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PHOTOELECTRIC ABSORPTION FOR X-RAYS

1. Definitions
HROUGHOUT the nonrelativistic sections
energies will be measured in Rydberg units.
That is, in units of

2ntmet /B2 =2.1535X 101 ergs
=13.53 e—volts.

The Rydberg unit of frequency is
2w*met/h?=3.2900 X 10" sec.~.

The unit of length will be the first Bohr radius
for hydrogen.

ay=h/4wme?=0.5281 X108 cm,
a=ay/Z, Z=atomic number.

The symbol a, will be used consistently for the
fine structure constant.

ao=2me?/hc=1/137.3="7.283 X 10,

a=ay Z.

In the relativistic sections the unit of energy
will be taken as

mc?=8.121 X107 ergs
=0.5104 Mev.

The unit of length will be
aoag=h/2wmc=23.847 X101 cm.

2. Introduction

The theory of photoelectric absorption by
deeply bound atomic electrons, in the light of
recent work, may now be considered complete for
all wave-lengths between medium x-rays and the
hardest y-rays. That it is possible to apply the
existing theory successfully to this problem,
without resort to purely numerical methods, de-
pends mainly on one essential feature. The ab-
sorption increases very rapidly with the tightness
of binding of the electron, and because of this the
absorption due to outer shells is negligible, or
nearly so, whenever the frequency is greater than
the critical X or L frequency. This circumstance
makes unnecessary a detailed knowledge of the
atomic field in which the loosely bound M, N,
- -+ electrons move. Their part in the absorption
may be crudely estimated on the basis of an
adequately screened central field (Z—s)e/r, and
although the number of outer electrons is large
their total contribution to the absorption is
rather small.
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For the K and L shells, especially for the
former, the field is almost wholly due to the
nuclear term — Ze?/r, which is much larger than
the interelectronic interactions €%/7, 5 in the case
of medium and heavy elements.

A test of the assumption indicated here is not
altogether lacking, in that one may introduce an
arbitrary screening constant in the potential
energy to represent the repulsive effect of the
outer electrons on the innermost shell. It turns
out that the magnitude of the absorption is very
insensitive to the size of this constant. Further-
more, when this constant is determined by means
of a consistent theory, excellent agreement is
found between the observed and calculated ab-
sorption limits.

This latter statement concerning the critical
frequencies is true only when the K electrons are
treated relativistically, but this necessity should
be expected when one remembers that a K elec-
tron of lead, for example, is bound with an energy
of about 100 kv, which strongly suggests the
importance of relativistic effects.

To emphasize the agreement between the
theoretical and experimental absorption limits,
curves have been prepared (Figs. 2-5), in which
the K discontinuity occurs at the observed critical
wave-length.

The single application of the theory to the
study of nuclear disintegration by y-rays (the
deuteron) is included because it is a problem
whose statement and meaning are unambiguous.
It provides an example almost completely an-
alogous to hydrogen in the atomic field. Un-
fortunately at present the general features of
nuclear structure do not permit extensions to be
made with the same degree of meaning as in
atomic theory, and consequently no attempt is
made here to apply the theory to more complex
nuclei.

With the exception of the calculation on the
deuteron, where different units from the rest of
the paper are used, all of the mathematics has
been relegated to separate sections from the body
of results. In fact, because of the lengthy nature
of all relativistic calculations, only the barest
sketch of the theory is given at all.

The writer takes pleasure in expressing his
gratitude to Dr. M. H. Johnson, Jr., for a critical
reading of the manuscript, and for many helpful



360

suggestions. He is also indebted to Dr. Cornelius
Brenecke for preparing some of the curves, to
Mr. Benjamin Roth for help in checking some of
the numerical work, to Mr. O. H. Clark for some
suggestions, and to Mr. Perry Pepper for help in
preparing the manuscript.

3. General expression for the absorption coeffi-
cient

Let the energy of binding of an electron in an
atomic system be E,. Then, when light of quan-
tum energy kv falls on this system, a quantum
may be absorbed, if 4y > E,. The (photo) electron
should then have the kinetic energy,!

E=hv—E,. 1)

Let the incident light be monochromatic, and
let the Poynting vector of this incident radiation
have the magnitude So=74»N. Theratio So/hv=N
will be the number of quanta falling on each cm?
per sec. Then, the probability that the atom will
absorb one quantum per sec., according to the
light quantum field theory, is?

1 27
[a£(0,0, -+ - No—1, 0)|2~=So——|JE, «, +|% (2)
t h2vic

The matrix element here is written

To, me v=2 f sin (k- 1+8)(A-js, dr (A)
or 3)
To, = f exp (i(x-1) (A js)dr,  (B)

where « is the propagation vector of magnitude
27v/c. A is a unit vector parallel to the polariza-
tion vector of the light. If the first form (A) (as

1 The conservation laws for energy and momentum in
uantum mechanics are identical with classical theory.
hen the atom has infinite mass, momentum is auto-
matically conserved, and Eq. (1) holds for the energy
because the nucleus can take up any necessary amount of
momentum without increasing its energy. When the atomic,
or, say, nuclear mass is finite (=2M), the nucleus takes up
some momentum and Eq. (1) must be corrected by a term
of the order of (1/2M)(mv—hv/c),?* which is small.

Far from the ionization limit the residual momentum
taken up by the nucleus is roughly proportional to &v/c on
the basis of the Schrodinger theory. But in the relativistic
problem where v~, the residual momentum approaches a
constant value (about c).

* See, for instance, E. Fermi, Rev. Mod. Phys. 4, 87
(1932); J. R. Oppenheimer, Phys. Rev. 35, 461 (1930); also
tzlr; 1art:icles by Wentzel and Bethe, Handbuch der Physik
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in Fermi’s article) is used, the phase 8 must be
averaged over. This is to take account of the fact
(when the radiation field is analyzed into stand-
ing waves) that the electron may be anywhere
between a crest and a node. In the second form
the phase 8 does not appear because in the deri-
vation the electric vector was written so as to
have constant absolute value for every wave in a
given direction. The two forms (A) and (B) lead
to the same absorption probabilities; the differ-
ence between them being only formal in this
connection. The vector jgz, is the current density
between the states characterized by # and E. In
the nonrelativistic theory it is written

Jza= (he/2im)(Y5* grad ¥»—¥n grad ¥5*).

When terms in (v/c)? are important, and the
Dirac equation must be used, we write?

jr, n=ceyr*apn.

The components of the vector a, a1, az, a3 (which
are analogous to the three components of ve-
locity v, vy, v,) are matrices each of four rows and
four columns. They are conventionally defined
in section 18.

In the above expressions the wave function ¥z,
corresponding to the energy E, is normalized* to
d(E/h). That is, the number of electrons in the
frequency range d(E/h) leaving the system to
infinity per unit time, is equal to d(E/h).

We multiply the right member of Eq. (2) by
the number of atoms N, per cm?, and divide by N.
The resulting (“linear’’) absorption coefficient

)]

is the probability per cm of path a light quantum
will be absorbed. If p is the density of matter, in
c.g.s. units, 7/p is called the mass-absorption
coefficient. Finally 7/N, is called the atomic
absorption coefficient, or the cross section for
absorption (CSA).

The theoretical range of validity of the formula
for 7 is very great and may be understood as fol-
lows : The condition |a?| = Pt(= (Sor/kvNo)t) <1,
must be satisfied in order for the perturbation

1=NoQ2n/hvc)|JE, n; |2

3 P, A. M. Dirac, Proc. Roy. Soc. A117, 610 (1928); A118,
351 (1928).

4 J. R. Oppenheimer, Phys. Rev. 31, 66 (1928); Mott and
Mazsssgy, heory of Atomic Collisions (Oxford Press, 1933),
p. .
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calculation leading to Eq. (2) to have a meaning.
On the other hand, since the calculation was for a
periodic disturbance (light wave), we must have
v2>1. That is (P<1/t<», which requires that
(So/hv)(7/No)<v. For ordinary radiation densi-
ties this latter condition is always well satisfied.

4. General formula for angular distribution of
the photoelectrons

The formulas for this part of the calculations
were originally derived on the basis of the
Schrédinger perturbation theory,’ very much in
the same way as the formulas of dispersion
theory. Although various authors have written
about the spatial distribution® of photoelectrons,
these papers are chiefly of historical interest. For
a treatment of this problem the reader is referred
to Sommerfeld, Sommerfeld and Schur, and H.
Bethe’ for the nonrelativistic treatment; to J.
Waller, and F. Sauter,® for the relativistic dis-
cussion.

Sommerfeld’s formula, which will be given
shortly, was derived on the basis of the Schrod-
inger equation, and hence must be reconsidered
when relativistic effects are important. The
generalization of his method to accqunt for these
effects was carried through by J. Waller, K.
Nikolsky, T. Muto8 and others.

The angular distribution can be obtained from
the wave function of the perturbed problem
(atom perturbed by incident light wave) at a
large distance from the atom, and is found to be
formally the same, regardless of which form of
theory is used. It is obtainable from the formula

V= (3CAO/2V)ZJE, 7 v\baszy (5)

where 4, is the amplitude of the electric vector,
and the summation is extended over all final
states ¥ corresponding to the energy E. ¢ is the

5 See Collected Papers on Wave Mechanics (London, 1928).

8 G, Wentzel, Zeits. f. Physik 40, 574 (1926); 41, 828
(1927); G. Beck, ibid. 41, 443 (1927); A. Carelli, ibid. 56,
694 (1929); S. E. Szczeniowski, Phys. Rev. 35, 347 (1930);
J. Frenkel, Phys. Rev. 37, 1276 (1931); H. Hall and J. R.
Oppenheimer, Phys. Rev. 35, 71 (1931).

7 A. Sommerfeld, Wave Mechanics (Methuen, 1930), 177.
See also, H. Bethe, Ann. d. Physik 4, 443 (1930); and
Sommerfeld and Schur, Ann. d. Physik 4, 409 (1930);
Schur, Ann. d. Physik 4, 433 (1930); H. Bethe, Handbuch
der Physik, Vol. 24/1.

8 J. Waller, Zeits. f. Physik 61, 837 (1930); T. Muto,
Scientific Papers of the Inst. of Phys. and Chem. Research,
Tokyo; K. Nikolsky, Zeits. f. Physik 56, 709 (1929); F.
Sauter, Ann. d. Physik 9, 217 (1931).
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normalized solution of the unperturbed problem,
and y,,F is the outgoing part of its asymptotic
value far from the atom. When (v/¢)?<1, ¢,,% is
found by solving the Schriédinger equation, and,
as it has the asymptotic form e#"/7, it is evident
that the current in the radial direction is equal to
W¥*ey. In the relativistic problem, for large
energies this is not the case, and here a result of
Gordon’s is useful.® It gives, as the conduction
current in the direction x;,

e (h oy w* 2e
Sp= -———*{—(\I/*m— —'I/ou*—) +——<pk\l/*a4¢}
c

2mel 1 dxy %X,

where 4 is the coefficient of mc-y in the Dirac
equation, and ¢, is the vector potential. The
vector potential will be zero in our considerations.

RESULTS OF NONRELATIVISTIC THEORY
OF THE PHOTO-EFFECT

5. Absorption coefficient of the K shell for long
wave-lengths

If both K electrons of an atom are supposed to
be unaffected by all other (L, M- - -shells) elec-
trons, and by each other, while each is supposed
to be in the same field, Ze/r of the nucleus, the
evaluation of the absorption coefficient from Eq.
(4) may be carried through without difficulty.
The retardation factor exp (4x-r), for reasons of
consistency with the nonrelativistic approxima-
tion, must be set equal to unity when the wave
function is limited to atomic distances of the
order of the first Bohr radius; and this leads to
the selection rule /=0—1 in the orbital angular
momentum. One finds for the mass-absorption
coefficient of the K shell

No hl]o 207
(r/ph=m— — —
p mc 3
exp { —4(vo/v) tan™ (v/vo)} ©
Z2(1 402 /pp2)A(1 —e—2mnlvy
where 1402 /vt=v/v1. ()

Eq. (7) expresses the conservation of energy in
the absorption process. The ideal absorption
limit »; occurring here is given by the equation
vi=22 (2n*me*) /h®=Z*Ry.
9 W. Gordon, Zeits. f. Physik 50, 630 (1928).
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In c.g.s. units, taking A\;=c/»;,

h 2 912.3
N=——= -10~% cm.
me a®Z? Z°

Finally, vo=2me®?Z/h=ac=orbital velocity of
bound electron.

For the case near the absorption limit, where
v/v9&1, Eq. (6) may be expanded in powers of
(2/v0)?. Neglecting terms of magnitude %(v/vo)*
compared to unity! in this expansion one finds

( / ) Noh(lo 297 1(1)1)8/3
T/pgEe—————
" p mc 3e* Z2\ v

7.6X106(V1)8/3 (' . )
= - , (in c.g.s. units).
AZ? v &

In the first equation above, e; is the base of the
Napierian logarithms (e;=2.71828--:), and in
the second equation 4 is the atomic weight.

It so happens that the function exp (4—(4/x)
X tan~! x) is rather well represented by the ex-
pression (14 (4/3)x?, even for x? as large as 2.
Consequently a much better representation for
7k, which gives results correct to within one
percent as long as »=3vx, may be written

TK 7.6><105( u,)4[1+4( v 1)] ®)
0 B Az 7 3\n '
This same expression represents Eq. (6) cor-
rectly to within 3 percent for all v <6v,.

When v/95>1, we find, after neglecting mvo/v
compared to unity,

78 Nohao 28(111)3'5 6,34X107(y1)3~5

p p mc3\v N A v
The condition 7v,/v<1, for the validity of this
formula, may be satisfied only for the lightest
elements, in the nonrelativistic range of ve-
locities v.

The maximum value of the cross section for
absorption 7x/Ng for any given element, occurs

10 The theoretical dependence of 7x on frequency in the
neighborhood of » is correctly given by this formula, That
is, by 7k~»8%, and not by 7x~v~* as one so often finds in
the literature; M. Stobbe, Ann. d. Physik 7, 696, Eq. (43")
(1930); F. Sauter, Ann. d. Physik 11, 497, Eq. (43a) (1931);
Compton and Allison, X-Rays in Theory and Experiment
(Van Nostrand, 1935), p. 560, Eq. (7.61). Corresponding
errors are also frequent regarding the L shells.
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at the ionization limit » = »;, and is there given by

TK hao 2% 1
—_——=— ~— area of K shell.
Ny mc 3e,'Z?

For the CSA, 7x/N¢=21.26X1071(v,/»)%3/22,
near the series limit.

In applying these formulas to physical atoms
the meaning of each approximation may be
qualitatively considered.

(@) First, to express the validity of the Schréd-
inger equation, we have the condition (v/c)?«1.
This condition applies to the velocity v of the
photoelectron as well as to o, the mean velocity
of the bound electron in its orbit. The condition
(v/c)?k1 for the final state, it is clear, can merely
limit the frequency of the incident beam. This
limiting frequency will be given, from Eq. (7), by
the condition

(W/c)2=(v/vx—1)a2<1

and will be different for different elements (Z).
If the Schrédinger equation is assumed to hold
for all » up to (v/c)*=1/20, say, we find

Plimiting~ (mc%/h)(1/40+a2/2).

In the bound state, the orbital velocity may be
crudely determined by balancing the nuclear
force of attraction against the centrifugal force,
assuming the electron to be moving in a circle of
radius »=ao/Z. This gives

vo=(Z%2/nao)t=2nZe*/h.

Hence in this instance the theory would seem to
be better applied to light elements than heavy,
since vy as determined above may be as large as
0.6 ¢, or larger, when applied to the heaviest
elements. We shall see later on that all relativistic
effects, from the normal state, final state, and
from the retardation, combine in such a way as
to leave the CSA (cross section for absorption)
unaffected to a good approximation, as long as
» < Vlimiting- At that time we shall, however, make
the notion of »iimiting SOmewhat more precise. It
is solely on the basis of this future work that the
results of this section have any meaning when
applied to the heavy elements.

() Concerning the neglect of electrostatic
interactions

CQ/YKKl, e’/rKL, ez/fKM,
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F1G. 1. Theoretical curve (Eq. (8) for A/\; >1 as well as for A/A; <1) of the mass-absorption

coefficient 74/p, for all elements, in units of 7.6X10%/4(Z—0.3)2.

M=912/(Z-0.3)%4. Experi-

men.tal points represent the total absorption u/p=7/p-+0/p, according to]S. J. M. Allen. The
vertical lines represent the difference between the maximum and minimum total absorption
observed at the K absorption limit, also according to S. J. M. Allen.

etc., the validity is best for heavy atoms Some
of these terms are always comparable with the
electron-nuclear term, — Ze?/7 unless Z>1. When
this latter condition is fulfilled it will be possible
to ascribe a meaning to the model, although even
here the outer shells effectively ‘‘screen” (i.e.,
repel) the K electrons and thereby diminish the
ionization energy. The two K electrons do not
have a very strong effect on each other.

When we attempt (see Fig. 1) to compare Eq.
(8) with experiment, a difficulty arises at once,
since the observed ionization frequencies are
smaller than »;=Z2Ry for the reason mentioned
above, and therefore do not satisfy the conserva-
tion law Eq. (7) in which the effect of screening
was neglected. The theory does not therefore
apply for observed frequencies less than »;, which
is the minimum frequency allowed by the con-

servation law, although Eq. (8) agrees rather well
with experiment when extrapolated into this
region.* Outside of this region, where it does
apply the agreement is rather good, especially for
large atomic numbers. This may be seen directly
from the experimental data (Fig. 1), or from
Gray's empirical formula,!t

Tatom = 1.92(1+0.0082)
x(1

*In Fig. 1 the observed K absorption limit for all
elements except uranium is seen to come from wave-
lengths greater than the ideal limit \i. The justification
for extrapolating Eq. (8) into this region is contained in
the sequel, where the presence of Z—0.3 in place of Z
will also be explained.

1 J, A. Gray, Proc. Roy. Soc. Canada 21, 179 (1927).

4ng  SOAg?

)Z“)\" X 10728 cm?
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which gives the atomic CSA. The K shell CSA
may be taken to be about 4/5 of gatom. In the
formula Ay is the observed critical wave-length,
in angstrom units, and \ is the wave-length in
angstrom units.

That v, =2%Ry is greater than vx (obs) is easily
understood, since Z:Ry measures the energy
necessary to remove a K electron to infinity from
an atom stripped of all other electrons, while
vk (obs) measures the corresponding energy for
an actual atom. However it is a little surprising
in this connection that the difference Z*Ry —vx
(obs) falls off for Z > 56. This latter circumstance
will be explained later, on the basis of the cor-
rect relativistic binding energy, which is greater
than Z?Ry.

6. Screening

We shall now consider the effects of a screening
function in the potential energy, with the aim of
applying this theory of the K shell to medium
heavy and heavy elements, which really do
possess other (L, M, ---) electrons. If the po-
tential energy is written as

—Zeé*/r+V(r),

such a V(7) could be determined numerically, as
in the Hartree self-consistent field. It must have
certain reasonable limiting properties. For r—0,
only the nuclear field can be of relative impor-
tance, and therefore, for small 7, V(r)— V4 Vi(7)
where V, is a constant, characteristic of the
atom, and V,(r)—0, for »—0. On the other hand,
if the electron is considered to be removed from
the atom, at large distances it will be in a field
—e2/r. Hence, at large distances from the atom,
we must have V(7)=(Z—1)e?/r.

The essential thing about such a screening
function in a first approximation is the constant
Vo, which one may presumably determine from
some consistent theory. The Fermi-Thomas
model,? which is based on statistical ideas, pro-
vides us with such a plausible theory. If we define
¢(r) by the equation

Vin=(Z-1e/nN[1—-e(n],

where  V(o)=V,,

121,. H. Thomas. Proc. Camb. Phil. Soc. 23, 542 (1927);
E. Fermi, Zeits. f. Physik 48, 73 (1928).
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the differential equation for ¢ may be written
Po/dx*= ¢} /2, 9)
p=ao(972/1282)}

according to the Fermi-Thomas treatment. An
asymptotic solution for ¢, valid for 7 large was
found by Sommerfeld.® It shows that ¢ decreases
like ¢ at great distances from the atom. We
shall need only the value of ¢ for 7 small, for the
present at least, and this is given by the ex-
pansion!t

where x=r7/u, and

e=1—1.589x+(4/3)xt—---.
Thus, we get
e(Z—-1) e

Vo=1.589——=1.79—(Z—1)2}
® Qo

or Vo~3.6Z*3, in Rydberg units.

Now, whereas Eq. (1), with V,=0, took the
form E=hv—2?Ry, we now find it should be
written E=hy—Z2Ry+ V, since V, is merely an
additive constant to the energy in the Schrodinger
equation. Hence, the theoretical ionizing fre-
quency, becomes!®

' =22—Vo2Z?—3.6Z3Ry,

which is smaller than the corresponding expres-
sion with V=0, and in fact is smaller than the
ionizing frequencies observed, by an amount be-
tween fifteen (Z =50) and thirty percent (Z=19).
One may now calculate the absorption at »x(obs)
however, since, as we have said above, »,/ is
smaller than vx(obs).

The constant term V, in the potential energy modifies
the Coulomb potential by a fractional amount ~3.624/3/22
in the neighborhood of the first Bohr orbit. The correlation
between this change, and the change produced by it in »;
provides a basis for estimating the effect on the theoretical
frequency of ionization of other perturbations in the po-
tential. For example, a consideration of relativistic effects
on the Fermi-Thomas potential’® shows that the atomic
potential is decreased through these effects by only 0.3
percent well inside the first Bohr orbit, where they are

13 A, Sommerfeld, Zeits. f. Physik 78, 283 (1932).

KE, O. Wollan, Rev. Mod. Phys. 4, 205 (1932).

16 Of course, if the system were quantized correctly with
the potential energy given by the Fermi-Thomas potential,
one would find a »’ somewhat different from this. The
change would be in the same direction however, and, as we
shall see later, the results would not alter appreciably the
conclusions of this discussion.

(l;'sé\/l. S. Vallarta and N. Rosen, Phys. Rev. 41, 708
).
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largest. Terms of this magnitude would consequently be
expected to have a negligible effect on the ionization
frequency.

It is desirable however, if possible, to improve
the ionization frequency predicted by a screening
model. Further study shows indeed that part of
the discrepancy lies, as one might expect, in
neglecting the contraction occurring in the outer
shells when one K electron is removed to infinity.
Kennard and Roess!” have adapted the Fermi-
Thomas potential to take account of this con-
traction. From the potential function given by
them (Eq. (9)), one finds the screening constant

Vo=3.6Z43—3.3Z —42}, (10)
in Rydberg units. The ionization frequencies
' =21~ (3.623—-3.3Z—4Z%)  (10)

provided by this V, fit better than those given by
vy. They are still lower than the experimental
ones, nevertheless, by from five (Z=30) to
thirteen (Z=82) percent. But, as we shall see
in Section 10. this latter discrepancy is almost
completely accounted for by the relativistic
binding energy.

The problem of finding the absorption co-
efficient corresponding to a potential energy

=—Zet[r+Vy, V=—e*/r,

where 7y=(Z —1)e?/V,, is rather easy, inasmuch
as evaluating the matrjx glement presents no
difficulties at all. But for frequencies greater than
vy’ given above, and less than »; =22 which are
just the frequencies of interest, the wave func-
tion for the photcelectron corresponds to a
virtual energy, E— V,<0. At points within the
atom it consequently has somewhat the behavior
of a wave function corresponding to a discrete
state, whose principal quantum number is not an
integer. The normalization of this wave function
is therefore something of a problem. It is carried
through to a pretty fair approximation in Section
16. The final result, using that normalization,
and neglecting terms in (v/v0)* is merely to
justify the use of our previous formula for rx for
all frequencies greater than »,”. This does not
mean that v, = Z?is to be replaced by »,/ =22—V,
in Eq. (8). That equation as it stands is to be
used. The results, compared with experiment for

17E. H. Kennard and L. C. Roess, Phys. Rev. 38, 1267
(1931).

r<to; r>to,
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two elements, are given in Table V.18 In the case
of Pb, Eq. (8) does not apply as far out asA\=3\x
because here (v/c)? is comparable with unity.
The good agreement which obtains in spite of
this is accounted for by the relativistic model.

7. Absorption coefficient of the L shell

The L shell is customarily thought of as being
made up of three sub-shells L1, Ly and L. This
designation had its origin in x-ray studies and has
little meaning in a theoretical discussion where
relativity and screening effects are ignored, be-
cause in that case all eight electrons have the
same binding energy 1Z?Ry. Even so, there is a
formal separation between the L1 (two 2s elec-
trons) and the Lyi+ L1 (six 2p electrons) shells
which may be preserved with advantage for
purposes of comparing the results with certain
experiments.

If we now attempt to treat the L shell by
assuming each L electron to move in a screened
Coulomb field, (Z —s)e/r, of the nucleus, we are
at once faced with the necessity of assigning a
reasonable value to the screening constant s. This
model has not as precise a meaning as the cor-
responding thing for the K shell, because of the
large number of electrons in the L shell. It may
be expected to provide a fairly good description
however, because the electron-nuclear force is
still quite large compared to the other forces
involved. To determine the screening constant s,
Slater®® has given rules which were arrived at
from an examination of experimental ionization
energies. According to Slater’s rules for any 2s or
2p electron, we have s;=2(0.85)+7(0.35) =4.15.
For the K electrons, in agreement with the
screening observed in helium, he offers a screen-
ing constant s;=0.3. There is no direct reference
to screening by the outer shells (M, N, --+) in
Slater’s formulation.

Of coursg there is no a priori reason to expect
accurate results from the use of Slater’s constants

18 A similar table occurs in the literature where the

experimental points do not agree with those given here.
See Roess, Phys. Rev. 37, 532 (1931). Roess presumably
constructed these data from his Figs. 1 and 2, or rather
from Allen’s equivalents. Whereas Allen in his article,
Phys. Rev. 27,ql66 (1926), Table (IB) gives no points for
Sn for A>0.320A it is probable, in the light of Allen’s
recent values as shown in Table V, that the experimental
values of 7x/p near A=0.424A are lower than those Roess

gives.
1 J, C. Slater, Phys. Rev. 36, 57 (1930).
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when we compare the L absorption with experi-
ment, particularly in the event these results are
at all sensitive to the choice of s;. For if the
integral giving the transition probability has its
chief contribution for values of 7 somewhat less
than the radius of the L shell, a smaller screening
constant should be used, while in the event of the
main contribution coming from farther out, a
larger value should perhaps be used. We shall
include an arbitrary “inner’’ screening, ss, in the
sequel, and give some attention to the effect on
the absorption of reasonable changes in it. We
could further account qualitatively for the
“‘outer’’ screening, which is essentially concerned
with the discrepancy between the theoretical
ionizing energy %(Z —s2)? and the observed value,
by expanding the Fermi-Thomas or some other
atomic potential in the neighborhood of the L
shell, and obtaining a constant term V3, analogous
to the V, previously discussed for the K shell.
Since a term of this kind has no effect on the
magnitude of 7/p, in a first approximation as we
have seen, we shall omit any explicit reference
to V].

We shall now summarize the results of the
theory for the L shell.? For the two 2s electrons
of the L; shell we find

2%r hay  (ve/v)* vy
g Iy
3 mc (Z—s2)? 7
exp (—8(v1/v) tan™* (v/v1))
1—exp (—4mv,/v)

and for the six 2p electrons of the L1+ Ly shell
we find

27 hay  (v2/v)® 123
TL"+1L‘"=—~*———N0_(3+8—)
3 mc (Z—s9)?

v

(11)

><exp (—8(v1/v) tan='(v/v1))
1—exp (—4mv1/v)

20 The formuia of M. Stobbe, Ann. d. Physik 7, 661
(1930), for 7z, agrees with ours, but his formula for
T Lyx+ 7Ly should be reduced by a factor 3. See Stobbe’s
Eqgs. (45), (45'), etc. Since Bethe's Eqs. (47.19), (47.20),
Handbuch der Physik, Vol. 24/1, p. 480, were taken from
Stobbe, most of his computations for the L shell would ap-
pear to be wrong. It is surprising therefore, in Bethe's table
on p. 481, that the agreement with Skinner for the ratio
TLi+ 7Lyt 7Ly is so good. An examination of other data,
however, makes it appear probable that Skinner’s values are
too high. The agreement which Bethe finds with experiment
for the K discontinuity, 8k, is due to an error in computa-
tion. I am indebted to Professor Bethe for the benefit of a
discussion, during which he mentioned that Stobbe had
found an error in his own paper.

(12)
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‘TABLE 1. Ratio of the photo-effect in the Lyy+ Lyyy shell to
that in the L, shell. v(Mo Kai)=1288Ry; »(Mo Kaj)

=1280Ry; v»(Mo Kpi)=1445Ry; v(Mo KpB:) =1472Ry;
»(Cu Kay) =593Ry.
Ratio
Lt Ly ¢ Ly
Reference| Element | »(Ry) v2(Ry) /v Cale. Obs.
21a 82Au | 1288 | 1520 1.18 3.2 3.3
‘“ ‘ 1445 B 1.05 2.9 4.3
“ 74W 1288 | 1225 | 0.950 2.6 4.0
¢ y 1280 ‘ 957 2.6 3.3
“ 58Ce | 1288 730 .566 1.6 2 +
‘ 56Ba | 1288 680 528 1.5 2.0
t ‘“ 1445 “ 470 1.3 2.0
‘ 47Ag | 1288 462 359 1.0 1.8
‘ ‘ 1455 “ 320 | 091 0.71
" 42Mo | 1288 362 281 .80 75
‘ 40Zn | 1288 325 .252 72 .67
“ ‘ 1472 325 .220 .63 40
‘ 35Bi 1288 241 187 54 .30
‘ 29Cu | 1288 156 21 .35 2—
‘ ‘“ 593 “ .263 75 75
21b 56Ba 593 680 1.15 3.1 7.0
‘o 531 “ 600 1.01 2.8 4.5
‘ 50Sn “ 530 | 0.894 2.5 4.0
“ 47Ag ‘ 460 775 2.2 3.0
o 42Mo o 360 .607 1.7 3.0
o 38Sn o 290 490 14 2.0
“ 29Cu o 156 .263 0.75 0.75

In these formulas »; and »; are defined as follows:
va=%(Z—s2)*Ry,

v,=%-(2we?/h)(Z —sz) =orbital velocity of elec-
tron in initial state. These quantities are con-
nected by the conservation law

14 (@/v1)?=v/v,,
which can be used to express 7, as a function of ».
From Egs. (11), (12) and Eq. (6), neglecting s

compared to Z and », and »; compared to » we
may write for large frequencies

Tx 2877, 2(8/3) (/) (71, 71y
Egs. (11), (12) furnish the relation
Tot 7oy, ve 3+8w/v
T 143/

which may be compared with experiments on
magnetic spectra of photoelectrons, which are
ejected from elements by the Ka and KB radia-
tions of various substances.?! In Table I we give

2 (a) H. R. Robinson and A. M. Cassie, Proc. Roy. Soc.
A113, 282 (1926); (b) H. W. B. Skinner, Proc. Camb. Phil.
Soc. 22, 379 (1924); (c) F. K. Richtmyer, Phys. Rev. 23,
292 (1924). See also A. H. Compton and S. K. Allison for
further references, X-Rays in Theory and Experiment (Van
Nostrand, 1935).

TL,
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the results. Robinson and Cassie used the frequen-
cies Mo Ka;=1288, Mo Ka;=1280, MoKpB;
=1445 and Mo KB.=1472 all in Rydberg units.
Where these frequencies occur in the table, the
corresponding emission line above is indicated.
Skinner- used the frequency Cu Kay=3593Ry.
The agreement is not of the best, but, considering
the experimental difficulties involved in estimat-
ing intensities, it is satisfactory. Where the
authors give a range for the intensities, such as
4-5 for 74,4+ 71,, say, and 6 for 7., we take the
mean, and in this case for example would write
0.75 for the ratio.

We now proceed to discuss the absorption co-
efficients separately. For frequencies close to the
L limit we may expand the cross section as
before.

exp (—8(v1/v) tan™! (v/v1))
1 —exp (—4mv1/v)

y\¥ (4 s\
)2 )
Vs 15 71
Then, neglecting terms ~§(v/v,)* and smaller,
we find the following formulas (in c.g.s. units);

71, =2.93X 10—”N°(V2/V)2m/(z_52)2'(13)
Toyyt T2, =8.06X 107N (v2/ )39/ (Z —55)?
and for the total contribution from the L shell
=7+ 70,7, =110
X107V No(vs/v)2-8/(Z — 53)2.
This gives for the CSA at the absorption limit
7/No~(1/13) X area of L shell

or a maximum value of about 9 times the max-
imum value of 7x/N,. Finally, for numerical
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computation near the L limit, we may also write
T1/p=066.6 X 108(vy/v)?8/A(Z —52)2.

From Egs. (11), (12) one may also obtain a
simple formula when »/v5>1, which is the first
term of an expansion in powers of 27v,/v. For
these large frequencies one finds

TL, ™~ (,’3/”)3.61
Togt Toa~ (v2/v)*

However, we must bear in mind the restriction to
nonrelativistic velocities (v/¢)?<1, which is here
equivalent to the condition (v/v2—1)a?/4k1.
This condition, together with the condition that
the expansion be valid gives

(ra)? <L (v/ve—1)(a2/4)k1.

We see therefore that the expansions for v large
can be valid only for the very lightest elements.
They are useful mainly in suggesting the more
rapid decrease with increasing frequency of
Tryt 7oy, OVer 7o, '

A further application of some interest is the
calculation of the so-called K absorption jump.?
This quantity, 8y, is effectively a measure of the
ratio of the K shell absorption to the absorption
from all other shells. It is defined as

(1x+71,+‘ru+--')
b=
Tt Tt vy

If all kinds of screening are neglected, and the
theoretical value »;=Z?Ry is used for v, one
finds from the formulas previously given

Sx=14(8/3) exp ((8/4/3) tan™1 4/3—4)=17.15

the same for all elements. If, however, we set
s2=4.15 and 5,=0.3, and calculate 5k for » equal
to vk, the observed value of the critical frequency,
then dx changes with Z. To compute éx we
derive the formulat

Z'—Sz

TL

Tk (Z—s;) ¢ [14(4/3)(v/vi—1)] exp {8(v/ve—1)~t tan—! (v/vo—1)1—4}
14-6(va/v) +8(va/)* '

(14)

2 See Compton and Allison, reference 21, p. 528; E. Jonssen, Diss. Upsala (1928), Table 115; Richtmyer, Phys.

Rev. 30, 755 (1927).

When calculations are made with Eq. (14) for light elements (Z less than about 35), the factor [1+(4/3)
X (v/v1—1)] must be reduced because of screening (according to Section 16). For Fe the reduction is about 4 percent.
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Expanding this about »=4v; we find

7_ 10/3, YK
8 =214-6. 15( ) [1+0.066(—-——4)].
Z""Sg 127

Applying this to Fe26, Agd7, W74, with the
experimental values 525, 1888, 5120Ry, respec-
tively, for vk, we find for éx the values

11.2 for Fe, 9.31 for Ag, 8.49 for W.

Bethe calculates* the M shell absorption to be 23
percent of the L absorption for Fe, and 35 percent
for W. Correcting our values for this, according
to the definition of dk, gives the values

9.2 for Fe, 7.4 for Ag, 6.5 for W,

TABLE 11. General functions for computing the L absorption
coefficients for all elements. (r/p)y, = (7.6X10%/4 (Z—s2)2)f1y
(Definition of fz, with Eq. (11)). Similarly for fr +Lyy;.
fr,=2%4(1+3/No)f (Definition of f) fr 411, =2%" NN
X(3+8N/N)f. Writing fo=fu,+fugitom, (r/o)r = (1.6
X108/4(Z—s3)?) - fr. For completeness, N\o=912.3X4/(Z
—s52)? AU

N/A f Ty Tog+Lin T

2.0 | 0.3479 0.50985 0.71379 1.22364
2.1 .3198 45531 60801 1.06332
2.2 .2952 .40901 52197 0.93098
2.3 2727 .36834 45029 .81863
24 2516 .33187 .38921 .72108
2.5 L2341 .30190 .34039 64229
2.6 2176 27471 .29808 57279
2.7 .2023 .25037 26197 51234
2.8 .1896 .23021 23245 46266
2.9 1762 .21020 20517 41537
3.0 1649 19339 18263 37602
3.1 1549 17869 16350 34219
3.2 1460 .16586 14716 .31302
3.3 1372 15355 13218 .28573
3.4 1291 14242 11911 .26153
3.5 1216 13241 10766 .24007
3.6 1150 12362 097838 22146
3.7 1088 11552 089038 20456
3.8 1029 10791 081049 18896
3.9 09737 10099 073908 17490
4.0 09239 094781 067701 .16248
4.1 08776 089089 062133 15122
4.2 08328 083699 057021 14072
4.3 07938 079006 1052613 13162
4.4 07541 074354 048414 12277
4.5 07190 070246 .044753 11500
4.6 .06859 066431 041439 10787
4.7 106533 062751 .038331 10108
4.8 .06216 059216 1035425 09464
49 05974 056460 1033125 08959
5.0 .05690 053370 030688 .08406
5.5 046008 041682 021845 106353
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which are in fair agreement with Jonssen’s, who
gives

8.5-9.2 for Fe, 6.7-7.8 for Ag, 5.7-6.4 for W.

The experimental values are rather sensitive to
the scattering correction however, and Jonssen’s
results, for example, could easily be brought into
agreement with the theoretical ones by attribut-
ing slightly more absorption than he did to the
scattering. Similarly, the theoretical results are
somewhat in doubt from the nature of the model
employed, and could perhaps reasonably be made
a trifle lower. The agreement must be considered
as satisfactory in any case, except perhaps for the
lightest elements,** which are not discussed in
this connection.

TasLe II1. Mass- absayplwn coejﬁczent vf the L shell for tin,

Sn (50), \a=1.73584
pE72N AA) (/o) /00 Ly Ly (/o)
1.55 1.1199 27.615 49.636 77.251
1.65 1.0521 24.063 40.623 64.686
1.75 0.9918 21.051 33.546 54.597
1.85 9382 18.490 27.921 46.411
1.90 9136 17.445 25.670 43.115
1,95 .8901 16.483 23.560 40.043
2.0 .8679 15.494 21.689 37.180
2.1 8266 13.835 18.474 32.310
2.2 7889 12.428 15.861 28.289
2.3 7547 11.191 13.683 24.874
24 7233 10.085 11.826 21.911
2.5 6943 9.173 10.343 19.517
2.6 6676 8.347 9.058 17.405
2.7 .6429 7.609 7.961 15.566
2.8 6199 6.995 7.065 14.059
2.9 .5985 6.387 6.235 12.622
3.0 5785 5.877 5.548 11.425
3.1 .5600 5.430 4.968 10.398
3.2 5424 5.041 4473 9.511
3.3 5259 4.667 4.017 8.681
3.4 .5105 4.327 3.619 7.946
‘3.5 4959 4.023 3.273 7.296
3.6 4822 3.756 2.972 6.730
3.7 4692 3.510 2.704 6.217
3.8 4569 3.279 2.461 5.743
3.9 4451 3.042 2.245 5.314
4.0 4339 2.881 2.057 4,938
4.1 4234 2.707 1.887 4.594
4.2 4133 2.543 1.732 4.275
4.3 4037 2.400 1.598 3.998
4.4 3945 2.261 1.470 3.731
4.5 .3857 2.133 1.361 3.494
4.6 3774 2.018 1.258 3.276
4.7 .3694 1.908 1.164 3.072
4.8 .3616 1.799 1.076 2.875
4.9 3543 1.717 1.006 2.723
5.0 3472 1.623 0.933 2.556
5.5 3156 1.267 622 1.929

* Handbuch der Physik, 24, p.480. In this reference Bethe
ig_lves these estimates as 16 and 25 percent, respectively.

owever, since the value he took for 7 was too large by
the factor 17/12 =1.4, his estimates for 7a must presumably
be raised by the corresponding amount.

** The writer is indebted to Professor S. J. M. Allen who
has obligingly supplied him with the data for oxygen con-
tained in Fig. (1) as well as with new results for lead, and
considerable other data on tin and silver which are pre-
sented herein.
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TABLE 1V. Mass-absorption coefficient of the L shell for lead,
Pb (82), N2=0.6027A4.

pEY2N AA) (r/p)p, (/P Lyl (v/p)1,

1.55 0.3889 5.505 9.895 15.400
1.65 .3653 4.797 8.098 12.895
1.75 3444 4.197 6.687 10.884
1.85 3258 3.686 5.566 9.252
1.90 3172 3478 5.117 8.595
1.95 3001 3.286 4.697 7.983
2.0 3013 3.088 4.324 7.412
21 2870 2.758 3.683 6.441
2.2 2739 2478 3.162 5.639
2.3 2620 2.231 2.728 4.959
24 2511 2,010 2.358 4.368
2.5 2411 1.829 2.062 3.891
2.6 2318 1.664 1.806 3.470
2.7 2232 1.517 1.587 3.103
2.8 2152 1:394 1.408 2.803
29 2078 1.273 1.243 2.516
3.0 2009 1.171 1.106 2.278
3.1 1944 1.082 0.990 2.073
3.2 1883 1.005 891 1.896
3.3 1826 0.930 .801 1.731

34 1772 .863 722 1.584
3.5 1722 .802 652 1.454

3.6 1674 749 .593 1.341

3.7 1629 700 539 1.239
3.8 1586 654 491 1.145

3.9 1545 612 448 1.060

4.0 1507 574 410 0.984
4.1 1470 .540 376 916
4.2 1435 507 345 .853

4.3 1402 479 319 .798
4.4 1370 450 293 743

4.5 1339 426 27 697

4.6 1310 402 251 653
4.7 1282 .380 232 612
4.8 - 1255 359 215 574
4.9 1230 342 .200 542
5.0 1205 323 186 .509
5.5 .1096 252 132 384
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TABLE V. Comparison of the mass-absorption coefficients
with experiment, for wave-lengths shorter than the critical
wave-length of the K shell. The empirical data were sent to
the author by S. J. M. Allen. The values (o/p)est in the
sixth column are estimated values of the scattering, ac-
cording to Allen. The values for lead indicated by the
bracket are recent ones obtained by J. Read (Proc. Roy.
Soc. A152, 402 (1935)). His estimates of o/p were taken
from the Klein-Nishina formula, and consequently they
neglect coherent scattering. Since the mean atomic radius
for lead is of the same order (0.06A) as the wave-length one
would expect o/p to be larger than Read’s values in this
region (and probably smaller than Allen’s). See below Fig. 3
for the effect of the M shell.

(r/p)y,

M [ NN Gk | Bas. | /o) | (/o) | /o) | (/P

Eq. (8) | (11, 12) | Obs. | Est. | Est. Calc.
Sn (50), M =0.3693A; A =119; Ak =0.424A
0.424 | 0.8710 | 37.21 4.62 46.6 1.05 [45.6 41.83
417 .8856 | 35.97 4.43 44.7 1.0 |43.7 40.40
9232 | 31.96 3.89 39.8 10.99 [38.8 35.85
380 9718 | 27.90 3.34 34.3 .98 133.3 31.24
370 19981 | 25.99 3.09 32.2 97 [31.2 29.08
331 | 1.1158 | 19.26 2.24 23.8 94 (22.9 21.50
300 | 1.2310 | 14.73 1.62 18.10 90 {17.20 16.35
260 | 1.4204 | 10.17 1.10 12.40 86 |11.54 11.27
220 | 1.67 6.199 0.67 8.00 82 7.18 6.87
200 | 1.8465 4.735 .50 6.12 78 5.34 5.235
Pb (82), M =0.1367A; A =207; \x =0.1407

0.1407| 0.9716 .94 0.81 7.75 10.91 6.84 6.75
.130 | 1.0516 4.806 .64 6.45 | 1.00 | 5.45 5.45
113 | 1.2097 3.286 43 4.70 | 1.04 | 3.66 3.72
098 | 1.3949 2.217 28 3.50 | 1.06 2.44 2.50
080 | 1.7088 1.255 15 2.46 | 1.10 1.36 1.41
072 | 1.8986 0.9300 2.04 | 1.05 0.99 1.04
064 | 2.1359 6644 078 1.63 | 0.92 1 0.74
050 | 2.7340 3260 037 1.00 | .67 .33 .37
051 | 2.6804 3452 .039 0.642) .089| .553 38
048 | 2.8479 2896 .033 .554| .086 468 32
045 | 3.0378 2401 027 475 .083 392 27
042 | 3.2548 1963 021 407| .082 .325 22

The formula for §x may also be open to question when
applied to heavy elements, for the reason that relativity
effects may then be important. Although such effects are
shown later to leave 7x unaffected at the K limit, an elec-
tron leaving the L shell with an energy corresponding to
vk has the velocity v~3%ac/2, which may be as high as one-
half the velocity of light for heavy elements. Since the cor-
rection to 7z due to this effect may be ~(v/c)?, Eq. (14)
must be considered uncertain to some extent until the
effect of relativity on 7, has been studied. In this connec-
tion, a somewhat more detailed treatment of the problem
at »z would result.. For example, 2p electrons, as is well
known according to the Dirac equation, divide into two
groups of three 2p3(Lir) and three 2p;n(Lyr) electrons.
Electrons of the Lyr group are more strongly bound than
the Ly electrons, by an amount Z%(a2/16)(1+4§a?+:-+),
in Rydberg units. This separation, which is fractionally
~a?/4 of vy, agrees with that observed if Z is replaced by
Z~s, where the valuc of s is practically constant for all
elements (223.5), and is not far from Slater’s value for 2s,
2p electrons (4.15). The rather smaller LiLir splitting is
accounted for in a different way from the LyrLyry splitting.
Its magnitude may be obtained, in the theory already
given, by writing 5224 for p electrons, s =3 for s electrons.

8. Direction of emitted photoelectrons®

(a) The K shell

When all relativistic effects are neglected, i.e.,
momentum of the light quantum, change of
photoelectronic mass with velocity, and effects
due to deep binding (large Z) of the electron
initially, Eq. (5) gives for the K shell?

¥y, 0¥y, o¥~sin? # cos® p=cos? 6, (15)

28 The experimental literature on angle distribution in-
cludes: F. W. Bubb, Phys. Rev. 23, 137 (1924); F. Kirch-
ner, Ann. d. Physik 83, 521 (1927); P. Auger, J.d. physique
8, 85 (1927). These workers were mainly concerned with
studies near the series limit, where the distribution is give-
by sin? 8 cos? ¢. Work on the advance of the maximum was
carried on by: W. Bothe, Zeits. f. Physik 26, 59 (1924)
(Geiger counter); Williams, Nuttal and Barlow, Proc. Roy.
Soc. Al21, 611 (1928); P. Auger, Comptes rendus 186,
758 (1928); 187, 141 (1928); 188, 447 (1929), (Wilson Cloud
Chamber); Auger and Meyer, Comptes rendus 192, 672
(1931); Lutze, Ann. d. Physik 9, 853 (1931); see Compton
and Allison, reference 10, p. 564 for other references.

2 See A. Sommerfeld, reference 13, p. 182.
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F16. 2. Theoretical curves of the K and L mass-absorption coefficients 7/p for tin, in the region A <Ax. The
experimental points were supplied by S. J. M. Allen. They represent a weighted mean of the results of several
observers, which has been corrected for scattering. The points on this graph correspond to Table V. The wave-

length is in A.U.

where 0 is the angle between the velocity v of the
photoelectron and the electric vector of the
incident light. The angle 8 is the angle between »
and the propagation vector of the light. For an
unpolarized beam the distribution is proportional
to sin? 8. If the momentum hv/c of the light
quantum is taken into account in first order, but
all other relativistic effects are ignored, the
Schrodinger theory may be used to find the
distribution in angle, which is given by

¥y, o¥*,, o~sin? 6 cos? p(1+448 cos 6), (15)
where B=v/c. It is mathematically consistent to
compute this effect with nonrelativistic wave
functions, because all other relativistic effects
enter only through integer powers of (v/c)2.
This result follows from a straightforward ap-
plication of the theory, as shown by Sommerfeld
and Schur.” The term 44 cos 8, which favors
emission in the forward direction, is of course
connected with the radiation pressure. A calcula-
tion of the asymmetry in distribution here con-
tained, by elementary considerations, does not

lead to the above term, according to Sommerfeld,
except in a qualitative sense.?

The agreement between experiment and
theory, in connection with the results of this
section, is generally rather good.

(b) The L and higher shells

The angular distribution, sin? 8, just given for
the K shell, which holds when all v/¢ effects are
neglected, also applies to any s electron, regard-
less of which shell it may occupy. This is true
because an electron initially in an s state (I=0)
has zero angular momentum along the z axis
(m=0), and can consequently undergo only
transitions in which » changes to 1.

For a p electron however, this is not the case.
Transitions may in this instance occur to states
characterized by m =0, which circumstance gives
rise to an isotropic term in the angular distribu-
tion. This term has been found to occur. In fact
Bethe has found that the angular distribution for

% See also H. R. Hulme, Proc. Roy. Soc. A133, 391
(1931).
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F1G. 3. Theoretical curves of the K and L mass-absorption coefficients for tin r1/p, according to Table
III, on a different scale from Fig. 2. The experimental points for A <\; have been corrected for scattering,
according to S. J. M. Allen, by an amount ¢/p~1. The points for A\>>\; contain the scattering, which is frac-
tionally small, however, in this region.

Note added in proof: For computing absorption by the 18 electrons of the M shell the formula

hag 2° ¢ 2 3 —4nztan~t3/n
= NS BT g (/) (1+8~V—8)-{27+136ﬁ+208(2) +96(E) }exP[ : /]
v v v v

mc 3 (Z—s3)?

1 —_— e—21ma

was derived. Here n3=3(v/v3—1)"}, where v3=(Z—s3)?/9Ry. This term, added to 7y, accounts
rather well for the absorption observed in the region A>\;.

any (n,!) shell may be written as a+fsin? 6
cos? ¢, where o and B are given in terms of
radial integrals corresponding to the transitions
(n,1—>E, I+1). In the above treatment f is
positive. The direction of maximum emission
is consequently in the direction of the electric
vector.

Schur? has carried out the calculations for the
2p shell. He gives

Wa, 1¥%2, 1~v+2(Z—5)?sin? 6 cos? ¢.

’;sichur, reference 7. See the article by Bethe, reference 7,
p. 484.

For the entire L shell he also gives the result
W, ¥, ~sin? § cos? ¢
—s)2 —5)2
} (Z-s) /1+2(Z 5)
4v+43(Z—s)? \ v

sin? 6 cos? ¢) s

where » is to be expressed in Rydberg units.

RESULTS OF RELATIVISTIC THEORY

9. First-order relativity corrections to 7x

Relativistic effects may enter the discussion of
absorption processes in several ways. Physically
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they are usually referred to as change of mass
with velocity, electron spin, and radiation pres-
sure or retardation which enters through &v/c.

We consider an electron, described by the
Dirac equation, to be in a central field Ze/r. The
most deeply bound state turns out to have the
energy Eo=mc?(1—a?)} where a=Z/137 is the
fine structure constant times the atomic number,
as previously defined. The physical interpreta-
tion of «, for this bound state, may be arrived at
from a consideration of the average potential and
kinetic energies. One finds for these quantities

V¥= —mc?a?/(1 —a?)},
T*=mea?/(1~a)i[1+(1 —at)¥],

and hence — V*/T*=1+4(1—a?? instead of the
value two, which obtains in nonrelativistic
mechanics. From the expression above, one sees a
plays the role of vy/c for the bound state, where
v, is equal to the orbital velocity. This corre-
sponds exactly with the meaning ascribed to a in
Section 5.
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If we let p designate the momentum, in units
of me, for states of continuous energy E, to which
transitions occur, then E=mc?(1+p?%)?, and Eq.
(1) gives for the relation between kv, Ey and E,
the equation

hv+mc(1 —a?) b =mc*(1+ %)L
This reduces at once to the equation
v/vi=[1+4(v/v0)*],

or Eq. (7) of Section 4, when both o? and p? may
be considered small. The parameters « and p
consequently measure the importance of rela-
tivistic effects; but whereas frequencies may
always be used so that p<1 for any given ele-
ment, the size of « is determined when the atomic
number is fixed. Hence, in consideration of ab-
sorption by the K electrons of a heavy element,
relativistic effects would always seem to be
present, since 0.6 for Pb 82, and is propor-
tionately large for other heavy elements. How-
ever, although the wave functions do exhibit a

(16)

KHLpltly
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F1G. 4. Theoretical curves of the K and L mass-absorption coefficients =/p for lead. 4 according to
S. J. M. Allen, have been corrected for scattering by an amount ¢/p~1. That is, according to column
6 of Table V. @ according to J. Read (Proc. Roy. Soc. 152, 402 (1935)). These points were corrected
by Read according to the Klein-Nishina formula (o/p~0.! 085) The coherent scattering indicates this

correction should be raised somewhat.
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marked and complicated effect depending on «,
it turns out that 7 itself is practically inde-
pendent of «, for all frequencies (v=2vk) such
that p=0(a). Actual calculation also shows that
the correction in $?, although complicated in
form, contributes only a few tenths percent to 7,
for frequencies up to twice the critical frequency.
Since a frequency of 2vg, for example, ejects an
electron with a momentum given by p=a=0.6
for lead, it may be considered somewhat sur-
prising that no relativistic effects are important
in this region. In fact, if the formula of Eq. (8) is
used to compute the CSA of RaC(Z=284) for
hv/mc?=0.692, which corresponds to a frequency
3.7 times vk, one finds

1.25X1077
oA /m=1]

»

75/ No=
24.4 X 1072 cm?.

This is to be compared with the correct value of
the CSA for this case which is 6.0X 10~ cm?;
according to the numerical calculation of Hulme

MASS ABSORRTION COEFFICIENT _
o ~ @ © S

o
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»
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and his collaborators.?” In view of the fact that
this is in a region beyond which Eq. (8) is even
here considered to be valid (for this frequency,
p~1.6, 3~0.84!) the discrepancy of 25 percent is
satisfactory enough.

These results also seem to indicate a more
gradual change in the frequency dependence of
7k, than the theory has heretofore been thought
by many writers to predict, at least for the heavy
elements. For, as we have seen, starting from
the series limit, 7x~»27. The exponent of » is
not much different for » near 2»x ; and, as we have
just seen, for v~4vg, Eq. (8) agrees fairly well
with the correct theoretical result, which is
known to have a somewhat slower dependence on
frequency in this region. (See Fig. 6.) One sup~
poses therefore, since the formulas for very small
and for very large frequencies join so well in the
case discussed, that the exponent of v is theo-
retically always less than about 3, and that 7x

27 Hulme, McDougall, Buckingham, Fowler, Proc. Roy.
Soc. A149, 131 (1935).

F1G. 5. Theoretical curves of the K and L mass-absorption coefficients for lead, r1/p, according to Table
1V, on a different scale from Fig. 4. The points for A>\; obs. contain the scattering (¢/p~1).
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does not fall off as fast as »35, except for the
lightest elements. This merely means that for
heavy elements it is impossible to get far away
from the K limit without being in the region
where hv~mc?. For light atoms however, there is

HARVEY HALL

still a region where the wave-length exponent is
greater than 3. This region lies between v~2vg
and »~2mc?/h. Hulme has calculated® the ex-
ponent of \, under the condition Z/137«1, in the
part of this region near » =mc*/h, with the results:

A 6.08 X107 cm 1.22X107° cm 2.431071 cm 6.08 X107 cm 9.73X1071° cm
IXZ™8 4.89X10~% 1.87X10-% 9.92X10-3% 1.68 X103 8.01 10~
n 1.9 2.4 3.1 3.3

The coefficient of absorption I is written
I~Z5\,

*The value of # under each wave-length expresses
the mean variation of I between that wave-length
and the one following.

10. Screening

The discussion of screening already given,
applies equally well in its essential details to the
results of section 9. The only difference lies in the
relativistic ionization energy, which for a single
bound electron is

hvo=mc[1—(1—a?){]=Z2(1+a%/4)Ry.

This is an increase over the Schrédinger value
Z2Ry, and the change is such as to give good
agreement with observed ionizing frequencies,
when the screening constant Vo= (3.6242—3.3Z
—4Z%Y)Ry of Eq. (10) is introduced. This mod-
ification gives for the ionizing frequencies,
vo'' 2Z2(14+a?/4) — Vo, which is an increase of
Z2%2/4 over those computed from Eq. (10%).
Ionization frequencies computed with it agree
with those observed to within 4 percent for all
elements from Fe 26 to U 92. The agreement is
even better, being a deficit of only 2 percent, for
all elements from Ag 47 to U 92. Even this small
deficit of 2 percent is removed when the atomic
system, with the potential given by Eq. (9), is
correctly quantized. For, in the work of Roess
and Kennard, this was done for Sn 50, and their
result for vy exceeded vx(obs) by only 0.3
percent.

In this way we see that a crude, but consistent,
screening model may be employed to predict the
ionization frequency of a K electron. When this
model is applied to a Dirac electron the results

agree very satisfactorily with experiment. In
Figs. (3-5) are plotted the mass-absorption co-
efficients for the two elements Pb 82 and Sn 50,
the observed and theoretical ionization fre-
quencies agreeing in both cases, in conformance
with the remarks of this section.

In connection with apparent absorption due to scatter-
ing, for which the experimental points in these figures
were partially corrected, a few remarks on the theoretical
side may be proper. According to the Thomson scattering
formula, one finds the mass scattering coefficient, per
atom, to be given by (¢/p)atom~0.4Z/A, or (o/p)atom
~A0.17. A rough calculation with the Fermi-Thomas
field, which takes account of the fact that at least some
of the atomic electrons scatter coherently, results in the
formula (o/p)atom~0.17Z%. However, for »~2vg in the
case of Pb, hv/mc?~4%, and this result must still be cor-
rected by terms in (hv/mc?) entering the Klein-Nishina
scattering formula. The first-order correction gives
(0/p)atom~0.17Z}(1 —2hw/mc?), which appreciably dimin-
ishes the result where hv/mc® was neglected. When the
higher orders are included too, we find for Pb, (¢/p)atom
~0.34 at v=2yg, which is less than the scattering correc-
tion for a lighter element, near its absorption limit.

11. 7% and 7y, in the region sv/mc2>1

(&) The K shell

The absorption of very short wave-length
radiation presents features very different from
those in the problems already discussed. The
chief difference may be described in terms of the
coordinate system in which the wave equation is
separated. For the case of an electron in a
Coulomb field, the only system in which the
Dirac equation is known to be separable is space
polar coordinates. In this system, for energies
E>mc?, there are an infinite number of wave
functions corresponding to a given energy, each
one corresponding to a different orbital angular
momentum /. In the previous sections, transitions
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from the normal state, under perturbation by the
light wave, were possible only to final states /=1,
or at most /=2 (section 9). This came about
because the wave-length of the radiation was
long, or at least not small, compared to the first
Bohr radius, @¢¢/Z. One could then expand the
retardation factor exp¢(2wv-r/c), and neglect
corrections 0(2wva/c)?~a?/4 at the K absorption
limit. Each higher term in the expansion of the
retardation factor may be thought of as inducing
transitions to final states typified by larger
valuesof /. For frequenciesso large that zv/mc2~1,
the correction term above would be ~(1/a)2>1,
indicating a completely different analytic charac-
ter for the CSA over its behavior near the K
limit. It is found actually that many terms in /
contribute to the CSA when kv/mc? is large, the
number of such terms being proportional to
hv/mc. In fact, the behavior of these terms when
hv/mct>1 is approximately given by the expres-
sion B exp (—2Imc?/hv), which must be summed
over all / from zero to infinity. The actual prob-
lem is extremely involved in a mathematical way,
due primarily to the impossibility of solving the
Dirac equation in a coordinate system which
embodies the symmetry (axial) of the physical
problem.

Since the photoelectron may be considered to
have an energy E>mc?, when hv>>mc?, it would
at first sight seem plausible to neglect the effect of
the nucleus on it. This neglect would allow one to
describe the final states in rectangular co-
ordinates, where they are particularly simple,
and contain the desired symmetry. The normal
state could then be treated according to the
strict Dirac equation with a Coulomb field. Such
a heuristic model, however, while it leads to the
correct dependence on atomic number (Z8) and
on the frequency (1/v), gives the wrong constant
of proportionality.?8 In addition, the constant it
does give, does not reduce to the correct one in
the limit a—0! The objection to any such model
is that the errors involved in its use are un-
controlled.

Another approach to the problem was made by
Sauter.? Sauter actually performed. the summa-
tions over the angular momenta already dis-

28 H. Hall and J. R. Oppenheimer, Phys. Rev. 38, 71

(1931).
2 F, Sauter, Ann. d. Physik 9, 217 (1931).
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cussed, under the two restrictions 4> Z?Ry, and
Z/137«1. The first of these approximations is
automatically contained in the second one when
v is large. Sauter’s formula may be written

grict B 14 1—2(1—p2)
Wz (1-p)L3 (1—@i1+(1—pi]

1-p 148
X(l— log — ]
28 1-8

TK=

where B=v/¢, and is given by
hv/mc*+1=(1—p2)~4
From this result
T =272 Now,%2/3mcy"?, when $2K1
78 = No(ao®ZN/7) (h/mc) =1.16 X 10~B\Z5N,

when B~1. The principal objection to the use of
Sauter’s formula, as we shall see, is that the
effect of the approximation in « when » is large,
cannot be ignored except for the lightest ele-
ments. Even for Fe 26 this correction amounts to
about 20 percent for frequencies truly far from
the K limit; while for Pb 82 his result would be
more than twice too large.

The problem of summing over ! without mak-
ing a critical neglect in o was successfully handled
for the case of large frequencies, by a change in
the order of the summation over I with certain
integrations.® This treatment is discussed in
Section (20). In the limitof very large frequencies
it leads to the result

4raladZ(mc?/hv)
Tk=Ny——""—~
a2elea(r—2a)

ao=1/137.3, a7

ao="h2/4nrme?.

a=ayZ,

Now to obtain a formula applicable for somewhat
smaller, though still large frequencies we write
finally

dratag®Z8(mc?/hv)

alefga(r—2a)

TK=1VQ

(18)
116107525

a2alga(r—2a)

® H. Hall, Phys. Rev. 45, 620 (1934).
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F1G. 6. Absorption coefficients for various atoms. Here
the absorption coefficient per atom (satom in Hulme’s nota-

tion) is taken to be 5/4 of the absorption coefficient for the
K shell.
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where \ is in cm. From Sauter’s formula we find,

in our notation,
ple 4 e—2 1 e+p
SE e )
¢ /13 e+1 2¢p e—p
where p and ¢ are the electron’s momentum and
. energy in units of mc and mc?, respectively, and

g=hv/mc*. These quantities are related by the
conservation law Eq. (16).

e=g+(1—a?)tmg+1,
p=(&—1)L

Formula (18) is approximately correct except for
the neglect of terms a?/e. The error in it, as e— ),
(i.e.,in Eq. (17)) is only a few percent for Pb, and
is smaller for smaller atomic numbers.

Eq. (18) may now be used as a continuation of
Eq. (6), after the latter has ceased to apply. For
example, in the case of Pb for »~4vk, these two
formulas agree to within about 20 percent, 7x
from Eq. (6) being about 15 percent smaller than
the correct value as calculated by Hulme. Con-
sidering that both of these equations are here
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applied outside of their respective regions of
validity, the agreement is satisfactory.

The relativistic theory of absorption by a
hydrogenic atom has been applied rigorously in
reference 27 to compute 7x for several different
elements. The calculations were done for hv/mc?
between 0.694 and 2.21. For frequencies greater
than the latter point, Hulme used our Eq. (18) to
supplement his curves. The results are shown in
Fig. 6. The atomic absorption is here taken to be
5/4 that of the K shell. In Hulme's notation
datom 1S the atomic CSA, so that* ouom=(5/4)
X (7/N,) k. Because 7x has the asymptotic form
given by Eq. (17) Hulme plots oatom* Z~%(hv/mc?)
against mc?/hv. The results indicated in Fig. 7
were also found by Hulme and his collaborators.
Here is shown the strong dependence of 7x, on
atomic number when the frequency is kept fixed,
for two different frequencies. These numerical
results for the frequency range mentioned show
that Eq. (18) may be used with fair accuracy,
even though it could hardly have been expected
to apply for the lower frequencies.®® Of course
when applying it here, ambiguities arise because
terms of the type a?/e enter into the calculation
of the correction factor R, whereas terms of this
type were neglected in other parts of the deriva-
tion. This point is mentioned in the theoretical
Section 20. Sufficeit tosay that the considerations
of that section could not alter the agreement with
the correct calculation for reasonably large
frequencies.

(b) The L shell

The use of the factor 5/4 to obtain gatom from
ok (our 7g), is based on certain experimental
data for a limited frequency range. Approxi-
mately the same factor may be used for all large
frequencies, as may be seen from a study of the
L shell. It turns out that the relatively rapid
decay of Tzy+ 7Ly, far from the ionization limit,
as suggested in Section 7, persists in the rela-
tivistic theory, where most of the L absorption

* Hulme takes the ratio oatom = (5/4)o x from Rutherford,
Chadwick and Ellis, Radiations from Radioactive Sub-
stances, p. 464.

3 In reference 26 Hulme gives a table for two different
frequencies and three different elements, comparing Eq.
(18) with his data. For the large frequency, hv/mc?=2.21
the agreement is better than 7 percent in all cases, and for
the smaller one, kv/mc?=0.694, it is better than 12 percent
throughout.
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occurs in the L, shell (2S5; electrons). Only here
the ratio between 7z, and 7, is no longer given
by (3)*=1, but is modified by effects in a2, so that
for very heavy elements the ratio is in the
neighborhood of 1/5 or 1/4.

Fig. 6, in addition to the different curves,
contains three experimental points for Pb, which
L. H. Gray® previously had found, and incor-
porated into an empirical curve. The agreement
is seen to be good. For purposes of comparison,
Gray's empirical formula is given here. Gray
gave for the atomic linear absorption coefficient,
Tpp, the relation

lOglopr= 36505 +10 10g10>\+0.480(10g10 )\)2,
which may be written in the form
Tpb=4.472 X 10~3\+0.48 logioh

In these equations® X is to be expressed in X.U.
To obtain the CSA, 7p, must be divided by
the number of atoms, N, per cm?® where
Ny=3.32X10%2 cm™

(7pb)/No=1.35 X 10~25\1+0.48 logih o2,

12. Angular distribution from the K shell

The radial photoelectric current is not pro-
portional to ¥¥*, but to Yas¥* in the relativistic
theory. This point was anticipated in Section 3.
Using the Dirac four-component wave function
we may write

WI* =W W * - W0 o* + WU g 4 W W %,
Vo U* =WV %4 VoW — Ul p* — W 0 %,

The difference between these two expressions is
really negligible for small photoelectron veloci-
ties. Here the ratio of small to large components
of ¥ is proportional to /¢, and consequently the
above expressions differ only by terms in (v/c)2.
Even in this case however the angle distribution
will differ slightly from the distribution sin? ¢
cos? ¢, because of relativistic effects which enter
through o? (i.e., from retardation, and effects of
the Coulomb field in both initial and final states).
First, neglecting all corrections in v/c, the altera-
tion arising from o? in the distribution function J
is given by the result (see Section 22).

32 L, H. Gray, Proc. Camb. Phil. Soc. 27, 103 (1931).

3 In reference 30 where (7pp)/Nyisgiven in this form, the

first numerical factor was written in error as 1.67 instead
of 1.35.
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F1G. 7. The absorption coefficient as a function of atomic
number for two different frequencies. (6 =mc?/hv).

J~sin? 6 cos? [ 1+ (0.280 cos? §—0.056)a?].

Since cos § enters only in the second power, there
is no change due to o? in the angle of maximum
emission, which is physically reasonable. The
correction term is zero for cos? §=1/5, or 6=67°;
it is positive for smaller angles, and negative for
larger ones. For §=30° the correction is only
0.15 o2, and in fact is always less than 0.22 o2

When the first power of 8=v/c is retained one
finds:

J~sin? 6 cos? ¢
X [14(0.280 cos? §—0.056)a2 448 cos 6]

in agreement with the nonrelativistic formula
when a2—0.

Now when 2 is not to be neglected, the so-
called “small components” ¥;, ¥, contribute
equally with the others. For the case Z/137<«1
Sauter has given the distribution

sin? 6
(1—8 cos 6)*
—3(1—(1~8)%)(1—B cos )}

1 (1—-(1—pyh2
i A
4 1-p2

[cos2 p{(1—p1}

(1—8 cos 0)].
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When 2«1 this reduces at once to Eq. (15). For
the extreme relativistic region where 8~1, how-
ever, the term independent of the polarization
vector may be of importance. The physical
interpretation of this effect, in terms of the
electron, is not very evident.

A NUCLEAR APPLICATION

13. Photoelectric disintegration of the deuteron3*

The range of the interaction between a neutron
and a proton has been shown by Wigner to be
smaller than the ordinary nuclear radius, which
is about 2Z¥X 107 cm. The argument is based on
a knowledge of the mass defects of He* and H2.
Wigner assumes a neutron-proton interaction,
which was studied by Eckart® and Epstein in
other connections. Wigner’s treatment essentially
contains the assumption that the neutron-proton
force may be represented as a function of the
mutual separation of the two particles. Two
arbitrary constants appear in this interaction,
which correspond physically to the potential
energy Vo at zero separation, and the range 7,
over which the interaction is large. Wigner found
the connection between V), and 7, for a fixed
energy of binding, to be given roughly by the
relation Vo~7y72, and this relation is not very
sensitive to changes in the form of the inter-
action. Using variational methods Wigner then
found that binding energies of about 2 Mev for
the deuteron, and about 30 Mev for helium are
possible, and consistent with the idea of a short
range (1.0—1.5X10~8 c¢m) interaction between
neutron and proton.

An important feature of the short range inter-
action, is the appearance of the wave function
which describes the stable state (deuteron). The
wave function spreads over a region which is
determined almost solely by the binding energy,
and hardly at all by the depth of the potential
hole. In the limit of 7¢—0, that is, of an inter-
action which is infinitely large over an in-
finitesimal distance, the wave function is never-
theless large at distances as great as 5X 1071 cm,
for reasonable binding energies. This circum-
stance allows an elementary application of the

3 See Chadwick and Goldhaber, Proc. Roy. Soc. A151,
479 (1935); Bethe and Peierls, Proc. Roy. Soc. A148, 146
(1935); Massey and Mohr, Proc. Roy. Soc. A148, 206

(1935); E. Wigner, Phys. Rev. 43, 252 (1932).
% C. Eckart, Phys. Rev. 35, 1303 (1930).
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ideas of quantum mechanics to be made. One
may calculate the probability of deuteron dis-
integration by light quanta in particular, and
with considerable certainty as long as the range
of interaction may be considered small enough.

The work of Wigner shows that a potential box
may be used to study the essential features of the
deuteron problem. Bethe and Peierls have calcu-
lated the deuteron cross section according to the
ideas outlined above, as have Massey and Mohr
using an exponential interaction as well. Bethe
and Peierls give for the deuteron CSA for
gamma-rays:

o= (he*/6M'c) (8(v— 1)}/ W), (19)

where W equals the binding energy of the
deuteron, in ergs, and M’ equals twice the re-
duced mass of neutron and proton. For W equal
to 2.14 Mev, hv=2.62 Mev, the CSA is

¢=6.8X10"%8 cm?.

Chadwick and Goldhaber found experimentally
a value for o of 5X10728 cm?, which would seem
to be in satisfactory agreement with the theo-
retical result, since they allow an uncertainty of a
factor two.®

In the light of the large uncertainty which
enters experimentally, it would hardly seem
necessary to improve the model of Bethe and
Peierls. Nevertheless, a few definite statements
may be made concerning such an improvement,
and we wish to discuss some of them here. First
of all, it can be said, the Bethe-Peierls result may
be considered exact in the limit where the range
7o of the interaction vanishes. Next, if the inter-
action be considered a constant, — V,, out to a
finite distance 7, and zero for 7>7,, certain
changes occur in the treatment. These changes
result in an ncrease of o as given in Eq. (19).

The changes which enter, when the potential
box is used, may be outlined as follows. From
Eq. (33) we find the CSA in terms of the matrix
integral for the electric moment.?”

" s In this connection see Letter to the Editor by the
author, Phys. Rev. 49, 401 (1936).

37 The factor 7/2 occurs in the integrand, instead of r.
For if we have two particles in relative coordinates, the
electric moment is given by the matrix element of ef-+e¢'y,
where ¢ and 7 are the distances of the charges ¢ and ¢/,
respectively, from the center of mass. If charge e has
the mass 7, and e’ the mass M we know ei+e'n=(Me

+me')r/(m-+ M), where 7 is the vector connecting ¢ and e'.
For m=M, and ¢’ =0, this gives et+e'n=er/2.
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weth 2

o= . (20)

th

f (rR;)z(rRz)dr
° 2

c
The unit of energy has been taken to be
2mec?=1.02 Mev.

The wave functions R; and R, satisfy the
differential equation

d*(rR)/dr+(E—V—I(1+1)/r*)(rR) =0, (21)

where E is the energy in units of 2m.c?, and 7 is
the distance between neutron and proton in
units of the Compton wave-length divided by
47(1840)%. This unit of length is 6.35X 107 cm.
M is the reduced mass MpM,/(Mp+ M,). The
functions R, and R, are the normalized solutions
of Eq. (21) for E<0 (stable state-deuteron) and
for E>0 (state proton+neutron). If E; repre-
serits the binding energy of the deuteron, and E,
the energy of the final state neutron plus proton,
to conserve energy we must have?®

hll = E)+ Ez.
Now let us represent the neutron proton inter-
action by the function
r<rg
r>7o,

V=~ Vy=const,
V=0,

where we consider 7, to be in the neighborhood
of 1.5X10-18 cm, or 0.236 in terms of our unit
of length.

For s states, and E<0, Eq. (21) has the
solution

rRy=sin 7(Vo— E1)},
rRi=A4 exp (—7E}), r>r,.

Here E;= —E, so that E,;>0. Joining the two
expressions for R; (and the derivatives) at 7,
gives the following conditions for the constant 4,
and the energy E;

A =exp (7E?}) sin 7o(Vo—Ey)},
tan 7o(Vo—E1)t= — (Vo/E1— 1)1

38 The change in momentum of the center of mass is
equal to the momentum of the light quantum. This gives
rise to the velocity v, where vo/c="hv/(Mp+ M,)c?. Since
this is small for all gamma-rays, the energy relation
hv=E,+E; may be considered valid. Similarly the re-
tardation factor exp (ix-r) may be seen to differ neg-
ligibly from unity, which validates its absence in Eq. (20).
The theoretical application to the deuteron is consequently
nonrelativistic in all of its essential features, and the result
Eq. (33) Section 15, may be used directly with only
obvious modifications in the wave functions.

r<rg
(22)
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The second condition requires the argument of
the tangent to be >=/2. If we write 7o(Vo~E;)}
=7/2+8, this condition becomes

tan 5=70E1*/(7l’/2+5) ’\'02,

using 7=0.236(1.5X10~® cm), and a binding
energy E;=2.1 (Mev) the potential well turns
out to have the depth V;~60 Mev. As 7,—0,
Vo (w/2r0)%.

Now the condition for normalizing the bound
state (22) is

o Y [T
N;"’{f sin’—(——i—&)-dr
0 7o 2

©

+ cos? 6f exp (2E} (ro—7))dr} =1
0

and this gives, to order &2,
N2=1-—x8/2-+48%

Now the integral in Eq. (20) we write as the
sum of two integrals having the limits 0—7, and
79— =, respectively. One may then show that the
contribution between 0 and 7g is small (fraction-
ally about 7,t/4), and that the error in extending
the limits of the second integral to 0 — «, instead
of ro— =, is also small (a fractional difference of
less than 74!/3, for all y-ray energies). The results
above are a consequence of the fact that R; is
small (~7) within the range of the interaction.
The function R, suffers a phase shift for r>r,
because of the sudden change in ¥, but this phase
shift turns out to have no appreciable effect
either (about 0.4 7¢*), so that the final state may
really be considered unaffected by the potential
V. In accordance with these remarks, we write
for the normalized final state (I=1)

1‘R2

1 /sin 7Eqt
=—( —cos rEz*)
‘II"Ez* f.Ezl
and for the bound state
7Ry =N cos roEyteroBit. g=rEaf,
Using these expressions, we find from Eq. (20)
o= O'B.p.[l +1‘0E1§+0.6(70E1’1)2]

to order (79E;})2 By op.p. is meant the CSA as
given by Eq. (19).
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The effect of the correction terms in 7, is to
increase ¢. This increase, for 7o corresponding to
1.5%X10™® cm, and a binding energy of 2.14
Mev, is 40 percent, and results in the value
¢=9.5X10"%8 cm?.

As should be apparent from the discussion, it is
not even necessary to evaluate the matrix integral
to find the corrections to op.»., as the net correc-
tion is given by the square of the coefficient of
et in R, above. Consequently it would seem
possible to calculate the effect of any given inter-
action V on the CSA, to order 7%, merely by
studying the wave function for the initial state.
This turns out to be the case as one may see by
studying the problem where

= — Voe—r/ro‘
The solution of Eq. (21) is then
7R =NJoroz,} (2roVole=r/210),

The results of this problem are substantially the
same as for the potential hole.

NONRELATIVISTIC THEORY

14. Separation of the Schrédinger equation for
hydrogenic atoms

(a) Angle dependence

The Schrédinger equation for an electron in
the field of an infinitely heavy nucleus, of charge
Ze, is

Ap+(e+2(Z/p))¥=0. (23)

The equation is here written in simple units.
That is, if 7 is the distance between electrons and
nucleus, and if E is the energy, in c.g.s. units,
then p=r/ay, e=E/Ry, where ao=h*/4n*me* is
the radius of the first Bohr orbit for hydrogen,

Gror) G (

1
Rn. 1=
Q1)

2Z

n

(n+1D)!
2n(n—1—1)!

HALL

and Ry=2n’me*/h? is the ionization energy of
hydrogen.

The well-known solution of Eq. (23) in polar
coordinates may be written

¥v="Y1, (0, ©)R(p),
where Y, ., is the normalized angular function
(I—m)! 21+1
(+m)! 4r
Pp(x) = (1—x®)"2(dmP,/dx™),
Py(x) = (1/241) (d (x> — 1) /dx").

The radial function R satisfies the differential

equation
d*(pR)
+(E+
dp?
The solution is
R(p)=ple=rtF(I4+1—2Z(—€),
2A+2; 20(—e)),

where Fis the confluent hypergeometric function
defined by

]
Y1, w(6, 0) =( ) P m(cos B)eime,

2Z I(+1)

)<p1e>=0. (24)

o

(25)

ala+1) x?
vy(v+1)2!

Fla, v; x)=1+gx+
v

(b) The radial function E<Q

For this case the condition on R at infinity
requires that I+1—Z(—e)~¥=negative integer
or zero. This condition will be satisfied if

Z(—e)t=mn, n=1,2,3, -

e= —2%/n? (26)

for the energies of the bound states. The normal-
ized radial function® R,, ; for these states is

or,

2Zp\'
—~—) ce 2o F(l4+1—mn, 214+2; 2Zp/n) (27)
n

in our units, which we shall call Rydberg units. To obtain the normalized radial function in c.g.s.

units, this expression should be multiplied by a¢%.

(c) The radial function E>0
We define the quantity & by the equation

(—e)t=emil2k=4k.
# See H. Bethe, Handbuch der Physik, 24/1, p. 283. The normalizing factor may also be obtained directly from a term

by term expansion and integration of Ry, 1.
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Physically, % is the ratio of two velocities: the velocity » of the state characterized by E, and 2re?/h,
the orbital velocity in the first Bohr orbit of hydrogen. That is, k=vh/2me?. To simplify writing we also
define

n=_27[k.

Then 7 is also a ratio of two velocities, which are the orbital velocity vo=27e?Z/k in the ground state,
and the velocity ». No confusion should arise between this # and the one defined previously for states
E <0, as this one always enters accompanied by the factor exp (v7/2) =1.

We may now write, directly from Eq. (25),

R=N-(2kp)e~*?F(l+141in, 2142 ; 2ikp).

N is merely a normalizing factor which will be chosen later. A convenient integral representation for
this function is*

o P22 exp (—ilkp-tn log 2o~ (4 1)w/2])
B | T(+1+Fin) |2enrre

f etttin(1 4t/ 2ikp) -ind
0
+the complex conjugate. (28)

This latter form is convenient for the problem of normalization, when only the asymptotic value of
R for kp>1 is needed. For pvery large the integrals in Eq. (28) are particularly simple, being complex
gamma functions of argument /+1-+4n or /+1—4n. The asymptotic expression of R turns out at
once to be

r(2042) 1
R(p)~N—— . o5 [kp+tn log 2kp—(I+1)m/2—o(+1, n)], (29)
[T+ 14in) (e kp

where ¢ is the phase of the complex gamma function, defined by
ew L) =T (J4+1+4n) /| T(I+1+1in)|.

The radial function
R~c/p cos (kp+p)

(where 8 may vary as fast as log p) is now normalized to d(E/k) by the following condition on ¢:#
c2=1/kr.
This condition determines IV above in atomic units. To express IV in c.g.s. units it must be multiplied
by a¢#(h3/2w2met)t.
Due to the different behavior of the complex gamma function for very small and for very large

energies E, two different forms for N are useful.
First, as we find from the condition on ¢2,

k¥ T (4141in)|erm2
T nr(2+2)

(30)

which is useful for large energies, where 7 is small. With the use of the property
T'(x)T'(1 —x) =n/sin 7,

40 See Whittaker and Watson, Modern Analysis, 4th edition, p. 337, et seq. My, n(z) =2t~ 2F(m+%—k, 2m+1; 2).

4 See Mott and Massey, Atomic Collisions, p. 256 and H. Bethe, reference 7, p. 292. Bethe's Eq. (4.23) for R,, should
be multiplied by 2}, since his unit of energy is 2R, =2-(2n*me*/h?). The exponential factor, exp (¢kr) should also be
changed to exp (—1kr).
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since / is an integer, we may also write

)’1’1(2+ 2 and Ne— ( id )’1’1<2+ 5, (31)
S n an = EEE—— S ne)*,
8=1 (2l_+_1)! 1__6—-21"! 8=l

which is useful for small energies, or indeed for any energies if  is not a large integer.
To summarize, the entire wave function for E >0, normalized in Rydberg units, is

¥e(r, 8, ©) =Y, n(0, ¢)- N(2kp)'e=**F(I+1+1in, 2142 ; 2ikp), (32)

where N is given by either Eq. (30) or Eq. (31). To express the wave function in c.g.s. units it should
be multiplied by ao~}(h3/27*me?)?.

|T(+1+in) | =(

sinh 7.

15. Evaluation of the matrix element

The absorption coefficient discussed in Section 5, et seq., is given directly by the square of the
matrix element of the current jgz, » from Eq. (3B). That is, by the square of

eh

JE, ,.=7-fexp (Z(x-1))Y*(A-grad Yn)dr
cm

— 2y f exp (i(x: D))Wu*(A- r)¥ndr.

We consider light incident along the z axis. Then 4, the unit polarization vector, will be in the
x—v plane. Since the Schrodinger equation ignores all relativistic effects it is necessary for a consistent
calculation to set (x-r) which enters | Jg, »| quadratically, equal to zero. For, in the neighborhood of
the first Bohr orbit, (x-r)~a+(v/c)?/a using the conservation law, and this is always of order
a=27/137 for justifiable photoelectron velocities. It may indeed be of order unity for (v/c)2~Z /137,
but the Schrédinger equation itself breaks down for velocities so large (except for the lightest elements
where the screening model has no meaning. Hydrogen provides the single exception for which the
retardation factor might be meaningfully retained).

An electron in the normal state (#=1, [=m=0) has the wave function

Yo=(Z%/m)de2e.

Since (A-r)=A4,x+4,y, and x and y are proportional to cos ¢, sin ¢, respectively, 7 is determined for
the final state to bex1. For m=+1, Jg, , is proportional to (4,—%4,), and for m= —1, Jg, , is in
the same way proportional to (4,+174,).

We may therefore effectively sum Jg, > over m= %1, and write

T, o=e2mwiv/2} | Y5*(x+iy)pedr.

Since x+4y=7 sin fe¢, I for the final state will be unity (s—p transition). Then, using
Y1, 108, ) = (§7)% sin fete,
and performing the easy angular integration, we find
2Z%- 2wivay [
Jz, o=—-—-———fe“z"p3Rgdp. (33)
34 0
The integral may be simply evaluated by series expansion of the integrand. One finds

o 12Z
e~ Zople=ike F(2+1in, 4 ; 2tkp)dp=———exp (—2n cot™! u).
fo @
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Substitution of this into Eq. (4), and multiplication by a factor 2 to take account of both K electrons,
leads to the absorption coefficient
hao 287 Z% exp (—4n cot 1 n)
k=2 No—

mc_\; (1 —e2m) (k24 2Z2)4 '

The conservation law, which may now be used to express 7x as a function of », reads

v=22+k=2}(14+1/n?),
where v is in Rydberg units.
16. Screening
We assume the atomic electron has a potential energy V in the field of the nucleus, where
V==2Z/p+V, p<po=2(Z—1)/V,

Vs

=—2/p P> po

Vo is of the order 3.6Z%/3, and p, consequently is of the order 3Z—%. This value of p, lies well outside of
the L shell for medium heavy and heavy elements. For the bound states the energies are therefore
approximately given by

en=—2n2+ Vo  m=1,2,3, .
Since Vy—e, now occurs in the bound state wave functions, in place of —e,, these functions are

unchanged by the presence of V. The energy equation relating kv, €., and ¢, the energy of the final
state, however is changed as a result of the change in e,. It reads

hv—Z2/nt=e— V.

Now for the final states, e— V, occurs in place of e. Since e— V, can now be negative for small
photoelectron velocities, the final state wave function in this instance will have the appearance
of a discrete state function of large but nonintegral total quantum number, for all p <p,. Again since
po is large, and this behavior consequently persists throughout the range where the matrix integral
contributes, there is no difficulty in completing the integration, as one sees by using the expression

Ry=N'(2(Vo— ) ie V03 FI+1—iZ/(Vo— )}, 20+2; 20( Vo))

to evaluate the integral of Eq. (33). If we let ¥’ = (V,—¢)?, the result of this integration gives

3.2%n%%a  vk"Z5  [1—k/Z\%I¥
= Ne N ( )
. he (Z2 =k \14+F /2

The problem is therefore to find the normalizing factor N, for the range e— V;,<0.

Since asymptotic formulas for functions of the According to this method the solution of
type Rz above are not well known, we propose
to study this normalization by means of the @*(pR) ( +§Jﬁ +_{>_) (pR) =0
W.K.B. method. It will be of advantage first to de? ¢ o o? pEy=

see what result the W.K.B. method# gives for the
normalization of the pure hydrogenic function outside of the classical turning point py, is given

with no screening, when ¢>0. by

— , RICOR P
@ See L. A. Young and G. E. Uhlenbeck, Phys. Rev. 36, Rpl~—————cos{ | ¢ldp——1.

1154 (1930). ™ P I3 4
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This function is already normalized. The quan-
tity ¢(p) is defined as
22 (43

et+——

) IS

o= i o(p1)=0.

Now by joining at p;, the solution inside the
turning point is given by

1 »
Rei(p)=—¢ texp (f <a*dp)-
27t o

In this way the normalizing factor N (for no
screening) should be approximately determined
by setting

(2p€t) !N =Rz (p), p=0.
If we use Sterling's formula, and thereby neglect

a term 1/24(l4+1), we find from the above
relation

N=((22)n'/(21+1)})
c(142N2/n?)M2 exp (m tan™t N/n—N\).

If this is compared with the correct nérmalization
as given by Eq. (31), one sees there is a fractional
error here of amount (J+3%)/24X#n* for small
energies (large ). Nevertheless the above formula
gives values accurate to within one percent for
n?=3 (v/v1=4/3).

Now, let us consider the potential energy (in
Rydberg units) to be given by

=—=2Z/p+ Vs p<m
V=—2/p, p>p=2(Z—1)/V,,

where V), is a constant. The conservation law
then reads

for

hv=22+4¢—V,.

For the moment we shall discuss the case where
e— Vo>0. Now the normalization will be found
as before, that is by making the amplitude of
the wave function be 1/7x%p, for p— . But the
solution of the differential equation for V= —2/p
must be joined with that for V= —2Z/p+ V, for
p=p1, and consequently this will modify the
amplitude inside, and therefore change the
normalizing factor N somewhat. If we define

27 N )
P=¢—Vot+—=——; P(pp)=0, A=l+3,
p P
2 N
Q=et———3 Q(Po)=0,
p P

HARVEY HALL

, T

p= f Po—,
L3 T
=.£QQ*dp——Z

the W.K.B. solutions may be written
r
—s=prien | [=Praof, o<on,
op

pR=P~tcos p(p), pr<p<pi,

pR=A4Q tcos [g(p)+A], »>p1

These functions represent the solution for this
problem. The solution will be normalized if it is
multiplied by (4%r)~%. The two constants 4 and
A are now to be found by joining the two
oscillatory solutions, and their derivatives at p;.
We are here not interested in the phase A, but
only in the amplitude 4. The conditions at p;
give for 4 the relation

A2=1—

Vosin 2p(p1) Vo cos p\ 2
: ( ) y (p=p1)
491P§ 4P1P’

in which the last term may generally be dropped.
The normalization is -now obtained in the same
way as before, and is in fact given by

(2Z))nl )\2 A2
A(21+ D '( ) exp (n tan™! N/n—N\)
only 7 is now written

n=2/(e—Vo)y'=2Z/k

due to the presence of V. For computing 4 we
give the expressions

2 N
P(p1)=et———)
p1 pi
Pin] pi(P+E)+n
p(p1) = p1Pi+n ng
N/Zpp—1 =
—Ncos™t

(1+22/n2)} 4
=2p1Pt—N\cos™ \2/Zp1—1)—n/4, e=V,.
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Here cos™ (\2/Zp1—1/(1+X2/n?)}) is in the first
or second quadrant. This gives the correct phase
for the limiting case e— Vo=0.

Now let us consider the case e— V,<0. Both
roots of P(p)=0 are now positive, the one
moving in from 4« as Vo—e increases. We
write these roots pp, and pp’, where

N/Z
pp=——————,
L (L

, N/Z
Iy

Here as before #n*=22/(e—V,), but is now
negative. The function Q(p) =e+2/p—22/p? still
has only one positive root

pa=A/1+(1+4n%)%

However, in joining the solutions corresponding
to P(p) and Q(p) at p;, where P=(, we must be
careful to join oscillatory solutions only if
pa<p1<pp’ (see Fig. 8). These conditions put a
lower limit on —#?, or an upper limit on ¢ which
is somewhat greater than V,/2, according to the
particular value of Z being considered. We shall
now need

» dp =
p0)= [ [-(Vim9pt2zp—n7=-2
rp p 4
, T
=f Pidp——
op 4
pP}
=pPt=|n|tan! ———
[n] (1+Zp1/n?)
N/Zp—1 =
—\cos™? -

(1+N/n2)t 4

and for continuing the solution in to p =0 we also
need

3 dp » dp
[ e—2zpt i1 == [ (=212
Pp 14 p P

14N/ |n|

=N+3|n| logm

nog 22 (14 /)t
og —— n
g2)\2

as p=0. Now joining again at p;, and continuing
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the solution in to p=0, we again find the nor-
malizing factor, for the energy range e— V<0, to
be given by

QZ)ynt
T AQI+)!

(1422/n2)M2 exp (n tan™t N/n—N\)

only # is now imaginary. NV may be expanded in a
power series in #? however, so that, we are now
prepared to give a rule for computing 7x in the
region v/ <1.

We omit any reference to the amplitude 4 for
the moment. Then, since the W.K.B. method
gives the same functional dependence of N on %
on both sides of the ideal series limit »;, it seems
likely that a rigorous theory would do the same.
This we shall assume. Thus we conclude that due
to screening effects the result Eq. (8) for 7x will
be modified only by the factor 1/4% on both
sides of the ideal limit »;. For energies e— V>0
we have found this factor to be

1/A42214- (Vo sin 2p(p1) /4p1P?).
For energies e— V(<0 the same result follows,

only in the two cases p(p;) is different. For
€— Vo>0

p(p1) = p1Pi+n log M
(m4N)1
o NZp—t
(1+n/mt)t 4
and for e— V(<0
p(p1)=prPi+|n| tan™ ——JL
|n](14-Zp1/n?)
N/Zp—1 =«

- —1 J—

(14w/m2)t 4
In both cases P(p;) is the same
P(p1) =e+2/p1—N/ps%.

These expressions for p(p;), as might have been
predicted, are analytic continuations of each
other as e— V) passes through the value zero.

So far little has been said concerning the effect
of the amplitude 4, and the corresponding phase
shift A, on the wave functions in the integral of
Eqg. (33) for the matrix element. This integral is
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Fi1c. 8. Illustration of condition (pq <p1<pp') when joined radial solutions may both be oscillatory.

also subject to changes brought about in the
normal state wave function due to the screening.
A qualitative estimate of this effect may be made
as follows. Omitting from the discussion the
radial wave function of the final state, which is
oscillatory, the integrand for the matrix element

1S
peZe,

which is a maximum for pm.x=3/Z. Since the
changes due to screening enter only for p>p;, we
may expect them to have only a slight effect if
pmax is much less than p;. This is the case for
heavy elements, and is fairly well satisfied for
lighter ones. If we write the condition

Pmax= %Ply

we obtain a lower limit for Z of about 16. This
should be a stringent enough condition for large
energies, since the wave function begins to
oscillate at about pmax/3, and the contribution
from beyond p; should consequently be small due
to interference. For small energies the error will
be greatest, since the wave-length is long here,
but even for e— V=0 the error will be slight for
heavy elements (ZX26).

In computing the phase p(p:) for the energy
e— Vy=0, which corresponds to r=» =22 we
may expand 2 in a series of powers of

s=[Vo/2(Z—1)T
We find

Do) =4/5+N0/24N8/96+ - - - —(A+1)7

and
1/A4221+45 sin 2p/8(1 —N\2%62/4)1.

This form for 1/42 may account for the dis-
crepancies found at y=vx for Ta Au U, as
illustrated in Fig. 1, and for the discrepancies in
the opposite direction for the lighter elements
Fe, Cu, Ag, Sn at »=vx. The phase 2p may fall
in any quadrant, and hence sin 2p may be nega-
tive as well as positive. However, as we have
already seen, the binding energy as determined
from the modified Fermi-Thomas field, does not
agree with »x (obs) unless the relativistic binding
energy is used in place of the term Z%. This
indicates that the screening should be applied to
the relativistic wave functions. Nevertheless, it
seems possible by physical arguments to make
plausible use of the formula just derived for 1/42
for the relativistic problem. The point of joining,



PHOTOELECTRIC ABS

n=2(Z—1)/V,, is by definition at such a dis-
tance from the nucleus that the strong nuclear
field has been almost totally screened. The wave
function at this point should consequently be well
represented by the Schrédinger function. For the
case discussed, the change in amplitude A4
outside of the K shell produced only the same
changes on the wave function for p—0. In this
way we found the correction 1/42 to the matrix
element. For the relativistic wave function we

17. Angular distribution for K shell
From Eq. (5)
V=Y yOp 1 wdy m~ T YyWg
iL,m i, m

)%
YOg 4 m=

p
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should expect a corresponding amplitude shift to
have the same effect at p=0. On the basis of the
above argument the amplitude shift would be
the same as that we have found.

The corrections 1/42, with V, determined by
Eq. (10), agree qualitatively with the experi-
mental results in Fig. 1. For Pb 1/42~0.96 for
A/M=1, while for Fe, Cu, Sn, 1/4? is between
1.05 and 1.02 for A\/A\=1. The correction falls off
rapidly to zero in all cases as A/\; decreases.

LmJE L m

exp {i[kp+nlog 2kp—(r/2)(+1)—a(+1,n)]} - Vi, w(6, ¢).

For long wave-lengths we have found Jg, 1, » vanishes unless /= |m| = 1. Therefore,

— gl (1, n) (ka) ingikp

Y~ Jg, 1, 1(km)}

(Yl, 1+ Y*l, 1)1

o

consequently the current vector has only the component along p, or

¥ * grad ¥— ¥ grad ¥*~cos ¢ sin 6.

The angle distribution is given by the square of this component.

J~cos? psin? §.

REeLATIVISTIC THEORY

18. The Dirac equation*® for hydrogenic atoms

(a) Form of solutions and angle dependence

The relativistic wave equation, including the effect of spin and change of mass with velocity, of
an electron in the electromagnetic field (4o; 41, 42, 43), is

[_E_

c

e e
+-Ao+ (11, p+—A) +a4mc]¢ =0.
c c

(34)

The state ¢ is characterized by the energy E. The operators in the equation are :* p= —i# grad, and

0 0 0 1 0 0 0 —i
w0 0 1000 0]

01 0 of 0—-i 0 of

1 0 0 0 i 0 0 OJ

where aiartoaka; =20 (’i, k=1, 2, 3, 4).

4 P, A, M. Dirac, Proc. Roy. Soc. A117, 610 (1928).
* The relations between the components of ¥, defined by

0 0 1 0 1t 0 0 0
o 0o o -t lo 1 0 o
=11 0 0o o] *Tjo o -1 of

0—-1 0 0 0 0 0 —1

the Dirac a matrices, and the components defined by Weyl's

s’ matrices (see H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel, 1928); p. 172) are given by
(1, ¥, ¥3, Y weyl= W1+ ¥s, Yotvs, Y1—¥s, Y2—¥4)Dirac.
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The wave function ¥ is itself a matrix of a single column

[./,,

12}
{m]
2
The solutions of Eq. (34) for a Coulomb field may be written as follows:
j=l-1% j=l+3
I+m—5\1 —m+3
b= (o) HO Vs ( ) F0) Vs, ms
21—1
l=m—3 l+m+2
¢2=(--) FO Y mis (G ) F0) Vs, mis
. 20—1 2143
(l—m+% : " ' (H—m-{-%)* Y
=\ )gr ot SR YRR A
I+m+i\? I—m+3\?
Yam— (———~) €Y1 mis Yim (———) NV
20+1 20+1

The projection of the angular momentum on the z axis is here denoted by m (a half-integer). The
two sets of solutions correspond to the two possible values of the total angular momentum j. The
radial functions f and g satisfy two first-order simultaneous equations. In this section we write

p=_2nxmcr/h=r-27x/Compton wave-length,
e=E/mc?,

where 7 is the radius vector, and E the energy in c.g.s. units. The equations for f and g may then
be written

Cetlta/p]f+[dg/do+(1—k)g/p]=0,
[e—1+a/plg~[df/dp+(1+k)f/p]=0.
Here, as before, a=2ne?Z/hc=Z/137. We have also that

(35)

k=j4+3=14+1, when j=I1414,
—(+9=—1, when j=l-}.

The Egs. (35) may now be solved at once by series substitution, after splitting off an exponential
factor. Only the result will be given here as the procedure is straightforward. Except for a normalizing
factor we find,*

4 See H. Bethe, reference 7, for similar results. The functions f and g are customarily written as a linear combination
of two other confluent hypergeometric functions,

Fvti-g Tomtrtt),  and P (v- i 2vkl)-

Our solution is of course equivalent to these others, but in form is much more convenient for calculations in the continuum
(e>1), since our G(p), although involving = (—1)4, is itself real.

The other independent solutions of Eqgs. (35) (which are inadmissible as wave functions, and hence are omitted) are
obtained from those above by changing the sign of v = (k*—a?)} throughout. This change, unhke the corresponding one in /
for solutions of the Schrédinger equation, actually does give the other independent solutions, since —1 is never a negative
integer, and the series for F(a, —2v), for example, consequently exists.
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a k+vy
f=;_rG7(P)+‘—A'G7+:(P), 2=Gy(p)+4-Gy11(p). (36)
1% «
« ke—y
Where y=(k2—a?)} A=
A= 2y2y+1)(k+7)
and Gy(p)=(2p(1— ez)*)""‘6“"‘*‘2’%}’(‘Y—}16/(1 =€)}, 295 20(1—éA)d).

(b) The radial functions for E <mc?

When e <1 the confluent hypergeometric functions defining f and g become infinite as p— «, unless

v—ae/(1—€)t= a negative integer, or zero.
We write
ae/(1—e)t—y=n', n'=0,1,2,---.

This determines the discrete energies
e=[1+(a/(v+n)] (37

For each 7’ there are two values of e. One is obtained by putting k=I+1 (j=1+1), and the other by
putting k= —1 (j=I—3%). Since k can never be zero an exception is found for the case /=0 (e.g., the
normal state), when e has only one value.

The normalizing factor for discrete states is determined by the condition

fm(f’+g2)pzdp =1

It is generally easy to find directly. The complete, normalized solutions for the normal state only

will be given here. For k=1, #n’=0, which characterize the normal state functions, we find
F=la/A4+v) LA +71)/2T (1 +271) JH(2a) nHpmiteer,
g=1-T(1+71)/20(1+271) PRa) mtipm-le=ce,

(c) The radial functions for E> mc?

The solutions for this case are formally the same as before. We write

k+

Y
fe- (iGﬁ* 4 -Gm), = NG+ 4Gy 1) (38)
Y

a
We make the definitions, p=(—1)}, n=ae/p. Then

a ke—vy
p2vQ@y+1)(+7)

and  G,(p) = (2pp)"te~?* F(y+in, 2v ; 2ipp) =real.

As writteq, p is the momentum of the electron, in units of mc.
Now G,(p) behaves very much like the nonrelativistic function R for very large p, as may be seen
by reference to Eq. (28). We may write

XA B [ nlog 26— — o )]
~ ——¢o n lo; ———a(y,n) |
+(p Ty Lin) | e 2pp s| pp g 2pp 2 a(y
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From this it may be shown that

Falle—1)isin v, ge(e1)} cos v, (39)
o p
where v=pp+nlog 2pp—mvy/2—o(y, n)—tan™! a (E—-l)‘
k4+vy\e+1
N : T(2v+1)

and

c= . .
L2(k+7) (ke ] [T(y+in)|emp
The normalizing condition is

v

(B+AE) b
lim f{f fd(E/h)} p*dp+same for g=1.
¢

AE=0 0 E—AE)[h

This condition requires ¢ to be given by the expression, ¢ = (7$)~* using our units of length and energy.
In this way N is determined. From the condition on ¢ we find

2 b [T (y+in)|emnre
N=[*§(k+~/)(kf+'¥)] '——i—:—z—f%——

If we write f and g, instead of as in Egs. (38), as
ycos I'+nsin T
ELELAN

= (e—1 l(' T-G,+
! (e+1)*cosI‘(e A !

2v(2y+1)
(40)
(+1)"( r G+ncosI‘-—7sinI‘ )
= cosT- _ G,
¢ (e+1)¥cosT € ® ! 2y(2v+1) o
a fet+1\?
where tan '=—— ) then the quantity
k+y\e—1
N 2[P(7+1+in)le*””(p)’
(e+1)icosT r2y+1) -

may be considered as the normalizing factor. The advantage of this symmetrical form is that the
above quantity remains unchanged for states where k <0.

Asymptotic forms for f and g when % <0, similar to those in Egs. (39) for £ <0, are sometimes useful.
They are given by

c ¢
f=~(e—1)}sin ¥, g=-(e+1)}cos v,
° P

where ¢=(7p)~}, and

a e+1\ 1}
v =pg+nlog 2pp—n(v+1)/2—0o(y, n)—tan™! (——) .
[B]+v\e—1

The phase v differs from » only by a constant.
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19. The relativistic absorption coefficient

The two normal states are of the same energy, e=vi. They are specified by the numbers: j=}%
k=1, m=+}. The wave functions are:

1 1
m=3% (a) y'=—-4fcosf m=—% (B) ¢°=—:(—1f) sin fe—i*

27t 27t

1 1

2 ——zf sin feiv Yol =—--1f cos
27t
1 ¥3'=0

—E;'(—g) e .

00=0 Tt

where f and g are as given in section 18b.
The problem is now to evaluate

JE, ,.=fexp (tx-1)(4 - jg, n)d7, where jg, n=—ceyp*ay,.

The light may be considered again incident along the z axis, so that A lies in the #, y plane; say in
the direction of the x axis. Only for large frequencies, which we shall consider, exp 7(x-r) must be
reatined. This factor of course complicates the analysis.

Integration over the angles presents no difficulties, but then a radial integration remains. We shall
here summarize the results after completing the angular integration which is straightforward. We find.

Tk shel1 =2 §(7a+78)

47
=No— 3 [Ja2(k)+T2(—k)+ T (k) + T2 (—k)]. (41)

hve 1=°
To express the J’s, let us split off the common factor
$eNoN (b /m)},
where  No=[(2a)*"*'/2(1+y)T(14+2y)]}, N=2(p/m)le™?|T(y+1+4i")|/T(2y+1).

We further define integrals involving the radial function g (and similarly for ones in f).
glp—1,k+1) =fe‘“’e“”'F(k+1, 2k+2; 2igp)p*—"gdp,
[

where g="hv/mc? and g of the integrand is given by Eqgs. (40). That is, omitting the normalizing
factor written above.
ycos'+nsinT ncosT—vysin T
f=(e-—1)*(sin r-Gyt+——m _— 7+1)
2v(2v+1) 27(2v+1)

The functions f* and g’ will indicate that the sign of & is to be changed in f and g, respectively. The
change in the sign of k will affect only the coefficients sin T, cos T' of Gy, Gy41, since only here does %
occur nonquadratically. We had

G~,+1), g= (e+1)*(cos r-G,+

a fe+1
tan '=s——

k+vy e+l)
k+vy\e—1

) so that tan I'= ———
a \e—1



392 HARVEY HALL

Then we may write

[k(2—1)]

o(k) = (ig/2)* g (u—2, k),

Ja(k) Y (ig/2)*Pag(n—2, k)
k(-1

Jo(—k) =—————(ig/2)* g’ (u—1, )

(—k) TG (ig/2)* g’ (u—1, k+1)

ro(42)

k¥ (iq/2)+*

Jo(k) =——————{a(k—1)2k+1)g(n—2, k) — ag’s(p, k+1) — (L+v1)gf(k, k+1)},
2rk+3)

Je(—k)= 2eiig/2) ' R 1, k+1 "(u—1, k) —(1 "(u—1,k

Mk = s oyt G D= G D=4 1,0, |

where we have written u=k-+~y-++v1. Every term in each of these equations is real.
Now the fundamental integral occurring here is

S(u—2, b, y+in)= f i oakivtio g2 F(k, 2k ; 2igp) F(y-Hin, 2 ; 2ipp)-dp.
0

We have defined S explicitly only as a function of those parameters which change from term to term
in Egs. (42). This integral was treated*® by the author in connection with the same problem. The
method indicated in that treatment can be extended, due to the partial symmetry between the two
confluent hypergeometric functions in the integrand, to find two forms for the integral. One of these
forms is convenient for sv/mc2>1, and the other for hv/mc?<1. Again because the work is straight-
forward asindicated in the reference, we shall write down the two forms. The parameters g, k, v may,
with certain obvious restrictions, be considered as arbitrary.

1.
Su=2, by ytim ==ty () L [T
u—2, k, y+in)=T(u— f"’(—) f a~n
4pq/ Bk, k)Jo (1—xu)*
a—dei 12— glg—ib’ 2y u—2k—1
. (———————————) (ae=#") CrH=w RF(y —in, 2y+1—p, 2y ; 1 —ae™#') -du.
2ip
We have here made the following definitions to avoid writing.
2p 1—xu 1+
x= <1l; a= ; B'=2tan™! lf.
e+ (1—x)} e+1 o

This form is convenient for investigation near the series limit, where #» may be very large, because of
the way in which confluence occurs in the integrand when #— «, x—0.
II. The second form is

S(u—2, k, y+in)=

I‘(”_l)enﬁqhﬂ—n / x )1
B(y+in, y—in)|[a+i(p+q) 1" |*\4pq

Lggr=imin(] —gg) v=1tin rg—lgiB — qe=ib\ k—k=1=1 s\ k=Y 2k A 1—p 2k+2—p "~
S () Q) e ()) -
o (1—xu)7(1—x)™? 44 7. 2 2 7.

4 H. Hall, Phys. Rev. 38, 66 (1931).
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Here we have written
a~teiBl2—gle—iBl2
B=tan™l—; g=————————
Y1 a—teiBl24gle—iB12

and a is the same as in case I. This is the same form, except for slightly different writing, that has
already been used for the problem of very large energies.*

The two integrals just given to define S may be studied in the following manner. The range of
integration 0=%=1 is divided into two ranges 0—u,, and #,—1, where uo=[1+(1—x)*]" is the
point where #(1 —%)/(1 —xu) is a maximum. Let #; designate points in the first range, so that 0=u,
1 =1up; and %, points in the second range, so that #y=wu,=1. Then, if we set y=xu(1 —u)/(1 —xu),
it follows that us+u; =14y, ue—u1=2[((14+y)/2)2—y/x]}. Then we find usu=y/x

ar=(1—xu) /(1 =) =[us(1 —u1) fus(1 —uz) ],
as= 1/(11
and in the same way

LA =) /ua(1 —2) ]im=[(1 —u2)/ua(1 —x)¥ I

A brief inspection of the integrands in I and II will now show that the integrals are real, as they must

be. We write then
e[ () S,
LR

f"[f(a(uz)) dus  fa(u1)) duy
= —= *—]y"“‘dy,
wll—xus dy 1—xu dy

xuo(l—uo) 1—(1—x)t
1—xu, —l—i—(i -—x)*'

Yo=

Now for the cases here presented f(as) = f*(a1). This follows at once in form II. In I it may be seen
by using the relation

Fa, B, v, x) =(1—x)"*F(y—a, B, v, —x/(1—x)).
We find further from the definitions
wi=(1+3)/2=[((L+)/2)=y/x],,  ue=(1+9)/2+[((1+5)/2)*~y/=]},
that dus/dy= — (1 —xuz)/x(ue—u1), dui/dy=1—xu,)/x(us—u).

It therefore follows that

lfo f2+f2* yk—l .

J— dy.

vo 2 [(49/2)—y/x]

This form is very convenient for a large class of integrals, including our I and II, because nearly all

the contribution to the integral comes for y near y,, unless of course the behavior of f dominates over
that of y*1.

X

4 H. Hall, Phys. Rev. 45, 622 (1934).
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In case I, when an expansion, for small energies, in #? is needed, the substitution

y=yoe"*
results in the expression
¥o* f“ fotfo* e .
= ar,
xugk(1—x)¥, 2 [t/k+(ot/2uck(1—x) )2 ]

where ¢=Fk(1—e~"/%), The integrand may now be expanded in powers of ¥, and due to the e~ factor
few terms are needed. The actual calculations for the absorption coefficient are tedious and long, and
are hardly worth repeating here. In computing the relativistic absorption coefficient near the series
limit, it suffices to say, all terms o?, p*=(v/c)? and larger ones were retained, with the results as
outlined in section 9. There is no appreciable change due to relativistic effects, even for Pb, for
frequencies as large as v~2vg, unless they come from higher terms in o2, p%.

20. Discussion of 7x when hv/mc2>1

In this case, many terms in the angular momentum contribute to the sum of Eq. (41). We shall
here give an evaluation of the J’s, based on the treatment of the last section, which will lead to the
correct value of the CSA in the limit 4v/mc?*— ». This means that y may be set equal to %, since the
main contribution will be for k of the order E. The difference between v; and unity will however be
maintained, so that the final result will be correct for all « when kv/mc?*— . This order of approxi-
mation allows us to write

T(k+2—-25)7}

[k(kz—l)]*k““=[ o) ], where &§1=1—y1~a?/2.

This allows us to express the J's in a fairly simple form. We omit a common factor which is inde-
pendent of k. Then we find

[T(+2-20)7 o
Ja(k)—L'-W]L y*1fidy
FT(k+2—26
T(=k)= ((k 2! )] Yy,
:I‘(k+2 25)% 2(141) “
s = | [ =
T (k+2—261) * (204
—k)= ~1 4—2fs1dy,
e A e ST T

where

) 2T o ) 5
[T 0 )"
fs=[ ]—* Real ( ) ( )‘"“ ( )1—517

Sa

I
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A TeC O )
fl TeC 0 ) C )

fe=; | wea ( )( )‘"“( )1—»1.

The empty spaces in the brackets here are to be filled with the quantities in the corresponding brackets of fi.

One point connected with the derivation of Eqs. (43) we may mention here. When terms in 1/e, or what is the same
thing, when terms in 1/ are dropped, we may omit the first terms of f and g’, and the second terms of f’ and g. That is, we
may write, from Egs. (40),

1
f=N~~'——2(2k+1)Gk+l(P).
g=N-Gx(p) when £>0,
f'==N-Gxlp),
1
! = + ————|
g'=N 2(2k+1)61,+1(p) when % <0.

In the case of f’, ¢, the sign of k has already been changed, of course, so that the absolute value of % is intended here.

We see fi=fs, fs=fs. The expression a(u) is the same as in the last section. It is seen that y=<y,
21—1/e<1. Hence it will be permissible to square the J’s, obtaining a double integral for each one,
and then to change the order of summing and integrating. We proceed in this manner. In the double
integral resulting, after the sum over k=2, 3, -+, is completed, there will be two variables of inte-
gration, y; and vy, say. If the substitutions y1=y¢(1 —2u/e), y2=yo(1 —2v/¢) are made, and finally we
go to the limit e—, we find after some work

25 (1—3%6)) exp (—ma+2atan~ta/vy) 3
TK=NQ'47I'G:02(108— i 1)'—

e (1—6,/2) a?h 8
f " f = (€08 B/D) ) sint (8/2) +4u)- (cost (8/2)+2) (4 sin? (8/2) +4) T4
o Jo [u(t w1 +0) P +uto)rmf - '

All factors have been restored in 7x. Here sin =g, so that sin? 8/2=8,/2, etc. The bracket, left blank
in the integral, is

{  }={cos p(#) cos ¢(v)+[(142u) cos ¢(u) —2 cot B/2(u+u?)?sin o(u)]
-[(1+20) cos ¢(v) —2 cot B/2(v+2%)! sin ¢(v)]},
(14u)t4ut 271 (u+u?)}
where o(u)=alog ———————8; tan™! — .
(A4u)t—ut a 142

This formulation is exact for the limit e— .
Now let us consider the double integral above, for the case a=0. It may then be written

14-2)b4ud
dudv{1-+—|:1—{-214——4(14—1—u2)l log %——M] [same for v]}

fmf 1+u)t—ub “w
o Jo [(ut+u2) (v+0) (1 +u-+v)t '
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Partial integration shows that we may write in the integral
{ }=14+1+2u)(1420) =21+ u+v+2uv). (45)

One may now prove that the integral above, where « is neglected, is equal to 8/3. Because of the
factor (14+u+v)~4 the chief value of the integral is contributed for rather small values of #, v.
Thus, if in the factors depending on «, # and v are set equal to zero, one obtains Eq. (17) at once on
replacing the expression

— %6, exp (2a tan™! o/ 1)
1—-6,/2 a2

by the approximate expression €2¢’/a’, and by making a similar change in the removed factor.

Now although the important values of # and v are small, a somewhat better result than Eq. (17)
can be obtained by another approximation of #,y, %.v. An inspection of expression (44) shows that %
and v can be set equal to about 1/7 in the slowly varying factors, and the correct result 8/3 will be
found. Consequently, if we set #=v=1/7 in the part of the original integral depending on «, we find
approximately

TE=TK"*

— 26, exp (—wa+2a tan™? (a/'yl))l' (142/7)2 4 0.63
] (1+0.05a tan™! ).
1—8,/2 e Lt +1/7) (a2 +4/7)

a

where 7x° represents the value obtained for 7x from Eq. (17) by setting a=0. We rewrite the above
expression for 7x¢ in the form

0 — %8, exp [2a(tan™ (a/v1) — ) 81 o 0.63
w 1-#hewl (&/m) =) ! ) (1+0.05a tan-i )
alelgar—2a 1_51/2 oid1—2a? \8(7+4/a2)

TK=
@
The factor by which this differs from 7x in Eq. (17) may now be computed. For a=0.6 (Pb), we find
it to be about 0.96, or only 4 percent lower. A more careful determination of the error in Eq. (17) due
to a could now be made along similar lines, but due to the small part 7 plays in the fotal absorption
for large frequencies, this hardly seems worth while. Particularly since our estimate of the error above
proves it is not large.

Concerning the relative contribution of the J's to 7x when kv/mc®>>1, we see that Jo(k) and Jo(— %) contribute equally
and Jg(k) and Jg(—k) contribute equally. In expression (45), 1+ (14 2u)(1429), Jo(+%) and Jo(—%) may be considered

to be responsible for } each; Jg(k), Jg(—k) for (142u)(142v)/2 each. Or, it may be stated, the spin states « and 8 con-
tribute approximately the fractions § and §, respectively, to 7.

21. Discussion for 7 when hv/mc>>1

The Ly(2S;) shell contains two electrons, which, in the notation of section 18, are typified by the
quantum members j=3%, m=+3%, k=1. The corresponding wave functions are

m=3 Y1=i(3)¥¥1, 0 m=—%  $r=i(H¥1, 2
Ye=1(3)¥¥1, 1 Ya=1i(HHYY1, o
Ys=—g¥o, 0 ¥3=0
¥i=0 va=g¥o, 0.

The energy of both electrons is the same, being given by e= (1 — 8/5)}. The functions f and g can be
found at once from Egs. (36). The absorption coefficient can now be written out from Egs. (42) by
making the appropriate changes in the bound state. This is true because the components ¥; have the
same angle dependence as those for the normal state.
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The work is thenceforth about the same as for the K shell, and we shall not give any of the details.
We find approximately,
TL[/TK= % - 2%,

This gives for the ratio, 0.20 for Pb, 0.15 for Sn.
22. Angular distribution for the K shell

To find the contribution to the angle distribution from one normal state («), we must sum the
product

Y, 1, im0 i a
over all values of m, I, j to which transitions occur. This gives
p Vo= Vm, 1, iJm, 1, i; o
The angle distribution (radial current) will then be given by
$ =W, *agV,.
To this must be added s,%, obtained in the same way using Jz. We find then
Vo= 3 {¥¥m 1T, 1; a ¥ m, 1 I m 1: o},

m, 1

Vo= 3 (¥ m, 1Jm, 1. 6V m, 1J% m, 1 65

m, 1
T m, 1, a=Ja’(—k.)+Ja*’(-—k),
T, 1 a=J o} (k) — T} (k),
T, 1 p=JTa"H—k)+ T (—k),
T m, 1 g=—Ja"¥k) +T6H(R).
We then find
\Pa=§{¢“’z. st a(—R)+9s, 10 To(—R)+¥P" 2, apT (k) =71, —12Ts(R)},

¥s ZI{\V"L _srnSa(—R) ¥, 12 Ts(—k) =¥, _apaT () +P"1, 10 (k)]

where Jo(%k), Js(==k) are now given by Egs. (42). If we now neglect all terms in (v/c)?, s, and
¥, ¥,* are equivalent expressions for the current. Even when the first power in v/c is neglected the
calculations are tedious, and the net effect of o? is small. We shall omit all details and merely state the
result for (v/c)=0.

W, ¥, *~sin? [ cos? ¢ —a?{(0.086 —0.428 cos? §) cos? ¢+ (r/8) sin 2¢} ],
YW * ~sin? 9|:cosA2 ¢—a2{(0.026—0.132 cos? 6) cos? p— (7/8) sin 2¢}].
The sum of these expressions gives the radial current as already presented in Section 12.
J~sin? 6 cos? g[ 1 —a2(0.056—0.280 cos? 6)].

The contributions from the two spin states a and 8 are observed here to differ, particularly in the
sin 2¢ term. This latter difference however is of course impossible to observe.



