  +6{35 Re 185 186 0
17 Sn 117 119.5 —2|37 Os 189 193 —4
19 Te 123 128.5 —4(39 Hg 199 200 0
21 Kr 129 136 —6|41 Tl 203 206 -2
23 Ba 135 1435 -—8|43 Bi 209 212 -2

* Remarks: There are two isobars for A4 =115, viz., Sn and In. As-
suming In to have the smaller energy (it is more abundant 1), Snus
would only exist because the transition Sn!'s-e~=In!b~+n0'is for~
bidden. For A =113 therearealso twoisobars, Inand Cd. Thus 111 (Cd)
is the heaviest nucleus of isotopic number 15 which is certainly ener-
getically stable. Tlus would make 34 =2 for I =15, more in line with
the general trend of 34

* There is a pronounced irregularity for I =23 and 25: The isotopic
number 25 appears already in Ba'¥ and La!%. Then the isotopic number
drops back to 23 in Pri4, Nd'® and Sm'¥, to reach 25 again in Ndus,
Smi® and Ews. We had "therefore to include the values =23 and 23
twice in our table.

neutrons. The latter number is near to 58, so
that we may expect a closed neutron (5g) shell.
The number of protons is midway in the 5¢ shell.
Thus we would expect, from the naive stand-
point, to find an excess of neutrons in the nuclei
below A4 =110, exactly the contrary of the
experimental result.

Similarly, the end of the experimental period
of an excessive number of neutrons ends with
La!®, ie., Z=57 and N=82. This corresponds
to a closed shell of protons, but does not represent
any particular point with regard to the neu-
trons.”

Therefore it seems that the naive theory of neutron-
proton shells fails for higher atomic number. The reason
may be the following: Because of the interaction of the
particles, there will be a great number of energy levels of
the nucleus as a whole, for a given distribution of the
protons and neutrons over the individual quantum states.
Let us call such a distribution of the particles a “con-
figuration” and the levels of the nucleus, corresponding to
a given configuration, a ‘“level system.” Then the lowest
level of a system will lie much lower than the average
energy of the level system, the difference being largest
when the outermost shells of neutrons and protons are
just half-filled, because this state of affairs corresponds

7 Bartlett, Elsasser and Guggenheimer have left out the
shells 2s, 3p and 3s, without giving any reason for such a
procedure. According to them, the 5g shell should be filled
when there are 50 particles, the (4d 6k) shell with 82 par-
ticles. These numbers would agree with the experimental
result, but they lack theoretical foundation.
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to the largest number of levels in the system. Accordingly,
we shall have two effects counteracting each other: The
energy of zero approximation (average of the energies of a
system of levels) decreases when a shell approaches com-
pletion, but the difference between the average energy
and the lowest level of a system decreases as well. The
minimum energy will therefore lie between the middle
and the end of a shell. The larger the number of places in
the shell, the larger will be the number of levels in a
‘“system,” and the more will the minimum energy be
shifted towards half-complete shells. Thus it may happen
that 48 rather than 58 protons, and 82 rather than 92
neutrons, correspond to minimum energy.

This explanation of the discrepancy between the ob-
served isotope scheme and the naive theory is tentative
only and somewhat ad hoc. However, it seems certainly
necessary to include higher approximations to the energy
than the zero approximation, in nuclear physics much
more than in atomic physics, and the direction of the
deviation from the naive theory due to higher approxima-
tions is correctly given by our argument.

(b) Even atomic weight

For even atomic weight, even nuclear charge
Z corresponds to greater stability than odd
charge (§10, and rule 2 above). This means that
stable nuclei of atomic weight 4% (z an integer)
have isotopic numbers 7=A4 —2Z divisible by 4,
while nuclei of atomic weight 4n+2 have in
general isotopic numbers of the form 4m+2.

The first rule holds without exception, the
second rule for all nuclei of the type except the
very lightest ones (H?, Li% B!, N). For these
four nuclei, the ‘“‘even-odd rule” conflicts too
severely with the rule that among light nuclei
those with isotopic number 0 are by far the most
stable, because the forces between neutrons and
protons are the strongest forces in the nucleus.
It seems significant that this conflict is decided
in favor of the even-odd rule (isotopic number 2)
as early as for 4 =18, for which atomic weight
we have the stable nucleus O containing 8
protons and 10 neutrons while F!%, which would
contain an equal number of neutrons and
protons, is unstable. We do not consider it

- significant that the change from isotopic number
0 to 2 occurs just after the completion of the 2p
shells of neutrons and protons (cf. §30).

The change of the isotopic number of the
nuclei 4n+2 from 0 to 2, which is such a natural
consequence of general principles, is quite suffi-
cient to explain the striking change of the isotope
pattern at Z=8: For Z=7, each element has
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two isotopes of isotopic number 0 and 1, whether
its nuclear charge Z is even or odd [Exceptions:
For Z=1, there is in addition the proton, with
isotopic number —1. For Z=2, the isotope He®
is unknown, and there are very strong reasons
that it does not exist at all (Atkinson, A6),
being unstable against disintegration into an
a-particle and a neutron. For Z=8, Be? is
unknown because it can disintegrate into two
a-particles. The exceptions are not serious for
our point: We are now interested in the most
stable nucleus for any given atomic weight; thus
it suffices that He® is more stable than Li% and
Be® more sp than Li® which is certainly true].
For Z=8, each element of even Z has three
isotopes, of isotopic number 0, 1, 2; while the
elements of odd Z have only one isotope each
(I=1). This change of the pattern means only
that the nuclei of weight 4%+ 2 have odd nuclear
charge for A =14, even charge for 4=18. There
is therefore no profound reason behind the
change of the isotope pattern at oxygen.

Turning now to the nuclei of atomic weight
4n, we remark that for low atomic weight these
nuclei have isotopic number 0 throughout. This
fact, together with the fact that they contain
even numbers of neutrons and protons, makes
them the most stable nuclei in the region (§30).
(The special stability follows also from the
picture of a-particles as subunits. §31.) The
heaviest nucleus of this kind is Ca*. It may be
significant that this nucleus contains just 20
neutrons and protons, corresponding to complete
1s, 2p, and (3d, 2s) shells.

The behavior of heavier nuclei of even weight
shows fluctuations analogous to those of the
nuclei of odd weight. In fact, the nuclei of odd
atomic weight lie always in the center of the
broad band filled by nuclei of even weight
(Fig. 2). There are therefore the same difficulties
in explaining the observed periodicities as for
the odd nuclei.

We shall now mention a few other points connected with
the shell-structure of nuclei.

(a) Radioactivity. A feature giving some support to our
ideas about shell-structure is the start of a-radioactivity.
The lightest a-radioactive atom (except for the odd case
of Sm) is Po?°, For this element, Z=84 and N=126. This
is fairly near the completion of the group of proton shells
(4d, 6k, 3s) and the group of neutron shells (5f, 67). The
shells would be complete for Z=92 and N=132, but we
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expect minimum energy for somewhat smaller values of
Z and N.

(b) Nuclear spins and magnetic moments. Nothing defi-
nite can be said in this respect until a better method of
attack has been found, or at least until the first and second
approximation mentioned in §36 have been calculated.
However, it seems significant that large spins appear for
the first time after the 4f shell is begun (scandium, Z=21,
spin 7/2).

With all reserve, we may be allowed to infer from our
considerations the probable spin of K% which is supposedly
the radioactive isotope of K (Klemperer, K4). K* contains
19 protons and 21 neutrons, i.e., complete 20-shells minus
a proton in the 2s shell plus a neutron in the 4f shell. The
orbital momentum of K% is therefore most probably 3,
while we cannot say whether the spins of proton and
neutron are parallel or antiparallel to each other and to
the orbital momentum. In any case, a total momentum of
2, 3 or 4 would result. 4 would be amply sufficient, 3 just
sufficient to explain the long life of radioactive K* (§43).

(c) Another type of shell-structure was suggested by
Landé (L2). He assumed that as many neutrons and
protons as possible are combined in a-particles while the
remaining neutrons are arranged in shells. It was necessary
to assume that some inner neutron shells are left incom-
plete while outer shells are being built up, and that the
inner shells are completed afterwards. The capacity of the
successive neutron shells was assumed to be 2, 6, 8, 12. It
seems hard to attach any theoretical significance to these
numbers.

In conclusion, we want to emphasize again
that reliable conclusions about the shell-structure
of nuclei can only be drawn when atomic weight
determinations will be available which are
guaranteed to be accurate to at least three
decimals, i.e., 1 part in 100,000 for atomic weights
of the order 100.

§35. ENERGY OF O AND CA*" IN THE HARTREE
ApproxiMATION (H10)

Heisenberg (H10) has calculated the energy
of the closed-shell nuclei He¢, O, Ca%, using
the individual-particle approximation and as-
suming oscillator wave functions (cf. §32). He
assumes the “Gaussian’’ potential

J(rw) = — Be~r*le? (188)

to act between a neutron and a proton, and no
force between like particles. The wave function
of the neutrons and protons in the 1s shell is

V1. = (u/m)le+",

where 7 is the distance from the center of the

(188a)
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nucleus and u a constant characteristic for the
auxiliary oscillator potential used (cf. §32). If
this potential is

U=3Cr=31 Mo, (188b)
where M is the mass of the proton (or neutron)
and /27 its “classical’” frequency in the oscil-
lator potential, then

n=(MC}/h=Muw/h. (188c¢)

The wave functions of the other states (2p, 3d,
etc.) are similar to (188a). C (or w, or u) has to
be regarded as an arbitrary parameter which
must be fixed in such a way as to make the total
energy a minimum.

For the details of the calculation we refer to
Heisenberg’s paper. The procedure is the fol-
lowing : The kinetic energy is equal to half the
eigenvalues of the particles in the oscillator
potential, i.e., (3/4)hw, (5/4)hw and (7/4)kw,
respectively, for particles in the 1s, 2p, and
(3d, 2s) shell. The potential energy consists of
the neutron-proton interaction and the Coulomb
repulsion between the protons: Both terms can
be calculated from the wave functions, but the
final expressions are somewhat complicated.
Potential and kinetic energy are added, and the
sum minimized as a function of x = ua? (cf. (188),
(188c)). The result represents the binding energy
as a function of the force constants B and a.
Instead of calculating the mass defect from the
constants derived from the theory of light nuclei
(chapter IV), Heisenberg uses the inverse pro-
cedure, i.e., to calculate the force constants from
the observed mass defect. (This procedure has
been used by us in connection with the statistical
model, chapter V.) These constants may be
compared to those necessary to give the correct
eigenvalue of the a-particle, with the variation
principle and the eigenfunction

Y= e Mrttrad)—v(rigd+rid+rattra?) | (188d)
For any given range a of the forces, the constant
B must be chosen about 25 percent larger to
obtain the correct binding energy of He* with
the oscillator wave functions, than with the
wave function (188d). This means that the
oscillator wave functions are less good approxi-
mations than (188d). The reason is, of course,
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that in (188d) the interacting particles are linked
directly to each other while in the oscillator
approximation they are linked to the center of
the nucleus, and only indirectly to each other.

The approximation to the energy of the nuclet
O1% and Ca*® afforded by the oscillator potential
is slightly worse than for He!, the values of B
necessary to obtain agreement with the observed
binding energy being about 8 percent and 15
percent larger for O and Ca%, than for Het.

Nothing is changed if forces between like
particles are assumed, provided the force between
two like particles is of the form (cf. 142)

K(rlz)uro’z. (189)

For in this case the total interaction between all
neutrons will be of the form

1S K(r12) | pa(rire) | %d7ridre (1892)

(cf. 146e), while the interaction between neutrons
and protons is

S T(r12) pn*(1112) pp(1112)dTid 72,  (189D)

where J is the interaction potential between
neutrons and protons, and p.p, the mixed
densities of neutrons and protons (§24). Since
the numbers of neutrons and protons and their
wave functions are equal, we have p,=p, and
all interactions together give an integral of the
form (189b), with only J being replaced by
J+3K. Thus the result for the binding energy
will be the same as without like-particle forces,
only B means now the sum of the interaction
between two unlike particles, and half the
interaction between two like particles. This will
not change the comparison between the results
for Het, O, Ca%, with each other and with the
result of the variational method applied to He'.
(It would change the comparison with the
theory of the deuteron.)

§36. THE COUPLING SCHEME IN NUCLEI

For nuclei with incomplete shells, it is of
great interest to find out how the orbital mo-
menta and the spins of the individual particles
are coupled to the resultant nuclear momentum
I. Up to the present, practically no calculations
concerning this problem have been carried out.
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But it seems as if the Hartree approximation
discussed in the preceding sections, might in the
future lead to a rational theory of the nuclear
spins I and the associated magnetic moments u,
at least for light nuclei. One must, however, be
prepared that higher order perturbations may
seriously affect the picture, at least as regards
the magnetic moments.

It seems reasonable to assume Russell-
Saunders coupling to hold at least approximately
in the nucleus, the Heisenberg forces being small
compared to the Majorana forces (§13, 14). We
shall thus introduce a total orbital momentum A
of the nucleus and a total spin momentum 2=
whose resultant is the ‘‘nuclear spin’’ (total
angular momentum of the nucleus) 7. The
momenta A and 2 are the resultants of the \’s
and ¢’s of the individual particles. A level of
the nucleus shall be denoted similarly to the
usual spectroscopic way, giving first the con-
figuration of the protons, then that of the
neutrons, then the characteristics of the level of
the nucleus as a whole ; e.g., (1s? 2p) (1s? 2p?)2P;)2
means that there are two protons in the 1s shell,
one in the 2p shell, 2 neutrons in 1s, two in 2p,
and that the resultant orbital momentum of the
nucleus as a whole is 1 (P term), the resultant
spin 1/2 (doublet term), the total nuclear
moment 3/2.

The energy of the various levels corresponding
to a given configuration of neutrons and protons,
can be calculated by a method similar to that
used in the theory of optical spectra. The calcu-
lation is, however, much more involved because
there are twice as many particles in each shell
(neutrons and protons!) and the particles of
different kind are not equivalent. This makes
the number of levels extremely high. The terms
expected from all possible neutron and proton
configurations in the p shell are listed in Table
XIV. (6 °P means that the configuration leads,
among others, to 6 different *P terms of the
nucleus.)

The calculation of the energy levels is simple
only in the case of one neutron and one proton
in the p shell. Since there are no restrictions due
to the Pauli principle in this case, we may
disregard the spins entirely in first approxima-
tion. We denote by 1 the coordinates of the
proton, by 2 those of the neutron, and by M the
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component of the total orbital momentum in a
given direction (axis of the polar coordinate
system). We leave out the wave functions of the
particles in the closed 1s shell. Putting further-
more

f=(8/3)r le= et p p, (190)
where p is defined as in (187d), we have:
For M =2 one wave function
Yo=(3/8)f sin 6,ei! sin fzeiv2.  (190a)
For M =1 two wave functions
Y1=(3/8r)V2f sin 0,¢i¢1 cos 0, (190b)

Y12=(3/87)VZf cos 0, sin B.ei2.
For M =0 three wave functions
Yo1=(3/87)f sin 61e'%1 sin e~ i¢2,
Yoe=(3/87)f sin 61e~ %1 sin fre?%2, (190c)
Yos=(3/47)f cos 6, cos ,.

Following Slater’s ‘‘method of sums,”?® the
energy of the D term is given by the diagonal
matrix element of the interaction between neu-
tron and proton, corresponding to the wave
function (190a) for M =2. The P term is found
by adding the diagonal matrix elements corre-
sponding to the two functions (190b), and sub-
tracting the D term from the sum. The S term is
equal to the sum of the three diagonal elements
corresponding to (190c), minus the sum of the
two diagonal elements corresponding to (190b).
In every case, an additional constant has been
left out containing the interaction of the 1s

% J. C. Slater, Phys. Rev. 34, 1293 (1929).
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neutrons and protons among themselves and
with the 2p neutrons and protons, and also the
kinetic energy of the particles. Since this con-
stant is the same for all three terms SPD, it is
irrelevant for the question of which term is
the lowest.

The interaction between neutron and proton
may be expanded in spherical harmonics of the
angle © between the radius vectors r; and r; of
the two particles, viz.,

V(ris) = — Vo—3V.P(cos )

—SVz.Pg(COS @)—, (191)

where the minus sign has been chosen in order
to make Vo, V1, etc., positive. If we take

V(i) = —Beris/*, (191a)
then
Vi=(—iy!(nwa/4iryrs)B
X J144 (287179 /a?) e rit+rdiat - (191)

where J is the Bessel function. In particular,

Vo= (B/2x)(e*— e %)e=(ri*+raM)a? (191¢)
Vi=(B/2x?)[e*(x—1)
—er(x+1)Je- e (191d)
Vo= (B/2x%)[e*(x?—3x+3)
—e*(x2+3x+3) Je~(n*+rhiat - (191e)
with x=2r1rs/a’ (191f)

Every V, is positive for any positive value of x.
Considering that the interaction is of the
Majorana type, we have now, e.g., for the

TABLE XIV. Nuclear levels expected from various neutron and proton configurations in the p shell.

ToTAL
CONFIGURATIONS TERMS NUMBER
(1) (P15 (pY) (%) (%) (2°) 3D 3P 3§ 1D 1P 1§ 6
@ (pY); (#) (p‘g; N D 4P 4S :F 2D 3P S 10
. )4
) (69: % (59: 60 (09 D 5P 5§ 2F 3D P 1S 25
IG 1F 41D 1P 31§
@) ;%) (Y SP 4F 34D 34P 2iS G 3F 27
52D 6P 2:S
@ (%) 7S 28D 25P 85 3G 33F 6D 38

6P 33S G 3'F 4D 4P 1S
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average value of the interaction over the wave

function yy; (190b) :

Vav = fyi*(1, 2) V(r2)¥n(2, 1)dridre
=(9/32x2) S f2(rirs) V(rsa) sin 0,e—i1

cos 03 sin 8z¢i¢2 cos 1d7idTe.  (192)

We see that the Majorana force makes the
diagonal matrix element very different from its
usual form for “ordinary forces.”” To evaluate
(192), we put™

sin 0y cos Ozei92=(87/15) ¥ 21(02¢2), (192a)

where YV is a normalized spherical harmonic.
Moreover, we insert (191) for V(1) and expand
the spherical harmonics of ® according to the
addition theorem’

(2041)Py(cos ©)
l
=4r Zlem(om) Yin*(62¢2). (192b)

m=—

Only the term Y (6101) Ya*(f2¢2) in the expan-

sion (191), (192b) contributes to (192), since all

other terms vanish upon integration over the

angles. We thus have

VY = —(9/3272) (87 /15)4n S f(rir2)
Vz(?’lrz)hzdfﬁ’zzdfz: - %L, (192(3)

where L denotes the integral. With the value
(190) for f, and (191e) for Vs, the integral can
be evaluated ; the result is

L= [ f2Vori2drira*dra=(5/3)a®?(24a)~"2. (193)

In a similar manner, we may evaluate the
other diagonal elements of V; e.g., for the state
Y2 we obtain

V@ =(9/64x2) S f2V sin? 6, sin? fsdridrs
=(1/16x%) S f2V[1—Py(61) J[1—P2(62)]
Xdrdre= —(K41iL), (192d)
where
K= [ f2Vori2driradre
=3a?(2+a) (5 +6a+3a?). (193a)
™ Cf. Handbuch der Physik, Vol. 24/1, p. 275, Eq. (1.8).

% Handbuch der Physik, Vol. 24/1, p. 559, (65.59), also
p. 554, (65.21), (65.22).
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The diagonal matrix elements of V are:

VO=—(K+iD), V=V =—G/5)L,
(194)
VoD = yon = —(6/5)L, VO = — (K+(4/5)L).

Therefore the energy levels:

D=V®=—K-1L, (195)
P=2VW_y®=4K-L, (195a)
S=2VOD4 V0D 20 = —K—2L. (195b)

Since both K and L are positive and K > L (cf.
193, 193a), the lowest level is the S level, the
next D, and the highest P. This order is opposite
to the order of levels in atomic spectra. The
reason for this reversion of the order is that the
forces between the particles are attractive in
nuclei, repulsive in atoms (Coulomb force be-
tween the electrons).

The ratio of the intervals SD : DP cannot be
predicted on general grounds as in atomic
spectra, but depends on the radial wave functions
and on the form of the interaction potential.
The reason is the Majorana type of the forces:
This makes the integral K appear with different
sign in the expressions for the energy of the
different levels, while K would appear with the
same sign throughout in atomic theory. The
interval (DP) therefore depends on K as well as
L, while in atomic spectra both intervals (DP)
and (SD) would only depend on L.

Now we have to consider the spin interaction.
We know (§14) that there are Heisenberg forces
between neutron and proton which increase the
Majorana forces if the two particles have parallel
spin, and decrease them if the spins are anti-
parallel. Thus the spins of the neutron and the
proton in the 2p shell will be parallel in the
lowest state of the nucleus Li®. This lowest state
is thus a 3S state, i.e., the total angular mo-
mentum of the nucleus must be 1 unit, and the
magnetic moment must be the same as for the
deuteron, save for perturbations. Both these
predictions seem to agree with the experiments
of Fox and Rabi, (F13).

In view of the extreme complication of the
level scheme for more than 2 particles in the 2p
shell (Table XIV), and of the fundamental
difference between atomic and nuclear theory
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due to the Majorana forces, it does not seem
possible to make any safe predictions regarding
the spins of other nuclei, without actually
carrying the calculations through. However, it
seems as if the order of levels is roughly opposite
to that in atoms: Thus we might expect to find
always a level of low orbital momentum A and
comparatively low resultant spin’® 2 as the
lowest level of nuclei. It is conceivable that one
might explain in this way the fact that all
nuclei containing even numbers of neutrons and
protons seem to have zero total momentum 7.

The calculations carried out in this section
represent only the first approximation to the
energy. This will probably be insufficient in many
cases. A second approximation may be obtained
as follows: We first determine the configuration
of neutrons and protons which has lowest energy
in zero approximation. Then we determine which
of the energy levels corresponding to the given
configuration lies lowest. (Thus far the procedure
corresponds to the procedure in this section.)
Then we look for the next higher neutron-proton
configurations and take those terms arising from
them which have the same symmetry as the
lowest level which we have determined just
before. We may calculate the perturbation of
the ground level due to these higher levels of
the same symmetry according to the usual
methods, with regard to energy as well as
magnetic moment, etc. In some cases, it may
happen that the lowest level does not have the
angular momentum deduced from the first ap-
proximation but a different angular momentum
which is more favored by the interaction with
the higher levels arising from other proton-
neutron-configurations.

§37. VAN VLEcKk's PoTeENTIAL (V1)

It is of great interest to investigate whether the forces
exerted by a nucleus on one of its particles, can adequately
be represented by a potential, i.e., whether the wave
equation for a given particle can be written in the form

(#/2M) Ay + (W= U(r))y =0. (196)

8 Two factorsgoverning the spin should be distinguished:
The Pauli principle, and the actual forces acting on the spin
(Heisenberg forces). The Pauli principle will probably re-
quire Jow resultant spin of all neutrons, and low resultant
spin of all protons, as far as these terms have any meaning.
Inasmuch as the Pauli principle does not yet determine the
resultant spin, the Heisenberg forces will tend to make it as
large as possible.
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This is not obvious in the case of Majorana forces, in fact,
the wave equation which one obtains at first does not
have the form (196) at all.

To find the appropriate one-particle wave equation in
the Majorana theory, we start from the general Majorana
equation (29b), leave out the spins,”” and write the posi-
tional wave function as a product of wave' functions of all
individual particles,” viz.,

z N
Y(xixe: o xzé - ) =Igi@)Mew(gr).  (196a)
=1 k=l

We then integrate over the positions of all protons and
neutrons except one proton, let us say the jth, after having
multiplied Eq. (29b) by

z N
Ty *(e) M er(Er) :
1] k=1

The wave function and coordinate of the proton j shall
simply be denoted by ¥ and x. Then we find

(w/2M)ay+Wy =§f‘i§‘ok*(§)1(x—-§)¢(§) ex(x).  (196b)

W is a constant connected to the total energy of the nucleus
E and certain integrals over the wave functions. The right-
hand side contains a sum over all proton wave functions
and has not at all the familiar form U(r)y(x).

Van Vleck has shown that (196b) nevertheless can be
reduced to the form (196) with a suitably chosen potential
function U(r). This is at least true if the wave functions
¢ and y are solutions of a wave equation of the type (196)
with a simple-hole potential; i.e., U is supposed to be
constant and equal to — U, inside a sphere of radius R,
and to be zero outside. From this assumption it cannot
only be derived that Eq. (196b) can be reduced to the
form (196) but moreover that the potential U acting on
the neutron is again a simple potential hole of radius R.
Thus the scheme is consistent.

In the simple potential hole, we may represent the wave
functions ek and y¢; by plane waves (statistical method,
chapter V) or by spherical waves (§32) which can
be considered as superpositions of plane waves. Since
%vk*(f)m(x) is the mixed density (§24), we have (cf. 151)

o(Ex) =§¢k*(5)‘ﬁk(x)
=@/k) f"dp exp Lix—E)-p/], (197)

where P = hk, is the maximum momentum of the neutrons
(cf. 150b). For y, we write

w(&) =exp (ipo-¥/h). (197a)

J may be expanded in a Fourier series
Jx—§) = [(daa(Q) exp (ig-x—E)/h),  (197b)

where the coefficients a(q) are given by
a(@) =k~ [axJ(x) exp (—iq-x/h). (197¢)

"7 Spin and symmetry of the wave function do not enter
in first approximation.
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Then the right-hand side of (196b) becomes

=2 [t ["dq [ dpa(@) exp [ip+a) %/
+i(po—p—a)-&/R]. (198)
In this equation, we invert the order of integration,
integrating first over § (i.e., the volume of the nucleus),
then over q, finally over p. If the nucleus is very large com-
pared to the wave-lengths #%/p of the particles and the
range of the forces (which is approximately %/g), we have

J & exp [ipo—p—a)-£/h1=16(@c—p—0), (1982)

& being Dirac’s §-function. Then the integration over q
yields (cf. 197a)

S a@dq exp itp+a)-x/315(po—p—0)

=a(po—p) exp (i(po-X)/h) =a(po—p)¥(x) (198b)
since the é-function makes the integrand vanish except for
g=po—p. On the right-hand side of (198b) we have now
the wave function of the proton y(x), as required. Inserting
into (198), we find

0=2¢(®) [ "dpa(po—p)- (198¢)
Thus (196b) reduces to the form (196) with
U=2 [ dpapo—p). (199)

Thus we may indeed use an ordinary Schrédinger
equation for each individual particle. Moreover, U does
not depend on the direction of po, since a(po—p) depends
only on |po—p| and the integral in (199) goes over a
sphere in p space. The form (196) is thus independent of
our assumption in (197a) that ¢ is a plane wave: It is
valid for any linear combination of plane waves of given
wave number po/k (or given energy W), e.g., for spherical
waves, etc. (Van Vleck treated first the case of spherically
symmetrical waves.)

However, there is still a serious flaw in our considera-
tions: U obviously depends on the value of po, i.e., on the
energy of the particle (it decreases with increasing energy).
Thus we do not obtain the same wave equation for indi-
vidual-particle states of different energy. Therefore the
solutions of (196), each taken with the potential U appro-

VII. B-Disintegration

§38. DISPROOF OF THE EXISTENCE
oF ELECTRONS IN NUCLEI

It is now generally believed that no electrons
exist inside nuclei. The main reasons are the fol-
lowing :

1. The statistics of nuclei. Nuclei of even
atomic weight generally obey Bose, such of odd
weight Fermi statistics. This is to be expected
(§4) if the nucleus contains only neutrons and
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priate for its particular energy parameter W, do not form
an orthogonal set. Thus this method is not applicable for
the construction of a set of individual wave functions to
be used for the calculation of nuclear energies according to
the scheme of §§35, 36. All wave functions of such a set
must be derived from one and the same ‘‘auxiliary po-
tential” which may be chosen as some average of the U’s
derived from (199).

The scheme of this section may, however, be useful in
deriving an approximate wave function for one particular
particle, and for this purpose (neutron scattering) the
method was originally devised by Van Vleck.

The value of U can easily be obtained from (199) if
the range of the nuclear forces is long compared to the
wave-length of the particles (/P or k/po). In this case,
a(g) will only be large for small ¢'s so that

v 2£wdpa(po—p)=2](0) if po<P
0 if po>P.

This would mean that only such neutrons would be bound
whose momentum is less than the maximum momentum
of the protons.

Actually, the range of the forces is of the same order as
the wave-lengths. In this case, U will decrease slowly with
increasing po. It may be expressed in terms of the mixed
density of the protons (197), with the help of (197c¢), (199):

U=2h‘3£wdxfdpj(x) exp [(p—po)-x/h]

(199a)

= j;  dxJ (x)e =70 %M (x) (1991)
= (dnh/po) j; “rdrp(r) () sin (por/k).  (199¢)

With the ‘““Gaussian potential’”
J(r)=—Be " (199d)

U can easily be evaluated, the result being

=—B[®(x—y)+2(x+y)
+,,—iy—x(e—(ny)’_e—<z—v)’)] (199¢)

x=Pa/2h, y=po/2h, (1991)

and & the error integral (cf. Jahnke-Emde, Table of
Functions).

with

and Nuclear Forces

protons. If we would, however, replace one
neutron by a proton plus an electron, there
would be an increase of the number of elementary
particles by one, and therefore a change from
Bose to Fermi statistics and vice versa.

2. The nuclear spin. The corresponding argu-
ment holds for the nuclear spins which are
integer or half-integer according to whether the
atomic weight is even or odd (§5).

3. The nuclear magnetic moments. They are all
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of the order of the proton magneton eh/2Mc,
while they should be of the order of the Bohr
magneton ek/2mc if electrons existed in the
nucleus.

4. The size of the electron wave function. The
wave-length of an electron with a kinetic energy
of the order of a few MV (energy of most -rays!)
is much larger than the nuclear radius (§3, end).

5. The impossibility of a potential barrier suf-
Jicient to keep the electrons inside the nucleus. This
argument is the strongest of all, and we shall
therefore discuss it in detail.

The nuclei emitting g-particles have mean lifetimes from
1/50 of a second up to about 108 years. There must,
therefore, be some force keeping the 8-particles inside the
nucleus for that length of time, in spite of the fact that
they have amply enough energy to escape. It might be
tried to assume a potential barrier keeping the electrons
from leaving the nucleus, in analogy to a-particles (chapter
IX). There are three grave reasons in the way of such an
assumption :

(a) To all our knowledge, a nucleus aftracts an electron
at any distance. This is certainly true at large distances
(Coulomb force) and at very small distance (owing to
the very assumption that there are electrons bound in
the nucleus). In order to provide a potential barrier for
the electrons, there would have to be a strong repulsion
at intermediate distances (a few times nuclear radius,
say).

(b) In relativistic theory it is nearly impossible to devise
any potential barrier which would keep high energy
electrons inside the nucleus. To see this, it is sufficient to
consider the relativistic Schrédinger equation (without
spin), #z.,

BeAYy+[(E— V)32 —m2ctJy=0. (200)

E is the total energy of the electron, i.e., its kinetic energy
at infinite distance from the nucleus plus mc2. This equation
has a solution of exponential character only if

|E=V| <me. (200a)

However, it is necessary that the solution is of exponential
type in the region of the potential barrier, because only in
this case the potential barrier prevents the particles from
immediate escape. This means that the potential energy V'
inside the potential barrier must not differ from the total
energy E of the electron by more than mc?. It is obvious
that such a requirement is very unlikely to be fulfilled by
a given potential barrier, especially for such nuclei for
which the energy E of the g-particles is very large. There
is one case (B®) in which E=24 mc. Then V would have
to be between 23 and 25 mc?, a very improbable assumption
indeed.”

" The fact that the B-particles coming from a given
nucleus have a continuous energy spectrum, would make
the situation quite untenable, because we would have to
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(c) Granted that V has really a value satisfying (200a),
there would be extremely large perturbations of the optical
electrons due to that potential barrier which absolutely
contradict experiment. The most favorable assumption is
that V=E inside the barrier, let us say for 7 between R
and R+b (R=nuclear radius, b=breadth of barrier,
r=distance between nucleus and electron). In this case,
the solution of (200) is

y=Ae ik for R<r <R+, (200b)

where 4 is a constant. The lifetime is then, similar to
that of nuclei emitting a-particles (cf. chapter 1X)

7= (R/c)etmedlh, (200c)
Putting R=8-10"2 cm, ¢=3-10" cm/sec., and assuming a
lifetime =1 sec., we have

2mcb/h=log (4-10%2) =52,

200d
b=26k/mc; 200d)

i.e., the breadth of the potential barrier would have to be
much larger than the Compton wave-length %/mc. Since
the radius of the K shell of heavy atoms is less than twice
the Compton wave-length, the potential barrier assumed
would change the potential acting on the K electrons,
and even on more distant electrons, beyond recognition,
and would have tremendous effects on the energies of all
these electrons. This disproves completely the assumption
of a potential barrier keeping the electrons in the nucleus.

Therefore we are forced to assume that the
electrons observed in [B-disintegration did not pre-
exist in the emitting nucleus. We suppose that they
are formed in the same moment when they are
actually emitted, and that it is this process of
formation which is so improbable that it accounts
for the long lifetime of B-emitting nuclei.

The process of B-disintegration should there-
fore be compared not to e-disintegration, but to
the emission of light by atoms (or nuclei). This
comparison to light seems quite advantageous to
explain what is meant by non-pre-existence and
formation in the moment of emission: Nobody
would say that a hydrogen atom in the third state
contains the light quanta corresponding to the
spectral lines it may emit, viz., the Ha-line and
the two first lines of the Lyman series. (The
second Lyman line may be emitted immediately,
or the first after the emission of He.) Still, the
hydrogen atom is capable of emitting these light
quanta, and it is generally accepted that the

assume a different height of the barrier for different nuclei
of the same species, corresponding to the energy of the
B-particle emitted. But the continuous energy distribution
of the B-rays cannot be properly understood without the
neutrino hypothesis anyway, so we prefer not to use it here
as an argument.
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quanta are produced in the moment of their
emission. The emission of electrons by nuclei is
entirely analogous, we have just to substitute
“electron’’ throughout for “light quantum.”

§39. Tue Neurtrino (F7, B17, N1, C14, C15,
C16)

The assumption that the g-particles which are
emitted by radioactive nuclei, did not exist in
the nucleus before the emission but are ‘‘created”
in the moment of emission, solves the difficulties
3, 4 and S pointed out in §38. However, there
remain the difficulties about statistics and spin,
and the still graver difficulty of the continuous
B-spectra. These difficulties can only be solved
by introducing a new, hypothetical particle,
having no charge, very small mass (electron mass
or less), spin 37, and Fermi statistics. This par-
ticle is called the neutrino.

The main evidence for the neutrino is the con-
tinuous character of the B-spectra. The B-par-
ticles emitted by radioactive nuclei do not all
have the same energy, but have energies dis-
tributed over the whole range from zero to a
certain upper limit which we shall denote by E,.
This is in violent contradiction to the fact that
the parent nucleus before the emission of the
B-ray, and the product nucleus after the emission,
have quite exactly determined energies. This
follows for natural radioactive nuclei from the
fact that the a-particles emitted have definite
energies for each transformation. For the arti-
ficial radioactive nuclei the proof is even more
conclusive, since the masses of the radioactive
nucleus as well as of the product nucleus can be
determined with very great accuracy, by means
of the energy balance of nuclear transmutations
involving only heavy particles, or by mass-
spectrographic measurements.

We are thus confronted with the following situ-
ation: A parent nucleus which is in a quantized
state of definite energy, emits an electron and
leaves a residual product nucleus, again in a
quantized state of definite energy. However, the
energy of the emitted electron is not equal to the
difference AE between the energies of the nucleus
before and after emission, but may have any
amount between 0 and E,, the energy in each
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particular case being apparently determined by
chance.

There are only two ways of accounting for this
situation: either (a) we have to give up the con-
servation of energy for 8-disintegration or (b) we
have to assume that, simultaneously with the
electron, another particle is emitted which
ordinarily is not detected. Such an assumption
would immediately account for the experimental
facts: The total available energy AE will be
distributed among the electron and the second,
unobservable, particle (neutrino). The electron
would therefore only receive a part of AE which
will vary from case to case. The maximum
kinetic energy the electron may receive is

Ey=AE— (m+u)c?, (201)
where m and u are the masses of electron and
neutrino. E, will thus be the upper limit of the
B-spectrum.

It seems that the hypothesis (a) i.e., noncon-
servation of energy, should not be made if it can
possibly be avoided. Not only in classical physics
and in all branches of atomic physics has the
principle of conservation of energy proved
extremely successful, but also in the transmuta-
tions of nuclei it holds perfectly as long as only
heavy particles (of at least proton mass) are
involved. This success seems to justify the reten-
tion of the principle by all means.

Moreover, there seems to be direct experi-
mental proof against the nonconservation hy-
pothesis, at least if one accepts that energy is
conserved statistically, in the average over a
great number of B-processes. Such an assumption
seems necessary ; if it were not made, it would
be possible to construct a machine for perpetual
motion, either using B-processes or their inverse.
Assuming now statistical conservation of energy,
we have

E=AE—me, (201a)
E being the average kinetic energy of the B-par-
ticles. This equation is contradicted by experi-
ments, most violently for the artificial radio-
active nuclei Li® and B (C14, 15, 16).

The nucleus Li® disintegrates into Be3+ €™,
the B-particles having an average energy (C16)

(201b)

ELi=3.8MV.
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The difference between the masses of Li® and
Be8 can be derived from the data

Li+H2=Lis+H!+Q, (201c)
Li"+H!'=2Het+17.2 MV,  (201d)
Be®=2He*+0.3 MV, (201e)

H?=2H'-1.2 MV. (201f)

The first transmutation is the one used to produce
the radioactive Li®. The energy Q evolved in it is
not known with any certainty. However, it is
known that ordinary lithium (mixture of Li® and
Li?) bombarded by deuterons yields one and
only one proton group of a range of about 30 cm,
corresponding to an energy evolution around
5 MV. This group has been attributed to the
reaction

Lis4+H?=Li"+H! (201g)

since at the time the .existence of Li® was not
suspected, and since the separated isotope Li®
showed the group. However, no search for the
proton group was made with pure Li7 as target.
Therefore we consider it most plausible that both
isotopes Li® and Li7 contribute to the group, the
energies evolved in the two reactions being
accidentally the same. In any case, it is abso-
lutely certain that the energy evolved in (201c)
is mot more than 5 MV, it might be equal to that
figure or less.—The energy evolved in (201d) is
very accurately measured ; the difference of the
energies of Be® and 2a-particles is deduced from
the transformation of B by protons and is
certainly accurate to 0.5 MV, the difference
between the deuteron and two protons is based
on the mass spectrographic determination of
Bainbridge and also certainly correct to =40.5
MV. Thus we find

AE=17.2—03—-1.2—0> 10.7 MV. (201h)

This is more than 6 MV greater than the average
energy of the B-particles emitted by Li® which is
irreconcilable with the assumption of statistical
conservation of energy in @-disintegration.

On the other hand, the figure in (201h) agrees
perfectly with the upper limit of the g-spectrum
emitted by Li® which is

Ey=10.5 MV. (201i)
Therefore Eq. (201) holds, which gives strong
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support to the neutrino hypothesis, designated
as alternative (b) above.

The evidence from B!? (C15) is similar: B'? is
formed in the reaction

BU4H?=B24H. (202)

From the bombardment of boron by deuterons
several proton groups arise, the longest having a
range of 92 cm. This bombardment may, besides
(202), lead to the reaction

B4 H?=Bu4H! (202a)

The decision between (202) and (202a) is possible
by observing the number of the protons of each
group and the number of the B-particles emitted
by B It is found that the B-particles are much
more numerous (20 times) than the protons in
any group of range longer than 10 cm. Therefrom
it follows that the energy evolved in (202) is less
than 2.5 MV. With the masses B"=11.0111,
H2=2.0142, H'=1.0081, we have thus

B2 11.0111+42.0142 —1.0081
—0.0027=12.0145 (202b)

and, with the mass 12.0037 for C2, we find
AE—mc?2 0.0108 mass unit=10.1 MV. (202c)

This is to be compared to the observed average
energy of the B-particles

E=4MV (202d)
and to the maximum energy
E,=11.5 MV. (202e)

Again, the experiments definitely contradict the
assumption of only statistical conservation of
energy, and are in good agreement with the
neutrino hypothesis.

Further examples are the artificial radioactive
nuclei F'7, P, etc. We can thus say that the
proof against the only statistical conservation
of energy is conclusive, and that the idea of non-
conservation of energy has to be abandoned
altogether, in favor of the neutrino hypothesis.

Further support for the neutrino hypothesis is
derived from the difficulty about the statistics
and the spin of nuclei (1 and 2, §38). The
assumption that only neutrons and protons are
present in nuclei, solves this difficulty for sta-
tionary states of nuclei. However, there remains
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a difficulty for the B-transformation. For the
atomic weight of the nucleus remains unchanged
in the B-transformation, therefore its statistics
does not change and its spin remains integer
(half-integer) if it was integer (half-integer)
before. On the other hand, the emitted electron
has Fermi statistics and spin }: Consequently,
the total spin of the system cannot be conserved
in the B-disintegration, being, for a nucleus of
even weight, integral for the parent nucleus, and
half-integral for the product nucleus and the
electron together. Such a nonconservation of
total spin, and a similar nonconservation of the
statistics of the system, is almost as bad a con-
tradiction against very well-established laws of
nature as the nonconservation of energy would
be. Therefore we are again forced to assume the
emission of a second particle (neutrino) in the
B-disintegration. Doing this, the difficulty is
removed if we assume the neutrino to have the
spin 3% and Fermi statistics, as every other
elementary particle (electron, positron, proton,
neutron). Then the resultant of the spins of
electron and neutrino is integral (1 or 0), and the
resultant of the spins of all particles left after the
B-disintegration, viz., product nucleus, electron
and neutrino, is integral or half-integral accord-
ing to whether the parent nucleus has integral
or half-integral spin which allows the total
angular momentum to be conserved. Similarly,
the statistics remains conserved because now the
total number of particles (protons and neutrons
in the nucleus, electron and neutrino) increases
by 2 in the B-transformation which leaves the
statistics of the system unchanged (§4).

A further point to support the neutrino
hypothesis is the success of the theory of the
B-decay, especially as regards the energy dis-
tribution of the electrons (K85, and §40), and the
dependence of the lifetime on the maximum
energy (§41).

There is thus considerable evidence for the
neutrino hypothesis. Unfortunately, all this
evidence is indirect; and more unfortunately,
there seems at present to be no way of getting
any direct evidence. At least, it seems practically
impossible to detect neutrinos in the free state,
i.e., after they have been emitted by the radio-
active atom. There is only one process which
neutrinos can certainly cause. That is the inverse
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B-process, consisting of the capture of a neutrino
by a nucleus together with the emission of an
electron (or positron). This process is, however,
so extremely rare (§42) that a neutrino has to go,
in the average, through 10'® km of solid matter
before it causes such a process. The present
methods of detection must be improved at
least by a factor 10% in sensitivity before such
a process could be detected.

Whether there are other processes by which a
free neutrino may be detected, depends entirely
on its properties. We know for certain that the
neutrino has no charge, because the charge of the
electron alone accounts for the change of the
charge of the radioactive nucleus in B-emission
(increase by one unit). The absence of charge
precludes any strong ionization due to neutrinos.
However, it is theoretically quite conceivable
that the neutrino might have a magnetic moment
associated with its spin. The ionization due to
such a magnetic moment has been calculated
(B14) and was found to be about 100%? ions per
km path in air, #» being the magnetic moment
expressed in Bohr magnetons. Nahmias (N1)
has searched for ionization produced by neu-
trinos, using strong radioactive sources shielded
by large amounts (about 1 meter) of Pb in order
to absorb -, 8- and y-rays and leave only the
neutrinos. No ionization was found larger than
the fluctuations of the ionization due to cosmic
rays, in spite of the latter’s intensity having been
cut down by performing the experiment in an
underground railway of London. The evaluation
shows that neutrinos cannot form more than 1
ion in about 500,000 km path in air, which
means that their magnetic moment, if any, must
be smaller than 1/7000 Bohr magneton. It seems
therefore probable that the neutrino does not
have any magnetic moment at all. This makes it
futile to search for ionization produced by neu-
trinos.

Therefore the only hope of getting more direct
evidence for the neutrino is from the radioactive
decay itself. The recoil of the product nucleus,
which can be observed in principle, will decide
definitely between the hypothesis of noncon-
servation of energy and the neutrino hypothesis.
According to the neutrino hypothesis, the mo-
mentum of the recoil nucleus should be equal and
opposite to the resultant of the momenta of the
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electron and the neutrino. Therefore, if the
momentum of the recoil nucleus and the emitted
electron can be observed simultaneously as to
magnitude and relative direction, the momentum
of the neutrino can be inferred. On the other
hand, the energy of the neutrino is directly given
as the difference between the upper limit of the
B-spectrum and the energy of the p-particle
actually observed in a particular experiment.
Now the neutrino momentum p and its kinetic
energy E must be related by an equation of the
form

(E+uc?)?=pc?+puict, (203)

u being the neutrino mass. All observations must
be representable by the same value of p—a
severe test to the neutrino hypothesis if the
experiments can be performed. It is seen that
such experiments would lead to a direct deter-
mination of the neutrino mass as well as to a
more direct proof for its existence.

The difficulty of the experiments lies in the
smallness of the kinetic energy of the recoil
nucleus. If we assume that all the energy avail-
able (E,) is given to the electron, the recoil
energy of a nucleus of mass M is easily found to
be

Er = Eo(Eo+ 21%62)/211162

=540E¢™ (E+1)/A4 volts, (203a)

where E¢" is the upper limit of the 8-spectrum
in MV, and 4 the atomic weight of the radio-
active nucleus. For Ey=2 MV, which is about
average for artificial radioactive nuclei, and
A =20, we have E,=160 volts. The most favor-
able case would be Li8, with E¢=10.5 MV, 4 =8
and therefore E,=8000 volts; unfortunately,
this element has a very short life (} sec.).

The present evidence about neutrinos can be
summarized as follows:

No charge .

Very small mass, probably zero, at least small compared to
electron mass (from g-spectra, §40)

Spin 3k

Fermi statistics

Magnetic moment less than 1/7000 Bohr magneton, if any

No detectable effects in free state

In concluding this section, a word must be
said about antineutrinos. It seems probable that
neutrinos obey a wave equation similar to the
Dirac equation, only the charge (and possibly
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also the mass) being zero. This wave equation
will allow solutions with both positive and nega-
tive energy. Just as in the case of electrons, it
must be assumed that all states of negative
energy are ordinarily filled, in order to avoid the
serious difficulties connected with the possibility
of transitions from positive to negative energy.
A state of negative energy which happens to be
empty, is equivalent to a particle analogous to
the positron. This particle is called an anti-
neutrino. Since the neutrino has no charge and
probably no magnetic moment, the antineutrino
cannot be distinguished from the neutrino in any
way. There is thus no need of distinguishing
neutrinos and antineutrinos, except for the
mathematical formalism.

§40. THEORY OF B-DISINTEGRATION

If a nucleus emits a B-particle, its charge in-
creases by one unit while its weight remains
unchanged. In other words, the number of
protons in the nucleus increases by one, while
the number of neutrons decreases by one. Thus
the B-transformation can be considered as con-
sisting of the transformation of one neutron into
one proton, one electron and one neutrino:

n—H' -+ e +n. (204)

Similarly, a radioactive process in which a
positron is emitted, is to be considered as

Himsnl+ et 0. (204a)

It need hardly be mentioned after the discussions
of §38 that the neutron should not be considered
as composed of a proton, an electron and a neutrino,
but is only able of transforming into these three
particles, and similarly for the proton.

The problem of the theory of B-disintegration
is to calculate the probability of the processes
(204), (204a). Of course, this cannot be done on
the grounds of any existing theory, butan entirely
new ‘“‘force’’ has to be introduced which produces
just the transitions (204), (204a), i.e., which
converts a neutron into a proton (or vice versa)
and at the same time produces a (negative or
positive) electron and a neutrino. Such a force
has been introduced by Fermi (F7), using the
analogy to the emission of light discussed at the
end of §38.
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The probability that a charged particle emits light and
at the same time goes over from the state 7 to the state #,
is given by the well-known formula (relativistic theory)

w=C| fu*OAE) @un©)dr |2, (205)

where %, and u, are the wave functions of the particle,
« the Dirac operator, C a certain constant and A(r) the
vector potential of a light wave of the correct frequency
(E,.— E.)/h and unit intensity, at the place of the charged
particle. (205) can also be expressed by saying that there
is a certain term in the Hamiltonian of the charged particle
which corresponds to the spontaneous emission of radiation
and which has the form

H=CA(r)-«, (205a)

where the transitions of the particle under the influence of
this Hamiltonian have to be calculated according to the
ordinary methods of the perturbation theory. The vector
potential A may be regarded as a sort of wave function of
the emitted light quantum : Thus in the Hamiltonian there
appears the wave function of the emitted particle at the
place of the emitting particle.

It is reasonable to assume a similar expression
for the interaction between a heavy particle, an
electron and a neutrino. There are only two dif-
ferences. Firstly, two particles are produced
rather than one, therefore both the wave func-
tions of electron and neutrino have to appear in
the Hamiltonian. Secondly, the emission of the
two particles changes the character of the heavy
particle, converting a neutron into a proton and
vice versa. Let us introduce an operator Q which
corresponds to the conversion of a neutron into
a proton, and Q* corresponding to the opposite
conversion. Then a plausible expression for the
Hamiltonian of B-emission would be

H=g(y*¢*Q+¥¢0%),

where ¢ is the wave function of the electron, ¢
that of the neutrino, both taken at the place of
the heavy particle. The first term corresponds
to the creation of an electron and a neutrino,
together with the conversion of a neutron into a
proton, the second term to the absorption of an
electron and a neutrino, or the emission of a
positron and an antineutrino, together with the
conversion of a proton into a neutron. g is a
constant to be derived from experiment.

The mathematical treatment is simplified, and
the physical ideas and results not changed (K5)
if we let one particle be created and one absorbed
in each process, rather than two created or two
absorbed. This can be done by assuming that the

(206)
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emission of a negative electron is associated with
that of an antineutrino (or with the absorption
of a neutrino), while the emission of a positron
(or absorption of an electron) is accompanied by
the emission of a neutrino. This is equivalent to
our previous assumptions, because of the equiv-
alence of neutrino and antineutrino. The Hamil-
tonian (206) is then to be replaced by

H=g(¥*oQ+¢e*Q*). (206a)

The probability of a g-transformation is given
by the ordinary nonstationary perturbation
theory. If u, and u, are the eigenfunctions of the
heavy particle before and after emission, and
G.G, the number of states of electron and
neutrino per unit energy interval, the probability
of a B-emission in which the electron receives an
energy between E and E+dE, is per unit time:

w=(27/k)g*| Sdru.*(r)un(D)P*(r) o(r) |2

XG,GdE. (206b)

Thus far, we have not considered relativity.
The introduction of relativistic wave functions
for the light particles is absolutely essential
because their energies are much larger than their
‘“rest” energy, mass-c®. The introduction of
relativity for the heavy particles would not be
necessary, except for the calculation of forbidden
transitions (§§41 to 43) and for symmetry.

To set up the relativistic analog to (206b), we start
from the requirement that the integrand in (206b) is
relativistically invariant (F8, K5). From two functions y
and ¢, we may build up five quantities, which behave
under Lorentz transformations, respectively, like a scalar,
a vector, a tensor, a pseudovector and a pseudoscalar,” viz.,

Scalar: i(yte) = (¥*Be), (207a)
Four vector:
. i(Yrap) (space components),
—i(ytye) = {(‘l/*w) (time component), (207b)
Tensor:
(Y*Boe) (if 1and k=1, 2, 3),
Wryivee) = {(nﬁ*ﬂaqz) (if either i or k=4), (207¢c)
Pseudovector :
(y*@p) (‘‘space” components,
i=4, kl=1, 2, 3),
Whrivime) = i(W*vee) (“time” component, (207d)
L ikl=1, 2, 3),
Pseudoscalar: (¥1yivivsvae) = (¥*Bvse). (207e)

" Pauli, Handbuch der Physik, Vol. 24/1, p. 220, etc.
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Here @ = (az, ay, a.) and B are the ordinary Dirac matrices,
% is the ‘“‘matrix vector’” with the components

for k=1,2,3, vy4=-—8.

@ is the Pauli spin operator, viz.,

(207f)

Yi=—ifa

1= —ia;ax, where the indices 7k! follow cyclically
upon each other, each being one of the (207g)
numbers 1, 2, 3

¢t is the “‘conjugate’ to the Dirac wave function, iz.,
yt=—iy*8 (207h)
VE=Y172Y3V4. (2071)

The factors 7 and —¢ on the left-hand sides of (207a)
to (207e) are chosen so as to make the main components
on the right-hand side real.

Five quantities analogous to (207a) to (207e) can be
formed from the wave functions of the heavy particles
Umtn. Multiplying any of the quantities (207a) to (207e)
with the corresponding quantity formed from #mu., we
obtain an invariant. Thus we have five different possi-
bilities to replace the integrand in (206b) in relativity
theory:

and finally

Scalar: (ua*Bun) (V*Be), (2082)
Vector: (n*um) (Y* @) = (un*aun) - (V*ag),  (208b)
Tensor : (un*Boun)- (V*Boe)
+ (un*Baeun) - (V*Bay), (208c)
Pseudovector: (u,*0un)- (y*ae)
— (wa*ystm) (V*vse), (208d)
Pseudoscalar: (un*Bystm) (¥*Bvse). (208e)

Fermi chose originally an expression similar to (208b).
From the standpoint of the general theory of nuclear
forces, the ‘‘tensor’” or the ‘‘pseudovector’” expression
(208c), (208d) are preferable (§44). (The dot means scalar
product.)

For the heavy particles, the operator 8 practically does
not change the wave functions, the operator @ acts on the
spin part of the wave function but leaves the order of
magnitude practically unchanged, while {(#.*au,) and
(4n*ysuun) are small compared to (#.*un), viz., of the
relative order v/c where v is the velocity of the heavy
particles.® Therefore the second terms in (208b, ¢, d) can
practically be neglected (except for forbidden transitions,
§§41 to 43). This makes the results from expressions (208a)
and (208b), and from (208c) and (208d), very nearly
identical.

The energy distribution of the B-particles can
easily be calculated from (206b) after a definite
one of the expressions (208a) to (208e) has been
chosen to replace the integrand in (206b). One
must simply insert a plane wave for the neutrino
wave function, while the electron wave function
¥ is to be taken in the Coulomb field of the dis-

8 Cf., Handbuch der Physik, Vol. 24/1, p. 301, etc.
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integrated nucleus. For light nuclei, it is allow-
able to neglect the effect of the Coulomb field and
thus to replace the electron wave functions by
plane waves as well. Since the wave-lengths
of electron and neutrinoare large compared to the
nuclear radius for all known g-transformations, ¢
and ¢ may be regarded as constant and taken
outside the integral. With these approximations,
the energy distribution of the B-particles turns
out almost identical whichever of the expressions
(208a) to (208e) is accepted. The result for w is

1 mc? g )2 E, p.
wW=——f — —_
2%k \mc(h/mc)?) mc?mc
E. pn dE
X—— —|G|?, (209)
mc? mc mc?

where E E.p.p, are energy and momentum of
electron and neutrino. (The energies are supposed
to include the terms mc® and uc?, resp.) G is the
matrix element

G= Sdrup*tm
G= Sdru,*oun

for (208a) or (208b),
for (208c) or (208d).

(209a)
(209d)

A small term of the relative order mc*uc?/EE.
has been neglected in (209).

From the shape of the B-spectrum near the
maximum energy of the electrons, the mass of
the neutrino can be deduced (F8). The experi-
mental evidence points to a mass very small
compared to the electron mass, probably zero.
This conclusion is reached as follows: If E, is
near its upper limit E,, the factors E. and p. in
(209) may be regarded as constant. If the neu-
trino mass is not zero, E, may also be considered
constant, viz., equal to uc?, aslong as Eq— E <K puc?.
Under the same condition, we may insert for p,
the nonrelativistic expression p, = (2u)}(E, — pc?)}
= (2u)}(E¢— E.)}. Thus at the upper limit of the
energy spectrum (209) would go to zero as
(Eo—E.)}, i.e., with vertical tangent. Actually, the
observations show that the number of g-particles
per unit energy goes to zero with horizontal
tangent near the upper limit of the B-spectrum.
This can only be understood if u is assumed to
be zero: Then E,=cp.=E,—E. and (209)
becomes proportional to (Eq— E.)? if the electron
energy E. is near the upper limit E,. A very
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small mass of the neutrino, up to about % of the
electron mass, would however seem tolerable in
the light of the present evidence.

In the following, we shall put the neutrino
mass equal to zero. Then (209) can be written

mc? (gmzc
200\ B

with the abbreviations

) |G| 2%(e2—1)}(ep—€)?de (210)

=E./mc, e=E)/mc. (210a)
If €21, which is the case for many of the radio-
active substances, the 1 in (¢—1)} may be
neglected compared to e over the larger part of
the energy spectrum. Then w becomes propor-
tional to €(ep— €)?, i.e., there is a maximum of the
probability for equal distribution of the energy
among electron and neutrino (e=3¢) and the
distribution is symmetrical with respect to the
two particles (PS5). This is in contradiction to
experiments: It is found generally that the
electron receives, in the average, much less than
half the maximum energy E, In other words,
the neutrino energy is in the average larger than
the electron energy.®

This shows that the theory in the form hitherto
used does not account for the experimental facts.
It is necessary to correct it in such a way that the
emission of neutrinos of high energy becomes
theoretically more probable. This has been done
by Konopinski and Uhlenbeck (KS5), by intro-
ducing the derivative of the neutrino wave
function with respect to time instead of the wave
function itself. There are three possible expres-
sions involving the first derivative of ¢ which
correspond to the expressions (208b, ¢, d), viz.,

Vector: (#n*unm)($*B¢/dt)

—c(un*au,)(Y*p grad ¢), (211b)
Tensor: (u,*Bou,)- (Y*[aXgrad ¢J)
+ (U, *Bau,) (Y*a(de/cot) —¢* grad ¢), (211c)

81 This is true of the light radioactive nuclei as well as
of the heavy ones. The discrepancy can therefore not be
attributed to the neglection of the electrostatic action of
the nucleus on the electrons.
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Pseudovector:
(un*oun) - (W*8{LaXgrad p]—io(dp/cdt)})
i(untysun) (W*B(o grad ). (211d)

(211b) is the expression chosen by Uhlenbeck,
while a linear combination of (211b) and (211c)
or (211d) must be taken if one wants to connect
B-emission and general nuclear forces (§44).
Making the same assumptions as when deriving
(209), viz., small nuclear charge and zero neutrino
mass, we obtain from (211)

) | G |%e(e2— 1) ¥(eg— €)*de,

21r3h mcz(ﬁ/mc
(212)

where G has the same meaning as in (209a) if the
expression (211b) is chosen, while it is (%)} and
(5)* times (209b), respectively, if (211c) or
(211d) is accepted for the interaction between
heavy particle, electron and neutrino. (212)
differs from (210) by containing the fourth power
of the neutrino energy e,—e, rather than the
second. This difference arises from the derivatives
contained in (211): Since d¢/dt= —1iE,¢/h, the
introduction of the derivative introduces a factor
E, in the integral in (206b), and therefore a
factor E,*=(E,—E.)? in the transition proba-
bility w. This additional factor (Ey—E,)? is just
what is required to bring about agreement with
the experimental energy distribution in B-spectra :
The factor makes for an increase in the proba-
bility of emission of slow electrons and fast
neutrinos, compared to that of fast electrons and
slow neutrinos. The most probable electron
energy is shifted to 3E, for large E,.

A more quantitative comparison between
formula (212) and the experimental energy dis-
tributions for all well-investigated B-spectra, has
been carried out by Konopinski and Uhlenbeck
(KS5). The result is very satisfactory. Moreover,
the total disintegration probability (integral of
(212) over €), i.e., the reciprocal lifetime of the
radioactive nucleus, is also well represented by
(212) in its dependence on the maximum energy
(§41). It seems therefore that one of the ex-
pressions (211) must be very nearly correct. We
shall therefore accept the Konopinski-Uhlenbeck
theory as the basis of our future discussions.
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§41. LIFETIME vs. MAXIMUM ENERGY IN
B-DisiNTEGRATION (F8, S1, K16)

The total probability of B-decay can be
obtained easily by integrating (212) over all
electron energies from e=1 to ¢= €. The result is

(log 2)/r=f0’wde=|G|2f(eo)/ro, (213)

where 7 is the half-life of the B-disintegrating
nucleus,

To=(273%/mc?) (mc?)2(h/mc)8g~2 (213a)

is a time characteristic for g-decay, G is the
matrix element referring to the transition of the
heavy particles (cf. 209a, b), and

1 2 247 8
e = (e~ 0 ettt =)
105 21 420 105

+3eo(eo®+3) log (eo+ (a2 —1)}) » (213b)

is a function of the upper limit Eo=mc2¢ of the
B-spectrum. If the kinetic energy of the g-
particles is small, i.e., if e,c—1 is small compared
to unity, (213b) can conveniently be expanded in
powers of e,—1, with the result

F(eo) =(256/5-7-9-11)VZ(eg— 1)
+0(ea— 1),

The lifetime 7 of B-disintegrating nuclei is,
according to (213), inversely proportional to
f(eo), and therefore decreases rapidly with in-
creasing kinetic energy of the gB-particles. For
small kinetic energy, r» (eo— 1)~ (cf. 213c), for
large kinetic energy, 7 e~7 (cf. 213b). This
behavior agrees, qualitatively and quantitatively,
with experiment. This can be seen from Table
XV, in which the product f(eo)7 is listed for a
number of radioactive nuclei, for which the upper
limit of the B-spectrum ¢, is well known.® Now
according to (213),

7f(e0) =70 log 2|G| 2. (213d)

Here 7o is a universal constant. The matrix
element G will be nearly unity if the neutron
before the disintegration is in almost the same

(213c)

82 A very useful method for determining this upper limit
has been suggested by Kurie, Richardson and Paxton (K16).
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state as the proton after the disintegration. This
will be true at least for a large number of light
radioactive nuclei. If there is considerable differ-
ence between the states of neutron and proton, G
will be smaller than unity. G may even vanish, in
this case we have a ‘“forbidden transition’ which
will be discussed below.

Since we expect the matrix element G to be
nearly unity for a considerable number of
radioactive nuclei, the product 7f should have
approximately the same value for all these
nuclei. This is actually true for the first group of
nuclei in Table XV (group 04), for all of which
7f has a value between 0.4:10° and 3-10% in
spite of considerable differences between the
lifetimes 7 of the various nuclei. Absolute agree-
ment of the values 7f is of course not to be
expected because of the differences in the matrix
element G. However, the agreement is good
enough to allow the determination of a rough
value of the universal constant 7,. This constant
must lie at least in the neighborhood of

70=0.7-10° sec., (214)

i.e., approximately one day. Using this value,
and the value of the ‘“‘characteristic electronic
time"

h/mc*=1.3-1072! sec. (214a)

we find from (213a) for the constant g of the
B-decay

g=1.1-10"8mc*(h/mc)* (214b)
=6.5- 10~ Mc2(h/ M)t (214¢)
=1.9-10"% erg cm*. (214d)

Corresponding to the fact that the lifetime of
B-disintegrating nuclei (order of some seconds) is
extremely long compared to nuclear times
(~10"2 sec.), the constant g turns out to be
extremely small if mc? and %/mc are chosen as
the unit of energy and length, respectively
(cf. 214b). Since the B-decay is a property of
heavy particles, it may seem more appropriate
to choose Mc? and %/Mc as units: In these units,
g is about 1/150. The smallness of g causes some
difficulties if one tries to connect the neutron-
proton forces and the B-decay (§44).

Formula (213), (213b) is only true for light
nuclei for which the influence of the nuclear field
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on the wave function of the B-particle may be
neglected. For heavy nuclei the wave functions
of the electron in the Coulomb field must be
used. Then (212) must be replaced by (cf. KS5)

mc? g2

de= —_—
273k (mc?)?(h/mc)?
Xe(e2—1)¥(eg—e)temre—n73

X | T(s+ive(e—1)=1) /T(2s+1) |2

IG|*

X (2pR/h)*~de, (215)
where
v=2Z/137, s=(1—-994,
p=electron momentum, (215a)
R=nuclear radius, I'=TI-function.
(215) may be approximated as follows
2 €
wde= . ZTYG(Eo—é)m
Rme\ 26=0 4
X[e(1+47?) —1]¢ 1(—}}—) o (215b)

The expression e-2m<¢~D7"} may be neglected,
even for very high energy and medium large
nuclear charge. The main differences between
(212) and (215b) are: (1) an additional factor
27y, which, for Z=88 (radium), is equal to 4,
and (2) the four last factors in (215b) which
stand instead of (e&—1)}, giving, for Z=88,
R=9-10" and e=3, an increase by a factor 6.
The first factor would be present in non-
relativistic wave mechanics as well; it is due to
the influence of the Coulomb field which in-
creases the probability of the electron being near
the nucleus. The other factors are characteristic
of the relativistic wave mechanics. Both (1) and
(2) tend to increase the probability of B-dis-
integration for heavy nuclei, altogether by a
factor of about 24. The lifetime of a heavy
B-radioactive nucleus should therefore be con-
siderably shorter than that of a light radioactive
nucleus, if the upper limit of the B-spectrum is the
same-in both cases.®

8 It is therefore not correct to plot lifetimes vs. energy in
the same diagram for heavy and light nuclei (Sargent
curves). If heavy and light radioactive nuclei are to be

compared, the factors due to the Coulomb field and to rela-
tivity have to be taken into account.
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From (215b), the reciprocal half-life may
easily be found by integrating over e. The square
bracket may be regarded as constant for this
purpose. We find a formula of the type (213),
with

Rm‘:) 2(s—1)

2
Foleo) =2my[(1+47%) — 1]"“(_ h
5 &

4 1 1 1 1
X |:—-——€07—‘ (—605——603+—60) ]. (216)
(2sH2105 5 3 7

Here ¢ is a suitably chosen average energy of the
electrons. The dependence on . the maximum
energy is mainly contained in the last bracket;
in this bracket the first term is much larger than
the others unless ¢ is very small. For large
energies ¢ the dependence on energy is the same
for light (cf. 213b) and heavy nuclei (216).

The values of 7f(eo) for some heavy radioactive
nuclei are tabulated in Table XV under 0B.
While they agree fairly well among themselves,
they are appreciably higher than the values for
light nuclei (group 04 in table). This may
indicate that the matrix elements G for heavy
nuclei are in the average smaller than for light
ones, which would be quite plausible because
neutron and proton wave functions are certainly
very different in heavy, and very similar in light
nuclei. Probably, a B-disintegration of a heavy
nucleus is always connected with a complete
rearrangement, which should reduce the value of
G. (Changes in the fundamental expression for
the B-disintegration do not affect the ratio of the
disintegration probability of light and heavy
nuclei appreciably.)

We shall now discuss the forbidden transitions.
We call a g-disintegration forbidden if the matrix
element G vanishes for the transition. The most
common cause for this will be a change of the
total angular momentum I of the nucleus. We
may distinguish forbidden transitions of the
first, second, third . . . kind according to changes
of I by L=1, 2, 3---. The ‘“forbidden” transi-
tions will, of course, not be completely forbidden
but will only be much less probable than the
“allowed” transitions with L=0.

In order to calculate the probability of for-
bidden transitions, we must not make certain
approximations which we made thus far (cf.
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paragraph above 209). The dependence of the
electron and neutrino wave function on the
coordinates inside the nucleus, and the ‘‘small”
second term in the fundamental expression
(211b) for the interaction, must be taken into
account. The small term in the interaction does
in no case yield a bigger transition probability
than the large term, and can therefore be
neglected even now, provided we want only to
know the order of magnitude of the effects.

If the nuclear moment changes by L, the product of
the eigenfunctions #, and ., will contain a spherical
harmonic of order L, besides a factor depending on the
radius 7. The transition probability will then depend on the
integral (cf. (211b), d¢/dt=—iEq¢/h=const- ¢)

S PLOF@O0*0)—p*(r0) Je-iEnathedr,  (217)

where F(r)PL(6) represents the product un*u,, the expo-
nential is the neutrino wave function, and ¢, and y; are
the first and third Dirac component of the electron wave
function.’® The direction of motion of the neutrino is
assumed parallel to 2, and without loss of generality z may
be chosen as axis of the polar coordinate system, so that
z=r cos 6. The exponential in (217) may be expanded;
any term in the expansion is much smaller than the
preceding, the ratio being about E,R/k¢ (R=nuclear
radius), i.e., about 1/20 for neutrino energies of about 1 MV.
The nth term in the expansion contains a factor (cos 6)".
Of the electron wave functions ¥, and y;, one contains a
spherical harmonic P(6), the other Py_;(8) if k—} =j is the
* There may be terms containing higher spherical har-
monics, but their contribution to the transition probability
is negligible.
. % The neutrino spin has been assumed parallel to z. If it

is opposite, ¥, and ¥4 appear instead of ¥ 1. This does not
change the result.
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angular momentum of the electron. The function containing
P is somewhat smaller than the other, but only by a factor
of the order. v, i.e., about 1/2 for heavy nuclei and still
1/7 for a nucleus as light as K.

In order that (217) does not vanish we must take such a
term in the expansion of the neutrino wave function that
its product with y¥; or s contains (cos 6)%, For this
purpose, we have to take the L—kth term, multiplied by
the smaller electron function, or the L—k+1st term,
multiplied by the larger electron function. According to
the foregoing, the former choice will give much the larger
contribution to the integral. The contribution from
different values of & is about the same, that from k=1
(s and py electrons) being possibly slightly larger than
that from higher values of £(2, 3, - - -, L). The contribution
of k=1 to the transition probability will therefore be of
the same order as the total transition probability.®¢ The
lifetime in the case of forbidden transitions then becomes
again of the form (213), but now with f(e) being re-
placed by

CcR)\ 2L—4+28
fL(éo)‘F“/a “‘*“(mh )

L 1
>((2L+3)(2L+4)(2L+5). 12.32.52.. .. (2L—1)?

=L@l 471~ 13

¢ 218
X st (218)

and G being replaced by
GL= f Un*tn Y120 (r/R)2dr, (218a)

where Vs is a spherical harmonic and M is the difference
between the magnetic quantum numbers of the stateS u,,
and #,. G1, will again be of the order of magnitude unity,
but rather smaller.

8 The addition of the contributions of higher £’s will
increase the transmon probabxhty, the consideration of
the second term in the interaction expression (211b) will
decrease it somewhat. The result seems to be about within
a factor 2 equal to (218).

TABLE XV. Lifetimes of B-radioactive nuclei.*

NucLEys 7(sec.) e—1 fleg) 7f(ep) NucLEus T @—1 S(eg) 7f(ep)
Grour 0A Group 1A
Cn 1200 2.5 30 0.4-105 | Li® 1/2 21.8 3-107 1.5-107
N 660 2.83 60 0.4-105 | B2 1/50 25.8 12-107 0.6-107
(023 150 3.9 450 0.7-105 | N 9 (13) 108 0.9-107
Fv 70 4.9 1900 1.3-105 | F2 40 (10) 2-10° 0.8-107
Si?? 150 3.9 450 0.7-10° | Na2 1.5-107 (1.2) 0.4 0.6-107
Mg? 620 3.9) 450 2.8-105 | Na* 54000 4.1 600 3.4-107
Al 180 7.8 3.6-10¢ 0.7-107
Grour 0B fo fo pa 195 9.6 1.3-108 2.5-107
UX, 94 5.5 19700 18-105 | Sist 9600 4.1 600 0.6-107
Ra B 2300 2.27 219 5-105 | CI38 2200 12.5 10¢ 2.2-107
Th B 55000 1.70 1.1 6-108 | Ko 4850 9.0 108 4.5-107
Th C” 275 4.5 5700 16-108
AcC” 410 3.73 1410 6-105 | Grour 1B To fo
Ra C 1700 7.14 140000 2.4-108
GROUP 2 or HIGHER Ra E 6-10° 3.38 650 4-10°
1.3-108 4. 600 0.8-10° | ThC 8500 5.29 18000 1.5-108
K“‘ 3-101 1. 1.0 3-10% | MsTh, 32000 6.21 55000 1.7-10°

*Data on maximum energy mostly from Kurie, Richardson and Paxton (K16) and from Fowler, Delsasso and Lauritsen (F15).
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Comparing (218) to (216), we find
,yz EOR 2L—2
pute/ st =o(==)
9\ %c

7:6-5
X .
(2L+5)(2L+4)(2L+3) 12-32.52% « .. (2L —1)?

(218b)

Thus the probabilities of the first forbidden
(L=1) and the allowed transitions are in the
ratio 4%/9, which is about 1 : 40 for heavy nuclei
and considerably less for light nuclei. However,
for very light nuclei and high energy E, this does
not hold, the ratio being then (E.R/%c)? rather
than 42/9 whenever the first quantity is larger
than the second. Since the forbidden transitions
of the first order have, for light nuclei, been
observed mainly in cases of high maximum
energy E,, a ratio 1 : 100 is in the average to be
expected for the probabilities of first forbidden
and allowed transitions. In Table XV, we have
listed a number of nuclei for which the g-
disintegration is apparently of the first forbidden
type: Group 1A contains light nuclei, 1B heavy
nuclei of this type. For simplicity, we have again
calculated 7fo(eo) for each nucleus. Since actually
7f1(e0) should be equal to 7(log 2)|G|~2, we
expect 7fy to be about 100 times as large. Indeed,
the values of 7f, are about 100 times larger for
group 1 than for group 0. The difference between
heavy and light nuclei is again found for the
forbidden transitions.

The probability of forbidden transitions of
higher order decreases, according to (218b), by a
factor (EoR/kc)? per order. Besides, there is
another factor (last factor in (218b)) which also
decreases rapidly with increasing L. Thus the
lifetime for B-active nuclei becomes very long if
the B-disintegration corresponds to a forbidden
transition. There are three pB-disintegrations
known which have exceedingly long lifetimes:
K, Sr and Nd. The isotope concerned in the case
of K is probably K, according to a suggestion of
Klemperer (K4). The maximum energy of the
B-rays of K is about 0.7 MV = 1.4m?, the nuclear
radius is probably about 4.5-107% cm, therefore
EoR/kc=0.016. A change of the angular mo-
mentum by L =3 will be amply sufficient to account
for the observed lifetime. We have for L=3
from (218b)
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11 7-6-5 3
fo/fo=="—+0.0164 —————=4.10~12

9 72 11-10-9 32.5° (218c)
corresponding to a life 2.5-10' times longer than
for an allowed transition. Actually, the quantity
7f(eo) is only 3-10'° times larger for K than for
most allowed disintegrations. Thus the assump-
tion of a change of the nuclear moment by 3
units is more than sufficient to account for the
long life of K#°. Such a change seems likely from
general considerations (§34).

§42. THE INVERSE B-PROCESsEs: CAPTURE OF
ORBITAL ELECTRONS BY NUCLEI, Dis-
INTEGRATION OF NUCLEI BY ELEC-
TRONS AND NEUTRINOS

The following three “inversions” of the ordi-
nary B-process seem of interest

(1) The capture of an orbital electron of the atom by a
nucleus, with the emission of a neutrino.

(2) The capture of an incident free electron by a nucleus,
with the emission of a neutrino.

(3) The capture of an incident neutrino by a nucleus,
with the emission of a (positive or negative) electron.

Processes (1) and (2) lead to a decrease of the
nuclear charge by one unit, (3) to an increase, if
a negative, a decrease, if a positive electron is
emitted.

All three processes are, of course, only possible
if the necessary energy is available; e.g., the
condition for process (1) is, if the binding energy
of the orbital electron is neglected compared to
the nuclear energies:

ZA4e>(Z—1)4+n". (219)
Here Z4 denotes the mass of the original nucleus,
of charge Z and mass number 4, (Z—1)4 is the
mass of the product nucleus, ¢ that of the
captured electron and #° that of the emitted
neutrino. The condition is certainly fulfilled for
all positron-emitters; in fact, for these the more
stringent condition

ZAS(Z—1)A+eF+nd (219a)
must be fulfilled. However, the process of capture
of an electron is of no great interest for positron
emitters, because for these nuclei the emission of



§42

a positron will in general be much more probable
than the capture of an orbital electron.

There will, however, certainly be some nuclei
ZA for which (219) but not (219a) is fulfilled.
One of these nuclei is He?, provided the mass of
the neutrino is zero (or very small), as we have
assumed in §40. F'8 might be another, judging
from the general trend of the masses of analogous
nuclei in its neighborhood. Finally, it is probable
that In8, Sn!% and Te" (or perhaps one of
them) belong in this category, being isobaric
with the ‘“neighboring” nuclei Cd®, In'% and
Sb'%, respectively (cf. §43).

The probability of capture is, of course,
greatest for the K electrons, since they are most
frequently inside the nucleus. The probability
can easily be calculated from the general theory
of B-decay. It is a function of the kinetic energy
Ey=eymc? given to the neutrino in the process,
i.e., of the excess of the energy on the left-hand
side of (219) over than on the right-hand side.
The lifetime may again be expressed in the form
(213), with G having the form (213b) and (218a)
for allowed and forbidden transitions, respec-
tively, and with

2R\ 272 145
Sr(eo) =21r7“eo‘(—) —_— (220)
ax 2s!
for allowed transitions (L=0) and
21r €2(L —1+4€0)?
frt(e)=
ST .- (2L—1)2L
EoR\ 252 /2R 22 145
x( ) (——) —— (220a)
ke ax 2s!

for forbidden transitions in which the nuclear
moment changes by L. ax denotes the Bohr
radius of the K shell, for s see (215a).

For the nucleus He? we have y=2/137, and
therefore s ~1. Thus

fr=2-10"5(E,/mc?)* (221)
and, with G=1 and (213):
7=2.5-10%(mc?/E,)* sec.
=100(mc?/E,)* years. (221a)

The energy set free in the capture of an electron
by He? is equal to the difference of the masses of
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He® and H®. This difference seems to be some-
where in the neighborhood of 0.0002 mass unit
=0.4mc? (cf. chapter XVII, or §22). With this
value, He® would have a lifetime of about 5,000
years. This would mean that He® cannot be found
in nature since it would have decayed long ago;
but artificially produced He® would not change
over into H? in any time allowing easy obser-
vations. It is to be noted that the capture of an
electron by a nucleus is not observable as a
B-process but could only be deduced from the
fact that the product substance (in our case H?)
slowly accumulates in a material which originally
contained only the parent substance (He?).

For Z=150, i.e., in the region in which pairs of
neighboring isobars are found (§43), we have
¥=0.365,5=0.93,R=7-10"8cm, ax=1.05-10"1°
cm, and therefore

Fx0=0.62¢f, (222)

2L—2
) (222a)

(L—14€0)*
fxE=0.009€ (

12.32. ... (2L—1)2L
Therefore the lifetime becomes
7=0.8-105(mc?/Eo)* sec. = 1(mc?/E,)* days
for L=0, (222b)
7=0.15(mc?/E,)* years for L=1, (222c)
7=0.8-104(mc?/E)*[mc?/(Eo+mc?) ]? years

for L=2, (222d)
r=0.9-10°(mc2/Eo)*[mc?/(Eo+2mc?) ]? years
for L=3. (222)

The lifetime thus increases very rapidly with
increasing order of the forbidden transition, a
fact which is very important for the question of
stability of isobars (§43).

We shall now turn to the processes (2) and (3)
mentioned at the beginning of this section, i.e.,
the disintegration of nuclei by free electrons or
neutrinos. Both these processes are about equally
probable for equal energy of the incident particle,
because the B-theory is almost symmetrical in
electrons and neutrinos. Both processes are
exceedingly rare, because of the small value of
the characteristic constant g. Their probability
can be estimated very easily from the probability
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of capture of a B-particle: The probability of
“‘allowed’ capture processes is proportional to
the probability of the incident particle being at
the nucleus. For the capture from the K shell,
this probability is equal to the nuclear volume
divided by the volume of the K shell, which, for
small nuclear charge, is max®. For a free electron
moving through a material containing per cm®* N
atoms whose nuclei can be disintegrated, the
probability of being in the nucleus is the nuclear
volume divided by the volume per atom, the
latter being equal to 1/N. The ratio of the
probabilities is thus wNag® Since ax=*%4/mcy,
the function f(e) becomes for the capture of a
free electron by light nuclei (cf. 220)

foleq) = 22N (i /mc)Pedt. (223)

The time until a free electron is captured, is thus
(cf. 213) 7olog 2/|G|?*f.(eo). Assuming that the
electrons travel with the velocity of light, the
path traveled before causing a disintegration,
would be ¢ times the “lifetime,"” i.e.,

1 mc?\* ymcy\ 3
le=cto 1og2—-—————(———) (———) N1 (223a)
27| G|2\ E, h

For a solid material all of whose atoms may be
disintegrated by the electron, the number N may
be estimated as 6-10%. Putting G=1, we thus
obtain

1,=2-102(mc?/Eo)* cm. (223b)

Thus, even if the disintegration of the nuclei is
energetically possible and corresponds to an
“allowed” transition, and even if the energy E,
given to the neutrino is very big, the probability
of the process if entirely negligible. In other
words, the disintegration of nuclei by the capture
of free electrons and emission of neutrinos is
practically unobservable.8?

The probability of disintegration of nuclei by
free neutrinos is almost the same as that by

87 Electrons can, however, disintegrate nuclei by virtue
of their electric field. This process is analogous to the dis-
integration by vy-rays (cf. §16, and B17) and might be ob-
servable; the disintegrating electron is #ot captured in the
process.—The disintegration by capture of electrons may
also become observable if the expression for the probability
of B-disintegration is modified in such a way as is necessary
to explain tie nuclear forces (§44) and if at the same time
the energy of the incident electron and the emitted neutrino
are of the order 137 mc3.
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electrons. The path which a neutrino of energy
E, has to travel in a solid material containing
6-10% nuclei per cm?, is

by=2-102(mc?/ Eo)*(mc*/E)(mc/p) cm  (223c)

if E and p are energy and momentum of the
electron which would be emitted in the nuclear
disintegration, and if every nucleus in the
material can be disintegrated by the neutrinos
of the given energy. It is indeed very unfortunate
that the probability of the disintegration of
nuclei by neutrinos is so unobservably small,
because this disintegration is the only action of
free neutrinos which can be predicted with
certainty.

§43. STABILITY OF ISOBARS AND FORBIDDEN
B-PROCESSES

We have found in §10 that two nuclei of the
same mass number and nuclear charge differing
by one unit (neighboring isobars) cannot both be
stable. In fact, pairs of neighboring isobars
practically do not occur at all in nature. How-
ever, a few such pairs seem well established experi-
mentally. These are Cd'®® In!3; In!6 Sn!%; Sphi2s
Te!»; K4 Ca*; and Rb?7 Sr#”. All the isotopes in
the first three pairs have been confirmed recently
by Bainbridge®® using hydrogen-free sources,
thus excluding spurious ‘“isotopes” due to
hydrides. Other rare isotopes which would be
isobaric with ‘“‘neighboring” well-established
nuclei could not be confirmed by Bainbridge.
These are Cd"® (would be isobaric to In!'%),
Sni2(Sbi2t), Hgl®7(Aut®7), Hg0s(T12%), Pb2os(T]209),
Pb205(T1205), Pb209(Bi2®), Pb?¢ (this nucleus can
be said to be spurious almost with certainty,
because the radioactive element Ra D is identical
with Pb?!?, thus Pb?? cannot occur in nature as a
stable isotope). All these isotopes seem to be, at
least, much rarer than was originally claimed;
however, Bainbridge believes that his results
need rechecking in order to be sure that the
doubtful isotopes really do not exist.

The last two of the well-established pairs of
isobars do not enter our present discussion,
because K and Rb are known to be radio-
active. In the case of K, it seems highly probable

88 We are indebted to Dr. Bainbridge for communicating
his results to us before publication.
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that K is responsible for the radioactivity. In
fact, K was discovered by Nier (N3) after
Klemperer (K4) had given good reasons for its
being the radioactive isotope of K (cf. §33, 40).
In the case of Rb, it seems reasonable to assume
that Rb?# is the radioactive isotope, just because
it is isobaric with Sr¥”. This view is confirmed by
the fact that no other isotopes of Rb than Rb#?
and Rb?# could be detected (N4).

There remain three pairs of well-established
neighboring isobars, none of which shows any
observable B-activity. The number of these pairs
is very small indeed, compared to the number of
‘“‘allowed” isobaric pairs with nuclear charges
differing by two units, which is over 50 (cf.
Table I). However, the fact that three ‘‘for-
bidden” pairs of isobars exist, is significant
enough and must be explained.

There appear to be two possible explanations.
Either (a) the mass of the neutrino is not zero or
(b) the B-transformation of one isobar into the
other is highly forbidden.

If we accept alternative (a), the conditions for
the energetic stability of two isobars Z4 and
(Z—1)4 are the following: The nucleus (Z—1)4
must not be capable of B-disintegration. This is
certainly the case if its mass is smaller than the
sum of the masses of the particles which would be
formed in such a disintegration, i.e., the nucleus
ZA4, an electron and a neutrino. We thus have the
condition for the masses

(Z—1)A<ZA4 e +no, (224)

Similarly, Z4 must be incapable of capturing one
of the orbital electrons attached to it (§42) and
emitting a neutrino. This condition will be
fulfilled if the sum of the masses of the original
particles is smaller than the masses of the
produced particles, vsz.,

ZAt e < (Z—1)A+no. (224a)

The nuclei Z4 and (Z—1)4 will therefore both be
energetically stable if

(Z-1)A=n"<Z44-e <(Z—-1)4+n" (224b)

In other words, if the mass of the nucleus Z4,
plus an electron is identical with the mass of the
nucleus (Z—1)4 within an accuracy of one
neutrino mass, then both isobars Z4 and (Z—1)4
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will be energetically stable against B-trans-
formations.

We may try to obtain an estimate of the
neutrino mass from this condition, assuming that
there are just 3 pairs of neighboring isobars of
atomic weight below 150. We have shown in §9
and 10 (cf. (21)) that, in a very rough approxi-
mation, the exact weight of the atoms of mass
number 4 can be represented as a function of the
charge Z as follows:

E(Z)=B+x(Z~Z4)=B+C(Z=Z4)/4, (225)

where B and C are certain constants and Z4 is
the “‘most favorable’”’ charge for the atomic
weight (cf. (19a)) 4. C depends only slightly on
the atomic weight 4, and has, for 4 in the
neighborhood of 120, the value 100 MV (cf. (21),
(22)). If we have two isobaric nuclei of charges
Z and Z—1, we define a quantity 8 by putting

Za=Z—3+B. (2252)

B is supposed to lie between —% and +%. We
assume now that any value of g8 in this range is
equally probable, i.e., that the values of g are
distributed perfectly at random. The weights of
the two isobaric atoms, as functions of 3, are

B+(C/4)G—8)*
for the nucleus of charge Z,

(225b)
B+(C/A)(GG+8)?
for the nucleus of charge Z—1,
so that the difference is
AE=2C8/A. (225¢)

This difference is supposed to be smaller than
the neutrino mass 7. Thus the two isobars will
both be stable if

18] <ned /2C.

The probability for this is, for random distribu-
tion of the g’s:

(225d)

p=ned/C.

The total number of isobaric pairs of odd atomic
weight smaller than 150 should therefore be

(225¢)

150

P= Y nd/C=150%10/4C=5600m,/C. (225f)

allodd 4's

Putting this equal to three, and inserting C=100
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MV, we find

7,=0.05 MV. (225g)

Thus the mass of the neutrino must be one-tenth
of the electron mass in order to explain the
observed number of pairs of isobars on the basis
of energetic stability.®? Such a mass would seem
just reconcilable with the data about the energy
distribution in g-spectra. However, it does not
seem very plausible to assume a neutrino mass
which is so small, and still not zero. The assump-
tion of a zero mass would seem much more
satisfactory.

We are thus led to alternative (b) (see above)
which assumes that one of the neighboring
isobars may be energetically unstable, but does
not transform into the other because the corre-
sponding B-transformation is highly forbidden.

We must distinguish two cases: Either the
isobar of larger nuclear charge has higher energy,
or that of smaller charge. In the first case, there
will be an “inverse’’ B-process, i.e., a capture of
K electrons by the unstable nucleus ; in the second
case, there will be an ordinary B-process. Only
in the second case there will be a radioactivity
which is observable in principle; whereas the
“inverse’ B-process would manifest itself only in
the gradual disappearance of the more energetic
isobar. Accordingly, we have to make the
following requirements regarding the lifetime of
the unstable isobar :

(a) If the nucleus of higher charge is the
unstable one, its lifetime must be of the order of
the age of the earth (about 10? years). Otherwise,
this nucleus could no longer be found on the
earth.

(b) If the nucleus of lower charge has higher
energy, its lifetime must be such that radio-
activity becomes unobservable.®® In order to
compute the necessary lifetime, we may assume
that a radioactivity of one g-particle per hour

8 This figure is based on the assumption that the de-
pendence of the energy of isobaric nuclei on the nuclear
charge is perfectly regular, as given by (225). If there are
irregularities, a larger value would be required for the
neutrino mass. Also, it should be pointed out that it is
not very satisfactory to base statistics on only 3 pairs.

% In making this statement, it is assumed that no radio-
activity can be observed from the elements Cd, In and Sb.
It would, of course, be very interesting to search for such
radioactivity. The 8-particles may be expected to have very
small energy.
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from one cm? area of a solid target could just
be observed. Furthermore, let us assume an
upper limit of the g-spectrum of 200,000 volts,
corresponding to an average energy slightly
below 100,000 volts. If 7 is the half-life in years,
the number of B-particles observed per cm? per
hour is

B=Nx, log 2/24-3657, (226)
where N is the number of atoms of the disinte-
grating isotope per cm® in the material and x,
the average depth from which B-particles will
escape. The latter is influenced by scattering and
stopping and can be calculated (B14, formulae
(32), (30), (29)). If the disintegrating isotope
constitutes almost 100 percent of the material,
which would be the case for. In!5, one finds
Nxo=5:10" cm—2 for Z=50 and an electron
energy of 100,000 volts. Then (226) becomes
B=4-101/7

particles/hour.  (226a)

Thus a lifetime of 10'® years would be required
in order to make the radioactivity unobservable.

When we find a pair of neighboring isobars in
nature, without observing any g-radioactivity in
the isobar of smaller nuclear charge, it is more
likely that the isobar of larger nuclear charge is
the energetically unstable one. We shall therefore
assume in the following that case (a) is realized
in all three observed isobaric pairs, so that In!s,
Snt5 and Te'® are the energetically unstable
isobars.

For these isobars, the lifetime is given by
(222b, ¢, d, e). It is seen that a change of the
nuclear moment by L =2 units would lead to the
required lifetime of 10° years or more, only if
the energy E, of the emitted neutrino is less than
about 25,000 volts. It is rather improbable that
the energies of the two isobars coincide to that
accuracy. However, a change of the nuclear
moment by 3 units will lead to a lifetime of 10°
years even if E, is as large as 500,000 volts which
is certainly a conservative estimate of the energy
difference between the isobars. Thus the existence
of pairs of neighboring isobars is possible, if

1. The difference of the nuclear spins of the two isobars
is at least 3 units.

2. The isobar of the larger charge has the higher
energy.
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Differences of 3 units in total spin seem very
plausible, in view of the high angular momenta
of the individual particles in the nucleus (§32),
and the high total momenta observed for a
number of nuclei (§48). Thus the explanation of
isobaric pairs on the grounds of forbidden
B-transitions seems satisfactory. There is, then,
no objection to assuming the neutrino mass to
be zero.

In concluding this section, we want to mention
the most fundamental pair of isobars, viz.,
neutron and proton. Of these particles, the
neutron must be unstable, its weight being
about Ey=350,000 volts higher than the weight
of a proton and an electron together. This
figure is based on the binding energy of the
deuteron (2.14 MV, §16) and Bainbridge's
determination of the masses of proton and
deuteron (H2=2.01423, if H'=1.00807). There
seems to be some evidence (AS) that the deuteron
is actually heavier than 2.01423; this would
make the neutron even more unstable.

The transition n!'—H!4-e +n° is certainly
“allowed,” therefore its probability is given by
(213), (213b). Inserting e=1.7 into (213b), we
obtain f(e)=0.02, and with (213), (214), and
G=1:

TNeutron = 2.5 - 10% sec. =1 month.  (227)

A similar value has been deduced by Motz and
Schwinger (M17). The lifetime (227) is too long
to allow observation of the g-decay of neutrons.
This would even be true if we take Aston’s value
for the mass of H? (2.0148) which would lead to
an upper limit of the g-spectrum of the neutron
of about 0.9 MV, therefore ¢=2.8, f(&) =4, and

7=1.2-10% sec. =3 hours. J(227a)

It might also be worth while to estimate the
lifetime of the nuclei Be!® and C* which are
formed in certain transmutations. Since the
nuclei B1® and N* are known to be stable, their
isobaric neighbors Be!® and C* must be unstable,
if we assume the neutrino mass to be zero. The
difference in energy seems to be very small in
both cases, probably about 100,000 to 200,000
volts. Assuming the B-transitions to be allowed,
.the lifetimes would be between £ and 20 years.
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§44. NUCLEAR FORCES AND B-DISINTEGRATION

It was first suggested by Heisenberg® that
there may be a connection between the ‘‘Fermi
field” corresponding to 8-disintegration, and the
forces between neutrons and protons. This con-
nection may be thought of as analogous to the
connection between the emission of light (electro-
magnetic field) and the Coulomb interaction
between charged particles. In quantum electro-
dynamics, the Coulomb interaction between two
particles is not introduced as a separate assump-
tion, but each particle is only assumed to interact
with the electromagnetic field. Only because both
charged particles interact with the field, there
is also some interaction between them. The
Coulomb interaction is thus regarded as a second
approximation of the interaction between field
and individual particles.

The same program may be carried out for
Fermi’s g-field and the nuclear forces. Let us
suppose we have two particles 1 and 2 and want
to investigate the interaction energy correspond-
ing to the transformation of the first particle
from a neutron into a proton, simultaneously
with the inverse transformation of the second
particle. Given is the Hamiltonian describing the
interaction of both particles with the Fermi field,
which we assume in the Konopinski-Uhlenbeck
form (206a), (211b), leaving out the small term
containing the o operator of the heavy particles:

H=H,;+H*+H.+H,*
H,=(gE./hc) (xbf*(rl)ﬂ(p(rx))Qn-

Here E, is the neutrino energy, 8 the Dirac
operator, ¢(r;) and ¥(r;) neutrino and electron
wave function at the place of the heavy particle,
Q the operator transmuting a neutron into a
proton and Q* the inverse operator. The indices
1 and 2 refer to first and second heavy particle,
and H,* is the complex conjugate of H;.

The Hamiltonian (228) will, in second approxi-
mation, lead automatically to a simultaneous
transformation of particle 1 from a neutron into
a proton, and of 2 from a proton into a neutron.
The Hamiltonian connected with this transfor-
mation is, according to the ordinary Schrodinger

(228)

9 Heisenberg, Lectures at the Cavendish Laboratory,
Cambridge, 1934. Unpublished.
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perturbation theory

Hz*delab
W=-% _
L Eb _Ea

chdH2*ac
e E~E,

(228a)

Here a, b, ¢, d denote initial, two intermediate
and final state, H,®, etc., the respective matrix
elements and E,E; the total energies. The states
are describable as follows:

Initial state (a): Particle 1= Neutron, 2= Pro-
ton, all electron and neutrino states of negative
energy occupied, all states of positive energy
empty.

Intermediate state (b): Particle 1=Proton,
2=Proton, one neutrino state of negative energy
—E,. empty, one electron state of positive
energy E, occupied

Intermediate state (c): Particle 1=Neutron,
2=Neutron, one electron state of negative energy
—E. empty, one neutrino state of positive
energy E, occupied

Final state (d): Particle 1=Proton, 2=Neu-
tron, all negative states occupied, all positive
states empty.

Thus in both cases

Ey—E.,=E.,—E,=E,+E.. (228b)

We now insert for ¢ and ¢ plane waves, normalized per
unit momentum:

¢(11) =h™*%(ps) exp [ipa-11/R], (228¢)

etc., where p, is the momentum of the neutrino and @ a
constant spinor. After a simple calculation involving these
spinors, (228a) reduces to

— o &)y [ GRRe  , i(Dn—1D.) 22
w 2(’”),;, S ot exp [ipa—p0-1/) (2284)

if the neutrino mass is assumed to be zero. r=r;—r; is the
distance of the two particles, and the integral extends
over all momentum space of electron and neutrino.
Introducing polar coordinates in p, and p.-space, and
integrating over the angles, we obtain

we-sno(g oo

D dDnDedpeEn?

EoiE sin (pnr/h) sin (per/h).

(228e)

The main contribution to the integral clearly comes from
high energies of electron and neutrino. We therefore put

pn=En/c, pe=E./c. (228f)
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Furthermore, we introduce the abbreviations
x=Enr/hc, y=Eer/kc. (228g)
Then (228e) becomes
_ 8 . pexidxydy | .
=—ir 4h~cr 7J; x—-l-;_ sinxsiny. (228h)

The integral diverges. It can, however, be calculated as

' F(p, q) .
( apioq )p_q_l (2281)
0
d;
with F=ffgx+—; cos px cos ¢y. (228j)
0

F has the value® m/2(p+¢); therefore (228i) becomes
41r/2(141)5=3x/8.

Thus W= —(3/16)n3(g2/kc)r". (229)

The interaction of a neutron and a proton is
thus proportional to the inverse seventh power
of their distance, i.e., it increases very rapidly
with decreasing distance, as we have always
assumed. The interaction would become infinite
for »=0, and the binding energy of all nuclei
would become infinite, if (229) held down to
r=0. We must therefore assume that, for some
reason as yet unknown, (229) breaks down at
small distances. To define the breakdown radius
a more accurately, we put

W=—W,=—(3/16)n3(g2/hc)a~" for r<a,

229
W =expression (229) (2292)

for r >a.

This would correspond practically to a potential
hole of depth W, and radius a. By choosing a
suitable value for the breakdown distance a,
we could make the interaction (229a), and the
corresponding binding .energies, as large as we
please; e.g., if we want to obtain the correct

2 To calculate F, we introduce s=x+y, t=x-—y,
a=(p+q)/2, B=(p—~¢q)/2. Then
in ) fisjfj.; di[ cos(as+Bt) +cos(Bs+at)]

- };f;” ‘%’ 113 [sin(a+8)s—sin(a—B)s]

(

+ if:o %sé [sin(84a)s—sin(B—a)s].
ds . _ f+=/2, if k>0,
f?s‘"""{—r/z, if £ <0.

Since a+B=p>0, a—pB=g>0, the first integral in (B) is
zero, the second is equal to r/4a=nx/2(p+¢).

(&)

B)

Now

©
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value for the binding energy of the deuteron, we
must choose (cf. (40))

Woa?=(n?/4)8*/ M, (229b)
0.75-3.6-107120.1.7.10-%
1.1-107%1.3-10%
% 1.3-10 cmb,
Wo=1.3-10"2 volts.

3
i.e., (ma)’ =Zg2M/h"‘c =

a=0.85-10"% cm, (230)

However, the assumption of such a short
range and such a large magnitude of the forces
between neutron and proton is quite unsatis-
factory. It would lead to an extremely big
binding energy of the a-particle (chapter IV).
In order to obtain agreement with the empirical
facts about nuclear forces, we must assume that
the ‘“‘cut-off” of the interaction (229) occurs in
the neighborhood of r=2-10"2 cm (§21). This,
however, leads to an interaction energy which is
negligibly small compared to the empirical value.
The quantity Woa?, which determines the binding
energy of the deuteron, is proportional to =5, and
is therefore decreased by a factor 250~5=10"12
if the range of the forces is increased by a factor
250, from 0.8-107'% to 2-108 cm. Thus the
interaction comes out to be too weak by a factor
10, if we cut the potential (229) off at the observed
range of the nuclear forces.

This highly unsatisfactory result is, of course,
due to the extremely small value of the constant
g which governs the g-emission. However, the
general idea of a connection between g-emission
and nuclear forces is so attractive that one
would be very reluctant to give it up. In princi-
ple, several ways seem open:

(a) The interaction leading to B-emission is
only part of a more general interaction. The
other “‘components’ of that general interaction
are larger. This hypothesis was suggested by
Heisenberg, in analogy to electrodynamics,
where also the Hamiltonian leading to emission
and absorption of light (transverse electro-
magnetic waves) is small compared to that
connected with ‘longitudinal” electromagnetic
waves. The latter cause most of the Coulomb
interaction. How such a modification could be
introduced into the B-theory, is of course not
clear.
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(b) The fundamental expression for the B-
emission contains actually higher derivatives of
the electron and neutrino wave function. This
would mean a more rapid increase of the g-
disintegration probability with increasing energy.
Now the constant g is derived from the given
lifetimes of nuclei emitting g-rays of a few MV
energy. On the other hand, the energies which
contribute most to the interaction of a neutron
and a proton at a distance @, are those for which
the electron and neutrino wave-length is of the
order a. The energy corresponding to a=2-10"%
cm, is E=#c/a=~100 MV, i.e., about 100 times
the energy of most B-particles. Each additional
derivative introduced into the expression (211),
multiplies the Hamiltonian corresponding to
B-decay by a factor E, or E,, according to
whether it is introduced into the electron or the
neutrino wave function. Since W contains (cf.
228a) the square of the g-Hamiltonian, a factor
EZ2* (or E,?*) is introduced if 2 more derivatives
are introduced in (211). Since the constant g
must be redetermined in such a way as to make
the lifetimes of B-decaying nuclei agree with
experiment, W is multiplied by the 2kth power
of the ratio of the energies occurring in (228a),
and in B-decay. This ratio being about 100, W
is multiplied by 10%. The introduction of three
more derivatives (i.e., altogether four) into (211)
would, therefore, bring about agreement with
the observed nuclear forces.

However, such a change of the fundamental
assumptions of the theory would also lead to a
considerable decrease of the lifetime of nuclei
emitting high energy g-rays, compared to those
emitting less energetic ones. This would destroy
the agreement obtained in §41, Table XV. The
only way out would be to assume that all the
observed high energy B-transformations are
forbidden at least of the second order, which
does not seem plausible at all.

(c) It may be that the behavior of electrons
of wave-length near ¢2/mc?(=2.8-10" cm) is so
completely different from the usual one, that
these electrons contribute much more to (228a)
than we anticipate, without the B-interaction
differing appreciably from the Konopinski-
Uhlenbeck expression for lower energies. This
idea is sufficiently vague to make it hard to
disprove it.
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Assuming for the present that the problem of
the magnitude of the nuclear forces, as compared
to the B-interaction, will be solved in some way
or other in the future, we may inquire into the
nature of the forces between neutron and proton
following from the p-theory. The force is clearly
an exchange force, being connected with a change
of roles of neutron and proton (see above). This
is in agreement with our empirical knowledge
about neutron-proton forces. However, it turns
out to be a Heisenberg force, because the spins
remain unchanged in the process (228) if we
consider a particle at a given point, r, or r,.
Only the ‘“charge passes over’’ from point r; to
r;, so that the neutron formed in the process,
which is situated at r,, has the same spin as the
proton previously situated at that place. This is
the characteristic of a Heisenberg force, which is
not admissible for the fundamental force of
nuclear physics (§7, §11).

However, it is easy to change the fundamental
expression for the g-disintegration so as to obtain
a Majorana rather than a Heisenberg force. It is
only necessary to accept one of the interactions
(211c), (211d), rather than the Konopinski-
Uhlenbeck interaction (211b). Besides irrelevant
changes in the magnitude of the forces, this will
introduce a factor @hevy in the Hamiltonians
(228), and therefore a factor o;-¢; in the ex-
pression (228a) for the interaction energy of
neutron and proton. The product o,- o3 is positive
when proton and neutron spin are parallel, in
this case we obtain the same result as before.
@1-02 is negative if the spins are antiparallel ; in
this case we therefore find the sign of the
interaction reversed. This is exactly the difference
between a Heisenberg and a Majorana force
(Eq. (30a, b)). Their signs are equal if the spins
of proton and neutron are parallel, opposite for
opposite spins.

However, the numerical factor is not correct.
¢1-02 has the value 1 for parallel, —3 for anti-
parallel spins. The force between neutron and
proton would thus be 3 times as large for anti-
parallel than for parallel spins, whereas actually
(§14) the forces are almost equal, and the force
for parallel spins is even somewhat bigger. Thus
we ought to take a suitable linear combination
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of the forces (211b) and (211c, d) to obtain a
neutron-proton interaction of the desired form.
This again is somewhat unsatisfactory.

The replacement of (211b) by (211c, d) does
not change our discussion about g-spectra
materially. The only difference is that changes of
the spin angular momentum of the nucleus by
one unit are now allowed transitions. If the
coupling between spin and orbital momentum is
weak, we have, then, just to refer to changes of
the orbital momentum of the nucleus rather than
to its total momentum, in discussing forbidden
B-transitions. If the spin-orbit coupling in the
nucleus is strong, which is probably the case,
changes of the total momentum by L+1 will be
about as probable as changes by L were in our
previous discussion. Then we must require a
change by 4 units for radioactive K%, and for the
isobaric pairs (§43).

The “‘B-hypothesis of nuclear forces’ gives, in
first approximation, only forces between neutrons
and protons. In second approximation forces
between like particles would appear, the mechan-
ism being about as follows : Each of two neutrons
emits ‘virtually” (intermediate state, cf. 228a)
an electron and a neutrino, and then absorbs the
particles emitted by the other neutron. It should
be expected that this second approximation is not
small compared to the first. For if the g-theory
is to lead to the observed magnitude and range
of neutron-proton forces, we must assume that
for electron and neutrino energies of about 100
MYV the B-interaction H (228) is also of the order
100 MV : Electrons of energy ~100 MV should
give the main contribution to W, because their
wave-length is of the order of the range of the
nuclear forces. On the other hand, W is of the
order H?/(E.+E.), according to (228a, d), and
is about 30 MV empirically (§21). This requires
the matrix elements of H, corresponding to the
emission of electrons and neutrinos of 100 MV,
to be also of the order 100 MV. But if this is
true, we should expect the second approximation
to be nearly as big as the first,.i.e.; the forces
between like particles should be not much
smaller than those between neutron and proton,
in agreement with the conclusions from nuclear
binding energies (§21).
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§45. THE MAGNETIC MOMENTS OF PROTON
AND NEUTRON (W11)

It was first suggested by Wick (W11) that the
anomalous values of the magnetic moments of
proton and neutron (§5) may be explained on the
grounds of the p-theory. According to that
theory, a neutron can never be regarded as
entirely isolated, but is always associated with a
‘‘B-particle field” surrounding it. In other words,
if we observe a neutron at a given moment, we
shall not always find a neutron, but sometimes
we shall find a proton, an electron and a neutrino
instead. During the short intervals of time when
the neutron is replaced by a proton, an electron
and a neutrino,ean external magnetic field will
find the spin of the electron to act upon. The
interaction energy between a magnetic field and
a neutron, will therefore be equal to the inter-
action energy between the field and an electron,
times the probability of finding the neutron
temporarily ‘‘dissolved” into proton, electron
and neutrino at any given instant, times the
probability that the spin of the electron is
parallel to the spin of the neutron rather than
antiparallel.

The same argument holds for the proton, with
the only difference that ‘‘positron’” should be
inserted instead of ‘‘electron.” Moreover, the
proton will interact with the magnetic field even
if it is not ‘“dissolved’’; during these times, its
interaction will correspond to its ‘“‘normal’’ mag-
netic moment %e/2Mc, which follows from the
Dirac theory.

The probability that a neutron is found to be
temporarily dissolved into a proton, an electron
of energy E. and a neutrino of energy E, is,
according to the Schrédinger perturbation theory,

|H(E., E.)|?/(E.+E.)?, (231)

where H is the matrix element of the 8-interaction
(211) which refers to the emission of an electron
and a neutrino of the respective energies E,, E,.

If we insert in (231) the ordinary interaction
derived from the probability of g-disintegration
itself, we are faced with the same difficulties as
in the preceding section when trying to account
for the nuclear forces: If we accept the B-inter-
action as it stands, the expression for the mag-
netic moment of the neutron will diverge. If we
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avoid the divergence by ‘‘cutting off’’ the
B-interaction for high energies of electron and
neutrino, we shall obtain much too small a value
for the magnetic moment.

We shall therefore assume, just as in the pre-
ceding section, that the present g-ray theory is
not adequate in the region of high electron and
neutrino energies, but that a future correct
theory will give a higher disintegration proba-
bility for electron energies of the order 100 MV.
We shall furthermore assume that this proba-
bility will turn out to be such as to give the
correct magnitude of the nuclear forces. This
means (end of §44) that the matrix elements H
in (231) are nearly as large as the denominator
E.+E,, if E, and E, are of the order 100 MV.
Then (231) becomes almost unity ; may be of the
order 1/10. In other words, during a considerable
fraction of the time, the neutron will be found
dissolved into proton, electron and neutrino.

The magnetic moment of a high energy elec-
tron is one-third Bohr magneton.* The corre-
lation between the spin directions of the neutron
and the emitted electron is not easy to estimate;
it depends on the particular linear combination
of the expressions (211b, ¢, d) which represents
the correct 8-ray interaction.* A correlation of a
few percent would be sufficient to account for
the observed magnetic moment of the neutron,
2., 2.04/2Mc=1/900 Bohr magneton. Accord-
ing to the foregoing, the probability that an

9 This can be seen easily from the Dirac wave function
of a free electron with spin parallel to the Z axis, whose

_ components are

Yi=—Acp. Yo=—Ac(prtip,) vs=—AE+me) =0,
A=[2E(E+mc?)] texp [i(p-r—Et)/h].
The magnetic moment, in Bohr magnetons, is given by
(V*op) = Yr*vai— o™+ y¥a* s — vt
=[2p2— (P2 +p2) + (E+mc?)? ]/ 2E(E+mc?).

Averaging all over directions of motion of the electron, we
obtain

pr=pr=pr=1ip*=(E4+mc?)(E—mc?)/3c
We have therefore
(Y*oup) =[E+mc—}(E—mc*)]/2E =} +§mc*/E.
For small E, of the order of mc?, this expression has the
value 1; for large E (C>mc?), it is only one-third.
% If the B-ray interaction is represented by one of the

expressions (211b, ¢, d) alone, there will be no correlation
betweer the spins of neutron and electron.
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electron is present, is of the order 1/10; the
magnetic moment of the electron, if present, is
1/3 Bohr magneton ; thus the magnetic moment
of the neutron would be 1/30 Bohr magneton if
the spin of the emitted electron were always
parallel to the neutron spin.

It appears thus that our theory gives rather
too large a value for the magnetic moment of the
neutron if we deduce the g-interaction from the
forces between neutron and proton.

The magnetic moment of the proton can be
calculated in the same way. Since the B-ray
theory is perfectly symmetrical in neutrons and
protons, the additional moment of the proton
should be equal and opposite to the magnetic
moment of the neutron. By additional moment
we understand the excess of the actual magnetic
moment of the proton over its ‘‘elementary”
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moment #%/2Mc which follows from the Dirac
theory. We should thus conclude that the sum
of the magnetic moments of neutron and proton,
i.e., the magnetic moment of the deuteron, is
equal to the elementary magnetic moment of
the proton, since the additional moment of the
proton, and the magnetic moment of the neutron,
cancel each other. The observed value of the
magnetic moment of the deuteron is about
0.85%/2Mec. This is nearly, but not exactly, equal
to the value following from our considerations.
The difference may either (a) be connected with
the difference in mass between neutron and
proton, or (b) with the fact that the proton is
actually dissolved into a neutrop, a positron and
a neutrino during a considerable fraction of the
time, and does not possess its ‘‘elementary
moment’’ during that time.

VIII. Nuclear Moments

The essential features of atomic and molecular
structure can be accounted for by the quantum
theory on the assumption of an atom consisting
of a small massive nucleus surrounded by elec-
trons which are held in the nuclear field. It is
quite satisfactory for most of the purposes of
atomic and molecular structure to consider the
field only at distances from the nucleus suffi-
ciently large that its field is a Coulomb field. As
far as the main features of atomic and molecular
spectra are concerned, therefore, the nucleus
does not enter except as the center of this
Coulomb field. There are, however, certain facts
of both atomic and molecular spectra which lead
directly to information concerning the atomic
nucleus.

For atoms it is well known that the totality
of energy states found from the usual analyses
of spectra can be accounted for both as to
number and, with some difficulty, as to position
by the quantum theory treatment of the electrons
moving in the central Coulomb field. These
states are characterized by quantum numbers of
the electrons, by the total angular momentum
of the electrons and usually by the spin and
orbital angular momenta as well. The most
closely adjacent states are those (at least for the
case of Russell-Saunders coupling) which have

only different total angular momenta. Such
states compose a ‘‘multiplet” and are referred to
as fine structure because of their frequent close
spacing.

A more detailed examination of the spectral
lines involved frequently has indicated that
states considered above are not themselves single
but are actually composed of a group of states.
This multiplicity is called hyperfine structure.
Thehyperfinestructure of spectral lines cannot be
accounted for on the basis of the assumptions
mentioned above. It was first suggested by
Pauli (P4) that hyperfine structure is due to the
action of the electrons in the field of anuclear
magnetic dipole. That the interaction is essen-
tially a magnetic one is immediately seen by a
comparison of hyperfine structure groups with
ordinary fine-structure multiplets. Such a com-
parison shows striking similarities. The nuclear
origin of hyperfine structure is confirmed on
many sides but it seems sufficient to mention
only one such confirmation at this time. Those
states which have electrons with a higher prob-
ability of being near the nucleus show the
structure while those with a very low proba-
bility show no structure. It is now completely
certain that the hyperfine structure of spectral
lines is for the greatest part due to the interaction
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of a nuclear magnetic moment with the electrons
not appearing in closed shells. The origin of the
nuclear magnetic dipole whose presence gives
rise to the hyperfine structure is probably due
to the motion of electrical charges and it is to
be expected that the nucleus possesses a certain
angular momentum (spin). This same con-
clusion is of course attained since the nucleus is
considered to be built of protons and neutrons
which themselves have intrinsic angular mo-
menta and magnetic moments. A detailed study
of the hyperfine structure for a particular element
allows us to determine the angular momentum
of the nucleus in question and, with somewhat
more difficulty in interpretation, the magnitude
of the nuclear magnetic moment as well. Com-
plications arise when the element has several
isotopes but these can frequently be overcome.

For diatomic molecules composed of like atoms
it is found that the presence of a nuclear angular
momentium changes the statistical weight of the
rotational states. For zero nuclear angular
momentum we find that alternate lines of the
bands are missing. With a nuclear angular
momentum it is found that successive lines of
the bands have an intensity ratio which depends
on the magnitude of the nuclear spin. It is thus
possible by studying the intensities in such
molecular spectra to determine the nuclear
angular momentum.

There are other indications of the presence of
nuclear spins and magnetic moments. In hy-
drogen for example, since the proton is known to
have a spin, the hydrogen molecule may consist
of two hydrogen atoms with their nuclear spins
in the same (orthohydrogen) or opposite direc-
tions (parahydrogen). The presence of these two
sorts of hydrogen is known theoretically from
the behavior of the specific heat at low tem-
peratures (D2) and indeed the two sorts of
hydrogen have been separated experimentally.
In the presence of a paramagnetic gas such as
oxygen the rate of conversion from para- into
orthohydrogen depends on the size of the nuclear
magnetic moment. It has thus been possible (F1)
to determine the ratios of the nuclear magnetic
moments for hydrogen and deuterium from this
dependence. A more detailed account of these
atomic and molecular effects will be found in the
following paragraphs.
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§46. THE INTERACTION OF THE NUCLEAR
MOMENT WITH THE ELECTRONS

If the interaction which gives rise to the hyper-
fine structure is due to the presence of a nuclear
magnetic dipole in the field of the electrons it
should be possible to deduce certain properties
of it without calculation. Let us denote by I and
J the angular momenta of the nucleus and the
electrons, respectively, in units of % The inter-
action term which must be added to the potential
energy of the system will be proportional to the
cosine of the angle between I and J, and may be
written

V=A'"1-])=34'"F-12—-J2), (232)
where F is the vector sum of I and J or the total
angular momentum of the system in units %. The
addition to the energy which such a perturbing
potential will give can be found immediately
from the characteristic values for the squares of
angular momenta.

W=3A{F(F+1)—-II+1)—-J(J+1)}. (233)

All the states of the hyperfine structure group
have the same values of the quantum numbers
I and J. F takes on a series of values from I+J
down to |I—J| as determined by the quantum
theory treatment of vectors. W then has a series
of values A[1J]; A[IT—(I+J)]; A[ITJ+1)
=2(I+7)]; ALIT+3)-3(I+J)]. . . and the
energy differences of successive states are
A(I+T); AJ+T-1); AI+T-2). ... For
the energy differences the part in brackets is just
the larger F value for the two states considered.
This regularity is called the interval rule and the
factor 4 the interval factor. (233) above leads
directly to this regularity and may therefore be
regarded as a statement of the interval rule.
Since (233) follows directly from the cosine form
of the interaction it is expected that the interval
rule will hold exactly (G9). The only exception
to this should occur when two atomic states with
different J are separated by an amount which is
not large compared to the hyperfine structure
separations. The hyperfine structure separations
are rarely more than a few cm™ so this exception
occurs very infrequently. Recently deviations
from the interval rule have been found which do
not come under this exception and which there-
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fore mean that the form of the interaction term
must be slightly modified. This can be done by
the assumption that the nucleus has a small
electric quadrupole moment and will be discussed
somewhat further in §50.

It is apparent from (233) that the relative
spacing and number of the hyperfine structure
states is fixed as soon as the quantum numbers
F, I and J are known. In case I<J, then I can
be determined directly from the number of
hyperfine states which would be 27+1. For I>J
however, the number of states is determined by
J. In either case the hyperfine quantum number
F can be determined from exact measurements
of the relative separations by the use of the
intérval rule (except for J=3%). With F thus
determined and J known, the value of I can be
found. It is thus possible to determine the
nuclear angular momentum without any further
knowledge of the nature of the interaction.

The interaction constant 4 will contain the
nuclear magnetic moment x and factors which
relate to the electrons and the probability of
their being near the nucleus. The constant u is
related to the absolute size of the hyperfine
structure separations. In order to determine u
it will be necessary to make a determination of
the other factors in 4 and then use the experi-
mental size to find u. Let us consider the case of
a single electron in the field of the nuclear mag-
netic dipole with charge Ze. In order to have the
calculation apply to s electrons as well as others
it is necessary to use the Dirac equations. We
wish then to write the interaction term in terms
of the vector potential

A=[ur]/r3=gu [Ir]/r3, (234)
where u=guol is the nuclear magnetic moment
and pc=eh/2mc. If this vector potential is intro-
duced into the Dirac equations and if the two
“small” wave functions are eliminated to obtain
an equation in the two ‘‘large” wave functions, the
term representing the interaction of the nucleus
with the electron can be written (B23)(F5)(B12).

Hy=guo(A-T), (235)

where
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A=2u[r 3L —r3¢+3r5(r-o)r]
X (14edo/2mc?)~1—2u[r 20 —7r4(r-0)r]

d edo\ !
X—{1 +——) . (235a)
dr 2mc?

Here L# is the angular momentum vector, o is
the spin angular momentum and ¢ is § times the
Pauli spin matrix, 4, is the scalar potential of
the nuclear electrostatic field and E has been
replaced by mc2. With (235) for the interaction
and using the properties of angular momenta and
the fact that A contains only electron variables
the perturbed energy can be found (B23) to be

Wi=gu(A)[F(F+1)—I(I+1)

~JU+)I2IT+D T (236)
(A J)s is the diagonal element in the matrix
(A J) for state J. (A J) can be found from (235a)
using J=L+o¢. If the second term of (235a) is
neglected in comparison to the first and if
eAo/2mc? is neglected compared to 1, we obtain

(A J)=2p[r~ Lt —r—0243r5(r-0)?

+3r5(r-0)(r-L)]. (237)
Here (r-L)=0 since L=#4[rp] and 377 %r-e)?
—r~%¢?=0 due to the properties of the Pauli spin
matrix 2e.

Using (237) which holds for electrons other
than s electrons (236) now becomes

L(L+1)
W= guo®— (r=3
J(J+1)

X[F(F+1)—I(I+1)—J(J+1)].

(238)

For s electrons the first term of (235a) vanishes
and we have

(AJ)e= —2uo[r2e®—r4(r-0)?]

d '1+er)‘1 2d(l_*_er -1
X— = — por*— ) .
dr( 2mc? ! dr 2mc?

The diagonal element for J becomes
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Al d edo\ !
ADr=—n| R?(r)r—zd—(w——) rdr
0

7 2mc?

il eAy\ ! d
= #of ( 1+—— ) —R%(r)dr
0 2mc? dr
SuoR*(0).

R(r) is the radial function and R(0) its value at
the origin. edo/2mc? is neglected in comparison
to 1. From (238), (236) and (239) it is possible
by comparison with (233) to obtain expressions
for the separation factors. For single electrons
these will be called a, or @; and the quantum
numbers /, j, etc.

a,= (4/3)g(Dro*R*(0),
ar=2g(Dp’r=*(0+1)/i(G+1).

Since u=guol, equations (240) or (241) determine
the size of the nuclear magnetic moment® if the
separation factors as well as the quantum
numbers are known from experiment and if it is
possible to determine R2(0) or 7. For any
particular atom a knowledge of the wave
functions is necessary therefore to determine the
magnetic moment. Furthermore it is necessary
to have wave functions which are quite accurate
in the neighborhood of the nucleus if u is to be
determined accurately. At present such wave
functions are not available. Calculations by
Wills and Breit (W15) and by Shoupp, Bartlett
and Dunn (S21) for Na 3s, 3p3/2 and 4p3. states
using Hartree functions give u=35.85, 22 and 10.4
nuclear magnetons, i.e., uo/1838, respectively,
while x=2.5, 5.1, 3.1 n.m., respectively, using
Fock functions. Both of these sorts of wave
furictions give the spin doublet separations too
high. Empirical correction assuming that the
wave functions give the correct ratio of doublet
separation to hyperfine structure separation
leads to values for p of 2.5-3.0 n.m. While Na
may not be a favorable example, it is apparent
that calculations using present wave functions
are rather dangerous. It is very desirable, there-
fore, to have some approximation method which
leads to consistent results and which could be

(239)

(240)
(241)

% Jt is customary to give u/ug, i.e., to measure u in
units of uo, the Bohr magneton. Nuclear moments are of
the order 1073y, and it is customary to express them in the
nuclear magneton (n.m) unit u,/1838.
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applied even where wave functions are not
available.

Let us consider the case of hydrogenic wave
functions. For this case R2(0) =4Z3/n%,* and we
find that (240) can be rewritten in the form

8 Ra?Z? o .
Qg =— g cm™,
3 nt

(242)

where R=me!/4rh’c and a=e*/hc. For hydro-
genic functions r—*=2%/n%a*(l+1)(l+4%)! and
using this value in (241) we find

Ra?Z3
——————c
2*j(G+1)(+3)

For this case (243) reduces to (242) for j=% and
1=0.

For atoms consisting of a single electron out-
side a closed shell (243) would be a poor approx-
imation if Z denotes the atomic number, since
the screening of the other electrons which plays
an important role, would be neglected. A way in
which the screening can be taken into account
is indicated by the fact that (243) is similar to
the expression for the spin doublet separation.

Ay Ra?Z*

——— (!
+3 w+DI+)

Approximations to the spin doublet separation
which replace Z* by Z#(1+2)* and # by n* have
been found to hold for alkali type atoms. Here 2
is the degree of ionization, n* the effective total
quantum number and Z;=Z for s electrons while
Z;=(Z—4) seems to fit the data for p electrons.
For higher [ the difference Z — Z; becomes greater
and the necessary approximation more difficult
to obtain. This approximation for deeply pene-
trating states was derived first by Landé (L1)
using the Bohr theory and can now be justified
on the basis of the wave mechanics.

By a similar argument Goudsmit (G6) and
Fermi and Segré (F11) have obtained an approxi-
mation for the hyperfine structure using the
observed doublet separation

Avi(l4-1)
————e—————
JG+HDI+3)Z:

This approximate expression can be used with

a=g(I) m~L (243)

~1

a(Av) =l

a,=g(I) m~L (244)
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Av and Z; to calculate g(Z) from the observed
separation factor. For s electrons, an approxi-
mation® similar to that made in the doublet
separation gives

Ra*Z;(1+42)?
——————¢
n*j(j+1)(+4%)

With Z; fixed as above (244) and (245) become
semiempirical formulas whose main virtues are
that they apply to a considerable range of
examples and lead to values of u which, although
determined from different states of the electron,
are nearly the same.

Certain approximations (E =2mc?; ed (K2mc?)
were made to obtain (240) and (241) which hold
for light elements but are not valid for heavier
ones. More exact calculations by Breit (B22) and
Racah (RS) which do not use these approxima-
tions show that (244) or (245) should be multi-
plied by a factor
(4, 2)=4jG+1)(G+%)/(4p*—1)p (246)

p=L(i+1)*=2%].
This factor becomes important (~1.20) for
Z =40 for j=% and for Z=80 for j=3/2. This
relativistic correction factor can be carried over
directly to the approximations (244) and (245)
using Z; as determined before for Z above. The
doublet separation appearing in (244) is subject
to the same sort of correction. In this case it is

found (B22, RS5) that the doublet separation
should be multiplied by a factor

MG, Z)=[20(1+1)/ 22T {(+1)2— Z%2}
—1— (2= Z%?)).

a,=g m~L (245)

where

(247)

Using these correction factors (245) and (244)
become

, oIn®i(+1)(0+3)

“ T Rz (14200, Z))
, aljG+D)+HZN, Z))
T Mk, 2))

1838, (248)

1838.

(249)

% It has been pointed out by Fermi and Segré that (255)
should be multiplied by a factor (1 —ds/dn) where n—s=n*.
This factor would increase the values of u calculated from
the low s states of Na I, Cs I and T1 III by 2 percent, 5 per-
cent and 10 percent, respectively. This factor is certainly
negligible for light elements and for heavy elements is
probably smaller than errors due to perturbation effects.
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Here u' is the nuclear magnetic moment in
nuclear magnetons (uo/1838) and Ar is the
observed doublet separation. Table XVI gives
the values (G6) of « and A for several Z;. If the
doublet separation is large as it is for the heavy
elements a further correction must be made
(B24).

A comparison with (238) for example shows
that for g (or u) positive the hyperfine structure
levels will be arranged with that state with
smallest F as lowest. In such a case the levels
are said to be regular, the a factor positive and
u positive. Similarly for the case where the state
with largest F is lowest the levels are said to be
inverted, the a factor negative and u negative.

TaBLE XVI.

e et x —— by
Zi  j=1/2  j=3/2 I=1|2Z; j=1/2 j=3/2 I=1
10 1.01 1.00 1.00 | 70 1.78 1.10 12
20 1.04 1.01 1.00 | 80 2.25 1.15 1.17
30 1.09 1.02 1.01 85 2.61 1.17 1.20
40 1.18 1.03 1.03 | 90 3.10 1.20 1.24
50 1.30 1.05 1.05 |92 3.36 1.21 1.27
60 1.49 1.07 1.08

Table X VI gives the correction factor « for the hyperfine separation
2;le ;he correction factor A for the doublet separation for various values

If the atom considered has more than one
valence electron the above relations cannot be
applied directly. It is frequently the case that
the interaction is due to the presence of one
penetrating s electron in the group of valence
electrons. In such a case the separation for a
given state can be obtained simply in terms of
the separation constant of the s electron (G7).
For many configurations all of the valence elec-
trons will have a considerable interaction with
the nucleus. It is possible in such cases to find
relations which give the hyperfine structure size
in terms of the separation constants of the
various electrons involved.?” Having thus deter-
mined the one-electron separation factors, the
nuclear magnetic moments can be found from
(248) and (249). If these equations are to yield

97 The hyperfine structure for several valence electrons
is discussed in the following papers: Goudsmit (GS);
Guttinger and Pauli (G16); Racah (RS5); Breit and Wills
(B28) (sp, sd, sf, p%, p-p, % p%); Crawford (C18) (d%);
Crawford and Wills (C22) (#%s). The more recent work of
Breit, Crawford and Wills give the separations for the in-
dicated electron configuration in intermediate coupling as
well, in terms of the one electron separation factors,
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constant values of u from different atomic states,
we see that the hyperfine separation must differ
greatly for the various states. This is indeed
found to be the case.

It is well known that perturbations between
states are very prevalent in atomic spectra;
i.e., the wave function representing a particular
atomic state contains the pure wave function
not only of that state but of others which are
thus said to perturb it. These perturbations
frequently become very large when the states
involved are close together, since the real wave
function can be written

' =¥+ ¥ Voi/(Eo—Es), (250)
where Vo, is the matrix element of the electro-
static energy between the two states. The factor
(Eo—E;)™ insures that the correction to the
wave function usually will not be great. A case
of very small perturbation would be if Vp=1
ev and (Ey—E,;)=10 ev. The perturbing state
might well be above the ionization potential with
such a value of Ey—E1. ¢’ would contain 0.1y,
and the y,® would make only a 1-percent con-
tribution®® in y¢’. It has been pointed out by
Fermi and Segré (F11) that even in such unfavor-
able cases the hyperfine structure perturbation
may be large. Suppose that the hyperfine struc-
ture of the perturbing state is 50 times that of
state 0, which might well be the case if the
former had an unpaired s electron and the latter
did not. The hyperfine structure for the latter
state would be increased by 50-1 percent due to
the perturbation and it would thus be half again
as large as without the perturbation. It is very
difficult to calculate such perturbations exactly
and since they may have a great influence in the
determination of u it is desirable to avoid using
states in the determination of x which are subject
to great change. States with small hyperfine
structure will have the greatest percentage
change. It is therefore desirable in the determi-
nation of u to use states which have large

9 In.some cases it is also possible to have cross terms
contributing. If the two electron configurations for ¥, and
¥ differ in only a single electron and are furthermore of
the same parity, there will be a term S 'YoH'yudr if H' is
the hyperfine interaction term. The most frequent pertur-
bations are between configurations which differ in two elec-
trons but this effect might be expected between ps and
pd for example.
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hyperfine structure and are not subject to violent
perturbation. States which perturb each other
are those with the same value of J and the same
parity. For strict L-S coupling there is the
additional restriction that the states must have
the same resultant L and S.

§47. METHODS USED TO DETERMINE THE NU-
CLEAR ANGULAR MOMENTUM AND THE
HYPERFINE STRUCTURE SEPARATIONS

1. Direct observation of the hyperfine structure

There are a considerable number of methods
which are used to determine the nuclear spin and
the hyperfine separations. For the greater part
the methods are best applicable to different
cases; i.e., they are very largely supplementary
in scope. The greatest amount of information
has come from the direct study of the hyperfine
structure of the spectral lines. It is possible from
such a study to get information from both
normal and excited states and for almost any
atom whose spectrum can be excited. Informa-
tion about excited states is important in order to
obtain independent determinations of x. The
main limitations are those arising from the com-
plexity of the patterns and the smallness of the
separations.

A. Number of componenis. If each of the two
states between which a radiative transition takes
place, has hyperfine structure then the resulting
spectral line will show structure. This line
structure will be more complex than the state
structure because the selection rules for the
hyperfine quantum number F may be shown to
be the same as for the total electronic angular
momentum J, namely, F—F, F+1, 0—0 being
forbidden. It is thus not infrequent for line
patterns to consist of fifteen or twenty com-
ponents which, because of their close spacing,
overtax the present possibilities of resolution.
There are many cases, however, where the experi-
mental possibilities are sufficient. If the hyperfine
levels of one state are very close and are con-
siderably larger for the other state, the resulting
pattern will show essentially only the larger
separations. Because of the interval rule such a
line has a characteristic ‘‘flag” appearance, i.e.,
the separations decrease uniformly across the
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pattern. It has been pointed out in §46 that the
number of hyperfine states into which an atomic
level is split by the presence of a nuclear moment
is 2I+1for J>Ior2J+1forI>J. Itisapparent
that the complete analysis of the hyperfine
structure for any state which is split into a
number of components less than 2J+1 is a
conclusive determination of /. For this purpose
the presence of flag-type patterns is very useful.
For small values of the nuclear spin the hyperfine
structure of the spectral line is very frequently
resolved completely. Exact values of the hyper-
fine structure separations will come for the most
part from those patterns which can be completely
resolved.

B. Relative separations. It is frequently the
case in simple spectra of the one-electron type
that no state of sufficiently large J can be found
which has any appreciable hyperfine structure.
In such a case the interval rule (233) can be used
to determine the F values for the hyperfine states
and thus the value of the nuclear spin I if J is
known. The relative separations are not sensitive
to. [ if I is large so that in such a case extremely
accurate values of the hyperfine separations must
be used. A determination of I by the use of the
interval rule relies absolutely on its validity and
therefore upon the cosine law of interaction. In
view of deviations from this law which have been
found recently and which seem to be due to the
presence of an electric quadrupole moment, it
can be considered as safe to use the interval rule
to determine I only for those cases which would
show no quadrupole effects (B15) namely, those
states involving only s or p, electrons. Since the
interval rule cannot be applied to a state with
J=1%, it can now be used with safety only for
certain states involving more than a single
electron.

C. Relative intensities. The relative intensities
of the components of a hyperfine structure
multiplet have been shown to obey the intensity
relations (H14) which hold for multiplets in
Russell-Saunders coupling when the quantum
numbers L, J and S are replaced by J, F, and I,
respectively. With J known for both initial and
final state it is possible from an accurate knowl-
edge of the relative intensities to deduce I since
the F value can be written in terms of / and J.
This method is very useful where the spin cannot
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be determined directly from the number of com-
ponents.

D. Zeeman effect. There is one further method
for determination of the nuclear spin from the
direct observation of the hyperfine structure and
that comes in the study of the Zeeman effect.
The Zeeman effect of an atomic level leads to a
displacement M ;g(J)uoH where H is the mag-
netic field strength, M, a magnetic quantum
number for the state J and Jg(J)uo is the mag-
netic moment of the atom for the state J. If a
nuclear moment is included two additional
terms must be added to the energy (B3).

W= MJg(J)MoH+MIg(I)#0H+A MiM,.

M refers to one of the magnetic substates of I
and, g(Z)uof is the nuclear magnetic moment and
hence the second term is negligible compared to
the first. The third term represents the inter-
action between the nuclear magnetic momentand
the outside electrons, 4 being the separation
constants. The above expression for the energy
holds only for strong fields, i.e., for those fields
in which the Zeeman-effect separation is large
compared to the hyperfine separations. The usual
field strengths which are used in Zeeman effects
give separations which generally fulfill this con-
dition and we therefore usually have a Paschen-
Back effect of the hyperfine structure multiplet.
Due to the third term above, each M, state is
split into 2741 (the possible number of values
of M) “hyperfine” states. In a spectral line each
transition M,;—M ;' will consist of 2741 com-
ponents since in the strong field case changes.in
M will not be allowed. It is thus possible to
determine the nuclear spin directly from the
number of components in the Zeeman effect. The
hyperfine Zeeman effect is also known experi-
mentally and theoretically for field strengths
which are not ‘‘strong.”

II. Polarization of resonance radiation

If we have atoms in a weak magnetic field and
excite them with their own radiation incident in
the direction of the field, it is known that the
radiation produced will show polarization effects.
It is found that the percentage polarization
changes with the strength of the magnetic field.
This change with field strength comes about
because the intensities of the Zeeman components
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may be shown for particular states to depend on
H/A where H is the field strength and 4 is the
hyperfine separation constant. Different com-
ponents of the radiation are thus emitted by
atoms in the field with varying intensities and
even if the components cannot be resolved this
change in intensity is evident in the polarization
of the emitted radiation. The polarization for a
particular field also depends on the nuclear spin.
The important application of this method as it
has been developed by Ellet and Heydenburg
(E2)(H12)(H13)(L3) is not in the determination
of the nuclear spin but in the determination of
very small hyperfine structure separations which
cannot be studied directly. It has been possible
by this method to determine hyperfine separations
which are less than 103 cm~!. The small sepa-
rations of the excited states of Na and Cs have
been obtained in this way.

III. Molecular and atomic beams

The principle of the Stern-Gerlach effect has
been applied directly to a beam of hydrogen
molecules by Stern Estermann and Frisch
(F14)(E4). The beam of hydrogen molecules is
passed through a strong magnetic field which has
a steep gradient at right angles to the direction
of the beam. The beam is separated into a
number of components depending on the number
of magnetic substates and the magnetic moment
can be determined from the amount of the
splitting. For hydrogen molecules there is, in
addition to the magnetic moment which may
come from the two nuclei, a magnetic moment
arising from the molecular rotation. For para-
hydrogen the two nuclei have their nuclear
momertts in opposite directions so that for pure
parahydrogen any observed magnetic splitting is
entirely of rotational origin. It is possible to
determine the rotational magnetic moment from
observations on parahydrogen and then to make
the necessary correction on the moment observed
for orthohydrogen when ordinary hydrogen is
used for the beam. The orthohydrogen will be
split into three components (total spin 1) each of
which will consist of three components due to the
rotational moment. The central one of these
coincides with the parahydrogen position but the
magnetic moment car be calculated from the
separation of the outer two components, cor-
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rections being made for the rotational moment.
Measurements made by this method constitute
the only direct determination of the nuclear
magnetic moment.

A beam of atoms passed through a strong
magnetic field with gradient perpendicular to the
beam shows a separation into (2J+1) com-
ponents (Stern-Gerlach). If a nuclear moment is
present each of these components consists of
2141 individual components which for strong
fields all fall together. Breit and Rabi (B26) have
pointed out that as the field strength approaches
zero these individual components no longer all
fall together. In the case of the hydrogen atom
(I=3%) in its normal state there are four magnetic
substates which for weak fields are all separate in
the deflection pattern. Furthermore the spacing
of the components changes as the field decreases
until the two central ones come together at zero
field. The deflection in the field will depend on
the component of the magnetic moment in the
field direction. For the two states with M =M/,
+Ms=0 this component will depend on H/4,
where H is the magnetic field strength and 4 is
the hyperfine separation factor. The components
of the magnetic moment in the field direction are

uo Mg, M1)=p.(3, 3) =no;

—Xko
T et MG O Py

(142t

where x=uoH/whcAv. An accurate measurement
of the deflection pattern, together with knowl-
edge of the field gradient, allows the determi-
nation of u.(3, —3%) and p.(—3%, %) and hence a
determination of Av the hyperfine separation.
The nuclear spin is obtained directly from the
number of components (2/41) which have the
same M s and which thus fall together in strong
fields. The method of atomic beams has been
extensively developed by Rabi and his co-workers
(R2)(R3)(R1)(M13)(F13) and has recently been
extended by these workers (R4)(K3) so that the
regularity or inversion of the hyperfine structure
can also be detected. This allows one to say
whether the magnetic moment is positive or
negative. It has been applied to hydrogen and
the various alkalis, its limitations coming chiefly
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from the fact that a beam of atoms must be
produced and detected. This method gives the
nuclear spin and the hyperfine structure separa-
tion of the normal state only. It thus gives just
the information which cannot be obtained from
the study of the polarization of resonance radia-
tion. The atomic beams method can be applied in
cases where the hyperfine structure separation is
too small to be measured directly. It has been
applied successfully to H, D, Li, Na, K, Rb
and Cs.

IV. Band spectra

The presence of a nuclear spin causes a change
in the statistical weight associated with a given
rotational state of a homonuclear diatomic mole-
cule and thus causes a change in the expected
intensities found in the band spectrum. If there
were no nuclear spin, the statistical weight of any
state for which the total angular momentum is J,
would be 2J+1. The presence of a nuclear spin
further increases the degeneracy and changes the
statistical weight of the states. It is found that
the states whose wave functions are symmetrical
in the position coordinates of the two nuclei are
not affected in the same way as those whose wave
functions are antisymmetrical. Let us suppose
that a wave function symmetrical in the position
coordinates is multiplied by a weight factor g,
while one antisymmetrical is multiplied by a
factor g,. We know (see paragraph 4) that a given
molecule will have only those states which have
wave functions which are totally antisymmetric
(symmetric) if the nuclei obey the Fermi (Bose)
statistics. If the particular nucleus has even
atomic weight it will follow the Bose statistics,
for odd atomic weight the Fermi statistics. For
nuclear spin zero therefore we see that either g,
or g, must be zero since the symmetry is entirely
determined by the position coordinates.

If I is the nuclear spin of each of the two nuclei
there will be 2741 spin orientations and thus
(2I+41)? spin functions representing the com-
ponents of the two nuclear spins. Of these, (27+1)
have the same component for both spins and will
thus be symmetrical. For the remaining 27(27+1)
functions, half can be built up as symmetrical
combinations and half as antisymmetrical combi-
nations. There are thus (I+41)(2/+1) sym-
metrical and 7(27+1) antisymmetrical spin func-
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tions. For a molecule containing nuclei which
obey the Fermi statistics we can make the total
wave function antisymmetrical from either a
symmetrical or antisymmetrical position function
by making the spin function either antisym-
metrical or symmetrical. Because of the unequal
weighting of the states corresponding to these
latter, those states for which the position
functions are antisymmetrical will have the
greater weight. The ratio will be

go/g=I+1)/1.
For a molecule containing nuclei which obey the
Bose statistics the total wave function can be
made symmetrical from either a symmetrical or
antisymmetrical position function with a spin
function which is either symmetrical or anti-
symmetrical. This leads to a ratio of the weight
factors
&/8=(I+1)/1.

Successive rotational states will show alternate
symmetry in the position coordinates and thus
will have different statistical weights. This leads
to a band structure in which successive lines have
an intensity ratio (+1)/I, no matter whether
the Fermi or the Bose statistics are obeyed. A
determination of the positional symmetry charac-
teristics for the rotational states allows one to
decide the symmetry of those states of greater
weight and hence whether the nuclei follow the
Fermi or the Bose statistics. H!, Li?, Na2, P3,
CPB%, and K* are found to obey the Fermi
statistics while H2, Het, N, Q!¢ and S*2 are found
to obey the Bose statistics.

The above method is very useful in the
determination of nuclear spins, particularly for
light nuclei. The main advantage of the band
spectrum determination is that since it depends
only on the nuclear angular momentum, it is
possible to obtain the spin of nuclei even in case
the spin is zero. Methods which determine the
hyperfine structure separation are unable to
distinguish between zero magnetic moment and
zero spin. On the other hand, no information
about the nuclear magnetic moment can be
obtained by this method of alternating in-
tensities. Nuclei whose angular momenta have
been determined from band spectra include H?,
He, Het, Li7, C12, N, O'6, F19, Na®, P, $% and
CIss,
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V. Other methods

The specific heat of a gas will depend on the
distribution of molecules over the various low
states. At ordinary temperatures, 7" is large
compared to the distance between the rotational
states and any possible weighting of these states
is irrelevant. For very low temperatures this is
not the case and the specific heat of hydrogen,
for example is well known at temperatures where
kT is not large. For the hydrogen molecule the
alternate rotational states are symmetrical in the
nuclei beginning with the lowest with J =0, while
those with J odd are antisymmetrical. From
above this means that since the nuclei are
expected to obey the Fermi statistics, g./g.
=J1/(I+1). Under ordinary conditions there will
be no transitions from the symmetrical to the
antisymmetrical states so that if the gas were
run down to a very low temperature the mole-
cules would not concentrate in the lowest state.
This lack of transitions means that hydrogen
must be treated effectively as a mixture of two
gases and the specific heat determined ac-
cordingly. It was only after this had been done by
Dennison (D2), that it was possible to get an
explanation of the behavior of the specific heat
at low temperatures. Furthermore it was found
necessary to weight the even and odd states in
the ratio % in order to fit the specific heat and
hence, from above, 7=1.

While there are no transitions between sym-
metrical and antisymmetrical states under ordi-
nary conditions, it is well known that it is
possible to separate parahydrogen and also
orthodeuterium by adsorption of the hydrogen
or deuterium on charcoal at the temperature of
liquid hydrogen. These preparations can be made
with considerable purity and are very stable. It
is, however, possible to induce para-ortho tran-
sitions by the presence of an inhomogeneous
magnetic field such as that due to the para-
magnetic oxygen molecule. A. Farkas and L.
Farkas (F1) have found that both parahydrogen
and orthodeuterium will slowly reach the equi-
librium condition in the presence of oxygen. It is
possible to compare the rates of conversion of
parahydrogen and orthodeuterium under suitable
conditions and Kalckar and Teller (K1) have
found that the relative speed of conversion de-
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pends only on the spins and magnetic moments
and on the equilibrium concentrations. It is
possible by measuring the relative speeds of
conversion to make an accurate determination of
the ratio of magnetic moments for hydrogen and
deuterium. Farkas and Farkas find up/up=23.96
+0.11.

§48. VALUES OF NUCLEAR SPINS AND
MAGNETIC MOMENTS

There are a considerable number of elements
which have been investigated by one or more of
the methods described in §46 and nuclear spins
determined. These values of the nuclear spins are
gathered in Tables XVII, XVIII and XIX. The
first of these contains those nuclear spins which
it is believed are known with certainty. Those
known with somewhat less certainty are given in
Table XVIII where a grade of 4, B or C has been
appended to indicate decreasing certainty. Such
a division into groups of this sort is necessarily
somewhat arbitrary because there are no sharp
divisions in the degree of certainty of the
nuclear spin. It is apparent from §47, however,
that not all methods used to determine the
nuclear spin are equally sure and it is because of
this that the above division has been made. The

TaBLE XVII. Nuclear spins.

ELE- ELE-

MENT SOURCE Z A I |MENT SOURCE zZ A I
H * 1 1 1/2|Rb * 37 855/2
H * 1 2 1 87 3/2
He B 2 4 0 |Cd * 48 111 1/2
Li * 3 7 3/2 113 1/2
C B 6 12 0 |In * 49 115 9/2
N * 7 14 1 {Sn * 50 117 1/2
o B 8 16 0 119 1/2
F * 9 19 1/2|Sb * 51121 5/2
Na * 1123 372 123 7/2
Al * 13 27 1/2|Cs * 55 133 7/2
P B 15 31 1/2}Pr H(WS5) 59 141 5/2
S B 16 32 0 |Eu * 63 151 5/2
K * 19 39 3/2 153 5/2

* 19 41 3/2{Ta H(MS) 73 1817/2

Mn * 25 55 5/2|Re H(Z1) 75 185 5/2
Cu * 29 63 3/2 (G14)(M12) 187 5/2
65 3/2|Hg * 80 199 1/2

Ga * 31 69 3/2 201 3/2
71 3/2|T1 * 81 203 1/2

As * 33 15 32 205 1/2
Br * 35 79 3/2(Pb * 82 207 1/2
81 3/2|Bi * 83 209 9/2

Table XVII contains those nuclear spins which are believed to be
certain. In the “‘Source” column, means determined from band
ag:ctra and H from hyperfine structure, while an asterisk indicates
that it is discussed in the text.
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TaBLe XVIII. Additional probable nuclear spins.

ELe- ELE-

MENT SOURCE Z A I MENT SOURCE Z A 1
Li * 3 6 1C| Xe * 54 129 1/2A
Cl B 17 35 5/2C 131 3/2B
K * 19 41 >1/2 Ba * 56 135 5/2C
Sc * 21 45 7/2A 137 5/2C
v * 23 51 7/2B| La * 57139 7/2A
Co * 27 59 7/2A Tb H(S6) 65159 3/2B
Zn * 30 67 3/2B| Ho H(S14) 67 165 7/2A
Kr * 36 83 9/2C{ Tu H(S13) 69 169 1/2B
Sr * 38 87 =3/2C| Lu AR 7/2B
Cb * 41 93 9/2B| Hf H(R8) 72 177<3/2C
Ag * 47 107 3/2C 179 =3/2C

109 3/2C| Ir H(S15) 77 191  1/2C

I * 53 127 5/2A| Pt H(V2) 78195 1/2C
u * 79197 3/2C

Pa H(S5) 91231 3/2A

Table XVIII contains additional nuclear spins which are consxdered
probable. Decreasing probability is indicated by the letters A,
with those marked A being mearly certain.

tables give in the second column an indication of
the source of the information in some cases and in
other cases simply an asterisk to indicate that the
particular element is discussed briefly below.
The nuclear spins are in every case assigned to
particular isotopes. In general this can be done
simply, because the element is either single or
consists of only two isotopes whose relative
abundances are well known. In such cases there
is no confusion in assigning the nuclear spins.
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In other cases where there are a large number of
isotopes some further interpretation is necessary.
It is first noticed that the majority of the isotopes
represented in the tables of spins have odd mass
numbers and that all of these isotopes with odd
mass numbers show half-integer spins. The
isotopes with even mass numbers show integer
spins, mostly zero. Furthermore it should be
stated that no measurable hyperfine structure
has been found for any isotope with even mass
number 4, and even atomic number Z (meaning
either small magnetic moment or zero spin). Now
the cases mentioned above for which there exist a
considerable number of isotopes have all been
studied by the direct observation of the hyperfine
structure. In the interpretation of the resulting
patterns it has been assumed that the even
isotopes show no structure. This assumption is
very reasonable in view of the above regularity
and indeed has a striking confirmation in the
cases of Pb and Hg. For the first of these
Kopfermann (K7) has been able to designate the
isotopes by using uranium and thorium lead. For
Hg the evidence that the strong central com-
ponent is formed by the even isotopes which do
not have hyperfine structure is already well
indicated by the intensities but is confirmed by
the presence of one line for which the central

TaBLE XIX. Nuclear magnetic moments.

ELE- OBs. ELE- OBs.
MENT VA A I m CLaAss RaTIO MENT zZ A I » Crass RaTtIO
H 1 1 1/2 29 I cd 48 111 172 —0.65 II
2 1 08s 11 39 13 172 —0.65 1 1.00
Li 3 6 1C ~0.8  III In 49 115 972 57 1
7 3/2 32 1 Sn 50 117 172 —0.89 II 1.00

N 7 14 1 ~02 I 119 12 —0.89 1I :
F 9 19 1/2 3 I Sb 51 121 5.2 37 1 1.32
Na 11 23 3/2 20 1 123 772 28 1 .
Al 13 27 172 22 1 Xe 54 129 124  —0.9 I
K 19 39 3/2 040 1 L81 131 3/2B 0.8 11 :

41 3/2 +022 1 : Cs 55 133 772 2.5 I
Sc 21 45 7/2A 36 1 Ba 56 135 5/2C 1.0 II
Cu 29 63 3/2 25 1 1.00 137 572C 1.0 II

65 3/2 2.5 1 : La 57 139 7/2A 2.8 I
Zn 30 67 3/2B —-1.7 1 Eu 63 151 572 I
Ga 31 69 372 21 1 0.79 153 5/2 I 2.2

71 3/2 27 1 Au 79 197 3/2C 0.3 I
As 33 75 3/2 1.5 1 Hg 80 199 172 0.5 I _g00
Kr 36 83 9/2C -1 11 201 372 -0.6 II :
Rb 37 85 5/2 14 1 0404 | TI 81 203 172 14 1 0.98

87 372 28 I - 205 172 14 I :
Sr 38 8 =3/2C ~-—08 II Pb 82 207 1/2 06 II
Ag 47 107 3/2C 02 1 Bi 8 209 972 4.0 I

109 3/2C 02 I

Table XIX

) of the various elements in units ¢h/2Mc. A number given in the ratio column is the ratio of the

ins the s G
magnetic moment of the isotope wnth smaller A (mass number) to that with larger A. All elements given here are discussed briefly in the text.
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components are absent (G8). This line is ordi-
narily forbidden but arises because two atomic
states are not separated by an amount large
compared to the hyperfine structure. The ‘‘for-
bidden” line should thus occur only for those
isotopes possessing structure. The other cases in
which a number of even isotopes exist in addition
to the odd ones mentioned here are Zn, Kr, Sr,
Cd, Sn, Xe, Ba and Hf. These even isotopes
either have spin zero or very small magnetic
moments.

Most of the known nuclear spins are of isotopes
with Z and 4 both odd (class I) and these spins
are half-integer. There are fewer with Z even and
A odd (class II) and these are also half-integer.
There are only three (this type of nucleus is very
rare) with Z odd and 4 even (class III) and they
have spin unity. There are four with Z and 4
both even (class IV) and these spins are zero.

The nuclear magnetic moments are gathered
in Table XIX. These are mostly derived from the
hyperfine structure separation by the use of
Goudsmit’s equations (248) and (249). The mag-
netic moment is given in the column headed p
and is in units po/1838. All elements for which
magnetic moments are given, are discussed
briefly in the text. The nuclear magnetic moments
roughly follow certain regularities. In general
those nuclei of class I have magnetic moments
which are large (>1) and positive. The nuclei of
class II all seem to have small magnetic moments
and are mostly negative. The three of class III
are all small, that of H? being positive. No
magnetic moments are known for elements of
class IV, since none of them show any hyperfine
structure. As mentioned before this may mean
zero angular momentum or small magnetic
moment. Since the few nuclei of this type for
which spins are known all have 7=0, perhaps the
former possibility is the more probable.

In view of the approximations which are
necessary in order to determine nuclear magnetic
moments, there is one sort of information which
is of great interest because it does not depend on
these approximations. In cases where there are
two isotopes the ratio of the magnetic moments
can be determined directly from the hyperfine
separations and the values of the spins by making
use of the fact that wave functions of the two
isotopes are the same in the neighborhood of the
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nucleus. There are twelve such ratios which are
known and they are listed in Table XIX, giving
the ratio of the magnetic moment of the isotope
with smaller 4 to that of the isotope with larger
A. Since they should have an accuracy which is
limited only by the accuracy of the hyperfine
measurements these ratios constitute the most
accurate information about nuclear magnetic
moments.

There is really no satisfactory way of ascer-
taining the errors in the values of the nuclear
magnetic moments themselves. Calculations
using wave functions have been found to give
widely varying results in the case of Na (see p.
209). The better the wave functions were cor-
rected, the more nearly did the values of the
magnetic moment obtained -agree with that
obtained by the use of the Goudsmit-Fermi-
Segré approximate formulas. Probably the best
indication of the accuracy comes from the con-
sistency of the values obtained from different
atomic states, i.e., by using different individual
electron hyperfine separation constants. In de-
termining the magnetic moment care must be
exercised not to use any atomic states which are
subject to large perturbations (see p. 211). It is
nearly impossible to avoid such perturbations in
atoms which have complicated configurations of
valence electrons, though it is sometimes possible
to find cases where they are not important. In
general the most accurate information will come
from atoms or ions which have simple valence
configurations. There are numerous nuclei whose
external electron structure is too complicated to
allow a determination of the nuclear moments at
present (for example Eu).

H

The nuclei H! and H? are known to have spin
3 and 1, respectively. These values have been
determined from band spectra (H16)(K2)(M19)
and in the first case also by the atomic beams
method (unpublished) and from the specific heat
at low temperatures (D2). The value of the
magnetic moment (¢=2.9) of H! is that deter-
mined by Rabi, Kellogg and Zacharias from the
determination of the hyperfine structure sepa-
ration of the normal state (unpublished and
(R2)(R4)). The magnetic moment of H? is also
the value given by Rabi, Kellogg and Zacharias
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(R3). For hydrogen the calculations of the
magnetic moment use the exact wave functions
of course; the errors arise from the difficulties
of measurement. The value 0.7 for H? is in
agreement with the ratio u(H!)/u(H2) =3.96
determined by Farkas and Farkas (F1) which is
more accurately known than either of the
magnetic moments.*
Li

The work of Fox and Rabi (F13) using the
atomic beam method indicates that Li® has a
spin =1. It seems probable that the spin is 1
(see §36). The ratio of the magnetic moments
can be determined directly and gives u(Li%)/
w(Li”) =0.25. This means that the magnetic
moment of the Li¢ is about the same as for H2
For Li’ the nuclear spin has been determined
from band spectra by Harvey and Jenkins
(HS), from hyperfine structure by the work of
Guttinger (G15), Schuler (S2); Guttinger and
Pauli (G16) and Granath (G10) and by atomic
beams by Fox and Rabi (F13). The magnetic
‘moment has been determined from the hyperfine
structure separations of Li IT 152535, (G10) and
from the hyperfine separation of the ground state
of Li I (F13). The two values thus obtained are
practically identical.

N

The N nucleus is known to have a spin of 1
from the alternations in intensity in band spectra
as observed by Ornstein and Van Wijk (02).
From the study of lines in the N I spectrum
expected to have large hyperfine structure by
reason of the large nuclear interaction, it has
been concluded that the magnetic moment must
be in the neighborhood of 0.2 or smaller (B1).
Because of the importance of the magnetic
moments of light elements it would be very
desirable to have a measurement on the normal
state by the atomic beams method. The nitrogen
nucleus follows the Bose statistics (H11)(R7).

F

The fluorine nucleus has a spin of %, determined
from band spectra by Gale and Monk (G1) and

* Note added to proof: More recently Rabi, Kellogg and
Zacharias have found that p(H?)=0.85+0.03. This is not
in agreement with the ratio determined by Farkas and
Farkas and this latter is therefore subject to doubt.
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confirmed from hyperfine structure measure-
ments by Campbell (C2). The nuclear magnetic
moment has been obtained from these latter
measurements by Brown and Bartlett (B30).
They have carried out calculations using Hartree
functions and have obtained values which are in
the neighborhood of 3. There is quite a variation
in the values obtained from different levels, at
least part of which is due to the fact that the
hyperfine structure patterns are not completely
resolved.

Na

The nuclear spin of Na? has been determined
from atomic beam deflection (R1), from band
spectra (J5), from hyperfine structure intensities
(G12), and from the polarization of resonance
radiation (E2)(L3), and the values thus found
are all I=3/2. The hyperfine structure separa-
tions of several states have been measured
(R1)(E2)(L3)(G12)(J3)(F13) and the magnetic
moments have been calculated (W15)(S21) by
using the G.F.S. relations and with various sorts
of wave functions (see p. 209). The value given
in these tables is that obtained from the G.F.S.
relations for the states 3s2Sy2 and 4p 2P;p. The
values for 3p 2Pj, are between 2.25 and 2.6
depending on the value of the separation used.

Al

The nuclear spin 7=$} has been determined by
Ritschl (R11) from observations on the number
of components in the hyperfine structure. The
measurements give only a single one-electron
separation factor a(3s) since the separation
observed in the Al IT and Al I terms are attrib-
uted to this electron (R11)(P3)(G8). The value
of the magnetic moment is determined from this
single separation. Brown and Cook (B31) have
obtained magnetic moment 2.4 from the same
separation by using Hartree functions.

K

The nuclear spin of K39 has been determined
by the atomic beam method by Millman (M13)
and is 3/2. The magnetic moment is determined
from the separation of the normal state 4s2Sy;
which has been accurately determined by the
deflection method (F13) as well as by the
hyperfine structure measurements of Jackson and
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Kuhn (J3)(J4). Recent measurements (Rabi and
co-workers, unpublished) with atomic beams
indicate that the hyperfine structure of the
normal state of K?® is regular and the magnetic
moment therefore positive. This result is in
disagreement with the observed intensities (J4)
of the hyperfine structure, but this may be due
to reversal in the hyperfine lines. The value
—0.40 for the magnetic moment is given from
the G.F.S. relation while Gibbons and Bartlett
(G4) get u=1.2 using Hartree functions. This is
a wide discrepancy but in view of similar
difficulties with Hartree functions in Na, the
former value is taken. The nuclear spin of K#
has been found by Manley (unpublished) to be
3/2 using atomic beams. The magnetic moment
determined from the separation of the normal
state is 40.22.

Sc

Schuler and Schmidt (S11) and Kopfermann
and Rasmussen (K10) have found the nuclear
spin of Sc*® to be 7/2, and the first workers have
determined it from the number of components.
The magnetic moment has been determined by
the second workers from the ds?2D;p, and 2Dy
separations. Since these separations are not
resolved directly but are inferred from an unre-
solved pattern and since it is doubtful what the
correct value of Z; should be (they use Z;=8),
the resulting magnetic moment is very approxi-
mate. The two separations give the same p,
however.

\'s

The hyperfine structure of the V I spectrum
has been investigated by Kopfermann and
Rasmussen (K12) who assign a nuclear spin of
7/2. Because of the extreme complexity of the
unresolved patterns this value cannot be con-
sidered as certain. The interactions are too
complicated to determine a magnetic moment
from the observed separations.

Mn

The nuclear spin of 5/2 for Mn®% has been
determined by White and Ritschl (W7). The
complexity of the electron configurations do not
allow a determination of a value for u.
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Co

From the work of More (M16) and Kopfer-
mann and Rasmussen (K11) the nuclear spin 7/2
of Co% is practically certain. No value of the
magnetic moment can be obtained from the
measured separations because of the complexity
of the electron configurations.

Cu

The hyperfine structure of Cul has been
studied by Ritschl (R10) who found the spins
of both Cu® and Cu® to be 3/2. Though the
lines in the resultant patterns are not coincident
for the two isotopes they both have the same
spin and the same hyperfine separations. This
means that they both have the same magnetic
moment. The magnetic moment 2.5 is determined
from the d's %Sy, and the d%?2Ds, 5. These
give, respectively, 2.5, 2.5 and 2.1 with the
value Z;=19.6 determined by Fermi and Segre
for the d electron. These terms are selected
because they are expected to show the smallest
perturbation effects from terms with much larger
structure. Perturbation effects may, however, be
present for both of these terms and this adds to
the uncertainty of the magnetic moment. The
approximate agreement of the values given
above indicates that these perturbations are
probably not serious.

Zn

Hyperfine structure has been found by Schuler
and Westmeyer (S19) for Zn II. The observed
components are very weak compared to the
strong lines assigned to the even isotopes in
accordance with expectations for Zn%. They
conclude that the spin is 3/2 though this con-
clusion is not certain because the pattern is not
completely resolved. By using the observed
separation for d%?2D;, the magnetic moment
would be about —1.7. This value has no other
confirmation.

Ga

The nuclear spins of Ga® and Ga™ have been
determined by Jackson (J1) and Campbell (C1)
from a study of the hyperfine structure. The two
nuclei have the same spin I'=3/2 but different
magnetic moments as found by Campbell. The
ratio u%/u=0.79 is quite exact. The individual



220

magnetic moments are determined from the
separation constants for the 5s 25y, and 4p Py,
states in Ga I and from the separation constant
a(4s)=0.43 cm™! as determined from numerous
separations in Ga II. These give 2.24, 2.36 and
2.07 for u®, respectively. Perhaps none of these
values is very accurate.

As

The nuclear spin of As’ has been determined
by Tolansky (T4) and by Crawford and Crooker
(C20) from interval measurements on the hyper-
fine structure. Interval measurements may be
influenced by the presence of an electric quad-
rupole moment for the nucleus. Crawford and
Crooker’'s determination on the intervals of
4555 35, of AsIV is free from this possibility,
however. The magnetic moment u=1.5 is calcu-
lated from the separation factor a(4s) deter-
mined from the AsIV measurements. The
separations in As II are subject to large pertur-
bations so cannot be used directly to determine u.

Br

The nuclear spins of Br? and Br®! seem to be
quite certainly 3/2 from the work of Tolansky
(T3). Though none of the spectral lines investi-
gated were completely resolved, the appearance
of almost identical structures having four compo-
nents for several lines having 4p*5s 4P;;, as a
final state indicated 7=3/2. Both isotopes have
the same abundance and the structures are
superimposed. There are several separations
known but the interaction with the nucleus is
through all the five electrons and perturbations
are also very probable. No magnetic moment is
determined.

Kr

Krypton has a number of even isotopes and
one odd one, Kr8. The spectral lines havé been
studied by Kopfermann and Wieth-Knudsen
(K13) and are found to have a very strong
central component corresponding to the even
isotopes and a weak structure attributed to
Krs3, It is possible to conclude that 7>% and
the value 9/2 makes the weighted center of the
fine structure coincide with the even isotopes.
This value is uncertain. By using Goudsmit’s
sum relations (GS) it is possible to obtain a value

H. A. BETHE AND R. F.

BACHER §48
for u from a(S5s). This value is negative and
roughly unity.

Rb

The spins of Rb® and Rb%" have been deter-
mined by Kopfermann (K8) from the hyperfine
structure of the Rb II lines and also by Fox and
Millman (unpublished) using the atomic beams
method. Both methods give I(85)=5/2 and
I(87)=3/2. The magnetic moments have been
determined from the separations for 5s2S, the
normal state of Rb I. The ratio of the magnetic
moments (0.494) is believed to be quite accurate
(~1 percent).

Sr

Strontium is known to have hyperfine struc-
ture (M18)(S17)(S3)(W4) and it is attributed
to Sr#7. The spin is very uncertain but using the
value I=3/2 a value for the magnetic moment
can be obtained from the separation of the
normal state of Sr II. (Av=—0.15 cm™.)

Cb

The spin of Cb% has been determined by
Ballard (B7) from the hyperfine structure. The
lines are not completely resolved but a careful
study has yielded the value 7=9/2. The value
of the magnetic moment (B7), u=3.7 is very
rough at best.

Ag

A doubling of the resonance lines of silver has
been observed by Hill (H15). Because of the
intensity ratio of the components it is concluded
that the structure is hyperfine structure and not
isotope shift, since the two isotopes have nearly
the same abundances and the observed structure
shows a weak and a stronger component. A
tentative value of 3/2 is suggested for the spins
of both isotopes. If this is correct then the two
isotopes would have the same magnetic moments.
They would be about +0.2.

Cd

Cadmium has six isotopes, 4 even and 2 odd
whose mass numbers are 111 and 113. The lines
of the spectrum have been studied by Schuler
and co-workers (S4)(S9) and are found to have
a strong central component attributed to the
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even isotopes and a simple hyperfine structure
attributed to 111 and 113 together. The spins
of the two odd isotopes are certain under these
assumptions which are made almost mandatory
by the detection of isotope shift (S20) in Cd II.
The magnetic moments for the odd isotopes are
determined from the separation factor a(Ss) for
the Ss electron, which gives rise to most of the
structure in Cd I, and that of the 6s electron (J6).
These give p=—0.66 and —0.63, respectively,
for both isotopes.

In

The nuclear spin of In's has been determined
by Jackson (J2) and Paschen and Campbell
(P1)(P2). Though no lines have been found
where the large spin could be determined directly
from the number of components the accurate
measurement of the separations of 5s6s 3S; which
would not be expected to show any quadrupole
effect, makes I=9/2 quite certain. The unusually
large magnetic moment is determined from the
separations observed in In I, a(6s)=0.056 cm™!
and a(6p;) =0.076 cm™ and deduced from In II,
a(5s)=0.70 cm™. These give u=35.2, 5.9 and
6.0, respectively, for the magnetic moment.

Sn

Tin has a large number of isotopes but only
two of these Sn!'7 and Sn''® are odd and present
in any considerable amount. A study of the
hyperfine structure by Tolansky (T5) and by
Schuler and Westmeyer (S18) shows that the
lines can be interpreted in a manner similar to
Cd, assigning the weak structure to the odd
isotopes. If this structure is due to both odd
isotopes then it is quite certain that the spin of
each is 1/2. From the hyperfine separations of
6s 25y, and 6p 2Py in Sn I1 the magnetic moments
are u=—0.90, —0.87, respectively.

Sb

The nuclear spins of the two antimony isotopes
Sb?' and Sb'?* have been determined by the
work of Crawford and Bateson (C19) Badami
(B4) and Tolansky (T6). Crawford and Bateson
have completely resolved the line 5s6p 3P,
—5s6s 35y of Sb IV and interval measurements
lead uniquely to the spins 1(121)=5/2 and
1(123)=7/2. The interval rule is expected to
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hold very well here as a possible quadrupole
moment would show no effect for these states.
The magnetic moments are determined from the
separation factor a(5s)=1.4 cm™! for Sb?! de-
termined from these measurements. A determi-
nation of the same a(5s) from the sp? configura-
tion of Sb II leads to a lower value of a(5s) =1.04
but this might be expected since this configura-
tion is undoubtedly perturbed and its hyperfine
structure made smaller thereby. By using the
former value, u(121)=3.7. The ratio w(121)/
#(123)=1.32 can be determined directly from
the observed separations.

I

The hyperfine structure of the iodine spectrum
has been studied by Tolansky (T7)(T8)(T9) who
has observed a large number of lines. Interval
measurements on lines showing structure pre-
dominantly from one level indicate that the spin
is very probably 5/2. The large number of
possible energy states and the existence of large
perturbations do not permit an evaluation of the
magnetic moment of 11?7 at present.

Xe

There are a considerable number of Xe
isotopes but only two, Xe!?® and Xe!® with odd
mass numbers. Kopfermann and Kindal (K9)
and Jones (J7) find that the observed hyperfine
structures can be accounted for by assigning
nuclear moments to these odd isotopes. The spin
of Xe is almost surely 1/2 and that of Xe!®
probably 3/2. With the sum relations of Goud-
smit (GS) it is possible to find a separation factor
a(6s) = —0.164 cm™! for Xe??. This gives a rough
value for the magnetic moment u=—0.9. The
ratio of the moments is known from the observed
separations, and the spins x(129)/u(131) = —1.11.
In this case the two magnetic moments have
opposite signs.

Cs

The nuclear spin of Cs!3® has been determined
from hyperfine structure by Kopfermann (K6)
and by the method of atomic beams by Cohen
(C11). The value I=7/2 is quite certain. Accu-
rate measurements of the hyperfine separations
of several states have been made by Granath
and Stranathan (G11) and Heydenburg (H13).
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The separation factors and magnetic moments
obtained from them are as follows: a(62Sy)
=0.0767 cm™, x=2.70; a(6*Py;) =0.00925 cm™,
u=245; a(6*P3;)=0.00142 cm™, u=2.37;
a(7zP1/2) =0.00329 cm“, ,u=2.67 H 0(72P3/2)
=0.000486 cm™!, u=2.48. The values Z;=Z and
Z ;=7 —4 have been used for s and p electrons as
usual. Slightly different values of Z; determined
either from the doublet separation or from the
observed ratio of the hyperfine separations from
the two members of the doublet lead to small
changes in the above values (G11)(H13).

Ba

Kruger, Gibbs and Williams (K14) have con-
cluded from a study of the intensities of .the
Ba II hyperfine structure that the spin of Ba!s®
and Ba!¥” is probably 5/2. The presence of
several isotopes makes this value rather uncer-
tain. All the lines show strong central components
corresponding to the even isotopes. Using the
separations (K14)(R12) of the 6 %S and 6 2Py,
states the magnetic moments are respectively
#=1.06 and 0.82 if I=5/2.

La

The angular momentum of La'®® is very.

probably 7/2 % from the hyperfine structure
measurements of Anderson (A1)(A2). The mag-
netic moment has been determined by Crawford
and Grace (C21) from the separations observed
in La IIl. They find for the states 6s2S and
6p 2Py2 the values p=2.84 and 2.87. From a
study of the d2s configuration Crawford (C18)
gets for the separation factor a somewhat
different value which gives u=2.5.

Eu

The two europium isotopes Eu!® and Eu!®?
have been found by Schuler and Schmidt (S15)
to have angular momentum 5/2 % for each type
of nucleus. These values are established directly
by the number of components observed. The
individual magnetic moments cannot be found
easily due to the complicated electronic structure,
but their ratio is found directly. There is evidence
in Eu that the interval rule is not followed
equally well for both isotopes. This is a deviation
which cannot be explained by a perturbation
effect (see §50).
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Lu(Cp)

From the relative intensities of the hyperfine
components, Schuler and Schmidt (S16) find a
value 7/2 % for the angular momentum of the
Lu'"® nucleus. Evidence of deviations from
interval rule are also found.

Au

Hyperfine structure found for gold by Ritschl
(R9) and Wulff (W16) indicates that Au!®” has a
nuclear spin which is probably 3/2. By using
this value and the observed separation of the
normal state, u=0.2.

Hg

Mercury has several isotopes of even mass
number and two odd ones Hg!*® and Hg?" to
which the observed hyperfine structure is at-
tributed. These two isotopes have been found by
Schuler, Keyston and Jones (S8)(S7) to have
spins 1/2 and 3/2, respectively. Numerous lines
of the Hg I spectrum have been investigated and
the separations are well known. These separa-
tions, however, are due mainly to the 6s electron
which has a large separation factor. The values
of a(6s) for Hg'® determined from various
configurations do not agree particularly well
(from 6s 9s, a(6s)=1.37 neglecting a(9s); from
6s 6p, a(6s)=1.15). These give wx(199)=0.52,
0.43, respectively. The ratio of the magnetic
moments gives u(199)/u(201) = —0.90.

Tl

Hyperfine structure has been found in the T11,
II and III spectra (S10)(M3)(M2). All of these
patterns show conclusively that =% for TI2®
and TI?%, The separations in Tl II are due
almost entirely to the 6s electron so that while
it is possible to make several estimations of this
separation constant this leads to only one
determination of 4. By using (248) and (249) the
following values of u are obtained from the
various separations: Tl III, a(7s)=1.37 cm™,
£=0.9; a(85)=0.606 cm™, u=1.5; a(6p12) =1.21
cm™, p=1.8; a(7p12) =0.375, u=1.4; T1 II a(6s)
=58 ecm™, u=17; Tl I a(75s)=0.402 cm™,
w=11; a(6p12)=0.710 cm™, u=2.0. These
values vary rather widely and are probably not
very trustworthy. Calculations by Breit (B24)
and Wills (W14) give u(6p12)=1.45 and u(7s)
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=1.35 from the Tl I separations. There are
rather large perturbations in the thallium spectra
which make some of the separations very
irregular and those expected to be particularly
bad are not included above. Though the compo-
nents due to the two isotopes are usually not
separated there is evidence (S10) that TI%0¢ may
have slightly larger separations, though this
small effect may be due to the presence of a
quadrupole moment for one of the isotopes.

Pb

The lead isotopes, with 4 =204, 206, 207, 208,
are all evident in the hyperfine structure.
Kopfermann (K7) has shown, by using samples
of uranium lead (206) and thorium lead (208),
just which single components should be assigned
to these isotopes. Pb%” shows a structure which
is due to a nuclear spin I=%. The presence of
perturbations makes the determination of u
somewhat unreliable. Using the separation (M4)
of 65 75 3S; from Pb III and neglecting the value
a(7s) we find from (248), x=0.64. This value
would be smaller had a(7s) not been neglected.
Using a(6s)=1.89 as determined by Rose (R13)
from Pb II sp? we find u=0.40. This is probably
too small due to perturbations. Breit and Wills
(B28) find x=0.75 and 0.67 from considering
the 6p? and 6p 7s configurations of Pb I.

Bi

For Bi?®, I=9/2. This value has been deter-
mined from the study of the Zeeman effect for
the hyperfine structure by Back and Goudsmit
(B3). Hyperfine structure has been observed
and studied in the spectra of Bi I-V. Of these
Bi IT and III may be expected to show large
perturbation effects due to excitation of inner
electrons. For Bi IV, there are also perturbations
but it is possible from some of the unperturbed
levels to find (M1), a(6s) =2.3 cmL. This value
is practically the same as that determined
directly from 6s6ps2 which should not be greatly
perturbed. From Bi V the separation of the
normal state (A3) gives a(6s) =2.6 cm™.. By using
this value in (248), u=3.5. It is possible that the
$* configuration of Bi I is not badly perturbed
and we may obtain the separation constant,
!a(6p1/z)=0.375 cm™. By using (249) this gives
u=3.5. This agreement does not mean much
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since the second value should certainly be larger
due to the screening of the other p electrons.
Breit and Wills find u=5.4 from $?* of Bi I. The
value 3.5 given in Table XIX, probably is not
very reliable.

§49. IsOTOPE SHIFT IN ATOMIC SPECTRA

The spectral lines which are due to the
different isotopes of an element usually do not
have the same -wave-length and the energy
states of the various isotopes must therefore be
spaced differently. If this effect occurs alone,
there are as many components of a given spectral
line as there are isotopes and their intensities
are proportional to the relative abundances. If
we consider the energy states for a particular
isotope and compare them to those of another,
we cannot say from the isotope shift alone how
the energy levels of one isotope are placed with
respect to those of another; we can detect only
differences in the separations of the energy
levels. Accordingly we expect such an isotope
effect to be detectable only by means which
study the transitions between energy states.

In the preceding paragraphs the presence of
several isotopes was a complication which made
the interpretation of the hyperfine separations
more difficult. We found that isotopes having
even mass number 4 show no hyperfine separa-
tions except those few peculiar nuclei of class I11
(H2Li®* B1* N'4), Those nuclei with A4 odd
generally show hyperfine structure. For elements
which have a number of isotopes we may expect
isotope shift alone for those with even 4 and
isotope shift plus hyperfine structure for those
with odd A. In the first case we can determine
the relative displacement of the levels directly
from the observed shifts. In the second case it is
necessary to allow for the hyperfine structure
and find the position of the hypothetical level
without hyperfine structure. Because of the
regular spacing and known weighting of the
levels, this can be done quite easily and it is
thus possible to determine the isotope shift for
all the isotopes whether they show hyperfine
structure or not though the interpretation in
case they do is much more involved.

In order to ascertain the cause of isotope shift
it is perhaps best to examine first of all the effect
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of different mass for the different isotopes. It is
well known that a correction to the energy must
be made in a hydrogen-like atom if the nucleus
has been regarded as fixed. It is also well known
that the final energy depends upon the nuclear
mass and that the H!' and H? spectral lines are
not coincident but are displaced from each other
by an amount which is just that expected by
their mass difference.

In the case of an atom with several electrons
it is found that the shift in the energy levels
consists of two parts (H17)(B11), one of which
is just like the hydrogen case and is called the
normal effect and a new part which is character-
istic of the many electron problem and is called
the specific effect. If the center of mass is
regarded as fixed the Schrodinger equation for N
electrons of mass m and a nucleus of mass M
can be written

1 ~ 1
—WL—Zv%%—vaJ

2# k=1 k<j
4-(V(x)—W)y=0, (251)
mM ‘] i) ‘]
where u= , W=i—+j—+k—,
MA+m Oxc Oy« 0z

and x,, y« and 2, are the coordinates of the xth
electron with respect to the nucleus. Let us
consider that the characteristic values W(m)
and the solutions ¥(m) are known for the case of
the stationary nucleus. In order to compare with
these values let us neglect the second term in
(251) momentarily. It may then be seen by
introducing coordinates with respect to the
center of mass that the energy W’ is related to
W(m), the energy for a stationary nucleus simply
by

W'=aW(m),

where a=u/m. (251a)

Next if we consider the second term in (251) as
a perturbation, it gives a contribution to the
energy

h2
AW=—— | ¢*(m)[X VeV, W(m)dr. (251b)
M x<j

We now have the difference between the energy
in (251) and that for the problem of the station-
ary nucleus, separated into two parts (251a)
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the normal effect and (251b) the specific effect.
In order to evaluate (251b) it is necessary to use
wave functions for the particular atom in
question. Hughes and Eckart (H17) carried this
out for the case of Li and found agreement with
experimental data of Li I and Li I. Bartlett and
Gibbons (B11) have made the calculation for
the case of Ne. In this case the agreement is not
satisfactory since some of the lines show much
larger specific shifts than expected.

The shift due to the specific effect (251b) is
inversely proportional to the mass M or to 4 if
we replace M by A the mass number of the
particular isotope considered. We have then for
the normal effect.

W’—'————A W =({1 ” W

- <m)—( 2 ) (m),
(252a)

W' —W(m)=—(m/A)W(m).

Since the specific effect is also inversely pro-
portional to the mass number, the total energy
displacement D=W’—W(m)+AW is propor-
tional to 1/4. If we consider an element with
several isotopes with mass numbers 4, 4+46,
A+ 38, etc., the relative displacement for these
various isotopes can be written

Do—D1=C/A —‘C/(A +51) éC&l/A2.
(252b)
Dy—D, §C52/A2.

Since &, &, etc., are practically always small
compared to 4 this is a good approximation.
The relative displacement is thus proportional
to the differences of the masses of the two
isotopes. For several isotopes with successive
mass numbers we expect the components due to
the various isotopes to be equally spaced. This
affords a means of examining the isotope shift
without making the calculations in each case.
The first element in the periodic table which has
more than two isotopes all of which have
sufficient abundance, is Mg. There are three
isotopes with 4 =24, 25, and 26, present with
relative abundances 7, 1, 1. According to (252b)
we should expect any energy state tohave
relative displacements proportional to the mass
differences and hence the same must be true of
the relative shift in the spectral lines. Some of
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the spectral lines of Mg I do show isotope shift
(B2) but instead of showing three equally spaced
components, show only two components.* This
means that the observed shift cannot be ex-
plained by mass effect alone. For other elements
it has been found that the elements with even 4
are usually spaced approximately according to
(252b) but the odd isotopes do not occupy the
required positions.?® Schuler and Schmidt (S12)
have found in Sm that the even isotopes also
do not seem to be regularly spaced. It must be
concluded that mass effect alone is not sufficient
to explain the observed shifts for any but the
light elements.

If the isotope displacement of a state for
which the outer electrons are seldom in the
neighborhood of the nucleus (large 1) is arbi-
trarily called zero, then it is found that states
with electrons having small / and particularly
with s electrons, have large isotope displacement.
The amount of the displacement increases with
the number of penetrating electrons and the
degree of penetration. This means that pertur-
bation effects are very important for isotope
displacement as well as for hyperfine structure.
A simple example (B2) of this is found in the
case of Mg where most of the observed shifts
are directly due to perturbation effects and are
found to be quantitatively related to the amount
of the perturbation. The importance of states
showing penetration indicates that calculations
(D3) particularly for heavy atoms, which assume
Russell-Saunders coupling and neglect perturba-
tions must be considered as unreliable.

The presence of large displacements where
penetrating electrons are involved indicates that
isotope shift may be due to some difference in
the field in the neighborhood of the nucleus.
It has been pointed out by Bartlett (B8) that
such a difference is to be expected if one assumes
constant nuclear density. The heavier isotopes
have greater radii since R~A}, and will bind a

* The possibility that Mg? shows hyperfine structure
can be eliminated because of the nature of the states
involved.

9 It was suggested by Breit and Condon at the New York
meeting of the American Physical Society, February 1936,
that a small neutron-electron interaction might, though in-
significant elsewhere, show itself in the isotope shift. If the
odd neutron which nuclei of even Z and odd 4 contain,
(Mg? for example) would show such interaction it might

explain why these isotopes do not appear centrally between
those of mass 4 —1 and 4
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penetrating electron more loosely than the
lighter nuclei. Calculations have been carried
out by Breit and Rosenthal (B25)(R14) and
Racah (R6) who find that the change in the
energy of an s state due to a change in nuclear
radius Ay, is

Ra,? s 1 Ay
W= Rz(O)m[yoz‘+——yu’“+’]ﬂ—-,
VA [r(2s+1)]4 2v? Yo

2Zry Vv Z
where s=(1—v2)%; yo= [ U= y=—,
ao mc? 137

7o is the nuclear radius in cm inside of which V,
the potential energy is considered constant; ao
is the Bohr radius and R the Rydberg constant;
R(0) is the value of the Schrédinger radial
function at r=0 and it may be obtained in
terms of the observed hyperfine separation from
(240) if the magnetic moment has been previ-
ously determined from (248) or (249). Breit has
found that, with R?(0) determined in this way,
there is general agreement for Hg, Tl and Pb.
Since it is expected that 7o will be larger than
normal for nuclei containing an odd neutron or
proton, the shift for a nucleus with Z even and
A odd will be more nearly like that of nucleus Z,
(A+1) than like Z, (4 —1). For heavy nuclei,
however, it is known that the displacement for
nucleus Z, 4 is more nearly like Z, A —1. It is
possible that the extra neutron may interact
with the electrons to cause this effect.?® Detailed
comparisons have not yet been made for other
elements, but the light elements are in dis-
agreement with the “‘radius” effect since for Ne,
Mg, Cu and Zn it would be necessary to ascribe
smaller radii to the nuclei of larger mass number.
Although no entirely satisfactory explanation of
the observed isotope shifts has been found, the
variation for different atomic states indicates a
difference in the fields of the various isotopes in
the neighborhood of the nucleus.

§50. QUADRUPOLE MOMENTS

It has been found by Schuler and Schmidt
(S15) that certain elements show deviations from
the interval rule. Such deviations are to be
expected when two atomic states are very close
together but otherwise the interval rule should
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be obeyed if the interaction between the electrons
and the nuclear moment follows a cosine law.
The deviations found by Schuler and Schmidt
(S15) for Eu and by Mintz and Granath (M14)
for Bi cannot be explained by perturbation
effects. In the first case the two isotopes Eu!®
and Eu'®® show different deviations from the
interval rule and in the second case deviations
are found for the p® 2Dj, state of Bi which is not
sufficiently close to any other state to allow an
explanation on the basis of perturbations.

Schuler and Schmidt observed that the devia-
tions could be satisfactorily accounted for by
the presence of an interaction term which is
proportional to the square of the cosine of the
angle between the nuclear spin and the extra-
nuclear angular momentum. Such an interaction,
they pointed out, would be expected if the
nucleus has an electric quadrupole moment. It
is indeed reasonable that nuclei should have
small electric quadrupole moments. Such a
moment arises if the protons are not distributed
over the nucleus on the average with spherical
symmetry.

The calculation of the contribution to the
energy due to the presence of an electric quadru-
pole moment for the nucleus has been carried
out by Bethe (B15) and Casimir (C3). It is
found that for the case of a single electron
outside closed shells the change in the energy of
a hyperfine state F associated with the atomic
state j=I/—4%, can be written
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We= — LR
3C(C+1) —4I(I+1)j(i+1)
(204+1)21+3)(2I —1) (21 +3)’

where C=F(F+4+1)—I(I+1)—j(j+1). R? is a
measure of the nuclear quadrupole moment since
R is the coordinate of a nuclear proton with
respect to the center of gravity of the nucleus.
It is possible to determine 7=3 from (241). It is
also possible to replace 73 by Z(r)r—*/Z; and to
determine this quantity from the fine structure
separation since Z(r)r—?=Av/Ra’a®(l+3%). To
find the corresponding expression for Wr when
j=14+%, (253) should be multiplied by (21+3)/
(21-1).

From (253) it is found that for j=3, We
vanishes. There is, therefore, no quadrupole
effect for s and pi;, electrons. Other states will
be expected to show effects which are roughly
proportional to the fine structure doublet sepa-
ration so that large effects will be expected for
low ps; and d electrons for the heavy elements.

For the case of several electrons the situation
is somewhat more complicated. In the case of
Eu, Casimir found that the observed deviations
could be accounted for by quadrupole moments
R*=5.1, 2.4-10* cm? for Eu™ and Eu'%,
respectively. For Bi, Bethe found a quadrupole
moment R?*=0.61-10-24 cm? This moment for
Bi is about the size which would be expected if
a single proton were unsymmetrically distributed
in the nucleus.

(253)
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