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)1. CAUSES PRODUCING WIDTH AND DISPLACE-
MENT QF SPEcTRAL LINEs

r N the present paper we shall be concerned
with intensity distributions in broadened

spectral lines, and the symbol I(v) will be used
to denote such distributions. Its precise meaning
should be stated at once: I(v)dv is proportional
to the intensity at frequencies between v and
v+dv withdrawn from a light wave of uniform
color distribution as it passes an infinitely thin
sheet of absorbing atoms. Unless otherwise
stated, the constant of proportionality will be
so fixed that Jo"I(v)dv =1.

I(v) is therefore an idealized quantity which
is not given directly by experiment. It is not
identical, for instance, with the intensity of
absorption measured at frequency v, unless the
absorption is due to a very thin layer of atoms.
But we shall see in f2 how I(v) can be obtained
from such empirical data.

I(v) is proportional to the intensity of emission
at frequency v by a thin layer of atoms under
similar conditions. By similar conditions is meant
not only that the number and arrangement of
atoms shall be the same, but also that the relative
number of excited and unexcited atoms shall
correspond to the state of equilibrium with
radiation in the case of absorption. Since this
condition is rarely realized in actual emission
experiments, the results which will here be
presented must not be applied thoughtlessly to
the intensity distribution in emission lines. All

theories here discussed share the assumption
that the number of atoms in the excited state is
so small that interactions between excited atoms
may be neglected. This is not always true when
electrical methods are used to excite radiation,
and the situation is often further complicated
by the permanent electric fields which are super-
posed upon the fields surrounding the moving
atoms.

Whether the considerations in the present
paper are applicable to emission will therefore
have to be decided separately in each individual
case. The criteria for applicability to emission
are:

(1) The number of excited atoms must be small compared
to the number of unexcited ones.

(2) The agency of excitation must act uniformly over a
range of energies larger than the width of the line.
Thus, for instance, if excitation is produced by irradia-
tion with light, this light must have a uniform intensity
distribution over the entire width of the fluorescent
line.

(3) If external fields are present, they must be taken into
proper account.

Theoretically we may, if we wish, think of I(v)
as the intensity taken out of the passing wave

by a single absorbing atom. But as far as a
single atom is concerned the intensity of ab-
sorption at v is proportional to that of emission
at v if the atom were excited. ' Hence in de-

' This follows from the universal relation between
Einstein's coeffIcients A and B.
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scribing theoretically what happens to a single
atom we are at liberty to apply either the point
of view of absorption or that of emission, and
we shall make use of this freedom whenever it is
advantageous.

All frequencies used in the present paper are
true, not angular frequencies, measured in sec. '.

A term frequently used is: "half-width" of the
distribution. Because of existing ambiguity we
define the meaning of half-width, d v1, here to be
used. It is the entire frequency range in which
I(v) is larger than half its maximum. Thus, if
I(v) is symmetrical about its maximum I(vs),

I(vp+ 26v)) = 2I(vp).

A. Radiation damping

The process of radiation damping is responsible
for the fact that a spectral line emitted by an
isolated atom is not infinitely sharp. Its classical
mechanism is this: A vibrating, and hence
radiating, electric charge continually loses energy
and in consequence diminishes its amplitude of
vibration, while maintaining its natural fre-
quency vo. But a damped vibration of this kind
is not monochromatic; its frequency distribution
is found by making a Fourier analysis of the
electric moment as a function of the time. This
yields the result

This is the meaning usually employed by experi-
mental workers in this field.

To classify the various causes contributing to
the width& and shift of spectral lines is not an
easy matter, nor is it entirely unambiguous.
For the separate agencies interplay to an extent
which makes their isolation difficult, and even
the theories overlap in their conceptual structure,
causing discrepancies between different investi-
gators. In the present paper an attempt will be
made at uniform formulation of the theory
without too strict adherence to time-honored
distinctions, and it will be shown how the
various special theories, like impact broadening,
resonance coupling, etc. , fit into a more general
scheme.

Those effects which are well understood and
adequately treated in the literature will be
discussed very briefly. A summary account of
the work published up to 1932 is to be found in

a review article by V. Weisskopf, ' to which
reference should be made for earlier papers not
included in the present bibliography. As far as
theories are concerned, the problem of line
width often presents two aspects, one from the
point of view of classical physics, and one from
that of quantum mechanics. Wherever such a,

distinction can correctly be made, attention will

be called to it as well as to the difference in the
results to which the two points of view lead.
Let us begin by outlining the various effects in
question.

' V. Weisskopf, Physik. Zeits. 34, 1 (1933).

where y = (4m /3) (e'/mc') v&P sec. '

m and e being, respectively, the mass and the
charge of the vibrating particle. Formula (1) is
obviously true both for emission and absorption
since interactions between oscillators are here
ignored. The constants are so adjusted that the
total intensity fI(v)dv=i. In the case of ab-
sorption, this quantity is clearly proportional to
the number of oscillators per unit volume, so
that (1),also, must be multiplied by this number.

The half-width of the line, according to (1), is
y. If y is expressed in terms of wave-lengths
instead of frequencies it becomes independent of
the wave-length of the line:

7=(4~/3)(e'/mc') em=1.17X10 4 A

Experiment indicates, however, that different
spectral lines have different widths on a wave-
length scale. These classical considerations are
therefore in need of revision.

In quantum mechanics the natural line width
arises from the fact that each of the two energy
levels Et and Es, between which a transition
occurs, is uot indefinitely sharp but has a finite
width AE& and AEs, respectively. According to
the work of Weisskopf and Wigner, and Hoyt'
the intensity distribution within the line is then
given by

I(v) = (7/27r)/t (vsl —v)'+(7/2) j (2)
' V. Weisskopf and E. Wigner, Zeits. f. Physik 03, 54

(1930);05, 18 (1931).F. Hoyt, Phys. Rev. 30, 860 (1931).
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which is formally identical with (1). v» is the
Bohr frequency (E2—E~)/h. But the half-width

y has a different value. It is made up of the
term widths of the two levels:

use of the idea of damping, the term "radiation
damping" is still applied to the present effect
because of the similarity of the above results
with those of the classical consideration.

y =y, +yg ——aE~/h+b, E2/h. (3)

Each dE can be calculated from the principle of
indeterminacy in the following way. If dt& is the
average time which the atom remains in the
energy state E&, then

AEg htj~h/2m. . (4)

Now 1/ht~ is the total number of spontaneous
transitions which can occur per second when the
atom is in state E&. Let E& be a lower energy
state capable of combination with E~. According
to radiation theory the number of transitions
taking place from Ej to E~ per second is
(8~'e'/mc') v»'f», v» being the frequency and

f~q the "oscillator strength" corresponding to a
passage from E& to E~. Hence

1 8''e'
Z v» f»~

mc'

the summation being extended over all energy
levels lower than E~. Thus, from (4),

4~e'h
AE1= Q V» f»,

mc'

so that, because of (3)

4~e~
7= Z v» f»+Z v2& f» & (5)

mc' l

where every state l has an energy lower than E~.
If the line in question is a resonance line the

lower state is capable of no downward transitions,
hence every f»=0. The second sum in (5)
reduces to only one term, v»2f». For the D lines
of Na, f» has the value 1/3, so that in this case
(2) and (5) reduce to the classical for'mulae (1).
But in general y will depend on the oscillator
strength of the various possible transitions, and
will not be the same on the wave-length scale for
all spectral lines. For further details compare
reference 2.

Although the quantum-mechanical explana-
tion of natural line breadth makes no explicit

v= vo(1 —v /c). (6)

The fractional number of such atoms within a
range dv is

dn/n=(M/2mRT)&e & "" &'~'dv, .

3II is the molecular weight of the gas. This
formula also represents the fraction of the total
intensity which is absorbed at a frequency v

related to v, by (6). Thus, if we express v, in

terms of v, we obtain

I(v) (Mc'/2~RTvo') )e-&~c i'~~vo i &v-vo& (7)

It is thus seen that the Doppler effect causes the
absorption (or emission) line to take on a Gauss
distribution, whose half-width is easily seen to be

8 vy=2(log 2)&(2RT/Mc2)&vo (8)

or, on a wave-length scale,

b,Xy =2(log 2)&(2RT/Mc') &ho.

Thus, while the natural line width is approxi-
mately independent, on a wave-length scale, of
the wave-length, the Doppler broadening di-
minishes as we pass to smaller wave-lengths.
In the x-ray region the Doppler effect may
indeed be neglected against the natural line
width.

The two broadening eRects become of equal
magnitude at wave-lengths of about 100A. In the
optical region the natural line width is therefore
under ordinary conditions always masked by the
Doppler effect. The distribution which results on
combination of the two effects is in general

B. Doppler effect

The thermal motion of the atoms of a gas will

contribute to the diffuseness of a spectral line.
Suppose that light from a continuous source of
uniform intensity shines through the gas. If all
atoms were at rest they would absorb a (nearly)
sharp frequency vo. Atoms moving with speed v

in the direction of propagation of the light will,

by Doppler's principle, absorb a frequency
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complicated;* it is symmetrical about vs. In the
wings of the spectral line, however, where

~
v —vs

~

is much greater than the Doppler half-width,
the intensities still obey formula (2) and are
unmodified by the Doppler effect, the reason
being that (7) is a very close distribution which
vanishes much more rapidly for large

~
v —

v&~

than does the dispersion curve (2). It is possible,
therefore, to determine natural line widths in the
optical region despite the interference due to the
Doppler effect by making measurements in the
extreme portions of the broadened line.

We now pass to the consideration of those
causes of broadening which have their origin in
the forces exerted upon the absorbing atom by
its neighbors. While the former two effects were
independent of the density of the gas in which
absorption takes place, the remaining ones mill

depend strongly on the density.

C. Resonance between similar atoms

Let us first assume that the gas is monatomic
and that its atoms are all of the same kind.
The simplest classical description of the process
of light absorption by such an assemblage would
replace each atom by an oscillator with a single
natural frequency vs and then introduce a
coupling force between all pairs of oscillators.
The coupling force is that between two dipoles;
it has the form

F;;=const. /r;, (9)

where r;; is the distance between the ith and the
jth oscillator. As a result of these interactions
the entire assemblage of atoms will not have the
single natural frequency vs, but a very great
number of natural frequencies distributed around
vs. If there were no thermal motion these
frequencies would be discrete; actually they
merge into a continuum and produce a broadened
line. The breadth arising from this cause is often
spoken of as due to coupling.

On somewhat closer inspection from the point
of view of quantum mechanics the process
presents a different aspect. The atoms of a gas,
as long as they are in their normal states, have a
symmetrical distribution of charge and do not
interact as dipoles would. But, as will be shown

~ For discussion and references, see reference 2.

in )4, forces of the type {9)are called into play
between two similar atoms, one of which is
excited. These forces result from a continual
interchange of a light quantum between the two
partners, i,e. , from optical resonance. The situa-
tion is indeed more complicated than the simple
picture of the foregoing paragraph would suggest.
In view of the true origin of the coupling forces
the line breadth now under discussion is some-
times referred to as resonance breadth. To avoid
confusion we emphasize that there is no physical
distinction between broadening due to resonance
of similar atoms and broadening due to dipole
coupling. Details will be worked out in $4 et st.
D. Broadening due to forces of the van der

Waals type

In many experiments an absorption line which
would be sharp at very small gas pressures is
distorted because the absorbing atom is under
the influence of foreign atoms or molecules. For
the present we shall suppose that the latter have
spherical symmetry and hence carry no perma-
nent poles. The presence of a foreign perturber
will change the absorptive properties of the atom
by altering the arrangement of its energy levels
continually in time. In general the higher levels
will be distorted more strongly than the normal
one so that a net change in the energy differences
will result. The interaction between the lowest
state of the absorbing atom and a foreign
perturber is described by introducing the well-
known van der Waals force between neutral
particles; that between higher energy states and
an unexcited perturber can be described in a
similar manner. The broadening effects which
result from these forces give rise to interesting
asymmetries in the spectral line and are experi-
mentally capable of being traced to very high
gas pressures. In discussing them in detail (cf.
)$4, 8, 9) it will always be supposed that the
number of foreign atoms or molecules surround-
ing the optically active atom is far greater than
the number of neighbors of its own kind, so that
resonance broadening can be neglected. In most
experiments the broadening effects of this type
are much greater than radiation damping and
Doppler effect, so that these, also, may be
ignored.
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Fio. 1. Schematic trends of potential energy curves in
van der Waals broadening.

A qualitative description4 of the appearance
of lines broadened by foreign gas pressures can
be given in connection with Fig. 1, in which the
energies of both the upper and the lower atomic
states of the radiating atom (e.g. , Na) are
plotted (schematically) as functions of R, the
distance of separation between the Na atom and
a perturbing molecule. At present our interest
is confined to the outer rising portions of these
curves, since the inner portions are significant
only for close encounters which are in general
less probable than others. If all optical transi-
tions took place at infinite separation, the line
would be sharp and have the normal energy E,
signified by the arrow a. But the average length
of arrow is smaller than a; the mean frequency
of the spectral line smaller than the normal
frequency vs so that the line should be shifted
to the red. Moreover, the intensity within the
line should lie predominantly to the red of v&

' A. Jablonski, Zeits. f. Physik VO, 723 (1931).

with but little intensity on the blue side, since
transitions like d are rare.

All these features are exhibited in the micro-
photometer trace reproduced in Fig. 2. It repre-
sents the D& line, broadened in one case by 1.85
atmos. , and in the other by 17.8 atmos. of argon
pressure. Shift and asymmetry are clearly visible.

The main part of the present paper will be
devoted to the effects C and D. But before
entering upon a detailed discussion we must deal
with another type of broadening.

E. Broadening by foreign perturbers carrying
permanent fields

The fields in question may be due to ions,
dipoles or multipoles, No complete theory of the
broadening by such agencies is available. Debye'
and Holtsmark' calculate the line width under
the following simplifying assumptions:

(1) The broadening can be regarded as a displacement of
the energy levels through a Stark effect.

(2) The effective field strength is that produced by all

perturbers at the center of the radiating atom.
(3) The fields vary infinitely slowly compared with the

time of emission or,absorption.

Assumption (2) is questionable because the
radiating electron is usually near the periphery
of the atom, and the fields are very inhomo-

geneous. But a more detailed treatment would

conjure up all the difficulties of the Stark effect
in inhomogeneous fields. Assumption (3) is not
serious when the density of perturbers is large
and the line very broad.

The results of the theory have been subjected
to quantitative experimental tests only for cases

4 P. Debye, Physik. Zeits. 20, 16'0 (1919).
4 J. Holtsmark; Ann. d. Physik 58, 577 (1919);Physik.

Zeits. 20, 160 (1919);25 73 (1924).

Fir. 2. Microphotometer traces of D~ broadened by argon. Small Peek: trace for an argon pressure of 1.85 atmos. ;
large Peak: trace for a pressure of 17.8 atmos. Reference line (Ne, X5881.896), exactly superposed on the two traces,
appears on extreme left. (Lower trace is slightly out of focus in the reproduction. )
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where the perturbers are ions. ' Hence we shall
limit our discussion to that case. Debye and
Holtsmark have shown that the intensity distri-
bution, which the latter author evaluates graphi-
cally, has a half-width

d vs=const. n~&,

if n& is the number of perturbers per unit volume.
The constant is related in a simple way to the
width of the Stark pattern in a field of unit
strength. Since we shall not return to the subject
of broadening by ions, we review the experi-
mental material relevant to it at once.

It has long been known that with spark
discharges between metallic electrodes in a gas,
most of the spectral lines both of the electrode
material and of the gas are broadened, frequently
with the center of gravity of the line shifted to
the red, by intermolecular fields. Hydrogen
atomic lines, as well as lines of other elements
which show a first-order Stark effect, are broad-
ened appreciably by interatomic fields even for
relatively mild electrical excitation. Holtsmark
and Trumpy' have investigated arc lines of Li,
Ag, Cu and Ni which show a first-order Stark
effect of known amount so that from the observed
line breadths the magnitude of the mean inter-
molecular electric fields could be estimated.
These field strengths were found to increase
with arc current according to the n&-law for ions,
reaching 30,000 volts/cm for i =17 amperes. At
this current strength the 4132A 3P—6D line of
Li is over 8A broad. *

Interesting observations on the broadening of
the Balmer lines of hydrogen by interatomic
Stark effects have been made by Merton, '
Hulburt, "and Finkelnburg. "Hulburt observed
that with condensed discharges in hydrogen at

~ Holtsmark, reference 6 explains the broadening of the
Ha line found by Michelson (Phil. Mag. 34, 208 (1892)) as
caused by the quadrupoles of the H& molecules, but. the
quadrupole moment assumed (3.2X10 ~6) is n'ot in agree-
ment with the quantum-mechanical structure of the Hq
molecule, which leads to a much smaller value.' J. Holtsmark and B. Trumpy, Zeits. f. Physik 31, 803
(1925).

*A first-order Stark effect is shown only by terms with
higher orbital quantum numbers, the valence electron
being in a hydrogen-like orbit. Under usual excitation con-
ditions lines involving such terms will always be somewhat
broadened by intermolecular fields. Hence the name
Chggse series, to which this Li line belongs.

9 R. T. Merton, Proc. Roy. Soc. A92, 322 (1915).' E. O. Hulburt, Phys. Rev. 22, 24 (1923).
n W, Finkelnburg, Zeits. f. Physik 70, 375 (1931),

250 mm pressure the EIP, Hp and EIb lines are
each broadened symmetrically for about 60A,
the EIP line, however, showing the incipient
division into two groups of Stark components.
Finkelnburg, with capacity discharges between
electrodes 1 mm apart in hydrogen at various
pressures up to 30 atmos. , finds as the pressure
rises that the Balmer lines increase greatly in
breadth, the lines nearer the beginning of the
series becoming merged with the continuous
background, until finally at 30 atmos. only EIa
remains as a broad intensity maximum in a
continuous spectrum. At 2 atmos. the widths of
the Hoi, EIP and EIy lines, the last two being
reconstructed so as to have the same maximum
intensity as EIn, are 550, 1680, and 2650 cm ',
respectively, or almost exactly in the ratio
1:3:5. This rule, together with other facts,
indicates definitely interatomic Stark effect to
be the principal cause of the broadenings. If
with pressure increase a line becomes so broad
that it merges into the continuous spectrum, the
corresponding upper state of the atom must be
no longer sharply quantized. At 30 atmos.
pressure, then, orbits with n=3 practically no
longer exist.

Comparing his results with those of Rausch
v. Traubenberg on the extinction of the higher
members of the Balmer series with known high
external electric fields, Finkelnburg concludes
that at 1 atmos. the mean interatomic field must
be 2X10' volts/cm. At 5 atmos. this mean field
strength is about 5X10' volts/cm, while at 30
atmos. it is about 2 X10' volts/cm. Since Hs has
no dipole moment, only ions and quadrupoles
can produce these fields. The' average interatomic
field for 1 atmos. due to quadrupole moments is
considerably less than 10' volts/cm, but at 100
percent ionization a mean field due to ions of
1.3X10s volts/cm is to be expected from the
Debye and Holtsmark equations. The observed
2 X 10' volts/cm would thus indicate a 15 percent
ionization in the path of the discharge. From the
n&-law of increase of field strength for ions, and
assuming an equal degree of ionization at all
pressures, at 30 atmos. the field strength should
increase by a factor of 30&=10, which again
gives the 2X10' volts/cm estimate. The EIP line
at 1 atmos. is observed to have an asymmetrical
contour in agreement with the calculated lessened
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intensity of the long wave-length components in
the high field Stark pattern.

The reversal of the metallic lines in Finkeln-
burg's spectrograms results from the partial
pressure of the metallic vapor. He demonstrates,
however, that this partial pressure in the path
of the discharge depends in turn upon the total
pressure in the chamber.

Knauss and Bryan" have recently observed
that the spectrum of a high current discharge
through a narrow stream of Hg shows some of
the lines to be as much as 100A broad, while
others are merged entirely with the continuous
background. Very strong interatomic fields must
be responsible for these great line breadths.

The absorption spectra of solutions of Hg
atoms in various solvents have been shown by
Reichardt and Bonhoeffer" to give the 253'lA
line split into two broad components. This
splitting is attributed to the action of strong
interatomic electric fields. For Hg in HsO, for
example, they conclude from the size of the
splitting that the effective mean field strength
is 33&(10' volts/cm, which is of the order of
magnitude indicated by Finkelnburg's experi-
ments for gas discharges at very high pressure.

)2. EXPERIMENTAL PROCEDURES FOR DETER-
MINING INTENSITY DISTRIBUTIONS

Before proceeding with the discussion of the
several features of pressure broadening, we shall
sketch very brieAy the methods of determin-
ing experimentally the intensity distribution
throughout the broadened spectral lines. The
direct determination of this distribution may be
made by the method of photographic pho-
tometry. If both the intensity of the source of
continuous radiation and the sensitivity of the
photographic plate do not vary sensibly with v

throughout the frequency interval considered,
and if the strength of the absorption. and the
time of exposure are so adjusted as to cause all
of the registration to be on the straight-line
portion of the characteristic curve for the emul-
sion, the photometer trace yields directly the
distribution I(v) discussed in the previous sec-

'~H. P. Knauss and A. L. Bryan, Phys, Rev, 47, 842
(1935)."H. Reichardt and K. T. BonhoeHer, Zeits. f. Physik
67, 780 (1931).

tion. For if i(v) denotes the intensity of the
transmitted light in general, ip that falling with-
out absorption on the photographic plate and l
the absorption path length,

i(v) =ipe I&"&E.

That is, log i=const. —I(v)l, while for the pho-
tographic plate log i is proportional to the density
D for the straight-line part of its characteristic
curve. Therefore D ~ —I(v).

In general, however, the photographic plate
must be calibrated, the best method probably
being to use a step filter having several steps of
known transparency placed either directly in
front of the slit of the spectrograph or in the
plateholder just to one side of the absorption
line. The first position requires equal illumina-
tion of the entire slit, a difficult problem with
any of the usual sources of intense continuous
radiation. The second position is therefore to be
recommended, the steps of the filter lying
parallel to and just far enough from the absorp-
tion line so that absorption is not interfered with.
With the aid of the blackening marks so pro-
duced, the photometer trace may be readily
transformed into a true absorption curve I(v).

The ordinates of this curve are proportional to
the quantity nEE, known as the index of absorp-
tion. The latter is defined by the equation

(v) ='L 'e—4xn4EEE

so that nEE= (X/4~l) log (ip/i).

(2)

(3)

The true index of absorption may thus be com-
puted for each value of v from the ratio i%p if
it is desired. For the purposes of many investiga-
tions, where interest is confined to the relative
variation of the intensity across the broadened
line, a knowledge of I(v) is equivalent to that of
nEE'(v).

To obtain the entire line contour the center
of the absorption line must not show complete
absorption. Trial exposures must usually be
taken for each gas pressure in the absorption
tube, adjusting the total absorption so that
about 75 percent absorption is produced at the
line maximum. The position of the absorption
maximum is of course given directly by the pho-
tometer readings, for the transformation to the
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true absorption curve does not shift the position
of this maximum with respect to the readings
for the standard lines.

A satisfactory simple numerical presentation
of the amount of asymmetry in the pressure-
broadened line is difflcult. One can, for example,
give the ratio of the area under the absorption
curve on the high frequency side of the maximum
to that on the low frequency side."Or one can
state the ratio of the red "half" to the blue
"half" of the half-width of the line. "Obviously
neither of these ratios gives much information as
to the exact contour of the absorption line.

This direct method of determining the shift
and asymmetry of pressure-broadened absorp-
tion lines has been employed by numerous
investigators. For further details of experimental
technique reference should be made especially
to reports by Fuchtbauer and his co-workers"
and by Margenau and Watson. "

From the amount of the total absorption
Js (nx)dv, to be obtained by graphical integra-
tion of the (n~, v)-curves, oscillator strengths and
transition probabilities may be computed. For
according to radiation theory the oscillator
strength of the atoms involved is

4am
f=— nod v,

nj8 p

while the transition probability A is

4~
A= nxdv.

t,"ngk

From such measurements it has been deter-
mined" that the oscillator strengths are approxi-
mately 1 for the resonance lines of the alkalis,
while for the 2537A line of Hg the f value is
but 1/35. 's It has been found that the total
absorption for this Hg line decreases with in-

"C.Fuchtbauer and F, Gossler, Zeits. f. Physik 87, 89
(1933).

"H. Margenau and W. W. Watson, Phys. Rev. 44, 92
(1933)."C.Fiichtbauer and W. Hofmann, Ann. d. Physik 43,
96 (1914); C. Fiichtbauer, G. Joos and O. Dinkelacker,
Ann. d. Physik 71, 204 (1923); C. Fiichtbauer and H.
Meier, Physik. Zeits. 2'7, 853 (1926)."Cf. 15; also W. Watson and H. Margenau, Phys. Rev.
44, 748 (1933)."Fiichtbauer and Hofmann, reference 16.

"Fiichtbauer, Joos and Dinkelacker, reference 16; B.
Trunapy, Zeits. f. Physik 40, 594 (1926).

creasing pressure of foreign gas," so that f
becomes approximately 1/100 when the line is
broadened by 36 atmospheres of COs pressure,
for example. The value 1/35 is computed by
extrapolating to zero density of foreign gas.
Trumpy" has observed by this method the exact
manner in which the transition probabilities
rapidly fall with increasing quantum number in
the principal series of Na, and WaibeP' has made
similar measurements for the lines of the prin-
cipal series of Cs.

Other less direct methods of measuring the
half-widths and intensity distributions in spectral
lines have been employed. In these methods
some theoretical expression for the line contour
is assumed, with unknown constants to be
determined from the measurements of the total
absorption. Ladenburg and Levy s' for example,
consider the case where the light source does not
give a continuous spectrum but is a column of
excited gas which also absorbs the line in ques-
tion. These authors give the details of the
dependence of the absorption on the constants
for Doppler and dispersion distributions. Also,
measurement of the rotation of the plane of
polarization at and near the spectral line in
magneto-optic experiments may be made to
yield the f values and estimates of the line
breadth. "The relation between the line breadth
and the rotation of the plane of polarization
depends, however, on the nature of the assumed
expression for the intensity distribution in the
line.

$3. GENERAL METHOD OF CALCULATING INTEN-

SITY DISTRIBUTIONS WHEN PERTURBATIONS

DEPEND QN TIME

The effects outlined in )1 C, D, and 8 present
a common feature: the frequency of the emitting
atom is disturbed by external influences, and
these influences vary with the time. The classical
manner of dealing with this situation is obvious.
The active atom is replaced by an oscillator of
natural frequency vs. Under the action of its

'08. Trumpy, Zeits, f. Physik 34, 715 (1925)."F.Waibel, Zeits. f. Physik 53, 459 (1929)."R.Ladenburg and S. Levy, Zeits. f. Physik 65, 189
(1930).

"Cf. for example R. Minkowski, Zeits. f. Physik 23, 69
(1922); W. Schiitz, Zeits, f. Physik 45, 30 (1927).
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We find the amplitude J(v') corresponding to
the frequency v' by developing (1) in a Fourier
integral

JttI(f) = J(v')e' '"'dv'. (2)

The amplitude is then given by

J(v') = M(t)e '~t""dt. . (3)

moving neighbors this frequency is modified into
v= vs+At(tt). The amplitude of vibration will
also in general be affected by the perturbations
and become a function of the time A(t). Hence
the electric moment at any instant t will be,
if written in complex form,

3f=A (/) exp $2vrifo'v(r)dr). (1)

In classical terms this is equivalent to assuming
constancy of the amplitude of oscillation A.

The act of emission of a photon may be re-
garded as the measurement of the energy of the
atom in the excited state provided the energy
of the lower state is known. The number of
photons emitted with frequency v', i.e. , I(v') is
therefore proportional to the probability that the
excited state shall have an energy E'= hv' greater
than the lower state whose energy we shall
take to be 0. This probability is found by ex-
panding the state function for the excited state
in terms of pure energy functions and then
picking the coefficient belonging to the energy E'.
Its square will be the probability, and hence the
intensity sought.

If the atom is in a pure energy state with
energy E', its 4'-function is

This is, in view of (1), P(g)e2rt (E'JL) t (6)

J(v') = A (tt) exp {2rri [fotv(r)dr —v'tgI dh. (4)

The intensity at frequency v' finally is related
to the amplitude by

g denotes space coordinates and E' is inde-
pendent of t. Let us now assume that at t=0 a
perturbation e(t) sets in. The state function will
then develop according to Schrodinger's equation

(h/2~i) (d/dt)% = e(t') +,

The exact way in which the amplitude of the
oscillator A depends on the time is difficult to
calculate. It is customary to assume A to be
constant within a certain interval of time and
to vanish outside this interval.

Although the treatment of the problem from
the quantum-mechanical point of view is neces-
sarily different, Lenzs4 has pointed out as early
as 1924 that the final results must be the same
because of the correspondence principle.

Weisskopf has shown" that formulae (4) and
(5) are valid in quantum mechanics under
certain simplifying conditions. His proof involves
the use of the Kramers-Wentzel-Brillouin approxi-
mation. It is possible to establish (4) and (5)
without applying this method. In the following
we give a simple proof which assumes that the
perturbation affects only the energy of the
emitting atom, but not the charge distribution. *

"W. Lenz, Zeits. f. Physik 25, 299 (1924)."V.Weisskopf, Zeits. f. Physik VS, 287 (1932).
*More precisely: the matrix elements between the

various atomic states are not appreciably altered.

which has the solution

P(q) exp P(2'/k)ftt e(r)dr). (7)

This expression must be expanded in functions
like (6), that is, we must perform a Fourier
analysis of (7). If we put E'/h=t' and e/h=v,
the probability amplitude becomes

a(v') = exp I 2rriI J'Otv(r)dr —t 't jIdt,

and this is proportional to J(v') in (4) if A(t) is
considered constant. Under this condition, then,
the classical method of computing intensity
distributions is correct provided we replace the
classical frequency t(t) by c(/)/h„where e is
the perturbed energy as a function of the time.
If the energy of the lower state also varies in
time, e(t) must be interpreted as the energy
difference between the upper and lower state,
as an inspection of the preceding argument
will show.
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We are thus confronted with the question of
how to determine e. It will depend on the space
configuration of all gas atoms, and, through their
motions, on the time. The next two sections will
deal with the principal energy perturbations
responsible for the widths of spectral lines.
As a matter of nomenclature, let us write

e =Es—Ei+Des —«i,

where E2 and Ei are the normal energies of the
upper and lower states, respectively, «s and b, ei

the perturbations produced in these energies by
neighboring atoms. Correspondingly, we have

v= vp+Dv,

where

vp ——(1/k) (Es—Ei), and b, v = (1/k) («s —«i).

)4. VAN DER WAALs INTERAcTIQNs

We first turn to the problem of broadening by
foreign gases, where the coupling between atoms
is chiefly due to forces of the van der Waals
type. Their quantum-mechanical significance has
first been investigated by F. London" who has
also derived formulas for calculating them. The
two quantities to be determined are «i and
d, es. The first of these is the additional energy
possessed by the normal state of the radiating
atom due to the presence of all perturbers, the
second the additional energy of the excited state
due to this cause. We consider at present only
«i' and «s', the added energies resulting from
the presence of a single perturber.

London's formula for the perturbation energy
between one atom in state k and another
(different) atom in state l is

1 3 he 4 faa gii
«~i' = ———— +S.

2s- &'i' (Ei,.—Ei,) (Fv —Fi) (Ei,.+Fi —Ei,—Fi)

R is the distance between the two atoms; f« is
the oscillator strength corresponding to the
transition k—4' for the first atom, g i i for the
second. The E's and F's are the energies of
the various states for the two atoms, respec-
tively. States for which k'=k, or l'=l must be
excluded from the sum. The term containing
the summation is the first one of an expansion
of hei, i' in descending powers of R', the re-
mainder, S, therefore starts with const. /Rs.

«i' is given by (1) if we let k refer to the
ground state of the radiating atom, l to the
ground state of the perturber. Since then every
Ei-, &Bi„and every Fi &F&, the term propor-
tional to R—p is certainly negative. The energy
of the ground-state is therefore lowered at R
values for which S may be neglected.

In discussing «s' we shall suppose the radi-
ating atom to be in an excited P state. Most
experiments on line broadening have been per-
formed on resonance lines or on higher members
of the principal series, hence this assumption
seems in order. b, es' is then not exactly given by
formula (1) if we let k be this P state and l the
ground state of the perturber; but (1) repre-
sents the average over all orientations of the
excited atom. The instantaneous interaction

energy depends on the magnetic quantum num-
ber of the P state, " and may in fact be of
opposite sign for different values of this quantum
number. The forces are therefore not strictly
central forces, nor are they to be classed as
polarization forces. To simplify matters we shall
ignore this difficulty and use (1) for computing
Ass'. As a matter of fact, we are thereby ignoring
a possible cause of broadening, since we are
replacing the multiplicity of b, es' by a sharp
average. But neither experiment nor theory is at
present refined enough to warrant an investiga-
tion of these details.

«s' is not necessarily negative. To be sure,
fi, i, has always the same sign as the corresponding
energy difference Ei,.—Ei„hence the sign of
«2' (with neglect of S) depends on the various
values of (Ei,.—Es+F& —Fi). If they are pre-
ponderantly positive, «s' will be negative. In
general this will be the case, for there is only
one transition which causes a negative E~ —Ei.,
(namely, if k' denotes the normal state) and all
Fi —Fi&0. Thus if the radiating atom is an
alkali and the perturber a rare gas, the only

'~ F. London, Zeits. f. Physik 63, 245 (1930); Zeits. f.
physik. Chemic Bl1, 222 (1930)."H. Margenau, Phys. Rev. 40, 392 (1932),has given the
formulae for individual m values.
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negative Ek —Ek amounts to 2 or 3 volts, while
the smallest F~.—Fg is of the order of 10 volts
(transition from normal ground state to lowest
excited state). This situation is quite general
when the radiating atom is a metal and the
perturber a gas.

There are instances, however, where des'&0.
The example of an excited sodium atom inter-
acting with a normal K atom is a case in point, '"
for here the dominant term in the summation of
(1) is the one associated with the two resonance
transitions, and this is positive. "For this reason,
e (cf. 3.8)* is greater than Es —Ek, and the
spectral line (D line) should suffer a displacement
toward the blue. But experiments to verify this
have not been performed. In general the shift is
to the red, for it turns out that in most cases
—Des & —Bey .

For purposes of calculation formula (1) can
often be simplified. Suppose, for instance, that
the broadening substance is a rare gas. The
energy differences F~.—F& will then be grouped
around the ionization energy, the smallest being
the energy of resonance which is comparatively
great for rare gases. The largest energy difference
is of course infinite, for we must not exclude
transitions to the continuous spectrum from the
summation in (1); but the f values for these
transitions fall rapidly beyond the ionization
limit. An estimate of b.e' can therefore be
obtained by replacing all terms F& —F& by some
mean energy difference F and taking this to be
the ionization energy. If in this procedure we
make use of a well-known formula for the
polarizability o, , the summation over l' can be
eliminated from (1), and there results"

1 3 'he fkI"
aF Q +S.

R 2m 2x k' (Ek~ —Ek) (F+Ek~ —&k)
(2)

a and F refer, of course, to the gas. This formula
is useful when the f values for the strongest lines
of the radiating atom are known. For gases other
than the noble ones, where there is a greater
spread in the values of F& —F&, its validity is
very questionable, but it may still be used to
determine the order of magnitude of the effects.

Numerical computations on the basis of (2),"
while subject to the uncertainties just men-
tioned, show that ~des'~ & ~Ae~'~ again with the
neglect of S; but he~' is not negligible compared
with Des'. The order of magnitude of these
energies amounts to a few millivolts at distances
of separation around SA.

Next we should consider the role played by S.
1he first term in (1) represents the dipole-dipole
interaction between the charge distributions of
the two atoms in question. S contains the effects
of the higher poles. s' S is negligible when the

"Because Ek —Ek~ —2.1 volts for Na, F~ ~ —Fg~+1.6
volts for X.

*In references to equations of preceding sections the
6rst number indicates the section,"Cf. F.London, Zeits. f. physik Chemic Bll, 222 (1930).

~0 These are present even if there are no permanent
poles!

extent of the charge distribution is considerably
smaller than the distance between the atoms.
Roughly speaking S will become appreciable at
R values smaller than 10A in the case of des',
for As&' it may be neglected to somewhat smaller
distances. The general effect of S will be to make
De' lower, i.e. , to increase the force of attraction.
At distances of separation SA, formula (1)
loses its validity altogether, for then exchange
forces of the valence type set in and cause either
strong repulsion or (in cases uninteresting from
the point of view of this article since no atomic
line could be radiated) chemical coalescence. In
what follows, the effect of S will be considered
only in a qualitative way.

So far we have considered interactions between
two individuals, De'. What we wish to deal with
is an assembly consisting of one radiating atom
and a great number of perturbers. The transition
here is simple, for the forces expressed in formula

(1) possess the important property of addi-
tivity. " Hence d, e =+De', where the sum is
taken over all perturbers. With this under-
standing, and with neglect of S, (3 8) and (3 9)
may be written
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s =Es—Bi+a+(1/R') (3)

and v = vp+bg(1/R P), (4)

where the sum extends over all perturbers; a is
the difference of the coefficients of 1/R' in (1)
for the excited and the normal state of the
radiating atom, and b=a/h. b is in general
negative; its order of magnitude is 10—'s or
10 "cm' sec. '.

~ss' ——y{e'hfis/8~'m vg') (1/R'), (1)

where the numerical factor y takes the value —2
if m=0, +1 if m= &1.* fis is the f value corre-
sponding to the transition from the normal to
the excited state, vp the frequency of the spectral
line.

To derive (1) we proceed as follows. If one of the two
atoms is in the excited state p' and one in the normal state
f the combined state is a superposition of the two functions

fi =P'{1)P{2) and Pq = f(1)P'(2),
since we do not know which of the two atoms is excited.
Hence the total unperturbed state function is

+=ci4i+cgA, (2)

with two possible values for ci and c&, respectively. The
perturbing energy is

V = —(e'/R') (2sisg —xi@2—yiy, ) (3)
where xi is the coordinate of the electron in atom 1,

*Symbol m, occurring in formulas such as (1), refers of
course to the electron mass.

(5. RESONANCE INTERACTIONS

Let us again begin by considering the energy
perturbation which takes place when only two
atoms are present. hei', which, as in the last (,
refers to the added energy when both atoms are
in the normal state, is of the van der Waals
type. The van der Waals forces in the case of
metallic atoms are large; but even so they are
small compared to the resonance forces which
appear in Des'. We shall therefore neglect hei
altogether. This is proper as long as we are deal-
ing with large distances of separation (small
pressures), for the resonance perturbation en-
ergies are proportional to 1/R', while Ae& 1/R'.

b, ss' depends on the orientation of the atoms,
that is, on the magnetic quantum number m of
the excited one. In fact we have

m easured from its nucleus, and xp the electron coordinate
in atom 2, etc. Let Vi2be the matrix element of (3) between
Pi and &2. Its value is easily seen to be

3 (ei/R3)
~
ri2) ' if ni =0,

+3(e'/R )
~
r»l ~ if re = ~1 (4)

Vii = Vip ——0.

rig is the radial matrix element between the normal and
the excited state. According to well-known rules, the
perturbed energy h~&' (for which we shall write 6 for the
moment) is found by solving the set of equations

Zc;(Vi.;—bi;A) =0 (5)
and this leads to

(6)

Hence
A=aV, ~.

On substituting this value back into (5) we get the two
sets of c's:

ci =c2 and ci ———c~, (8)

showing that the combination (2) is either symmetrical or
antisymmetrical. But the state (2) must be capable of
optical combination (by dipole radiation) with the state
in which no atom is excited, namely, +p ——P{1)P(2).

If we compute the transition probabilities from ep to the
two states 8', we find that the transition probability to
the antisymmetrical % vanishes. The second possibility in

(8) is therefore excluded, and there remains only

keg'=+ Vip. (9)

Substitution of (4) into (9) leads to formula {1)if we re-
member that

~
rig

~

= (3h/8x myp)fi2.

The interaction energy can have both signs,
the choice depending on the value of m {not on
the two possible solutions of (6)). The average
over-all values of m is 0. The classical interpreta-
tion of this fact is that b, es' is, on the average,
just as often positive as negative. In fact one

may show that, if one desires to use classical
methods of averaging over angles, des' is equal to
e'hfis/8m'mvpR' times an angular function whose
maximum value is 1 and which has a mean
value 0. Eq. (1) can therefore be correctly
interpreted as the analog for the classical inter-
action of two permanent dipoles of equal mo-
ments p = (e'hfis/8~'mv p) l. But this analogy
breaks down when the number of partners in
the interaction is greater than two. The forces
represented by Eq. (1) are not additive.

To see this we repeat the procedure leading to (1). Sup-
pose there are n atoms, one of which is excited. We then
have n functions
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fi =0'(1)It (2) 0(&)
A =p(1)P'(2) p(n),

Vgg —A Vgg ~ Vg~

Vti V22 —A' ' V2

V„g V, 2
.V„„—A

(10)

The solutions d, of this equation are irrational functions of
the V;;. This means that they cannot be composed addi-
tively from the V;;. When (10) is solved, the n sets of coef-
ficients c must be determined by substitution in (5).
Each set must then be assigned a weight proportional
to the strength of combination with the unexcited state
+p=g~(1)it(2) ~ ~ P(n), and this is also the weight of the
corresponding A. Only the antisymmetrical state will have
a 0-weight. We thus obtain a weighted distribution of
eigenvalues A which is not in general symmetrical about
A=O. Each eigenvalue A, finally, is capable of assuming
three different values because of the three possibilities
for m.

Our aim has been merely to sketch the method and to
point out the difficulties involved. The problem has not
been solved, although various attempts have been made. "
These have already been discussed by Weisskopf' who
points out that the assumption of an error curve for the
distribution of the solutions A of Eq. (10) is misleading.
The solution of (10) is clearly impossible if I is large.
But the sum of the A's can be shown to be 0. From this
circumstance Holtsmark and Frenkel conclude that the
distribution of A's is symmetrical about d. =0. This is true,
of course, but it allows no inference regarding the distribu-
tion of frequencies within the broadened line, since the
A's are not of equal weight.

For these reasons we shall apply the theory of
resonance coupling only to cases of line broaden-
ing in which the simultaneous action of several
perturbers may be ignored, so that we may con-
tent ourselves with the use of Eq. (1). This is
proper at small pressures if attention is confined
to the wings of the line. "Under these simplifying
conditions (b.ss ——Ass', b, si ——0) we may write, in
view of (3 9) and (1),

v = vp~B/R', where B=eF2/8' mvp. (11)
» J. Holtsmark, Zeits. f. Physik 34, 722 (1925); J.

Frenkel, Zeits. f. Physik 59, 198 (1930) L. Mensing, Zeits.
f. Physik 61, 655 (1930).

» In the wings of the line the frequency shifts, being
large, are caused by close encounters. For close encounters
the probability of binary or higher order impacts is small.

A =4 (1)4 (2) 4'(~)

and n linear combinations of the type

4' =cgPg+cmgg+ +c„A
in place of (2). V is now more complicated; it involves the
angles between the various radii vectors connecting the
atoms. Instead of (2) we now have the secular equation

The factor y has here beeri replaced by +1, its
"classical value. "

)6. TRUE DISTRIBUTION vs. STATIsTICAL DIS-
TRIBUTION; VELOCITY BROADENING.

The true intensity distribution, which is given
by (3.4, 5), presents a noteworthy feature.
Suppose that v(r), the actual frequency absorbed
or emitted, lies always in a certain range h. I(v')
will then not vanish in general if v' lies outside 6,
because the Fourier analysis produces finite
intensities even for frequencies which the vibrat-
ing system has never possessed. The spectral line
will therefore contain frequencies v corresponding
to energies e=hv which have never occurred as
perturbation values.

This fact is most simply explained by an idea
due to Oldenberg" who points out the possibility
of conversion of kinetic energy into radiation and
vie verse. Thus let us suppose that the con-
figuration of perturbers is such as to produce a
given s-value. If we visualize the act of absorp-
tion as an instantaneous process and imagine all
atoms to retain their state of motion, the only
frequency which can be absorbed is e/h, and the
line would be sharp. The atoms may, however,
lose or gain kinetic energy during the optical-'"

process, so that the frequency may be either
greater or smaller than e/k. Since the atom
concerned —and it is plausible to suppose that
the exchange takes place during a single en-
counter —can at most lose its thermal energy and
is not likely to gain more, we expect the diffuse-
ness of the spectral line due to this cause to be of
the order of kT/h. It should be small for slowly
moving atoms.

From this point of view one may regard the
true intensity distribution as decomposable into
two distributions. * The first is that arising from
the actual presence of modified frequencies
corresponding to perturbation values which the
configuration of atoms has produced in the
course of its motion. This distribution can be
calculated by the methods of statistical me-
chanics and will be called the statistical frequency
distribution. Superimposed upon this will be
found the diffuseness arising from the exchange

"O. Oldenberg, Zeits. f. Physik 4'I, 184 (1928); 51, 605
(1928).

~ Compare also reference 2.
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of energy just discussed. For some purposes this
may conveniently be regarded as a second distri-
bution. We shall refer to it as "velocity broaden-
ing distribution"'4 because, as we have seen, it
results from the fact that the atoms may gain or
lose velocity during the act of radiation. Its
more precise definition will be given shortly. The
true distribution (3 4, 5) comprises both of these.

It may seem somewhat surprising that the
argument which we have used in $3 to establish
the true distribution, making use of a single
radiating atom, should yield the velocity distri-
bution correctly. The reason is that we have not

really limited ourselves to the consideration of a
single atom, for we implied, by letting e be a
function of the time, that the system in question
is an open one whose energy is not conserved.
Exchanges of energy have thus been permitted,
and the effects assumed by Oldenberg figure
implicitly in the result.

We shall now investigate the relation between
true, statistical and velocity distributions in
greater detail, following somewhat the outline of
a previous paper. "If we combined (3.4) and (3.5)
we obtain for the true distribution (A(t) will be
taken to be constant=1)

I(v') = dtidt2 exp {2rri[fp'~v(T)dr —fp'2v(r)dT+v (tp t])j}.

The two integrations for which no limits are
stated extend over the entire time during which
the process of radhation occurs, which will for the
present be regarded as infinite. If we substitute
for ts —t& the variable x we may write (1):

I(v ) = dti dx exp {2~i[v'x—fp"v(r)dr J}. (2)

Let us now make a Taylor expansion of the
integral in the exponent.

I(v') = dt's dx exp {2xi[v'—v(ti) jx}

sin 2~a[v' —v(ti) j
=lim dti-

1I-[V' —V(ti) J

(4)

But what is the meaning of dt&? It is the interval
of time during which the frequency of radiation is

~4 The use of the term "impact distribution" which might
seem more appropriate, is preempted, for it is almost
universally applied to a special type also known as Lorentz
distribution (cf. $7).

f v(T)dT = v =p'x+v —p'x /2+
0 = v(ty)x+ v(ti)x /2+ ' ' '. (3)

The dots denote time derivatives. If the mole-
cules of the gas moved with extreme slowness all
terrfis but the first could be neglected in this
expansion. In that case (2) would read

We see, therefore, that the statistical distribution
is the limiting form of the true distribution for
very small velocities, and hence low tempera-
tures. Conversely, we may say that the velocity
broadening distribution, the incorporation of
which into I, produces the true distribution,
must become negligible for very small velocities. "

The general way in which I, must be modified
at higher temperatures can also be determined by
inspecting (2). The integral over x in this ex-
pression is a function of v' and v(t&), say F(v', v).
Hence, in view of what has been said about dti,
(2) takes the form

I(v') = I,(v)F(v', v)dv. (6)

The function F in this expression is the velocity
broadening distribution; its only rigorous defini-
tion is by means of this integral. An exact
evaluation of F(v', v) on a theoretical basis has

"H. Margenau, Phys. Rev. 48, 755 (1935).
36 In this connection compare also H. Kuhn and F.

London, Phil. Mag. 18, 983 (1934).

v(t~). In other words, dti ——I,(v)dv, where we have
written I,(v) for the statistical frequency distri-
bution defined previously. With this substitution,
(4) goes into

sin 2m |i(v' —v)
I(v') =lim I,(v) dv= I,(v'). (5)

s (v' —v)
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not been carried through and is not likely to
succeed because of the difficulties in determining
J&"v(r)dr in (2). The quantity v(7) in this
integral represents the instantaneous perturba-
tion (on a frequency scale) due to all atoms. One
may show, however, that the function F(v', v) is
symmetrical with respect to v', and hence that
impacts produce a symmetrical spreading of the
frequencies at every ordinate of the I, curve; but
this spreading is not the same for all ordinates. In
the next sections we shall discuss a few practical
approximative methods of dealing with the F
distribution in specific cases of broadening.

Some further insight into the factors on which
F(v', v) depends may be gained by utilizing the
first two terms of the expansion (3). We then find
after simple calculation for the real part of
F(v', v) (the imaginary part is of no importance,
for it must vanish in the integration over dt's, a
real quantity, in (2))

(RF(v', v)

1 & 7r(v' —v) ' ~(v' —v) '
cos +sin — — . (7)

I'j

t v
t

will in general be a function of v. A crude idea
of the width of F(v', v) can be obtained by sup-
posing j i

i
to be independent of v over the range

in which F is appreciable. The function (7) is
plotted in Fig. 3. Its width m=2(ii i/n)&. The
negative portions of F are of course meaningless,
if we think of the function as an actual intensity
distribution, yet they are present. This feature
shows that the decomposition of I(v') into I, and
F, which has been made, is possible only in a
formal way, as indicated by Eq. (6), and that F
gains physical meaning only if combined properly
with some statistical distribution. Nevertheless
the two aspects of statistical broadening and
velocity broadening are so suggestive that the
distinction may well be retained.

The width of the F distribution, as we have
seen, is about

i
vi&. Since we have assumed ivy

to be constant, this quantity must refer to some
average value which is by no means uniquely
defined. This average will increase, however, if
the number of impacts increases. We may con-
clude, therefore, that the width of the impact
distribution will grow in some way with the

Fm. 3. Graph of the function (7).

density of the gas. Furthermore, since v during
a single impact is (clv/Br) v; cos(tt;, r) we see that

i
v

i
l is approximately proportional to the square

root of the speed of the molecules, although the
terms in (3) which have been neglected may well
produce proportionality to a power of v some-
what greater than 1/2.

The foregoing considerations of a fundamental
nature, while not readily adaptable to practical
purposes of calculation, are helpful in gaining a
correct perspective and in judging the validity of
simpler calculations. In order to turn them to
useful account we must start with far simpler
initial hypotheses. Lenz'r has evaluated expres-
sion (1) with some rigor. His results are interest-
ing, but claim validity only for a small range of
pressures because of the complexity of the
calculation. The usual procedure is to do violence
either to I„"or to F." In the first group of
papers, the calculations involve the simplifying
assumption that the statistical distribution is
negligible, i.e. , that I,(v) may be regarded as 0
for every v except in a very small range where it
is large; in the latter group F(v', v) is taken to be
0 unless v= v'. The details will be discussed in
simple terms in the next section. As to termi-
nology, we remark that theories of the first type
are usually classified as impact theories; for the
latter we propose to use the term statistical
theories. Neither can be complete by itself. The

» W. Lenz, Zeits. f. Physik 80, 423 (1933).
'8 H. A. Lorentz, Proc. Amst. Acad. 8, 591 (1906); V.

Weisskopf, Zeits. f. Physik 75, 287 (1932); H. Kallmann
and F. London, Zeits. f. physik Chemic B2, 207 (1929)."H. Margenau, Phys. Rev. 40, 387 (1932); 43, 129
(1933);44, 931 (1933); M. Kulp, Zeits. f. Physik 79, 495
(1932); 87, 245 (1933).



PRESSURE EFFECTS ON SPECTRAL LINES

difference between them is one of method rather
than substance, although it is sometimes er-
roneously supposed that impact theories describe
a type of broadening physically different from
others. All interactions produce both statistical
and impact broadening.

$7. IMPACT THEORIES AND THEIR
EXPERIMENTAL VERIFICATION

The simplest premise upon which a theory of
pressure broadening can be constructed is to
assume a constant frequency perturbation to-
gether with a finite radiation time. This pro-
cedure leads to the formula describing what is
commonly known as Lorentz" broadening, a
formula which we shall now derive. The physical
mechanism assumed by Lorentz is this: An atom
absorbs or emits the sharp frequency vp during
the time between two collisions. Each collision
stops the radiation process completely, the
energy of vibration being wholly converted into
kinetic energy. The theory is therefore an impact
theory in its purest form.

Let the time between two collisions be T. The
function A(t) will then be a constant within the
interval —T/2 (t(T/2 and 0 outside. Further-
more, v(r) = vp=const. Hence (3.4) becomes

TI2

J(r ') =const. e' '&"' "'&'dt
—TI2

sin 7r(vp —v') T=const. ("- ')

This is Lorentz' formula. It defines a dispersion
curve of half-width

Av;=1/s r. (2)

Avi= p vni. (3)

By putting J'l(v')dv'=1, the const. in Eq. (1) is
seen to have the value 1/2~2'.

The impact distribution thus derived has
therefore the same form as the natural spectral
line (whose shape is discussed in $1A). In the
present derivation natural line width has been
disregarded. It can be shown, however, that if
radiation damping is included in the calculation
in accordance with its classical mechanism,
formula (1) remains unaltered, except that one
must write in place of 1/2r r the quantity 1/2rr+y,
where y is the same as in (1 ~ 1).The half-width of
a line affected by radiation damping and Lorentz
broadening is therefore the sum of the half-widths
of the two separate effects.

The Doppler effect produces greater confusion
and alters the line shape. But, as was pointed out
in (1 ~ 2), the Doppler modification is inapprecia-
ble in the extreme wings of the line.

The quantity 1/r is the number of collisions
per second, which is known from kinetic theory
tO be 2r p28ni. In thiS eXpreSSiOn 8 iS the rOOt-mean-

square velocity of impact, ni the number of
atoms per unit volume. p is known as the
"optical collision diameter, " that is, the average
distance between the centers of two colliding
atoms at which the radiative process stops. In
view of this relation, (2) takes the form

I(v'), according to (3.5), is the square of this
expression. But T is not the same for all collisions.
It is therefore necessary to average I(v') over all
radiation times. The probability that T shall
lie between T and T+dT is proportional to
e ~'dT, where r is the mean time between
collisions. Hence

sin L~(vp —v )Tj
I(v') =COnSt. e—2'~ rd T

2r2(vp —v }2

const.
(1)

(v' —vp) + (1/2wr)

H. A. Lorentz, reference 38. Compare also J. Q.
Stewart, Astrophys. J. 59, 32 (1934).

This formula is applied both to the case of
broadening by foreign atoms and by atoms of the
same kind, only i has to be calculated differently
for the two cases as is well known from kinetic
theory. If the half-width of the line is measured,

p can be computed from (3) provided one takes
the values of 8 and ni from gas theory. p is not
necessarily the same as the kinetic collision
diameter, although it might be expected to be of
the same order of magnitude. Before discussing
the experimental material which has been col-
lected in support of formulas (1) and (3), and
theii defects, it seems well to point out how I(v)'
of (1) fits into the general scheme of the last
section.
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This is fairly obvious. I,(v) has in Lorentz'
theory been assumed to be different from zero
only in a very small range about v = vs. Inspection
of (6.6) then shows that I(v') is to be identified
with F in such a way that F(v'v) =const. /
L(v' —v) +1/(27rr)'1 = I(v'v), which will cause
(6.6) to read

I(v') = I,(v)I(v', v)dv=const. I(v', vo).

We now pass to an examination of the experi-
ments bearing on Lorentz' theory. Most of the
measurements on the width and shape of absorp-
tion lines at low gas pressures have been made
either on the 2537A Hg line or on the Na D lines.
Minkowski, 4' Schiitz, "Korff4' and Weingeroff"
all agree that the D lines become broader than
the natural line width at a Na vapor pressure
slightly less than 10 ' mm. The theoretical value
of the natural width of the D lines as computed
withEq. (1.1) is1,012X10'sec. '(0.64&(10'sec.—'
in angular frequency units). This value is
actually obtained by Minkowski, Schiitz and
Weingeroff, each using a different experimental
method, at pressures of about 10 ' mm. Min-
kowski measured directly the intensity in the
wings of the lines much broadened because of a
long absorption path in order to make inappreci-
able the effect of Doppler broadening (cf. $1).
For the case of the D lines this experimental
verification of the theoretical natural line width is
a check on the correctness of the fvalues 1/3 and
2/3. (Although subject to no pressure broadening
at these low vapor pressures, the observed inten-
sity distribution may be expected to depart
somewhat from the dispersion form because of
insufficient resolution and the influence of
anomalous dispersion. )

Contours of the D lines obtained with low Na
vapor pressures have been measured by Korff. 44

His measurements show that the opacity
throughout the line varies inversely as the square
of the wave-length distance from resonance, as is
to be expected from Eq. (1) when the half-width
can be neglected as compared to (v —vs). The

4' R. Minkowski, Zeits. f. Physik 36, 839 (1926)."S.A. Korff, Astrophys. J. '/6, 124 (1932).
4' M. Weingeroff, Zeits. f. Physik 6/, 679 (1931).
"4S. A. Korin, Phys. Rev. 38, 477 (1931);Astrophys. J.

'76, 124 (1932).

contours show the variation of the total width of
the line with the square root of the number of
atoms in the line of sight, 4' and the correct
natural line width is indicated.

Almost without exception investigators find
the expected linear increase of the half-width
with density of atoms in the absorption tube. The
reported approximate variation of the half-widths
of several lines of the principal series of Na with
the square root of the number of absorbing atoms
by Harrison and Slater" is questionable" be-
cause of possible sources of error in their pro-
cedure. Trumpy" " has similarly reported a
proportionality between line width and the
square root of the number of absorbing atoms
both for the Na and the Hg lines. He used,
however, a rather high pressure of a foreign gas in
these experiments —COs pressures up to 36
atmospheres in the Hg 2537A absorptions, for
example —,and reports indeed that the line
breadths for several different COs pressures
extrapolated to zero Hg vapor pressure are ap-
proximately proportional to the total pressure.
But with increasing Hg vapor pressure the in-

creasing line widths are produced by simultane-
ous foreign gas broadening and resonance
broadening, and the half-widths due to these two
effects are not additive. Therefore no conclusion
as to the variation of line width with the number
of Hg atoms may be drawn from these measure-
ments.

If the density of absorbing atoms is so low tha
broadening by like atoms is negligible, the
breadths of the Hg 2537 line and of several alkali
atom absorption lines have been shown to be
proportional to the density of foreign gas atoms
up to quite high foreign gas pressures. Fucht-
bauer, Joos and Dinkelacker, "for example, have
observed this linear dependence for the Hg-line
up to a maximum of 50 atmospheres. Fig. 4 is
reproduced from their plot showing the linear
variation of the half-widths of the line with

45 This is in agreement with Eq. (1), for the const. of the
numerator includes 1/r and hence ni. The total width is
determined by Kore as the frequency interval between
two points on the contour where the opacity is a constant
(5 percent of its maximum). At these points, the second
term in the denominator of (1) may be neglected. Then

ni/(v' —vo) =const. , (v' —vo} ~ n&&.

"G. R. Harrison and J. C. Slater, Phys. Rev. 26, 176
(1925).
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.—I0

Io 20 so d~oq a N~) 50

FIG. 4. Half-widths of the Hg 2537A line es. relative
density of perturbing gases. (After Fiichtbauer, Joos and
Dinkelacker. )

4' C. Fuchtbauer and C. Schell, Physik. Zeits. 14, 1164
(1913);cf. also F.Waibel, Zeits. f. Physik 53, 459 (1929);F.
Gossler and H. E. Kundt, Zeits. f. Physik 89, 63 (1934);
C. FOchtbauer and F. Gossler, Zeits. f. Physik 93, 648
(1935);C. Fuchtbauer and H. J. Reimers, Zeits. f. Physik
95, 1 (1935).

relative density (the density of the amount of
perturbing gas at O'C and 1 atmos. ) of Hs, A, COs
and Ns. A similar linear relationship for the D
lines of Na broadened by Hs, A and Ns is dis-
played in Fig. 5, taken from the work of Mar-
genau and Watson. "This direct proportionality
between the width of the D lines and the density
of the perturbing gas has been observed for a
smaller pressure range by Fiichtbauer and
Schell, 4' Minkowski4' and Kor844 and for other
alkali lines by Fuchtbauer and his co-workers"
and by Watson and Margenau, "However, the
latter find for the X resonance lines broadened by
Ns an increase in half-width more rapid than
linearly with Ns density when the perturbing gas
is at about relative density 20 (cf. discussion
in $9).

The optical collision diameters determined
from the observed line half-widths vary con-
siderably depending upon the experimental
methods and theories used. They are always,
however, consistently larger than the atomic
diameters as given by the kinetic theory. Sub-
stituting the kinetic theory value of 8 in Eq. (3)
and solving for p' we obtain the formula

~hvI mM
P (4)

2nI(2skT)' m+M

FIG. 5. Half-widths of the D lines (averages for D~ and D~)
vs. relative density of perturbing gases.

where m is the mass of the absorbing atom, M
that of the perturbing molecule. In addition to
the direct determination of the line half-width
from the line contour this width may be found
under certain conditions from measurement of
the total absorption. "Zemansky" and Kunze"
have determined the width of the Hg line
broadened by foreign gases by total absorption
measurements. Schutz" has measured the width
of the Na D lines broadened by a number of
foreign gases with the method of magnetic rota-
tion. Optical collision diameters may also be
computed from the amount of the quenching of
resonance radiation by certain gases. "Such de-
terminations have been made for the Hg line by
Stuart" and for the Na lines for Hs, Ns and COs
as the foreign gases by Mannkopff, " von
Hamos, '4 Kisilbasch, Kondratjew and Lei-
punsky" and Winans. "We list in Table I some
of the optical collision diameters for Na with
several foreign gases as determined from observed
half-widths of the broadened D lines. For com-
parison we include the values from the experi-
ments on the quenching of Na resonance radia-
tion together with theoretical values to be de-
rived later (cf. Eq. (7.7)). A similar table of

"R.I.adenburg and F. Reiche, Ann. d. Physik 42, 181
(1913).

4' M. W. Zemansky, Phys. Rev. 36, 219 (1930)."P.Kunze, Ann. d. Physik 8, 500 (1931).
'~ Cf. Mitchell and Zemansky, Resonance Radiation and

Excited Atoms, p. 206.
"H. A. Stuart, Zeits. f. Physik 32, 262 (1925)."R.Mannkopff, Zeits. f. Physik 36, 315 (1926).
'4 L. Z. von Hamos, Zeits. f. Physik 74, 379 (1932).
4' B. Kisilbasch, V. Kondratjew and A. Leipunsky,

Physik. Zeits. Sowjetunion 2, 201 (1932)."J.G. Winans, Zeits. f. Physik 60, 631 (1930).
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TABLE I. Optical collision diameters for Pa unth various
foreign gases in A units.

Fuchtbauer and Schell
Minkowski
Margenau and Watson
Schutz

MannkopH
Quenching von Hamos

diameter Kisilbasch et al.
Wins ns

Theoretical value

H2 He Ns Ne A

12.0
7.7 7.9

5.6 6.5 8.7
5.8 5.6 8.3 6.2 9.0
4.1 7.8

5.4
2.5

2.5 3.1
4 7 6 7

"W. Orthmann and P. Pringsheim, Zeits. f. Physik 46,
106 (1927}."H. Becker, Zeits. f. Physik 59, 583 (1930).

collision diameters for the 2537A Hg line is given

by Weisskopf. '
It is well known that all absorption lines are

broadened to a much greater extent by increase
of pressure of the same atoms than by foreign gas
pressure. Optical collision diameters computed
from the measured widths of these very much
broadened lines are much larger than those given
in Table I. Korff, 4' for example, computes from
his measurement of the pressure at which the Na
lines become broader than the radiation damping
width that the distance for Na —Na interaction is
about 200A. Orthmann and Pringsheim, '" by
indirect measurement of the width of the Hg line,
find that a rise of Hg vapor pressure from 0.0001
mm to 7.3 mm produces the same broadening as
does the addition of 250 mm of a mixture of He
and Ne. This pressure difference would indicate
that p is about 50A for Hg —Hg interaction.
Similar measurements have been made by
WaibeP' on the absorption lines of Cs. It is very
doubtful, however, whether these very large
collision diameters have any significance (cf.
(8 below).

Pressure broadening experiments on the near
infrared band spectra of HCI, HsO and COz have
shown that Lorentz' theory is largely capable of
accounting for the line breadths. All of the rota-
tional lines are broadened to about the same
extent, with approximate proportionality be-
tween breadth and pressure, and with intensity
distributions of the dispersion curve form. The
breadths produced by diRerent foreign gases as
well as by the absorbing gas itself are all of the
same order of magnitude. Becker" has measured

the half-width of a line of the 1,74tt HCI band at
pressures of 3, 5, 7, 9 and 11 atmos. as 8.65, 14.0,
17.1, 21.75 and 25.1A, respectively. These widths
indicate an optical collision diameter for HC1
against HCl of 13.6A.

Interesting pressure broadening data for the
lines of the HCN band at 1.04p, have been re-
ported by Herzberg and Spinks. "The broaden-
ing for 1 atmos. of HCN gas pressure is con-
siderably greater than that in the HCl bands at
the same pressure of HCI. The line width in-
creases rapidly with pressure, is far less when an
equal amount of air is substituted for part of the
HCN, and decreases with increasing molecular
rotation. These facts indicate that the eRect
cannot be described solely as Lorentz broadening.
Furthermore, the indicated strong interaction of
the HCN molecules cannot be due only to the
large dipole moment of HCN, for the HsO and
HCI bands do not show this very large pressure
broadening. Herzberg and Spinks mention that
an additional necessary condition for the eRect
would seem to be the relatively easy deforma-
bility of the molecule, shown by a small vibration
frequency. "The lowest frequency of HCN is 713
cm ', while for H20 it is ~1600 cm ' and for
HC1 3000 cm '.

Lorentz' theory, if taken literally, implies that
the broadening is caused by collisions of the
second kind. If this were true, the process of
broadening should invariably be accompanied by
a diminution of the total intensity of radiation, as
measured by Jo nKdv, that is, there should be
"quenching" of the radiation.

But quenching has been observed in relatively
few cases."Clearly, then, the mechanism cannot
be understood in that way. Lenz'4 and Kallmann
and London" have indicated how the essential
features of Lorentz' theory can be maintained in

the face of this apparent contradiction, if only
the meaning of the impact diameter p is changed.
They point out that it is not necessary to assume

'9G. Herzberg and J. W. T. Spinks, Proc. Roy. Soc.
A147, 434 (1934).

"HCN polymerizes easily, as Dr. Herzberg has pointed
out to the writers in conversation. This also shows the
existence of strong interatomic forces."The D lines are quenched by H2, N2, Br2 and CO2 and
the Hg line 2537 by H&, 02, and CO. See H. A. Stuart,
reference 52; Mitchell and Zemanski, Resonance Radiation
and Excited Atoms; R. Mannkopf, reference 53; J. G.
Winans, reference 56,
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the process of radiation to terminate abruptly on
collision, but that a phase change of sufficient
magnitude is equivalent to such determination
because it makes sections of an uninterrupted
wave train incoherent. Correspondingly, they
define p as the distance of separation between
two atoms at which the phase of the radiation has
undergone a change of about ~ radians, as a
result of the frequency changes which have taken
place in the motion. Weisskopf" has given a
simple method for calculating the collision
diameter thus defined. The phase y is related to
the hv appearing in (3.9) by

Putting p = 1 for d =p, we obtain

p —(47rB/8} &.

We put the values (6) and (7) into the Lorentz
formula (3) and obtain

b, vi —2.2b s(8) Iani

for broadening by foreign gases, (8)

Avi —4' Bni
for broadening by similar atoms. (9)

In view of (3.11), the last equation may be
written

p=f 2mb, vdt. (S) 3 vi —(e'fis/2~mvo) ni. (10)

Let us assume that the frequency change is due
to the passage of a single perturber. Then b, v is a
function of R, the distance between the partners,
and through R of the time t. The perturber may
be taken to Hy along a straight line of distance d
from the radiating atom with uniform speed v, so
that R= (v't'+d') &. We now distinguish two
cases:

(a) The perturber is a foreign atom. Then Av

is given approximately by {4.4);

Av =b/R'= b/(e't'+d')'.

The total phase change during the fhght is.,
according to (S},

dt 3s' b
+=21lb

(v't'+d') ' 4 8d'

y is seen to depend very strongly on d. Weisskopf
takes for p that value of d which makes q =1.
Hence"

I =((3~'/4) (b/8))"'. (6)

(b) If the perturber is an atom of the same
kind, hv is given by (5.11), and

dt 4~B
Cp = 27I'B

(e't'+d')& 8d'

"H. Kuhn, Phil. Mag. 28, 98'7 (1935) modifies this pro-
cedure by putting q =m and determining v, which intro-
duces a different numerical factor in (6). We feel that such
refinements are unimportant, because there is no sharp
value of q beyond which wave trains are to be regarded
as distinct.

Formulae {6) and (7) agree well, as to order of
magnitude, with the values of p derived from the
experimental half-widths (using Eq. (3)).But the
experimental values agree rather poorly among
themselves, as was noted; an exact verification of
the theory is therefore difficult.

Formula (10), however, permits an interesting
check. We have already noted that the half-width
of the D lines becomes greater than the natural
line width at pressures somewhat below 10 '
mm. The natural width of the D lines is 1.1 X10'
sec. '. The value of ni for which (6) becomes
equal to this comes out to be about 10'4, which
corresponds to a pressure of about 3X10 ' mm.

Well established is also the fact that Ave is
proportional to ni, as already mentioned in the
discussion of the experimental material. This
feature is common to all impact theories. The
various results dier, however, in their depend-
ence on the mean velocity 8—= (e') &.

In the simple Lorentz theory the half-width is
proportional to 8 since p is regarded as a constant.
But in W'eisskopf's formulae (8) and (10) this is
no longer true. In (10) the quantity 8 has indeed
dropped out. We have seen in the previous
section that the velocity width must vanish as
8—&0. Since Eq. (10) does not satisfy this require-
ment it is clear that it expresses more than what
we have termed the effect of velocity broadening.
Weisskopf seems to regard it as representing
impact width. This nomenclature is unfortunate
because, to put the matter forcibly, Eq. (10)
predicts a width even if the atoms are stationary,
that is if there are no impacts.

This at once indicates that Eq. (10) includes



H. M ANGE NAU AND W. W. WATSON

somehow the effect of the statistical distribution
I,. In fact we shall show in the next section that
it represents essentially the statistical half-width
for the case of resonance interactions. The
formula is of course correct, but the way in which
it is here derived, though it is simple and elegant,
obscures its meaning. "

$8. STATISTICAL THEORIES

The statistical distribution of frequencies was
defined in )6 as the distribution I,(v) which
results if the intensity at frequency v is regarded
as proportional to the time interval during
which v is radiated. This time interval in turn
is proportional to the relative volume of configu-
ration space in which the frequency perturbation
is v. Let there be one radiating atom and n per-
turbers. If the radiating atom is fixed at the origin
of the coordinate system the element of con'figu-

ration space is the product (4~/U) "R1sdR1Rs2dRs
~ . R 'dR„where V is the volume of the gas.
Hence

jf

2 3
v/rh

F16. 6. Curve a, statistical distribution I. (v), Eq. (8.2);
curve b, I, modified by uniform diHusion, Eq. (9.4) with
b =2~X'; curve c, I, modified by a different diffusing func-
tion of smaller half-width. Abscissae are in units mA'; the
area under each curve is unity.

0 if (vp —v) (0
(v)=, . (2)

)1(vp —v)-"'e—~"' "6-" if (vp —v))0,
where 'A= —',s-( —b)In . (2')

~ R„'dR1 dR„. (1)

The integration here is to be extended over the
range of all R's in which

v' —dv'/2 & v(RIRs ~ ~ R„)& v'+dv'/2.

We consider first again the case of broadening
by foreign gases, where v(RIRs . .R„)is given
approximately by (4.4):

e 1
v= vp+b g

1 1R.6

Eq. (1) can be evaluated by the methods of
statistical mechanics. "We shall state here only
the result:

"The meaning of p, Eq. (7), must likewise not be taken
too literally, for it is seen that p~~ as ~0, which is
diaicult to interpret. The trouble may be traced to the
definition (5) and the subsequent substitution for hv. Sup-
pose, for instance, that hv is constant. There will then be no
impact width and hence a vanishing optical collision
diameter because the radiation is coherent. Nevertheless
the procedure outlined leads to an infinite p."' H. Margenau, Phys. Rev. 48, 755 (1935).

As was remarked in $4, b is usually a negative
constant. n1 is again the number of foreign atoms
per unit volume. Expression (2) is plotted in
Fig. 6. Its derivation involves the assumption
that (4.4) is valid all the way into the origin of R.
As a consequence, it is in error for those fre-
quencies which correspond to close encounters,
that is for large values of (vp —v). In fact the
tail in Fig. 6a is too long. The error increases
as n1 becomes larger; it creeps inward from the
external portions of the distribution curve. Eq.
(2) should be valid, except for the tail, far above
atmospheric pressures. Its validity is discussed
more in detail in the last reference. "

H. Kuhn" has previously given the formula

I,(v) =-const. (—b) l(vp —v)

as valid for the wing of the broadened line. It is
seen to be the form taken by (2) if (vp —v)

»10~b~n16. The maximum of I,(v) is given by

vp —v = —H, = (gK) (3)

Hence the shift of the maximum of I, is propor-
tional to the square of the relative density of the
foreign gas. The half-width of I, is 1.85m)1', and
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Vp ——2/nt. (4)

Eq. (1) now takes the simple form

4& v+8 v 4s- dRI.(v)dv= — R'dR= —R'(v)—.(5)
Vp Vp dv

Now since
j

v
i
=B/RP, R(v) = (B/v) l. If we

substitute this value and its derivative in (5),
the result is"

4mB 2' B
I„(v)=——=—ng—.

3Vp v2 3 v2
(6)

Because we have dealt with single impacts only,
(6) is the statistical distribution for large v. It is
so normalized that J'I, (v)dv =1."Ke know the
correct form of I,(v) to be of the dispersion type"

6~ Numerically this formula is uncertain by a factor 2 as
a result of the crude manner in which we have dealt with
the double sign in v= &B/R3.

"The lower limit of this integral is of course not 0, but
v'= B/Rp' where (4n./3)RO' ——1/ni.

"The reader will observe that there is no definite ex-
perimenRl evidence for this statement. The experimental
half-width is mostly found by assuming (7) and making

hence proportional to nP. The interesting feature
of I, is its asymmetry, which is qualitatively
that observed experimentally at very high pres-
sure. But before comparison with experiment is
made (cf. next () I, must be augmented by an
inclusion of the velocity broadening distribution.

Next we discuss the statistical distribution
for the example of resonance broadening. Here
we are forced to limit our considerations to the
broadening effects at very small pressures (cf.
$5) where only two atoms may be supposed to
interact at any time. By more detailed calcula-
tions than those which will be presented in this
paper it can be shown that the resulting sta-
tistical distribution, derived on the condition of
additivity of the interactions, is of the dispersion
type. The half-width of this distribution can be
determined by the following simple analysis.

According to (5.11), v=+B/R' if v is meas-
ured from vp as origin. Any atom is equally likely
to produce a blue or a red shift. Hence we divide
all perturbers into two equal groups, one pro-
ducing blue, the other red shifts. In a volume
2/n& there will be on the average one atom of
group I. Let us call this volume Vp. Thus

(7)

This is also normalized. For v»Av«, (7) takes
the form b.v«/2s. vs. Comparing this with (6) we
find

~v « =(4~'/3)Bn, . (8)

Upon inserting the value of B from (5.11) it is
thus found that

b v« —(epfn/6mvp)na. (9)

measurements for large, v, and then obtaining d,v«by
finding the coefficient of v', guided by (7). This is pre-
cisely the process which we are here employing to determine
dv«.

It is interesting to observe that this expression
is identical, except for a factor 6/2s, with formula
(7.10). The latter has been derived on the basis
of impact theory with the- use of the optical
diameter p. The present deduction shows that
the use of optical diameters is entirely super-
fluous, and that the real meaning of (9), or
(7.10), regards the statistical distribution of
frequencies. This may offer an explanation of
the fact that the values of p calculated by
numerous investigators from resonance broaden-
ing of spectral lines diverge widely. Our con-
clusion is that they have very little significance,
and that the use of optical collision diameters in
connection with resonance broadening should be
discouraged.

Formula (9) does not include what we have
termed velocity broadening. This is probably
small compared to the width given by (9). At
any rate (9) should be regarded as the minimum
breadth of the line due to the effect of resonance.

The literature contains numerous statements
about "coupling breadths. " Logically, this can-
not be separated from the effects expressed by
(9). It arises when the presence of numerous
atoms is taken into proper consideration, as was
pointed out in $5. The exact calculation then
becomes impossible, but Weisskopf2P has shown
on the basis of simple classical considerations
that deviations from (9) are negligible for
sufficiently large values of (vp —v), that is for
those portions of the distribution curve from
which half-widths have been experimentally
derived.
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$9. AsYMMETRIEs AND SHIFTs

In the present $ we shall limit ourselves for
the most part to examples of broadening by
foreign gases, where asymmetries and shifts are
most pronounced. There are a few instances of
strongly asymmetrical broadening and of shifts
due to pressures of the same gas (cf. below); but
in general, lines broadened by atoms of the same
kind are symmetrical, at least sufficiently far
from the center of absorption, as the discussion
above has shown. Let us first review some of the
experimental features of asymmetrically broad-
ened lines. The existence of pressure shifts of
spectral lines, mostly towards the red, has been
known for many years. "Quantitative study of
the intensity distribution throughout an ab-
sorption line broadened by a considerable pres-
sure of a foreign gas seems to have been first
made by Fuchtbauer and Hoffmann" for the
blue Cs lines. Using Nz gas pressures up to
2360 mm they obtained the true line contours
by the method of photographic photometry.
The asymmetrical nature of the broadened lines
is clearly indicated by their photometer curves,
the decrease of absorption being less rapid on
the red side of the maximum.

Detailed study of the shifts and asymmetries
produced in the Hg 2537A line by pressures up
to 50 atmospheres of six different foreign gases
has been made by Fuchtbauer, Joos and Dinkel-
acker. " Their finding that over this entire
pressure range the line half-widths are directly
proportional to the relative density of the
foreign gas had already been mentioned ($7).
The shift of the maximum of absorption, towards
the red for every gas, also varies linearly with the
density of the perturbing gas. Fig. 7 reproduces
F. J. and D. 's figure giving the measured shifts
plotted against relative density. H&, although
producing almost the greatest half-width, effects
the smallest shift, the line contour having but
very little asymmetry to the blue. The contours
of the N2 and A-broadened lines are markedly
asymmetrical to the red, and these are just the
gases producing the largest shift of the max'imum
of absorption. The values of the half-widths and

—0,4
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FIG. 7. Shifts of the Hg 2537A line ties. relative density
of perturbing gases. (After Fuchtbauer, Joos and Dinkel-
acker. )

TABLE II. Half-zeidths hI'1 and shifts Ar of Kg, Na and E
resonance lines per unit relatioe density of perturbing gas
(sec. I&(10').

LINE

Hg 2537

Ci

Na 5890

K 7665
K 7699
K 4044
K 4047

FOREIGN GAS AI11/d

A 9.66
Nz 8.26
Oz 7.86
A 17
Nz 11.7
Nz 13.2
Nz 132
Nz 33
Nz 33

3.73
3.73
3.69
6
5.2
6.2
6.55

16.5
19

RATIO

2.6
2.2
2.13
2.84
2.25
2.13
2.0
2.0
1.75

shifts of the Hg line per unit relative density of
these several foreign gases are assembled in
Table II.

Similar measurements of the effects of foreign
gases (A, Ns and Hs) on the D lines of Na have
been made by Margenau and Watson. "Foreign
gas pressures up to 17 atmospheres were used,
the Na vapor pressure being kept so low as to
make resonance broadening negligible. The line
contours reveal (1) the red shift of the absorption
maximum as well as the half-widths varying
linearly with the density of the perturbing gas,
(2) marked asymmetries, most pronounced near
the base of the line, and to the red for A and Ns,
but slightly to the blue for H&, (3) both D lines

showing approximately the same broadening and

"Cf. W, J. Humphreys and Mohler, Astrophys. J. 3,
114 (1896).

'zC. Fuchtbauer and W. Hoffmann, Physik. Zeits. 14,
l 168 (1913);Ann. d. Physik 43, 96 (1914).

Hg 2537

IC

Na 5890

Coz 13.1
HzO 10.6
Hz 12.36
Hz 195

3.2
2.34
1.97
4,5

4.1
4.5
6.3
4.3
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shift. The D lines are broadened by a given gas
almost twice as strongly (in freq. units) as is the
Hg line. Values of the shifts and half-widths per
unit relative density are listed in Table II.

Pressure effects of Ns up to 30 atmos. pressure
on the K resonance lines have been investigated
by Watson and Margenau. " The lines are
broadened very asymmetrically to the red, the
shifts and half-widths increasing linearly with
the density to about relative density 10. Above
this pressure, however, there is definite indication
of a more rapid than linear increase. The initial
rates of shift and broadening are given in Table
II. It is interesting to note the approximate
constancy of the ratio of half-width to shift, the
ratio being slightly larger than 2 for most
perturbing gases. The significance of this ratio
will be considered below. A discussion of the
details of the pressure broadening of the higher
members of the principal series of the alkalis is
to be found in $10.

Minkowski" has investigated the intensity
distribution in the D lines broadened by Hs, He,
Ne, N&, A and several hydrocarbon gases, all at
pressures below 200 mm. The method of long
absorption path length, giving complete opacity
for the centers of the lines, was used in order to
avoid modifications due to the Doppler e6ect
(cf. )1}.Therefore the entire line contour was
not obtained. The asymmetrical character of
the intensity distribution in the broadened lines
was determined, however, with Hs and He
producing slight asymmetry to the violet and A
and the hydrocarbons the greatest red asym-
metry.

By assembling measurements on the intensity
distribution on both sides of the D lines broad-
ened by various pressures of A up to about 100
mm from a large number of spectrograms
Minkowski" has recently shown that the in-

tensity decrease on the long wave-length side of
the lines is proportional to (vs —v) & while on the
short wave-length side it is approximately
proportional to (v —vo) '.

These experimental facts can be understood
rather simply in terms of the theoretical concepts
developed in the preceding sections. Let us first

"R.Minkowski, Zeits. f. Physik 55, 16 (1929).
~~ R. Minkowski, Zeits. f. Physik 93, 731 (1935).

consider the role of the statistical distribution
I.(v), given by (8.2). Its half-width, as was
noted, is 1.85m)'=25 ~.b ~

nP. Now for the Hg line
2537, ~b~ is about 1.5X10 "cm' sec. '. Hence,
at atmospheric pressure, the half-width of I, is

2.5X10' sec. '. But the half-width measured

by Fiichtbauer and his collaborators" is 8.26
X10 sec. '. It is thus seen that the statistical
distribution contributes at this pressure only a
very small portion of the broadening, which is
therefore almost entirely due to the velocity egect.
Indeed if we assume the entire width to be given

by (7.8) which describes essentially this eR'ect,

we find for h~q the value =8X10' sec. ', and
this is in agreement with the experimental one.
(This good agreement is probably accidental!}

Since the velocity breadth increases with n&

the line width should be proportional to the
relative density of the perturbing gas as long as
the velocity breadth is the predominant one.
However, the statistical width grows with nP,
so that a point will be reached at which the two
are equal. As we pass from this point to still
higher relative densities a curvature in the graph
of Av~ vs. n~ should set in indicating a change to
the statistical nP-law. This transition occurs
when

6v) = m.X~

where we may regard d v~ as given by (7.8), or
else take it directly from experiment. For the
Hg line this condition is realized for a relative
density of about 50. Measurements have not
been carried beyond such pressures; it is there-
fore understandable that deviations from the
linear law have not been observed for the Hg
line. The K resonance lines present a more
favorable case for the detection of the departure,
as will be shown below in another connection
(cf. Table III). Here the departure has been
observed'~ at relative densities around 15.

Before proceeding to details, let us give some
attention to the true intensity distribution
within the line. If we knew the exact velocity
broadening distribution, Ii, we could find I(v)
by compounding I,(v), as given by (8.2), with I'
in accordance with (6.6}. Two cases may here
be distinguished.

First, suppose the pressure of the foreign gas
to be low, so that s.) '(&Ave. It is then the velocity
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The value of this integral for two limiting cases
can be determined at once. If.v'»h»mX2, that
is, for the extreme blue wing of the spectral line,
I(v') varies nearly as (v') ', i.e. it behaves like
the dispersion curve. On the other hand, if
—v'&)6, (2) takes on the features of I, because
I, falls off less rapidly than the dispersion curve.
But the behavior of I, on the extreme red side of
the line is given by (v') &. Experimental veri-
fication of these relations by Minkowski has
a1ready been noted.

Formula (2), if calculated graphically, reveals
in general the features of a simpler expression
derived by Lenz" by carrying out the Fourier
analysis 2n extenso.

Next we proceed to the case where ~)2~6,vq.

The characteristics of the true distribution are
now chieRy those of I„and the exact form of I
is no longer so important. For the sake of
simplicity let us assume that Ii scrambles the
frequencies uniformly within a range h. One can
then show" that

(3)

where

v' —~/2 v' ga/2
2

4(x)=—, e "d3.
p

This expression is plotted in Fig. 6, curve b.
An exact comparison of this curve with experi-
mental line contours has not yet been made,
but it shows in a qualitative way most of the

broadening distribution which impresses its
features predominantly upon the line. But this
distribution is given with reasonable accuracy
by the impact theories; we know that it is
approximately a dispersion function whose half-
width is given by (7.8). Because this is not now
the complete half-width (although very nearly
so) we will call it h. On these premises the true
intensity distribution will be"

I(v') = const.
I.(v)dv

~ (2)
(v' —v) '+ (6/2) '

experimental features. There is now, of course,
an appreciable intensity at v values on the blue
side of vp. We observe that the position of the
maximum is different from the maximum of I,.

A word of caution is necessary in this connec-
tion. The condition xX2=hv~ is usually verified
only at pressures around 20 atmos. or more. But
at such high densities I, is already strongly in
error on the red side. We must therefore expect
(4) to be inaccurate on the red wing of the line.

Fortunately, however, as Kuhn" has pointed
out and as the figure shows, the effect of I' in
this region is unimportant, and I agrees practi-
cally with I,. Hence conclusions may be drawn
as to the correct form of the interaction law
(4.4) by observing the intensities in the extreme
red wing of the line (cf. reference 64). This is
true also for the former case of low pressures.
On the basis of such considerations Minkowski"
has determined the value of ~bj in (4.4) to be
about 6X10 "cm' sec. '.

The position of the intensity maximum in
asymmetrical distributions is now to be investi-
gated. Its displacement with respect to vp is
known as the shift of the line. Some theories
have identified this shift with the mean, (v —vp),

of the frequency distributions. This mean is
easily calculated; it is always strictly propor-
tional to n~ and depends in a sensitive manner
upon the distance of closest approach. Also, it
turns out that the mean of the true distribution
is equal to the mean of I,(v). In reference 27
Margenau has calculated approximate distances
of closest approach in this manner, by identifying
the measured shift with (v —vp). This procedure
has been rightly criticized by Kuhnss who points
out that the measured shift, which is the dis-
placement of the maximum and not the mean,
is largely independent of the distance of closest
approach.

A theoretical estimate of the variation of the
shift with n& can be obtained easily. '2 We suppose
again that the velocity effect diffuses every
ordinate of I,(v) in a uniform manner. The true
distribution is then given by (3). On setting its
derivative with respect to v' equal to 0 we have
for the shift, v, the relation

I,(v +6/2) =I,(v —b,/2), (5)

~' Again we measure frequencies from vp as origin. "A more detailed discussion is found in reference 64.
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6 being the "velocity breadth. " According to
this equation, v can be determined by the
simple graphical procedure of finding where the
I, curve (Fig. 6a) has a horizontal width b, .
The mean of the two abscissae defining this
width is v„.

Now suppose that h»s.X', which is the case
up to pressures of several atmos. Then, since I,
rises very rapidly at v=0, the abscissa bounding
the range of width 6 on the left lies practically
at v =0; the limit on the right is about b„and

v =d, /2. (6)

This is true regardless of the precise behavior of
I,(v) for large v.

We see that v in this case bears very little
relation to the maximum of I,. Moreover, since
6 varies linearly with ni, v also does because of
(6). At low pressures the shift of the observed
maximum is thus entirely occasioned by the
increasing velocity width (here equivalent to
the usual impact width) of the line. Relation (6)
is well substantiated by the values in Table II.
The quotient Avi/v is somewhat greater than
2 because b, vi is a little larger. than 6, being
compounded from velocity breadth and sta-
tistical breadth. It is to be noted that the gases
COs, HsO, Hs, if used as broadening agents, do
not follow this rule. This is because their inter-
actions with a radiating atom are not adequately
described by the theory of $4, in the case of COs
and HsO because of the complexity and polarity
of the molecules, in the case of Hs chiefly because
of the neglect of R and exchange forces in (4.4).

In arriving at the relation (6) we have made
use of the fact that I.(v) rises very steeply at
v = vs And has no intensities for v& vs. This is of
course only an approximation; it ceases to be
valid for lines which involve higher atomic states.
In Fig. 1 we have drawn schematically the curves
si and es. In deriving I, we have assumed the
curves to follow the dotted lines, whereas really
each has a minimum. Thus we have considered
only transitions like b and c, which involve less
energy than a, and excluded transitions like d
which involve more. If the upper minimum lies
sufficiently near the origin the region of phase
space in which transitions like d are possible is
small, and their occurrence may be neglected.
The fact that (6) is approximately valid for

resonance lines shows that this is the case. But
if the upper state of the line is a higher excited
state, es may have no minimum at all (in which
case there results a blue shift, cf. reference 27)
or, if it has a minimum, this may lie so far from
the origin that transitions of type d cannot be
neglected. Rule (6) will then certainly not be
valid.

If h&(s)', which is true for high pressures,
v„coincides with the maximum of I„andhence
varies with nis. The region in which the linear
law gradually changes into the square law is
again given by 6=m-)'.

An upward curvature in the plot of v es. ni
has been found for the K lines 7665 and 7699A,
perturbed by Ns," not for Hg 2537A under
similar conditions. In the former case departures
became noticeable at relative densities around 15,
in the latter they were still absent at the highest
pressures (relative densities =50). Table III
offers an explanation of these facts. It contains
the values of b, computed from (4;2); of hvar, the
empirical half-width (by which 6 may be re-
placed) for unit relative density; and of ~X'

(cf. 8.2), for the two cases above.

TABLE III.

b
d,vi

Hg-N

1.5X10 "cm' sec. '
8.3)&109 sec. ~

1.5X10' sec. '

K-N

7X10 "cm'sec. '
13&(10'sec. '

7&&10' sec. '

The values of b are quite uncertain, but their
ratio should not be strongly in error. The table
shows that b, vi, which varies as ni, and m)'

which varies as nis, become equal at relative
density 19 for K—Ns, at relative density 55 for
Hg —Ng. The experimental results are therefore
not surprising.

At low pressures the shift of the maximum
should not be independent of the temperature,
as is usually supposed, for the velocity breadth
varies with the temperature. This point has not
been tested experimentally.

At very high pressures (s-)'»Avi) the asym-
metries of the true distribution are practically
those of I,. But here I, is not correctly given
by (8.2). It becomes necessary to consider the
nature of the interaction curves (Franck-Condon
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curves) in greater detail. The calculation of I, is
then in general difficult; but a simplified (one-
dimensional) consideration~4 shows qualitative
agreement between the experimental types of
asymmetry and the expected tendency of the
Franck-Condon curves.

Several striking examples of very much
broadened, asymmetrical resonance lines in
emission have been reported. Hopfield" has
observed the He resonance line at 585A to be
broadened asymmetrically to the high fre-
quency side for some 500 cm '. KVeizel~' has
explained this by showing that in the upper state
of the resonance line the electronic energy always
increases on the approach of another He atom.
The average translational energy of the excited
He atoms in the arc is probably high enough so
that the resonance transition may take place
from points well upon the repulsion 'II„and 'Z„
potential energy curves, thus producing the
large broadening of the resonance line. This
broadening is then experimental evidence for the
existence of these two predicted terms of the Hes
molecule.

Oldenberg'" has produced asymmetrical broad-
ening of the Hg 2537A line by Hg and by
pressures of A and Kr. The resonance level of
the Hg atom is shifted by the quasi-binding
with the foreign gas atom, while the very large
broadenings observed by Oldenberg in the
Quorescence spectrum of these Hg —A and
Hg —Kr mixtures are evidence of the inter-
change between atomic kinetic energy and radia-
tion (cf. $6 above). Strong evidence for the
existence of fairly stable Cs-polarization mole-
cules is to be found in the experiments of H.
Kuhn" whose spectrograms of the absorption by
Cs vapor at fairly high pressures show weak
bands accompanying the very broad, asym-
metrical Cs atomic lines.

$10. SHIFTs QF THE HIGHER SERIEs MEMBERs
OF THE ALKALIS

To predict in detail the behavior of the higher
members of the principal series under pressures

"H. Margenau, Phys, Rev. 44, 931 (1933)."J.J. Hopfield, Astrophys. J. 72, 133 (1930).
"W. Weizel, Phys. Rev. 38, 642 (1931)."' O. Oldenberg, Zeits. f. Physik 4I, 184 (1928); 51, 605

(1928); 55, 1 (1929).
"'H. Kuhn, Zeits. f. Physik 76, 782 (1932).

of foreign gases requires a much more precise
knowledge of the interaction curve es than can
at present be obtained. One can draw one
qualitative inference from London's formula
(4.2), which of course is still valid, for large R.
If k refers to one of the higher I' states, say the
second or third, transitions from this state to
near lying Sand D states have large probabilities,
and hence large f values. Hence there will be
terms in the sum of (4.2) for which fbi, is large
and which have at the same time small de-
nominators since EI, —E~ is small. For this
reason we may expect larger shifts for higher
series members. But on the whole no regularities
regarding shifts or half-widths can be predicted.

The contours of the second and third doublets
of the principal series of caesium broadened by a
number of foreign gases at pressures up to
4700 mm have been studied in considerable detail
by Fuchtbauer and Gossler. " Gossler and
Kundt" have extended this investigation to the
fourth member of the Cs series. The second
doublet in the principal series of potassium
broadened by Ns and Hs has been examined by
H. Petermann, "while Watson and Margenau"
have measured the contours of both the second
and third doublets of K broadened by N2

through a greater range of pressures. All of these
pressure-broadened lines show the expected
larger shifts and half-widths. In addition inter-
esting variations either in the direction or the
amount of the asymmetry of the line contour are
displayed.

Table IV, summarizing the findings for the Cs
lines, is taken from the paper by Gossler and
Kundt. " The columns headed Asym. give the
ratio of the area under the line contour to the
red of the absorption maximum to that to
the violet of the maximum. DX is the shift of the
maximum of absorption in A units, while Avl is
the half-width in sec. ' reduced to T=400 abs.
and 760 mm pressure. For all the foreign gases
the breadth of the lines increases as one proceeds
to higher members of the series, but the rate of
increase would indicate a constant value of the
pressure broadening for still higher series mem-

'9 C. Fuchtbauer and F. Gossler, Zeits. f. Physik 8'I, 89
(1933).

F. Gossler and H. E. Kundt, Zeitk. f. Physik 89, 63
(1934)."H. Petermnan, Diss. Rostock, 1930.
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FIG. 8. Contour of the Cs 4555A line (second member of
principal series) perturbed by N& (pressure 3984 mm). Note
red asymmetry. (After Fiichtbauer and Gossler. )

TABLE IV. Asymmetry, shift and half-uIidth for the second,
third and fourth members of the principal series of caesium
broadened by He, Ne, A and N3.

Cs LINR AsvM. A) (A)

HELIUM

4555A 0.84 0.0804
violet violet

3876A 0.47 0.269
very violet

strong viol.

3612A 0.64 0.375
strong viol. violet

ARGON

4555A 1.80 0.109
very red

strong red

3876A 1.59 0.319
strong red red

3612A 1.26 0.470
red red

(11) „) As&M. A) (A) (10 ")Avt X Av) X

NEON

3.55 1.03 0.0232 1.31
slight red red

7.96 0.54 0.0502 2.53
strong viol. violet

8.27 0.56 0.070 2.62
strong viol. violet

NITROGEN

3.52 1.30 0.120 2.49
red red

7.42 0.56 0.0745 4.24
strong viol. red

8.81 0.60 0.0515 7.41
strong viol. violet

bers. With the exception of argon all the gases
used produce pressure shifts changing in direction
from red to violet in passing to the higher
series members. Also the lessened rate of in-
crease of the shift in going from the third to
the fourth series member is a harbinger of a
constant value for the shift for the highest
members of the series, The asymmetry of the
broadened lines, which initially for all gases is
changing from red to violet, seems also to be
tending towards a constant value for the higher
series members. It is of interest that for one case,
that of the 38"76A line broadened by N&, a red

6 5 4 3 2 I 0 I 2 3'A~

F1G. 9. Contour of the Cs 3876A line (third member of
principal series) perturbed by N2 (pressure 4196 mm).
Note strong violet asymmetry. (After Fiichtbauer and
Gossler. )

shift of the maximum of absorption is accom-
panied by a violet asymmetry. According to our
theoretical discussion this seemingly anomalous
pressure effect is quite understandable. Figs. 8
and 9 illustrate the change of asymmetry from
red {Cs4555A) to violet {Cs3876A) for nitrogen
pressure broadening.

The pressure effects of foreign gases for the Cs
resonance lines have not been investigated. For
the E series, however, Watson and Margenau"
have observed the considerable increase in shift
and half-width in passing from the resonance
lines to the second and third members of the
series. Table V summarizes these observations
for the lowest densities. There is a slight differ-
ence in the size of the shifts for the 'IIl and the

H3/3 components, but the widths of the two
components are in each case about equal. Com-
paring the effect of N3 and Hs on the second
doublets only, the broadening is according to
Fuchtbauer about 25 percent greater for the Cs
lines than for the X lines. For both of these
doublets Petermann found the short wave-length
component to be broadened by H3 about 20
percent more than is the long wave-length com-
ponent. These variations of pressure effects as
between the two components of the doublets, as

TABLE V. Summary of pressure shifts Av and broadenings
hI l per unit relative density for potassium doublets.

7665 7699 4044 4047 3446 3447

Au/d(cm ') 0.206 0.219 0.55 0,64 0.49 0.45
AI 1/d(cm ') 0.44 0.44 1.10 1.10
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well as the indicated and predicted departures of
the shifts for high pressures from the usual
linear increase with density of foreign gas de-
serve further investigation.

As we pass to the highest members of the
principal series in the alkalis theory again affords
guidance. Fermi" has calculated the shifts to
be expected for such lines in an interesting
manner and correlated them with the collision
cross sections of slow electrons in the respective
gases. We now present Fermi's theory.

When the valence electron of an alkali atom
is excited to a state with principal quantum
number =30 the radius of its Bohr orbit is 500A;
it encloses a sphere which, at atmospheric
pressure, contains about 13,000 foreign atoms.
Moreover, the valence electron moves through
these atoms rather slowly, its de Broglie wave-
length being around 100A. Its motion resembles
'therefore very much the motion of a slow free
electron through a gas.

A change from the normal energy of the
valence electron can be ascribed to two causes:

(1.}The atom core polarizes all foreign atoms
within the orbit of the valence electron, and this
eRect diminishes the total energy of the system.

(2) The valence electron, in the aggregate of
its encounters with the foreign atoms, either
gains or loses energy. Whether the system gains
or loses energy depends on the charge distribu-
tion of the foreign atoms. These two effects will

now be discussed in order.
(1) Let n be the atomic polarizability of the

perturbers, and F; the field at the position of the
ith perturber due to the core of the alkali atom.
The change in energy will then be

n
he= —g-F .

i2

But I"; is simply e/R, hence

ne 1

2 'R4

Because the sum converges rapidly for large R
it may be extended over all perturbers instead
of limiting it to the atoms inside the electron

s' E. Fermi, Nuovo cim. 11, 157 (1934).

orbit. Thus there corresponds a value of he to
every configuration of atoms, i.e., to every set of
R;. The value of he corresponding to the intensity
maximum in the line (if the present effect alone
were responsible for the broadening) will be that
associated with the most probable configuration,
which is a uniform distribution of perturbers.
When it prevails, every volume of size 1/n& con-
tains one perturber. Let us assume them to be
arranged in spherical shells. The first perturber
will then be a distance R& away from the origin,
where

(4~/3)Ris ——1/nl,

and from there on outward we consider them
spread uniformly and continuously over all
volume with density n&. This procedure is not
rigorous, but gives an answer which is nearly
right. We have on the basis of these assumptions

1 R'dR 4m ni
Q —=4+ni
' R4 ~& R4

=47rni(4&ni/3) its 20ni4/s (2)

in view of the preceding equation. Combining
(1) and (2) we obtain

5e = —10e'nni4~s,

so that the frequency shift due to this cause is

6vi = —10(es/h)nni" s.

For convenience we may replace n by the dielec-
tric constant D according to

D = 1+4m-nin.

The result is then

6s i= —2.8)&10'(D—1)ni1. (3)

(2) Next we consider the change in the energy
which occurs as a result of the impacts of the
valence electron with the foreign atoms. The
valence electron moves in a potential composed of
two parts: (1) U, the potential due to its nucleus,
(2) P V;, the potential due to all the foreign

f

atoms. The spatial extent of V; (potential due to
the ith perturber) is small compared to the elec-
tron's de Broglie wave-length. The Schrodinger
equation is
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p'P+(8s'm/h') (e—U- Q V;}f=0. (4)

Let us introduce a function p, defined as the
space average of P over a domain whose linear
dimensions are small compared to the de Broglie
wave-length, but sufficiently large to contain
numerous per turbers. U may be considered
constant in such a range. This function satisfies
an equation obtained from (4) by carrying out
the space integration over the above domain:

8~sm 8&sm~
v'4+ {.—U}y— P V,y=0. (5)

h' h'

We turn to the evaluation of the last term of this
equation. Consider a coordinate system whose
origin is fixed at the center of the ith perturber.
In this system, V;= V;(r) (provided the charge
distribution of a perturbing molecule has spher-
ical symmetry, as we shall suppose). The varia-
tion in V; is large within a small range about
r=O, so large in fact that e —U is negligible
compared to V;. In the neighborhood of r=0,
therefore,

ps'=(8 2m/h') V;p,

Fio. 10. Graph of I, Eq. (6).

change 8 which occurs as a result of V; is related
to a by

a/) =S/2~, (9)

where X is the de Broglie wave-length.
From (6) we have

8m'm 8s'm
Ver =47r Vurdr =4s u"rdr

h2 h'

=4s.
~

u'r —u ),"=—4s-af.

The last step follows if we remember that u is
given by (8) at the upper limit, and vanishes for
r=O because P=u/r has to remain finite. Since
there are ni perturbers per unit volume,

or if we put &=u(r)/r,

u"=(8 'm/h') V;u. (6)

8s.sm

Q VII' = -4s nial'.
h'

u =ci+csr. (7)

But far away from a perturber where the varia-
tion in f is due only to U and therefore small,
P=P, and u=rP. Ke must therefore identify
the coefficient cs in (7) with p which we may
here regard as constant. For ci we may write
aP so that {7)becomes

u= (a+r) P. (8)

Fig. 10 shows the meaning of the length a: it is
the distance through which the electron wave is
displaced with respect to the origin by the
presence of V;. If no perturbers were present
the u-function would be the straight" line A.
V; causes it to be represented by B. The Phase

"Straight because the de Broglie wave-length is large
compared to the dimensions of the figure.

Far away from the origin, where V;=0, the
solution of (6) is

On inserting this in Eq. (5) there results

8s-'m h'ani
q'P+ e+ —U /=0. (10)

h' 2s-m

This, however, is simply Schrodinger's equation
for the electron in the potential of the atom core,
but with e+h'ani/2s-m in place of e. The eigen-
values of (10) are the eigenvalues in the absence
of the foreign atoms, diminished by h'an&/2s. m.
Hence

d, e = —h'ant/2~m,

b, vs ———hani/2s. m.

The constant a is related to the collision cross
section of slow electrons in the foreign gas. If
the wave-length X of the electrons is large com-
pared to the obstacle with which they collide,
the collision cross section is given by '

'4 G. Wentzel, Handblck der 2'kysik, Vol. 24, 1 (1933),
p. 711.
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o = ()I,'/s. ) sin' 8.

Now 8 is small and given by (9). Therefore
D

Xl/ .DK ' '-
4

o =4m-a'. (12) 02
Ne

The quantity a may be either positive or nega-
tive; its sign is not given by (12).But Reinsberg '
shows that the shift given by (11) is toward the
red if the collision cross section plotted against
electron velocities, has a minimum for low
velocities; otherwise it is toward the blue.

Fermi finally assumes the two shifts, Dv& and
hvs, to be additive. Hence the result, on com-
bining (3) and (11) and using numerical con-
stants, is

vs —v = —2.8&&10~(D—1)ni&&0.33o&ni. (13)

Fermi's theory is essentially a statistical one
and does not include the broadening effect due to
atomic motions. But since the shifts represented
by (13) are very large indeed they are not likely
to be modified appreciably by the inclusion of
this effect.

Experimental determinations of the pressure
shifts of the highest members of the principal
series of the alkalis have been made by Amaldi
and Segre ' (Na and K perturbed by H&, N&, He,
A), Fiichtbauer, Schulz and Brandt" (Na and K
perturbed by Ns, He, Ne, A), Fiichtbauer and
Gossler (Cs perturbed by Hg and Xe), and
Fuchtbauer and Reimers" (Cs perturbed by Kr).
The first two of these papers show - that the
amount of the shift of the lines is independent
of the kind of absorbing alkali atoms, depending
only on the nature of the perturbing foreign gas,
as the preceding theory shows. The shifts are
constant in each case for all lines after about the
fifteenth in the series, again in agreement with
theory. Reduced to O'C and 1 atmos. they are
about 9.8 cm ' red for A, 0.2 cm ' violet for Ne
and 5.8 cm ' violet for He. b, vs as computed from
the observed shifts at the series end and reduced
to O'C and 760 mm is 9.82 cm ' violet for Hg,

"C.Reinsberg, Zeits. f. Physik 93, 416 (1935).
E. Amaldi and E. Segrh, Nature 133, 141 (1934),

Nuovo cim. 11, 145 (1934).
c' C. Fiichtbauer, P. Schulz and A. F. Brandt, Zeits. f.

Physik 90, 403 (1934)."C.Fiichtbauer and F. Gossler, Zeits. f. Physik 93, 648
(1935).

'c C. Fuchtbauer and H. J.Reimers, Zeits. f. Physik 95, 1
(1935).
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Fio, 11.Shifts of the Cs principal series lines perturbed by
He, Ne, and A. (After Fiichtbauer, Schulz and Brandt. )

'c C. Fiichtbauer, Physik. Zeits. 35, 975 (1934).

31.6 cm ' red for Xe, 17.20 cm i red for Kr,
8.5 cm—' violet for Ns, and 5.47 cm ' red for Hs.

Fig. 11, giving the shifts of all the Cs series
lines when perturbed by He, Ne and A at O'C
and 1 atmos. , is taken from the report by
Fiichtbauer, Schulz and Brandt. "The values for
the second, third and fourth series members are
taken from the earlier measurements of Fiicht-
bauer and his co-workers, whereas those from
the ninth member to the end are their values for
Na and K which should be quite the same for Cs.
To be noted are the change in sign of the shift
at the first lines for He and Ne, the maxima
formed by the He and Ne curves and the lack
of a maximum for the A curve. These higher
series lines are of course broadened and have an
asymmetrical intensity distribution. The con-
stant pressure shift for the lines near the limit
of these series is accompanied by a constant
value for the line breadths. Those gases pro-
ducing the largest shifts cause the greatest half-
breadths, the but little shifted lines for the case
of Ne being therefore the sharpest. Fucht-
bauer" gives a curve representing the varia-
tions in the half-widths of Cs and Na lines up to
3S—22P broadened by He which we reproduce
in Fig. 12. The large maximum at the fifth
member of the series and the approach to a
constant end value are interesting features of
this curve. All of the higher series members after
the fifth retain the same asymmetrical character
to the series end; slightly asymmetrical to the
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Fto. 12. Half-widths, reduced to O'C and 1 atmos. , of
members of the principal series of Cs (lines 2 to 6) and Na
(lines 9 to 19) perturbed by helium. (After Fuchtbauer. )

violet for the He broadening, strongly asym-
metrical to the red for A broadening.

In Table VI are collected the values of the
effective cross sections for the several foreign

TABLE VI.

Effective

cross sections of gases for electrons of
very lope velocity.

FRoM EQ.
GAS (1013) RRF.

He 15.5 cm'/cm' 87
Ne 0.23 87
A 252 87
Kr 121,3 89
Xe 412 88
Hg 37,2 88
Np ~5 87
H2 123 86

BY ELEcTRIcAL
EXF.

15.3 cm-'/cm'

26.0
20
58

250-300
10
24.4

ELEC VELO-
crrY RrF.

0.03 volt 91

0.03 volt 91
v &0.6 volt 93

0.2 volt 93
v &1 volt 92

91
91

PI H. B.Wahlin, Phys. Rev. 37, 260 (1931).
PP R. B. Brode, Proc. Roy. Soc. A105, 397 (1925).
93C. Ramsauer and R. Kollath, Ann. d. Physik 3, 536

(1929).

gases used in these pressure-broadening experi-
ments, calculated from the constant pressure
shifts for the lines near the end of the alkali
series with the aid of Eqs. (3) and (11).They are
the effective cross sections for all the atoms in a
cm' at 1 mm pressure, obtained by multiplying
the collision cross sections o for the single atoms
of the perturbing gas by n1/760=3. 553X10"/
cm'. In these calculations the value of I4v1,

Eq. (3), is computed from the known dielectric
constant or polarizability of the perturbing gas
and the pressure and temperature holding foJ
the spectrogram in question. This "red" con-
tribution is then subtracted from the observed
shift in order to obtain d, v& which is usually much
the larger of the two parts.

The comparison of the spectroscopic and elec-
trical values in Table VI needs some explanation.
For Ar, Kr and Xe only, of the gases used, the
Ramsauer cross section for small electron veloci-
ties has a minimum, so that the hvs of Eq. (11)
should cause a red shift according to Reinsberg. '
These are just the perturbing gases that produce
red shifts, all the others are to the violet. For
Xe, for example, the Ramsauer curve shows for
small electron velocities a very steep rise. An
electrical measurement with electrons of say 0,03
volt, which is about the orbital velocity of the
valence electron for the term 20P, would prob-
ably yield about the spectroscopic value 412
cm'/cm'. The same explanation holds for the
discrepancy between the two values for Kr.
The good agreement between the values of the
effective cross sections for He and for A by the
two methods is apparently due to the exception-
ally low electron velocities used by Kahlin.
This optical method yields the first determina-
tion of this quantity for Ne. The value 37.2 for
Hg as compared to the much larger value by
electrical methods is interesting, indicating that
the last part of the Ramsauer curve (for low
electron velocities) may have a maximum after
which it sinks to the value 37 for the very lowest
velocities. Hence even though this curve has a
minimum for larger electron velocities, the
pressure shift produced by Hg is to the violet.
A similar explanation may be used for the rather
large difference between the two values for Ns.
For N2, as a matter of fact, a falling of the
Ramsauer curve in the range of lowest electron
velocities has been noted.




