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Recently, there has been much interest in a new kind of “unspeakable” quantum information that
stands to regular quantum information in the same way that a direction in space or a moment in time
stands to a classical bit string: the former can only be encoded using particular degrees of freedom
while the latter are indifferent to the physical nature of the information carriers. The problem of
correlating distant reference frames, of which aligning Cartesian axes and synchronizing clocks are
important instances, is an example of a task that requires the exchange of unspeakable information
and for which it is interesting to determine the fundamental quantum limit of efficiency. There have
also been many investigations into the information theory that is appropriate for parties that lack
reference frames or that lack correlation between their reference frames, restrictions that result in
global and local superselection rules. In the presence of these, quantum unspeakable information
becomes a new kind of resource that can be manipulated, depleted, quantified, etc. Methods have also
been developed to contend with these restrictions using relational encodings, particularly in the
context of computation, cryptography, communication, and the manipulation of entanglement. This
paper reviews the role of reference frames and superselection rules in the theory of
quantum-information processing.
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I. INTRODUCTION: WHY CONSIDER REFERENCE
FRAMES IN QUANTUM INFORMATION?

Classical information theory is typically concerned
with fungible information, that is, information for which
the means of encoding is not important. Shannon’s cod-
ing theorems, for instance, are indifferent to whether the
two values 0 and 1 of a classical bit correspond to two
values of magnetization on a tape, two voltages on a
transmission line, or two positions of a bead on an aba-
cus. Most information-processing tasks of interest to
computer scientists and information theorists are of this
sort, whether they be communication tasks such as data
compression, cryptographic tasks such as key distribu-
tion, or computational tasks such as factoring. Nonethe-
less, there are many tasks that cannot be achieved with
fungible information but that are also aptly described as
information processing tasks. Examples include the syn-
chronization of distant clocks, the alignment of distant
Cartesian frames, and the determination of one’s global
position. Imagine, for instance, that Alice and Bob are

in separate spaceships with no shared Cartesian frame
�in particular, no access to the fixed stars�. There is
clearly no way for Alice to describe a direction in space
to Bob abstractly, that is, using nothing more than a
string of classical bits. Rather, she must send to Bob a
system that can point in some direction, a token of one
of the axes of her own Cartesian frame. This token can-
not be spherically symmetric; it must have a degree of
freedom that can encode directional information. On
the other hand, if she wishes to synchronize her clock
with Bob’s by sending him a token system, she will need
to make use of a system that has a natural oscillation.
The information that is communicated in these sorts of
tasks is said to be nonfungible. These two sorts of infor-
mation, fungible and nonfungible, have also been re-
ferred to as speakable and unspeakable �Peres and
Scudo, 2002b�.

The relatively young field of quantum-information
theory has been primarily concerned with developing a
quantum theory of speakable information. Investigators
have sought to determine the degree of success with
which various abstract information-processing tasks can
be achieved assuming that the systems used to imple-
ment these tasks obey the laws of quantum theory.
Nonetheless, there has also been progress in developing
a quantum theory of unspeakable information, outlin-
ing, for instance, the success with which tasks such as
clock synchronization and Cartesian frame alignment
can be achieved in a quantum world.

That one must look to physics to answer questions of
interest to computer scientists is a fact that has not al-
ways been obvious. �Landauer �1993� summarized this
point in the slogan “Information is physical.”� That one
must look to physics to answers questions about the pro-
cessing of unspeakable information, on the other hand,
comes as no surprise. Nonetheless, the quantum theory
of unspeakable information is only just beginning to be
explored.

It is critical to note that when one has a system encod-
ing directional information, such as a spin-1 /2 particle in
a pure state, the direction is not defined with respect to
any purported absolute Newtonian space, but rather
with respect to another system, for instance, a set of
gyroscopes in the laboratory. Similarly, a system that
contains phase information, such as a two-level atom in
a coherent superposition of ground and excited states, is
not defined relative to any purported absolute time, but
rather relative to a clock. We refer to the systems with
respect to which unspeakable/nonfungible information is
defined, clocks, gyroscopes, meter sticks, and so forth, as
reference frames. The tasks we have highlighted thus far
can all be described as the alignment of reference
frames. Nonfungible information is nonfungible pre-
cisely because it can only be defined with respect to a
particular type of reference frame.

Even a quantum-information theorist who is uninter-
ested in tasks such as clock synchronization and Carte-
sian frame alignment must necessarily consider physical
systems which make use of reference frames. The reason
is that although fungible information can be encoded
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into any degree of freedom, and thus defined with re-
spect to any reference frame, it is still the case that some
degree of freedom must be chosen, and consequently
some reference frame is required. For instance, if a two-
level atomic qubit is being used for some task, one still
requires a clock in the background in order to imple-
ment arbitrary preparations and measurements on this
qubit even if the task is to perform abstract quantum-
information processing rather than as a means of distrib-
uting phase information. In this example, one can
change the relative phase between the ground and ex-
cited states of a two-level atom by a specified amount by
turning on a static electric field for a specific time inter-
val, but this requires a suitably precise clock as well as
alignment of the field with the atomic dipole moment.

It follows that to lack a reference frame for a particu-
lar degree of freedom has an impact on the success with
which one can perform certain quantum-information
processing tasks. On several occasions there has been
considerable controversy over the performance of cer-
tain tasks because this impact was ignored or not treated
properly. As we will see, the lack of a reference frame
can be treated within the quantum formalism as a form
of decoherence—quantum noise. As opposed to the typi-
cal source of decoherence, which is due to correlation
with an environment to which one does not have access,
this decoherence can be viewed as resulting from corre-
lation with a �possibly hypothetical� reference frame to
which one does not have access. This is a powerful re-
sult, because if the lack of a reference frame can be
viewed as a form of decoherence, the now-standard
techniques of combating decoherence in quantum-
information theory �in particular, the use of
decoherence-free subsystems� can be applied.

As it turns out, the restriction of lacking a reference
frame is mathematically equivalent to that of so-called
superselection rules—postulated rules forbidding the
preparation of quantum states that exhibit coherence
between eigenstates of certain observables. Originally,
superselection rules were introduced to enforce addi-
tional constraints to quantum theory beyond the well-
studied constraints of selection rules �conservation laws�.
They were considered to be axiomatic restrictions, ap-
plying to only certain degrees of freedom. For instance,
a superselection rule for electric charge asserts the im-
possibility of preparing a coherent superposition of dif-
ferent charge eigenstates. As we shall see, however, for
superselection rules associated with compact symmetry
groups, the presence of appropriate reference frames
can actually allow for the preparation of such superpo-
sition states, thereby obviating the superselection rules
in practice. This shows that there is an intimate connec-
tion between the restriction of lacking a reference frame
and that of a superselection rule.

As Schumacher �2003� has emphasized, interesting re-
strictions on experimental operations yield interesting
information theories. For instance, the fact that classical
channels and local operations are a cheap resource com-
pared to quantum channels leads us to study what can
be achieved with local operations and classical commu-

nication �LOCC�. The resulting information theory is
the theory of entanglement. As another example, the
relative ease with which one can implement Gaussian
operations in quantum optics leads one to consider the
information theory that results from the restriction to
these operations. By comparing and contrasting the in-
formation theories that result from various different re-
strictions we are led to a much broader perspective on
all of them. In particular, analogies between the result-
ing theories allow us to apply the insights gained in the
context of one to solve problems arising in the context
of another. In this sense, studying the restriction of a
superselection rule—or equivalently, as we shall demon-
strate, the restriction of lacking a reference frame—may
yield lessons for the rest of quantum-information theory.

In some cases, it is difficult to imagine lacking a refer-
ence frame. For example, Cartesian frames with preci-
sion on the order of fractions of a degree and clocks with
precision on the order of fractions of a second are suffi-
ciently ubiquitous that their presence typically does not
even warrant mention. However, these same reference
frames become quite difficult to prepare and maintain if
one requires very high precision or very good stability.
Furthermore, there are certain kinds of reference frames
that are difficult to prepare even if one requires only low
precision and poor stability. For instance, a Bose-
Einstein condensate of alkali atoms can act as a refer-
ence frame for the phase that is conjugate to atom num-
ber, and the reliable preparation of these has only been
achieved in the past decade. In addition, it is straightfor-
ward to imagine two parties with reference frames that
are uncorrelated �such as the example of the space-
faring Alice and Bob provided earlier�. In this case we
say that they lack a shared reference frame. All of these
facts demonstrate that reference frames must be consid-
ered as resources.

Regardless of the degree of freedom in question, a
reference frame is always associated with some physical
system. As such, it may be treated within the formalism
of quantum mechanics. In this case, we speak of quan-
tum reference frames. Indeed, one can imagine an ex-
treme case wherein the only system in a party’s posses-
sion that plays the role of a reference frame �or plays the
role of a shared reference frame with another party� is
of bounded size. For instance, one can imagine a quan-
tum clock consisting of an oscillator with a small maxi-
mum number of excitations, or a quantum gyroscope
consisting of a handful of spin-1 /2 systems. It is then
natural to ask how well such a bounded-size reference
frame approximates one that is of unbounded size.

The ability of a bounded reference frame to stand in
for an unbounded reference frame is analogous to the
ability of an entangled state to stand in for the possibil-
ity of implementing nonlocal operations. Recall that the
teleportation protocol permits entanglement and classi-
cal communication to substitute for a nonlocal opera-
tion. More generally, when one lacks the ability to per-
form nonlocal operations �such as when qubits are
remotely separated�, entanglement becomes a quantifi-
able resource. Similarly, when one is subject to a super-
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selection rule �i.e., when one lacks a reference frame for
some degree of freedom� bounded reference frames be-
come a quantifiable resource about which we can ask the
same sorts of questions as we do for entanglement. For
instance, we may ask the following questions: Which
states are interconvertible? How many states of a stan-
dard form can be distilled from a given state and how
many are required to form a given state? How much of
the resource is required for a given task? How quickly is
it used up? etc.

Finally, because it is all too easy to forget about the
presence of reference frames, these are at the root of
various conceptual confusions. These include the inter-
pretation of quantum states exhibiting coherence be-
tween number states in a single mode �a subject of con-
troversy in quantum optics, Bose-Einstein condensation,
and superconductivity�; the quantification of entangle-
ment in systems of bosons or fermions, or in situations
when operations are restricted; the efficiency with which
frames may be aligned, clocks synchronized, etc.; and
the significance of superselection rules on the possibility
of implementing various quantum-information process-
ing tasks.

In this paper, we provide a review of the recent inves-
tigations into these and related issues. In Sec. II, we in-
troduce the formalism for treating the lack of a general
reference frame in quantum theory, and show how this is
equivalent to a superselection rule. Section III considers
quantum-information processing without a shared refer-
ence frame. Section IV considers how to treat reference
frames within the quantum formalism, which provides
the starting point for a theory of distributing quantum
reference frames—the topic of Sec. V. The effect of
bounding the size of reference frames for quantum-
information processing is considered in Sec. VI. Finally,
we provide an outlook to the future of this field in Sec.
VII.

II. FORMALIZING REFERENCE FRAMES AND
SUPERSELECTION RULES

A. Reference frames in quantum theory

Reference frames �RFs� are implicit in the definition
of quantum states. For example, in the position repre-
sentation of the wave function of a quantum particle,
��x�, x parametrizes the position of the particle relative
to a spatial reference frame. More generally, the quan-
tum state of a system is a description of the system rela-
tive to a suitable reference frame.

Consider a quantum system with Hilbert space H,
prepared in a state ��0� relative to a reference frame. We
can now consider a transformation that changes this re-
lation. Such a transformation can be active, changing the
system such that it subsequently holds a different rela-
tion to the reference frame, or passive, in which case the
system is unchanged but is now described relative to a
new reference frame. In both situations, the transforma-
tion can be represented by a unitary operator T�g�,
where g denotes the transformation; the transformed

system is then described by the state T�g���0�. Note that
these operations can be composed, so that T�g�g�
�T�g��T�g� is a transformation if both T�g�� and T�g�
are, and this composition is associative �i.e.,
T�g�g��T�g�=T�g��T�g�g��. Also, there exists an inverse
transformation T�g−1� to every transformation T�g�, such
that T�g−1�T�g�=I, the identity. If this inverse is unique,1

the set of all transformations form a group G. We use
g�G to denote an abstract transformation within the
group, and say that T is the unitary representation of
this group on the quantum system �or, equivalently, on
the Hilbert space H�.

In this review, we will often use two common ex-
amples of a reference frame to illustrate the concepts
and ideas we cover. The first example is a phase refer-
ence, for which the relevant group of transformations is
U�1�, the group of real numbers modulo 2� under addi-
tion. A representation of U�1� on a quantum system de-
termines how that system transforms under phase shifts.
The second example that we use extensively in this re-
view is a Cartesian frame specifying three orthogonal
spatial directions; the group of transformations of orien-
tation relative to a Cartesian frame is the group of rota-
tions SO�3�. An element ��SO�3� can be given, say, by
a set of three Euler angles. The representation of SO�3�
on a quantum system then determines how that system
transforms under rotations; for example, a spin-j particle
transforms according to the unitary representation Rj �a
Wigner rotation matrix�. We will often extend the group
of rotations SO�3� to the group SU�2� to allow for spinor
representations.

Because group theory provides a powerful math-
ematical tool for analyzing the role of reference frames
in quantum systems, we make frequent use of group-
theoretic techniques throughout this review. We present
a short introduction to the relevant techniques in this
section, but the reader may consult a standard group
theory text, such as Fulton and Harris �1991� or Stern-
berg �1994�, for further details. Also, for an introduction
to the standard mathematical techniques of quantum in-
formation, we direct the reader to Nielsen and Chuang
�2000�.

We begin by exploring an illustrative example.

B. Lacking a phase reference implies a photon-number
superselection rule

In this section, we investigate an explicit example of a
reference frame—a phase reference—and demonstrate
that if one lacks a phase reference then the resulting
quantum theory is equivalent to one in which there is a
superselection rule for photon number.

1If the inverse is not unique, then the RF is instead associated
with a coset space. This situation occurs when the RF itself is
invariant under some transformations. We consider an ex-
ample of such an RF—a direction �as opposed to a full Carte-
sian frame�—in Sec. V.
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In quantum optical experiments, states of an optical
mode are always referred to some phase reference. Con-
sider K optical modes as described by some party, Alice,
relative to a phase reference in her possession—for ex-
ample, a high intensity laser. Let �n1 , . . . ,nK� be the Fock
state basis for the Hilbert space H�K� describing these
modes, with ni the number of photons in the mode i, and

N̂i the number operator for this mode.
Consider another party, Charlie, who has a different

phase reference. Let � be the angle that relates Charlie’s
phase reference to Alice’s. Alice can perform an active
transformation on her system of optical modes by allow-
ing them to evolve under a Hamiltonian proportional to

N̂tot��i=1
K N̂i, the total photon-number operator. Specifi-

cally, the unitary transformation U���=exp�i�N̂tot� will
actively advance her system by an angle �. Using the
equivalence between the representations for active and
passive transformations, we thus conclude that states
prepared by Alice are represented by Charlie relative to
his phase reference by performing a passive transforma-
tion of �, using the representation U of U�1� on K

modes given by U���=exp�i�N̂tot�. If ��� is the state
relative to Alice’s phase reference, then this same state
relative to Charlie’s phase reference is given by the
transformed state

U������ = ei�N̂tot��� . �2.1�

For example, let Alice prepare the single-mode coher-
ent state

��� � �
n=0

�

cn�n�, cn � e−���2/2 �n

	n!
, �2.2�

with ��C; this state has a phase arg��� relative to Al-
ice’s phase reference. Charlie would describe this same
state relative to his phase reference by a coherent state
with the same amplitude but with phase arg���+�. This
passive transformation agrees with that of Eq. �2.1� be-
cause

�ei��� = ei�N̂��� , �2.3�

where N̂ is the number operator on this single mode.
As another example, let Alice prepare the two-mode

state ��01�+ �10�� /	2. Because this state is an eigenstate

of N̂tot, the transformation U��� induces only an unob-
servable overall phase when acting on this state. Thus
Charlie also represents the state of the system as ��01�
+ �10�� /	2 relative to his phase reference. This two-mode
state is an example of an invariant state; it is defined
independently of any phase reference.

It will be useful for us to decompose the Hilbert space
H�K� of K modes into subspaces that transform in a
simple way under the action of the group U�1� as fol-
lows. Defining Hn to be the Hilbert space consisting of
states of K modes with precisely n total photons, i.e.,

eigenspaces of N̂tot with eigenvalue n, we can express
the Hilbert space H�K� as a direct sum

H�K� = �
n=0

�

Hn. �2.4�

Any state ��n��Hn transforms under phase shifts, i.e.,
under the representation U of U�1�, as

U�����n� = ein���n�, ��n� � Hn. �2.5�

Define �n to be the projector onto Hn. Then an arbi-
trary state ����H�K� transforms as

U������ = �
n

ein��n��� . �2.6�

Now consider the situation where Charlie has no
knowledge of the angle � that relates his phase refer-
ences to Alice’s, i.e., the laser serving as his phase refer-
ence is not phase locked to hers.2 Let Alice prepare a
quantum state ��� of K modes relative to her phase ref-
erence. Given that � is completely unknown, one must
average over its possible values to obtain the state rela-
tive to Charlie. This averaging yields the mixed state

U����
��� � �
0

2� d�

2�
U������
��U���†. �2.7�

Using Eq. �2.6� yields

U����
��� = �
0

2� d�

2� �
n,n�

ein��n���
���n�e
−in��

= �
n,n�

�n���
���n���
0

2� d�

2�
ei�n−n���

= �
n

�n���
���n. �2.8�

Because this result applies to any state ���, we can ex-
press the action of U on an arbitrary density operator 	
as

U�	� = �
n

�n	�n. �2.9�

The map U removes all coherence between states of dif-
fering total photon number on Alice’s systems. It follows
in particular that U�	� is invariant under phase shifts,

†U�	�,U���‡ = 0, ∀ � . �2.10�

Thus if states are described relative to Charlie’s phase
reference, Alice faces a restriction in what she can pre-

2It should be noted that if the phase between Alice and Char-
lie’s references is changing in time in a known manner, then the
transformation relating their descriptions is still of the form of
Eq. �2.1� but with � a function of time. Given that this function
is known, the parties can compensate for this effect. However,
a lack of knowledge of how this phase is changing, for instance,
an unknown drift, can eventually lead to Alice and Charlie
having no information about the relative phase between their
references. In such a situation, the time scale of the drift rela-
tive to the operations they perform is critical; a slow drift may
have negligible effect on a quick protocol.
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pare. This restriction is characterized by the quantum
operation U, which ensures that Charlie will describe
any state prepared by Alice as block diagonal in total
photon number, or equivalently as invariant under phase
shifts. We note in particular that the only pure states
that Alice can prepare are those which lie entirely within
a single eigenspace Hn.

Now consider the following related question for op-
erations: If a unitary operation V is performed by Alice
relative to her phase reference, how is this operation
described by Charlie relative to his phase reference? Let

 be the state of the system relative to Charlie’s phase
reference. To describe the action of V on this state if the
angle � that relates Charlie’s phase reference to Alice’s
is known, Charlie could transform this state into Alice’s
frame, then apply the unitary V, then transform back to
his frame; the resulting state is

U���VU���†
U���V†U���† �2.11�

relative to Charlie. Thus the operation is described by
Charlie by the unitary V�=U���VU���†. If the phase �
is unknown, then Charlie would instead describe the op-
eration by an incoherent mixture of unitaries of this
form, i.e., by the map

Ṽ�
� � �
0

2� d�

2�
U���VU���†
U���V†U���†. �2.12�

A notable special case is if the system was prepared by
Alice, so that the state 
 relative to Charlie’s RF is of
the form 
=U�	�, as in Eq. �2.9�. In this case,

Ṽ�
� = U�V
V†� , �2.13�

so that Ṽ�
� is also block diagonal in total photon num-
ber. Thus if operations are described relative to Charlie’s
phase reference, then Alice experiences a restriction on
what operations she can perform.

We note that a restriction that requires states to be
block diagonal in the eigenspaces of some operator is
common in quantum theory: it is formally equivalent to
a superselection rule �SSR� �Giulini, 1996�. Many super-
selection rules in nonrelativistic quantum theory, such as
the superselection rule for charge �Wick et al., 1952� are
characterized by an inability to prepare states with co-
herence between eigenspaces of some charge operator
corresponding to different eigenvalues. Thus we can re-
fer to the restriction described above as a superselection
rule for photon number �Sanders et al., 2003�. Alice can-
not prepare, say, a coherent state ��� relative to Charlie’s
phase reference, but she can prepare a phase-invariant
state such as ��01�+ �10�� /	2. In addition, she cannot per-
form the unitary displacement operation that takes the
vacuum �0� to a coherent state ���, but she can perform
any unitary operation on the two-dimensional subspace
spanned by �01� and �10�.

We note that in the present context the SSR only re-
stricts preparations and operations by Alice �or any
party who does not share Charlie’s phase reference�. The
SSR does not forbid states with coherence between dif-
ferent total photon-number eigenstates from existing
within the theory, and, in particular, Charlie �or any
party who shares Charlie’s phase reference� experiences
no such restriction on what states he can prepare. Thus
it makes sense within this context to consider what ma-
nipulations Alice can perform under the restriction of an
SSR on general �possibly coherent� states. For example,
Alice can perform the relative phase shift which takes
the state ��0�+ �1�� /	2 to ��0�− �1�� /	2. Also, we note that
Alice is able to �incoherently� change the total photon
number, i.e., she can perform an operation that maps the
vacuum �0� to the single-photon state �1�. Thus this re-
striction is not equivalent to a conservation law for pho-
ton number.

C. A general framework for reference frames and
superselection rules

In this section, we consider how to generalize the ba-
sic idea of the previous section—that lacking a reference
frame leads to a superselection rule—beyond the case of
a phase reference. We present some formal mathemati-
cal tools, in particular, tools from group theory and lin-
ear algebra, that we will use throughout this review pa-
per.

Suppose two parties, Alice and Charlie, are consider-
ing a single quantum system described by a Hilbert
space H. Let this system transform via a group G rela-
tive to some reference frame. Throughout this review,
we consider both finite groups and continuous �Lie�
groups. For the latter, we will restrict our attention to
Lie groups that �i� are compact, so that they possess a
group-invariant �Haar� measure dg; and �ii� act on H via
a unitary representation T, ensuring that they are com-
pletely reducible �Sternberg, 1994�. Many of the tech-
niques in this review can be applied to other groups with
some modification, but there are many technical difficul-
ties which are beyond its scope.

Let g�G be the group element relating Charlie’s ref-
erence frame to Alice’s, i.e., the element in G that de-
scribes the passive transformation from Alice’s to Char-
lie’s reference frame. Furthermore, suppose that g is
completely unknown, i.e., that Alice’s reference frame
and Charlie’s are uncorrelated. It follows that if Alice
prepares a state 	 on H relative to her frame, the state of
the system is represented relative to Charlie’s frame by
the state3

3The invariant measure is chosen using the maximum entropy
principle: because Charlie has no prior knowledge about Al-
ice’s reference frame, he should assume a uniform measure
over all possibilities.
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	̃ = �
G

dgT�g�	T†�g� � G�	� , �2.14�

with T�g� a unitary representation of g on H, and dg the
group-invariant �Haar� measure.4 We call the operation
G the ‘‘G-twirling’’ operation. If we choose to always
represent preparations by Alice relative to the reference
frame of Charlie, then all states are of the form 	̃
=G�	�.

Any 	̃ of this form satisfies

�	̃,T�g�� = 0, ∀ g � G �2.15�

and thus is said to be G-invariant. The proof follows
from the fact that T�g�	̃T†�g�=�Gdg�T�gg��	T†�gg��= 	̃.

Let B�H� denote the set of all bounded operators on
H. Given that B�H� forms a Hilbert space under the
Hilbert-Schmidt inner product �
 ,��=Tr�
†��, linear
maps can be regarded as operators acting on B�H�.
These are called superoperators to distinguish them from
operators acting on H. It is useful to define the superop-
erator T�g� by T�g��	�=T�g�	T†�g�, which is the unitary
representation of G on B�H�. We may then express G
simply as G=�GdgT�g�.

We now consider the representation of transforma-
tions. The most general transformation upon a quantum
system, i.e., the most general quantum operation, is rep-
resented by a completely positivity-preserving superop-
erator E :B�H�→B�H�. �See Nielsen and Chuang �2000�
for the definition and properties of these superopera-
tors.� The question of interest to us is the following: If an
operation is represented by the superoperator E relative
to Alice’s frame, how is this same operation represented
relative to Charlie’s frame? Generalizing the justification
given for Eq. �2.12� in the case of a phase reference, we
conclude that relative to Charlie’s frame the operation is

represented by the superoperator Ẽ, where

Ẽ�	� = �
G

dgT�g�E�T†�g�	T�g��T†�g� , �2.16�

or, equivalently,

Ẽ = �
G

dgT�g� � E � T�g−1� , �2.17�

where A �B�	�=A†B�	�‡. Given that T�g� is a represen-
tation of G on B�H�, Eq. �2.17� has the form of Eq.
�2.14� except with operators replaced by superoperators.

We therefore refer to the map taking E to Ẽ as super-G-

twirling. Any superoperator of the form of Ẽ satisfies

�Ẽ,T�g�� = 0, ∀ g � G , �2.18�

where �A ,B�=A �B−B �A is the superoperator commu-

tator. Thus Ẽ is invariant under the action of G; it is a
G-invariant operation.

The superoperator Ẽ acts on a G-invariant operator Ã
as

Ẽ�Ã� = �
G

dgT�g� � E � T�g−1�†G�Ã�‡

= �
G

dgT�g� � E � G�Ã� = G � E � G�Ã� , �2.19�

where we have used the fact that Ã=G�Ã� and T�g−1�
�G=G.

Every completely positivity-preserving superoperator
admits an operator-sum decomposition of the form
E�	�=�kAk	Ak

† where the Ak are called Kraus operators.
Clearly, a sufficient condition for an operation E to be a
G-invariant operation is for all of its Kraus operators Ak
to be G-invariant operators. In general, however, this is
not a necessary condition. Note, in particular, that if V is
a unitary operator that is G-invariant, then V�·�
=V�·�V† is a G-invariant superoperator and the associ-
ated unitary transformation can be implemented with-
out an RF. Nonetheless, there may exist G-invariant su-
peroperators arising from G-noninvariant unitary
operators.

Finally, we consider the representation of measure-
ments. The most general measurement on a quantum
system is represented by a set of completely positivity-
preserving superoperators �Ek�, the sum of which is
trace-preserving. The probability of outcome k for the
measurement is pk=Tr�Ek�	�� and upon obtaining this
outcome, 	 is updated to Ek�	� /pk. The probability of
outcome k may also be specified by pk=Tr�Ek	� where
the set �Ek� is a positive operator valued measure
�POVM� �defined by the conditions Ek�0 and �kEk=I�.
The POVM �Ek� that is associated with a measurement
is obtained from the set of superoperators �Ek� associ-
ated with it by Ek=Ek

†�I�, where the adjoint of a super-
operator is defined relative to the Hilbert-Schmidt inner
product on the operator space, Tr„E†�
��…=Tr„
E���….

Recalling how operations transform under a change of
reference frame, if a measurement is represented by the
set of superoperators �Ek� relative to Alice’s frame, then

it is represented by the set of superoperators �Ẽk� rela-

tive to Charlie’s, where Ẽk is given by Eq. �2.17�. Taking
the superoperator adjoint of Eq. �2.17�, and using the
fact that Ek=Ek

†�I�, it follows that the POVM �Ek� rela-

tive to Alice’s frame is represented by the POVM �Ẽk�
relative to Charlie’s frame where

Ẽk = G�Ek� . �2.20�

It follows that

4If the group G is instead a finite group, this expression is
Gfinite�	���G�−1�g�GT�g�	T†�g�. In the following, we use the
Lie group notation exclusively; however, all results apply
equally well to finite groups.
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�Ẽk,T�g�� = 0, ∀ g � G , �2.21�

that is, the POVM �Ẽk� is G-invariant.
Thus relative to Charlie’s reference frame, the prepa-

rations, operations, and measurements that Alice can
implement are represented by states, superoperators,
and POVMs of the form of Eqs. �2.14�, �2.17�, and �2.20�,
respectively. We now demonstrate that this restriction
has the same mathematical characterization as that of a
superselection rule for a �possibly non-Abelian� group
G.

First, we note that the representation T of the group
G allows for a decomposition of the Hilbert space into
charge sectors Hq, labeled by an index q, as

H = �
q

Hq, �2.22�

where each charge sector carries an inequivalent repre-
sentation Tq of G. In the U�1� phase reference example
presented above, the charge sectors corresponded to
eigenspaces of total photon number. Each sector can be
further decomposed into a tensor product,

Hq = Mq � Nq, �2.23�

of a subsystem Mq carrying an irreducible representa-
tion �irrep� Tq of G and a subsystem Nq carrying a trivial
representation of G. �Recall that a representation acts
irreducibly on a space if there are no invariant sub-
spaces.� Note that this tensor product does not corre-
spond to the standard tensor product obtained by com-
bining multiple qubits: it is virtual �Zanardi, 2001�. The
spaces Mq and Nq are therefore virtual subsystems. The
Mq and Nq are sometimes referred to as gauge spaces
and multiplicity spaces, respectively.5 For the U�1� phase
reference example, the subsystems Mq are one dimen-
sional, and so the additional tensor product structure
within the irreps is not required; for a general superse-
lection rule corresponding to a non-Abelian group G,
however, they can be nontrivial.

Expressed in terms of this decomposition of the Hil-
bert space, the map G takes a particularly simple form.
Because of the broad utility of this form, we present it as
a theorem.

Theorem. The action of G in terms of the decomposi-
tion

H = �
q

Mq � Nq, �2.24�

is given by

G = �
q

�DMq
� INq

� � Pq, �2.25�

where Pq is the superoperator associated with projection
into the charge sector q, that is, Pq�	�=�q	�q with �q
the projection onto Hq=Mq � Nq, DM denotes the
trace-preserving operation that takes every operator on

the Hilbert space M to a constant times the identity
operator on that space, and IN denotes the identity map
over operators in the space N.

We provide a short proof of this theorem at the end of
this section.

Note that the operation G has the general form of
decoherence. Whereas decoherence typically describes
correlation with an environment to which one does not
have access, in this case the decoherence describes cor-
relation to a reference frame to which one does not have
access. Given that G acts as identity on subsystems Nq,
these subsystems are called decoherence-free sub-
systems �also known as noiseless subsystems� �Zanardi
and Rasetti, 1997; Knill et al., 2000�. In stark contrast, G
acts as the completely depolarizing operation on the
subsystems Mq; these are called decoherence-full sub-
systems �Bartlett et al., 2004a�.

It follows, in particular, that a G-invariant operator

Ã=G�A� must have the form

Ã = �
q

IMq
� ANq

, �2.26�

where IMq
are identity operators on the subsystems Mq

and ANq
are arbitrary operators on the subsystems Nq.

We are now in a position to see how the restriction of
lacking a reference frame for the group G is equivalent
to the standard notion of a superselection rule associ-
ated with this group. Superselection rules are most com-
monly discussed in the context of Abelian groups where
they can be described simply as a restriction of the
physical states and observables to those that are block
diagonal with respect to the inequivalent representa-
tions of G �Giulini, 1996�. �Occasionally, this restriction
is argued to hold for the observables alone, but in this
case every state that is not restricted in this way is op-
erationally indistinguishable from a state that is, so one
may as well assume this restriction for the states also.�
The standard notion of a superselection rule for an ar-
bitrary �possibly non-Abelian� group G is a restriction of
the physical states and observables to those that com-
mute with every element of G �Giulini, 1996�. This re-
striction on states is precisely what is asserted in Eq.
�2.15�, and the restriction on observables is simply Eq.
�2.21� applied to the special case of a projective mea-
surement. The restriction on transformations has tradi-
tionally only been articulated for unitary transforma-
tions and asserts that only G-invariant Hamiltonians are
physical. This is equivalent to asserting that the unitary
itself be G invariant, and such unitaries were identified
above as the only ones that can be achieved when lack-
ing an RF for the group G. Equation �2.18� is a gener-
alization of this restriction to irreversible transforma-
tions. Thus one can view the restrictions of Eqs. �2.15�,
�2.18�, and �2.21� as formalizing the restrictions of a su-
perselection rule associated with the group G in the lan-
guage of quantum-information theory. We shall say that
the restriction due to the lack of a reference frame for G
is equivalent to a superselection rule associated with the
group G.

5In high-energy physics, Mq are called color spaces and Nq
are called flavor spaces.
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We note that although the term ‘‘superselection rule’’
was initially introduced to describe an axiomatic restric-
tion on quantum states, observables, and operations
�Wick et al., 1952�, it has been emphasized by Aharonov
and Susskind �1997� that whether or not coherent super-
positions of a particular observable are possible is a
practical matter, depending on the availability of a suit-
able reference system. We return to this issue in Sec. IV.

Finally, although we have thus far mentioned only the
two limiting possibilities for the correlations that might
hold between Alice and Charlie’s reference frames—
completely correlated or completely uncorrelated—in
general one might consider the intermediate scenario
wherein they are partially correlated. To model this, one
replaces the uniform Haar measure appearing in Eq.
�2.14� with the nonuniform measure that characterizes
Charlie’s partial knowledge of the group element g in
order to obtain a weighted G-twirling operation. Like
G-twirling, this operation is noiseless on the multiplicity
spaces, but unlike G-twirling, which is completely deco-
hering on the gauge spaces, the weighted G-twirling op-
eration is only partially decohering on these spaces.

Proof of Theorem 1. Our proof, which follows Nielsen
�2003�, makes use of two central theorems of group rep-
resentation theory known as Schur’s lemmas. We state
these lemmas here without proof.

Lemma (Schur’s first). If T�g� is an irreducible repre-
sentation of the group G on the Hilbert space H, then
any operator A satisfying T�g�AT†�g�=A for all g�G is
a multiple of the identity on H.

Lemma (Schur’s second). If T1�g� and T2�g� are in-
equivalent representations of G, then T1�g�AT2

†�g�=A
for all g�G implies A=0.

We begin by decomposing the representation T�g� ap-
pearing in Eq. �2.14� into a sum of irreducible represen-
tations T�g�= �q,Tq,�g�, where q labels inequivalent ir-
reps and  is a multiplicity index. It follows that

G�A� = �
q,q�,,�

� dgTq,�g�ATq�,�
† �g� . �2.27�

Define Aq,q�,,�=�dgTq,�g�ATq�,�
† �g�. Because of the

invariance of the measure dg, it follows that

Tq,�g�Aq,q�,,�Tq�,�
† �g� = Aq,q�,,�, ∀ g � G .

�2.28�

Thus, by Schur’s second lemma, Aq,q�,,�=0 for q�q�.
Equation �2.27� can then be expressed as

G�A� = �
q,,�

� dgTq,�g�ATq,�
† �g� . �2.29�

Let �q, be the projection of H onto the carrier space of
Tq,, and let �q=��q,. Then the above equation can
be expressed as

G�A� = �
q,,�

� dgTq,�g��qA�qTq,�
† �g� , �2.30�

and thus we can express G as

G = �
q

Gq � Pq, �2.31�

where Gq�Aq�=�,��dgTq,�g�AqTq,�
† �g� is a superop-

erator on Hq, and recall that Pq�A�=�qA�q.
We now determine the form of Gq in terms of the

tensor product structure Hq=Mq � Nq. The projector
�q, can be expressed in terms of this tensor product as
�q,=�Mq

� �, where �Mq
is the projector onto Mq,

and � is the rank-1 projector on Nq that picks out the
representation  of G. The rank-1 projectors � form a
basis for Nq, so that �� is the identity on Nq. Given
that Tq�g� acts nontrivially only on Hq, we can write
Tq,�g�=Tq�g� � �. It follows that

G�A� = �
q,,�

� dg�Tq�g� � ���qA�q�Tq
†�g� � ���

= �
q
� dg�Tq�g� � �



��qA�q�Tq
†�g�

� �
�

��
= �

q
�GMq

� INq
� � Pq�A� , �2.32�

where the superoperator GMq
takes an operator B on

Mq to GMq
�B�=�dgTq�g�BTq

†�g�. By Schur’s first lemma,
GMq

�B� is a multiple of identity on Mq. Therefore be-
cause the map G is trace preserving GMq

=DMq
, the

trace-preserving map that takes every operator on Mq
to a constant times the identity on Mq. �

III. QUANTUM INFORMATION WITHOUT A SHARED
REFERENCE FRAME

In implementing multipartite cryptographic and com-
munication tasks using quantum systems, it is generally
presumed, at least implicitly, that all parties share per-
fect reference frames for all relevant degrees of free-
dom. Moreover, one might think that in order to achieve
some or all of these tasks, they must share such refer-
ence frames; for instance, one might think that if they
wish to achieve quantum communication using the Fock
space of an optical mode, they must share a phase ref-
erence, and if they wish to do so using spin-1 /2 systems,
they must share a reference frame for spatial orienta-
tion. This impression is mistaken; quantum-information
processing tasks can be achieved without first establish-
ing a shared reference frame by using entangled states of
multiple systems, that is, relational encodings.

A classical analog is elucidating. If two parties do not
share a Cartesian frame, then they cannot communicate
any classical information to one another through encod-
ings in the directional degree of freedom of a system.
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For instance, if Alice encodes information into the ori-
entation, relative to her frame, of a physical arrow or
gyroscope, Bob cannot access this information because
he can compare the system with his frame only. None-
theless, they can still communicate by encoding informa-
tion in the relative orientations of two or more such
systems. We shall be concerned with the quantum ana-
log of such relational encodings.

The essential idea is to use the result, presented in
Sec. II, that the effect of lacking a shared RF can be
expressed as a form of decoherence. We then make use
of the techniques of decoherence-free subspaces and
subsystems �Zanardi and Rasetti, 1997; Knill et al., 2000;
Kempe et al., 2001� to find quantum states that are pro-
tected from the noise. These techniques �and variants
thereof� can be interpreted as yielding relational encod-
ings. They are in fact ideally suited to the problem of
overcoming the lack of a shared RF because the exis-
tence of decoherence-free subspaces and subsystems re-
lies on there being nontrivial symmetries in the noise,
something that may not occur for a realistic noise model,
but which is guaranteed to occur in the present context.
For instance, in order to redescribe, relative to one RF, a
qubit state that is defined relative to a second, uncorre-
lated RF, one must apply to it an unknown unitary. To
redescribe, relative to this RF, many qubits that were all
prepared relative to the same RF, one must apply pre-
cisely the same unitary to each.

We begin in Sec. III.A by applying these techniques
and others to determine the efficiency with which classi-
cal and quantum communication can be performed in
the presence of such noise. The implications for quan-
tum key distribution are discussed in Sec. III.B. We also
discuss the important issue of sharing entanglement be-
tween two parties who lack a shared RF; we demon-
strate in Sec. III.C that a rich structure emerges in bipar-
tite entanglement of pure states when this restriction
applies. Finally, in Sec. III.D, we investigate the crypto-
graphic power of private shared RFs, where it is as-
sumed that it is an eavesdropper Eve who fails to have a
sample of Alice and Bob’s RF.

A. Communication without a shared reference frame

1. Communication using photons without a shared phase
reference

Consider the following problem: Alice wants to com-
municate some amount of classical or quantum informa-
tion to Bob using an optical channel, i.e., using quantum
states of some number of optical modes, when they do
not share a phase reference. Using the formalism of Sec.
II.B, a state 	 prepared by Alice is represented by Bob
as the �generally mixed� state U�	�=�n�n	�n. This
problem thus takes the form of a more standard one
from quantum communication: how to communicate
quantum or classical information through a noisy chan-
nel described by a decoherence map U.

The communication may be constrained in some ad-
ditional way, such as by a limit on the number of usable

optical modes, or by an energy limit that bounds the
maximum number of photons that can be transmitted, or
both. Because of these constraints, Alice and Bob wish
to use a communication protocol that makes optimal use
of these resources.

Let us first consider classical communication. The sim-
plest possible problem is the one wherein Alice is re-
stricted to sending at most one photon to Bob, using a
single optical mode. Clearly, using such a channel, Alice
can communicate a single classical bit to Bob by sending
either a single photon �1� or no photon �the vacuum� �0�.6

This protocol does not rely on Alice and Bob sharing a
phase reference, because both the states �0� and �1� are
invariant under the superoperator U. Generalizing this
result, if Alice can send at most N photons in a single
mode, she can communicate N+1 classical messages
�equivalently, log2�N+1� classical bits� to Bob. With K
�1 modes, one has to consider all possible ways of dis-
tributing N photons among K modes. The dimension of
the resulting Hilbert space is �N+K�! /N!K!, and speci-
fies the number of classical messages Alice can commu-
nicate using eigenstates of photon number.

What about quantum communication? Again, con-
sider a situation wherein Alice is restricted to sending at
most a single photon to Bob using a single optical mode.
Any state 	1 Alice prepares must then have support on
the qubit Hilbert space spanned by ��0�, �1��, and any
such state is represented by Bob as U�	1�=p0�0�
0�
+p1�1�
1� for pi= 
i�	1�i�, i.e., as an incoherent mixture of
the zero- and one-photon states. Any qubit state is com-
pletely depolarized according to Bob. Thus quantum
communication cannot be performed by using only a
single mode with at most one photon. This negative re-
sult is one of many disadvantages to this encoding of a
qubit into states spanned by �0� and �1�, known as the
“single-rail” encoding �Kok et al., 2007�. Clearly, no
quantum communication can be performed using any
number of photons in a single mode, because Bob rep-
resents all states prepared by Alice as being diagonal in
the photon-number basis.

Now consider the case where Alice can make use of
two modes in her communication to Bob. Noting that
Bob will represent any preparation by Alice as block
diagonal in the eigenspaces of total photon number, Al-
ice should prepare states lying in just one of these
eigenspaces if she wishes to communicate quantum in-
formation. For example, the one-photon eigenspace of
two modes �labeled a and b� is two dimensional, and a
general pure state on this eigenspace has the form

���n=1 = ��1�a�0�b + ��0�a�1�b, �3.1�

for � ,��C satisfying ���2+ ���2=1. Any such state satis-
fies U����1
���= ���1
��; this two-dimensional subspace is

6Such an encoding is not feasible in practice, because all
photon-based communication schemes rely on obtaining a de-
tector event �a “click”� for every message. Specifically, the de-
tection of the vacuum cannot be discriminated from an event
where the photon is lost, or missed by the detector.
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a decoherence-free subspace of U. Using states of this
form, Alice can communicate a single qubit to Bob with-
out requiring a shared phase reference. We note that this
encoding is the commonly used “dual-rail” encoding of
optical quantum computing �Kok et al., 2007�. Evidently,
to communicate quantum information using at most N
photons in M modes without a shared phase reference,
Alice and Bob should make use of the eigenspace of
total photon number N� �N��N� that has the largest
dimension. This eigenspace is the one corresponding to
N�=N, and has dimension �N+K−1�! /N!�K−1�!.

Using multiple modes of the optical field raises addi-
tion issues regarding the use of reference frames, de-
pending on how these modes are identified, and this can
lead to a much richer structure. For example, in the
dual-rail encoding of Eq. �3.1�, the modes a and b could
represent different spatial or temporal modes, in which
case Alice and Bob would require a shared Cartesian
frame or a clock in order to identify these modes. An-
other common implementation for this encoding is for a
and b to represent the two polarization modes of the
single photon �for example, horizontal and vertical
polarization�—a so-called “polarization encoding” �Kok
et al., 2007�. For Alice and Bob to share quantum infor-
mation using such an encoding, although they do not
need to share a phase reference, they do need to share a
reference frame for polarization, i.e., to agree on an axis
for their polarizing materials that are used to prepare,
manipulate, and measure such states. The efficiencies of
general schemes for transmitting quantum information
via the polarization and phase of optical modes when
parties do not share a reference frame for polarization
have been fully characterized �Ball and Banaszek, 2005,
2006�.

Recently, optical quantum-information experiments
have made use of the spatial mode structure of light
�Mair et al., 2001; Vaziri et al., 2003; Langford et al.,
2004�; use of this degree of freedom requires a shared
reference frame for both position and orientation. Using
spatial modes, it is possible to restrict attention to states
of a single photon with a fixed orbital angular momen-
tum �the standard basis for which is the Laguerre-Gauss-
Vortex modes �Siegman, 1986��. Encodings into a sub-
space of fixed orbital angular momentum will be
invariant under rotations about the direction of propa-
gation, and thus will not require a shared reference
frame for orientation about this direction. These encod-
ings do require a shared reference frame for the direc-
tion of propagation, and also a precise determination of
the separation between parties in order to compensate
for the relative phase �Gouy shift� acquired between dif-
ferent states of fixed orbital angular momentum during
propagation �Spedalieri, 2004�.

2. Communication without a shared Cartesian frame

We now turn our attention to the problem of how
Alice and Bob can perform both classical and quantum
communication through the exchange of spin-1 /2 sys-
tems �qubits� when they lack a shared Cartesian frame

�Bartlett et al., 2003�. This problem has a much richer
structure than the phase-reference case investigated
above, due to the existence of decoherence-free sub-
systems �rather than subspaces�. For simplicity, we con-
sider a noiseless channel that transmits these spin-1 /2
systems from Alice to Bob; these results can be ex-
tended to noisy channels or higher-dimensional �spin
�1/2� systems �Byrd, 2006; van Enk, 2006�.

The group of transformations of orientation relative
to a Cartesian frame is SO�3�, which we will extend to
SU�2� to allow for spinor representations. We will de-
note an element of SU�2� by �, which might represent,
for instance, a set of three Euler angles. In the case of a
single spin-1 /2 system, the Wigner rotation operators
R��� provide an irreducible representation of SU�2�. If
Alice sends N spin-1 /2 systems to Bob, and she de-
scribes these, relative to her Cartesian frame, by 	 then
Bob describes these same spins relative to his Cartesian
frame by

EN�	� =� d�R����N	R†����N. �3.2�

That is, he averages over all passive rotations that might
relate his frame to Alice’s, and every rotation acts on
each of the N spins identically as R����N because each
spin experiences the same rotation by virtue of the fact
that each is prepared relative to the same Cartesian
frame. We refer to this representation of SO�3� as col-
lective. Thus Bob’s lack of Alice’s Cartesian frame has
the same effect as collective noise on the channel. It is
still possible for Alice and Bob to communicate by en-
coding in the relational degrees of freedom of the qu-
bits, as we shall see.

The problem of determining the communication ca-
pacities in the presence of this restriction is simple if we
decompose the Hilbert space in the manner dictated by
Eqs. �2.22� and �2.23�. We begin with some simple ex-
amples, illustrating the basic techniques and some few-
qubit schemes for classical and quantum communica-
tion, before presenting the general results.

a. One transmitted qubit

Given that R��� is an irreducible representation on
H1/2, by Schur’s lemma, the SU�2� twirling on one qubit
is equivalent to the completely depolarizing operation,

E1 = DH1/2
. �3.3�

Thus if Alice prepares a single qubit in the state 	 and
transmits it to Bob, he represents the state of this re-
ceived qubit as the completely mixed state

E1�	� =
1
2

I . �3.4�

Consequently, Bob can infer nothing about 	 from the
outcome of any measurement. So, without a shared RF,
Alice cannot communicate any information to Bob using
only a single qubit.
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b. Two transmitted qubits: A classical channel

The unitary representation R����2 of SU�2� is reduc-
ible. To decompose it into irreducible representations,
we briefly review the representation theory of SU�2�.

The inequivalent representations of SU�2� are labeled
by the total angular momentum J2 quantum number j.
The carrier spaces of these representations are the
charge sectors Hj. The carrier spaces of the irreducible
representations, the gauge spaces, are denoted as Mj.
Such spaces have dimensionality 2j+1, and may be de-
composed into a basis �j ,m� of eigenstates of Jz with
eigenvalues �m where m� �−j ,−j+1, . . . , j�. The multi-
plicity spaces Nj arise when there are different ways of
coupling multiple systems to a given total angular mo-
mentum. A pair of spins with angular momentum num-
bers j1 and j2 couple to any total angular momenta j
satisfying �j1− j2 � � j� j1+ j2. We summarize this as j1 � j2
= �j1− j2 � � ¯ � �j1+ j2�.

It follows that for a pair of spin-1 /2 systems, we have
� 1

2
��2= 1

2 �
1
2 =0 � 1. The possible total angular momenta

are j=0 and j=1 and each has multiplicity 1. The joint
eigenstates of total angular momentum operators J2 and
Jz, denoted �j ,m�, form a basis of the Hilbert space �the
coupled representation�. We can relate this coupled ba-
sis to the joint eigenstates of J1

2, J1z, J2
2, J2z, denoted by

�j1 ,m1� � �j2 ,m2� �the uncoupled representation� by

�1,1� = �00� , �3.5�

�1,0� = ��01� + �10��/	2, �3.6�

�1,− 1� = �11� , �3.7�

�0,0� = ��01� − �10��/	2 � ��−� , �3.8�

where �0� ��1�� is the quantum-information-theoretic
shorthand for �1/2 , ±1/2�, and �01���0� � �1�, etc. These
are the j=1 �symmetric� triplet states and the j=0 �anti-
symmetric� singlet state.

Suppressing multiplicity spaces when they are one di-
mensional �because Hj=Mj � C=Mj�, we have

�H1/2��2

4
= Hj=1

3
� Hj=0

1
, �3.9�

where the dimensionality of each space is expressed in
bold underneath each subspace. Writing R����2

=Rj=1��� � Rj=0���, and applying Schur’s lemma, we in-
fer that

E2 = �DMj=1
� Pj=1� + Pj=0, �3.10�

where Pj�	�=�j	�j and �j is the projector onto the sub-
space Hj. Equation �3.10� asserts that the coherence be-
tween the singlet and triplet spaces is eliminated and the
triplet space is depolarized.

Thus if Alice transmits two qubits and she assigns the
state 	 to the pair, Bob describes the pair by

E2�	� = pj=1�1
3
�j=1 + pj=0��−�
�−� , �3.11�

where pj=Tr�	�j�. Note that Bob can distinguish per-
fectly between the antisymmetric state ��−�
�−� and a
state 	S which lies in the symmetric subspace because
E2���−�
�−��= ��−�
�−� and E2�	S�= 1

3�j=1, and these two
images are orthogonal.

Thus Alice can communicate one classical bit to Bob
with every two transmitted qubits by implementing the
following protocol: Alice sends Bob the antisymmetric
state ��−� to communicate b=0 and any state in the sym-
metric subspace �for example, the state �00�� for b=1.
Bob then performs a projective measurement onto the
antisymmetric and symmetric subspaces and recovers b
with certainty.

c. Three transmitted qubits: A quantum channel

We must determine how R����3 is decomposed into
irreducible representations. To see how three spin-1 /2
systems couple to total spin, imagine coupling the first
pair to a spin j1 and then coupling this to the third:
� 1

2
��3= �0 � 1� �

1
2 = 1

2 �
1
2 �

3
2 . Note that because the third

spin 1/2 can couple to either j1=0 or j1=1 to yield j
=1/2, the latter representation has multiplicity 2. We let
�1/2 , ±1/2 ,� denote a basis of Hj=1/2 in the coupled rep-
resentation, where  is a degeneracy index which by
convention we take to be 0 if the coupling was to j1=0
and 1 if the coupling was to j1=1. These states can be
given explicitly in terms of the three spin-1 /2 systems as

� 1
2 , 1

2 ,0� =
1
	2

��011� − �101�� , �3.12�

� 1
2 ,− 1

2 ,0� =
1
	2

��010� − �100�� , �3.13�

� 1
2 , 1

2 ,1� =
1
	6

�2�110� − �101� − �011�� , �3.14�

� 1
2 ,− 1

2 ,1� =
1
	6

�− 2�001� + �010� + �100�� . �3.15�

We can then define an isomorphism Hj=1/2=Mj=1/2

� Nj=1/2 through �m� � ���� 1
2 ,m ,� with �m� a basis of

Mj=1/2 and �� a basis of the multiplicity space Nj=1/2.
Thus the total Hilbert space decomposes as

�H1/2��3

8
= Hj=3/2

4
� �Mj=1/2

2
� Nj=1/2

2
� , �3.16�

where again we have included the dimensions of each
subsystem.

An application of Schur’s lemma along the lines pre-
sented in Sec. II.C implies that
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E3 = DMj=3/2
� Pj=3/2 + �DMj=1/2

� INj=1/2
� � Pj=1/2,

�3.17�

where I is the identity map. Note that the operation
DMj

� INj
is only defined on the space of operators act-

ing on Mj � Nj=Hj, but it is always preceded by Pj,
which projects into this space. If Alice prepares three
qubits in the state 	, then Bob assigns to them the state

E3�	� = p3/2� 1
4�j=3/2� + p1/2� 1

2IMj=1/2
� 	Nj=1/2

� , �3.18�

where pj=Tr�	�j� and

	Nj=1/2
= p1/2

−1 TrMj=1/2
��j=1/2	�j=1/2� . �3.19�

We note that the subsystem Nj=1/2 is unaffected by the
decohering superoperator E3; i.e., it is a decoherence-
free subsystem. Thus Alice can encode a logical qubit
into this subsystem �Kempe et al., 2001�. That is, she can
prepare states of the form 
 � 	 on Mj=1/2 � Nj=1/2, where
	 is the logical qubit state she wishes to transmit to Bob,
and Bob can access this decoherence-free subsystem and
retrieve the quantum information without a shared RF.
Thus one logical qubit can be transmitted using three
physical qubits without a shared RF.

d. Asymptotic behavior

The above two schemes demonstrate that classical and
quantum communication are possible without a shared
RF. The efficiency of the above schemes can be in-
creased through the use of more qubits, because the
sizes of the decoherence-free subsystems can grow expo-
nentially with increasing number of qubits.

For simplicity, we consider only the case where N is
even. The collective �tensor� representation of SU�2� on
N spin-1 /2 systems, R����N, can again be decomposed
into a direct sum of SU�2� irreps, each with angular mo-
mentum quantum number j ranging from 0 to N /2. That
is, we can decompose the Hilbert space as

�H1/2��N

2N
= �

j=0

N/2

Mj
2j+1

� Nj
cj

�N�
, �3.20�

where we have indicated the dimensions of the various
spaces. The multiplicity of the irrep j, which is the di-
mension of Nj, is found from representation theory to be

cj
�N� = � N

N/2 − j
 2j + 1

N/2 + j + 1
. �3.21�

Relative to this decomposition, the SU�2�-twirling op-
eration EN has the form

EN = �
j

�DMj
� INj

� � Pj, �3.22�

as can be inferred from the result for arbitrary groups in
Sec. II.C. The carrier spaces for the irreducible repre-
sentations of SU�2�, Mj, are the decoherence-full sub-
systems for EN, while the multiplicity spaces Nj, which
carry the trivial representation of SU�2�, are the
decoherence-free subsystems for EN.

Alice can choose to transmit classical messages by
preparing orthogonal states as follows: For each irrep j,
she can choose one arbitrary state from each multiplic-
ity. Thus it is possible to transmit, without a shared RF, a
number of classical messages equal to the number C�N�

of SU�2� irreps in the direct sum decomposition of the
tensor representation of SU�2� on N qubits, which is
given by

C�N� = �
j=0

N/2

cj
�N� = � N

N/2
 . �3.23�

In fact, this is the maximum number of classical mes-
sages that can be sent; for a proof, see Bartlett et al.
�2003�. Thus the number of classical bits that can be
transmitted per qubit using the above scheme is
N−1 log2 C�N�, which tends asymptotically to 1
− �2N�−1 log2 N; in the large N limit, one classical bit can
be transmitted for every qubit sent. Remarkably, this
rate is equivalent to what can be accomplished if Alice
and Bob do possess a shared RF.

To determine the optimal scheme for transmitting
quantum �rather than classical� information, again using
N qubits and under the restriction of no shared RF, we
identify the largest decoherence-free subsystem for EN.
This is the subsystem Nj with the greatest multiplicity
cj

�N�. Asymptotically, this is found to occur at jmax

=	N /2, and the number N−1 log2 cjmax

�N� of logical qubits
encoded per physical qubit in N physical qubits behaves
as 1−N−1 log2 �N�, approaching unity for large N. Full
details can be found in Kempe et al. �2001�. This remark-
able result proves that quantum communication without
a shared RF is asymptotically as efficient as quantum
communication with a shared RF, and is the communi-
cation analog of “asymptotic universality” �Knill et al.,
2000�. In addition, we note that the algorithm for
encoding/decoding quantum information into
decoherence-free subsystems can be done efficiently
�Bacon et al., 2006a, 2006b�.

e. Relativistic considerations

The ability to perform quantum-information process-
ing in a relativistic setting has also been of recent inter-
est �see Peres and Terno �2004� for a review�, and in this
context it is natural to consider whether parties who do
not share an inertial frame �i.e., a reference frame for
the Poincaré group� can still perform quantum commu-
nication, and at what efficiency. It has been shown that
classical and quantum communication can be performed
at the same rate as demonstrated above using indistin-
guishable massive spin-1 /2 particles, or using photons, if
appropriately localized wave packets for these particles
are used �Bartlett and Terno, 2005�. In addition,
continuous-variable quantum information can be shared
using related methods �Kok et al., 2005�.

3. Consequences for quantum-information processing

The communication schemes presented above imply
that Alice and Bob can share entangled states in the
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absence of any particular shared RF. Consider the case
of lacking a shared Cartesian frame as an example. De-
noting the logical qubit that can be encoded using three
physical qubits in Alice’s �Bob’s� possession by
��0L�A�B� , �1L�A�B��, a triple of physical qubits in Alice’s
possession can be maximally entangled with a triple in
Bob’s possession using the state 1

	2 ��0L�A�0L�B
+ �1L�A�1L�B�. Because Alice and Bob can perform any
measurement in their respective logical qubit Hilbert
spaces, they can demonstrate quantum nonlocality
�Bell’s theorem� despite having no shared Cartesian RF
�Bartlett et al., 2003; Cabello, 2003�. It also follows that
such entangled states can be used for quantum telepor-
tation of logical qubits, which implies that the latter does
not rely upon the existence of a shared Cartesian RF
either, contrary to some expectations �van Enk, 2001�. In
fact, for any quantum-information task that assumes
some shared RF, it is possible to make use of logical
encodings to perform the task without this shared RF.
�Any task, that is, which deals with speakable rather
than unspeakable quantum information; the alignment
of RFs, for instance, obviously cannot be achieved in
this way.� It should be noted, however, that although one
can achieve quantum-information tasks without any par-
ticular kind of shared RF, some form of shared RF is
always required. For instance, in the example just de-
scribed, Alice and Bob must agree on the ordering of
the three physical qubits, and this agreement constitutes
a kind of shared RF �Bartlett et al., 2004a�.

Several recent experiments have demonstrated the
key techniques required for quantum-information pro-
cessing without a shared Cartesian frame. These experi-
ments make use of single-photon polarization qubits.
Lacking a shared RF for polarization means that Bob’s
polarizing elements �such as calcite crystals� are uncor-
related with Alice’s. The relevant group is also SU�2�,
and thus the analysis presented above applies to this
scenario as well. Banaszek et al. �2004� have demon-
strated that two orthogonal entangled states of two
single-photon polarization qubits remain perfectly dis-
tinguishable between two parties who do not share a
reference frame for polarization, thereby demonstrating
the classical communication protocol in Sec. III.A.2.b.
In addition, Bourennane et al. �2004� have demonstrated
nonorthogonal entangled states—states of a logical qu-
bit encoded in four single-photon polarization qubits—
that are identical in any reference frame; see also Zou et
al. �2006�. These states demonstrate the basic principles
of a decoherence-free subsystem that are needed for
quantum communication without a shared RF.

B. Quantum key distribution without a shared reference frame

The possibility of performing secure communication
through the use of quantum key distribution �QKD� is
one of the most celebrated applications of quantum-
information science �Gisin et al., 2002�. Because of its
advanced state of development, it is also one of the first
quantum protocols to require explicit consideration of
shared reference frames, or the lack thereof, between

communicating parties. All practical QKD protocols are
based on the exchange of quantum states of light, and as
discussed in Sec. III.A.1, essentially any identification of
a mode structure �either spatial, time bin, or polariza-
tion� requires a reference frame of some sort. For ex-
ample, in all single-photon implementations of QKD, a
shared clock is necessary in order to agree upon a short
time window for communication; otherwise, dark counts
from the photodetectors can greatly reduce security and
efficiency �Brassard et al., 2000�.

Quantum key distribution schemes that obviate the
need for certain shared reference frames �and that are
robust against other forms of noise� have recently been
developed, and make use of the techniques of
decoherence-free subspaces and subsystems �Walton et
al., 2003�. Consider the following proposal of Boileau et
al. �2004�. Alice �the sender� and Bob �the receiver� wish
to perform QKD using the polarization states of single
photons. This choice avoids stabilization problems inher-
ent in phase-based schemes, but presents a problem of
its own: If an optical fiber is used as the quantum chan-
nel, the polarization of a transmitted photon is rotated
by a random amount due to optical birefringence. Al-
though this random rotation fluctuates with time, it can
be considered constant on a short time scale so that all
photons in a pulse are subject to the same rotation. Thus
the problem becomes equivalent to one in which Alice
communicates to Bob using a noiseless channel, but in
which they do not share a reference frame for polariza-
tion. The communication scenario then becomes equiva-
lent to that analyzed in Sec. III.A.2.

Alice can perform quantum communication with Bob
without a shared RF for polarization through the use of
decoherence-free subspaces or subsystems. We now
briefly outline two straightforward and experimentally
accessible QKD protocols using these techniques; the
first protocol makes use of four-photon decoherence-
free subspace, and the second makes use of three-
photon decoherence-free subsystems.

The smallest nontrivial decoherence-free subspace for
the superoperator EN of Eq. �3.2� occurs for N=4. It is
the two-dimensional j=0 �singlet� subspace. A simple
QKD scheme using this subspace is as follows. Define
the state ��−���= ��0���1��− �1���0��� /	2 to be the two-
photon singlet state of photons � and � �� ,�
� �1,2 ,3 ,4��. Define three four-photon states as prod-
ucts of singlet states of differing photons, i.e.,

��1� = ��−�12��−�34,

��2� = ��−�13��−�24,

��3� = ��−�14��−�23. �3.24�

Clearly, all three states are j=0 �singlet� states in the N
=4 decoherence-free subsystem. Thus each of the states
��a� prepared by Alice is represented the same way by
Bob, even though they do not share a reference frame
for polarization.
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Note that these states are also nonorthogonal, satisfy-
ing �
�a ��b��=1/2 for a�b. Thus if Alice restricts her
transmitted states to a pair of these, then they can imple-
ment a B92-type QKD protocol �Bennett, 1992�. In ad-
dition, this protocol can be defined in such a way that
Bob need only perform single-photon measurements in
some fixed polarization basis �i.e., without the need for
entangling measurements�; see Boileau et al. �2004� for
details.

As noted in Sec. III.A.2, there exists a two-
dimensional decoherence-free subsystem with N=3.
There is a simple modification of the above QKD pro-
tocol which makes use of this subsystem. Define the fol-
lowing three mixed states, obtained from the three pure
states of Eq. �3.24� by discarding the last photon, i.e.,

	a = Tr4���a�
�a�� . �3.25�

In terms of the decomposition of the three-qubit Hilbert
space of Sec. III.A.2.c, all three of these states lie on the
Hj=1/2 subspace, and in terms of the tensor product struc-
ture Hj=1/2=Mj=1/2 � Nj=1/2 these states are products of
the completely mixed state 1

2I on Mj=1/2 and one of
three pure nonorthogonal states on Nj=1/2. Again, if Al-
ice restricts her transmitted states to a pair of these, then
they can implement a B92-type QKD protocol without
the need for a shared RF for polarization.

The unconditional security of the QKD schemes of
Boileau et al. �2004�, which are based on using the above
states, has been proven �Boileau et al., 2005�. In addi-
tion, a BB84 version of this QKD scheme, which does
not require a shared reference frame for polarization,
has been demonstrated experimentally �Chen et al.,
2006�. We note that the essential concept of this
scheme—to use the techniques of decoherence-free sub-
spaces or subsystems to obviate the necessity for a
shared reference frame in QKD—can be applied to any
system and RF. In particular, it has been proposed to use
spatial encodings of optical modes discussed at the end
of Sec. III.A.1 to perform QKD �Spedalieri, 2004�.

C. Entanglement without a shared reference frame

Entanglement is often considered the key resource in
quantum-information processing, and so it is valuable to
consider the role of shared reference frames in both
qualitative and quantitative properties of bipartite en-
tanglement. As we demonstrate in this section, the very
meaning of entanglement between parties who do not
share a reference frame must be reassessed, with some
surprising results.

1. Entanglement without a shared phase reference

As an example, we again consider a number of optical
modes shared between two parties, Alice and Bob, who
do not share a common phase reference. We consider all
states and operations to be described relative to the
phase reference of a third party, Charlie, which is

assumed to be uncorrelated with both Alice’s and Bob’s
local phase references. �For many of the issues consid-
ered, we could dispense with Charlie and describe every-
thing relative to either Alice or Bob, but this introduces
an artificial asymmetry into the formalism which easily
leads to confusion. We therefore opt to describe all
states relative to Charlie, whether he participates in the
protocol or not.� As such, Alice redescribes states pre-
pared relative to Charlie’s phase reference by mixing
over all possible phase shifts. Bob does the same, and
because Alice and Bob’s phase references are uncorre-
lated, the phases over which they mix are independent.
Recalling the results of Sec. II.B, the mixing over phases
yields a photon-number superselection rule, and the in-
dependence implies that Alice and Bob are subject to
local photon-number superselection rules. In this case,
all of Alice’s operations commute with the local map UA,
defined as in Eq. �2.9� as

UA�	A� � �
n

�n
A	A�n

A, �3.26�

where �n
A in the projector onto the eigenspace of total

photon number n on Alice’s local modes. All of Bob’s
operations commute with the local map UB, defined
similarly.

In such situations, there has been considerable debate
over the entanglement properties of certain types of
states, such as the two-mode single-photon state �Tan et
al., 1991; Hardy, 1994, 1995; Greenberger et al., 1995;
van Enk, 2005b�,

��0�A�1�B + �1�A�0�B�/	2. �3.27�

There is a temptation to say that this state is entangled
simply because of its nonproduct form. However, it is far
more useful to consider whether or not this state satisfies
certain operational notions of entanglement. One such
notion is whether a state can be used to violate a Bell
inequality. Another is whether it is useful as a resource
for quantum-information processing, for instance, to
teleport qubits or implement a dense coding protocol. In
the context of a local photon-number superselection
rule, this two-mode single-photon state fails to satisfy
either of these notions of entanglement, because all such
tasks would require Alice and Bob to violate the local
photon-number superselection rule. A different but
equally common notion of entanglement is that a state is
entangled if it cannot be prepared by LOCC. The two-
mode single-photon state certainly does fit this notion
because pure nonproduct states cannot be prepared by
LOCC. Thus we see that operational notions of en-
tanglement that coincided for pure states under unre-
stricted LOCC, namely, being not locally preparable and
being useful as a resource for tasks such as teleportation
or violating a Bell inequality, do not coincide under a
local photon-number superselection rule, and the state
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in question is judged entangled by one notion and not
the other.7

Another class of states whose entanglement proper-
ties have been discussed in the quantum optics literature
is those that are separable but not locally preparable
under a local photon-number superselection rule �Ru-
dolph and Sanders, 2001b; Verstraete and Cirac, 2003�.
Examples of such states are

� + �A� + �B, �− �A�− �B, �3.28�

where �± �= ��0�± �1�� /	2. �Rudolph and Sanders �2001b�
and Verstraete and Cirac �2003� considered states such
as the equal mixture of �+ �A�+ �B and �−�A�−�B. For sim-
plicity, we restrict our attention to pure states.� Because
of the superselection rule, these states cannot be pre-
pared locally. However, because they are product states,
they clearly cannot be used for tasks such as teleporta-
tion or violating a Bell inequality. We will return our
attention to states such as these in Sec. IV.

In contrast, consider a state of the form

��01�A�10�B + �10�A�01�B�/	2. �3.29�

This state is certainly not locally preparable. In addition,
it can be used to violate a Bell inequality, implement
dense coding, and so on, despite the superselection rule.
This is because Alice and Bob can still implement any
measurements they please in the two-dimensional sub-
spaces spanned by �01� and �10�. Thus this state is unam-
biguously entangled by any reasonable notion.

We then see that the remarkable and often confusing
entanglement properties of states when parties do not
share a reference frame can be understood by recogniz-
ing that different operational notions of entanglement
do not coincide in this case. Specifically, for pure
quantum-optical states in a situation where Alice and
Bob do not share a phase reference, there exists a
proper gap between states that are locally preparable
under LOCC, and states that are useful for performing
quantum-information tasks such as teleportation and
violating a Bell inequality. The existence of this proper
gap is reminiscent of a similar situation for mixed quan-
tum states: that of bound entanglement �Horodecki et
al., 1998�. This analogy can be extended further; in the
following section, we demonstrate that some of the
strange phenomena from mixed-state entanglement—
activation and multicopy entanglement distillation—are
present as well in pure-state quantum optics with a local
photon-number SSR. This analogy is pursued in Bart-
lett, Doherty, et al. �2006�.

2. Activation and entanglement distillation

In this section, we demonstrate that there exist analo-
gous processes of activation �Horodecki et al., 1999� and

multicopy entanglement distillation �Watrous, 2004� us-
ing pure bipartite quantum-optical states when Alice
and Bob do not share a phase reference. An understand-
ing of these processes and their relation to the above-
mentioned gap between two commonly used notions of
entanglement is key to resolving several recent contro-
versies regarding the entanglement of quantum-optical
states �van Enk, 2005a; Bartlett, Doherty, et al., 2006�.

We now demonstrate that to achieve a Bell inequality
violation with the state

��0�A�1�B + �1�A�0�B�/	2, �3.30�

it is necessary to use a process that is analogous to acti-
vation. Understanding the necessity of an additional re-
source for this process resolves the controversy over the
use of the state to demonstrate quantum nonlocality
�Tan et al. 1991; Hardy, 1994, 1995; Greenberger et al.,
1995�.

As we have shown, this state cannot be used for tasks
such as violating a Bell inequality when Alice and Bob
do not share a phase reference, i.e., when a local
photon-number superselection rule applies. However,
combining ��0�A�1�B+ �1�A�0�B� /	2 with �+ �A�+ �B, one ob-
tains a state that is useful for such tasks. The state
�+ �A�+ �B is said to activate the entanglement of
��0�A�1�B+ �1�A�0�B� /	2. This is seen as follows. Let Alice
and Bob both perform a quantum nondemolition mea-
surement of local photon number on both of their local
modes, and postselect the case where they both find a
local photon number of 1. The resulting state is

�1
A

� �1
B� 1

	2
��0�A�1�B + �1�A�0�B�� + �A� + �B�

�
1
	2

��01�A�10�B + �10�A�01�B� . �3.31�

Violations of a Bell inequality have recently been
demonstrated experimentally using the state �3.30� by
Babichev et al. �2004� and Hessmo et al. �2004�. One can
take two different perspectives on such an experiment.
It is illustrative to consider them both.

In the work of Hessmo et al. �2004�, in addition to the
state �3.30�, a correlated pair of coherent states ���A���B,
where �����n�e−���2/2�n /	n!��n�, are assumed to be
shared between Alice and Bob. These modes are used as
local oscillators in the homodyne detections at each site.
Noting that neither ��0�A�1�B+ �1�A�0�B� /	2 nor ���A���B
can be used individually for violating a Bell inequality, it
is unclear how it is possible to do so using such re-
sources. The resolution of the puzzle is that a pair of
correlated coherent states ���A���B, much like the state
�+ �A�+ �B discussed above, activates the entanglement of
the two-mode single-photon state.

An experimental demonstration of nonlocality using
the two-mode single-photon state has also been de-
scribed by Babichev et al. �2004�. Rather than treating
local oscillators as coherent states, they are treated as
correlated classical phase references. In this case, they
constitute an additional resource that “lifts” the restric-

7Of course, if there is no local photon-number superselection
rule, this state would satisfy all of these notions of entangle-
ment, as emphasized by van Enk �2005b�. In particular, no such
superselection rule would apply if all parties share a common
phase reference.
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tion of the local photon-number superselection rule, and
the state ��0�A�1�B+ �1�A�0�B� /	2 becomes unambiguously
entangled. These two alternative descriptions are
equally valid; see Bartlett, Rudolph, and Spekkens
�2006�.

The existence of such activation processes also re-
solves a controversy concerning the source of entangle-
ment in the experimental realization of Furusawa et al.
�1998� of continuous-variable quantum teleportation.
Again, it is illustrative to consider two different perspec-
tives of this experiment.

The first perspective is a variant of the one presented
by Rudolph and Sanders �2001b�. In our language, it can
be synopsized as follows. Alice and Bob are presumed
to be restricted in the operations they can perform by a
local photon-number superselection rule. They share a
two-mode squeezed state ���=	1−�2�n=0

� �n�n ,n�, where
0���1. In addition, they share two other modes pre-
pared in a product of correlated coherent states ������.8

The former is the purported entanglement resource in
the teleportation protocol, while the latter is a quantum
version of a shared phase reference. These states are
analogous to ��0�A�1�B+ �1�A�0�B� /	2 and �+ �A�+ �B,
respectively—neither can be used as a resource for tele-
portation when considered on its own. So the question
arises as to how teleportation could possibly have been
achieved. The answer is that the product of coherent
states activates the entanglement in the two-mode
squeezed state.9

The second perspective is one wherein the shared
phase reference is treated classically; this perspective
was taken by Furusawa et al. �1998�. As described above,
this classical shared phase reference acts as a resource
that lifts the superselection rule, and causes the two-
mode squeezed state to become unambiguously en-
tangled.

An analog of multicopy entanglement distillation can
also be demonstrated in our quantum optical example.
Two copies of the state ��0�A�1�B+ �1�A�0�B� /	2 can be
used to obtain free entanglement �i.e., not bound� in the
presence of the SSR, whereas only one copy cannot. The
protocol, introduced by Wiseman �2003� and discussed
in greater detail by Vaccaro et al. �2003�, is as follows. As
in the activation example above, Alice and Bob both
perform a quantum nondemolition measurement of lo-
cal photon number �on both local modes� and postselect
the case where they both find a local photon number of
1. The resulting state is

�1
A

� �1
B� 1

	2
��0�A�1�B + �1�A�0�B���2

�
1
	2

��01�A�10�B + �10�A�01�B� , �3.32�

where ����2= ������. A process very similar to this two-
copy entanglement distillation has been demonstrated in
quantum optics experiments �cf. Ou and Mandel �1988�;
Shih and Alley �1988��, where correlated but unen-
tangled photon pairs from parametric down-conversion
were made incident on the two input modes of a beam
splitter, so each photon transforms to a state of the form
��0�A�1�B+ �1�A�0�B� /	2. Subsequently, measurements on
the two output modes are postselected for one-photon
detection at each output mode. The fact that their post-
selected results are consistent with a description of an
entangled state demonstrates that the entanglement of
the state ��0�A�1�B+ �1�A�0�B� /	2 has been distilled by
making use of two copies.

Finally, we consider the analog of multicopy entangle-
ment distillation from two copies of the two-mode
squeezed state ���=	1−�2�n=0

� �n�n ,n�. Homodyne mea-
surements by Alice and Bob �relative to their uncorre-
lated local oscillators� can be performed on one copy of
this state to establish a shared phase reference, which
then lifts the superselection rule and causes the second
copy to become unambiguously entangled.

3. Quantifying bipartite entanglement without a shared
reference frame

As we have seen above, operational notions of en-
tanglement for a bipartite pure state no longer coincide
when parties do not share a reference frame. How then
does one quantify the amount of entanglement of a bi-
partite state in such a situation? Entanglement measures
can be defined in the presence of such a restriction again
by being operational. In the following, we discuss one
such operational measure which quantifies the distillable
entanglement under a local Abelian superselection rule.
�This measure is directly related to the entanglement of
particles �Wiseman and Vaccaro, 2003�.� We note that
these results apply directly to a general �possibly non-
Abelian� SSR, with local operations restricted as in Eq.
�2.17� �Bartlett and Wiseman, 2003�; however, for sim-
plicity, we focus here on the Abelian case.

We continue with the scenario of the previous section.
Consider a bipartite state 	AB shared by Alice and Bob
and defined relative to Charlie’s phase reference. We as-
sume that in addition to this bipartite system, Alice and
Bob each possess a number of quantum registers, not
subject to any SSR, with total Hilbert space dimension
equal to or greater than that of their respective systems.
�For example, these registers could be standard qubits
over which Alice and Bob have complete control.�
These registers are initiated in a pure product state �AB.

The entanglement in the presence of an SSR of the
state 	AB is quantified through a measure ESSR, which is
defined by the maximum amount of entanglement that

8The state assigned by Rudolph and Sanders �2001b� is simply
a mixed version �mixed over the phase of the pump beam� of
���������.

9van Enk and Fuchs �2002a� suggest a similar protocol to the
one we describe here, for the mixed states discussed in the
previous footnote. Homodyne measurement is performed on
the pump beam with respect to an external phase reference,
and the measurement result will yield a two-mode squeezed
state that is unambiguously entangled with respect to this ex-
ternal RF.
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Alice and Bob can produce between their quantum reg-
isters using local U�1�-invariant operations and classical
communication �U�1�-LOCC�. The latter can be quanti-
fied by an appropriate standard measure E; it seems
most appropriate to use the entanglement of distillation.

We now prove that the entanglement in the presence
of an SSR, ESSR�	AB�, is given by the entanglement
E�Uloc�	AB�� that they can produce from the state
Uloc�	AB� by unconstrained LOCC, where Uloc�UA � UB.

The proof is illustrative, so we present it here. Let
O= �O� be the set of all LOCC operations by Alice and
Bob that commute with Uloc. Note that, for any quantum

operation E, the composite operation Ē�Uloc�E �Uloc is in
the set O. Let O�O be some operation on the initial
state 	AB � �AB. The final state of the registers is given
by �AB� =Trsys�O�	AB � �AB��, where the trace is over the
shared system. The maximum entanglement produced
between registers is given by maximizing E��AB� � over all
operations in O. Thus

ESSR�	AB� = max
O

E„Trsys�O�	AB � �AB��…

= max
O

E�Trsys„�Uloc � O � Uloc��	AB � �AB�…�

= max
E

E�Trsys„�Uloc � E � Uloc��	AB � �AB�…�

= max
E

E„Trsys�E†Uloc�	AB� � �AB‡�… , �3.33�

where the second line follows from the properties of the
trace and by applying the definition �2.7� to UA and UB,
and the last line follows from the properties of the trace.
The latter maximization is over all LOCC �not just op-
erations that commute with Uloc�, and gives the entangle-
ment E�Uloc�	AB�� that Alice and Bob can produce be-
tween their registers from the state Uloc�	AB� by
unconstrained LOCC.

4. Extensions and application to other systems

The general perspective discussed above for investi-
gating entanglement without a shared reference frame
can be applied to other situations, although for the most
part this issue has not been explored. Condensed-matter
systems is one area where these results can be directly
applied, because these systems possess a number of
practical restrictions on operations. Local particle-
number superselection rules often apply in practice; for
example, as noted by several authors, the single-electron
two-mode Fock state ��0�A�1�B+ �1�A�0�B� /	2 has ambigu-
ous entanglement properties under this restriction
�Wiseman and Vaccaro, 2003; Samuelsson et al., 2005;
Beenakker, 2006; Dowing et al., 2006�. For this reason,
most proposals for creating bipartite entangled states
make use of spin or orbital angular momentum degrees
of freedom of multiple particles �Beenakker et al., 2003;
Samuelsson et al., 2003, 2004�. We note, however, that
the two-mode single-electron Fock state is an entangle-
ment resource akin to the two-mode single-photon state,
which we have shown to be useful through activation or

multicopy entanglement distillation; also, a suitable
shared U�1� reference frame could “lift” the restriction
of the superselection rule, and the two-mode single-
electron Fock state would be unambiguously entangled
with such a resource. �Determining a suitable quantum
state of such a shared U�1� RF consisting of fermions is
an outstanding problem in general. The two-copy en-
tanglement distillation protocol described above applies
equally well to fermionic states of the form ��0�A�1�B

+ �1�A�0�B� /	2. The activation protocols described above,
however, do not appear to have precise fermionic ana-
logs; specifically, there are several challenges in defining
an analog of the optical coherent state for fermions. See
Dowling et al. �2006�.� Moreover, entangled states be-
tween angular momentum degrees of freedom of differ-
ent particles will yield no real advantage over the two-
mode single-electron Fock state in situations wherein
there is a local SU�2� superselection rule. Such a super-
selection rule will be in force, for instance, if the parties
fail to share a Cartesian frame for spatial orientations.
As with quantum optical systems, such considerations
emphasize the need to be operational when classifying
or quantifying entanglement.

The theory of entanglement for indistinguishable par-
ticles is another situation where considerations of en-
tanglement without a shared reference frame are rel-
evant. States of indistinguishable particles can appear
entangled due to the necessary symmetrization or anti-
symmetrization of the wave function. For example, in
the position representation of two indistinguishable par-
ticles, a wave function of two particles is expressed as

�12�x1,x2� =
1
	2

��1�x1��2�x2� ± �1�x2��2�x1�� , �3.34�

where the � cases correspond to bosons and fermions.
The entanglement properties of such a state are the sub-
ject of some debate �Paskauskas and You, 2001; Schlie-
mann et al., 2001; Wiseman and Vaccaro, 2003; Dowling
et al., 2006�. From the perspective of this review, one can
view the indistinguishability of particles as a lack of a
reference ordering, i.e., lack of a reference frame to
uniquely label the particles �Eisert et al., 2000; Bartlett
and Wiseman, 2003; von Korff and Kempe, 2004; Jones
et al., 2005, 2006�. For example, if the particles described
in the above state were distinguishable through another
degree of freedom, such as their spin, then the entangle-
ment of the above state would be unambiguous. Thus, in
many condensed-matter systems it may be worthwhile to
consider the possibility of lifting the restriction of indis-
tinguishability, viewed as a lack of a reference ordering,
through an appropriate reference frame. �Such a refer-
ence frame would necessarily make use of some physical
degrees of freedom to uniquely label the particles.�

D. Private shared reference frames as cryptographic key

Two parties, Alice and Bob, are said to possess a pri-
vate shared RF for some degree of freedom if their ref-
erence frames are perfectly correlated with each other,
and are completely uncorrelated with any other party.
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Such private shared RFs can be used as a novel kind of
key for cryptography. To illustrate the general idea, con-
sider the case where Alice and Bob share a private Car-
tesian frame.10 They can achieve some private classical
communication as follows: Alice transmits to Bob an
orientable physical system �e.g., a pencil or a gyroscope�
after encoding her message into the relative orientation
between this system and her local reference frame �for
instance, by turning her bit string into a set of Euler
angles�. Bob can decrypt the message by measuring the
relative orientation between this system and his local
reference frame. Because an eavesdropper �Eve� does
not have a reference frame correlated with theirs, she
cannot infer any information about the message from
the transmission.

We consider the quantum version of this example,
where Alice sends spin-1 /2 particles to Bob via a noise-
less channel, as in the communication problem of Sec.
III.A.2. Note that whereas in that problem Bob lacked
the RF with respect to which the spins were prepared,
here Bob shares the RF and it is Eve who lacks it. Thus
the superoperator EN of Eq. �3.2� now describes the re-
striction that Eve faces by virtue of lacking the private
shared RF. In Sec. III.A.2 we sought to determine how
Alice could encode information in such a way that it
remained accessible to someone who lacked her RF,
whereas here we are interested in the opposite problem:
how to encode information in such a way that it is inac-
cessible to someone who lacks her RF �but accessible to
someone who has it�. We follow the work of Bartlett et
al. �2004a�, to which the reader is directed for a more
complete analysis.

A few points are worth noting before presenting the
results. First, private communication using a private
SRF is similar in some ways to private-key cryptography,
specifically, the Vernam cipher �one-time pad�. For ex-
ample, the secret key in the Vernam cipher can be used
only once to ensure perfect security. Similarly, for our
communication schemes, only a single plain text �classi-
cal or quantum� can be encoded using a single private
SRF. If the same private SRF is used to encode two
plain texts, then the relation that holds between two ci-
pher texts carries information about the plain texts, and
because it is possible to learn about this relation without
making use of the SRF, Eve can obtain this information.
This is akin to the fact that in our example of the clas-
sical pencil or gyroscope Eve can measure the angular
separation of the two pencils.

This analogy prompts us to raise and dismiss the pos-
sibility that a private SRF is equivalent, as a resource, to
some amount of secret key or entanglement. It is true
that a private SRF may, through public communication,
yield a secret key. Conversely, as will be seen in Sec. V.J,

a secret key may, through public communication, yield a
private SRF. Moreover, if, contrary to what has been
assumed here and in Sec. V.J, the parties possess a public
SRF, then a private SRF is equivalent to an unbounded
amount of secret key �in practice, the size of the key is
limited by the bounded size of physical systems that de-
fine the SRF or the bounded degree of correlation in the
SRF�. For instance, the parties can measure the Euler
angles relating the private SRF to the public SRF and
then express these in binary to obtain secret bits.
Nonetheless—and this is the critical point—in the ab-
sence of either a public SRF or public communication of
unspeakable information, there is no procedure for in-
terconverting secret key and private SRF. Thus the two
resources are not equivalent. Similarly, one can show
that the resource of a private SRF is distinct from that of
entanglement.

a. One qubit

Consider the transmission of a single qubit from Alice
to Bob. As they share an RF, Bob represents states of
this single qubit in the same way as Alice. On the other
hand, Eve, who does not share Alice’s RF, describes the
state 	 as E1�	�= 1

2I, as in Eq. �3.4�. She consequently
cannot correlate the outcomes of her measurements
with Alice’s preparations. It follows that using this single
qubit and their private shared RF, Alice and Bob can
privately communicate one logical qubit, and thus also
one logical classical bit.

b. Two qubits: Decoherence-full subspaces

If multiple qubits are transmitted, it is possible for
Eve to acquire some information about the preparation
even without access to the private shared RF by per-
forming relative measurements on the qubits. For two
transmitted qubits in the state 	, Eve’s description is
E2�	�=pj=1� 1

3�j=1�+pj=0�j=0 as in Eq. �3.11�. Despite not
sharing the RF, Eve can still discriminate the singlet and
triplet subspaces and thus acquire information about the
preparation. Nonetheless, Alice can achieve some pri-
vate quantum communication by encoding the state of a
qutrit �a three-dimensional generalization of the qubit�
into Hj=1, the triplet subspace. Bob, sharing the private
RF, can recover this qutrit with perfect fidelity. However,
Eve identifies all such qutrit states with 1

3�j=1, and there-
fore cannot infer anything about Alice’s preparation.

The property of Hj=1 that is key for this scheme is that
the two-qubit superoperator E2 is completely depolariz-
ing on it, as seen explicitly from Eq. �3.10�, which we
repeat: E2= �DMj=1

�Pj=1�+Pj=0. We define subspaces with
this property to be decoherence-full subspaces, consis-
tent with the terminology presented in Sec. II.C.

Now consider how many classical bits of information
Alice can transmit privately to Bob. An obvious scheme
is for her to encode a classical trit as three orthogonal
states within the triplet subspace. However, this is not
the most efficient scheme. Suppose instead that Alice
encodes two classical bits as the four orthogonal states

10Although it is difficult to imagine how a Cartesian frame
defined by fixed stars might be made private, it is clear that if
the Cartesian frame is defined by a set of gyroscopes, privacy
amounts to no other party having gyroscopes that are corre-
lated with those of Alice and Bob.
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�i� =
1
2

��−� +
	3
2

�ni��ni�, i = 1, . . . ,4, �3.35�

where ��−� is the singlet state and the �ni��ni� are four
states in the triplet subspace with both spins pointed in
the same direction, with the four directions forming a
tetrahedron on the Bloch sphere; specifically,

�n1� = �0� , �3.36�

�n2� =
i

	3
��0� + 	2�1�� , �3.37�

�n3� =
− i
	3

��0� + e2�i/3	2�1�� , �3.38�

�n4� =
i

	3
��0� + e−2�i/3	2�1�� , �3.39�

as in Massar and Popescu �1995�. It is straightforward to
verify that

E2��i�
i�� =
1
4

I, ∀ i , �3.40�

i.e., all four states are represented by Eve as the com-
pletely mixed state. As these four states are orthogonal,
they are completely distinguishable by Bob and so pro-
vide an optimal private classical communication scheme.

c. Three qubits: Decoherence-full subsystems

Consider the case where Alice transmits three qubits
to Bob. The Hilbert space H1/2

�3 and the superoperator E3
decompose into irreps as

�H1/2
8

��3 = Hj=3/2
4

� �Mj=1/2
2

� Nj=1/2
2

� �3.41�

and

E3 = DMj=3/2
� Pj=3/2 + �DMj=1/2

� INj=1/2
� � Pj=1/2,

�3.42�

as in Eqs. �3.16� and �3.17�. Clearly, the four-dimensional
subspace Hj=3/2 is a decoherence-full subspace. We also
see that any state on Hj=1/2 that is of the product form
	 � 
 with respect the factorization Hj=1/2=Mj=1/2

� Nj=1/2 is mapped by E3 to the state 1
2IMj=1/2

� 
 �see also
Eq. �3.18��. Thus every state of the virtual subsystem
Mj=1/2 is mapped to the completely mixed state on that
subsystem. Such a subsystem is an example of a
decoherence-full subsystem.

Alice can therefore achieve private communication of
two qubits using the decoherence-full subspace Hj=3/2 or
a single qubit using the decoherence-full subsystem
Mj=1/2. Note, however, that for greater numbers of
transmitted qubits, the decoherence-full subsystems
typically have greater dimensionality than the
decoherence-full subspaces, and schemes that encode
within them are necessary to achieve optimal efficiency,
as discussed below.

For private classical communication, the question of
optimal efficiency is much more complex. One scheme
would be for Alice to encode two �classical� bits into
four orthogonal states within the j=3/2 decoherence-full
subspace. Alice can also encode two bits into four or-
thogonal maximally entangled states on the virtual ten-
sor product Mj=1/2 � Nj=1/2, because the depolarization
on Mj=1/2 is sufficient to map all of these to 1

2IMj=1/2
�

1
2INj=1/2

, making them indistinguishable to Eve.
It turns out that the optimally efficient scheme for

private classical communication uses both the j=3/2 and
1/2 subspaces. Let �j=3/2 ,��, �=1, . . . ,4 be four or-
thogonal states on the j=3/2 subspace, and let
�j=1/2 ,��, �=1, . . . ,4 be four maximally entangled
states �as described above� on the j=1/2 subspace. De-
fine the eight orthogonal states

�b,�� =
1
	2

��j = 3/2,�� + �− 1�b�j = 1/2,��� , �3.43�

where b=1,2 and �=1, . . . ,4. Alice can encode three
bits into these eight states, which are completely distin-
guishable by Bob. It is easily shown that the decohering
superoperator E3 maps all of these states to the com-
pletely mixed state on the total Hilbert space; thus these
states are completely indistinguishable from Eve’s per-
spective.

d. General results

In general, an optimally efficient private quantum
communication scheme for N spin-1 /2 systems is given
by encoding into the largest decoherence-full subsystem
for EN of Eq. �3.2�. The largest is Mj=N/2 and has dimen-
sion N+1. Thus, given a private Cartesian frame and the
transmission of N qubits, Alice and Bob can privately
communicate log2�N+1� qubits.

The general results for private classical communica-
tion are much more complex, and beyond the scope of
this review. �Observe the complexity of even the three-
qubit example above.� Here we simply state the result,
which is that the number of private classical bits that can
be communicated using a private shared Cartesian
frame and N qubits is 3 log2 N �Bartlett et al., 2004a�.

These results show that, asymptotically, the private
classical capacity �3 log2 N� is three times the private
quantum capacity �log2 N�. By relaxing the requirement
of perfect privacy, it is possible to use the properties of
random subspaces to nearly triple the private quantum
capacity, almost closing the gap between the private clas-
sical and quantum capacities �Bartlett et al., 2005�. Fi-
nally, we note in passing that bipartite entangled states
of 2N spins, completely mixed on the total J=0 sub-
space, have been identified as a resource for private
quantum and classical communication; it is illustrative to
view such states as quantum private shared RFs �Livine
and Terno, 2006�.
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IV. QUANTUM TREATMENT OF REFERENCE FRAMES

As we have seen in the previous two sections, the lack
of a reference frame has the effect of inducing a super-
selection rule. We have explored examples of how the
lack of a phase reference in quantum optics experiments
leads to an Abelian SSR and how the lack of a Cartesian
frame leads to a non-Abelian SSR.

However, some SSRs are typically viewed as being
axiomatic; a canonical example is an SSR for electric
charge, which forbids superpositions of eigenstates of
different charge �Wick et al., 1952, 1970; Strocchi and
Wightman, 1974�. In a classic paper, Aharonov and Sus-
skind �1967� challenged the necessity of this SSR, and
outlined a gedanken experiment for exhibiting a coher-
ent superposition of charge eigenstates as an example of
how this SSR can be obviated in practice. This gedanken
experiment highlights the requirement of an appropriate
reference frame in order to exhibit superpositions be-
tween eigenstates of superselected quantities, and as a
result it can be argued that an SSR is simply a practical
limitation due to the lack of such a reference frame. This
point has been repeated by several authors �Mirman,
1969, 1970; Lubkin, 1970; Giulini, 2000a, 2000b�.

In this section, we demonstrate that this result is gen-
eral: Any SSR associated with a unitary representation
of a compact group can be viewed as the lack of an
appropriate reference frame, and can be overcome by
using an appropriate quantum system to serve as a ref-
erence frame.

A. Relational descriptions of phase

1. Quantization of a phase reference

Suppose we have a system that transforms under U�1�
and where the associated eigenstates are denoted by �n�.
For concreteness, we imagine these to be eigenstates of
photon number, or of number of bosonic atoms, in some
mode. If there is no SSR for U�1�, then we can prepare
states such as

��0� = ��0� + �1��/	2, �4.1�

���� = ��0� − �1��/	2, �4.2�

which differ only in their phases. We distinguish such a
state, which has coherence between �0� and �1�, from the
incoherent mixture I /2= 1

2 �0 � 
0 � + 1
2 �1 � 
1 � by measuring

an ensemble of such systems in the basis ���0� , ����� and
observing whether the outcome is random or not.

Now suppose instead that there is an SSR for U�1� in
force for this system. For optical systems, this corre-
sponds as discussed above to the situation where one
lacks the phase reference with which these states were
prepared. If the states �n� are eigenstates of bosonic
atom number �such as are used in describing Bose-
Einstein condensates�, then such an SSR is often as-
sumed to be an axiomatic restriction �cf. Wick et al.
�1952�; Cirac et al. �1996�; Leggett �2001�; Wiseman and
Vaccaro �2003��. In either case, it becomes impossible to

prepare a coherent superposition of eigenstates of total
number. Nonetheless, it is still possible to prepare a pair
of systems in such a way that they have a well-defined
relative phase �Nemoto and Braunstein, 2003�. We con-
sider the pair consisting of our original system, which we
denote by S, and a new system, which we denote by R.
Defining the states

��0����R = ��n − 1�R ± �n�R�/	2, �4.3�

on R �with n�1�, we may then define states on the pair
with relative phases 0 and �, respectively,

��0�RS = ���0�R��0�S − ����R����S�/	2, �4.4�

����RS = ���0�R����S − ����R��0�S�/	2. �4.5�

Noting that these states can also be expressed as

��0�RS = ��n�R�0�S + �n − 1�R�1�S�/	2, �4.6�

����RS = ��n�R�0�S − �n − 1�R�1�S�/	2, �4.7�

it is clear that both of these states are eigenstates of total
number with eigenvalue n and are therefore valid prepa-
rations under the SSR.

Moreover, within the eigenvalue n eigenspace, one
can measure the basis ���0� , ����� in order to statistically
distinguish states with a well-defined relative phase from
those, like 1

2 �n+1 � 
n+1 � � �0 � 
0 � + 1
2 �n � 
n � � �1 � 
1 � ,

which do not have a well-defined relative phase. Clearly,
this measurement is also valid within the constraints of
the SSR.

In fact, for every preparation, operation, and mea-
surement of the system that is not U�1� invariant, one
can find an equivalent preparation, operation, and mea-
surement for the relation between the pair of systems
that is U�1� invariant. To do so, we simply use the map

�0� → �n�R�0�S,

�1� → �n − 1�R�1�S, �4.8�

so that, in particular, we have

a�0� + b�1� → a�n�R�0�S + b�n − 1�R�1�S, �4.9�

for �a�2+ �b�2=1.
It is straightforward to generalize the quantization

map of Eq. �4.8� to the case of a system which may have
more than one photon. If it has at most mmax photons,
we simply use the map

�m� → �n − m�R�m�S, �4.10�

where we require that n�mmax. In this case,

�
m=0

mmax

cm�m� → �
m=0

mmax

cm�n − m�R�m�S. �4.11�

This extension of the Hilbert space corresponds physi-
cally to incorporating the phase reference into the quan-
tum formalism. In other words, it describes the internal-
ization or quantization of the reference frame. To see
this, consider the following analogy with classical me-
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chanics. Suppose a ball is bounced off of a wall. If we do
not treat the wall as a dynamical entity, but rather as an
external potential that appears in the equations of mo-
tion of the ball, then the solutions to the equations of
motion are not translationally invariant. Specifically, if
we take a given bouncing trajectory for the ball and
translate it in such a way that the bounce no longer co-
incides with the location of the wall, we do not obtain
another solution—the external potential breaks the
translation invariance. However, if we internalize the
wall, that is, treat its position as a dynamical degree of
freedom, then we find that the equations of motion, and
the solutions, will be invariant under translations of the
entire system �consisting of the ball and the wall�.

Similarly, when one writes down a state such as
��0����= ��0�± �1�� /	2, the phase of this state is only de-
fined relative to an external phase reference. We can
view this external phase reference as a type of external
potential, which provides the means for preparing states
and performing operations �i.e., giving solutions to the
quantum-mechanical equations of motion� that are not
invariant under phase shifts. However, if we incorporate
the phase reference as an internal system �and we do not
compare our internal systems to any other external
phase reference�, then the only empirically meaningful
states and operations are invariant under phase shifts of
the entire system �including the internalized phase refer-
ence�.

Whether one treats the wall in our classical example
as an external potential or an internal dynamical system
is a choice of the physicist. Similarly, one can treat a
reference frame internally or externally; with either
choice, one can obtain an empirically adequate descrip-
tion of the experiment �Bartlett, Rudolph, and
Spekkens, 2006�.

2. Dequantization of a phase reference

It is useful to consider the opposite problem to the
one considered above, namely, given a description of an
experiment wherein the phase reference is being treated
internally, how does one obtain a description wherein it
is treated externally? In our classical example of a ball
bouncing off a wall, this involves finding the equations
of motion for the relative position of the ball to the wall.

We would like to determine the quantum analog of
this process. In the context of a quantum reference
frame for spatial location, it is relatively straightforward.
To externalize the reference frame, one defines a novel
tensor product structure of the Hilbert space in terms of
the commuting pair of observables qR−qS and pR+pS,
where qR ,pR and qS ,pS are the position and momentum
operators for the reference frame and system, respec-
tively.

The procedure is a bit more subtle in our U�1� ex-
ample, but also involves identifying a novel tensor prod-
uct structure of the Hilbert space. The original tensor
product structure, corresponding to the reference frame
and system division, will be denoted H=HR � HS. The
product states with respect to this structure �n�R�m�S are

simultaneous eigenstates of N̂R, the number operator for

R, and N̂S, the number operator for S with eigenvalues n

and m, respectively. The operators N̂R and N̂S form a
complete set of commuting operators for the Hilbert
space H.

By choosing a different complete set of commuting
operators, we can define an alternate tensor product
structure for the Hilbert space. Specifically, we choose

N̂S, the number operator for S, and N̂tot=N̂S+N̂R, the
total number operator. The state �m�R�n�S is also a joint
eigenstate of this pair, with eigenvalues m and m+n,

respectively. Given that N̂S and N̂tot form a complete set
of commuting observables, we may label an element of

the basis ��n�R�m�S� instead by the eigenvalues of N̂S and

N̂tot, that is, �n�R�m�S= �Ntot=m+n ,NS=m�.
Now, if it were the case that any pair of values, one

drawn from the spectra of NS and the other drawn from
the spectra of Ntot, could be simultaneous eigenvalues of
NS and Ntot, then we could define a new tensor product
structure by �Ntot= l ,NS=m�= �l� � �m�. However, any
pair �l ,m� with m� l cannot be simultaneous eigenval-
ues. This problem can be resolved by restricting our at-
tention to states �n�R�m�S where the minimum value of n
is larger than the maximum value of m. Recalling the
physical significance of these eigenvalues, we see that
this corresponds to assuming that the RF has more ex-
citations than the system.

Assuming a system with at most mmax excitations, and
a reference with a number of excitations that is at least
mmax, we may focus upon the subspace H�
=span��n�R�m�S ,m=0, . . . ,mmax,n�mmax�. It is then
straightforward to introduce a tensor product structure
on H� as follows. We define an mmax-dimensional Hil-
bert space Hrel with an orthonormal basis �m�rel labeled

by the eigenvalue m of N̂S. We call this the relational
Hilbert space. We also define a Hilbert space Hgl with an

orthonormal basis �l�gl labeled by the eigenvalue of N̂tot.
We call this the global Hilbert space. We then have a
vector space isomorphism

H� � Hgl � Hrel, �4.12�

which is made by identifying

�l�gl�m�rel � �Ntot = l,NS = m� , �4.13�

for all m�mmax and l�mmax.
We can therefore define a linear map from the sub-

space H� of HR � HS to Hgl � Hrel in terms of their re-
spective basis states as

�n�R�m�S � �m + n�gl�n�rel. �4.14�

Under this map, we have

a�n + 1�R�0�S + b�n�R�1�S � �n�gl � �a�0�rel + b�1�rel� .

�4.15�

Any U�1�-invariant state on HR � HS will lead to a state

on Hrel � Hgl that commutes with N̂tot, i.e., the state will
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be diagonal in the number basis of Hgl. By discarding the
global degrees of freedom and considering only the re-
duced density matrix on Hrel, we are essentially moving
to a paradigm of description wherein the RF is not
treated within the quantum formalism. We call this pro-
cedure externalizing or dequantizing the reference
frame. For instance, if we follow the map of Eq. �4.15�
by a trace over Hgl, we obtain the map

a�n + 1�R�0�S + b�n�R�1�S � a�0�rel + b�1�rel, �4.16�

which is the inverse of Eq. �4.9�, the map describing the
internalization or quantization of the phase reference.

3. Optical coherence controversy

This simple analysis of the quantum treatment of ref-
erence frames is useful for resolving a controversy con-
cerning whether quantum coherences between photon-
number eigenstates are fact or fiction �Molmer, 1997,
1998; Gea-Banacloche, 1998; Rudolph and Sanders,
2001a, 2001b; Nemoto and Braunstein, 2002, 2003, 2004;
van Enk and Fuchs, 2002a, 2002b; Fujii, 2003; Sanders et
al., 2003; Spekkens and Sipe, 2003; Wiseman, 2003, 2004;
Smolin, 2004; Bartlett, Rudolph, and Spekkens, 2006�. It
is standard practice in quantum optics to model the state
of the electromagnetic field generated by a laser to be a
coherent state, which is a coherent superposition of
photon-number eigenstates. One justification that may
be given for such an approach is that if one imagines the
source of the radiation to be a classical oscillating dipole
�which seems a reasonable assumption� then a simple
calculation shows that the field is left in a coherent state.
On the other hand, if one quantizes the dipole moments
in the gain medium and assumes that these are initially
in a thermal state �which must have zero expectation
value of the dipole moment operator�, and that the cou-
pling between the gain medium and the radiation field
conserves photon number �which again seem like rea-
sonable assumptions�, then the reduced density operator
of the field is found to be in an incoherent mixture of
photon-number eigenstates �Molmer, 1997�. The fact
that distinct states are obtained by the two analyses has
led many researchers to conclude that the two descrip-
tions are inconsistent and that one must be wrong.

To gain insight into this controversy, it is useful to
consider the gain medium as a phase reference for the
radiation field. Rather than considering this case in de-
tail, we return to the example of the previous section,
which provides a simplified version of the controversial
phenomena. Recall that we also considered two distinct
paradigms of description for a system S and a phase
reference R. In the first description—the external-R
paradigm—only S was treated quantum mechanically, so
that the total Hilbert space was HS. In the second
description—the internal-R paradigm—both S and R
were treated quantum mechanically, so that the total
Hilbert space was HS � HR. Moreover, the state on HS is
different in the two cases. For instance, if the state of S
in the external-R paradigm is ��0�= ��0�+ �1�� /	2 of Eq.

�4.1�, after internalizing R, the joint state is ��0� of Eq.
�4.6�, and the state on HS is 1

2 �0�
0�+ 1
2 �1�
1�.

Thus just as the classical and quantum treatments of
the gain medium in the generation of laser light led to
distinct state ascriptions for the radiation field, our clas-
sical and quantum treatments of the phase reference R
lead to distinct state ascriptions for the system S. It is a
mistake, however, to conclude that the two descriptions
are inconsistent. As we saw in the previous subsection,
both descriptions are valid. To resolve the confusion ex-
plicitly, we elaborate on the physical interpretation of
the states in these Hilbert space.

In the external-R paradigm, we saw that the phase of
the quantum state of S �that is, the phase of the ratio of
amplitudes of �0� and �1�� can only be given meaning
relative to the external phase reference R. So it is clear
that the state on HS describes not just the intrinsic prop-
erties of S, but some of its extrinsic properties as well,
specifically, its relation to R.

In the internal-R paradigm, any phase of the quantum
state of S can also only be given meaning relative to an
external phase reference, but R is no longer an external
RF, and any phase reference that is still treated exter-
nally, say R�, has been assumed not to be correlated with
S. Thus we expect S to not have a well-defined phase in
this case. The point is that in the internal-R paradigm HS
also describes extrinsic properties of S, but in this case it
is the relation of S to R�, rather than R.

Thus the fact that the quantum states on HS are dis-
tinct in the two paradigms is not an inconsistency be-
cause despite the common notation, they describe differ-
ent degrees of freedom: one describes the relation of S
to R and the other the relation of S to R�.

Moreover, if one wishes to recover the quantum state
describing the relation of S to R in the internal-R para-
digm, it is clear that one should not look at the quantum
state on HS because this amounts to tracing over HR
which corresponds to ignoring R, and one clearly cannot
ignore a system when one seeks to find the relation be-
tween it and another. But where then is information
about the relation between S and R found in HS � HR?
The answer is that it is found in a virtual subsystem,
specifically in the Hilbert space Hrel. The resolution of
the optical coherence controversy is achieved in an
analogous manner.

The key insight for resolving these sorts of confusions
is that quantum states of systems in an external RF para-
digm do not simply describe its intrinsic properties, but
also the relation of the system to the external RF; fur-
ther discussion on this issue can be found in Wiseman
�2004� and Bartlett, Rudolph, and Spekkens �2006�.

4. Generalization to composite systems

The generalization of the quantization procedure in
Sec. IV.A.1 to the case of multiple systems �i.e., modes�
is not so straightforward. The problem is that if we wish
to describe a pair of systems S1 and S2 relative to an RF
R, then the reduced density operators on RS1 and on
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RS2 cannot both be pure entangled states �Coffman et
al., 2000�. This fact is known as the monogamy of pure
entanglement. As a result, the quantum description of
the RF and system that was presented above is only
adequate if the system in question is the only one that
will ever be compared to the RF. However, the most
general notion of an RF is something with respect to
which the orientation of many systems can be defined.
We consider such a generalization presently.

Note that if we demand that there be no limit on the
number of systems that can be correlated with the RF,
and that the degree of correlation with the RF be equal
for all the systems, then the reduced density operator on
RS for an arbitrary system S must be unentangled, that
is, a separable state. At first glance, this might seem
problematic, because it might seem that the entangle-
ment in Eqs. �4.9� and �4.11� is critical for the RF quan-
tization procedure to work. It is true that if we restrict
ourselves to a subspace of HR of the same dimension as
the system of interest, as we did in Eqs. �4.9� and �4.11�,
then we cannot obtain a faithful representation. How-
ever, by allowing ourselves to make use of a larger sub-
space, we can obtain a good representation, and in the
limit of arbitrarily large dimension, we obtain a perfect
representation, as before. Defining the unnormalized
states

����R = �
n=0

�

ei�n�n�R, �4.17�

which have well-defined phase, the quantization map
takes the form

	 →� d�����R
��� � U���	U†��� . �4.18�

We must demonstrate that this is a faithful representa-
tion of the system that satisfies the U�1�-SSR. Rather
than doing so for the phase reference case individually,
we proceed directly to present the generalization of this
quantization map to an arbitrary group, and prove that
the latter has the properties we desire.

B. Quantization of a general reference frame

Consider the quantum description of a system with
Hilbert space HS, in the case where one possesses an
external reference frame for a degree of freedom asso-
ciated with the group G. The Born rule predicts that for
a preparation associated with density operator 	 fol-
lowed by a transformation associated with operation E
and finally a measurement associated with the POVM
�Ek�k the probability of the measurement outcome k is
Tr�E�	�Ek�.

Now consider a quantum description for the same sys-
tem, but where an SSR for G is in force. This SSR im-
plies a restriction on the states, transformations, and
measurements. However, as we now demonstrate it is
possible to append this system with another quantum
system R which serves as a quantum reference frame in

such a way that, although an SSR for G applies to the
entire composite system RS, the RF allows us to effec-
tively describe the system as if the SSR did not exist
�Kitaev et al., 2004�.

Our aim is to map the elements of the old represen-
tation �of preparations, operations, measurements� to el-
ements in a new, G-invariant representation on HR
� HS. Thus we seek a map

	 → 	inv, �4.19�

�Ek�k → �Ek
inv�k, �4.20�

E → Einv �4.21�

such that 	inv=G�	inv� and Ek
inv=G�Ek

inv� are both
G-invariant operators on HR � HS, and Einv is a
G-invariant superoperator on B�HR� � B�HS� „this im-

plies that when acting on a G-invariant operator Ã, Einv

satisfies �G �Einv�G��Ã�=Einv�Ã�….
In addition, we would like this map to preserve the

statistical predictions of the old representation; if all sta-
tistics of the Born rule can be reproduced in this new
representation, then it is equivalent to the old one. Spe-
cifically, we want this map to be such that

TrRS�Einv�	inv�Ek
inv� = TrS�E�	�Ek� , �4.22�

for all states 	, operations E, and measurements �Ek�k.
Such a map does exist �assuming we can allow dR, the
dimension of HR, to be arbitrarily large�, as we now
demonstrate.

The quantum system R that will constitute the RF for
G must clearly transform under G in some nontrivial
manner. Thus HR must carry a representation of G, de-
noted UR, which in general will be reducible. In order
for R to serve as a complete quantum RF for G, the
state �g� on HR corresponding to the configuration g
�G must not possess a nontrivial invariant subgroup,
i.e., if UR�g���g�� �g� then g� must be the identity. It fol-
lows that the states of R transform as

UR�g���g� = �g�g�, ∀ g,g� � G . �4.23�

For this quantum system to function as a perfect refer-
ence frame for G, the different configurations �g� must
all be distinguishable. Thus we require that states for
different configurations are orthogonal


g�g�� = ��g−1g�� , �4.24�

where ��g� is the delta function on G defined by
�dg��g�f�g�= f�e� for any continuous function f of G,
where e is the identity element in G. The above require-
ments are the defining properties of the left regular rep-
resentation of G. In the case of a Lie group, the dimen-
sionality of HR must be infinite for such states to exist.

578 Bartlett, Rudolph, and Spekkens: Reference frames, superselection rules, and …

Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007



We refer to such an infinite-dimensional quantum RF as
unbounded.11

We now present the map from operators on HS to
G-invariant operators on HR � HS:

$:A � �
G

dg�g�
g� � US�g�AUS
†�g� , �4.25�

where US is the representation of G on the system.
Using this map $, we define the invariant versions of

density operators, elements of POVMs, and Kraus op-
erators, respectively, as

	inv =
1

dR
$�	� , �4.26�

Einv = $�E� , �4.27�

Kinv = $�K� , �4.28�

where dR is the dimensionality of the Hilbert space HR�
�span��g� ,g�G� spanned by the orbit of the RF states,
which may be a subspace of HR. �One can easily check
that TrRS�	inv�=1 if TrS�	�=1.�

The following are properties of the $ map: �i� $�A� is
G-invariant; �ii� $�A+B�=$�A�+$�B� and $�AB�
=$�A�$�B�, so the algebra of operators is reproduced.

The G-invariance of $�A� follows from

�UR�g�� � US�g���$�A��UR
† �g�� � US

†�g���

= �
G

dg�g�g�
g�g� � US�g�g�AUS
†�g�g� = $�A� ,

�4.29�

where the final equality follows from the invariance of
the Haar measure dg. To prove property �ii�, we note
that $ is linear by definition, and that

$�A�$�B� =� dgdg��g�
g�g��
g��

� US�g�AUS
†�g�US�g��BUS

†�g��

=� dg�g�
g� � US�g�ABUS
†�g� = $�AB� ,

�4.30�

where we have used Eq. �4.24�.
From these properties, one can show that if 	 is a

density operator, then so is 	inv, if �Ek� is a POVM, then
so is �Ek

inv�, and that if E is a superoperator with Kraus
operators �K�� satisfying ��K�

† K�=E, then the superop-
erator Einv having Kraus operators �K�

inv� satisfies
���K�

inv�†K�
inv=Einv. Most importantly, one can prove

that the new representation satisfies Eq. �4.22� and
therefore reproduces the quantum statistics:

TrRS�	invEk
inv� = dR

−1TrRS�$�	�$�Ek��

= dR
−1TrRS�$�	Ek��

= dR
−1TrRS��

G
dg�g�
g�

� US�g�	EkUS
†�g��

= dR
−1TrR��

G
dg�g�
g��TrS�	Ek�

= TrS�	Ek� . �4.31�

The case where there is a nontrivial operation E can be
dealt with similarly.

This is a remarkable result. It proves that superselec-
tion rules cannot provide any fundamental restrictions
on quantum theory. This has particular implications for
quantum cryptography as we discuss below. It also
proves that all superselection rules associated with uni-
tary representations of compact groups result from a
lack of an appropriate reference frame, because, as we
have shown, including an unbounded quantum reference
frame reproduces a quantum theory that is equivalent to
one in which the superselection rule does not apply.

C. Are certain superselection rules fundamental?

We now return to the question, introduced at the be-
ginning of this section, of whether certain superselection
rules are more fundamental than others. That is, are cer-
tain SSRs axiomatic, as opposed to those which arise in
practice when there is not an appropriate RF? This issue
bears on several controversies that are the counterparts
of the optical coherence controversy in other contexts. It
has arisen in the context of coherence between charge
eigenstates in superconductivity �Haag, 1962; Kershaw
and Woo, 1974; Anderson, 1986� and of coherence be-
tween atom number eigenstates in Bose-Einstein con-
densation �Hoston and You, 1996; Javanainen and Yoo,
1996; Castin and Dalibard, 1997; Yoo et al., 1997; Leg-
gett, 2001�. Here, however, the intuition for the coher-
ences being fiction is based on the notion that the super-
selection rule for charge and for baryon number are
axiomatic, so that any quantum state that violates this
SSR does not represent reality.

To make the discussion definite, let us compare on the
one hand quantities such as charge and baryon number,
for which axiomatic SSRs are conventionally assumed to
apply, and on the other hand quantities such as linear
momentum, angular momentum, and photon number,
for which SSRs are generally not assumed to apply. We
consider whether our conclusion, that it is possible to
effectively lift a superselection rule, should apply to both
of these equally.

The example of the phase reference provided in Sec.
IV.A applies equally well in the case of atom number
�and thus baryon number� as it does to the case of pho-
ton number. In both cases, one can certainly create well-

11For finite groups, one need only assume that 
g �g��=�g,g�
where �g,g� is the Kronecker delta.
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defined relative phases between a pair of systems. More-
over, the reasons for interpreting the larger of the two
systems as a reference frame for the other are just as
valid in the case of atom number as they are in the case
of photon number. Finally, in both cases one can recover
a description of the relational degree of freedom,
wherein one effectively has lifted the SSR.

Given the generalization to non-Abelian groups, pro-
vided in Sec. IV.B, it would appear that all such super-
selection rules may be lifted in practice. Of course, the
technical challenge in doing so is to build a reference
frame for the degree of freedom in question. Admit-
tedly, it may be more difficult to construct good refer-
ence frames for some degrees of freedom, but there is
nothing in principle preventing their construction. For
instance, to lift the superselection rule associated with
charge, one must simply have a large reference system
with respect to which one can coherently exchange
charge, as argued by Aharonov and Susskind �1967�. As
another example, the experimental realization of Bose-
Einstein condensation in alkali atoms provided a refer-
ence frame for the phase that is conjugate to atom num-
ber �Dowling et al., 2006�. We see no obstacle in
principle to lifting more general sorts of superselection
rules as well.

What sets the two categories apart in practice seems
to be the fact that some reference frames, such as those
for spatial location or angular position, are ubiquitous,
whereas others, such as a frame for the quantity conju-
gate to charge, tend not to arise through natural causes
and are difficult to prepare and maintain. But this may
be only a practical and not a fundamental difference.

Another motivation might be given for treating the
two categories differently, specifically, that a superselec-
tion rule for linear momentum would seem to imply that
objects could not be localized in space, and this one
might think would be contrary to what is observed.
However, all that is ever observed empirically is the lo-
calization of systems relative to other systems, and this is
consistent with a superselection rule for total linear mo-
mentum. If one seeks to describe the entire universe
quantum mechanically, as is typically done in quantum
cosmology and some approaches to quantum gravity,
then it is natural to assume SSRs for all global transfor-
mations, so that there is no distinction between charge
and linear momentum. One can reach this conclusion by
noting that all physical systems that could serve as RFs
have been quantized. Alternatively, one can appeal to
one of the central lessons of general relativity: that all
observable quantities ought to be relational.

D. Superselection rules and quantum cryptography

Information-theoretic security is a form of security
that does not rely on assumptions about the computa-
tional capabilities of one’s adversary. The appeal of
quantum cryptography is that it offers protocols achiev-
ing this sort of security where classical protocols fail.
Quantum key distribution is the primary example of a
task for which this is the case. On the other hand, there

exist cryptographic tasks, such as bit commitment, for
which it has been shown that even quantum protocols
cannot achieve information-theoretic security. The pos-
sibility of quantum key distribution arises ultimately
from a restriction imposed by the laws of quantum me-
chanics on would-be eavesdroppers—namely, that quan-
tum information cannot be cloned. By definition, SSRs
also impose restrictions on the accessible quantum states
and operations. For instance, an SSR for charge forbids
the creation of superpositions of eigenstates of differing
total charge. It is conceivable therefore, as first sug-
gested by Popescu �2002�, that SSRs could place restric-
tions on would-be cheaters and thereby achieve greater
security for some tasks �for instance, unconditional secu-
rity for bit commitment� �Mayers, 2002; Verstraete and
Cirac, 2003; DiVincenzo et al., 2004; Kitaev et al., 2004�.

To motivate the intuition that SSRs might improve the
security of quantum protocols, we consider the case of a
partially binding and partially concealing bit commit-
ment protocol �Spekkens and Rudolph, 2001� in the
presence of a superselection rule for SO�3�. Alice pre-
pares two qubits in either the singlet state ��−�, which
has total spin 0, or the triplet state �11�, which has total
spin 1, according to whether she wants to commit a bit
b=0 or 1, respectively. She sends Bob one of the two
qubits as a token of her commitment. Bob cannot distin-
guish the reduced states I /2 and �1� 
1� with certainty and
so the protocol is partially concealing. At a later stage,
she sends him the second qubit, at which point Bob
checks her honesty by performing a projective measure-
ment to discriminate ��−� from �11�. There is no cheating
strategy that allows Alice to unveil an arbitrary bit
value, so the protocol is partially binding. Clearly each
step in the honest protocol respects the SSR. However,
it is quite plausible, at first sight, that an optimal cheat-
ing strategy for Alice will not respect the SSR—either
because she must prepare a state which is a superposi-
tion of two different angular momenta, such as ���−�
+ �11�� /	2, or because prior to sending the second qubit
to Bob she must apply to it some local operation that
violates the SSR. If all of Alice’s optimal cheating strat-
egies required SSR violation, then the degree of bind-
ingness against Alice and thus the security of the proto-
col would be greater by virtue of the SSR.

Despite the plausibility of this notion, it turns out that
SSRs do not, in general, offer the possibility of crypto-
graphic protocols with greater security �Kitaev et al.,
2004�. This result can be proven using the general frame-
work of Sec. IV.B. We begin by demonstrating this for
the case of arbitrary two-party cryptographic protocols.
Such protocols can be formulated as follows. Alice and
Bob each hold a local system in their laboratories, called
A and B, respectively, and exchange a message system
M back and forth. At the outset, they share a product
state 	A � 	M � 	B and in each round of the protocol, one
of the parties applies a joint operation on their local
systems and the message system and then sends the mes-
sage system to the other party. At the end, both parties
perform a measurement on their local system.
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Security in this context is a restriction on the degree
to which a cheating Alice can influence the probability
distribution over the outcomes of the final measurement
of an honest Bob, and a similar restriction with the roles
of Alice and Bob reversed. �No restrictions are guaran-
teed for the case where both parties cheat.� We consider
the case of a cheating Alice here.

Because we may include any ancillas used by Alice
and Bob in the local systems A and B, we can assume
that all operations are unitary. In the honest protocol,
the first operation implemented by Alice is VA1

, the first
implemented by Bob is VB1

, the second by Alice is VA2
,

and so forth. We denote the POVM associated with
Bob’s final measurement by �EB,k� where k labels the
possible outcomes. The probability of outcome k is

pB�k� = Tr�EB,kV�	A � 	M � 	B�V†� , �4.32�

where

V = VBn
VAn

¯ VB2
VA2

VB1
VA1

. �4.33�

Suppose that the honest protocol respects the SSR,
and that the SSR is associated with a group G. In this
case, all states, unitaries, and POVM elements described
above are G-invariant operators. We now show that a
cheating strategy that violates the SSR can always be
simulated by a cheating strategy that respects the SSR,
and consequently a cheater that faces an SSR does not
suffer any disadvantage in cheating ability compared to
one who does not.

Suppose that Alice’s optimal SSR-violating
cheating strategy is one wherein she replaces each
G-invariant operation VAj

with an operation VAj
� that

need not be G-invariant. She thereby can cause the
probability of outcome k to be pB� �k�=Tr�EB,kV��	A

� 	M � 	B�V�†� where V�=VBn
VAn

� ¯VB2
VA2

� VB1
VA1

� . We
now demonstrate that there is an SSR-respecting
cheating strategy that also leads to pB� �k�. The trick
is to use the construction of Sec. IV.B. Alice simply
extends her local system A to RA, where R is a
system that will play the role of a local reference
frame. She replaces the G-noninvariant operation VAj

� ,
which acts nontrivally on AM, with $�VAj

� �, where $ is
the map defined in Eq. �4.25�. $�VAj

� � is a G-invariant
unitary operator that acts nontrivially on RAM.
Bob’s operations must be trivial on R, so that we can
write these as IR � VBj

. It is useful to note, however,
that because the VBj

are G-invariant, it follows that
IR � VBj

=$�VBj
�. Moreover, given that $ preserves

the algebra of operators �property �ii� of
the $ map�, we have $�VBn

�$�VAn
� �¯$�VB1

�$�VA1
� �

=$�VBn
VAn

� ¯VB1
VA1

� �=$�V��. The initial state and Bob’s
final measurement are also trivial on R and G-invariant.
It follows that dR

−1IR � 	A � 	M � 	B=dR
−1$�	A � 	M � 	B�

and IR � EB,k=$�EB,k�.
Thus the probability of outcome k in Alice’s SSR-

respecting cheating strategy is

dR
−1 Tr�$�EB,k�$�V��$�	A � 	M � 	B�$�V�†��

= Tr�EB,kV�	A � 	M � 	BV�†� = pB� �k� , �4.34�

where we have used Eq. �4.31�. Thus any probability
distribution achieved by a cheating strategy that violates
the SSR can also be achieved by one that respects it.

It is straightforward to generalize this result to the
case of an n-party protocol with k cheating parties. We
begin with the case of a pair of cheating parties �Alice
and David�. If their SSR-violating cheating strategies
consist of unitaries VAj

� and VDj
� , then by the same rea-

soning as applied above they can achieve an equivalent
degree of success using SSR-respecting cheating strate-
gies consisting of unitaries $�VAj

� � and $�VDj
� � which are

nontrivial on RA and RD, respectively. Because only
one of these parties is ever implementing an operation
at a given time, they can achieve this strategy by passing
the RF R back and forth between them. Moreover, even
if Alice and David are prevented from implementing
such transmissions during the protocol, there is a re-
source they may share prior to the protocol, namely, a
shared RF, which allows them to do just as well. Suppose
their shared RF is constituted of a pair of systems, R1
and R2, in the state

	R1R2
=� dg�g�R1


g� � �g�R2

g� . �4.35�

We show that by using R2 alone, David can achieve the
same operations on MD as could be achieved if Alice
had passed him R1. We define $1 and $2 as the generali-
zations of $ for R=R1 and R=R2, respectively. If Alice
had passed David a copy of R1, he could replace VDj

� by
the operation $1�VDj

� �. But given that

$1�VDj
� �	R1R2

� 	MD$1�VDj
�†�

=� dg�g�R1

g� � �g�R2


g�

� �U�g�VDj
U†�g��	MD�U�g�VDj

† U†�g��

= $2�VDj
� �	R1R2

� 	MD$2�VDj
�†� , �4.36�

it follows that David achieves the same effect by replac-
ing VDj

� by the operation $2�VDj
� �, which is something that

he can achieve locally. The generalization of this argu-
ment to an arbitrary number of cheating parties is
straightforward.

It should be noted that for Lie groups, the states we
have been considering are, strictly speaking, not normal-
izable. However, one can introduce a sequence of nor-
malizable approximations to these states, parametrized
by an integer N, corresponding to RFs of bounded size,
such that the results described here are reproduced in
the limit N→�, that is, the limit of an unbounded RF.
See Kitaev et al. �2004� for details.

Superselection rules that are not associated with a
compact symmetry group have also been considered, for
instance, the superselection rule for univalence which
denies the possibility of a coherent superposition of bo-
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son and fermion �Doplicher and Roberts, 1990� and su-
perselection rules that can arise in two-dimensional sys-
tems that admit non-Abelian anyons. Using different
methods, it has been shown that such SSRs also fail to
yield any advantages for two-party cryptography �Kitaev
et al., 2004�, but the question remains open for multi-
party protocols.

V. ALIGNING REFERENCE FRAMES

Separated parties often require the use of a shared
reference frame. For instance, they may require their
clocks to be synchronized or their Cartesian frames to
be aligned. Furthermore, although it was shown in Sec.
III that lacking a reference frame does not prevent one
from achieving information-theoretic tasks such as com-
munication, cryptography, and computation, this restric-
tion can decrease the �nonasymptotic� efficiency with
which they can be achieved and often requires more so-
phisticated encodings. Thus separated parties might opt
to initially devote their communication resources to set-
ting up a shared reference frame and thereafter use a
standard encoding, rather than perpetually circumvent-
ing the lack of such an RF with a relational encoding.

We refer to the process by which observers correlate
their local reference frames, that is, by which they refine
their knowledge of the relation between them, as refer-
ence frame alignment. In order to do so, the parties
must exchange systems with the relevant degrees of
freedom, which serve as finite samples of the sender’s
local RF and can be compared to the receiver’s local RF
to obtain some information about the relative orienta-
tion of the two frames. For example, through the ex-
change of spin-1 /2 particles, Alice and Bob can align
their local Cartesian frames. Exchanging quantum states
of an optical mode allows them to align their phase ref-
erences.

We discussed in Sec. IV how a quantum system of
unbounded size can play the same role as a classical
reference frame. By the transmission of such a system,
one can achieve perfect alignment of separated classical
reference frames. However, one is often restricted to
sending systems of bounded size, either to economize on
communication resources or because of the impractical-
ity of encodings that require a joint preparation of too
many systems. It is therefore of great interest to deter-
mine the fundamental quantum limits on the alignment
precision that can be achieved for given communication
resources. This is the question we address in this section.

It should be noted that if the communication re-
sources are bounded, the end result of an alignment
scheme is partial correlation between the local reference
frames. The operational consequence of not having
complete correlation is that the parties must contend
with the decoherence that arises from the weighted
G-twirling operation discussed in Sec. II.C. As the im-
precision in this alignment approaches zero, the
weighted G-twirling operation approaches the identity
map. We are concerned here with schemes that mini-
mize this imprecision.

Consider an alignment scheme for some form of ref-
erence frame, which makes use of a number N of trans-
mitted quantum systems. The expected error in align-
ment, measured by the variance, can be theoretically
determined as a function of N. The problem has close
connections with the field of quantum parameter estima-
tion �Holevo, 1982� and quantum metrology �see Gio-
vannetti, Lloyd, and Maccone �2004��, and a general fea-
ture of this behavior is closely related to well-studied
results in phase estimation. Specifically, if the N quan-
tum systems are used independently �i.e., entangled sig-
nal states are not used, and measurements on individual
systems are independent� one can only achieve an error,
quantified by the variance, that scales as 1/N. This re-
sult, which is a consequence of the central limit theorem,
is commonly known as the standard quantum limit. In
contrast, strategies which make use of entanglement be-
tween the N systems, as well as joint measurements, can
achieve an error �variance� that scales as 1/N2. This re-
sult, commonly known as the Heisenberg limit, repre-
sents the fundamental limit to the scaling of accuracy as
allowed by the laws of quantum physics �Giovannetti et
al., 2006�.

We begin with a discussion of a simple example to
provide some intuition about what sorts of states are
optimal for the alignment problem. Heuristically, they
are states that, when mixed over the action of the group,
have significant support on the largest possible dimen-
sionality of Hilbert space, thereby making them as dis-
tinguishable as possible. This intuition can be made rig-
orous in the context of a simple figure of merit: the
maximum likelihood of a correct guess. After introduc-
ing a more useful figure of merit, the fidelity, we describe
in detail strategies for the alignment of phase references,
spatial directions, and Cartesian frames, and demon-
strate how the Heisenberg limit can be achieved. We
also overview results on the alignment problem for a few
other sorts of reference frames. For alternate overviews
of techniques for aligning directions and Cartesian
frames, see Peres and Scudo �2002b� and Bagan and
Munoz-Tapia �2006�.

A. Example: Sending a direction with two spins

Suppose Alice and Bob have uncorrelated Cartesian
frames and they wish to align their z axes by Alice trans-
mitting a pair of spin-1 /2 particles to Bob. What state of
these two spins should Alice prepare, and what mea-
surement should Bob perform in order to optimize their
expected success in this task?

A seemingly reasonable strategy would be for Alice to
send parallel spins aligned with her z axis. Assuming
Alice’s z axis points in the n direction relative to Bob’s
frame, this strategy corresponds to sending Bob the state

�n��n�, where �Ŝ ·n��n�= �� /2��n�, relative to his local
frame. Bob’s task is now one of state estimation—to op-
timally estimate the pure state �n� given two copies
�Massar and Popescu, 1995�. We note that the set of
states from which Bob must measure are all on the
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three-dimensional symmetric j=1 subspace Hj=1 of two
spins; he can thus restrict his measurement to a POVM
on this Hilbert space. We consider the case where Bob
performs a covariant measurement, i.e., a continuously
parametrized POVM of the form

�E� = R����2E0R†����2, � � SU�2�� , �5.1�

where E0= �e�
e� is a positive rank-1 operator. �Any
POVM of higher rank can be simulated by a rank-1
POVM followed by classical post-processing of the re-
sult.� To form a POVM, the vector �e� must satisfy the
normalization condition

� d�E� = Ij=1, �5.2�

where Ij=1 is the identity operator on Hj=1. It is straight-
forward to show �for example, by using Eq. �3.10�� that
this condition completely constraints the form of the
POVM, i.e., it requires that �e�=	3�00� up to an arbitrary
choice of single-spin basis ��0�,�1��. Let Bob choose �0� to
be aligned with his +z direction.

If Alice sends two spins in the state �n��n�, and Bob
performs the measurement �5.1�, then the probability of
Bob obtaining the measurement outcome � is given by
the Born rule

p���n� = Tr�E��n��n�
n�
n�� �5.3�

=3 cos4��/2� , �5.4�

where �=cos−1�n ·�z� is the angle between n and �z. If
Bob obtains the measurement outcome �, then his best
guess as to the direction n is ng=�z. A natural way with
which to quantify the quality of Bob’s guess is to use the
fidelity �1+n ·ng� /2=cos2�� /2�, which gives a value of 1
if he guesses correctly �ng=n�, a value of 0 if he guesses
the opposite direction �ng=−n�, and which decreases
monotonically between these two limits. A random
guess would give an average fidelity of 1/2.

The average fidelity of Bob’s guess then is given by
averaging over the distribution of transmitted states by
Alice �chosen to be uniformly sampled from the sphere�
and all possible measurement outcomes by Bob,
weighted by the fidelity,

F =� dn� d�p���n�
1 + n · �z

2
. �5.5�

As the probability p�� �n� and the fidelity depend only
on the angle �=cos−1�n ·�z�, this expression simplifies to

F =
1
2�0

�

d� sin ��3 cos4��/2��
1 + cos �

2
=

3
4

. �5.6�

We note that the same average fidelity can be achieved
with a finite �four-element� PVM in the basis given by
Eq. �3.35� �Massar and Popescu, 1995�.

Remarkably, this method where Alice sends two par-
allel spins is not optimal; a higher average fidelity can be
achieved if Alice instead sends two antiparallel spins
�Gisin and Popescu, 1999�, as we now demonstrate. Let

�n��−n� be the two-qubit state transmitted by Alice;
again, Bob must perform a type of state estimation to
determine n. Note that the set of possible states is no
longer contained within the j=1 symmetric subspace,
and thus Bob must now perform a measurement on the
entire two-spin Hilbert space. Choosing a covariant
POVM of the form �5.1�, the new normalization condi-
tion now becomes

� d�E� = I , �5.7�

where I is now the identity on the full two-spin Hilbert
space. Choosing E0= �e�
e� to be rank 1, this normaliza-
tion again completely constrains the POVM �up to an
arbitrary choice of single-spin basis by Bob� to be

�e� = 	3��+� + ��−� , �5.8�

where ��±�= 1
	2 ��01�± �10��.

The probability that Bob obtains the measurement
outcome � given that Alice prepared �n��−n� is a func-
tion only of the angle � between n and �z, given in this
case by

p���n� =
�1 + 	3cos ��2

2
. �5.9�

This leads to a fidelity of F= �1+	3� / �2	3��0.789, which
is greater that that achieved for the parallel spin case.
We note that this fidelity can also be achieved with a
finite �four-outcome� PVM of the form

�i� =
	3
2

�ni��− ni� + �− ni��ni�
	2

+
1
2

��−� , �5.10�

where �ni� are along the four directions of the tetrahe-
dron, given by Eqs. �3.36�–�3.39�. An experiment dem-
onstrating this protocol has been performed by Jeffrey et
al. �2006�, wherein it was referred to as “quantum orien-
teering.”

A heuristic explanation of why the antiparallel spins
are superior to the parallel spins for this task is obtained
by investigating the orbits of transmitted states under
the relevant group, in this case, the group of rotations
SU�2�. Consider the orbit under the group of a state of
parallel spins �n��n�,

Mpar = ��R��� � R�����n��n�, � � SU�2�� . �5.11�

This orbit has support entirely on the three-dimensional
symmetric j=1 subspace of the two-spin Hilbert space.
In contrast, the orbit under the group of a state of anti-
parallel spins �n��−n�,

Manti = ��R��� � R�����n��− n�, � � SU�2�� ,

�5.12�

has support on the full four-dimensional two-spin Hil-
bert space. The latter orbit spans a larger space, there-
fore its elements are, loosely speaking, more orthogonal
and consequently easier to discriminate. We see in the
following that this heuristic idea can be formalized to
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provide optimal methods for the alignment of any type
of reference frame.

B. General approach to aligning reference frames

Consider the general problem of aligning an RF asso-
ciated with the group G using the one-way transmission
of a quantum system �composed, say, of a number of
elementary systems� with Hilbert space H. For instance,
one might be trying to communicate information about
a Cartesian frame, associated with the group SU�2�, us-
ing N spin-1 /2 particles and corresponding Hilbert space
H= �H1/2��N. The problem is to devise an optimal proto-
col for this task, given the allowed communication re-
sources, for some given figure of merit.

The most general statements we can make about op-
timal RF distribution schemes concern the form of an
optimal POVM for a given covariant set of signal states,
provided the figure of merit satisfies some very general
and natural properties. Optimal states for a general task
of this sort can be taken to be pure, given that any mixed
state scheme is a convex sum of pure state schemes and
therefore can do no better than the best pure state
scheme. Thus the signal states form an orbit of pure
states

���g�� = U�g���� , �5.13�

where U�g� is the representation of G on H. We call ���
the fiducial state.

We now consider a general form for the fiducial state
in terms of the decomposition of H into irreps of G,
given by Eqs. �2.22� and �2.23�. In terms of the charge
sectors Hq, we express the fiducial state as

��� = �
q

�q��q� , �5.14�

with �q satisfying �q��q�2=1, and where ��q���q��� is
the normalized component of the fiducial state on each
charge sector Hq �where �q is the projector onto the qth
charge sector�. Each state ��q� can be viewed as a �gen-
erally entangled� state on the tensor product decompo-
sition Hq=Mq � Nq of Eq. �2.23�. Let

��q� = �
m=1

dq

m
�q���m

�q�� � �rm
�q�� �5.15�

be a Schmidt decomposition of this state on Mq � Nq,
where

dq � min�dim Mq,dim Nq� . �5.16�

We note that if ��q� does not have maximal Schmidt
rank �meaning some of the m

�q� are zero�, then the

Schmidt vectors are not unique. Let Ñq�Nq be the
dq-dimensional space spanned by the Schmidt vectors
��rm

�q���. Let ���m
�q��� be a basis for Mq, obtained using the

Schmidt vectors from Eq. �5.15� and, if necessary, com-
pleting this set arbitrarily to a basis.

A general expression for the fiducial state is thus

��� = �
q

�q �
m=1

dq

m
�q���m

�q�� � �rm
�q�� , �5.17�

which lies on the subspace H̃�H given by

H̃ � �
q

Mq � Ñq. �5.18�

In addition, the support of the orbit of the fiducial
state, i.e., the space

H� = span�U�g����, g � G� = supp�G����
���� , �5.19�

will also lie within H̃,

H� � H̃ . �5.20�

Thus for any choice of a fiducial state ��� the measure-
ment may be described by a POVM that is restricted to

H̃. In addition, if the figure of merit we are attempting
to optimize satisfies some general conditions �which we
discuss below�, the optimal POVM can be chosen to be
G covariant.12 Moreover, its elements can be taken to be
rank 1.13 Thus the optimal POVM must have the form
�E�g��, given by

E�g� = U�g��e�
e�U�g�†. �5.21�

We call �e�
e� the fiducial POVM element. Given that

these elements form a resolution of identity on H̃, we
have �dgE�g�=IH̃, or, equivalently,

G��e�
e�� = IH̃. �5.22�

Thus an RF alignment scheme of this sort is specified by
a fiducial state ��� and a fiducial POVM element �e�
e�.
In order to determine an optimal scheme, we first deter-
mine the optimal �e�
e� for a given ���.

The constraint Eq. �5.22� completely fixes the form of
�e� to be

�e� = �
q

	dim�Mq� �
m=1

dq

��m
�q�� � �rm

�q�� . �5.23�

This vector �e� of Eq. �5.23� can be described as follows:
it is a coherent superposition across the charge sectors
where ��� has support, with the amplitude squared in
each such charge sector given by the dimensionality of
Mq, and the projections in each such charge sector given

by maximally entangled states across Mq � Ñq.
We now demonstrate why �e� must take this form.

Equation �5.22� can be expressed as

12We note that choosing a covariant POVM is sufficient to
obtain an optimal protocol, but not necessary. For practical
schemes, it may be valuable to identify finite-element POVMs
that also obtain the optimum, as in Sec. V.A.

13For a proof of this, see Chiribella et al. �2005�. In general,
any non-rank-1 POVM can be simulated by a rank-1 POVM
followed by classical post-processing of the result; however,
this simulation need not be covariant.
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�
q

Dq � Iq��q�e�
e��q� = �
q

IMq
� IÑq

. �5.24�

In terms of the charge sectors, we write

�e� = �
q

cq�eq� , �5.25�

where the cq are nonzero and �eq���q�e� is a normalized
state in the jth sector. Projecting Eq. �5.24� onto a single
charge sector and tracing over Mq, we find

TrMq
��eq�
eq�� = IÑq

/dq, �5.26�

which tells us that the reduced density operator on Ñq of
�eq� is the completely mixed state, and consequently that

�eq� is a maximally entangled states across Mq � Ñq. This
may be written as

�eq� =
1

	dq
�
m=1

dq

��m
�q�� � �rm

�q�� . �5.27�

Projecting Eq. �5.24� onto a single charge sector and

tracing over both Ñq and Mq, we conclude that

�cq�2 = Tr�IMq
�Tr�IÑq

� = dim�Mq�dq. �5.28�

We may define ��m
�q�� in such a way that the coefficients

cq can be taken to be real and positive. Combining Eqs.
�5.25�, �5.27�, and �5.28� we recover Eq. �5.23�.

The covariant POVM then is fixed by the problem,
and it remains only to determine the optimal fiducial
state ���. To do so, one needs to specify a figure of merit.

C. Maximum likelihood estimation

We now consider a particular choice for a figure of
merit: the maximum likelihood of a correct guess �Chiri-
bella et al., 2004b�. Because our standard example is a
continuous group, the likelihood of a correct guess is
infinitesimal, and so we must look at the maximum like-
lihood density—the probability density � of obtaining
the POVM outcome E�g� given that the signal state is
���g��, averaged over the prior distribution over signal
states, which we take to be uniform. �A more simple
analysis is possible for finite groups.� This density takes
the simple form

� =� dgTr�E�g����g��
��g��� = �
e����2. �5.29�

As the fiducial POVM element �e� is fixed, optimization
is achieved by taking ��� to be parallel to �e�,

��� =
�e�
�e�

, �5.30�

where �e � =	
e �e�. It follows from Eq. �5.23� that

�e� = 	�
q

dim�Mq�dq = 	dim H̃ . �5.31�

The optimal fiducial state, which has the form of Eq.
�5.17�, must have all Schmidt coefficients m

�q� equal and
nonzero, and the coefficients �q are completely fixed by
the optimal �e�; i.e., the optimal fiducial state is

��� = �
j
	dim�Mq�

dim H̃
�
m=1

dq

��m
�q�� � �rm

�q�� . �5.32�

Note that this state satisfies

G����
��� = IH̃/dim H̃ . �5.33�

We can conclude that the maximum likelihood density
of a correct guess takes the general form

�max = �e�2 = dim H̃

= rank�G����
����

= �
q

dim Mqmin�dim Mq,dim Nq� .

�5.34�

Given Eqs. �5.33� and �5.34�, we can interpret this re-
sult as follows: We maximize the likelihood of a correct
guess by choosing the fiducial signal state ��� to be such
that, under G averaging, the weights of the state
G����
��� are spread uniformly over the largest possible
space. Thus, at least for the case of maximum likelihood
estimation, the intuition behind why antiparallel spins
do better than parallel spins is found to have a rigorous
counterpart, and indeed this intuition is found to gener-
alize to the alignment of any RF whose configurations
correspond to the elements of a group. By choosing a
fiducial state in this way, the signal states are made as
distinguishable as possible.

1. Maximum likelihood estimation of a phase reference

With the general results above, the optimal perfor-
mance of any particular alignment protocol quantified
by maximizing the likelihood can be directly and simply
calculated. Suppose, for example, one seeks to align
phase references by transmitting at most nmax photons in
a single mode. The relevant group in this case is U�1�.
The charge sectors correspond to total photon number,
so we use n rather than q to denote them. Because the
irreps of U�1� are one dimensional, we have dim Mn
=1. In this case, the optimal fiducial POVM element and
the optimal fiducial signal state are

�e� = �
n=0

nmax

�n�, ��� =
1

	nmax + 1
�
n=0

nmax

�n� . �5.35�

Clearly,
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G����
��� = �
n=0

nmax 1

nmax + 1
�n�
n� , �5.36�

so that the maximum likelihood density of a correct
guess is

�max = rank�G����
���� = nmax + 1. �5.37�

Note that for multiple modes the subspaces Hn may be
multidimensional, and in this case the basis states can be

chosen to be any set of eigenstates of N̂tot, i.e., any mul-
timode states that are eigenstates of total photon num-
ber.

For comparison, it is useful to consider the maximum
likelihood that could be achieved using a coherent state
��� with mean photon number nmax/2 �we cut off the
amplitude for n�nmax which is negligible for sufficiently
large values of nmax�,

�CS = �
��e��2 = � �
n=0

nmax e−���2/2�n

	n!
�2

, �5.38�

which behaves as ���=	nmax/2 for large values of nmax.
Thus the phase eigenstate offers a quadratic improve-

ment in nmax over the coherent state. Heuristically, this is
due to the fact that for the Poissonian number distribu-
tion of a coherent state most of the support lies within
±	n̄ of the mean photon number n̄=nmax/2. Thus the
majority of the support of the U�1� orbit of a coherent
state is carried by a subspace of the Hilbert space with
dimension that scales as 	n̄. For the optimal state ���
= 1

	2n̄+1
�n=0

2n̄ �n�, in contrast, the dimensionality of this sub-
space scales as n̄.

The quadratic improvement achievable in such cases
is typically explained by noting that there is an uncer-
tainty relation between phase and photon number, and
to achieve the smallest possible variance in phase, one
requires the largest possible variance in photon number.
This is certainly a useful tool for understanding the suc-
cesses of different schemes. Nonetheless, as we shall
show presently, whereas the optimal strategies for align-
ing RFs associated with non-Abelian groups can also be
understood in terms of the support of the group orbit of
the signal state, it is at present unclear whether an argu-
ment in terms of an uncertainty principle can be pro-
vided in such cases.

2. Maximum likelihood estimation of a Cartesian frame

We now consider the task of optimally aligning a full
spatial �Cartesian� frame through the exchange of spin-
1 /2 particles, based on maximizing the likelihood of a
correct estimation. For this example we will be required
to use the multiplicity of irreducible representations of
SO�3� that occur in �H1/2��N to obtain the optimal
scheme.

We restrict ourselves to the case of N an even number
for simplicity. N spin-1 /2 particles carry a tensor repre-
sentation R�N of SO�3�; this representation is reducible,
and the irreducible representations �labeled by j� appear

with nontrivial multiplicities. As analyzed in Sec.
III.A.2, the total Hilbert space of N spin-1 /2 particles
can be decomposed as

�H1/2��N = �
j=0

N/2

Mj � Nj, �5.39�

where Mj carry irreducible representations Rj of SO�3�
and have dimensionality 2j+1, and Nj carry the trivial
representation of SO�3� and have dimensionality given
by Eq. �3.21�. For this example, the dimension of each
decoherence-free subsystem Nj is greater than or equal
to the dimension of the corresponding decoherence-full
subsystem Mj for all j except j=N /2 �where dim Nj=1�.
Thus the maximum dimension of H� is, from Eqs. �5.20�
and �5.34�,

dim H� = �N + 1� + �
j=0

N/2−1

�2j + 1�2 =
1
6

N3 +
5
6

N + 1.

�5.40�

For each j�N /2 we choose a �2j+1�-dimensional sub-
space Nj

��Nj with basis �j ,��m��. The optimal signal
state thus has the form

���N�� =
1

dim H��	N + 1�N/2,N/2�

+ �
j=0

N/2−1

	2j + 1 �
m=−j

j

�j,m� � �j,��m�� , �5.41�

and the maximum likelihood density of a correct guess is

�max =
1
6

N3 +
5
6

N + 1, �5.42�

which scales as N3 /6 for large N.

D. General figures of merit

As discussed above, maximizing the likelihood of the
correct guess led us directly to a general principle for
choosing the fiducial signal state. However, as a figure of
merit, the maximum likelihood density is not a very
practical choice—it rewards only a perfectly correct
guess. In many situations, one would desire a figure of
merit that would quantify the performance of a scheme
by the amount of Shannon information gained by the
recipient about the sender’s reference frame. However,
such figures of merit usually lead to intractable optimi-
zation problems.

A more common and tractable approach is to intro-
duce a payoff function f�g� ,g� which specifies the payoff
for guessing group element g� when the actual group
element is g �Chiribella et al., 2005�. Assuming a uniform
prior for the signal states, the figure of merit for the
alignment scheme can then be the average payoff
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f̄ =� dgdg�p�g��g�f�g�,g� , �5.43�

where p�g� �g� is the probability of guessing g� when the
signal state is g for the scheme in question. In particular,
the commonly used fidelity, which quantifies the vari-
ance of the average guess and which leads to direct com-
parisons with the standard quantum limit, is one choice
of payoff function; we will determine this fidelity and
explore protocols that optimize its average in the ex-
amples that follow.

The task of reference frame alignment imposes some
natural constraints on the form of payoff functions. We
note that the group elements g and g� denote an orien-
tation relative to some background RF, i.e., the identity
group element corresponds to being aligned with this
background RF. However, it is desirable to construct
protocols that are independent of any background RF;
for example, if the background RF was transformed by a
group element h�G, and g and g� were now defined
with respect to this transformed background RF, the
payoff function should be the same. Such protocols are
associated with a payoff function f�g� ,g� that is right in-
variant, i.e., which satisfies

f�g�h−1,gh−1� = f�g�,g�, ∀ h � G . �5.44�

In addition, the payoff function should be a function
only of the relative transformation relating the transmit-
ted state �determined by g� and the measurement out-
come �determined by g��. This requirement of a protocol
demands that the payoff function be left invariant,

f�hg�,hg� = f�g�,g�, ∀ h � G . �5.45�

Payoff functions that are left invariant are also referred
to as covariant. It is always possible to find a covariant
POVM that is optimal for any estimation problem with a
covariant �left-invariant� payoff function �Holevo, 1982�,
and it is for this reason that we focused our attention on
covariant POVMs early in this section.

Any function f�g� ,g� that is left invariant can be writ-

ten as a function f�g� ,g�= f̃�g�−1g�; if this function is also

right invariant, then it satisfies f̃�hg�−1gh−1�= f̃�g�−1g�,
and thus is a class function, i.e., a function on the conju-
gacy classes of G. �Recall two group elements, g1 and g2,
are in the same conjugacy class if there exists another
group element h such that g1=hg2h−1.� Any class func-

tion f̃ can be expanded as a sum of the characters14 �q�g�
of G as

f̃�g�−1g� = �
q

aq�q�g�−1g� , �5.46�

where aq are arbitrary coefficients. We restrict our atten-
tion to real, positive-valued payoff functions, which will
allow us to perform a simple maximization.

We note that the maximum likelihood estimation task
described above corresponds to choosing a payoff func-
tion f�g� ,g�=��g�−1g�, a delta function. This payoff func-
tion is both left and right invariant, and its expansion in
terms of characters as in Eq. �5.46� corresponds to
choosing all aq positive and equal to the dimension of
the irrep.

As a consequence of the covariance of both the set of
signal states and the POVM, the probability p�g� �g� is
also a function of g�−1g, i.e.,

p�g��g� = �
e�U�g�−1g�����2 � p̃�g�−1g� . �5.47�

The average payoff of Eq. �5.43� then simplifies as

f̄ =� dgdg�p̃�g�−1g�f̃�g�−1g� =� dgp̃�g�f̃�g� , �5.48�

which follows from the invariance of the measure dg.
Using the explicit form of Eq. �5.47�, we have

f̄ =� dg
��U†�g��e�
e�U�g����f̃�g� . �5.49�

Defining

M �� dgU†�g��e�
e�U�g�f̃�g� , �5.50�

we may rewrite f̄ as

f̄ = 
��M��� . �5.51�

Equation �5.51� is the generalization of Eq. �5.29� to an
arbitrary covariant payoff function. As the fiducial
POVM element is completely constrained to be of the
form of Eq. �5.23�, the operator M is therefore deter-
mined by the figure of merit. In order to maximize the

average payoff f̄ then, one must find a fiducial state ���
of the form �5.17� that lies in the eigenspace of M with
the largest eigenvalue. Specifically, we solve the eigen-
value equation

M��� = max��� , �5.52�

and the use of this state yields a maximal average payoff
of

f̄max = max. �5.53�

For the problem of optimally aligning reference
frames using a left- and right-invariant payoff function,
we use the following result of Chiribella et al. �2005�
without proof:15 the optimal fiducial signal state can be
chosen to have the form

14The characters �q�g� of a group G form a basis of class
functions; they are given by the trace of the irreducible repre-
sentations Tq of G, i.e., �q�g�=Tr�Tq�g��.

15The proof relies on determining an upper bound on the
average payoff, and then demonstrating that states of the form
�5.54� saturate this bound.
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��� = �
q

�q �
m=1

dq

��m
�q�� � �rm

�q�� , �5.54�

for coefficients �q satisfying �q��q�2=1. These coeffi-
cients are determined by the specific choice of payoff
function. We note, however, that this result greatly sim-
plifies the optimization problem: the number of coeffi-
cients is now given by the number of irreps appearing in
the decomposition of U, rather than by the dimension of
the Hilbert space.

1. Fidelity of aligning a phase reference

We now reconsider the problem of aligning a phase
reference, as in Sec. V.C.1, but with an alternate �and
commonly used� payoff function: the function f��� ,��
=cos2����−�� /2�, which takes the value 1 for the correct
guess ���=�� and 0 for ��=�+�. Note that this payoff
function is left- and right-invariant, and can be written

as f̃���=cos2�� /2�, where � now denotes the relative
angle between the signal and guess. This figure of merit
is commonly referred to as the fidelity.

The Hilbert space for this task will be restricted as
follows: we allow arbitrarily few or many modes, but the
maximum total photon number is restricted to nmax. �An
alternate approach would be to bound the mean photon
number; however, this adds considerable complexity to
the problem.�

As mentioned above, for any alignment scheme based
on independent uses of N modes with at most a single
photon in each, that is, N single-rail qubits, the average

fidelity will approach f̄=1 as 1/N, from the central limit
theorem. This scaling is referred to as the standard
quantum limit; the optimal scheme outperforms this
scaling, as we now demonstrate. We now optimize over
choices of signal state ���N�� in order to maximize the

expected payoff, quantified by the average fidelity f̄ of
Eq. �5.51�.

Let ��n� ,n=0,1 , . . . ,nmax� be an arbitrary set of eigen-

states of the total number operator N̂tot; the details of
these states, including their mode structure, is irrelevant
to the task. The fiducial POVM element is of the form
�e�=�n=0

nmax�n�.
The operator M of Eq. �5.50� is given in this instance

by the matrix

Mnn� = 
n�M�n�� = �
0

2� d�

2�
ei�n−n��� cos2��/2�

=
1
2
�n,n� +

1
4
�n,n�+1 +

1
4
�n+1,n�. �5.55�

Note that

M =
1
4

M̃ +
1
2

I , �5.56�

where M̃nn�=�n,n�+1+�n+1,n�. As any eigenvector of M̃ is
an eigenvector of M, it suffices to find the eigenvalues

and eigenvectors of M̃. The maximum average fidelity is
then

f̄max =
1
2

+
1
4
max�M̃� , �5.57�

and is achieved when ��� is the eigenvector of M̃ associ-

ated with the maximum eigenvalue max�M̃�.
The characteristic equation we must solve is

det�M̃ − I� = 0, �5.58�

where I is the identity. Defining Gk�M̃−I where k is

the dimension of the vector space on which M̃ acts, one
finds that

det Gk = −  det Gk−1 − det Gk−2, �5.59�

for which the solution is

det Gk = Uk�− /2� , �5.60�

where Uk are the Chebyshev polynomials of the second
kind, given by

Uk�cos �� =
sin��k + 1���

sin �
. �5.61�

Given that Uk�x�= ±Uk�−x�, it follows that the charac-
teristic equation is UN+1� /2�=0, and thus the largest
eigenvalue is max=2 cos�� / �N+2��. The maximum aver-
age fidelity for the distribution of a phase reference is
thus

f̄max =
1
2

�1 + cos��/�N + 2��� . �5.62�

To find the eigenvector ��� associated with the largest
eigenvalue, we must solve

M̃��� = max��� . �5.63�

Let �n be the coefficients of ���=�n=0
nmax�n�n�. The defini-

tion of M̃ leads to

�n+1 + �n−1 = max�n, �5.64�

for 1� j�N−1. At n=0, we have �1=max�0, and at n
=N, we have �N−1=max�N. The solution is �n
=Un�max/2�, and the coefficients �n fall to zero at N
+1 as required. The optimal state thus has the form

���N�� = N�
n=0

N

sin� �n + 1��
N + 2

��n� , �5.65�

where the normalization N is approximately N��N /2
+1�−1/2 in the large-N limit �Berry and Wiseman, 2000�.

In the limit of large N, the average fidelity behaves as

f̄max � 1 −
�2

4N2 for N � 1. �5.66�

Thus this optimal protocol for the alignment of a phase
reference has an error �variance� which decreases as
1/N2, i.e., at the Heisenberg limit.
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2. Fidelity of aligning a Cartesian frame

We now consider the task of aligning a Cartesian
frame through the exchange of spin-1 /2 particles, using
the fidelity as the figure of merit �Bagan et al., 2004b;
Chiribella et al., 2004a, 2005�.

We first develop the payoff function, which we require
to be both left and right invariant. One such possibility is
to use the mean deviation between Alice’s coordinate
axes and Bob’s, i.e.,

f������ = 1 − 1
8 �

i=x,y,z
��niA − ��niB�2, �5.67�

where �n denotes the vector obtained by rotating the
vector n by ��SO�3�. This function can be expressed in
terms of the characters �j��� for SO�3�; because these
characters will be useful in the following, we briefly re-
view them here. The characters of SO�3� are given by
the trace of the irreps Rj as

�j��� = Tr�Rj���� . �5.68�

Recall that any rotation � in SO�3� can be expressed as
a rotation by �, in the range 0���2�, about some axis.
Conjugation by another rotation in SO�3� simply
changes the axis, not the value of �. Thus conjugacy
classes are labeled by an angle � �a rotation by � about
some axis�, and characters being class functions are func-
tions only of �. Explicitly, they are given by

�j��� = �j��� =
sin��2j + 1��/2�

sin��/2�
. �5.69�

The payoff function can be expressed in terms of the
character �j=1 of Rj=1 �the representation of SO�3� that
acts on spatial vectors� as

f���,�� = 1
4 + 1

4�1���−1�� . �5.70�

As it is a covariant function only on the conjugacy class,
we can express it as

f̃��� = 1
4 + 1

4�1��� . �5.71�

The fiducial POVM element can be written as

�e�N�� = 	N + 1�N

2
,
N

2 � + �
j=0

N/2−1

�2j + 1��ej� , �5.72�

where

�ej� �
1

	2j + 1
�

m=−j

j

�j,m� � �j,��m�� , �5.73�

are maximally entangled.
From Eq. �5.54�, the optimal fiducial signal state has

the form

���N�� = �N/2�N

2
,
N

2 � + �
j=0

N/2−1

�j�ej� , �5.74�

where the coefficients �j are to be determined. For sim-
plicity and brevity, we only solve this eigenvalue prob-
lem in the limit of large N. In this limit, the �N/2 term

�the only exceptional term� can be ignored.
As with the phase distribution problem, the goal is to

find the state ��� that maximizes

f̄ = 
��M��� = �
j,j�

�j
*�j�Mjj�, �5.75�

where Mjj� is the matrix

Mjj� =� d�
ej�Rj����ej�
ej��Rj����†�ej��f̃��� . �5.76�

We note that


ej�Rj����ej� =
1

2j + 1 �
m,m�=−j

j


j,m�Rj����j,m��

�
��m����m���

=
1

2j + 1 �
m=−j

j


j,m�Rj����j,m�

=
1

2j + 1
�j��� . �5.77�

Thus

Mjj� �� d��j����j�
* ���� 1

4 + 1
4�1���� . �5.78�

To evaluate this integral, one can make use of the or-
thogonality properties of group characters; see Chiri-
bella et al. �2004a� for details. We find that

Mjj� �
1
4�j,j� + 1

4 ��j,j�−1 + �j−1,j�� . �5.79�

The eigenvalue problem then is essentially identical to
that solved for the distribution of a phase reference in
the previous section. In this limit this maximum average
fidelity scales as

f̄max � 1 −
�2

N2 for N � 1. �5.80�

Thus this scheme also scales at the Heisenberg limit.
We note that this particular task has given rise to

some controversy and errors in the literature. In particu-
lar, a mistaken claim of optimality for this task in Bagan,
Baig, and Munoz-Tapia �2001�, which resulted from a
failure to include the multiplicity of irreducible repre-
sentations, led to some confusion over the use of cova-
riant measurements in this task �Peres and Scudo,
2002a�.

E. Reference frames associated with coset spaces

A directional RF, for the z axis say, can be obtained
from a full Cartesian RF by throwing away the informa-
tion about the azimuthal angle. To specify a direction
therefore it is sufficient to specify an equivalence class of
Cartesian frames, those related by an SO�2� transforma-
tion about this axis. Hence a directional RF is associated
with an element of the coset space SO�3�/SO�2�. This
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coset space is equivalent to S2, the space of points on a
three-dimensional sphere, which corresponds to the pos-
sible directions in space.

Thus certain reference frames have distinct configura-
tions which do not correspond to the elements of a
group, but rather those of a coset space of a group. If we
consider a reference frame for a group G but are uncon-
cerned about the difference between those related by a
subgroup G0 of transformations, then we can speak of a
reference frame for the coset space G /G0. We may in-
corporate such cases into the framework specified above
by choosing our figure of merit to reflect the unimpor-
tance of the subgroup in the estimation task; i.e., choose

a payoff function f̃�g�−1g� that satisfies

f̃�g�−1gg0� = f̃�g�−1g�, ∀ g0 � G0. �5.81�

In other words, we imagine choosing signal states and
POVMs that are covariant for a group G that is a cov-
ering group for the coset space in question. Let z be a
set of coset representatives, i.e., z�G /G0, and let dz be
a left-invariant measure on G /G0. Then, using Eq.
�5.48�,

f̄ =� dgp̃�g�f̃�g� = �
G/G0

dz��
G0

dg0p̃�zg0� f̃�z�

= �
G/G0

dzp̃inv�z�f̃�z� . �5.82�

Here we have defined

p̃inv�z� � �
G0

dg0p̃�zg0�

= Tr���
G0

dg0U�zg0��e�
e�U†�zg0����
���
= Tr�U�z�EinvU

†�z����
��� , �5.83�

where

Einv = �
G0

dg0U�g0��e�
e�U†�g0� , �5.84�

is G0-invariant. Thus for any covariant measurement
with fiducial POVM element �e� that achieves the opti-
mum figure of merit, there exists a G0-invariant covari-
ant measurement with fiducial POVM element Einv that
achieves the same optimum. For this reason, we may as
well restrict the fiducial signal state and fiducial POVM
element to be G0-invariant.

We note that, if the group G0 is non-Abelian, it may
not be possible to find a pure state that is invariant un-
der the subgroup. In such a situation, if one wishes to
work with G0-invariant states and measurements, then
one will have to use mixed fiducial states and POVM
elements �Chiribella and D’Ariano, 2004�. We now con-
sider an example with an Abelian group G0, for which
these complications do not arise.

1. Aligning a direction

Consider the task of optimally aligning a direction in
space through the exchange of spin-1 /2 particles. This
was first considered for just two particles by Gisin and
Popescu �1999� and Massar �2000�, as discussed in Sec.
V.A. The problem was subsequently considered for an
arbitrary number of particles by Bagan, Baig, Brey, et al.
�2000, 2001� and Peres and Scudo �2001a�. �For a related
investigation, wherein it is addressed how to perform
this task using product states, see Bagan, Baig, and
Munoz-Tapia �2001�.�

Let ���N�� be the fiducial signal state. We restrict our
attention to the case of N even. Because we are con-
cerned only with aligning a direction and not a full Car-
tesian frame, we can choose ���N�� to be invariant under
rotations about the z axis without loss of generality. Any
such pure invariant state is an eigenstate of Jz; thus
choose ��m

�N�� to be an eigenstate of Jz with eigenvalue
�m. Clearly, m must be in the range −N /2 , . . . ,N /2.

First, some notation. It is standard to express a rota-
tion in SO�3� in terms of its Euler angles �� ,� ,��. Spe-
cifically, a unitary rotation operator can be expressed as

R��,�,�� = Rz���Ry���Rz��� , �5.85�

where Ry and Rz are SO�2� rotations about the y and z
axes, respectively. For any element in SO�3�, a set of
Euler angles can be found in the range 0��, ��2�, and
0����. The invariant subgroup is G0=SO�2� in this
problem, rotations about the z axis; thus the parameters
�� ,�� provide coordinates for the coset space SO�3�/
SO�2�.

a. Maximum likelihood

We now maximize the likelihood of a correct guess.
Restricting the fiducial POVM element to be SO�2� in-
variant, it takes the form

�em
�N�� = �

j=m

N/2

	2j + 1�j,m� . �5.86�

As we wish to include all possible irreps j, following the
general construction of Sec. V.B, we should choose m
=0, i.e., a fiducial POVM element

�e�N�� = �
j=0

N/2

	2j + 1�j,0� . �5.87�

The signal state should then be parallel to this vector of
the form

���N�� =
1

�N/2 + 1�2 �
j=0

N/2

	2j + 1�j,0� , �5.88�

and the maximum likelihood density of a correct guess is

�max = �N/2 + 1�2. �5.89�
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b. Fidelity

A natural payoff function for this problem is the inner
product between Bob’s guess direction ng and Alice’s

transmitted n, given by f̃���= �1+ng ·n�=cos2�� /2�, where
� is the angle between their directions. This payoff func-
tion is also known as the fidelity. We provide the details
for this optimization as well. Note that this is the gener-
alization of the example provided in Sec. V.A from two
to an arbitrary number of spin-1 /2 systems.

The fiducial POVM element is essentially16 con-
strained to be that of Eq. �5.87�, and now the signal state
takes the general form

���N�� = �
j=0

N/2

bj�j,0� , �5.90�

where the coefficients bj are to be determined. The Born
rule yields

p̃��,�,0� = �
��N��R�N��,�,0��e�N���2. �5.91�

This quantity is independent of �, and thus the relevant
conditional probability is

p̃��� = �
��N��R�N�0,�,0��e�N���2. �5.92�

Note that R�N�0,� ,0�=Ry
�N��� �a rotation about the y

axis� and the reduced Wigner matrix d00
j ��� is given by

d00
j ��� � 
j,0�Ry����j,0� = Pj�cos �� , �5.93�

where Pj�x� is a Legendre polynomial.
The operator M of Eq. �5.50� is given by the matrix

Mjj� = 
j,0�M�j�,0�

=
1
2�0

�

sin �d�Pj�cos ��Pj��cos ��cos2��/2�

=
1
4�−1

1

dxPj�x�Pj��x��P0�x� + P1�x��

=
1
4
� 2

2j + 1
�j,j� +

2j

�2j + 1��2j� + 1�
�j,j�+1

+
2j�

�2j + 1��2j� + 1�
�j,j�−1 , �5.94�

where we have expanded the payoff function in terms of
Legendre polynomials.

This eigenvalue problem is essentially the same as
those solved in the previous section. The maximum av-
erage fidelity is given by

f̄max =
1 + xN/2+1

2
, �5.95�

where xN/2+1 is the largest zero of the Legendre polyno-
mial PN/2+1�x�. In the limit of large N, this maximum
average fidelity scales as

f̄max � 1 −
�2

N2 for N � 1, �5.96�

where ��2.4. Thus this optimal scheme also scales at
the Heisenberg limit �Bagan, Baig, Brey, et al., 2001;
Peres and Scudo, 2001a�.

F. Relation to phase/parameter estimation

We note that the task of aligning a phase reference is
essentially equivalent to the task of estimating an un-
known phase. Specifically, instead of viewing the prob-
lem of noiseless transmission of a quantum system be-
tween parties who do not share a phase reference, the
problem could instead be viewed as one of transmission
of the same quantum system between parties who do
share a phase reference, but where the transmitting
channel induces an unknown phase shift on the system.

In this light, we note that the protocol presented in
Sec. V.D.1 is equivalent to the optimal solution for phase
estimation using the same figure of merit �Berry and
Wiseman, 2000�. Techniques for quantum-limited phase
estimation have been well studied, and there exist a
wide variety of alternate methods that could each be
applied, in some form, to the task of aligning a phase
reference. For an overview of phase estimation tech-
niques from different viewpoints, we refer the reader to
the review article on quantum metrology by Giovan-
netti, Lloyd, and Maccone �2004�, or the text of Nielsen
and Chuang �2000� which discusses phase estimation
techniques from a quantum algorithm perspective. Also,
see Giovannetti et al. �2006� for a unified framework of
these techniques.

Similarly, the task of aligning a reference frame for G
through the transmission of a quantum system is essen-
tially equivalent to estimating an unknown element g
�G given a quantum channel that acts on the same
quantum system with the unitary U�g�. This latter task is
generally referred to as parameter estimation.

We note then that the scheme for aligning a Cartesian
frame presented in Sec. V.D.2 is closely related to a
method for estimating an unknown SU�2� �or more gen-
erally SU�d�� transformation �Acin et al., 2001�. We
briefly review this latter scheme, because of its close re-
lation to the topic at hand. Let R��� be the unitary rep-
resentation of an unknown rotation ��SU�2�, which
acts on states of a Hilbert space H; the task is to esti-
mate � through one application of R��� to some quan-
tum state. For this problem, we allow the use of an an-
cillary system, with Hilbert space K of arbitrary
dimension; this ancilla is assumed to transform trivially
under SU�2�. �That is, SU�2� acts as R��� � I on H � K.�
Without loss of generality, one can choose dimK

16The choice of m=0, necessary to optimize the maximum
likelihood problem, is not a priori optimal for maximizing the
average fidelity. However, m can be left free and then opti-
mized at the end, with the result that m=0 is indeed optimal
for this task �Peres and Scudo, 2001a�.
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=dim H, and choose a basis for K with the same labels
as H. We choose the standard SU�2� angular momentum
basis �j ,m ,��, where � labels the multiplicity.

An optimal state ��� on H � K for maximizing the
likelihood of a correct guess, up to a normalization con-
stant, is

��� � �
j=0

N/2−1
1

	�2j + 1�cj
�

m=−j

j

�
�=1

cj

�j,m,��H�j,m,��K,

�5.97�

where cj is the multiplicity of the jth representation. The
fiducial POVM element will be parallel to this vector.
We note that this state is a superposition over irreps j of
a maximally entangled state between an irrep j on H and
an equally sized space on K. The optimality of this state
for alignment follows from the general arguments pre-
sented in Sec. V.C: the optimal fiducial state is one that
maximizes the dimension of the group orbit. Without the
help of an ancilla, this is achieved within a given irrep j
by entangling the gauge space Mj �on which the group
acts nontrivially� with the multiplicity space Nj �on
which it acts trivially�. In the present context, it is
achieved by entangling the system with the ancilla.

As such methods for parameter estimation have im-
portance for quantum computing in terms of the charac-
terization of quantum gates, it is interesting to consider
how the methods of reference frame alignment may be
applied to such characterization problems as well.

Finally, work on magnetometry—the use of magnets
as direction indicators to determine the strength and di-
rection of a magnetic field—is also a problem of param-
eter estimation, closely related to the problem of refer-
ence frame distribution. Practical proposals for
quantum-limited magnetometry make use of spin-
squeezed clouds of cold atoms to measure the three
components of an unknown magnetic field through a
form of phase estimation �Petersen et al., 2005�. It would
be interesting to investigate whether spin-squeezed
states of indistinguishable particles �e.g., atoms� can be
used for the distribution of a direction or frame as effi-
ciently as the optimal protocols derived above, which
make use of �distinguishable� qubits in highly entangled
states and corresponding entangling measurements.

G. Communication complexity of alignment

We have thus far only considered protocols for RF
alignment wherein there is a single round of communi-
cation from Alice to Bob. We now consider multiround
protocols �Rudolph and Grover, 2003; de Burgh and
Bartlett, 2005; Giovannetti et al., 2006�. Whereas the
single-round protocols generally require entanglement
between the transmitted systems to achieve the Heisen-
berg limit, multiround protocols have the advantage that
they can achieve this limit despite using no entangle-
ment.

With multiround protocols, it is natural to frame the
problem as one of communication complexity, wherein

one investigates the resources of rounds of communica-
tion along with the standard resources of number of
transmitted quantum or classical bits. To conform with
standard notions of communication complexity, it is use-
ful to consider the alignment problem with two depar-
tures from the approach adopted in analyzing the previ-
ous alignment protocols. First, we consider the worst
case scenarios �rather than the average case considered
above�; second, we avoid the use of payoff functions,
such as the fidelity, with a view to obtaining a more pre-
cise estimate of how well any given instance of the pro-
tocol has performed. As such, we consider strategies for
aligning spatial reference frames that allow Bob to di-
rectly determine the angle which relates his and Alice’s
RFs to some specified accuracy with a bounded prob-
ability of error in the worst case scenario. More pre-
cisely, if � is an angle relating Alice and Bob’s RFs, and
�� is the estimation of � inferred by Bob, then we will be
interested in the amount �and type� of communication
required for protocols that achieve Perror=Pr���−���
���� , for some fixed  ,��0. By setting �=1/2k+1 we
say that with probability 1− Bob has a k-bit approxi-
mation to �.

We now describe such a protocol for the case of shar-
ing a phase reference through the exchange of qubits,
i.e., the same task as investigated in Sec. V.D.1. This
protocol can also be applied to the task of aligning a
Cartesian frame �Rudolph and Grover, 2003�. The ef-
fects of decoherence on these protocols has been shown
to be equivalent to that of decoherence on the “stan-
dard” protocol of Sec. V.D.1 �Boixo et al., 2006�.

Let �BA be the unknown angle �misalignment� that
relates Bob’s phase reference to Alice’s. In this protocol,
Alice and Bob use an algorithm that estimates each bit
of the phase angle �BA independently. We define the
phase angle �BA=�T, where T has the binary expansion
T=0. t1t2t3¯. Alice and Bob will attempt to determine T
to k bits of precision, and accept a total error probability
Perror� . If the total error probability is to be bounded
by  , then each ti, i=1, . . . ,k, must be estimated with an
error probability of  /k. �An error in any one bit causes
the protocol to fail, so the total error probability in es-
timating all k bits is Perror=1− �1− /k�k� .�

To estimate the first bit t1, Alice prepares a single qu-
bit in the state ��0�A+ �1�A� /	2 �relative to her phase ref-
erence� and sends the qubit to Bob. Bob then performs
his operation XB and sends the qubit back to Alice,
where XB is the Pauli bit-flip operator according to Bob.
She then performs her operation XA. The resulting com-
bined transformation XAXB is described in Alice’s frame
as

XAXB = XA�e−i�BAZ/2XAe+i�BAZ/2� = e+i�BAZ, �5.98�

where Z is the Pauli phase-flip operator. Finally, Alice
performs a Hadamard transformation HA �in her frame�
and measures the observable OA=−Z. The expected
value of this observable is 
OA�=cos�2�BA�, with an un-
certainty of
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!OA = 	
OA
2 � − 
OA�2 = sin�2�BA� . �5.99�

Expressing 
OA� in terms of T, we have


OA� = cos�2�BA� = cos�2�0 . t1t2 ¯ � . �5.100�

By repeating this procedure n1 times, i.e., sending n1
independent qubits and averaging the results, Alice ob-
tains 
OA�, the estimate of 
OA�. If n1 is chosen such that

�
OA�− 
OA���1/2 with some error probability, then �T̄
−T��1/4, thus determining the first bit t1 with this same
probability. The required number of iterations n1 to
achieve the desired error is given by the Chernoff
bound, with �=1/4. That is, the probability that the first
bit of Alice’s estimate 
OA� differs from the first bit of
the actual value 
OA� decreases exponentially in the
number of repetitions n1, and is bounded explicitly by

Pr��
OA� − 
OA�� � 1/2� �  /k � 2e−n1/32. �5.101�

Thus, allowing a probability of error  /k in this bit, we
require n1�32 ln�2k / � iterations.

Now we define a similar procedure for estimating an
arbitrary bit tj+1. Alice prepares the energy eigenstate
�0�, and performs her HA operation. Alice and Bob then
pass the qubit back and forth to each other 2j times,
each time Bob performs his XB operation and Alice per-
forms her XA operation. That is, they jointly implement
the operation �XAXB�2j

. Finally Alice performs her HA
operation. Expressing these operations in Alice’s frame,
the protocol to estimate tj+1 produces the state

��j�A = HA�XAXB�2j
HA�0� = HA�e+i�tABZ�2j

HA�0�

= HAe+i2j�tBAZHA�0�

= �i sin�2j�tBA��0� + cos�2j�tBA��1��A. �5.102�

Alice then measures the observable OA=−Z. The ex-
pected value of this observable is


OA� = cos�2j+1�tBA� = cos�2j�2�0 . t1t2 ¯ ��

= cos�2�t1t2 ¯ tj . tj+1tj+2 ¯ �

= cos�2�0 . tj+1tj+2 ¯ � . �5.103�

Equation �5.103� has the same form as one iteration of
the scheme to estimate the first bit t1; Alice and Bob
simply require more exchanges to implement �XAXB�2j

.
To get a probability estimate for each bit tj+1, this more
complicated procedure is repeated nj+1 times. Because
we require equal probabilities for correctly estimating
each bit, we can set all nj+1 equal to the same value, n
�32 ln�2k / �. Thus the total amount of qubit communi-
cation Nc required to obtain bits t1 through tk by this
procedure is

Nc = n � �
j=1

k

2j−1 = n�2k − 1� = O„2k ln�2k/ �… . �5.104�

To facilitate comparison with the previous sections,
wherein the focus was on maximizing the average fidel-
ity, we imagine that Alice and Bob use the above proto-

col to obtain, with probability �1− �, an angle �� which
is a k-bit estimator of the true angle �, i.e., they obtain
��−����2� /2k+1 with probability �1− �. The fidelity of
this estimate is f=cos2���−��� /2�. Since cos x�1−x2 we

have that f̄�1− �2� /2k�2. To compare with the average
case fidelity computed previously, we assume that when
the protocol fails �which happens with probability  � the
fidelity obtained is 0, i.e., worse than a random guess.
We then have that the expected fidelity from this proto-
col satisfies

f̄ � �1 −  ��1 − �2�

2k 2� . �5.105�

If we take  =1/22k, then the total number of qubit
communications scales as k2k for large k, while the ex-

pected fidelity f̄ scales as 2−2k�1− �log2 Nc� /Nc
2. Thus,

remarkably, this protocol beats the standard quantum
limit of 1 /Nc, yet does not require entangled states or
collective measurements. This is achieved at the cost of
an increased complexity in coherent qubit communica-
tions.

H. Clock synchronization

If Alice and Bob share a common frequency standard,
then they can use techniques for phase reference align-
ment that were outlined above to perform clock syn-
chronization, i.e., aligning a temporal reference �Jozsa et
al., 2000�. To see the relation between phase alignment
and clock synchronization, it is easiest to work in a ro-
tating frame �interaction picture� in which states are de-
scribed as ���I=eiH0t/����, and observables and transfor-
mations as AI=eiH0t/�Ae−iH0t/�, where H0 is the free
Hamiltonian. In this rotating frame, states are stationary
under free evolution, and the problem of clock synchro-
nization is reduced to one of aligning a phase reference.

In one class of clock synchronization protocols based
on phase estimation, the systems exchanged are ticking
qubits: nondegenerate two-level quantum systems that
undergo time evolution �Chuang, 2000�. Much like phase
estimation, the use of entangling operations and/or mea-
surements can lead to different scalings in the synchro-
nization accuracy. For example, a protocol that uses only
separable �unentangled� ticking qubits and single-qubit
measurements requires O�22k� ticking qubit communica-
tions �a coherent transfer of a single qubit from Alice to
Bob� to achieve an accuracy in the time offset of Alice’s
and Bob’s clocks of k bits. That is, the synchronization
accuracy scales as the standard quantum limit. In com-
parison, a protocol by Chuang �2000� makes use of the
quantum Fourier transform and an exponentially large
range of qubit ticking frequencies. This protocol re-
quires only O�k� quantum messages to achieve k bits of
precision, an exponential advantage over the standard
quantum limit. Although this protocol gives insight into
the ways that quantum resources may allow an advan-
tage in clock synchronization, it is unsatisfactory for two
reasons: �i� its use of exponentially demanding physical
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resources is arguably the origin of the enhanced effi-
ciency �Chuang, 2000; Giovannetti et al., 2001�, and �ii�
Alice and Bob need to a priori share a synchronized
clock in order to implement the required operations as
defined in Chuang �2000�. These problems are not
present in subsequent protocols based on ticking qubits,
which used the techniques for phase estimation pre-
sented in Sec. V.G to design a clock synchronization pro-
tocol that operates near the Heisenberg limit �de Burgh
and Bartlett, 2005�. The Heisenberg limit for clock syn-
chronization can be achieved by making use of the phase
estimation protocol of Sec. V.D.1.

Distinct from approaches based on phase estimation,
there has been considerable interest in another class of
clock synchronization protocols which make use of en-
tanglement �Jozsa et al., 2000�; see also Preskill �2000�;
Burt et al. �2001�; Jozsa et al. �2001�; Yurtsever and
Dowling �2002�. In a variant of this approach, a third
party Charlie distributes a large number of boxes to Al-
ice and Bob, where each box contains one spin of a spin
singlet. Each box also contains a classical magnetic field
aligned in the z direction, such that the free Hamiltonian
for each spin is H0=�
z for some constant energy �. �We
note that this establishes a shared RF between Alice and
Bob for this particular direction.� Clock synchronization
can be achieved by Alice performing measurements on
her spins in her x direction at time t=0. By informing
Bob �via any classical channel� as to the subensemble of
the singlets for which she obtained the +x outcome, Bob
can identify the subset of his particles which are all pre-
cessing �via the free Hamiltonian� around the common z
direction in phase with Alice’s clock. However, because
Bob does not necessarily share a common x direction
with Alice, he cannot actually read out this phase infor-
mation. This complication can be neatly circumvented
with a slight modification—on half of the particles, Alice
and Bob use a different magnetic field strength in the z
direction to establish two different precession frequen-
cies. Bob can now choose any x direction to measure
each subensemble, because both ensembles of precess-
ing spins are offset by the same unknown phase shift
with respect to Alice’s spins, and he can achieve syn-
chronization by merely observing the beats between the
oscillations.

In the language of this review, we can understand this
protocol as one in which standard refbits �see Sec. VI.D
for more details� are being distilled from the initial sin-
glets and put to use as a bounded shared RF. Note that if
such synchronization was Charlie’s intention all along,
then such a protocol would not be a particularly efficient
use of resources—he could just as simply have distrib-
uted to Alice and Bob a shared RF state �such as those
given in Eq. �3.28�, for example� which require no en-
tanglement whatsoever �Preskill, 2000�.17 This fact, to-
gether with the result that this entanglement cannot be

purified �an issue we return to in Sec. VI.E�, suggests
that shared entanglement between two parties does not
provide an advantage for clock synchronization �or
other forms of RF alignment�.

A third class of protocols for clock synchronization
makes use of precise timing of light signals exchanged
between parties, and for which the quantum limits have
recently been investigated. Instead of classical coherent
state light pulses for the signals, one can use highly en-
tangled states of many photons and beat the standard
quantum limit �Giovannetti et al., 2001�. Essentially, the
advantage is due to entanglement-induced bunching in
arrival time of individual photons, enabling more accu-
rate timing measurements. The key disadvantage of this
technique is that the loss of a single photon destroys the
entanglement and renders the measurement useless
�Giovannetti, Lloyd, and Maccone, 2001, 2004�, although
techniques have been developed to trade off the quan-
tum advantage in return for robustness against loss
�Giovannetti et al., 2002�. Furthermore, the effect of dis-
persion is known to be an important issue with such
protocols, with the use of entanglement possibly offering
an advantage here as well �Fitch and Franson, 2002; Gio-
vannetti, Lloyd, Maccone, et al., 2004�. We note that
such protocols differ from those based on phase estima-
tion in that they make use of relativistic principles �spe-
cifically, the constancy of the speed of light�.

I. Other instances of alignment

We considered above the alignment of Cartesian
frames using N spin-1 /2 systems. A different approach
to this alignment problem is to use a single hydrogen
atom �Peres and Scudo, 2001b�. The analysis of this task
is similar to that presented above, with the notable dif-
ference that multiplicities of representations of SO�3�
are not available with the hydrogen atom. Also, the use
of elliptic Rydberg states of the hydrogen atom have
been considered for this problem, with resulting fidelity
comparable with that of the optimal scheme for a hydro-
gen atom �Lindner et al., 2003�.

Although a phase reference �clock� and spatial direc-
tion �or Cartesian frame� may be the most ubiquitous
types of reference systems, it is possible to distribute
more general and exotic types of reference frames
through the exchange of appropriate quantum systems.

For example, consider the distribution of a reference
ordering, i.e., a labeling of N objects �von Korff and
Kempe, 2004�. Through the use of techniques similar to
those described in Sec. V.D.2 for the distribution of a
Cartesian frame, one can construct an optimal protocol
that distributes an ordering of N particles using N sys-
tems with dimensionality N /e. �In contrast, the classical
problem requires N systems each with N distinguishable
states.�

Another problem is the distribution of a reference
frame for chirality �Diosi, 2000; Gisin, 2004; Collins et
al., 2005�. Such quantum systems have been given the
moniker “quantum gloves.” Clearly, a full Cartesian
frame includes a reference for chirality; however, distrib-

17An analog of this scheme for Cartesian frame alignment has
been proposed �Rudolph, 1999a, 1999b�, and similar reserva-
tions apply.
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uting a full Cartesian frame purely for the purposes of
distributing a reference chirality is not very economical,
and more efficient methods are possible. Also, a chiral
reference can be distributed perfectly, i.e., with no error,
with only finite quantum resources. Methods for the dis-
tribution of a chiral reference using only two kinds of
particle �i.e., a proton and an electron� and only four
spinless particles, along with other interesting combina-
tions, can be found in Collins et al. �2005�.

One can also consider the problem of secret sharing of
unspeakable information �Bagan, Calsamiglia, et al.,
2006�. In such a protocol, a quantum state is shared be-
tween several parties with the aim that a reference
frame can only be determined if all of the parties come
together �to perform collective operations and measure-
ments�. Parties working alone, or together using only
LOCC, cannot determine the reference frame with the
same precision.

J. Private communication of unspeakable information

With the development of optimal schemes for the dis-
tribution of a reference frame, it is natural to consider
how two parties, Alice and Bob, can perform such a
distribution privately by using some number of shared
secret bits—a classical key—to randomize the signal
state �Chiribella et al., 2006�. In other words, we consider
the problem of how well two parties can convert a pri-
vate classical key into a private shared RF �of bounded
size� using a public channel and given that they do not
previously possess a shared RF �private or public�. For
concreteness, we investigate the private communication
of a Cartesian frame.

Consider the optimal scheme for the distribution of a
Cartesian frame using fidelity as the figure of merit
�which achieves the Heisenberg limit�. The fiducial sig-
nal state for this scheme is given by Eq. �5.74�. �The
scheme will be essentially identical for any figure of
merit.� As with any private quantum communication,
Alice and Bob can choose unitary operators from a set
of unitaries, based on their classical key, to randomize
any quantum state as viewed by an eavesdropper Eve
who does not share this key, using the techniques of
Ambainis et al. �2000�. In general, to completely ran-
domize a state on a Hilbert space of dimension d=2N,
Alice and Bob require a key consisting of 2N secret bits.
However, we note that Alice and Bob do not share a
reference frame to begin with and thus they can only
perform correlated operations on the multiplicity spaces
Nj. Despite this restriction, a complete randomization
can be achieved for the fiducial state of Eq. �5.74�. To
see this, recall that this state can be expressed as a co-
herent superposition, over all representations �charge
sectors� of SO�3�, of maximally entangled states across
the representation space Mj and an equally sized sub-

space Ñj of the multiplicity space. Because of this par-
ticular structure of the fiducial state, a complete ran-

domization over just the subsystems Ñj will take every
signal state to the same mixed state �and thus achieves a

complete randomization on the Hilbert space that is the
span of the supports of the signal states�. The dimension

of each subsystem Ñj is equal to that of Mj, namely, dj
=2j+1, thus requiring 2 log2�2j+1� secret bits to com-
pletely randomize. The total number of secret bits re-
quired to completely randomize all signal states is

log2��
j=0

N/2

�2j + 1�2 � 3 log2 N . �5.106�

Thus through the transmission of N qubits on a public
channel and using 3 log2 N classical bits of private key,
one can achieve the distribution of a private Cartesian
frame at the Heisenberg limit, which is to say with an
error that scales as 1/N2. We note that this number
3 log2 N is identical to the number of classical bits that
can be transmitted privately given a private shared Car-
tesian frame as key, as discussed in Sec. III.D.

K. Dense coding of unspeakable information

Consider the following problem. Alice wants to send
Bob classical information, but at the time that Alice
learns which message she would like to send Bob, the
cost of using the quantum channel is very high, whereas
earlier, before Alice learns the message, the cost of using
the channel is low. Dense coding allows Alice to make
use of the channel at the early time, prior to learning the
message she wishes to send, in order to increase the
amount of information she succeeds in transmitting to
Bob at the later time.

Suppose that Alice wishes to send to Bob a direction
in space rather than a classical message. Suppose, more-
over, that at the time where Alice learns the direction
she would like to send Bob, the cost of using the quan-
tum channel is very high, whereas earlier, before Alice
learns the direction, the cost of using the channel is low.
One would have a natural analog of dense coding to
unspeakable information �directional information in this
case� if use of the channel at the early time allowed Bob
to estimate Alice’s direction with greater accuracy at the
later time.

The following is such an analog. Alice prepares a pair
of spin-1 /2 systems in a singlet state, and in the first use
of the channel sends one of these to Bob. Later, when
she has a sample of the classical direction n̂ that she
would like to send to Bob, she implements a unitary
rotation of � degrees about n̂ on her spin-1 /2 system
and sends it to Bob. Through Alice’s operation, the sin-
glet is transformed into ��+ n̂��−n̂�+ �−n̂��+ n̂�� /	2, which
is a two-spin state that can be used to indicate the direc-
tion n̂; in fact, given that the image of such a state under
SU�2� averaging covers the entire symmetric subspace,
this state is as good a direction indicator as the parallel
spin state of Sec. V.A. In her second use of the quantum
channel, she sends her spin to Bob, and Bob estimates
the direction. The optimal average fidelity that can be
achieved for such a state and measurement was shown in
Sec. V.A to be 3/4, which is greater than the fidelity of

595Bartlett, Rudolph, and Spekkens: Reference frames, superselection rules, and …

Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007



2/3 that could be achieved using a single spin-1 /2
system.18 Thus this scheme provides an analog of dense
coding for unspeakable quantum information. The opti-
mization of this sort of dense coding scheme has not
been investigated to date.

A slightly different analog of dense coding of un-
speakable information was considered by Bagan et al.
�2004a�, building on the results of Acin et al. �2001�. This
protocol involves Alice initially sending Bob half of an
entangled state over multiple spin systems. It is assumed
that subsequently the entire laboratory of the sender is
subject to the same SU�2� transformation that her half of
the entangled pairs are subject to. Under this assump-
tion the three parameters describing the relation of her
spin-1 /2 system to that of the receiver also describe the
relation of her local Cartesian frame to that of the re-
ceiver. In this scenario, the sender is essentially passive:
both the spin and the local Cartesian frame must be
acted upon by some external agency. Unfortunately, it is
not clear whether this is of practical significance in the
most common case where the SU�2� transformation act-
ing on the local Cartesian frame is a rotation in space.
For instance, if a rotation of the entire laboratory is re-
alized by an external torque, it is not clear that the state
of a spin-1 /2 system stored in this laboratory �i.e., in
some trapping potential� will necessarily undergo the
same rotation.19 Nonetheless, the optimal solution for
this sort of scheme has been provided for an arbitrary
number of spin-1 /2 systems �Bagan et al., 2004a�. The
optimal state bears a strong similarity to the optimal
state for aligning Cartesian RFs, presented in Sec. V.D.2.

L. Error correction of unspeakable information?

We end this section with a cautionary note on the po-
tential use of quantum methods for aligning reference
frames, made by Preskill �2000� for the specific task of
clock synchronization: that the standard techniques of
quantum error correction cannot be directly applied to
unspeakable information.

Consider a situation wherein Alice and Bob wish to
align their respective frames by exchanging quantum
systems via some noisy quantum channel. Let F be the
decohering superoperator describing the channel. The
form of this noise is critical to their ability to complete
this task; here we consider only two extreme cases. One
is if the noise is of the form F= �qIMq

� DNq
in terms of

the decomposition of Eq. �2.24�, where DN is the com-
pletely depolarizing superoperator on N. This noise af-
fects only the multiplicity subsystems; in other words, it

acts only on the relational degrees of freedom of the
transmitted systems. In such a case, RF alignment is still
possible �although possibly at a decreased efficiency, as
the optimal protocols took advantage of these multiplic-
ity subsystems�. Alice and Bob can choose to transmit
states that are encoded entirely within the gauge sub-
systems Mq, as these subsystems are decoherence-free
in terms of the noise.

On the other hand, if the noise is of the form F
= �qDMq

� INq
in terms of the decomposition of Eq.

�2.24�, then the gauge subsystems Mq will experience
complete decoherence. However, Alice and Bob cannot
choose to execute their alignment protocol entirely
within the decoherence-free multiplicity subsystems Nq,
because these subsystems cannot carry unspeakable in-
formation �at least, not of this type�. Whereas speakable
information can be encoded into any desired subsystem,
unspeakable information must be encoded into sub-
systems carrying the appropriate degree of freedom.

This latter case can be worded as a simple physical
example. Consider the alignment of a phase reference,
using a noisy channel that simply adds a constant but
unknown phase shift. If Alice and Bob use one of the
techniques of this section to attempt to align their phase
references using this channel, Bob will acquire an esti-
mate of the phase difference between his and Alice’s
RFs. However, because Bob knows this estimate may
differ from the actual difference by some unknown shift,
caused by the channel, he in fact has learned nothing
about the relation between his phase reference and Al-
ice’s. There is no protocol that they can perform that will
distinguish the unknown phase shift relating their RFs
and the unknown phase shift applied by the channel,
and thus alignment cannot be performed using this
channel �Preskill, 2000; Yurtsever and Dowling, 2002�.

VI. QUANTUM INFORMATION WITH BOUNDED
REFERENCE FRAMES

In the reference frame alignment schemes of Sec. V,
we determined which quantum states of a given
bounded size were optimal in serving as a sample of the
sender’s classical reference frame. The systems were ul-
timately measured relative to the receiver’s classical ref-
erence frame, so that the unspeakable information that
they contained was essentially amplified to the macro-
scopic scale with some associated uncertainty. However,
there will be situations for which this amplification pro-
cess is not ideal, and instead one should make direct use
of the quantum RF itself.20 Whatever purpose the recipi-
ent had in mind in trying to align his classical RF with
that of the sender’s, one can ask to what extent he could
achieve this same purpose by storing his quantum
sample of the sender’s reference frame in his laboratory
and thereafter using it in place of his classical RF.

Furthermore, many quantum experiments involve me-

18The optimal average fidelity that can be achieved for a sym-
metric product state consisting of N spin-1 /2 systems �a paral-
lel state� is �N+1� / �N+2�, and this result generalizes to any
symmetric pure state �Massar and Popescu, 1995�.

19That is, unless the spin degrees of freedom are coupled to
other fields in the laboratory. This coupling itself would negate
the protocol, however, as it implies some ongoing active trans-
formations on the stored spins.

20For example, Janzing and Beth �2003� consider the con-
straints on amplifying and copying quantum RFs for phase.
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soscopic or even microscopic systems that can be under-
stood as playing the role of a reference frame. For in-
stance, a Bose-Einstein condensate may act as a
reference frame for the phase conjugate to atom num-
ber, even though it may contain a relatively small num-
ber of atoms. We are therefore led to consider the ques-
tion of how well a bounded-size quantum system may
stand in for a classical reference frame.

In Sec. IV we have already considered the problem of
treating reference frames within the quantum formalism,
but the system instantiating the reference frame was as-
sumed to be of unbounded size. Here we are interested
in bounded-size quantum reference frames. We focus, in
particular, on the implications of such RFs on one’s abil-
ity to perform quantum-information processing tasks,
specifically: the fundamental primitive of quantum state
estimation, operations and measurements in quantum
computation, and the quantum cryptographic protocols
of data hiding and bit commitment. Furthermore, we
demonstrate that for bounded shared RFs, like en-
tanglement, it is possible to develop a general theory of
the manner in which this resource is distributed, trans-
formed from one form to another, distilled, degraded
with use, quantified, etc.

A. Measurements and state estimation with bounded reference
frames

State estimation is a fundamental primitive of
quantum-information processing. In this section, we dis-
cuss the role of reference frames in performing measure-
ments required for state estimation, and the effect of
bounding the size of this RF.

1. A directional example

Consider the task of estimating whether the state of a
spin-1 /2 system is aligned or antialigned with some per-
fect �unbounded� directional RF, given the promise that
it is one of the two. If one is able to compare the system
with this RF, then this task can be easily achieved, as it
corresponds simply to discriminating a pair of orthogo-
nal states, �+z� and �−z�, where we take z to be the axis
defined by the directional RF. Specifically, a measure-
ment of S ·z, the spin along z, determines the answer
with certainty. In contrast, if one is not able to make use
of this RF, then a superselection rule is in force, the
measurement of S ·z becomes impossible, and the states
�+z� and �−z� become completely indistinguishable.

There is an intermediate scenario between these two
extreme cases, however, wherein one only has access to
a sample of the RF—one that is of bounded size. In this
case, �+z� and �−z� become partially distinguishable, as
we now demonstrate with an example. We consider the
case wherein the directional RF is a spin-j system, for
some arbitrary but finite j, prepared in an SU�2� coher-
ent state �jz� �the eigenstate of J ·z associated with the
maximum eigenvalue�.

Because the task is to estimate the relations between
the bounded RF and the system, it is possible to restrict

the measurement to one that is invariant under collec-
tive rotations �i.e., rotations of both the bounded RF
and the spin-1 /2 system by the same amount�. In other
words, one can consider a global superselection rule as-
sociated with the group SU�2� to apply, because the sys-
tem serving as an RF for direction is treated internally.
As a result, the form of the measurement is highly con-
strained. Note that the joint Hilbert space Hj � H1/2 of
the bounded RF and system decomposes into a sum
Hj+1/2 � Hj−1/2 of a J= j+1/2 and a J= j−1/2 irreducible
representation of SU�2�, the group of collective rota-
tions. By Schur’s lemmas �see the proof in Sec. II� a
positive operator on this space that is SU�2�-invariant
must have the form p+�j+1/2+p−�j−1/2, where �j±1/2 is the
projector onto Hj±1/2. Thus a rotationally invariant mea-
surement is represented by a POVM with elements of
this form. However, any such POVM may be obtained
by classical post-processing of the outcome of the two-
element projective measurement ��j+1/2 ,�j−1/2�, so that
the latter is the most informative rotationally invariant
POVM. The POVM elements �j+1/2 and �j−1/2 are asso-
ciated with the measurement outcomes ‘‘aligned’’ and
‘‘antialigned,’’ respectively.

Denote the probability that the state �±z� is found to
be aligned with the bounded RF by p�+�± � and the
probability that it is found to be antialigned by p�−�± �.
The Born rule

p�± � ± � = 
jz�
±z��j±1/2�jz�� ± z� �6.1�

yields

p�+ � + � =
2j + 1

2j + 2
, p�− � + � =

1

2j + 2
,

p�+ �− � = 0, p�− �− � = 1. �6.2�

Assuming equal prior probabilities for �+z� and �−z�, the
average probability of successful discrimination is

psuccess =
1
2

p�+ � + � +
1
2

p�− �− � = 1 −
1

4�j + 1�
. �6.3�

The smallest possible RF corresponds to taking j=1/2,
in which case psuccess=5/6; see Pryde et al. �2005� for an
experiment based on this example. For large j, we have a
probability of success that approaches 1 linearly in 1/ j,
and we recover perfect distinguishability as j→�, corre-
sponding to the case of an unbounded RF.

This example can be extended to the problem of esti-
mating the relative angle between a spin j1 and a spin j2;
the optimal measurement is the projective measurement
��J ,J= �j1− j2� , . . . , j1+ j2� onto the subspaces of total
angular momentum J, for the same reasons as above
�Bartlett et al., 2004b�. The optimization problem be-
comes nontrivial when we allow for states of the
bounded RF and/or the system that span multiple irreps,

i.e., states that are not eigenstates of Ĵ2. Measuring a
spin-j system relative to a bounded directional RF con-
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sisting of a pair of spins has been considered by Bagan,
Iblisdor, and Munoz-Tapia �2006� and Lindner et al.
�2006�.

These sorts of results serve to illustrate how, for Lie
groups at least, a measurement relative to a bounded RF
cannot perfectly simulate one relative to an unbounded
RF. Note that we have only considered the inferential
but not the transformative aspect of the measurement,
that is, we have not considered how the quantum state
of the system is updated as a result of the measurement.
The work of Wigner �1952� and of Araki and Yanase
�1960� demonstrates, however, that for rank-1 projective
measurements one cannot perfectly simulate a von Neu-
mann update rule when an unbounded RF is replaced by
a bounded one.

2. Measuring relational degrees of freedom

We note that measurements relative to a bounded
quantum RF are an example of measurements of rela-
tional degrees of freedom. While a complete discussion
of relational formulations of quantum theory is beyond
the scope of this review, we briefly make some connec-
tions between problems involving reference frames and
relational ones.

The estimation of relative parameters for various de-
grees of freedom encompasses such natural tasks as es-
timating the distance between two massive particles, the
phase between two modes of an electromagnetic field
�the essential aim of a homodyne measurement�, or the
angle between a pair of spins as described above, all of
which are clearly related to issues of bounded reference
frames. Such measurements have been discussed in con-
nection with their ability to induce a relation between
quantum systems that had no relation prior to the mea-
surement, e.g., inducing a relative phase between two
Fock states �Javanainen and Yoo, 1996; Molmer, 1997;
Sanders et al., 2003� or a relative position between two
momentum eigenstates �Rau et al., 2003; Cable et al.,
2005�.

Measurements of relative parameters are critical for
achieving programmable quantum measurements
�Dušek and Bužek, 2002; Fiurášek et al., 2002�. Such
measurements use the state of a quantum system �the
reference system� to determine the form of a measure-
ment performed on another system. For example, a ref-
erence system in an SU�2� coherent state as above can
be used to “program” the choice of measurement basis
of a spin-1 /2 system. The problem of optimizing pro-
grammable quantum measurements, including determin-
ing the form of the joint measurement and the optimal
state of the reference system, is directly related to the
problem of optimizing measurements of relative param-
eters between a system and a bounded reference frame.

Note that problems of relative parameter estimation
are complementary to those of determining the optimal
measurement schemes for estimating collective param-
eters for a rotational degree of freedom, the subject of
Sec. V.

B. Quantum computation with bounded reference frames

1. Precision of quantum gates

In the majority of architectures proposed for quantum
computation, external classical fields are utilized to
implement single qubit logical operations. As an ex-
ample, we focus on the use of coherent states of the
electromagnetic field, which are particularly ubiquitous
for quantum computing architectures—in the form of
either lasers or radio frequency fields generated by an
oscillating current. From the perspective of this review,
we interpret such fields as defining a reference
frame—in this case, a clock—with respect to which co-
herent superpositions of the computational basis �energy
eigenstate� states are necessarily defined. Note that the
fact that the RF is interacting directly with the qubits
does not weaken such a viewpoint—at some stage in the
quantum-information processing a clock must physically
interact with the quantum computer �perhaps via inter-
mediary systems�; if it did not, then there would be no
operational difference if we enforced a superselection
rule for energy.21

If the reference frame is bounded—quantified in this
example as a finite mean photon number of the laser
field—the operations performed with respect to this
bounded RF may have imperfect precision, and gener-
ally the system and the field become entangled. A
simple and standard model of a single two-level atom
resonantly interacting with a single mode �cavity� field
via a Jaynes-Cummings interaction serves to illustrate
the basic idea �van Enk and Kimble, 2001�. The interac-
tion Hamiltonian takes the form

H = i�g�Ŝ+â − â†Ŝ−� , �6.4�

where â is the field mode annihilation operator, and Ŝ±

are the atomic raising and lowering operators. If the
field mode is initially prepared as a coherent state ���
=e−�1/2����2�n��n /	n!��n� with very large amplitude ���2

→�, it is common to replace the field operators â , â†

with classical c-numbers � and �*. In the language of
this review, this is the process of externalizing the refer-
ence frame. For an atom initially in the excited state,
evolution under this classical field then yields the well-
known Rabi oscillations between the ground �0� and ex-
cited states �1�. Specifically, the state at time t is

��C�t�� = sin�g���t��0� + cos�g���t��1� . �6.5�

Consider now what occurs if we choose not to exter-
nalize the driving field, and in particular describe it via a
finite amplitude coherent state. The evolution of the

21Previously, we have been concerned primarily with SSRs for
photon number when dealing with optical examples. However,
in this section, as we are discussing the coupling of atoms to
the optical fields under �additively� energy conserving Hamil-
tonians, we extend the type of SSR under consideration to one
for total energy.
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atom and field under the Hamiltonian of Eq. �6.4� can be
solved exactly, yielding

��Q�t�� = �
n=1

�

An�t��0��n� + Bn−1�t��1��n − 1� , �6.6�

where

An�t� =
e−1/2���2�n−1

	�n − 1�!
sin�g	nt� , �6.7�

Bn−1�t� =
e−1/2���2�n−1

	�n − 1�!
cos�g	nt� . �6.8�

To compare this evolution under a bounded reference
frame to the ideal �unbounded� case we should dequan-
tize the reference frame22 using the techniques of Sec.
IV.A.2. Following the procedure outlined therein, we
now move into the tensor product structure induced by
energy difference �relational� versus total energy �glo-
bal�. In terms of this tensor product structure we have

��Q�t�� = �
n=0

�

��n�t��rel�n − 1�gl, �6.9�

where ��n�t��rel=An�t��0�rel+Bn−1�t��1�rel is unnormalized.
The reduced density matrix of the relational system

�i.e., we trace out the global degree of freedom� is there-
fore a mixed state,

	Q�t� = �
n=0

�

��n�t��
�n�t�� , �6.10�

and it is this mixed state we wish to compare with the
pure state �6.5� expected in the unbounded, externalized
description.

We perform the comparison by computing the fidelity
F�t�= 
�C�t��	Q�t���C�t�� between the mixed state ob-
tained through the full quantum treatment and the pure
state of Eq. �6.5� obtained via the above approximation.
If we consider the specific choice of evolution time t
=� / �2���g�, which corresponds to performing a 
x gate,
then this fidelity is very well approximated �even for
small values of ���� by �Haroche, 1984�

F�t =
�

2���g �
1
2
�1 − cos��	1 + ���2

���
e−�2/8����2+1�

= 1 −
�2

16���2
+ O� 1

���4 . �6.11�

We see that the gate operation results in a state that is in
error �as quantified by the fidelity� by an amount that is
inversely proportional to the mean number of photons
in the driving field.

The extent to which such a model captures the essen-
tial features of currently proposed quantum computing
architectures has been the subject of considerable de-
bate, cf. van Enk and Kimble �2001�; Gea-Banacloche
�2002a, 2002b�; Itano �2003�; Silberfarb and Deutsch
�2003�; Gea-Banacloche and Ozawa �2005�; Nha and
Carmichael �2005�. What is clear is that such effects are
generally about two orders of magnitude smaller than
the typical spontaneous emission rates in these systems.
However, in situations wherein the reference frame is
small �for example, if quantum computers together with
the control fields were to be built on chips in an inte-
grated manner� or in systems which have negligible
spontaneous emission, then it is not unreasonable that
such considerations will have to be incorporated into
analyses of fault tolerance.

2. Degradation of a quantum reference frame

As we have demonstrated, a bounded reference frame
can result in nontrivial limitations on one’s ability to per-
form operations and measurements on quantum sys-
tems, and thus limitations on quantum-information pro-
cessing tasks such as quantum computing. However, this
imprecision is not the only limitation enforced by quan-
tum mechanics. In addition, any measurement that ac-
quires information about the relations between the sys-
tem and RF must necessarily disturb them
uncontrollably. The resulting disturbance to the RF can
be understood as a measurement back action. The effect
of this back action has been studied for reference frames
for spatial position �Aharonov and Kaufherr, 1984�, for
directional reference frames �Aharonov et al., 1998�, and
for clocks �Casher and Reznik, 2000�. Here we investi-
gate how measurement back action on a bounded RF
can lead to its degradation, i.e., a reduction of its suit-
ability to perform future measurements.

The conventional approach wherein reference frames
suffer no back action may yield a poor approximation to
the full quantum treatment, as suggested above. This
issue may be particularly important for quantum compu-
tation, where a large number of high-precision measure-
ments must be performed. In some implementations,
such measurements are performed relative to a refer-
ence frame that is usually described by a finite quantum
system; for example, the proposed single-spin measure-
ment technique using magnetic resonance force micros-
copy �Rugar et al., 2004�, or the single-electron transis-
tors used for measurement of superconducting qubits
�Makhlin et al., 2001�. We now demonstrate that the
number of measurements for which a quantum refer-
ence frame can be used scales quadratically rather than
linearly in the size of the reference frame, which is a
promising result for the prospect of using microscopic or
mesoscopic reference frames in performing repeated
high-precision measurements.

In the following example, we investigate the degrada-
tion of a quantum reference direction as it is used for
repeated measurements. We use a spin-j system for our
quantum reference direction �the RF�, with Hilbert

22This dequantization was not carried out by van Enk and
Kimble �2001�, although for this example it does not make a
quantitative difference to the overall conclusions about gate
fidelity.

599Bartlett, Rudolph, and Spekkens: Reference frames, superselection rules, and …

Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007



space Hj. We choose the initial quantum state of the
spin-j system to be 	�0�= �j , j�
j , j�; this choice of initial
state simplifies the analysis, and in addition it has been
determined to be the initial state that maximizes the ini-
tial success probability �Bartlett, Rudolph, Spekkens,
and Turner, 2006�. This quantum RF is aligned in the +z
direction relative to a background frame.

The systems to be measured will be spin-1 /2 systems,
each with a Hilbert space H1/2. We choose the initial
state of each such system to be the completely mixed
state I /2, and our quantum RF will be used to measure
many such independent spin-1/2 systems sequentially.
We assume trivial dynamics between measurements, and
thus our time index will simply be an integer specifying
the number of measurements that have taken place. The
state of the RF following the nth measurement is 	�n�,
with 	�0� denoting the initial state of the RF prior to any
measurement. We consider the state of the RF from the
perspective of someone who has not kept a record of the
outcomes of previous measurements. Thus, at every
measurement, we average over the possible outcomes
with their respective weights to obtain the final density
operator.

The measurement which optimally determines
whether a spin-1 /2 particle is aligned or antialigned to a
spin-j system was determined in Sec. VI.A.1 to be the
two-outcome projective measurement ��+��j+1/2 ,�−
��j−1/2� on Hj � H1/2. We use this measurement here. It
can be shown that of the many ways of implementing
this measurement, the update rule that degrades the ref-
erence frame the least is the standard Lüders update
rule �Bartlett, Rudolph, Spekkens, and Turner, 2006�.
Thus the resulting evolution of the quantum RF as a
result of the nth measurement is

	�n+1� = E�	�n�� , �6.12�

where the superoperator E is given by

E�	� = TrS� �
c��+,−�

�c�	 � I/2��c , �6.13�

with TrS the partial trace over H1/2.
The map E can be written using the operator-sum rep-

resentation as

E�	� =
1
2 �

c��+,−�
�

a,b��0,1�
Eab

c 	Eab
c† , �6.14�

where Eab
c �
a��c�b� is a Kraus operator on Hj and

��0�,�1�� is a basis for H1/2. These operators can be
straightforwardly determined in terms of Clebsch-
Gordon coefficients.

We quantify the quality of a quantum RF as the aver-
age probability of a successful estimation of the orienta-
tion of a fictional test spin-1 /2 system which is, with
equal probability, either aligned or antialigned with the
background +z axis. Denote the pure state of the test
spin-1 /2 system that is aligned �antialigned� with the ini-
tial RF by �0� ��1��. For a spin-1 /2 system prepared in the
state �0� or �1� with equal probability, the average prob-
ability of success using a quantum RF state 	 is

P̄s = 1
2TrR�	�E00

+ + E11
− �� . �6.15�

The solution for 	�n�, given the initial state 	�0�= �j , j�
j , j�,
yields an average probability of success P̄s�n� that de-
creases with n as

P̄s�n� =
1
2

+
j

2j + 1
�1 −

2

�2j + 1�2n

. �6.16�

The initial slope R of this function bounds the rate of
degradation. It is

R � P̄s�1� − P̄s�0� = − 2j/�2j + 1�3. �6.17�

Thus, in the large j limit, we have the rate of degradation
with n satisfying R�−1/ �4j2�.

Let  �1 be a fixed allowed error probability for the
spin-1 /2 direction estimation problem. After n measure-
ments, the probability of successful estimation is lower
bounded by 1+nR, so the number of measurements re-
quired to ensure that this bound be greater than 1− is
− /R. Consequently, the number of measurements that
can be implemented relative to the spin-j RF with prob-
ability of error less than  is

nmax �  j2. �6.18�

This result implies that the number of measurements for
which an RF is useful, that is, the longevity of an RF,
increases quadratically rather than linearly with the size
of the RF. Thus in order to maximize the number of
measurements that can be achieved with a given error
threshold, one should combine all of one’s RF resources
into a single large RF and perform all measurements
relative to it, rather than use a number of smaller RFs
individually. We note that this degradation, as quantified

by the decreasing average probability of success P̄s�n�,
can be modeled precisely as the distribution of a classi-
cal reference direction undergoing a random walk �Bart-
lett, Rudolph, Sanders, and Turner, 2006�.

Using similar methods, it has also been demonstrated
that a bounded quantum phase reference, realized as a
single-mode quantum state of the electromagnetic field
with bounded photon number, also leads to a longevity
that scales quadratically in this size �mean photon num-
ber� �Bartlett, Rudolph, Spekkens, and Turner, 2006�. It
is an open problem to determine if this quadratic scaling
is a general result.

We have discussed the degradation associated with a
loss of purity of the reference frame state. Another
mechanism of degradation is for the reference frame to
become misaligned with the background reference
frame of which it is a token. Poulin and Yard �2006� have
shown how a reference frame can suffer this sort of mis-
alignment when the systems being measured have a non-
zero polarization �that is, are not described by the com-
pletely mixed state�, and that in the presence of such
drift, the longevity scales linearly, rather than quadrati-
cally, in the size of the reference system.
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C. Quantum cryptography with bounded reference frames

In Sec. IV.D, we demonstrated that SSRs cannot pro-
vide any fundamental limitations on quantum crypto-
graphic protocols, essentially because quantum refer-
ence systems which obey the SSR can enable it to be
effectively lifted. However, this result does not mean
that SSRs are uninteresting for cryptography. In quan-
tum cryptography, it is typical to focus on unconditional
security—security not premised upon assumptions about
the resources of one’s adversaries, but only upon the
validity of the laws of quantum mechanics. In classical
cryptography, in contrast, security is typicaly
conditional—it is generally premised upon assumptions
about the computational capabilities of one’s opponents.
Other types of conditional security can be premised
upon assumptions about other noncomputational capa-
bilities or resources available to the adversarial parties.
In this section, we consider the specific case where the
physical resource about which assumptions are being
made is some kind of RF, the lack of which in turn in-
duces an effective SSR. This is effectively an assumption
of bounded resources, because given unlimited re-
sources the SSR can be lifted as in Sec. IV.B. We use the
specific examples of data hiding and bit commitment to
illustrate protocols that achieve this sort of security.23

1. Data hiding with a superselection rule

In a quantum data hiding protocol, one party �Char-
lie� wants to share a single datum by distributing systems
among two other parties �Alice and Bob� in such a way
that the bit can only be recovered if the parties have
some mechanism for performing joint measurements on
the distributed systems. Such measurements could be
performed by the parties coming together, by using a
quantum channel, or by performing teleportation �using
prior entanglement� with a classical channel. These pos-
sibilities are generally considered equivalent. Thus Char-
lie must assume that the two parties have no access to
the specific physical resource of a quantum channel. It
has been proven that perfect quantum data hiding is not
possible even with this assumption �Terhal et al., 2001�.

If, in addition, Charlie can assume that the two parties
do not share a phase reference �that is, they are subject
to a local Abelian SSR� then perfect data hiding can be
achieved �Verstraete and Cirac, 2003�. For example,
without a shared phase reference for their optical modes
as in Sec. III.C.1, Alice and Bob cannot distinguish the
pair of orthogonal pure states ��±�= ��01�± �10�� /	2 using
LOCC because UA � UB���+��=UA � UB���−��, and so this
pair of states could be used to encode the classical bit.

As discussed in Sec. IV.B, it is also clear that shared
reference systems could be used by Alice and Bob to

break such data hiding protocol. Such reference systems
need not be entangled, which shows that breaking of
data hiding in this case is quite different to the case of
using entanglement to implement a quantum channel.
However, if Charlie has reason to believe that the refer-
ence systems shared by Alice and Bob are bounded in
size, then it is still possible for him to achieve data hid-
ing. He does this by using such a large number of sys-
tems to encode the bit that any bounded shared refer-
ence does not suffice to extract all required data.

2. Ancilla-free bit commitment

A particularly simple class of bit commitment proto-
cols �Spekkens and Rudolph, 2001� involve Alice pre-
paring one of two orthogonal states ��0,1�, according to
whether she wishes to commit a bit b=0,1. Here ��0,1�
are �generally entangled� states over a proof system and
a token system. She sends the token system to Bob as
her commitment. To unveil the bit, she sends Bob the
proof system, and he verifies her commitment by pro-
jecting onto ��0,1�. A simple version of such a protocol
was discussed in Sec. IV.D above.

Consider the situation wherein Alice and Bob are
constrained such that they cannot make use of a refer-
ence frame, either shared or local. This constraint en-
forces the protocol to be ancilla-free—for instance, we
do not allow either party to prepare ancillary systems
which could then act as an effective RF in the manner
described in Sec. IV.B. It turns out that under such a
constraint, arbitrarily secure bit commitment is possible
�DiVincenzo et al., 2004�.

It is illustrative to first consider a case where such a
restriction does not help. Consider ancilla-free bit com-
mitment in the case that Alice and Bob lack a phase
reference. As Alice must prepare the initial states ��0,1�,
they must each lie completely in a single superselection
sector, i.e., eigenstates of total photon number, and take
the form

��b� = �
n

cn
b�N − n�P�n�T. �6.19�

Because the reduced density matrices of the token sys-
tem 	b=�n�cn

b�2�n�T
n� are diagonal in the number basis,
the fact that Bob can only perform measurements diag-
onal in this basis actually is no restriction on him at
all—he can cheat �by trying to distinguish these states�
just as well as he could in an unconstrained protocol.

Consider now if Alice is cheating, i.e., she attempts to
commit her bit only after the commitment stage. An op-
timal cheating strategy for Alice is to prepare a state
��̃�� ��0�+UP � IT��1�, where the unitary matrix UP on
the proof system is one which maximizes the overlap

�0�UP � IT��1� �Spekkens and Rudolph, 2001�. If, after
the commitment stage, she decides to commit b=0, then
she simply sends the proof system as is. If instead she
decides to commit b=1, then she applies UP

† to the proof
system before sending it to Bob. The question is
whether Alice can perform this optimal cheating strat-
egy despite the SSR. Consider first the unitary UP which

23We note in passing that a different type of assumption,
namely, that Alice and Bob share partially misaligned refer-
ence frames, can be used as a kind of guaranteed noisy chan-
nel, and, as in classical cryptography, such channels can be
used for secure two party protocols �Harrow et al., 2006�.
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maximizes 
�0�UP � IT��1�. If UP�N−n���AN−n�, where
�Ai� is a state not necessarily respecting the SSR, then

�0�UP � IT��1�=�n�cn

b�2
AN−n �N−n�. Clearly the maximi-
zation of this expression will be achieved by choosing
�AN−n�=ei�N−n�N−n�, i.e., for a unitary UP which is diag-
onal in the number state basis. Furthermore, the state
��̃� then takes the generic form �ncn�N−n�P�n�T which
respects the SSR. Under the assumptions of an ancilla-
free SSR protocol, any state prepared by Alice or any
unitary operator she applies is constrained to be diago-
nal in the number basis—as we have seen, in this case
she can still achieve the optimal cheating strategy de-
spite such a constraint.

The Abelian SSR induced by lack of a phase refer-
ence therefore does not help devise a more secure
ancilla-free bit commitment. It can be shown, however,
that a different type of Abelian SSR does lead to arbi-
trarily secure ancilla-free bit commitment. We follow the
work of DiVincenzo et al. �2004�. Consider a number of
spin systems, with a local Abelian SSR given as follows:
all local operations must commute with the total local
angular momentum operator J2. Thus all states and op-
erations must be diagonal in total spin quantum number
j. However, they can have coherence between the differ-
ent m eigenvalues of Jz. This superselection rule is dis-
tinct from any that we have considered in this review,
and does not appear to be related to the lack of an ap-
propriate reference frame. The key property of this
Abelian SSR that will be useful for ancilla-free bit com-
mitment, and is distinct from the other Abelian SSRs we
consider, is that the quantum number j labeling the local
superselection sectors is nonadditive.

Using the standard �j ,m� notation for the uncoupled
basis, consider the bit commitment protocol which is de-
fined by the following two states ��b� of total spin j=1:

��b� =
1
	2

�1,1�P��0
b�T +

1
	3

�1,0�P��1
b�T

+
1
	6

�1,− 1�P��2
b�T, �6.20�

where

��0
b�T =

2
3

�0,0�T + �− 1�b1
2

�1,0�T +
	2
6

�2,0�T, �6.21�

��1
b�T = �− 1�b

	3

2
�1,1�T −

1
2

�2,1�T, �6.22�

��2
b�T = �2,2�T. �6.23�

We note that although the proof system is also an eigen-
state of JT

2 with eigenvalue j=1, the token system is not;
this is a result of the nonadditive nature of this SSR. If
we look at the reduced density matrices 	0,1 on the token
system in the uncoupled basis, we see that they are block
diagonal �incoherent mixtures� in the eigenspaces of Jz,
with eigenvalues m=0, 1, 2. Within each block, the diag-
onal elements of ��m

b �
�m
b � are the same—that is, they are

indistinguishable by their total spin. Under the SSR,
Bob is restricted to performing measurements which are
diagonal in total spin, and so these two states are com-
pletely indistinguishable.

In a general bit commitment scenario, indistinguish-
ability of the token systems by Bob would imply that
Alice has complete control—that she should be able to
perfectly change her commitment after the commitment
stage. However, this is not the case for this example—
the two states 	0,1 have a nonunit fidelity F�	0 ,	1��1.
Because the fidelity sets a bound �for these type of pro-
tocols� on how well Alice can control the outcome �re-
gardless of any restrictions on her�, we see that some
security against Alice will be possible.

Generalizations of the above pair of states ��b� can be
defined for which, as j becomes large, F�	0 ,	1�→0, im-
plying perfect security against Alice �DiVincenzo et al.,
2004�. We believe that a fruitful avenue for future re-
search would be to determine if such constraints on
ancilla-free bit commitment can be achieved using a
non-Abelian superselection rule of the form discussed in
this review.

D. Quantifying bounded shared reference frames

Much of quantum-information theory is concerned
with tradeoffs in the utilization of various types of fun-
damental resources. The canonical example is quantum
teleportation, which demonstrates that one ebit �Bell
pair� of shared entanglement plus two communicated
classical bits are equivalent to the communication of a
single qubit. In this section, we demonstrate that a
shared reference frame is also a quantifiable resource,
akin to entanglement, which allows parties to perform
tasks that they were unable to perform without it, or to
perform tasks more efficiently.

Consider the activation example of Sec. III.C.2, which
involved two parties �Alice and Bob� who do not share
the phase reference of a third party �Charlie� or each
other. In this context, the two-mode single-photon state
��1�A�0�B+ �0�A�1�B� /	2 could not be used to perform
quantum teleportation or to violate a Bell inequality.
However, if Alice and Bob were also provided with the
bipartite state �+ �A�+ �B, where �+ �= ��0�+ �1�� /	2 de-
scribed relative to Charlie’s phase reference, they could
activate the entanglement in the former state through
LOCC. Although Alice and Bob do not share Charlie’s
phase reference, clearly the state �+ �A�+ �B provides a
bounded version of it. This bounded shared phase refer-
ence can be used to activate the entanglement of the
two-mode single-photon state, as can an unbounded
classical shared phase reference. However, unlike the
latter, the bounded shared phase reference �+ �A�+ �B can
only activate the entanglement with probability 1/2, and
in addition is consumed in the process; it is a shared
reference frame that can be depleted, in this case,
through a single use. The state �+ �A�+ �B can be consid-
ered an elementary unit of Charlie’s phase reference,
much like an ebit �a Bell pair� is considered an elemen-
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tary unit of entanglement. As a result of this analogy, the
state �+ �A�+ �B has been denoted a refbit.

Continuing this example, we note that the two-mode
single-photon state ��1�A�0�B+ �0�A�1�B� /	2 can also be
viewed as a resource for activating another copy of this
same state. �This process can alternatively be viewed as
two-copy entanglement distillation, as in Sec. III.C.2.�
This state is invariant under global phase changes, and
thus is completely uncorrelated with Charlie’s �or any
other party’s� phase reference, but it nevertheless pro-
vides a bounded version of a shared phase reference for
Alice and Bob. It is useful to view this state as the el-
ementary unit of a shared phase reference between Al-
ice and Bob, uncorrelated with any other.

Because of the dual purpose of this state—either as an
elementary unit of a shared phase reference or as a state
from which entanglement can be activated with the use
of a shared phase reference—it has been named and
categorized in many different ways depending on its in-
tended use. So which way should it be viewed? The an-
swer is that this state can serve as a resource for both
entanglement and a shared reference frame, and that
one must trade off its usefulness for one purpose against
the other. In fact, a wide variety of tradeoffs between
refbits, ebits, cbits, and other resources can be derived
�van Enk, 2005a, 2006�, which emphasizes the utility of
thinking of reference frames as yet another form of re-
source.

Now that we have identified standard elementary
unit�s� of a shared reference frame, we can quantify how
well a given quantum state serves as a shared reference
frame by the state’s asymptotic interconvertibility to this
standard form, using local operations and classical
communication.24 A remarkable property of entangle-
ment of pure bipartite states is that, by observing the
properties of asymptotically reversible transformations
using LOCC, entanglement can be quantified by a single
additive measure: the reversible conversion efficiency to
a standard form of entanglement, the ebit. For an Abe-
lian superselection rule, the resource of a quantum
shared reference frame can be quantified by a single ad-
ditive measure in a similar fashion. Thus the nonlocal
properties of pure bipartite quantum states in the pres-
ence of an Abelian superselection rule are completely
characterized by two additive measures: the entangle-
ment �for which we can use an operational measure such
as ESSR, the entanglement in the presence of an SSR,
discussed in Sec. III.C.3� and another measure quantify-
ing the state’s ability to serve as a shared RF. In the
following, we investigate one such measure for the latter,
the superselection induced variance �SIV� �Schuch et al.,
2004a, 2004b�. We note that measures for quantifying
quantum shared RFs in the presence of non-Abelian su-
perselection rules have not been explored to date.

Let Alice and Bob each have in their possession a
number of optical modes, and consider a situation as in
Sec. III.C.1 where they do not share a phase reference.
Thus Alice and Bob are restricted by an Abelian local
superselection rule for photon number. Let HA �HB� be

the local Hilbert space for Alice’s �Bob’s� modes, and N̂A

�N̂B� be the total local photon-number operator for
these modes. Consider a bipartite quantum state ��� on
HA � HB that is an eigenstate of total photon number

N̂A+N̂B. �This condition ensures that the state is not
correlated with another party’s phase reference.� The su-
perselection induced variance V��� of this state is de-
fined to be the variance in the local photon number,

V��� � 4�
��N̂A
2

� IB��� − 
��N̂A � IB���2� . �6.24�

This SIV satisfies the following properties: �i� it is addi-
tive, meaning V�� � ���=V���+V���� for any ��� , ����;
�ii� it is symmetric under exchange of A and B; and �iii�
it is a bipartite monotone, in that it is nonincreasing un-
der LOCC operations that can be performed by Alice
and Bob without a shared phase reference. The state
��1�A�0�B+ �0�A�1�B� /	2, which we identified above as an
elementary unit of shared phase reference, has an SIV
of 1.

Two measures—the entanglement and the SIV—
completely quantify the nonlocal resources of a bipartite
state. To prove this result, the general idea is to show
that Alice and Bob can, through LOCC restricted by the
superselection rule, reversibly convert an asymptotic
number of copies of the bipartite state into a number of
states with only the first type of resource �entanglement�
and none of the second �SIV�, and a number of states
with only the second and none of the first. Let Alice and
Bob share N copies of a bipartite state ���, which has
entanglement ESSR��� and SIV V���. In addition, let Al-
ice and Bob each have in their possession an arbitrary
number of quantum registers—quantum systems that
are not restricted by any superselection rule, such as
were discussed in Sec. III.C.3; these registers are initi-

ated in an arbitrary unentangled state �0̃��0̃�. Then the
transformation

����N
� ��0̃��0̃���ESSR���N → ��

n
cn�n��N − n�

� ��̃−��ESSR���N �6.25�

is asymptotically reversible, and Alice and Bob can per-
form this transformation with LOCC restricted by the
SSR, where the coefficients cn are Gaussian distributed

with variance NV��� /4, and ��̃−� is a maximally en-
tangled Bell state of a pair of qubits of Alice’s and Bob’s
quantum registers.

We now analyze the two states on the right side of Eq.
�6.25�. The first state �ncn�n��N−n� has SIV of NV���.
Such a state serves as a good standard shared RF for
large N �Vaccaro et al., 2003�. Although it is a nonsepa-
rable pure state, the entanglement in the presence of an
SSR, ESSR, of this state is zero. In contrast, the state of

24For an alternate measure of how well a quantum state can
serve as a shared reference frame, based on entropic proper-
ties, see Vaccaro et al. �2005�.
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the unrestricted registers ��̃−��ESSR���N clearly contains
an amount of entanglement equal to ESSR���N standard
ebits. As this system is a quantum register and not a
system with a phase degree of freedom, it clearly has no
function as a shared phase reference; thus the SIV of
this state is zero. The two states on the right side of Eq.
�6.25� then represent standard forms for each type of
nonlocal resource—superselection induced variance,
and entanglement in the presence of an SSR—and con-
tain none of the other type.

A proof that the transformation �6.25� is asymptoti-
cally reversible with LOCC restricted by the SSR can be
found in Schuch et al. �2004a�. In their proof, they used
the entropy of entanglement E rather than ESSR; we
note that in the asymptotic limit for an Abelian SSR,
ESSR���N�→E���N� for any pure state ��� �Wiseman
and Vaccaro, 2003�. Thus their proof applies directly to
the above statement. This result can be extended to ap-
ply to mixed states �Schuch et al., 2004b�. Finally, we
note that explicit protocols for activation—creating
states with ESSR�0 using states with ESSR=0 using a
quantum shared reference frame state—have been de-
veloped �Vaccaro et al., 2003; Bartlett, Doherty, et al.,
2006�.

E. Purification of bounded shared reference frames?

As noted in the previous section, the state ��1�A�0�B

+ �0�A�1�B� /	2 can be viewed as the elementary unit of a
shared phase reference between Alice and Bob, uncor-
related with any other. This state has the appearance of
a maximally entangled Bell state �see Sec. III.C�, and so
a natural question is to ask whether a number of imper-
fect �noisy� states can be purified to a smaller number of
superior states of this form. Of course, for such a process
to be of any use it would need to be implementable
without the use of some other, unbounded shared RF.
An affirmative answer would mean that shared RFs are
a resource that can be purified, just like entanglement.
Unfortunately, however, such a task does not appear to
be possible, as we now demonstrate, following Preskill
�2000�.

Consider a noisy shared RF state that is a mixture of
the state ��1�A�0�B+ �0�A�1�B� /	2 with probability p�1/2
and the state ��1�A�0�B− �0�A�1�B� /	2 with probability 1
−p. Let Alice and Bob share two copies of this mixed
state. With these states, they attempt to perform the fol-
lowing simple entanglement purification protocol �Ben-
nett et al., 1996�: they each apply a controlled-NOT

�CNOT� on the two qubits in their possession, and then
perform an X measurement on the target qubit. Each
party obtains a measurement outcome ±1, which they
communicate with each other classically, and compare
whether the results are the same or different. Effec-
tively, though this process they have measured the joint
nonlocal operator

�XAXB�1 · �XAXB�2. �6.26�

In the standard entanglement purification protocol, if
Alice and Bob keep only those states where they obtain
the same measurement results, the resulting states will
have higher fidelity with the state ��1�A�0�B

+ �0�A�1�B� /	2.
Note, however, that this protocol requires operations

which are not U�1� invariant. For example, a measure-
ment of X must be performed relative to that party’s
local phase reference. Let Alice and Bob make use of
unbounded local phase references in this protocol. Note
that the operator XA is defined with respect to Alice’s
phase reference, and XB with respect to Bob’s. If their
phase references differ by a phase shift �BA, then these
two operations are related by XB=e−i�BAZ/2XAe+i�BAZ/2;
see Sec. V.G. Thus the state to which they are purifying
in this instance is

��1�A�0�B + e−i�BA�0�A�1�B�/	2. �6.27�

If Alice’s and Bob’s local phase references are uncorre-
lated, as we assumed, then �BA is completely unknown,
and the protocol does not yield a state with higher fidel-
ity with ��1�A�0�B+ �0�A�1�B� /	2.

F. Treating bounded reference frames as decoherence

We conclude this section with a discussion of an ap-
proach to describing the effect of using bounded RFs.
As demonstrated above, bounded RFs limit one’s ability
to prepare states and to perform quantum operations
and measurements on a system, and the nature of these
limitations is similar in many ways to that of decoher-
ence. One is then led to ask whether it is possible to
treat bounded RFs externally rather than internally �in
the sense of Sec. IV.A.2� by positing an unavoidable de-
coherence. In other words, if such a description existed,
then the bounded size of the RF could be said to effec-
tively reduce the purity and/or coherence of systems de-
scribed with respect to it.

While no completely general description of treating
bounded RFs in this manner has yet been developed,
specific examples of such decoherence mechanisms and
their consequences have been discussed in various rela-
tional approaches to quantum theory �Page and Woot-
ters, 1983; Gambini et al., 2004a, 2004b; Milburn and
Poulin, 2006; Poulin, 2006�. These discussions have pri-
marily focused on the tricky issue of internalizing time in
quantum theory. Unsurprisingly, given the interpretation
of certain types of phase references as clocks, these re-
lational formulations generally follow along the lines of
the procedures we have already reviewed. One begins
by treating all systems which can serve as a clock as
internal, constructs �pure or mixed� states that are in-
variant under global time shifts, identifies relational
spaces in the decoherence-free subsystems, refactorizes
the Hilbert space in terms of the induced tensor product,
and finally interprets the new formulation as the true
dynamical description. As expected, a form of decoher-
ence in this new description is found whenever the size
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of the internalized reference system�s� is bounded. It is
an interesting open problem to identify the appropriate
decoherence maps �if they exist� that describe the dy-
namics of a system relative to a bounded �particularly
non-Abelian� RF. While one can debate the appropri-
ateness of these approaches from a foundational per-
spective, such an approach would certainly be useful for
addressing questions in the field of quantum informa-
tion.

VII. OUTLOOK

The study of reference frames and superselection
rules in the context of quantum-information theory is an
unfinished task. In this section, we provide an overview
of the topics discussed together with some open prob-
lems and research directions, while outlining the practi-
cal and foundational significance of this sort of investi-
gation.

It is useful to divide the practical applications into two
broad categories corresponding to whether their pur-
pose is the manipulation of speakable information or of
unspeakable information, that is, corresponding to the
nature of their inputs and outputs.

The first category contains the standard problems of
interest in quantum-information theory, both those that
use quantum systems to manipulate classical informa-
tion and those whose inputs and outputs are themselves
quantum information. Even though these ultimately
process speakable information �whether classical or
quantum�, protocols for such tasks must always encode
this information using some degree of freedom, which
requires some form of RF. Thus we are led to ask how
much the absence of a particular RF or of a shared RF
among separated parties decreases the efficiency of vari-
ous information-processing tasks, or increases the prac-
tical difficulty of implementing them. What is the answer
to such questions in the case where one has an imprecise
RF or two parties share RFs that are only partially cor-
related? Such questions have been considered here for a
variety of tasks, such as quantum and classical commu-
nication �Sec. III.A�, quantum key distribution �Sec.
III.B�, and implementing quantum gates �Sec. VI.B.1�.
There are many more tasks that could be considered.
Most of the communication and cryptographic problems
considered to date have determined the efficiency only
in the case where one demands perfect fidelity encoding
and decoding and perfect security. Furthermore, these
sorts of questions have been scarcely addressed for the
case of shared RFs that are partially correlated. Finally,
although there have been a few experiments demon-
strating the viability of some of these schemes, such as
relational encodings �Sec. III.A.3�, the development of
realistic physical implementations remains as much a
source of experimental challenges as any other quantum
technology.

The second category of applications consists of tasks
that explicitly involve the manipulation of unspeakable
information, such as clock synchronization or the align-
ment of Cartesian frames. Quantum considerations be-

come important to achieve the optimal precision and it
is the tools of quantum-information theory that are best
suited to a treatment of the problem. We may describe
the alignment of remote reference frames as the com-
munication of unspeakable information, and as soon as
one starts describing and thinking about such tasks in
the language of information theory, many new tasks sug-
gest themselves. Examples mentioned in this review are
dense coding of unspeakable information �Sec. V.K�, us-
ing private shared RFs as a cryptographic key �Sec.
III.D�, the private communication of unspeakable infor-
mation �Sec. V.J�, and secret sharing of unspeakable in-
formation. Many more analogies of this sort could be
considered. Indeed, for almost any information-
theoretic task of interest today, it is interesting to muse
about possible analogs of it for unspeakable informa-
tion. �A particularly intriguing question to consider is
whether there is such an analog for computation.� On
the experimental side, the implementation of quantum
protocols for even the best studied of these sorts of
tasks, the alignment of reference frames, has, with the
exception of phase estimation, only just begun to be in-
vestigated.

As emphasized in the Introduction, imposing a restric-
tion on operations generically leads to the identification
of a novel resource to overcome this restriction, and we
are then compelled to develop a theory for how that
resource may be manipulated. For instance, under the
restriction of LOCC, entanglement becomes a resource,
and the theory of how this resource can be
manipulated—the theory of entanglement—has been
the subject of a significant amount of work in recent
years. Others have considered the theory of communi-
cation under natural restrictions such as local operations
and public communication �Collins and Popescu, 2002�
or restrictions to only Gaussian quantum-optical states
and operations �Eisert and Plenio, 2003�. A superselec-
tion rule �either local and global� is another sort of natu-
ral restriction, and under this restriction any quantum
state that acts as an RF becomes a resource. The theory
of such resources might aptly be called the theory of
quantum reference frames or the theory of unspeakable
quantum information. It endeavors to answer questions
such as how this resource is depleted with use, trans-
formed from one form to another, shared among several
parties, etc. Such a theory has only begun to be devel-
oped. The limited results on bounded quantum refer-
ence frames, described in Sec. VI �see also Sec. III.C�
are evidence of this. Moreover, in a sense there is a fam-
ily of theories to be developed, because we obtain dif-
ferent results depending on the group G with which the
superselection rule is associated. Many investigations to
date have applied only to the cases of the group U�1�
and/or the group SU�2�. Ultimately, one would like to
have a generic theory of unspeakable information that
applies to any group; in particular, noncompact groups
�such as the Lorentz or Poincaré groups� may require
more general mathematical tools than those discussed
here.

It is worth noting that this research is not necessarily
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driven by applications. In this sense, it is similar to the
study of entanglement in quantum-information theory,
which although initially motivated by its practical appli-
cations, has increasingly become an interesting subject
in its own right. Of course, just as the development of
the theory of entanglement has led to many unforeseen
practical dividends, we may expect this of a general
theory of unspeakable information as well.

Finally, applying the tools of quantum-information
theory to the study of RFs and SSRs can shed light on
foundational issues in quantum theory. Examples from
this review include whether there exist axiomatic super-
selection rules and the controversy over the nonlocality
of a single photon. Another issue which is likely to be
clarified by an analysis in terms of quantum reference
frames is that of spontaneous symmetry breaking, which
is significant in both condensed matter physics and
quantum field theory and the foundational status of
which is notoriously murky. Foundational issues related
to particle statistics may also benefit from such an analy-
sis. For instance, an interesting open question is whether
the univalence superselection rule, which forbids coher-
ent superpositions of bosons and fermions �Giulini,
1996�, may be lifted by an appropriate reference frame
�Dowling et al., 2006�. Because this SSR is not associated
with a compact group, answering this question requires a
formalism more general than the one presented here.
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