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I. RANDOM MATRICES AND CHAOS

A. Introduction

This Colloquium presents the application of random
matrices to nuclear spectroscopy. We discuss the origin
of random-matrix theory �RMT�, some of its predictions,
and its relation to classical chaos. We show that the pre-
dictions of RMT often agree well with spectroscopic
data in nuclei. In the main part of the paper, we address
the question: How can this success of RMT be recon-

ciled with our knowledge of the dynamical behavior of
nuclei as embodied in the nuclear shell model? Al-
though actually formulated for nuclei, our arguments
apply likewise in modified form to other Fermi systems
like atoms and molecules.

Near the ground state, the spectra of self-bound Fermi
systems are essentially discrete. As an example, Fig. 1
shows the measured spectrum of the nucleus 19O. Up to
the threshold for decay into a neutron �n� and 18O �the
neutron threshold� at an excitation energy of
3.957 MeV, the levels shown decay only by gamma emis-
sion; the ground state is unstable against beta decay. The
long lifetimes of these decay modes render the levels
virtually discrete. Above the neutron threshold, the lev-
els acquire finite particle decay widths �which typically
are much larger than those for beta and gamma decay�
and are also seen as resonances in cross sections �similar
to the ones in the reaction n+ 18O�. The levels in Fig. 1
carry quantum numbers which reflect symmetries of the
nuclear Hamiltonian: Total spin J corresponds to rota-
tional invariance, total isospin T to proton-neutron sym-
metry, and parity P to mirror reflection symmetry. In
heavy nuclei, because of the Coulomb interaction be-
tween protons the isospin is no longer a good quantum
number. In its general appearance, Fig. 1 is representa-
tive not only for nuclei but also for atoms, molecules,
and atomic clusters.

B. Regular motion

The excitation energies and widths for beta, gamma,
and particle decay of the levels found experimentally
can often be described in terms of simple integrable dy-
namical models. In analogy to classical mechanics, we
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then speak of regular motion. A striking example is fur-
nished by the existence of rotational bands. These are
characterized by a spin-parity JP sequence 0+,2+ ,4+ , . . .
and excitation energies proportional to J�J+1�. They
correspond to a rotation of the entire �nonspherical�
nucleus about some axis. Figure 2 shows two such bands
in the nucleus 174Hf. Another example for regular mo-
tion is provided by the independent-particle model:
nucleons move independently in the mean field of the
nucleus. This model corresponds to the most elementary
version of the nuclear shell model and accounts for the
existence of “magic numbers” for neutrons and protons
�i.e., numbers where a major shell is filled and where the
nuclear binding energy attains maxima� as well as for
spins and parities of ground states of nuclei differing by
one unit in proton or neutron number from closed-shell
nuclei. We discuss the nuclear shell model in the next
section.

C. Nonregular motion

The emphasis in this paper is on chaotic motion in
nuclei. The previous subsection serves as a reminder
that there is strong evidence for regular motion in nu-
clei, especially in the vicinity of the ground state. We
now turn to the equally strong evidence for chaotic mo-
tion. We first present a semihistorical narrative.

The first evidence for chaotic motion in nuclei came
from spectroscopic data on levels at neutron threshold,
i.e., rather far from the ground state. In general, it is
exceedingly difficult to unambiguously identify the posi-
tions, spins, and parities of such levels. Neutron time-of-
flight spectroscopy offers the unique opportunity to ac-
quire precise spectroscopic information in a range of
excitation energies which is otherwise virtually inacces-
sible. The neutron threshold in medium-mass and heavy
nuclei typically occurs at an excitation energy of
5–7 MeV �and not at �4 MeV as in 19O; see Fig. 1�.
Measuring the total cross section for slow neutrons ver-
sus kinetic energy, one observes resonances. Each of the
resonances corresponds to a nuclear state at an excita-
tion energy of around 5 or 7 MeV. The ground states of
even-even nuclei have spin-parity 0+. Slow neutrons
carry angular momentum 0 and have spin 1/2. For even-
even target nuclei, the states seen, therefore, all have
spin-parity 1/2+. We show here not the earliest but some
of the best data. In the 1970s, the Columbia group mea-
sured time-of-flight spectra of slow neutrons scattered
on a number of heavy nuclei. For each target nucleus,
they observed a sequence of up to 200 1/2+ levels. �That
number was limited by the resolution of the time-of-
flight spectrometer.� Figure 3 shows their data for the
total neutron scattering cross section on 238U versus neu-
tron energy. We see a number of very narrow resonances
�widths typically smaller than 1 eV� with typical spacings

FIG. 1. The spectrum of 19O. From Ajzenberg-Selove, 1987.

FIG. 2. Rotational bands in 174Hf. From Bohr and Mottelson,
1975.
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of 10 eV. The energies of the associated levels were de-
termined with the help of an R-matrix multilevel analy-
sis �Lane and Thomas, 1958�.

Already in the 1930s, similar data �of much inferior
quality� had led Bohr to formulate his compound-
nucleus hypothesis �Bohr, 1936�. Bohr argued that the
existence of narrowly spaced narrow resonances is in-
compatible with independent-particle motion in the
nucleus. Indeed, simple estimates using a central poten-
tial yield single-particle s-wave level spacings around
1 MeV �and not 10 eV as shown in Fig. 3� and s-wave
decay widths for neutron-instable states of around
100 keV �and not �1 eV as shown in Fig. 3�. Bohr ar-
gued that the existence of such narrow resonances could
not be understood without assuming strong interactions
between the incident neutron and the nucleons in the
target. A wooden toy model �shown in Fig. 4� was used
to demonstrate this idea of the compound nucleus. The
billiard balls represent nucleons, the queue indicates the
kinetic energy of the incident neutron, and the trough
simulates the attractive mean field. Since the publication
of Bohr’s 1936 paper and until the discovery of the
nuclear shell model in 1949, the idea of independent-
particle motion in the nucleus was virtually unacceptable
in the nuclear physics community. And as we shall see,
understanding chaos in nuclei is almost synonymous to

reconciling Bohr’s idea of the compound nucleus with
the nuclear shell model.

D. Random matrices

When Wigner �1955� introduced random matrices into
physics, he did not refer explicitly to Bohr �1936�. Nev-
ertheless, we believe that his work was motivated by and
can be seen as the mathematical formulation of the idea
of the compound nucleus. It is noteworthy that the work
started in 1951, two years after the discovery of the shell
model.

How can one deal with a situation where the constitu-
ents of a quantum system strongly interact? Suppose
that we are dealing with a nonintegrable system without

FIG. 3. Total cross section for scattering of neutrons by 238U vs neutron energy. The abscissa spans about 80 eV in each of the four
plots. From Garg et al., 1964.

FIG. 4. Wooden toy model simulating Bohr’s compound
nucleus. Ref.: Nature 137, 351 �1936�.
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remaining symmetries. By that we mean that extant
symmetries of the Hamiltonian like total spin and parity
have been taken into account; the Hamiltonian has
block-diagonal form; the individual blocks are free of
further symmetries. We focus attention on one such
block to which we refer for simplicity as the Hamil-
tonian. Is it possible to make generic statements about
the spectrum and eigenvalues of such a system? Follow-
ing Wigner �1959�, we consider the matrix representa-
tion H�� of the Hamiltonian in Hilbert space. Here
� ,�=1, . . . ,N and N�1 �we let N→� at the end of the
calculation�. Nuclei are time-reversal invariant. There-
fore, we can choose a representation where H�� is real
and symmetric. There are no further symmetries beyond
rotational symmetry and parity. Now comes the decisive
and unusual step: Rather than considering the individual
Hamiltonian of the actual physical system, we study an
entire ensemble of Hamiltonians, all having the same
symmetry. It turns out that while we cannot make ge-
neric statements about the individual Hamiltonian, such
statements are possible about almost all members of the
ensemble.

The ensemble is defined in such a way that it com-
bines generality with the symmetry of H: It consists of
real and symmetric matrices. To avoid a preferred direc-
tion in Hilbert space, it is chosen to be invariant under
those transformations in Hilbert space which preserve
the symmetry of H. These are the orthogonal transfor-
mations. The ensemble is defined in terms of a probabil-
ity density in matrix space. The probability density has
the form

C exp�−
N tr�H2�

�2 � �
���

dH��. �1�

The last factor is the product of the differentials of the
independent matrix elements. This factor is orthogonally
invariant and so is the trace of H2 in the exponent. The
Gaussian factor is introduced because a cutoff is needed
to render the integrals over matrix space convergent.
The ensemble is characterized by a single parameter �,
which has the dimension of energy. This parameter de-
termines the mean level spacing of the ensemble, i.e.,
the mean value of the distance between two neighboring
eigenvalues. We are interested in the fluctuations of the
spacings of neighboring levels around that mean value
and in the correlations between spacings of different
pairs of neighboring levels. These are characterized by
certain local fluctuation measures which are introduced
below. All measures depend on the level spacing ex-
pressed in units of the mean level spacing and are, there-
fore, independent of the parameter � and altogether pa-
rameter free. The factor C is a normalization factor. The
factor N in the exponent �with N the matrix dimension�
guarantees that the spectrum has finite range. Equation
�1� defines the Gaussian orthogonal ensemble �GOE� of
random matrices. Dyson �1962a, 1962b, 1962c� showed
that there are three canonical random-matrix ensembles
defined by symmetry: the GOE, the Gaussian unitary
ensemble �GUE� �for time-reversal noninvariant sys-
tems�, and the Gaussian symplectic ensemble �GSE� �for

systems with half-integer spin which are not rotationally
invariant�. The ensembles GUE, GOE, and GSE carry
the Dyson parameters �=1, 2, and 4, respectively.

While the symmetry of the Hamiltonian and thus the
form of the invariant measure in expression �1� is dic-
tated by quantum mechanics, the choice of the Gaussian
cutoff is arbitrary and dictated by convenience. It has
been shown, however, that an entire class of different
choices �like, for instance, taking the trace of the fourth
power of H in the exponent� yields the same results for
the local fluctuation measures. This important property
is referred to as universality of the ensemble. It guaran-
tees that the local fluctuation measures predicted by the
GOE are generic.

Random-matrix theory �RMT� only predicts ensemble
averages of observables �calculated by integrating the
observable over the ensemble �1��. But experimentally
we deal with a single Hamiltonian, not an ensemble. The
applicability of RMT to a single system is guaranteed by
the property of ergodicity: For almost all members of
the ensemble, the ensemble average of an observable �as
given by RMT� is equal to the running average of that
observable over the spectrum of a single member. Er-
godicity guarantees that the quantitative and parameter-
free predictions of RMT can be meaningfully compared
with experimental data.

E. Fluctuation measures

The two fluctuation measures most frequently em-
ployed in analyzing data are the nearest-neighbor spac-
ing �NNS� distribution and the Dyson-Mehta �Mehta,
2004� or 	3 statistic. Figure 5 gives the NNS distribution
P��s�, i.e., the probability distribution of spacings, versus
s �the actual spacing of two neighboring eigenvalues in
units of their mean spacing� for Dyson’s three canonical
ensembles. The distributions are characterized by level
repulsion at short distances �P��s�
s� for small s� and a
Gaussian falloff for large s. We note that if the system
were integrable, all eigenvalues would carry different
quantum numbers and level repulsion would be absent.
The 	3 statistic measures correlations between eigen-

FIG. 5. The nearest-neighbor spacing distribution P��s� vs s,
the actual spacing in units of the mean level spacing, for the
three canonical ensembles with �=1, 2, and 4 �solid, dashed,
and dotted lines, respectively�. �=2 corresponds to the GOE.
From Guhr et al., 1998.
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value spacings. Let N�E� denote the total number of
levels below energy E. Clearly N�E� is a step function
which increases by one unit as E passes an eigenvalue.
The 	3 statistic measures how well N�E� is on average
approximated by a straight line. The statistic is defined
by

	3�L� =	min
a,b

1

L



E0

E0+L

„N�E�� − aE� − b…2dE��
E0

.

�2�

Minimization with respect to a and b determines the
best straight line. The angular brackets denote an aver-
age over the initial energy E0 and over the ensemble. All
energies are in units of the mean level spacing, and
	3�L� is, therefore, parameter free. If the spacings were
totally uncorrelated, then 	3 would be linear in L. It
would grow much slower with L if the spacings were
correlated in such a way that a large spacing is always
followed by a small one and vice versa. The actual be-
havior of 	3�L� is shown as a solid line in Fig. 7: 	3�L�
grows essentially logarithmically with L. This property is
referred to as the stiffness of RMT spectra.

It is important to note, for later discussion that a GOE
spectrum does not carry any information content be-
yond the mean level spacing. This is obvious since any
realization of H is obtained by drawing random numbers
from the Gaussian distribution �1�. Thus, it would not be
worthwhile to apply spectroscopic analyses to such a
spectrum. Put differently, a GOE Hamiltonian has
N�N+1� /2 independent matrix elements. Counting
shows that we need to measure all N eigenvalues and all
N eigenfunctions to reconstruct H. This is very different
for typical dynamical systems where the Hamiltonian is
known except for a small number of parameters.

F. Quantum chaos

Suppose the fluctuation measures of an experimental
spectrum agree with GOE predictions. What does such a
result imply physically? The answer to this question was
better understood with the study of few-degrees-of-
freedom quantum systems which are chaotic in the clas-
sical limit. The development culminated in the Bohigas-
Giannoni-Schmit conjecture �Bohigas et al., 1986�. It
says that the spectral fluctuation properties of a quantum
system which is chaotic in the classical limit coincide with
those of the canonical random-matrix ensemble that has
the same symmetry. Bohigas et al. �1986� supported their
conjecture by calculating numerically the NNS distribu-
tion and the 	3 statistic for the Sinai billiard, a system
which is time-reversal invariant and fully chaotic in the
classical limit, and comparing the result with the GOE
prediction. This is shown in Figs. 6 and 7.

Agreement like the one shown in Figs. 6 and 7 has
since been found in many other chaotic systems. More-
over, an analytical proof of the Bohigas-Giannoni-
Schmit conjecture has recently been published �Heusler
et al., 2007�. That proof uses the semiclassical approxi-

mation and generic properties of chaotic trajectories. We
are thus led to consider agreement between the spectral
fluctuations of a physical system and RMT predictions
as a signal for chaotic motion. It is in that sense that we
use the word chaos also in nuclei. This is done with a
caveat: The semiclassical proof by Heusler et al. �2007� is
not applicable directly to nuclei because nuclei are too
dense to admit a semiclassical approximation.

Quantum chaos has been studied intensely during the
last 20 years or so �Haake, 2001�. These studies have
focused mainly on dynamical systems with few degrees
of freedom. The Sinai billiard is a prime example. Here
chaos is due to the fact that the inner circle and the
outer rectangle possess incommensurate symmetries. In
contradistinction, the atomic nucleus is a many-body
system. We show that in such a system the dynamical
features which cause chaos are distinctly different from
the ones which cause chaos in few-degrees-of-freedom
systems.

G. Chaos in nuclei

We are now in the position to return to the data
shown in Fig. 3. Combining the information on the ex-

FIG. 6. The NNS distribution for the Sinai billiard �histogram�
and the GOE prediction �solid line�. From Bohigas et al., 1986.

FIG. 7. The 	3 for the Sinai billiard �histogram� and the GOE
prediction �solid line�. From Bohigas et al., 1986.
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cited levels in 239U obtained from these data with that of
many similar experiments on the scattering of slow neu-
trons and of protons at the Coulomb barrier by other
nuclei, Haq et al. �1982, 1983� formed the nuclear data
ensemble. It consists of 1726 spacings. These were used
to determine the NNS distribution and the 	3 statistic.
The results are shown in Figs. 8 and 9. The solid lines
labeled Poisson correspond to totally uncorrelated levels
and thus to integrable systems. The agreement with the
GOE prediction is impressive. We conclude that at neu-
tron threshold �and at the Coulomb barrier for protons�
nuclei display chaotic motion. The deep physical insight
of N. Bohr, who conceived the compound nucleus idea
and designed the toy model of Fig. 4, is borne out by the
data: Idealized models of billiards are prime examples of
chaotic motion, and nuclear levels at neutron threshold
display chaotic behavior. Since 1983, there has also been
growing evidence for chaotic motion in nuclei at lower
excitation energies, although the statistics of such data is
usually not as good as near the neutron threshold.

In conclusion, there is strong evidence for chaotic mo-
tion in nuclei. How can this evidence be reconciled with
the extant information on nuclear dynamics �the shell
model�? And—given the fact that GOE spectra carry
zero information content beyond the mean level
spacing—which is the information content of nuclear
spectra in the regime of chaotic motion? These are the

questions we address in the remainder of this paper.

II. DYNAMICAL ASPECTS

A. Chaos in the nuclear shell model

The shell model is the universal model for the struc-
ture of atoms and nuclei. In nuclei, it consists of a cen-
tral potential U with a strong spin-orbit interaction �the
mean field� and a fairly weak residual interaction V
which accounts for the remaining part of the nucleon-
nucleon interaction. The central potential U defines the
major shells shown in Fig. 10: The 1s shell, the 1p shell,
the 2s1d shell, etc., in spectroscopic notation, the latter
with the subshells s1/2, d3/2, and d5/2 where the indices
denote the nucleon spin. The subshells have different
single-particle energies, and the states within a major
shell are, therefore, not totally degenerate. Still, large
degeneracies remain when the shell contains more than
a single nucleon. These degeneracies are lifted by the
residual interaction V. That interaction conserves parity
and is rotationally invariant and invariant under time

FIG. 8. The NNS distribution for the nuclear data ensemble
�histogram� and the GOE prediction �solid line�. From Haq et
al., 1983.

FIG. 9. The 	3 for the nuclear data ensemble �data points� and
the GOE prediction �solid line�. From Haq et al., 1982.

FIG. 10. Level sequence in the nuclear shell model. The orbit-
als are labeled by their spectroscopic notation, and the number
of available single-particle states is shown. From Mayer and
Jensen, 1955.
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reversal. It is weak in the sense that it produces configu-
ration mixing primarily within the same major shell.
More precisely, the magnitude of a typical matrix ele-
ment is small compared with the spacing of the centroids
of adjacent major shells but comparable with that of ad-
jacent subshells in the same major shell. In all that fol-
lows we, therefore, consider only a single major shell.
And the residual interaction is predominantly a two-
body interaction, V=����V�r�� ,r���, although there is evi-
dence that three-body forces are needed to obtain quan-
titative agreement with experimental spectra. Again, we
confine ourselves for simplicity to two-body forces.

The Hamiltonian of the shell model is

H = �
�
�−

�2

2m
	� + U�r���� + �

���

V�r��,r��� . �3�

Here r�� denotes the coordinates and spin-isospin de-
grees of freedom of the nucleon labeled �. The single-
particle part of H has eigenstates j� and eigenvalues �j.
We use second quantization and write H as

H = �
j

�jaj
†aj +

1
4�

ijkl
v�ij ;kl�ai

†aj
†alak. �4�

Here aj
† creates a nucleon in a single-particle state j. The

two-body matrix elements v�ij ;kl� represent the residual
interaction. In writing Eq. �4� we have not paid attention
to conserved quantum numbers like spin and isospin.
This was done in order to keep the notation simple.
More details are given in Sec. II.B.

In the shell model it is assumed that all shells but one
are completely filled and attention is focused on that last
shell �the valence shell�. Distributing the valence nucle-
ons over the various subshells in the valence shell, one
constructs a basis of antisymmetrized many-body states
J��. We use a shorthand notation where J stands for
total spin, total isospin, and parity, while � is a running
index. These are used to calculate the matrix elements

H���J� = �J�HJ�� �5�

of the Hamiltonian �4� in the subspace with quantum
numbers J. Diagonalization of H���J� yields the eigen-
values and eigenfunctions. The latter are used to calcu-
late various transition matrix elements. This scheme has
been used with considerable success in many parts of the
periodic table. Exceptions are mainly deformed nuclei
which occur in the middle between large major shells.
When we refer to Eq. �4� in the text further below, we
always do so with the understanding that that equation
refers to the valence shell only.

In the following we focus attention on the 2s1d shell
�in short, the sd shell�. The 1s shell and the 1p shell are
filled, taking a total of 16 nucleons. Thus, the sd shell
describes nuclei with mass numbers between 16 �O� and
40 �Ca�. We do so for practical reasons: The dimensions
of the Hamiltonian matrices in the sd shell are quite
manageable �maximal dimensions are of the order of
103� while much larger numbers occur in higher shells.
We sometimes consider also a single j shell with half-

integer j. Although not realistic in the framework of the
nuclear shell model, this idealization is useful for pur-
poses of orientation.

Which are the fluctuation properties of the resulting
spectra? That question was studied, for instance, by
Zelevinsky et al. �1996�. The authors used standard
single-particle energies and a standard two-body re-
sidual interaction to calculate the positions of the states
with spin J=2 and isospin T=0 for 12 nucleons in the sd
shell. The matrix dimension is 874. In Figs. 11 and 12,
the NNS spacing distribution and the 	3 statistic for
these levels are compared with GOE predictions. The
agreement is very good. �It would be desirable to con-
firm this result experimentally. Unfortunately, the data
needed are not available: There are no more than a
handful of levels known for each value of spin and iso-
spin; such levels cluster in the vicinity of the ground
state.� Zelevinsky et al. �1996� described numerous fur-
ther results �on thermodynamic properties, on the statis-
tics of eigenfunctions, etc.�. While it was found that the
input used in shell-model calculations �the distribution
of many-body matrix elements� differs from that used in
the GOE, the results agree to a very large extent with
GOE predictions.

The result displayed in Figs. 11 and 12 and other re-
sults obtained on chaos in shell-model calculations are
surprising and call for a deeper analysis. Indeed, the
Hamiltonian of the shell model is quite different from a
GOE matrix. And yet, it is able to produce GOE-like
spectral fluctuations. It does not seem unreasonable to
speculate that the shell model would also be able to ac-
count for the GOE-like spectral fluctuations shown in
Figs. 8 and 9 �this cannot be checked because of the
large dimensions of the matrices involved�. At the same

FIG. 11. The NNS spacing distribution for the J=2, T=0 states
of 12 nucleons in the sd shell �histogram� compared to the
GOE �line�. From Zelevinsky et al., 1996.
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time, the shell model accounts well for some regular fea-
tures observed experimentally like magic numbers and
spectroscopic data on low-lying states. The questions
raised at the end of Sec. I.G must, therefore, be refor-
mulated as follows: Are the results shown in Figs. 11 and
12 a generic property of the shell model or are they due
to very special circumstances? In other words: How is
chaos produced in the shell model? And what is the
information content of shell-model spectra? A further
question would be: How does the shell model manage to
produce both regularity and chaos? We will not address
that last question. Suffice it to say that regularity is
mostly seen when considering states with different quan-
tum numbers like in Fig. 2, while chaos is manifest in
long sequences of states carrying identical quantum
numbers. The way we use them here, regularity and
chaos are not necessarily contradictory concepts.

B. Two-body random ensemble

To answer these questions, it is necessary to go some-
what more deeply into the details of shell-model calcu-
lations. The single-particle states in the shell model carry
the half-integer spin quantum number j. The two-body
interaction scatters a pair of nucleons in states �j1 , j2�
into states �j3 , j4� which may or may not be identical to
�j1 , j2�. The two-body interaction conserves total spin, to-
tal isospin, and parity. Coupling the initial and final pairs
of states to total spin s �and suppressing the analogous
coupling for isospin for simplicity�, we write the antisym-
metrized reduced matrix elements of the two-body inter-
action in the form �j3j4s V  j1j2s� or more simply as v���
where the index � labels different two-body matrix ele-

ments. �The word “different” refers to matrix elements
not connected by symmetry properties.� Counting
�which must include spin and isospin� shows that in the
sd shell, � ranges from 1 to 63 and, in a single j shell with
half-integer j, from 1 to j+1/2.

Chaos has to do with the complete mixing of states in
Hilbert space. How does the residual interaction accom-
plish such mixing? We focus attention on the two-body
interaction and assume that all subshells belonging to a
major shell are degenerate. �It is intuitively obvious and
has been shown numerically that the mixing of shell-
model states becomes weaker as the differences between
single-particle energies of subshells become comparable
to the magnitudes of the v���.� We accordingly omit the
single-particle energies in Eq. �4� altogether. The Hamil-
tonian H�� of Eq. �5� is then completely determined by
the two-body interaction in Eq. �4�. Thus, it has the form

H���J� = �
�

v���C���J,�� . �6�

The sum over � is equivalent to the sum over �ijkl� in
Eq. �4�. Each term in the sum in Eq. �6� is the product of
two contributions. The v��� stand for the matrix ele-
ments denoted by v�ij ;kl� in Eq. �4� �except that we have
now paid proper attention to the coupling of angular
momenta� and represent the specific features of the two-
body interaction. Except for angular momentum cou-
pling coefficients, the elements of the coefficient matri-
ces C���J ,�� are the matrix elements of the operators
ai

†aj
†alak in Eq. �4�. These matrices are determined by the

major shell we are in, by the coupling scheme we have
chosen to construct the states J��, and by the specific
two-body interaction operator labeled � which defines
the matrix element v���. The matrices C���J ,�� repre-
sent the geometry and symmetries of the shell model
and are generic in the sense that they are independent of
the actual choice of the residual interaction. The seem-
ingly trivial equation �6� actually contains very useful
information about chaos in the shell model.

To answer the question how the residual interaction
causes chaos in the most general terms, we study the
Hamiltonian �6� for the most general two-body interac-
tion. This is accomplished by assuming that the elements
v��� of the two-body interaction are Gaussian-
distributed random variables with mean value zero and
a common second moment. The value of the second mo-
ment is irrelevant since it determines only the overall
scale of the spectrum. With this assumption, the matrices
�6� form an ensemble of Gaussian-distributed random
matrices. This two-body random ensemble �TBRE� of
the shell model was originally introduced in the 1970s by
French and Wong �1970� and by Bohigas and Flores
�1971�. The TBRE is tailored to the shell model and,
therefore, much more realistic than the GOE. The en-
semble being defined in terms of an integration over the
Gaussian variables v���, statements derived by averag-
ing over the ensemble hold for all members of the en-
semble with the exception of a set of measure zero with
respect to that integration measure.

FIG. 12. The 	3 statistic for the J=2, T=0 states of 12 nucle-
ons in the sd shell �data points� compared to the GOE �solid
line�. From Zelevinsky et al., 1996.
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Within the TBRE, v��� play a minor role only: They
determine the specific linear combination of the matri-
ces C���J ,�� which forms the Hamiltonian. If the Hamil-
tonian causes chaos for almost all choices of v���, this
property must be inherent in the matrices C���J ,��.
Therefore, an analytic theory has to address these ma-
trices as the fundamental building blocks of the TBRE.
Unfortunately, such a theory is in its infancy as yet. An
analytically more accesible ensemble is provided by the
embedded Gaussian orthogonal ensemble EGOE�k�
�Mon and French, 1975�. This ensemble is defined as a
random-matrix ensemble of m fermions occupying l de-
generate single-particle levels with Gaussian-distributed
random k-body interaction matrix elements, but as-
sumes no further symmetries like spin and isospin. For
k=m, the EGOE�k� becomes the GOE, and for k=2, it
becomes the analog of the TBRE without quantum
numbers. For recent reviews, we refer the reader to
Kota �2001� and Benet and Weidenmüller �2003�. Less is
known for the TBRE. In the following, we describe
some insights that have been gained over the last few
years.

C. Comparison of GOE and TBRE

The GOE has three important properties: It is invari-
ant under orthogonal transformations �hence, analyti-
cally tractable�, it is universal, and it is ergodic. The
TBRE probably does not share any of these properties.
The set of matrices C���J ,�� is fixed. A unitary transfor-
mation of all matrices generates another representation
of the ensemble but not another member of the en-
semble. Therefore, the TBRE is not unitarily invariant.
It is not clear how a non-Gaussian distribution of v���
would affect spectral fluctuation properties of the
TBRE. In the case of the GOE, local fluctuation prop-
erties and global spectral properties become separated
in the limit N→�. This separation is at the root of uni-
versality �local fluctuation properties do not depend on
the form of the distribution of the matrix elements�. By
definition, the TBRE is linked to a specific shell; its ma-
trices have finite dimension. Similarly for ergodicity: For
the GOE, this is proved by showing that correlation
functions vanish with increasing distance of their energy
arguments. The proof uses the limit N→�. This limit
does not exist in the TBRE. One is tempted to ask: Why
bother with the TBRE? The answer is: The TBRE is
more realistic than the GOE. Moreover, it might be pos-
sible to study the TBRE analytically for the case of a
single j shell and to prove universality and ergodicity in
the limit j→�.

Except for mirror symmetry about the main digonal,
every element of a GOE Hamiltonian matrix stands for
an independent random variable. For N�1, the number
N�N+1� /2 of such variables is much larger than the ma-
trix dimension N. The number n of independent random
variables in the TBRE is typically small in comparison
with the matrix dimension. For the case of a single j
shell, n grows linearly with j while the typical matrix

dimension grows exponentially with j. In the GOE, the
analogs of the matrices C���J ,�� exist. These are the
N�N+1� /2 matrices G� which either have a unit element
somewhere in the main diagonal and zeros everywhere
else or have a unit element somewhere above the main
diagonal, its mirror image below, and zeros everywhere
else. The set �G�� forms a complete basis for real and
symmetric matrices. In contradistinction, the matrices
C���J ,�� do not form such a complete set. To be sure,
every matrix C���J ,�� may be thought of as a linear
combination of the G�. But the number of matrices
C���J ,�� is typically much smaller than N�N+1� /2.
Therefore, many other linear combinations of the G�

exist which are linearly independent of C���J ,�� and
which do not occur in the TBRE. The TBRE may be
negatively defined by constraining all such linear combi-
nations to be zero.

We present evidence that the matrices C���J ,�� are
the agents which cause chaos in the TBRE. In anticipa-
tion of this result, we give a qualitative argument why
every matrix C���J ,�� may be thought of as a single
representation of the GOE. In constructing the many-
body basis states J��, we may proceed as follows. We
form Slater determinants by distributing m nucleons
over the single-particle states of a major shell. These are
antisymmetric by construction but do not possess good
quantum numbers J. States with good J are obtained as
linear combinations of such Slater determinants, a typi-
cal state J�� consisting of a linear combination of many
determinants. Although the two-body interaction has
nonvanishing matrix elements only between determi-
nants that differ in the occupation numbers of not more
than two single-particle states, that fact makes sure that
the matrices C���J ,�� are densely filled. Moreover, the
coefficients in the linear combinations are determined
by angular momentum algebra, i.e., contain Clebsch-
Gordan coefficients, Racah coefficients, and coefficients
of fractional parentage. Although individually deter-
mined group theoretically, these quantities combine to
make the coefficients of the linear combinations almost
random numbers. This stochastic aspect of the shell
model has been emphasized by Zelevinsky et al. �1996�
who employed the term “geometric chaoticity.”

Thus, the matrices C���J ,�� are dense and their ele-
ments are close to being random. Our qualitative argu-
ment is subject to two caveats. First, the dimension of
the matrices C���J ,�� is always finite. Second, the matri-
ces C���J ,�� are not dense everywhere and may have a
substructure with blocks that are completely empty.
Consider, for instance, the sd shell and the two-body
operator �0 which scatters a pair of nucleons in states
�d3/2 ,d3/2� into states �d5/2 ,d5/2�. The two-body operator
has vanishing matrix elements between all many-body
states J�� which are constructed by filling only the s1/2

and d3/2 shells with m nucleons. The same statement ap-
plies to the matrix C���J ,�0�.
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III. PROPERTIES OF THE TBRE

In this section we present several properties of the
TBRE which are either fundamentally different from
those of the GOE or have no counterpart in the latter.
The material in this section is largely taken from Papen-
brock and Weidenmüller �2004, 2005, 2006�. The numeri-
cal examples are all obtained in the sd shell or in a single
j shell.

A. How the matrices C��„J ,�… mix the states

The sd shell has subshells s1/2, d5/2, and d3/2. Let ni
with i=1,2 ,3 denote the occupation numbers of these
three subshells and m=�ini the total number of nucle-
ons in the sd shell. The many-body basis states J�� can
be ordered in blocks with fixed values of �n1 ,n2 ,n3�. For
m=12 there exist 41 such partitions. The two-body ma-
trix elements v��� belong to one of three classes: �i�
They leave the partition unchanged so that �n1 ,n2 ,n3�
→ �n1 ,n2 ,n3� �28 two-body matrix elements�; �ii� they
change the partition by moving one nucleon from one
subshell to another while leaving the second nucleon in
its subshell so that �n1 ,n2 ,n3�→ �n1+1,n2−1,n3�, etc. �22
two-body matrix elements�; or �iii� they change the par-
tition by moving both nucleons from one subshell to an-
other so that �n1 ,n2 ,n3�→ �n1−1,n2−1,n3+2� cyclic or
to �n1−2,n2+1,n3+1� cyclic �13 two-body matrix ele-
ments�. The same classification applies to the matrices
C���J ,�� since each of these and the corresponding v���
contain the same two-body operator. Therefore, the
C���J ,�� acquire block structure. For 12 nucleons
coupled to J=0, T=0 this is shown in Fig. 13 where the
839 states are ordered according to the sizes of the
blocks to which they belong.

The block structure is clearly a consequence of the
shell model with its subshells. It is bound to occur in
every major shell. The structure is completely absent in
the GOE where the matrices are densely filled. It is clear
that a single matrix C���J ,�� cannot mix the states com-
pletely. Such mixing can be accomplished only by a lin-
ear combination of most or all of C���J ,�� as in Eq. �6�.
Put differently, it is clear that a single or a few nonvan-
ishing matrix elements v��� cannot lead to a complete
mixing of the basis states, i.e., to chaos. We expect that
we need most or all of v��� for that purpose. This obser-
vation illustrates the caveat “with the exception of a set
of measure zero” presented in Sec. II.B: Putting one or
several v���’s identically equal to zero reduces the set
�v���� to a set of measure zero with respect to the inte-
gration over all variables v���. The observation also
sheds light on and reinforces the concept geometric
chaoticity �Zelevinsky et al., 1996�. Indeed, the mixing is
both made possible and limited by geometric constraints
that result from the coupling of single-particle states to
many-body states with good quantum numbers.

A few numbers may illustrate the way in which the
matrices C���J ,�� fill their individual blocks. As a mea-
sure for such filling, we use the number of C���J ,��

which contribute on average to a given matrix element.
When the partition is not changed �black �color online:
red� blocks in Fig. 13�, that number is 25.2±4.0 �out of a
total of 28 matrices�. Within the black blocks, mixing is
thus very thorough. This statement is supported by an-
other measure �inverse participation ratios� not shown
here. For the light gray �color online: green� blocks, the
corresponding number is 7.2±1.4 �out of a total of 22
matrices� and for the dark gray �color online: blue�
blocks, 2.0±0.9 �out of a total of 13 matrices�. Similar
values are obtained in the case of a single j shell. The
wealth of available numerical data �see, for instance,
Figs. 11 and 12� shows that there is chaos for some
choices of v���. This is not an accidental feature related
to a particular choice of the residual interaction. Indeed,
the numbers given show that the mixing of states within
each of the diagonal �red� blocks is virtually complete
for almost every choice of the residual interaction. This
fact ensures that a few nondiagonal matrix elements suf-
fice to also mix different diagonal blocks very efficiently
with each other. Thus, the seemingly small numbers
cited for the light and dark gray blocks are actually quite
sufficient to accomplish complete mixing of all states,
even though some �white� blocks carry zero entries. As a
result, we conclude from the structure of the matrices
C���J ,�� that chaos is a generic structural property of
the sd shell. Since other major shells are structurally
similar to the sd shell, we conclude that chaos is generic
in the shell model at large. We formulate this statement

FIG. 13. �Color online� The block structure of the matrices
C���J ,�� for m=12 nucleons in the sd shell coupled to total
spin J=0 and total isospin T=0. Black �color online: red�, no
change of partition. Light gray �color online: green�, change of
partition by moving one nucleon. Dark gray �color online:
blue�, change of partition by moving two nucleons. White:
there is no two-body matrix element that connects the states in
question. From Papenbrock and Weidenmüller, 2005.
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with one proviso: We have neglected the differences in
the single-particle energies pertaining to different sub-
shells. In realistic cases, our statement applies only if the
magnitude of the matrix elements of the residual inter-
action is sufficiently large to strongly mix different sub-
shells. This is the case in practice.

While different subshells are mixed quite thoroughly
and chaos is expected to prevail within every major
shell, different major shells do largely retain their iden-
tity because the magnitudes of v��� are typically small
compared to the spacings of major shells. This is dem-
onstrated by experimental facts on the behavior of the
neutron strength function or of spectroscopic factors
which unfortunately cannot be presented and explained
in the present framework �Lapikas, 1993�.

We reiterate the remark that strong mixing within a
major shell does not preclude the existence of individual
states at higher excitation energies that can be identified
as distinct modes of motion of the nucleus �like the
giant-dipole resonances�. Deformed nuclei display col-
lective motion like rotational bands and, in the ground-
state domain, deviations from Wigner-Dyson spectral
fluctuations. This last fact has been extensively discussed
in the literature �see Abul-Magd et al. �2004�, and refer-
ences to earlier work therein�. At this point, it is not
clear how such features can be reconciled with the view
of chaos in nuclei presented in this paper.

B. Information content of nuclear spectra

The GOE spectra do not carry any information con-
tent. Spectral fluctuations in nuclei often agree with
GOE predictions. Are such spectra void of physical in-
formation? We answer this question in quantitative
terms �Papenbrock and Weidenmüller, 2006� but begin
with a qualitative consideration.

The Hamiltonian �6� contains the matrix elements
v��� as parameters and is otherwise fixed. The number
of these parameters is typically small compared with the
matrix dimension. Therefore, a small number of data
points �for instance, energies of levels with fixed spin J�
suffices, in principle, to determine H���J�. The Hamil-
tonian matrices of the levels with spins J��J are gov-
erned by the same set of matrix elements v��� �only the
matrices C���J� ,�� differ in form and dimension� and
are, therefore, also known once the v��� are determined.
Hamiltonians describing other nuclei �different mass
numbers� pertaining to the same major shell are likewise
governed by the set �v���� and, thus, known too. �Again
a caveat is needed: The set �v���� which empirically de-
scribes the data best may change with mass number.�
Thus, the situation is radically different from that of the
GOE because the matrices C���J ,�� �the agents of
chaos� are fixed by the shell model. A small number of
parameters determines spectra of many J values in many
nuclei. TBRE spectra do carry information.

We now turn to the quantitative question: How reli-
ably can this information be deduced from the data? To
this end we cast the Hamiltonian �6� in another form.

We seek a decomposition of the Hamiltonian into a sum
of matrices that can be ordered with respect to their
relevance or importance. The decomposition �6� is not
useful for this purpose: The matrices C���J ,�� exhibit
some degree of linear independence but a stronger met-
ric concept is called for. For this purpose, we introduce
the canonical scalar product for matrices and switch
from the matrices C���J ,�� to new matrices B���J ,��
that form an orthonormal basis set. With d�J� the dimen-
sion of the Hilbert space spanned by the state vectors
J��, we define the real and symmetric overlap matrices

S���J� = d−1�J�Tr�C�J,��C�J,��� . �7�

These are diagonalized by orthogonal transformations
O�J�,

�O�J�S�J��O�J��T��� = s�
2�J���, �8�

where T denotes the transpose. The matrices S���J� are
positive semidefinite so that s�

2�J��0. The eigenvalues
are arranged by decreasing magnitude, s1

2�J��s2
2�J�

� ¯ �0. The real roots s��J� of s�
2�J�’s are chosen posi-

tive or zero. If one or several eigenvalues vanish, we
conclude from Eqs. �8� and �7� that there exist one or
several linear combinations of the matrices C�J ,�� that
vanish identically. For the a1�J� nonvanishing eigenval-
ues s�

2�J�, we define

B���J,�� =
1

s��J���

O��C���J,��, � = 1, . . . ,a1�J� .

�9�

Except for possible degeneracies among the eigenvalues
s�

2�J�, the matrices B���J ,�� are defined uniquely. By
construction, these matrices are orthonormal with re-
spect to the trace,

d−1�J�Tr�B�J,��B�J,��� = ��. �10�

Written in terms of the matrices B�J ,��, the Hamil-
tonian takes the form

H���J� = �
�=1

a1

w�J,��s��J�B���J,�� . �11�

We note that the eigenvalues s�
2�J� indicate the weight

and relevance of the corresponding basis matrix B�J ,��
in the construction of the Hamiltonian �11�. This weight
has purely geometric origin. The dynamical weight
w�J ,�� stems from the two-body interaction and is given
by

w�J,�� = �
�

O��v���, � = 1,2, . . . ,a1. �12�

The w�J ,�� have the same distribution as v���: They are
Gaussian-distributed random variables with mean values
zero and a common second moment. The form of the
Hamiltonian �11� with the definitions �9� and �12� is com-
pletely equivalent to the original expression �6�. It allows
us to quantify the information content of nuclear spec-
tra. If for some value of J one or several eigenvalues
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s�
2�J� vanish, the number a1�J� of variables w�J ,�� is

smaller than the number of elements v���. For such a
value of J it is then impossible to determine more than
a1�J� linear combinations of the v��� from the data. We
show below that such vanishing eigenvalues always oc-
cur. Moreover, if some eigenvalues are significantly
smaller than the leading ones, then Eq. �11� shows that
their influence on the spectrum is small �we recall that
the matrices B�J ,�� obey Eq. �10�� and it will be difficult
to deduce their values from the data. We conclude that it
is important to determine the eigenvalues s�

2�J�. The de-
termination can be done without prior knowledge of the
form of the residual interaction �i.e., of the values of the
v���� since the eigenvalues are determined by the matri-
ces C���J ,��, i.e., by the shell model itself.

Papenbrock and Weidenmüller �2005, 2006� gave the
distribution of the roots s��J� of the eigenvalues for a
single j shell with j=19/2 and for some nuclei in the sd
shell. All these distributions are very similar. By way of
example, we reproduce in Fig. 14 the graph for the states
with isospin 0 in the nucleus 24Mg.

We note that all roots change smoothly with J. The
largest s1�J� is significantly larger than all others. For the
case of the single j shell, it can be shown analytically that
the corresponding linear combination B���J ,1� of the
matrices C���J ,�� is approximately equal to the matrix
representation of the monopole operator which in turn
is approximately equal to the unit matrix. The numerical
results indicate that these statements are generic; they
hold also for 24Mg. Hence, s1�J� determines essentially
the centroid of the spectrum of states with spin J and has
little influence on spectral fluctuations. The latter are
largely determined by the remaining nonvanishing ei-
genvalues and associated matrices B���J ,��. Because of
the orthogonality relation �10�, the latter are almost
traceless.

The root s1�J� is followed in magnitude by four eigen-
values that are distinct from the remaining set. We ob-
serve that some eigenvalues in that set vanish for large
values of J �this is because the matrix dimension shrinks
with increasing J and eventually becomes too small to
support a large number of eigenvalues� and that at least

one eigenvalue vanishes for all values of J. This is be-

cause the operator J�2 for total spin J is a two-body op-

erator. Thus, the matrix representation of the term J�2

−J�J+1� can be written as a linear combination of the
matrices C���J ,��. This linear combination vanishes
identically.

Figure 14 shows that it is difficult to determine those
w�J ,��’s from data which belong to the smallest eigen-
values and that the problem cannot be solved by com-
bining data for different spin values. Practitioners of the
shell model avoid the difficulty by combining a fit to
data with ab initio values of v��� obtained from many-
body theory; see, for instance, Brown and Wildenthal
�1988� and Honma et al. �2004�.

C. Preponderance of ground states with spin zero

Johnson et al. �1998� reported that in even-even nuclei
�nuclei with even proton and neutron numbers�, the
TBRE yields ground states with spin zero much more
frequently than corresponds to the fraction of spin-zero
states in the model space. Subsequent work by Bijker
and Frank �2000� and by Jaquod and Stone �2000�
showed that similar regularities exist in bosonic and
electronic many-body systems, respectively. The phe-
nomenon has received intense attention, and we refer
the reader to the reviews by Zelevinsky and Volya
�2004� and Zhao et al. �2004�. The problem has been
understood quantitatively for bosonic models of the
nucleus within mean-field calculations �Bijker and
Frank, 2001�. For the nuclear shell model, two ap-
proaches yield good agreement with numerical simula-
tions. Zhao et al. �2002� devised an algorithm that accu-
rately predicts the fraction of ground states with a given
spin. The other approach considers fluctuations and cor-
relations between the J-dependent spectral widths and
also leads to semiquantitative predictions. This approach
was put forward by Papenbrock and Weidenmüller
�2004� and is described in what follows.

The key to understanding the phenomenon is the ob-
servation that the spectral widths �J of states with differ-
ent J values are correlated. The spectral widths are de-
fined by

�J
2 = d−1�J�Tr�H2�J�� . �13�

From Eqs. �11� and �10�, we have

�J
2 = �

�=1

a1

w2�J,��s�
2�J� . �14�

Spectral widths pertaining to different J depend upon
the same random variables v��� �the w�J ,�� are linear
functions of the v���; see Eq. �12�� and are, therefore,
correlated.

Before using this fact, we relate the spectral width �J
to the position of the lowest �or highest� state with spin
J—more precisely, to the distance RJ of the lowest �or
highest� level in the spectrum from the origin �the spec-
tral radius�. �We do not distinguish the lowest from the

FIG. 14. �Color online� Roots s��J� of the eigenvalues s�
2�J�

defined in Eq. �8� vs total spin J for the T=0 states in 24Mg.
From Papenbrock and Weidenmüller, 2006.
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highest state since the v��� have random signs.� The
spectral radius is expected to be a random variable. We
ask for the probability pj with which, for a given value of
J, RJ takes maximum value. The probability of finding a
ground state with spin J is given by pJ.

We define the scaling factor rJ by writing

RJ = rj�J. �15�

Equation �15� is useful in the present context because it
turns out that �in contrast to �J� rJ hardly fluctuates with
v���. For the case of six fermions in the j=19/2 shell and
for the states with spin J=0, this is shown in the inset of
Fig. 15. Similarly constant �nonfluctuating� behavior of rJ
was found for other cases �different spin values, differ-
ent number of nucleons, and nuclei in the sd shell�.
Therefore, the fluctuations and correlations of the
widths �J directly affect those of the spectral radii RJ.
The linear fits to rJ, obtained as shown in the inset, are
used for the plot of rJ versus J shown in Fig. 15 �and
similarly for other cases�. The overall monotonic de-
crease of rJ with J reflects the overall monotonic de-
crease of the dimensions d�J� with J. Indeed, average
shell-model spectra are known to have approximately
Gaussian shape. It is then intuitively obvious that rJ
grows with d�J�. The decrease of rJ with increasing J
shown in Fig. 15 enhances the chance for states with
small spins J to form the ground state. The same is true
for the odd-even staggering of rJ �which is due to the
same reason and gives, for instance, preference to spin
zero over spin 1�.

It remains to study the probabilities that the spectral
widths �J attain maximum values. For the case displayed
in Fig. 15, these are shown as solid lines in Fig. 16. The
states with lowest and highest spins have the largest
probabilities. Here correlations play a role: For some
choice of v���, the spectral width for some other spin
value may take an unusually large value but so do, at the
same time and for most cases, �0 and �42. The dashed
line in Fig. 16 gives the probability that the product rJ�J
attains maximum value. Because of the effect shown in
Fig. 15, the highest spin value is suppressed and spin 0

wins. The result must be compared with the actual prob-
abilities �dots� that a state with spin J forms the ground
state. The agreement, although not perfect, shows that
the explanation accounts for the main features of the
phenomenon.

Similar results were obtained for eight fermions in the
j=19/2 shell for 20Ne and for 24Mg. Figure 17 shows the
case of states with T=0 in 24Mg.

D. Correlations between spectra carrying different quantum
numbers

In the TBRE the preponderance of ground states with
spin zero is, to a large extent, due to correlations be-
tween spectral widths �J pertaining to different values of
J. The correlations are caused by the fact that all widths
�J depend on the same random variables v���. Equation
�6� shows that the same statement holds for the Hamil-
tonians H���J� pertaining to different spin values and,
more generally, for the Hamiltonians pertaining to nu-
clei belonging to the same major shell.

From the point of view of the shell model, these state-
ments are not terribly surprising. A change of the re-
sidual interaction causes simultaneous changes in the
spectra of all nuclei belonging to the same major shell.

FIG. 15. �Color online� The scaling factor rJ of Eq. �13� versus
J for six fermions in the j=19/2 shell �solid line�. Inset: Linear
fit to rJ for the states with J=0. The dots correspond to 900
realizations of the ensemble. From Papenbrock and Weiden-
müller, 2004.

FIG. 16. �Color online� Six fermions in the j=19/2 shell with
900 realizations of the TBRE. Solid line: Numerical probabili-
ties for �J to have maximum value. Dashed line: Numerical
probabilities for rJ�J to have maximum value. Dots: Numerical
probabilities for state with spin J to be the ground state. From
Papenbrock and Weidenmüller, 2004.

FIG. 17. �Color online� Same as Fig. 16 for the T=0 states in
24Mg. From Papenbrock and Weidenmüller, 2006.
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In the framework of a statistical description, this fact is
tantamount to the existence of spectral correlations.
Still, it is remarkable that such correlations have never
been addressed in the framework of RMT until quite
recently. It is, in fact, not obvious how to model such
correlations in canonical RMT. The standard approach
consists of assuming that correlations do not exist. This
assumption is usually stated explicitly in the statistical
theory of nuclear reactions. Let Sab�E ,J� be an element
of the statistical scattering matrix for scattering from
channel a into channel b at energy E and total spin J. It
is assumed that elements pertaining to different J values
are uncorrelated. This assumption implies the symmetry
of compound-nucleus scattering cross sections about 90°
scattering angle in the center-of-mass system.

It is of interest to test these standard assumptions of
RMT using the TBRE. While tests for correlations of
the statistical scattering matrix have apparently not yet
been performed, tests of spectral correlations for levels
both in the same nucleus carrying different quantum
numbers and in different nuclei do exist �Papenbrock
and Weidenmüller, 2006�. The level density ��E ,J� for
levels with spin J and energies E��J� �where � is a run-
ning index� is given by

��E,J� = �
�

„E − E��J�… . �16�

As a measure of spectral correlations, we use the cor-
relator

C�E1,J1;E2,J2� = ��E1,J1���E2,J2� − ��E1,J1���E2,J2� .

�17�

In Fig. 18 we show the two terms on the right-hand
side of Eq. �17� and the resulting correlator versus the
energies E1 and E2 of the two sets of spin states for the
J=0, T=0 and the J=2, T=0 states in 24Mg. The cor-
relator has a maximum value of about 13% of the mean
value of the product of the level densities.

In Fig. 19 we show the same quantities for the J=0,
T=0 states in 22Ne and 24Mg. Here the correlator has a
maximum value of 6%. In both cases, the existence of
spectral correlations is firmly established.

The correlators shown in Figs. 18 and 19 are obtained
by averaging over the ensemble and are, therefore, en-
tirely theoretical. Do they have any correspondence in
reality �where we deal with a single Hamiltonian rather
than an ensemble�? Presently, this question cannot be
answered using experimental data—the data set is not
sufficient. However, shell-model calculations can serve
as a substitute. Realistic single-particle energies and an
optimized two-body interaction �Brown and Wildenthal,
1988� were used to calculate the energies of low-lying
states with spins J=0 and 2 �J=1/2 and 5/2� in a number
of even-even �odd-even, respectively� nuclei in the sd
shell �Papenbrock and Weidenmüller, 2006�. The corre-
lations between nearest-neighbor level spacings of the
lowest few states with different spins were evaluated as
in Eq. �17�, the ensemble average being replaced by the
running average over the set of nuclei just mentioned.

Figure 20 shows the result �displayed in the same form
as in Figs. 18 and 19�. Again, the existence of correla-
tions is established. We observe that these are particu-
larly pronounced for the lowest levels where they
amount to about 10%.

Our analysis establishes the existence of correlations
between spectra carrying different quantum numbers.
All examples were taken from the sd shell, however,
where the dimensions of the Hamiltonian matrices are
rather small �typically 102–103�. The maxima of the cor-
relators are in the 10% range. It is not clear how these
results carry over to other major shells where both the
matrix dimensions and the number of independent two-
body matrix elements are much larger. The statistical
theory of nuclear reactions is mainly used in such shells.
Therefore, definitive conclusions must wait for further
analysis.

FIG. 18. �Color online� Correlations between the level densi-
ties for states with spin 0 and spin 2 �both with T=0� in 24Mg.
Left panel: Mean value of the product of the two level densi-
ties. Middle panel: Product of the mean level densities. Right
panel: The correlator of Eq. �17� �from 400 realizations of the
ensemble�. From Papenbrock and Weidenmüller, 2006.
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IV. SUMMARY AND CONCLUSIONS

In the first part of this paper, we introduced random
matrices and the concept of �quantum� chaos. Both are
linked by the Bohigas-Giannoni-Schmit conjecture.
Random-matrix theory predicts fluctuation properties of
spectra in a parameter-free fashion. In many cases, the
fluctuation properties of nuclear spectra agree with
these predictions: The nuclear dynamics is �partly� cha-
otic. To relate this observation to known dynamical fea-
tures of spherical nuclei, we described, in the second
part, the nuclear shell model �a mean-field theory with
residual interactions�. We pointed out that shell-model
spectra also show chaos. To explain this observation, we
defined the two-body random ensemble as the generic
Gaussian random-matrix ensemble of the shell model.

In the third part, we displayed a number of properties of
that ensemble, mainly using the sd shell. We focused
attention on those properties in which the TBRE differs
from standard RMT: �i� The TBRE generically produces
chaos. Thus, chaos in nuclei is not due to a particular
feature of the residual interaction. The mechanism
which mixes the basis states of Hilbert space differs sig-
nificantly from that of canonical RMT. Chaos is due to
the building block matrices C���J ,��. In each major
shell, these matrices are fixed once and for all. They are
determined entirely by intrinsic properties of the shell
model and are independent of any particular residual
interaction. �ii� The spectra of matrices drawn at random

FIG. 19. �Color online� Same as Fig. 18 except for the corre-
lations between the level densities for states with spin 0 and
isospin 0 in 20Ne and in 24Mg. Left panel: Mean value of the
product of the two level densities. Middle panel: Product of the
mean level densities. Right panel: The correlator of Eq. �17�
�from 400 realizations of the ensemble�. From Papenbrock and
Weidenmüller, 2006.

FIG. 20. �Color online� Same as Fig. 18 except for the corre-
lations between pairs of nearest-neighbor spacings of low-lying
levels with different spins obtained by averaging over a num-
ber of nuclei in the sd shell �see text�. The indices i and j label
the spacings consecutively starting from the lowest state. Left
panel: Mean value of the product of the two spacings. Middle
panel: Product of the mean values of the two spacings. Right
panel: The correlator. From Papenbrock and Weidenmüller,
2006.
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from a canonical ensemble of RMT do not carry any
information content. Because of the role played by the
fixed matrices C���J ,��, this is not so for the TBRE. On
the contrary, it is possible to extract relevant physical
information from nuclear spectra. We have analyzed the
degree to which this can be done. �iii� The preponder-
ance of ground states with spin zero in the TBRE is, to a
large extent, due to correlations between widths of spec-
tra with different spin values. �iv� Correlations exist
more generally also between spectra carrying different
quantum numbers and in different nuclei belonging to
the same major shell. The implications of this last state-
ment have not yet been fully explored.

The examples used to illustrate or prove these asser-
tions were taken from the sd shell or from a single j
shell. The line of reasoning strongly suggests, however,
that the spectral fluctuation properties of the TBRE
agree with RMT predictions for all major shells. We con-
fined ourselves to a two-body residual interaction and to
the TBRE. It is obvious that the inclusion of three-body
forces would enhance the tendency of the system to-
wards chaotic dynamics.

Throughout most of the paper, we assumed that the
single-particle energies of subshells belonging to a major
shell are degenerate. Within this approximation, we
have shown that quantum chaos is a generic feature of
the nuclear shell model. This means that most choices of
the residual interaction will result in spectra showing
spectral fluctuations that agree with RMT predictions.
Actually, the neglect of the differences of single-particle
energies of subshells is not completely justified. The
magnitude of a typical two-body matrix element which
mixes different subshells is comparable with the differ-
ence of the corresponding single-particle energies. The
resulting incomplete mixing of many-body states within
a major shell reveals itself in slight deviations from RMT
predictions �Zelevinsky et al., 1996�. Moreover, the re-
sidual interaction is far too weak to thoroughly mix ad-
jacent major shells. This is why shell structure remains
the hallmark of nuclear physics, in spite of quantum
chaos. It is in that sense that spherical nuclei display
only partial quantum chaos.

Low-lying states in spherical nuclei often display regu-
lar features. This statement is not at variance with our
conclusions. Indeed, chaos manifests itself mainly in the
fluctuation properties of spectra. These are defined in
terms of statistical measure tests of which require a large
number of levels with identical quantum numbers. The
regular features refer to the properties of a small num-
ber of levels in the ground-state domain which carry dif-
ferent quantum numbers. The properties of these levels
may be particularly sensitive to a specific component of
the two-body interaction. Modeling the entire residual
interaction in terms of these components may give rise
to regular motion.

Our discussion has been confined to spherical nuclei.
Nuclei with mass numbers lying in the middle of large
major shells �like the rare-earth nuclei� cannot be suc-
cessfully described in terms of the spherical shell model.
The dimensions of the many-body Hilbert spaces are too

large. One uses instead collective models with a small
number of degrees of freedom. The connection between
these and the spherical shell model is not firmly estab-
lished. However, quantum chaos is prevalent in these
nuclei, too, with the exception of cases of distinct sym-
metries �Alhassid and Whelan, 1991�.

There are several open questions and directions for
future research. �i� We are still lacking a deeper analyti-
cal understanding of the TBRE and its fluctuation prop-
erties. An analytical approach must be based on proper-
ties of the matrices denoted here by C���J ,��. While a
theoretical description for shells with several subshells is
probably difficult, focusing on a single j shell might sim-
plify the problem. �ii� The TBRE predicts correlations
between spectra with different quantum numbers �e.g.,
different masses, spins, or isospins� for nuclei within a
major shell. Experimental verification is difficult due to
limitations in the length and completeness of observed
nuclear spectra, but other Fermi systems might be more
accessible. �iii� The correlations between spectra with
different quantum numbers might also affect the scatter-
ing matrix, more precisely, such correlations might in-
duce correlations among S-matrix elements carrying dif-
ferent total spin quantum numbers. The present analysis
of fluctuating cross sections in compound nuclei neglects
any such correlations. A better understanding of this
problem would be highly desirable.

Nuclear spectroscopy is a mature field with a history
of more than 50 years. In spite of this fact it continues to
offer great challenges. We have addressed one of them:
the way chaos is induced by the two-body interaction of
the shell model, an interaction which is at the same time
responsible for the many regular features seen in nuclei.
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