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I. INTRODUCTION

It is an old idea that unification of the fundamental
forces may be related to the existence of extra dimen-
sions of space-time. Its first successful realization ap-
pears in the works of Kaluza �1921� and Klein �1926�,
which postulated a fifth dimension of space-time, invis-
ible to everyday experience.

In this picture, all physics is described at a fundamen-
tal level by a straightforward generalization of general
relativity to five dimensions, obtained by taking the met-
ric tensor g�� to depend on five-dimensional indices �
=0,1 ,2 ,3 ,4, and imposing general covariance in five di-
mensions. Such a theory allows five-dimensional
Minkowski space-time as a solution, a possibility in evi-
dent contradiction with experience. However, it also al-
lows many other solutions with different or less symme-
try. As a solution which could describe our Universe,
consider a direct product of four-dimensional
Minkowski space-time, with a circle of constant period-
icity, which we denote as 2�R. It is easy to check that at
distances r�R, the gravitational force law reduces to
the familiar inverse square law. Furthermore, at energies
E� � /Rc, all quantum-mechanical wave functions will
be independent of position on the circle, and thus if R is
sufficiently small �in 1926, subatomic�, the circle will be
invisible.

The point of saying this is that the five-dimensional
metric g��, regarded as a field in four dimensions, con-
tains additional, nonmetric degrees of freedom. In par-
ticular, the components g�5 transform as a vector field,
which turns out to obey the Maxwell equations in a
curved background. Thus one has a unified theory of
gravitation and electromagnetism.

The theory contains one more degree of freedom, the
metric component g55, which parametrizes the radius R
of the extra-dimensional circle. Since the classical Ein-
stein equations are scale invariant, in the construction as
described, there is no preferred value for this radius R.
Thus Kaluza and Klein simply postulated a value for it
consistent with experimental bounds.

Just like the other metric components, the g55 compo-
nent is a field which can vary in four-dimensional space-
time in any way consistent with the equations of motion.
We discuss these equations of motion in detail later, but
their main salient feature is that they describe a �non-
minimally coupled� massless scalar field. We might ex-
pect such a field to lead to physical effects just as impor-
tant as those of the Maxwell field we were trying to
explain. Further analysis bears this out, predicting ef-
fects such as new long-range forces, or time dependence
of parameters, in direct conflict with observation.

All this would be a historical footnote were it not for
the discovery, which emerged over the period 1975–
1985, that superstring theory provides a consistent quan-
tum theory of gravity coupled to matter in ten space-
time dimensions �Green et al., 1987a, 1987b�. At
energies that are low compared to its fundamental scale
�the string tension�, this theory is well described by ten-
dimensional supergravity, a supersymmetric extension of
general relativity coupled to Yang-Mills theory. But the
nonrenormalizability of that theory is cured by the ex-
tended nature of the string.

Clearly such a theory is a strong candidate for a
higher dimensional unified theory of the type postulated
by Kaluza and Klein. Around 1985, detailed arguments
were made, most notably by Candelas et al. �1985�, that
starting from the heterotic superstring theory one could
derive supersymmetric grand unified theories �GUTs� of
the general class which, for completely independent rea-
sons, had already been postulated as plausible exten-
sions of the Standard Model up to very high energies.
This construction, the first quasirealistic string compac-
tification, took ten-dimensional space-time to be a direct
product of four-dimensional Minkowski space-time, with
a six-dimensional Ricci flat manifold, one of the so-
called Calabi-Yau manifolds. Performing a Kaluza-
Klein-type analysis, one obtains a four-dimensional
theory unifying gravity with a natural extension of the
Standard Model, from a single unified theory with no
free parameters.

However, at this point, the problem we encountered
above rears its ugly head. Just like the classical Einstein-
Maxwell equations, the classical supergravity equations
are scale invariant. Thus if we can find any solution of
the type we just described, by rescaling the size R of the
compactification manifold, we can obtain a one-
parameter family of solutions, differing only in the value
of R. Similarly, by making a rescaling of R with a weak
dependence on four-dimensional position, one obtains
approximate solutions. Thus again R corresponds to a
massless field in four dimensions, which is again in fatal
conflict with observation.

In fact, the situation is even worse. Considerations we
will discuss show that typical solutions of this type have
not just one but hundreds of parameters, called moduli.
Each will lead to a massless scalar field, and its own
potential conflict with observation. In addition, the inter-
action strength between strings is controlled by another
massless scalar field, which by a long-standing quirk of
terminology is called the dilaton. Since this field is
present in all string theories and enters directly into the
formulas for observable couplings, many proposals for
dealing with the other moduli problems, such as looking
for special solutions without parameters, founder here.

On further consideration, the moduli are tied up with
many other interesting physical questions. The simplest
of these is the following: Given the claim that all of
known physics can arise from a fundamental theory with
no free parameters, how do the particular values we ob-
serve for the fundamental parameters of physics, such as
the electron mass or the fine-structure constant, actually

734 Michael R. Douglas and Shamit Kachru: Flux compactification

Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007



emerge from within the theory? This question has al-
ways seemed to lie near the heart of the matter and has
inspired all sorts of speculations and numerological ob-
servations.

This question has a clear answer within superstring
theory, and the moduli are central to this answer. The
answer may not be to every reader’s liking, but let us
come back to this in due course.

To recap, we now have a problem, a proliferation of
massless scalar fields; and a question, the origin of fun-
damental parameters. Suppose we ignore the dynamics
of the massless scalar fields for a moment, and simply
freeze the moduli to particular values, in other words,
restrict attention to one of the multiparameter family of
possible solutions in an ad hoc way. Now, if we carry out
the Kaluza-Klein procedure on this definite solution, we
will be able to compute physical predictions, including
the fundamental parameters. Of course, the results de-
pend on the details of the assumed solution for the extra
dimensions of space, and the particular values of the
moduli.

Returning to the problem of the massless scalar fields,
a possible solution begins with the observation that the
equations of motion of general relativity and supergrav-
ity are scale invariant only at the classical level. Defining
a quantum theory of gravity �in more than two space-
time dimensions� requires introducing a preferred scale,
the Planck scale, and thus there is no reason that the
quantum theory cannot prefer a particular value of R, or
of the other moduli. Indeed, this can be demonstrated
by simple considerations in quantum field theory. For
example, given a conducting cavity, even one containing
vacuum, one can measure an associated Casimir energy,
which depends on its size and shape. This agrees with
the theoretically predicted vacuum energy of the zero-
point fluctuations of the quantum electromagnetic field.
Very similar computations show that a quantum field in
a compactified extra dimensional theory will have a Ca-
simir energy which depends on the size and other
moduli parameters of the extra dimensions, and which
contributes to the four-dimensional stress-energy tensor.

In a more complete treatment, this Casimir energy
would be the first term in a systematic expansion of the
quantum vacuum energy, to be supplemented by higher-
order perturbative and nonperturbative contributions.
In higher dimensional theories, it is also possible to turn
on background field strengths in the extra dimensions
without breaking Lorentz invariance, and these contrib-
ute to the vacuum energy as well. All of these effects can
be summarized in an effective potential, defined as the
total vacuum energy, considered as a function of as-
sumed constant values for the moduli fields.

We now work on the assumption that this effective
potential, defined in precise analogy to the effective po-
tentials of conventional quantum field theory and many-
body physics, can be used in a very similar way: to de-
termine the possible �metastable� vacuum states of the
theory, as the local minima of the effective potential.
Any configuration not at such a minimum will roll down
to one, converting its excess potential energy into other

entropically favored forms, such as radiation. This argu-
ment is very general and applies to all known physical
systems with many degrees of freedom; it is widely ac-
cepted in cosmology as well, so there is no evident rea-
son not to accept it in the present context.

Almost all effective potentials for systems in the real
world have more than one local minimum. The conse-
quences of this fact depend on the time scales of transi-
tions between minima �quantum or thermally induced�
compared to the time scales under study. If transitions
proceed rapidly, the system will find the global minimum
of the potential, and if this changes upon varying param-
eters, the system undergoes a phase transition. On the
other hand, if transitions between vacua proceed slowly,
local minima are effectively stable, and one speaks of a
system with multiple configurations. Both phenomena
are ubiquitous; examples of extremely long-lived meta-
stable configurations include most organic molecules
�which “decay” to hydrocarbons and carbon dioxide�,
and all nuclei except 62Ni, the nucleus which minimizes
the binding energy per nucleon.

The structure of effective potentials responsible for
multiple minima, metastability, and transitions is central
to a good deal of real world physics and chemistry. Al-
though details are always essential, there are also prin-
ciples which apply with some generality, which make up
the theory of energy landscapes �Wales, 2003�. The pic-
turesque term “landscape” actually originated in evolu-
tionary biology �Wright, 1932�.

For reasons we will discuss in Sec. II, string vacua with
small positive cosmological constant, as would fit
present astronomical observations, are believed to be
metastable and extremely long-lived even compared to
cosmological time scales. Thus if we find multiple local
minima of the effective potentials derived from string/M
theory compactification, the appropriate interpretation
is that string/M theory has multiple configurations, the
vacua.

Now, ever since the first studies of string compactifi-
cation, it has appeared that choices were involved, at the
very least the choice of compactification manifold, and
other discrete choices, leading to multiple vacua. How-
ever, it was long thought that this might be an artifact of
perturbation theory, or else not very interesting, as the
constraints of fitting the data would pick out a unique
candidate solution. While occasional suggestions to the
contrary were made, as done by Banks �1995b�, Smolin
�1997�, Schellekens �1998�, and Linde �2005�, these were
not supported by enough evidence to attract serious at-
tention.

This has changed in recent years, as increasingly de-
tailed arguments have been developed for the existence
of a large number of candidate vacua within string/M
theory. �The bulk of our review will be devoted to these
arguments, so we defer the references to there.� These
vacua realize different values of the cosmological term,
enabling an “anthropic” solution of the cosmological
constant problem, along the lines set out by Banks
�1984�, Weinberg �1987�, Bousso and Polchinski �2000�,
and Linde �2005�, which can naturally accomodate the
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growing evidence for dark energy �see Copeland et al.
�2006� for a recent overview�.

Does anything pick out one or a subset of these vacua
as the preferred candidates to describe our Universe?
At this point, we do not know. But, within the consider-
ations discussed in this review, there is no sign that any
of the vacua are preferred. So far as we know, any suf-
ficiently long-lived vacuum which fits all the data, includ-
ing cosmological observations, is an equally good candi-
date to describe our Universe. This is certainly how we
proceed in analogous situations in other areas of physics.
The analogy leads to the term landscape of string vacua
and a point of view in which we are willing to consider a
wide range of possibilities for what selected our vacuum.
Indeed, an extreme point of view might hold that, de-
spite the evident centrality of this choice to all that we
will ever observe, nevertheless, it might turn out to be
an undetermined, even random choice among many
equally consistent alternatives.

Of course, such a claim would be highly controversial.
And, while in our opinion the idea must be taken very
seriously, it is far outrunning the present evidence.
String/M theory is a theory of quantum gravity, and
given our present limited understanding both of general
principles of quantum gravity and of its microscopic
definition, it is too early to take any definite position
about such claims. Rather, in this review, we will try to
state the evidence from various sides. To start with, since
there is as yet no precise definition of the effective po-
tential in string theory, we need to state our working
definition, and justify it within our present understand-
ing of the theory. Then, there are important differences
between other physical theories and quantum gravity,
which suggest various speculations about why some of
the vacua which appear consistent at the level of our
discussion, actually should not be considered. Another
point in which quantum gravity plays an essential role is
the idea that early cosmology leads to a “measure fac-
tor,” an a priori probability distribution on the vacua
which must be taken into account in making predictions.

We discuss all of these points in Sec. III. While point-
ing out many incomplete aspects of the theory, whose
development might significantly change our thinking, we
conclude that at present there is no clear evidence
against, or well-formulated alternative to, the null hy-
pothesis which states that each of these vacua is a priori
a valid candidate to describe our Universe. In fact, many
of the suggested alternatives, at least within the general
framework of string theory, would themselves require a
significant revision of current thinking about effective
field theory, quantum mechanics, or inflationary cosmol-
ogy. Compared to these, the landscape hypothesis ap-
pears to us to be a fairly conservative option. We argue
as well that it can lead to testable predictions, perhaps
by finding better selection principles, or perhaps by
thinking carefully about the situation as it now appears.

To summarize the situation, while we have a criterion
that determines preferred values for the size and other
moduli, namely, that our vacuum is a long-lived local
minimum of the effective potential, this criterion does

not determine the moduli uniquely, but instead gives us
a set of possibilities, the vacua. We make an ad hoc
choice of vacuum, and ask what physics it would predict.

To first address the fate of the moduli, while these
would still be scalar fields, they would be lifted, gaining
masses Mmoduli

2 proportional to the second derivatives of
the effective potential. In general, we would expect to
see their effects only in experiments at energies E
�Mmoduli and above. The remaining effect of this phys-
ics, referred to as moduli stabilization, is to set the pa-
rameters in the solution, which enter into physical pre-
dictions.

What values do we expect for Mmoduli? Although de-
tailed computations may not be easy, the energy scales
which enter include the Planck scale, the string tension,
and the inverse size of the extra dimensions �c /R �often
referred to as the Kaluza-Klein scale or MKK�. There is
no obvious need for lower energy scales of present-day
physics to enter, and thus it seems plausible that a de-
tailed analysis would lead to all moduli gaining masses
comparable to the new scales of string theory. In this
case, the prospects for direct observation of physical ef-
fects of the moduli would be similar to those for direct
observation of excited string modes or of the extra di-
mensions, in other words, a real possibility but not a
particularly favored one.

It is possible that some moduli might gain lower
masses and thus have more direct experimental conse-
quences. One class of observational bounds on the
masses of moduli arise from fifth-force experiments;
these are important for masses less than about 10−3 eV.
A stronger bound comes from cosmology; masses up to
10 TeV or more are constrained by the requirement that
energy trapped in oscillations of the moduli fields should
relax before primordial nucleosynthesis �de Carlos et al.,
1993; Banks et al., 1994�. Both bounds admit loopholes,
and thus this possibility is of interest for phenomenol-
ogy.

How does one compute the effective potential in
string theory? For a long time, progress in this direction
was slow, due to the belief that in the compactifications
of most interest the effective potential would arise en-
tirely from nonperturbative effects. This brought in the
attractive possibility of using asymptotic freedom and
dimensional transmutation to solve the hierarchy prob-
lem �Witten, 1981a�, but also the difficulty that such ef-
fects could only be computed in the simplest of theories.

Other possibilities were occasionally explored. A par-
ticularly simple one is to turn on background magnetic
fields �or generalized p-form magnetic fields� in extra
dimensions. These contribute the usual B2 term to the
energy, but since they transform as scalars in the observ-
able four dimensions this preserves Poincaré symmetry,
and thus such configurations still count as vacua. Fur-
thermore, writing out the B2 term in a curved back-
ground, one sees that it depends nontrivially on the met-
ric and thus on the moduli, and thus it is an interesting
contribution to the effective potential for moduli stabi-
lization. However, while this particular construction,
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usually called the flux potential, is simple, the lack of
understanding of other terms in the effective potential
and of any overall picture inhibited work in this direc-
tion.

Over the last few years, this problem has been solved,
by combining this simple idea with many others: the
concepts of superstring duality, other techniques for
computing nonperturbative effects such as brane instan-
tons, and mathematical techniques developed in the
study of mirror symmetry, to compute a controlled ap-
proximation to the effective potential in a variety of
string and M theory vacua. The basic result is that these
effective potentials can stabilize moduli and lead to su-
persymmetry breaking with positive cosmological con-
stant, as is required to get a vacuum which could de-
scribe our Universe. One can go on to get more detailed
results, with applications in particle physics and cosmol-
ogy which we will discuss.

We have now finished the nontechnical summary of
the basic material covered in this review, and turn to an
outline. In Sec. II, we assume a general familiarity with
particle physics concepts, but not necessarily with string
theory. Thus we begin with an overview of the basic in-
gredients of the different ten-dimensional �10D� string
theories, and the known types of compactification. We
then discuss some of the data needed to specify a
vacuum, such as a choice of Calabi-Yau manifold, and a
choice of moduli. We then explain in general terms how
the fluxes can be expected to induce potentials for
moduli of the extra dimensions. Finally, we describe
some applications of flux vacua: to the cosmological con-
stant problem, to particle physics, and to early cosmol-
ogy.

In Sec. III, we begin to assume more familiarity with
string theory, and critically examine the general frame-
work used in the rest of the paper: that of 10D and 4D
effective field theory �EFT�. While our present day un-
derstanding of physics fits squarely into this framework,
there are conceptual reasons to worry about its validity
in a theory of quantum gravity.

In Sec. IV, we turn to detailed constructions of flux
vacua. These include the simplest constructions which
seem to fix all moduli, in both the IIb and IIa theories.
We also comment on recent progress, which suggests
that there are many extensions of these stories to un-
earth.

It will become clear, from both the general arguments
in Sec. II and concrete examples in Sec. IV, that the
number of apparently consistent quasirealistic flux vacua
is very large, perhaps greater than 10500. Therefore we
need to use statistical reasoning to survey broad classes
of vacua. In Sec. V, we describe a general framework for
doing this, and give an overview of the results.

We conclude with a discussion of promising directions
for further research in Sec. VI.

II. A QUALITATIVE PICTURE

We begin by briefly outlining the various known
classes of quasirealistic compactifications, to introduce

terminology, give the reader a basic picture of their
physics, and explain how observed physics �the Standard
Model� is supposed to sit in each. A more detailed dis-
cussion of each class will be given in Sec. IV, while far
more complete discussions can be found in Green et al.
�1987a, 1987b�, Polchinski �1998a, 1998b�, Johnson
�2003�, and Zwiebach �2004�.

We then introduce the mathematics of compactifica-
tion manifolds, particularly the Calabi-Yau manifolds, to
explain why moduli are more or less inevitable in these
constructions. Even more strikingly, this mathematics
suggests that the number of types of matter in a typical
string/M theory compactification is of the order of hun-
dreds or thousands, far more than the 15 or so �counting
the quarks, leptons, and forces� observed to date. Thus a
central problem in string compactification is to explain
why most of this matter is either very massive or hidden
�so far�, and give us a good reason to believe in this
seemingly drastic exception to Occam’s razor.

In the next subsection, we explain flux compactifica-
tion, and how it solves the problem of moduli stabiliza-
tion. In particular, it becomes natural that almost all
moduli fields should be very massive, explaining why
they are not seen.

We then explain, following Bousso and Polchinski
�2000�, why flux compactifications in string theory lead
to large numbers of similar vacua with different values
of the cosmological constant, leading to an anthropic so-
lution of the cosmological constant problem. This solu-
tion depends crucially on having the many extra types of
unobserved matter we just mentioned and might be re-
garded as the justification of this generic feature of
string compactification.

Finally, we outline some of the testable consequences
this picture might lead to. These include not just observ-
able effects of the moduli, but also calculable models of
inflation, and new mechanisms for solving the hierarchy
problem of particle physics.

A. Overview of string and M theory compactification

String/M theory is a theory of quantum gravity, which
can at present be precisely formulated in several weakly
coupled limits. There are six such limits; five of these are
the superstring theories in ten space-time dimensions
�Polchinski, 1998a, 1998b�, called type IIa, type IIb, het-
erotic E8�E8, heterotic SO�32�, and type I. In addition,
there is an 11-dimensional limit, usually called M theory
�Duff, 1996�. All of these limits are described at low
energies by effective higher dimensional supergravity
theories. Arguments involving duality �Polchinski, 1996;
Bachas et al., 2002� as well as various partial nonpertur-
bative definitions �Banks, 1999; Aharony et al., 2000�
strongly suggest that this list is complete, and that all are
limits of a single unified theory.

While there is a rich theory of string/M theory com-
pactification to diverse dimensions, we focus on quasire-
alistic compactifications. These are solutions of the
theory which look to a low energy observer like a four-
dimensional approximately Minkowski space-time, with
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physics roughly similar to that of the Standard Model
coupled to general relativity. The meaning of roughly
similar will become apparent as we proceed, but re-
quires obtaining the correct gauge group, charged mat-
ter content and symmetries, as well as arguments that
the observed coupling constants and masses can arise.

Now, of the six weakly coupled limits, the type-II
theories and M theory have 32 supercharges and �at
least at first sight� do not include Yang-Mills sectors, a
problem which must be solved to get quasirealistic com-
pactifications. The other three theories have 16 super-
charges and include Yang-Mills sectors, SO�32� from the
open strings in type I, and either E8�E8 or SO�32� in
the heterotic strings. On the other hand, by ten-
dimensional supersymmetry, the only fermions with
Yang-Mills quantum numbers are the gauginos, trans-
forming in the adjoint of the gauge group. Thus we must
explain how such matter can give rise to the observed
quarks and leptons, to claim we have a quasirealistic
compactification.

We briefly discuss the important physical scales in a
compactification. Of course, one of the main goals is to
explain the observed four-dimensional Planck scale, de-
noted MP,4 or simply MP. By elementary Kaluza-Klein
reduction of D-dimensional supergravity,

MP,D
D−2� dDx�gR�D� → �VolM�MP,D

D−2� d4x�gR�4�

+ ¯ ,

this will be related to the D-dimensional Planck scale
MP,D, and the volume of the compactification manifold
Vol�M�. Instead of the volume, we define the Kaluza-
Klein scale MKK=1/Vol�M�1/�D−4�, at which we expect to
see Kaluza-Klein excitations; the relation then becomes

MP,4
2 = MP,D

D−2/MKK
D−4. �1�

In the simplest �or small extra dimension� picture, used
in the original work on string compactification, all of
these scales are assumed to be roughly equal. If the
Yang-Mills sector is also D dimensional, this is forced
upon us, to obtain an order one four-dimensional gauge
coupling; there are other possibilities as well.

1. Supersymmetry

There are many reasons to focus on compactifications
with low energy N=1 supersymmetry. From a
bottom-up perspective, supersymmetry �SUSY� suggests
natural extensions of the Standard Model such as the
minimal supersymmetric Standard Model �MSSM� �Di-
mopoulos and Georgi, 1981�, or nonminimal SSM’s with
additional fields. These models can help solve the hier-
archy problem, can explain coupling unification, can
contain a dark matter candidate, and have other attrac-
tive features. But so far, all this is only suggestive, and
these models tend to have other problems, such as re-
producing precision electroweak measurements and a
�presumed� Higgs mass MH�113 GeV. Thus many al-
ternative models which can explain the hierarchy, and

even the original “desert” scenario which postulates no
new matter below the GUT scale, are at this writing still
in play.

Since collider experiments with a good chance of de-
tecting TeV scale supersymmetry are in progress at Fer-
milab and scheduled to begin soon at Cern, the question
of what one can expect from theory has become very
timely. We have just given the standard bottom-up argu-
ments for low-energy SUSY, and these were the original
motivation for the large effort devoted to studying such
compactifications of string/M theory over the past 20
years. From this study, other top-down reasons to focus
on SUSY have emerged, having more to do with the
calculational power it provides. We summarize some of
these motivations.

First, there are fairly simple scenarios in which an as-
sumed high scale N=1 supersymmetry is broken by dy-
namical effects at low energy. In such compactifications,
supersymmetry simplifies the computation of the four-
dimensional effective Lagrangian, as powerful physical
and mathematical tools can be brought to bear. Now this
may be more a question of theoretical convenience than
principle, as in many models �such as the original GUTs�
perturbation theory works quite well at high energy.
But, within our present understanding of string/M
theory, it is quite important.

Second, as discussed in Sec. II.F.2, supersymmetry
makes it far easier to prove metastability, in other words,
that a given vacuum is a local minimum of the effective
potential. In particle physics terms, metastability is the
condition that the scalar field mass terms satisfy Mi

2�0.
Now in supersymmetric theories, there is a Bose-Fermi
mass relation MBose

2 =MFermi�MFermi−X�, where X is a
mass scale related to the scale of supersymmetry break-
ing. Thus all one needs is �MFermi � �X, to ensure meta-
stability.

At first this argument may not seem very useful, as in
many realistic models the observed fermions all have
MFermi	X. But, of course, this is why these fermions
have already been observed. Typical string compactifica-
tions have many more particles, and this type of generic-
ity argument will become very powerful.

Note that neither of these arguments refers directly to
the electroweak scale and the solution of the hierarchy
problem. As we formulate them more carefully, we will
find that their requirements can be met even if super-
symmetry is broken so far above the electroweak scale
that it is irrelevant to the hierarchy problem.

This will lead to one of the main conclusions of the
line of work we are reviewing, which is that TeV scale
supersymmetry is not inevitable in string/M theory com-
pactification. Rather, it is an assumption with good the-
oretical motivations, which should hold in some string/M
theory compactifications. In others, supersymmetry is
broken at scales which are well described by 4D effec-
tive field theory, allowing us to use these tools to control
the analysis, but SUSY is not directly relevant to solving
the hierarchy problem. A third class of models is known
in which SUSY is broken at the Kaluza-Klein �KK�
scale, and there are even arguments for models in which
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supersymmetry is broken at the string scale; see Silver-
stein �2001�.

In any case, we proceed with the assumption that our
compactification preserves d=4, N=1 supersymmetry at
the KK scale. A standard argument �Green et al., 1987b�
shows that this is related to the existence of covariantly
constant spinors on M, which is determined by its ho-
lonomy group Hol�M�. More precisely, the number of
supersymmetries in d=4 is equal to the number of su-
percharges in the higher dimensional theory, divided by
16, times the number of singlets in the decomposition of
a spinor 4 of SO�6� under Hol�M�. In the generic case of
Hol�M�	SO�6� this is zero, so to get low-energy super-
symmetry we require Hol�M��SO�6�, a condition on
the manifold and metric referred to as special holonomy.

All possible special holonomy groups were classified
by Berger �1955�, and the results relevant for supersym-
metry in d=4 are the following. For dim M=6, as is
needed in string compactification, the special holonomy
groups are U�3� and SU�3�, and subgroups thereof. The
only choice of Hol�M� for which the spinor of SO�6�
contains a unique singlet is SU�3�. Spaces which admit a
metric with this special holonomy are known as Calabi-
Yau manifolds �or threefolds, from their complex dimen-
sion�. Their existence was proven by Yau �1977�, and we
will discuss some of their properties later. One can show
that the special holonomy metric is Ricci flat, so this
choice takes us a good part of the way towards solving
the 10D supergravity equations of motion.

For dim M=7, as would be used in compactifying M
theory, the only choice leading to a unique singlet is
Hol�M�	G2. Manifolds of G2 holonomy also carry
Ricci flat metrics, and this leads to a second class of
geometric compactifications. A third class, F theory
compactification, is based on elliptically fibered Calabi-
Yau fourfolds. We defer discussion of these to Sec. IV;
physically they are closely related to certain type-IIb
compactifications.

The outcome of the discussion so far is that the three
theories with 16 supercharges and Yang-Mills sectors all
admit compactification on Calabi-Yau manifolds to d
=4 vacua with N=1 supersymmetry, and gauge groups of
roughly the right size to produce GUTs. On the other
hand, the theories with 32 supercharges have various
problems; the type-II theories seem to lead to N=2 su-
persymmetry and too small gauge groups, while M
theory on a smooth seven-dimensional manifold cannot
lead to chiral fermions �Witten, 1981b�. In fact, all of
these problems were later solved, but here we follow the
historical development.

2. Heterotic string

The starting point for Candelas et al. �1985� �CHSW�
was the observation that the grand unified groups are
too large to obtain from the Kaluza-Klein construction
in ten dimensions, forcing one to start with a theory con-
taining 10D Yang-Mills theory; furthermore, the matter

representations 5+10̄, 16, and 27 can be easily obtained

by decomposing the E8 adjoint �and not from SO�32��,
forcing the choice of the E8�E8 heterotic string.

General considerations of EFT make it natural for the
two E8’s to decouple at low energy, so in the simplest
models the Standard Model is embedded in a single E8,
leaving the other as a “hidden sector.” But what leads to
spontaneous symmetry breaking from E8 to E6 or an-
other low-energy gauge group? This comes because we
can choose a nontrivial background Yang-Mills connec-
tion on M, which we denote as V. Such a connection is
not invariant under E8 gauge transformations and thus
will spontaneously break some gauge symmetry, at the
natural scale of the compactification MKK. The remain-
ing unbroken group at low energies is the commutant in
E8 of the holonomy group of V. Simple group theory,
which is shown in an example below, implies that to re-
alize the GUT groups E6, SO�10� and SU�5�, the ho-
lonomy of V must be SU�3�, SU�4�, or SU�5�, respec-
tively.

Not only is E8 gauge symmetry breaking possible, it is
actually required for consistency. As part of the Green-
Schwarz anomaly cancellation mechanism, the heterotic

string has a three-form field strength H̃3 with a modified
Bianchi identity,

dH̃3 = �
�/4��Tr�R ∧ R� − Tr�F2 ∧ F2�� . �2�

In the simplest solutions, H̃3=0, and then consistency
requires the right-hand side of Eq. �2� to vanish identi-
cally. The solutions of Candelas et al. �1985� accomplish
this by taking the “standard embedding,” in which one
equates the E8 gauge connection on M �in one of the
two E8’s� with the spin connection �, i.e., considers an
E8 vector bundle V→M which is V=TM. In this case,
since F=R for one of the E8’s, and vanishes for the
other, Eq. �2� is trivially satisfied, and �by considerations
given in Sec. IV� so are the Yang-Mills equations.

Thus any Calabi-Yau threefold M gives rise to at least
one class of heterotic string compactifications, the
CHSW compactifications. The holonomy of V is the
same as that of M, namely, SU�3�, and thus this con-
struction leads to an E6 GUT. Below the scale MKK,
there is a 4D N=1 supersymmetric EFT governing the
light fields. In the CHSW models, these include the fol-
lowing.

• A pure E8 N=1 SYM theory, the hidden sector.

• An observable E6 gauge group. One can also make
simple modifications to V �tensoring with Wilson
lines� to accomplish the further breaking to SU�3�
�SU�2��U�1� at MKK, so typically in these models
MGUT�MKK.

• Charged matter fields. The reduction of the E8 gaugi-
nos will give rise to chiral fermions in various 4D
matter �chiral� multiplets. The adjoint of E8 decom-
poses under E6�SU�3� as
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248 = �27,3� � �27, 3̄� � �78,1� � �1,8� . �3�

Thus we need the spectrum of massless modes aris-
ing from charged matter on M in various SU�3� rep-
resentations. As explained by Green et al. �1987b�,
this is determined by the Dolbeault cohomology
groups of M; thus

n27 = h2,1�M�, n27 = h1,1�M� �4�

are the numbers of chiral multiplets in the 27 and 27
representations of E6. Since for a Calabi-Yau
manifold the Euler character �=2�h1,1−h2,1�, we
see that the search for three-generation E6 GUTs
in this framework will be transformed into a ques-
tion in topology: the existence of Calabi-Yau
threefolds with �� � =6. This problem was quickly
addressed, and quasirealistic models were con-
structed, beginning with Greene et al. �1986�; Tian
and Yau �1986�.

• Numerous gauge neutral moduli fields. The Ricci-flat
metric on the Calabi-Yau space M is far from
unique. By Yau’s theorem �Yau, 1977�, it comes in a
family of dimension 2h2,1�M�+h1,1�M�. As described
below, the parameters for this family, along with
h1,1�M� axionic partners, are moduli corresponding
to infinitesimal deformations of the complex struc-
ture and the Kähler class of M. In addition, there is
also the dilaton chiral multiplet, containing the field
which controls the string coupling, and an axion part-
ner.

• More model dependent modes arising from the �1 ,8�
in Eq. �3�. These correspond to infinitesimal defor-
mations of the solutions to the Yang-Mills field
equations, and thus are also moduli, in this case
moduli for the gauge connection V. By giving
vacuum expectation values to these scalars, one
moves out into a larger space of compactifications
with V�TM.

It should be emphasized that the CHSW models,
based on the standard embedding V	TM, are a tiny
fraction of the heterotic Calabi-Yau compactifications.
More generally, the theorem of Donaldson, Uhlenbeck,
and Yau relates supersymmetric solutions of the Yang-
Mills equations to stable holomorphic vector bundles V
over M. Many such bundles exist which are not in any
way related to TM. In this case, the Bianchi identity �2�
becomes nontrivial. Instead of solving it exactly, one can
argue that if one solves Eq. �2� in cohomology, then one
can extend the solution to all orders in an expansion in
the inverse radius of M �Witten, 1987�.

These more general models are of great interest be-
cause they allow for more general phenomenology. In-
stead of GUTs based on E6, which contain many unob-
served particles per generation, one can construct
SO�10� and SU�5� models. The technology involved in
constructing such bundles is quite sophisticated; some
state of the art constructions have appeared in Donagi et
al. �2005�, and references therein.

One can then go on to compute couplings in the EFT
at the compactification scale. Perhaps the most charac-
teristic feature of weakly coupled heterotic models is a
universal relation between the four-dimensional Planck
scale, the string scale, and the gauge coupling, which
follows because all interactions are derived from the
same closed string diagram. At tree level, this relation is

MPlanck,4
2 � MKK

2 /gYM
8/3 . �5�

Since the observed gauge couplings are order 1, this
clearly requires the extra dimensions to be very small.
Actually, if we put in the constants, this relation leads to
a well-known problem, as discussed by Witten �1996c�: If
we take a plausible grand unified coupling gYM

2 �1/25,
one finds MKK�1018 GeV which is far too large for the
GUT scale. Various solutions to this problem have been
suggested, such as large one-loop corrections to Eq. �5�
�Kaplunovsky, 1988�.

Perhaps the most interesting of these proposed solu-
tions is in the so-called heterotic M theory �Horava and
Witten, 1996; Witten, 1996c�. Arguments from super-
string duality suggest that the strong-coupling limit of
the ten-dimensional E8�E8 heterotic string is 11-
dimensional M theory compactified on an interval; the
two ends of the interval provide ten-dimensional end of
the world branes each carrying an E8 super-Yang-Mills
theory. In this theory, while much of the previous discus-
sion still applies, Eq. �5� is drastically modified.

Finally, there are “nongeometric” heterotic string con-
structions, based on world-sheet conformal field theory,
such as Kawai et al. �1986, 1987�, Antoniadis et al. �1987�
and Narain et al. �1987�. In some cases these can be ar-
gued to be equivalent to geometric constructions �Gep-
ner, 1987�.

3. Brane models

Following the same logic for type-II theories leads to
N=2 supersymmetric theories. Until the mid 1990s, the
only known way to obtain N=1 supersymmetry from
type-II models was through “stringy” compactifications
on asymmetric orbifolds �Narain et al., 1987�. A power-
ful theorem from Dixon et al. �1987� demonstrated that
this would never yield the Standard Model, and effec-
tively ended the subject of type-II phenomenology for
eight years.

After the discovery of Dirichlet branes �Polchinski,
1995� this lore was significantly revised, and quasirealis-
tic compactifications can also arise in both type-IIa and
type-IIb theories. A recent review with many references
appears in Blumenhagen, Cvetic, et al. �2005�. Since flux
compactifications are presently most developed in this
case, we need to discuss it in some detail.

Dirichlet branes provide a new origin for non-Abelian
gauge symmetries �Witten, 1996a�. Furthermore, inter-
secting branes �or branes with world-volume fluxes� can
localize chiral matter representations at their intersec-
tion locus �Berkooz et al., 1996�. And finally, an appro-
priate choice of D-branes can preserve some but not all
of the supersymmetry present in a type-II compactifica-
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tion. Thus type-II strings on Calabi-Yau manifolds, with
appropriate intersecting brane configurations, can give
rise to chiral N=1 supersymmetric low-energy EFTs.

There are three general classes of type-II N=1 brane
compactifications on Calabi-Yau manifolds:

• IIa orientifold compactifications with D6 branes;

• IIb orientifold compactifications with D7 and D3
branes;

• generalized type-I compactifications; in other words,
IIb orientifold compactifications with D9 and D5
branes.

After the choice of Calabi-Yau, a particular compactifi-
cation is specified by a choice of orientifold projection
�Gimon and Polchinski, 1996�, and a choice of how the
various Dirichlet branes are embedded in space-time.
Each of the branes involved is space filling, meaning that
they fill all four Minkowski dimensions; the remaining
spatial dimensions �p−3 for a Dp-brane� must embed in
a supersymmetric cycle of the compactification manifold
�discussed in Sec. IV�. Finally, since Dirichlet branes
carry Yang-Mills connections, just as in the heterotic
construction one must postulate background values for
these fields. The nature of this last choice depends on
the class of model; it is almost trivial for IIa �where su-
persymmetry conditions require a flat connection on the
internal space, in the simplest cases�, and for the gener-
alized type-I model with D9 branes one uses essentially
the same vector bundles as in the heterotic construction,
while in the IIb model with D7 and D3 branes, the num-
ber of choices here are intermediate between these ex-
tremes.

In a full analysis, a central role is played by the so-
called tadpole conditions. We go into more detail about
one of these �the D3 tadpole condition� later. These con-
ditions have more than one physical interpretation. In a
closed string language, they express the condition that
the total charge on the compactification manifold, in-
cluding Dirichlet branes, orientifold planes, and all other
sources, must vanish, generalizing the Gauss’s law con-
straint that the total electric charge in a closed universe
must vanish. In an open string language, they are related
to anomalies, and generalize the condition �2� related to
anomaly cancellation in heterotic strings. In any case, a
large part of the general problem of finding and classi-
fying brane models is to list the possible supersymmetric
branes, and then to find all combinations of such branes
which solve the tadpole conditions.

The collection of all of these choices �orientifold, Di-
richlet branes, and vector bundles on branes� is directly
analogous to and generalizes the choice of vector bundle
in heterotic string compactification. In some cases, such
as the relation between heterotic SO�32� and type-I
compactification, there is a precise relation between the
two sets of constructions, using superstring duality.
There are also clear relations between the IIa and both
IIb brane constructions, based on T-duality and mirror
symmetry between Calabi-Yau manifolds.

Predictions of the generic brane model are rather dif-
ferent from heterotic models. Much of this is because
the relation between the fundamental scale and the
gauge coupling, analogous to Eq. �5�, takes the form

gYM
2 = gsls

p−3/VolX ,

where ls is the string length and VolX is the volume of
the cycle wrapped by the particular branes under con-
sideration. Since a priori volumes of cycles have no di-
rect relation to the total volume of the compactification
manifold, one can have many more possible scenarios
for the fundamental scales in these theories, including
large extra dimension models. A related idea is that the
branes responsible for the observed �Standard Model�
degrees of freedom can be localized to a small subregion
of the compactification manifold, allowing its energy
scales to be influenced by “warping” �Randall and Sun-
drum, 1999a�.

Even if one has small extra dimensions, coupling uni-
fication is generally not expected in brane models. This
is because the different gauge groups typically arise
from stacks of branes wrapping different cycles, with dif-
ferent volumes, so the couplings have no reason to be
equal.

To conclude this overview, we mention two more
classes of compactification which can be thought of as
strong-coupling limits of brane constructions, and share
many of their general properties. First, there are com-
pactifications of M theory on manifolds of G2 holonomy;
these are related to IIa compactification with D6-branes
by following the general rules of IIa-M theory duality.
Second, there are F theory compactifications on ellipti-
cally fibered fourfolds; these can be obtained as small
volume limits of M theory on Calabi-Yau fourfolds
�where one shrinks the volume of the elliptic fiber�, and
are simply an alternative description of IIb compactifi-
cation with D7 and D3 branes �and a dilaton which var-
ies over internal dimensions�. Both of these more gen-
eral classes have duality relations with heterotic string
constructions, so that �in a still only partially understood
sense� all N=1 compactifications are connected via su-
perstring dualities, supporting the general idea that all
are describing vacuum states of a single all-
encompassing theory.

B. Moduli fields

In making any of the string compactifications just de-
scribed, in order to solve the Einstein equations, we
must choose a Ricci flat metric gij on the compactifica-
tion manifold M. Now, given such a metric, it will always
be the case that the metric gij obtained by an overall
constant rescaling is also Ricci-flat, because the Ricci
tensor transforms homogeneously under a scale trans-
formation. Thus Ricci-flat metrics are never unique, but
always come in families with at least one parameter.

Now, the “universal” parameter space describing all
such metrics is by definition the moduli space of Ricci-
flat metrics. This is a manifold, possibly with singulari-
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ties, denoted as M. It can be described in terms of co-
ordinate patches; we denote a set of local coordinates as
t
 with 1	
	n.

What is the physics of this? In general treatments of
Kaluza-Klein reduction, one decomposes the
D-dimensional equations of motion as a sum of terms,
say for a massless scalar field as �,

0 = �������� + �M�� ,

where �M is the scalar Laplacian on M. One then writes
the higher dimensional field � as a sum over eigenfunc-
tions fk of �M,

��x,y� = 

k
�k�x�fk�y� . �6�

Substituting, one finds that the eigenvalues k become
the masses squared of an infinite set of fields, the
Kaluza-Klein modes.

Doing the same in the presence of moduli, we might
consider the parameters ti as undetermined, and write

�
M�R3,1

dDx�GR�D��G�t�� + �G� ,

where G�t�� is an explicit parametrized family of Ricci-
flat metrics on M, and �G are the small fluctuations
around it. We then expand �G in eigenfunctions, to find
the spectrum of the resulting EFT.

Within the space of all variations �G, there is a finite
subspace which corresponds to varying the moduli,

�G
 � �G�t��/�t
.

One can check that these variations form a basis for the
space of solutions of the linearized Einstein equation on
M. Decomposing �G�x ,y� in analogy to Eq. �6�, one
finds that each independent variation gives rise to a
massless field in the four-dimensional theory. Con-
versely, the parameters t
 can be regarded as the expec-
tation values of these massless fields.

Now, since we get a valid compactification for any par-
ticular choice of Ricci-flat metric, locality demands that
we should be able to vary this choice at different points
in four-dimensional space-time. By general principles,
such a local variation must be described by a field. The
situation is analogous to that of a spontaneously broken
symmetry. By locality, we can choose the symmetry
breaking parameter to vary in space-time, and if the pa-
rameter was continuous it will lead to a massless field, a
Goldstone mode.

However, there is a crucial difference between the two
situations. The origin of the Goldstone mode in symme-
try breaking implies that the physics of any constant
configuration of this field must be the same �since all are
related by a symmetry�. On the other hand, moduli can
exist without a symmetry. In this case, physics can and
usually will depend on their values. Thus one finds a
parametrized family of physically distinct vacua, the
moduli space M, connected by simply varying massless
fields.

While this situation is almost never encountered in
real world physics, this is not because it is logically in-
consistent. Rather, it is because in the absence of sym-
metry there is no reason the effective potential should
not depend on all fields. Thus, even if we were to find a
family of vacua at some early stage of our analysis, in
practice the vacuum degeneracy would always be bro-
ken by corrections at some later stage.

A well-known loophole to this statement is provided
by supersymmetric quantum field theories. Due to non-
renormalization theorems, such moduli spaces often per-
sist to all orders in perturbation theory or even beyond.
These theories manifest different low-energy physics at
distinct points in M, and thus provide a theoretical ex-
ample of the phenomenon discussed here.

Conversely, one might argue that, given that super-
symmetry is broken in the real world, any moduli we
find at this early stage will be lifted after supersymmetry
breaking. We will come back to this idea later, once we
have more of the picture. We will eventually argue that
while this is true, in models with low-energy supersym-
metry breaking, it is more promising to consider stabili-
zation of many of the moduli above the scale of super-
symmetry breaking. However, this is a good illustration
of the idea that it is acceptable to have moduli at an
early stage in the analysis, if they are lifted by correc-
tions to the potential at some lower energy scale. A use-
ful term for these is “pseudomoduli” �Intriligator et al.,
2006�.

Finally, whether or not the moduli play an important
role in observable physics, they are very important in
understanding the configuration space of string theory.
In particular, in many of the explicit constructions dis-
cussed above, as well as in the explicit nongeometric
constructions we briefly mentioned, one finds that ap-
parently different constructions in fact lead to vacua
which differ only in the values of moduli, and thus one
can be turned into another by varying moduli. In this
situation, there need be no direct relation between the
number of constructions and the final number of vacua
after moduli stabilization.

In early work, this point was not fully appreciated. As
a relevant example, Lerche et al. �1987� estimated the
number of lattice compactifications to be 101500. Thus
already this work raised the possibility that the number
of string vacua might be very large. However, these were
very simple vacua, either with unbroken supersymmetry
or else with uncontrolled supersymmetry breaking. At
the time, it was generally thought that the number of
quasirealistic vacua would be much smaller. An argu-
ment to this effect was that since moduli were not stabi-
lized in these models, it might be �as is now thought to
be the case� that this large number of compactifications
were simply special points contained in a far smaller
number of connected moduli spaces of vacua. Then, in
similar quasirealistic models with broken supersymme-
try and an effective potential, the number of actual
vacua would be expected to be comparable to the �per-
haps small� number of these connected moduli spaces.
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Such debates could not be resolved at that time. To
make convincing statements about the number and dis-
tribution of vacua, one needs to understand the effective
potential and moduli stabilization.

C. Calabi-Yau manifolds and moduli spaces

While our main concern is moduli spaces of Ricci-flat
metrics, we first give the reader some examples of
Calabi-Yau threefolds. We describe the simplest known
constructions, as discussed by Green et al. �1987b�.

1. Examples

The simplest example to picture mentally is the
blown-up T6 /Z3 orbifold. We start with a six-torus with a
flat metric and volume V, chosen to respect a discrete Z3
symmetry. We take three complex coordinates z1, z2,
and z3, and define the torus by

zi 	 zi + 1 	 zi + e2�i/3.

We then identify all sets of points related by the symme-
try

zi → e2�i/3zi for all i .

While this is not a manifold �it has singularities at the
27 fixed points of the group action�, one can still use it
for string compactification. One can also modify it to get
a smooth Calabi-Yau, the blown-up orbifold. This pro-
cess introduces topology at each of the fixed points; as it
turns out, a two-cycle and a four-cycle. Thus the final
result is a smooth Calabi-Yau with second Betti number
b2=dim H2�M ,R�=27. One can also show that the third
Betti number b3=2.

A second simple example is the quintic hypersurface
in P4. This is the space of solutions of a complex equa-
tion of degree five in five variables zi, such as

z1
5 + z2

5 + z3
5 + z4

5 + z5
5 = 0, �7�

where the variables are interpreted as coordinates on
complex projective space, i.e., we count the vectors
�z1 ,z2 ,z3 ,z4 ,z5� and �z1 ,z2 ,z3 ,z4 ,z5� as repre-
senting the same point, for any complex �0. One can
show that the Euler character �=−200 for this manifold
by elementary topological arguments �Green et al.,
1987b, Vol. II, 15.8�. With a bit more work, one finds all
the Betti numbers, b0=b2=b4=b6=1, and b3=204. We
omit this here, instead computing b3 by other means in
the next subsection.

The main point we take from these examples is that it
is easy to find Calabi-Yau threefolds with Betti numbers
in the range 20–300; indeed, as shown in Sec. V.D.3, this
is true of most known Calabi-Yau threefolds.

2. Moduli space: General properties

The geometry of a moduli space of Calabi-Yau mani-
folds as they appear in string theory has been described

by Candelas and de la Ossa �1990� �see also Seiberg
�1988� and Strominger �1990��. Locally, it takes a product
form,

M = MC�MK, �8�

where the first factor is associated with the complex
structure deformations of M and the second is associ-
ated with the Kähler deformations of M, complexified
by the B-field moduli.

These two factors enter into physical string compacti-
fications in rather different ways. At the final level of the
effective N=1 theory, the most direct sign of this is that
the tree level gauge couplings are controlled by a subset
of the moduli:

• MK for IIb compactifications;

• MC for IIa compactifications.

The main results needed for this section are the rela-
tions between the Betti numbers of the Calabi-Yau
manifold M and the dimensions of these moduli spaces:

b2 = dim MK, b3 = 2 dim MC + 2. �9�

The first relation follows from Yau’s theorem, and is not
hard to explain intuitively. Since the Ricci flatness con-
dition is a second-order partial differential equation, at a
linearized level, it reduces to the condition that a defor-
mation of a Ricci-flat metric must be a harmonic form.
The Kähler moduli space parametrizes deformations
which come from deforming the Kähler form, and thus
its dimension is the same as that of the space of har-
monic two-forms, which by Hodge’s theorem is b2. The
second relation can be understood similarly by relating
the remaining metric deformations to harmonic three-
forms, given a bit more complex geometry.

Mathematically, one can understand these moduli
spaces in great detail, and in principle exactly compute
many of the quantities which enter into the flux poten-
tial discussed shortly. Without going into the details of
this, we look at an example, the complex structure
moduli space of the quintic hypersurfaces just discussed.

To start note that we do not need to take the precise
equation �7� to get a Calabi-Yau manifold. In fact, a ge-
neric equation of degree five in the variables,

f�z� � 

1	i,j,k,l,m	5

cijklmzizjzkzlzm = 0, �10�

can be used. Equation �10� contains 5�6�7�8�9/5!
=126 adjustable coefficients, denoted cijklm, and varying
these produces Calabi-Yau manifolds with different
complex structures. To be precise, there is some redun-
dancy at this point. One can make linear redefinitions
zi→gi

jzj using an arbitrary 5�5 matrix gi
j, to absorb 25

of the coefficients. This leaves 101 undetermined coeffi-
cients, so dim MC=101. By Eq. �9�, this implies that the
Betti number b3=2�101+2=204.

One can continue along these lines, defining the
meaning of a “generic equation,” and taking into ac-
count the redundancy just mentioned, to get a precise
definition of the 101-dimensional moduli space MC for
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the quintic, and results for the moduli space metric, pe-
riods, and other data used in Secs. IV and V. Similar
results can be obtained for more or less any Calabi-Yau
moduli space, and many examples can be found in the
literature on mirror symmetry. While the techniques are
rather intricate, it is fair to say that at present this is one
of the better understood elements of the theory.

D. Flux compactification: Qualitative overview

Each weakly coupled limit of string/M theory has
certain preferred generalized gauge fields, which are
sourced by the elementary branes. For example, all
closed string theories �type II and heterotic� contain the
universal Neveu-Schwarz �NS� two-form potential Bij or
B2 �numerical subscripts are used to indicate the degree
of a form�. Just as a one-form Maxwell potential can
minimally couple to a point particle, this two-form po-
tential minimally couples to the fundamental string
world-sheet. At least in a quadratic �free-field� approxi-
mation, the space-time action for the B field is a direct
generalization of the Maxwell action; we define a field
strength

H3 = dB2,

in terms of which the action is

S =� d10x�g�R − �H3�ijk�H3�ijk + ¯ � ,

leading to an equation of motion

�i�H3�ijk = �jk + ¯ ,

where �jk is a source term localized on the world-sheets
of fundamental strings.

The analogy with Maxwell theory goes very far. For
example, recall that some microscopic definitions of
Maxwell theory contain magnetic monopoles, particles
which are surrounded by a two-sphere on which the to-
tal magnetic flux g=�F2 is nonvanishing. This magnetic
monopole charge must satisfy the Dirac quantization
condition, eg=2� �in units �=1�. So too, closed string
theories contain five-branes, which are magnetically
charged. A five-brane in ten space-time dimensions can
be surrounded by a three-sphere, on which the total gen-
eralized magnetic flux �H3 is nonvanishing. Again, it
must be quantized, in units of the inverse electric charge
�Nepomechie, 1985; Teitelboim, 1986�.

Besides the NS two-form, type-II string theories also
contain generalized gauge fields which are sourced by
the Dirichlet branes, denoted Cp+1 with p=0,2 ,4 ,6 for
the IIa theory, and Cp+1 with p=1,3 ,5 for the IIb theory.
We denote their respective field strengths F�p+2�; these
are not all independent but satisfy the general “self-
duality” condition

*Fp+2 = F10−p−2 + nonlinear terms.

To complete the catalog, the type-I theory has C2 �as it
has a D-string�, while M theory has a three-form poten-
tial C3, which couples to the supermembrane.

We are now ready to discuss flux compactification.
The general idea makes sense for any higher dimen-
sional theory containing a p+1 form gauge field for any
p. We denote its field strength as Fp+2.

Now, suppose we compactify on a manifold with a
nontrivial p+2 cycle �; more precisely the homology
group Hp+2�M� should be nontrivial, and � should be a
nontrivial element of homology. In this case, we consider
a configuration with a nonzero flux of the field strength,
defined by

�
�

Fp+2 = n � 0. �11�

As a simple illustration—not directly realized in string
theory—we imagine starting with Maxwell’s theory in six
dimensions, and compactifying on M=S2. In this case,
H2�S2 ,Z�	Z, and we take a generator � to be S2 itself.
Thus we claim that there exists a field configuration
whose magnetic flux integrated over S2 is nonzero. In-
deed there is; this can be seen by considering the field of
an ordinary magnetic monopole at the origin of R3, and
restricting attention to an S2 at constant radius R, to
obtain the field strength

B�� = g sin �d�d� .

While this solves Maxwell’s equations in three dimen-
sions by construction, one can easily check that such a
magnetic field actually solves Maxwell’s equations re-
stricted to S2. Thus this is a candidate background field
configuration for compactification on S2.

Note that we have defined a flux which threads a non-
trivial cycle in the extra dimensions, with no charged
source on S2. The monopole is just a pictorial device
with which to construct it. Appealing to the monopole
also allows us to call on Dirac’s argument, to see that
quantum-mechanical consistency requires the flux n to
be integrally quantized �in suitable units�.

The same construction applies for any p. Further-
more, if we have a larger homology group, we can turn
on an independent flux for each basis element �i of
Hp+2�M ,R�,

�
�i

Fp+2 = ni, �12�

where 1	 i	dim Hp+2�M ,R��bp+2, the �p+2�th Betti
number of the manifold M. In the case p=0 of Maxwell
theory, one can see that any vector of integers ni is a
possible field configuration, by appealing to the math-
ematics of vector bundles �these numbers define the first
Chern class of the U�1� bundle�. Equally precise state-
ments for p�0, or for the case in which the homology
includes torsion, are being formulated �Moore, 2003�.

Now, in Maxwell’s theory and its generalizations, turn-
ing on a field strength results in a potential energy pro-
portional to B2, the square of the magnetic field. Of
course, the presence of nontrivial E or B in our ob-
served four dimensions would imply spontaneous break-
ing of Lorentz symmetry. By contrast, we can turn on
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magnetic fluxes in the extra dimensions without directly
breaking 4D Lorentz invariance. However, there will
still be an energetic cost, now proportional to F2, the
square of the flux.

The key point now is that because the fluxes are
threading cycles in the compact geometry, this energetic
cost will depend on the precise choice of metric on M. In
other words, it will generate a potential on the moduli
space M. If this potential is sufficiently generic, then
minimizing it will fix the metric moduli.

In principle, this potential can be computed from the
standard Maxwell Lagrangian coupled to a curved met-
ric. One finds for the potential energy

V = �
M

dDy�GGijGkl�F2�ik�F2�jl

=�
M

F2 ∧ �*F2� , �13�

where G is the metric on M. The second version, in
differential form notation and where * denotes the
D-dimensional Hodge star, applies for any Fp+2 with the
replacement 2→p+2; here the metric enters in the defi-
nition of *.

Now, if we substitute for G the family of Ricci-flat
metrics G�t�� introduced in Sec. II.B, and do the inte-
grals, we get an explicit expression for V�t�, which we
can minimize. This is the definition of the flux potential;
we now have the technical problem of computing it.

At first, it is not clear that this can be done at all;
indeed we cannot even get started as no closed-form
expression is known for any Ricci-flat metric on a com-
pact Calabi-Yau manifold. In principle the computations
could be done numerically, but working with solutions of
six-dimensional nonlinear partial differential equations
is not easy either, and this approach is in its infancy
�Headrick and Wiseman, 2005; Douglas, Karp, et al.,
2006�. Fortunately, by building on many mathematical
and physical works, we now have an approach which
leads to a complete analytical solution of this problem,
as discussed in Sec. IV.

Freund-Rubin compactification. There are other
Kaluza-Klein theories in which the technical problem of
computing Eq. �13� is far simpler, and was solved well
before string theory became a popular candidate for a
unified theory. While these theories are too simple to be
quasirealistic, they serve as good illustrations. We con-
sider one here, leaving more detailed discussion to Sec.
IV.

After it was realized that nature employs non-Abelian
gauge fields, the earliest idea of 5D unification was aug-
mented. Instead, theorists considered 4+D-dimensional
theories, with D of the dimensions compactified on a
space with a non-Abelian isometry group. This leads to
a gauge group which contains the isometry group. One
can even find seven-dimensional manifolds for which
this is the Standard Model gauge group, although chiral
fermions remain a problem for this idea.

In any case, the problem of explaining how and why
extra D dimensions were stabilized in whatever configu-
ration was required to obtain 4D physics was first stud-
ied in this context. A collection of historically significant
articles on Kaluza-Klein theory can be found in Ap-
pelquist et al. �1987�.

The first serious attempt to explain the spontaneous
compactification of extra dimensions appeared in Crem-
mer and Scherk �1976�. This work was extended by Lu-
ciani �1978� and reached more or less modern form by
Freund and Rubin �1980�.

We now show how the Freund-Rubin mechanism
works by again considering six dimensions, now in
Einstein-Maxwell theory. Compactifying to four dimen-
sions on an S2, they found that inclusion of a magnetic
flux piercing the S2 allows one to stabilize the sphere.
One can understand this result by a scaling argument;
such arguments are discussed in Giddings �2003�, Silver-
stein �2004b�, and Kachru et al. �2006�. We start with a
6D Einstein/Yang-Mills Lagrangian

S =� d6x�− G6�R6 − �F2�2� , �14�

where all dimensions are made up with powers of the
fundamental scale M6. We then consider reduction to
four dimensions on a sphere of radius R:

ds2 = ���dx�dx� + R2gmn�y�dymdyn, �15�

where m ,n run over the two extra dimensions and g is
the metric on a two-sphere of unit radius. We then
thread the S2 with N units of F2 flux,

�
S2

F2 = N . �16�

In the 4D description, R�x� should be viewed as a
field. Naively reducing, we find a Lagrangian where
R2�x� multiplies the curvature tensor R4. To disentangle
the graviton kinetic term from the kinetic term for the
modulus R�x�, we perform a Weyl rescaling. After this
rescaling, we find an effective potential with two
sources.

First, before Weyl rescaling, the 6D Einstein term
would contribute to the action a term proportional to
the integrated curvature of S2, i.e., the Euler character.
In particular, positive curvature makes a negative contri-
bution to the potential. After rescaling, this term is no
longer constant; instead it scales like −R−4.

In addition, the N units of magnetic flux through S2

contribute the positive energy described in Eq. �13�. By
flux quantization, F2�N /R2, while the integral over the
internal space contributes a factor of R2. Therefore the
flux potential scales like N2 /R6. The dimensions are
made up by powers of the fundamental scale, in terms of
which the flux quantum is defined.

Thus the total potential as a function of R�x� takes the
form
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V�R� � N2/R6 − 1/R4. �17�

It is not hard to see that this function has minima where
R�N. So with moderately large flux, one can achieve
radii which are large in fundamental units, and curva-
tures which are small, justifying the use of supergravity.

Strictly speaking, the original Freund-Rubin vacua are
not compactifications which yield lower-dimensional
EFT’s. The vacuum energy following from Eq. �17� is
negative, and gives rise to a 4D curvature scale compa-
rable to the curvature of S2. Therefore 4D effective field
theory is not obviously a valid approximation scheme in
these vacua. It is plausible, however, that by using more
complicated manifolds and tuning parameters to de-
crease the 4D vacuum energy one could use the Freund-
Rubin idea to obtain quasirealistic vacua �Acharya et al.,
2003�.

E. A solution of the cosmological constant problem

Einstein’s equations, relating the curvature of space-
time to the stress energy of matter, admit an additional
term on the right-hand side,

gij = 8�GN�Tij + �gij� .

The additional cosmological constant term � is a
Lorentz-invariant vacuum energy and is believed to be
generically present in any theory of quantum gravity; it
receives corrections from known quantum effects �some-
what analogous to the Casimir effect� at least of order
�100 GeV�4. On the other hand, elementary consider-
ations in cosmology show that any value �� ��1 �eV�4 or
so is in violent contradiction with observation. More re-
cently, there is observational evidence of various types
�the acceleration of the expansion of the Universe; and
detailed properties of the cosmic microwave background
spectrum� which can be well fit by assuming �
�10−10 �eV�4�0.

This is by now a very long-standing question with
which most readers will have some familiarity; we refer
to Weinberg �1989�, Carroll �2001�, Padmanabhan
�2003�, and Nobbenhuis �2004� for introductory over-
views, and the history of the problem. A recent discus-
sion from the same point of view we take here is in
Polchinski �2006�, along with general arguments against
many of the other approaches which have been taken
towards the problem.

One approach which cannot be ruled out on general
grounds is to simply assert that the fundamental theory
contains the small observed parameter �. More pre-
cisely, the large quantum contributions �q from all types
of virtual particles �known and unknown� are almost
precisely compensated by an adjustable bare cosmologi-
cal constant �bare�−�q. However, besides being unes-
thetic, this idea cannot be directly realized in string/M
theory, which is formulated without free parameters.
Rather, to address this problem, we must find out how to
compute the vacuum energy, and argue that the energy
of the vacuum we observe takes this small value.

Taken purely as a problem in microscopic physics, the
prospects for accurately computing such a small vacuum
energy seem very distant; furthermore, it seems very un-
likely that any vacuum would exhibit remarkable cancel-
lations between large known contributions to the
vacuum energy, and unknown contributions, required to
make such an argument. But here is precisely the loop-
hole; what is indeed very unlikely for a single vacuum,
can be a likely property for one out of a large set of
vacua.

Simple toy models in which this is the case were pro-
posed by Abbott �1985� and Banks et al. �1991�. The
general idea is to postulate a potential with a large num-
ber of roughly equally spaced minima, for example,

V��� = a� − b sin � + �q

�with b�0� whose minima �= �2n+1/2�� have energies
�n=�q+2�an−b. Thus if a is very small, then no matter
what value �q takes, at least one minimum will realize
the small observed �. By postulating more terms, one
can even avoid having to postulate a small number a
�Banks et al., 1991�. For example, consider

V��� = E1sin�a1� + b1� + E2sin�a2� + b2� + �q.

The reader may enjoy checking that if the ratio a1 /a2 is
irrational, any � �within the range �q±E1±E2� can be
approximated to any desired accuracy.

While in EFT terms these models might be reason-
able, the actual potentials arising from string/M theory
compactification appear not to take this form. Besides
verifying this in explicit expressions, there is a concep-
tual problem. This is that these models assume that the
field � can take extremely large values, of order 1/�.
However, taking a modulus � to be so large, implies that
the Calabi-Yau manifold is decompactifying, or under-
going some similar limit. In such a limit, the potential
can be computed more directly and does not take the
required form.

However, there is another mechanism for producing
potentials with large numbers of minima, introduced by
Bousso and Polchinski �2000�, which relies on having a
very large number of degrees of freedom.1 We consider
a toy model of flux compactification, where there are N
different p cycles in the compact geometry that may be
threaded by the flux of some p-form field F,

�
�i

F = ni, i = 1, . . . ,N . �18�

Let us also assume a simple ad hoc cutoff on allowed
values of the fluxes, of the form



i

ni
2	 L , �19�

where L is some maximal amount of flux. One can view
Eq. �19� as a toy model of the more complicated tadpole
conditions that arise in real string models. Finally, we

1This idea was anticipated in Sakharov �1984�.
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assume that for each value of the fluxes F the resulting
potential function for moduli admits a minimum with
energy

V � − V0 + cini
2. �20�

Here we take ci to be distinct order 1 constants, while
−V0 is assumed to be a large fixed negative energy den-
sity, for example, representing the quantum contribution
to the cosmological constant �q discussed earlier.

A striking fact follows from these simple assumptions
and known facts about compactification topologies—the
number of vacua will be huge. As discussed, typical
Calabi-Yau threefolds have Betti numbers of order 100.
For a space with N=100 and L=100, Eq. �19� indicates
that the number of vacua can be approximated by the
volume of a sphere of radius �L�10 in a 100-
dimensional space. This is roughly �50/50!�10100

�1060. Here it was important that �L is much larger
than the unit of flux quantization, so that one can ap-
proximate the number of possible flux choices by com-
puting the volume in flux space of the region defined by
Eq. �19�.

We justify this toy model in Secs. IV and V, by show-
ing that the real counting of flux vacua—while differing
in details—is similar, that classes of vacua with signifi-
cantly larger N and L exist, and that for a sufficiently
large fraction of the flux choices, one has controlled ap-
proximations in which the vacua exist.

We consider the cosmological constant in this model.
In a vacuum with flux vector ni this will be given by Eq.
�20�. Thinking of the quadratic term in Eq. �20� as defin-
ing a squared distance from the origin in N-dimensional
space, we see that to have a small vacuum energy of
order �, a flux vacuum must sit within a shell bounded by
two ellipsoids, of radius �V0 and �V0+�. �These are el-
lipsoids because ci are not all equal, though we assume
them all to be O�1�.�

As argued by Bousso and Polchinski �2000�, if the
number of vacua exceeds �10120, this shell is populated
by some choices of flux. The simplest argument for this
is that, given that the fluxes ni and the postulated coef-
ficients ci are independent, we can expect the values of
the vacuum energy attained by Eq. �20� to be roughly
uniformly distributed over scales much smaller than the
coefficients ci. Thus in a set of Nvac vacua, we might
expect the typical level spacing to be 1/Nvac, and that a
vacuum energy of order 1/Nvac will be realized by at
least one vacuum. We make more precise arguments in
Sec. V.

Thus this toy model can explain why at least some
vacua exist with the very small cosmological constant
consistent with observation. Furthermore, the essential
features of the toy model, namely, a very large number
of vacua with widely distributed vacuum energies, distin-
guished by the values of hundreds of microscopic pa-
rameters, seem to be shared by more realistic stringy
flux compactifications. This energy landscape of poten-
tial string vacua has been called the string landscape

�Susskind, 2003�; a detailed discussion has been given by
Susskind �2005�.

Anthropic selection. Suppose we grant that a few, rare
vacua will have small �. How do we go on to explain
why we find ourselves in such a vacuum?

There have been many attempts to find dynamical
mechanisms which prefer small � solutions �including
relaxation mechanisms �Brown and Tietelboim, 1987,
1988; Feng et al., 2001; Steinhardt and Turok, 2006�,
peaking of the wave function of the Universe �Hawking,
1984; Coleman, 1988�, and many others �Rubakov, 2000;
Itzhaki, 2006��. Each seems in some sense problematic:
for instance, the relaxation proposals typically suffer
from an empty universe problem, whereby they favor
completely empty vacuum solutions with small �, in-
compatible with our cosmological history. For a detailed
discussion of dynamical selection mechanism problems,
and possible loopholes, see Polchinski �2006�.

Without a dynamical selection mechanism, one can try
anthropic criteria to explain why we inhabit a vacuum
with small �. A better term for the generally accepted
criteria of this type is selection effect; in other words, we
take the fact that the circumstances of a particular ex-
periment or observation might skew the distribution of
observed outcomes, and apply it to the problem of why
we observe our Universe instead of another.

In practice, what is meant by this is an argument
which focuses on some macroscopic property of our
Universe, and derives constraints on microphysics by re-
quiring the microphysics to be consistent with the mac-
roscopic phenomenon. The most famous example, is the
argument of Weinberg �1987� that the existence of struc-
ture �i.e., galaxies� puts stringent bounds on the magni-
tude of the cosmological term.2 For a positive cosmo-
logical constant, the bound arises due to two competing
effects. On the one hand, primordial density perturba-
tions gravitate and attract each other; in a universe with
vanishing �, the Jeans instability will eventually lead to
the formation of large scale structure. On the other
hand, a large � and the consequent accelerated expan-
sion lead to such rapid dilution of matter that structure
can never form. The requirement that structure has time
to form before the accelerated expansion takes over
leads to a bound on � within an order of magnitude or
two of the observed value.

Weinberg’s logic suggests that if structure is required
for observers, and if there are many possible vacua with
different values of �, then selection effects will explain
why any given observer sees an atypically small value of
�. It is also important that since the scales of microphys-
ics differ so drastically from the scale of the required �,
one can expect the distribution of vacua in � space to be
reasonably flat over the anthropically acceptable range.
Hence, all else being equal, one should expect to find a

2While we do not review the history, important works include
Banks �1984, 1985�, Linde �1984�, and Barrow and Tipler
�1988�.
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value of � close to the upper bound compatible with
structure formation.

This seems to be true in our Universe. It is notable
that Weinberg’s bound was published well before the
detection of dark energy, and the amount of dark energy
is very close to his estimate of the maximal value com-
patible with the formation of structure. There is some
controversy about how close our Universe is to the
bound; see, e.g., Loeb �2006�.

An important question which must be asked before
accepting this logic is whether early cosmology can give
rise to all of these possible vacua. According to the cur-
rent picture, based on the theory of eternal inflation, this
is so: our Universe sits in a “multiverse” with many dif-
ferent inflating regions, corresponding to the different
de Sitter critical points in the set of vacua. We discuss
this further, and the arguments that different flux vacua
can be connected by physical processes in string theory,
in Sec. III.E.

Anthropic arguments are typically met with suspicion
for the simple reason that it seems hard to convincingly
and quantitatively verify a physical theory based on such
arguments. There are many reasons �discussed in, e.g.,
Banks et al. �2004�, Arkani-Hamed, Dimopoulos, and
Kachru �2005�, and Wilczek �2005�� to believe that more
traditional, dynamical explanations will be required to
resolve some of the outstanding mysteries of physics.
But unless another convincing solution to the cosmologi-
cal constant problem is found, this argument is likely to
remain.

F. Other physical consequences

While a solution to the cosmological constant problem
would be an important achievement, the resolution pro-
vided by the landscape of flux vacua does not suggest
immediate tests.

The study of flux vacua also leads to new and testable
string models of particle physics and cosmology; indeed
this has driven much of the interest in the subject. Over
the past few years, these studies have motivated new
models of TeV scale particle physics �Giudice and Ro-
manino, 2004; Arkani-Hamed and Dimopoulos, 2005;
Arkani-Hamed, Dimopoulos, and Kachru, 2005; Giudice
and Rattazzi, 2006�, new models of inflation �Kachru et
al., 2003; Silverstein and Tong, 2004; Chen, 2005a,
2005b�, which can have testable signatures via cosmic
strings �Sarangi and Tye, 2002; Jones et al., 2003; Cope-
land et al., 2004; Dvali and Vilenkin, 2004b� or non-
Gaussianities of the spectrum of density perturbations
�Alishahiha et al., 2004; Babich et al., 2004; Chen et al.,
2006�, and new testable proposals for the mediation of
supersymmetry breaking �Choi, Falkowski, et al., 2005�.
Some of these models have large or warped extra di-
mensions and manifest very low scale quantum gravity,
raising the exciting possibility of producing black holes
at future colliders �for a recent review, see Landsberg
�2006��.

As things stand, none of these models appear as inevi-
table top-down consequences of string theory; rather

they are special choices made out of a wide range of
possibilities in the fundamental theory, proposed in part
because they have clearly identifiable or at least unusual
characteristic signatures. The hope is that an influx of
new data on TeV scale particle physics and inflationary
cosmology over the next decade will help select between
these ideas, or else suggest new, testable proposals.

Here, we describe, at a very qualitative level, three
areas where studies of flux vacua may be directly rel-
evant to phenomenological questions in string theory.
We call upon some basic results from the theory of su-
persymmetry breaking, so we review this first.

1. Overview of spontaneous supersymmetry breaking

By spontaneous supersymmetry breaking, we mean
that although the vacuum breaks supersymmetry, at
some high-energy scale dynamics is described by an N
=1 supergravity EFT. As discussed by Wess and Bagger
�1992�, the effective potential in such a theory is deter-
mined by the superpotential W, a holomorphic function
of the chiral fields,3 and the Kähler potential K, a real-
valued function of these fields. We denote the chiral
fields as �i, then the effective potential takes the form

V = eK/MPl,4
2 


i
�Fi�2 − 3

�W�2

MPl,4
2 � +

1
2




D

2 , �21�

where Fi=DW /D�i��W /��i+ �1/MPl,4
2 ���K /��i�W are

the so-called F terms, associated to chiral fields, while
the D terms D
�
�†t
� are associated to generators of
the gauge group.

While any solution of �V /��i=0 with �2V /��i��j

positive definite is a metastable vacuum, spontaneous
supersymmetry breaking is characterized by nonzero
values for some Fi and D
. The most basic consequence
of this is that the gravitino gains a mass m3/2

=eK/2MPl,4
2

�W � /MPl,4
2 by a super-Higgs mechanism. If we

assume that the cosmological constant V�0, �W� and
thus m3/2 are determined by Eq. �21� in terms of �F�2 and
�D�2.

One should be careful to distinguish the various en-
ergy scales which appear in supersymmetry breaking; we
define

MSUSY
4 = 


i
�Fi�2 + 1

2




D

2 , �22�

the energy scale associated to supersymmetry breaking
in the microscopic theory. Note that many authors use a
different definition in which MSUSY�m3/2.

A third set of energy scales are set by the MSSM soft
supersymmetry breaking terms, such as masses for the
gauginos and scalars. These are more model dependent,
but usually fall into two general classes. The first class
are effects which lead to masses proportional to F /MP.

3To be more precise, the superpotential in supergravity is a
section of a holomorphic line bundle.
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One fairly generic source of scalar masses is coupling
through irrelevant terms in the Kähler potential, with
the general structure

� d2�d2�̄�c2/MP
2 �X†X��i�†�i, �23�

where X should be thought of as a chiral field containing
the largest F term. Such terms are not forbidden by any
symmetry �unless �i is a Goldstone boson, but compac-
tification moduli in general are not, with the notable ex-
ception of axions�. If they are present and FX�0, the
field �i obtains a mass

mi � cFX/MP. �24�

Similarly, if X appears in the gauge-coupling function f
for some gauge group G, i.e., in the term

� d4xd2�f�X�Tr�W
W

� , �25�

then FX�0 gives rise to a gaugino mass as well. Another
generic source of masses for charged particles is
anomaly mediation �Giudice et al., 1998; Randall and
Sundrum, 1999b�; in particular, this produces gaugino
masses m1/2�bgYM

2 m3/2, where b is a beta function coef-
ficient.

Once one has a soft supersymmetry breaking mass
term for charged fields X, one can get further supersym-
metry breaking effects suppressed not by MP but by MX,
the mass of the X fields. One loop diagrams of X par-
ticles will produce soft mass terms for charged gauginos,
and at higher loop order soft masses for all charged par-
ticles. This is known as gauge mediation; for references
see Giudice and Rattazzi �1999�.

We now consider a quasirealistic model which solves
the hierarchy problem by spontaneous supersymmetry
breaking, in the sense that the small number MEW /MP
comes out of some dynamics. In general, one expects the
EFT to be a sum of several parts; a supersymmetric
Standard Model �SSM�; a sector responsible for super-
symmetry breaking; possibly a messenger sector which
couples supersymmetry breaking to the SSM; and finally
sectors which are irrelevant for this discussion. After in-
tegrating out all non-SSM fields, one obtains an SSM
with soft supersymmetry breaking terms, such as masses
for the gauginos and scalars. The first test of the model
is that the resulting potential leads to electroweak sym-
metry breaking. This depends on two general features of
the supersymmetric extension. Recall that an SSM must
have at least two Higgs doublets; we suppose there are
two, Hu and Hd. First, the Higgs doublets can get a su-
persymmetric mass term

W = ¯ + �HuHd,

the so-called � term. This must be small, ��MEW. In
addition, one must get soft supersymmetry breaking
masses coupling the two Higgs doublets �the b term�,
also of order MEW. Of course, there are many, many
more constraints to be satisfied by a realistic model,
most notably on flavor neutral currents �FCNC�.

Now, one can distinguish two broad classes of super-
symmetry breaking models. In the first class, generally
known as gravity mediated models, supersymmetry
breaking is mediated only by effects which are sup-
pressed by powers of MP. In this case, to obtain soft
masses at MEW, the natural expectation is F
��1011 GeV�2, the so-called intermediate scale, and
m3/2�MEW.

On the other hand, if the SSM soft masses come from
gauge mediation, the sparticle masses are suppressed by
powers of MX, not MP. Therefore depending on MX, one
can get by with a much smaller F breaking, perhaps as
low as F��100 TeV�2. Such a gauge mediated model
will have m3/2�MEW as well as many other differences
from the first class.

This more or less covers the basic facts needed for this
review; further discussion can be found in Martin �1997�,
Giudice and Rattazzi �1998�, and Luty �2005�.

2. The moduli problem

As discussed, string compactifications preserving 4D
N=1 supersymmetry typically come with dozens or hun-
dreds of moduli fields. These are chiral multiplets �i
which have gravitational strength couplings and a flat
potential to all orders in perturbation theory.

In general, all scalar fields, including the moduli, will
receive mass after supersymmetry breaking. In a few
cases, namely, the moduli which control the Standard
Model �or grand unified� gauge couplings, we can put a
lower bound on this mass, around 100 GeV, just by con-
sidering quantum effects in the Standard Model. As
pointed out by Banks et al. �2002�, this precludes any
observable variation of the fine-structure constant �and
the other SM gauge couplings�, even on cosmological
time scales. Thus while the underlying theory allowed
for such time variation in principle, it is inconsistent with
known properties of our vacuum combined with the ef-
fective potential hypothesis. This is perhaps the simplest
testable prediction of string/M theory for which contrary
evidence has ever been reported �Murphy et al., 2003�;
the present status is discussed in Uzan �2003, 2005�.4

More generally, one can estimate moduli masses in
particular models of supersymmetry breaking. Using Eq.
�24�, and assuming a gravity mediated model with F
��1011 GeV�2, we find a rough upper bound

mmoduli � 1 TeV.

As for gauge mediated models, since moduli which do
not couple directly to the Standard Model also get their
leading masses from Eq. �24�, their masses will be far
lower, even down to the eV range.

In general, such particles would not be subject to di-
rect detection, because of their very weak �nonrenor-

4String/M theory also leads to many testable predictions for
which we have no reason at present to expect contrary evi-
dence, for example, CPT conservation, unitarity bounds in
high-energy scattering, etc.
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malizable� coupling to the Standard Model. One can
construct optimistic scenarios �including the large extra
dimensions scenario �Arkani-Hamed et al., 1998� and
models of gauge mediation with very low SUSY break-
ing scale� in which the moduli masses come down to
10−3 eV, so that one could hope to detect such fields in
fifth-force experiments studying the strength of gravity
at short distances �Dimopoulos and Giudice, 1996�.

However, granting the usual discussion of inflationary
cosmology, scalar field masses less than about 100 TeV
will cause significant phenomenological problems. In
particular, they cause a Polonyi problem—the oscilla-
tions of such scalars about the minima of their potential,
in a cosmological setting, will overclose the Universe �de
Carlos et al., 1993; Banks et al., 1994�. One way of un-
derstanding this is as follows. The equation of motion
for the moduli �i in the early Universe is

�̈i + 3H�̇i = − �V/��i. �26�

Taking a single modulus � and Taylor expanding V���
�m2�2+¯, we see that the Hubble friction �the second
term on the left-hand side� dominates over the restoring
force from the potential energy if H�m. Via the rela-
tion H2MP

2 �Vtot �where Vtot is the total energy density
of the Universe�, we see that in the early Universe,
Hubble friction will dominate for light fields. This means
that until H decreases to H�m, such fields will not
reach the minima of their potential; they will be trapped
by Hubble friction at some random point.5 After the
Hubble constant drops below m, the energy density in
these fields can dominate the Universe, leading to a va-
riety of possible problems �overclosure, modifications of
the successful predictions of BBN, etc.�.

There are scenarios with moduli in this mass range
where the cosmological problems are avoided, say by a
stage of low-scale inflation �Dvali, 1995; Randall and
Thomas, 1995�. In general, however, this suggests that
the idea that string moduli get their mass through radia-
tive corrections after SUSY breaking is disfavored.
Rather, we should look for the physics of moduli stabi-
lization at higher energy scales.

As discussed, we expect the flux potential to produce
moduli masses. A first naive estimate for the energy
scale of this potential would be MKK, since this is an
effect of compactification. However, this neglects the
fact that the unit of quantization of the fluxes is set by
the fundamental scales, in string theory the string scale.
This discussion is somewhat model dependent �Kachru
et al., 2006�; in Sec. IV we will discuss the case of IIb flux
vacua. In general in such vacua, the complex structure
moduli which get a mass from fluxes end up with a typi-
cal mass MF,

MF � 
�/R3, �27�

which satisfies MF�MKK at moderately large radius, but
is still well above the supersymmetry breaking scale
MSUSY �and far above the even smaller gravitino mass
M3/2�MSUSY

2 /MP� for low-energy supersymmetric mod-
els with moderate R.

In a top-down discussion, one must check that these
masses squared are positive, i.e., metastability. Actually,
one can argue that this is generic in supersymmetric
theories, in the following sense. The mass matrix V� fol-
lowing from Eq. �21� takes the form

Mboson
2 = Mfermion�Mfermion − 
M3/2� �28�

for some order one 
.6 Thus any bosonic partner to a
fermion with �Mfermion � �M3/2 will automatically have
positive mass squared. Since for moduli Mfermion
�MF�M3/2, this entire subsector will be stable.

Quintessence. There is one cosmological situation in
which the existence of an extremely light, weakly
coupled scalar field has been proposed as a feature in-
stead of a bug. One of the standard alternatives to a
cosmological constant in explaining the observed dark
energy is “quintessence” �Peebles and Ratra, 1988�. In
this picture, a slowly rolling scalar field dominates the
potential energy of the Universe, in a sort of late-time
analog of early Universe inflation �though perhaps last-
ing only for O�1� e-foldings�. In light of our discussion, it
is natural to ask, can string theory give rise to natural
candidates for quintessence?

The observational constraints on time variation of
coupling constants make it necessary to keep the rel-
evant scalar very weakly coupled to observable physics.
The necessary mass scale of the scalar, comparable to
the Hubble constant today, means also that this scalar
must not receive the standard �MSUSY

2 /MP mass from
SUSY breaking. The most natural candidate is therefore
a pseudo-Nambu-Goldstone boson, and in string theory
these arise plentifully as axions. An axion with weak
enough couplings, and whose shift symmetry is broken
by dynamics at very low energies, could conceivably
serve as quintessence; it has been Hubble damped on
the side of its potential until the present epoch, and may
just be beginning its descent.

Prospects for this scenario are described by Svrcek
�2006�. While it is plausible, the scenario suffers from all
of the tuning problems of the cosmological constant sce-
nario, and an additional “why now” problem—there is
no good reason for the field to become undamped only
in the recent past.

3. The scale of supersymmetry breaking

Perhaps the most fundamental question in string phe-
nomenology is the scale of supersymmetry breaking. As

5This discussion is oversimplified, since V itself may receive
significant thermal corrections. The point then is that for a
modulus field, the true minimum only appears, typically very
far away ��MP in field space� from the finite-temperature
minimum, after H drops below the zero-temperature potential.

6One should not confuse this with formulas governing spar-
ticle partners of Standard Model excitations, for which soft-
breaking terms give dominant effects, and can lead to splittings
much larger than this estimate in various scenarios.
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discussed, there are many hints in the present data
which point towards TeV scale supersymmetry. It has
long been thought that low-energy supersymmetry
would also follow from a top-down point of view. One of
the simplest arguments to this effect uses the concept of
“naturalness,” according to which an EFT can contain a
small dimensionful parameter, only if it gains additional
symmetry upon taking the parameter to zero. This is not
true of the Higgs mass in the Standard Model, but can
be true for supersymmetric theories.

On the other hand, the solution just described for the
cosmological constant problem seems to have little to do
with this sense of naturalness; indeed it may seem in
violent conflict with it.7 How do we know that the small
ratio MEW

2 /MPl,4
2 �10−33 might not have a similar expla-

nation? Following this line of thought, one might seek
an anthropic explanation for the hierarchy, as done in
several works �Giudice and Romanino, 2004; Arkani-
Hamed and Dimopoulos, 2005; Arkani-Hamed, Di-
mopoulos, and Kachru, 2005; Arkani-Hamed, Dimopou-
los, Giudices, et al., 2005; Giudice and Rattazzi, 2006�.
While interesting, the possibility of such an explanation
would not bear directly on whether the underlying
theory has low-energy supersymmetry, unless we could
argue that our existence required this property �or was
incompatible with it�, which seems implausible.

However, there is a different set of arguments, now
described, that low-energy supersymmetry, and the natu-
ralness principle which suggested it, may not be the pre-
diction of string/M theory. Rather, one should define a
concept of stringy naturalness, based on the actual dis-
tribution of vacua of string/M theory, which leads to a
rather different intuition about fine-tuning problems.

The starting point is the growing evidence that there
are many classes of string vacua with SUSY breaking at
such high scales that it does not solve the hierarchy
problem, starting with early works such as Scherk and
Schwarz �1979�; Alvarez-Gaume et al. �1986�; Dixon and
Harvey �1986�; and Seiberg and Witten �1986�, and more
recently models with stabilized moduli such as Silver-
stein �2001� and Saltman and Silverstein �2006�. Despite
their disadvantage in not solving the hierarchy problem,
might such vacua “entropically” overwhelm the vacua
with low-scale breaking? We illustrate how one can
study this question with the following top-down ap-
proach to deriving the expected scale of supersymmetry
breaking, along the lines advocated by Douglas �2004b�
and Susskind �2004�.

Suppose for a moment that one has classified the full
set of superstring vacua, obtaining some set with ele-
ments labeled by i. Suppose that we had a complete

model of how early cosmology produces these vacua,
which leads to the claim that the probability to observe
vacuum i is P�i�. Finally, suppose that the SUSY break-
ing scale in the ith vacuum is Fi. Then, we use these data
to define a probability distribution over SUSY breaking
scales. Similarly, if we have more observables for each
vacuum, we could define a joint distribution over all of
them.

For simplicity we focus on two parameters, the super-
symmetry breaking scale F and the scale of electroweak
symmetry breaking MEW�100 GeV. Now, imagine that
we are about to do an experiment which will detect su-
perpartners if F�Fexp=1 TeV. Then, the probability
with which we expect to discover supersymmetry would
be

PSUSY = 

Fi	Fexp,MEW,i=100 GeV

P�i� . �29�

If this probability were high, we would have derived a
top-down prediction of TeV scale supersymmetry.

But, from what we know about string theory, do we
know it will be high? Might it instead be low, so that the
discovery of TeV scale supersymmetry would in some
sense be evidence against string theory?

Before continuing, we hasten to say that any top-
down “prediction” of this sort would only be as good as
the assumptions which went in, and furthermore would
probably rely on drastic simplifications of the full prob-
lem. We fully expect that the problem of testing string
theory, like any other theory, will involve the same sort
of interaction between theory and experiment which
characterizes all successful science. Our goal here is to
make an idealization of this complex problem, in order
to gain understanding. We will discuss the assumptions
and simplifications which would go into any such predic-
tion in Sec. V, here we continue in order to make the
point that given what we know now, TeV scale super-
symmetry is not an inevitable prediction of string theory.

First, given our ignorance of the correct probabilities
P�i�, a simple hypothesis to get a feel for the problem is
to set the probability P�i�=1/N for each of the N vacua
in the landscape. In other words, we assume that the
more string/M theory vacua realize a certain property,
the more likely we are to observe it. In Sec. V, we criti-
cally examine this hypothesis, and see how far one can
go without making any appeal to probabilities at this
point, but let us grant it for the moment.

Now, we rephrase the usual argument from natural-
ness in this language. We focus attention on the subset
of string/M theory vacua which, while realizing all the
other properties of the Standard Model, may have a dif-
ferent value for the electroweak scale MEW. Since this is
quadratically renormalized, in the absence of any other
mechanism, we expect that the fraction of theories with
MEW�MEW,max should be

MEW,max
2 /Mcutoff

2 � 10−30

7In Sec. V we will show that the c.c. is uniformly distributed
in some classes of vacua, consistent with traditional natural-
ness. Anthropic arguments are not in contradiction with natu-
ralness, rather they presuppose some idea of naturalness.
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taking Mcutoff�MGUT for definiteness. While small, of
course given enough vacua, we find vacua in which the
hierarchy is a result of fine tuning.8

We now have some subset of the string theory vacua
in which the Higgs mass is determined by supersymme-
try breaking in the general way discussed in Sec. II.F.1.
More specifically, the Higgs mass satisfies a relation like
Eq. �24�, with FX�1011 GeV, the intermediate scale, so
that we can expect to see supersymmetry at the TeV
scale. Then, while there are further conditions to check,
one might expect an order 1 fraction of these models to
work.

Now, the naturalness argument is the claim that, since
most of the TeV scale supersymmetry vacua work �fit
the data�, while only 10−30 of the fine-tuned vacua work,
we should expect to live in a universe with TeV scale
supersymmetry, or at least prefer this alternative to the
fine-tuned models.

Of course, we arranged our discussion in order to
make the essential gap in this argument completely evi-
dent. It is that, even though the fraction of fine-tuned
vacua which work is relatively small, if their number is
large, we might find in the end that far more of these
vacua work than the supersymmetric vacua. Given our
hypothesis, string theory would then predict that we
should not see supersymmetry at the TeV scale.

Is this what we expect or not? Before taking a posi-
tion, one should realize that the additional structures
being postulated in the supersymmetric models—the
scale of SUSY breaking, a solution to the � problem, a
mediation mechanism in which FCNC and the other
problems of generic supersymmetric models are solved,
etc.—each come with a definite cost, not in terms of
some subjective measure of the complexity or beauty of
the theory, but in terms of what fraction of the actual
string/M theory vacua contain these features. Is this cost
greater than 10−30 or not?

We will describe results bearing on this question in
Sec. V, but we are still far from having sufficient knowl-
edge of the set of string vacua to make convincing state-
ments. But given toy models which incorporate some of
the detailed structure of flux vacua in computable limits,
there are already interesting suggestions about how the
computation might turn out �Dine et al., 2004; Douglas,
2004c; Silverstein, 2004a; Susskind, 2004�.

What is already clear is that claims that string theory
naturally prefers low-energy supersymmetry are, as yet,
far from being justified. Indeed, the simplest toy models
suggest the opposite. It would be very important to im-
prove our understanding of this point.

4. Early Universe cosmology

There is substantial and growing evidence for a period
of early Universe inflation to explain the homogeneity,
isotropy, and large-scale structure of our Hubble volume

�Linde, 2005; Spergel et al., 2006�. However, obtaining a
reasonable model of inflation in string theory requires a
detailed understanding of moduli stabilization �Kachru,
Kallosh, Linde, Maldacena, et al., 2003�. The reason is as
follows.

Recall equations �26�, which govern the dynamics
of scalar fields �i evolving in a scalar potential V in a
Friedman-Robertson-Walker �FRW� cosmology with
Hubble constant H. To obtain slow-roll inflation, one
requires that the gradient in the potential is not very
steep, so that this dynamics reduces to gradient flow.
This leads to the standard slow-roll conditions

� = �MP
2 /2��V�/V�2 � 1, � = MP

2 V�/V � 1. �30�

The primes denote derivatives with respect to the infla-
ton �; the first condition provides for a period of accel-
erated expansion, while the second guarantees that this
period of accelerated expansion will last sufficiently long
to solve the horizon and flatness problems �for reviews
about inflationary cosmology, see Linde �2005� and Lyth
and Riotto �1999��.

Now, in string models at moderately weak coupling
gs→0 and/or large volume R� ls for the internal dimen-
sions �so that 10D supergravity can be used�, one knows
that Eq. �30� is not true. All known sources of potential
energy fall rapidly to zero as R−n with n�6 �Giddings,
2003; Silverstein, 2004b; Kachru et al., 2006�. Similarly
all known sources vanish as a positive power of gs. These
power laws are far too fast to allow slow-roll inflation, or
late-time acceleration for that matter �Fischler et al.,
2001; Hellerman et al., 2001�.

Thus to achieve slow-roll inflation, either one must
work in a regime of strong coupling/small radius where
it is difficult at present to compute �Brustein et al., 2003�
or else one must find models where the radii/dilaton and
other rapidly rolling moduli have been stabilized by a
computable potential, as we have for the flux vacua.

We consider a concrete proposal in this light, that of
Dvali and Tye �1999�. In these models, branes and anti-
branes �or branes which do not preserve the same super-
symmetry� are both present, in different parts of the
compact space M. The candidate inflaton is the distance
between the branes and antibranes on M, the inflation-
ary potential is generated by interbrane Ramond-
Ramond �RR� and gravitational forces, while the exit
from inflation can occur when the brane and antibrane
reach a distance �ls from one another, where the light-
est stretched string becomes tachyonic. This picture is
reminiscent of hybrid inflation �Linde, 1994�, with the
tachyon playing the role of the waterfall field that causes
the exit from inflation. Such brane inflation models were
generalized and explored by Burgess et al. �2001, 2002�;
Dvali et al. �2001�; Herdeiro et al. �2001�; Shiu and Tye
�2001�; Alexander �2002�; Dasgupta et al. �2002�; Garcia-
Bellido et al. �2002�; Gomez-Reino and Zavala �2002�;
and Jones et al. �2002�, without addressing the issue of
moduli stabilization; a review appears in Quevedo
�2002�.

8See Silverstein �2004a� for a toy model of how fluxes can do
this.
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It was argued by Kachru, Kallosh, Linde, Maldacena,
et al. �2003� that considering brane inflation in the ab-
sence of moduli stabilization does not make sense; pre-
dictions derived from considerations of the open string
potential ignoring closed string modes are corrected sig-
nificantly by inclusion of the closed strings. The inter-
brane potential, for D3 and anti-D3 branes separated by
a distance d in M, is given by

V�d� = 2T3�1 − T3/�2��3M10
8 d4� , �31�

where T3 is the brane tension. Note that d is related to a
canonically normalized scalar field via �=�T3d.

Can Eq. �31� plausibly satisfy the slow-roll conditions
Eq. �30�? There is a well-known problem. On a space of
radius R, using the relation between M10 and the 4D
Planck scale MP, one can see that ���R /d�6�O�1�.
Since one expects d	R, such models will have trouble
giving rise to slow-roll inflation. Many clever model
building tricks were postulated to surmount this kind of
difficulty in the papers cited previously; arguments pre-
sented by Kachru, Kallosh, Linde, Maldacena, et al.
�2003� showed that generically the problem persists.

Even having fixed this, perhaps by some fine tuning,
there is a more basic problem. The correct 4D Einstein
frame potential is not quite Eq. �31�; it must undergo a
Weyl rescaling to reach 4D Einstein frame, and this mul-
tiplies Eq. �31� by an overall factor of 1/R12. Thus re-
gardless of the interbrane potential, the system of equa-
tions �26� will lead to rapid decompactification. A similar
argument shows that one must prevent relaxation to gs
→0. So achieving slow-roll inflation requires stabilizing
the radion and the dilaton, a problem which can be
solved in flux compactification.

One still must engineer a flat enough interbrane po-
tential to satisfy Eq. �30�, as generic moduli stabilization
mechanisms do not yield sufficiently flat interbrane po-
tentials. The state of the art has been described by Bau-
mann et al. �2006�; while some tuning is involved, con-
struction of quasirealistic models seems well within
reach in many scenarios.

While we have focused on brane inflation, similar is-
sues arise in other inflationary models using moduli
fields �Binetruy and Gaillard, 1986; Banks, 1995a;
Blanco-Pillado et al., 2004, 2006; Greene and Weltman,
2006� or axions �Freese et al., 1990; Adams et al., 1993
Arkani-Hamed et al., 2003; Banks et al., 2003; Dimopou-
los et al., 2005; Easther and McAllister, 2006�.

III. QUANTUM GRAVITY, EFFECTIVE POTENTIAL, AND
STABILITY

As the subsequent discussion will be quite technical,
before going more deeply into details we should ask
more basic questions, such as the following.

• What are our implicit assumptions? Can we trust
them, and the formalism which they lead to?

• Might there be a priori arguments that the type of
vacuum we seek �with stabilized moduli and positive

cosmological constant� does not exist, or is extremely
rare?

• Related to this, might there be unknown additional
consistency conditions, which are satisfied by only a
few of the vacua?

Since as yet we have no fully satisfactory nonpertur-
bative definition of any string theory or M theory, clearly
our discussion cannot start from first principles; we need
to make assumptions about how the theory works and
what constitutes a “solution” to proceed. Thus our argu-
ments will not be conclusive, but rather are meant to
summarize existing work and suggest new approaches to
addressing these questions.

A. Effective potential

Our point of view, as explained in the Introduction
and assumed throughout Sec. II, is that the vacuum
structure of string/M theory is determined by an effec-
tive potential Veff. This is a function of the many scalar
fields which parametrize the local choices �moduli� de-
termining a particular solution, and whose value is the
exact vacuum energy of that solution. Granting this, our
problem is to define Veff incorporating all classical and
quantum contributions to the energy, compute it in a
controlled way, and find its local minima.

While this is how all known physical theories work,
there are good reasons not to accept this uncritically in a
quantum theory of gravity, as has been emphasized by
Banks �2004�, Banks et al. �2004�, and Dine �2004a�. We
cite a few of these reasons, and then consider the various
candidates we have for complete definitions of the
theory, to try to evaluate them.

We begin by asking whether the concepts which enter
into the effective potential are well defined. There is no
universal way to define energy in a generally covariant
theory. The standard formal definition of energy is the
dynamical variable conjugate to time translation, in the
sense of Hamiltonian mechanics, or in quantum commu-
tation relations. However, in a generally covariant
theory, time translation invariance is simply an arbitrari-
ness of the choice of global time coordinate, on which no
observable can depend. The logical conclusion is there-
fore that the energy, and thus the effective potential, in
any such theory must be identically zero.

Of course, this conclusion is not acceptable in a theory
which can describe conventional nongravitational phys-
ics, as clearly the concept of energy is sensible and useful
in that context. Formally, one simple way around it is to
consider only asymptotically flat solutions, which at
large distances �in any spacelike direction� approach
Minkowski space-time �or its product with the internal
dimensions�. In such a solution, one can define the gen-
erators of the Poincaré group purely in terms of the
asymptotic fields; in particular, the energy E is related to
the term in the metric g00�−2E /r which expresses the
Newtonian potential of a source with mass E. The
vacuum solutions we will mostly be interested in are
maximally symmetric de Sitter �dS� or anti–de Sitter
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�AdS� space-times with a cosmological constant which is
very small compared to the other scales of microscopic
physics, and thus are extremely close to asymptotically
flat. For such solutions, the flat space definition of en-
ergy should be operationally adequate �and is the one
used in everyday physics�.

Actually, there are major loopholes in the argument
just made, coming from caveats such as in the present
epoch, and extremely close to asymptotically flat. We
discuss these in Sec. III.C, with the conclusion that they
all rely on some sort of nonlocality in the theory. While
this does not make them unthinkable, we postpone this
discussion and discuss the definition of the effective po-
tential in Minkowski space-time.

We recall the standard definition of the effective po-
tential in a quantum field theory, for definiteness a
theory of a single scalar field �. We first couple � to a
source J, and compute �say using the functional integral�
the partition function Z�J�, to define the generating
function of connected Green’s functions F�J�=ln Z�J�.
We then set the expectation value �0 of � by solving

�F/�J = �0,

which formally amounts to a Legendre transform. The
resulting functional ���0�, specialized to constant �0, is
the effective potential.

In trying to repeat this definition in string theory, we
face the problem that it is not possible to couple a string
theory to a local source, nor to a local current; this was
one of the main problems with the early proposals for
using strings to describe hadronic physics. This led to the
general observation that the theory tends not to provide
natural definitions of off-shell quantities, meaning quan-
tities defined in terms of space-time histories which are
not solutions. For example, computations of scattering
amplitudes using the string world-sheet formalism are
unambiguous only if all external states are on mass shell.
This is not considered a flaw in the theory, as the S ma-
trix is defined purely in terms of scattering of on-shell
external states. However, the effective potential is an
off-shell quantity.

Two general ways around this problem are known.
The first approach is to do without the coupling to a
local source, instead manipulating the value of �0 by
adjusting the boundary conditions. This is not com-
pletely general, but can be satisfactory in some situa-
tions. For example, if the effective potential is zero, any
constant �0 will be a solution, and we can pick a particu-
lar solution by choice of boundary conditions. More gen-
erally, if we know the effective potential in advance, we
can find solutions of the EFT, and pick one by choice of
boundary conditions.

This is implicitly what is done in most work on string
compactifications with extended supersymmetry. For ex-
ample, in a family of compactifications to Minkowski
space, supersymmetry guarantees that the effective po-
tential is zero, so there is no difficulty in adjusting
moduli by varying boundary conditions. Another class
of examples is flux compactifications with N�4 super-

symmetry in anti–de Sitter space. Again, supersymmetry
determines the effective potential uniquely, so that one
can study solutions with prescribed boundary conditions
without detailed string theoretic computation. This is
used implicitly in many works on the AdS/conformal
field theory �CFT� correspondence.

While at first this definition seems inadequate for
the problem at hand, in which we want to compute a
nontrivial effective potential not known in advance,
one can still try to follow this route. We would start
with a known extended supersymmetry background,
and then postulate boundary conditions �probably time
dependent� which, if it were the case that the effective
potential described a second nontrivial metastable
vacuum, would lead to a solution matching on to this
solution in the interior. We will say more about this ap-
proach in Sec. III.C, and explain the obstacles to it
there.

This brings us to the second approach, which is simply
to couple the string theory to a nonlocal source. For
example, one can do this in string field theory, the
framework which is most directly analogous to quantum
field theory �Zwiebach, 1993�. Just as QFT can be de-
fined in terms of an operator ��x� which creates or de-
stroys a particle at a point in space-time x, here one
introduces a string field operator, call it ��L�, which cre-
ates or destroys a string on a one-dimensional loop L in
space-time. One can then introduce a source J�L� for the
string field into the action in the standard way, say as

S = S0 +� dL��L�J�L� ,

where the definition of the integral over loops is taken
from the string field theory framework. One then fol-
lows the logic which led to the field theory definition, to
get a string field theoretic effective potential ���0�.

While such a definition might be difficult to use in
practical computations, the point is to have a precise
definition which could be used to justify our approxi-
mate considerations. To do this, the next step would be
to identify the light modes in ���0�, and solve for all of
the others, to obtain an effective potential which is a
function of a finite number of fields. To the extent that
we could do this, we would have made precise the intu-
ition that string theory reduces to field theory at long
distances, where the effective potential is a valid con-
cept.

However, there are formidable obstacles to making
such a definition precise. At present there is little under-
standing of string field theory beyond its perturbative
expansion, and just as for quantum field theory, this ex-
pansion is only asymptotic �Shenker, 1990�. It is also not
obvious that all nonperturbative effects we call upon be-
low are contained in string field theory, see Schnabl
�2005� for relevant progress on this. In any case, verify-
ing or refuting the approximate discussion made below
would be an important application of a nonperturbative
definition.
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For four-dimensional quantum field theory, such a
definition is made by appealing to the renormalization
group. One must find some asymptotically free UV
completion of the theory of interest, and then find some
approximate finite description of the weakly coupled
short distance theory, such as lattice field theory.

While we have no comparable theoretical understand-
ing of string theory, there is a widely shared intuition
that, at least in considering low-energy processes and
vacuum structure, string theory is weakly coupled at
short distances �the string scale and below�. This intu-
ition has several sources: First, the extended nature of
the string cuts off interactions at these distances. Sec-
ond, asymptotic supersymmetry makes leading contribu-
tions of massive states to the effective action cancel. Fi-
nally, other effects of massive states are suppressed by
inverse powers of the fundamental scales. Presumably,
this intuition justifies matching on to a field theoretic
description at distances around the string scale, and then
following the standard RG paradigm.

B. Approximate effective potential

We now grant that the problems just discussed are
only technical, and consider how to make a precise defi-
nition of the effective potential used in this review,
namely, in weakly coupled string field theory, taking into
account nonperturbative effects in a semiclassical expan-
sion.

We start with ten-dimensional EFT, i.e., supergravity
with 
� and gs corrections. We then compactify to get a
four-dimensional effective action with massive KK
modes, string modes, and the like. At this level, the dis-
cussion is precise. Even in the presence of fluxes, in
many models the leading results can be inferred from
supersymmetry and considerations of 4D N=2 super-
gravity.

We then need to add in semiclassical nonperturbative
effects, such as instantons and wrapped branes. The ba-
sic features of these can already be seen in supersym-
metric field theory. After much development, originating
in the study of 4D supersymmetric QCD �Affleck et al.,
1984; Shifman and Vainshtein, 1991�, and using holomor-
phy and duality arguments, quite a lot is known about
exact superpotentials in N=1 field theories �Intriligator
et al., 1994�, and exact prepotentials in N=2 field theo-
ries, following Seiberg and Witten �1994�.

In string theory, mirror symmetry relates exact prepo-
tentials in type-IIa and type-IIb Calabi-Yau models,
where an infinite �world-sheet� instanton sum in the pre-
potential on one side maps to a completely classical geo-
metric computation on the other �Candelas et al., 1991�.
String duality maps these world-sheet instanton sums to
space-time instanton sums, allowing one to recover non-
perturbative effects from string duality �Kachru and
Vafa, 1995; Kachru et al., 1996�. This grew into the real-
ization that one could design stringy configurations of
branes or singularities to give rise to a low-energy field
theory, and compute the instanton sums via string tech-
niques �Katz and Vafa, 1997; Katz et al., 1997�.

More generally, holomorphy arguments allow one to
classify which Euclidean branes, wrapping which topolo-
gies, can contribute to a holomorphic superpotential.
The theory of D-branes �Polchinski, 1995� allowed find-
ing the full list of possible BPS instantons relevant for
N�1 vacua. A prototypical example of a macroscopic
argument classifying the branes and topologies which
are relevant for instanton effects in F theory has been
given by Witten �1996b�. While exact computation of the
superpotential in a general compactification is still be-
yond our reach, this does allow for principled estimates
of the leading instanton contributions in many back-
grounds. In the particular cases where the instanton ef-
fect can be reinterpreted in the low-energy effective
theory as a dynamical effect in quantum field theory,
even the coefficient can be estimated with some confi-
dence, by matching to exact field theory results. In many
examples, even this crude level of understanding suffices
to exhibit vacua in the reliable regime of weak coupling
and large volume.

The main issue we now have to address is that we
want to take the sum of various terms, some inferred
directly from supergravity or world-sheet physics, and
others computed �or even inferred� from nonperturba-
tive effects. Typically, a solution of �Veff /��i=0 for the
full effective potential will not be a critical point of the
various terms which enter into Veff, so these terms will
be ambiguous. But if there are ambiguities, how can we
be sure that we have fixed them for every term in a
consistent way?

Our eventual answer to this question will be to exhibit
examples of solutions in which contributions to the ef-
fective potential with different origins have parametri-
cally different scales. Thus although individual terms
may have some ambiguity, a very weak control over this
ambiguity will suffice to prove that the full effective po-
tential has minima.

We see no reason that such a separation of scales
should be needed for consistency, so this type of argu-
ment is not completely satisfactory; it does not apply to
large numbers �perhaps the vast majority� of solutions.
However, already within the limits of this argument, we
find sufficiently many stabilized vacua to justify the
claims of Sec. II.

Even restricting attention to these solutions, we are
still not done. Another pitfall to guard against in ex-
trapolating results for the effective potential is the pos-
sibility of phase transitions. This is especially worrisome
for first-order transitions, which unlike second-order
transitions have no clear signal such as a field or order
parameter becoming massless. Such transitions are not
possible in global supersymmetry, in which the energy of
a supersymmetric vacuum is always zero; however, this is
not true after supersymmetry breaking and in supergrav-
ity. Should we worry about this possibility?

Actually, the rules here are somewhat different from
equilibrium statistical mechanics and field theory, in that
sufficiently long-lived metastable configurations will
count as vacua. However, a possibility which needs to be
considered is that additional fields, perhaps arising from
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the Kaluza-Klein modes of dimensional reduction, or
composite fields expressing quantum correlations, might
destabilize our candidate vacua.

The first possibility, that Kaluza-Klein modes destabi-
lize vacua, will be considered in Sec. IV. The basic argu-
ment that this generically does not happen was given in
Sec. II.F.2.

The second possibility is handled by a combination of
arguments. In most of the EFT, quantum fluctuations
are controlled by string coupling, which is assumed to be
small. Thus mass shifts for composite fields will be small,
so given that the moduli are all massive, we do not ex-
pect phase transitions. This argument has the flaw that
some subsectors of the theory must be strongly coupled
at low energy �after all, we know this is the case for
QCD�. For these sectors, we appeal to existing field
theory analyses, and the assumption that the supersym-
metry breaking scale is smaller than the fundamental
scale, so that supergravity effects are a small correction.

C. Subtleties in semiclassical gravity

So far we assumed that our local region of the Uni-
verse can be well modeled as Minkowski space-time. Of
course, no matter how slow the time evolution of the
Universe, or how small the cosmological constant, if
these are nonzero, at sufficiently large scales the nature
of the solution will be radically different from
Minkowski space-time. Thus we wonder whether even if
a solution looks consistent on cosmological scales, it
could be inconsistent as a full solution of the theory.

At first this might sound like it could only happen if
the underlying framework were nonlocal. However,
while string/M theory is believed to be nonlocal at the
fundamental �Planck and string� length scales, in all
known formalisms and computations these effects are
either exponentially small at longer distances or appear
to be gauge artifacts, analogous to the apparent instan-
taneous force at a distance one finds in Coulomb gauge.
Thus it is hard to see how they could be relevant. Still,
some feel that paradoxes involving black-hole evapora-
tion and entropy point to nonlocality �Giddings, 2006�.

Even in a local theory, a solution which is consistent
on short time scales can be inconsistent on longer time
scales, by developing a singularity with no consistent
physical interpretation or “resolution.” Although one
often hears that string theory resolves space-time singu-
larities, there are examples of spacelike singularities
with no known resolution, nor any proof that this cannot
be done, making this an active field of research.

Now in an ordinary physical theory one would say
that the possibility of developing a singularity with no
consistent interpretation shows that the theory is not
fundamental; rather it should be derived from a more
fundamental theory in which the corresponding solution
is not singular. Familiar examples include Navier-Stokes
and other phenomenological many-body theories, and of
course classical general relativity.

In the present context, one might attempt a different
interpretation. If it turned out that some subset of vacua

generically led to singularities, while another subset did
not, it might be reasonable to exclude the first set of
vacua as inconsistent. Now it seems strange to us, indeed
acausal, to throw out a solution because of an inconsis-
tency which appears 101010

years in the future. Still, if
such an approach led to interesting claims, it might be
worth pursuing.

Another idea along these lines is that there might be
approximately Minkowski solutions which, while them-
selves consistent, cannot be embedded in a solution with
a sensible cosmological origin. This test seems better as
it is consistent with causality. It could be further refined
by asking not just that the cosmology be theoretically
consistent, but that it agree with observation. Of course,
we need to address this issue in the course of testing any
given solution, but ask if there are simple arguments
that some solutions cannot be realized cosmologically, or
cannot satisfy the constraints discussed in Sec. II.F.4, be-
fore going into details. We know of no results in this
direction, however.

We now come back to a point raised in Sec. III.A, and
explain the obstacles to performing thought experiments
which prove the existence of multiple �isolated� vacua of
an effective potential �Farhi et al., 1990; Banks, 2000�.
For instance, suppose the effective potential for a single
scalar � has two vacua at �±. One can make a vacuum
bubble interpolating between the two vacua, whose sur-
face tension we can call �. Starting from the �+ vacuum,
suppose one nucleates a bubble of radius R in the �−
phase. The Schwarzschild radius of the bubble is
��R /MP�2. So the bubble will be smaller than its
Schwarzschild radius unless R���R /MP�2, i.e., unless

R�MP
2 /� . �32�

This is interesting for the following reason. A �+ experi-
mentalist can only use the bubble to infer the existence
of the �− vacuum and study its properties, if Eq. �32� is
satisfied. We expect that the potential barrier between
two typical vacua in a quantum gravity theory should be
�MP, as there is no small parameter to change the scal-
ing in typical solutions. Then, one also finds ��MP

3 , and
only bubbles smaller than the Planck length would be
outside their Schwarzschild radius. Of course such
bubbles are not a priori meaningful solutions, and could
not be used by to verify the existence of other vacua.

This argument is a bit quick, for example, because the
vacua discussed in Sec. IV do have small parameters, but
the conclusion is largely correct, as explained further by
Farhi et al. �1990� and Banks �2000�.

D. Tunneling instabilities

We have argued that in string theory the effective po-
tentials one infers from direct computation typically
have many minima. For such a minimum to be consid-
ered a metastable vacuum, its lifetime � should be para-
metrically long compared to the string time. We now
explain why there are large numbers of vacua that sat-
isfy this criterion, and the stringent criterion ���today
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�15 billion years, using the theory of the decay of false
vacua in field theory developed by Callan and Coleman
�1977�; Coleman �1977�, and Coleman and De Luccia
�1980�.

We consider a toy model consisting of a single scalar
field �, with a metastable de Sitter vacuum of height V0
at �0, and a second Minkowski vacuum at infinity in field
space. This can be thought of as modeling the potential
for a volume modulus in a string compactification, where
the second vacuum represents the decompactification
limit �Kachru, Kallosh, et al., 2003�. Suppose the barrier
height separating the de Sitter �dS� vacuum from infinity
is V1.

The tension of the bubble wall for the bubble of false
vacuum decay is easily computed to be

T = �
�0

�

d��2V��� . �33�

The dominant tunneling process differs depending on
whether V0MP

2 �T2 or V0MP
2 �T2.

Since T��V1��, this translates into the question of
whether ����V0 /V1 or ����V0 /V1. The former re-
gime is called the thin wall limit for obvious reasons. In
this limit, the analysis of Coleman et al. applies. The
tunneling probability is given by

P = exp�− 27�2T4/2V0
3� . �34�

For dS vacua with V0�V1 the rate is clearly highly sup-
pressed, easily yielding a lifetime in excess of 1010 years.

In the opposite regime of a low but thick potential
barrier, V0MP

2 �T2, the dominant instanton governing
vacuum decay would instead be the more enigmatic
Hawking-Moss instanton �Hawking and Moss, 1982�.
The physical interpretation of this instanton is unclear; a
description in terms of thermal fluctuations of the � field
which yields the same estimate for the rate can be found
in Linde �2005� and references therein. The action of
this instanton is the difference between the dS entropies
of dS vacua with vacuum energies V0 and V1, resulting in
a tunneling rate

P � exp�− S��0�� = exp�− 24�2/V0� . �35�

For small V0, this again is completely negligible. Equa-
tion �35� neglects a small multiplicative correction factor
of exp�24�2 /V1� which accounts for the entropy at the
top of the hill.

For V0�V1, this factor is not numerically important,
but its presence serves to prove a conceptual point. Be-
cause of the existence of the Hawking-Moss instanton,
any dS vacuum which is accessible in the EFT approxi-
mation to string theory will have a lifetime which is
parametrically short compared to the Poincaré recur-
rence time of de Sitter space �considered as a thermal
system with a number of degrees of freedom measured
by the de Sitter entropy� �Kachru, Kallosh, et al., 2003�.

This discussion illustrates how, within the regime of
EFT, one can find long-lived vacua. However, a question
which appeared in Bousso and Polchinski �2000�, and
has not been settled in more realistic models, is that

besides the approximate Minkowski vacua at infinity just
discussed, there are many other possible end points for
the decay of a vacuum, both dS and AdS vacua. Some of
these tunneling rates have been computed by Kachru et
al. �2002�, Frey et al. �2003�, Kachru, Kallosh, et al.
�2003�, Ceresole et al. �2006�, and generically they are
also very small. However, one might wonder whether
the large degeneracy of possible targets could lead to
enough “accidentally” low barriers to substantially in-
crease the overall decay rates. This might be addressed
using the statistical techniques of Sec. V.

E. Early cosmology and measure factors

In any theory with many vacua, one could ask: Are
some vacua preferred over others? A natural answer in
the present context is that if so, it will be for cosmologi-
cal reasons: perhaps the “big bang” provides a preferred
initial condition, or perhaps the subsequent dynamics fa-
vors the production of certain vacua.

This type of question has been studied by cosmolo-
gists for many years; some recent reviews include Guth
�2000�, Linde �2005�, Tegmark �2005�, and Vilenkin
�2006�. At present the subject is highly controversial and
thus we are only going to sketch a few of the basic ideas
here.

One general idea is that a theory of quantum gravity
will have a preferred initial condition. The most famous
example is the wave function of Hartle and Hawking
�1983�, which is defined in terms of the Euclidean func-
tional integral. Presumably, time evolving this wave
function and squaring it would lead to a probability dis-
tribution on vacua. In the present context, this suggests
looking for a natural wave function on moduli space, or
on some larger configuration space of string/M theory.
An idea in this direction has appeared in Ooguri et al.
�2005�.

Another idea, more popular in recent times, is that
the distribution of vacua is largely determined by the
dynamics of inflation. Inflation involves an exponential
expansion of spatial volume, which tends to wash away
any dependence on initial conditions. In particular,
many standard arguments for inflation in our Universe,
such as the explanations of homogeneity, flatness, and
the nonobservation of topological defects, rely on this
property. While these standard arguments do not in
themselves bear on the selection of a particular vacuum,
it is widely believed that inflation also washes away all
dependence on the initial conditions relevant for
vacuum selection �say the choice of compactification
manifold, moduli, and fluxes�, because of the phenom-
enon of eternal inflation �Vilenkin, 1983; Linde, 1986a,
1986b�.

Without going into details, eternal inflation leads to
a picture in which any initial vacuum will eventually
nucleate bubbles containing all the other possible vacua,
sometimes called “pocket universes.” Because of the ex-
ponential volume growth, the number distribution of
these pocket universes will very quickly lose memory of
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the initial conditions and converge on some universal
distribution.

For this to happen, the microscopic theory must sat-
isfy certain conditions. First, the effective potential must
either contain multiple de Sitter vacua or contain re-
gions in which inflation leads to large quantum fluctua-
tions �essentially, �� /��1�. Then, to populate all vacua
from any starting point, and thus have any hope to get a
universal distribution, all vacua must be connected by
transitions. These conditions are fairly weak and likely
to be true in string/M theory. The first can already be
satisfied using models discussed in Sec. II.F.4. One can
find much evidence for the second condition, that all
vacua are connected through transitions, from the
theory of string/M theory duality. For example, it is true
for a wide variety of models with extended supersymme-
try �for example, N=2 type II compactifications on
Calabi-Yau �Greene et al., 1995; Avram et al., 1996�, and
thus will be true for flux compactifications built from
these.

Either way, the result of such considerations would be
a probability distribution on vacua, usually referred to as
a measure factor. This probability distribution would
then be used to make probabilistic predictions, along the
lines suggested in Sec. II.F.3.

At this point, many difficult conceptual questions
arise. After all, our Universe is a unique event, and most
statisticians and philosophers would agree that the stan-
dard “frequentist” concept of probability, which assumes
that an experiment can be repeated an indefinite num-
ber of times, is meaningless when applied to unique
events. While this may at first seem to be only a philo-
sophical difficulty, it will become practical at the mo-
ment that our theoretical framework produces a claim
such as the probability with which our Universe appears
within our theory is 0.01, or perhaps 10−10, or perhaps
10−1000. How should we interpret such results?

Many cosmologists have argued that the interpreta-
tion of a measure factor requires taking into account the
selection effects discussed in Sec. II.E.1 in a quantitative
way, estimating the expected number of observers con-
tained in each pocket universe, to judge whether a typi-
cal observer should expect to make a certain observa-
tion. Such an analysis would be very complex, involving
a good deal of astrophysics, and perhaps even input
from other disciplines such as chemistry and biology,
leading many to wonder whether generally accepted
conclusions could be obtained this way.

Other interpretations have been suggested. One is to
consider a probability as having a clear interpretation
only if it is extremely small, and consider such unlikely
vacua as “impossible.” In other words, we choose some
�, and if our observations can only be reproduced by
vacua with probability less than �, we consider the
theory with this choice of measure factor as falsified.
While one might debate the appropriate choice of �,
since some ideas for measure factors lead to extremely
small probabilities for some vacua �say proportional to
tunneling rates, which as shown in Sec. III.D are ex-

tremely small�, this might be interesting even with an �
so small as to meet general acceptance.

Another approach, which is probably the most sound
philosophically, is not to try to interpret absolute prob-
abilities defined by individual theories, but only com-
pare probabilities between different theories, consider-
ing the theory which gives the largest probability as
preferred. Even without a competitor to string/M theory,
this might be useful in judging among proposed measure
factors, or dealing with other theoretical uncertainties.
Following up this line of thought would lead us into
Bayesian statistics; see MacKay �2003� for an introduc-
tion to this topic.

Anyhow, these questions are somewhat academic at
this point, as general agreement has not yet been
reached about how to define a measure factor, or what
structure the result might have. In particular, doing this
within eternal inflation is notoriously controversial,
though recent progress has been reported by Bousso
�2006�, Vilenkin �2006�, and references therein, and per-
haps generally accepted definitions will soon appear.

Thus we conclude this subsection by listing a few
claims for measure factors which appear in existing lit-
erature. One such is the entropy exp�24�2MP

4 /E� of de
Sitter space with vacuum energy E. This is the leading
approximation to the Hartle-Hawking wave function,
where E is usually the vacuum energy in some initial
stage of inflation. Since such a factor is extremely
sharply peaked at small E, its presence is more or less
incompatible with observed inflation, ruling this wave
function out. There are some ideas for how corrections
in higher powers in E could fix this; see Firouzjahi et al.
�2004� and Sarangi and Tye �2006�.

Another common result is exp�24�2MP
4 /��, formally

the same entropy factor, but now as a function of the
cosmological constant at the present epoch. This arose
in the early attempts to derive a measure from eternal
inflation, and has a simple interpretation there: the
probability that a randomly chosen point sits in some
vacuum, includes a factor of the average lifetime of that
vacuum, as predicted by Eq. �35�. This interpretation
suggests that this measure factor is also incorrect, as dur-
ing almost all of this lifetime the Universe is cold and
empty, so this factor has no direct bearing on the ex-
pected number of observers. More technical arguments
have also been made against it.

If we ignore this problem, since this measure is
heavily peaked on small �, we might claim to have a
dynamical solution to the c.c. problem. From our point
of view, this proposal has the amusing feature that it
predicts that the total number of ��0 vacua is roughly
10120, which presumably could be checked indepen-
dently. If so, this would seem superficially attractive, as
in principle it predicts a unique overwhelmingly pre-
ferred vacuum, the one with minimum positive �. On
the other hand, the prospects for computing � accu-
rately enough to find this vacuum seem very dim. Even
if we could get exact results for �, there are arguments
from computational complexity theory that the problem
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of finding its minimum is inherently intractable �Denef
and Douglas, 2006�, making this measure factor nearly
useless in practical terms. It is also far from obvious at
present that the number of ��0 vacua is in the neigh-
borhood of 10120.

Perhaps a better response to the problem is to define
away the entropy factor. There are various closely re-
lated ways to do this �Vilenkin, 2006�; for example, Van-
churin and Vilenkin �2006� argued that it can be done by
restricting attention to the world-line of a single eternal
observer, and counting the number of bubbles it enters.
This leads to a prescription in terms of the stationary
distribution of a Markov process constructed from inter-
vacuum tunneling rates; its detailed properties are being
explored, but at first sight this appears to lead to a wildly
varying probability factor P�i� which, since it is deter-
mined by the structure of high-energy potential barriers,
would have little correlation to most observable proper-
ties of the vacua themselves. As discussed in Sec. V.F,
this might still allow making probabilistic predictions.

Other factors which have appeared in such proposals,
and while probably subleading to the ones we covered
might be important, include a volume expansion factor
�the overall growth in volume during slow-roll inflation�,
the volume in configuration space of the basin of attrac-
tion leading to the local minimum �Horne and Moore,
1994�, a canonical measure on phase space �Gibbons and
Turok, 2006�, dynamical symmetry enhancement factors
�Kofman et al., 2004�, and the volume of the extra di-
mensions �Firouzjahi et al., 2004�.

F. Holographic and dual formulations

The advent of string/M theory duality in the mid-
1990s led to an entirely novel perspective on many ques-
tions, and several new candidate nonperturbative frame-
works, such as matrix models, matrix theory, and the
AdS/CFT correspondence. While it is not known how to
use them to directly address the problem at hand, per-
haps the most general of these is the AdS/CFT corre-
spondence, which bears on the definition of solutions
with negative cosmological constant.

Consider a maximally symmetric four-dimensional so-
lution of string theory with negative cosmological con-
stant, in other words, a product of �3+1�-dimensional
anti–de Sitter space-time with a six-dimensional internal
space. According to AdS/CFT, there will exist a dual
�2+1�-dimensional conformal field theory �without grav-
ity�, which is precisely equivalent to the quantum string
theory in this space-time. This can be made more con-
crete for questions which only involve observables on
the boundary of AdS; for example, a scattering ampli-
tude in AdS maps into a correlation function in the CFT,
and boundary conditions of the fields in AdS map into
the values of couplings in the CFT.

This dictionary has been much studied. The most
important entries are between the relation �3+1�-
dimensional AdS c.c. and the number of degrees of
freedom of the CFT and the relation between masses
in AdS and operator dimensions in the CFT. For ex-

ample, in Freund-Rubin compactification of IIb string
theory on AdS5�S5, the curvature radius R4 / �
��2

�gsN, so the number of degrees of freedom N2 scales to
very large values for weakly curved, weakly coupled
vacua. Similarly, the map between operators and gravity
modes shows that operators with dimension ��O�1�
map to KK modes with masses �1/R.

For the Freund-Rubin examples, the AdS curvature
radius and the radius of the internal sphere are equal.
For the AdS4 vacua which arise in discussions of the
landscape, one is usually interested instead in theories
with compact dimensions having RKK�RAdS, so there is
an effective 4D description. Such theories will have dual
CFTs that differ qualitatively from those appearing in
standard examples of AdS/CFT. By mapping from grav-
ity modes to field theory operators, we see that the num-
ber of operators with ��O�1� will be much smaller in
these theories. Instead of an infinite tower of operators
with regularly spaced conformal dimension �dual to the
KK tower in Freund-Rubin models�, these dual CFTs
will have a sporadic set of low dimension operators �dual
to the compactification moduli�, and then a much larger
spacing between the operators dual to KK modes.

So given a class of AdS vacua in the landscape, it
seems reasonable to search for candidate dual CFTs that
could provide their exact definition. Further thought
leads to difficulties with this idea. First, the AdS vacua
whose existence is established using effective potential
techniques, by definition lie in the regime in which the
gravity description is weakly coupled. Since they have
no exact moduli �the compactification moduli are given
small but nonzero masses by fluxes and other effects,
and are dual to irrelevant operators whose dimension is,
however, of O�1��, they do not extrapolate �along lines
of fixed points� to a dual regime where the field theory
would be weakly coupled. So trying to find the dual field
theory involves working on the wrong �strongly coupled�
side of the duality, a difficult procedure at best.

We are not primarily interested in typical landscape
vacua. Rather, we are most interested in those highly
atypical vacua in which fortuitous cancellations give rise
to small �, as in the Bousso-Polchinski argument. Such
vacua rely on complicated cancellations between many
terms, and there are reasons to think they are exceed-
ingly hard to find explicitly even in the more computable
gravity description. This is the familiar problem that one
would need to include Standard Model and other loop
corrections to very high orders in perturbation theory, to
claim that one had found a specific vacuum with small �.
Even worse, a small variation to one of these compli-
cated solutions �such as changing a flux by one unit� will
spoil the cancellation and give a large cosmological
term. This suggests that the CFTs we are interested in
finding �which are dual to the AdS vacua with atypically
small �� are also complicated, and furthermore we need
to compute very precisely to see the cancellations which
single out the few solutions with small cosmological
term.
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Nevertheless, in principle we should be able to get the
general features of the problem to agree on both sides.
The basic picture would seem to be that we start with
QFTs with many, many degrees of freedom, perhaps the
dual theory of Silverstein �2003�, and then flow down to
CFT. To recover agreement with our effective potential
analyses, we need to find that a generic renormalization-
group flow either loses almost all the degrees of free-
dom, and thus is dual to large �, or else has no weakly
coupled space-time interpretation at all. On the other
hand, given appropriate tunings in the bare theory, more
degrees of freedom would survive the flow, leading to a
theory whose dual had a tuned small �.

IV. EXPLICIT CONTRUCTIONS

We now describe how flux vacua can be constructed in
type-II string theories. The most studied case involves
IIb/F-theory vacua, so we begin there. We then present
more recent results about IIa flux vacua, discuss mirror
symmetry in this setting, and provide some definite indi-
cations that many new classes of vacua are waiting to be
explored. We cannot exhaustively review all approaches
to the subject; rather, we hope that this review, together
with other reviews �Frey, 2003; Silverstein, 2004b;
Grana, 2006�, will provide a good overview of various
approaches and classes of models. For discussions of
models without low-energy supersymmetry, see Silver-
stein �2004b�.

Before we begin, we describe the approach used here
to compute the effective potential. The dimensional re-
duction of classical 10D supergravity �supplemented by
branes and fluxes� to four-dimensions is a well-defined
and straightforward �if technically challenging� proce-
dure. In various flux compactifications, it yields a tree
approximation to the effective potential as a function of
the moduli fields. This effective potential should be the
leading term in a systematic expansion if gs and ls

2 /R2 �in
the leading-order solution� are sufficiently small. In
some cases, we supplement this classical potential with
quantum corrections which have been computed in the
gs or 
� expansion, or with known nonperturbative con-
tributions to the 4D effective superpotential. The gen-
eral form of the latter can in many cases be inferred
from holomorphy and symmetry considerations, or from
known field theory results �applied to the low-energy
limit of the string compactification�. While this general
strategy is likely to apply only to a small fraction of all
vacua �those which are self-consistently stabilized at
weak coupling and large volume�, we see that this frac-
tion alone is enough to indicate the existence of a land-
scape, and to suggest concrete problems for further
work. While this leaves open the conceptual questions of
Sec. III.A, it is also fair to say that the success of EFT in
describing particle physics gives us good reason that it
will be applicable to study quasirealistic string vacua.

A. Type-IIb D3/D7 vacua

Here we consider type IIb/F-theory vacua whose 4D
N=1 supersymmetry is of the type preserved by D3/D7
branes in a Calabi-Yau orientifold.

1. 10D solutions

Here we describe the 10D picture of flux compactifi-
cations in the supergravity limit. We follow the treat-
ment by Giddings et al. �2002�. Closely related solutions
�related to the IIb solutions via the F-theory lift of M
theory� were first found in M-theory compactifications
on Calabi-Yau fourfolds by Becker and Becker �1996�,
and some aspects of their F-theory lift were described by
Dasgupta et al. �1999� and Gukov et al. �2000�.

The type-IIb string in ten dimensions has a string
frame action,

L =
1

2�10
2 � d10x�− G�1/2e−2SR + 4��S��S −

1
2

�F1�2

−
1
12

G3G3 −
1

4� 5!
F̃5

2�
+

1

8i�10
2 � eSC4 ∧ G3 ∧ G3 + Sloc. �36�

The theory has an Neveu-Schwarz �NS� field strength H3
�with potential B2� and RR field strengths F1,3,5 �with
corresponding potentials C0,2,4�. The field strength

G3 = F3 − �H3 �37�

is a combination of the RR and NS three-form field
strengths,

� = C0 + ie−S �38�

is the axio-dilaton, and

F̃5 � F5 − 1
2C2 ∧ H3 + 1

2B2 ∧ F3. �39�

The five-form field is actually self-dual; one must impose
the constraint

F̃5 = * F̃5 �40�

by hand when solving the equations of motion. Finally,
Sloc in Eq. �36� allows for the possibility of including the
action of any localized thin sources in our background;
possible sources which could appear in string theory in-
clude D-branes and orientifold planes.

We start by looking for solutions with 4D Poincaré
symmetry. The Einstein frame metric should take the
form

ds10
2 = e2A�y����dx�dx� + e−2A�y�g̃mn�y�dymdyn, �41�

� ,� run over 0 , . . . ,3 while m ,n take values 4 , . . . ,9 and
g̃mn is a metric on the compactification manifold M. We
have allowed for the possibility of a warp factor A�y�. In
addition, one should impose
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� = ��y�, F̃5 = �1 + * ��d
�y� ∧ dx0 ∧ ¯ ∧ dx3�
�42�

and allow only compact components of the G3 flux,

F3,H3 � H3�M,Z� . �43�

The G3 equation of motion then tells one to choose a
harmonic representative in the given cohomology class.

One can show by using the trace-reversed Einstein
equations for the R4 components of the metric that

�̃2e4A = e2AGmnpGmnp

12 Im���
+ e−6A��m
�m
 + �me4A�me4A�

+ �10
2 e2A�Tm

m − T�
��loc. �44�

We have denoted the stress-energy tensor of any local-
ized objects �whose action appears in Sloc� by Tloc.

Equation �44� already tells us something quite inter-
esting. The first two terms on the right-hand side are �0,
but on a compact manifold the left-hand side integrates
to zero �being a total derivative�. Therefore, in compact
models, and in the absence of localized sources, there is
a no-go theorem: the only solutions have G3=0 and eA

=const, and IIb supergravity does not allow nontrivial
warped compactifications. This is basically the no-go
theorem proved in various ways by Gibbons �1984�, de
Wit et al. �1987�, and Maldacena and Nunez �2001�.

This does not mean that one cannot find warped solu-
tions in the full string theory. String theory does allow
localized sources. It was emphasized already by Verlinde
�2000� that one can make warped models by considering
compactifications with N D3 branes, and stacking the D3
branes at a point on the compact space; then as is famil-
iar from the derivation of the AdS/CFT correspondence
�Maldacena, 1998�, the geometry near the branes can
become highly warped.

For this loophole to be operative, one needs

�Tm
m − T�

��loc� 0 �45�

to evade the global obstruction to solving Eq. �44�. Be-
fore finding nontrivial warped solutions with flux, we

will also need one more fact. The Bianchi identity for F̃5
gives rise to a constraint

dF̃5 = H3 ∧ F3 + 2�10
2 T3�3

loc, �46�

where T3 is the D3-brane tension and �3
loc is the local D3

charge density on the compact space. The integrated Bi-
anchi identity then requires, for tadpole cancellation,

1

2�10
2 T3

�
M

H3 ∧ F3 + Q3
loc = 0, �47�

where Q3
loc is the sum of all D3 charges arising from

localized objects.
Now, one can rewrite Eq. �46� more explicitly in terms

of the function 
�y� as

�̃2
 = ie2AGmnp*6Gmnp

12 Im���
+ 2e−6A�m
�m


+ 2�10
2 e2AT3�3

loc. �48�

Subtracting this from the Einstein equation �44�, one
finds

�̃2�e4A − 
� =
e2A

24 Im���
�iG3 − *6G3�2 + e−6A���e4A − 
��2

+ 2�10
2 e2A� 1

4 �Tm
m − T�

��loc − T3�3
loc �. �49�

we make the assumption
1
4 �Tm

m − T�
��loc� T3�3

loc. �50�

This serves as a constraint on the kind of localized
sources we want to consider in finding solutions. The
inequality is saturated by D3 branes and O3 planes, as
well as by D7 branes wrapping holomorphic cycles; it is
satisfied by D3 branes; and it is violated by O5 and O3
planes.

Assuming we restrict our sources as above, it follows
from Eq. �49� that G3 must be imaginary self-dual �ISD�,

*6G3 = iG3, �51�

that the warp factor and C4 are related,

e4A = 
 , �52�

and that the inequality �50� is actually saturated. So so-
lutions to the tree-level equations should include only
D3, O3, and D7 sources. In the quantum theory, one can
obtain solutions on compact M with D3 sources as well;
we describe this when discussing supersymmetry break-
ing.

We did not write out the extra-dimensional Einstein
equation and the axio-dilaton equation of motion yet;
their detailed form will not be important for us. Impos-
ing them, we find that this class of solutions describes
F-theory models �Vafa, 1996� in the supergravity ap-
proximation, including the possibility of background
flux. As noted earlier, these solutions are closely related
to those of Becker and Becker �1996�, whose F-theory
interpretation has also been described by Dasgupta et al.
�1999� and Gukov et al. �2000�.

The simplest examples of such solutions are perturba-
tive IIb orientifolds. An argument by Sen �1997� showed
that every compactification of F-theory on a Calabi-Yau
fourfold has, in an appropriate limit, an interpretation as
a IIb orientifold of a Calabi-Yau threefold. We therefore
develop the story in the language of IIb orientifolds, but
the formulas generalize in a straightforward way to the
more general case. In this special case of perturbative
orientifolds, at leading order, the metric on the internal
space is conformally Calabi-Yau; it differs by the warp
factor e2A.

2. 4D effective description

Here we describe the construction of the 4D effective
action for IIb orientifolds with RR and NS flux, follow-
ing Giddings et al. �2002�. The main result will be an
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explicit and computable result for the 4D effective po-
tential, which can be analyzed using analytical, numeri-
cal, or statistical techniques. Earlier work in this direc-
tion appeared in Dasgupta et al. �1999�; Gukov et al.
�2000�; Taylor and Vafa �2000�; Mayr �2001�, while
related results in gauged supergravity were presented
in Polchinski and Strominger �1996�; Michelson �1997�;
Dall’Agata �2001, 2004a, 2004b�; Andrianopoli,
D’Auria, and Ferrara �2002�; Andrianopoli et al. �2002a,
2002b�; D’Auria et al. �2002�; Ferrara �2002�; Ferrara
and Porrati �2002�; Andrianopoli, D’auria, et al. �2003�;
Andrianopoli, Ferrara, et al. �2003�, Angelantonj et al.
�2003, 2004�, and D’Auria, Ferrara, Gargiulo, et al.
�2003�. Generalizations of this formalism to include ef-
fects of the warp factor appear in DeWolfe and Giddings
�2003�; Frey and Maharana �2006�; and Giddings and
Maharana �2006�.

We consider a Calabi-Yau threefold M with h2,1 com-
plex structure deformations, and choose a symplectic
basis �Aa ,Bb� for the b3=2h2,1+2 three-cycles a ,b
=1, . . . ,h2,1+1, with dual cohomology elements 
a ,�b

such that

�
Aa

b = �b

a, �
Bb

�a = − �b
a, �

M

a ∧ �b = �a

b. �53�

Fixing a normalization for the holomorphic three-form
 , we then define the periods

za = �
Aa
 , Gb = �

Bb

 �54�

and the period vector !�z�= �Gb ,za�. za are projective
coordinates on the complex structure moduli space of
the Calabi-Yau threefold, with Gb=�bG�z� �G�z� is com-
monly known as the prepotential�. The Kähler potential
K for the za as well as the IIb axio-dilaton �=C0+ i /gs is
given by

K = − lni�
M
 ∧  ̄� − ln�− i�� − �̄�� . �55�

Note that given the period vector, one can rewrite

�
M
 ∧  ̄ = −!†�! , �56�

where � is the symplectic matrix. This structure on the
complex structure moduli space follows from so-called
special geometry, as derived by Dixon et al. �1990�;
Strominger �1990�, and Candelas and de la Ossa �1991�.
The special geometry governs the moduli space of vec-
tor multiplets in N=2 supersymmetric compactifications.
However, to leading approximation �i.e., tree level�, it
also governs the complex structure moduli space of N
=1 orientifolds of these models. In general, some of the
complex structure moduli could be projected out in any
given orientifold construction; in this circumstance, one
should restrict the various quantities to the surviving
submanifold of the moduli space.

Now, we consider turning on fluxes of the RR and
NS-NS three-form field strengths F3 and H3. In a self-
explanatory notation, we define these via integer-valued
b3 vectors f ,h:

F3 = − �2��2
��fa

a + fa+h2,1+1�a� , �57�

H3 = − �2��2
��ha

a + ha+h2,1+1�a� . �58�

These fluxes generate a superpotential for the complex
structure moduli as well as the axio-dilaton �Gukov et
al., 2000�,

W = �
M

G3 ∧ �z� = �2��2
��f − �h� ·!�z� , �59�

where G3=F3−�H3.
To write down a general expression for the potential,

we introduce one more ingredient. Thus far, we have
described only a Kähler potential on the complex struc-
ture moduli space. In general models, there are also
Kähler moduli �up to h1,1�M� of them, depending on
how many survive the orientifold projection�. However,
they will cancel out of the tree-level effective potential
in the IIb supergravity, in the following way �Giddings et
al., 2002; Grimm and Louis, 2004�. The Kähler potential
for these moduli is

Kk = − 2 ln�V� �60�

Given a basis of divisors �S
�, 
=1, . . . ,h1,1, the volume
V is determined in terms of the Kähler form J= t
S
 by

V = 1
6S
�"t


t�t". �61�

Here S
�" is the triple intersection form, and counts the
intersections of the divisors S
, S�, and S". Note that for
this class of vacua the flux superpotential �59� does not
depend explicitly on the Kähler moduli.

Now, the expression for the potential in N=1 super-
gravity takes the form �Freedman et al., 1976�

V = eK+Kk

i,j

gij̄DiWDjW − 3�W�2� , �62�

where i , j run over indices labeling the complex structure
and Kähler moduli as well as the dilaton. DiW is the
Kähler covariantized derivative DiW=�iW+K,iW. At
this point, because of the special structure where W is
independent of the t’s at tree level, as well as the tree-
level form of the Kähler potential, in Eq. �62� the
−3 �W�2 term precisely cancels the terms where i , j run
over 
 ,� �the Kähler moduli�. Therefore one can ex-
press the full tree-level flux potential as �Giddings et al.,
2002�

V = eKtot

a,b

gab̄DaWDbW� , �63�

where here the sum over a also includes �.
So surprisingly, despite the fact that we are working in

an N=1 supergravity, the potential is positive semidefi-
nite with vacua precisely when V=0. Furthermore, one
sees immediately that generic vacua are not supersym-
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metric; supersymmetric vacua have DaW=D�W=D
W
=0, while nonsupersymmetric vacua have D
W�0 for
some 
. This is precisely a realization of the cancellation
that occurs in a general class of supergravities known as
no-scale supergravities �Cremmer et al., 1983; Ellis et al.,
1984�. Unfortunately, the miracle of vanishing cosmo-
logical constant for the nonsupersymmetric vacua de-
pended on the tree-level structure of the Kähler poten-
tial �60� which is not radiatively stable. Therefore this
miracle, while suggestive, does not lead to any mecha-
nism of attacking the cosmological constant problem.
The potential �63� receives important corrections in both
perturbation theory and nonperturbatively.

A simple characterization of the points in moduli
space which give solutions to V=0 for a given flux arises
as follows. We need to solve

D�W = DaW = 0, �64�

which, more explicitly, means

�f − �̄h� ·!�z� = �f − �h� · ��a! +!�aK� = 0. �65�

In fact, these equations have a simple geometric inter-
pretation: For a given choice of the integral fluxes f ,h,
they require the metric to adjust itself �by motion in
complex structure moduli space� so that the �3,0� and
�1,2� parts of G3 vanish, leaving a solution where G3 is
imaginary self-dual �ISD�, as in Eq. �51�.

At this stage, since we are solving h2,1+1 equations in
h2,1+1 variables for each choice of integral flux, it seems
clear that generic fluxes will fix all the complex structure
moduli as well as the axio-dilaton. Furthermore, one
might suspect that the number of vacua will diverge,
since we have not yet constrained the fluxes in any way.

However, the fluxes also induce a contribution to the
total D3-brane charge, arising from the term in the 10D
IIb supergravity Lagrangian

L = ¯ +
1

8i�10
2 � C�4� ∧ G3 ∧ G3

Im �
+ ¯ , �66�

where C4 is the RR four-form potential which couples to
D3 branes. This results in a tadpole for D3-brane
charge, in the presence of fluxes:

Nflux =
1

�2��4�
��2�
M

F3 ∧ H3 = f · � · h . �67�

This is important because �i� one can easily check that
for ISD fluxes Nflux�0, and �ii� in a given orientifold of
M, there is a tadpole cancellation condition �47�, which
we can write in the form

Nflux + ND3 = L , �68�

where L is some total negative D3 charge which needs
to be canceled, arising by induced charge on D7 and O7
planes �Giddings et al., 2002�, and/or explicit O3 planes.
In practice, for an orientifold which arises in the Sen
�1997� limit of an F-theory compactification on elliptic
fourfold Y, one finds �Sethi et al., 1996�

L = ��Y�/24. �69�

What this means is that the allowed flux choices in an
orientifold compactification on M, and hence the num-
bers of flux vacua, are constrained by Nflux	L. This will
be important later, when discussing vacuum statistics for
this class of models.

Note here that in describing this classical story we
have simplified matters by turning on only the back-
ground closed string fluxes. In general orientifold or
F-theory models, D7 branes with various gauge groups
are also present, and one can turn on background field
strengths of the D7 gauge fields, generating additional
contributions to the tadpole condition �68� and the
space-time potential energy. Because our story is rich
enough without considering these additional ingredients,
we proceed with the development without activating
them, but discussions which incorporate them in this
class of vacua can be found in, e.g., Burgess et al. �2003�,
Jockers and Louis �2005a, 2005b�, Haack et al. �2006�,
and Garcia del Moral �2006�.

Example: The conifold. We now exemplify our previ-
ous considerations by finding flux vacua in one of the
simplest noncompact Calabi-Yau spaces, the deformed
conifold. The metric of this space is known explicitly
�Candelas and de la Ossa, 1990�. The vacua discussed
below have played an important role in gauge/gravity
duality �Klebanov and Strassler, 2000�, the study of geo-
metric transitions �Vafa, 2001�, and warped compactifi-
cations of string theory �Giddings et al., 2002�, including
models of supersymmetry breaking �Kachru et al., 2002�.
We encounter some of these applications as we proceed.

The deformed conifold is a noncompact Calabi-Yau
space, defined by

P�x,y,v,w� = x2 + y2 + v2 + w2 = �2 �70�

in C4. As �→0, the geometry becomes singular: the ori-
gin is nontransverse, since one can solve P=dP=0 there.
It is not difficult to see that an S3 collapses to zero size at
this point in moduli space; e.g., for real �2, the real slice
of Eq. �70� defines such an S3. In this limit, the geometry
can be viewed as a cone over S3�S2. There are two
topologically nontrivial three-cycles; the A-cycle S3 we
have already discussed, which vanishes when �→0, and
a dual B-cycle swept out by the S2 times the radial di-
rection of the cone.

The singularity �70� arises locally in many compact
Calabi-Yau spaces �at codimension 1 in the complex
structure moduli space�. In such manifolds, the B-cycle
is also compact; the behavior of the periods of  is par-
tially universal, given by

�
A
 = z, �

B
 =

z

2�i
ln�z� + regular = G�z� . �71�

Here z→0 is the singular point in moduli space where A
collapses, and the regular part of the B-period is nonuni-
versal.
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We can now study flux vacua using the periods �71�
and the explicit formulas �59� and �63� for the superpo-
tential and potential energy function. Choosing

�
A

F3 � M, �
B

H3 � − K �72�

we find that the superpotential takes the form

W�z� = − K�z + MG�z� . �73�

Given the logarithmic singularity in G, this superpo-
tential bears a striking resemblance to the Veneziano-
Yankielowicz superpotential of pure N=1 supersymmet-
ric SU�M� gauge theory �Veneziano and Yankielowicz,
1982�. We show that this is no accident.

The Kähler potential can be determined using Eq.
�55�. We are interested in vacua which arise close to the
conifold point where z is exponentially small; to obtain
such vacua we consider K /gs to be large. In this limit,
the dominant terms in the equation for classical vacua
are

DzW = �M/2�i�ln�z� − iK/gs + ¯ , �74�

where ¯ are O�1� terms that will be negligible in a self-
consistent manner. For K /gs large, one finds that

z � exp�− 2�K/gsM� �75�

and these flux vacua are exponentially close to the coni-
fold point in moduli space. Due to the ambiguity arising
from the logarithm, there are M vacua, distributed in
phase but with the magnitude of z as given above.

For the noncompact Calabi-Yau, these are good flux
vacua. In fact, the conifold with fluxes �72� is dual, via
gauge/gravity duality, to a certain N=1 supersymmetric
SU�N+M��SU�N� gauge theory, with N=KM �Kle-
banov and Strassler, 2000�. While it is beyond the scope
of our review to discuss this duality in detail, the infra-
red physics of the gauge theory involves gluino conden-
sation in pure SU�M� N=1 SYM. This fact, together
with the duality, explains the appearance of the
Veneziano-Yankielowicz superpotential in Eq. �73�. The
M vacua we found in the z plane are the M vacua which
saturate the Witten index of pure SU�M� SYM.

In a compact Calabi-Yau, the dilaton � is also dynami-
cal and we would need to solve D�W=0 as well. Naively,
one would find an obstruction to doing this in the limit
described above �large K /gs and exponentially small z�.
In fact, one can do this even in compact situations, as
described by Giddings et al. �2002�.

While this example is quite simple, we use it to illus-
trate many points. In the literature, one can find many
other examples of explicit vacua, both in toroidal orien-
tifolds �Dasgupta et al., 1996; Greene et al., 2000; Frey
and Polchinski, 2002; Blumenhagen et al., 2003; Cascales
and Uranga, 2003a, 2003b; Kachru, Shulz, and Trivedi,
2003�, and in more nontrivial Calabi-Yau threefolds �Cu-
rio et al., 2001; Tripathy and Trivedi, 2003; Conlon and
Quevedo, 2004; Giryavets, Kachru, and Tripathy, 2004;

Giryavets, Kachru, Tripathy, and Trivedi, 2004; Aspin-
wall and Kallosh, 2005; DeWolfe, 2005; DeWolfe et al.,
2005a�.

3. Quantum IIb flux vacua

At the classical level, the Kähler moduli of IIb orien-
tifolds with flux remain as exactly flat directions of the
no-scale potential. However, quantum corrections will
generally generate a potential for these moduli. This po-
tential will have at least two different sources:

�1� In every model, there will be corrections to the
Kähler potential which depend on Kähler moduli.
The leading such corrections have been computed
by Becker et al. �2002� and Berg et al. �2005, 2006�.
As soon as Kk takes a more general form than Eq.
�60�, the no-scale cancellation disappears and the
scalar potential will develop dependence on the
Kähler moduli.

�2� The superpotential in these models enjoys a non-
renormalization theorem to all orders in perturba-
tion theory �Burgess et al., 2006�. Nonperturbatively,
it can be violated by Euclidean D3-brane instantons.
The conditions for such instantons to contribute in
the absence of G3 flux, and assuming they have
smooth world-volumes, with vanishing intersection
with other branes in the background, have been de-
scribed by Witten �1996b�. The basic condition is fa-
miliar also from supersymmetric gauge theory: there
should be precisely two fermion zero modes in the
instanton background. These zero modes can be
counted as follows. One can lift the Euclidean D3
brane to an M5 brane wrapping a divisor D in the
M-theory dual compactification on a Calabi-Yau
fourfold. Then, the number of fermion zero modes
can be related to the holomorphic Euler character �
of the divisor:

number of zero modes = 2��D� = 2

p=0

3

h0,p�D� . �76�

In the simplest case of an isolated divisor with h0,0

=1 and other h0,p vanishing, the contribution is defi-
nitely nonzero. For more elaborate cases where �
=1 but the divisor has a moduli space, it is conceiv-
able that the integral over the instanton moduli
could vanish.

The conditions under which such instantons contrib-
ute in the presence of various fluxes and/or space-filling
D-branes �whose world-volumes they may intersect� re-
main a subject of active investigation �Gorlich et al.,
2004; Kallosh et al., 2005; Saulina, 2005; Blumenhagen et
al., 2006; Florea et al., 2006; Haack et al., 2006; Ibanez
and Uranga, 2006; Lust, Reffert, Schulgin, et al., 2006�.
The condition �76� is certainly modified. More generally,
there can be contributions from nonperturbative dynam-
ics in field theories arising on D7-brane world-volumes,
whose gauge coupling is Kähler modulus dependent
�Kachru, Kallosh, et al., 2003; Gorlich et al., 2004�.
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It was argued in Kachru, Kallosh, et al. �2003� �KKLT�
that such corrections will allow one to find flux compac-
tifications of the IIb theory that manifest landscapes of
vacua with all moduli stabilized. As a simple toy model
for how such corrections may be important we consider
a model with a single Kähler modulus �, with

Kk = − 3 ln�− i�� − �̄�� . �77�

Here one should think of Im����R4 / �
��2 where R is
the radius of M, while Re��� is related to the period of
an axion arising from C4 �Giddings et al., 2002�. If there
is a D7 stack which gives rise to a pure SYM sector,
whose gauge coupling depends on �, one finds a super-
potential of the general form

W = W0 + Aeia�. �78�

One should view W0 as being the constant arising from
evaluating the flux superpotential �59� at its minimum in
complex structure moduli space. A is a determinant
which a priori depends on complex structure moduli,
and a is a constant depending on the rank of the D7
gauge group. We noted above that A would generally
depend on complex structure moduli. However, the
scales in the flux superpotential make it clear that com-
plex structure moduli receive a mass at order 
� /R3,
while any Kähler moduli masses arising from the correc-
tion in �78� will be significantly smaller. Therefore one
can view the supergravity functions above as summariz-
ing the EFT of the light mode �, having integrated out
the heavy complex structure modes and dilaton. For a
detailed discussion of possible issues with such a proce-
dure, see Choi et al. �2004� and de Alwis �2005�.

It is then straightforward to show that one can solve
D�W=0, yielding a vacuum with all moduli stabilized
and with unbroken supersymmetry �Kachru, Kallosh, et
al., 2003�. For small W0, this vacuum moves into the re-
gime of control �large Im���� with logarithmic speed.
�Small a arising from large rank gauge groups also
helps.� This provides a loose proof of principle that one
can find models with all moduli stabilized. This picture
has been extended in further work; the most explicit ex-
amples to date appear in Denef �2004, 2005�, Lust, Ref-
fert, Schulgin, et al. �2005�, and Lust, Reffert, Scheideg-
ger, et al. �2006�.

Before summarizing further detailed considerations,
we discuss here two important questions. First, under
the assumptions above one requires an exponentially
small value of W0 to obtain a vacuum which is in the
regime of computational control, where further correc-
tions are expected to be small. Is it reasonable to expect
such a small value? Actually, in all string models of
SUSY GUTs in which Ms�MP, such a tuning of W0 is
inevitable. Recall from Sec. II.F.1 that the largest F term
which is allowed in a model where SUSY explains the
gauge hierarchy is roughly �1011 GeV�2. Taking into ac-
count Eq. �21�, a small cosmological constant requires

�W�2	MP
2 �1011 GeV�4 → �W/MP

3 �	 10−14. �79�

For models of gauge mediation with low-scale breaking,
the tune becomes even larger. This tune is absolutely
necessary in the standard supergravity picture of unifi-
cation, and enters directly into cosmology via the grav-
itino mass. It is therefore an inevitable problem in stan-
dard SUSY scenarios with high string scale that one be
required to tune W to be small at any minimum.

This does not answer the question of whether such
small values of W0 are in fact attainable in actual flux
vacua. We answer this in the affirmative in Sec. V. In-
deed, we will make more detailed claims; for example,
that the �naive� expectation that this could be easily at-
tained by an approximate R symmetry, is not true for
known flux vacua.

Another interesting question is: When is one justified
in using the tree-level Kähler potential while including
the nonperturbative correction to W? Clearly, at very
large volume, corrections to Kk �which are power-law
suppressed� are more important than instanton effects.
However, in self-consistent perturbation theory, this is
not the relevant question. The relevant question is,
given the estimates above, if one then includes a first
correction to Kk and then reexpands around the solution
one has obtained with the tree level Kk, how much does
the solution shift? It is easy to verify that for large Im���
perturbative corrections to Kk �expanded around the
minimum of the potential� shift the solution by a small
amount, which can be tuned by tuning W0.

Naturally, however, this suggests that the corrections
to K themselves can cause new features at large volume,
giving rise to further critical points in the potential dis-
tinct from the KKLT minima. Such critical points have
been observed by Balasubramanian and Berglund
�2004�, Balasubramanian et al. �2005�, von Gersdorff and
Hebecker �2005�, and Berg et al. �2006�, using estimates
for the first few quantum corrections to K. These can
yield vacua with very large volume, even realizing the
large extra dimensions scenario of Arkani-Hamed et al.
�1998�. The phenomenology of such models has been
described by Conlon et al. �2005� and Conlon and Que-
vedo �2006�.

4. Supersymmetry breaking

The vacua discussed so far are supersymmetric. One
hopes to also learn about vacua which have supersym-
metry breaking at or above the TeV scale, and have
positive cosmological constant. Here we discuss three
ideas in this direction: one in some detail �largely be-
cause it is novel and uses stringy ingredients�, and two
more standard ideas quite briefly. We focus on theories
with low-energy breaking �i.e., breaking far below the
KK scale�. There are also known solutions with super-
symmetry breaking at the KK scale �Saltman and Silver-
stein, 2006� or even higher scales �Silverstein, 2001�. Ex-
amples of this type have been discussed by Silverstein
�2004b�.
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We also only discuss the mechanisms of SUSY break-
ing that have been explored in the IIb landscape. One of
the most important consequences of SUSY breaking is
the generation of soft terms. For flux-induced breaking
these terms have been investigated by Camara et al.
�2004�; Lawrence and McGreevy �2004a, 2004b�, Alla-
nach et al. �2005�, Camara, Ibanez, and Uranga �2005�,
Font and Ibanez �2005�, Ibanez �2005�, Marchesano et al.
�2005�, Lust et al. �2005a, 2005b�, and Lust, Mayr, et al.
�2006�. More generally, constructions of models incorpo-
rating a standardlike model together with flux stabiliza-
tion have appeared in Marchesano and Shiu �2004,
2005�, Cvetic and Liu �2005�, and Cvetic et al. �2005�.

a. Warped supersymmetry breaking

The idea presented by Kachru et al. �2003� is as fol-
lows. Calabi-Yau compactification, at leading order in

�, gives rise to a compactification metric of the form

ds2 = ���dx�dx� + gmndymdyn �80�

with � ,� running over coordinates in our R4, and m ,n
=1, . . . ,6 parametrizing the coordinates on the extra six
dimensions.

However, in the presence of fluxes, one finds a more
general metric of the form

ds2 = e2A�y����dx�dx� + e−2A�y�gmndymdyn. �81�

A�y� is a warp factor, which allows the scale in the 4D
Minkowski space to vary as one moves along the com-
pact dimensions ym.9 The equation determining A�y� in
terms of the flux compactification data can be found in
Giddings et al. �2002�. Compactifications where A�y� var-
ies significantly as one moves over the compact six-
manifold M are often called warped compactifications.

An important toy model of warped compactification is
the Randall-Sundrum model �Randall and Sundrum,
1999a�. This is a 5D model where a warp factor, which
varies by an exponential amount over the fifth dimen-
sion �which is compactified on an interval�, can be used
to explain exponential hierarchies in physics. The basic
idea is that scales at the end of the fifth dimension,
where eA has a minimum, are exponentially smaller than
those at the UV end where eA is maximized.

The simplest realization of this idea in string theory
uses precisely the same kinds of �deformed� conical
throats that arise in describing string duals of confining
gauge theories �Klebanov and Strassler, 2000�. We
found, for instance, that in the conifold geometry one
can stabilize moduli exponentially close to a conifold
point in moduli space without tuning

�
A

F3 = M, �
B

H3 = − K, z = exp�− 2�K/gsM� .

�82�

But the fluxes here are precisely those of the warped
deformed conifold solution which appears in gauge/
gravity duality; hence the warp factor e2A�y� at the tip of
the deformed conifold will take the same value it does
there. This gives rise to an exponential warping

eA � e−2�K/3gsM. �83�

As a result, compactifications of the conifold with flux
can give rise to string theory models which accommo-
date the exponential warping of scales used in Randall-
Sundrum �RS� scenarios �Giddings et al., 2002�. The pos-
sibilities for making realistic RS models in this general
context have been investigated by Cascales et al. �2004,
2005�, Franco et al. �2005�, and Gherghetta and Giedt
�2006�, and references therein.

Instead of using the redshifting of scales to explain the
Higgs mass directly, this warping can also be used in
another way. Imagine that instead of engineering the
Standard Model in the region of minimal warp factor,
one arranges for SUSY breaking to occur there. The
Standard Model can be localized in the bulk of the
Calabi-Yau space, where eA�O�1�. In this situation, the
exponentially small scale of supersymmetry breaking
can be explained by warping, instead of by instanton
effects. It can be transmitted via gravity mediation or
other mechanisms to the observable sector. This sce-
nario, combined with other assumptions, has been ex-
plored in a phenomenological context in, e.g., Choi,
Falkowski et al. �2005�, Choi, Jeong et al. �2005�, Kitano
and Nomura �2005�, Brummer et al. �2006�, and Choi et
al. �2006�.

To flesh out such scenarios, one should provide ex-
plicit microscopic models of such SUSY breaking. Such
a model was proposed by Kachru et al. �2002�. The idea
is to consider the conifold with flux, in the presence of a
small number p�M of anti-D3 branes. While the throat
carries �H∧F=KM units of D3 brane charge, this is not
obviously available to perturbatively annihilate with an-
tibranes. It then becomes interesting to work out the
dynamics of this nonsupersymmetric but controlled sys-
tem.

For p�M, we consider the p antibranes as probes of
the exact solution given by Klebanov and Strassler
�2000�. Their dynamics will be governed by their world-
volume action in the fixed supergravity background.
This action is a function of the six matrix-valued fields
�i, which are adjoints of SU�p� and parametrize the
brane positions on M. In an appropriate duality frame, it
is given by the sum of two terms: a Born-Infeld term

SBI = −
�3

gs
� d4x Tr�det�G��det�Q� �84�

and a Chern-Simons term

9The fact that fluxes generate warping has been described by
Strominger �1986� and Becker and Becker �1996�. This was
discussed in the IIb context in Dasgupta et al. �1999� and
Greene et al. �2000�, and concrete ideas about Randall-
Sundrum scenarios in string theory were developed by Chan et
al. �2000� and Verlinde �2000�.
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SCS = − �3� d4x Tr�2�i�i�B6 + C4� . �85�

Here �3 /gs=T3, G� is the pullback of the induced metric
along antibranes, i� is the interior derivative so

i�i�B6 =�n�mBmnpqrs
1
4!

dyp ∧ ¯ ∧ dys, �86�

Q is the matrix

Qj
i = �j

i +
2�i

gs
��i,�k��Gkj + gsCkj� , �87�

and B6 is given in an ISD flux background by

dB6 =
1

gs
2*10H3 = −

1

gs
dV4 ∧ F3, �88�

where dV4 is the volume form on R4 at the brane loca-
tion in the compact dimensions.

It is best to summarize the dynamics in three steps
�Kachru et al., 2002; DeWolfe et al., 2004�.

1. Weight loss. The noncommutator terms in the ISD
flux background yield the action

− p
�3

gs
� d4x�g4e4ATr�2+ 1

2e−2A���
i���jgij� . �89�

Therefore the leading potential is

V�y� = 2e4A�y�. �90�

It arises by adding the BI and CS terms; for a D3-brane
these would instead cancel, as D3-branes in the ISD flux
backgrounds feel no force.

In the Klebanov-Strassler solution �Klebanov and
Strassler, 2000�, the warp factor depends only on the ra-
dial direction in the cone A�y�=A�r� for some radial di-
rection r. Then the potential �90� simply yields a force in
the radial direction

Fr�r� = − 2��3/gs��re
4A�r� . �91�

The warp factor monotonically decreases as one goes
towards the smooth �deformed� tip of the cone, so in the
first step of evolution the p antibranes are drawn quickly
to the region of minimal warp factor, the tip of the de-
formed conifold. This result is intuitively clear: the
branes wish to minimize their energy, and the minimal
energy can be obtained by going to the region where
eA�1.

2. Embiggening. Now we analyze the dynamics of the
p anti-D3 branes at the tip. The metric at the tip of the
warped deformed conifold is given by

ds2 � �e−2�K/3Mgs�2dx�dx� + R2d 3
2 + �dr2 + r2d ̃2

2�b0
2.

�92�

Here b0 is a number of order 1 and R2�gsM. In particu-
lar, at the tip r=0, the geometry is well approximated by
an S3 of radius �gsM.

The flux is also easy to determine; the H3 flux is
spread over the radial direction, while the F3 flux

threads the S3 at the tip. In the supergravity regime
where gsM�1, we can solve �AF3=M by just setting F
proportional to the warped volume form � on the S3:

Fmnp = f�mnp, f � 1/�gs
3M . �93�

So the system we are studying consists of p anti-D3
branes transverse to a diffuse magnetic three-form flux
�that is, a flux whose flux density is small in the super-
gravity regime of large gsM� or, equivalently, p anti-D3
branes in an electric seven-form flux.

This system is T-dual to D0-branes in an electric four-
form flux. These D0-branes undergo the famous Myers
�1999� effect; p D0-branes in a background flux expand
into a fuzzy D2-brane carrying p units of world-volume
gauge flux �to encode the D0 charge�. Similarly here the
anti-D3 branes should be expected to expand into five-
branes, carrying p units of world-volume flux. Because
we are working in a duality frame where SCS contains a
coupling to B6, in fact the anti-D3s will expand into an
NS five-brane.

We can see this as follows. On the large S3, one can
approximate

Ckj � �2�/3�Fkjl�
l, Gkj � �kj. �94�

Therefore

Qj
i = �j

i +
2�i

gs
��i,�j� + i

4�2

3
Fkjl��i,�k��l. �95�

Then

Tr��detQ� � p − i
2�2

3
FkjlTr���k,�j��l�

−
�2

gs
2 Tr��i,�j�2. �96�

Now the B6 term in SCS would cancel the cubic term
in the potential if we were considering D3 branes; they
do not undergo a Myers effect in this background. On
the other hand, for anti-D3 branes, the B6 term adds and
we find an effective potential

Veff��� = e−8�K/3Mgs
�3

gs
p − i

4�2f

3
�kjlTr��k,�j��l

− ��2/gs
2�Tr��i,�j�2 + ¯ � . �97�

It is important to emphasize that this potential is expo-
nentially small, due to the warp factor at the tip of the
cone.

Now, demanding �Veff /��=0, we find

†��i,�j�,�j
‡ − igs

2f�ijk��j,�k� = 0. �98�

We can solve Eq. �98� by choosing constant matrices �i

that satisfy

��i,�j� = − igs
2f�ijk�

k. �99�

This is a very familiar equation. Up to a rescaling of
fields, Eq. �99� is just the commutation relation satisfied
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by p�p matrix representations of the SU�2� generators.
Therefore we can find extrema of the antibrane poten-
tial, by simply choosing �generally reducible� p�p ma-
trix representations of SU�2�, i.e., there is an extremum
for each partition of p. The full landscape of these ex-
trema is somewhat complicated �see, e.g., Jatkar et al.
�2002� and DeWolfe et al. �2004� for remarks on struc-
ture, and Gomis et al. �2005� for a discussion of open
string landscapes�. What is clear is that the energetically
preferred solution is the p-dimensional irreducible rep-
resentation, for which

Veff � e−8�K/3Mgsp
�3

gs
1 −

8�2

3
�p2 − 1�

M

1

b0
12� . �100�

The radius of the fuzzy S2 the branes unfurl into is given
by

R̃2 =
4�2

b0
8

�p2 − 1�
M2 R2, �101�

where R2�gsM controls the size of the S3 at the tip of
the geometry.

It is clear from Eq. �101� that we can only trust this

solution for p�M; for larger p, the radius R̃ approaches
the radius of the S3, and global features of the geometry
may become important.

3. Deflation. We now comment on the ultimate fate of
these nonsupersymmetric anti-D3 states in the
Klebanov-Strassler throat. The throat is characterized
by �AF3=M, �BH3=−K. At very large values of the ra-
dial coordinate r �the UV of the dual quantum field
theory�, the charge Qtot characterizing the throat with
the p probe antibranes is then

�
A

F3 = M, �
B

H3 = − K,

ND3 = p → Qtot = KM − p . �102�

But there are also supersymmetric states carrying this
same total charge; for instance, one could consider

�
A

F3 = M, �
B

H3 = − �K − 1�,

ND3 = M − p → Qtot = KM − p . �103�

Since the two charge configurations �102� and �103� have
the same behavior at infinity in the radial coordinate,
they should be considered as two distinct states in the
same theory. In fact, one can explicitly write down a
vacuum bubble interpolating between them; it consists
of an NS five-brane wrapping the A-cycle, and studied in
detail by Kachru et al. �2002� and DeWolfe et al. �2004�.
This bubble can be interpreted as a bubble of false
vacuum decay, carrying the metastable nonsupersym-
metric vacuum �102� to a stable supersymmetric vacuum.
Because the scale of supersymmetry breaking in the ini-
tial vacuum is exponentially small, one can control these
states quite well for 1�p�M. A detailed study showed
that as p approaches M, the metastable vacuum disap-

pears; the critical value of p /M is O�1/10�.
This situation is reminiscent of some recent examples

where direct study of 4D supersymmetric field theories
has uncovered metastable nonsupersymmetric vacua
�Intriligator et al., 2006�. Extending our knowledge of
such states �using either gauge/gravity duality or 4D field
theory techniques�, and the interrelations between them,
remains a very active area of research.

In addition to their interest as an example of the in-
tricate dynamics that can occur with branes in flux back-
grounds, these states have also been used in the KKLT
proposal to obtain de Sitter vacua in string theory
�Kachru, Kallosh, et al., 2003�, and play an important
role in some models of string inflation �Kachru et al.,
2003�.10 Of course, for the former role, other mecha-
nisms of supersymmetry breaking could serve as well.
We now discuss two less stringy, but very well motivated,
ideas.

b. Dynamical supersymmetry breaking

An alternative to using warped compactification to
obtain an exponentially small scale of supersymmetry
breaking is to use dimensional transmutation and instan-
ton effects �Witten, 1981a�. Many examples of field theo-
ries which dynamically break supersymmetry have been
discovered starting with the work of Affleck, Dine, and
Seiberg summarized by Affleck et al. �1985�. More re-
cent reviews include Poppitz and Trivedi �1998� and
Shadmi and Shirman �2000�.

It is clear that one can incorporate these dynamical
breaking sectors as part of the low-energy physics of a
string compactification. The extra-dimensional picture
then does not a priori add much to the 4D discussion,
although it can be useful in “geometrizing” criteria for
different mediation mechanisms to dominate �Diaco-
nescu et al., 2006�. Discussions of DSB with gauge or
gravity mediation of SUSY breaking to the Standard
Model, in fairly concrete pseudorealistic string compac-
tifications, appeared in Braun et al. �2006�, Diaconescu et
al. �2006�, Franco and Uranga �2006�, and Garcia-
Etxebarria et al. �2006�.

c. Breaking by fluxes

Perhaps the most direct analog of the original Bousso-
Polchinski proposal in the IIb flux landscape is the fol-
lowing. We saw previously that one can supersymmetri-
cally stabilize all moduli after including nonperturbative
corrections to the superpotential which depend on
Kähler moduli. Prior to stabilizing Kähler moduli, it
would have seemed that one must solve the no-scale
equation V=0 to find a IIb flux vacuum. However, given

10The argument of Sec. IV.A.1 that one cannot solve the IIb
equations of motion in warped Calabi-Yau flux compactifica-
tions if one includes anti-D3 sources is true only at tree level.
The same effects which allow one to stabilize the Kähler
moduli also allow the incorporation of antibranes with suffi-
ciently small �warped� tension, as shown by Kachru, Kallosh, et
al. �2003�.
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that one will stabilize Kähler moduli anyway, it is no
longer necessary to do this. Instead, consider the poten-
tial Vflux�za ,�� arising from the three-form fluxes. If one
finds a critical point of this potential in the a ,� direc-
tions, with

�aV = ��V = 0, �2V� 0, �104�

then the vacuum would be stable in the a ,� directions
�despite the tree-level instability in the Kähler modulus
directions�. Now, including the instanton contributions
to V, it becomes clear that one may stabilize the Kähler
moduli and complex/dilaton moduli while using a flux
vacuum for the complex/dilaton moduli which is not of
the ISD type, as long as the departure from the ISD
condition is not too severe. Naively, any violation of the
ISD equations yields, via Eq. �59�, a nonzero F term for
some complex/dilaton modulus. This means that the re-
sulting vacuum will yield spontaneous supersymmetry
breaking. This is too quick: one should really go back
and solve the full equations of the EFT, including any
dependence of the �prefactor to the� nonperturbative ef-
fects on the complex structure moduli. However, in
many cases, this intuition should be borne out. A toy
model vacuum of this type has been exhibited in Salt-
man and Silverstein �2004�.

Because the effects being used to stabilize Kähler
moduli are exponentially small, this mechanism is only
viable if one tunes in flux space to find proto-vacua with
a very small violation of the ISD condition. This was
shown to be generically possible in IIb vacua by Denef
and Douglas �2005�, as discussed in Sec. V.C.

B. Type-IIa flux vacua

Here we discuss the construction of Calabi-Yau flux
vacua in type-IIa string theory. Our exposition follows
the notation of DeWolfe et al. �2005�, using the N=1
supersymmetric formalism developed by Grimm and
Louis �2005�. Closely related work developing the basic
formalism for IIa flux compactification and presenting
explicit examples also appears in Bovy et al. �2005�, Ca-
mara, Font, et al. �2005�, Derendinger et al. �2005a,
2005b�, House and Palti �2005�, Kachru and Kashani-
Poor �2005�, Villadoro and Zwirner �2005�, Acharya, Be-
nini, et al. �2006�, Aldazabal et al. �2006�, Benmachiche
and Grimm �2006�, Ihl and Wrase �2006�, and Saueressig
et al. �2006�. Candidate M-theory vacua which are in
many ways similar to these IIa models were first de-
scribed by Acharya �2002�; see also Behrndt et al. �2006�.

1. Qualitative considerations

Before we launch into a detailed study, it is worth
contrasting the present case with the class of IIb vacua
just described. In the IIa string compactified on a
Calabi-Yau space M, one can imagine turning on back-
ground fluxes of both the NS three-form field H3 and the
RR 2p form fields F0,2,4,6. The basic intuition that three-
form fluxes should yield complex structure dependent
potentials, while even-form fluxes should yield Kähler

structure dependent potentials, then suggests that the
IIa flux superpotential will depend on all geometric
moduli already at tree level.

In fact, if we focus on just the dilaton and volume
modulus, which are normally two of the more vexing
moduli in string constructions, by a simple scaling argu-
ment the flux potential will suffice to stabilize them in a
regime of control.

To find the potentials due to fluxes, one should reduce
the flux kinetic and potential terms from ten dimensions
to four dimensions, remembering to perform the neces-
sary Weyl rescalings to move to 4D Einstein frame.
These have been discussed by Silverstein �2004a�. The
results are as follows. If the compactification manifold
has radius R and the string coupling is gs=e�, then

• N units of RR p-form flux contributes to the scalar
potential with the scaling

VRR = N2e4�/R6+2p, �105�

• N units of NS three-form flux contribute

VNS = N2e2�/R12, �106�

• N orientifold p+3 planes wrapping a p cycle in the
compact manifold and filling space-time, contribute

VO�p+3� = − Ne3�/R12−p �107�

�while of course N D-branes would, up to an overall
coefficient, make the same contribution with a posi-
tive sign�.

The simplest class of N=1 supersymmetric IIa orien-
tifolds arise by acting with an antiholomorphic involu-
tion I on a Calabi-Yau space M. The fixed locus of I is
some collection of special Lagrangian cycles, which are
wrapped by O6 planes. We assume that there are O�1�
O6 planes in our construction. The tadpole condition for
D6-brane charge takes the schematic form

ND6 + �
�

F0 ∧ H3 = 2N06, �108�

where � is the three-cycle pierced by H3 flux. We can
therefore cancel the tadpole by introducing O�1� units of
F0 and H3 flux, without adding D6 branes. The other
fluxes are unconstrained by tadpole conditions; so we
can also turn on N units of F4 flux. The overall result is
a potential that takes the schematic form

V =
e4�

R6 −
e3�

R9 +
e2�

R12 + N2 e4�

R14 . �109�

This potential has minima with R�N1/4 and gs�N−3/4.
Hence, as emphasized by DeWolfe et al. �2005�, the IIa
theory can be expected to admit flux vacua with para-
metrically large values of the compactification volume
and parametrically weak string coupling, in a 1/N ex-
pansion. Unlike standard Freund-Rubin vacua �Freund
and Rubin, 1980�, these theories are effectively four di-
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mensional; the 4D curvature scale is parametrically less
than the compactification radius.

It is still important to verify that the qualitative con-
siderations here are borne out in detail in real Calabi-
Yau models. We now describe the relevant formalism.

2. 4D multiplets and Kähler potential

To find the chiral multiplets in a 4D N=1 supersym-
metric orientifold of M, we proceed as follows. The N
=2 compactification on M gives rise to h1,1 N=2 vector
multiplets and h2,1+1 hypermultiplets �including the uni-
versal hyper�. The projection will choose an N=1 vector
or chiral multiplet from each N=2 vector, and an N=1
chiral multiplet from each hyper.

We first analyze the projected vector multiplet moduli
space. If in a basis of �1,1� forms on M there are h−

1,1 that
are odd under the involution, then the surviving moduli
space of Kähler forms is h−

1,1 dimensional. �The even ba-
sis elements give rise to N=1 vector multiplets, which
contain no moduli and will not enter in our discussion.�
We write the complexified Kähler form on the quotient
as

Jc = B2 + iJ = 

a=1

h−
1,1

ta�a, �110�

where ta=ba+ iva are complex numbers and �a form a
basis for H−

1,1. The rather surprising fact that elements of
H−

1,1 correspond to moduli comes about because the su-
persymmetric IIa orientifolds are based on orientation
reversing involutions, which reverse the sign of J and B2.
Then in the dimensional reduction these should be ex-
panded in a basis of two-forms which flip sign under the
involution �Grimm and Louis, 2005�.

The Kähler potential for the reduced moduli space is
inherited from the N=2 parent Calabi-Yau theory, and
is given by

KK�ta� = − ln4
3�M

J ∧ J ∧ J� = − ln4
3
�abcv

avbvc� ,

�111�

where �abc is the triple intersection form

�abc = �
M
�a ∧ �b ∧ �c. �112�

Now, we turn to the projected hypermultiplet moduli
space. Here the formalism is more intricate �Grimm and
Louis, 2005�. Choose a basis for the harmonic three-
forms �
A ,�B� where A ,B=0, . . . ,h2,1 and

�
M

A ∧ �B = �AB. �113�

Without loss of generality, one can expand  as

 = 

A

ZA
A − gB�B. �114�

ZA are homogeneous coordinates on complex structure
moduli space; we denote by zC �C=1, . . . ,h2,1� the inho-
mogeneous coordinates on this same space.

The complex structure moduli are promoted to
quaternionic multiplets in the N=2 parent theory by ad-
joining RR axions. If we expand the C3 gauge potential
whose field strength is F4,

C3 = #A
A − #̃B�B, �115�

then we get h2,1+1 axions. The axions from #0 , #̃0 join
the axio-dilaton to yield the universal hypermultiplet,
while the other h2,1 axions quaternionize zC.

The orientifold involution splits H3=H+
3

� H−
3. Each of

these eigenspaces is of �real� dimension h2,1+1. We split
the basis for H3 so �
k ,�� span the even subspace, while

�
 ,�k� span the odd subspace. Here k=0, . . . , h̃ while

= h̃+1, . . . ,h2,1. Then the orientifold restricts one to the
subspace of moduli space �Grimm and Louis, 2005�

Im Zk = Re gk = Re Z = Im g = 0. �116�

C3 is also even under the orientifold action; hence one

keeps the axions #k and #̃ while projecting out the oth-

ers. In addition, the dilaton � and one of #0 , #̃0 are kept
in the spectrum of the orientifold. So, from each hyper-
multiplet we get a single chiral multiplet, whose scalar
components are the real or imaginary part of the com-
plex structure modulus, and an RR axion.

We summarize the surviving hypermultiplet moduli in
terms of the object

 c = C3 + 2i Re�C � . �117�

Here C is a “compensator” which incorporates the dila-
ton dependence via

C = e−D+Kcs/2, eD = �8e�+KK/2. �118�

One should think of eD as the four-dimensional dilaton;
Kcs is the Kähler potential for complex structure moduli

Kcs = − lni�
M
 ∧  ̄�

= − ln 2�Im ZRe g − Re ZkIm gk� . �119�

The surviving chiral multiplet moduli are then the ex-
pansion of  c in a basis for H+

3:

Nk = 1
2�

M
 c ∧ �k = 1

2#k + i Re�CZk� �120�

and

T = i�
M
 c ∧ 
 = i#̃ − 2 Re�Cg� . �121�

The Kähler potential which governs the metric on this
moduli space is
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KQ = − 2 ln2�
M

Re�C � ∧ * Re�C �� . �122�

3. Fluxes and superpotential

Now we can contemplate turning on the fluxes which
are projected in by the antiholomorphic involution. It
turns out that H3 and F2 must be odd, while F4 should be
even. So we write

H3 = q
 − pk�k, F2 = − ma�a, F4 = ea�̃
a, �123�

where �̃a are the four-form duals of the H−
1,1 basis �a. To

see that they are even under the orientifold involution
�as they must be to enter in the expansion of F4�, one
can simply recall that when nonzero, �̃a∧�b�Vol and
the volume form changes sign under the involution.
There are in addition two parameters m0 and e0, param-
etrizing the F0 and F6 flux on M.

In the presence of these fluxes, one can write the 4D
potential after dimensional reduction as �DeWolfe et al.,
2005b; Grimm and Louis, 2005�

V = eK 

ta,Nk,T

gij̄DiWDjW − 3�W�2� . �124�

Here the total Kähler potential is

K = KK + KQ �125�

and DiW=�iW+W�iK is the Kähler covariantized de-
rivative.

The superpotential W is defined as follows. Let

WQ�Nk,T� = �
M
 c ∧ H3 = − 2pkNk − iqT �126�

and

WK�ta� = e0 + �
M

Jc ∧ F4 −
1
2�M

Jc ∧ Jc ∧ F2

−
m0

6 �M
Jc ∧ Jc ∧ Jc. �127�

The full superpotential is then

W�ta,Nk,T� = WQ�Nk,T� + WK�ta� . �128�

Our first qualitative point is now clear: the potential
depends on all geometric moduli at tree level. Detailed
examination of the system of equations governing super-
symmetric vacua

Dta
W = DNk

W = DT
W = 0 �129�

shows that under reasonable assumptions of genericity,
one can stabilize all geometric moduli in these construc-
tions �DeWolfe et al., 2005b�. These same considerations
show that in the leading approximation, h+

2,1 axions will
remain unfixed. An orientifold of a rigid Calabi-Yau
model �i.e., one with h2,1=0� was studied by DeWolfe et
al. �2005b�, where it was shown that this flux potential
gives rise to an infinite number of 4D vacua with all

moduli stabilized. Furthermore, as suggested by the scal-
ing argument in Sec. IV.B.1, these solutions can be
brought into a regime where gs is arbitrarily weak and
the volume is arbitrarily large. We note that to get a
semirealistic vacuum, one must impose physical criteria
�a lower bound on KK masses, or a lower bound on the
gauge couplings� which will regulate the infinite number
of models found here. At present, it seems only a finite
�though perhaps very large� number of such models can
satisfy even such basic physical cuts.

4. Comments on 10D description

The 10D description of the IIa solutions is less well
understood than the description of their IIb counter-
parts. That is because in the IIb case one special class of
solutions is conformally Calabi-Yau, at leading order
�Giddings et al., 2002�. In the IIa case, on the other hand,
the metrics of the supersymmetric compactifications are
those of half-flat manifolds with SU�3� structure. The
definition of such spaces can be found in Chiossi and
Salamon �2002�, and their relation to supersymmetric IIa
compactification has been described by Behrndt and
Cvetic �2005a, 2005b�, Behrndt et al. �2005�, House and
Palti �2005�, and Lust and Tsimpis �2005�.

It is natural to wonder what relation these half-flat
solutions bear to the Calabi-Yau flux vacua we have
been discussing, where fluxes are viewed as a perturba-
tion of a IIa Calabi-Yau compactification. This issue has
been clarified by Acharya, Benini, et al. �2006�. The de-
scription in terms of a Calabi-Yau metric perturbed by
back reaction from the flux �and inclusion of thin-wall
brane sources� is valid at asymptotically large volume.
Finite �but large� volume analysis of the supergravity
solution with localized O6 planes indicates that the back
reaction deforms the metric to a half-flat, non-Calabi-
Yau metric with SU�3� structure, outside a small neigh-
borhood of the O planes. Detailed formulas for the sta-
bilization of moduli derived from considerations of the
previous subsection can be recovered precisely from the
supergravity solution in the approximation that the O6
charge is smeared.

C. Mirror symmetry and new classes of vacua

The constructions we have reviewed are based at the
start on type-II Calabi-Yau models. Such models enjoy
mirror symmetry, a duality exchanging the IIb string on
M with a IIa string on a mirror manifold W. Dual theo-
ries must give rise to the same 4D physics, though in
different regimes of parameter space one or the other
may be a better description. Therefore we see immedi-
ately that simply to match dimensions of hyper and vec-
tor multiplet moduli spaces, one must have h1,1�M�
=h2,1�W� and h2,1�M�=h1,1�W�. This can be viewed as a
mirror reflection on the Hodge diamond of a Calabi-Yau
space, which explains the name of the duality.

It is natural to wonder whether, since the parent
Calabi-Yau theories enjoy mirror symmetry, the classes
of flux vacua we have constructed above also come in
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mirror pairs. Are they dual to one another in some way?
This seems unlikely, given the qualitative differences be-
tween the two classes of 4D EFTs. We see that it is not
the case, but that, nevertheless, exploring analogs of mir-
ror symmetry for these vacua leads to interesting conclu-
sions, suggesting that the known portion of the land-
scape is a small piece of a much larger structure.

While mirror symmetry was used by Candelas et al.
�1991�, methods of constructing W given M were known
then only for very special classes of models �Greene and
Plesser, 1990�. An important advance came during the
duality revolution, when it was realized that mirror sym-
metry is a generalization of T duality �Strominger et al.,
1996�. Known examples of Calabi-Yau spaces admit, in
some limit, a fibration structure where T3 fibers vary
over an S3 base. By matching of BPS states it was shown
that mirror symmetry can be thought of as the operation
of T-dualizing the T3 fibers of M to obtain W, and vice
versa.

Since the study of T3 fibrations is in its infancy, it may
seem surprising that this construction will be of use to
us. However, it is a conceptually simple relation of a
space and its mirror, and it will allow us to check
whether the mirrors of IIb Calabi-Yau flux vacua are IIa
Calabi-Yau flux vacua. This general subject has been ex-
plored by Gurrieri et al. �2003�, Kachru, Schulz, Tripathy,
et al. �2003�, Bouwknegt et al. �2004�, Fidanza et al.
�2004, 2005�, Tomasiello �2005�, Chiantese et al. �2006�,
and Grana, Louis, et al. �2006�.

1. A warmup: The twisted torus

We provide an illustrative example that should make
our conclusions intuitively clear. We follow the discus-
sion in Kachru, Schulz, Tripathy, et al. �2003�. Imagine
string compactification on a square T3, M, with metric

ds2 = dx2 + dy2 + dz2 �130�

and a nonzero NS three-form flux

�
M

H3 = N . �131�

Since H=dB, we are free to choose a gauge in which

Byz = Nx �132�

with other components vanishing. This configuration is
not a static solution of the equations of motion; T3 is flat
so there is no curvature contribution to the lower-
dimensional effective potential, while the H3 flux energy
can be diluted by expanding the volume of T3. We ig-
nore this for now; we use this setup as a module in a
more complicated configuration that provides a static so-
lution of the full equations of motion momentarily.

With the data at hand, we proceed to T-dualize in the
z direction. Applying Buscher’s T-duality rules �Buscher,
1987, 1988� �their generalizations to include RR fields
�Bergshoeff et al., 1995; Hassan, 2000� will also play a
role momentarily�, we find a new background with

B = 0, ds2 = dx2 + dy2 + �dz + Nxdy�2. �133�

The coordinate identifications to be made in interpreting
the metric are

�x,y,z� � �x,y + 1,z� � �x,y,z + 1� � �x + 1,y,z − Ny� .

�134�

This space is an example of a Nilmanifold—it has h1=2,
and in particular is topologically distinct from T3, which
would have been the expected T-dual target space in the
absence of H3 flux. So we see that T-dualizing along a
leg of an H3 flux, one can exchange the NS flux for other
NS data—namely, topology as encoded by the metric.
Here the nontrivial topology arises because as one winds
around the x circle, one performs an SL�2,Z� transfor-
mation mixing the y ,z directions.

If we T-dualize again, now along the y direction,
straightforward application of the rules leads us to the
metric

ds2 =
�dz2 + dy2�
�1 + N2x2�

+ dx2 �135�

and the B field

Byz = Nx/�1 + N2x2� . �136�

Making sense of these data is not as simple as interpret-
ing the Nilmanifold metric above. In particular, as we
wind around the circle coordinatized by x, the metric g
and B are not periodic in any obvious sense. There is a
stringy sense in which they are periodic; there is an
O�2,2 ;Z� transformation that relates the values at x=1
to those at x=0. However, this O�2,2 ;Z� transformation
is not an element of SL�2,Z�, and so these data can at
best make sense as the target space of a stringy sigma
model. Discussions of such nongeometric backgrounds
�including and generalizing asymmetric orbifolds� are a
subject of current interest; see, for instance, Silverstein
�2001�, Dabholkar and Hull �2003 2006�, Hellerman et al.
�2004�, Flournoy et al. �2005�, Hull �2005, 2006a, 2006b�,
Hull and Reid-Edwards �2005�, Shelton et al. �2005�,
Flournoy and Williams �2006�, and Lawrence et al.
�2006�.

In the following, we focus our discussion on open
questions about the geometric vacua. However, these
considerations suggest that once one considers general
vacua, novel stringy geometric structures play an impor-
tant role in obtaining a thorough understanding.

2. A full example

We now provide full string solutions which incorpo-
rate the previous phenomena. We follow Kachru,
Schulz, Tripathy, et al. �2003�; see also Schulz �2004,
2006�, and Grana, Minasian, et al. �2006� for further dis-
cussion of these models.

Consider IIb string theory on T6 /Z2 orientifold, where
Z2 inverts all six circles �and is composed with the opera-
tion of worldsheet parity reversal�. For simplicity, focus
attention on a �T2�3, with complex moduli �1,2,3:
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dzi = dxi + �idyi,  =!idzi. �137�

Flux vacua in this model were studied by Dasgupta et al.
�1999�, Frey and Polchinski �2002� and Kachru, Schulz,
and Trivedi �2003�. One example from Kachru, Schulz,
Tripathy, et al. �2003� will suffice for us. Let

F3 = 2�dx1 ∧ dx2 ∧ dy3 + dy1 ∧ dy2 ∧ dy3� �138�

and

H3 = 2�dx1 ∧ dx2 ∧ dx3 + dy1 ∧ dy2 ∧ dx3� . �139�

The factor of 2 is inserted in order to avoid subtleties
with flux quantization as described by Frey and Polchin-
ski �2002�. We can easily read off the flux superpotential

W = 2��1�2�3 + 1� + 2���1�2�3 + �3� . �140�

It is easy to see that along the locus

��3 = − 1, �1�2 = − 1 �141�

the equations �W /��i=�W /��=0 are satisfied, as is W
=0. Therefore there is a moduli space M of supersym-
metric vacua. In fact, these vacua preserve N=2
supersymmetry—this is a special feature which arises be-
cause the torus is a nongeneric Calabi-Yau space. The
nongenericity of the torus also implies that one should
impose primitivity conditions J∧G3=0 on G3; for a
given choice of the integral fluxes, this becomes a con-
straint on Kähler moduli.

We have chosen our fluxes so that in appropriate re-
gions of M, the best description �i.e., the description
which seems to be most weakly coupled, among known
duality frames� is either the model above or its T-dual on
one, two, or three circles. In the gauge

Bx1x3 = 2x2, By1x3 = 2y2 �142�

the relevant T-dual descriptions are the following.
One T-duality along x1:
This gives rise to a IIa model with metric

ds2 =
1

Rx1
2 �dx1 + 2x2dx3�2 + Rx2

2 �dx2�2 + Rx3
2 �dx3�2

+ ¯ . �143�

Here x1,2,3 sweep out a Nilmanifold over the T3 spanned
by the yi. There are also nonzero fluxes remaining:

By1x3 = 2y2 �144�

in the NS sector and

F2 = 2dx2 ∧ dy3,

F4 = 2�dx1 + 2x2dx3� ∧ dy1 ∧ dy2 ∧ dy3 �145�

in the RR sector.
This manifold has h1=5 and is non-Kähler. In particu-

lar, it is not just that one does not use a Calabi-Yau
metric in describing the physical theory �that is true even
for Calabi-Yau compactification, where 
� corrections
deform the metric even in the absence of flux�. There is
a topological obstruction to putting such a metric on this
space.

Second T-duality along y1:
Now we find the IIb theory with metric

ds2 = R̃x1
2 �dx1 + 2x2dx3�2 + Rx2

2 �dx2�2 + Rx3
2 �dx3�2

+
1

Ry1
2 �dy1 + 2y2dx3�2 + Ry2

2 �dy2�2 + Ry3
2 �dy3�2

�146�

and with fluxes

B = 0, F3 = 2�dx1 + 2x2dx3� ∧ dy2 ∧ dy3

+ 2�dy1 + 2y2dx3� ∧ dx2 ∧ dy3. �147�

This space is also non-Kähler.
Third T-duality along y3:
This just flips the radius of the y3 circle in Eq. �146�

and changes the flux to

F2 = 2�dx1 + 2x2dx3� ∧ dy2 + 2�dy1 + 2y2dx3� ∧ dx2.

�148�

At this point, we have T-dualized on some T3 in the
original starting model, and consider this an analog of
mirror symmetry in the spirit of Strominger et al. �1996�.
This example suggests that the IIb Calabi-Yau flux vacua
of the general class studied in Sec. IV.A are not mirror
to the IIa Calabi-Yau flux vacua described in Sec. IV.B.
In less simple examples, we expect that dualizing flux
vacua with one leg of the H3 flux along the T3 fiber could
lead to a geometric but non-Calabi-Yau dual, while du-
als of theories with more legs of H3 on the T3 fiber will
in general be nongeometric vacua.

One might wonder whether every geometric flux
vacuum admits some dual description that brings it into
one of the two large classes we have already explored in
the IIb and IIa theories. A study of examples strongly
suggests that this is false. For instance, the class of vacua
described by Chuang et al. �2005� does not admit a dual
description involving IIa, IIb, or heterotic Calabi-Yau
compactification. Furthermore, Grana, Minasian, et al.
�2006� exhibited an explicit vacuum based on Nilmani-
fold compactification that is not dual to a Calabi-Yau
with flux.

V. STATISTICS OF VACUA

Given a systematic construction of a set of string
vacua, besides working out individual examples, one can
try to get some understanding of the possibilities from
statistical studies. As mentioned earlier, such studies
date back to the late 1980s, and while at that time
moduli stabilization was not understood, interesting re-
sults were obtained. Perhaps the most influential of
these came out of the related study of the set of Calabi-
Yau threefolds, which provided the first evidence that
mirror symmetry was a general phenomenon �Kreuzer et
al., 1992; Candelas et al., 1995�. We review some of these
results in Sec. V.D.3.

The systematic constructions discussed of flux super-
potentials and other effective potentials enable us to
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find statistics of large, natural classes of stabilized vacua.
Here we describe a general framework for doing this
�Douglas, 2003�, and some of these results. See Douglas
�2004a� and Kumar �2006� for other recent reviews.

The large number of flux vacua suggests looking for
commonalities with other areas of physics involving
large numbers, such as statistical mechanics. As it turns
out, there are very close analogies with the theory of
disordered systems, in which one constructs idealized
models of crystals with impurities, spin glasses, and
other disordered systems, by taking a random potential.
In other words, one chooses the potential randomly
from an ensemble of potentials chosen to reflect general
features of the microscopic physics, and does statistical
studies. Given a simple choice of ensemble, one can
even get analytic results, which besides adding under-
standing are particularly important in studying rare phe-
nomena. As explained, by treating the ensemble of flux
superpotentials as a random potential, one can get good
analytical results for the distribution of flux vacua, which
bear on questions of phenomenological interest.

We begin our treatment with a careful explanation of
the definitions, as while they are simple, they are differ-
ent from those commonly used in statistical mechanics
and quantum cosmology. This is so that we can avoid
ever having to postulate that a given vacuum exists or is
created with a definite probability, an aspect of the
theory which, as discussed in Sec. III.E, is not well un-
derstood at present. Rather than a probability distribu-
tion, we discuss vacuum counting distributions, which
can be unambiguously defined.

One reason to be careful about these definitions is
that the need for making theoretical approximations will
introduce approximate vacuum counting distributions,
which are also interpreted in probabilistic terms. How-
ever, the underlying definition of probability in this case
is clear; it expresses our confidence in the particular the-
oretical arguments being used, and in this sense is sub-
jective. The payoff for this methodological interlude will
be a clear understanding of how statistics of string
theory vacua can lead to a precise definition of stringy
naturalness, as introduced in Sec. II.F.3.

We now describe counting of flux vacua and some ex-
act results. This will enable us to continue the discussion
of Sec. II.F.3 on the scale of supersymmetry breaking.
We continue with a survey of what is known about other
distributions, such as of Calabi-Yau manifolds, and dis-
tributions governing the matter content. We then survey
various simpler distributions which have been suggested
as models for the actual distributions coming from string
theory. Finally, we discuss the general interpretation of
statistical results, and the prospects for making argu-
ments such as those in Sec. II.F.3 precise.

A. Methodology and basic definitions

Suppose we have a large class of vacua, constructed
along the lines of Sec. IV or otherwise. As discussed, we
have no a priori reason to prefer one over the other.
While we have many a posteriori ways to rule out vacua,

by fitting data, computing measure factors, or otherwise,
this requires detailed analysis to do. In this situation, we
may need to know the distributions of vacua, or of their
observable properties, to make theoretical progress.

As in Sec. II.F.3, it is useful to motivate the subject as
an idealization of the problem of testing string theory. If
we had a list of all possible vacua, call these Vi, then all
we would need to do for this is to compute a list of the
observables for each, and check whether the actual ob-
servables appear on this list.

To be a bit more concrete, the physics is well de-
scribed by the Standard Model, a 4D EFT TSM. The
problem would then reduce to finding the list of all EFTs
Ti which are low-energy limits of the vacua Vi, and
checking whether TSM appears on this list.

To be even more concrete, consider data which go
into explicitly specifying a particle physics EFT. This in-
cludes both discrete and continuous choices. Discrete
choices include the gauge group G and matter represen-
tation R of fermions and bosons. Choices involving pa-
rameters include the effective potential, Yukawa cou-
plings, kinetic terms, and so on; denote the vector
containing these parameters as g� . While not done here,
in a complete discussion we need to specify the cutoff
prescription used in defining the EFT as well. In any
case, we can regard the sum total of these choices as
defining a point Ti= �G ,R ,g�� in a theory space T.

Now, given a set of vacua �Ti�, the corresponding
vacuum counting distribution is a density on T,

dNvac�G,R,g�� = 

i
��G,Gi���R,Ri���n��g� − g� i� , �149�

or, for conciseness,

dNvac�T� = 

i
��T − Ti� . �150�

Its integral over a subset of theory space R�T is the
number of vacua contained in this subset,

N�R� = �
R

dNvac. �151�

It should be clear that Eq. �149� contains the same
information as the set of vacua �Ti�. What may be less
obvious, but will emerge from the discussion below, is
that one can find useful approximations to such distribu-
tions, which are far easier to compute than the actual
vacuum counting distribution. This is because these dis-
tributions show a great deal of structure, which is not
apparent if one restricts attention to quasirealistic mod-
els from the start. This observation is the primary formal
motivation for introducing the definition.

At this point, if the definition �149� is clear, one can
proceed to the next subsection. However, since many
similar but different definitions can be made, and the
issue of interpretation may confuse some readers, we
expand on these points.

To eliminate one possible source of confusion, the list
we are constructing is of possible universes within string
theory. Our own Universe at the present epoch is sup-
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posed to correspond to one of these universes, not some
sort of superposition or dynamical system which ex-
plores multiple vacua. The point of the list, or the
equivalent distribution �149�, is simply to have a precise
way to think about the totality of possibilities.

Another possible confusion is between Eq. �149� and
the definition of a measure factor used in quantum cos-
mology. As discussed in Sec. III.E, to define a measure
factor we need to assign a probability factor P�i� to each
vacuum. The measure factor corresponding to a given
list �Ti� and the probability factor P�i� is then

d�P�T� = 

i

P�i���T − Ti� . �152�

Its integral over a region R gives the probability with
which a vacuum in R will be produced in the associated
cosmological model.

We already discussed some aspects of the interpreta-
tion of such distributions in Sec. III.E, and continue this
in Sec. V.F. The main point we want to make here is
simply that, unlike a measure factor, a vacuum counting
distribution is not a probability distribution, and does
not require any concept of a probability that a universe
of type T exists for its definition. Rather, it summarizes
information about the set of consistent vacua of the
theory.

1. Approximate distributions and tuning factors

A reason to be careful about the difference between a
vacuum counting distribution and a measure factor is so
that we can properly introduce the idea of an approxi-
mate vacuum counting distribution. To motivate this,
suppose that we know how to construct a set of vacua
Vi, but that our theoretical technique is not adequate to
compute the exact value of a coupling g in each vacuum,
only some approximation to it. In practice this will al-
ways be true, but it gains particular significance for pa-
rameters which we must fit to an accuracy far better
than our computational abilities, with the prime ex-
ample being the cosmological constant as discussed ear-
lier.

Suppose for sake of discussion that we are interested
in the cosmological constant �, but can compute it only
to an accuracy roughly ��. We might model our relative
ignorance by modifying Eq. �149� to

dNvac��� = 

i

1
����

exp−
�� − �i�2

����2 � , �153�

a sum of Gaussian distributions of unit weight. The
choice of the Gaussian, while not inevitable, would fol-
low if the total error was the sum of many independent
terms, which is reasonable as the cosmological constant
receives corrections from many sectors in the theory.

If we use the resulting approximate vacuum counting
distribution to compute integrals like Eq. �151�, we will
get results like we expect region R to contain half a
vacuum, or perhaps 10−10 vacua. What could this mean?

Of course, given that string theory and the effective
potential have a precise definition, any particular

vacuum has some definite cosmological constant �i,true.
The problem is just that we do not know it. In modeling
our ignorance with a Gaussian �or any other distribu-
tion�, we have again introduced probabilities into the
discussion—but note that this is a different and less
problematic sense of probability than P�i� introduced in
discussing the measure factor. It is not intrinsic to string
theory or cosmology, but rather it expresses our judg-
ment of how accurate we believe our theoretical compu-
tations to be. As such, it is a technical device, but a
useful one as we shall see.

Having understood this, the meaning of results like we
expect region R to contain 10−10 vacua in this context
becomes clear. In actual fact, the region must contain
zero, one, or some other definite number of vacua.
While given the theoretical information to hand, we do
not know the actual number, we now have good reasons
to think R probably does not contain any vacua. How-
ever, this conclusion is not ironclad; numerical coinci-
dences in the computations might put one or more vacua
into R. If our model for the errors is correct, the prob-
ability of this happening is 10−10, in the usual “frequen-
tist” sense: if we have 1010 similar regions to consider, we
expect one of them to actually contain a vacuum.

The reader will probably have already realized that
what just discussed gives a precise sense within string
theory to the usual discussion of fine tuning made in
EFT. Although in principle every coupling constant in
every string vacuum has some definite value, and in this
sense is tuned to arbitrary precision, in practice we can-
not compute to this precision, and need to work with
approximations. The preceding discussion gives us a way
to do this and to combine the results of various approxi-
mations. This could be used to justify the discussion in
Sec. II.F.3, where we compared hypothetical numbers of
vacua with and without low-energy supersymmetry. In
combining the ingredients of an approximate vacuum
counting distribution, small tuning factors can be com-
pensated by multiplicity factors to produce seemingly
counterintuitive results. We come back to this idea after
discussing some concrete results.

Of course, the specific ansatz �153� was a way to feed
in explicit knowledge about computational accuracy and
tuning. As we will see, there are many other approxima-
tions one might make in computing a vacuum counting
distribution, sometimes with explicit control parameters
and sometimes not, but with the same general interpre-
tation. We discuss the continuous flux approximation be-
low.

Finally, we cite the standard statistical concept of a
representative sample. This is a sample from a larger
population in which the distribution of properties of in-
terest well approximates the distribution in the larger
population. Given a representative sample of Nrep

vacua, their distribution dNrep, and the total number of
vacua Nvac, we infer an approximation to the total
vacuum counting distribution,
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dNvac�T� � �Nvac/Nrep�dNrep�T� .

While elementary, this idea is probably our main hope of
ever characterizing the true dNvac of string/M theory in
practice, so making careful use of it is likely to become
an increasingly important element of the discussion.

B. Counting flux vacua

The simplest example of the general framework we
will describe is the counting of supersymmetric IIb flux
vacua for a Calabi-Yau with no complex structure
moduli. This leads to flux vacua with stabilized dilaton
axion, and a one-parameter distribution which can be
worked out using elementary arguments. One can ex-
plicitly see the nature of the continuous flux approxima-
tion.

We then discuss general results for supersymmetric
vacua, an explicit two parameter distribution, and some
of the general conclusions from this analysis. Finally, we
discuss the formalism, which combines elements of ran-
dom potential theory with the mathematical theory of
random sections of holomorphic line bundles.

1. IIb vacua on a rigid Calabi-Yau manifold

This problem was studied by Ashok and Douglas
�2004� and Denef and Douglas �2004�. We write � for the
dilaton axion; by definition it must satisfy Im ��0, in
other words, it takes values in the upper half plane. A
rigid Calabi-Yau �CY�, for example, the resolved T6 /Z3
orbifold, has b2,1=0 and thus b3=2; thus there are two
NS fluxes ai and two RR fluxes bi, which we take to be
integrally quantized.

The flux superpotential �59� is

W = �f1 +!f2�� + g1 +!g2 � F� + G ,

where we group the NS and RR fluxes into two complex
combinations F and G. Here

!� �
B
 ��

A
 

is a complex number which is determined by the geom-
etry of the CY; we take != i for simplicity.

The Kähler potential on this moduli space is K
=−ln Im �, and it is very easy to solve DW=0 for the
location of the supersymmetric vacuum as a function of
the fluxes; it is

DW = 0 ↔ �̄ = − G/F , �154�

so there will be a unique vacuum if Im G /F�0, and
otherwise none.

The tadpole condition �68� becomes

Im F*G	 L . �155�

Finally, the SL�2,Z� duality symmetry of IIb superstring
theory acts on the dilaton and fluxes as

a b

c d
�:�→ �� =

a� + b

c� + d
; F

G
� → aF + bG

cF + dG
� .

�156�

Two flux vacua which are related by an SL�2,Z� trans-
formation are physically equivalent, and should only be
counted once. Since the duality group is infinite, gauge
fixing this symmetry is essential to getting a finite result.

A direct way to classify these flux vacua is to first
enumerate all choices of F and G satisfying the bound
�155�, taking one representative of each orbit of Eq.
�156�, and then to list the flux vacua for each. Now it is
not hard to see that this can be done by taking f2=0, 0
	g1� f1, and f1g2	L. Using Eq. �154�, each choice of
flux stabilizes a unique vacuum, and thus the total num-
ber of vacua is finite,

Nvac�L� = 2��L� = 2

k�L

k , �157�

where ��L� is a standard function used in number
theory, with the asymptotics



L	N

��L� = ��2/12�N2 + O�N ln N� .

Finally, we use Eq. �154� to get the distribution of
vacua in configuration space. We suppose that in the
resulting low-energy theory � controls a gauge coupling,
but there is no direct dependence of the low-energy
theory on the values F ,G of the fluxes apart from the
dependence encoded in �. In this case, it is useful to use
SL�2,Z� transformations to bring all vacua into the fun-
damental region �� ��1 and �Re � �	1/2, as this is the
moduli space of physically distinct theories, ignoring the
flux.

We plot the results for L=150 in Fig. 1. Each point on
this graph is a possible value of � in some flux vacuum;
many of the points correspond to multiple vacua.

While Fig. 1 clearly displays a great deal of structure,
one might worry about its intricacy and ask: If this is
what comes out of the simplest class of models, what
hope is there for understanding the general distribution
of vacua in string theory? Fortunately, there is a very
simple approximate description, which captures much of
the structure of this distribution. It is a uniform distribu-
tion, modified by a sort of symmetry enhancement phe-
nomenon.

We first discuss the uniform distribution. A very naive
first guess might be d2�, but of course this is not invari-
ant under field redefinitions; rather we must look at the
geometry of the configuration space to decide what is a
natural uniform distribution. Now the configuration
space of an EFT always carries a metric, the sigma
model metric, defined by the kinetic terms in the La-
grangian,

L = Gij � �i � �j + ¯ . �158�

Thus the natural definition of a uniform measure on
configuration space is just the volume form associated to
the sigma model metric,
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d� = dn��det G��� . �159�

In the problem at hand, this is

d� = d2�/4�Im ��2. �160�

Of course, this is a continuous distribution, unlike the
actual vacuum counting distributions which are sums of
delta functions. However, if we take a limit in which the
number of vacua becomes arbitrarily large, the limiting
distribution of vacua might become continuous. Since
the discreteness of the allowed moduli values was due to
flux quantization, and intuitively the effects of this
should become less important as L increases, it is rea-
sonable to conjecture that in the limit L→� the distri-
bution of flux vacua in moduli space approaches Eq.
�160�.

If we are a bit more precise and keep track of the total
number of vacua, we can make a similar conjecture for
the vacuum counting distribution itself. Normalizing Eq.
�160� so that its integral over a fundamental region is Eq.
�157�, we find

lim
L→�

dNvac = �Ld2�/�Im ��2. �161�

For example, a disk of area A should contain 4�AL
vacua in the large L limit.

While this is true, as can be deduced from the formal-
ism described shortly, at first glance the finite L distribu-
tion may not look very uniform. Comparing with the L
=150 figure, we see that around points such as �=ni with

n�Z, there are holes of various sizes containing no
vacua. Where do these holes come from, and how can
they be consistent with the claim?

In fact, at the center of each of these holes there is a
large degeneracy of vacua, which after averaging over a
sufficiently large region recovers the uniform distribu-
tion. For example, there are 240 vacua at �=2i, which
compensate for the lack of vacua in the hole. As dis-
cussed by Denef and Douglas �2004�, while this leads to
a local enhancement, just beyond the radius of the hole
the uniform approximation becomes good.

This behavior can be understood as coming from
alignments between the lattice of quantized fluxes and
constraints following from DW=0. Using this, one can
argue that the continuous flux approximation will well
approximate the total number of vacua in a region of
radius r satisfying

L�K/r2. �162�

Another rough model for the approximation might be a
Gaussian error model as in Eq. �153�, with variance �
�K /L. Finally, one can also understand corrections to
the large L approximation as a series in inverse frac-
tional powers of L, using mathematics discussed by
Douglas, Shiffman, et al. �2006�.

2. General theory

The result just discussed is a particular case of a gen-
eral formula for the large L limit of the index density of
supersymmetric flux vacua in IIb theory on an arbitrary
Calabi-Yau manifold M �Ashok and Douglas, 2004�,



L	Lmax

dIvac�L� = ��2�Lmax�b3/�b3/2b3 ! �det�− R − �� .

�163�

We will explain what we mean by index density shortly;
like the vacuum counting distribution, it is a density on
moduli space, here a b3 /2 complex dimensional space
which is the product of axion-dilaton and complex struc-
ture moduli spaces. The prefactor depends on the tad-
pole number L defined in Eq. �68�, and on b3, the third
Betti number of M. Instead of the density for a single L,
we have added in all L	Lmax; in the large L limit the
relation between these is the obvious one, but such a
sum converges to the limiting density far more quickly
than results at fixed L.

The density det�−R−� ·1� is determined by the metric
on moduli space �158�; the dependence on the other data
entering the flux superpotential �59� cancels out of the
result. It is a determinant of a �b3 /2�� �b3 /2� dimen-
sional matrix of two-forms, constructed from the Kähler
form � on M, with the matrix valued curvature two-
form R constructed from the metric on M.

Thus while the volume form �159� was a natural first
guess for the distribution of flux vacua, as we will see the
actual distribution can be rather different. The agree-
ment between Eqs. �161� and �160� in the example of
Sec. V.B.1 was particular to this case, and follows from

FIG. 1. �Color online� Values of � for rigid CY flux vacua with
Lmax=150. From Denef and Douglas, 2004.
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R$� for that moduli space. Similar, though more com-
plicated, explicit results can be obtained for the actual
vacuum counting distribution �Denef and Douglas, 2004;
Douglas, Shiffman, et al. 2006�, and distributions of non-
supersymmetric flux vacua �Denef and Douglas, 2005�.

We plot the number density in another example, com-
pactification on the mirror of the quintic CY �Greene
and Plesser, 1990; Candelas et al., 1991�. Here MC�M� is
one complex dimensional and thus the distribution de-
pends on two parameters; however, it is a product distri-
bution whose dependence on the dilaton axion is again
Eq. �160� for symmetry reasons. The dependence on the
complex structure modulus is nontrivial; if we plot it
along a real slice, we get Fig. 2.

The striking enhancement as %→1 is because this
limit produces a conifold singularity as discussed in Sec.
IV.A.2.a. As discussed by Denef and Douglas �2004�,
near the conifold point Eq. �163� becomes11

dNvac � d2%/�% − 1�2�ln�% − 1��3. �164�

As discussed in Sec. IV.A.2.a, under flux-gauge duality,
the parameter %−1 is dual to the dynamically induced
scale �analogous to �QCD� in the gauge theory, and thus
dimensional transmutation explains the leading d2% / �%
−1�2 dependence here. However, the logarithmic factors
have to do with details of the sum over fluxes.

This distribution is �just barely� integrable; doing so
over a disk, the number of SUSY vacua with L	L* and
�%−1 �	R is

Nvac = �4L*
4/18 ln�1/R2� . �165�

The logarithmic dependence on R implies that a sub-
stantial fraction of vacua are extremely close to the co-
nifold point. For example, when L*=100, there are still
about one million SUSY vacua with �%−1 ��10−100.

Despite this enhancement, from Fig. 2 one sees that
the majority of vacua are not near the conifold point. On
the other hand, in many parameter models a sizable
fraction of vacua can be expected to contain conifold
limits, by a simple probabilistic argument given in Sec.
V.E.3.

Many of the other general results for flux vacuum dis-
tributions which we called upon in Sec. IV also follow
from Eq. �163�, by inserting known behaviors of moduli
space metrics, introducing further constraints and so on.
For example,

• The fraction of flux vacua with string coupling gs

	��1 goes as �. This follows from Eq. �160� for the
tree level metric on dilaton-axion moduli space.

• The fraction of weakly coupled vacua with eK �W�2

	� goes as �.12 This is particular to IIb flux vacua, for
reasons discussed below.

a. Definition of the index density

This is a sum over vacua, weighed by ±1 factors,

dNvac�T� = 

i
��T − Ti��− 1�i

F. �166�

The factor �−1�i
F is essentially the sign of the determi-

nant of the fermionic mass matrix. The primary reason
to consider this quantity is that it leads to much simpler
explicit results than Eq. �149�. To explain why, recall the
general formula for the distribution of critical points of a
random potential V. As is well known in the theory of
disordered systems, this is

dNvac�z� = ��„V��z�…�detV��z��� , �167�

where the expectation value is taken in the ensemble of
random potentials; here the ensemble of flux potentials.
Formally, such a density is proportional to the delta
function �„V��z�…, however, the integral of such a delta

11While Eq. �164� is the index density �166�, it is not hard to
show that all vacua near the conifold point have �−1�F= +1, so
that in this case it is also the number density. More generally,
globally supersymmetric vacua �which do not depend on the
��K�W term in DW� always have �−1�F= +1. Conversely, the
�−1�F=−1 vacua are in a sense Kähler stabilized. 12While we omit the derivation, the key step is Eq. �172�.

FIG. 2. �Color online� The SUSY vacuum number density per
unit % coordinate volume, on the real % axis, for the mirror
quintic. From Denef and Douglas, 2004.
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function over field space is not 1. To get a normalized
density in which each vacuum has unit weight, we mul-
tiply by the Jacobian factor.

Now, upon incorporating the sign factor in Eq. �166�,
this becomes

dIvac�z� = ��„V��z�…detV��z�� , �168�

and the somewhat troublesome absolute value sign from
the Jacobian is removed. The virtue of this is that the
index turns out to be much simpler to compute than
dNvac, yet provides a lower bound for the actual number
of vacua. There is some evidence that the ratio of the
index to the actual number of vacua is of order 1/cb3 for
some order one c �Douglas et al., 2004�.

We use essentially the same formulas Eqs. �167� and
�168� to count supersymmetric vacua, by replacing V
with a flux superpotential W�z�, taking into account that
it and the chiral fields are complex. Combining these
ideas, and taking the continuous flux limit as done pre-
viously, leads to

lim
L→�

dIvac�z ;L� = �
L=N�N

d2b3N��2n�

��DW�z��detDiD̄jW DiDjW

D̄iD̄jW̄ D̄iDjW̄
� ,

�169�

where the tadpole constraint was schematically written
L=N�N in terms of a known quadratic form �.

b. Computational techniques

Without going into the details leading to Eq. �163�,
two general approaches have been used. In the original
computation, the integral over fluxes satisfying the tad-
pole constraint was rewritten as a Laplace transform of a
Gaussian integral with weight exp�−N�N�. In this way,
one can think of the random superpotential as defined
by its two-point function,

�W�z1�W̄�z̄2�� = exp�− K�z1, z̄2�� ,

where K�z1 , z̄2� is the formal continuation of the Kähler
potential K�z , z̄� to independent holomorphic and anti-
holomorphic variables. The flux superpotential is a
Gaussian random field, however, a rather peculiar one as
its correlations can grow with distance. Still, one can
proceed formally, and then justify the final results.

The other approach �Denef and Douglas, 2004� is to
make a direct change of variables from the original
fluxes F ,H to the relevant derivatives of the superpoten-
tial. Since this provides more physical intuition for the
results, we will discuss it.

One of the main simplifications which allows obtain-
ing explicit results for a density such as Eq. �163� is that
its definition restricts attention to a point z in configura-
tion space. Because of this, we only need a finite amount

of information, namely, the superpotential W�z� and
some finite number of its derivatives at z, to compute it.

For example, to evaluate Eq. �169� we only need

DiW�z�, DiDjW�z�, DiD̄jW�z�, and their complex conju-
gates. Standard results in supergravity �or the fact that

W is a holomorphic section�, imply that DiD̄jW=gij̄W, so
this is known in terms of W. Thus for a model with n
moduli, we only need the joint distribution of 1+n
+n�n+1� /2= �n+1��n+2� /2 independent parameters de-
rived from the potential to compute the vacuum count-
ing index. We give these names; in addition to W
�W�z�, we have13

FA = DAW�z� ; ZAB = DADBW�z� . �170�

By substituting Eq. �59� into these expressions and fixing
z, we get F and Z as functions of the fluxes N; in fact,
they are linear in the N.

Now, we can rewrite Eq. �169� as

lim
L→�

dIvac�z ;L� =� �d2Wd2Fd2Z�L�
�2n�

��Fi�detgij̄W Zij

Z̄īj̄ gījW̄
� , �171�

where �d2Wd2Fd2Z�L symbolizes the integral over what-
ever subset of these variables corresponds to the original
integral over fluxes satisfying the tadpole condition.

What makes this rewriting very useful is that the
change of variables N→ �W ,F ,Z� turns out to be very
simple, with a constant Jacobian det �N /��W ,F ,Z� �in
appropriate conventions, unity� �Denef and Douglas,
2004�. Let n=b3 /2, and denote the moduli as ti with i
=0, . . . ,n−1, where i�1 label complex structure moduli
and t0 is the dilaton axion. Then

�
L=N�N

d2KN → �
L=�W�2−�F�2+�Z�2

d2Wd2F0

��
i=1

n−1

d2Fid
2Z0i. �172�

The tadpole constraint is also simple. The other compo-
nents Zij are determined in terms of the Z0i: Z00=0 and

Zij = Fijkgkl̄Z̄l̄; 1	 i,j	 n − 1,

where Fijk are the standard Yukawa couplings of special
geometry �Candelas et al., 1991�. It is a short step from
these formulas to Eq. �163� and its generalizations.

13Strictly speaking, one needs to include the Kähler potential
in these definitions to get quantities which are invariant under
Kähler-Weyl transformations. An alternate convention which
we follow here is to do a Kähler-Weyl transformation to set
K�z , z̄�=0 at the point z under consideration, and use an or-
thonormal frame for the tangent space to z; see Denef and
Douglas �2004� for more details.
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Rewriting Eq. �172� is the simplest way to describe the
ensemble of IIb flux vacua, if one only needs to find
distributions of single vacua and their properties. On the
other hand, the approach in which W is a generalized
Gaussian random field could also be used to compute
distributions depending on the properties of more than
one vacuum, or on the effective potential away from its
critical points, for example, average barrier heights be-
tween vacua or the average number of e-foldings of
slow-roll inflationary trajectories. In fact, modeling the
inflationary potential as a Gaussian random field has
been tried in cosmology �Tegmark, 2005�; it would be
interesting to do the same with this more accurate de-
scription of the effective potentials for flux vacua.

All of these precise results are in the continuous flux
approximation. As before, the general theory suggests
that this should be good for L�K. The results have
been checked to some extent by numerical study �Con-
lon and Quevedo, 2004; Giryavets, Kachru, and Tripa-
thy, 2004�, finding agreement with the distribution in z,
and usually the predicted scaling with L. It should be
said that numerous subtleties had to first be addressed
which eventually found agreement; such as the need to
avoid double-counting flux configurations related by du-
ality, and the need to consider fairly large values of the
flux.

c. Other ensembles of flux vacua

These can be treated by similar methods, say by work-
ing out the analog to Eq. �172�. This was done for G2
compactifications by Acharya et al. �2005�. A useful first
picture can be formed by considering the ratio �DeWolfe
et al., 2005b�

��
number of independent fluxes

number of �real� moduli
,

as this determines the number of parameters
�W ,Fi ,Zij , . . . � which can be considered as roughly inde-
pendent. While for IIb flux vacua �=2, for other well-
understood flux ensembles �M theory, IIa,heterotic� �
=1 as there is only one type of flux.

For �=1, one generally finds the uniform distribution
Eq. �159�, and �W� is of order the cutoff scale. This is
because the conditions DiW=Fi=0 already set almost all
of the fluxes, so there are too few fluxes to tune W to a
small value. This is perhaps the main reason why con-
trolled small volume compactifications are easier to dis-
cuss in the IIb theory. Of course, it may yet turn out that
additional choices in the other theories, less well under-
stood at present, allow similar constructions there.

C. Scale of supersymmetry breaking

We now resume the discussion of Sec. II.F.3, combin-
ing results from counting flux vacua with various general
observations, to try to at least identify the important

questions here. We would like some estimate of the
number distribution of vacua described by spontane-
ously broken supergravity,14

dNvac�MSUSY,MEW,�� �173�

at the observed values of � and MEW, with MSUSY as
defined by Eq. �22�. If this were approximately a power
law,

dNvac�MSUSY,100 GeV,0� � dMSUSYMSUSY

 ,

then for 
�−1 vacuum statistics would favor low scale
SUSY, while for 
�−1 it would not.

For purposes of comparison, we begin with the pre-
diction of field theoretic naturalness. This is

dNvac
FT � �MEW

2 MPl
2 /MSUSY

4 ���/MSUSY
4 �f�MSUSY� ,

�174�

where the first factor follows from Eq. �24�. As for
f�MSUSY�, if we grant that this is set by strong gauge
dyanmics, a reasonable Ansatz might be
dMSUSY/MSUSY, analogous to Eq. �164�. This would lead
to 
=−9 and a clear �statistical� prediction.

Now, while we cannot say we have a rigorous disproof
of Eq. �174�, the approach discussed gives us many rea-
sons to disbelieve it, based both on computation in toy
models and on simple intuitive arguments. We explain
these in turn.

The simplest problem with Eq. �174� is the factor
� /MSUSY

4 . Instead, distributions of flux vacua generally
go as � /MKK

4 , � /MPl
4 , or some other fundamental scale.

In other words, tuning the cosmological constant is not
helped by supersymmetry.

To see this, we start from Eq. �21�, and the claim that
� is the value of the potential at the minimum, so that
�=MSUSY

4 −3 �W�2 /MPl,4
2 . Intuitively, this formula ex-

presses the cancellation between positive energies due
to supersymmetry breaking �the F and D terms�, and a
negative “compensating” energy from the −3 �W�2 term.
However, one should not fall into the trap of thinking
that any of these terms are going to adjust themselves to
cancel the others. Rather, there is simply some complete
set of vacua with some distribution of � values, out of
which a ��0 vacuum will be selected by some other
consideration �anthropic, cosmological, or just fitting the
data�. For the purpose of understanding this distribu-
tion, it is best to forget about this later selection effect,
only bringing it in at the end.

On general grounds, since the cosmological constant
is a sum of many quasi-independent contributions, it is
very plausible that it is roughly uniformly distributed out
to some cutoff scale M, so that the basic structure we are

14There are also vacua with no such description, because su-
persymmetry is broken at the fundamental scale. While these
might further disfavor TeV scale supersymmetry, at present it
is hard to be quantitative about this.

780 Michael R. Douglas and Shamit Kachru: Flux compactification

Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007



looking for in Eq. �173� is this scale. Clearly in Eq. �21�
this is set by the cutoffs in the F, D, and W distributions;
more specifically by the largest of these.

We now focus on the W distribution, coming back to
the F and D distributions shortly. According to Eq. �59�,
the effective superpotential W receives contributions
from all fluxes, including those which preserve super-
symmetry. Because of this, the distribution of W values
has little to do with supersymmetry breaking; rather it is
roughly uniform �as a complex variable� out to a cutoff
scale set by flux physics, namely, MF as defined in Eq.
�27�. Since

d��W�2� = 2�W�d�W� = �1/��d2W ,

this implies that �W�2 is uniformly distributed out to this
scale, and thus that � will be uniformly distributed at
least out to this scale, leading to a tuning factor � /MF

4 .
To summarize, the cosmological constant distribution

is not directly tied to supersymmetry breaking, because
it receives contributions from supersymmetric sectors as
well. This correction to Eq. �174� would result in 
=−5,
still favoring low scale supersymmetry, but rather less so.

Now, there is a clear loophole in this argument,
namely, that there might be some reason for the super-
symmetric contributions to W to be small. In fact, one
can get this by postulating an R symmetry, which is only
broken along with supersymmetry breaking. However,
within the discussed framework, it is not enough just to
say this to resolve the problem. Rather, one now has to
count the vacua with the proposed mechanism �here R
symmetry�, and compare this to the total number of
vacua, to find the cost of assuming the mechanism. Only
if this cost is outweighed by the gain �here a factor
MF

4 /MSUSY
4 � will the mechanism be relevant for the final

prediction. We will come back and decide this shortly.
Before doing this, since the correction discussed

would by itself not change the prediction of low scale
supersymmetry, we should discuss the justification of the
other factors in Eq. �174�. First, we will grant the factor
MEW

2 /MSUSY
4 , not because it is beyond question—after

all this assumes some generic mechanism to solve the �
problem—but because the information we would need
about vacuum distributions has not yet been worked
out.

On the other hand, the claim that the distribution of
supersymmetry breaking scales among string/M theory
vacua is dMSUSY/MSUSY can also be questioned. While
this sounds like a reasonable expectation for theories
which break supersymmetry dynamically, one has to ask
whether there are other ways to break supersymmetry,
what distributions these lead to, and how many vacua
realize these other possibilities.

Given the definition of supersymmetry breaking
vacuum used in Sec. II.F.1, namely, a metastable mini-
mum of the effective potential with F or D�0, one
might well expect a generic effective potential to contain
many supersymmetry breaking vacua, not because of
any mechanism, but simply because generic functions
have many minima. We discussed this idea in Sec.

IV.A.4.c, and it was shown to be generic for IIb flux
vacua by Denef and Douglas �2005�, leading to the dis-
tribution

dNvac�MSUSY� � d�MSUSY/MF�12. �175�

Although the high power 12 may be surprising at first, it
has a simple explanation �Dine et al., 2005; Giudice and
Rattazzi, 2006�. Consider a generic flux vacuum with
MSUSY�MF. Since one needs a Goldstino for spontane-
ous SUSY breaking, at least one chiral superfield must
have a low mass; call it �. Generically, the flux potential
gives order MF masses to other chiral superfields, so
they can be ignored, and we can analyze the constraints
in terms of an effective superpotential reduced to de-
pend on the single field �,

W = W0 + a� + b�2 + c�3 + ¯ .

The form of the Kähler potential K�� , �̄� is also impor-
tant for this argument; however, one can simplify this by
replacing �a ,b ,c� by invariant variables generalizing Eq.
�170�,

F � D�W ; Z � D�D�W ; U � D�D�D�W .

In terms of these, the conditions for a metastable super-
symmetric vacuum are �F � =MSUSY

2 �by definition�, �Z �
=2 �F� �this follows from the equation V�=0�, and finally
�U � ��F�. �As explained by Denef and Douglas �2005�
and many previous discussions, this is necessary so that
V��0. This also requires a lower bound on the curva-
ture of the moduli space metric.�

Now, the distribution of the �F ,Z ,U� parameters in
flux superpotentials can be worked out; we gave the re-
sult for F and Z in Eq. �171�, and one can also find U in
terms of �F ,Z� and moduli space geometry. A good
zeroth-order picture of the result is that �F ,Z ,U� are
independent and uniformly distributed complex param-
eters, up to the flux potential cutoff scale MF. All three
complex parameters must be tuned to be small in mag-
nitude, leading directly to Eq. �175�.

The upshot is that generic supersymmetry breaking
flux vacua exist, but with a distribution heavily favoring
the high scale, enough to completely dominate the
1/MSUSY

4 benefit from solving the hierarchy problem. In-
deed, this would be true for any set of vacua arising
from generic superpotentials constructed according to
the rules of traditional naturalness with a cutoff scale
MF.

The flaw in the naturalness argument in this case is
very simple; one needs to tune several parameters in the
microscopic theory to accomplish a single tuning at the
low scale. Of course, if the underlying dynamics corre-
lated these parameters, one could recover natural low
scale breaking. This would be a reasonable expectation
if W was entirely produced by dynamical effects, or per-
haps in some models in which it is a combination of
dynamical and high scale contributions. Besides models
based on gauge theory, it is entirely possible that a more
careful analysis of the distribution of flux vacua on
Calabi-Yau, going beyond the zeroth-order picture just
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described by taking into account more of the structure
of the actual moduli spaces, would predict such vacua as
well.

Of course, even if such vacua exist, we must go on to
decide how numerous they are. Following Dine �2004b�
and Dine et al. �2004, 2005�, we summarize the picture so
far by dividing the set of supersymmetry breaking vacua
into three branches.

�1� Generic vacua; i.e., with all F, D, and W distribu-
tions as predicted by the flux vacuum counting argu-
ment just discussed.

�2� Vacua with dynamical supersymmetry breaking
�DSB�. Here we assume the distribution
dMSUSY/MSUSY for the breaking parameters; how-
ever, W is uniformly distributed out to high scales.

�3� Vacua with DSB and tree level R symmetry. Besides
the dMSUSY/MSUSY distribution, we also assume W
is produced by the supersymmetry breaking physics.

In option �1�, TeV scale supersymmetry would seem
very unlikely. While options �2� and �3� lead to TeV scale
supersymmetry, they can differ in their expectations for
�W� and thus the gravitino mass: in option �3� this should
be low, while in option �2� the prior distribution is neu-
tral, so the prediction depends on the details of media-
tion as discussed in Sec. II.F.1.

What can we say about which type of vacuum is more
numerous in string/M theory? There is a simple argu-
ment against option �3�, and indeed against most dis-
crete symmetries in flux vacua �Dine and Sun, 2006�.
First, a discrete symmetry which acts on Calabi-Yau
moduli space will have fixed points corresponding to
particularly symmetric Calabi-Yau manifolds; at one of
these, it acts as a discrete symmetry of Calabi-Yau. Such
a symmetry of Calabi-Yau will also act on the fluxes,
trivially on some and nontrivially others. To get a flux
vacuum respecting the symmetry, one must turn on only
invariant fluxes. Now, looking at examples one finds that
typically an order one fraction of the fluxes transform
nontrivially; for definiteness let us say half of them. Thus
applying Eq. �163� and putting in some typical numbers
for definiteness, we estimate

Nvac sym/Nvac all � LK/2/LK � 10100/10200.

Thus discrete symmetries of this type come with a huge
penalty. While one can imagine discrete symmetries with
other origins for which this argument might not apply,
since W receives flux contributions, it clearly applies to
the R symmetry desired in branch �3�, and probably
leads to suppressions far outweighing the �MF /MSUSY�4

gain.
Thus R symmetry appears to be heavily disfavored,

with the exception of R parity: since the superpotential
has R charge 2, it is invariant under a Z2 R symmetry.
While crucial for other phenomenology, R parity does
not force small W.

What about branches �1� vs �2�? Among the many is-
sues, we must estimate what fraction of vacua realize

dynamical supersymmetry breaking. Looking at the lit-
erature on this, much of it adopts a very strong defini-
tion of supersymmetry breaking, in which one requires
that no supersymmetric vacua exist. And, although the
situation is hardly clear, it appears that very few models
work according to this criterion. This might be regarded
as evidence against branch �2�.

However, this is a far stronger definition of supersym-
metry breaking than we used elsewhere in our review.
Rather the question we want to answer is the difficulty
of realizing metastable dynamical supersymmetry break-
ing vacua. Recent work �Dine et al., 2006; Intriligator et
al., 2006� suggests that this is not so difficult, but it is still
a bit early to evaluate this point.

According to the point of view taken here, the goal is
to show that metastable dynamical supersymmetry
breaking vacua are generic in a quantitative sense. Do-
ing this requires having some knowledge about the dis-
tributions of gauge theories among string/M theory
vacua, to which we turn.

D. Other distributions

Understanding the total number and distribution of
vacua requires combining information from all sectors of
the theory. Here we discuss some of the other sectors,
while the problem of combining information from differ-
ent sectors has been discussed by Douglas �2003�.

1. Gauge groups and matter content

By now the problem of trying to realize the Standard
Model has been studied in many classes of constructions.
We consider type-IIa orientifolds of a Calabi-Yau M �see
�Blumenhagen, Cvetic, et al. �2005� for a recent review�.
In the vast majority of such vacua which contain the SM
one finds that the tadpole and other constraints force the
inclusion of exotic matter, charged matter with unusual
Standard Model quantum numbers or with additional
charges under other gauge groups. One also finds hidden
sectors, analogous to the second E8 of the original
CHSW models. While less well studied, other construc-
tions such as more general heterotic vacua, F and M
theory vacua, often contain exotic matter as well.

All this might lead to striking predictions for new
physics, if we could form a clear picture of the possibili-
ties, and which of them were favored within string/M
theory. One is naturally led to questions like: Should we
expect to see such exotic matter at low energies? Could
the extra matter be responsible for supersymmetry
breaking? Could the hidden sectors be responsible for
some or all dark matter, or have other observable con-
sequences?

A systematic base for addressing these questions
would be list all vacua, with their gauge groups and mat-
ter content, as well as the other EFT data. While this is
a tall order, finding statistics of large sets of vacua, such
as the number of vacua with a given low-energy gauge
group G and matter representation R, is within current
abilities �Blumenhagen, Gmeiher, et al., 2005; Dijkstra et
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al., 2005; Kumar and Wells, 2005a, 2005b; Dienes, 2006;
Douglas and Taylor, 2006; Gmeiner, 2006a, 2006b;
Gmeiner et al., 2006�. Besides providing a rough picture
of the possibilities, such statistics can guide a search for
interesting vacua, or used to check that samples are rep-
resentative.

Thus consider a vacuum counting distribution

Nvac�G,R� . �176�

To be precise, G and R should refer to all matter with
mass below some specified energy scale �. The existing
results count N=1 supersymmetric vacua and ignore
quantum effects, considering gauge groups which remain
unbroken at all scales, and massless matter.

Most systematic surveys treat intersecting brane mod-
els �IBMs�, in which the possible gauge groups G are
products of the classical groups U�N�, SO�N�, and
Sp�N�, while all charged matter transforms as two-index
tensors: adjoint, symmetric, and antisymmetric tensors,
and bifundamentals. In a theory with r factors in the
gauge group, the charged matter content can be largely
summarized in an r�r matrix Iij, whose �i , j� entry de-

notes the number of bifundamentals in the �Ni ,N̄j�,
called the generalized intersection matrix. Thus we can
rewrite Eq. �176� as

Nvac��Ni�,Iij� . �177�

Following the procedure outlined in Sec. II.A.3, one
can make lists of models, and compute Eq. �177�. Re-
sults from the studies so far are rather intricate, so a
basic question is to find some simple approximate de-
scription of the result. In particular, one would like to
know to what extent the data �Ni ,Iij� show structure,
such as preferred patterns of matter content, or other
correlations, which might lead to predictions.

Alternatively, one might propose a very simple model,
such as that �Ni ,Iij� are �to some approximation� inde-
pendent random variables.15 While one might be
tempted to call this a “negative” claim, of course we
should not be prejudiced about the outcome, and meth-
odologically it is useful to try to refute null hypotheses
of this sort. Actually, since even in this case there would
be preferred distributions of the individual ranks and
multiplicities, such a result would carry important infor-
mation.

The studies so far �Blumenhagen, Gmeiner, et al.
�2005�; Dijkstra et al., 2005; Douglas and Taylor, 2006� in
general are consistent with the null hypothesis, but sug-
gest some places to look for structure. As yet they are
rather exploratory and show only partial agreement,
even about distributions within the same model classes.

Blumenhagen, Gmeiner, et al. �2005� studied the
T6 /Z2�Z2 orientifold �and simpler warmup models� and

all gauge sectors enumerated. Simple analytical models
were proposed in which Eq. �177� is governed by the
statistics of partitioning the total tadpole among super-
symmetric branes. For example, the total number
of vacua with tadpole L goes roughly16 as exp�L, and
the fraction containing an SU�M� gauge group goes as
exp�−M /�L�. Computer surveys supported these claims,
and found evidence for an anticorrelation between total
gauge group rank and the signed number of chiral mat-
ter fields and for a relative suppression of three genera-
tion models. However, it is not clear whether these sur-
veys used representative samples, as discussed by
Douglas and Taylor �2006�.

Douglas and Taylor �2006� developed algorithms to
perform complete enumerations of k-stack models, in
other words, the distribution of k of the gauge groups
and associated matter. These obey power-law distribu-
tions such as Nvac�Ln /Ni


 with 
 depending on brane
types.

Dijkstra et al. �2005� enumerated orientifolds of Gep-
ner models, and restricted attention to the SM sector,
again finding that the majority of models had exotic mat-
ter, and multiple Higgs doublets.

An element not fully discussed in any of these works
is that to compute Eq. �176� as defined in Sec. V.A one
needs to stabilize all other moduli, and incorporate mul-
tiplicities from these sectors. One can try to estimate
these multiplicities in terms of the number of degrees of
freedom in the “hidden” �nonenumerated� sectors by us-
ing generic results such as Eq. �163�, for example, as is
done by Kumar and Wells �2005a�.

To state one conclusion on which all of these works
agree, the fraction of brane models containing the Stan-
dard Model gauge group and matter representations is
somewhere around 10−10, as first suggested by Douglas
�2003�. In this sense, reproducing the SM is not the hard
part of model construction, and indeed has been done in
all model classes with sufficient complexity �for example,
enough distinct homology classes� which have been con-
sidered. This is counting models with and without exotic
matter; while it is clearly more difficult to get SM’s with-
out exotic matter, we still await simple quantitative
statements about just how constraining this is, or how
constraining it is to get exotic matter which is consistent
with current phenomenological constraints.

Among the many other open questions, it would be
interesting to know if the heterotic constructions, which
one might expect to favor GUTs and thus work more
generically, are in fact favored over the brane models.
The one existing survey �Dienes, 2006�, of nonsupersym-
metric models, finds GUT and SM gauge groups with far
higher frequency. However, a mere 1010 advantage here
might well be swamped by multiplicities from fluxes and
other sectors.

15While this cannot be true of the entire spectrum as this
must cancel anomalies, these constraints are simple for brane
models, so the simplest model is to take a distribution of mat-
ter contents generated by taking these parameters indepen-
dently, and keeping only anomaly-free spectra. 16There are ln L corrections in the exponent.
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2. Yukawa couplings and other potential terms

These have various sources in explicit constructions:
world-sheet instantons in IIa models; overlap between
gauge theoretic wave functions in IIb and heterotic
models; all with additional space-time instanton correc-
tions. While interesting for phenomenology, at this point
none of this is understood in the generality required to
do statistical surveys.

However, one can suggest interesting pictures. As an
example, suppose that in some large class of vacua,
quark and lepton masses were independent random
variables, each with distribution d��m�. Is there any
d��m� with both plausible top-down and bottom-up mo-
tivations? Donoghue �2004� and Donoghue et al. �2006�
proposed the distribution d��m��dm /m both as a best
fit among power-law distributions to the observed
masses and as naturally arising from the combination of
�i� uniform distributions of moduli z and �ii� the general
dependence of Yukawa couplings

m � � exp�− z�

expected if they arise from world-sheet instantons.

3. Calabi-Yau manifolds

All explicit results discussed assumed a choice of
Calabi-Yau manifold. Now we do not know this choice a
priori, so to count all vacua we need to sum over it, and
thus we need the distribution of Calabi-Yau manifolds.
Of course, we might also use statistics to try to decide a
priori what is the most likely type of Calabi-Yau to con-
tain realistic models, or use these data in other ways. In
any case it is very fundamental to this whole topic.

Unfortunately, we do not know this distribution. The
only large class of Calabi-Yau manifolds which is under-
stood in any detail at present is the subset which can be
realized as hypersurfaces in toric varieties. In more
physical terms, these are the Calabi-Yau manifolds
which can be realized as linear sigma models with a su-
perpotential of the form W=Pf�Z�, leading to a single
defining equation. Mathematically, the toric varieties
which can be used are in one-to-one correspondence
with reflexive polytopes in four dimensions. Such a poly-
tope encodes the geometry and determines the Betti
numbers, intersection forms, prepotential and flux su-
perpotential, and supersymmetric cycles; for examples
of how this information is used in explicitly constructing
vacua, see Denef et al. �2004, 2005�.

We leave the definitions for the references, but the
main point for our discussion is that this is a combinato-
rial construction, so that the set of such polytopes can be
shown to be finite, and in principle listed. In practice, the
number of possibilities makes this rather challenging.
Nevertheless, this was done by Kreuzer and Skarke
�2002a, 2002b, 2004�, who maintain databases and soft-
ware packages to work with this information.

These data, as illustrated in Fig. 3, are the evidence
for our earlier assertion that most Calabi-Yau manifolds
have b�20–300, in the range needed to solve the cos-

mological constant problem along the lines of Bousso
and Polchinski �2000�, but not leading to drastically
higher vacuum multiplicities.

At present, the number of topologically distinct toric
hypersurface Calabi-Yau manifolds is not known. While
the 15 122 points on this plot are clearly distinct, one
point can correspond to several polytopes; furthermore,
the correspondence between polytopes and Calabi-Yau
manifolds is not one to one; thus one has only lower and
upper bounds. Furthermore, this set is known not to in-
clude all Calabi-Yau manifolds. One can at least hope
that it is a representative subset; most but not all math-
ematicians would agree that this is reasonable.

4. Absolute numbers

Combining the various sectors and multiplicities dis-
cussed leads to rough estimates for numbers of vacua
arising in different classes of constructions. The explor-
atory nature of much of the discussion combined with
the theoretical uncertainties outlined in Sec. III make
these estimates rather heuristic at present. We quote a
few numbers anyway.

To the extent that we can estimate numbers of other
choices in heterotic and IIa, they are subleading to num-
bers of IIb flux vacua. One can get a lower bound on this
from Eq. �163�, if one can compute the integral over
moduli space. This has only been done in one- and two-
parameter examples, and for T6 moduli space in Ashok
and Douglas �2004�, and in these cases gave �dim MC

times order 1 factors �one over the order of a discrete

FIG. 3. The toric hypersurfaces with ��0. The vertical axis is
h1,1+h2,1, while the horizontal axis is �=2�h1,1−h2,1�. The full
set also contains the mirror manifolds obtained from these by
taking �→−�. From Kreuzer and Skarke, 2002a.
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symmetry group�, and thus were subleading to the pre-
factor. We assume this is generally true, but it would be
worth checking, as it is not inconceivable that CY
moduli spaces have very large symmetry groups, and this
would drastically reduce the numbers. See Douglas,
Shiffman, et al. �2006� and Zelditch �2006� for many
more issues in making these estimates precise.

The number L can be computed either by choosing a
IIb orientifolding or using the relation to F theory on an
elliptically fibered fourfold N, for which L=��N� /24.
While it would be interesting to survey the expected
number of flux vacua over all manifolds as discussed in
Sec. V.D.3, at present it is not entirely clear that all of
these allow stabilizing Kähler moduli. For the three ex-
amples shown by Denef et al. �2004�, one finds 10307,
10393, and 10506. While there are further requirements,
such as small �W0� and gs, metastability after supersym-
metry breaking, and so on, as discussed in Sec. V.B.2 and
elsewhere these cuts appear to lead to comparatively
small factors. Thus one can take 10500 as a reasonable
estimate at present, unless and until we can argue that
further conditions of the sort discussed in Sec. III are
required.

One might worry that this is an underestimate, as we
have left out many other known �and unknown� con-
structions. The only handle we have on this is the set of
F theory compactifications, which are so similar to IIb
that the same formulas might be applied. Since typical
fourfolds have K�1000, this might drastically increase
the numbers, to say 101000. Or it might not, both because
one is typically not in the regime L�K where these
formulas are justified and because the additional moduli
�compared to IIb orientifolds� correspond to charged
matter, leading to additional corrections to the superpo-
tential. While one might expect that as more construc-
tions come under control the estimate will increase, this
need not be, as new dualities between these construc-
tions will also come into play.

E. Model distributions and other arguments

As we have seen, the computation of any distribution
from microscopic string theory considerations is a lot of
work. Since it is plausible that many results will have
simple explanations, having to do with statistics and gen-
eral features of the problem, it is tempting to try to
guess them in advance.

The simplest examples are the uniform distributions,
such as Eq. �159�. At first these may not look very inter-
esting; for example, Eq. �160� for the dilaton axion pre-
fers order 1 couplings. Another well-known example is a
mass parameter in an EFT, such as a boson mass m2�2.
The standard definition of naturalness includes the idea
that in a natural theory this parameter will be uniformly
distributed up to the cutoff scale. In some cases this is a
good model of the results, for example, in one-
parameter flux vacuum distributions away from singular
points.

Even when individual parameters are simply distrib-
uted, on combining many such parameters, one finds
new structure, which can lead to peaking and predic-
tions.

1. Central limit theorem

As is very familiar, random variables which arise by
combining many different independent sources of ran-
domness tend to be Gaussian �or normally� distributed.
This observation is made mathematically precise by cen-
tral limit theorems. Thus if we find that some observable
in string theory is the sum �or combination� of many
moduli, or many independent choices in our definition
of vacuum, it becomes plausible that this observable will
be normally distributed as well.

One can design model field theory landscapes in
which this postulate holds �Arkani-Hamed, Dimopoulos,
and Kachru, 2005; Dienes et al., 2005; Distler and Vara-
darajan, 2005�. A simple example is to take a large num-
ber N of scalar fields �i, with scalar potential

V = 

i

Vi��i� �178�

and where each Vi is a quartic potential with two vacua,
at �i

±. This kind of model would arise if the N fields are
localized at distinct points in extra dimensions, for in-
stance, so their small wave function overlaps highly sup-
press cross terms in the potential. For simplicity, we take
the quartics to be identical, though our considerations
would hold more generally.

It follows immediately from the central limit theorem
that despite the fact that there are 2N vacua very few of
them have small cosmological constant. More con-
cretely, let Vav be the average of the energies of the �±
vacua, and Vdiff be the difference. Then the distribution
governing the vacuum energies of the vacua is

���� =
2N

�2�NVdiff

exp−
�� − NVav�2

2NVdiff
2 � . �179�

In a nonsupersymmetric system with UV cutoff M* we
would a priori expect Vav�M*

4, and therefore the distri-
bution of vacua peaks at cosmological constant NM*

4,
with a width of order �NM*

4. Vacua around zero cosmo-
logical constant are not scanned. In some fraction of
such ensembles of order 1/�N, where one found Vav

	M*
4 /�N, one would be able to scan around zero cos-

mological constant. In a trivial supersymmetric generali-
zation of this landscape, with an unbroken R symmetry
�which guarantees that V=0 is special�, again one would
be able to scan around zero cosmological constant, while
supersymmetric theories without R symmetry would not
be expected to allow such scanning.

Suppose now that an observable coupling constant g is
controlled by the sum of the vacuum expectation values
�VEVs� 
i�i characterizing a given vacuum. The same
logic would teach one that despite the vast landscape of
2N vacua, the coupling constant does not scan very
much; it fluctuates by �g /g�1/�N around its mean
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value. More generally, there exist landscapes with a
large number of vacua, in which many physical quanti-
ties can be predicted with 1/�N precision. Since in na-
ture only a few quantities seem plausibly to be environ-
mentally determined, while many others beg for
explanations based on dynamics and symmetries, one
hopes that the cosmological term is one of a few vari-
ables that is scanned, while other quantities of interest
do not scan �Arkani-Hamed, Dimopoulos, and Kachru,
2005�.

To decide whether this is a good model for a particu-
lar parameter, one must look at microscopic details. As
mentioned, it is very plausible that the cosmological con-
stant works this way. On the other hand, there is no
obvious sense in which a modulus is a sum of indepen-
dent random variables, and indeed the AD distribution
�163� does not look like this. This would also be true for
an observable which was a simple function of one or a
few moduli, for example, a gauge coupling in a brane
model, proportional to the volume of a cycle. On the
other hand, a hypothetical observable which was a sum
or combination of many moduli might be well modeled
in this way. These observables would be the ones that
are most clearly amenable to prediction �or post-diction�
using statistical techniques.

2. Random matrix theory

Other universal distributions which appear very often
in physics are the random matrix ensembles, for ex-
ample, the Gaussian unitary ensemble �GUE� �Mehta,
1991�. In the large N limit, these peak and exhibit uni-
versal properties such as the semicircle law, level repul-
sion, etc.

On general grounds, one might expect moduli masses
to be modeled by a random matrix distribution. This was
made more precise by Denef and Douglas �2005�, who
observed that since the matrix of fermion masses DiDjW
in supersymmetric field theories is a complex symmetric
matrix, it can be modeled by the CI distribution of Alt-
land and Zirnbauer �1997�. This leads to level repulsion
between moduli masses ma, characterized by the distri-
bution

d��ma� = �
a

d�ma
2� �

a�b
�ma

2 − mb
2� . �180�

In particular, degenerate masses are nongeneric. This
was important in the arguments for Eq. �175� as degen-
erate masses would have led to an even larger exponent.

Another model for moduli masses was by Easther and
McAllister �2006�. They considered the large volume
limit, in which the superpotential is a sum of a flux term
with nonperturbative corrections, as in Eq. �78�. In this
limit, while most fields �complex structure moduli, dila-
ton, and others� obtain large masses, the axionic parts of
the Kähler moduli obtain small masses, depending on
the expectation values of the first set of fields. Taking
the number of Kähler moduli as K and the number of
the others as N, a reasonable model for the resulting
mass matrix is

�M2�ij = 


	K+N

Hi
H
j
† ,

where H is a K� �K+N� matrix with randomly distrib-
uted entries. For large K ,N, the limiting distribution for
M2 is very generally the Marcenko-Pastur distribution, a
simple distribution depending on the ratio K /N.

While these are interesting universal predictions, they
apply to moduli masses at scales MF, and it is not com-
pletely obvious how they would relate to observable
physics. Easther and McAllister �2006� proposed that
they favor “N-flation,” a mechanism for slow-roll infla-
tion �Dimopoulos et al., 2005�.

Similar Ansätze assuming less structure appear in
Kobakhidze and Mersini-Houghton �2004�, Holman and
Mersini-Houghton �2005�, Mersini-Houghton �2005�,
and Aazami and Easther �2006�.

3. Other concentrations of measure

This is the general term in mathematics for the large
N limits and other universal phenomena exhibited by
integrals over high dimensional spaces.

As a simple example, recall from Fig. 2 that in a one-
parameter model most flux vacua are not near a conifold
point. Suppose the probability of a given modulus being
away from a conifold point is 1−�, then the probability
of n moduli being away from conifold points should be
�1−��n, which for n��1 will be small. In this sense, most
vacua with many moduli will be near some conifold
point; some numbers have been given by Hebecker and
March-Russell �2006�.

Another example is that the vast bulk of an
n-parameter CY moduli space is at order one volume �of
the CY itself�; the fraction which sits at volume greater
than Vol falls off as �Vol�−n/3 �Denef et al., 2004�. This
applies, for example, to the large volume regime dis-
cussed in Sec. V.E.2; it is also relevant for IIb flux vacua
in its mirror interpretation.

4. Nonexistence arguments

Instead of doing statistics on explicit constructions,
another approach to characterizing the set of vacua is to
find consistency conditions or other a priori arguments
that vacua with certain properties cannot exist.

Perhaps the best known example is the statement that
vacua of string theory cannot have continuous global
symmetries �Banks et al., 1988�. One argument for this is
based on general properties of theories of quantum
gravity, specifically the fact that absorption and radiation
of particles by black holes will violate these symmetries.
A very different argument, from string world-sheet per-
turbation theory, is that such a symmetry must corre-
spond to a world-sheet conserved current, and such a
current can be used to construct a vertex operator for a
vector boson gauging the symmetry.

Recently, Arkani-Hamed et al. �2006� have proposed a
quantitative extension of this result: In any theory of
quantum gravity containing a U�1� gauge theory sector,
there should be a lower bound on the gauge coupling,
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g�m/MP,

where m is the mass of the lightest charged particle. Be-
sides verifying this in examples, they argue for this by
considering entropy bounds on the end states of charged
black holes; see also Banks et al. �2006�. It may be that
such arguments, using only general features of quantum
gravity, can lead to further interesting constraints �Vafa,
2005; Ooguri and Vafa, 2006�.

5. Finiteness arguments

In counting vacua, one is implicitly assuming that the
number of quasirealistic vacua of string/M theory is fi-
nite. As it is easy to write down effective potentials with
an infinite number of local minima, clearly this is a non-
trivial hypothesis, which must be checked. Actually, if
interpreted too literally, it is probably not true: there are
many well-established infinite series of compactifica-
tions, such as the original Freund-Rubin example of Sec.
II.D.1. While the well-established examples are not qua-
sirealistic, at first one sees no obvious reason that such
series cannot exist.

A basic reason to want a finite number of quasirealis-
tic vacua, under some definition, is that if this is not true,
one runs a real risk that the theory can match any set of
observations, and in this sense will not be falsifiable.
Again, this may not be obvious at first, and one can
postulate hypothetical series which would not lead to a
problem, or even lead to more definite predictions. Sup-
pose, for example, that the infinite series had an accu-
mulation point, so that almost all vacua made the same
predictions; one might argue that this accumulation
point was the preferred prediction �Dvali and Vilenkin,
2004a�.

However, the problem which one will then face is that
any general mechanism leading to infinite series of
vacua in the observable sector would also be expected to
lead to infinite sets of choices in every other sector of
the theory, including hidden sectors. Now, while a hid-
den sector is not directly observable, still all sectors are
coupled �at least through gravity; in our considerations
through the structure of the moduli space as well�, so
choices made there do have a small influence on ob-
served physics. For example, the precise values of stabi-
lized moduli in flux vacua will depend on flux values in
the hidden sector. Thus an infinite-valued choice in this
sector would be expected to lead to a set of vacua which
densely populates even the observable sector of theory
space, eliminating any chance for statistical predictions.

This argument comes with loopholes of course; one of
the most important is that the measure factor can sup-
press infinite series. Still, finiteness is one of the most
important questions about the distribution of vacua.

Consider the example of Sec. II.D.1, in which the flux
N can be an arbitrary positive integer. Analogous infi-
nite series exist in its generalizations to the G2 ho-
lonomy and IIa examples of Sec. IV.B, and so on. In
these series, the compactification volume goes as a posi-
tive power of N. Thus if our definition of quasirealistic
includes an upper bound on this volume, these infinite

series will not pose a problem. Such a bound follows
from Eq. �1� and a phenomenological lower bound on
the fundamental scale, say MP,D�1 TeV.

Various arguments have been given that the number
of choices arising from a particular part of the problem
are finite in this sense: the number of generations �Dou-
glas and Zhou, 2004�, the number of IIb flux vacua
�Douglas and Lu, 2006; Eguchi and Tachikawa, 2006�,
the choice of compactification manifold �Acharya and
Douglas, 2006�, and the choice of brane configuration
�Douglas and Taylor, 2006�. This rules out the postulated
infinite series of Dvali and Vilenkin �2004a�, as well as
others. However, at present there is no completely gen-
eral argument for finiteness, so this is an important point
to check in each new class of models.

F. Interpretation

We come finally to the question of how to use distri-
butions such as Eq. �149� or �152�. One straightforward
answer is that they are useful in guiding the search for
explicit vacua. For example, if it appears unlikely that a
vacuum of some type exists, one should probably not
put a major effort into constructing it.

Going beyond this, distributions give us a useful short-
cut to finding explicit vacua with desired properties. As
one example, in the explicit construction of Sec. IV.A.3,
we needed to assert that IIb flux vacua exist with a speci-
fied small upper bound on �W0�. For many purposes, one
does not need to know an explicit set of fluxes with this
property; a statistical argument that one exists would be
enough. The cosmological constant itself is a very impor-
tant example because, as discussed earlier, there is little
hope in this picture to find the actual vacua with small �.

Going further, it would be nice to know to what extent
arguments such as those in Secs. II.F.3 and V.C could be
made precise, and what assumptions we would need to
rely on. At first, one may think that such arguments re-
quire knowing the measure factor, plunging us into the
difficulties of Sec. III.E. However, if the absolute num-
ber of vacua is not too large, this is not so; one could get
strong predictions which are independent of this. After
all, if we make an observation X, and one has a convinc-
ing argument that no vacuum reproducing X exists, one
has falsified the theory, no matter what the probabilities
of the other vacua might be.

These comments may seem a bit general, but when
combined with the formalism we just discussed, and un-
der the hypothesis that there are not too many vacua,
could have force. We now return to the problem of the
scale of supersymmetry breaking. According to the ar-
guments of Sec. II.E and the distribution results of Sec.
V.B, tuning the cosmological constant requires having
10120 vacua which, while realizing a discretuum of cos-
mological constants, are otherwise identical. Suppose we
found only 10100 vacua with high scale supersymmetry
breaking; since finding the observed c.c. would require
an additional 10−20 tuning, we would have a good reason
to believe that high scale supersymmetry breaking is not
just disfavored, but inconsistent with string/M theory.
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While there would be a probabilistic aspect to this claim,
it would not be based on unknowns of cosmology or
anthropic considerations, but the theoretical approxima-
tions which were needed to get a definite result. If this
were really the primary source of uncertainty in the
claim, one would have a clear path to improving it.

This argument is a simple justification for defining the
stringy naturalness of a property in terms of the number
of string/M theory vacua which realize it, or theoretical
approximations to this number. Of course, to the extent
that one believes in a particular measure factor or can
bring in other considerations, one would prefer a defini-
tion which takes these into account; however, at present
one should probably stick to the simplest version of the
idea.

The downside of this type of argument is, not having
made additional probabilistic assumptions, if there are
too many vacua, so that each alternative is represented
by at least one vacuum, one gets no predictions at all.
How many is not too many for this to have any chance
of succeeding? A rough first estimate is fewer than 10230.
This comes from multiplying together the observed ac-
curacies of dimensionless couplings, the tuning factors of
the dimensionful parameters, and the estimated 10−10

difficulty of realizing the Standard Model spectrum. This
produces roughly17 10−70−120−30−10�10−230. Neglecting all
the further structure in the problem, one might say that
if string/M theory has more than 10230 vacua, there is no
obvious barrier to reproducing the SM purely statisti-
cally, so one should not be able to falsify the theory on
the basis of present data using statistical reasoning. Con-
versely, if there are fewer vacua, in principle this might
be possible.

The number 10230 is a lower bound; if the actual dis-
tribution of vacua were highly peaked, or if we were
interested in a rare property, we could argue similarly
with more vacua. We illustrate this by supposing that we
find good evidence for a varying fine-structure constant.
As discussed in Sec. II.F.2, fitting this would require an
effective potential which is almost independent of 
EM,
and this is highly nongeneric; Banks et al. �2002� argued
that the first eight coefficients in the series expansion of
V�
EM� would have to be tuned away. However, in a
large enough landscape, even this might happen statisti-
cally. Taking the cutoff at a hypothetical MSUSY
�10 TeV, this is a tuning factor of order 10−600, so if
string/M theory had fewer than 10800 or so vacua, such
an observation would rule it out with some confidence,
while if it had more, we would be less sure.

This is an instructive example, both because the point
is clear and because the stated conclusions taken liter-
ally sound absurd. If we really thought the observations
required a varying fine-structure constant, we would
proceed to the hypothesis that the framework discussed
based on the effective potential is wrong, that there is

some other mechanism for adjusting the c.c., or perhaps
some mechanism other than varying moduli for varying
the apparent fine-structure constant. Any such predic-
tion depends on all assumptions, including the basic
ones, which should be suspected first. However, we can
start to see how statistical and/or probabilistic claims of
this sort might unavoidably enter the discussion.

But what if there are 101000 vacua? And what hope is
there for estimating the actual number of vacua? All one
can say about the second question is that, while there
are too many uncertainties to make a convincing esti-
mate at present, we have a fairly good record of eventu-
ally answering well-posed formal questions about
string/M theory.

Regarding the first question, in this case one probably
needs to introduce the measure factor, which will in-
crease the predictivity. This might be quantified by the
standard concept of the entropy of a probability distri-
bution,

S = 

i

Piln�1/Pi� .

The smaller the entropy, the more concentrated the
measure, and the more predictive one expects the theory
to be. To some extent, one can repeat the preceding
discussion in this context, by replacing everywhere the
number of vacua with the total statistical weight eS.
However, justifying this would require addressing the is-
sues raised in Sec. III.E.

There is another reason to call on the measure factor,
namely, the infinite series of M theory and IIa vacua
discussed in Sec. IV.B. Since these run off to large vol-
ume, all but a finite number are already ruled out, as
discussed in Sec. V.E.5. However, since their number ap-
pears to grow with volume, any sort of probabilistic rea-
soning is likely to lead to the prediction that extra di-
mensions are just about to be discovered, an optimistic
but rather suspicious conclusion.

An alternate hypothesis �Douglas, 2005� is that the
correct measure factor suppresses large extra dimen-
sions, which would be true, for example, if it had a factor
exp�−vol�M��. Possible origins for such a factor might be
whatever dynamics selects 3+1 dimensions �some sug-
gestions include Brandenberger and Vafa �1989� and
Easther et al. �2005��, or decoherence effects as sug-
gested by Firouzjahi et al. �2004�.

One cannot go much further in the absence of more
definite information about the measure factor. But an
important hypothesis to confirm or refute is that its only
important dependence is on the aspects of a vacuum
which are important in early cosmology, while for all
other aspects one can well approximate it by a uniform
measure, in which the probability that one of a set of N
similar vacua appears, is taken to be 1/N.

The former include the scale of inflation and the size
of the extra dimensions, and may include other cou-
plings which enter into the physics of inflation and re-
heating. However, since the physics of inflation must
take place at energy scales far above the scales of the
Standard Model, most features of the Standard Model,

17The exponent 70 includes 
1 �10�, 
2 �6�, 
3 �2�, mproton �10�,
mn �10�, and 14 less well measured SM parameters, contribut-
ing, say, 32.
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such as the specific gauge group and matter content, the
Yukawa couplings, and perhaps the gauge couplings, are
probably decorrelated from the measure factor. For such
parameters, the uniform measure P�i��1/N should be a
good approximation. Regarding selection effects, we can
bypass this discussion knowing that the Standard Model
allows for our existence, and not consider the question
of whether in some other vacuum the probability or
number of observers might have been larger.

It is not a priori obvious whether a measure factor will
depend on two particularly important parameters, the
cosmological constant and supersymmetry breaking
scale. As discussed in Sec. III.E, the cosmological con-
stant does enter into some existing claims, but this leads
to its own problems. As for supersymmetry breaking,
one might argue that this should fall into the category of
physics below the scale of inflation and thus not enter
the measure factor, but clearly the importance of this
point makes such pat arguments unsatisfying. See Kal-
losh and Linde �2004� for arguments suggesting a link
between these two scales.

We conclude by suggesting that, while an understand-
ing of the measure factor is clearly essential to put these
arguments on any firm footing, it might turn out that the
actual probabilities of vacua are essentially decorrelated
from almost all low-energy observables, perhaps be-
cause they are determined by the high scale physics of
eternal inflation, perhaps because they are controlled by
the value of the c.c. which is itself decorrelated from
other observables, or perhaps for other genericity rea-
sons. In any of these cases, decorrelation and the large
number of vacua would justify using the uniform mea-
sure, and the style of probabilistic reasoning used in Sec.
II.F.3 would turn out to be appropriate.

VI. CONCLUSIONS

The primary goal of superstring compactification is to
find realistic or quasirealistic models. Real-world phys-
ics, both the Standard Model and its various suggested
extensions, is rather complicated, and it should not be
surprising that this goal is taking time to achieve.

Already when the subject was introduced in the mid-
1980s, good plausibility arguments were given that the
general framework of grand unified theories and low-
energy supersymmetry could come out of string theory.
While there were many gaps in the picture, and some of
the most interesting possibilities from a modern point of
view were not yet imagined, it seems fair to say that the
framework discussed here is the result of the accumula-
tion of many developments built on that original picture.

In this framework, we discussed how recent develop-
ments in flux compactification and superstring duality,
along with certain additional assumptions such as the
validity of the standard interpretation of the effective
potential, allow one to construct models which solve
more of the known problems of fundamental physics.
Most notably, this includes models with a small positive
cosmological constant, but also models of inflation and
new models which solve the hierarchy problem.

We emphasize that our discussion rests on assump-
tions which are by no means beyond question. We have
done our best to point out these assumptions, so that
they can be critically examined. But we would also say
that they are not radical assumptions, but rather follow
general practice in the study of string compactification,
and in particle physics and other areas. Any of them
might be false, but in our opinion that would in itself be
a significant discovery.

Even within the general framework we have dis-
cussed, there are significant gaps in our knowledge of
even the most basic facts about the set of string vacua.
Our examples were largely based on Calabi-Yau com-
pactification of type-II theories, where there are tools
coming from N=2 supersymmetry that make the calcu-
lations particularly tractable. General N=1 flux vacua in
these theories, which involve geometric flux �discretely
varying away from the Calabi-Yau metric� or even the
nongeometric compactifications of Sec. IV.C, are poorly
understood. In the heterotic string, Calabi-Yau models
do not admit a sufficiently rich spectrum of fluxes to
stabilize moduli in a regime of control �see Becker, Cu-
rio, et al. �2004�, Gukov et al. �2004�, and Curio and
Krause �2006��. The more general non-Kähler compacti-
fications, which are dual to our type-II constructions and
should lead to similar moduli potentials, are being in-
tensely investigated �Becker, Dasgupta, and Green,
2003; Becker, Dasgupta, and Prokashkin, 2003; Lopes
Cardoso et al., 2003, 2004; Becker, Becker, et al., 2004;
Goldstein and Prokushkin, 2004; Li and Yau, 2004; Fu
and Yau, 2005, 2006; Becker et al., 2006; Kim and Yi,
2006; Kimura and Yi, 2006�. For work on moduli poten-
tials in G2 compactifications of M theory, which also pro-
vide a promising home for SUSY GUTs, see Acharya
�2002�, Beasley and Witten �2002� and Acharya, Bobkov,
et al. �2006�.

These investigations may still be of too limited a
scope: In a full survey, one should not require a strict
definition in terms of world-sheet conformal field theory.
For example, compactifications of noncritical strings
�Myers, 1987� should also be explored. There have been
interesting investigations in this direction �Maloney et
al., 2002�, but little is yet known about the possible phe-
nomenology of these models.

We think many will agree that what has emerged has
at least answered Pauli’s criticism of a previous attempt
at unification. The picture is strange, perhaps strange
enough to be true. But is it true? That is the question we
now face.

We briefly recap a few areas in which we might find
testable predictions of this framework, as outlined in
Sec. II.F. Perhaps the most straightforward application,
at least conceptually, is to inflation, as the physics dis-
cussed determines the structure of the inflationary po-
tential. There are by now many inflationary scenarios in
string theory, involving brane motion, moduli, or axions
as inflatons. In each scenario, however, there are analogs
of the infamous eta problem �Copeland et al., 1994�,
where Planck-suppressed corrections to the inflaton po-
tential spoil flatness and require mild �1 part in 100� tun-
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ing to achieve 60 e foldings. While this may be a small
concern relative to other hierarchies discussed, it has,
nevertheless, made it difficult to exhibit very explicit in-
flationary models in string theory. In addition to sur-
mounting these obstacles through explicit calculation in
specific examples, it will be important to develop some
intuition for which classes of models are most generic;
this will involve sorting out the vexing issues of measure
discussed in Sec. III.E. Even lacking this top-down in-
put, clear signatures for some classes of models have
been found, via cosmic string production �Sarangi and
Tye, 2002; Copeland et al., 2004� or non-Gaussianities of
the perturbation spectrum �Alishahiha et al., 2004�; per-
haps our first clue will come from experiment.

Moduli could in principle lead to observable physics
at later times, such as a varying fine-structure constant,
or quintessence. The first is essentially ruled out, while
the second appears even less natural than a small cos-
mological term, with no comparable anthropic motiva-
tion.

Implicit in the word “natural” is the fact that many
predictions in this framework are inherently statistical,
referring to properties of large sets but not all vacua.
The statistics of vacua provides precise definitions of
stringy naturalness, which take into account not just val-
ues of couplings and the renormalization group, but all
choices involved in string compactification. This shares
some features of traditional naturalness, but may differ
dramatically in others.

In particular, TeV scale supersymmetry is not an in-
evitable prediction of string/M theory in this framework.
While we discussed many of the ingredients which
would go into making a well-motivated string/M theory
prediction, we are not taking a position as to what the
eventual prediction might be. Conceivably, after much
further theoretical development, we might find that TeV
scale supersymmetry is disfavored. Of course, a success-
ful prediction that CERN and Fermilab will precisely
confirm the Standard Model would be something of a
Pyrrhic victory. As physicists, we would clearly be better
off with new data and new physics.

For the near term, the main goal here is not really
prediction, but rather to broaden the range of theories
under discussion, as we need to keep an open mind in
confronting the data. The string phenomenology litera-
ture contains many models with TeV scale signatures; as
examples inspired by this line of work, see Giudice and
Romanino �2004�, Arkani-Hamed and Dimopoulos
�2005�, Arkani-Hamed, Dimopoulas, and Kachru �2005�,
Giudice and Rattazzi �2006�, Kane et al. �2006�. In the
longer term, a statistical approach may become an im-
portant element in bridging the large gap between low-
energy data and fundamental theory.

We may stand at a crossroad; perhaps much more di-
rect evidence for or against string/M theory will be
found before long, making statistical predictions of sec-
ondary interest. Or perhaps not; nature has hidden her
cards pretty well for the last 20 years, and perhaps we
will have to play the odds for some time to come.
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