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Group Theory and the Vibrations of Polyatomic Molecules
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INTRODUCTION

HE analysis of the vibrational spectrum of a
polyatomic molecule consists in correlating

the observed infrared and Raman frequencies
with the normal modes of vibration of the
molecule. ' By analogy with the diatomic case we
consider the nuclei of the N atoms to be vibrating
around an equilibrium configuration with ampli-
tudes small compared with the internuclear
distances. This assumption is actually justified
by experimental data. We know from classical
mechanics that under these conditions there are
certain definite combinations of the displace-
ments of each particle which give rise to definite
mechanical frequencies. These fundamental fre-
quencies and the normal coordinates correspond-
ing to them obviously depend on the potential
and kinetic energies of the particles. It may be
shown that the fundamental frequencies found in
this fashion are identical with those obtained by
quantum-mechanical calculations. We may hence
restrict ourselves to classical mechanics.

Consider a system of N nuclei forming a
stable configuration. The first step in any
dynamical problem is to set up the Hamiltonian
with the potential energy V as some unknown
function of the mutual displacements of the
particles. If we call g;i the distance between the
ith and jth nucleus, and let 5 refer to the change

*Sarah Berliner Research Fellow of the American
Association of University Women (1935—36).

~* Now at Sterling Chemistry Laboratory, Yale Univer-
sity, New Haven, Conn.' For a treatment of the vibrations of polyatomic mole-
cules without the use of group theory, cf. D. M. Dennison,
Rev. Mod. Phys. 3, 280 (1931).The specific points men-
tioned in this introduction are discussed there in detail.

3

in any quantity, we may expand the potential
energy as a Taylor's series in terms of the 8q's.
No terms linear in them appear since the undis-
turbed configuration is an equilibrium one. Also,
as a first approximation, we may neglect terms of
higher order than the second which amounts to
postulating harmonic forces between the nuclei. '
Then the potential energy is written as:

V=,gk», ~, og»bg;'i .

In some cases there may be definite physical or
chemical reasons for assuming certain specific
values for the various k's, but as a rule we have
to consider them at first as unknown constants
with the hope of being able to determine them
later from experimental data.

The usual way of expressing the kinetic energy
T is in terms of the displacements of the various
particles from their equilibrium positions. If we
assume a cartesian coordinate system xys, then:

T=-; p m;(Sx;s+Syp+Se;s),

where m; is the mass of the ith particle.
To have a Hamiltonian suitable for further

calculations, we must express both the kinetic
and potential energies in terms of the same
variables. Obviously there are functional rela-
tions between the bg's and the Sx's, by's, and bs's

and in the case of small vibrations (i.e., if the
various bg's etc. , are small quantities of the first
order) the relations are linear. However, both

'For a detailed discussion see Whittaker, Analytical
Dynamics, 2nd edition (Cambridge, 1927), p. 1.78.
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where X;=coP and the c0 s are the fundamental
frequencies (expressed in suitable units). We
know, furthermore, that the )I s are the roots of
the determinantal equation'

Fio. 1. The number of lines connecting the various nuclei
in a tetrahedral pentatomic molecule.

sets of variables turn out to be extremely
cumbersome for any actual calculations. Another
dif6culty has to be taken into account. The
system has 3N —6 degrees of internal freedom,
since rotation and translation claim three each,
but the number of lines connecting the various
nuclei may be larger than this (as, for example,
in the case of a pentatomic tetrahedral molecule;
see Fig. 1). Then all the bq; s are not linearly
independent and one or more of them have to
be eliminated by means of relations giving the
linear dependence. Also in Eq. (2), T is a func-
tion of 3N variables, i.e., the kinetic energies
due to rotation and translation have not been
subtracted. The most satisfactory way of treat-
ing the problem is to select 3N —6 independent
variables si, ss, ~ sstr e (which may be ex-
pressed linearly in terms of the original variables)
and transform both the kinetic and potential
energy to them. The conditions of conservation
of linear and angular momenta have to be
taken into account when performing the trans-
formation on T (i.e., the translational and
rotational energy have to be subtracted). We
obtain then:

The resultant equation in X would be one of
degree 3N —6. It happens, however, that for a
large number of so-called "symmetrical" mole-
cules, the equation in ) factors out into a number
of component equations of lesser degree. This
implies that it should be possible by a proper
choice of the variables to resolve the original
determinant immediately into a product of de-
terminants of less orders (cf. Fig. 16).

This question of the proper choice of variables
is intimately connected with a study of the
symmetry properties of molecules. For some
simpler cases, geometrical intuition may lead to
satisfactory results, but in general more powerful
mathematical methods are needed.

A suitable formalism for the treatment of the
problem has been developed in group theory.
The purpose of this report is to present elements
of the theory of groups and their representations
and to use these methods in the solution of the
problem of molecular vibrations. The knowledge
of group theory actually necessary for this is
very small and in what follows no attempt will

be made to furnish proofs of the various state-
ments made. Their validity can be easily demon-
strated by means of the specific groups used as
illustrations, but for a general proof the reader
must go to texts on group theory. 4

'Eq. (6) means:

Xt111-Kii Xyn-Kis . &tii, av-e —Ki, iver e

Atilt Kls ~Ised Kis ' ' ' ' ' '
0

sB'-8
V=-; g X,ts,s, (X,, =X,t), (4)

i

where the p, ;i are functions of the masses, but the
X;i are not. We know from the theory of small
vibrations' that the Hamiltonian may be trans-
formed to the form:

4 We have found the following, especially the first three,
to be useful references for the general theory of groups:
Wigner, Gruppentheorie (Braunschweig, 1931). (This book
is always meant, whenever we refer to Wigner, loc. cit.);
Schoenflies, Theoric der Kristallstruktur (Berlin, 1932);
Speiser, Theoric der Gruppen son endlicher Ordnung (Berlin,
1927); Bauer, Introduction 8 la thdorie des groupes (Paris,
1933); van der Waerden, Gruppentheoretische Methode i»
der Quantenrnechanik (Berlin, 1932); Mathewson, Ele-
rnentary Finite Groups (Boston, 1930); Eckart, "Group
Theory, "Rev. Mod, Phys. 2, 305 (1930);Weyl, Theory of
Groups and Qua»turn Mecha»ties (London, 1931);Burnside,
The Theory of Groups (Cambridge, 1927). The theory of
groups as applied to molecular vibrations has been de-
veloped by Wigner, Gottinger Nachrichten (1930), p. 133.
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GENERAL CONCEPTS

1. Delnition of a group

An ensemble of elements, E, A, B, 6, - . . is
said to form a group if the following four postu-
lates are obeyed:

I. There is a rule of combination such that the
combination of any two elements A and B of the
group will give a third element of the group, C,
called the product of A and B and written
C=AB.

II. The associative law holds: (AB) C =A(BC).
III. Every group contains a unit element, E,

for which AE=EA =A.
IV. Every element of the group has an inverse,

X=A ' such that XA. =A 'A=E. An element
and its inverse may be identical and obviously,

The members of a group may be considered as
abstract elements to which a meaning is to be
assigned later. They may be identified with real
or complex numbers, matrices or the motions of
a geometrical figure in space.

In what follows, the rule of combination is
multiplication and if necessary matrix multiplica-
tion. In the case of ordinary multiplication, the
four numbers ~1, &i form a group and it is
easily verified that the four group postulates as
given above are fulfilled.

If the group contains a finite number of
elements, it is called a Prlite grouP and the
number of its elements, h is called the order of
the group. Infinite groups are of considerable
interest in quantum mechanics but here we are
mainly concerned with finite groups. If the com-
mutative law holds, AB=BA, and the group is
said to be Abelian but in general AB gBA.

A simple group has been given above. An
example of a slightly more complex group of
order 6 will now be given and some additional
group properties presented. A group is com-
pletely defined if all of its products are known.
Let the elements of the group, E, A, B, C, D, F
be arranged in rows and columns in such a way
that the products stand at the intersections.
For example, the product AB will stand at the
intersection of the row headed by A and the
column by B. Let the multiplication table for
this group be:

E A B C D F
E E A B C D F
A A B E D F C
B B E A F C D
C C F D E B A
D D C F A E B
F F D C B A E

It is easy to see that the six elements form a
group and that the group postulates are obeyed.
Every product is contained in the group and
every element has an inverse. This group is not
Abelian for A C= CBg CA.

2. Sub-groups
Consider some one element of the group, say X

and form successive powers of this element.
Since the element chosen and all of its powers
are members of the group and since the group is
finite, this series will eventually repeat itself.
Let X"=E, then

X, X' X', X" ', X"=E
is called the period of X and is indicated by the
symbol IX}~ If n is the smallest number for
which X"=E, n is called the order of X. The
period of A in the group above is:

A, A'=B, A'=E, its order is 3.

The period of B is B, B'=A, B'=E and its
order is also 3. The' order of C is 2, however,
since C'=E. The period of X forms a group
itself since all the group postulates are fulfilled
and it is said to be a sub-group of the original
group, S.In the above group, the sub-groups are:

{A}= {B}=E, A, B,
{C}=E,C,
{D}=E,D,
{F}=E, F.

The order of a sub-group may be shown to be
a divisor of the order of the whole group. Since
the only divisors of 6 are 2 and 3 (besides 1

and 6) these are the only possible sub-groups.

3. Conjugate elements
If A, B, and X are elements of a group and

B=XAX-'

A and B are said to be conjugate to one another.
The following laws about conjugate elements are
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almost self-evident and are readily verified using
the group multiplication table given above:

I. Every element is conjugate with itself.
II. If A is conjugate with B, then B is conjugate

with A.
III. If A is conjugate with B and also with C,

then B and C are conjugate.

The elements conjugate with each other are
called a class. The whole group then splits into a
number of classes none of which contains ele-
ments in common. For the group (7), the class
of A is A and B.For,

EAE '=A, AAA —'=A, BAB '=A, CAC '=B
DAD '=B, FAF '=B.
Similarly, it can be shown that the class of C
(also D and F) is C, D, F.

The unit element always forms a class by
itself. There are then 3 classes in I:F; A, B;
C, D, F. Elements of the same class have the
same order, in the above example, 1, 3 and 2,
respectively. The number of elements in any
class is always a factor of the order of the whole
group. /

A comp/ex is a set of elements from a group
and is designated by German script letters.
The complex of elements forming a class is
always indicated by 5. If the complex 5 con-
tains A, B, C, the product C5 will contain CA,
CB, C'. By the product of two complexes 58
is meant the product of every element of 5 with
every element of 5 but products occurring more
than once are only taken once. If the complex @
is a sub-group

extend this concept to the case of general or
multiple isomorphism where instead of having a
one-to-one correspondence of elements in two
groups, there may be several elements of one
group isomorphous to a single element of another
group.

GEOMETRICAL BASIS

5. Elementary properties of motions

While group theoretical methods are extremely
elegant from a purely mathematical point of
view, they have the disadvantage of not being
easily visualized unless studied on a more
geometrical basis. We shall proceed therefore
with a consideration of some simple geometrical
properties. We are interested only in the possible
motions' of a figure when one of its points
remains fixed in space. ' Since the position of
any rigid figure is determined by the positions
of any three of its points which are not collinear,
the only two possible types of motion are rota-
tions through some angle q around an axis
passing through the fixed point and reflections in
a plane containing that point; all other types of
motion may be reduced to a combination of these
two fundamental ones. Hence two different
Positions of the same figure (or any two identical
figures that have a point in common) may be
brought into superposition by means of a rota-
tion; both the direction of the axis and the angle
of rotation are determined by the initial positions
of the two figures. Also any two mirror images
may be brought into superposition by a reflection
plus a rotation around an axis perpendicular to
the plane of reflection.

@and X@X ' are called conjugate sub-groups.

4. Isomorphism

Two groups are said to be isomorphous if
elements A, B and C of 8 are associated with
elements A', B' and C' of Q' in such a way that
if AB = C, also A'B' = C'. If the multiplication
tables of the two groups are known, there will
be a one-to-one correspondence with the elements
of the isomorphous groups throughout the tables,
although the meaning of the elements will be
different in each case. Instead of a simple iso-
morphism as illustrated here, it is possible to

6. Combined motions

A product of two motions may be defined as
their combination. Obviously the product of two
rotations is another rotation; the axis and angle
of this resultant motion are determined by the
axes and angles of the components. The product
of two reflections must be a rotation, since by
reflecting the mirror image of a figure F once

~ Motion is meant here in the strictly geometrical
sense.' While the motions discussed here are not to be corre-
lated with the actual movements of a molecule, we can
take advantage of the fact that in the problem of de-
termining the energy levels the center of gravity of the
system may be considered to be stationary.
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FM. 2. Reflections from two intersecting mirrors.

more, we get Ji again. This last case may serve
as an illustration and will therefore be discussed
in a little more detail.

Consider two intersec'ting mirrors a and b and a point M.
In Fig. 2, a and b are taken to be perpendicular to the plane
of the paper with M in the plane. The reflection in a
will bring M to the position MI, the reHection in b will
further shift it to M~. It is evident from the figure that~
(OM, OM~) =2(a, b). Also OM =0M~ =0M' and OM and
OM~ are both perpendicular to the line of intersection.

Hence the product of two reflections is a
rotation by an angle 2{a, b) around the line of
intersection of the mirrors a and b.

Corollary. —The product of a rotation and a
reflection in a plane containing the axis of rota-
tion is equivalent to a reflection in another plane
passing through this axis. The angle between the
two planes is equal to half the angle of rotation.

Assume now that the order of the two reflections has
been interchanged. The effect of b would be to bring M to
M' and then a would reflect it to M". Now: (OM, OM")
=2(b, a) = —2(a, b). The result is a rotation by the same

angle as before but in the opposite direction —the order of
two reflections may not be interchanged.

Another important result is the following: The
product of two rotations by s. around intersecting
axes te and v is equal to a rotation around an axis
perpendicular to u and v, by an angle equal to .

2(e, tI).
~ (a, b) will always denote the angle between two lines

a and b, the positive direction being from a to b.

The correctness of this statement can be shown as fol-
lows: The product, has to be a rotation. Now take any
point M on a line perpendicular to u and v and passing
through their intersection 0 (Fig. 3). The first rotation by
m brings M' to another position M' on the same line, such
that MO=OM', the second rotation brings it back to M.
Hence this perpendicular line remains unchanged and is
actually the axis of the resultant rotation. To determine
the angle, consider the axis u itself. The rotation around
u obviously leaves it unchanged; the rotation around s
brings it to a position u' such that (u, s) =(s,.u'). Hence
(u, u') =2(u, e) as was stated above. In an exactly similar
way, we may show that the product of the two rotations
taken in reverse order is a rotation around the same axis
and by the same angle only in the opposite direction.

The product of two operations depends in
general on the order in which they are taken.
However, the following special operations are
interchangeable (as shown in the less obvious
cases in the corresponding figures):

I. Two rotations around the same axis;
II. Two reflections from perpendicular planes—they are equivalent to a rotation by ~;
III. Two rotations by an angle ~ around

perpendicular axes;
IV. A rotation and a reflection in a plane

perpendicular to the axis of rotation {Fig.4).

The product of a rotation and a reflection in a
perpendicular plane which is thus defined un-
ambiguously is called an improper rotation or a
rotary refection. We may treat an improper rota-
tion as being the fundamental operation involv-

ing a reflection. An. ordinary reflection is an
improper rotation by the angle zero. There is
another important special case of it if the rotation
is by an angle vr. As may be seen from Fig. 5,

IM

'M

FIG. 3. Rotations by an angle vr around two
intersecting axes.
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Fxo. 4. Rotation and reflection in a plane perpendicular
to the axis of rotation.

every point M is transferred by this operation to
a position M& such that the three points 3II, 0,
and Mi are collinear and MO=OMi (0 is the
point of intersection of the axis with the plane).
The result is thus independent of the direction of
the axis and depends uniquely upon the position
of the point Oi (i.e., of the fixed point); the
operation is called an inversion and 0 is the
center of inversion. We may add to our list of
interchangeable operations:

V. An inversion and any other operation (this
is a consequence of I and IV).

V. Symbolic notation

Following Schoenflies we denote symbolically
any rotation by an angle q around an axis c by
C(q), similarly a reflection in a plane s is called
e,. If there is no ambiguity, we may omit
writing s. In a case where there are several axes,
a rotation around an axis a may be represented
by A(q). An improper rotation is represented by
S(q) and an inversion by I. The identity opera-
tion, one which leaves all points unchanged, is
symbolized by E. Since C(2&p) is equivalent to
two successive rotations by q, i.e., to the product
of two such rotations, we define:

Cs( q ) C(2 q )

or more generally:

C(q) C(q') =C(q+ q') and C~(q) = C(kq); (9)

k being any number whatsoever. Thus if k= —1,
C '(q) = C( —q). If q = 2~/n, where n is an
integer, C„may be used instead of C(q). With
this notation we have the following set of rela-
tions, which are an analytical statement of the
various geometrical properties discussed above:

Fio. S. Inversion.

C 'C =C C -'=Z, C "=E, C "=C ]„,
~s—Qo 0

—1

C„os——0.
p, C„=S; Ss '"=E; Ss +i'"+'=o.l, (10)

o-„op= Us,
Csoy, =I; Is=E I=I '
Ioj,= Cs, IC„=C„I.

h and v are two mutually perpendicular planes
intersecting in u and c is a line perpendicular
to h.

8. Symmetry properties and elements

Among all the possible rotations and reflec-
tions, we may select certain ones which have the
special property of bringing the figure into super-
position with itself. These motions are called
covering operations. If the only motion which will
accomplish this result is a rotation by 2s- (or
zero), the system is said to have no proper
symmetry; however, the only cases of interest are
those which do have some kind of proper sym-
metry. Take for example an equilateral triangle
(Fig. 6). The three positions obtained by rota-
tions of 2s./3 and 4s-/3 around an axis through
the center'of the triangle and perpendicular to its
plane are undistinguishable. We may thus have
axes, planes and centers of symmetry depending
on whether the covering operation is a rotation,
a reflection or an inversion. If the covering opera-
tion is a rotation by 2s./n, the symmetry axis is
said to be n-fold. The symmetry element cor-
responding to an improper rotation is called an
axis of the second kind or an improper axis. The
following relations hold between various sym-
metry elements:

I. The intersection of two symmetry planes is
a symmetry axis. If the planes form an angle of

'The statement in parentheses indicates the general
nature of the proof.
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M

2 2 3 I

FiG. 6. Proper symmetry of equilateral triangle.

s/n, the axis is n-fold. (Cf. the discussion about
the product of two reflections. )

II; If a symmetry plane contains an n-fold
symmetry axis, there are n —1 additional sym-
metry planes going through that axis, the angle
between two successive planes being s./n. (This
follows from the repeated application of the
corollary in $6.)

IIa. An important special case of II is n=2.
A. twofold axis and two perpendicular symmetry
planes passing through it are always present
together; if a figure has two of these elements, it
must necessarily have the third.

III. An even-fold axis, a plane perpendicular
to it, and a center of inversion are also inter-
dependent; any two of these elements require the
presence of the third. (See the definition of rotary
reflection and inversion in $6.)

IV. Two twofold axes forming an angle of
m/n require a perpendicular n-fold axis. (See
discussion in $6 of result of two rotations by s-.)

V. A twofold axis and an n-fold axis perpen-
dicular to it postulate n —1 additional twofold
axes, the angle between two adjoining ones being
~/n, . (This foHows from the repeated application
of result mentioned under IV.)
9. Geometrical definition of a group

From the very definition of covering opera-
tions, it is evident that they obey the postulates
stated, in $1; hence, the total set of covering
operations of a symmetrical figure constitute a
group. Any operation of the group will transform
the system of symmetry elements into itself,
since the figure to which the system belongs is by
definition brought into superposition with itself.
Symmetry 'elements which may thus be trans-
formed into one another are called equivalent.

In this connection, consider the following case: a system
consists of a threefold axis c and 3 twofold axes, a', u" and
u'", perpendicular to it. {Fig. 7.) Take any point M on c
above the plane of the I axes; a rotation by ~ will bring it
to the position 3P below the plane. The two halves of the
axis c may be transformed into one another, the axis is
said to be two-sided. Take now any point N on say a'.

N, g
„M

FiG. 7. One-and two-sided axes of rotation.

Rotations around either c or I" and zc'" can bring it only
to the positions

¹ on I"and N~ on u"', there is no opera-
tion which can bring one part of the I' axis in superposition
with the other. The axes e are ouse-sided. If the axis c were
2e-fold, the twofold axes would be two-sided for there
would be an operation C~„"=Cg, and a rotation by ~ can
bring one-half of any line perpendicular to the axis into
superposition with the other half.

10. Transformed operations

Consider an operation A with the element u
and an operation G which transforms a into b;
then the operation 8 which is connected to b in
the same way as A is connected to a is its con-
jugate' 8= GAG '. While this result is perfectly
general, the proof will be restricted to the case
where A is a rotation, A =A „.GAG ' is obviously
a rotation. Consider the effect of it on b; if G
transforms a into 5, then G ' transforms b into u.
A acting upon the result will leave it unchanged
and finally G will traiisform it back to b. Since
the resultant rotation GA „G ' leaves b unchanged,
b is its axis. To show that the angle of rotation
around J3 is also 2x/I we must show" that

J3"=E and BI'WE if p&n.

B~=—(GA „G—')&= GA „G—iGA„G-i .GA „G—i

P factors
=E if p=n

=GA &G-' . (11)
WE if pWn

A purely visual, very elementary proof may be given in
the special case of an equilateral triangle (Fig. 8) where a
and b are twofold axes and A is a rotation by ~. We let G
be a rotation (in the trigonometric sense) by 2m/3 around
the threefold axis passing through 0 and perpendicular to

' We make the convention that in a product of operations
like LMN, N is performed first, then N; then L. This is in
accord with the usual rules of matrix multiplication but
disagrees with Schoenflies.

'o Cf. $3.
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Fio. 8. Transformed operations illustrated for the case of
an equilateral triangle,

the plane of the triangle. We want to find the effect of the
combined operations GAG i on a point M. G ' is a rotation
by 2m/3 in the negative sense. It brings b to the position b'

coincident with a and 3E to 3P. (All equal distances on the
figure are marked off). A obviously leaves b in the position
b' and shifts M' to the position 3II".Finalfy, G the rotation
hy 2~/3 brings b back to its original position and llew' to
M'". The result of GA2G ' is thus to shift M to 1III"', but
it is evident that the same result is obtained directly by
performing a rotation by ~ around b. Hence we actually
have GA ~G ' =B2.

11. Transformation of an n-fold axis into itself

Assume that the n-fold axis coincides with the
s axis of the coordinate system and let the posi-
tive sense of rotation be counterclockwise around
the positive direction of s. Consider two lines li.
and ls in the xy plane such that we go from li to ls
in the trigonometric sense through the angle
2~/n. If the transformation G performed on the
symmetry elements does not affect the relative
positions of li and l2, li can be brought to the
position l2 only by the operation C„. In this case
there will be no possibility of transforming C„
into C„'. For example: every rotation is con-
jugate only to itself if the operation G transform-
ing the symmetry element is a reflection in the xy
plane, or an inversion, or more generally any
improper rotation around the s axis. On the other
hand, if the operation G is such that it inter-
changes li and ls or changes li to —li (or ls to
—ls, but not both) it is possible to bring li into
the position ls by means of C„' and to have C„
conjugate to C„'. Among operations G of this
kind are reflections in vertical planes bisecting-
(lil2) and rotations by ~ around either li or l2.

12. General properties of symmetry groups

The preceding discussion concerning conjugate
operations enables us to determine the classes

without having to set up the multiplication table
of the group. The different types of covering
operations give the number of classes; the number
of elements in each class is found by considering
the number of equivalent symmetry elements
corresponding to each operation.

%'ith this geometrical interpretation it is easy
to determine and classify all the possible types of
symmetry groups. We shall consider first the
problem of finding groups of higher symmetry by
adding certain symmetry elements to lower
symmetry groups. By analogy with JA} which
stands for the period of A, )A, 8}will represent
all quantities of the type A"8, where the order
of A and 8 cannot be interchanged. Consider a
group" 8 with the system of symmetry elements
{I;we want to add to it a system of elements {{
with the operation A corresponding to one of the
elements a of a. What conditions must the system
a and the operation A satisfy in order that
(N, A} should constitute a new group? In any
group the total system of symmetry elements
transforms into itself under every operation of
the group. The ensemble consisting of g and a
will obviously satisfy this requirement if every
power of A transforms g into itself and every
operation of 5 brings a into superposition with
itself. If Q consists of the operations E, G{'&,
G{'&, - G{"-'),this means that corresponding to
every operation G{~& and every power m of A
there is another operation G(» such that:

A "G(~&A = G'» or A "G{'&=G{»A". (12)

We may further note that if a, a{') etc. , are the
equivalent elements of a then there is an opera-
tion G(~&A(Q(~&) '=A('& which has the same re-
lationship to a"& as A has to a. We can now prove
that under these conditions (Ol, A }actually repre-
sents a group. Since 5 is a group and A a covering
operation (corresponding to a), all" we have to
show is that the product of any two operations,
say G{»A and G{'&A" is contained in JS, A}.
From Eqs. (12) and the group property of (9, it
follows that

G(p)A mQ{l)A r AmQ(k)G{i)A w AmQ(s)A r
—AmQ(a)A —mAr+m —G(t)A r+m (13)

"Cf. the notation in (&3.
i~ The covering operation of the type A G(~) is by Eqs.

(12) equal to an element of f Q, A l.
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Fio. 9. System of axes for dihedral group D2g+J.

which by definition is contained in {5,A }.A and
its. powers may transform elements of 8 into one
another, which were nonequivalent with respect
to the operations of S.Hence we need not expect
that the classes of a rotation group should be
identical with the classes of the group of the
second kind derived from it. This will be the case,
however, if A =I for an inversion can only trans-
form each single symmetry element into itself.
Furthermore, we have seen in $11 that if an
n-fold axis is transformed into itself by an inver-
sion, each power of C„remains conjugate only to
itself. Since an inversion commutes with every
other operation ($6, V), a class of the group {6%,I}
is obtained from a class of 8 by multiplying every
conjugate element by I, for G&"&G('&(G(~&) '= G("&

implies G(~&IG&'&(G(+) ' = IG("&.Hence {I,I}has
twice as many classes as Q.

It may be shown that the method of con-
struction presented here will actually lead to all
the possible symmetry groups. Furthermore one
can prove that if a group has more than one axis
of symmetry of higher multiplicity than 2, its
system of axes is identical with that of a regular
polyhedron. The only regular polyhedra are the
tetrahedron, the cube, the octahedron, the
dodecahedron and the icosahedron. Of these the
cube and octahedron have the same set of sym-
metry axes and the same is true of the icosa-
hedron and dodecahedron. This restricts the
number of possible groups of this type to a
very few.

It might be pointed out in this connection that
a regular polyhedron of n edges admits 2n cover-
ing operations of the first kind. This is due to the
fact that any edge may be brought into super-
position with any of the n others (including
itself) in two different ways.

Fio. 10. System of axes for dihedral group D2~.

13. Classification of symmetry groups

This represents merely a tabulation. We shall
start by considering first the groups of rotations
and then add on to them symmetry elements of
the second kind.

(A) RQTATIoN GRQUPs

I. Cyclic groups C„
The simplest possible type of symmetry consists

of just one n-fold axis c which is one-sided. The
corresponding groups of operations are called
cyclic and denoted by C = {C }.Since all opera-
tions of a cyclic group are commutative, it has
many classes as elements.

II. Dihedral groups D„
To construct a rotation group of higher order

and symmetry we can add to the n-fold axis a
perpendicular twofold axis u. According to
V, $8 this postulates n —1 additional twofold
axes u('&, u"& u'" '& perpendicular to c; (the
angle between two adjoining ones, is, of course,
~/n). The resultant system obeys the symmetry
requirement of $12. (It may be pointed out that
this symmetry requirement could not possibly be
satisfied unless the twofold axes were perpendicu-
lar to the n-fold one). Thus D = {C,Us}.

To find the classes of D„we note that in this
case, according to $10, C„~ and C ~= C„"—~ are
conjugate to each other. The actual determina-
tion of the classes is different for groups of odd
and even orders.

Consider first the group Ds„+(. (See Fig. 9.)
Successive rotations C2„+i will bring the twofold

axis u to coincide with the directions u('&,
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u&4&' u"» u&'&, u&'& u&'&—'& and back to u.
Hence all the twofold axes are equivalent and the
2p+1 rotations by s corresponding to them are
all in one class. Among the rotations around c
there are 2p operations different from the iden-
tity which are conjugate to each other two by
two. There are thus p classes of two elements
each. The total number of classes is hence p+2.

Consider now a group of even order, Ds„, (See
Fig. 10.) Successive rotations Cs„will transform u
to u& &, u&4& ~ ~ u&s~ 2&, —u, —u&s& ~ ~ ~ —u& ~ &, u.
No even-numbered axis can be transformed into
an odd-numbered one; there are two non-
equivalent sets of twfold axes and correspond-
ingly two classes. Among the rotations around
the 2p-fold axis C»& = C2~ &= Cs is in a class by
itself; the remaining 2p —2 operations that are
difl'erent from the identity are conjugate two by
two. Hence the group Ds„has altogether p+3
classes.

An important special case is the group Ds. It is
usually known as the "Vierer" group and is
symbolized by V. Its system of three mutually
perpendicular twofold axes is identical with the
cartesian coordinate system.

III. Tetrahedral group, T

This is the group of covering operations of the
regular tetrahedron. It can be generated from the
Vierer group by the addition of a system of
equivalent threefold axes which will make the 3
twofold axes equivalent; (see Fig. 11). Thus:
T= f V, Cs }.The tetrahedron has 4 threefold axes
connecting each vertex with the center of the
opposite face; the 3 twofold axes join the centers
of opposite edges. (One axis of each kind is drawn
in Fig. 12). The twofold axes being equivalent,
the 3 rotations by s. are in one class. Since in this

Fia. 11.A system of two and threefold axes.

case no operation transforms a threefold axis into
itself, the rotations by 2s-/3 and 4s/3 are in difer-
ent classes and the total number of classes is 4.

IV. Qctahedral group, 0
The octahedral group may be generated from

T by adding a system of equivalent twofold axes.
It is easier, however, to discuss the group on the
basis of the symmetry elements of the cube or of
the octahedron. A cube has 3 fourfold axes con-
necting the centers of opposite faces; the 4 main
diagonals are threefold axes, and in addition to
this there are 6 twofold axes which join the
centers of opposite edges. Again only one axis of
each kind is drawn in Fig. 13. It may easily be
shown that all axes of the same multiplicity are
equivalent and that all the rotations C„" and
C " "are conjugate. Hence 0 has the following 5
classes: E, 8 rotations by 2s/3, 6 rotations by
s-/2, 3 rotations by s around fourfold axes, and 6
rotations by ~ around twofold axes.

V. Icosahedral group P
This particular symmetry type has no crystallo-

graphic application and it is doubtful whether it
is needed for polyatomic molecules. It will,
therefore, be mentioned only briefly for the sake
of completeness. The group does not have any
standardized symbol. P (for pentagonal dodeca-
hedron which is one of the two polyhedra
corresponding to the group) is suggested here; it
has the advantage over Placzek's notation that
it does not conflict with any other symbol. P
consists of sixty operations; its symmetry ele-
ments are as follows: 6 fivefold axes, 10 threefold
and 15 twofold ones. For more detailed results
reference may be made to Speiser. 4

(8) GROUPS OF THE SECOND K1ND

A suitable reflection may be added to the
rotation group @ to give rise to a new group
IS, 0.}.Since os=Z, these groups of the second
kind will have the same number of improper as of
proper rotations. It may be shown" that two
groups IS, oi} and IS, os} are identical if and
only if &ri&rs is a rotation contained in 8, i.e., if the
intersection of the two planes is a symmetry
axis of Q. It may also be shown that groups

» Schoenflies, p. 80.
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Fzo. 12. A two and a threefold axis of the
tetrahedral system.

constructed by adding an inversion to a group of
rotations are already contained among the
{N, o j type, or else are identical with groups
having an improper axis. It is convenient though,
to indicate, whenever a group has a center of
symmetry, for then according to $22 its classes
may be obtained very simply from the corre-
sponding group of rotations. These general state-
ments are sufhcient to determine all the groups
which have symmetry elements of both the first
and the second kind. We shall assume that the
principal n-fold axis is vertical; lr will denote a
horizontal plane and v a vertical one. The
addition of either one of these elements to a group
of rotations will be symbolized by adding an h,
respectively a e as subscript to the group symbol.
The most important features of these groups will

now be summarized.

UI. Cyclic groups C„»

By defin&tron C»= {C„,o'»f. All the operattons
of this group are commutative P4 it has as many
classes as elements. According to III, $8, the
groups of even order have a center of symmetry.
The group C&» is sometimes denoted by C,.

UII. Cyclic groups C„„
These groups contain n vertical symmetry

planes (see II, $8). The operations consist of the
n rotations and the n reflections. By a reasoning
analogous to the one used in the case of the
dihedral groups it may be shown that for n even
the n symmetry planes form two nonequivalent
sets, while for n odd all the planes are equivalent.
Also, by $21, C„» and C„"—"are conjugate to
each other. Hence C»„has the following p+3

"See IV, ~g6.

Fro, 13. A two, three and fourfold axis of the cube.

classes: Z, 2 sets of p reflections each, a rotation
by s. and p —1 sets each consisting of two
rotations. Similarly the group Cs~+&, „has p+2
classes.

VIII. The groups S„
There are groups of operations whose only

symmetry element is an improper n-fold axis.
8„={S J and the groups are Abelian. It may be
shown very easily by writing S„=C r» and
considering all the elements of S„, that for
certain values of n, the improper n-fold axis is
equal to simpler symmetry elements. Thus:

as@+1 {Csy+ly 0»j Csy+1, »l
84~+s = {Cs.+i) Il =Csu+i. ' "

No such relation exists, however, for S4„.

IX. Dihedral groups D„»

If a horizontal plane is added to a dihedral
group of rotations, its presence postulates" n
vertical planes going through the twofold axes.
Since D consists of 2n operations, D„» will have
4n of them. The additional operations are obvi-
ously the n reflections in the n vertical planes and
the n improper rotations (among them is included
the improper rotation by an angle zero, i.e., the
reflection in the horizontal plane). The new

symmetry elements do not transform any of the
symmetry axes into one another that were
nonequivalent before. Hence the rotations of D»
will be divided into classes in the same way they
were in the case of D . The vertical planes are
again equivalent if n is odd and divided into two
sets if n is even. If C» and C» are conjugate to

"This last symbol is part of the standard crystallo-
graphic notation.

"See statement IIa, $8.
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each other, i.e., if for any operation G of the
group GC ~G—'=C~ ~, then GS„~G—'=GogC~'G —t

Go@G 'GC ~G '=Go&G 'C-' =oqC '=S„—";
because op, can only be conjugate to itself since
there is no plane equivalent to h. The improper
rotations are also conjugate two by two. Hence
D„& has twice as many classes as D„, i.e.,
D»+~y, has 2p+4 classes and D»q has 2p+6.

X. Dihedral groups D„~

Since D z contains already vertical planes
going through the twofold axes, the only other
way a vertical plane could be added to D„and
still transform the system of axes into itself
would be to have it bisect the angle of the
twofold axes (Fig. 8 or Fig. 9). This plane is
called d (for diagonal). Again one plane of this
type postulates n —. 1 additional ones. These
diagonal planes reflect two adjoining twofold
axes into one another, hence in this case the
twofold axes are equivalent both for even and odd
values of n. Similarly all the planes are also
equivalent. Since the angle between a plane and
an axis is always an odd multiple of vr/2n (even
multiples give the angle between two planes or
two axes), in the case of n odd, one of the planes
is always perpendicular to one of the twofold
axes. Hence for n=2p+1, the system has a
center of symmetry.

The 4n operations of D ~ are the n rotations
around the n-fold axis, the n rotations by v.

around the axes u, uu& etc. , the n reflections in
the diagonal planes, and another set of n opera-
tions of the type G= Uso~. To obtain these in
a more customary form, we consider a vertical
plane v going through the axis u. Then, according
to Eqs. (10), U& ——o~o, and G = U2o & = o &o,o'~.

Since the two planes v and d intersect in the
n-fold axis and the angle (v, d) is an odd multiple
of ~/2n, o„o.~——C((2k+1)2'/n) and G=oqCs '"+'
=S»'~+'(k=1, . . .n —1). By analogy with the
case of D q, we find that S2 '"+' and S2„'~ ' are

~ conjugate to each other.
From the preceding discussion we obtain the

following classes for D»q.
E, a rotation by v around the 2p-fold axis,

p —1 classes of conjugate rotations, one class of
2p rotations by 7r, one class of 2p rejections, and
p classes of conjugate improper rotations; alto-
gether 2P+3 classes.

Since D»+~~ has a center of inversion, it has
twice as many classes as D»+&, i.e., 2p+4. For
details, reference may be made to Section II.

XI. Tetrahedral group, T~

The six symmetry planes of T&= {V~, C&} pass
through an edge and the median lines of the two
opposite faces, and each contains one of the
threefold axes. Since the plane of symmetry is
vertical with respect to the threefold axis, the
rotations C& and C3 ' ——C&' will be conjugate to
each other. "Also the twofold axes of T are now
equivalent improper fourfold axes since the
generating group is Vq. We obtain then the
following classes for T~'.

E, a class of 8 rotations around threefold axes,
a class of 6 reHections, a class of 6 improper
rotations around fourfold axes, and a class of 3
rotations by ~ around these improper axes,
altogether 5 classes.

XII. The group T~

This group is derived from Vp by the addition
of a threefold axis, quite similarly to the con-
struction of T from V; T~= I V~, Cs }. Since Vq
has a center of inversion, T~ will have one too,
i.e., TA= IT, I}and its 8 classes can be obtained
directly from those of T. The standard notation
Tq for this group is somewhat misleading, for as
a rule h is perpendicular to the principal axis, i.e.,
the axis of greatest multiplicity, while in this
case it is perpendicular to a twofold axis.
Furthermore, it is evident that the geometry of a
tetrahedron does not allow a center of symmetry,
so that this so-called tetrahedral group is not a
group of covering operations of the tetrahedron.

XIII; Octahedral group, Oq

From the discussion of the symmetry of the
cube, we see that any symmetry plane h will
contain 2 fourfold axes and 2 twofold ones.
Hence" its presence postulates both v and d
planes and there is no other way of constructing
a group of the second kind from the group O.
OI, has a center of symmetry, so that its 10
classes are immediately known from those of O.

'v See )ii.
» See statement II, f8.
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XIU. Icosahedral group, P»

This group also has a center of inversion, the
plane h being perpendicular to the twofold axis.

(C) CONTINUOUS GROUPS

In addition to the finite groups, three infinite
groups must be considered. They are called D„,
C „and D» and are analogous to D„, C „and
D„». The four group postulates may be extended
to include an inFinite number of elements" and
the other concepts such as characters irreducible
representations, etc. , follow in a logical manner.

Consider the rotations around a fixed e axis
by the angle q, which may take an infinity of
values between 0 and 2~. This group, in analogy
with the cyclic groups is called the two-di-
mensional pure rotation group, C, and is
Abelian. It is a sub-group of the two-dimensional
rotary reflection group, C„„which is formed by
the addition of a plane of reflection passing
through the s axis. In this case, the rotations by
&y form a single class as shown before 2' and
the extended group is not Abelian.

The group D is isomorphous with this group,
but in place of the plane of reflection, there is a
twofold axis of rotation, perpendicula, r to the
e axis.

The group D„» contains in addition to the
infinite number of rotations about the s axis and
the twofold axis of rotation, a center of inversion.
It thus has twice as many classes and may be
written:

D»= (D, I]I.

14. Correlation between molecules and sym-
metry groups

When coordinating a molecule to one of the
symmetry groups enumerated above, we must be
careful to use the most complete group which will
transform into one another the equivalent atoms,
i.e., atoms which are identical and eccupy
geometrically equivalent positions. The incom-
plete group allows an asymmetry in the potential
field around each atom as will be shown on the
following example. Consider the molecule X3,
with its three atoms at the vertices of an equi-
lateral triangle. We might represent the potential

"For the details of continuous groups and their theory,
see Wigner, Chapter X, page 97.

See $11; also Section VII, this $.

FIG. 14. A figure with the proper symmetry C3.

field symbolically by means of lines of force.
Then if we take just Cs as the symmetry group
of the molecule, a potential distribution shown
in Fig. 14 is permissible geometrically, even
though obviously quite impossible physically.

15. Introduction to the theory of representations

Since we have identified the elements of the
symmetry groups with certain definite geo-
metrical operations, we should be able to find for
them analytical expressions, the so-called repre-
sentations. In this section we shall discuss the
geometrical meaning of representations and
indicate to what extent geometrical intuition can
serve as a guide in finding them.

Instead of actually specifying the group opera-
tions we could obviously indicate the numerical
value of some quantity associated with the
symmetrical figure for each one of the operations.
For example, in the cyclic group C we could,
starting from some arbitrarily chosen point,
represent each operation C„» by the value of the
corresponding angle of rotation. Thus:

8 C C.' C.' ~ ~ ~ C" '
0 2m/n 4~/n 6~/n 2s (n —1)/n.

The disadvantage of this "representation" is that
the corresponding group operation is not multi-
plication but addition combined with taking the
residue from an integral multiple of 2~; e.g. ,
4s./5+8~/5 = 2s.+2~/5.

Obviously we could select in this way any
number of quantities but it turns out that the
resulting representations are not independent of
each other. One requirement. for a suitable
representation is that it should have as its group
operation either ordinary or matrix multipli-
cation. Thus, in the example above, if instead of
giving the value of the angle we chose the com-
plex coordinate of a point on the unit circle, we
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would get as the coordinate of this point under
successive transformations:

C 2 . . . C n—1

432ni/n S43gi/n. . . S2n(n-1) 4/n ~

3

matrices of higher order than the third. As a
result we have to use other more formal methods
to obtain the representations in any but the
simplest cases.

which would be a satisfactory group repi'es-
entation.

If we take as our numerical quantity, a system
of unit vectors directed along the symmetry
axes, it would be an invariant under all opera-
tions. This case might be represented by ascribing
the identity (for simplicity just the number 1) to
every group element. This particular repre-
sentation is obviously possible for every group.
Consider now the example of a dihedral group,
D . Take a point on the I-fold axis c at unit
distance from the plane of the twofold axes.
Every rotation around c would leave this point
unchanged so that we can represent each one of
them by 1. The rotations by s- bring this point
below the plane; to them we can ascribe the
number —1.

These examples suggest that we could in
general consider the three coordinates xys of a
point on the unit sphere and see what happens
to them under various operations. If the opera-
tion G shifts M to the position M, with the
coordinates:

xg gllx+glsy+glss y —g21X+g22y+g23s
&g =gslx+g82y+ g88s

the nine numbers gll, g12 ~ g88 can be assigned
to G as its representations. The only way,
however, to have these nine numbers obey
simple multiplication is to take their matrix:

gll g12 g13)
G~ g21 g22 g28 (14)

g33 g3!l g333

This intuitive method of finding representa-
tions makes clear their geometrical meaning but
otherwise has some very serious drawbacks.
There is too much arbitrariness in the selection
of the numerical quantity associated with the
symmetrical figure and no simple way to ascer-
tain whether all possible representations have
been found. Also we do not know whether the
representations obtained are independent of one
another. Still another objection is that no obvious
meaning can be attached to representations by

Xm ~imlXm +iim2X2 + ' ' ' +4immxm
I 33 I

with the matrix A

481141'12' ' '
realm )

33 33333' '

...a„2".a„J
This may be written

(16)

xi= Pai/xj, (i=1, 2 m), (17)
j=l

or X=AX',

where X stands for the vector with the com-
ponents xl, x2, etc.

Assume that there are further substitutions of
the same type, X'=BX",X"=CX"', etc. These
matrices obviously obey the associative law,
(AB)C=A(BC). If the set of matrices is finite
and closed, " these together with the unity or
identical substitution form a linear substitution
group.

To distinguish specifically between an abstract
element or operation R and the matrix of the
transformation corresponding to it, we shall de-
note the matrix by I'(R). The representation
consisting of the matrices F(Z), F(A), etc. , will

"The set of matrices is said to be closed if the funda-
mental group property I is fulfilled.

THEORY OF REPRESENTATIONS

16. Linear substitution groups

Since we are interested only in the symmetry
groups, i.e. , the groups of covering operations of
symmetrical figures, we shall limit our study of
the theory of representations to this special case.
As a consequence, one should be very careful
about extending any of the statements made here
to groups of a more general nature.

The more formal method of finding the repre-
sentations is based on a study of linear trans-
formations. Consider a substitution of degree 228:

Xl i811X1 +~12X2 + ' ' ' +481
X2 =C21X1 +Q22X2 + ' ' ' +82 X
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Xn ae1X1 + ' ' 'ae, s+1Xe+1 +II I

II
Xx+1

I+a omxm
I

an+1, s+1Xe+1 + ' ' '
I+an+1, mXII

(19)

I Ia~, ~+1x~+1+ ' ' '+aI I x~ ~

This matrix has the form

(2o)

where P and S are square matrices of degree n
and (m —n), 0 is a zero matrix, and Q has (m —n)
columns and 22 rows but may also be a zero

22 See signer, Chapter IX.

be denoted by F; a superscript will be attached to
F whenever the representation is irreducible.

Every finite group is isomorphous with some
linear transformation group, and when this is
found, the matrices F(A), I'(B), and F(AB) can
be associated with the elements A, B, and AB of
the finite group in such a way that:

AB= C,

also F(A)F(B)=F(AB) =F(C).

It may be shown" that all representations can
consist of unitary matrices only, i.e., of matrices
for which F(R)$=F(R} '; F(R}$ indicates the
transpose of the conjugate matrix of F(R). If
F(R);q is the element in the 2th row and kth
column of I'(R), then the corresponding element
of F(R)f is F(R)),;, where the bar designates the
complex conjugate.

In case there is a different matrix for eacl'
element, the representation is said to be faithful.
The isomorphism may, however, be of the general

type in which one matrix represents several
elements of the group. One multiple isomorphism
of any group is the previously discussed case in
which the matrix (1) is associated with each
element.

1V. Reducible representations

Suppose the matrix corresponding to one of the
elements of the group has the general form (16).
It is often possible to find such a transformation
of coordinates that

x1 allx1 +' ' '+a1, +1x +1+' ' '+alII I

x2 aslxl + ' ' 'II I +a2 x

matrix. If a transformation can be found which
will put all the matrices of a given representation
in this form the representation is said to be
reducsble. It is always then possible" to continue
the process by a convenient choice of. axes until
every matrix of the group has the appearance

F(»(R) 0
0 F()(R) (21)

(23)

18. The character
The task of finding all the representations for

any group is rather cumbersome for any but the
simplest group. However, for most physical
applications it is sufhcient to know only the sum
of the diagonal elements of the matrices. From
any set of matrices representing a group, in-

finitely many new ones may be obtained by
transforming with an arbitrary matrix, G

GAG—'=Z GBG '=B', etc. ,
GAG-1 =A'

and if

AB=C GAG 'GBG '=GABG '=GCG '.
"See Wigner, Speiser, reference 4, An illustration of

the complete reduction of the matrices for the group (7)
may be found in Bauer, p. 79.

If there is no transformation which wi)1 in turn
put every matrix F(»(R) (or F")(R})in the form
(21), then the set of matrices F(R) is said to be
completely reduced and F(') (R), F(')(R) are called
the irreducible representations.

The l2 operations of a group may be acting on
any number N of variables x1, x2, x„. The
complete representation of the group referred to
these n variables will consist of matrices of 22 rows
and columns. If we write such a matrix in reduced
form, some of the matrices of the irreducible
representation may occur more than once (and
some may not come in at all), due to the fact that
the number n is independent of the group.
Matrix expressions of the type given by (21) will
be symbolized by

F(R) =Za(')F(')(R) (22}

where a(') gives the number of times the irre-
reducible matrix I'(')(R) occurs in the reduced
form of F(R). Instead of dealing with individual
matrices, we could write the representation F in
the same symbolic form:

F —Qa(&)F(1)
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These transformed matrices therefore follow the
same multiplication properties. The sum of the
diagonal elements is also the same.

Spur AG= gaikgki= ggkiaik, ——Spur GA

an expression analogous to Eq. (22) for the
matrices of the representation. Eq. (27) de-
termines the r numbers a&&'& completely, for by
forming the scalar product with x"'(R), summing
over all group elements, and using the ortho-
gonality property (25), we get:

and Spur GAG '=Spur AGG '=Spur A.
The spur in this connection is called the character
and designated by x(R), where R stands for any
element of the group. (Cf. F{R).) The characters
of matrices representing elements of the same
class are identical.

a"' = (1/h) Px(R) x&'&(R};

or by summing over the classes:

(28)

(29)
19. Properties of the character

Some important properties of the character
will now be presented without proof. For further
details, the texts cited must be consulted.

I. If there are r classes for a finite group, there
can only be r different irreducible representations,
I'&'&, I'&2&, , I'&"&. The characters corresponding
to r&'& will be symbolized by x&'&(R).

II. Class E is always represented by the unit
matrix. The characters, x&f&(Z) are thus equal to
the dimension of the representation and consti-
tute a divisor of the order of the group.

III. The dimensions of the representations can
be determined from the relation:

would follow from
Z= FZ' (30)

where hi is the number of elements in the class 5;.
20. Direct products

We shall introduce now a new concept. Con-
sider two vectors X and I with the components
x&, xs x and y&, ys y . We can associate
with them another vector Z which would have
for its components the products xiyk(i =1 ~ n),
k=1 m). We want to determine the transfor-
mation F such that:

Lx&"(&)3'+ Lx&"(&)3'
+. +Ex'"'(&)j'=h (24)

If:
X=GX' and Y= T7'. (31)

With r and h given, there will be a unique way"
for all the symmetry groups of satisfying Eq.
(24) with integers.

IU. The characters form an orthogonal system:

then

and

I I
Xiyk = QgiatkPXa yP y

ap
(33)

giatkP =fik, aP (34}

x;=hagi. x.' and yk=pt pyp' (32)

Ex& &(R)x&'&(R) =»; (25}

r-I'"'(R) pI'"'(R)"= 5&l(fif )'3~i ~,~p' (26)
R

The characters x(R) of the reducible repre-
sentation are given by:

Not only the characters but also the repre-
sentations are orthogonal. If f; and f; are the
dimensions of the representations 1"' and I'&»,

then:
F=GX T. (35)

The relation between the individual elements is
given by Eq. (34). The character of F is

x(F) = g fik, ik ——g giitkk ——pgiiptkk
i, k i, k k

=x(G)x(T) (36)

is the element in theik row and aP column of F.
This matrix with mn rows and columns is called
the direct product of G and T and is written

x(R) =ra& &x& &(R),
j 1

~ The solution, however, is by no means unique for other
types of groups.

Consider now a group 5 with the n elements:
A&, As, . . .A„and another group 8 with the m

elements Bq, Bs, . B;let all the A's commute
with all the B's. If we multiply every element of



VIBRATIONS OF POLYATOM IC MOLECULES 333

5 with every element of 5, we obtain a new set of
nm elements, which may be shown to constitute
a group. In fact, for every value of j, k, j' and k',
we have

A;Bg, A;.BI, ——A;At.BkBI. ——A;"Bk . (37)

Similarly, we may show that the other group
postulates are also obeyed. This extended group
of nm elements is called the direct product of 5
and 8 and is symbolized by 5XS. We are
interested in finding the representations of the
direct product from the representations of the
individual factors. From the preceding discussion
concerning vectors we can conclude that if we
have two typical matrices I'(A;) and I'(BJ,), then

1'(A;B ) = I'(A I) XI'(B ). (38)

This expression is n'ot to be confused with

r(A,A, ) = r(A, )r(A, ) = r(A, )
if A;Ai. ——At. (39)

This last equation refers to two matrices of the
same representations for two elements of a group,
the product of which is by definition again an
element of the group. On the other hand, in Eq.
(38) nothing is specified about the matrices
I'(A;) and I'(B~) and AtBt„an element of the
group NXS, is not equal to any other element of
that group.

We are interested chiefly in the characters of
the irreducible representations of the direct prod-
uct. The results for the complete representations
are given by Eq. (36). For Abelian groups, where
all representations are of the first degree, the
procedure for finding the characters of the direct
product is particularly simple. If x(A;) and X(B1.)
are the characters for typical elements of the
component groups, the corresponding character
in the direct product is y(A;)X(B1,).This is true
also in the general case for non-Abelian groups if
one representation is of the first degree and
another of the nth degree. The representation of
the product will also be of the nth degree and if
the component representations are irreducible,
the representation of the product is also irre-
ducible. However, if both representations are of
higher degree than one, the resulting product is
reducible. The reduction is readily made if the
table of characters for the two groups is known,
for multiplication of one set of characters by

another will give a sum of characters already
contained in the table and this can always be
uniquely resolved into its irreducible parts.

Examples of the use of these rules are easily
shown with the group C „,whose characters may
be found in Table III. The following results are
obtained:

A1XA1=A2XA2=A1,
A1XA2 =As,
A1XEJ =A2XEI, =EJ,
Ea XEa =A 1+As+Est,
EJ,XE;=EI,+I+E~ t

k&0,
k&0,

j, k&0; j~k.

TABLE I. General form of characters for the ssomorphous
groups D and C „with n odd; p=(n-1)/Z, ep=Zvr/n.

D„E
C~v

2C„&
2C„p

2C„'
2C„'

Ag 1 1 ~ ~ 1 1
As 1 1 ~ ~ ~ 1 —1
Bi 2 2cospe ~ ~ 2cose 0
Bs 2 2,cos 2pe ~ ~ ~ 2 cos 2p 0

Zp 2 2 cos p'y 2 cos Pp 0

TABLE

ne
Cse
Sss

II. General form of characters for the isomorphous
group D„, C„„and S„,with n even; p=n/Z.
E C„" 2C„P-t . . . 2c~x pcs pCs'
E C„& 2C„~~ ~" 2C„j p&y p&d

$ P 2$„~~ ~" 2S„~ p~ pcs

Ag

As
By
Bs

Es

1 1
1 1

1 ( —1)P
(-1)"

2 2 cosPs
2 2 cos 2py

1

1
(-1)~'
(-1)~'
2 cos (p —1)q
2 cos 2(p-1)y

1
~ ~ ~ 1
* —1

—1
2 cos p
2 cos 2y

1 1
—1 —1

1 —1
—1 1

0 0
0 0

Ep i 2 2 cos p(p —1)s 2 cos (p —1)ss ~ ~ ~ 2 cos (p —1)y 0 0

ss Bethe, Ann. d. Physik 3, 133 (1929).
's Mulliken, Phys. Rev, 43, 279 (1933); Tisza, Zeits. f.

Physik 82, 48 (1933).
s~ Wilson, J. Chem. Phys. 2, 432 (1934).

For notation see next paragraph.

21. Tables of characters

For methods of obtaining the characters, refer-
ence should be made to group theoretical texts.
Tables of characters for some of the point groups
were first given by Bethe" and then more com-
pletely by Wigner'. In Tables I and II we give
the characters in a general form and explicitly
for the infinite groups and the 32 point groups of
interest in molecular structure. They are also
given by Mulliken and Tisza" but our tables
follow the arrangement of Wigner so that they
may be used with the results of Wilson, 2' the only
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Cia —=C,

A;z
8; se, y

Ap
A„;s, y, z

Cs

TABLE III. Characters for the 32 crystallographic point groups and for the infinite cyclic and dihedral groups.

Cl E De E CR 2C4 2CR 2CR'
Ce, E CR 2C4 20„2acc

A 1 Va —=Dse E CR 2S4 2CR 2ag

E I Al 1 1 1 1 1
CR E CR AR z 1 1 1 —1 —1

ah 8„' 1 1 —1 1 -1
BR 1 1 -1 -1 1

A';Re y 1 1 E;s+iy 2 —2 0 0 0A";s 1 —1 Des= DCXI

Ce
Si

A

E

Cs/c=CRX as
Csi —=Se= Cs XI

cd —esp i/S

Ci
54

Ces

S,'

Al
As, z
Bl
BR
ER
El,' stiiy

Ce.

A, ;z
AR
BR
Bl

El, stiiy

E CR
E CR

Dss E aq

Al' 1 1
AR' 1 ]
Al" 1 —1
A,";z 1 -1
E', x+iy 2 2E" 2 —2

2Cs 2Ce
2CR 2Ce
2Cs 2Se

1 1
1 1
1 —1
1 —1-1 —1—1 1

3CR 3CR'
30'0 3'
3CR 30„

1 1-1 —1
1 -1

—1 1
0 0
0 0

A;s 1
8
E' se+ey (1

(1

1
1-1

—1

1—1

—e

A 1 1 1
8 1 —1 1

1 Cd Cd
l

C
4 Cds

E 1 cd cd
R 1 C

R
Cd

1—1
1
1—1—1

Ces =CCXI

Ce E Ce Cs CR Css Ce'

Dee= DeXI

(1 1 oP
3 —1 0

cd —eRP i/S

TA=TXI

„,s}
0

0 E
Td E

8CR 3CR
8Cs 3CR

6CR 6C4
600 6S4

T E 3CR 4C, 4CRC

1 1 1 1

Csa

cd —es&i/4 — c 4

V=—DR

Ap
Bp
A„;s
8„;stiiy

Al, z Al
Bs, y Bs, x
AR Bll s
Bl, s Bs, y

Vs=—Dy, =VXI

1 1
1 -1
1 1
1 -1

1 1—1 1-1 -1
1 —1

Ces=CeXI

E CR ae I
E CR . 0'e 0'y

E CR' Cs0 CR'

Al 1

AR 1
E 2
TR 3
Tlc +i y

D EC~„E

1
1 1—1 2
0 —1
0 -1

Os= &XI

2C(40)
2C(e )

1—1
0
1-1

1—1
0—1
1

CR

Ds
Cs,

E 2Cs
E 2CR

Al 1 1
Ass 1 1
E; stiiy 2 —1

Dar =De XI

3CR'
3ae

1-1
0

Al 1
AR 1
El 2
ER 2

1
1
2COS e
2 cos 2ep

2 COS h40

D i, =D XI

1
—1

0
0

difference being the order in which the repre-
sentations and classes are written down. If the
irreducible representations themselves, rather
than the characters are desired they may be
found in a paper by Seitz."

The standard mathematical symbolism, used
in the earlier part of our paper has been replaced

Re Seitz, Zeits. f. Krist. ASS, 433 (1934).

by that used by Placzekz' and Mulliken. Non-
degenerate states are indicated by A, B; double
degeneracy by Z and triple degeneracy by T.
States A are symmetrical while states 8 are
antisymmetrical to a rotation by 2s jn around the
principal I-fold axis, which is always in the s

» Placzek, Handbuch der Radiologic, 2 Auflage, Band VI,
Teil II (Leipzig, Akad, Verlagsges. , 1934), p. 205ff.
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direction. Different states of similar symmetry to
re8ection, in a plane perpendicular to the prin-
cipal axis are indicated by superscripts ' and "
and subscripts g and u refer to symmetry and
antisy'mmetry with respect to a center of
inversion.

The symbols for the classes have been ex-
plained at some length in (13.The number stand-
ing before the symbol for the class indicates the
number of elements in that class and the sum of
these numbers is the order of the group.

In addition to the groups given explicity some
others are given outside the tables as the direct
product of two groups. Their characters may be
found as described in $20 and in addition to the
states of the original group, which are g states
there are an equal number of I states.

To aid in finding the selection rules, the trans-
formation properties of x, y, z or xaiy, z have
also been given. Where two or more groups are
isomorphous and the states are the same {ex-
ample, D4, C4, and V~) the characters for the co-
ordinates refer to the first group in that table. To
obtain them for the other groups, one must
change the sign for j.mproper rotations, for ex-
ample z transforms like As for D4 but like A~ for
C4, and like Bs for Vg.

THEORY OF VIBRATIONS OF POLYATOMIC

MOLECULES

22. Introductory remarks

The problem is now to apply our knowledge of
the symmetry properties of the molecule to the
determination of vibration frequencies and of
normal modes of vibration. There are two sepa-
rate phases to this problem. First, we can de-
termine the number and types of fundamental
frequencies. We also have to ascertain the general
characteristics of higher vibrational states. Fur-
thermore, this phase includes finding the degree
of the equation of which some particular fre-
quency is a root. After this is known, we can
proceed to obtain explicit expressions for the
frequencies in terms of the nuclear masses and of
the constants of the forces acting between the
atoms. The qualitative results obtained previ-
ously should enable us to solve this second part
of the problem in the least cumbersome fashion.

23. Number and types of fundamenta1 vibration

frequencies
Assume that the problem has been solved and

that the kinetic and potential energies are given
in terms of the 3N—6 normal coordinates Q by:

fk
T=kEQ"+sZ Z Qk-'

k a~1

fk
U=~pX;Q,s+I+4 Q Q

k a=1

(40)

'o Of course, it may happen that all the frequencies are
single, in which case the double summations would not
appear.

The coordinates denoted by two subscripts are
fk-fold degenerate. " There are fk of them cor-
responding to one frequency QXk', fk is the multi-
plicity of this frequency. Let the molecule be
subjected now to a symmetry (covering) opera-
tion R. This purely geometrical procedure cannot
possibly affect the physical state of the molecule
therefore T and V are both invariant under R.
Since the state of vibration is also unchanged, the
only effect R can have on a nondegenerate co- .

ordinate Q; is either to leave it unchanged, or else
transform it into its negative. Symbolically this
may be written:

RQ;= ~Q;. (41)
The same result can be obtained purely alge-

braically, since it is evident from the form of the
expressions (40) that replacing Q; by —Q; will
leave the quadratic forms T and V invariant.
The degenerate variables Qk are not defined
uniquely, i.e., certain linear so-called orthogonal
combinations of them are still normal coordinates.

Take, as an illustration, the very simple case:

$(QIS+Q 2) V= $) (Qi'+QP)
Any combination of Q& and Q~ of the type Q&'=Qq sin 8'

+Qg cos 8' and Q~' = -Qi cos 0+Qg sin 0 will leave T and
V unchanged, as may be verified very easily by substitu-
tion. Hence, by definition, Q&' and Qq' are also normal
coordinates corresponding to the frequency g X,

The condition of invariance for T and V is
satisfied if R transforms each Qk into a combina-
tion of all the coordinates corresponding to the
same frequency QXk,

fk
RQka= Pr(R)k.,Q„; {~=1,2 fk). (42)
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We may take each normal coordinate as the
numerical quantity discussed in (15, whose be-
havior under various operations R gives us a
representation of the group. We see from Eq. (41)
that the representations associated with non-
degenerate coordinates can consist only of ~1.
Similarly Eq. (42) indicates that the representa-
tion corresponding to the fl, degenerate co-
ordinates will be in matrix form, the dimensions
of the matrix being the same as the multiplicity
of the frequency.

Different coordinates may behave similarly
under the various proper and improper rotations
of the group; they must then all have the same
representation, and the corresponding frequen-
cies will be of the same type. The number of
frequencies of a given type will hence be given by
the number of times the corresponding irre-
ducible representation occurs in the reduced form
of the complete representation of the group referred
to a particular molecule. Formula (28) gives this
number explicitly in terms of the character x(R)
of the complete representation and the characters
x&~)(R) of the irreducible representations. Since
the quantities x&~)(R) are known for every sym-
metry group, the problem consists in finding

g(R) for every operation R. To do this we start
by studying a general type of physical motion of
the molecule. We may express this motion in
terms of the displacements of each nucleus from
its equilibrium position. Let the state then be
described by: bxl, by&, l)zl, ~ (ix;, by;, bz;, 8x,
8y, oz . It is to be stressed that all numerical
indices refer to fixed positions in space and are not
attacked to any specific nuclei. "Apply a linear
transformation to this system of variables. In a
general case the new displacements bx', by', bz'

will be given by:
~xl gll ~xl+gll ~yl+gll ()zl+ ' ' '

+.gl ( )$x +gl (*w)gy +.g] ( )$z

~yl gll ~xl+gll ~yl+g11 bzl+ ' ' '

+g ( )Px+g ( )Py +g ( )Pz
(43)

~zl gll ~xl+gll "'byl+gll ~zl+ ' ' '

yg „&'*'bx„+g „&' )hy„+g „&"')bz„,

g 1 ~xl+g 1'"'~yl+g 1 ~zl+ '

+gnn '* ~xa+gam '" ~yn, +gaz ""~za
"This is, of course, obvious from a quantum-mechanical

point of view.

where the indices attached to the various g's are
self-explanatory. The matrix of the g's is the
representation of this particular transformation
and

Q(g . .(zz)+g . .(yy)+g . .(zz)) (44)

is its character. Let the transformation be an
operation R of the symmetry group of the mole-
cule which shifts a particle from the position j
to the position k. The physical motion of this
nucleus has not been affected by R; the only
thing that could have been changed is the orien-
tation in space of its displacement. The analytical
expression of this fact is that bxq', byl, ', hzl,

' can be
a function only of Bx;, by;, bz;.

~ Cf. $18.

bx '=F(R);&' )8x;+r(R) ( )Sy;+F(R). * )bz;,

Sy '=r(R);&"')()x;+r(R);& )Sy;+r(R);&"')Sz;,

bzk' ——F(R)1,;&")Bx;+F(R)1,& z» by;+F (R)y„&")bz;.
(45)

The only diagonal terms in the representation for
R that will be different from zero are the ones
corresponding to nuclei whose equilibrium posi-
tion in space is not changed by R.

As an illustration consider the case of a tri-
atomic molecule YXs with the undisturbed
atoms occupying the vertices of an isosceles tri-
angle. As we see in Fig. 15, a reQection in the
plane v, will leave the equilibrium position of the
Y atom unchanged, but will change the orienta-
tion of its displacement. Thus in evaluating x(R)
we can consider the effect of R on a displacement
separately for each particle where equilibrium
position is not affected. The explicit expressions
of the type (45) which connect Sxl,' with i)x; etc. ,
depend of course on the orientation of the sym-
metry element (corresponding to the covering
operation R) with respect to tke cartesian co-
ordinate system. The sum of the diagonal ele-
ments is, however, an invariant. " It suffices
hence to find it for a simple case. A covering oper-
tion can be either a proper or an improper rota-
tion. Let R be a rotation by an angle q around the
axis z. The operation may as usual be symbolized
by C(p); the corresponding linear substitution is:



VIBRATIONS OF POLYATOMIC MOLECULES 337

FIG. 15. Displacements of the nuclei of the YXq molecule
from their equilibrium positions.

x'=x cos y+y sin q,
y'= —x sin q+y cos y,

S. (46)

The spur of C(q) is 1+2 cos q and if uc is the
number of particles left unchanged by C(p), then
the character of the complete representation of

C(y) is: (we shall omit writing the angle q

wherever possible)

y(C) =uo(1+2 cos y). (47)

l.=yes —st,
l„=six —xmas,

l, =x8y —y8x. (50)

It may be shown (by means of general theorems
about angular momenta or in a very straight-
forward if inelegant fashion by direct substitu-
tion) that l transforms under a rotation C(y)
around the s axis in the following way:

vector acting at the center of gravity of the
molecule. The three components of this vector
transform under R like any other displacements.
Hence the character of a translation is 1+2 cos q&

for C(y) and —1+2 cos y for S(y).
Let the displacements of the N particles now

be such that they result in a physical rotation of
the molecule as a whole. This state may be ex-
pressed by means of an angular momentum /

acting on some point with the coordinates x, y, s.
The three components of the angular momentum
are:

If R is an improper rotation by y around the s
axis, R~S(q), the equations of transformation
are:"

l,'=i, cos y+l„sin p,
ly' ———l, sin (p+ly cos y,
l,'=l„. (51)

x"=x cos y+y sin q,
y"= —x sin q+y cos q,

Sf
Il (48)

and the spur of S(y) is —1+2 cos y. If, by
analogy to the case of a proper rotation, we call
the number of atoms left undisturbed by S(y),
ug, we obtain:

x(S) =u8( —1+2 cos q). (49)

The characters given by the formulae (47) and
(49) refer, however, to representations in terms of
all the 3N variables. To get the character cor-
responding to the representation by means of the
3N-6 normal coordinates, we have to subtract
the characters of the motions of translation and
rotation.

Consider first translation. The N vectors giving
the displacements of the nuclei are by the laws of
mechanics equivalent in this case to a resultant

"Wigner uses the expression "Drehspiegelung" which
usually means rotary reflection to denote an operation
known as perversion, i.e., a rotation followed by an in-
version. A perversion by the angle q is equal to an improper
rotation by the angle ~+ cp. This difference has to be taken
into account when comparing the formulae given here with
those of Wigner.

The e6ect of S(q) on the other hand is ex-
pressed by:

l,"= —l, cos y —l„sin q,
1„"=l.sin y —l„cos q,

(52)

the character of the motion of rotation is thus
1+2 cos q& for C(y) and 1 —2 cos q for $(q).

Hence the character of the representation re-
ferring to the 3N—6 normal coordinates

"(C)=y(C) —2(1+2 cos p)
= (Ic—2)(1+2 cos q), (53)

"(S)=y(S) —( —1+2 co y)
—(1—2 cos y) =x(S)

=u8( —1+2 cos q). (54)

Combining formulae (53) and (54), we obtain the
number of times, a&"&, a given representation, say
x(~& occurs in the complete (3N—6) dimensional
representation as:

a (~) = (I/h) I P (zt c —2) (1+2 cos pc) x (~'(C)
C

+gus( —1+2 cos q&s) x("&(S)I. (55)
8



338 J. E. ROSENTHAL AND G. M. MURPHY

The first summation extends over all proper rota-
tions and the second over all the improper ones.
The subscripts C and S have been added to o to
stress the fact that a different angle is involved
for different terms in the summation. Since the
quantities u, y, and x&~& are identical for all
conjugate elements, we can multiply the ex-
pressions under the summation sign 'by the
number of elements in each class and sum only
over the number of classes. (Cf. Eq. (29).)

To illustrate the preceding discussion we shall
treat in detail the case of the ZYXs molecule,
which has the shape shown in Fig. 17; this is the
structure of CClsH, CHsBr, etc. The symmetry
group is Cs„.We arrange in a table the characters
of the group, the quantities O~ and N~ for
(R= C(y) and R=S(O)); then +1+2 cos pg de-
pending as to whether the rotation is a proper
or an improper one. From these we obtain x(R)
and (R).

X&~)

x"'
x&a&

O'R

Na

+1+2 cos o'8

x(&)

E
1

1
2
0
3
3

15
9

2CB
1
1

—1

2' j3
2
0
0
0

30'y

1
-1

0
0
3
1
3
3

Now we apply formula (55) and obtain:

~&i& —3 a&'& =0 a&s& =3.

34 For details concerning the quantum-mechanical treat-
ment of the harmonic oscillator, reference may be made to
any text on quantum mechanics.

Hence molecule ZYXs will have three frequencies
corresponding to the representation x&'& and
three corresponding to g&s&. Frequencies of this
last type of symmetry will be doubly degenerate.

24. Irreducible representations and states of the
molecule

So far the preceding treatment has been purely
classical. However, to discuss overtones we must
introduce the quantum-mechanical point of view.
As is well known'4 the energy of a molecule con-
sidered as a system of uncoupled harmonic
oscillators with the fundamental frequencies
ai, o&s ~~ is given by:

Z= ay, (.,+-,), (56)

and each set of numerical values assigned to the
quantum numbers vi, vs, t~ defines a state,
We want to investigate the symmetry properties
of such a state, denoted by n, i.e., the irreducible
representation of the eigenfunction P„associ-
ated with it. The explicit expression for P will

depend on the potential function; the symmetry
properties, however, are obviously something
more fundamental. The irreducible representa-

,tion of a state will be independent of the specific
form of the Hamiltonian, provided the latter is
invariant with respect to all the operations of
the group. Hence we may investigate the simplest
case, a system of uncoupled harmonic oscil-
lators. The eigenfunction written in terms of the
normal coordinates Qi ~ Q;, Q;, etc. , is:

f= Lexp (—4+c.-Q"——:gcQQj-') j
a

y I IIII„,(c,Q;) } I Dllll, .(c;Q;„)j, (57)

where II, as usual designates a product, H„(c;Q;)
is a Hermitian polynomial of degree tt; in c;Q;,
and c;=(2m&0;/h)&. The double subscripts refer,
as before, to degenerate frequencies.

The exponential term is obviously invariant
with respect to every symmetry operation, thus
we have only to investigate the transformation
properties of the product of Hermitian poly-
nomials. Its representation is a direct product of
the representations for the individual poly-
nomials and the character is a product of their
characters. For nondegenerate coordinates the
following relations hold (as may be proved by
referring to explicit formulas for Hermitian
polynomials):

RH'„, (c;Q;) =JI„,(c;Q;) if RQ;= Q; (58a)

and

R-0;.(c Q') = (—I)"'~;(cQ')
if RQ;= —Q;. (58b)

These give immediately the character of the
product in the first bracket. For degenerate co-
ordinates, the treatment is more complicated.
If f; is the degree of degeneracy, then for every
value of j:
f
II II» (c;Q;„)=const. Qp"'Q;s"' Qg"

+lower degree terms, (59)
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where we omit the subscript on f. All terms for
which the sum of the powers of the various Q's is
the same, are of equal degree and they transform
into one another under any operation of the
group. The highest degree term gives the product
of Hermitian polynomials unambiguously and so
it is sufficient to know its transformation prop-
erties which will be the same as for the product.
The characters for various values of f and

of the product are given by the following for-
mulas s'

&&„(R}= 1 y(R) j" for f= 1, i.e., no degeneracy,

&&,{R)=~I g„-q{R)x(R)+x(R')j for f=2,

x.(R) = ' {2x(R)x.—(R) —l x.—(R)Cx(R)7
+kx{R')x.-s(R}+x(R")I «r f=3 (6o)

chosen in a way to satisfy the symmetry require-
ments of the group, i.e., equations of the type
(41} and (42). These variables which involve
neither the masses nor the force constants might
be called geometrical symmetry coordinates. "

Consider now any two nondegenerate vari-
ables, s, and s&„which belong to different
irreducible representations. Among the opera-
tions of the group there is at least one R such
that Rs, =s„while Rss ———ss, for if this were not
the case s, and ss would belong to the same
irreducible representation. The operation R thus
transforms the product s,ss into its negative, and
the condition of invariance for V cannot be
satisfied unless the coefFicient of this product
term vanishes.

For degenerate coordinates we shall make
explicit use of the formalism of group theory.
If every operation R of the group leaves a
quantity s s„ invariant, i.e., if:

In the case of x~(R}, we omit writing the sub-
script. In this symbolic notation &«&(R) —= 1 and
g &,(R)=—0. The higher degrees of degeneracy

f=4 and f= 5 occur only for icosahedral groups;
for explicit expressions for these cases, reference
may be made to Tisza. s'

Rs~ss n =sos st

then, obviously:

QRsms» = hstns»&
R

(61)

(62)

25. The degree of the equation giving the funda-
mental frequencies

It remains only to determine the degree of
the equation in X. From the preceding discussion
we would expect to obtain frequencies of the
same type as the roots of the same equation and
different type frequencies as the roots of dif-
ferent equations. Furthermore we might expect
that a frequency with a f;-fold degeneracy would
come in as a root of multiplicity f;, i.e., that the
equation determining it would be repeated f;
times. We can actually prove this intuitional
reasoning to be correct.

To do this we consider expression (4) for the
potential energy:

V=g Q X;;sts;.

The same arguments hold for the kinetic energy
function. Assume that the variables s have been

~ L. Tisza, Zeits. f. Physik 82, 48 (1933).

where &&t is the order of the group. Conversely if
Eq. {62) does not hold for any product s„s„,
we may conclude that the latter is not invariant
with respect to every operation of the symmetry
group and hence cannot occur in the expressions
for the kinetic and potential energies. Consider
now two representations I'&t& and I'&k& with the
respective dimensions f; and fs. Let s;„and sst&

be any two geometrical symmetry coordinates
belonging to these representations; the equation
of transformation for their product is

Rs; s&,t&= Q I'&'&(R) „I'&s&(R)t&p; s,. (63)

Summing with respect to R and making use of
the orthogonality relations (26), we obtain

36 These geometrical symmetry coordinates are not to be
confused with the symmetry coordinates introduced by
Howard and Wilson, 3. Chem. Phys. 2, 630 (1934).These
latter variables are functions of the masses and indicate
motions which conserve angular and linear momentum.
Their dependence on the masses malines their use very
inconvenient for any isotope effect calculations.
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Z» ske=Z Z I'"(R) vI'"'(R)e~s'~»~

= g s;,s „PF&'&(R),F&'&(R)t&„

since all quantities are essentially real. It follows
that no cross products may occur between co-
ordinates belonging to different representations
or between degenerate coordinates transforming
according to different rows of the same matrix.
If we have two coordinates, say s; and s; '

which transform according to the same row of
the matrix I'&'&(R) of an irreducible representa-
tion, then according to Eq. (26),

f'
gRs; s; '= g (h/f, )s; s;,'. (65)

Thus the product s; s; ' is itself not invariant,
however, if we sum over all the f; possible values
of a; we obtain

fi f~

g g s; s;.' =a P s; s;,'.
R a=1 y=l

Hence
fa

P Slas&a

is invariant with respect to every transformation
of the group even though the individual terms are
not. This means that all the products of the type
s; s; ' have to come in with the same coefficient
and that the potential function is the same
function of s;a as of s;p.

Since the Hamiltonian written in terms of the
geometrical symmetry coordinates does not con-
tain any cross product terms between coordinates
belonging to di8erent representations, the de-
terminantal equation (6) has the form shown in
Fig. 16, where the solid blocks refer to irre-
ducible representations and all the terms outside
them are zero. Furthermore, the dimensions of
any particular block, i.e., the degree of the
resulting equation in ) is equal to the number of
linearly independent symmetry coordinates asso-

FlG. 16. Determinantal equation in reduced lvrm.

ciated with that representation. Corresponding
to a representation of f; dimensions there will

be f; identical blocks.

26. The explicit solution of the vibration problem

The actual solution of any vibration problem
requires a knowledge of the geometrical sym-
metry coordinates. For nondegenerate cases,
these may be determined very easily; we simply
choose such displacements of the atoms that will

remain invariant under certain covering opera-
tions and transform into their negative under
certain others, depending on whether the char-
acter of the operation is ~1 in this particular
representation. Usually there may be an infinite
number of sets of coordinates satisfying the
symmetry requirements. However, only a small
number of these will be linearly independent;
we determine the number of coordinates corre-
sponding to a given representation by the
methods described in f23. Among the infinitely
many sets, we select those that are most con-
venient for computation purposes. The procedure
will be made clear in the case of the ZYX3
molecule, which has been shown to have three
doubly degenerate and three nondegenerate fre-
quencies. We shall indicate both the algebraic
and geometrical methods of finding the geo-
metrical symmetry coordinates. The nondegener-
ate case corresponds to the representation I'&'&,

where all the characters are +1. Hence all the
coordinates should be invariant both with re-
spect to rotations around the threefold axis and
to reflections in the perpendicular planes. If we
number the X atoms 1, 2, and 3 and assign the
numbers 4 and 5, respectively, to Z and Y, then
our nondegenerate coordinates will be linear
combinations of the mutual displacements of the
particles, the bq; s, which are invariant with
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JZ

~ Y

~X
~X

~ X

F1G. 17. Geometrical symmetry coordinates for the parallel vibrations of the molecule ZYX)).

respect to all permutations of the numbers 1, 2,
and 3. For example, we could choose

$1= 8/45) $2 = A/14+ 5/24+ 8/34)

$3=8/12+ 8/13+ 8/23)

or any linear combinations of these three. On
proceeding purely geometrically, we could select
the displacements indicated in Figs. 17a, b,
and c. Fig. 17c shows the motions in the plane of
the X atoms.

The construction of degenerate coordinates
with the suitable symmetry is usually somewhat
more laborious. However, the following remarks
should prove helpful in any special problem.
We shall limit the discussion to two and three-
fold degeneracy, since these are, apparently, the
only ones important physically. Hence we may
always assume our variables to be mutually
orthogonal. For all the groups, the entire set of
symmetry elements intersects in a line (example
C3„) or in a point, which need not, however, be
a center of inversion (cf. T~). If any atom is
located at the point or on the line of intersection,
then its equilibrium position is not affected by
any of the group operations. The three com-
ponents of its displacement transform under all
the operations of the group like the components
of a vector; the transformation matrices con-
stitute a representation. "Hence the components
of the displacement of such an atom form a set
of degenerate geometrical symmetry coordinates.
If there are more sets of degenerate variables

belonging to a given representation than there
are atoms on the line of intersection of the
symmetry elements, we must use other methods
of obtaining them. From the preceding set, we
know the actual matrices of the representation
and not only the characters as given by the
tables, and this should greatly facilitate the
problem. Also in some cases the solution may
have been worked out for a molecule with the
same symmetry but with a smaller number of
atoms than the problem under consideration, so
that we can use the results obtained there. We
shall again illustrate the preceding remarks on
the case of the ZYX3 molecule. The three vertical
symmetry planes of the C3„group intersect in
the z axis, the axis of threefold rotation. The Z

and Y atoms are located on this line, hence their
displacement in the x and y directions are
geometrical symmetry coordinates. For the third
variable belonging to this two-dimensional
representation, we can make use of the result for
the X3 molecule. "The coordinates are shown in
Figs. 18c, b and c.

With the knowledge of symmetry coordinates
the problem is practically solved. We could
write the potential energy expression U of re-

quired symmetry with arbitrary constants A, 8,
etc. , in terms of the variables s1, s2, etc. From the
discussion in $25, it follows that U is the sum of
the most general quadratic forms in the coordi-
nates associated with one representation. Since
a quadratic form in n variables has n(n+1)/2

'~ If the z axis is the only axis with a multiplicity +~3,
then l)z always transforms like &1, and there is no repre-
sentation of higher degree than the second.

' The results for X3 may themselves be obtained from
those for YX2 with the symmetry group C„, where all the
representations are one-dimensional.
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coefficients, for a molecule with r representations
and h; frequencies belonging to I'"&, the total
number of constants in the potential energy
expression is

Pb;(0;+1)/2.
1

bility of a transition from a state e to a state m is
known to be proportional to:

P s —X s+ Y s+g 2 (g7)

where X„„is a matrix element and is given by:

X„„= P„XP dr.

However, since our physical and chemical ideas
of intramolecular forces are bound up with the
distances between the atoms, we may have to
start by expressing V in terms of the 8g;; (cf.
Eq. (1))and then transforming to the variables s.
This transformation gives us the connection
between the general constants A, 8, etc. , and the
"physical" constants k;;;;.

To obtain the expression for the kinetic energy,
it may prove necessary to go through the very
general and rather elaborate procedure sketched
in the introduction. "However, in many cases it
is possible to find T directly in terms of the
variables s by means of simple dynamical
theorems.

Knowing both T and V, we only have to
expand the determinantal equation (6) to have
the complete solution of the vibration problem.

SELECTION RULES

2/. Frequencies active in the infrared

Let the electric moment of the molecule have
the three components X, Y and Z. The proba-

(b)

~ Y

If P„=0, the transition cannot occur but if
P WO, while X„=Y =0, the radiation is
polarized in the s direction. To find the selection
rules, we must determine for which values of e
and es, the matrix elements will be different
from zero.

The x component of the electric dipole
moment is ge;x, , where e; is the charge on the
ith particle, x; the x component of its distance
from some fixed point, and the summation
extends over all the nlclei and all the electrons.
In this form, however, we cannot possibly use X
for any calculations, since we do not know the
electronic eigenfunctions. As an approximation,
we may consider the dipole moment to be a
function of the effective charges and displace-
ments of the various atoms. It will be taken for
granted that the electric moment, like the
potential energy, has the same symmetry as
the geometrical configuration; and we shall
assume that if we expand it as a Taylor's series
in terms of the displacements, all the terms
beyond the linear ones may be neglected as
being small. All the selection rules to be derived
are based on this assumption which seems to be
valid for diatomic molecules and hence is
probably a good approximation to the poly-
atomic case. Since we are not interested in the
permanent electric moment, we shall write:

~ x ~x X=Pe;bx;, (o9)

~ x ~x or more conveniently in terms of the normal
coordinates:

X= Ps;(*&Q;. (70)

(c)

FM. 28. Geometrical symmetry coordinates for the
perpendicular vibrations of the molecule ZYXq.

"For a more detailed discussion of this method of finding
the expression for the kinetic energy, reference may be
made to J. E. Rosenthal, Phys. Rev. 45, $38 (2934).

The summation is over all 3N normal coordi-
nates, but the ones due to translation and
rotation are of no importance and may be dis-
carded. It is more convenient to study the
electric moment, P itself rather than just one of
its components, and so we shall write:

P =gs;Q;.
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In general, to evaluate integrals of the type
(68) as functions of the p;&*&'s etc. , we must
know the wave functions P„and P„explicitly,
and whenever the intramolecular forces are not
harmonic, this may involve a long and laborious
perturbation calculation. However, if we are
interested only in the vanishing or nonvanishing
of the matrix elements X„„,we can determine
that from symmetry considerations alone.

We shall begin by studying the transformation
properties of the electric moment P under the
various operations of the group. By definition P
is a vector, hence it transforms as (46) under a
rotation and as (48) under an improper rotation.
Hence its character is either

or

&& (C) =1+2 cos rp&; (72)

yp(S) = —1+2 cos pa. (73)

We could investigate the transformation prop-
erties of P starting with expression (71). Purely
formally we would get:

and

I" (R)=Pa &'&I'&'&(R) (74)

x (R) =ra "'x"'(R). (74a)

The a&'s in these equations may be determined
in the usual case by inspection. The quantities
&1+2 cos q are found for each class and they
will be a sum of characters contained in the
group. As an example, these quantities for the
group Cp, are 3, 0, i. This is immediately seen to
be A $+Bf so a&'& =a&'& = 1; a&'& =0. The nu-
merical value of ap&'& indicates how many normal
coordinates belonging to the irreducible repre-
sentation occur in Eq. (71).

We have thus transformation properties of the
electric moment. Since 1'p is three-dimensional,
it can consist either of 3 one-dimensional repre-
sentations, 1 one-dimensional and 1 two-di-
mensional, or 1 three-dimensional one. It should
be pointed out that the transformation properties
of the electric moment depend exclusively on the
symmetry group of the molecule and not on the
number of atoms in it.

The components X, Y and Z of P transform
like the corresponding coordinates, x, y and s.
Hence in the case of the two-dimensional repre-
sentations it is more convenient to consider
X&iY, rather than X or Y separately. For three-
dimensional representations, we would have to

consider linear combinations of X, Y and Z.
However, if we disregard the icosahedral groups
which do not seem to have any physical appli-
cation, three-dimensional representations occur
only for the tetrahedral or octahedral groups.
There the x, y, and s directions are equivalent so
that X= Y=Z. In any case, we may associate a
component of the electric moment with one of
its irreducible representation.

We consider now the integral (68). At first, we
shall limit the discussion to the case of transitions
from the normal state only.

X„p=J'Q„XPpdr. (75)

The eigenfunction of the ground state remains by
definition invariant under every operation of the
group. These operations must also leave integral
(75) unaffected. This is possible (cf. the detailed
discussion in $20) if and only if P and X
transform alike under every operation. Thus if
we know the irreducible representations of X, we
also know immediately all the states that are
active in the infrared.

For the general case, we have as in $20 to make
more explicit use of the formalism of group
theory. The integral (68) will be invariant under
all the elements of the group only if f„and Xf
transform alike and we know from $20 that if f
transforms like F&»(R) and X like I'&'&(R), then
the product Xf„ transforms like the direct
product,

I'&'&(R) )& I'&»(R) = Pa&~&I'&~&(R). (76)

Physically this means that the quantity Xf~
may be considered to have different components
each of which transforms according to an irre-
ducible representation. The quantity P„Xf is
invariant, i.e., X„AO and the transition is
permitted if and only if the representation of P
is contained among the representations on the
righthand side of Eq. (76).Thus all we have to do
is to find out which of the a&~& do not vanish. If
we use the characters instead of the repre-
sentations, we may write

x"'(R) Xx"'P) =Za"'x!"(R) (76a)

There are r such equations corresponding to the r
classes. Usually, however, it is not necessary to
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and
ZX&I, =&a

EI,~EI,. k /0
For an electric moment, X~iY, the characters
are 2, 2 cos»p, 0. Multiplying by the characters
for the states A 1, A ~ and Ei„we find the selection
rules

A 1~BI

and (Xai F) XXI,——ZI,+1+XI, 1

so, Z,~Z, . krak» = at.
28, The Raman e8ect

In order to determine the selection rules for
the Raman effect, the integral

u„„=J P„uP dv.

must be investigated, where u is the polarizability
of the molecule. If this integral vanishes, the
corresponding transition is forbidden just as in
the infrared spectrum and symmetry considera-
tion alone enable us to determine which lines are
permitted in the same way as above for the
infrared. The polarizability is a symmetric tensor
of the second rank and thus has 6 components
which transform under the proper and improper
rotations of the group elements like the products
of the corresponding vectors, When we use Eqs.
(46) and (48) we find the equations of trans-
formation to be'.

I
ug»; =egg&

(e„'+u„„')= (u.,+u»),
(e„'—u»') = {e.,—e») cos'2Ip+2u, „sin 2q,

(77)
egg =

u&I&; = —
g (ug~ —e») Siil 2&p+u~&ICOS 2'»

Iu»&I = ugg = +egg cos»pau&I»& sin»p
= u»&I =~egg Sin IP+u»I»& COS»P&

solve these equations for the a&~& may be found
by simple inspection.

An example, with the group C „will illustrate
the use of the rules. Let us choose characters
corresponding with state, A 1 and electric moment,
Z which also transforms like Al. The characters
in both cases are 1, 1, 1 and forming the direct
product, we have

ZXA1=A1,

giving the selection rule, Ai—&Ai. For the state,
Ag we obtain A~—+A g, and for a state EI„we have

where the upper (lower) signs are to be taken for
proper (improper) rotations. Here, as in the case
of the electric moment, it is found more con-
venient to take linear combinations of the com-
ponents of the polarizability. If we sum the
diagonal elements of Eq. (77), we obtain
2&2 cos q+2 cos 2q with the plus (minus) sign
for proper (improper) rotations and this is the
character for u, which by analogy with Eq. ('74)
and (74a), enables us to determine to irreducible
representations of the polarizability. These corre-
spond as before directly to those states having
active Raman frequencies. The lines are polarized
in accordance with the subscripts on the com-
ponents of the polarizability, whose matrix
element does not vanish.

In addition to the selection rules, some further
information about the Raman lines may be
obtained from symmetry considerations. The
polarizability may be written

u=uI+u",

where u' is called the average polarizability and
u&I is a factor of anisotropy. These two parts are
independent and additive for the polarizability
and the molecule can be considered as a mixture
of two kinds of molecules, part of them having
the polarizability, u' and the rest having u". If
the incident light is polarized, molecules of the
first kind will produce completely polarized
scattered light but the molecules of the second
type will result in scattered light polarized
perpendicular to the direction of the original
beam. If the scattered light is then investigated
with a Nicol prism, parallel and perpendicular to
the polarization of the incident light, the two
parts of the polarizability may be distinguished.
The ratio of the intensity of the two kinds of
scattering is called the degree of depolarization
and is given by

p =3u"'/(5u" +4u'") (78)

for linearly polarized light and for unpolarized
light

p =2p/(&+p). (79)

From (78), it is seen that p varies between 0,
where u"=0 and ~3 where u'=0. Under the
rotational operations of the group, the. quantity
u' transforms like e„+u»+e„and so will



VIBRATIONS OF POLYATOM I'C MOLECULES 345

disappear unless this quantity is invariant. It
is apparent that it will be invariant only for a
totally symmetric state which corresponds with
the identical representation of the groups. These
have been designated Ai in our tables and hence
all permitted Raman lines except those for
states A~ will have p= 4 and p„=6/7.

The anisotropic factor of the polarizability
transforms under the group in a more complicated
way than a' and in the general case, nothing can
be said about it from symmetry considerations.
In the special case of cubic groups and for totally
symmetric states, the symmetry is spherical and
the anisotropy factor disappears. From Eq. (78)
it is seen that

For other cases of totally symmetric functions,
we can only say that

p( (3
29. Tables for selection rules

The results for the selection rules may be
collected together in a general set of tables, The
transformation properties of the components of
the electric moment and the polarizability will be
found in Table IV. These states, as shown before
are the frequencies active in the infrared or the
Raman eftect.

The overtone bands will. be found in Table V,
where a symbol like LEAj" represents the 2th
overtone of the state, E~ and the irreducible
parts are given. These have all been obtained
from Eq, (6P). It should be noted that Et, is only
defined up to E„or Ev i (see Tables I and II).

For p =5, for instance, E„=Es, E„~&=E&,
Ep+2 =Es, Ep+s =Eo,

The representation for the combination states,
direct products of the irreducible representations,
are given in Table VI. This is to be read as an
ordinary multiplication table. The states are all
commutative and the direct product of Es and
E;, for instance will be found at the intersection
of the row and column headed by those two
symbols. One must apply the rules given above
to decide which of the given states are active.

CONCLUSION

For the results of the application of group
theory to vibrations, we refer to a paper by
Wilson'4 in which he has tabulated the number
of frequencies, degeneracy, selection rules and
other properties for the normal vibrations of a
large number of molecules. The molecules in-
cluded, contain from three to nine atoms and
comprise most of the ones which are liable to be
observed experimentally. Explicit solutions, in-
cluding isotopic shifts have been worked out by
the group theoretical and other methods for
molecules of the type YX2, YX3, YX4, YsXs and
some others, references to the papers being too
numerous to mention here. The Raman effect
has been discussed in great detail by Placzek 2

who uses a method equivalent, but not identical
with the group theory one.

Electronic states for many polyatomic mole-
cules have been treated by Mulliken" in a series
of papers, using the group theory method.
Rotational states" have not been discussed at

TABLE IV. Transformation properties of the components of
the electric moment and of the polarization tensor.

TABLE V. Overtones.

X, YZ'
X&i Y

o&&&& o&ev

r&e:e& ve
rree+o&vv& ee

&vv& &v*v

A„A'
A„A"
Av

A'
A"

Ar Are
Ed Ee

E,' E,
Ag Ar
Ee Ee

Br

E n-g
Ar
EQ

Cia C ' D' See 0 T8

Tl Ti
Tr Ts

Ag+E+ Ts

C;, Crb,' t A'1»X|A"1"i=A'»XAoe =
A &vrodd

Other groups: $A r pe =A r" ——A &

LA gq A e fAr, v even

J'A &+Esb+Ees+ ~ ~ ~ +E,b, v even
LEb+Esb+Esb+ .+E.b, v odd

For groups, Tg and 0, the E state transforms like the
E state for Cs„ for T states, see Tisza, reference 35.

e Combination bands are the same for these groups.
b Finite and continuous groups.«»= eo or 2, 3, 4, ~

b»=2, 3, 4, ~ ~ ~

«for n =2; A«=By', Er =Br+Be
s for» ~2; Er ~Br+Br
« for &i=4; Es=Br+Bs', for»=3; Es=Er

4' Casimir, Rotations of a Rigid Body in Qitantnm
Mechanics (J.B.Wolters, Groningen, 1931);Jahn, Ann. d.
Physik 23, 529 (1935).



346 J. E. ROSENTHAL AND G. M. MURPHY

A(

Ag A(
A2
Ei

E;
Tl
Ts

E(
ED+A
\

TABLE VL Combination bands.

EI
E(
Ea+i+E(( i(

E4+t+E((:-4(

Eo=A&+As Eris-—Bx+B2
B(2=By'=Ay B)XBI=A2

Tl
T2
Tl+ T2

A )+E+Tg+ Tp

T2

T2
Ti
Tj+ T2

A2+E+ Tg+ Tg
A g+E+Tg+ Tg

great length but Wilson4' has given the method
for calculating the statistical weights of rota-
tional levels and has applied it to several special
molecules. The group theoretical method has
been applied to many problems of diatomic
molecules and atoms. A complete review of the
subject and references to the original literature
may be found in the books of van der Waerden4
for the molecular case and Wigner' for the
atomic one.

The advantage of the use of group theory in all
problems of this kind may be summed up in the
following remarks. To find the energy levels of a
given system, one must, in general, solve the

+ Wilson, J. Chem. Phys. 3, 2'I (1935).

wave equation but this can be done exactly only
in a few simple cases and even approximately
only with some difficulty. On the other hand, the
wave functions must be invariant to the inter-
change of equivalent electrons and nuclei as well

as to certain rotations of the type considered
here. In the language of group theory, the
corresponding energy levels will then belong to
the irreducible representations of the permuta-
tion group or the proper finite or continuous
rotation group. From only a knowledge of the
symmetry properties of the wave functions con-
siderable information may be obtained about the
energy levels without the necessity of solving a
differential equation or performing a lengthy

perturbation calculation.


