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Inelastic light scattering is an intensively used tool in the study of electronic properties of solids.
Triggered by the discovery of high-temperature superconductivity in the cuprates and by new
developments in instrumentation, light scattering in both the visible �Raman effect� and x-ray part of
the electromagnetic spectrum has become a method complementary to optical �infrared� spectroscopy
while providing additional and relevant information. The main purpose of the review is to position
Raman scattering with regard to single-particle methods like angle-resolved photoemission
spectroscopy, and other transport and thermodynamic measurements in correlated materials.
Particular focus will be placed on photon polarizations and the role of symmetry to elucidate the
dynamics of electrons in different regions of the Brillouin zone. This advantage over conventional
transport �usually measuring averaged properties� provides new insights into anisotropic and complex
many-body behavior of electrons in various systems. Recent developments in the theory of electronic
Raman scattering in correlated systems and experimental results in paradigmatic materials such as the
A15 superconductors, magnetic and paramagnetic insulators, compounds with competing orders, as
well as the cuprates with high superconducting transition temperatures are reviewed. An overview of
the manifestations of complexity in the Raman response due to the impact of correlations and
developing competing orders is presented. In a variety of materials, observations which may be
understood and a summary of important open questions that pave the way to a detailed understanding
of correlated electron systems, are discussed.
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I. INTRODUCTION

A. Overview

Raman scattering is a photon-in photon-out process
with energy transferred to a target material. Most of the
light is elastically scattered from the sample, a fraction is
color-shifted and collected at the detector.

Light couples to electronic charge in solids and
can scatter inelastically from many types of excitations
in a sample, as shown schematically for
�Y0.92Ca0.08�Ba2Cu3O6.3 in Fig. 1. Optical phonons pro-
duce sharp peaks at well-known positions and orienta-
tions of the incoming and outgoing photon polarizations,
while a large broad feature centered at much higher en-
ergies due to two-magnon scattering occurs in com-
pounds with antiferromagnetic correlations. This review
article largely places emphasis on the electronic Raman-
scattering continuum upon which the phonons and mag-
nons are superimposed.

Light scatters off of electrons by creating variations of
electronic charge density in the illuminated region of a
sample. By observing the frequency shift and polariza-
tion change of the outgoing photon compared to the
incoming photon, the properties of charge-density relax-
ation are measured. However, measuring the Raman ef-
fect of photons scattering from electrons is a difficult
proposal to carry forward precisely because of the cou-
pling of the real photon vector potential and the ex-
change of virtual photons which mediate the Coulomb
forces between electrons. In simple metals, variations of
the charge density will be largely screened by mobile
electrons, and the system of electrons responds collec-
tively at a characteristic plasma frequency of several
electron volts. In semiconductors or well-developed
band insulators, the creation of charge-density fluctua-
tions occurs only via the population of excited states
across a band gap—again on the scale of several electron

volts. Therefore it is difficult to investigate the behavior
of electrons at low energies. In fact, hardly any measure-
ments of electronic Raman scattering in simple metals
exist precisely for this reason, and in semiconductors fo-
cus is usually placed on plasma excitations. Since the
dynamics of electrons lying near the Fermi surface gov-
ern the behavior of transport in most systems, this would
give the impression that Raman would have but little to
offer in simple metals and insulators.

Yet the Raman effect is extremely well suited to study
electrons in systems with nontrivial electron dynamics.
First well studied in the context of breaking Cooper
pairs in superconductors in the period from 1980 to
1990, the field of Raman scattering from electronic exci-
tations has grown tremendously over the past few de-
cades to study the evolution of electron correlations in a
variety of systems in which many-body interactions are
essential to the physics of novel materials and their po-
tential device applications.

Raman spectroscopy has become an indispensable
tool in the arsenal for understanding many-body physics.
One of the most celebrated achievements of electronic
Raman scattering has been the ability to focus on the
nature of electron dynamics in different regions of the
Brillouin zone. This distinguishes Raman scattering
from most other transport and thermodynamic measure-
ments, allowing the study of the development of corre-
lations in projected regions of the Brillouin zone. By
simply aligning the polarization orientations of the in-
coming and outgoing photons, charge excitations can be
selectively mapped and analyzed using group-theoretical
symmetry arguments. The search for conventional as
well as exotic excitations in strongly correlated matter
has been greatly enhanced. Raman spectroscopy has
provided new and valuable insights into unconventional
superconductivity and collective modes, excitations in
charge, spin, and/or orbitally ordered systems as well as
the competition between the various ordered phases. In
addition, new insights into electron dynamics of metal-
insulator transitions, quantum phase transitions, and the
concomitant quantum critical behavior could be ob-
tained. The purpose of this article is to review the es-

FIG. 1. �Color� Characteristic Raman-scattering spectrum taken on �Y0.92Ca0.08�Ba2Cu3O6.3. Light scattering contributions from
phonons, magnons, and electrons are plotted in blue, green, and red, respectively. p denotes the number of carriers per copper
oxide plaquette. The inset shows the photon polarization in the CuO2 plane and the realted form factor in the corresponding
Brillouin zone. Courtesy of Matthias Opel.
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sence of these new developments in a snapshot of the
current state of investigation.

The overall agenda of the paper is to provide a vehicle
to sort through the extensive literature, learn about the
outstanding problems, and become aware of the level of
consensus. In order to present a detailed picture of the
current status of electronic light scattering, other types
of excitations, such as phonons and magnons, are mainly
ignored. There have been many reviews on inelastic
light scattering from phonons and magnons. The reader
is referred to earlier reviews by Klein �1982b� for a fun-
damental treatment of scattering from phonons, while
studies of phonons in high-temperature superconductors
are summarized by Thomsen and Cardona �1989�,
Thomsen �1991�, and Sherman et al. �2003�. Recently
Lemmens et al. �2003� and Gozar et al. �2005� reviewed
magnetic light scattering in low-dimensional quantum
spin systems and cuprates. Due to space limitations we
cannot give adequate commentary on these exciting and
developing fields.

The outline of our review is as follows. After a brief
historical summary, the fundamental experimental as-
pects and theoretical developments for electronic Ra-
man scattering are presented in the first part of the ar-
ticle. A general treatise on the theory of electronic
Raman scattering is given in Sec. II with a view toward
the formalism for both weak and strong correlations.
Results from model-specific calculations can be found in
Sec. II.D. Readers who are more interested in summa-
ries of experimental work may want to skim these sec-
tions and skip to Sec. III, where a review of Raman-
scattering measurements in a variety of correlated
materials is given with a view toward common features
manifest from strong correlations. The presentation is
generally organized in systems with increasing complex-
ity of correlations and competing orders.

In this framework, the canon of work on high-
temperature superconductors in the last part of our re-
view is presented in Sec. IV. This detailed part of the
review is organized in conceptual issues of correlations,
superconductivity, normal-state properties, and the pro-
pensity toward charge and spin ordering in various fami-
lies of the cuprates. In all subsections in this part, data
on a variety of cuprate materials are summarized.

The review closes with a general discussion of open
questions for both experimental and theoretical devel-
opments in Raman scattering, and points out new direc-
tions in which our understanding of electronic correla-
tions may be further enhanced.

B. Historical review

Inelastic scattering of light was discovered indepen-
dently in organic liquids by Raman and Krishnan �1928�
and in quartz by Landsberg and Mandelstam �1928� who
properly explained the observed effect: The energy of
the incoming photon is split between the scattered one
and an elementary excitation in the solid. Shortly there-
after in 1930 C. V. Raman was awarded the Nobel prize,
and his name was associated with the effect �Pleijel,

1930; Fabelinski�, 1988; Ginzburg, 1998�. Although the
phenomenological description by Smekal �1923� in terms
of a periodically modulated polarizability qualitatively
captures the relevant physics including the selection
rules, the effect is genuinely quantum mechanical as de-
scribed first and ahead of the experimental discovery by
Kramers and Heisenberg �1925� in the context of the
dispersion in dielectrics.

Soon after the observation of light scattering from vi-
brational excitations, Verkin and Lazarev �1948� and
Kha�kin and Bykov �1956� attempted to use the new
technique for studying electronic excitations. They
picked one of the most ambitious subjects, i.e., light scat-
tering from superconducting gap excitations in conven-
tional metals. It is not at all surprising that they could
not succeed. In a seminal paper Abrikosov and
Fal’kovski� �1961� not only calculated the Raman re-
sponse of a typical elemental superconductor but also
demonstrated that the sensitivity in the early experi-
ments was by approximately 5 or 6 orders of magnitude
too low. In 1980 light was finally scattered successfully
from superconducting electrons in 2H-NbSe2 �Soorya-
kumar and Klein, 1980�. Balseiro and Falicov �1980� and
Littlewood and Varma �1981, 1982� argued that the su-
perconducting excitations in this system become Raman
active mainly via their coupling to a charge-density-wave
�CDW� mode. After the observation of gap excitations
in the A15 compounds Nb3Sn and V3Si �Hackl et al.,
1982, 1983; Klein, 1982a; Dierker et al., 1983� it was clear
that light can be scattered directly by Cooper pairs
�Dierker et al., 1983; Klein and Dierker, 1984�. Tüttő and
Zawadowski �1992� demonstrated that both types of
coupling contribute.

Collective excitations of normal electrons were first
observed in semiconductors �Mooradian and Wright,
1966� following theoretical studies by Pines �1963� and
Platzman and Tzoar �1964�. As a function of doping the
plasmon peak moves across the phonon energies leading
to strong electron-lattice interactions. In heavily doped
silicon, with the plasma energy well beyond the vibra-
tion spectrum, the evolution of the phonon line shape
�Fano, 1961; Cerdeira et al., 1973� clearly demonstrated
the existence of an electron continuum. In 1977, fluctua-
tions of electrons between pockets of the Fermi surface
of silicon were observed by Chandrasekhar et al. �1977�
and explained subsequently by Ipatova et al. �1981�. In
magnetic fields, transitions between Landau levels were
found �Worlock et al., 1981�.1 Strong phonon renormal-
ization effects also occur in metallic alloys with A15
structure �Wipf et al., 1978; Schicktanz et al., 1980�. The
origin of the broad continuum, which interacts with
phonons and is redistributed below the superconducting
transition �Klein and Dierker, 1984�, is certainly elec-
tronic but as of today is still not fully understood.

The full power of the method became apparent after
the discovery of copper-oxygen compounds �Bednorz

1The subject has been reviewed in detail by Abstreiter et al.
�1984�.
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and Müller, 1986� with superconducting transition tem-
peratures above 100 K. It turned out that, in contrast to
infrared spectroscopy, momentum-dependent transport
properties can be measured with Raman spectroscopy,
since different regions of the Brillouin zone can be pro-
jected out independently by appropriately selecting the
polarizations of the incident and scattered photons �De-
vereaux, Einzel, Stadlober, Hackl, et al., 1994�. New the-
oretical ideas were not only applied to the supercon-
ducting but also to the normal state. The spectra extend
over energy ranges as large as electron volts �eV� �Bo-
zovic et al., 1987; Cooper, Klein, et al., 1988; Cooper,
Slakey, et al., 1988; Kirillov et al., 1988� and are similar to
those in the A15’s or in rare-earth elements �Klein et al.,
1991�. Both elastic �Zawadowski and Cardona, 1990�
and inelastic �Kostur and Eliashberg, 1991; Itai, 1992;
Virosztek and Ruvalds, 1992� relaxation of electrons in-
deed produces light scattering over a broad range of en-
ergies. However, it soon became clear that a continuum
extending over an eV cannot originate from elastic scat-
tering, but only from inelastic processes or interband
transitions. It has not been straightforward to pin down
the types of interactions.

At very low energies, spin- �Yoon et al., 2000� and
charge-ordering fluctuations were reported in mangan-
ites and, respectively, in ladder compounds �Blumberg et
al., 2002� and in the cuprates �Venturini, Zhang, et al.,
2002; Tassini et al., 2005�. In clear contrast to typical
order parameter behavior, the characteristic energies of
the related peaks decrease rather than increase upon
cooling �Yoon et al., 2000; Blumberg et al., 2002; Caprara
et al., 2002, 2005; Venturini, Zhang, et al., 2002; Tassini et
al., 2005�. Hence, the functional response evolves oppo-
site to that of an ordered spin or charge density wave
�SDW/CDW� state �Klein, 1982c; Benfatto et al., 2000;
Zeyher and Greco, 2002�.

Along with the early studies of charge excitations,
Fleury and co-workers observed Raman scattering from
spin waves in antiferromagnetically ordered FeF2, MnF2,
and K2NiF4 �Fleury et al., 1966, 1967; Fleury and
Guggenheim, 1970�. Elliot and Loudon �1963� and
Fleury and Loudon �1968� presented a detailed theoret-
ical description which allowed them to semiquantita-
tively understand the spectral shape and cross section.
With the discovery of cuprates by Bednorz and Müller
�1986� this field also experienced a renaissance in par-
ticular for the study at low doping close to the antifer-
romagnetic Néel state �Lyons et al., 1988; Sugai et al.,
1988; Sulewski et al., 1991; Gozar et al., 2004, 2005�. Ra-
man scattering is probably the most precise method for
determining the exchange coupling J though the theoret-
ical understanding is still incomplete. In this context,
spin-Peierls systems �van Loosdrecht et al., 1996� and
ladder compounds �Abrashev et al., 1997� shifted very
much into the focus of interest �Dagotto, 1999�.

Very recently, light scattering from “orbitons,” i.e.,
from a propagating reorientation of orbitals, has been
proposed to explain new modes in the Raman spectra
�Saitoh et al., 2001�. However, there is no agreement yet
on whether or not orbitons can be observed indepen-

dent of phonons or other excitations �Grüninger et al.,
2002; Krüger et al., 2004; Choi et al., 2005�.

C. What can one learn from electronic Raman scattering?

We give now a qualitative introduction into the rela-
tionship between Raman spectroscopy and other experi-
mental techniques. We begin by drawing the distinction
between one-particle and many-particle properties.

Typically, electronic states in solids are characterized
by their energy dispersions as well as the characteristic
lifetime of an electron placed into such a state. This state
is represented by the single-particle propagator or
Green’s function for the electron,

G�k,�� =
1

� − �k − ��k,��
. �1�

Here �k denotes the bare energy-band dispersion calcu-
lated from a solvable model. � represents the electron
self-energy which encompasses all information pertain-
ing to interactions of the single electron in state k to all
other excitations of the system. Usually the self-energy
can only be obtained via approximate methods. Some of
these approximations are quite good, such as electron-
phonon interactions in metals �known as Migdal’s ap-
proach �Migdal, 1958�� for example, while others are
more difficult, such as the Coulomb interaction between
other electrons. The self-energy is a complex function
�=��+ i��, which, in general, depends on temperature,
momentum, and energy. The real part of the self-energy
determines how the energy dispersion �k is renormalized
by interactions while the imaginary part determines the
lifetime of the quasiparticle placed into the state k.

The spectral function is directly related to the analyti-
cally continued electron’s Green’s function for frequen-
cies on the real axis via the replacement i�→�+ i�:

A�k,�� = −
1

�
lim
�→0

G��k,� + i�� , �2�

which is measurable via modern angle-resolved photo-
emission �ARPES� techniques and has provided an im-
mense amount of information on strongly correlated sys-
tems �Campuzano et al., 2002; Damascelli et al., 2003�.
For noninteracting electrons, A�k ,�� is a � function
peaked at the pole of the propagator when the fre-
quency � equals the bare band energy �k. Interactions
broaden the spectral function and give it nontrivial tem-
perature and frequency dependences as well as non-
trivial anisotropies in momentum space if interactions
among electrons are anisotropic. The spectral function
describes real electrons, hence integrals over all energies
must obey sum rules, such as �i� �d�A�k ,��=1 and �ii�
�d�f���A�k ,��=n�k� with the Fermi-Dirac distribution
f��� and the momentum distribution function n�k�.

If the electronic interactions are weak, one usually
uses the nomenclature of Landau and refers to dressed
quasiparticles replacing the electron as the fundamental
excitation in the solid. These interactions may be char-
acterized by the residue of the pole �usually denoted by
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Zk� and the quasiparticle effective mass m* /mb= �Zk�−1,
with mb the bare band mass for quasiparticles lying near
the Fermi surface. Zk is related to the real part of the
self-energy �� which can be expanded for electrons near
the Fermi surface as ���k ,����0��k�+�����k ,�=0� /��.
According to Luttinger’s theorem, the Fermi surface av-
erage of �0��k� is absorbed by the chemical potential 	.
The enhancement of the quasiparticle mass over the
band mass can be written as m* /mb=1−��� /��. One
often defines m* /mb=1+
 with the dimensionless cou-
pling constant 
�0 �see, e.g., Ashcroft and Mermin
�1976��. Zk= �1−��� /���−1 is always smaller than 1, re-
flecting the fact that even for �=0 and T=0 only a frac-
tion Zk of the spectral weight �coherent part� is in the
pole of A�k ,�� while 1−Zk �incoherent part� is distrib-
uted over larger energy scales. Equivalently, Zk�1 is
the discontinuity at kF of the zero-temperature momen-
tum distribution function n�k�. If Zk approaches zero
�1/ ln ��, the system is referred to as a marginal Fermi
liquid �Varma et al., 1989�, and sum rule �i� is exhausted
only at energies much larger than �k. Thus knowledge of
the self-energy is an important requisite to understand-
ing many-body interactions.

For this reason, single-particle methods such as
ARPES, electron tunneling, and specific-heat measure-
ments have been applied extensively to study correlated
electron systems. Very much stimulated by the discovery
of superconductivity in cuprates �Bednorz and Müller,
1986� ARPES and tunneling spectroscopy have devel-
oped more rapidly than any other method in the last
decade. ARPES data have given unprecedented insight
into momentum-resolved single-electron properties and
their many-body effects �Campuzano et al., 2002; Dama-
scelli et al., 2003�, while tunneling measurements have
provided information on pairing �Mandrus et al., 1991;
Renner and Fischer, 1995; Zasadzinski, 2002� and have
recently elucidated many issues of nanoscale inhomoge-
neities in cuprates and their connection to superconduc-
tivity �Hoffman et al., 2002; Howald et al., 2003; Kivelson
et al., 2003; McElroy et al., 2003, 2005; Hanaguri et al.,
2004; Vershinin et al., 2004; Fang et al., 2006�. Detailed
knowledge of phase transitions in cuprates has been ob-
tained from specific-heat studies �Moler et al., 1994; Tal-
lon and Loram, 2001; Roulin et al., 2002�. Due to space
limitations we only list some of the later important ex-
perimental papers which we hope serve as an entry point
for the reader to search backwards in time to follow the
developments.

Yet knowledge of the spectral function and single-
particle excitation spectra do not yield information
about how electrons may transport heat, current, en-
tropy, or energy. For this one needs two-particle corre-
lation functions for charge or spin which can be mea-
sured by, e.g., ordinary and heat transport, optical
spectroscopy, and neutron and light scattering. As an
example for such a correlation function we consider a
standard expression for the generalized Kubo suscepti-
bility �a,b� ��� of weakly interacting, essentially isotropic
normal electrons �see, e.g., Mahan �2000��,

�a,b� ��� =
2

V�
k

akbk�
−�

� d�

�
G��k,��G��k,� +��

� �f��� − f�� +��� . �3�

Here V is the volume, ak ,bk are the bare vertices repre-
senting quasiparticle charge �ak=1� or current �ak= jk
=ek� correlation functions, and the factor 2 accounts for
spin degeneracy. The absorptive part of the conductivity
��=�j,j� ��� /� measures essentially a convolution of oc-
cupied and unoccupied states. For electrons weakly in-
teracting with impurities the conductivity can readily be
calculated to exhibit a Lorentzian dependence on � rep-
resented by

����� = �0
1

1 + ����2 , �4�

where �0 is the dc ��=0� conductivity, and the relax-
ation time �=−��2���−1 controls both the width of the
spectral function and conductivity as a function of
frequency.2 A very similar expression is found for light
scattering �Zawadowski and Cardona, 1990�. Thus in the
case of noninteracting electrons, the single- and two-
particle correlation functions can be simply related to
each other.

This is also true by and large if weak but essentially
isotropic interactions lead to an energy-dependent �����
and, for causality, to a finite �����. Götze and Wölfle
�1972� and, more phenomenologically, Allen and
Mikkelsen �1977� �for a more recent reference see Basov
and Timusk �2005�� discussed how this generalization
modifies the response given by Eq. �4�, which is then
often referred to as the extended Drude model.3 How-
ever, interacting systems require some care. For ex-
ample, in superconductors both the single- and two-
particle responses yield the energy gap. Yet two-particle
correlation functions also have coherence factors which
can be crucially important to determine the gap symme-
try in unconventional systems. Generally, collective
modes �such as the plasmon or excitons� appear directly
in two-particle correlation functions but only indirectly
in the spectral function.

Sometimes results from single- and two-particle mea-
surements can be qualitatively different, even for nonin-
teracting electrons. As an illustration, we consider first
the metal-insulator transition occurring in a system of
otherwise noninteracting electrons in a disordered envi-
ronment �Anderson transition�. Here, backscattering of
electrons from impurities leads to destructive phase in-
terference, and electrons become localized once a criti-

2Note that Eq. �3� does not return the proper transport life-
time �t which differs by a factor of typically 1−cos � with the
scattering angle � since events with �	0 do not contribute to
the resistivity. This deficit must be taken care of by vertex
corrections �Mahan, 2000�.

3The case of Raman scattering has been described in detail by
Opel et al. �2000� and will be touched upon briefly in Sec.
IV.D.1.
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cal concentration of impurities is in place in three di-
mensions. Thus while the conductivity is critical and
vanishes at the metal-insulator transition, the spectral
function, or equivalently the density of states, is uncriti-
cal. This distinction becomes even more pronounced if
the electron interactions are strong and anisotropic, and
the bare vertices along with the Green’s functions enter-
ing into Eq. �3� must be renormalized by the strong in-
teractions.

As a second example, in the spinless Falicov-Kimball
model light d electrons strongly interact with localized f
electrons and are characterized by the Hamiltonian �Fa-
likov and Kimball, 1969�

H = −
t*

2
D
�
�i,j�

�ci
†cj + cj

†ci� + Ef�
i

wi − 	�
i

�ci
†ci + wi�

+ U�
i

ci
†ciwi, �5�

where ci
† �ci� create �destroy� a conduction electron at

site i, wi is a classical variable �representing the localized
electron number at site i� that equals 0 or 1, t* is a renor-
malized hopping matrix element that is nonzero be-
tween nearest neighbors on a hypercubic lattice in D
dimensions, and U is the local screened Coulomb inter-
action between conduction and localized electrons. �i , j�
denotes a sum over sites i and nearest neighbors j. Ef
and 	 are adjusted to set the average filling of conduc-
tion and localized electrons. This model has been solved
exactly for electrons on a hypercubic lattice in the limit
of large coordination number �Freericks and Zlatić,
2003�. The system undergoes a metal-insulator transition
�MIT� at half-filling �one electron per site� if the interac-
tion U is beyond a critical value Uc. On either side of the
metal-insulator transition, the density of states is tem-
perature independent �van Dongen, 1992�, while the
conductivity has a strong temperature dependence
�Pruschke et al., 1995� showing the development of the
MIT.

In systems with strong and anisotropic interactions,
the differences between single- and two-particle proper-
ties are inescapable. This has been borne out in cuprates
by the large amount of work using optical �Homes et al.,
2004� and thermal conductivities �Sutherland et al.,
2005�, resistivities �Ando et al., 2004�, nuclear magnetic
resonance �NMR� �Alloul et al., 1989�, and electron spin
resonance �ESR� �Jánossy et al., 2003�. These experi-
ments have revealed basic properties of strongly corre-
lated systems and have emerged as key elements to char-
acterize the complex behavior of high-Tc cuprates.

Yet these two-particle measurements are largely in-
sensitive of anisotropies, as they measure Brillouin-zone
averaged quantities. As a result they reveal the behavior
of quasiparticles having the highest velocities which, in
cuprates, are quasiparticles near the nodal regions of the
Brillouin zone. As far as carriers are concerned, the mo-
mentum dependence of neutron scattering serves mainly
to measure spin dynamics in different regions of the
Brillouin zone.

In this review, we illustrate that Raman spectroscopy
gives complementary information to all of these mea-
surement techniques, and also may provide detailed in-
formation of charge and spin dynamics of electrons in
different regions of the Brillouin zone. This is due to the
polarization selection rules. As with phonon scattering
�Hayes and Loudon, 2005�, simple group-theoretic sym-
metry arguments can be used to focus on electron dy-
namics in different regions of the Brillouin zone. For
Raman scattering �akbk� is replaced with �k

2 which,
in certain limits, may be represented by �k

=�	,�e	
i e�

s�2�k /�2�k	�k�, with ei,s the incident, scattered
light polarization vectors.4 Apart from energy-
independent scaling factors and vertices with different k
dependences there is an extra factor 1/� between Ra-
man and infrared response. It has been shown first by
Shastry and Shraiman �1990� and explicitly demon-
strated within dynamical mean-field theory �DMFT� by
Freericks and Devereaux �2001� that, under certain re-
strictions, there is a simple correspondence between
conductivity and Raman response,

������  ���� ��� , �6�

highlighting that electronic Raman scattering measures
transport properties. However, even the simple form of
the vertices given above shows that a coincidence can be
expected only for an isotropic material. In anisotropic
systems, light scattering can sample parts of the Fermi
surface which are unaccessible for infrared spectroscopy.

D. State-of-the-art experimental technique

Over decades Raman scattering was predominantly
used for the study of molecular and lattice vibrations
which produce isolated and typically narrow lines in the
spectra �see Fig. 1�. The lines are used as probes which
sensitively react to changes in the environment of vibrat-
ing atoms. Similar considerations are at the heart of
magnetic resonance techniques such as NMR and ESR.

If light is scattered from electrons in solids, the spec-
tra are usually continuous �Fig. 1�. To study their evolu-
tion as a function of a control parameter, such as tem-
perature, doping, magnetic field, or pressure, is rather
involved since the overall shape and not the position of
well-defined lines matters. In addition, typical cross sec-
tions per unit solid angle and energy interval are smaller
by several orders of magnitude than those of vibrations.
Electronic Raman scattering in a metal typically pro-
duces one energy-shifted photon per s, meV, and sr �unit
solid angle steradian� out of 1013 incoming ones. The low
efficiency is particularly demanding in studies at high
pressure since additional losses and complications such
as fluorescence and birefringence arise from the win-
dows, which are typically diamond anvils. Although
there were successful early experiments �Zhou et al.,
1996� the availability of synthetic diamonds brought sub-
stantial advances �Goncharov and Struzhkin, 2003�.

4For a microscopic derivation, see Sec. II.B.
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There are three inventions which finally produced the
required sensitivity: �i� the laser as an intense light
source providing lines of high spectral purity in a wide
energy range; �ii� as an early application of the laser,
holographically fabricated gratings without secondary
images �ghosts� and an extremely low level of diffusely
scattered light; and, finally, �iii� the invention of charge-
coupled devices �CCDs� as a location-sensitive detector
with an efficiency at the quantum limit and negligible
dark count rate.

Gratings have an extremely well-defined number of
lines per unit length �cm in the cgs system�. This is the
origin of the energy unit cm−1. The following conver-
sions are frequently used:

1 meV = 11.604 K,

1 meV = 8.0655 cm−1,

kB = 0.695 04 cm−1/K.

Since the CCD has a high spatial resolution down to a
few 	m it is a superior replacement of the photographic
plate. It facilitates recording complete spectra in a single
exposure with energy ranges from meV up to approxi-
mately 1 eV, depending on the desired resolution.

The essentials of a setup for inelastic light scattering
with polarized photons are shown schematically in Fig.
2. The coherent light at energy ��i from the laser �Ar+

and Kr+ gas lasers are still very popular� is spatially fil-
tered. A prism monochromator �PMC� selects the de-
sired frequency and suppresses incoherent photons from
the laser medium. A combination of a 
 /2 retarder and
a polarizer �P1� facilitates the preparation of a photon
flux of a well-defined polarization state and intensity.
For excitation, the polarization inside the sample counts.
The same holds for the selection of the proper polariza-
tion for scattered photons at ��s. The best results are
obtained by using a crystal polarizer �P1, e.g., of Glan-
Thompson type� and a Soleil-Babinet compensator for
the incoming light and an achromatic 
 /4 retarder and
another crystal polarizer �P2� for the scattered light. In
this way all states, including circularly polarized ones,
can be prepared. The 
 /2 retarder in front of the en-
trance slit of the spectrometer rotates the polarization
into the direction of highest sensitivity.

Since we wish to discriminate between 1010–15 elasti-
cally scattered photons at ��i and the few Raman pho-
tons at ��s at very small shifts ��= ��i−��s�1 meV,
a single monochromator is insufficient. A modern instru-
ment for Raman scattering in metallic samples has three
stages consisting of essentially independent grating
monochromators. The first two are usually subtractively
coupled and select a band from the spectrum of inelas-
tically scattered photons. The third stage disperses the
band transmitted through the two stages of the pre-
monochromator into a spectrum which is recorded by
the CCD. In this configuration, the dispersion is given
only by the third stage while the first two discriminate
the elastically scattered laser light. If all stages are

coupled additively, the resolution is improved by a factor
of 3. Because of losses at the mirrors and gratings, only
15–20 % of the photons entering the spectrometer arrive
at the detector.

Since very interesting physics is present at energies
even below 1 meV �see, e.g., Sec. IV.D.3� the discrimi-
nation is a cardinal point. Out of the two options only
the premonochromator gives satisfactory results below
10 meV. The price one has to pay is a loss of intensity of
approximately 60%. Alternatively, for energy shifts
above 10 meV an interferometric notch filter can be
used. The latter device is widely used for commercial
applications which develop rapidly since the introduc-
tion of the CCD. The main fields are quality control and
analytics.

At finite temperatures T�0 inelastically scattered
light is found on either side of ��i. As a consequence of
time-reversal symmetry and for phase-space arguments
the energy gain �anti-Stokes� and loss �Stokes� spectra
are related by the principle of detailed balance �equiva-
lent to the fluctuation-dissipation theorem� �Placzek,
1934; Landau and Lifshitz, 1960�

FIG. 2. �Color� Schematic drawing of the light path. The laser
light with energy ��i is first spatially filtered. A prism mono-
chromator �PMC� is used to suppress the plasma lines of the
laser medium, only the coherent one at ��i passes the slit. The
polarization is prepared with polarizer P1 and the Soleil-
Babinet compensator �SB�. The 
 /2 retarder in front of P1
allows one to adjust the power. Before hitting the sample the
light is once again spatially filtered to maintain an approxi-
mately Gaussian intensity profile in the spot. If the angle of
incidence is not close to zero, phase shift effects at the sample
surface must be taken into account since the polarization in-
side the sample is important. High speed optics collects the
scattered light. The polarization state is selected by a 
 /4 re-
tarder and polarizer P2. The 
 /2 retarder in front of the en-
trance slit rotates the light polarization for maximal transmis-
sion of the spectrometer �here single stage�. Except for the
compensator most retarders and polarizers work also for light
propagating at small angles �up to approximately ±5°� with
respect to the optical axis. The configuration shown here is
usually referred to as backscattering geometry since incoming
and outgoing photons have essentially opposite momenta in
the sample.
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ṄAS

ṄST

= ��i +�

�i −�
�2

exp�−
��

kBT
� , �7�

with ṄST�AS� and �� the rate of photons per unit time
collected on the Stokes �anti-Stokes� side and the energy
transferred to the system, respectively. Equation �7� can
be used to determine the temperature of the laser spot.

If spectra are measured in large energy ranges, the
sensitivity of the instrument has to be taken into ac-
count. To this end, the spectral response of the whole
system, including all optical elements between the
sample and entrance slit of the spectrometer, the spec-
trometer itself, and the detector, must be calibrated.
This is best done by replacing the sample with a continu-
ous light source of the same size as the laser spot with a
known spectral emissivity. A continuous source is of cru-
cial importance for including the energy dependence of
the dispersion in addition to the bare transmission. In
addition, the frequency dependence of the sample’s in-
dex of refraction 
�=n+ ik requires attention in order to
get the internal cross section.

The main limitations of present commercial systems
come from geometrical aberrations of the spectrometer
optics and from the relatively low total reflectivity of the
large number of mirrors. It is a matter of resources to
improve these caveats. Recently, an improved type of
triple spectrometer with aspherical optics has been de-
scribed by Schulz et al. �2005�. CCDs and gratings are
close to the theoretical limits.

For many studies, light sources with continuously ad-
justable lines in an extended energy range would be de-
sirable. This holds particularly true for organic materials
�e.g., carbon nanotubes or proteins� which have rela-
tively sharp resonances in the visible and ultraviolet.
The synchrotron, free-electron lasers, as well as dye and
solid-state lasers, are developing rapidly and will gain
influence on the field of Raman spectroscopy in the near
future. The same holds for near-field techniques �Hart-
schuh et al., 2003� which are capable of improving spatial
resolution by at least an order of magnitude below the
diffraction limit.

II. THEORY OF ELECTRONIC RAMAN SCATTERING

A. Electronic coupling to light

The aim of this section is to formulate the theoretical
treatments for inelastic light scattering in general. Much
has been done in the development of theories for Ra-
man scattering, particularly in semiconductors and su-
perconductors. Early reviews of electronic Raman scat-
tering have been given by Klein �1983� and Abstreiter et
al. �1984� focusing on semiconductors. More recent re-
views by Devereaux and Kampf �1997� and Sherman et
al. �2003� have focused on theory in superconductors
with applications towards cuprates. We outline the gen-
eral formalism for treating systems with weak and strong
correlations and return to a discussion of various theo-

retical models in connection with materials in the fol-
lowing section.

1. General approach

We first consider a Hamiltonian for N electrons
coupled to the electromagnetic fields �Pines and
Nozières, 1966; Blum, 1970�:

H = �
i

N
�p̂i + �e/c�Â�ri��2

2m
+ HCoulomb + Hfields, �8�

where p̂=−i�� is the momentum operator, e is the mag-
nitude of the elementary charge �the electronic charge is

qe=−e�, and c is the speed of light. Â�ri� is the vector
potential of the field at space-time point ri and m is the
electron mass. HCoulomb represents the Coulomb interac-
tion and Hfields is the free electromagnetic part. We use

the symbol Â to denote operators. We expand the ki-
netic energy to obtain

H = H� +
e

2mc�
i

�p̂i · Â�ri� + Â�ri� · p̂i�

+
e2

2mc2�
i

Â�ri� · Â�ri� , �9�

with H�=H0+Hfields and H0= �1/2m��ip̂i
2+HCoulomb.

Generally we choose �� to denote eigenstates of H0
with eigenvalues E�: H0��=E���. The eigenstate is la-
beled by all the relevant quantum numbers for the state,
such as combinations of band index, wave vector, or-
bital, and/or spin quantum numbers, for example. The
eigenstates may be considered to be Bloch electrons
when the electron-ion interaction is included in H0, as
plane-wave states if it is neglected, or may represent
Hubbard states if HCoulomb is taken to include short-
range Hubbard-like interactions between electrons.

The electromagnetic vector potential can be expanded

into Fourier modes Â�ri�=�qeiq·riÂq. In second quan-
tized notation, the electromagnetic field operator takes
the form �Mahan, 2000�

Âq =
 hc2

�qV
�êqa−q + êq

*aq
†� , �10�

with V the volume. aq
†, aq are the creation and annihila-

tion operators of transversal photons with energy ��q
=�cq having a polarization direction denoted by the
complex unit vector êq.

Electronic Raman scattering measures the total cross
section for scattering from all electrons illuminated by
the incident light. The differential cross section is deter-
mined by the probability that an incident photon of fre-
quency �i is scattered into a solid-angle interval between
� and �+d� and a frequency window between �s and
�s+d�s. A general expression for the differential light
scattering cross section is given via the transition rate R
of scattering an incident �qi ,�i , êq

�i�� photon into a outgo-
ing state �qs ,�s , êq

�s��,
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�2�

����s
= �r0

2�s

�i
R . �11�

Here r0=e2 /mc2 is the Thompson radius, and R is deter-
mined via Fermi’s golden rule,

R =
1
Z�

I,F
e−�EIMF,I2��EF − EI − ��� , �12�

with �=1/kBT, Z is the partition function, and MF,I
= �FMI� where M is the effective light-scattering opera-
tor. The sum represents a thermodynamic average over
possible initial and over final states with k vectors in the
solid angle element d� of the many-electron system
having energies EI, EF, respectively. Here �=�i−�s is
the transferred frequency and we denote q=qi−qs the
net momentum transfered by the photon. Multiplying
Eq. �11� by the incident photon flux gives the number of
scattered photons per second into the solid angle incre-
ment d� within the frequency range d�s, while multiply-
ing Eq. �11� by �s /�i gives the power scattering cross
section �Klein, 1983�.5

From here on we consider the case relevant to Raman
scattering in the visible range with photon energies of
typically 2 eV. Since the momentum transferred to elec-
trons q�1/�, with � the skin depth at the light energies
�Abrikosov and Fal’kovski�, 1961�, is much less than the
relevant momentum scale of order kF, the Fermi mo-
mentum in metallic systems, the limit q→0 is a good
approximation in practically all cases.6 However, finite q
should be considered if incident light from frequency-
doubled or synchrotron radiation is used where transi-
tions between initial and final states at finite q can be
probed. Then the structure of the Landau particle-hole
continuum in weakly correlated systems or transitions
across a finite-q Mott gap in strongly correlated insula-
tors can be studied.7

MF,I has contributions from either of the last three
terms in Eq. �9�: the first two terms couple the electron’s
current to a single photon and the third term couples the
electron’s charge to two photons. This is shown in the
schematic cartoon in Figs. 3 and 4. Here we consider two
bands—one partially filled and the other completely
filled—in which the incident photon excites an electron
from either the partially or completely filled band,

shown in Figs. 3 and 4, respectively. In the nonresonant
intraband case, the photon gives up part of its energy to
leave behind a particle-hole pair, while in the interband
case, an intermediate state is involved, which decays via
a particle from the partially filled band into the hole left
behind in the filled band. The latter scattering may be
resonant if the incident or emitted photon energy corre-
sponds to that of the energy gap separation, otherwise it
is nonresonant. In this simple cartoon, one can see that
excitations lying near the Fermi surface are predomi-
nantly probed by nonresonant intraband scattering
while excitations involving transition between different
bands—such as the lower and upper Hubbard bands, for
example—are probed by intermediate state scattering.
The Feynman diagrams representing these contributions
to MF,I are shown in Fig. 5.

Referring to Eq. �9�, the current coupling has odd spa-
tial symmetry and involves single-photon emission or
absorption, while the second term is even in parity and
involves two-photon scattering of emission followed by
absorption and vice versa. The cross section or transition
rate is thus determined via Fermi’s golden rule by the
square of the matrix elements shown in Fig. 5.

The resulting Feynman diagrams of the contributions
to the cross section are shown in Fig. 6. However, not all
of them give rise to inelastic light scattering. Some of
these terms vanish either because they represent contri-
butions to the renormalized photon propagator �Fig.

5We note that Eqs. �11� and �12� describe scattering inside the
material. Trivial �Fresnel-formulas� and nontrivial �qz integra-
tion� �Abrikosov and Fal’kovski�, 1961; Fal’kovski�, 1990, 1991�
transformations, which we do not discuss here, are required to
fully describe the cross section outside. The qz integration
originates from the lack of momentum conservation perpen-
dicular to the surface of an absorbing medium and can change
the spectra qualitatively. From here on, �� is always the en-
ergy transferred to the system.

6The applicability of the q=0 limit is discussed in more detail
in Sec. II.D.6 and at the beginning of Sec. III.

7For a review of relevant work in this regard, the reader is
referred to Platzman and Isaacs �1998�; Kotani and Shin
�2001�; Devereaux et al. �2003a, 2003b�.

FIG. 3. �Color online� Cartoon showing light scattering via
nonresonant intraband scattering.

FIG. 4. �Color online� Cartoon showing light scattering via
interband transitions.
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6�a�� or due to parity arguments �Figs. 6�b�–6�d�� in the
limit of small-q scattering. The remaining terms can be
classified as nonresonant �Fig. 6�e��, resonant �Figs.
6�h�–6�j��, and mixed terms �Figs. 6�f� and 6�g��, since in
the former case the initial and final states must share a
large subset of quantum numbers, while the other terms
can involve transitions through intermediate states well
separated in energy and distinct from the initial and final
states. However, we remark that the response is only
truly resonant if the photon energies are tuned to the
energy gap between intermediate and initial or final
states.

To obtain a general expression for the matrix element
MF,I for Raman scattering, we use second quantized no-
tation for the fermions in which the single-particle wave
function and its conjugate are given by ��r�=��c����r�
and �†�r�=��c�

†��
*�r�, with �, �* the eigenstates of the

Hamiltonian H0. Electron states �, � are created or an-
nihilated by c�

† , c�, respectively, and the indices refer to
the quantum number associated with the state, such as
the momenta and/or spin states. The matrix element
MF,I can thus be written as

MF,I = ei · es�
�,�
��,��q��Fc�

†c�I�

+
1

m�
�

�
�,��,�,��

p�,���qs�p�,���qi�

� � �Fc�
†c������c�

†c��I�

EI − E� + ��i

+
�Fc�

†c������c�
†c��I�

EI − E� − ��s
� . �13�

Here I�, F�, �� represent the initial, final, and interme-
diate many-electron states having energies EI,F,�, respec-
tively. The many-electron states could be labeled by
band index and momentum as, for example, for Bloch
electrons. They may also consist of core and valence
electrons on selected atoms for x-ray scattering, or may
represent states of the many-band Hubbard model
for correlated electrons. ��,��q�=�d3r��

*�r�eiq·r���r�
= ��eiq·r�� is the matrix element for single-particle den-
sity fluctuations involving states � ,�. The momentum
density matrix element is given by p�,��qi,s�
= ��p ·ei,se

±iqi,s·r��. The first term in the expression
arises from the two-photon scattering term in Eq. �9� in
first-order perturbation theory. The remaining terms
arise from the single-photon scattering term in Eq. �9� in
second order via intermediate states � and involve dif-
ferent time orderings of photon absorption and emis-
sion. The p ·A coupling does not enter to first order
since the average of the momentum operator is zero.

2. Importance of light polarization

At this point, little progress can be made in evaluating
the matrix elements for Raman scattering without speci-
fying the quantum numbers of the electronic many-body
states. Yet, from Eq. �13�, one can apply symmetry argu-

FIG. 5. Feynman diagrams contributing to the effective light-
scattering operator M. �a� represents single-photon absorption,
�b� two-photon scattering, while photon emission �absorption�
followed by absorption �emission� is shown in �c� and �d�. The
panels on the right are the time-reversed partners of the left
diagrams.

FIG. 6. Feynman diagrams contained in the cross section. �a�
A renormalized photon propagator in the solid, while �b�–�d�
vanish due to parity and thus �a�–�d� do not contribute to in-
elastic light scattering. Of the remaining contributions, �e� re-
fers to intraband �sometimes nonresonant� scattering within a
single band, �f� and �g� are referred to as mixed contributions
while �h�–�j� describe transitions within a single or between
different bands via intermediate band states. If the light energy
is equal or close to the energy difference of the states involved,
resonance effects with a strong enhancement of the cross sec-
tion occur. Therefore the contributions themselves are some-
times referred to as resonant.
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ments to view what types of excitations can be created
by incident photons. In this subsection, we employ a
general set of symmetry classifications and put specific
emphasis on models in later subsections.

The first term in Eq. �13� only arises if the incident
and scattering polarization light vectors are not orthogo-
nal, as electronic charge density fluctuations are created
and destroyed along the polarization directions of the
incident and scattered photons. Thus, for instance, this
term does not probe electron dynamics in which the
charge density relaxes in a direction orthogonal to the
incident polarization direction.

In the limit of small momentum transfer q→0, the
matrix element simplifies to ��,��q→0�=��,� and thus
this term gives rise to scattering from fluctuations of the
isotropic electronic number density.

The remaining terms in Eq. �13� have contributions
regardless of photon polarization directions. However,
one can further classify scattering contributions by sepa-
rating the sum over intermediate states �� into states
which share some quantum numbers with the initial
many-body state, such as band index, and states which
do not. Since the photon momenta are much smaller
than the relevant electron momenta, contributions of
the terms where the intermediate states include the
same band index as the initial states are roughly a factor
of vF /c smaller than the first term in Eq. �13� and can be
neglected �Pines and Nozières, 1966; Wolff, 1966�. How-
ever, contributions where �� includes higher bands can-
not in general be neglected, particularly if the energy of
the incident or scattering light lies near the energy of a
transition from the initial state EI to an intermediate
state E�. These terms thus give rise to mixed and reso-
nant Raman scattering.

The polarization dependence of Raman scattering can
be generally classified using arguments of group theory.
In essence, the charge-density fluctuations brought
about by light scattering are modulated in directions de-
termined by the polarizations of the incident and scat-
tered photons. These density fluctuations thus have the
symmetry imposed on them by the way in which the
light is oriented, and the charge-density fluctuations
obey the symmetry rules governing the scattering geom-
etry. This is manifest in the dependence of the Raman
matrix elements on the initial and final fermion states. In
general, the Raman matrix element MF,I=MI,F

�,�ei
�es
� can

be decomposed into basis functions of the irreducible
point group of the crystal  	 �Klein and Dierker, 1984;
Monien and Zawadowski, 1990; Shastry and Shraiman,
1991a, 1991b; Devereaux, 1992; Hayes and Loudon,
2005�

MF,I�q → 0� = �
	

M	 	, �14�

with 	 representing an irreducible representation of the
point group of the crystal. Which set of 	 contributes to
the sum is determined by the orientation of incident and
scattered polarization directions. As an example, if we
consider the D4h group of the tetragonal lattice, as in the
cuprates, the decomposition can be written as

MF,I = 1
2OA1g

�1��ei
xes

x + ei
yes

y� + 1
2OA1g

�2��ei
zes

z�

+ 1
2OB1g

�ei
xes

x − ei
yes

y� + 1
2OB2g

�ei
xes

y + ei
yes

x�

+ 1
2OA2g

�ei
xes

y − ei
yes

x� + 1
2OEg

�1��ei
xes

z + ei
zes

x�

+ 1
2OEg

�2��ei
yes

z + ei
zes

y� , �15�

with O	 the corresponding projected operators and ei,s
�

the light polarizations. This classification demonstrates
that there is no mixing of representations for q=0, i.e.,
the correlation functions read R��O	

† O	��=R	�	,	� and
there are six independent correlation functions, each se-
lected by combinations of polarization orientations.

Following Shastry and Shraiman �1990�, we list in
Table I some common experimentally used polarization
geometries in relation to the elements of the transition
rate R selected. One observes that a complete character-
ization of M can be made from a subset of the polariza-
tion orientations listed in the table. However, additional
polarization orientations can be useful to calibrate data
and compare symmetry decompositions from different
combinations of orientations. For geometries with polar-
izations in the a-b plane in D4h crystals, the irreducible
representations cannot be accessed individually and
must be separated by proper subtraction procedures. As
a minimum set, four independent configurations are re-
quired, while additional polarizations may be used for
consistency checks.

In addition, we have listed in Table I the representa-
tive basis functions  	�k� taken from the complete set of
Brillouin-zone �BZ� harmonics for D4h space group
�Allen, 1976�. This directly points out the connection be-
tween polarizations and the coupling of light to elec-
trons. By virtue of the k dependence of the light scatter-
ing transition rate, excitations on certain regions of the
BZ can be correspondingly projected out by orienting
the incident and scattered light polarization vectors.
Thus Raman is one of the few spectroscopic multipar-
ticle probes �the other being inelastic x-ray scattering�
able to examine charge excitations in different regions
of the BZ.

For example, as demonstrated in Fig. 7, for crossed
polarizations transforming as B1g light couples to charge
excitations along the BZ axes �kx or ky=0�, while for B2g
excitations along the BZ diagonals �kx= ±ky� are pro-
jected accordingly. Operators like OA2g

cannot be ac-
cessed independently by linear polarizations alone. Only
sums including circular polarizations allow the isolation
of A2g components. Light scattering in this orientation
can be coupled to chiral excitations. These important
symmetry classifications have been extremely useful to
point out anisotropic electron dynamics in correlated in-
sulators �Shastry and Shraiman, 1990; Devereaux et al.,
2003a, 2003b�, superconductors �Devereaux, Einzel,
Stadlober, Hackl, et al., 1994�, and disordered �Zawa-
dowski and Cardona, 1990; Devereaux, 1992� and corre-
lated metals �Freericks and Devereaux, 2001; Freericks
et al., 2001; Einzel and Manske, 2004�. More recently
they have been related to sum rules referring to BZ-
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projected potential energies in correlated systems �Fre-
ericks et al., 2005�. In the remaining part of this review,
such symmetry classifications will be featured promi-
nently.

B. Formalism: Single-particle excitations and weak
correlations

We now consider specific cases where simplifications
can be made to Eq. �13�. First we assume that the inter-
mediate many-particle states only differ from the initial
and final states by single-electron excitations. This is ex-
act in the limit of noninteracting electrons, yet ignores
the effects of many-body correlations, and specifically

the role of Coulomb interactions on the reorganization
of the initial state into intermediate states by creating
many-particle excitations. We now focus on weakly in-
teracting systems, where single-particle excitations are
relatively well defined, and discuss strongly correlated
systems in later sections.

1. Particle-hole excitations

Equation �13� can be simplified by replacing E� in the
denominators by EI−E��+E� and EI−E��+E� in the
first and second terms, respectively, and using the clo-
sure relation ������=1. Commutator algebra eliminates
the four-fermion matrix element and

MF,I = �
�,�
��,��Fc�

†c�I� , �16�

where

��,� = ��,��q�êi · ês +
1

m�
��

� p�,��
s p��,�

i

E� − E�� + ��i

+
p�,��

i p��,�
s

E� − E�� − ��s
� . �17�

Specifying to states � ,� indexed by momentum quan-
tum numbers �such as Bloch electrons�, from Eq. �11�
the Raman response simplifies to a correlation function

S̃ of an effective charge density �̃,

TABLE I. Elements of the transition rate R for experimentally useful configurations of polarization
orientations �given in Porto notation� along with the symmetry projections for the D4h point group
relevant for the cuprates. Here we use notations in which x and y point in directions along the Cu-O
bonds in tetragonal cuprates, while x� and y� are directions rotated by 45°. L and R denote left and
right circularly polarized light, respectively. In our convention left circular light has positive helicity.
�In a right-handed system the polarization rotates from x to y while the wave front travels into
positive z direction by 
 /4.� Note that in backscattering configuration �see Fig. 2� with êi,s pinned to
the coordinate system of the crystal axes the representation for incoming and outgoing photons with
circular polarizations change sign in order to maintain the proper helicity.

Geometry êi ês R Basis functions  	�k�

xx, yy x̂ , ŷ x̂ , ŷ RA1g
+RB1g

1
2

�cos�kxa�+cos�kya��±
1
2

�cos�kxa�−cos�kya��

x�x�
1

2

�x̂+ ŷ�
1

2

�x̂+ ŷ� RA1g
+RB2g

1
2

�cos�kxa�+cos�kya��+sin�kxa�sin�kya�

x�y�
1

2

�x̂+ ŷ�
1

2

�x̂− ŷ� RB1g
+RA2g

1
2

�cos�kxa�−cos�kya���1+sin�kxa�sin�kya��

xy x̂ ŷ RB2g
+RA2g

sin�kxa�sin�kya��1+
1
2

�cos�kxa�−cos�kya���
LR

1

2

�x̂+ iŷ�
1

2

�x̂+ iŷ� RB1g
+RB2g

1
2

�cos�kxa�+cos�kya��+sin�kxa�sin�kya�

LL
1

2

�x̂+ iŷ�
1

2

�x̂− iŷ� RA1g
+RA2g

1
2

�cos�kxa�+cos�kya�+ �cos�kxa�

−cos�kya��sin�kxa�sin�kya��

xz x̂ ẑ RE1g
sin�kxa�sin�kzc�

yz ŷ ẑ RE1g
sin�kya�sin�kzc�

zz ẑ ẑ RA
1g
�2� cos�kzc�

FIG. 7. �Color� Schematic weighting of the light-scattering
transition for polarization orientations transforming as B1g and
B2g for a D4h crystal. High-symmetry points are indicated.
Here a typical Fermi surface for optimally doped cuprates is
represented by the solid line, and the orientations of the inci-
dent and scattered polarization light vectors are shown with
respect to copper-oxygen bond directions.
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�2�

����s
= �r0

2�s

�i
S̃�q,i�→� + i0� . �18�

Here the Raman effective density-density correlation
function is

S̃�q,i�� = �
I

e−�EI

Z � d�ei���IT��̃�q,���̃�− q,0�I� ,

�19�

T� is the complex time � ordering operator, and

�̃�q� = �
k,�
��k,q�ck+q,�

† ck,�. �20�

The scattering amplitude � is determined from the Ra-
man matrix elements and incident or scattered light po-
larization vectors as

��k,q� = �
�,�
��,��k,q�ei

�es
�, �21�

with

��,��k,q� = ��,� +
1

m�
k�
� �k + qps

�k���k�pi
�k�

Ek − Ek�
+ ��i

+
�k + qpi

�k���k�ps
�k�

Ek+q − Ek�
− ��s

� . �22�

Here pi,s
� =p�e±iqi,s·r. The dynamical effective density-

density correlation function or Raman response S̃ can be
written in terms of a dynamical effective density suscep-
tibility �̃ via the fluctuation-dissipation theorem,

S̃�q,�� = −
1

�
�1 + n��,T���̃��q,�� ,

with n�� ,T� the Bose-Einstein distribution and

�̃�q,�� = ����̃�q�, �̃�− q�����, �23�

where �� �� denotes a thermodynamic average as in Eq.
�19�. Thus for noninteracting electrons the Raman re-
sponse is given as a two-particle effective density corre-
lation function and can be calculated easily using, e.g.,
diagrammatic techniques or via the kinetic equation
�Devereaux and Einzel, 1995�, from which Eq. �7�
emerges. This reduces to evaluating the bubble diagram
depicted in Fig. 6 with vertices � depending upon the
incident and scattered photon frequencies.8

The vertex � depends on polarization, but does not
depend sensitively on q for q!kF. This can be made
more obvious if we consider the sum over intermediate
states k� in Eq. �22�. The sum over intermediate states
includes both the band index of the states created from
the initial state �i.e., the conduction band� as well as in-
termediate states separated from the conduction band.
The matrix elements of the former are proportional to
the momentum transferred by the photon, which in the
limit q!kF are smaller by a factor of �vF /c�2 than the
other terms, with vF�c� the Fermi �light� velocity, and can
be neglected �Pines and Nozières, 1966�. For the remain-
ing sum over the intermediate states separated from the
conduction band, we assume that ��i,s! Ek�

−Ek and
recover the widely used effective-mass approximation9

��,��k,q → 0� =
1

�2

�2Ek

�k�k�
. �24�

The symmetry classifications listed in Table I thus can
connect excitations created by certain polarization ori-
entations to properties of the band structure. Yet it must
be kept in mind that this connection can only be made in
the limit of small ��i,s.

2. Im„1/�… and sum rules

We consider first the case when the incident polariza-
tion is parallel to the scattered polarization and the band
Ek is isotropic and parabolic, as for the electron gas or
lightly filled isotropic band metal. The scattering ampli-
tude � is then independent of k and the effective density
�̃�q� is simply proportional to the pure charge density �.
Using the definition of the complex dielectric function
�Pines and Nozières, 1966; Mahan, 2000�

��q,�� = 1 − vq�irr�q,�� �25�

is obtained with vq the bare Coulomb interaction, and
�sc is the screened or irreducible polarizability. It is de-
termined from the full polarizability � via

�irr�q,�� =
��q,��

1 + vq��q,��
, �26�

but is most easily identified diagrammatically as all con-
tributions to the polarizability which are irreducible with
respect to the interaction. The dynamical density-density
correlation function �or structure factor� follows as

S�q,�� = −
1

�vq
�1 + n��,T��Im� 1

��q,��� . �27�

From Eqs. �20�, �24�, and �27�, the Raman response S̃ is
proportional to S with a constant of proportionality de-
termined by the ratio of effective to free-electron mass.

Inelastic light scattering occurs via the creation of
charge fluctuations inside the unit cell which are coupled
via the Coulomb interaction to charge fluctuations in

8We remark that technically these expressions must be modi-
fied if a resonant condition is satisfied. In that case one needs
to expand to higher terms in the vector potential to capture
resonance effects as perturbation theory breaks down. Yet for
low-energy Raman scattering, in most cases this is not crucially
important since in real materials the intermediate states
reached via a direct resonance are quite broadened by interac-
tions and the resonant terms are not orders of magnitude
larger than nonresonant terms. Thus this treatment may be of
more general utility.

9This is derived in Appendix E of Ashcroft and Mermin
�1976�.
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other unit cells. These intercell excitations are therefore
well screened by the Coulomb interaction and reduce
the scattering cross section at small q. In particular, for
small q, ��q ,���NFvF

2q2 /�2, and the response is gov-
erned by the plasma frequency. The Raman response
thus obeys the longitudinal sum rule resulting from
particle-number conservation �Pines and Nozières,
1966�,

�
0

�

d�� Im� 1

��q,��� =
�

2
�pl

2 =
2�2Ne2

m
, �28�

where �pl is the plasma frequency and N is the number
of electrons of mass m and charge −e in the system. Thus
the only contribution for q→0 comes from exciting the
plasmon being the only charge excitation available for
light scattering at small q in a free-electron gas.

3. Intracell vs intercell charge fluctuations

In the more general case of light scattering in solids,
the Raman response may have other contributions com-
ing from intracell charge fluctuations provided the band
structure is nonparabolic, as pointed out by Platzman
�1965� and Wolff �1968�. Then light can create aniso-
tropic charge fluctuations which are zero on average in-
side the unit cell and thus are not screened via the long-
range Coulomb interaction, as pointed out by Abrikosov
and Genkin �1973�. The general expression for the
screened Raman response function ��,�

sc can be written as
�Monien and Zawadowski, 1990; Devereaux and Einzel,
1995�

��,�
sc = ��,� −

��,1�1,�

�1,1
+
��,1�1,�

�1,1
2 �sc, �29�

where �sc=�1,1�1−vq�1,1�−1. This is an exact expression,
where the subscript � denotes the effective Raman den-
sity and 1 denotes the pure charge density, obtained
when the momentum-dependent vertex � is replaced by
a constant. The respective �’s describe the density-
density, density–Raman density, and Raman density–
Raman density susceptibilities which are again each ir-
reducible with respect to the interaction.

The first term in Eq. �29� is the bare response for a
neutral system, and the other terms represent the back-
flow needed to enforce particle number conservation of
charge density fluctuations and gauge invariance. These
terms are important for light-scattering configurations
which transform according to the symmetry of the lat-
tice, such as A1g in D4h crystals. In particular, if we con-
sider scattering from pure charge-density fluctuations
where � is a constant independent of momentum, which
is an A1g representation, the first two terms in Eq. �29�
cancel and �sc and Eq. �27� are recovered. This is ines-
capable for q=0, since then the scattering operator is
given in terms of the total density of electrons, which
commutes with the bare Hamiltonian and therefore can-
not give inelastic-scattering channels to light. On the
other hand, if we consider the scattering vertex � to de-

pend on wave vector, the backflow terms are not capable
of completely canceling the bare Raman response.

Momentum dependence of the vertex � is quite gen-
eral for electrons in solids. In particular, for crossed light
polarizations projecting out representations of lower
symmetry than that of the lattice ��,1 is identically zero
by symmetry for q=0 and the backflow terms make no
correction to the Raman cross section. This occurs for
B1g, B2g, and Eg scattering geometries in D4h systems
such as cuprates, for example. While there is no conser-
vation law for light scattering from the excitations cre-
ated by crossed polarizations �Kosztin and Zawadowski,
1991� there are sum rules which relate the Raman inten-
sity to model-dependent potential energies projected in
different regions of the BZ �Freericks et al., 2005�.

C. Formalism: Strong correlations

1. General approach to treating correlations

Section II.B outlined a general approach to inelastic
light scattering when the intermediate states differ from
the initial and final states only by individual single-
electron energies. This holds in the limit of weakly inter-
acting electrons. In this section we show that the formal-
ism is also valid in the Heisenberg limit of the Hubbard
model including the manifold of zero and single doubly
occupied sites. These are two limits in which either the
kinetic energy or the potential energy of electrons is
dominant. However, the more general case of interest to
most systems is tackling the problem when both kinetic
and potential energies are roughly equal. The interac-
tions are sufficient to give broad spectral functions as
measured by ARPES, where the incoherent part of the
spectral function is manifest from the strong many-body
interactions mixing individual electron states.

In this situation, one must resort back to Eq. �13� and
correlation functions involving two, three, and four par-
ticles are needed, as depicted in Fig. 6. Yet usually one is
not interested in treating many-body correlations over
various bands and puts focus on a few bands close to the
Fermi level having strong correlations. For example, in
cuprates one usually takes downfolded Hamiltonians in-
volving only Cu 3dx2−y2 and O 2px,y orbitals, with short-
range Coulomb interactions for two electrons in on-site
or neighboring orbital states. The downfolding proce-
dure, such as that described by Löwdin �1951� and
Andersen et al. �1995�, removes all other bands �effec-
tively moving them infinitely far away in energy from
the focus bands�, such as the apical oxygen, Cu 4s, and
other Cu d orbitals, and treats electrons in the bands of
interest as having renormalized energy dispersion. In cu-
prates the downfolding results in either a few bands
from local density approximation �LDA� approaches in
one case or cell perturbation theory in the strongly in-
teracting case. Thus we consider a downfolded tight-
binding Hamiltonian
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H0 = �
�i,j�,�

ti,jci,�
† cj,� + Hint, �30�

where ti,j are the effective hopping integrals resulting
from the downfolding procedure, and Hint describes the
relevant interactions. For example, we consider a square
lattice of electrons with strong on-site repulsion U much
greater than the electron hopping t in the Hubbard
model,

H = − t �
�i,j�,�

ci,�
† cj,� + U�

i
ni,↑ni,↓, �31�

where �i , j� denotes a sum over nearest neighbors.
The electronic eigenstates fall into two bands for large

U at 1/2 filling—e.g., the occupied lower and unoccu-
pied upper Hubbard bands—separated by an energy U
for double occupancies. Away from half-filling, quasipar-
ticles develop. The microscopic Hamiltonians can be
viewed as families of models related to the Hubbard
model, such as the Falicov-Kimball model, Anderson
model, or Anderson-Fano model, without loss of gener-
ality.

In essence, the sums over intermediate states in Eq.
�13� are separated into groups of bands lying far away in
energy from the initial and final states �i.e., the bands
projected out� and bands lying nearby the initial and
final states �considered bands with correlations�. The
former grouping of intermediate states are considered as
in Sec. II.B to be approximated by the effective-mass
contribution, Eq. �24�. The remaining terms involve ma-
trix elements of the current operator between the re-
maining band of interest.10

The interaction of light with these downfolded elec-
trons can be treated via the Peierls construction, in
which the creation and annihilation operators develop a
phase,

ci,�→ ci,�exp�− i�e/�c��
−�

ri

A · d�� . �32�

The resulting scattering Hamiltonian obtained by ex-
panding in powers of A reads

Hint =
e

�c
ĵ · A +

e2

2�2c2�
��

A��̂��A�, �33�

where

ĵ��q� = �
k

���k�
�k�

c�
†�k + q/2�c��k − q/2� �34�

is a component of the current operator ĵ and

�̂���q� = �
k

�2��k�
�k��k�

c�
†�k + q/2�c��k − q/2� �35�

is the stress tensor operator. Both operators are thus
formed from the energy dispersion of the downfolded
band structure. The matrix element can be written in
compact form:

MF,I�q� = �
�,�

e�
i e�

s M�,��q� ,

M���q� = �F�̂�,��q�I� + �
�

� �Fĵ��qs�����ĵ��qi�I�
E� − EI − ��i

+
�Fĵ��qi�����ĵ��qs�I�

E� − EI + ��s
� , �36�

with the sum over intermediate states � of the Hamil-
tonian Eq. �30�. The Raman cross section can be sepa-
rated into nonresonant, mixed, and resonant contribu-
tions:

R��� = RN��� + RM��� + RR��� , �37�

where the nonresonant contribution is

RN��� = �
I,F

exp�− �EI�
Z �̃I,F

i,s �̃F,I
s,i ��EF − EI − ��� , �38�

the mixed contribution is

RM��� = �
I,F,�

exp�− �EI�
Z ��̃I,F

i,s � j̃F,�
�s� j̃�,I

�i�

E� − EI − ��i

+
j̃F,�
�i� j̃�,I

�s�

E� − EI + ��s
� + � j̃I,�

�i� j̃�,F
�s�

E� − EI − ��i

+
j̃I,�
�s� j̃�,F

�i�

E� − EI + ��s
��̃F,I

s,i ���EF − E� − ��� ,

�39�

and the resonant contribution is

RR��� = �
I,F,���

exp�− �EI�
Z � j̃I,�

�i� j̃�,F
�s�

E� − EI − ��i

+
j̃I,�
�s� j̃�,F

�i�

E� − EI + ��s
�� j̃F,��

�s� j̃��,I
�i�

E�� − EI − ��i

+
j̃F,��
�i� j̃��,I

�s�

E�� − EI + ��s
���EF − EI − ��� . �40�

We have introduced the terms

�̃i,s = �
��

e�
i �̂���q�e�

s , j̃�i,s� = �
�

e�
i,sĵ��qi,s� , �41�

and denote Ô",
 as the matrix element �"Ô
�. Some of
the contributions are depicted diagrammatically in Figs.
8–10 for the nonresonant, mixed, and resonant terms,
respectively. In the limit D→� these are the main dia-
grams to consider. Additional diagrams involving multi-

10We remark that this is not exact as it inaccurately treats
resonant scattering processes occurring within the conduction
band. Since these processes are usually taken to be damped,
even though this approach is, strictly speaking, not exact, it
provides a good starting point for considering Raman scatter-
ing in correlated single-band systems, and as such has been
widely used �Shastry and Shraiman, 1991�
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particle vertex renormalizations generally contribute for
finite dimensions �not shown�.

In general, the matrix elements that enter into Eqs.
�38�–�40� are not easy to calculate for an interacting sys-
tem, so the summations are problematic to evaluate. In
particular, one needs to evaluate the irreducible stress
and current vertices, depicted in Figs. 8–10 by the
hatched symbols. Contributions to these vertex dressings
include many-particle renormalizations. A particularly
complicated one is shown in Fig. 11 which represents
four-particle vertex corrections. Moreover, analytic con-
tinuation must be performed to obtain the Raman re-
sponse R��� on the real axis from the imaginary axis.
While this is relatively straightforward for the nonreso-
nant case, mixed and resonant cases are problematic be-
cause of the complicated dependences on each of the
frequencies �i,s ,� which have to be analytically contin-
ued. While this continuation has been worked out re-
cently, evaluating these diagrams for general interactions
has proved elusive.

The overall complexity of the problem limits the
evaluation of the light-scattering cross section to generic
interacting systems. Only recently, these diagrams have
been evaluated exactly in a DMFT treatment of the
Falicov-Kimball model �Shvaika et al., 2004, 2005�.

2. Correlated insulators—Heisenberg limit

To emphasize the generality of Eq. �13� we now con-
sider the large U limit for the insulating half-filled two-
dimensional Hubbard model. Following Shastry and
Shraiman �1991� we consider a system with N interacting

electrons in which the manifold of states can be classi-
fied by the number n of doubly occupied sites. The well-
known Heisenberg Hamiltonian emerges from project-
ing the Hubbard model down onto the reduced Hilbert
space containing no double occupancies:

HHeisenberg = J�
i,�

Si · Si+�, �42�

with J=4t2 /U the Heisenberg exchange constant. Higher
manifolds containing n empty holes and doubly occu-
pied states can be labeled according to the net spin con-
figuration ��� of the N−2n singly occupied sites, as well
as the locations �R� of the empty rhole and doubly occu-
pied rdouble sites. We denote these states as n ; ��� ; �R��.
These states are connected to each other via

FIG. 8. Feynman diagrams for nonresonant Raman scattering.
The wavy and solid lines denote photon and electron propaga-
tors, respectively. The cross-hatched rectangle is the reducible
charge vertex. The symbol � denotes the stress-tensor vertex
of the corresponding electron-photon interaction. From
Shvaika et al., 2005.

FIG. 9. Feynman diagrams for the mixed contributions to Ra-
man scattering. The symbols jf and ji remind us to include the
relevant vertex factors from the current operator in the
electron-photon interaction. From Shvaika et al., 2005.

FIG. 10. Feynman diagrams for the resonant contributions to
Raman scattering. From Shvaika et al., 2005.
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1;���� ;�R�� = c�
†�rdouble�c��rhole�0;���� , �43�

where 0; ����=#rc�r

† �r�vac� and vac� denotes the
vacuum.

Light scattering thus occurs via transitions out of the
manifold of singly occupied states. To leading order for
large U, only the n=0 and n=1 manifold of states con-
tributes to light scattering via Eq. �13�, with n=0 denot-
ing the ground state and n=1 the manifold of interme-
diate states having one doubly occupied and one empty
site. The first term containing m�,� cannot contribute for
the half-filled lattice, and thus only interband scattering
between the upper and lower Hubbard bands occurs via
the p ·A term. The energy difference between these ex-
citations is U to lowest order in t /U, allowing us to write
the matrix element Eq. �13� in the form

MF,I = �
�,r,r�,�,��

�0;��I�ĵs�r�ês · �1;���� ;R��

��1;���� ;R�êi · ��ĵi�r��0;��F��

�� 1

U − ��i
+

1

U + ��s
� , �44�

with the current operator defined as

ĵi,s�r� = it�c�
†�r + �a · êi,s�c��r� − c�

†�r�c��r + �a · êi,s�� .

�45�

Here � is a unit vector connecting a site with its nearest
neighbors. The intermediate states � represent a sum
over spin configurations and locations of both the dou-
bly occupied and hole sites. Substituting Eq. �43� into
Eq. �44� collapses the intermediate state sum, leaving
four terms connecting initial and final states. Using the
identity 1/2−2Si ·Sj=c†�r+�a�c�r�c†�r�c�r+�a� valid in
the manifold of singly occupied states, one obtains the
light-scattering Hamiltonian of Elliot and Loudon �1963�
and Fleury and Loudon �1968�,

HEFL = �
r,�

Sr · Sr+�a�ês · ���êi · ��

�� 1

U − ��i
+

1

U + ��s
� . �46�

We note that the polarization dependence is crucial as
well. For xx+yy polarizations projecting the fully sym-
metric components, the light-scattering Hamiltonian Eq.
�46� commutes with the nearest-neighbor Heisenberg
Hamiltonian Eq. �42� and thus does not give inelastic
scattering in the A1g channel. Moreover, B2g �xy� is also
identical to zero. As a result, a large signal appears only
in the B1g channel �xx−yy�. These restrictions are lifted,
however, if longer range spin interactions are considered
�Shastry and Shraiman, 1991�.

The collapse of the intermediate states allowed us to
replace the operators with projected spin operators con-
fined to the restricted Hilbert space of the n=0,1 mani-
folds. Thus in this limited Hilbert space the formalism is
similar to noninteracting electrons in that the operators
appearing in the scattering matrix may be simplified. If
the Hilbert space is enlarged to include larger manifolds,
then this would no longer be the case, and thus including
terms to higher order in t /U becomes highly nontrivial
and is still one of the challenges to merge a weakly in-
teracting picture into a strongly interacting one.

We note that Eq. �46� was derived effectively as an
expansion in t / �U−��i�. Therefore the scattering Hamil-
tonian is limited to cases when both the number of holes
and double occupied sites are restricted and off-
resonance conditions apply, with the incident photon en-
ergy ��i far away from U. Efforts to extend the treat-
ment to more general conditions involve understanding
the motion of holes or doubly occupied sites in an arbi-
trary spin background. This has proved to be a hard
task.

D. Electronic charge relaxation

In Secs. II.B and II.C we reviewed the general formal-
ism of the theory of Raman scattering for weakly and
strongly correlated systems. In this subsection we now
specify the electronic states from which light can be scat-
tered and review the various theoretical treatments for
specific models of interacting electrons. Emphasis is
placed upon how symmetry can be used to highlight
electron dynamics on regions of the BZ, and general
features for each model system will be presented. We
first consider the case where the correlations among
electrons are weak.

1. Weakly interacting electrons

In this subsection, we consider electrons as having
very well defined eigenstates labeled by energy and mo-
mentum and having sharp spectral functions. Apart
from the form of the energy dispersion �k, the results are
rather general and governed largely by phase space con-
siderations. We must, however, consider the long-range
Coulomb interaction in order to account for charge

FIG. 11. Feynman diagrams for a typical parquetlike renor-
malization. This resonant diagram has simultaneous horizontal
and vertical renormalizations by the two-particle reducible
charge vertex. From Shvaika et al., 2005.
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backflow and screening, and we utilize the results de-
rived in Sec. II.B and the general expression Eq. �29�.

The use of �sc rather than � takes into account the
most drastic manifestation of the long-range Coulomb
interaction, viz., screening. For weakly interacting elec-
trons, the random-phase approximation �RPA� is accept-
able, which replaces �sc by the Lindhard function for
noninteracting electrons. The response functions are de-
termined by the Lindhard kernel,

�a,b�q,�� =
2

V�
k

ak,qbk,q
f��k� − f��k+q�

�k − �k+q + �� − i�
, �47�

for general vertices a ,b appearing in Eq. �29�. In a free-
electron gas, the Raman response is given by Eq. �27� or,
equivalently, the last term in Eq. �29�. For large q, col-
lective excitations are unimportant and light scattering
occurs via creation of particle-hole excitations in the
Landau continuum. However, as the only phase space
for creating particle-hole pairs comes from finite q trans-
ferred from photons, the resulting response is a con-
tinuum varying linearly with � at small frequencies and
extending up to a cutoff �c=vFq from the borders of the
continuum �Mahan, 2000�. The low-energy intensity is
proportional to q2, and the only excitation left at q=0 is
the collective plasmon. The Raman response for the
free-electron gas is shown in Fig. 12.

For electrons in a solid, however, the nonparabolicity
of the energy dispersion results in charge fluctuations
which are anisotropic in the small q limit and thus can
survive screening and give more weight at low-energy
transfers. Formally, an additional contribution to the re-
sponse is given by the first two terms in Eq. �29�. Yet
phase-space restrictions still produce an inescapable cut-
off at �c=vFq �Wolf, 1968�, and the response resembles
that shown in Fig. 12. This is also the case if scattering
occurs for the two-dimensional electron gas �2DEG� in
the absence of a magnetic field �Jain and Das Sarma,
1987; Mishchenko, 1999� or for complex Fermi surfaces
�Ipatova et al., 1983�. An RPA treatment for resonant
scattering has been given by Wang and Das Sarma �1999,
2002�.

Recently, substantial progress has been made in un-
derstanding the Raman response in the integer or frac-

tional quantum Hall regimes of the 2DEG. Space limi-
tations do not allow us to review these systems; so for
brevity, we cite only a recent reference �Richards, 2000�.

2. Impurities

Excitations at low energies in noninteracting elec-
tronic systems can arise for small q via electronic scat-
tering from impurities, where momentum contributed by
impurity scattering can provide phase space for electron-
hole creation which is anisotropic in the Brillouin zone.
For example, if one considers a general electron-
impurity interaction of the form

Himp = �
k,k�,�

Vk,k�ck,�
† ck�,�, �48�

with an anisotropic interaction Vk,k�, the gauge-invariant
Raman response is given via the diagrams presented in
Fig. 8. If we make a symmetry decomposition of the
scattering amplitude ��k�=�L�L L�k� in terms of basis
functions  L of the Brillouin zone, the resulting re-
sponse in channel L corresponding to a particular light
polarization orientation has a Drude Lorentzian form
�Fal’kovski�, 1989; Zawadowski and Cardona, 1990; De-
vereaux, 1992�:

���q,�� = NF�L
2 ��L

*

1 + ���L
* �2 , �49�

with NF the density of states at the Fermi level. 1 /�L
*

=1/�+Dq2−1/�L is the effective scattering rate where

1/� = 1/�L=0 = niNF� dSk

S
� dSk�

S
Vk,k�

2, �50�

involving an integration over the Fermi surface Sk nor-
malized to the Fermi area S. Here ni is the impurity
concentration and D= 1

3vF
2� is the diffusion constant. The

anisotropy of impurity scattering is characterized via or-
thonormal basis functions  L

Vk,k� = �
L,L�

 L
* �k� L�k��VL,L�, �51�

using an intelligent basis where the interaction is diago-
nal VL,L�=�L,L�VL. Then, 1 /�L=2�niNFVL and 1/�L=0 is
the dominant contribution.

The resulting Raman spectrum �Fig. 13� grows linearly
with frequency �, decays as 1/�, and has a peak when
��L

* equals 1. The width of the Lorentzian reflects the
rate at which charge-density excitations having symme-
try L decay into all other channels. Light polarizations
select the type of excitation L created, and thus allow a
way to probe the anisotropy of the impurity-electron in-
teraction. The decay of the charge-density fluctuations
can occur via finite q through the diffusion term and all
contributions other than VL which relax electrons out of
the state L. Put another way, Dq2+1/� are “scattering
out” processes, while 1/�L is a “scattering in” process,
giving an effective scattering rate 1/�L

* . This is a conse-
quence of a gauge-invariant treatment including charge

FIG. 12. Raman response of an electron gas. From Platzman,
1965.
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backflow �Coulomb interaction� as well as density pre-
serving scattering �impurity vertex corrections�.

In the limit of weak scattering, the response collapses
into a delta function, reflecting momentum conserva-
tion. One can note the obvious connection of the re-
sponse plotted in Fig. 13 to the Drude conductivity, al-
though even for simple impurity scattering the two
response functions are not related by a power of fre-
quency as soon as the impurity potential has any mo-
mentum anisotropy. Otherwise, for purely isotropic im-
purity scattering the conductivity and Raman response
are related by a power of frequency—the so-called
Shraiman-Shastry relation given in Eq. �6� �Shastry and
Shraiman, 1990; Freericks and Devereaux, 2001�.

3. Interacting electrons—nonresonant response

However, the most important application of light scat-
tering is for systems where the electronic correlations
are strong and cannot be treated in standard RPA. Thus
while long-range Coulomb screening is still important in
order to maintain gauge invariance, the interactions in-
troduce generally complex dynamics in specific regions
of the BZ. In this case, the electron self-energy � as well
as the vertex corrections to the light-scattering ampli-
tude � depend normally on both momentum and energy,
making the light-scattering evaluation more difficult. On
the other hand, anisotropies of the electron dynamics
can be explored.

Here we start by considering nonresonant scattering,
since this is an area in which by far most theoretical
treatments lie, as it is simpler to evaluate than the mixed
or resonant terms. We note that many calculations of
Im�1/�� have been performed from ab initio approaches
in the context of inelastic x-ray scattering �see Gurtubay
et al. �2004�, and references therein for recent work�.
There, the focus is largely on the q dependence of the
response, and electron-electron interactions have been
treated in various ways �Ku et al., 2002�. Yet, to our
knowledge, no calculation exists for Raman scattering in
a simple Fermi liquid in which inelastic-scattering pro-
cesses via the Coulomb interaction are incorporated ex-
actly, although recently dynamical mean-field theory
�DMFT� in correlated metals has been used �Freericks
and Devereaux, 2001�. This is because the irreducible

charge vertex is not generally known in models with
strong correlations, with the exception of the Falicov-
Kimball model. Thus we focus more on the polarization
dependence and investigate contributions to Raman
scattering from nonconserved charge fluctuations.

The general expression for the two-particle correla-
tion function describing the nonresonant Raman re-
sponse reads

��,��q = 0,i�� = −
2

V��
i�

�
k
��k�G�k,i��G�k,i� + i��

�$�k ;i� ;i�� . �52�

Similar expressions are obtained for ��,1 and �1,1 where
the vertices � and $ are successively replaced by 1 to be
inserted into Eq. �29�, or may be generally represented
in terms of the Raman vertex as shown in Fig. 8. In the
ladder approximation, the renormalized vertex is given
by a Bethe-Salpeter equation:

$�k ;i� ;i�� = ��k� +
1

V��
i��

�
k�

V�k − k�,i� − i���

�G�k�,i���G�k�,i�� + i��

�$�k�;i��;i�� . �53�

Here V�k ,�� is the generalized electron-electron inter-
action, and we have suppressed spin notation. If one
neglects vertex corrections such that the theory is not
gauge invariant, the Raman response has a particularly
simple form given by Eq. �3�. The effect of the long-
range Coulomb interaction is treated formally in the
same way as in Eq. �29�, with the vertices replaced by
the renormalized vertex as a solution to the Bethe-
Salpeter equation �53�.

Equations �52� and �53� have been the starting point
for many studies of light scattering treating electron-
electron interactions in effective models. These include
systems which have nearly nested Fermi surface seg-
ments �Virosztek and Ruvalds, 1991, 1992� or antiferro-
magnetic spin fluctuations �Kampf and Brenig, 1992; De-
vereaux and Kampf, 1999�. Similarly, a slave boson
approach to the t-J model �Bang, 1993�, electron-phonon
interactions �Kostur and Eliashberg, 1991; Itai, 1992;
Kostur, 1992; Rashkeev and Wendin, 1993�, and
fluctuation-exchange �FLEX� treatments of the Hub-
bard model �Dahm et al., 1999� have been considered.
While these studies involve approximate solutions, more
recently the use of DMFT has provided exact results in
the limit of strictly local correlations in the Hubbard
�Freericks et al., 2001, 2003� and Falicov-Kimball models
�Freericks and Devereaux, 2001�.

Two aspects of the Raman response are generally in
the main focus: the frequency dependence of the broad
continuum extending well past qvF, and the polarization
dependence. We discuss first the spectral response.

In the context of cuprates, Varma and co-workers
pointed out that a flat, nearly frequency-independent re-
sponse could be obtained if the imaginary part of the
electron self-energy depended linearly on frequency

FIG. 13. Raman response from impurity scattering in an oth-
erwise noninteracting system. From Zawadowski and Cardona,
1990.
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�Varma, 1989; Varma et al., 1989�. The response is then
given in terms of the scale-invariant ratio function of
�� /kBT that approaches a constant at large frequency
transfers. This can be understood phenomenologically
by replacing 1/�L

* with 1/�L
* �� ,T�max�kBT ,��� in Eq.

�49�.11 A scale-invariant response at low frequencies is a
general consequence of systems in proximity to a quan-
tum critical point, but this scale invariance is broken
outside the quantum critical regime. Marginal Fermi liq-
uid behavior emerges, for instance, when scattering is
considered in a nested Fermi liquid �Virosztek and Ru-
valds, 1991, 1992�, low Fermi-energy systems �Dahm et
al., 1999; Devereaux and Kampf, 1999� and slave-boson
systems �Bang, 1993�. A broad background very similar
to marginal behavior is also found for strongly coupled
electron-phonon systems �Kostur and Eliashberg, 1991;
Itai, 1992; Kostur, 1992�. As a representative example,
we show the response calculated by Virosztek and Ru-
valds �1992� for a nested Fermi liquid in Fig. 14.

Low-energy electron dynamics can be extracted by
studying the Raman response in the limit �→0. Ne-
glecting vertex corrections, the low-frequency response
reads �Devereaux and Kampf, 1999; Venturini, Opel,
Devereaux, et al., 2002�

�	� ��→ 0� =�NF��	2 �k� � d��− �f0/���Zk
2��,T�

2�k���,T�
� .

�54�

Here NF is the density of electronic levels at the Fermi
energy EF, �k� is the imaginary part of the single-particle
self-energy related to the electron lifetime as
� /2�k��� ,T�=�k�� ,T�, Zk�� ,T�= �1−��k��� ,T� /���−1 is

the quasiparticle residue, f0 is the equilibrium Fermi dis-
tribution function, and �¯� denotes an average over the
Fermi surface. Thus the inverse of the Raman slope

$	�T� = � ��	� ���
��

�−1

�55�

measures the effective scattering rate of the quasiparti-
cles in a correlated metal, and can be best thought of as
a Raman resistivity.

In systems with isotropic interactions, the polarization
dependence drops out and the slope of the low-
frequency Raman response is given in terms the low-
energy quasiparticle scattering lifetime $	�T�� /��T� as
an extension of Eq. �49�. Yet, in strongly correlated sys-
tems, the quasiparticle residue Z and, importantly, ver-
tex corrections, enter as well. In a correlated or a
strongly disordered metal �near an Anderson transition,
e.g.�, however, a finite energy might be necessary to
move an electron from one site to another one. Thus in
spite of a nonvanishing density of states at the Fermi
level, as observed in an ARPES experiment, for in-
stance, no current can be transported and $	�T�
%� /��T�. This is an important difference between
single- and two-particle properties.

Figure 15 displays the inverse Raman slope defined in
Eq. �55�, as determined via a DMFT treatment of the
Falicov-Kimball model in the vicinity of a metal-
insulator transition, as a function of the Coulomb repul-
sion U �Freericks and Devereaux, 2001�. It provides an
illustrative example of how Fermi-liquid-like features
evolve as the lifetime of putative quasiparticles increases
due to decreased role of correlations. For small U, the
correlated metal displays an inverse slope T2 as a ca-
nonical Fermi liquid in the metallic state. A pseudogap
opening in the density of states with increasing U drives
the inverse slope into insulating behavior, increasing as
the temperature decreases.

As a second important application, Eq. �55� can illu-
minate the anisotropy of electron dynamics due to the

11This is only an approximation since 1/�L
* �� ,T� depends

now on energy. Causality requires that the relaxation function
has real and imaginary parts, M�� ,T�=�
+ i /�L

* �Götze and
Wölfle, 1972; Opel et al., 2000�.

FIG. 14. Raman response as a function of temperature ob-
tained by Virosztek and Ruvalds �1992� for a system with a
nested Fermi surface.

FIG. 15. Inverse Raman slope �see Eq. �55�� close to a metal-
insulator transition at a value U=
2 in the Falicov-Kimball
model for D=� �Freericks and Devereaux, 2001�. All energies
and temperatures are measured in terms of the hopping t.
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momentum-dependent weighting factors of the polariza-
tion orientations and self-energies. The geometry of
light-scattering orientations, as given by the form factors
listed in Table I, project out the ratio of quasiparticle
residues and scattering rates in different regions of
the BZ. As a consequence, the Raman spectra show
polarization-dependent behavior determined largely by
the self-energies and vertex corrections near the regions
projected by the scattering vertices �. Figure 16 plots the
B1g and B2g Raman responses calculated in a spin-
fermion model in which electron scattering is most pro-
nounced involving antiferromagnetic reciprocal-lattice
momentum transfers Q= �� ,��, leading to “hot” quasi-
particles near the BZ axes �projected by B1g form fac-
tors� and “cold” quasiparticles along the BZ diagonals
�projected by B2g form factors�. Therefore the Raman
response has a sharp quasiparticle peak for B2g scatter-
ing at low energies due to the long quasiparticle life-
times, while the response in B1g is dominated by strong
incoherent scattering leading to a suppression of the
quasiparticle peak at low energies and an essentially
structureless continuum.

Last, we note that the nonresonant Raman response
has also been calculated for exchange of fluctuation
modes at wave vectors Q and −Q for systems near a
spin-density-wave instability �Brenig and Monien, 1992;
Kampf and Brenig, 1992; Venturini et al., 2000� and a
charge-density-wave instability �Caprara et al., 2005�.
Here the Raman response is sensitive to light polariza-
tions and has a peak centered at twice the energy of the
fluctuating mode.

4. Interacting electrons—resonant response

In addition to the nonresonant response, one has the
mixed and resonant contributions to consider. Typically
these diagrams are neglected in the weak correlation
limit, as they can be summed into two-particle response
functions as discussed in Sec. II.B. In the insulating case,
only the resonant terms are kept, as the studies focus on
excitations across a charge-transfer or Hubbard gap.
This has been calculated in systems exhibiting one-
dimensional �1D� Luttinger behavior �Sassetti and
Kramer, 1998; Sassetti et al. 1999; Kramer and Sassetti,

2000; Wang et al., 2004� where bosonization techniques
can be applied. Yet generally treating all diagrams on
equal footing is technically demanding. Only recently an
exact evaluation in DMFT has been performed �Shvaika
et al., 2004, 2005�.

It is well known that many of the Raman signals in
correlated metals and insulators display complicated de-
pendences on incoming photon frequency �i. For ex-
ample, the B1g two-magnon feature at roughly 350 meV
in the thoroughly studied insulating parent cuprates has
a resonance for incident photon energies near 3 eV. As
a reaction to the experimental results in cuprates, much
theoretical work has been devoted to Raman scattering
in a two-dimensional Heisenberg antiferromagnet using
the Elliot-Fleury-Loudon model, Eq. �46�.

In the nearest-neighbor Heisenberg antiferromagnet,
one treats the spin operators using a Dyson-Maleev rep-
resentation of magnons with dispersion 2J. In the ab-
sence of magnon-magnon interactions, at T=0 a sharp
peak at 4J appears as the top of the magnon dispersion
is heavily weighted by the B1g form factor. Beyond 4J,
the response abruptly falls to zero �Sandvik et al., 1998�.
However, since light scattering is localized to neighbor-
ing spins, magnon-magnon interactions must be in-
cluded, and the peak becomes more symmetric and
shifts to �3J via breaking six exchange bonds between
local neighbors, as shown in Fig. 17.

There have been many developments on the Elliot-
Fleury-Loudon model, which has been addressed via
critical fluctuation analysis �Halley, 1978�, series expan-
sions �Singh et al., 1989�, lower- �Parkinson, 1969; Morr
and Chubukov, 1997� and higher- �Canali and Girvin,
1992; Chubukov and Frenkel, 1995b� order spin-wave
theories, t-J studies at finite doping �Prelovšek and Jak-
li~, 1996�, exact diagonalization of small clusters �To-
hyama et al., 2002�, excitonic cluster approaches �Hana-
mura et al., 2000�, finite-temperature quantum Monte

FIG. 16. Polarization-dependent Raman response in a spin-
fermion model for a fixed temperature for three different val-
ues of the coupling constant. From Devereaux and Kampf,
1999.

FIG. 17. �Color online� Cartoon of the two-magnon scattering
process in a 2D Heisenberg antiferromagnet. An incident pho-
ton causes an electron with spin � to hop leaving a hole and
creating a double occupancy in the intermediate state with en-
ergy U. One particle of the double with spin −� hops back to
the hole site liberating a photon with energy �U−zJ�, leaving
behind a locally disturbed antiferromagnet with z exchange
bonds broken in the final state as indicated by dotted lines.
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Carlo methods �Sandvik et al., 1998�, studies of bilayer
effects �Morr et al., 1996�, two-leg spin ladders �Jurecka
et al., 2001�, and ring exchange �Katanin and Kampf,
2003�, giving a thorough treatment of two-magnon scat-
tering from spin degrees of freedom in the nonresonant
regime when the incident light energy does not match an
optically allowed interband transition energy. Scattering
from channels other than B1g, and describing the aniso-
tropic line shape of the response, have been addressed
via longer range spin-exchange interactions and by exact
diagonalizations of magnons coupled to phonons �Frei-
tas and Singh, 2000�, using an earlier approach of Loren-
zana and Sawatzky �1995�. Last, recent developments
concern scattering from orbiton degrees of freedom
�Okamoto et al., 2002� and scattering within a resonance
valence bond picture �Ho et al., 2001�.12

These approaches fail when the laser frequency is
tuned near an optical transition. In this regime, based on
a spin-density-wave approach, Chubukov and Frenkel
�1995a, 1995b� have formulated a so-called triple-
resonance theory from which important features of the
spectra can be derived. Using a SDW approach to the
Hubbard model, they found that additional resonant
diagrams of the type shown in Figs. 10�h�–10�j� contrib-
ute to the usual Elliot-Loudon-Fleury terms, and de-
rived a resonance profile in good agreement with experi-
ments. In addition, recent results by Tohyama et al.
�2002� have been obtained for the Raman response in
the resonant limit from both spin and charge degrees of
freedom. In Fig. 18 we show their results from exact
diagonalization of the Hubbard model with a 20-site
cluster �Tohyama et al., 2002�. The two-magnon response
at roughly ��=2.7J is resonantly enhanced when the
incident photon frequency is tuned to the Mott gap scale

U, in qualitative agreement with the results of Chu-
bukov and Frenkel �1995a, 1995b�. Both approaches pre-
dict a resonant profile for two-magnon Raman scattering
which differs from the absorption profile, as shown in
Fig. 18. Tohyama et al. �2002� have pointed out that the
resonance energies for the absorption spectrum and the
two-magnon response are not the same, due to differ-
ences in SDW coherence factors.

5. Interacting electrons—full response

An approach treating the full fermionic degrees of
freedom, and simultaneously treating nonresonant,
mixed, and resonant scattering on equal footing, is still
in its infancy. The theoretical challenge in calculating the
full inelastic light-scattering response function is that the
mixed diagrams involve three-particle susceptibilities
and the resonant diagrams involve four-particle suscep-
tibilities. Only in the infinite-dimensional limit, where
most of the many-particle vertex renormalizations van-
ish �all three-particle and four-particle vertices do not
contribute; only the two-particle vertices enter�, one can
imagine arriving at exact results. As an exception, the
full Raman response function can be calculated in the
Falicov-Kimball model, because the two-particle irre-
ducible charge vertex is known exactly in the limit of
large dimensions �Freericks and Miller, 2000; Shivaika,
2000�.

Recently, Shvaika et al. �2004, 2005� obtained the full
electronic Raman response function, including contribu-
tions from the nonresonant, mixed, and resonant pro-
cesses within a single-band model. In general, the reso-
nance effects can create orders of magnitude
enhancement over the nonresonant response, especially
when the incident photon frequency is slightly greater
than the frequency of the nonresonant energy loss fea-
ture. The resulting Raman response is a complicated
function of correlations, temperature, incident photon
energy, and transferred energy. It was found that reso-
nance effects are different in different scattering geom-
etries, corresponding to different symmetries of charge
excitations scattered by the light.

Resonance effects were found as a function of both
the incoming and outgoing photon frequencies �i,s. A
double resonance—occurring when the energy denomi-
nators of two pairs of the Green’s functions, appearing
in the bare response shown in Fig. 10, approach zero—
gives the strongest resonant enhancement of the re-
sponse �Shvaika et al., 2004�. In addition, an interesting
resonance effect on both the charge-transfer peak and
low-energy peak was found when the incident photon
frequency is of the order of the interaction strength,
showing that in general the total response cannot be well
described as a uniform resonance enhancement of the
separable nonresonant response. In agreement with the
results of Tohyama et al. �2002�, for an antiferromagnetic
system this is a direct consequence of the inseparability
of energy scales in the correlated electron problem, in
contrast to noninteracting electrons.

12The reader is also referred to the review article by Lem-
mens et al. �2003� for reviews on the theorerical treatments of
magnetic light scattering in low-dimensional quantum spin
systems.

FIG. 18. The dependence of �a� the two-magnon B1g Raman
intensity �shown in the inset for �i=8t� and of �b� the absorp-
tion spectrum on the incoming photon energy �i in a 20-site
cluster of the Hubbard model with U=10t �J=0.4t�. The solid
line in �b� is obtained by performing a Lorentzian broadening
with a width of 0.4t on the delta functions denoted by vertical
bars. From Tohyama et al., 2002.
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Shown in Fig. 19 is the temperature- and symmetry-
dependent Raman response, including nonresonant,
resonant, and mixed terms in the Falikov-Kimball
model. In the insulating phase, spectral weight is de-
pleted for small energy transfers and piles up into the
excitations at energies of order U as the temperature is
lowered. The transfer of spectral weight from lower to
higher energies occurs across a temperature-
independent so-called isosbestic point. An isosbestic
point also appears in studies of the Hubbard model
�Freericks et al., 2001, 2003�, implying that it is a generic
feature of the insulating phase, regardless of the micro-
scopic origin of the phase. We note that isosbestic be-
havior already appears in the nonresonant contributions
for B1g scattering. In the A1g and B2g symmetries, it
emerges only if resonant terms are included.

The local treatment of self-energies in the single-site
DMFT approach imposes limitations on the theory of
light scattering in correlated systems. In particular, the
full polarization dependence of the Raman spectra
would uncover the way in which correlations affect elec-
tron dynamics in regions of the BZ, providing a two-
particle complement to ARPES, for example. Progress
here most likely will come from cluster dynamical mean-
field theory able to treat nonlocal and anisotropic inter-
actions in a coarse-grained manner.

6. Superconductivity

As discussed in Sec. II.D.1, in the absence of interac-
tions there is no phase space for low-energy Raman scat-
tering for q=0 momentum transfers. In the supercon-
ducting state, phase-space restrictions are lifted since
light can break q=0 Cooper pairs if the energy of light is
greater than 2&. Thus the Raman response becomes

nontrivial, yet easily formulated in BCS theory. As a
consequence, there has been an enormous amount of
theoretical work devoted to light scattering for tempera-
tures below Tc as an extension of the theory for nonin-
teracting electrons in the normal state. We review that
work here.

In the superconducting state, focus has been tradition-
ally placed on the two-particle nonresonant response in
BCS theory. Formally the Raman response is given by
generalizing Eqs. �52� and �53� in particle-hole space us-
ing Pauli matrices �i=0..3 in Nambu notation �Nambu,
1960�:

��q = 0,i�� = −
2

V��
i�

�
k

Tr��̂�k�Ĝ�k,i��

�$̂�k ;i� ;i��Ĝ�k,i� + i��� , �56�

where Tr denotes the trace, and

$̂�k ;i� ;i�� = �̂�k� +
1

V��
i��

�
k�

Vi�k − k�,i� − i���

��̂iĜ�k�,i���$̂�k�;i��;i��

�Ĝ�k�,i�� + i���̂i. �57�

Here the bare Raman vertex of coupling to charge is �̂
= �̂3� and the interaction Vi determines the channel of
the vertex corrections. For example, Vi=3 corresponds to
interactions coupling electronic charge, while Vi=0 corre-
sponds to spin interactions.

For the case of weak correlations, the Green’s func-
tions appearing in Eqs. �56� and �57� are given by the
BCS expression

Ĝ�k,i�� =
i��̂0 + ��k��̂3 + &�k��̂1

�i��2 − E2�k�
, �58�

with E2�k�=�2�k�+&2�k� the quasiparticle energies. In
the weak-coupling limit for the BCS approximation,
Vi=3=−V for phonon-mediated pairing.

By far, the superconducting state has received the
largest amount of attention from theory, starting from
the seminal contribution of Abrikosov and Fal’kovski�
�1961�, which predated the observation of the effect by
19 years. The main focus in the early years was to study
the 2& features in conventional s-wave superconductors
with small and large coherence lengths �Abrikosov and
Fal’kovski�, 1961, 1987; Klein and Dierker, 1984; Abri-
kosov and Falkovsky 1988�, including the effects of Cou-
lomb screening �Abrikosov and Genkin, 1973� and ex-
amining the temperature dependence �Tilley, 1972�. If
one neglects vertex corrections, the q-dependent Raman
response in a superconductor is given by a projected
Maki-Tsuneto function �Maki and Tsuneto, 1962�,

FIG. 19. Raman response in the half-filled Falicov-Kimball
model �U=2t� as a function of transfered frequency for various
temperatures for fixed incident photon frequency �i=2t. The
thickest curve is T / t=0.05, and the temperature increases to
0.2, 0.5, and 1 as the curves are made thinner. From Shvaika et
al., 2004.
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�a,b� �q,� + i�� =
1

N�
k

ak,qbk,q

��A+�k,q��f„E�k�… − f„E�k + q�…�

�� 1

� + i� − E�k� + E�k + q�

−
1

� + i� + E�k� − E�k + q��
+ A−�k,q��1 − f„E�k�… − f„E�k + q�…�

�� 1

� + i� + E�k� + E�k + q�

−
1

� + i� − E�k� − E�k + q��� , �59�

with the coherence factors A±�k ,q�=1± ���k���k+q�
−&�k�&�k+q�� /E�k�E�k+q�. A more common expres-
sion is the Raman response for q=0 which simplifies to

�a,b� �q = 0,� + i��

=
2

N�
k

akbk� &�k�
E�k� �2

tanh�E�k�
2T

�
�� 1

2E�k� +� + i�
+

1

2E�k� −� − i�
� . �60�

The full Raman response, including backflow, is once
again given by Eq. �29�, in which the vertices a ,b are
replaced by the Raman �a ,b=�� and pure charge �a ,b
=1� vertices �Abrikosov and Genkin, 1973�.

For the case of an isotropic gap �&�k�=&� and mo-
mentum transfers q=0, a threshold and a square-root
discontinuity appears at twice the gap edge &, reflecting
the two-particle density of states. For finite q, the singu-
larity is cut off due to breaking Cooper pairs with finite
momentum, and the peak is shifted out to frequencies of
roughly vFq as in the normal state �Fig. 20�. Qualita-
tively similar behavior is obtained for disordered s-wave
superconductors �Devereaux, 1992� in which 1/�L

* �see
Eq. �49�� assumes the role of vFq.

Further advances in the theory for conventional
s-wave superconductors were made for energy gaps with
small anisotropy �Klein and Dierker, 1984�, coexistence
with charge-density-wave order �Balseiro and Falicov,
1980; Littlewood and Varma, 1981, 1982; Tüttő and
Zawadowski, 1992�, layered superconductors �Abriko-
sov, 1991�, impurities �Devereaux, 1992, 1993�, and final-
state interactions �Klein and Dierker, 1984; Monien and
Zawadowski, 1990; Devereaux, 1993; Devereaux and
Einzel, 1995�.

We note in particular that the variation with k of the
Raman vertices ��k� is coupled to the k dependence of
the energy gap &�k� �see, e.g., Eq. �60��, leading to a
strong polarization dependence of the spectra. For iso-
tropic s-wave superconductors, the vertex does not af-
fect the line shape, and thus the spectrum is polarization

independent, apart from an overall prefactor. For this
case, a polarization dependence can be generated in
BCS theory by taking into account channel-dependent
final-state interactions �Bardasis and Schrieffer, 1961�
and/or impurity scattering. However, for the most part
this only produces a channel dependence in the vicinity
of the gap edge, and thus the main feature of the re-
sponse is the uniform gap existing for all polarizations.
For anisotropic energy gaps, the symmetry dependence
of the spectra is a direct consequence of the k summa-
tion �angular averaging�, which couples gap and Raman
vertex and leads to constructive �destructive� interfer-
ence if the vertex and the gap have the same �different�
symmetry.

Generally, in superconductors with nodes of the en-
ergy gap, power laws in the low frequency and/or tem-
perature variation of transport and thermodynamic
quantities emerge, replacing threshold or Arrhenius be-
havior ubiquitous in isotropic superconductors. How-
ever, due to the averaging over the entire Fermi surface,
the power laws themselves do not uniquely identify the
ground-state symmetry of the order parameter, but only
can give the topology of the gap nodes along the Fermi
surface, e.g., whether the gap vanishes on points and/or
lines. Thus one cannot distinguish between different
representations of the energy gap which have the same
topology. For instance, for the case of d-wave tetragonal
superconductors, there are five pure representations
which have line nodes on the Fermi surface. Two-
particle correlation functions, determining the density,
spin, or current responses, do not have the freedom to
probe various portions of the gap or its phase around
the Fermi surface.

FIG. 20. Raman response for an s-wave superconductor for
q�� /2=0.1, 0.5, 1.0, 2.0, 4.0, and 8.0, with �=�vF /�& the
Pippard-BCS coherence length � and q�1/� the momentum
transfer in a metal with skin depth �. From Klein and Dierker,
1984.
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With the advent of high-Tc cuprates, a flurry of activ-
ity ensued on theory of Raman scattering in d-wave su-
perconductors �Monien and Zawadowski, 1989; Falk-
ovsky, 1990�, specifically including polarization
dependences �Devereaux, Einzel, Stadlober, Hackl, et
al., 1994; Devereaux and Einzel, 1995�, collective modes
�Devereaux and Einzel, 1995; Wu and Grffin, 1995a,
1995b; Dahm et al., 1998� impurities �Devereaux, 1995,
2003; Devereaux and Kampf, 1997; Wu and Carbotte,
1998�, temperature dependences �Branch and Carbotte,
1995; Devereaux, 1995, 2003; Devereaux and Kampf,
1997�, screening �Devereaux and Einzel, 1995; Branch
and Carbotte, 1996; Manske et al., 1997; Strohm et al.,
1998a�, band structure and bilayer effects �Krantz and
Cardona, 1994; Branch and Carbotte, 1996; Devereaux
et al., 1996; Strohm and Cardona, 1997�, surface and
c-axis contributions �Wu and Griffin, 1996; Wu and Car-
botte, 1997�, resonant effects �Sherman et al., 2002� and
mixed-state pairing �Devereaux and Einzel, 1995; Nem-
etschek et al., 1998; Lee and Choi, 2002�. The focus was
largely on how the symmetry selection rules could locate
the positions of the gap maxima and nodal points
around the Fermi surface.

For dx2−y2 superconductors, the interplay of polariza-
tions and gap anisotropy can be simply drawn. Referring
to Fig. 7, B1g orientations project out excitations around
the principle directions �M points or antinodal regions�
of the BZ where the superconducting gap is maximal
and where the van Hove singularity is located in the
cuprates, while B2g orientations project the nodal re-
gions along the diagonals. As a consequence, the Raman
response has a peak at 2&max for B1g and at slightly
lower energy for B2g. The polarization dependence also
enters the low-frequency behavior. Since line nodes
yield a linear dependence on energy of the density of
states, the B2g response depends linearly on �� in the
limit �→0 for a gap vanishing on the diagonals. For B1g
orientations, in contrast, the Raman vertex vanishes
along with the energy gap at the same points in the BZ.
This yields an additional �2 contribution from the line
nodes of the vertex, and the resulting response varies as
�3. The unscreened A1g response measures an overall
average throughout the BZ and thus picks up the gap
maxima as well as the linear density of states. This is
shown quantitatively in Fig. 21. The frequency power
laws also translate into low-temperature power laws of
the response in the dc limit �Devereaux and Einzel,
1995�.

Disorder effects generally smear peak features and
change the low-energy B1g exponent to 1, similar to the
change in the low-temperature NMR rate for d-wave
superconductors �Devereaux, 1995�. Moreover, similari-
ties between the in-plane conductivity and B2g Raman
follows from the BZ weighting around the nodes, while
the B1g response is qualitatively similar to the c-axis con-
ductivity due to the weighting around the antinodes
�Devereaux, 2003�. For example, the residual in-plane
conductivity at T→0 is universal and given by ��T=0�
=ne2 /m�&0, the slope of the B2g response proportional

to 2NF /�&0 is also universal and insensitive to impurity
effects, while the B1g channel and c-axis conductivity are
nonuniversal, having additional impurity dependent
prefactors �Devereaux, 1995, 2003; Devereaux and
Kampf, 1997�. The slope of the B2g response follows the
temperature dependence of the in-plane conductivity,
and both possess a peak at intermediate temperatures
due to a balance of DOS and lifetime effects as tempera-
tures are lowered from Tc. Yet, both the out-of-plane
conductivity and the B1g response do not show a peak
due to the more rapid variation of the projected DOS
coming from antinodal portions of the BZ.

We note that for a dxy energy gap, the above discus-
sion applies accordingly, with the role of B1g and B2g
symmetry reversed. It was indeed an important develop-
ment to show that Raman scattering is unique in deter-
mining two-particle electron dynamics in the supercon-
ducting state independently in different regions of the
BZ.

While low-frequency power laws are insensitive to
band structure �such as the shape of the Fermi surface�,
the polarization selection rules can select features of the
band structure at higher energies. For example, in cu-
prates the van Hove singularities from �� ,0� and related
points yield a peak at twice the quasiparticle energy
E�k� in A1g and B1g channels, as shown in Fig. 21. For
multiple bands, including the case of several Fermi-
surface sheets, the responses for crossed polarizations

FIG. 21. Raman spectra for unscreened A1g �top�, B1g
�middle�, and B2g �bottom� response as a function of reduced
temperature t=T /Tc. Here 2&�37 meV, and the higher peak
in A1g and B1g channels is a van Hove feature. From Branch
and Carbotte, 1995.
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are simply additive, yet for A1g channels due to backflow
effects an additional interference term can be present if
the charge fluctuations are different for the different
sheets �Krantz and Cardona, 1994; Devereaux et al.,
1996�.

Quite generally the backflow yields substantial reor-
ganization of spectral weight around 2&max compared to
the bare response �Branch and Carbotte, 1995; Dahm et
al., 1999�. This is because the term ��,1, which contrib-
utes in channels having the symmetry of the lattice, is
peaked and large at the same position as the unscreened
term ��,�. Not surprisingly, the reorganization depends
delicately on the relative momentum dependences of the
Raman vertices and energy gap �number of BZ harmon-
ics, for example, as shown in Fig. 22�, as well as on de-
tails of the band structure �Devereaux, Einzel, Stad-
lober, Hackl, et al., 1994; Krantz and Cardona, 1994;
Branch and Carbotte, 1996; Strohm and Cardona, 1997�.

For cuprates, Raman vertices have been calculated us-
ing LDA �Strohm and Cardona, 1997�, but limited
progress has been made in including the contributions of
substantial electronic correlations. In most other cases,
either the effective-mass approximation has been used
in calculations or simply a symmetry classification has
been made. While a detailed line-shape analysis can be
applied based purely on symmetry as explained above, it
must be kept in mind that even a comparison of overall
intensities between different geometries can at best be
qualitative.

Yet, the continuation of these treatments from the su-
perconducting to the normal state is not straightforward.
As can be seen directly from Eq. �60�, the intensity van-
ishes proportional to &2 as T approaches Tc. Hence to
avoid phase-space limitations in the absence of Cooper
pairs, an additional source for electronic scattering, such
as the one mediating the formation of Cooper pairs,
must be included. While strong coupling extensions of
Raman scattering in d-wave superconductors have re-
cently been presented �Jiang and Carbotte, 1996; Dahm
et al., 1999; Devereaux and Kampf, 2000�, a merging of
the normal and superconducting states is poorly under-

stood. This would require a not yet existing microscopic
description of the formation of d-wave superconductiv-
ity from the normal state.

7. Collective modes

Raman scattering has the almost unique ability to sort
out collective modes of the two-particle response in dif-
ferent symmetry channels, owing to the freedom to in-
dependently adjust the two polarization vectors. The
collective mode spectrum one obtains depends upon
which interactions are included in Eq. �57�. We first dis-
cuss the general consequences based on gauge invari-
ance and focus on excitonlike modes.

In order to form a fully gauge-invariant theory, the
interactions responsible for superconductivity appear

not only in Ĝ, but must also be included as vertex renor-

malizations $̂. In this way, the Raman response from
pure charge-density fluctuations in the superconducting
state yields the Goldstone mode from the broken gauge
symmetry—the phase or Anderson-Bogoliubov mode
�Anderson, 1958; Bogoliubov et al., 1959; Nambu, 1960�.
In the absence of the long-range Coulomb interaction,
this mode is a soft sound mode, yet the Coulomb
interactions—inescapable for q=0—push the sound
mode up to the plasma frequency via the Higgs mecha-
nism. As a result, particle-number conservation is satis-
fied in the superconducting state and �sc�q=0,��=0, in-
dependent of whether one considers Bloch states
�Abrikosov and Genkin, 1973; Klein and Dierker, 1984;
Monien and Zawadowski, 1990� or Anderson exact
eigenstates of the disordered problem �Devereaux,
1993�.

However, additional modes of excitonic origin may
appear if one considers further interactions between
electrons in clean �Bardasis and Schrieffer, 1961� and
disordered �Maki and Tsuneto, 1962; Fulde and
Strassler, 1965� conventional superconductors. These ex-
citons appear split off from the continuum at ���2& if
the interaction occurs in higher momentum channels or-
thogonal to the BCS condensate.

Since Raman scattering couples to anisotropic charge-
density fluctuations with symmetry selectivity to differ-
ent channels L, light polarizations can be used to deter-
mine the exact nature of bound states. Balseiro and
Falicov �1980� considered the formation of a phonon-
Cooper-pair bound state due to electron-phonon cou-
pling though neglecting channels higher than L=0.
However, this mode is canceled by the backflow apply-
ing generically to all systems. Finite L exciton formation
in clean and disordered superconductors and the result-
ing appearance in Raman scattering have been consid-
ered explicitly by Monien and Zawadowski �1990� and
Devereaux �1993�, respectively, bringing the symmetry
of the exciton and polarization dependence to light.

We show in Sec. III.B that the effect of final-state in-
teractions can be substantial in strongly coupled conven-
tional superconductors. This demonstrates the strength
of the electron-phonon coupling, not only in general, but
also specifically in channels orthogonal to the ground

FIG. 22. Comparison of the screened A1g response ob-
tained for different number of dx2−y2 gap harmon-
ics &�k�=&0��cos�kxa�−cos�kya�� /2+&1�cos�kxa�−cos�kya��3 /
8+&2�cos�kxa�−cos�kya��5 /32�. Here a–d correspond to the
set &1,2= �0,0�, �1,0�, �0,1�, and �1,1�, respectively, and &0 has
been rescaled to give the same value for the maximum gap.
Generally the large peak at 2& �as shown in Fig. 21� is sup-
pressed by backflow terms. From Devereaux et al., 1996.

200 Thomas P. Devereaux and Rudi Hackl: Inelastic light scattering from correlated …

Rev. Mod. Phys., Vol. 79, No. 1, January–March 2007



state. Interestingly, the lattice instability found in some
of these materials has the same symmetry as the collec-
tive mode and electronic states which apparently drive
the transition �Weber, 1984�.

For dx2−y2 superconductors, the collective mode spec-
tra have been investigated thoroughly by Devereaux and
Einzel �1995� and others �Wu and Griffin, 1995a, 1995b;
Manske et al., 1997, 1998; Dahm et al., 1998; Strohm et
al., 1998�. It was shown that the Anderson-Bogoliubov
mode appears in A1g channels and massive modes can
appear in other channels. Since the pair state has only
one representation in the D4h group, massive collective
modes arise when one considers interactions in orthogo-
nal channels. Recently, it has been suggested that the
presence of collective modes may allow one to distin-
guish charge- or spin-mediated d-wave pairing �Chu-
bukov et al., 1999, 2006�, highlighting the possible impor-
tance in the context of cuprates.

Generally, the collective mode spectrum can be quite
diverse in unconventional superconductors. In principle,
additional broken continuous symmetries can exist, such
as SO3

S spin rotational symmetry in spin-triplet systems
and SO3

L orbital rotational symmetry in spin-singlet sys-
tems, if the gap does not possess the full symmetry of
the lattice. Furthermore, massive collective modes can
arise if the energy gap is degenerate or has an admixture
of different representations of the point group. The mas-
sive modes can in principle lie below the gap edge, and
can thus be relevant for the low-frequency dynamics of
correlation functions. In fact, Raman-active modes in
spin-triplet superconductors such as Sr2RuO4 have
drawn recent theoretical interest �Kee et al., 2003�, al-
though the experimental challenges are not negligible
because of the low Tc and the related small energy gap
in these materials.

Though very interesting, spin-triplet pairing or spin-
orbit effects are rare and more on the exotic side in
superconductivity. Competing ground states, however,
are quite common whenever correlation effects come
into play. This is not at all confined to the cuprates, but
occurs also in, e.g., spin- and charge-density-wave sys-
tems. Usually, density-wave formation with long-range
order at least partially suppresses superconductivity
such as in 2H-NbSe2 �see below�. Then, additional
modes appear as a result of the competition between
CDW ordering and superconductivity, and collective
modes appear as one modulates either one or both order
parameters.

Littlewood and Varma �1981, 1982� and Browne and
Levin �1983� considered a direct coupling between
charge-density and superconducting gap amplitudes,
modulated, for example, by a CDW phonon, although
this was not specified. They obtained an additional gap
mode below 2&. Yet this mode was only considered in
the L=0 channel, and Coulomb interactions once again
remove this mode. Lei et al. �1985� considered an effec-
tive CDW-SC coupling via a phonon and realized that in
anisotropic systems such collective modes in L�0 chan-
nels may appear. Finally, Tüttő and Zawadowski �1992�

treated electron-phonon and CDW amplitude-phonon
coupling on equal footing in finite angular momentum
channels, showing generally that the collective modes in
these channels are unaffected by Coulomb screening.
The modes obtained split off from the gap edge and
appear as excitations below the quasiparticle spectrum,
much like excitons in semiconductors. Evidence of
mixed CDW-SC pairing may be seen in Raman experi-
ments via the presence or absence of these modes. This
has recently been extended by Zeyher �2003� to MgB2,
having multiple energy gaps on different electron bands.

The collective mode spectrum of coupled d-wave
charge density and superconductivity was investigated
by Zeyher and Greco �2002� along the lines developed
by Tüttő and Zawadowski �1992� for conventional CDW
and superconducting systems. As for s-wave CDW su-
perconductors, collective modes split off from the maxi-
mum of the gap edge. As an important difference in
d-wave systems, the modes distinctly affect the various
symmetry channels. Besides the reorganization of the
A1g spectral weight, additional modes alter the B1g spec-
trum, as shown in Fig. 23.

Density-wave instabilities need not necessarily com-
pete with superconductivity but rather can provide an
effective coupling mechanism �Castellani et al., 1995;
Perali et al., 1996� as long as quantum and thermal fluc-
tuations suppress long-range order. Then, collective
modes may appear as fluctuation-induced modes. Ra-
man scattering from these modes is usually determined
from Aslamazov-Larkin fluctuation diagrams considered
for the conductivity �Aslamazov and Larkin, 1968�. To
overcome q=0 phase-space limitations, the Raman re-

FIG. 23. Electronic Raman spectra of B symmetries for three
different doping levels including coupling of d-CDW and
d-superconducting amplitudes. The superscript 0 denotes the
spectra in the absence of collective modes. From Zeyher and
Greco, 2002.
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sponse is given by the exchange of two fluctuations
modes at wave vectors Qc and −Qc, yielding generally a
mode at energies of twice the mass of the fluctuation
propagator. Once again the polarization dependence can
select different fluctuation modes corresponding to dif-
ferent ordering wave vectors coupling to either charge-
or spin-density modes. This was investigated for spin
�Brenig and Monien, 1992� and charge �Caprara et al.,
2005� fluctuations in the normal state, and for novel spin
resonances in the superconducting state of cuprates
�Chubukov et al., 1999, 2006; Venturini et al., 2000�.

Last, we remark that many other types of collective
modes are possible if one considers more exotic ground
states with different symmetry classifications. For ex-
ample, a chiral spin liquid has been investigated by
Khveshchenko and Wiegmann �1994� in which helical
excitations were conjectured to exist and are in principle
measurable in A2g orientations which can be projected
out via proper sums of spectra taken with both linearly
and circularly polarized light. Other examples are modes
induced by magnetic fields or optical modes resulting
from Dzyaloshinskii-Moriya interactions in Heisenberg
antiferromagnets as observed recently in lightly doped
La2−xSrxCuO4, 0�x�0.03 �Gozar et al., 2005� and dis-
cussed by Silva Neto and Benfatto �2005�, directly dem-
onstrating the importance of spin coupling to the local
environment.

III. FROM WEAKLY TO STRONGLY INTERACTING
ELECTRONS

In this section we review experimental results in sys-
tems other than doped semiconductors �see reviews by,
e.g., Abstreiter et al. �1984� and Pinczuk and Abstreiter
�1989�� and cuprates �see Sec. IV� with a view towards
signatures in the Raman spectra arising from the devel-
opment of strong electronic correlations. We discuss
various types of superconductors and summarize results
on correlated metals and other strongly interacting sys-
tems.

The light-scattering cross section in absorbing media,
such as systems with free carriers, is generally weak
since the interaction volume is small for the short pen-
etration depth of visible light, �!
i=2�c /�i. As a con-
sequence, the momentum perpendicular to the surface is
not conserved, and the transfer q is no longer given by
the difference of the vacuum momenta of the involved
photons qi−qs but essentially by �=
 /4�k with k the
imaginary part of the index of refraction �Abrikosov and
Fal’kovski�, 1961; Mills et al., 1970�. Even in strongly
absorbing materials with k�1, 1 /�!� /a holds where a
is the lattice constant, and the limit of small momentum
transfer is still effective. This introduces a new energy
scale �vFq	�vF /�, with vF and q being the magnitudes
of the Fermi velocity and the momentum transfer, re-
spectively. In all considerations, this scale must be put
into relation to other relevant energies, such as the elec-
tron scattering rate $=� /� in the normal and the gap &
in the superconducting state. These at first glance aca-

demic considerations have major impact on both the ob-
servability and interpretation of electronic spectra.

A. Elemental metals and semiconductors

In addition to the small scattering volume due to the
absorption of light by free carriers, a parabolic disper-
sion and a spherical Fermi surface reduce the cross sec-
tion of single-electron excitations in metals and degen-
erate semiconductors strongly, since in such systems the
associated density fluctuations are screened by the long-
range Coulomb interaction. The few spectra we are
aware of have been on elements with a more complex
band structure such as Nb �Klein, 1982a; Klein and
Dierker, 1984� or Dy �Klein et al., 1991�. In Dy a broad
continuum similar to that in high-Tc cuprates �Bozovic et
al., 1987� is found. In Nb the superconducting state was
studied. Due to the low transition temperature Tc, the
correspondingly small energy gap &�T� and the small
ratio � /� with � the penetration depth of the light and �
the superconducting coherence length the characteristic
redistribution of scattering intensity is very hard to ob-
serve. The peaks found at 1.8 K in the expected energy
range close to 2&�T� are very weak, and no normal-state
spectra have been measured for comparison �Klein,
1982a; Klein and Dierker, 1984�.

In fact, superconductors rather than normal metals
were the main focus in the early days of electronic Ra-
man scattering. Only after the discovery of cuprates
�Bednorz and Müller, 1986�, with generally complicated
and sometimes very surprising electronic properties, did
studies of the normal state become increasingly attrac-
tive �see Sec. IV�.

B. Conventional superconducting compounds

Among superconductors, intermetallic compounds
like Nb3Sn or V3Si with A15 structure can be considered
conventional both above and below Tc. They are strictly
3D, superconductivity is mediated by phonons leading
to an essentially isotropic s-wave gap, and correlations
are believed to be of minor importance. This does not
mean they are simple. For instance, the Fermi velocity is
very small and close to the velocity of sound, and the
Fermi surface is multisheeted. Sufficiently perfect single
crystals of Nb3Sn and V3Si undergo a structural transfor-
mation from a cubic to a tetragonal lattice at low tem-
perature. Nevertheless, A15 compounds are paradigms
of strong-coupling s-wave superconductors with a high
density of electronic states at EF. Materials like the bo-
rocarbides, MgB2 or 2H-NbSe2, are certainly more com-
plex and correlations or multiband aspects come into
play.

1. A15 compounds

Superconductivity-induced structures close to twice
the gap edge were found in monocrystalline Nb3Sn �Fig.
24� and V3Si �Hackl et al., 1982, 1983; Klein, 1982a;
Dierker et al., 1983� two years after the discovery of gap
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modes in 2H-NbSe2 by Sooryakumar and Klein �1980�
�Sec. III.C� and after an early but unsuccessful attempt
in polycrystalline Nb3Sn by Fraas et al. �1970�. For T
�Tc the scattering intensity is redistributed with a sup-
pression below and a pileup at approximately 2&
�50 cm−1. The well-defined peak in Eg symmetry fol-
lows the BCS prediction for the temperature depen-
dence of the gap up to approximately 0.85Tc �Hackl et
al., 1983, 1989�. Somewhat unexpectedly, the peak fre-
quencies of the superconductivity-induced features de-
pend on the selected symmetry �Table II�. Independent
of minor differences in the absolute numbers stemming
from the data analysis the Eg peaks are significantly be-
low those having A1g and T2g symmetries. At first glance
one could think of a gap anisotropy to manifest itself.
However, there is no support from the tunneling results
which indicate the possible gap anisotropy to be oppo-
site in V3Si and Nb3Sn and very large or from calorimet-
ric studies which should track the smallest gap �Table II�.
In addition, the shapes of the Raman spectra are
strongly symmetry dependent in that the Eg peak is
much narrower than the others. The meaning of this an-
isotropy was a matter of intense discussion.

The results in A1g scattering symmetry in Nb3Sn
�Klein, 1982a; Dierker et al., 1983� and later in V3Si
�Hackl and Kaiser, 1988� demonstrate clearly that the
structures below Tc originate in light scattering from
Cooper pairs �Fig. 24�, since there exist no Raman-active
single excitations at this symmetry, such as phonons or

FIG. 24. Raman spectra of Nb3Sn. Lower curves in �a� and �b�
are at 40 K and upper curves are at 1.8 K. Data in �c� and �d�
are at 1.8 K. Below Tc=18 K the intensity at low energies is
strongly suppressed with respect to the normal state. Beyond a
threshold of approximately 50 cm−1 a new peak appears. The
symmetries are Eg ��a�, �d��, T2g �b�, Eg+A1g �c top�, Eg �c
middle�, and A1g �c bottom�. The A1g data in �c� are obtained
by subtracting the middle from the upper curve. Smooth solid
lines at low energy are theoretical fits to a broadened Maki-
Tsuneto function �see Sec. II.D.6�. From Dierker et al., 1983.

TABLE II. Gap energies in A15 compounds as measured by Raman scattering and other methods. a
and c refer to results from fits �see Fig. 24 and Sec. II.D.6�, b and d are peak frequencies. In two cases
an anisotropy was found by tunneling being indicated by a range �f and k�. The first and second
numbers are for �100� and �111� directions, respectively. Results of the following publications are
used: a �Dierker et al., 1983�, b �Hackl et al., 1989�, c �Klein and Dierker, 1984�, d �Hackl and Kaiser,
1988�, e �Rudman and Beasley, 1984�, f �Hoffstein and Cohen, 1969�, g �Geerk et al., 1984�, h �Junod
et al., 1983�, i �Axe and Shirane, 1973�, j �Moore et al., 1979�, k �Morita et al., 1984�, l �Tanner and
Sievers, 1973�, and m �Perkovitz et al., 1976�.

Sample

Raman energy �cm−1�

Reference data �cm−1�A1g Eg T2g

50 tunneling e
35–13 tunneling f

52 41 50 a
Nb3Sn 53 tunneling g

67 48 70 b
62 calorimetric h
56 neutrons i

37 tunneling j
40–50 tunneling k

40 c
V3Si 46 IR l

55 42 52 d
41 IR m
49 calorimetric h
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other bosonic modes in the A15 structure from which
electrons can borrow intensity. There is not even an ob-
servable electronic continuum above Tc �see Fig. 24�c�
and Hackl and Kaiser �1988��. In spite of similar band
structures and densities of states at the Fermi level
N�EF� �Klein et al., 1978�, the intensities of the modes
are quite different in the two compounds as is the over-
all scattering cross section. For this reason, the weak A1g
mode in V3Si escaped detection for a while �Hackl and
Kaiser, 1988�. Since there is nothing to interact with, the
peak frequencies of the A1g structures should be close to
the energy gap in the respective material. One actually
observes coincidence of both the A1g and T2g Raman
energies with those of bulk methods such as calorimetry
and neutrons, while the Eg energies are substantially
lower �Table II�.

We first note that surface sensitive methods such as
tunneling return somewhat smaller gap energies than
bulk methods. Optical spectroscopy results are also
smaller most likely due to surface treatment. Strain or
disorder can indeed reduce Tc in A15 materials since
N�EF� decreases rapidly �Mattheiss and Weber, 1982�.
Similar reasons might apply for the Raman data in
Nb3Sn of Dierker et al. �1983� although the fits �see Fig.
24� reveal gap values slightly below �5–10 %� the peak
positions. Spectra of cleaved surfaces, such as those of
V3Si and Nb3Sn taken by Hackl and Kaiser �1988� and
Hackl et al. �1989�, respectively, apparently give gaps
closer to the bulk values.

For these reasons, it seems worthwhile to look for
other sources of the anisotropy, and we consider an in-
terpretation in terms of final-state interactions �Bardasis
and Schrieffer, 1961; Zawadowski et al., 1972; Klein and
Dierker, 1984�. This means that the two single electrons
of a broken Cooper pair can still interact in channels
orthogonal to the pairing channel. The strongly coupled
Eg phonon �Wipf et al., 1978; Schicktanz et al., 1980,
1982; Weber, 1984� is in fact orthogonal to the fully sym-
metric �s-wave� pairing channel. Hence it is capable of
forming a bound state below the pair-breaking thresh-
old, explaining both the reduced energy and linewidth of
the Eg gap mode �Monien and Zawadowski, 1990�. Fits
to the results in V3Si are substantially improved by in-
cluding the bound state �Fig. 25� in comparison to those
neglecting it �Klein and Dierker, 1984�. Additional ex-
perimental support comes from the evolution with tem-
perature of the spectra in V3Si and Nb3Sn �Hackl et al.,
1983, 1989�. In either compound, the integrated spectral
weight in A1g symmetry increases significantly because a
new scattering channel opens up below Tc due to the
formation of Cooper pairs while staying essentially con-
stant in Eg symmetry because the weight is being trans-
ferred from the phonon to the bound state �Fig. 26�.

In contrast to Eg symmetry, the pair-breaking features
in T2g symmetry are weak and essentially at the A1g po-
sition. The question arises as to why there is no bound
state although there exists a phonon. Clearly, the T2g
phonon intensity is weak and the linewidth is small, re-
flecting the moderate coupling as opposed to Eg symme-

try where the complete linewidth and the asymmetric
Fano shape stem from the coupling to conduction elec-
trons �Wipf et al., 1978; Weber, 1984�. The bound state’s
energy splitoff by approximately 30% indicates that the
very strong interaction drives the system close to an in-
stability of the s-wave ground state. On the other hand,
the T2g mode is only weakly coupled and the interaction
with conduction electrons is not strong enough to sub-
stantially renormalize the spectrum.

Symmetry arguments, the unique line shape, the in-
tensity transfer in Eg symmetry, as well as the compari-
son to calorimetric results make us believe that the for-
mation of a bound state is more likely an interpretation

FIG. 25. Raman spectra in Eg symmetry of V3Si. From Mon-
ien and Zawadowski, 1990.

FIG. 26. Raman spectra of Nb3Sn at �a� Eg and �b� A1g sym-
metries. The integrated spectral weight �limits indicated by ar-
rows� stays constant to within 3% in Eg symmetry while in-
creasing by a factor of 3 in A1g symmetry on cooling from Tc to
6 K. For clarity the data points are omitted and only the re-
sults of a smoothing procedure are displayed. The scatter of
the data is smaller than 0.1 unit around the lines. From Hackl
et al., 1989.
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of the Eg results in A15 compounds than the manifesta-
tion of a gap anisotropy or a two-gap scenario. In con-
trast, both effects may cooperate in 2D MgB2 discovered
to be a superconductor recently by Nagamatsu et al.
�2001�.

2. MgB2 and the borocarbides

Electronic Raman studies on MgB2 have explored the
superconducting energy gap and changes in phonon line
shapes occurring below Tc, starting with the work of
Chen et al. �2001� and followed thereafter by Quilty et al.
�2002, 2003�. Here the symmetry dependence of the re-
sponse allowed direct observation of the pairing gap on
the two-dimensional � bands and the 3D � bands. By
orienting the light polarizations along the c axis of MgB2
�perpendicular to the hexagonal planes� the � bands
cannot be probed for having little dispersion and thus
the � bands are projected out, giving a value 2&�
=29 cm−1. Other polarizations are able to detect a larger
pairing gap 2&�=100 cm−1. zz-polarized spectra in the
superconducting state are shown in Fig. 27 along with
fits from the theory for disordered s-wave superconduct-
ors.

The gap values are consistent with those from other
techniques, yet the fit yields values of the disorder-
related scattering rate different from those of the resis-
tivity by a factor of 2 �Quilty et al., 2003�. Zeyher �2003�
has reanalyzed the fit where the direct coupling of light
to the � band is zero and the � gap appears as a result of
a coupling to the Raman-active E2g phonon, believed to
be largely responsible for pairing. The xx spectrum in
the superconducting state can be understood then as a
superposition of a phonon line, a background, and a col-
lective bound state due to residual interactions between
electrons, similar to that observed in A15 compounds
�see Figs. 25 and 26�a��.

The superconducting energy gap has also been studied
in some detail in the borocarbide superconductors

RNi2B2C �R=Y,Lu� by Yang, Klein, Cooper, et al.
�2000� and Yang, Klein, Devereaux, et al. �2000�. Sharp
2& peaks were observed in A1g and B2g symmetries,
while the maximum in B1g symmetry is less pronounced
and 20% higher in energy. All peaks showed a typical
BCS-type temperature dependence and disappeared
above the upper critical field Hc2. Due to the high sur-
face quality and improved instrumentation, the residual
scattering intensity below the gap edge is much smaller
than, e.g., in the A15 compounds but finite with an ap-
proximately linear variation with energy.

Since a direct coupling to a Raman-active mode was
not found in the borocarbides, it is more complicated
than in the A15 compounds or in MgB2 to sort out
whether a gap anisotropy, multigap superconductivity, or
collective modes are responsible for the variations in en-
ergy and line shape at the different symmetries. Bound
states are not only induced by Raman-active modes.
Then, however, the experimental verification via the line
shape is more difficult �see Fig. 25�. Similarly, the linear
low-energy scattering can suggest either the presence of
strong inelastic scattering due to large coupling con-
stants 
 �Allen and Rainer, 1991; Yang, Klein, De-
vereaux, et al., 2000� or gap nodes in pairing states with
lower symmetry, such as �s+g�, wave superconductivity
�Lee and Choi, 2002�. A quantitative analysis on the ba-
sis of a realistic band structure could possibly help to
clarify these, at present, open issues.

While superconductivity was the dominant correlation
in the A15 compounds, MgB2 was more complex due to
the interplay between 2D and 3D behavior. In the boro-
carbides magnetic order as a second instability compet-
ing with superconductivity comes into play �Canfield et
al., 1998�. Although the Raman studies were performed
on nonmagnetic compounds �Yang, Klein, Cooper, et al.,
2000; Yang, Klein, Devereaux, et al., 2000� the vicinity of
different types of order is characteristic for this and the
following classes of systems.

C. Charge-density-wave systems

The competition or coexistence of different ground
states was studied intensively in layered dichalcogenides
in the 1970s and 1980s. The interest in these charge-
density-wave systems was revived after the discovery of
superconductivity in cuprates for two reasons: in both
compound classes superconductivity competes with one
or more other instabilities, and, second, the dramatically
improved instrumentation allowed qualitatively new and
unexpected insights into materials like 2H-
NbSe2. As an example, the electronic scattering rate �−1

exhibits marginal �Varma et al., 1989� rather than Fermi-
liquid-like temperature and energy dependences �for a
discussion and for references see, e.g., Castro Neto
�2001��.

1. 2H-NbSe2

2H-NbSe2 is a layered, though 3D, superconductor
with an in-plane coherence length �� of approximately

FIG. 27. Raman spectra for xx and zz polarization geometries
in the superconducting state of MgB2 taken by Quilty et al.
�2003�. The solid lines are fits to the data using the theory of
Devereaux �1992� for disordered s-wave superconductors using
a single-gap and two-gap model for zz and xx polarizations.
The xx spectrum has also been interpreted in terms of a col-
lective bound state by Zeyher �2003�.
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70 Å and ��=25 Å �de Trey et al., 1973�. The penetra-
tion depth for visible light � is of the order of 200 Å,
hence ��!�. The discontinuity at 2& is expected to in-
crease with 2& /�vFq	� /� �Klein and Dierker, 1984�. In
addition, the material can be cleaved easily, facilitating
the preparation of atomically flat surfaces from which
diffuse scattering of laser light is minimized. These are
favorable �though not easy� conditions for observing gap
structures close to the elastic line.

In Fig. 28, the first observation of the redistribution of
scattering intensity in the superconducting state of
2H-NbSe2 with the sample immersed in superfluid He is
reproduced. The effect is measured for two samples with
slightly different impurity concentrations. In either case,
the fully symmetric A and E responses are shown.13 The
peaks have slightly different energies, and are located at
18 and 15 cm−1, respectively, close to twice the essen-
tially k independent leading edge gaps found in recent
photoemission experiments �Valla et al., 2004�. In the
normal state at 9 K the new low-energy modes are ab-
sent, while the maximum related to the CDW state is
still present. As can be seen in all panels, the CDW
mode hardens below the superconducting transition.

The difference between the two samples is the impu-
rity concentration apparently affecting the strength of
both the CDW and the gap mode. In fact, the CDW
transition can be suppressed by either pressure or an
increasing number of defects, which may be quantified
by the residual resistance ratio �Huntley and Frindt,
1974�. In a systematic study of impurity effects, Soorya-

kumar et al. �1981� showed that the gap excitations van-
ish along with the CDW mode while the superconduct-
ing transition temperature is essentially unchanged. It is
tempting to assume that the gap modes are directly
coupled to the CDW mode and exist only along with it.
This interpretation is supported by results obtained in a
magnetic field �Fig. 29�. Upon increasing the field the
gap feature in A symmetry is gradually suppressed while
the CDW mode gains intensity leaving the energy inte-
gral over the Raman response ����� constant to within
7% �Sooryakumar and Klein, 1981�. In E symmetry no
clear sum rule could be found �Sooryakumar and Klein,
1981�, and it is possible that some of the gap intensity
appears independent of the CDW.

Particularly the result in A symmetry �Fig. 29�, where
the gap mode gains intensity at the expense of the CDW
mode, triggered the theoretical work to follow.14 The
available data are not supportive of a sum rule in E
symmetry �see Fig. 28�a��, demonstrating similarities
with the A15 compounds where also both electronic
scattering and coupling to phonons was observed. In or-
der to shed some light into the rather involved discus-
sion, it is worthwhile to reconsider the influence of im-
purities �Sooryakumar et al., 1981�.

At first glance, the reaction to disorder points in the
same direction as the results in magnetic fields. How-
ever, defects not only suppress the formation of the
CDW �Huntley and Frindt, 1974� but also, indepen-
dently, reduce the intensity close to 2& �Devereaux,
1992, 1993� while normally leaving the transition tem-

13In the �incommensurate� CDW phase the symmetry repre-
sentations A1g, etc., of the D6h point group do not apply any
more.

14For convenience we give related references discussed thor-
oughly in the context of collective modes: Balseiro and Falicov,
1980; Littlewood and Varma, 1981, 1982; Browne and Levin,
1983; Klein and Dierker, 1984; Lei et al., 1985; Monien and
Zawadowski, 1990; Tüttő and Zawadowski, 1992. We would
like to draw the readers’s attention also to the closely related
Raman experiments in superfluid 4He �Greytak and Yan, 1969�
and their theoretical description �Zawadowski et al., 1972�.

FIG. 29. Raman spectra in A symmetry of 2H-NbSe2 �sample
B� in various magnetic fields at 2 K. From Sooryakumar and
Klein, 1980.

FIG. 28. Raman spectra of 2H-NbSe2 above and below Tc.
The lower curves of each panel are taken in the normal state
�9 K� and the upper ones at 2 K well below Tc with the sample
immersed in superfluid He. At the A ��−� � and E ��� sym-
metries the superconducting spectra are offset by 40 and 20
counts, respectively. According to the strength of the CDW
mode �labeled by C� samples B and M have slightly different
impurity concentrations. From Sooryakumar and Klein, 1980.
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perature Tc of a conventional s-wave superconductor
unchanged �Anderson, 1959�.15 For �vF /�!&, � /� the
intensity at 2& is proportional to �& �Devereaux, 1992,
1993�. In this respect Raman is just opposite to optical
conductivity where the gap can be observed only if � /�
is of the order of & or larger �Mattis and Bardeen, 1958�.
This implies that the Raman gap feature can be wiped
out by impurities while Tc remains essentially constant;
at the same time, though independently, the CDW tran-
sition is suppressed. Hence it is possible that the gap
features in 2H-NbSe2 exist on their own as pair-breaking
effects but the interaction with the CDW leads to a
bound state.

Most of the other CDW systems are not supercon-
ducting, but show very interesting behavior around the
transition to the charge-ordered phase. Some of them
have been studied earlier using light scattering. Here we
briefly discuss a recent study of the temperature-
pressure phase diagram of the CDW state.

2. 1T-TiSe2

In 1T-TiSe2 a commensurate CDW is established be-
low TCDW�200 K. The amplitude of the CDW couples
to zone-boundary acoustic phonons which are folded to
the center below TCDW �Snow et al., 2003�. Pronounced
soft-mode behavior can be observed as a function of
temperature. In the limit T→0 two strong lines at 115
and 75 cm−1 in A1g and Eg symmetry, respectively, domi-
nate the low-energy spectra. By increasing the pressure
the CDW state first stiffens along with the lattice then
disappears rapidly in the pressure range of 5–25 kbar.
Above 25 kbar a quantum disordered �essentially isotro-
pic� metallic or semimetallic state is found although the
Raman continuum typical for a metal is not reported.
The quantum-mechanical melting of the CDW order is
in many ways similar to classical 2D melting, with the
appearance of crystalline and disordered CDW regimes,
as well as an intermediate soft CDW regime in which
the CDW exhibits strong fluctuations and loses stiffness.
Here measurements on the development and polariza-
tion dependence of the electronic continuum raises the
possibility of following quantum critical behavior in
other systems with competing orders. This is a promising
direction for future studies.

D. Kondo or mixed-valent insulators

All correlations discussed so far are related to
electron-lattice interactions in systems with screening
lengths of the order of the interatomic spacing. With
decreasing electronic density, new phenomena develop
originating from the competition between kinetic and

potential energy of conduction electrons. Well-known
examples are the Mott metal-insulator transition or
Wigner crystallization. In either case, the material be-
comes an insulator at low temperature due to “immobi-
lization” of electrons.

Raman scattering on band insulators and semiconduc-
tors has been well documented, with a focus placed on
high-energy charge-transfer excitations. Yet the develop-
ment of the Raman response at low frequencies can in
principle shed light on the development of electronic
correlations with temperature and/or doping.

Experiments by Nyhus, Cooper, and Fisk �1995� on
Kondo insulating FeSi shown in Fig. 30 and Nyhus, Coo-
per, Fisk, and Sarrao �1995, 1997� on mixed-valent SmB6
have indeed shown the transfer of spectral weight from
low to high energies as the temperature is lowered into
the insulating state. This “universality” suggests that
there is a common mechanism governing the dynamic
charge relaxation in correlated insulators. As these ma-
terials are cooled, they show a pileup of spectral weight
for moderate photon energy losses with a simultaneous
reduction of the low-frequency spectral weight. This
spectral weight transfer is slow at high temperatures and
then rapidly increases as the temperature is lowered to-
wards a putative quantum critical point corresponding to
a metal-insulator transition.

A characteristic energy appears which separates the
region of intensity depletion from intensity enhance-
ment with temperature. This characteristic frequency is
essentially independent of temperature and is thus
called an isosbestic point in the spectra �as shown in Fig.
30�. Finally, it is often observed that the range of fre-
quency where the Raman response is reduced, as T is
lowered, is an order of magnitude or more larger than
the temperature at which the low-frequency spectral
weight disappears. As discussed in the Sec. II.D.4 these
findings are consistent with the loss of low-frequency
scattering due to thermal depletion of excited states.
The channel dependence has not yet been a focus of

15In A15 compounds the high density of electronic states at
EF �partially responsible for high Tc� depends sensitively on
disorder �Matthesis and Weber, 1982�. Hence disorder reduces
Tc fast as opposed to what one would expect from the Ander-
son theorem.

FIG. 30. Temperature dependence of the Raman response
measured in FeSi by Nyhus, Cooper, and Fisk �1995�. Here &c
denotes the position of energy gap developing in the con-
tinuum at low temperatures, transferring spectral intensity into
the peak at energy &0. The sharp low-energy features are
phonons.
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interest. If it were measured, information concerning the
evolution of the potential energy with doping could be
inferred �Freericks et al., 2005�.

E. Magnetic, charge, and orbital ordering: Raman scattering
in Eu-based compounds, ruthenates, and the manganites

There has been a great deal of interest in the relation-
ship between diverse and exotic low-temperature phases
of strongly correlated systems �Dagotto, 2005�. In par-
ticular, the manganites, ruthenates, Eu oxides, and
hexaborides display charge-ordered, paramagnetic or
antiferromagnetic insulating, and ferromagnetic metallic
phases as a function of doping, pressure, and/or tem-
perature. Due to the complex interplay between spin,
charge, and orbital degrees of freedom, these systems
present a battleground where different ordered phases
compete for primacy as components of the Hamiltonian
are changed �Imada et al., 1998�.

The phase diagram of strongly correlated materials is
more complex in systems having strong electron-lattice
interactions as well as orbital ordering tendencies. Ra-
man spectroscopy in systems such as the manganites and
ruthenates have provided information on the evolution
of lattice, charge, and spin dynamics across phase
boundaries. In many cases the transitions can be induced
by applying pressure.

While Raman scattering from phonons has tradition-
ally provided information concerning the development
of locally or globally symmetry-broken states accompa-
nied by the formation of static charge ordering, elec-
tronic Raman spectroscopy can be brought to bear on
this problem as it can detect both fluctuating or static
charge and/or spin ordering, and may reflect on the ten-
dency toward orbital ordering as well. In addition, the
polarization dependence can shed light on the types of
excitations that are created in or near the ordered
phases which may serve as signatures that certain inter-
actions are more prominent than others. Thus Raman is
a powerful spectroscopic method by which the dynamics
across quantum phase transitions can be investigated in
correlated systems.

Recent Raman studies on EuB6 �Nyhus, Yoon, et al.,
1997�, Eu1−xLaxB6, EuO �Snow et al., 2001�, and
Eu1−xGdxO �Rho et al., 2002� showed that the metal-
semiconductor transition in these materials is accompa-
nied by distinct changes of the electronic continuum. A
high-temperature paramagnetic semimetallic phase is
well characterized by scattering from diffusive charge
excitations which become less diffusive at lower tem-
peratures when correlation effects have not yet set in.
However, the diffusive scattering rate, when fit with Eq.
�49�, increases with decreasing temperature and scales
with the magnetic susceptibility as the system begins to
develop short-range magnetic order, typical of insulating
behavior, as shown in Figs. 19 and 30. Finally, at low
temperatures, a ferromagnetic metallic phase occurs,
showing a flat continuum characteristic of a strongly cor-
related metal. The doping, polarization, and magnetic-
field dependence of the spectra imply that the metal-

semiconductor transition is precipitated by the
formation of bound magnetic polarons above the ferro-
magnetic ordering temperature.

Concerning the ruthenates, recently Snow et al. �2002�
and Rho et al. �2003� have studied the evolution of the
spin and lattice dynamics through the pressure-tuned
collapse of the antiferromagnetic Mott-like phases of
Ca2RuO4, Ca3Ru2O7, and Ca2−xSrxRuO4 into a ferro-
magnetic and possibly orbitally ordered metallic state at
low temperatures. The studies have shown many charac-
teristic features resulting from the interplay of strong
electron-lattice and electron-electron interactions. These
include �i� evidence of an increase of the electron-
phonon interaction strength, �ii� an increased tempera-
ture dependence of the two-magnon energy and line-
width in the antiferromagnetic insulating phase, �iii�
evidence of a charge gap development significantly be-
low the metal-insulator transition �TMI�, and �iv� a hys-
teresis associated with the structural phase change. The
latter two effects are indicative of a first-order metal-
insulator transition and a coexistence of metallic and in-
sulating components for T�TMI. The measurements
have not yet been extended to probe the unconventional
superconducting state at low temperatures.

Raman measurements on cubic and layered mangan-
ites have been used to explore the interplay of spin,
charge, and orbital degrees of freedom. Yamamoto et al.
�2000� and Romero et al. �2001� observed a suppression
of the low-energy continuum at B1g symmetry upon en-
tering the charge- and orbital-ordered state. The inter-
pretation is not yet settled. Possible candidates are spin-
density or dynamical charge-orbital fluctuations
�Yamamoto et al., 2000� or a collective CDW excitation
�Romero et al., 2001�. The controversy can probably not
be solved without a quantitative theoretical description.

Björnsson et al. �2000� have measured cubic
La1−xSrxMnO3 and via phonon line-shape analysis have
shown strong electron-phonon interactions involving lo-
cal lattice distortions in the high-temperature paramag-
netic state which gradually vanish below the ferromag-
netic transition. A broad hump in the electronic spectra
develops at low temperatures in the metallic state
around 400 cm−1 for x=0.2, and weakens in intensity and
shifts to higher energies for x=0.5. Although a polaronic
peak would weaken with increasing carrier density, the
shift towards higher energies with doping was inter-
preted rather as a low-energy plasma excitations within
the ferromagnetic metallic phase. Since recent ARPES
studies on the same compound �Mannella et al., 2004�
and bilayer manganite �Mannella et al., 2005� have re-
vealed coexistence of quasiparticle and polaron features
in the metallic phase and do not show evidence for low-
energy plasma excitations, more work is needed to
clarify this issue.

A comprehensive study via reflectance and
Raman measurements on Pr0.7Pb0.21Ca0.09MnO3,
La0.64Pb0.36MnO3, La0.66Pb0.23Ca0.11MnO3, and
Pr0.63Sr0.37MnO3 by Yoon et al. �1998� has shown that the
electronic continuum displays a change from diffusive
polaronic peaks at high temperature to a flat featureless
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continuum, similar to that observed in the cuprates, in
the low-temperature ferromagnetic phase. A broad po-
laronic peak around 1200 cm−1 shifts to lower energies
with increases doping indicative of weakened polaron
binding energies. This is consistent with a cross-
over from a small-polaron-dominated regime at high
temperatures to a large-polaron-dominated low-
temperature regime. The low-temperature phase also
provided evidence for the coexistence of large and small
polarons, also in agreement with the ARPES results.

Recent work on Bi1−xCaxMnO3 �x�0.5� by Yoon et al.
�2000� is of particular interest in connection with the
search for charge ordering. As shown in Fig. 31, Raman
scattering offers a unique means of probing the uncon-
ventional spin and/or charge dynamics that arise when

charge carriers are placed in the complex spin environ-
ment of a charge-ordered system. Using circularly �LL�
in addition to linearly �xx and yy� polarized light anti-
symmetric components of the Raman tensor were iso-
lated. In cubic crystals such as Bi1−xCaxMnO3 they trans-
form as the T1g irreducible representation �equivalent to
A2g in tetragonal materials like cuprates�. Upon entering
the charge-ordered phase a quasielastic scattering re-
sponse appears with the T1g symmetry of the spin-
chirality operator. Thus it was conjectured that the chiral
excitations were signatures either of a chiral spin-liquid
state associated with the Mn core spins or of closed-loop
charge motion caused by the constraining environment
of the complex orbital and Néel textures. A possible
path for charge motion is shown in Fig. 31, emphasizing
the circular nature of charge transfer. It is remarkable
that the spectral shape and the temperature variation of
the characteristic energy are quite similar to the low-
energy response in cuprates �see Sec. IV.D.3� although a
state with static order is entered in Bi1−xCaxMnO3. It is
interesting and perhaps important how the two types of
response are related.

Recently Saitoh et al. �2001� have performed Raman
measurements on detwinned and orbitally ordered
LaMnO3 and have observed multiple peak structures
which they interpret as orbital excitations or orbitons.
While this has been challenged by Grüninger et al.
�2002� on the basis of selection rules, more recent mea-
surements by Krüger et al. �2004� related the peak fea-
tures to second-order phonon scattering activated via
the Franck-Condon mechanism �Perebeinos and Allen,
2001�.

Even if we could only scratch the surface of this inter-
esting subject we hope to demonstrate that Raman mea-
surements continue to be of merit to study the interplay
of strong correlations and electron-phonon coupling and
the novel excitations which emerge in orbitally ordered
systems.

In this section we have shown how the Raman spectra
evolve as the degree of correlations increases in differ-
ent materials. One common aspect is the nontrivial po-
larization and temperature dependence of the spectra
which emerge in materials with increasing complexity.
Finally, it was shown that Raman scattering can be ap-
plied to materials with varying degrees of competition
between ordered states. Nowhere is this more apparent
than in the results on cuprates with high superconduct-
ing transition temperature. Due to the large amount of
work devoted to these materials and the complexities of
the issues raised, we split off the discussion of cuprates
and related compounds into the following separate sec-
tion.

IV. HIGH-TEMPERATURE SUPERCONDUCTING
CUPRATES

The story of cuprates began with the discovery by
Bednorz and Müller �1986� of superconductivity in
La2−xBaxCuO4 with x�0.1, . . . ,0.2. Soon after the con-

FIG. 31. Raman response in a charge-ordered system. �a� Tem-
perature dependence of the Raman spectra in the LL scatter-
ing geometry in Bi0.19Ca0.81MnO3. �b� Fractional change in the
integrated quasielastic Raman scattering intensity
�50–350 cm−1� as a function of T /Tco for samples with charge-
ordering temperatures Tco=165 �circles� and 210 K �triangles�.
Inset: Fractional change in the quasielastic scattering ampli-
tude A and fluctuation rate $ as a function of T /Tco obtained
via a fit of the data with Eq. �49�. Lines are guides to the eye.
�c� Example of a closed-loop path for charge motion in the
charge-ordered phase �x=0.5� which is not precluded either by
the orbital configuration or by the spin environment. Filled
and empty circles represent Mn3+ and Mn4+ sites, respectively.
From Yoon et al., 2000.
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firmation by Cava et al. �1987�, YBa2Cu3O7 with a Tc
above 90 K was synthesized �Wu et al., 1987�. These un-
expected results led to further discoveries of layered cu-
prate structures with one or more CuO2 planes per unit
cell �Fig. 32�. Materials synthesis has yielded compounds
with increasingly higher Tc, and major advances have
been made in single-crystal growth methods,16 providing
a diversity of samples. Independent of the material fam-
ily and its respective maximal Tc, superconductivity ex-
ists for doping levels 0.05�p�0.27 and 0.12�n�0.18
with p and n the number of holes and electrons, respec-
tively, per plaquette �CuO2 formula unit� �Onose et al.,
2001; Tallon and Loram, 2001� as shown schematically in
Fig. 32. n=0=p denotes half-filling.

It became clear soon thereafter that cuprates are
doped Mott insulators with strong electronic correla-
tions dominating the entire phase diagram �Fig. 32�. The
emergence of high-temperature superconducting phases
in materials from which strong correlations yield antifer-
romagnetism and large departures from Fermi-liquid
theory has highlighted our limited understanding of
electronic correlations. While overdoped systems seem
to display a behavior of the resistivity close to T2 at low
temperature �Nakamae et al., 2003� and well-defined
quasiparticles in ARPES studies, strong deviations al-
ready occur for optimally doped systems and become
increasingly pronounced as the antiferromagnetic phase
is approached. At optimal doping, where Tc is maximal,
the materials have already high normal-state resistivities
and hence are canonical examples that bad metals make
good superconductors. We still do not have a theoretical
framework to understand why.

Upon underdoping, cuprates develop strong elec-
tronic anisotropies in the CuO2 planes, which can be
thought of as a signature of correlations. For this reason,
momentum resolution is crucial for understanding the
physical properties. ARPES has been important from
the beginning, revealing among many other things a
strong k dependence of both the superconducting en-
ergy gap and the pseudogap in the normal state �Cam-
puzano et al., 2002; Damascelli et al., 2003�. As a more
subtle effect, the quasiparticle weight Zk and the inco-
herent part of the spectral function were observed to
have a substantial variation with k and doping p, imply-
ing the importance of correlation effects and the exis-
tence of strongly momentum-dependent interactions
�Damascelli et al., 2003�. More recent studies of scanning
tunneling microscopy �STM� have indicated the pres-
ence of nanoscale disorder �McElroy et al., 2005� in ad-
dition to the strong anisotropies identified from ARPES
studies �Damascelli et al., 2003�. Both tools have com-
bined to give insight into the tendencies these com-
pounds have towards electronic ordering before the an-
tiferromagnetic phase is reached.17 This demonstrates
directly that the simultaneous understanding of both
single- and two-particle response functions is important.

In this context, electronic Raman scattering has
played a major role in characterizing the anisotropic dy-
namics of electrons across the phase diagram. These in-
clude the intense study of antiferromagnetism, where
Raman measurements on the parent insulating cuprate
compounds were the first to yield an estimate of the
magnetic exchange J from the energy of the two-
magnon scattering peak in the B1g channel �Lyons et al.,

16Recent work can be found in Hardy et al., 1993; Erb,
Walker, and Flükiger, 1996; Liang et al., 2000, 2002; Onose et
al., 2001; Ando, Komiya, et al., 2004; Eisaki et al., 2004.

17A selection of references is Hanaguri et al., 2002; Hoffman
et al., 2002; Damascelli et al., 2003; Howald et al., 2003; Vershi-
nin et al., 2004.

FIG. 32. �Color� Schematic phase diagram of the cuprates. On the hole-doped �p� side long-range antiferromagnetic �AF� order
disappears rapidly. The maximal superconducting �SC� transition temperature Tc is strongly material dependent but always ob-
served at p�0.16. On the electron-doped �n� side the AF phase is more extended. Tc does not exceed 30 K at n�0.14. T*

represents the approximate crossover temperature to the pseudogap regime �Timusk and Statt, 1999�. On the left-hand side and
the right-hand side the structures of prototypical Nd2−xCexCuO4 and La2−xSrxCuO4, respectively, are shown. The atoms are Cu:
red; O: blue; La,Sr and Nd,Ce: yellow. All cuprates are tetragonal or close to tetragonal with small material-dependent deviations.
Nd2−xCexCuO4 crystallizes in T� structure without O octahedra and a slightly shorter c axis. La2−xSrxCuO4 and all other hole-
doped materials have octahedra which are cut into half for materials with more than one CuO2 plane.
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1988�. The discovery of the broad and flat electronic
continuum in the normal state of cuprates close to opti-
mal doping �Bozovic et al., 1987� became the signature
of the anomalous and strange metallic phase at high
temperatures and spawned the idea of marginal quasi-
particles �Varma et al., 1989�. The polarization depen-
dence of this background above �Staufer et al., 1990;
Slakey et al., 1991� as well as below Tc �Cooper, Slakey,
et al., 1988; Hackl et al., 1988; Slakey, Klein, Rice, et al.,
1990� visualized strong anisotropic interactions in these
materials. Specifically, the observation of a polarization-
dependent gap opening in the spectra below Tc was in-
strumental in solidifying the symmetry and orientation
of the superconducting order parameter. Finally, more
recent work has focused on elucidating the behavior of
competing orders and complexity which come hand in
hand with strong correlations.

It is safe to say that no other system has been studied
so intensely via a bevy of experimental tools in recent
years as the cuprates. This is certainly true for Raman
spectroscopy, where light-scattering cross sections have
been analyzed in a rich number and quality of materials.
In this section, we discuss Raman results on cuprates
and related materials, with an overview of relating find-
ings to the physics uncovered in other systems. We show
issues in which consensus has been reached and other
issues which are controversial and require further analy-
sis.

A. From a doped Mott insulator to a Fermi liquid

The so-called parent compounds of the cuprate super-
conductors are antiferromagnetic Mott insulators. At
half-filling, charges are localized and excited states are
separated by an approximately 2-eV charge transfer gap,
modeled as the Coulomb energy U prohibiting double
occupancy in the Hubbard model.18 The ground state is
a Heisenberg antiferromagnet which develops 3D long-
range order below a Néel temperature of typically
300 K. The excitations are spin waves with a very small
�in-plane� anisotropy gap at q=0 and a nearest-neighbor
exchange coupling J. The spin waves have been studied
right at the beginning by Raman scattering, and J was
determined from the two-magnon peak to be of order
100 meV.19 Very early the existence of chiral spin exci-
tations, i.e., excitations where the spins are rotated out
of the easy �CuO2� plane, was demonstrated �Sulewski et
al., 1991�. The resonance profile20 has been described in
terms of the triple resonance theory of Chubukov and
Frenkel �1995a, 1995b�. Between 1.5 and 1.6 eV, i.e., well
above the magnetic excitation energies, a strong peak

was observed and, for its A2g symmetry, interpreted in
terms of a copper d-d interorbital transition �Liu et al.,
1993�. Very recently, one magnon excitations at q=0
were observed in the Néel state of La2−xSrxCuO4 �Gozar
et al., 2004� and related to Dzyaloshinskii-Moriya and
XY optical modes resulting from a spin gap by Silva
Neto and Benfatto �2005�. The experiments are the q
=0 and ��→0 manifestation of canted spins which give
also rise to scattering in the two-spin-flip channel at
large energies in A2g symmetry �Sulewski et al., 1991�.
Here a lot more information, such as the Dzyaloshinskii-
Moriya vector, the size of the anisotropy gap, and the
spin-lattice interaction strength, could be derived �Gozar
et al., 2005�.

If the insulator is doped away from half-filling, anti-
ferromagnetic long-range order disappears quickly with
hole doping but survives up to higher electron doping
levels �Fig. 32�. Yet short-ranged antiferromagnetic cor-
relations are not quenched even at high doping levels, as
seen by the persistence of the two-magnon peak in B1g
Raman scattering experiments on both the hole-doped
�Reznik et al., 1993; Blumberg et al., 1994; Rübhausen et
al., 1999; Sugai et al., 2003� and the electron-doped side
�Onose et al., 2004� of the phase diagram. This is sum-
marized in Fig. 33 for a number of compounds and
shows how the two-magnon peak softens and broadens
with doping, eventually merging into the continuum at
higher doping levels. Since the two-magnon intensity is
dominated by a double spin flip of nearest neighbors, it
can be observed even for small magnetic correlation
lengths �m of the order of a few lattice constants �see
Fig. 17�. The two-magnon peak persists at least up to
optimal doping for hole-doped systems �Fig. 33�. The
position of the maximum and the peak intensity de-
crease by factors of roughly 2 and 20, respectively, for
0�p�0.16. Consistent with the Raman results, neutron-
scattering experiments in La2−xSrxCuO4 revealed mag-
netic excitations in the complete superconducting range
�Wakimoto et al., 2004�.

The broadening of the two-magnon response with
doping and temperature has been studied theoretically
on clusters for the t-J model �Prelovšek and Jakli~, 1996�
and by quantum Monte Carlo �QMC� techniques �Sand-
vik et al., 1998�, respectively. Knoll et al. �1990� analyzed
their experiments at elevated temperatures in terms of
spin-lattice coupling. While many features of the data at
half-filling for undoped cuprates can be captured by
studies of HEFL Eq. �46�, in general the evolution of the
magnon line shape with doping and temperature and its
full polarization dependence is not very well under-
stood. In particular, it is an unsettled issue how, when a
more metallic state develops for higher doping levels,
the magnon line merges into the relatively featureless
continuum �shown in Fig. 33� that extends well beyond
all relevant energy scales such as �qvF, the supercon-
ducting energy gap &, or the maximal phonon energy
��D. In strongly overdoped yet superconducting
samples �0.20�p�0.27�, the physical properties in the
normal state are still not those of a conventional metal.

18The subject has been reviewed in detailed articles and
books �Fulde, 1995; Gebhard, 1997�.

19A selection of references is Lyons et al., 1988, 1989; Sugai et
al., 1988; Knoll et al., 1990; Sulewski et al., 1990, 1991; Blum-
berg et al., 1996; Rübhausen et al., 1997.

20A selection of references is Lyons et al., 1988; Blumberg et
al., 1996; Knoll et al., 1996; Rübhausen et al., 1997.
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The continuum itself displays significant polarization
and doping dependence, which will be addressed in Sec.
IV.D.

For p�0.05 �n�0.12�, superconductivity emerges and
reaches a maximal Tc at approximately p=0.16 �n
=0.14�. In the Raman spectra, superconductivity-
induced peaks emerge out of the flat continuum in the
normal state, accompanied by spectral weight reorgani-
zation for temperatures below Tc, as shown for
Bi2Sr2CaCu2O8+� in Fig. 34.

In the following section we focus on the polarization
dependence of the Raman response below Tc in both
hole- and electron-doped cuprates. We summarize how
symmetry arguments can be used to obtain the momen-
tum dependence of electronic properties in general and,
specifically, that of the energy gap &�k�. The doping de-
pendence in hole-doped systems will be discussed in Sec.
IV.C.

B. Superconducting energy gap and symmetry

Early Raman results for the electronic continuum
showed only little difference between the normal and
superconducting states �Lyons et al., 1987�. We know
now that the relatively high defect concentration in the
first samples suppressed the structures related to the
gap. The synthesis of flux-grown YBa2Cu3O7 with a suf-
ficiently small number of defects �Kaiser et al., 1987;
Schneemeyer et al., 1987� improved the situation rapidly,
and a clear indication of the pair-breaking effect was
obtained by Cooper, Klein, et al. �1988� on YBa2Cu3O7,
showing the emergence of a peak and reorganized spec-
tral weight occurring for temperatures below Tc as ex-
pected from theory. Soon thereafter a strong polariza-
tion dependence of the Raman spectra was observed
�Fig. 34�, which can be considered the first spectroscopic
evidence of a gap anisotropy �Cooper, Slakey, et al.,
1988; Hackl et al., 1988; Yamanaka et al., 1988; Slakey,
Klein, Bukowski, et al., 1990�. In contrast to conven-
tional materials �see, e.g., Fig. 24�, there is no sharp on-

FIG. 33. Doping dependence of the two-magnon B1g spectra in a number of compounds at 300 K. From Sugai et al., 2003.

FIG. 34. Raman spectra in the �a� normal state and �b� super-
conducting state for A1g+B2g �left panel� and B1g�+A2g� �right
panel� orientations in Bi2Sr2CaCu2O8+�. From Yamanaka et
al., 1988.
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set of the scattering intensity at a threshold. As an ex-
planation of the continuous increase of the scattering
intensity at small frequencies the possibility of nodes
was first discussed by Hackl et al. �1988�, Monien and
Zawadowski �1989�, and Falkovsky and Klama �1990�.
Originally shown in Bi2Sr2CaCu2O8+� and YBa2Cu3O7,
the studies were quickly extended to other optimally
hole-doped cuprates. It was shown by Kang et al. �1996,
1997� that magnetic fields suppress the peaks, indepen-
dently indicating their relationship to superconductivity.

1. Symmetry: B1g and B2g

The polarization dependence of both the peak fre-
quencies and low-energy slopes of the superconducting
spectra had been a vexing problem for several years fol-
lowing the first observation of the reorganized spectral
weight and polarization-dependent response. As shown
in Fig. 34, the peak in the B1g response developed at
roughly 30% higher energies than for B2g or A1g polar-
ization geometries, and the low-frequency spectra rose
as �3 for B1g and linearly with � for other channels. In
addition, the temperature-dependent depletion at low-
frequency shifts was faster in B1g symmetry than in
other channels.

A satisfactory description emerged as soon as the mo-
mentum dependences of the Raman vertices of different
symmetries 	, �	�k�, and of the energy gap &�k� were
properly taken into account, as outlined in Sec. II.D.6.
As indicated by early experiments �Hardy et al., 1993;
Shen et al., 1993� and corroborated by many more later
�Scalapino, 1995�, a gap with dx2−y2 symmetry is the most

compatible with the results in cuprates �Devereaux, Ein-
zel, Stadlober, Hackl, et al., 1994�.

The predictions of d-wave theory—such as frequency
power laws, temperature dependences, and relative
peak positions—were found to be consistent with many
optimally hole-doped compounds, such as YBa2Cu3O7
�Chen, Irwin, Liang, et al., 1994; Devereaux and Einzel,
1995�, Bi2Sr2CaCu2O8+� �Devereaux, Einzel, Stadlober,
Hackl, et al., 1994; Devereaux and Einzel, 1995; Blum-
berg, Kang, Klein, et al., 1997�, La2−xSrxCuO4 �Chen, Ir-
win, Trodahl, et al., 1994�, Tl2Ba2CuO6 �Devereaux and
Einzel, 1995; Kang et al., 1996, 1997; Blumberg, Kang,
and Klein, 1997�, Bi2Sr2CuO6+� �Einzel and Hackl,
1996�, Tl2Ba2CaCu2O8 �Maksimov et al., 1990; Kang et
al., 1997�, Tl2Ba2Ca2Cu3O10 �Hoffmann et al., 1994�, fol-
lowed by HgBa2Ca2Cu3O8+� �Sacuto et al., 1998, 2000�,
Bi2Sr2Ca2Cu3O10+� �Limonov, Lee, et al., 2002�, and
HgBa2CuO4+� �Gallais et al., 2004�. The identification of
twice the maximal gap from the peak in B1g channels
yielded 2&max�8kBTc for all compounds, well above the
weak-coupling value of 4.28kBTc for d-wave pairing, in-
dicating the strong-coupling nature of the pair state.21

An additional confirmation of d-wave pairing came
from impurity effects on the Raman spectra in the su-
perconducting state �Devereaux, 1995; Misochko et al.,
1999; Limonov, Shantsev, et al., 2002�. Raman scattering
like other types of responses �ARPES, infrared and tun-

21Due to this high ratio, we note, however, that in certain
cases �Zeyher and Greco, 2002; Martinho et al., 2004� the B1g
peak is thought not to be related directly to a 2& feature. On
the other hand, 2& /kBTc�10 emerges from strong-coupling
d-wave treatments �Monthoux and Scalapino, 1994�, and is
consistent with the broadening of the B1g signal observed near
2&.

FIG. 35. Fit to the B1g and B2g data on as-grown �Tc=86 K,
top panel� and oxygen-annealed �Tc=79 K, bottom panel�
Bi2Sr2CaCu2O8+� from Staufer et al. �1992�. Inset: log-log plot
of the low-frequency B1g response, showing crossover from
linear to cubic behavior at a characteristic frequency �* /&0
=0.38 and 0.45 for the top and bottom panels, respectively.
From Devereaux, 1995.

FIG. 36. Raman and neutron-resonance peak energies
as a function of the critical temperature Tc in
YBa2�Cu1−xNix�3O6.95 for x=0, 0.01, and 0.03. The horizontal
line for the B1g peak positions is just a guide to the eye, while
the A1g peak and the neutron resonance are fitted by a straight
line representing 5kBTc. From Gallais et al., 2002.
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neling spectroscopy, NMR, etc.� couples only to the
magnitude and not to the phase of the order parameter
and hence cannot discriminate between a dx2−y2 and a
dx2−y2 gap, i.e., the sign change of the d-wave gap is not
accessible. Impurities, however, could discriminate be-
tween a conventional energy gap with accidental nodes
and a pure d-wave gap �Borkowski and Hirschfeld,
1994�. While peaks in the B1g channel are generally sup-
pressed by impurities, the theory for Raman scattering
in disordered d-wave superconductors predicted a cross-
over from linear to cubic frequency dependence at a
characteristic frequency �* set by the impurity concen-
tration, while a true threshold would develop if the
nodes were accidental �Devereaux, 1995�. In fact, a
crossover from a linear to a cubic frequency dependence
is observed as shown in Fig. 35. This specific influence of
impuritites on the Raman spectra further solidified the
d-wave picture of hole-doped cuprates which was finally
cemented by superconducting quantum interference de-
vice measurements, reviewed by Van Harlingen �1995�
and Tsuei and Kirtley �2000�.22

Additional attributes have been investigated, such as
the agreement of the effective-mass approximation cal-
culated within LDA for d-wave superconductors in
YBa2Cu3O7 �Strohm and Cardona, 1997�, effects of
orthorhombicity and mixing of s-wave components al-
lowed by symmetry �Strohm and Cardona, 1997; Ne-
metschek et al., 1998�, as well as the issue of the A1g
peak seen in the superconducting state �Krantz and Car-
dona, 1994�, which is among the complicated though
eventually crucial problems on the way to a better un-
derstanding of cuprates.

2. The A1g problem—Zn, Ni, and pressure

While the B1g and B2g spectra are in reasonable agree-
ment with the predictions on the basis of d-wave pairing
various problems arose in A1g symmetry which slowed
down the acceptance of the model in the beginning. One
of the objections was the strong intensity found in the
A1g channel. As discussed in Sec. II.D.6, the A1g re-
sponse is complicated due to the backflow terms which
are as singular as the bare terms for frequencies at the
gap edge, leading to cancellations of diverging intensi-
ties. For both a cylindrical Fermi surface and a tight-
binding band structure �Devereaux, Einzel, Stadlober,
and Hackl, 1994; Krantz and Cardona, 1994�, the
effective-mass approximation predicts a suppression of

the A1g intensity in comparison to other channels, in
contrast to what is found experimentally, as shown in
Figs. 34 and 38. Since the effective-mass approximation
is of questionable utility in highly correlated systems like
cuprates, this objection was not as serious as an overall
comparison of spectral intensities is not possible without
detailed knowledge of the Raman-scattering matrix ele-
ments given in Eq. �36�. Good fits to the data of the A1g,
B2g, and B1g symmetries �with the overall intensities as
free parameters� could be obtained �Devereaux and Ein-
zel, 1995�. However, a sensitivity to band structure and
higher harmonics of the energy gap and Raman vertices
found in the calculations implied a similar sensitivity to
details of the materials which was not observed in the
data.

Further it was argued by Krantz and Cardona �1994�
that scattering in a multiband system—such as in the
CuO2 bilayer—would yield a sharp intensity at twice the
gap edge, which was again inconsistent with the data on
single- and double-layer systems available at that time.

The issue of multiband scattering was partially re-
solved by Devereaux et al. �1996�. It was found that if
the energy gaps were equal on at least two sheets of the
Fermi surface split by bilayer hopping, a diverging inten-
sity would be possible. However, the intensity is only
proportional to the difference of the individual Raman
vertices of the bands. This is a qualitative reason why
the multiband case would give peaks only under quite
special conditions, implying that the fits obtained from
the single-band case are still valid. Yet it does not satis-
factorily explain the sensitivity of the A1g response to
band and energy gap anisotropy factors.

A recent undertaking to understand the origin of the
A1g intensity has involved the response of the peak to
partial replacement �up to a few percent� of Cu by Zn
and/or Ni in YBa2Cu3O7−� �Gallais et al., 2002; Limonov,
Shantsev, et al., 2002; Martinho et al., 2004; Le Tacon et
al., 2005�. Martinho et al. �2004� found that the intensity
of the A1g peak was insensitive to either Ni or Zn dop-
ing, while the peak in B1g is suppressed by Zn, in agree-
ment with earlier results �Limonov, Shantsev, et al.,
2002�. As shown in Fig. 36, Gallais et al. �2002� found in
contrast to Martinho et al. �2004� that the peak position
in A1g was reduced by Ni impurities and made the im-
portant observation that it followed that of the magnetic
spin-resonance mode �for a recent review see Tranquada
�2005��. Le Tacon et al. �2005� found that Zn doping in-
creased the low-frequency spectral weight and sup-
pressed the B1g peak without changing its position. It is
not clear why the position of the B1g peak does not
change while Tc decreases. Possible explanations are an
inhomogeneous distribution of the impurities or an acci-
dental cancellation effect between the decreasing 2&�Tc�
and an increase of the peak energy ��peak

B1g because of
defects �Devereaux, 1995�. The shift of the A1g peak
with Zn argued for a two-component picture including a
contribution from a collective mode such as the � reso-
nance in the spin-wave spectrum.

22We emphasize that disorder rapidly suppresses gap features
in the Raman spectra �see Sec. II.D.6�. Even in a d-wave su-
perconductor where Tc reacts to impurities the peaks disap-
pear long before Tc vanishes. Hence the characterization of
the samples is a central issue. Doping generally introduces de-
fects along with spins or carriers such as Ni in the CuO2 plane
or Sr in La2−xSrxCuO4 and clusters of oxygen in YBa2Cu3O6+x
�Pekker et al., 1991; Erb, Genoud, et al., 1996� suppressing the
gap structures rapidly.
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Two approaches concerning the presence of a collec-
tive mode in the spectra superimposed upon a well-
screened background have been put forward by Ven-
turini et al. �2000� and Zeyher and Greco �2002�.
Venturini et al. �2000� showed that a collective mode,
uniquely appearing in A1g for symmetry reasons,
emerges due to coupling to the 41-meV spin-resonance
mode seen in neutron-scattering measurements in a
number of compounds �Sidis et al., 2004�. Zeyher and
Greco �2002� argued that the peak in the B1g channel
may be identified as a collective mode split off from 2&
�Blumberg, Kang, Klein, et al., 1997� as a consequence of
the simultaneous presence of long-range d-CDW and
d-superconducting order and that the A1g peak may be
related to a superconducting amplitude mode. In either
case the sensitivity to parameters characterizing the
anisotropies of energy gap, band structure, and Raman
vertices were not present, yet it is still unclear which, if
either, are able to explain the A1g peak in the supercon-
ducting state.

A remarkable set of experiments by Goncharov and
Struzhkin �2003� plotted in Fig. 37 highlights some short-
comings in the above-mentioned scenarios. Upon pres-

sure the peak in the B1g channel and Tc move downward
in a similar fashion as upon overdoping �discussed in
Sec. IV.C�, and the B1g phonon hardens with pressure as
expected, while the peak position in A1g remains re-
markably constant. This implies that the B1g peak is in-
timately tied to superconductivity and the A1g peak has
a substantial contribution from a channel which is rela-
tively insensitive to pressure and changes in supercon-
ducting properties. In the discussions of possible candi-
dates for the mode highlighted above, the pressure
sensitivity of spin, charge, and superconducting order
would all be expected to be large. Thus the origin of this
peak remains presently unclear. One can speculate that
it may be related to possible phonon modes involving
mixed Bi-O and Ba-O which have been indicated to be
less sensitive to pressure, but clearly further work is
needed to clarify this matter �Goncharov and Struzhkin,
2003�.

Recently, Munzar and Cardona �2003� argued that a
c-axis plasma mode would be expected to be Raman
active in cuprate materials with more than two CuO2
planes, giving rise to an additional contribution in the
A1g channel only due to mass fluctuations with opposite
sign on different CuO2 layers. The position of the
plasma resonance was predicted to lie in a frequency
range close to the continuum peak.

In fact, in multilayer compounds with more than two
adjacent CuO2 planes, a strong A1g peak in the super-
conducting state occurs at roughly the peak frequency of
the B1g channel, as shown in Fig. 38 for
Bi2Sr2Ca2Cu3O10+�. In addition, strong phonon reso-
nances were found here and for multilayer Hg com-
pounds �Hadjiev et al., 1998�, where some A1g c-axis
phonons shift by as much as 20 cm−1 at the supercon-
ducting transition, more than in any other high-Tc com-
pound, implying a strong renormalization of the A1g

continuum below Tc.

FIG. 37. Pressure dependences of the superconducting peaks
in YBa2Cu3O6.95 for B1g �full circles� and A1g �open circles�
symmetries. The position of the B1g phonon is also indicated
�triangles�. Inset: Comparison of the pressure-dependent re-
sults to the Raman data on Bi2Sr2CaCu2O8+� samples at am-
bient pressure with different doping levels �Kendziora and
Rosenberg, 1995�. From Goncharov and Struzhkin, 2003.

FIG. 38. Resonance enhancement of the of the A1g Raman
response in Bi2Sr2Ca2Cu3O10+� at 10 K. From Limonov, Lee, et
al., 2002.
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3. Resonance effects

As another experimental knob to turn, resonance
studies of the peaks developing in the superconducting
state provide information on the character and interac-
tions of the quasiparticles forming the condensate. For
this reason, studies of the gap feature as a function of
the incoming photon energy were pursued. Effects in the
energy range of the gap were observed in various com-
pounds with one �Kang et al., 1996; Blumberg et al.,
2002� and more than one CuO2 layer �Hadjiev et al.,
1998; Sacuto et al., 1998; Rübhausen et al., 1999; Li-
monov, Lee, et al., 2002; Budelmann et al., 2005�. There
are two distinct though not necessarily independent ef-
fects: �i� the spectral weight and the shape of some
phonons of predominantly A1g symmetry change more
or less dramatically below Tc �Hadjiev et al., 1998; Li-
monov, Lee, et al., 2002� and �ii� the intensity of the
electronic continuum is amplified in the vicinity of 2&max
�Fig. 38� �Rübhausen et al., 1999; Blumberg et al., 2002;
Limonov, Lee, et al., 2002�. The resonance effects typi-
cally occur for excitation energies of 2±0.2 eV and are
particularly strong in compounds with three or four
CuO2 layers �Limonov, Lee, et al., 2002�.23 More impor-
tantly the normal state is only weakly affected. Hence
although the resonance energy is close to the 1.6-eV ab-
sorption edge �Uchida et al., 1991; Singley et al., 2001�,
constraints are imposed in terms of interband transitions
between the lower and the upper Hubbard band �cf. Eq.
�44� and Shastry and Shraiman �1990��, since the width
of the resonance is much larger than 2&max. At least in
triple-layer compounds, an additional channel can be
opened up below Tc due to the c-axis plasma resonance
�Munzar and Cardona, 2003� which may interact with
low-energy phonons and renormalize their shape and in-
tensity substantially. The existence of a resonating con-
tinuum in double-layer compounds is still a matter of
debate. Some authors find the pair-breaking peaks to
resonate �Blumberg, Kang, Klein, et al., 1997; Rüb-
hausen et al., 1999; Budelmann et al., 2005�, while others
do not �Limonov, Lee, et al., 2002; Venturini, Opel,
Hackl, et al. 2002�.

Given this background, the strong resonance effects in
electron-doped Nd2−xCexCuO4 were a quite interesting
and somewhat unexpected feature �Blumberg et al.,
2002�. While the B2g response in the superconducting
state is strongly enhanced toward the red, neither the
B1g spectra below Tc nor the normal-state spectra in
general are particularly sensitive to the energy of the
exciting light. An explanation in terms of Hubbard phys-
ics is certainly tempting but, for the symmetry and tem-
perature dependence, not completely exhaustive. In our
opinion, the subject needs further experimental and the-

oretical clarification before arriving at a level of predic-
tive power.

After the observation of resonance effects in
Nd2−xCexCuO4 and along with an improved material
quality the number of studies in electron-doped systems
increased continuously and facilitated several interesting
insights which will be summarized in the following.

4. Electron vs hole-doped materials

Some cuprates such as Nd2−xCexCuO4 crystallize in
the T� structure which is characterized by missing oxy-
gen octahedra �see Fig. 32� and, as a consequence, a
short c axis �Tokura et al., 1989�. A maximal Tc of ap-
proximately 30 K is obtained in thin films of
La2−xCexCuO4 �Naito and Hepp, 2000�. None of the
electron-doped cuprates is completely ordered, and oxy-
gen appearing in an apex position is the main defect
�Radaelli et al., 1994� even in superconducting samples.

Phonons �Hayen et al., 1991� and crystal-field excita-
tions �Jandl et al., 1993� in Nd2−xCexCuO4 were studied
soon after the discovery �Tokura et al., 1989� and ex-
plained thoroughly. An exception was the A1g line at
590 cm−1, assigned by Heyen et al. �1991� as a localized
mode of interstitial oxygen in the apex position �cf. Fig.
32�. Later on, Onose et al. �1999� demonstrated that the
mode is suppressed after annealing the samples in re-
ducing atmosphere in order to induce or enhance Tc.

The first electronic Raman spectra in the supercon-
ducting state of slightly overdoped Nd1.84Ce0.16CuO4
showed a small gap anisotropy �Stadlober et al., 1995�.
The ratio 4.1�2& /kBTc�4.9 is similar to that of strong-
coupling conventional superconductors like Pb, Nb, or
Nb3Sn �see Table II�. The temperature dependence of
the gap is relatively close to the BCS prediction �Stad-
lober et al., 1995; Blumberg et al., 2002�. This motivated
an interpretation in terms of an anisotropic s-wave gap,
yielding a reasonable description of both the shapes and
positions of the B1g and B2g pair-breaking peaks �Stad-
lober et al., 1995�.

Similar spectral shapes were also found at other dop-
ing levels for both Nd2−xCexCuO4 and Pr2−xCexCuO4, as
shown in Fig. 39. The low-energy sides of the peaks were
found to be almost doping independent and closer to
those of hole-doped cuprates than to those in conven-
tional superconductors when samples and instrumenta-
tion facilitated improved measurements close to �=0.

Recent ARPES �Armitage et al., 2001; Matsui et al.,
2005� and interferometric experiments �Tsuei and Kirt-
ley, 2000; Chesca et al., 2003� provided evidence of a
d-type gap bringing antiferromagnetic spin fluctuations
back into play as a possible coupling mechanism. Since
the diameter of the Fermi surface encircling �� ,�� is
smaller here than in hole-doped systems, the antiferro-
magnetic ordering vector QAF= �� ,�� connects spots
close to �� /2 ,� /2� rather than in the vicinity of �� ,0�
for p doping and the gap is expected to have a maximum
at the hot spots and to decrease towards �� ,0�.

On this basis Blumberg et al. �2002� proposed a novel
type of nonmonotonic d-wave gap with maxima only ap-

23It is interesting to note that the resonance of the two-
magnon peak is close to the charge-transfer gap of 2.5 eV or
higher �Knoll et al., 1996; Blumberg, Kang, Klein, et al., 1997;
Rübhausen et al., 1997�.
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proximately 15° away from the diagonal. An explicit cal-
culation using the suggested &�k� �Blumberg et al., 2002�
in a one-band model approximately reproduces the
overall line shapes but reveals discrepancies in the peak
positions �Venturini et al., 2003� �see also Blumberg et al.
�2003��. Better agreement between experiment and
theory can be obtained with a monotonic d-wave gap in
a two-band picture �Liu et al., 2006� for which evidence
has been found by magnetotransport �Fournier et al.,
1997�.

Four remarks are to be considered: �i� In ARPES, the
gap maximum is found approximately at the hot spot
where a pseudogap is observed above Tc �Matsui et al.,
2005�. �ii� No quasiparticle peaks indicating coherence in
the superconducting state are resolved in ARPES
�Armitage et al., 2001; Matsui et al., 2005�. �iii� Twice the
gap energy observed by ARPES is �40% smaller than
that derived from the Raman spectra �Matsui et al.,
2005�. �iv� Phase-sensitive experiments �Alff et al., 1999�
and results on the magnetic penetration depth �Kokales
et al., 2000; Skinta, Lemberger, et al., 2002� are support-
ive of an s-type gap.

Hence in spite of mounting evidence of d-wave pair-
ing, explanations for the symmetry dependence of the
Raman spectra and several other experiments are still
missing. A possible explanation could lie in a crossover
from d to s pairing upon increasing doping �Skinta, Kim,
et al., 2002�. However, Raman data from differently
doped Pr2−xCexCuO4 �see Fig. 39� do not show a varia-
tion of the line shape and sufficiently strong symmetry
dependence of the pair-breaking features in the proper
doping range �Qazilbash et al., 2005�.

In hole-doped systems, on the other hand, strong
variations of the line shapes at A1g and B1g symmetry
are found although there is little doubt about the persis-
tence of the �dominant� d-wave nature of the supercon-
ducting gap in the entire phase diagram �Tsuei and Kirt-
ley, 2000�. The doping and polarization dependence of
the Raman spectra in superconducting p-type cuprates
will be the subject of the next section.

C. Superconducting gap: Doping dependence

One of the early Raman experiments on doping ef-
fects in overdoped Bi2Sr2CaCu2O8+� showed the energy
of the pair-breaking peak in B1g symmetry to decrease
much faster than those at the other symmetries and Tc
�Staufer et al., 1992�. The first systematic study was per-
formed by Kendziora and Rosenberg �1995� on
Bi2Sr2CaCu2O8+�, shown in the inset of Fig. 37. The
doping level in this material can be varied continuously
and reliably in the range 0.15�p�0.23 by changing the
oxygen concentration �Triscone et al., 1991; Kendziora et
al., 1993�. At lower oxygen doping, the structure is pos-
sibly metastable or unstable; at higher doping, the oxy-
gen diffuses out even at room temperature. Underdop-
ing is better achieved by replacing Ca with Y. As an
essential result, the pair-breaking peaks at A1g, B1g, and
B2g symmetry are found to depend in different ways on
doping and, consequently, on Tc. This doping depen-
dence is shown in Fig. 40 for recent measurements on
Bi2Sr2Ca1−xYxCu2O8+� by Sugai et al. �2003�. Most re-
markably, the B1g pair-breaking peak is proportional to

FIG. 39. �Color� Doping dependence of the
low-energy electronic Raman response of
Pr2−xCexCuO4 single crystals and thin films
for B2g, B1g, and A1g channels obtained with
647-nm excitation. The columns are arranged
from left to right in order of increasing cerium
doping. Abbreviations UND, OPT, and OVD
refer to underdoped, optimally doped, and
overdoped samples, respectively. The normal-
state response �light/red� measured just above
the respective Tc is decomposed for the B2g
and B1g channels into a Drude-like compo-
nent with a constant carrier lifetime �green
dotted line� and an extended continuum �yel-
low dotted line�. Superconducting spectra
�dark/blue� are taken at T	4 K. For the OPT
crystal a low-frequency �3 power law is
shown at B1g symmetry. From Qazilbash et
al., 2005.
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1−p rather than Tc in the doping range indicated, but
fades in intensity for underdoped materials. The peak
energies in B2g symmetry, however, scale more or less
with the transition temperature. For p�0.15 the B1g
peak becomes very weak, yet a clear 2& peak survives in
the B2g channel for all doping levels.

In the decade to follow there were numerous
studies on differently doped cuprates, including
Bi2Sr2CaCu2O8+�,

24 YBa2Cu3O6+x,25 La2−xSrxCuO4,26

HgBa2CuO4,27 HgBa2Ca2Cu3O8,28 Tl2Ba2CuO6,29

Tl2Ba2CaCu2O8,30 and Tl2Ba2Ca2Cu3O10.
31 A compila-

tion of experimental results is shown in Fig. 41. The scat-
ter of the data points partially reflects the development
of the sample quality. However, there are also discrep-
ancies between the results which are related to the inter-
pretation of the experiments.

We first summarize the generally accepted features
close to and above optimal doping:

• at p�0.16 the peaks in the three Raman-active sym-
metries are in relative positions expected for d-wave
pairing, the ratio 2&max/kBTc is approximately 8;32

• in the overdoped range p�0.16 the B1g peak fre-
quency decreases faster than Tc obeying �peak

B1g /Tc
max

	46�0.28−p� �with �peak
B1g and Tc

max in cm−1 and K,
respectively�;33

24Hackl et al., 1996; Blumberg, Kang, Klein, et al., 1997; Liu et
al., 1999; Rübhausen et al., 1999; Opel et al., 2000; Sugai and
Hosokawa, 2000; Hewitt and Irwin, 2002; Sugai et al., 2003;
Venturini et al., 2003; Budelmann et al., 2005.

25Cooper, Slakey, et al., 1988; Altendorf et al., 1992; Chen et
al., 1993; Reznik et al., 1993; Nemetschek et al., 1997; Limonov
et al., 1998, 2000; Opel et al., 2000; Sugai et al., 2003; Masui et
al., 2005.

26Chen, Irwin, Trodahl, et al., 1994; Naeini et al., 1999; Ven-
turini, Opel, Devereaux, et al., 2002.

27Gallais et al., 2005; Le Tacon et al., 2005.
28Sacuto et al., 1998, 2000.
29Nemetschek et al., 1993; Kang et al., 1996; Blumberg, Kang,

and Klein, 1997; Gasparov et al., 1997.

30Kang et al., 1997.
31Gasparov et al., 1997; Stadlober et al., 1995.
32Cooper, Slakey, et al., 1988; Hackl et al., 1988; Yamanaka et

al., 1988, 1992; Chen, Irwin, Trodahl, et al., 1994; Devereaux,
Einzel, Stadlober, Hackl, et al., 1994; Gasparov et al., 1997.

33Kendziora and Rosenberg, 1995; Blumberg, Kang, Klein, et
al., 1997; Naeini et al., 1999; Venturini, Opel, Hackl, et al., 2002;
Masui et al., 2003; Sugai et al., 2003.

FIG. 40. �Color� Doping dependence of the B1g and B2g Ra-
man spectra in Bi-2212 at 5 and 100 K. From Sugai et al., 2003.

FIG. 41. �Color� Compilation of the peak position �peak in the
Raman response in the superconducting state normalized to
Tc

max. B1g �open diamonds� and B2g �squares� orientations are
shown for a variety of compounds. The respective references
are color coded as follows: Bi-2212 �red �Venturini, Opel,
Hackl, et al., 2002�, green �Sugai and Hosokawa, 2000; Sugai et
al., 2003�, cyan �Kendziora and Rosenberg, 1995�, yellow
�Blumberg, Kang, Klein, et al., 1997; Liu et al., 1999�, pink
�Hewitt and Irwin, 2002�, and gold �Masui et al., 2003��, LSCO
�blue �Sugai et al., 2003��, Bi-2223 �gray �Masui et al., 2003��,
Tl-2201 �purple �Nemetschek et al., 1993; Kang et al., 1997;
Gasparov et al., 1997, 1998��, Tl-2223 �olive �Hoffmann et al.,
1994; Stadlober et al., 1994��, and Hg-1201 �black �Gallais et al.,
2005��. The dashed black line is the interpolation formula
6Tc /Tc

max=6�1−82.6�p−0.16�2�. For comparison, results for
twice the maximal leading edge gap of ARPES �circles� �Cam-
puzano et al., 2002� and for the peak-to-peak energy in the
tunneling density of states �triangles� �Zasadzinski, 2002� are
included.
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• whenever the B2g peak can be observed its maximum
follows Tc, �peak

B2g Tc;
34

• the A1g peak frequency follows either the magnetic
�� ,�� mode35 or, in the case of resonantly enhanced
light scattering, �peak

B1g .36

The gap close to the node, which is projected out in
B2g symmetry, is also found by penetration depth, low
bias STM, and the Nernst effect to more or less follow
the transition temperature for all doping levels �Pana-
gopoulos and Xiang, 1998; Deutscher, 1999, 2005; Xu et
al., 2000�. However, it is inconsistent with peak-to-peak
measurements of tunneling density of states �Zasadzin-
ski, 2002�, the energy of the �� ,0� peak in the spectral
function �Campuzano et al., 2002�, and thermal conduc-
tivity �Sutherland et al., 2005�, which when interpreted in
terms of a d-wave quasiparticle picture �Durst and Lee,
2000� indicate that the gap energy continues to increase
with decreased doping. This highlights one of the major
issues in cuprates of whether the superconducting pair-
ing energy rises with underdoping or follows Tc, and re-
quires further study.

In many experiments, a second energy scale is ob-
served which varies approximately as p0−p, similar to
�peak

B1g . Most authors �Timusk and Statt, 1999� call it a
pseudogap &* opening below the crossover temperature
T* �see Fig. 32� with &*T*. The understanding of the
pseudogap is a matter of intense research at present. A
possible relation to the B1g Raman data will be dis-
cussed close to the end of this subsection.

In the underdoped range, the interpretation is more
controversial. The main issues are whether or not the
B2g pair-breaking peak can be observed at all doping
levels and how the B1g spectra evolve for p�0.16.

The B2g problem seems to converge with the improve-
ment of the sample quality. The cleaner the samples, the
clearer the B2g pair-breaking peak, as expected theoreti-
cally �Devereaux, 1995�. The problem can be visualized
in YBa2Cu3O6+x where oxygen tends to cluster and to
form pinning centers if the Cu-O chains are not com-
pletely filled �Erb, Genoud, et al. 1996�. However, in ad-
dition to fully oxygenated YBa2Cu3O7, partially ordered
phases exist for x=0.5 with Tc�60 K and x=0.353 with
Tc→0 �Liang et al., 2000, 2002� where every second and
third chain is filled, respectively. Therefore the maxima
are pronounced in YBa2Cu3O6.50 and YBa2Cu3O6.98
�Opel et al., 2000� while the peak is smeared out at op-
timal doping, YBa2Cu3O6.93, and practically disappears
slightly below �Sugai et al., 2003�. The problem of oxy-
gen clustering exists also in Bi2Sr2CaCu2O8+�, but the
resulting potentials are weaker and essentially doping
independent, as can be seen directly from the compari-

son of different overdoped samples �Opel et al., 2000;
Venturini, Opel, Hackl, et al., 2002� exhibiting nearly
constant intensities of the B2g pair-breaking features. In
a similar fashion, partial replacement of Ca by Y does
not create a strong impurity potential either. This was
directly shown by electron spin resonance �Jánossy et al.,
2003� in YBa2Cu3O6.1, where Ca in place of Y is a very
weak impurity which does not localize carriers even at
low temperature and doping. We conclude that Y and O
doping can be used more or less simultaneously in
Bi2Sr2CaCu2O8+� as long as Y is distributed statistically.
The direct comparison of the data presented in Fig. 40
with those of Opel et al. �2000� and Venturini, Opel,
Hackl, et al. �2002� indeed shows that the B2g pair-
breaking peaks have doping and dopant �O, Y� indepen-
dent intensities if a high sample quality can be main-
tained. Under these conditions, the B2g maxima seem to
exist at all doping levels and apparently scale with Tc.
Since in YBa2Cu3O6+x and La2−xSrxCuO4 doping
changes both carrier concentration p and mean free path
�, the pair-breaking peaks appear and disappear de-
pending on the doping-dependent order.

It is important to remember these considerations for
the analysis of the B1g data. This is particularly impor-
tant when intensity issues are discussed. Therefore
we focus first on Y-underdoped and O-overdoped
Bi2Sr2CaCu2O8+� �Fig. 40� to determine the intensity
evolution of the B1g pair-breaking structure. It becomes
very weak right below optimal doping while no signifi-
cant weakening of the B2g structures is observed. The
gradual suppression of the B1g coherence peaks in Ra-
man coincides with the disappearance of the coherence
peaks in ARPES and STM �McElroy et al., 2003�. This is
corroborated by results in partially ordered
YBa2Cu3O6.5, in La1.9Sr0.10CuO4, HgBa2CuO4, and
HgBa2Ca2Cu3O8, where the B2g structures are well re-
solved, while in B1g symmetry no pair-breaking effect
could be found �Naeini et al., 1999; Opel et al., 2000;
Venturini, Zhang, et al., 2002; Gallais et al., 2005�.

When the peak is observed in B1g in the underdoped
region, as shown in Fig. 41, its position does not track Tc
and lies within the scatter of points or slightly below the
values of 2& generally obtained via ARPES �Campu-
zano et al., 2002� and peak-to-peak positions in tunnel-
ing measurements �Zasadzinski, 2002�.37 It has been ar-
gued by Chubukov et al. �1999, 2006� and Zeyher and
Greco �2002� that the B1g peak in Raman measurements
in underdoped compounds may be due to a collective
mode appearing below Tc from either spin-coupling or
d-CDW order, respectively, split off from twice the gap
maximum 2&. Yet this interpretation is inconsistent with
the doping behavior of the pairing gap determined from

34Kendziora and Rosenberg, 1995; Misochko et al., 1999;
Opel et al., 2000; Venturini, Opel, Hackl, et al., 2002; Venturini,
Zhang, et al., 2002; Gallais et al., 2005.

35Gallais et al., 2002; Le Tacon et al., 2005.
36Limonov, Lee, et al. 2002.

37We point out, however, that there is considerable uncer-
tainty in determining the gap from ARPES, as both the lead-
ing edge and peak of the spectrum have been used. In either
case, the antinodal spectral function is very broad in under-
doped systems and indentifying an energy scale from a broad
feature is not without uncertainty.
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B2g symmetry, as discussed above. In addition, the find-
ings of the doping behavior of antinodal quasiparticles
in the normal state �see Sec. IV.D� indicate that anti-
nodal quasiparticles have become incoherent already
above optimal doping. Therefore it is not intuitively ob-
vious how a propagating mode could emerge deep in a
region of incoherence. An alternative scenario is that
the peak observed in B1g channels is strongly altered by
incoherence and is a measure of the binding energy of
localized antinodal electrons, such as via the formation
of resonance-valence bond singlets or small polarons.
Yet why a peak should appear remains to be understood.
In any case, this issue highlights another vexing problem
in cuprates: how involved are antinodal electrons in su-
perconductivity for underdoped systems.

There were reports about B1g pair-breaking peaks at
low doping p�0.1 �Slakey, Klein, Rice, et al., 1990;
Blumberg, Kang, Klein, et al., 1997� appearing already
above Tc, at a doping-independent position of approxi-
mately 600 cm−1. In the discussion of the existence of
preformed pairs in the pseudogap state above Tc and of
collective modes inside the gap �see Sec. II.D.7� that are
indicative of the pairing potential, this result has obvi-
ously some importance. However, in the vast majority of
the experiments, the observation could not be con-
firmed. Further complication comes from the existence
of an oxygen impurity mode in close vicinity �Quilty et
al., 1998; Hewitt et al., 1999�. Future studies are needed
to clarify this issue.

In conclusion, Raman-scattering experiments reveal
two energy scales in the superconducting state which
have a different dependence on doping: While the peaks
in B2g symmetry follow the transition temperature, the
maximum energy of those in B1g symmetry decreases as
p0−p. In the majority of experiments, the coherence
peaks in B1g symmetry are found to fade away rapidly
for p�0.16. The origin of the features observed at small
doping remains controversial.

D. Normal state: Dichotomy of nodal and antinodal electrons

The studies of the symmetry and doping dependence
of the Raman spectra in the superconducting state are
suggestive of interactions with a pronounced structure in
momentum space which, in addition, vary with doping
�see, e.g., Fig. 41�. One of the key questions is therefore
how the interactions renormalize the quasiparticles and
their response functions in the normal state.38 Owing to
the crystal structure of cuprates, the anisotropy of the
in-plane to the out-of-plane transport translates into a
momentum dependence of the in-plane transport prop-

erties �Forró, 1993; Turlakov and Leggett, 2001; De-
vereaux, 2003�. Hence Raman scattering can substan-
tially supplement optical conductivity measurements
above Tc. An anisotropy of the normal-state Raman
spectra was actually observed soon after the gap
anisotropy.39

1. Unconventional metal-insulator transition

The momentum dependence of the transport as mea-
sured by Raman scattering is indeed dramatic. Gener-
ally, the nodal region along the diagonal of the Brillouin
zone �B2g symmetry� remains essentially unchanged at
all doping levels, while the �� ,0� regions �B1g symmetry�
suffer an overall loss of oscillator strength by approxi-
mately an order of magnitude if the doping level is re-
duced from 0.22 to 0.10 �Fig. 42�. When this doping de-
pendence was first observed, Katsufuji et al. �1994�
realized that the variation of the B1g spectra with p can-
not be explained by only changing the filling of a rigid
band where the ratio of the B1g to the B2g scattering
intensities is essentially determined by �t / t��2 with t and
t� the nearest- and next-nearest-neighbor hopping ma-
trix elements, respectively �Einzel and Hackl, 1996�.
Changing the ratio �t / t�� enough to account for the ob-
served Raman intensities leads to unrealistic band struc-
tures. The suggested importance of correlation effects
on the Raman intensities was pointed out early on.

The intensity changes of the B1g spectra as a function
of doping �Fig. 42� are accompanied by a qualitative
change of the temperature dependence at a given dop-

38The properties of the normal state have been studied and
reviewed extensively in the last two decades. Recent reviews
are given by Timusk and Statt �1999�, Tallon and Loram �2001�,
and Basov and Timusk �2005�. A thorough study of the dc and
Hall transport properties in various compounds performed on
high-quality samples of the last generation were presented by
Ando et al. �2001� and Ando, Komiya, et al. �2004�.

39Staufer et al., 1990; Slakey et al., 1991; Reznik et al., 1993;
Katsufuji et al., 1994; Hackl et al., 1996; Yamanaka et al., 1996;
Blumberg and Klein, 1999; Naeini et al., 1999; Opel et al., 2000.

FIG. 42. Direct comparison of the low-energy B1g and B2g
Raman response functions measured at temperatures indicated
�all below Tc� in La2−xSrxCuO4 for different values of Sr dop-
ing. The scale is the same for all frames. From Naeini et al.,
1999.
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ing level. For Bi2Sr2CaCu2O8+�, the effect is shown in
the range 0.15�p�0.23 �Fig. 43�. For B2g symmetry,
there is little change of both the overall intensity and
initial slope which depends on temperature as expected
for a metal. As opposed to B2g symmetry, the tempera-
ture dependence of the B1g spectra reverses sign �Fig.
43�a��, indicating nonmetallic behavior at p=0.15. As
outlined above �Eq. �55��, the initial slope of the re-
sponse function is proportional to a transport lifetime �
or, equivalently, conductivity. Accordingly, the inverse of
it, ���	� /���−1, corresponds to a resistivity which, for the
Raman selection rules, is momentum sensitive as indi-
cated by the index 	.

It has been shown by Opel et al. �2000� that both the
energy dependences and magnitudes of $	�� ,T�
=� /�	�� ,T� and m	

* �� ,T� /mb=1+
	�� ,T� can be de-
termined from the spectra using a memory function
analysis �Götze and Wölfle, 1972� in combination with
an energy integral over �	� /� �sum rule�. By extrapolat-
ing the results to �=0, very reliable numbers for $��
→0,T� can be obtained.40

In Fig. 44, the Raman resistivities $	�� ,T� of
Bi2Sr2CaCu2O8+� in the limit �=0 are plotted for 	
=B1g, B2g at various temperatures and doping levels.
The B2g results compare well to conventional resistivi-

ties ��T� using the Drude expression $	��=0,T�
=�0��̃pl�2��T� with the renormalized plasma frequency
�̃pl. With the plasma frequency in eV and the resistivity

in 	� cm, one finds $	�T��1.08�Ẽpl�2��T�. At p=0.23,
the transport is essentially isotropic. Below p=0.22, an-
isotropy develops quite abruptly, and for p�0.16, the
temperature dependence of $B1g

��=0,T� becomes non-
metallic. This crossover behavior has been interpreted in
terms of an unconventional metal-insulator transition at
0.20�p�0.22, where the antinodal transport is gradu-
ally quenched while the nodal one remains essentially
unaffected �Venturini, Opel, Devereaux, et al., 2002�.

Since the current vertex has a similar k dependence as
the B2g Raman vertex, IR spectroscopy and similarly dc
transport project out mainly the nodal part of the Fermi
surface �Devereaux, 2003�, and show therefore good
qualitative agreement with the B2g Raman results, which
exhibit little variation with doping for 0.1�p�0.23 be-
yond the change of �̃pl, as shown in Fig. 44. The suppres-
sion of the antinodal transport coincides with a reduc-
tion of the quasiparticle strength Zk in the vicinity of
�� ,0� �Kim et al., 2003; Zhou et al., 2004�, and a collapse
of the Korringa law �T1T�−1=const as observed by
NMR, where T1 is the spin-lattice relaxation time �Al-
loul et al., 1989; Billinge et al., 2003�.

Below p�0.16, insulating behavior can also be ob-
served in conventional transport at low temperature if
superconductivity is suppressed with high magnetic
fields �Boebinger et al., 1996; Ando, Ono, et al., 2004�.
The logarithmic divergence of the resistivity in the limit
T→0 indicates localization of the carriers. The cross-
over from metallic to nonmetallic behavior occurs at
temperatures T�Tc, well below those found in B1g Ra-
man scattering. This is consistent with the observation
that the B2g spectra do not show any anomaly in the
normal state. The synopsis of NMR, conventional, and
Raman transport leads to the conclusion that carriers
get gradually localized upon decreasing doping. Accord-
ing to the Raman results, the suppression of free-carrier

40The memory function or extended Drude analysis is par-
ticularly useful for a single-component response. Further de-
tails and limitations have been discussed by Opel et al. �2000�.
In Raman scattering the integral is as crucial as the plasma
frequency in IR spectroscopy if magnitudes and energy depen-
dences are to be derived in a similar way as in the analysis of
the reflectivity �Basov and Timusk, 2005�. Sum rule might be
somewhat misleading and should be used with care since the
integral over �	� ��� /������ �see Eq. �6�� is not a conserved
quantity like the number of carriers in the f-sum rule. Without
the integral the energy dependence of one of the quantities
must be dropped and/or a fit to model functions for $	��� and
1+
	��� is required �Slakey et al., 1991; Hackl et al., 1996;
Yamanaka et al., 1996; Blumberg and Klein, 1999; Naeini et al.,
1999�.

FIG. 44. �Color� Raman relaxation rates �resistivities� at B1g
and B2g symmetries of Bi2Sr2CaCu2O8+�. B1g and B2g are sen-
sitive to antinodal and nodal regions of the Brillouin zone as
indicated. Dashed lines represent dc transport data. Using
plasma frequencies from IR spectroscopies, the Drude formula
is used for the conversion of resistivities to relaxation rates.
From Hackl et al., 2005.

FIG. 43. �Color� Direct comparison of the low-energy B1g and
B2g Raman response functions measured at temperatures indi-
cated �all above Tc� in Bi2Sr2CaCu2O8+� for different doping
levels p=0.15, 0.20, and 0.22 �from left to right�. From Ven-
turini, Opel, Devereaux, et al., 2002.
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transport starts at p�0.21 at the antinodal regions of the
Fermi surface and gradually moves towards the nodal
points with decreasing p. The conductivity apparently
disappears only very close to or at zero doping, making
connection to recent ARPES results which show quasi-
particles along the nodal direction even at the lowest
�yet finite� doping level �Yoshida et al., 2003�.

Although there are no studies of both the doping and
temperature dependences in n-doped cuprates, the com-
parison of the low-temperature data of Pr2−xCexCu2O4
�Fig. 39� to those in Bi2Sr2CaCu2O8+� �Fig. 40� or
La2−xSrxCu2O4 �Fig. 42� is worthwhile. In fact, a signifi-
cant decrease of the overall B1g intensity for small n is
revealed whereas the continuum at B2g symmetry is not
as doping independent as on the p-doped side, but
rather becomes weaker towards lower doping. Raman
relaxation rates have been determined explicitly only for
Nd1.85Ce0.15Cu2O4 �Koitzsch et al., 2003�. In both B1g and
B2g symmetry, Raman resistivities are close to those
found by conventional transport, as shown in Fig. 45.
This is certainly at variance with the results in hole-
doped systems at comparable carrier concentrations.
From the viewpoint of Raman scattering, n-doped cu-
prates at optimal doping in the normal state look more
like overdoped p-type samples with isotropic transport
properties. The interpretation is not clear at the mo-
ment, but this similarity may be perhaps related to the
rather involved band structure on the n-doped side
�Fournier et al., 1997; Onose et al., 2004�.

2. Quantum critical point(s)

The quite unusual transport properties described
above are accompanied by various crossover phenom-
ena, such as the opening of a pseudogap �Timusk and
Statt, 1999�, the collapse of the Korringa law �Billinge et
al., 2003� and several other intriguing observations �Tal-
lon and Loram, 2001�. Recent studies show pseudogap
phenomena also in electron-doped cuprates �Onose et
al., 2001, 2004; Alff et al., 2003�. All those anomalies fit

into the broader context of a nearby quantum critical
point �QCP�.41 A QCP occurs in the phase diagram at
T=0 at a critical value xc of a control parameter, such as
doping x and/or pressure. The most general property of
a QCP is the existence of thermal and quantum fluctua-
tions up to high temperatures for x�xc, which prevent
the transition into an ordered phase at finite T. The end
point of the Néel phase at p�0.02 as well as p=0.05 and
0.27 delimiting superconductivity are examples on the
hole-doped side. However, an interesting putative QCP
may be hidden below Tc at the zero-temperature ex-
trapolated value of T*�p ,n� �see Fig. 32�, indicating com-
petition between different types of order and supercon-
ductivity �Castellani et al., 1997; Sachdev, 1999;
Andergassen et al., 2001; Chakravarty et al., 2001; Kivel-
son et al., 2003�. Below T* partial or even long-range
order can be established.

In a normal metal, the kinetic energy of electrons Ekin
is much larger than the Coulomb energy U because of
screening. If the ratio U /Ekin increases upon decreasing
carrier density and approaches 1, various types of insta-
bilities can arise which usually induce a transition to an
insulator. Classical examples are the Mott transition or
the Wigner crystal. Cuprates are close to this limit, and
several additional possibilities have been discussed.
Prominent examples may be spontaneous orbital cur-
rents �Varma, 1997�, spin ordering �Machida, 1989;
Zaanen and Gunnarsson, 1989; Tranquada et al., 1995,
2004; Kivelson et al., 2003� charge ordering such as
stripes or density waves �Castellani et al., 1995; Ander-
gassen et al., 2001; Chakravarty et al., 2001; Kivelson et
al., 2003�, and Fermi surface deformation fluctuations
�Metzner et al., 2003�. In all cases, static order is found
only, if at all, at very low doping and/or in specifically
modified structures such as La2−y−xRySrxCuO4 for y
�0.4 and R=Nd,Eu �Tranquada et al., 1995; Klauss et
al., 2000� or the nickelates. In La1.775Sr0.225NiO4 �Pash-
kevich et al., 2000� and La1.67Sr0.33NiO4 �Blumberg et al.,
1998; Yamamoto et al., 1998� the formation of static dis-
tortions due to the formation of stripes are big enough
to split phonon and magnon lines due to zone doubling
and to suppress the B1g continuum at low energies.

Of course, static order is much easier to verify than
fluctuating order. Nevertheless, fluctuating incommensu-
rate spin order has been observed in La2−xSrxCuO4 for
x�0.055 �Fujita et al., 2002�, YBa2Cu3O6.85, and
YBa2Cu3O6.6 �Hinkov et al., 2004�, while commensurate
spin order is seen at low energies in YBa2Cu3O6.353
�Stock et al., 2006�. This means that in a temperature-
dependent volume characterized by the coherence
length �s�T� a superstructure of the antiferromagneti-
cally ordered spins is established for higher doping lev-
els. At the same time the charges which are expelled
from the antiferromagnetic regions becoming spatially
organized as well. This type of order has similarity with
a liquid crystal and is sometimes referred to as nematic

41For general references see Sachdev �1999� and Vojta �2003�.

FIG. 45. �Color online� Raman relaxation rates at B1g and B2g
symmetries of Nd1.85Ce0.15Cu2O4 �Koitzsch et al., 2003�. B1g
and B2g are sensitive to antinodal and nodal regions, respec-
tively. The dashed line represents recent transport data for
Pr1.85Ce0.15Cu2O4 thin films �Dagan et al., 2004�. The Drude
model with a plasma energy of 1 eV �Homes et al., 1997� is
used for the conversion of the resistivity to relaxation rates.
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�Kivelson et al., 1998, 2003�. From these experiments it
cannot be decided whether the fluctuating magnetic su-
perstructure is a property of the spins or of the charges.
For statically ordered La2−y−xNdySrxCuO4 with doping
x=1/8, Tranquada et al. �1995� showed that charge or-
dering precedes spin ordering when the temperature is
reduced. It has indeed been shown that charge ordering
fluctuations are quite common phenomena in correlated
systems �Castellani et al., 1995; Metzner et al., 2003�.

As long as there is no long-range or static order which
competes with superconductivity, fluctuations can estab-
lish Cooper pairing �Perali et al., 1996; Chakravarty et
al., 2001�. For this reason, the understanding of the dy-
namics of incipient charge and spin order is a very inter-
esting subject in cuprates.

3. Role of fluctuations and incipient ordering phenomena at
small doping

The study of dynamical order requires inelastic probes
typically sensitive at finite q. In the case of charge order-
ing, resonant x-ray scattering is the most promising as it
can provide direct evidence for the charge ordering at a
particular wave vector �Abbamonte et al., 2004�, while
neutrons can be used only if the charges modulate the
lattice or the spin structure. Optical methods are con-
fined to q=0. However, two excitations with opposite
momenta can be created, such as multiphonon or two-
magnon scattering. Therefore light can be scattered
from Cooper pairs or if an electron-hole pair couples to
two excitations. It depends on the individual context
how fluctuation phenomena are best studied.

In copper-oxygen systems, an unexpected additional
component in the B1g spectra was observed in
La1.90Sr0.10CuO4: as shown in Fig. 46, a peak is found in

the 100-cm−1 range which gains intensity and moves to
very low but finite energy with decreasing temperature
�Venturini, Zhang, et al., 2002; Tassini et al., 2005�.42 At
high energy for all temperatures, and at high tempera-
ture for all energies, the spectra of cuprates with p
�0.10 are similar and show a strong anisotropy between
nodal and antinodal regions in the Brillouin zone �see
Figs. 42–44�. At low temperature the low-energy feature
is unique to La1.90Sr0.10CuO4, while the spectra become
flatter in YBa2Cu3O6.5 and Bi2Sr2�Y0.38Ca0.62�Cu2O8+�
�see Fig. 43�. To appreciate the differences, one has to
recall that the conventional transport properties of all
these compounds are very similar �Ando, Komiya, et al.,
2004�. Before we discuss possible interpretations we
compare results for different doping levels and materi-
als.

From a comparison of the low-energy peak to infrared
results, a relationship to fluctuating stripe order was con-
jectured �Venturini, Zhang, et al., 2002�. For further sup-
port, it seems worthwhile to exploit the selection rules
Raman scattering offers. The effect in B1g symmetry is
indeed compatible with the orientation of stripes along
the Cu-O bonds at p=x=0.10 �Fujita et al., 2002�. This is
simply because order along the principal axes of an es-
sentially tetragonal lattice corresponds to an orthorhom-
bic distortion. Fluctuations correspond to microtwin-
ning, meaning that x and y cannot be accessed
individually. Hence B1g symmetry measuring only the
difference xx−yy �on a microscopic scale� projects out
exactly this distortion. As a familiar example, we recall
that fully oxygenated YBa2Cu3O7 has Cu-O chains
along the crystallographic b axis making b�a. Even if
the sample is twinned, the chain contributions are al-
ways superimposed on the B1g spectra, while the xx and
yy spectra are equal �as opposed to a single-domain
crystal�. For x�0.055, a reorientation by 45° is observed
by neutron scattering �Fujita et al., 2002�. Since B1g and
B2g are equivalent modulo a � /4 rotation in the basal
plane of a tetragonal lattice, the related peak should
now appear in B2g rather than in B1g symmetry. In fact,
this has be observed in La1.98Sr0.02CuO4, as shown in Fig.
46 �Tassini et al., 2005�.

Spectra similar to those in La1.98Sr0.02CuO4 �Fig. 46�
are found in �Y0.97Ca0.03�Ba2Cu3O6.1 with p�0.02 �Fig.
47�b��. Owing to the homogeneity of the sample, the
peak is very narrow and well defined. As the low-energy
peak emerges, the intensity of the continuum is sup-
pressed by roughly 30% over an energy range of ap-
proximately 550 cm−1 in a similar though much stronger
way than at higher doping �Nemetschek et al., 1997;
Opel et al., 2000�. In B1g symmetry, there is an overall
loss of spectral weight up to much higher energies, simi-
lar to YBa2Cu3O6+x and Bi2Sr2CaCu2O8+� at higher

42We note that the lines observed by Gozar et al. �2004� in
La2−xSrxCuO4 �x=0,0.01,0.02� have nothing in common with
the response discussed here and were clearly indentified as
one-magnon excitations �see also Silva Neto and Benfatto
�2005��.

FIG. 46. �Color� Low-energy response of underdoped
La2−xSrxCuO4. A Drude-like peak �Zawadowski and Cardona,
1990� with a characteristic energy �c�x ,T� is revealed after
subtraction of the 2D response of the CuO2 planes. At x
=0.02 �a� and 0.10 �b� the additional response is observed in
B2g and B1g symmetry, respectively. The styles of the lines �col-
ors� do not correspond to similar temperatures but rather high-
light the scaling of the response with temperature: similar spec-
tra are obtained if the temperatures differ by approximately a
factor of 2. From Tassini et al., 2005.
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dopings as shown in Fig. 47�a�, demonstrating the tran-
sition to a correlated insulator �Freericks and De-
vereaux, 2001�.

Simultaneously with the studies in La1.90Sr0.10CuO4,
the quasi-1D ladder compound Sr14−xCaxCu24O41 was in-
vestigated �Blumberg et al., 2002; Gozar et al., 2003�
which is considered a model system for high-Tc cuprates
�Sigrist et al., 1994; Dagotto and Rice, 1996; Dagotto,
1999�. At temperatures above approximately 450 K
low-energy spectral peaks similar to those in
La1.90Sr0.10CuO4 are found �Fig. 48�, although their ener-
gies and widths are an order of magnitude smaller. The
width obeys an Arrhenius law with a doping-
independent activation energy & of approximately
2100 K. In the insulator �x=0�, the conductivity �for T
�300 K� reveals a similar & while for x=12 the conduc-
tivity is metallic above 70 K �Gozar et al., 2003; Gozar
and Blumberg, 2005�. The position of the maximum and
width decrease upon cooling. In both cases, for T
�450 K the peaks move below the detection limit of
2 cm−1. Below 250 K, no indication of the peaks can be
detected any more. It is interesting to note that at least
in undoped Sr14Cu24O41 a charge-ordered state develops
below TCO	250 K, consistent with the expected emer-
gence of a soft Goldstone mode �Abbamonte et al.,
2004�.

In the ordered state Sr14Cu24O41 has an optical re-
sponse which is well described by that of a pinned
charge-density wave �Littlewood, 1987; Blumberg et al.,
2002�. For T�250 K, the results are interpreted in terms
of a damped plasma oscillation above TCO �Blumberg et
al., 2002; Gozar et al., 2003; Gozar and Blumberg, 2005�.
Since free carriers damp the mode, the width is expected
to increase in proportion to the conductivity just oppo-
site to what one would expect from free carrier re-
sponse. This complicates the interpretation of the results
in metallic Sr2Ca12Cu24O41 where the width still in-

creases with temperature while the conductivity de-
creases. Gozar et al. �2003� argued that different regions
of the Fermi surface contribute to the transport and
damping in essentially 2D Sr2Ca12Cu24O41.

A comparison of panels �a� and �b� of Fig. 48 shows
that the continuum surviving at low temperature is sig-
nificantly stronger in the metal �Fig. 48�b��. We therefore
think that the low-energy mode found at T�250 K
could also originate from incipient charge order. In
Sr14−xCaxCu24O41 the mode is then superimposed on a
free-electron response in a similar way as in high-Tc cu-
prates.

It is interesting that similar types of spectra are also
found in Bi1−xCaxMnO3 �see Sec. III.E�, exhibiting com-
parable temperature dependences. While the results in
ladders are interpreted in terms of an overdamped
plasma mode in a CDW system above the ordering tem-
perature �Blumberg et al., 2002; Gozar et al., 2003; Gozar
and Blumberg, 2005�, the response in cuprates was pro-
posed to originate from fluctuations of the charge den-
sity in the vicinity of a charge-ordering instability �Ca-
prara et al., 2005�. Since the charge modulation
observed, e.g., by tunneling microscopy �Hoffman et al.,
2002; Howald et al., 2003; Vershinin et al., 2004� is at
finite q, two fluctuations have to be exchanged to fulfill
the q=0 selection rule in Raman scattering �Venturini et
al., 2000; Caprara et al., 2005�. Caprara et al. �2005� have
shown that charge-ordering fluctuations at incommensu-
rate wave vectors determined via neutron scattering
�Fijita et al., 2002� yield proper line shapes and selection

FIG. 47. �Color� Raman response �	� �� ,T� of
�Y0.97Ca0.03�Ba2Cu3O6.1 in �a� B1g and �b� B2g symmetry. The
doping level is close to p=0.02. From Hackl et al., 2005.

FIG. 48. �Color� Temperature-dependent Raman response for
cc polarization in ladder compounds. Upper inset: Fit of the
data with Eq. �49� plus a small background. Lower inset: Two-
leg ladder structure. From Gozar et al., 2003.
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rules in La1.90Sr0.10CuO4 and La1.98Sr0.02CuO4. To which
extent the spin channel is involved and whether similar
considerations apply to other dopings and cuprate fami-
lies have not been explored yet and remain important
future topics.

In contrast to Sr14−xCaxCu24O41, the low-energy peak
is strongly doping dependent in La2−xSrxCuO4. The tem-
perature scale is different by a factor of 2 for the two
doping levels studied �Fig. 46�, implying that T*�0.02�
	2T*�0.10�. The doping level pc determined from ex-
trapolating T* to zero, T*�pc�=0, yields 0.15�pc�0.20
in close vicinity of the QCP inferred from other experi-
ments. It is therefore possible that the low-energy re-
sponse is related to the thermal and quantum fluctua-
tions above a hidden critical point.

In summary, the comparison of cuprates studied sug-
gests that there is a superposition of two anomalies in
B1g symmetry: �i� below p�0.22 antinodal quasiparticles
become localized in all compounds as can be observed at
sufficiently high temperature and �ii� with decreasing
temperature a well-defined peak develops in
La1.90Sr0.10CuO4 at low energy. Although nothing com-
parable can be resolved in Y- and Bi-based compounds
at the same doping level, the additional response may
not necessarily be absent. It rather can mean that the
low-energy features are broader and shifted to higher
energies, hence becoming very similar in shape to the
response from the 2D planes. Since the relationship be-
tween superconductivity and spin and/or charge fluctua-
tions is a key issue in cuprates further work seems
worthwhile here.

V. CONCLUSIONS AND OPEN QUESTIONS

The results discussed in the course of this review dem-
onstrate that Raman spectroscopy is and has been an
invaluable tool to investigate the dynamics of strongly
correlated electrons. Improvements in the experimental
technique have opened up the field to a variety of new
systems. Light scattering has offered unique insights into
dynamics in different regions of the Brillouin zone,
showing the development of ordering and the competi-
tion between various phases as the role of correlations
increases. Materials such as superconductors with
charge-density-wave order, correlated insulators, ruthen-
ates, manganites, and finally superconducting cuprates
show the rich variety of phenomena which have been
unveiled via Raman investigations. Along the way, light
scattering has considerably deepened our knowledge of
dynamics and correlation effects, and has provided sev-
eral key ingredients towards the development of a com-
prehensive theoretical description of these materials.

Summarizing the findings on correlated systems over
the past several years, the key ingredients stemming
from Raman investigations include the following: �i� The
development of anisotropies as correlations are in-
creased. Symmetry-selective measurements provide a
tool to zoom in on the dynamics in different regions of
the Brillouin zone. This is evidenced by Raman scatter-

ing studies on MgB2 as well as the cuprates in the nor-
mal and superconducting phases, and the ordered
phases in the ruthenates and manganites. �ii� The exis-
tence of collective modes. Using Raman techniques the
prevalence of certain types of order were identified. Evi-
dence for the importance of collective modes comes
from CDW-superconductor and magnon scattering in
antiferromagnetic insulators, and implications for a
number of possible fluctuation or ordering modes exist
in the cuprates. �iii� A qualitative understanding of
quantum critical behavior. The symmetry projection of
parts of the Brillouin zone completes the picture of the
battleground between competing orders concomitant
with an underlying quantum phase transition. Here
spectral weight transfers as a function of temperature,
doping, and pressure on a number of materials com-
bined with polarization-dependent studies have opened
a new door in the area of quantum criticality.

It is clear that a number of issues are still of primary
interest in correlated systems in general. These include
the following: �i� the origin of the electronic continuum
in a number of compounds which look surprisingly simi-
lar at first pass; �ii� the origin of the polarization depen-
dence in materials which exhibit instabilities towards or-
dered phases; �iii� the mapping of Brillouin zone-
projected electron dynamics close to a quantum critical
point.

The cuprates continue to provide a wealth of informa-
tion and puzzles in the area of superconductivity and
strong electronic correlations. Issues in which consensus
has been reached include �i� the presence antiferromag-
netic correlations over a wide range of doping levels evi-
denced from the two-magnon peak; �ii� the broad con-
tinuum in the normal state as a common feature of all
cuprates; �iii� the d-wave nature of the pair state below
Tc in a number of hole-doped materials derived from
low-frequency power laws and polarization depen-
dences, �iv� the dichotomy between the dynamics of B1g
and B2g quasiparticles at low dopings, where low-
frequency antinodal B1g behavior is governed by inco-
herence at the same time as nodal B2g quasiparticles
show relatively doping-independent metallic character,
similar to the findings of transport quantities; and �v� the
disappearance of this dichotomy for appreciably doped
samples.

In cuprates there are still several unsettled questions:
�i� What is the origin of the A1g and/or B1g peaks in the
superconducting state? Do they originate from the redis-
tribution of superconducting quasiparticles or are they
collective modes or of lattice origin? �ii� How does the
nodal �antinodal� dichotomy picture of coherence �inco-
herence� merge into a metallic description at high dop-
ing, BCS superconductivity for temperatures below Tc,
and antiferromagnetism near half-filling? �iii� What is
the microscopic origin for low-energy peaks at low dop-
ing, and how from this can information be obtained on
the competition between ordered phases?

These are issues which we believe will form the plan
of development of Raman scattering in cuprates as well
as other materials in the years to come. The continua-
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tion of investigations on many new and well-
characterized samples will further our knowledge of ma-
terials and correlations. Applications of the use of
pressure and magnetic field will allow an exploration of
quantum criticality and evolution of anisotropic electron
dynamics in a variety of systems. The rapid development
of Raman scattering as we have outlined indicates that
the study of the electronic dynamics of complex materi-
als will remain a vibrant and promising field of research.
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