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Topological entanglement in polymers and biopolymers is a topic that involves different fields of
science such as chemistry, biology, physics, and mathematics. One of the main issues in this topic is to
understand how the entanglement complexity can depend on factors such as the degree of
polymerization, the quality of the solvent, and the temperature or the degree of confinement of the
macromolecule. In this respect a statistical approach to the problem is natural and in the last few years
there has been a lot of work on the study of the entanglement complexity of polymers within the
statistical mechanics framework. A review on this topic is given here stressing the main results
obtained and describing the tools most used with this approach.
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I. INTRODUCTION

Long linear polymer molecules have two main charac-
teristic features: their connectivity and flexibility. In ad-
dition, the monomers take up space so that the polymer
chain cannot cross itself. These features imply that poly-
mer molecules can be self-entangled and, if a ring clo-
sure reaction occurs, the entanglement can be trapped as
a knot in the resulting ring polymer molecule. If the ring
polymer is knotted, the knot cannot be removed without
breaking chemical bonds in the polymer. Knots and
other entanglements are important in many areas of
polymer physics and there has been considerable inter-
est and research activity on this subject. Knots in ring
polymers have been studied using rigorous approaches,
computationally and experimentally, though we focus on
the first two areas in this review.

When linear polymers in solution crystallize entangle-
ments can be trapped in the crystallization process and
they can affect the properties of the crystal and the de-
gree of crystallinity �de Gennes, 1984; Bayer, 1994; Saitta
et al., 1999; Saitta and Klein, 2002�. It is likely that en-
tanglements become localized in the amorphous regions
of the crystal. Rheological properties are also affected
by entanglements between polymer chains and these can
contribute to the elasticity of a polymer network �Ed-
wards, 1967, 1968�.
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As we will show, the probability of being knotted de-
pends on the degree of polymerization of the polymer as
well as on the solvent quality and polymer flexibility.
DNA molecules are typically enormously long and the
probability of knotting is high, in spite of the fact that
DNA is a very stiff molecule. Knots and entanglements
in DNA can affect the efficiency of cellular processes
such as replication and transcription �Wasserman et al.,
1986; Sumners, 1990, 1992, 1995� and knotting in DNA
has been well studied by molecular biologists �Dean et
al., 1985; Liu et al., 2006�. Organisms have special en-
zymes, the topoisomerases, which can pass one strand of
DNA through another and knot and unknot the DNA
molecule, to facilitate these cellular processes �Goto
and Wang, 1982; Wang, 1996; Rybenkov et al., 1997; Yan
et al., 1999�. There are also topoisomerases which act on
RNA �Wang et al., 1996�. In bacteria the DNA mol-
ecules are often circular so the action of the enzymes
can be studied directly on circular DNA molecules with
a particular knot type and the change in knot type after
the action of the enzyme can be determined. Under-
standing the mechanism of action of these enzymes has
led to a fruitful collaboration between topologists and
molecular biologists �Sumners, 1995; Sumners et al.,
1995�.

The knot probability in DNA molecules has been
studied by Shaw and Wang �1993, 1994� and by Ryben-
kov et al. �1993�. They took linear DNA molecules with
different lengths in solutions of different ionic strengths,
and carried out a cyclization reaction. They then deter-
mined the proportion of the resulting circular DNA
molecules which were knotted. This is perhaps the most
direct measurement of knot probability that has been
carried out. The knot probability also depends on the
extent to which the DNA molecule is geometrically con-
fined. For instance, DNA molecules confined to viral
capsids have a very high probability of being knotted
and the distribution of knot types is different from the
knot distribution for free DNA in solution �Arsuaga
et al., 2002; Micheletti et al., 2006�. The importance of
entanglements in DNA for cellular processes has led to
a general interest in the effects of stiffness and geometri-
cal constraints on knot probabilities.

Knotted ring polymers have a smaller radius of gyra-
tion than unknotted ring polymers with the same degree
of polymerization. For polyelectrolytes this means that
the molecules move at different speeds in an electric
field. In vitro gel electrophoresis experiments can be
used to separate circular DNA molecules with different
knot types and such experiments can be used to deter-
mine the types of knots produced by the action of an
enzyme �Stasiak et al., 1996; Levene and Tsen, 1999;
Trigueros et al., 2001�.

In linear polymers, as opposed to ring polymers, the
molecule is not knotted in the topological sense. Never-
theless, we are used to thinking of linear pieces of string
as being knotted, or containing a knot. The string, or
linear polymer, can certainly be entangled but how do
we make sense of the idea of knotting in linear poly-
mers? This question arises in proteins which are not usu-

ally cyclic and so are not knotted in the topological
sense. Taylor and co-workers �Taylor, 2000; Taylor et al.,
2003� have addressed the problem of deciding if a pro-
tein is “knotted,” though even with their definition,
clearly knotted proteins are not common �Taylor et al.,
2003�.

Modern micromanipulation techniques such as atomic
force microscopy �AFM� and optical tweezers allow
single molecules to be manipulated �Bustamante et al.,
2000; Strick et al., 2003�. For instance, a single molecule
can be stretched and the stress-strain curve can be mea-
sured �Bustamante et al., 1994; Cluzel et al., 1996�. In
addition, the molecule can be stretched and then re-
leased so that its relaxation behavior can be studied
�Bohbot-Raviv et al., 2004�, or can be stretched until a
chemical bond breaks so that the influence of knotting
on the breaking strength can be studied. Recently knots
have been tied in single-actin filaments �Arai et al., 1999�
and DNA �Meiners and Quake, 2000; Bao et al., 2003�
using optical tweezers in combination with beads at-
tached to the macropolymers as handles and it has been
suggested �Arai et al., 1999� that molecular-scale knots
might function as micromanipulation tools in biological
systems.

Experimental evidence for knots in DNA and for
their influence on cellular processes is unequivocal.
Knots and entanglements must also be ubiquitous in
synthetic polymers. The growth in interest in knotting in
the last 20 years is enormous and this review discusses
the rigorous results and numerical simulations which
have contributed to our understanding of the area.

Polymers in solution are flexible objects and, to under-
stand their configurational properties, one must carry
out an averaging procedure over the space of configura-
tions. The obvious approach is to use statistical mechan-
ics though this field has also attracted interest from com-
binatorialists and probabilists. The first papers which
investigated knotting in polymers from a theoretical
point of view were by Edwards �1967, 1968�. Edwards
pointed out the importance of carrying out a restricted
average over the topologically available region of the
configuration space. These papers are highly original
and insightful and require careful study. They had an
enormous influence on the development of the field,
even though the invariant proposed by Edwards is not a
topological invariant.

The first numerical studies of knotting in polymers
were by Frank-Kamenetskii and co-workers in a series
of papers �Vologodskii et al., 1974, 1975; Frank-
Kamenetskii et al., 1975�. They were the first to use the
Alexander polynomial to characterize the knot type of
the ring polymer. This approach is still used today
though other knot polynomials �e.g., the Jones polyno-
mial and the HOMFLY polynomial� are becoming more
widely used since they are better discriminators of knots.
See Adams �1994� for an approachable discussion of the
Jones and HOMFLY polynomials.

The idea that long ring polymers in dilute solution will
be knotted with high probability is due to Frisch and
Wasserman �1961� and to Delbruck �1962�. This is the
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famous Frisch-Wasserman-Delbruck conjecture. The ba-
sic idea behind the modern proof of this conjecture can
be traced back to Frisch and Klempner �1970� though a
detailed proof does not seem to have been given until
much later �Sumners and Whittington, 1988; Pippenger,
1989�. This theorem and the idea behind the proof are
discussed in Sec. III.A.1. Rigorous results about knot-
ting of ring polymers in various environments are dis-
cussed in Sec. III.A. This requires some basic knot
theory which is outlined in Sec. II. Many questions can-
not be answered rigorously and much of our knowledge
comes from numerical approaches. In Sec. III.B we de-
scribe the main Monte Carlo methods which have been
useful in this field, and survey the results obtained.

If we know that a ring polymer will be knotted, we
can ask how badly knotted it will be. This is the question
of topological entanglement complexity which is the
subject of Sec. III.A.2. It is closely connected to geo-
metrical entanglement complexity which is discussed in
Sec. IV.

There are interesting questions about how tightly a
knot is tied in a polymer ring. Is the knot a local object
or is it delocalized over the whole ring? This notion of
tightness has important consequences for the dimen-
sions of polymer rings and also for the dependence of
entropy on the degree of polymerization, and will ap-
pear in several places in this review.

In the same way that a polymer ring can be knotted,
two or more polymer rings can be linked. Linking can
have deleterious effects on cellular processes, just as
knotting can. The problem of linking is discussed in
Secs. III.A.7 and III.B.7.

Molecules like duplex DNA consist of two polymer
chains which wind around each other. These systems can
be modeled as ribbons. If the ribbon is closed then the
appropriate kind of ribbon to model circular DNA has
two boundary curves. These curves can be knotted or
linked and these properties are discussed in Secs. III.A.8
and III.B.8.

Finally, we introduce the idea of ideal knots in Sec.
VII.

II. SOME BASIC KNOT THEORY

If one takes a piece of string and identifies the two
ends, either it is possible to lay the string down so that it
lies entirely in a plane �say on a flat table� or this is
impossible and the string must cross itself at least three
times. In carrying out this operation one is allowed to
move the string around and deform it at will. The string
is a model of a simple closed curve in Euclidean three-
space, R3. In the first case we say that the simple closed
curve is unknotted and in the second that it is knotted.
Knot theory is concerned with embeddings of a simple
closed curve in three-space and these embeddings are
called knots. If two different embeddings can be
smoothly deformed into one another then we say that
the two embeddings have the same knot type. So a knot
type is an equivalence class of embeddings. Embeddings
which can be deformed so that they are planar are un-

knotted embeddings, and each of them is the unknot. It
is easy to see that there are different knotted embed-
dings which cannot be deformed into one another so
there are different knot types. A little experimentation
shows that the simplest knot type has at least three
crossings when we attempt to deform it to lie in a plane;
see Fig. 1. Another way of looking at this is to project
the embedding of the simple closed curve onto a plane
and count the number of crossings in the projection. If
we minimize over all smooth deformations and over all
projection directions then the minimum number of
crossings is the crossing number. If we neglect enanti-
omers there is only one knot type, the trefoil, which has
crossing number 3, one �the figure-eight knot� with
crossing number 4 but two with crossing number 5. We
shall use a symbol which is based on the crossing num-
ber but has a subscript which distinguishes between dif-
ferent knots with the same crossing number. The first
few knots have symbols 31, 41, 51, and 52 �since there are
two knots with crossing number 5�. These are sketched
in Fig. 1. There is an arithmetic of knots something like
the idea of factorization of integers into their prime fac-
tors. Some knots �like the granny knot� can be factored
into simpler knots. The granny knot is two trefoils, one
tied after the other as sketched in Fig. 1. We write the
granny knot as 31#31, and say that it is the connect sum
of two trefoils. If a knot cannot be factored in this way
we say that the knot is prime. Otherwise it is composite.

There is an extra complication because sometimes a
knot and its mirror image are distinct in that one cannot
be deformed into the other. This is true for 31, 51, 52, 61,
and 62 but not for 41 and 63, for instance. If a knot can
be smoothly deformed into its mirror image, we say that
the knot is achiral. We call the two enantiomers of the
trefoil the 31�+� and 31�−� knots if we want to emphasize
the difference between the enantiomers. The composite
knots 31�+�#31�+� and 31�−�#31�−� are two enantiomers
of the granny knot. The knot 31�+�#31�−� is achiral and
is the square knot. �This is analogous to the meso stereo-

FIG. 1. Knot diagrams for some knots.
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isomer of tartaric acid. The molecule has two chiral cen-
ters but has a plane of symmetry so it is achiral.� Count-
ing enantiomers there are three composite knots with six
crossings, the �+� and �−� granny knots, and the achiral
square knot.

Tables giving pictures of prime knots �in fact, of one
enantiomer of each knot when the knot is chiral� with up
to nine crossings can be found in Livingston �1993� and
Adams �1994�. Prime knots with up to 16 crossings have
been enumerated by Hoste et al. �1998�; see also Jacob-
sen and Zinn-Justin �2002� and Rankin et al. �2004�. It is
known that the number of knots with n crossings in-
creases exponentially rapidly with increasing n �Ernst
and Sumners, 1987; Welsh, 1991�.

We can convert a knot into an unknot by reversing
one or more crossings in the knot. If we draw the trefoil
in its simplest form so that it only has three crossings,
and reverse any of its three crossings, we obtain the un-
knot. We call the minimum number of crossing reversals
needed to obtain the unknot the unknotting number.
The trefoil and figure-eight knots each have unknotting
number 1. Of the two five crossing number knots, 52 has
unknotting number 1 and 51 has unknotting number 2.
The granny knot has unknotting number 2 �essentially
because each trefoil has to be unknotted�. It turns out
that if a knot has unknotting number 1 then it is auto-
matically prime �Scharlemann, 1985�.

We can ask for the minimum number of crossing
changes needed to convert one knot into another. This
gives a distance on the space of knots and this has been
studied by Darcy �2001�. Sometimes it is possible to
compute the distance exactly but sometimes only upper
and lower bounds are available. These numbers are of
interest in understanding topoisomerase action on circu-
lar DNA �Flammini et al., 2004�.

It is useful to be able to make changes to a projection
of a knot �a knot diagram� which correspond to smooth
deformations of the three-dimensional object. Reide-
meister showed that any smooth deformation �isotopy�
can be represented by a sequence of modifications to the
projection. These are called Reidemeister moves and
are sketched in Fig. 2.

One of the basic questions in knot theory is to find an
algebraic way of distinguishing a knot from the unknot
or distinguishing two knots from one another. The idea
is to find an invariant such that if the value of the invari-
ant differs for two different embeddings then the two
embeddings have different knot types. An example,
which has a venerable history and is still much used to-
day, is the Alexander polynomial. This is a polynomial in
a variable t which can be calculated for any embedding.
We explain how to compute the Alexander polynomial
for a given embedding though we will not show why it is
an invariant. Consider the figure-eight knot as an ex-
ample. Attach an orientation to the curve as shown in
Fig. 3. Classify the crossings as positive or negative by a
right-hand rule �so the figure-eight knot has two positive
crossings and two negative crossings�. The crossings di-
vide the curve into four arcs. At each crossing there is an
overcrossing arc, an incoming arc, and an outgoing arc.

Number the arcs and the crossings. Write down a deter-
minant with rows corresponding to the crossings and
columns corresponding to the arcs, with arc parameters
as shown in Fig. 4. If the crossing is positive, the entry
corresponding to the overcrossing arc is 1− t, the entry
corresponding to the incoming arc is −1, and to the out-
going arc is t. Similarly if the crossing is negative, the
three corresponding entries are 1−1/ t, −1, and 1/ t. For
the figure-eight knot shown in Fig. 3 the determinant has
the form

FIG. 2. The three Reidemeister moves.

FIG. 3. �Color online� Oriented knot diagram for the knot 41.
The numbers in boxes refer to the labeling of the four arcs. For
clarity the arcs are delimited by filled circles.
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One then computes any principle minor and multiplies
or divides by powers of t and 1− t to obtain a polynomial
in t which has a constant term. This is the Alexander
polynomial, ��t�. In this case we obtain

��t ;41� = t2 − 3t + 1. �2�

If we repeat the procedure with the trefoil �see Fig. 5�,
we get the determinant

D�t� = �
− 1

1

t
1 −

1

t

1

t
1 −

1

t
− 1

1 −
1

t
− 1

1

t
.
� . �3�

If, for example, we take as the principle minor �order 2
in this case� the one at the bottom-left corner, we get an
expression that, after multiplication by t2, gives the poly-
nomial

��t ;31� = t2 − t + 1. �4�

A comparison between ��t ;41� and ��t ;31� tells us that
the trefoil and figure-eight knots are indeed distinct. The
unknot has an Alexander polynomial equal to 1. Com-
posite knots have Alexander polynomials which are the
products of the Alexander polynomials of their prime
components, so that

��t,31 # 41� = �t2 − t + 1��t2 − 3t + 1� . �5�

The Alexander polynomial is not a perfect discriminator
since there are several pairs of knots with the same Al-
exander polynomial. For instance, the knot 820 has an
Alexander polynomial �t2− t+1�2, which is the same as
the granny knot 31#31, and 821 has the same Alexander
polynomial as 31#41. Examples of knots with trivial Al-
exander polynomial are known �e.g., the Kinoshita-
Terasaka knot which has 11 crossings� so these cannot
be distinguished from the unknot by computing the Al-
exander polynomial.

Other polynomials are known which are better dis-
criminants of knots. Examples are the Jones polynomial
and the HOMFLY polynomial; see, for instance, Adams
�1994�.

One can also use geometrical ideas to characterize
knots. The boundary of a punctured sphere is necessar-
ily the unknot. If we puncture a higher genus surface
�e.g., a torus�, the boundary curve can be knotted. The
lowest genus �orientable� surface which when punctured
can have a particular knot as the boundary curve defines
the genus of a knot and is called the Seifert surface of the
knot. For instance, the trefoil and figure-eight knots
both have genus 1 since they can each be the boundary
curve of a punctured torus. In Fig. 6 we show two draw-
ings of a punctured torus where the boundary curve is
the unknot. The Seifert surface of the figure-eight knot
is sketched in Fig. 7. The two bands in Fig. 6 have been
twisted and it is easy to check that the resulting bound-
ary curve is a figure-eight knot. It is not difficult to prove
that genus adds under the connect sum operation so the
granny knot has genus 2. We end this section with de-
scriptions of some types of knots which play a particular
role in what follows. Consider the standard solid torus T,

FIG. 4. The sign convention for signed crossings and the arc
labelings for computation of the Alexander polynomial.

FIG. 5. �Color online� Oriented knot diagram for the knot −31.

FIG. 6. Two drawings of a punctured torus whose boundary
curve is the unknot.
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i.e., the surface and interior of an “unknotted” torus. A
torus knot Tp,q wraps around the surface of T, �T, p
times in the meridinal direction and q times in the lon-
gitudinal direction. We often describe Tp,q as the
�p ,q�-torus knot. For instance, the trefoil, 31, is the
�2,3�-torus knot and 51 is the �2,5�-torus knot.

We say that a disk D in a solid torus T is meridinal if
its boundary �D is a nontrivial curve �i.e., cannot be
shrunk to a point� in the boundary of T, �T. A curve in
the interior of T is geometrically essential if it intersects
every meridinal disk in T. Consider a curve in the inte-
rior of the standard torus T which is geometrically es-
sential and which has knot type K1. Now knot the solid
torus T so that its center line is a knot of type K2. This
converts K1 to a new knot K3. We say that K3 is a satel-
lite knot with K2 as companion.

This gives only a brief account of some basic facts
about knots. Many good knot theory books are available
which give detailed but not too technical accounts of the
subject �Livingston, 1993; Adams, 1994�.

III. KNOTTING PROBABILITY IN RING POLYMERS

A. Rigorous results

In order to make progress in understanding the prob-
ability of knotting in ring polymers we have to make a
choice of how to model the system. Several different
models have been considered and these have their own
specific advantages and disadvantages. Below we list
some of them.

�i� Lattice polygons: A simple model which captures
the fact that monomers take up space to the ex-
clusion of other monomers is a lattice polygon.
The model is discrete so that one is simply count-
ing objects and combinatorial ideas and methods
can be used. Consider the simple cubic lattice as
an example. A lattice polygon is an embedding of
a simple closed curve in this lattice. That is, it is an
alternating sequence of vertices and edges in the
lattice so that no vertex of the lattice is visited
more than once, and the zeroth and last vertices
of the sequence are identical �see Fig. 8 for an

example of a knotted lattice polygon�. It can also
be thought of as a walk which revisits its zeroth
vertex at its last step and is otherwise self-
avoiding. Polygons are regarded as being distinct
if they cannot be superimposed by translation.
Clearly the smallest polygon has four edges and
there are three ways to embed a square in the
lattice �in the �x ,y�, �x ,z�, and �y ,z� planes�. If we
write pn for the number of polygons with n edges
then p4=3. Similarly it is not difficult to see that
p6=22 and p8=207. Note that all polygons on the
simple cubic lattice have an even number of
edges.

�ii� Equilateral random polygons: These are closed
�piecewise linear� curves in R3 where all the edges
making up the curve have equal length. Succes-
sive edges are equally likely to point in any direc-
tion. One can think of them as random walks
�with all steps of equal length� in R3 conditioned
to return to their starting point on their last step.
Notice that with probability 1 an equilateral ran-
dom polygon is a simple closed curve �i.e., it has
no self-intersections� and knotting is well defined.

�iii� Gaussian random polygons: These are similar to
equilateral random polygons but where each edge
is a Gaussian random vector.

�iv� Continuum models with balls at the vertices: To
account for the fact that monomers take up space
and exclude other monomers one can add hard
balls at each vertex of either of the previous two
models. One then conditions on the balls being
disjoint. These are sometimes called rod-bead
models �Chen, 1981a, 1981b, 1981c�.

�v� Thick continuum models: In a similar way one can
thicken the edges in equilateral or Gaussian ran-
dom polygons, and insist that these thick edges
are disjoint except around a vertex where two
edges meet. Effectively this is a tubular neighbor-
hood of an equilateral or Gaussian random poly-
gon.

�vi� Wormlike chains: This model is also a continuum

FIG. 7. The Seifert surface of the figure-eight knot. This sur-
face is a punctured torus and the figure-eight knot has genus
one.

FIG. 8. �Color online� The shortest trefoil knot on a cubic
lattice.
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model but with continuous curvature of the chain,
where the curvature direction is random at every
point along the chain. It can be thought of as a
limiting version of the freely rotating chain. �The
freely rotating chain is a piecewise linear, equilat-
eral model, where the angle between adjacent
edges is fixed, but where all dihedral angles are
equally likely.� The wormlike chain �WLC� was
first invented by Kratky and Porod �1949� and a
useful description can be found in Flory �1969�. In
contrast to the previous cited models the WLC is
a useful model for stiff chains, such as double
stranded DNA, where the persistence length is
relatively large. For example, the WLC model has
proven to be very useful in understanding the
force-extension diagram of a DNA molecule
�Smith et al., 1992; Bustamante et al., 1994; Marko
and Siggia, 1995�.

1. A rigorous proof of a conjecture

In the early 1960s Frisch, Wasserman, and Delbruck
�Frisch and Wasserman, 1961; Delbruck, 1962� conjec-
tured that sufficiently long ring polymers would be knot-
ted with high probability. Although this conjecture was
investigated numerically it was not until 1988 that it was
established rigorously for well-defined models �Sumners
and Whittington, 1988; Pippenger, 1989; Soteros, Sum-
ners, and Whittington, 1992; Diao, Pippenger, and Sum-
ners, 1994; Diao, 1995�. The simplest case to study is
lattice polygons. Suppose that we write pn for the num-
ber of n-edge polygons on the simple cubic lattice, then
it is known that pn increases exponentially rapidly as the
number of edges increases. In fact, Hammersley �1961�
showed that

0 � lim
n→�

n−1log pn � � � � �6�

which means that

pn = e�n+o�n�. �7�

The quantity � is called the connective constant of the
lattice and, for the simple cubic lattice, it is easy to see
that

log 3 � � � log 5. �8�

Numerical estimates show that �� log�4.68��1.54. �
is the limiting entropy per edge of the polygon in re-
duced units. If cn is the number of n-edge self-avoiding
walks on the lattice �so that c1=6, c2=30, c3=150, c4=5
�150−3�2�4=726�, then Hammersley �1961� also
showed that

lim
n→�

n−1log cn = � , �9�

so the numbers of polygons and self-avoiding walks
grow at the same exponential rate. The equality of the
connective constant for self-avoiding walks and poly-
gons is the basis for the inequalities in Eq. �8�. The up-
per bound comes from the fact that the set of walks with

no reverse steps contains the set of self-avoiding walks.
The lower bound comes from the subset of self-avoiding
walks with steps only in positive coordinate directions.

If we write pn
o for the number of unknotted polygons

with n edges then Diao �1993� showed that pn
o=pn for

n�23 so that all polygons in the simple cubic lattice
with less than 24 edges are unknotted. At 24 edges the
only knot which can occur is the trefoil �see Fig. 8�. We
note that the probability that a polygon with n edges is
unknotted Pn

o can be written as

Pn
o =

pn
o

pn
�10�

and the Frish-Wasserman-Delbruck conjecture says that
Pn

o goes to zero as n goes to infinity. In fact, Sumners and
Whittington �1988� and independently Pippenger �1989�
showed that

lim
n→�

n−1log pn
o = �o �11�

and that �o��, so the limiting entropy per edge of an
unknotted polygon is strictly less than that of a polygon
where there is no restriction on the knot type. This im-
plies that

Pn
o = e−��−�o�n+o�n� = e−�0n+o�n�, �12�

where �0�0. Hence Pn
o goes to zero as n goes to infinity

�the Frisch-Wasserman-Delbruck conjecture� and goes
to zero exponentially rapidly. There are no useful rigor-
ous results about the magnitude of the constant �0.

The proof is technical but the basic ideas are quite
simple. We want to show that most sufficiently long
polygons contain a knot which is tied so tightly that
there is no space available for the polygon to rethread
through this region and unknot the polygon. In fact the
proof uses only three main ideas:

�i� The first idea is purely topological. For any knot
type k there does not exist a knot type k� such
that the connect sum k#k�=�, the unknot. This
means that there are no antiknots which will un-
knot a given knot. If you tie a knot in a hose pipe
there is no point in then tying an additional knot
in the hope that the two will cancel. The proof of
this statement relies on the additivity of genus. If
a knot has two components then the genus of the
knot is the sum of the genuses of the two compo-
nents. Since every nontrivial knot has positive ge-
nus the nonexistence of antiknots follows imme-
diately.

�ii� If we have a local knot in a polygon, we still have
to worry about the remainder of the polygon re-
entering this local region and untying the knot.
For lattices this problem is easy to handle in the
following way. Every vertex has an associated
dual three-cell �the Wigner-Seitz cell� so every
subwalk has an associated neighborhood made up
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of the union of these dual three-cells. If we con-
sider a subwalk then its associated set of dual
three-cells might be a three-ball. If so, we have a
ball pair �a three-ball and a properly embedded
one-ball�. We can ask if this ball pair is knotted.
See Fig. 9 for a sketch of a knotted ball pair
whose knot type is 31. �A ball pair is unknotted if
the ball pair can be smoothly deformed to give
the standard geometrical three-ball with the one-
ball as a diameter. Otherwise it is knotted.� If the
polygon contains a subwalk such that the walk
and its dual three-cell neighborhood form a knot-
ted ball pair then the polygon cannot reenter this
region �the three-ball� so we are guaranteed that
the polygon is knotted.

�iii� Finally we need to guarantee that these subwalks
corresponding to knotted ball pairs occur on most
sufficiently long polygons. For this we use a pat-
tern theorem due to Kesten �1963�. Consider a
subwalk 	 which can occur at least three times on
a sufficiently long self-avoiding walk. Let pn�	̄� be
the number of n-edge polygons which do not con-
tain 	 as a subwalk. Then

lim sup
n→�

n−1log pn�	̄� � � �13�

so we are guaranteed that the subwalk occurs at
least once on all except exponentially few suffi-
ciently long polygons.

Now we are ready to prove the theorem. Suppose that
	 is a subwalk corresponding to a tightly tied trefoil, so
that the knot type of the ball pair corresponding to 	
and its associated three-ball neighborhood is 31; see Fig.

9. Write pn�31
¯ � for the number of n-edge polygons which

do not contain a trefoil as part of the knot decomposi-
tion. We have the following set of inequalities:

pn
o � pn�31

¯ � � pn�	̄� . �14�

We then use Kesten’s pattern theorem to obtain

lim
n→�

n−1log pn
o � �o � � . �15�

Although these results are for the simple cubic lattice
they can be extended to some other lattices in three
dimensions, such as the face-centered-cubic lattice.

Similar results have been obtained for Gaussian ran-
dom polygons and for equilateral random polygons
�Diao et al., 1994; Diao, 1995�. For these models there
are additional technical difficulties since for off-lattice
models we do not have an excluded volume �the dual
three-cell� for each vertex. Instead one must consider
three-balls which are large enough that they contain a
knotted subwalk with high probability but small enough
that the ball will be revisited with low probability. Oth-
erwise the idea of the proof is similar to the lattice case.

For extensions of these continuum models �where the
edges are thickened or balls are associated with each
vertex� no such rigorous results exist.

Embeddings of graphs in lattices can also be knotted
and there are extensions of these kinds of results to
knotted graphs �Soteros et al., 1992�.

2. Measures of knot complexity

Given that sufficiently long ring polymers are knotted
with high probability one can ask how badly knotted the
polymer is likely to be. This introduces the idea of mea-
sures of knot complexity. For instance, one could ask for
the probability that the knot is prime, or how many com-
ponents there are likely to be in the knot type. One can
also ask for the typical crossing number or the typical
unknotting number, or for the span of the Alexander or
Jones polynomial. Another useful measure of knot com-
plexity is log ���−1��. The results of the previous section
can be extended to give some partial answers to these
questions.

As it stands the argument given in the last section for
lattice polygons guarantees that all but exponentially
few sufficiently long polygons will contain a trefoil as
part of their knot decomposition. In addition, one can
consider a pattern corresponding to a pair of trefoils and
then the argument shows that most polygons contain at
least two trefoils and so are composite. This implies that
prime knots are exponentially rare. There is nothing
special about the trefoil in the above argument so the
argument can be extended to show that sufficiently long
polygons contain any given knot type with high prob-
ability.

Kesten’s theorem tells us more. It says that not only
do all except exponentially few polygons contain a given
subwalk 	 but that the subwalk occurs with positive den-
sity. That is, there is a positive number 
=
�	� such that
with high probability the polygon will contain at least 
n
copies of 	 for large enough n. So sufficiently long poly-
gons contain a positive density of knots of every fixed
knot type, with high probability. This kind of argument
can be used to show that the expected value of the cross-
ing number increases at least linearly with n as n goes to
infinity, with similar results for other measures of knot
complexity �Soteros et al., 1992�. In particular
	log ���−1� � 
 increases at least linearly with increasing n.

There are no corresponding results for any continuum
models. However, for Gaussian random polygons and
for equilateral random polygons we know that the knot

FIG. 9. A sketch of the knotted ball pair corresponding to the
trefoil.
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is a satellite knot with high probability �Jungreis, 1994;
Diao et al., 2001�.

3. Ring polymers with specified knot type

A somewhat different kind of question is to ask for
the probability that a ring polymer has a particular knot
type. For instance, how likely is it that the polymer is a
trefoil? �This is not the same as asking for the probabil-
ity that the ring contains a trefoil as part of its knot
decomposition.�

We present some results for the trefoil but the same
arguments work for any other given knot type. Since
everything which is known rigorously about this ques-
tion is for lattice polygons, we shall restrict ourselves to
this case.

Let pn�31� be the number of n-edge polygons whose
knot type is the trefoil. Since all except exponentially
few polygons contain at least one copy of, say, the knot
41,

lim sup
n→�

n−1log pn�31� � � �16�

so polygons with a particular knot type are exponen-
tially rare �Whittington, 1992�. We can also ask how they
compare with unknots. A subset of trefoil polygons with
n edges can be constructed by concatenating trefoil
polygons with m edges and unknots with n−m edges
�Whittington, 1992�. This gives the inequality

pn�31� �
1
2pm�31�pn−m��� . �17�

Taking logarithms, dividing by n, and letting n go to
infinity with m fixed gives the inequality

lim inf
n→�

n−1log pn�31� � �o �18�

so that to exponential order there at least as many tre-
foils as unknots.

These results are expressed using lim inf and lim sup
because the existence of the limit limn→�n−1log pn�31� is
an open question. It would be interesting to establish
whether Eq. �18� is an equality or a strict inequality. This
would give useful information about the relative abun-
dance of unknots and ring polymers with a particular
knot type.

4. Rings in confined geometries

Polymers are often confined in some way. For in-
stance, DNA can be confined in a cell, in the nucleus, or
in a viral capsid. Polymers used in steric stabilization of
dispersions can be confined between two large colloidal
particles, and polymers can be confined in capillaries.
These geometrical constraints can affect the properties
of the polymer in many ways. For instance, the entropy
of the polymer is decreased, and its size and shape can
be affected.

Tesi, Janse van Rensburg, Orlandini, and Whittington
�1994� considered lattice polygons in a slab of the
simple-cubic lattice. That is, they considered polygons
confined between two parallel planes z=0 and z=L. It is

possible to have knotted polygons whenever L�0. Let
pn�L� be the number of n-edge polygons with this con-
straint where two polygons are considered distinct if
they cannot be superimposed by translation in the x and
y directions. It can be shown that

lim
n→�

n−1log pn�L� � ��L� , �19�

where ��L� is a strictly increasing function of L and

lim
L→�

��L� = � . �20�

If pn
o�L� is the number of n-edge unknotted polygons in a

slab of width L then Tesi, Janse van Rensburg, Orlan-
dini, and Whittington �1994� showed that

lim
n→�

n−1log pn
o�L� � �o�L� �21�

and that �o�L����L� for all L�1. This means that suf-
ficiently long polygons with this slab constraint are knot-
ted with high probability.

Soteros �1998� proved a pattern theorem for polygons
in prisms using transfer-matrix methods and used this
result to show that sufficiently long polygons in prisms
are knotted with high probability.

5. Adsorbing ring polymers

When a ring polymer in solution adsorbs at an impen-
etrable surface one might expect that the probability
that the ring is knotted would decrease in the adsorbed
phase compared to in the desorbed phase. The problem
has been studied for lattice polygons by Vanderzande
�1995� and by Janse van Rensburg �2002a�. The model is
as follows. Consider the simple cubic lattice with vertices
having integer coordinates �x ,y ,z� and the half space z
�0. The plane z=0 corresponds to a plane at which
adsorption can occur and the space z�0 corresponds to
the solution in contact with this plane. We call vertices in
the plane z=0 visits. Consider n-edge polygons in the
half space z�0 with at least one visit. Let pn,m be the
number of polygons with n edges and with m visits. We
can construct the partition function

Zn��� = �
m=1

n

pm,ne�m, �22�

where �=−
 /kBT. T is the absolute temperature, kB is
Boltzmann’s constant, and 
�0 is the energy associated
with a visit, i.e., with an adsorbed monomer. There exists
an �c�0 such that the reduced limiting free energy

F��� = lim
n→�

n−1log Zn��� �23�

is equal to �, independent of �, for all ���c and is
strictly greater than � for all ���c. Suppose that 	m
 is
the mean number of visits. Then

619E. Orlandini and S. G. Whittington: Statistical topology of closed curves: Some …

Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007



���� = lim
n→�

	m

n

�24�

is the limiting fraction of vertices in the plane z=0, i.e.,
the limiting fraction of vertices which are visits. Then
����=0 for all ���c and �����0 for all ���c.

The critical value �c corresponds to the adsorption
transition. With fixed 
�0 there is a critical temperature
T0 above which the polymer is desorbed and below
which it is adsorbed. It is not known rigorously whether
the transition is first order �� discontinuous� or higher
order �� continuous�, though there is convincing numeri-
cal evidence that the transition is not first order �Hegger
and Grassberger, 1995�. There are also convincing scal-
ing arguments describing the adsorption transition �see,
for example, de Gennes �1979� and Vanderzande �1998��.

Vanderzande �1995� showed that for every finite value
of �, as n goes to infinity the probability that the poly-
gon is knotted goes to 1. So except in the limiting case of
infinite � �i.e., zero temperature� when the polygon lies
completely in the plane z=0 the polygon is knotted with
high probability. Of course, the knot probability for fi-
nite n will depend on � and this has been investigated
numerically �see Sec. III.B.4�.

How can we understand this result? For any ��� one
can show that there are very large excursions �i.e., out-
of-plane subwalks�. This means that the number of ver-
tices between successive visits can be very large. If these
excursions are large enough then they will be knotted
with high probability by an argument similar to that
used in Sec. III.A.1. In addition, one can think of the
adsorbed polygon as having some typical span in the z
direction so that, roughly speaking, it lies in a slab �see
Sec. III.A.4�. If the slab has width of at least 1, then this
is wide enough for knots to form and one can appeal to
the results of Sec. III.A.4 to understand the knotting.

6. Semiflexible polymers

Different polymer molecules can have very different
degrees of flexibility and biopolymers such as DNA are
in fact very stiff. One would expect that the flexibility
might affect the probability of knotting. Orlandini and
Tesi �1998� considered a lattice model of ring polymers
with an additional term to account for a bending energy.
They considered polygons on the simple cubic lattice
where they kept track of the number of right angles be-
tween adjacent pairs of edges �meeting at a vertex�. Sup-
pose that pn�k� is the number of n-edge polygons with k
right angles. One can construct a partition function

Qn�� = �
k

pn�k�ek. �25�

Here  can be thought of as a flexibility parameter. The
free energy Q is given by

Q�� = lim
n→�

n−1log Qn�� . �26�

If we write pn
o�k� for the number of unknotted polygons

with n edges and k right angles, we can define the cor-

responding partition function and free energy

Qn
o�� = �

k
pn

o�k�ek �27�

and

Qo�� = lim
n→�

n−1log Qn
o�� . �28�

Orlandini and Tesi �1998� showed that

Qo�� � Q�� �29�

for all finite . This means that even semiflexible poly-
gons are knotted in the infinite n limit though the knot
probability at finite n will of course depend on , as we
show later. The effect of increasing the stiffness is to
decrease the effective number of edges. Although this
affects how the limiting behavior is approached, it does
not affect the behavior in the infinite n limit. As far as
we know no corresponding results are available for any
continuum models.

7. Linked rings

In the same way that a simple closed curve can be
self-entangled to form a knot, two simple closed curves
can be mutually entangled. If the two curves cannot be
deformed so that they lie on two different sides of a
plane, we say that they are linked or that they form a
link. Sometimes we call this topological linking. The sim-
plest kind of link has two crossings, and is called the
Hopf link 21

2. It is sketched in Fig. 10. Links �or cat-
enanes� are of interest chemically in their own right
�Frisch and Wasserman, 1961; Dietrich-Buchecker and
Sauvage, 1984�. In addition, linked pairs of DNA rings
occur in the mitochondria of malignant cells �Hudson
and Vinograd, 1967� and are intermediates in the repli-
cations of circular DNA �Adams et al., 1992�, so linking
can have important biological consequences.

The simplest link invariant is the linking number. To
compute this we first orient both curves. At each cross-
ing of the two curves �note that we ignore places where
a curve crosses itself� we attach a sign �i.e., ±1� according
to a right-hand rule as in Fig. 4. If we have K crossings

FIG. 10. �Color online� Some link diagrams. The links shown
are the Hopf link, the �2,4�-torus link, the Whitehead link, and
the connect sum of the trefoil and the Hopf link.
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numbered i=1,2 , . . . ,K with crossing i having sign �i,
the linking number of the link is

Lk =
1
2�

i=1

K

�i. �30�

Since the sign of Lk depends on the orientations at-
tached to the two curves, we are often interested only in
�Lk�. For the Hopf link �Lk � =1. In Fig. 10 we also sketch
the �2,4�-torus link 41

2 with �Lk � =2. If �Lk � �0 then the
two curves are linked but if �Lk � =0, this invariant does
not definitely tell us that they are unlinked. For instance,
for the Whitehead link 51

2, sketched in Fig. 10, the two
curves are linked but �Lk � =0. If �Lk � �0, we say that
the two curves are homologically linked so if they are
homologically linked, they are topologically linked but
not vice versa.

One can form a link between two closed curves, one
or both of which can be knotted. For instance, the trefoil
can be linked to the unknot as shown in Fig. 10 to give
the connect sum of the trefoil and the Hopf link 31#21

2.
One can also have links with k simple closed curves, k
�2. We say that the link has k components.

Little is known rigorously, but some work has been
done on the linking probability for random embeddings
of circles in R3 �Duplantier, 1981; Pohl, 1981� and in the
cubic lattice �Orlandini, Janse van Rensburg, et al.,
1994�.

Consider, for example, two simple closed curves which
are embedded in the simple cubic lattice so that �i� nei-
ther of the two curves is knotted, �ii� each curve has
length n, so that each of them is an n-edge polygon, and
�iii� the pair of curves forms a link of some particular
link type �.

We can ask for the number of such embeddings
pn,n

�2� ��� where the superscript tells us that the link has
two components and the subscripts tell that each poly-
gon has n edges. Orlandini, Janse van Rensburg, et al.
�1994� investigated this question and proved that

lim
n→�

�2n�−1log pn,n
�2� ��� = �0 �31�

independent of the two component link type �. This
means that the numbers of embeddings of two equal
sized polygons linked as the Hopf link, the �2,4�-torus
link, the Whitehead link, etc., all grow at the same ex-
ponential rate. If k unknotted polygons form a
k-component link of type �, so that each polygon has n
edges then

lim
n→�

�kn�−1log pn,n,. . .
�k� ��� = �0 �32�

independent of the k-component link type �. Some ex-
tensions of these results can be found in Soteros et al.
�1999�.

It is interesting to compare these results about the
exponential growth rate being independent of link type
with the situation of single polygons with fixed knot
type, where no such result is available �see Sec. III.A.3�.

Diao �1994� and Diao and Janse van Rensburg �1998�
have looked at the opposite extreme case where there is
a large density of simple closed curves and one asks for
the probability that they form an unsplittable link. This
means that there is no smooth deformation �ambient
isotopy� whereby some of the simple closed curves can
be separated from others by placing them on opposite
sides of a plane.

As the simplest possible case Diao �1994� considered
two geometrical circles with unit radius, oriented at ran-
dom in three-space but with the distance between their
centers fixed at r. He showed that P�r�, the linking prob-
ability, is given by

P�r� = 1 − r/2, �33�

when 0�r�2 and zero otherwise. This is a remarkably
simple result.

We call B�O ,R� the three-ball of radius R centered at
O. Suppose we have n unit radius circles with centers
randomly distributed in B�O ,R� and with random orien-
tations. Diao �1994� showed that the probability that
these n circles form an unsplittable link is at least
1−e−�n for some ��0.

Diao and Janse van Rensburg �1998� considered a col-
lection of unit radius circles with their centers generated
by a Poisson process in three-space and with random
orientations. They showed that there is a critical value �c
of the density ��� of circles such that for ���c the prob-
ability that there is an infinite unsplittable link is zero.
For ���c this probability is positive. This work on many
linked rings may be relevant to understanding the ar-
rangement of DNA circles in trypanosomes. These
micro-organisms are associated with serious diseases
such as leishmaniasis and Chagas disease. They have an
organelle called the kinetoplast which houses thousands
of DNA circles which can be interlinked to form a net-
work resembling chain mail �Chen et al., 1995�.

8. Ribbon models

Some polymer molecules, such as double stranded
DNA, consist of two polymer chains which wind around
one another. These molecules can be modeled as rib-
bons in three-space where the two polymer chains form
the two boundary curves of the ribbon. If the two ends
of the ribbon are glued together, we have a closed rib-
bon. The closed ribbon can have two boundary curves
�i.e., it is homeomorphic to a cylinder� and it is then an
orientable ribbon �see Fig. 11 for some examples� or one
boundary curve �i.e., it is homeomorphic to a Mobius
band� and it is then a nonorientable ribbon �see Fig. 12�.
In the case of DNA the two polynucleotide chains run
antiparallel and the chemistry then requires that when
the chain ends join to form a closed ribbon the ribbon
must be orientable.

When the ribbon is orientable we can ask if the center
line of the ribbon is knotted or whether the boundary
curves are knotted. In fact, the knot type of the center
line is the same as the knot type of either boundary
curve �because the pushoff across the ribbon is an ambi-
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ent isotopy�. But there is an additional complication be-
cause the two boundary curves can be linked. If the cen-
ter line is unknotted then the only possible link types are
the �2,2k�-torus links. The simplest example is the Hopf
link and the next most complicated is the �2,4�-torus
link shown in Fig. 10. If the center line is knotted then
the two boundary curves can form a satellite link. See
Fig. 11 for an example of a satellite link when the knot
type of the center line is the trefoil.

When the ribbon is nonorientable there is only one
boundary curve. If the center line is unknotted then
the knot type of the boundary curve must be a
�2,2k+1�-torus knot �unless it is unknotted�. If the cen-
ter line is knotted, the boundary curve is a satellite knot.
See Fig. 12 for an example of a satellite knot when the
knot type of the center line is the trefoil.

Janse van Rensburg et al. �1994, 1996� considered a
lattice version of a ribbon. Consider the simple cubic
lattice. A plaquette is a unit square whose vertices are at
vertices of the simple cubic lattice. Plaquettes can be
attached so that they share a common edge and a se-
quence of plaquettes can form a closed ribbon, which
can be orientable or nonorientable. One can count the
number of embeddings of an orientable closed ribbon
with n plaquettes and show that this number increases
exponentially rapidly with n. The rate of increase �to
exponential order� is the same for orientable and non-
orientable ribbons. Janse van Rensburg et al. �1996�
showed that all except exponentially few sufficiently
long orientable ribbons have a knotted center line so the
boundary curves are knotted. Nonorientable ribbons
also have knotted center lines with high probability so,
with high probability, the boundary curve is a satellite
knot. These proofs are an extension of the proof
sketched in Sec. III.A.1 for lattice polygons.

In the case of orientable ribbons the boundary curves
can be linked and it is reasonable to ask how badly
linked they are likely to be. One measure of the link
complexity is the linking number Lk �see Sec. III.A.7�.
Janse van Rensburg et al. �1996� showed that

	�Lk�
 � An1/2 �34�

for some positive constant A, and n sufficiently large.
For any smooth orientable ribbon the linking number

of the two boundary curves can be written as the sum of
two geometrical quantities, the twist Tw and the writhe
Wr so that

Lk = Tw + Wr . �35�

This is White’s theorem �White, 1969�. Twist charac-
terizes the local crossings between the two boundary
curves and writhe characterizes the nonlocal �or distant�
crossings of one curve with itself. Writhe is a useful mea-
sure of the degree of supercoiling in molecules like
DNA. In the continuum the twist and writhe can be
computed by integrating around the closed curve
�Cǎlugǎreanu, 1959; Pohl, 1968; Fuller, 1971�. For lattice
models there is a convenient way to calculate the writhe
by computing linking numbers of the curve with its
pushoffs in certain directions �Lacher and Sumners,
1991; Garcia et al., 1999; Laing and Sumners, 2006�.
Janse van Rensburg et al. �1996� showed that

	�Wr�
 � Bn1/2 �36�

and

	�Tw�
 � Cn1/2 �37�

for some positive constants B and C, and n sufficiently
large.

For the nonorientable case the writhe of the center
line of the ribbon satisfies the inequality �36�.

9. Some open problems

We end this section on rigorous results with a short list
of open problems which we regard as being especially
interesting.

�i� We know that the constant �0 in the expression
for the unknotting probability is positive but little
else is known. Provide good upper and lower
bounds on �0. This is equivalent to providing
bounds on the entropy difference between all
polygons and unknotted polygons.

�ii� Does �0 depend on the lattice? For example, is �0
different for the simple cubic and face centered
cubic lattices? One might expect �0 to be lattice
dependent since � certainly depends on the lat-
tice. However, �0 is a difference between two non-
universal quantities.

�iii� Although we know that the limit

lim
n→�

n−1log pn
o

exists, we do not know that the limit

FIG. 11. Some orientable ribbons. In the sketch on the left the
two boundary curves form the Hopf link. On the right they are
a satellite link of the trefoil.

FIG. 12. Some nonorientable ribbons. The left figure shows a
ribbon whose boundary curve is the trefoil, i.e., the �2,3�-torus
knot. The right is a satellite knot of the trefoil.
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lim
n→�

n−1log pn�31�

exists. Of course, the situation is the same for all
nontrivial knot types.

�iv� Does the number of trefoils increase at the same
exponential rate as unknots or does the number
of trefoils increase exponentially more rapidly?

�v� We know �Whittington, 1992� that the number of
granny knots increases at least as rapidly �on an
exponential scale� as the number of trefoils. Do
they increase at the same exponential rate?

�vi� Do ring polymers with fixed knot type collapse at
the same temperature as unrestricted ring poly-
mers?

�vii� When a ring polymer collapses to form a compact
structure below the � temperature, there is strong
numerical evidence that the knot probability in-
creases. Can we say anything rigorously about
this?

B. Numerical approaches

In order to investigate the topological properties of
ring polymers we have to choose a suitable numerical
approach. Knotting does not occur, or occurs with small
probability for short ring polymers, in spite of the fact
that we know that polygons are knotted with probability
1 in the infinite size limit. For instance, all polygons on
the simple cubic lattice with less than 24 edges are un-
knotted and only the trefoil can occur on these polygons
with 24 edges �Diao, 1993�. This suggests that the most
useful numerical methods will be those which can be
applied directly to long polymer molecules, such as
Monte Carlo methods and methods based on stochastic
dynamics. Monte Carlo methods are designed to form a
random sample of large polygons from which the prop-
erties of the complete set of polygons with that size can
be estimated by statistical methods.

There are two problems to be faced. The first is to
design an algorithm which will sample the space of poly-
gons, either with a fixed number of edges or in an en-
semble where the number of edges can vary. This in it-
self is a difficult problem but several algorithms exist
and, especially for the lattice problem, the algorithms
have been the subject of both rigorous analysis �to make
sure that they sample the complete space and that they
sample with the expected probability distribution� and
stringent numerical tests. We describe two basic ap-
proaches for the lattice problem and some extensions
which improve the sampling in some circumstances. At
least some of the Monte Carlo methods which have been
used for continuum models are closely related to meth-
ods for lattice problems.

The second problem is to identify the knot type. In
practice one uses a topological invariant such as the Al-
exander polynomial ��t�, even though this is not a per-
fect discriminator; see Sec. II. The computer time re-

quired grows like O�n log n�+O�k2�, where n is the
number of edges in the polygon and k is the number of
crossings. If less information is needed, it is sometimes
sufficient to calculate ��−1�. If more information is
needed, it is possible to calculate additional polynomials
such as the Jones polynomial or HOMFLY polynomial,
although the computer time needed then grows expo-
nentially with the number of crossings. One can also cal-
culate Vassiliev invariants such as the derivatives of the
Jones polynomial, which are less computationally inten-
sive �Deguchi and Tsurusaki, 1993�.

The identification of the knot type is necessary if one
wants to sample the space of all polygons of a given size,
and estimate the fraction of such polygons which are
unknotted or which are trefoils, etc. Sometimes the
question of interest is how to sample polygons with a
fixed knot type and examine their properties, perhaps as
a function of the number of edges. If one can construct
an algorithm which samples the space of polygons with
fixed knot type, this avoids the problem of computing a
knot invariant but one then needs assurance that the
algorithm samples appropriately from the polygon sub-
space. All these sampling issues will be addressed in the
next sections.

1. Numerical studies of knot probabilities

We begin by describing an algorithm designed for sys-
tems with a fixed number �n� of edges where one wants
to sample over the space of all knot types and estimate
the relative frequency of occurrence of different knot
types �especially the unknot�. The calculation is then re-
peated for different values of n to estimate the knot
probability as a function of n. We focus on the lattice
case but similar methodology has been used to sample in
continuum models.

The basic idea is to use a Markov chain to provide
correlated samples. With n fixed the pn polygons are the
states i=1,2 , . . . ,pn of a Markov chain. One constructs a
Markov chain with transition matrix Q with elements qij,
where qij is the transition probability from state i to state
j. In the simplest situation where all polygons have equal
weight �which is the typical situation when one is think-
ing of the good solvent regime and there are no flexibil-
ity terms or geometrical constraints� the limit distribu-
tion of the Markov chain should be uniform, and this
limit distribution should be unique, independent of the
initial state. Provided that the Markov chain is ergodic
�i.e., any state can be reached from any other state in a
finite number of time steps�, aperiodic, and symmetric
�i.e., qij=qji for all i , j� the limit distribution will be
unique and uniform.

How should one construct the Markov chain? One
knows from experience with Markov chain sampling for
self-avoiding walks that one cannot use only local moves
�Madras and Sokal, 1987� and that one should aim for a
Markov chain that has the possibility of making large
changes in the conformation, even if these changes are
only accepted infrequently. The pivot algorithm is
known to work well for self-avoiding walks �Lal, 1969;
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Madras and Sokal, 1988�. A modification of the pivot
algorithm which is designed for polygons is the two-
point pivot algorithm by Madras, Orlitsky, and Shepp
�1990�. The algorithm works as follows. Given a polygon
with n edges label the vertices k=1,2 , . . . ,n. Pick two
vertices k1�k2 uniformly and independently. Split the
polygon into two subwalks, one from k1 to k2 and the
other from k2 to k1. Pick the shorter of these. Apply a
lattice symmetry transformation to the shorter walk
which leaves the end points of the walk invariant. �For
example, one can invert or reflect the subwalk as shown
in Fig. 13. One can always apply an inversion transfor-
mation but rotations and reflections can be applied only
when the end points of the shorter walk are on particu-
lar lines in the lattice.� Reconnect the two subwalks at
their �unchanged� end points. If the resulting object is a
polygon, accept with probability 1 as the next state of
the realization of the Markov chain. Otherwise reject it
and the next state of the realization of the Markov chain
is the current polygon. This Markov chain can be shown
to be ergodic, aperiodic, and to have uniform unique
limit distribution. Since the sequence of polygons gener-
ated is highly correlated, some care must be taken in
forming reliable error estimates of the desired quanti-
ties. For continuum models such as equilateral random
polygons in three-space one can use the same idea. One
scheme which has been used is to pick two vertices at
random, disconnect the polygon at these two vertices
into two subwalks, and rotate the shorter walk about the
line joining these two points through a randomly chosen
angle. For equilateral random polygons the new object
will be a polygon with probability 1 �although in prin-
ciple one should worry about word length problems on
the computer�, so the new object is accepted. In variants
where the equilateral polygon has thick edges or there
are balls at the vertices one must check that the newly
created object has no undesirable overlaps of balls or
cylinders, etc. If not, the object is accepted as the new
polygon. If there are overlaps �i.e., the excluded volume
constraints are violated�, the next polygon in the realiza-
tion of the Markov chain is the old polygon. Modifica-
tions with other symmetry transformations in addition to
rotation are also possible. The required ergodicity result
for equilateral random polygons was proven by Millett
�1994�.

Next we describe the results for some Monte Carlo
studies of knot probabilities. The first attempt to study
numerically the knot probability for polymer rings was
due to Frank-Kamenetskii’s group who analyzed the fre-
quency of knots for n-step polygons on the body-
centered-cubic lattice �Frank-Kamenetskii et al., 1975�.
Their results seemed to indicate that the constant �0 is
very small although the generation of relatively short
polygons �n�160� did not allow an estimate of its value.
The first estimate of �0 was by Janse van Rensburg and
Whittington in 1990. They used a two-point pivot algo-
rithm to study polygons on the face-centered-cubic lat-
tice with up to 1600 edges. Using the Alexander polyno-
mial they estimated the probability that a polygon is
knotted for various values of n up to 1600 and fitted
their data by the form

Pn
o = C0e−�0n. �38�

They estimated that �0= �7.6±0.9��10−6 and that C0 is
about 1. This means, of course, that � and �o differ by
only about 7.6�10−6 so it is quite hopeless to try to
estimate the two connective constants separately. More-
over, even at n=1600 almost all knots found are trefoils
�although we know from Sec. III.A.1 that in the large-n
limit almost all knots must be composite�. Yao et al.
�2001� carried out a similar calculation for polygons with
up to 3000 edges on the simple cubic lattice, using de-
rivatives of the Jones polynomial to detect knotting, and
estimated that �0= �4.0±0.5��10−6. Janse van Rensburg
�2002b� estimated �0 on the simple-cubic, face-centered-
cubic, and body-centered-cubic lattices, for polygons
with up to 4000 edges, and obtained the values �0
= �4.15±0.32��10−6 �sc�, �0= �5.91±0.32��10−6 �fcc�,
and �0= �5.82±0.37��10−6 �bcc�. The first thing to notice
is that these values are small. The second is that they
indicate that �0 is lattice dependent. Of course one can
interpret �0 as the inverse of a characteristic length n0.
For each of these lattices the value of n0 is a little larger
than 105. One can think of this length as roughly repre-
senting the length at which knotting starts to be impor-
tant.

Since the incidence of knots is low in polygons, many
studies have ignored the self-avoiding property of poly-
mers and focused on polymers with Gaussian statistics
instead �Vologodskii et al., 1974; des Cloizeaux and
Metha, 1979�. Michels and Wiegel �1986� used a Lange-
vin dynamics approach to study knotting in a continuum
model where the polygon is represented by a sequence
of up to 320 mass points joined by harmonic bonds.
They estimated that the probability of being unknotted
is roughly Pn

o��n, where �=0.996 40±0.000 02. This
corresponds to �0= �3.6±0.02��10−3. Consequently, �0
is much larger for this off-lattice model with no excluded
volume constraint �since the mass points have no size�
than for lattice models, and this is borne out by other
studies on knot probability for off-lattice models such as
Gaussian random polygons and the rod-bead model. For
Gaussian random polygons the exponential decay of the
unknotting probability is confirmed with the constant �0

FIG. 13. �Color online� Examples of pivot moves: I, inversion.
II, reflection through the x=−y line.
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being about 2.9�10−3 �i.e., n0�340� �Deguchi and Tsu-
rusaki, 1993, 1997�. For the rod-bead model the prob-
ability of being unknotted is still well represented by Eq.
�38� but with �0 increasing as the radius r of the beads
decreases, ranging from 3.7�10−3 for r=0.05 �Deguchi
and Tsurusaki, 1997� down to 1.25�10−6 for r=0.499
�Koniaris and Muthukumar, 1991a, 1991b�, which is
rather similar to the value found for the lattice calcula-
tion.

Another way to implement the excluded volume inter-
action is to consider polygons whose segments are given
by cylinders of unit length with radius r �Shimamura and
Deguchi, 2000�. Two segments have no overlap if the
distance between the central axis of the two cylinders is
larger than 2r and allowed polygons are the ones with no
overlaps between any pair of segments. By sampling
polygons with a number of cylinders n up to 150 the
authors were able to confirm the exponential decay be-
havior of the unknotting probability. Moreover, they
showed that the characteristic length n0 is roughly ap-
proximated by an exponential function of the cylinder
radius �i.e., the chain thickness� r.

2. Rings in confined geometries

The first attempt to study ring polymers in a confined
geometry was by Michels and Wiegel �1989�. They were
interested in the behavior of ring polymers in a slab ge-
ometry, i.e., confined between two parallel planes. As a
simple model they considered closed curves in the plane
in which the intersections were chosen to be + or −
crossings at random. Their basic finding was that the
knot probability was larger for this system than for ring
polymers in three-space.

Tesi, Janse van Rensburg, Orlandini, and Whittington
�1994� studied lattice polygons on the simple-cubic lat-
tice confined so that the z coordinate of each vertex
satisfied 0�z�L, i.e., in a slab of width L. They used a
two-point pivot algorithm coupled with rejection tech-
niques to select polygons satisfying the slab constraint.
At a fixed value of n they found that the knot probabil-
ity first increased as L decreased and then decreased as
L became close to 1. They estimated �0�L� for L=40, 50,
and 60. Their results for this range of L are consistent
with �0�L�=�0���+� /L, where �0��� was found by Yao
et al. �2001� for the complete simple-cubic lattice and � is
a positive constant. Polygons in a prism were also stud-
ied in the same paper with qualitatively similar results.

Ring polymers have also been studied in cubes and
spheres. The earliest study of this type was by Michels
and Wiegel who found that the knot probability in-
creases as the polymer becomes more constrained. For
ring polymers with n monomers in a sphere of radius R
the probability of being unknotted Pn

o�R� appears to
scale as

Pn
o�R�

Pn
o���

=
Pn

o�R�
Pn

o = g n

R3� , �39�

with �2.28.

There has been a renewed interest in this geometrical
constraint because of work on DNA in viral capsids. Re-
cent Monte Carlo work on this problem for equilateral
random polygons �Arsuaga et al., 2002; Micheletti et al.,
2006� showed that the knot probability increases rapidly
as the confining sphere decreases in radius. They found
that their data scaled like Eq. �39� with =2.15±0.04; see
Fig. 14. As R decreases the knot complexity increases
and the distribution of knot types changes.

3. Semiflexible polymers

Polymers can have very different degrees of local flex-
ibility and it is interesting to ask how the knot probabil-
ity depends on the flexibility. The model discussed in
Sec. III.A.6, where one keeps track of the number of
right angles in the polygon and gives a weight to right
angles, has also been studied by Monte Carlo methods
for finite values of n �Orlandini et al., 2005�. Because
different polygons can have very different weights the
sampling procedure becomes more complicated. First
one wants to sample from a Markov chain whose limit
distribution is the appropriate Boltzmann distribution,
not the uniform distribution. One can design a Markov
chain with this limit distribution following the scheme
originally proposed by Metropolis et al. �1953�. If we
have an underlying symmetric Markov chain with tran-
sition matrix Q with elements qij and we want to design
a Markov chain with limit distribution ��i�, we define a
new Markov chain with transition matrix elements given
by

pij = qijmin��j

�i
,1� �40�

when j� i and

pii = 1 − �
j�i

pij �41�

for all i.
This is the original idea of Metropolis et al. �1953� and

it works in principle and in many practical cases. How-
ever, when the system is strongly interacting, i.e., where
there are energy terms which lead to large differences in
the Boltzmann factors, the method can run into quasi-
ergodic problems where the system gets trapped for long

FIG. 14. Scaling of the unknotting probability for a ring con-
fined to a sphere.
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periods, in particular regions of the configuration space.
Worse still, the sampling procedure can appear to be
working when this quasiergodic problem is present so
the procedure can give erroneous results which are not
apparently wrong. This can sometimes be recognized by
careful data analysis and using different realizations of
the Markov chain with different starting configurations.
However, there are now methods available for dealing
with quasiergodic problems which construct Markov
chains with much higher mobility in the configuration
space so that trapping is much less likely to occur. One
method which works well in the kinds of problems de-
scribed here goes by several different names: multiple
Markov chain sampling, parallel tempering, and replica
exchange. This method was originated by Geyer �1991�
and described in the statistics literature. Tesi et al. �1996�
used it in a polymer problem and it has now become a
widely used method in statistical mechanics. Because it
has been used in several random knotting problems we
give a brief description here, though we focus just on the
basic idea.

The method relies on sampling in a larger space where
we have an auxiliary parameter such as temperature. It
is often convenient to think of this parameter as being
the fugacity associated with some property, like the
number of right angles in the case of flexibility. Typically
a standard Metropolis sampling procedure works well
�i.e., gives fast convergence to the limit distribution with
no quasiergodic problems� at high temperature but not
as well at low temperature where one is often interested
in extracting data. The idea behind multiple Markov
chain sampling is to run several Markov chains in paral-
lel at different temperatures and periodically attempt to
swap configurations between different Markov chains at
different temperatures. The swap probability �i.e., the
probability that an attempted swap will be accepted� is
chosen so that each of the Markov chains at different
temperatures will have the limit distribution appropriate
for that temperature. The realization of each Markov
chain can then be analyzed separately to derive data at
that temperature but one must remember that there are
correlations between the data at different temperatures.

To understand why the method works, first focus on a
particular temperature. Every time a successful swap oc-
curs involving this temperature the state of the Markov
chain will change drastically so that the sampling will
then start again from a new region of the configuration
space �Orlandini, 1998�. Now focus on a configuration
and how it changes. A configuration will move from one
temperature to another, evolve to a different configura-
tion at that temperature and then change temperatures
again. When it returns to its original temperature it will
have evolved at other temperatures and if these include
higher temperatures, there will likely have been major
changes to the configuration. The temperatures should
be chosen such that adjacent temperatures should have
a substantial overlap of their energy distributions so that
swaps are frequently successful. This method has been
widely used in statistical mechanics and was used to
study knotting in semiflexible lattice polygons �Orlan-

dini et al., 2005�. A related method which has not been
tried for these problems but which would probably work
well is umbrella sampling �Torrie and Valleau, 1977�.

Orlandini et al. �2005� studied knotting in polygons on
the simple cubic lattice as a function of the flexibility
parameter  introduced in Sec. III.A.6. Larger values of
 correspond to a smaller persistence length. They con-
sidered polygons with up to 3200 edges. They computed
the density of right angles �= 	k
 /n as a function of . At
=0 �where we have polygons with uniform weight� the
density of right angles � is about 0.77. At fixed � the
knot probability increases as n increases and we know
from Sec. III.A.6 that this probability goes to 1 as n goes
to infinity. At fixed n the knot probability decreases as �
increases beyond 0.77. As � decreases from 0.77 the knot
probability at first increases, goes through a maximum,
and then decreases as � decreases further; see Fig. 15.
This means that there is an optimal degree of flexibility
for knotting. At first the fact that the knot probability is
a decreasing function of � seems counterintuitive. One
might expect more flexible polygons �with a larger den-
sity of right angles� to be more easily knotted. Orlandini
et al. argued that very flexible polygons have a high pro-
portion of U turns which lead to a “wastage” of avail-
able edges for knotting. Removing these U turns �by
replacing the sequence of three edges by a single edge�
gives a polygon with less edges but the same knot type.
Of course, when � becomes small enough the polygon
becomes too stiff �i.e., has too few right angles� for knot-
ting to occur effectively so the probability of knotting
has to decrease at very low values of �.

Recently, inextensible wormlike polymer loops have
been generated by the Fourier sums whose coefficients
have random values whose amplitudes decay as n−1e−n/np

�Rappaport et al., 2006�. These Fourier knots have the
property that locally they are similar to wormlike chains
with persistence length that scales as 1/np. By looking at
the topological properties of Fourier loops it has been
found that the unknotting probability decays exponen-

FIG. 15. �Color online� Knotting probability as a function of
the density of right angles �. The dashed line represents the
unweighted polygons.
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tially with the characteristic cutoff frequency of the Fou-
rier expansion np.

4. Adsorbing ring polymers

The problem of knotting in adsorbing ring polymers
has been investigated by Janse van Rensburg �2002a�
using Monte Carlo methods. He estimated the exponent
�0 as a function of the interaction strength with the ad-
sorbing surface ��, see Sec. III.A.5�. The value of �0 is
independent of � in the desorbed phase and decreases
with increasing � in the adsorbed phase.

One measure of knot complexity is ���−1��. Janse van
Rensburg estimated 	log ���−1� � 
 as a function of � and
found that �i� 	log ���−1� � 
 increases roughly linearly
with increasing n, �ii� is roughly independent of � in the
desorbed phase, and �iii� decreases as � increases in the
adsorbed phase. Consequently, polymers are less likely
to be knotted in the adsorbed phase and the complexity
of the knot decreases as the extent of adsorption in-
creases.

5. Collapsing polymers

Polymers in a good solvent are expanded random
coils but as the temperature decreases or the solvent
quality decreases they typically undergo a transition to a
collapsed conformation. The temperature at which this
transition occurs is called the � temperature. Above this
temperature �in the good solvent regime� the radius of
gyration Sn scales with the degree of polymerization as

Sn � An�, �42�

where ��0.588 in three dimensions �Li et al., 1995;
Guida and Zinn-Justin, 1998�. Below the � temperature
the radius of gyration scales as Sn�Bn1/3 in three di-
mensions. Because the polymer is more collapsed below
the � temperature we would expect the knot probability
to be higher than in the good solvent regime.

This phenomenon was first studied by Janse van
Rensburg and Whittington �1990�. They considered lat-
tice polygons with an attractive pseudopotential be-
tween pairs of vertices which are unit distance apart but
not joined by an edge of the polygon. At fixed n the
knot probability increases dramatically in the collapsed
phase. It appears that Pn

o�e−�0n but �0 is much larger in
the collapsed phase than in the good solvent regime.
There is no theoretical argument for this form for Pn

o in
the collapsed phase.

Virnau et al. �2005� looked at a continuum model with
the same phenomenon. Their model was a bead-spring
model in which the bonds can stretch under a finite ex-
tensible nonlinear elastic �FENE� potential. In addition,
the beads interact with a Lennard-Jones potential de-
signed to mimic the behavior of polyethylene. As the
temperature decreases they showed that the knot prob-
ability increases, in agreement with the results for the
lattice model described above.

Mansfield �1994� examined the compact phase model
in which the polygons are Hamiltonian cycles on the

cubic lattice. This means that they are in the most com-
pact state possible. To detect and identify knots he com-
puted the Alexander polynomial ��t� at ten different
values of t. By looking at n step Hamiltonian cycles with
n�1000 he showed that the knot probability for such
configurations was much higher than in the case of lat-
tice polygons modeling the good solvent regime. In par-
ticular he estimated n0�270 giving �0�3.7�10−3, i.e.,
two orders of magnitude bigger than for polygons in the
extended phase. More recently Lua et al. �2004� exam-
ined the knotting probability of Hamiltonian cycles on
the cubic lattice with n up to 2774. The larger values of n
and the use of more sophisticated knot detectors such as
the Vassiliev invariants revised the estimate of the char-
acteristic length from n0�270 to n0�196 corresponding
to �0�5�10−3.

6. Polyelectrolytes

DNA is a polyelectrolyte and its conformation is
therefore sensitive to the ionic strength of the solution.
The knot probability and distribution of knot types have
been investigated experimentally by Rybenkov et al.
�1993� and by Shaw and Wang �1993, 1994� as a function
of ionic strength. Both groups found that the knot prob-
ability decreased as the ionic strength decreased. This
reflects the fact that at low ionic strength the interionic
repulsion is less screened so the polymer is stiffer. In a
similar way more complex knots are seen at higher ionic
strength. Rybenkov et al. modeled this by considering a
closed chain of impenetrable cylinders with diameter d.
The Hamiltonian also contained a bending rigidity term
chosen to fit the Kuhn length of DNA. The value of d
was then varied to give the best fit between the experi-
mental and simulation results. The authors interpret d as
an effective diameter. Although this treatment gives a
nice �two-parameter� fit to the experimental data, it does
not take into account the details of the screened Cou-
lomb interaction.

Tesi, Janse van Rensburg, Orlandini, and Whittington
�1994� investigated knotting in a simple model of a poly-
electrolyte. They used the model of Janse van Rensburg
and Whittington but added a screened Coulomb term
�in fact, a Yukawa potential� to model the screened re-
pulsion between like charges on the polyelectrolyte.
Their potential can be written as

U = �
i�j

�u�rij� + A
e−�rij

rij
� . �43�

Here u�r�=kBTv if r=1 and zero otherwise. � is a
screening parameter depending on the ionic strength of
the solution. When � is very large, the Coulomb repul-
sion is effectively negligible. They examined how the
knot probability increased as � increased, i.e., as the
ionic strength increased. The results are in qualitative
agreement with the experimental results of Shaw and
Wang �1993, 1994� and of Rybenkov et al. �1993�.
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7. Linked rings

In Sec. III.A.7 we introduced two notions of linking,
topological linking and homological linking. Homologi-
cal linking is detected by computing the linking number
Lk and two curves are homologically linked if Lk�0
and homologically unlinked otherwise. If two curves are
homologically linked, they are topologically linked but
the converse is not necessarily true. Topological linking
is more difficult to detect but there is a partial solution
based on computing a two-variable Alexander polyno-
mial �Torres, 1953�. This idea was first used in polymer
problems by Vologodskii et al. �1975� and by Klenin et al.
�1988�. The two-variable Alexander polynomial detects
some links which would be missed by calculating the
linking number, but it is not a perfect detector in that it
also misses some links.

Orlandini, Janse van Rensburg, et al. �1994� examined
the probability for a pair of polygons each with n edges,
confined to a L�L�L cube on the simple-cubic lattice,
to be homologically linked. They found that the linking
probability increased with increasing n at fixed L and
decreased with increasing L at fixed n, as expected.
They argued that there are two length scales in the prob-
lem: �i� the length �L� of the side of the cube and �ii� a
typical dimension of the polygon in the absence of a
spatial constraint n�, where ��0.588. They also argued
that the probability that the two polygons would be ho-
mologically linked would be a function of the ratio of
length scales n� /L and found that their numerical results
scaled in this way.

They approximated topological linking by having a
nontrivial two-variable Alexander polynomial. They
then asked what was the probability that two curves
would be homologically linked, given that they are topo-
logically linked. Again they argued that this conditional
probability would depend on the ratio of length scales
and found that their data scaled in this way. Two topo-
logically linked curves are more likely to be homologi-
cally linked when n� /L is large and less likely to be ho-
mologically linked when n� /L is small. That is,
homological linking is a good indicator of topological
linking when the system is relatively dense but is not an
effective indicator for sparse systems.

8. Ribbon models

The lattice ribbon model described in Sec. III.A.8 has
been studied using Monte Carlo methods �Janse van
Rensburg et al., 1994; Orlandini, Janse van Rensburg, et
al., 1996�. The Monte Carlo procedure is rather compli-
cated but is based on grand canonical sampling where
the length of the ribbon can vary. The results can be
summarized as follows:

�i� For orientable ribbons the average of the absolute
value of the linking number for two boundary
curves increases roughly like n1/2, where n is the
number of plaquettes.

�ii� For orientable ribbons the probability that the
two boundary curves are homologically linked in-

creases to unity as n goes to infinity, linearly in
1/�n.

�iii� For both orientable and nonorientable ribbons
the average of the absolute value of the writhe for
the center line increases like n1/2.

These results are consistent with the rigorous bounds
discussed in Sec. III.A.8 and indicate that the bound on
the linking number and writhe might be best possible. It
is unfortunate that we have no useful rigorous upper
bounds on 	�Lk � 
 or on 	�Wr � 
.

In addition, the authors investigated the types of
knots in the boundary curves of nonorientable ribbons
and found 31 and 51 to dominate for relatively short rib-
bons. These are the torus knots discussed in Sec. III.A.8.
Although we know that satellite knots must eventually
dominate, the values of n required might be very large.

9. Entanglements in condensed phases

Linear and ring polymers in a dense phase such as
concentrated solutions and melts �where the polymer is
present at high density but is disordered� can be highly
entangled. These entanglements can include both self-
entanglements �i.e., the individual chain can be knotted�
and mutual entanglements where different polymer
chains can wind around one another. Although it is well
established that entanglement �in any form� strongly af-
fects the dynamical and rheological properties of the
polymer network in condensed phases �de Gennes, 1979;
Doi and Edwards, 1986�, very little is known about the
topological properties of such entanglements at equilib-
rium. Most of our knowledge on this subject comes from
numerical studies in which several polymer chains are
modeled in a restricted environment such as a box, and
the behavior is investigated by molecular dynamics or
Monte Carlo methods �see, e.g., Dickman and Hall,
1988; Smith et al., 1998�. However, efficient sampling of a
system consisting of several polymers close to one an-
other is an extremely difficult task and most numerical
investigations have been restricted to relatively short
chains. Another problem with these studies is a proper
definition of topological entanglement if the melt con-
sists of linear �open� chains. This is not the case for a
melt of polymer rings where the topological entangle-
ment is defined in terms of knotted and linked closed
curves. Recently, several computational studies have
been performed to explore the influence of topological
constraints on the structure of ring polymers in melts. It
has been found �Skolnick et al., 1989; Müller et al., 1996,
2000; Brown and Szamel, 1998� that unknotted and un-
linked rings in melts are smaller than their linear chain
counterparts, i.e., with observed radius of gyration scal-
ing exponent � between 0.4 and 0.42. This squeezing of
the unknotted rings has been interpreted as an effect of
the topological constraints imposed by neighboring
rings. This effect has even stronger implications in the
dynamical properties of such rings that do not follow the
typical diffusion law �Rouse dynamics� for isolated ring
polymers but a superdiffusion law �Brown et al., 2001�.
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Along these lines Kim and Klein �2004� have explored
the evolution of a trefoil knot tied in a linear chain em-
bedded in a melt of unknotted chains. In particular, they
found that a tight open trefoil knot unravels via a se-
quence of expansions and contractions �early stage re-
gime� followed by a slow migration of the whole knot
along the backbone. It is interesting to notice that dur-
ing the whole dynamics the knot maintains a definite
size 	m
 that scales with chain length n as n0.4 �see Sec.
VI.B�.

A quite different way of characterizing the entangle-
ment complexity of concentrated polymer solutions and
polymer melts has recently been proposed �Orlandini et
al., 2000; Orlandini and Whittington, 2004�. The idea is
to drill out a tube �prism� at random through a fixed
polymer configuration to construct a random sample of
polymer entanglements. Typically, chains will enter and
leave the tube so that within the tube one will see many
polymer subchains which begin and end in the boundary
of the tube. If one cuts the tube into sections, each of
which can be thought of as a cube, the cubes and k sub-
chains within them will each form a tangle of k strings.
Indeed these subchains can be both self-entangled and
mutually entangled. One can then define knotting in
such systems �by thinking of the cube and embedded
chain as constituting a ball pair� and linking between
two chains �for instance, by imagining joining up the
ends of each chain outside the cube to form a simple
closed curve�; see Fig. 16. In this way a proper definition
of topological entanglement is achieved in each cube
and one can infer the topological properties of the entire
system by reconnecting the cubes properly �i.e., by
matching the subchains at the cube faces� to form the
original tube. A possible model of this system is a set of
k self-avoiding and mutually avoiding walks on a cubic
lattice properly embedded in a cube of length D. This
model has been explored by Monte Carlo simulations
�Orlandini, et al., 2000; Orlandini and Whittington,
2004�. This work characterized the extent of mutual en-
tanglement by calculating the linking number between
two chains �properly embedded in the cube� with their
ends joined up outside the cube to form two different
simple closed curves. This was extended to k chains by
computing the � k

2
� linking numbers between pairs of

chains. The absolute values of these � k
2

� linking numbers
were then added to form a measure L of entanglement

complexity and this quantity was then averaged over re-
alizations, to form 	L
. It turns out that 	L
 / � k

2
� increases

as the monomer density � increases and that 	L
 / � k
2

� is
roughly a universal function of �D4/3 /k, where D is the
cube size. This comes from the following scaling argu-
ment. The entanglement complexity 	L
 / � k

2
� should de-

pend on the ratio of the two length scales RF and D,
where RF is the free dimension of the polymer segment
in the cube. If the typical segment length is m then m
=�D3 /k. The ratio of length scales is then �3/5D4/5 /k3/5,
so we see that the entanglement complexity is a function
of �D4/3 /k where we use the Flory value �=3/5.

10. Some open problems

We end this section on numerical results with a short
list of open problems which we regard as being espe-
cially challenging.

�i� The study of the knotting probability for highly
confined polymer rings �or, in general, for poly-
mers in a dense phase� is a difficult task, especially
if the excluded volume interaction is included.
There is a general problem of sampling efficiently
for polymers in a highly compact state. Different
Monte Carlo schemes have been proposed to
handle this problem but none of them are effec-
tive when n is large. This is a general problem in
Monte Carlo studies of polymers in dense phases
and has applications outside knotting and linking.

�ii� There is a related topological issue. After gener-
ating a configuration of a ring polymer we have to
check whether or not it is knotted and we might
want to determine its knot type. In principle this
can be done by computing knot invariants such as
the Alexander or Jones polynomial. The difficulty
is that for configurations that are highly compact
the number of crossings �in a given projection�
increases rapidly with n and the computation of
such invariants becomes impracticable. Common
approaches rely on algorithms that either reduce
the number of crossings of a given projection �by
Reidemeister moves� or simplify the configuration
keeping its knot type unaltered. Again these strat-
egies seem to work for relatively short ring poly-
mers, but new methods are needed to extend cur-
rent work to longer polymers.

IV. GEOMETRICAL MEASURES OF ENTANGLEMENT
COMPLEXITY

Ring polymers with the same knot type can differ in
the way in which they are geometrically embedded. For
example, unknotted ring polymers and linear chains can
be badly embedded in the sense that they can have
many crossings in every projection.

FIG. 16. Schematic representation of the projection of two
chains properly embedded in a cube, and the completion of the
chains to form two polygons by adding edges outside the cube.

629E. Orlandini and S. G. Whittington: Statistical topology of closed curves: Some …

Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007



A. Writhe

Linear DNA and unknotted circular DNA can be su-
percoiled �Vologodskii et al., 1992�. A useful measure of
this type of entanglement is the writhe �Wr� of the mol-
ecule, introduced in Sec. III.A.8 in connection with a
conservation theorem relating the writhe of the center
line of a ribbon to the twist of the ribbon and the linking
number of the two boundary curves. Although twist is
only defined for double stranded molecules, writhe is
well defined for a single curve �Cǎlugǎreanu, 1959; Pohl,
1968�. For polygons in Z3 Janse van Rensburg et al.
�1993� showed that, for n sufficiently large,

	�Wr�
 � A�n , �44�

where A is a positive constant. The square-root lower
bound seems to be quite good since numerical estimates
based on Monte Carlo simulations suggest a power-law
dependence on n of the kind �Janse van Rensburg et al.,
1993�

	�Wr�
 � n� with � = 0.522 ± 0.004. �45�

Writhe is also well defined for linear �open� polymers
and numerical estimates of the absolute value of the
writhe for self-avoiding walks in Z3 �Orlandini, Tesi, et
al., 1994� give

	�Wr�
 � n� with � = 0.500 ± 0.005. �46�

Unlike the lower bound, the only known rigorous upper
bound on the absolute value of the writhe is quite far
from the behavior observed numerically. The best upper
bound known is given by Cantarella et al. �2001� and
independently by Buck and Simon �1999� who have
shown that

	�Wr�
 � An4/3. �47�

One might wonder if there are situations in random
polymers in which the absolute value of the writhe can
deviate drastically from square-root behavior. Possible
candidates are polymers in dense phases such as the
ones strongly confined in restricted volumes or undergo-
ing a collapse transition. In the case of equilateral poly-
gons confined in a sphere of radius R Micheletti et al.
�2006� have shown that for R sufficiently small �com-
pared to the typical extension of the chain�

	�Wr�
 � n� with � � 0.75. �48�

For highly constrained polymers the absolute value of
the writhe seems to grow faster than that for uncon-
strained polymers in good solvents.

Gee and Whittington �1997� have investigated how
linking can induce writhe in linked polygons.

B. Average crossing number

Another example of a geometrical measure of en-
tanglement complexity is the average crossing number.
Suppose we have a simple closed curve in R3. If we
project onto R2 in some direction, we in general see

crossings of the curve with itself. If we average the num-
ber of crossings over all possible projection directions,
this is the average crossing number of the curve. Nor-
mally we are interested in a further average over real-
izations of the curve. This is sometimes called the mean
average crossing number and sometimes simply the av-
erage crossing number 	ACN
. For the case of equilat-
eral random polygons Diao et al. �2003� proved that the
mean average crossing number for equilateral random
polygons with n edges behaves as

	ACN
 = 3
16n log n + O�n� . �49�

The interesting feature is that it grows a little faster than
linearly. If the knot type � is fixed then a numerical in-
vestigation suggested that the behavior is

	ACN���
 = a�n − n0�log�n − n0� + b�n − n0� + c , �50�

where n0=n0��� is a constant which depends on the knot
type and a, b, and c are parameters independent of the
knot type. In fact n0 is the minimum number of edges
need to form the knot �. This has connections both to
tight knots �Sec. VI.B� and to ideal knots �Sec. VII�. A
similar rigorous result was established for Gaussian ran-
dom walks and polygons where now the constant 3/16 is
replaced by 1/ �2�� �Diao and Ernst, 2005�.

A numerical estimate of 	ACN
 for self-avoiding
walks in Z3, with n up 1500 �Orlandini, Tesi, et al. 1994�,
gave

	ACN
 � n1.1, �51�

where the deviation from linear behavior is due to the
logarithmic correction enhanced by finite-size effects
that in models with excluded volume interactions are
quite severe. Indeed by going up n=4000 Grassberger
�2001� confirmed, also for self-avoiding walks, the
n log n behavior. As for the absolute value of the writhe,
a rigorous upper bound on 	ACN
 has been found
�Buck, 1998; Cantarella et al., 1998�,

	ACN
 � n4/3. �52�

In this case, however, there are numerical indications
�Grassberger, 2001� that this upper bound is a good one
for compact polymers and one expects similar behavior
also for dense polymers, i.e., confined in small spheres.

It is worth mentioning that in the case of protein
chains the average crossing number provides an interest-
ing measure of their compactness �Arteca, 1995� and
several studies have been devoted to investigate how
	ACN
 in proteins scales with the length n of the
polypeptide chain �Arteca, 1993, 1994, 1997, 2002;
Dobay et al., 2004�. Proteins have relatively short back-
bones and it is difficult to discriminate, for small n, be-
tween the n log n and n4/3 behavior. It is then difficult to
decide on those grounds if proteins, as far as the average
crossing number is concerned, are more similar to ran-
dom polymers in good solvents or to compact polymers.
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C. Some open problems

�i� We have seen that the upper bound on the absolute
value of the writhe is quite far from numerical estimates.
An improvement on that bound is clearly needed.

�ii� Up to now the only numerical result on the abso-
lute value of the writhe for dense polymers is for a
model of equilateral polygons confined to a sphere
�Micheletti et al., 2006�. It would be useful to extend this
investigation to other systems such as polymers in com-
pact phases and to situations where the excluded volume
interaction is taken into account.

V. ENTROPY AND DIMENSIONS OF KNOTTED RING
POLYMERS

In previous sections we have been mainly concerned
with the probability that a ring polymer is knotted. Now
we turn our attention to the properties of ring polymers
with a particular knot type. There are very few rigorous
results for this kind of problem and we have to rely
almost entirely on numerical methods.

There are two rather different Monte Carlo ap-
proaches for this type of problem. One is to use a two-
point pivot algorithm and to classify configurations by
knot type �e.g., by using the Alexander polynomial� and
bin the data according to knot type. The second ap-
proach is to use a Monte Carlo scheme which samples
polygons with a fixed knot type, perhaps at a range of
values of n. We describe the idea behind a lattice version
of the second scheme. This idea can be extended to an
off-lattice model of the polymer provided that one
makes sure that local moves do not result in a crossing
change �Farago et al., 2002�.

One approach which samples at fixed knot type is to
use the Berg, Foester, Aragao de Cavalho, Caracciolo,
and Froelich �BFACF� algorithm �Berg and Foester,
1981; Aragao de Carvalho et al., 1983; Aragao de Car-
valho and Caracciolo, 1983�. In this approach one uses a
Markov chain defined on the set of all polygons, but the
knot type of the initial polygon determines the knot type
of all polygons in the �correlated� sample. The BFACF
algorithm uses two types of local moves, sketched in Fig.
17. In the first move two adjacent edges at right angles
are permuted. This is often called flipping across a
square. In the second move an edge is replaced by three
edges making a U turn or a U turn is replaced by a
single edge. In the second move the number of edges in
the polygon increases or decreases by 2, so the algorithm
samples polygons with different sizes. There is a param-
eter in the algorithm which can be tuned to determine

the typical range of values of n which is being sampled.
Since neither move allows the polygon to pass through
itself, the knot type cannot change so every polygon in
the sample has the same knot type as the original poly-
gon. A more delicate question is whether every polygon
with a particular knot type can be obtained from a given
initial polygon with the same knot type. This is the ques-
tion of whether the ergodic classes of the Markov chain
coincide with the knot types. This was established by
Janse van Rensburg and Whittington �1991b� using an
argument based on Reidemeister moves.

A. Entropic exponents

If we think of the class of all n-edge lattice polygons, it
is expected that pn will scale as

pn = An�−3�n1 +
B

n� + ¯ � . �53�

Here �=e�, � is a critical exponent, and � is a correction
to scaling exponent. The best estimate of � is
0.237±0.005 �Li et al., 1995�.

It is at least plausible that for a fixed knot type �

pn��� = A���n����−3����n1 +
B���
n���� + ¯ � �54�

and we know that ������ for all knot types �.
Using a BFACF algorithm coupled with multiple Mar-

kov chains Orlandini, Tesi, et al. �1996, 1998� investi-
gated this scaling behavior and found evidence that
����=� and that

���� = � + N��� , �55�

where � denotes the unknot and N��� is the number of
prime components in the knot decomposition of �. This
implies that ���� is independent of � if � is a prime knot.
Within the confidence limits of the statistical analysis the
authors found that ���� is independent of � for the knots
considered. Deguchi and Tsurusaki �1997� found very
similar results for Gaussian random polygons and for a
continuum rod-bead model.

One can understand the result in Eq. �55� if we as-
sume that knots are tied relatively tightly. What do we
mean by this? Suppose that 	 is a simple closed curve in
three-space with knot type �. Suppose that S is a sphere
which cuts 	 at exactly two points, thus dividing 	 into
two one-balls, 	1 and 	2. Suppose that 	1 meets S at its
two boundary points but is otherwise inside S and that
	2 meets S at its boundary points but is otherwise out-
side S; see Fig. 18. Convert 	1 into a simple closed curve
	1� by adding a curve on the sphere S to join the end
points of 	1. The same construction converts 	2 to a
simple closed curve 	2�. Suppose that 	1� has knot type �
and 	2� is unknotted. Then we can say that the knot is
localized inside S. Technically 	1 and S form a knotted
ball pair �see Figs. 9 and 18�. Now minimize the number
of edges in 	1 over all possible spheres S and all possible
pairs of intersection points. Call this minimum number

FIG. 17. The BFACF moves.
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of edges m�. If m�=o�n� then the knot is said to be tight.
An extreme case would be when m� is a constant inde-
pendent of n. Returning to the lattice case, we first as-
sume that � is prime. When the knot is tight there are of
order 
n places where such a knot could be created by
concatenating a small polygon with m edges and knot
type � and an unknotted polygon with n edges. From
this one can argue that

pm+n��� � 
npn��� �56�

so from the assumed scaling form �54� we have

���� = ���� + 1 �57�

if ����=����. �We know that ��������� but not that
they are equal.�

If � is composite and has N��� prime components, we
can give a similar argument. We can choose N��� of 
n
locations in about �
n�N��� ways and the rest of the argu-
ment is the same and yields Eq. �55�.

B. Metric properties

This assumption has implications for dimensions of
polygons with fixed knot type. Suppose that 	Rn

2���
 is
the mean-square radius of gyration of polygons with n
edges and knot type �. We might expect the mean-
square radius of gyration to scale as

	Rn
2���
 = A����n2�����1 + B����n−����� + ¯ � . �58�

If knots are tight in the above sense then a knotted poly-
gon will resemble an unknotted polygon with small local
additions of tightly knotted prime components. The ef-
fect of these additions should be to change the correc-
tions to scaling terms but not the exponent � or the am-
plitude A. This implies that ����=���� and A����
=A���� for all �.

There is general agreement that ���� is independent of
� �Janse van Rensburg and Whittington, 1991a; Quake,
1994, 1995; Orlandini et al., 1998; Matsuda et al., 2003�.

Although there has been some disagreement about the
constancy of the amplitude, there is a growing amount
of numerical evidence that it is constant.

If we consider rings without excluded volume in
three-space, such as equilateral or Gaussian random
polygons, then the radius of gyration for the set of all
rings scales like n1/2. The object is just a random walk
conditioned to return to the origin. Grosberg �2000�
used scaling arguments to investigate the dimensions of
this sort of model if the ring was conditioned to be un-
knotted. He argued that the radius of gyration would
then scale as n� with ��0.588, the value appropriate for
self-avoiding polygons or for rings with excluded vol-
ume. While this topological expansion might seem sur-
prising at first sight there is growing evidence that the
prediction is correct �Dobay et al., 2003; Matsuda et al.,
2003; Moore et al., 2004�.

The asymptotic behavior of the average size of ring
polymers with fixed topology has also been studied for
an off-lattice model in which self-avoiding polygons con-
sist of N cylinders with radius r. By varying r Shimamura
and Deguchi �2001, 2002� showed that the topological
expansion strongly depends on the radius r. For small r
�where the model is closer to the Gaussian random poly-
gon� the effect is indeed significant, but it becomes less
important as the radius r increases, i.e., as the self-
avoidance becomes more and more relevant.

C. Some open problems

�i� There is a considerable amount of Monte Carlo
data available on the number and dimensions of poly-
gons with a particular knot type. The difficulty is to
know how to analyze these data. Most of the existing
analysis has used the functional forms �54� and �58� but
in fact we do not know if the correction to scaling terms
are of these forms. There will certainly be a term in n−1

and there could be terms which are more important than
the assumed n−� term �Marcone et al., 2005�.

�ii� Although there is growing evidence for the rela-
tions �55� and �57� in the expanded phase, are there cor-
responding relations for polygons in the compact phase?

VI. SIZE OF A KNOT WITHIN A KNOTTED POLYMER
RING

In Sec. V we introduced the idea that knots might be
tight. In this section we discuss this idea in more detail
and review some numerical evidence both in the good
solvent and poor solvent regimes. Since we are trying to
identify the “knotted part” of a ring, i.e., where the es-
sential aspect of the knot resides, we have to ask how to
define knotting in an open chain or self-avoiding walk.

A. Knots in self-avoiding walks: Knotted arcs

If we consider an open chain then the standard defi-
nition of knotting says that all such open chains are un-
knotted. Technically this is because any one-ball is am-

FIG. 18. Localization of a knot in the interior of a sphere S.
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bient isotopic to the standard one-ball. More informally
it is because the chain can be deformed to convert it to a
straight line without passing the chain through itself. In
spite of this we talk about knots in pieces of string so the
problem is to formalize this notion. For related work,
and its application to knots in proteins, see Taylor �2000�
and Taylor et al. �2003�.

We first discuss some special cases. We introduced the
idea of a knotted ball pair in Sec. III.A.1 and provide a
more careful definition here �Sumners and Whittington,
1990�. Consider a self-avoiding walk 	 on the simple
cubic lattice with vertices labeled i=0,1 ,2 , . . . ,n. Vertex
i is at the point ri= �xi ,yi ,zi� where the coordinates are
integers and �ri−ri−1 � =1 for 1� i�n. Associated with
the ith vertex is a unit cube Ci centered at ri, which we
call the dual three-cube of the ith vertex. Let C= �Ci.
Suppose that C is a three-ball �i.e., is homeomorphic to
the standard three-ball ��x ,y ,x� ,x2+y2+z2�1��. All the
vertices of 	 are in the interior of C and we can add two
half edges to extend 	 to form 	� so that the end points
of 	� are in the boundary of C, �C. This �unique� exten-
sion of 	 is a one-ball properly embedded in the three-
ball C so 	� and C form a ball pair �C ,	��. Now there is
a standard ball pair, which is the standard three-ball de-
fined above together with the line segment from �1,0 ,0�
to �−1,0 ,0� which is a diameter of the standard three-
ball. If �C ,	�� is homeomorphic to the standard ball
pair, we say that the ball pair �C ,	�� is unknotted. Oth-
erwise it is knotted. This can be used as a definition of
knotting in an open curve but it only works when the
union of the dual three-cells �C� is a three-ball.

Another special case which is worth considering is
when the self-avoiding walk 	 is unfolded. For instance,
suppose that x0�xi�xn for 1� i�n−1. Then we say
that 	 is x unfolded. In this situation we can add rays
from r0 to �−� ,y0 ,z0� and from rn to �� ,yn ,zn� and re-
gard these rays as meeting at the point at infinity in the
one-point compactification of R3. We say that 	 is knot-
ted if this resulting simple closed curve is knotted, and
unknotted otherwise. The number of these unfolded
walks with n edges grows at the same exponential rate as
the number of self-avoiding walks �Hammersley and
Welsh, 1962� but they are still rare objects so this scheme
is not generally useful. However, it does suggest some
useful extensions:

�i� One idea is to join the two end points of the walk
by a line segment to form a closed curve. The
problem is that the closed curve might not be
simple since this line segment will in general go
through some lattice points which might be occu-
pied by vertices of 	. One can get around this
problem by first adding short parallel line seg-
ments �of length 
, say� to each end point of 	 in
a direction with irrational direction cosines, and
then joining the end points of the resulting object
to form a closed curve which is necessarily a
simple closed curve. We say that 	 is knotted if
this simple closed curve is knotted. The answer

might depend on the direction cosines chosen so
an averaging over direction cosines might be nec-
essary.

�ii� Another idea is to add parallel rays to the end
points of 	 and regard the rays as meeting at in-
finity to form a closed curve. If the rays have a
randomly chosen direction, the rays will have ir-
rational direction cosines with probability 1 and
the closed curve will be simple, almost surely.
Again it might be necessary to average over the
direction cosines.

It has been shown �Janse van Rensburg et al., 1992� that
with each of these definitions of knotting in self-avoiding
walks sufficiently long walks are knotted with high prob-
ability and the walks are very badly self-entangled with
high probability.

Recently Millett et al. �2005� proposed a more proba-
bilistic method to detect knots in linear chains. The idea
consists in analyzing the spectrum of knots generated by
multiple closures of the same open chain. Each closure
is obtained by connecting the ends of the chain to a
point chosen �randomly� on the surface of a sphere that
contains the walk. Different closures correspond to dif-
ferent chosen points. For each fixed open chain a distri-
bution of knots is estimated and the most probable knot
gives the knot type of the open chain. Interestingly
enough it turns out that the knot obtained by a simple
direct end-to-end closure usually coincides with the knot
type that dominates the random closure spectrum.

B. Tight knots

We met the idea of tight knots in the proof of the
main theorem in Sec. III.A.1 and again when discussing
the entropy and dimensions of rings with a specified
knot type in Sec. V. In this section we examine the direct
evidence as to whether or not a knot is tight and how
this depends on solvent quality.

If we return to the definition of tightness given in Sec.
V, we see that we really have three possibilities:

�i� If the average number 	m�
 of edges in the part of
the polygon localized in S increases more slowly
than any power of n as n goes to infinity, we say
that the knot is strongly localized. Note that this
includes the situations where 	m�
 is a constant or
increases like log n.

�ii� If 	m�
 goes like o�n� but at least like some power
of n as n goes to infinity, we say that the knot is
weakly localized.

�iii� If 	m�
 goes like An for some positive constant A
as n goes to infinity, we say that the knot is
delocalized.

Katritch et al. �2000� carried out a Monte Carlo inves-
tigation of knot tightness in equilateral random polygons
�in the good solvent regime�. They used constructions
related �i� to �ii� and described in Sec. VI.A to identify
the shortest subwalk which, when closed to form a knot,
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had the same knot type � as the complete ring. We call
this a minimal knotted arc and use its length to define
the length m� of the knot in the ring. For polygons with
500 edges they found that the typical values of m� were
about 6 to 8 for trefoils, about 15 for figure-eight knots,
and about 20 for 51 and 52. They give results for the
proportion of polygons with the knot localized in less
than n /10 edges. Although it is difficult to put their re-
sults in the perspective described above �i.e., the three
classes�, their general conclusion was that knots were
tight, in general agreement with the results described in
Sec. V.

Marcone et al. �2005� carried out an analysis of tight-
ness in self-avoiding polygons on the simple-cubic lattice
using a variant of the above approach that allows one to
minimize the risk of knot modifications or disentangle-
ments during the closure of the subwalk in the resulting
new ring. By detecting the minimal knotting arc for
polygons having knot type 31 and with n up to 1500, they
found

	m�
 � nt, �59�

where t�0.75 for the good solvent regime. This result
turns out to be robust with respect to a change of prime
knot type. For example, by replacing the 31 by a 41 or 51
knot, Eq. �59� remains valid with the same t within the
confidence limits.

This approach works well in the good solvent regime
but not for poor solvents where it turns out that the knot
is delocalized. The closure schemes described above can
introduce new extraneous crossings and, while this effect
is minor in the good solvent regime, it causes serious
problems for poor solvents where the polygon is com-
pact. To get around this problem Marcone et al. �2005�
used a different approach which works for both good
and poor solvents. Consider a ring polymer which passes
through a small slip ring �so that the ring polymer and
slip ring are not linked�. This essentially divides the ring
into two subwalks each of which approximates a ring
because their end points are close together. This is re-
lated to work by Edwards �1968� and by Metzler et al.
�2002a�. If we tie a trefoil in each of these subwalks and
then simulate their behavior, in a good solvent typically
one subwalk will grow and the other will shrink to maxi-
mize the total entropy. We can identify the length of the
knot as the length of the shortest subwalk. Their results
for this approach �t�0.75� for good solvents agree with
their results using the closure scheme. For poor solvents
they estimated that t�1. That is, they believe that knots
are weakly localized in the good solvent regime but de-
localized in the poor solvent regime.

These results for the good solvent regime are consis-
tent with a molecular-dynamics study by Mansfield
�1998� who found that maximally tight knots loosened
somewhat in a molecular-dynamics simulation, suggest-
ing that they are not strongly localized. Virnau et al.
�2005� came to similar conclusions for an off-lattice
model.

Another approach that in principle would work well
either in the swollen or in the compact regime is the one
introduced by Farago et al. �2002�. The idea is to quan-
tify the degree of tightness of knotted polymers by com-
paring the force-extension relations of knotted and un-
knotted chains. It turns out that, unlike unknotted
configurations, knotted rings exhibit strong finite-size ef-
fects which can be attributed to the presence of an aver-
age knot size 	m�
. By simulating off-lattice chains with
n �the number of beads� up to 750, Farago et al. found, in
the swollen regime, the power-law behavior �59� with t
=0.4±0.1. This result agrees with the one of Marcone et
al. �2005� in showing that knotted polymers in the ex-
tended phase are weakly localized although the estimate
of t is slightly smaller.

C. Flat knots

A simplified model, which has played an important
role in the development of ideas concerning localization
and delocalization properties of real knots in equilib-
rium, is that of flat knots �Guitter and Orlandini, 1999;
Metzler et al., 2002b�. These are closed curves in the
plane, e.g., in the square lattice, that can be seen as
quasi-two-dimensional projections of the three-
dimensional �3D� knots. Physically they can be realized
by adsorbing 3D polymer rings on a strongly attractive
planar surface or membrane or by confining the polymer
between two close parallel walls �see the model by Mich-
els and Wiegel in Sec. III.A.4�. In these cases the flat
polymer knot can still equilibrate in two dimensions.
Macroscopic realization of flat knotted polymer rings
comes also from experiments in which macroscopic
knotted chains are flattened by gravity onto a vibrating
plane �Ben-Naim et al., 2001�. Flat knots have the advan-
tage of being easy to image by microscopy and more
amenable to numerical studies, for example, on the en-
tropy and dimension of knotted rings, than their 3D
counterparts. In this respect a first numerical study on
flat knots was by Guitter and Orlandini �1999�. As a
model of a flat knot they considered a configuration in
the square lattice which has edges which are lattice
edges but also crossings between pairs of edges which
cross a unit square; see Fig. 19. The initial configuration
corresponds to a projection of a knotted curve in three-
space. They used BFACF plus some additional moves
corresponding to lattice versions of Reidemeister moves
I and II �see Fig. 2�. They showed that the connective
constant is independent of knot type, to numerical accu-
racy, and that

���� = ���� + N�, �60�

where N� is the number of prime components in the
knot �. They also showed that the critical exponent � is
independent of knot type. Although they did not carry
out a detailed study of tightness, they observed that the
knotted regions were typically very small. See Fig. 20 for
a typical configuration of the composite knot 31#31. The
two prime components are separated and localized. If
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the number of overlaps of the polymer ring with itself is
restricted to the minimum compatible with the topology
�e.g., 3 for a 31 knot�, the flat knot model enjoys a drastic
simplification and an analytic approach to the problem
of the size of a knot within a flat knot is possible �Met-
zler et al., 2002b�. Indeed the overlaps of the chain can
be interpreted as vertices of a two-dimensional polymer
network, for which a well-developed theory exists
�Ohno and Binder, 1988; Duplantier, 1989�. By exploit-
ing results coming from this theory Metzler et al. �2002b�
were able to predict that prime flat knots would be
strongly localized in the good solvent regime. They con-
firmed this prediction by a Monte Carlo simulation.

To see how the above results can be affected by the
quality of the solvent, Orlandini et al. �2003, 2004� ex-

tended the model introduced by Guitter and Orlandini
�1999� to incorporate an attractive vertex-vertex interac-
tion as a pseudopotential to mimic poor solvent condi-
tions. Due to the presence of both excluded volume and
attractive interactions, the model undergoes a � transi-
tion. Orlandini et al. �2003, 2004� showed that, while in
the good solvent regime the knots are strongly localized
�in agreement with the results of Metzler et al. �2002b��,
in the poor solvent regime �where the polymer is rela-
tively compact� they are delocalized. At the right � tem-
perature weak localization prevails with t=0.44±0.02.
This last result can be explained by extending the scaling
theory of polymer networks of fixed topology at the �
point and assuming that the configurations having the
shape of a figure-eight dominate the statistics in that
regime. This assumption, confirmed by the numerical
data, gives t=3/7 as the conjectured exact value �Orlan-
dini et al., 2003, 2004�, in good agreement with the nu-
merical estimate. If, on the other hand, the above as-
sumption is discarded, one finds that knots are loose also
at the � point, i.e., t=1 �Hanke et al., 2003�.

D. Some open problems

�i� Are there better ways to estimate the size of a knot
within a knotted polymer ring? �ii� To what extent are
the methods that have been proposed mutually consis-
tent? �iii� Can flat knots be regarded as a good model of
adsorbed polymers in the low-temperature limit �i.e.,
when the polymer is strongly adsorbed�? �iv� Are flat
knots a good model of polymers confined in thin slabs?

VII. IDEAL KNOTS

Any embedding in R3 of a particular knot �say, 31 to
be specific� is equally good, from the topological point of
view, since they can all be interconverted by an ambient
isotopy. However, these embeddings differ in their ge-
ometry and it is clear that geometry, as well as topology,
is important in determining the properties of ring poly-
mers. Katrich et al. �1996� asked if a particular embed-
ding was in some way preferable, in that its properties
characterized at least some properties of all embeddings.
They coined the term ideal knots for such embeddings.

The idea that one embedding is better than others is
connected to the notion of knot energies. The idea is to
attach a potential to the embedding and to minimize the
energy over all embeddings. There is no particular po-
tential which is obviously the correct potential since this
potential does not come from the physics of the prob-
lem. Nevertheless, many different potentials have been
proposed and there are some reasons for preferring one
over another �Diao et al., 1997a�. One hopes to be able
to use such potentials as discriminators between differ-
ent knot types. If two knots have different minimum
energies for a given potential then they must be topo-
logically distinct and must be different knot types.

The scheme used by Katrich et al. �1996� was to ask
how long a piece of rope was needed to tie a particular

FIG. 19. An example of a flat knot configuration on the square
diagonal lattice with six crossings and the topology of a trefoil
knot.

FIG. 20. A typical configuration for the composite knot 31#31.
We have indicated the location of the two prime knots.
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knot. For a particular knot type consider all possible
embeddings in R3 where the knot is the center line of a
tube of uniform unit diameter. This curve has some
length. Now minimize this length over all embeddings of
this knot, subject to the tube not intersecting itself. Call
this the length of the knot. The minimizing conformation
is called the ideal representation of the knot. This is a
nice idea but there are some difficulties to be faced. The
conformation which minimizes the length may not be
unique in which case there is not a unique ideal repre-
sentation. At a more practical level, it is hard to know if
one has found the global minimum in the space of em-
beddings. One also has to worry about what properties
the tube, or the center line, should have. Should the
center line have continuous first derivative or continu-
ous first and second derivatives? Should it be smooth?
These questions have been examined by several groups.
The background and further references can be found in
papers by Diao and co-workers �Diao et al., 1997a,
1997b, 1999�. As mentioned in Sec. III.A.6, polymers
can have different degrees of flexibility and in this re-
spect it is interesting to explore the notion of ideal rep-
resentation of the knot for tubes with different flexibili-
ties. For example, it is reasonable to expect that the
more flexible the tube is the tighter the knot can be.
Buck and Rawdon �2004� have shown that this is, how-
ever, not always true since there a value of flexibility
beyond which more flexibility adds very little entangle-
ment.

There is an equivalent scheme in which one fixes the
length of the knot and asks for the maximum diameter
of a tube around the center line. This intrinsic property
of the knot is sometimes called the thickness of the knot
and the curve itself provides an ideal shape or represen-
tation of the knot type �Buck and Simon, 1997, 1999;
Litherland et al., 1999�. Approximations of ideal shapes
in this sense have been found via a series of computer
experiments �Katrich et al., 1996, 1997�. A simple char-
acterization of curve thickness is the notion of global
radius of curvature for a curve �Gonzalez and Maddocks,
1999�. This can be seen as a suitable three-body interac-
tion among triplets of points along the curve that leads
to a family of integral knot energies that do not require
explicit regularization and that can be more easily
implemented in models of polymers with a given thick-
ness �Maritan et al., 2000; Marenduzzo et al., 2005�.

The idea of an ideal knot has proved quite fruitful
�Stasiak et al., 1998�. We introduced the writhe of a
closed curve in Sec. III.A.8 when discussing ribbon mod-
els of duplex polymers. Since writhe is a property of a
curve, one can also ask for the writhe of an embedding
of a knot. If we fix the length of the embedding of a knot
of type � and average over all embeddings of � with this
length then 	Wr���
 will depend on the knot type �. If �
is an achiral knot then 	Wr���
=0. For chiral knots it has
been observed that 	Wr���
 is either independent of the
length of the curve or, at least, depends only weakly on
the length, going to a constant as the length increases
�Janse van Rensburg et al., 1997; Stasiak et al., 1998�.
There are strong positive correlations between the

writhe of an ideal knot, the average writhe of a knot on
the simple cubic lattice, and the writhe of a model of
circular DNA �Janse van Rensburg et al., 1998; Stasiak et
al., 1998�.

Another interesting feature of ideal knots is the so-
called quasiquantization of writhe. If one computes the
values of the writhe of the tightest conformations of
prime knots, their distribution turns out to be concen-
trated around multiples of 4/7 �Pieranski, 1998; Cerf and
Stasiak, 2000, 2003; Pieranski and Przybyl, 2001�. Inter-
estingly enough the quasiquantization phenomenon
seems to appear not only in the ideal representation but
also in random knots when the single writhe value is
replaced by its average value �Janse van Rensburg et al.,
1993, 1998�.

Finally, there is also a strong correlation between the
speed with which a knotted circular DNA molecule
moves through a gel under the influence of an applied
electric field and properties of the ideal representative
of a knot �Stasiak et al., 1996, 1998�.

VIII. DISCUSSION

In this review we have discussed how entanglements
in long linear and ring polymers can be investigated both
rigorously and numerically. These entanglements can oc-
cur in DNA and can have serious consequences for cel-
lular processes such as replication. There can be no
doubt that long synthetic polymers are also entangled
and that these entanglements affect crystallization and
rheological properties.

In order to make any useful statements about the
problem one must choose a suitable model of the poly-
mer and we have discussed several possibilities. For
some of these models it is possible to prove that most
sufficiently long ring polymers are knotted and what is
meant by “most” can be made precise. What is meant by
“sufficiently long” is more difficult and this question can
only be answered numerically. One can also ask how
badly knotted a ring polymer will be. There are various
measures of this topological entanglement complexity
and, using many of these measures, sufficiently long ring
polymers are very badly knotted.

We have also looked at the effects of geometrical con-
straints, adsorption, and flexibility on the knot probabil-
ity. In each case it is possible to make statements rigor-
ously about the asymptotic behavior but not about
smaller systems.

We have discussed numerical methods which are use-
ful in investigating models of knotting and described
some of the main results which come from these ap-
proaches. Extensions to linking and to ribbon models
have also been briefly considered.

It is much more difficult to address the question of the
dimensions of knotted polymers and we have reviewed
the numerical work in this area, focusing on the question
of whether knots are “tight” or “loose.”

The field has undergone a rapid development since
the late 1980s and we understand many features of knot-
ting and linking. Many questions remain to be answered
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and we have discussed some open problems which we
regard as being particularly interesting.

Our focus has been on equilibrium properties but
knotting and other entanglements can play an important
role in dynamics. An obvious example is in gel electro-
phoresis where the effect of knotting on the dynamics
can be used to identify the knot type. For linear poly-
mers there are interesting questions about the creation
and removal of entanglements �i.e., the knotting and un-
knotting of the linear chain� as a function of time. An-
other intriguing problem is the effect of topological con-
straints on the kinetics of the collapse of a polymer in
bad solvent �Nechaev, 1990; Grosberg and Nechaev,
1991�. These are interesting issues but they are beyond
the scope of this review.
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