
Colloquium: Light scattering by particle and hole arrays

F. J. García de Abajo

Instituto de Óptica—CSIC, Serrano 121, 28006 Madrid, Spain

�Published 10 October 2007�

This Colloquium analyzes the interaction of light with two-dimensional periodic arrays of particles
and holes. The enhanced optical transmission observed in the latter and the presence of surface modes
in patterned metal surfaces is thoroughly discussed. A review of the most significant discoveries in this
area is presented first. A simple tutorial model is then formulated to capture the essential physics
involved in these phenomena, while allowing analytical derivations that provide deeper insight.
Comparison with more elaborated calculations is offered as well. Finally, hole arrays in
plasmon-supporting metals are compared to perforated perfect conductors, thus assessing the role of
plasmons in these types of structures through analytical considerations. The developments that have
been made in nanophotonics areas related to plasmons in nanostructures, extraordinary optical
transmission in hole arrays, complete resonant absorption and emission of light, and invisibility in
structured metals are illustrated in this Colloquium in a comprehensive, tutorial fashion.
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I. INTRODUCTION

The scattering of waves in periodic media plays a cen-
tral role in areas of physics as diverse as low-energy
electron diffraction �Pendry, 1974� or atomic-beam scat-
tering from crystal surfaces �Farías and Rieder, 1998�.
Valence electrons in solids, sound in certain ordered

constructions �Martínez-Sala et al., 1995�, or light in pho-
tonic crystals �Joannopoulos et al., 1997; López, 2003�
undergo diffraction that under certain conditions can
limit their propagation in frequency regions known as
band gaps �Ashcroft and Mermin, 1976�. Among these
examples, the scattering of electromagnetic waves is par-
ticularly important because it allows obtaining structural
and spectroscopic information over a fantastically wide
range of lengths, going from atomic dimensions in x-ray
scattering �Henke et al., 1993� to macroscopic distances
in radio and microwaves. Actually, Maxwell’s equations
are written in first-order derivatives with respect to spa-
tial coordinates, so that light scattering in the absence of
nonlinear effects is solely controlled by the shape and
permittivity of diffracting objects with distances mea-
sured in units of the wavelength, and therefore the same
phenomena are encountered over entirely different
length scales.

We can classify the performance of periodic structures
in three distinct categories according to the ratio of the
period a to the wavelength �. For ��a, an effective
homogeneous medium description is possible. This is in
fact what happens in most naturally occurring sub-
stances when a has atomic dimensions. But also in cer-
tain artificially textured materials �metamaterials�, which
allow achieving exotic behavior like magnetic response
at visible frequencies �Grigorenko et al., 2005� and me-
dia with negative refraction index �Smith et al., 2004�,
without neglecting the exciting possibility of using nano-
particles as building blocks to tailor on-demand optical
properties �Liz-Marzán, 2006�. The opposite limit ��
�a� is generally well accounted for by classical rays, al-
though keeping track of phases proves to be crucial near
points of light accumulation, like in the self-imaging of
gratings described by Talbot �Talbot, 1836; Huang et al.,
2007�. Nevertheless, it is the intermediate regime, when
� is comparable to a, in which diffraction shows up in
full display. We find examples of this in both three-
dimensional �3D� photonic crystals, which offer a prom-
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ising route to fully controlling light propagation over
distances comparable to the wavelength �Joannopoulos
et al., 1997; López, 2003�, and two-dimensional �2D�
crystals, in which a substantial degree of optical confine-
ment has been accomplished �Akahane et al., 2003�.

In this Colloquium, we focus on light scattering by
planar structures of particles or holes, which have be-
come a current subject of intense research driven to
some extent by advances in nanopatterning techniques.
Our main purpose is to explain the phenomena ob-
served within this context in a tutorial but nevertheless
comprehensive fashion. We first review experimental
and theoretical developments in Sec. II. Then, we for-
mulate in Sec. III a simple powerful model that deals
with the response of particle and hole arrays on a com-
mon footing, leading to analytical expressions that cap-
ture the main physical aspects of these systems. Finally,
metals with plasmons will be discussed, and the main
differences with respect to plasmon-free perfect conduc-
tors elucidated, in Sec. IV. We use Gaussian units, unless
otherwise stated.

The beginning of the last century witnessed important
developments in diffraction of light in gratings after
Wood’s observation of anomalous reflection bands
�Wood, 1902, 1912, 1935� and their subsequent interpre-
tation �Lord Rayleigh, 1907; Fano, 1936, 1941�. Two
types of anomalies were identified, one of them occur-
ring when a diffracted beam becomes grazing to the
plane of the grating, the Rayleigh condition �Lord Ray-
leigh, 1907�, giving rise to a sharp bright band, and the
other one showing up to the red of the former as an
extended feature containing two neighboring dark and
bright bands �Fano, 1936, 1941�.

The century concluded with another significant dis-
covery �Ebbesen et al., 1998�: periodic arrays of sub-
wavelength holes drilled in thin metallic films can trans-
mit much more light per hole at certain frequencies than
what was previously expected for single openings, based
upon Bethe’s prediction of a severe cutoff in transmis-
sion as �b /��4 for large � compared to the hole radius b
�Bethe, 1944�. Previous knowledge gathered by electri-
cal engineers in the microwave domain �Ulrich, 1967;
Chen, 1971; McPhedran et al., 1980� had already ex-
ploited the use of periodically drilled surfaces as
frequency-selective filters and discussed the occurrence
of 100% transmission at wavelengths slightly above the
period. However, the hole sizes that were considered in
that context lie in the region of sizeable transmission for
single holes. The more recently discovered extraordi-
nary transmission phenomenon was, however, observed
for narrower holes �relative to the wavelength�, the
transmission of which exceeded orders of magnitude the
one expected from the sum of their individual transmis-
sions �Ebbesen et al., 1998�. For square arrays under nor-
mal incidence, a transmission minimum occurred at a
wavelength close to the period a, coinciding with the
Rayleigh condition �Lord Rayleigh, 1907�, and a trans-
mission maximum showed up at longer wavelength, thus
revealing its connection to Wood’s anomalies �Ghaemi et
al., 1998; Sarrazin et al., 2003�. However, the explanation

of the effect is still a subject of debate, as some under-
stand that it originates mainly in the interaction of the
apertures with surface plasmons �Ghaemi et al., 1998;
Popov et al., 2000; Martín-Moreno et al., 2001; Salomon
et al., 2001; Wannemacher, 2001; Barnes et al., 2004�,
whereas others make emphasis in dynamical light dif-
fraction �Treacy, 1999, 2002; Sarrazin et al., 2003; Lezec
and Thio, 2004�. While the latter works well to under-
stand the observed extraordinary optical transmission in
drilled plasmon-free perfect conductors �Mittra et al.,
1988; Gómez-Rivas et al., 2003; Cao and Nahata, 2004;
Miyamaru and Hangyo, 2004�, supporters of the surface-
plasmon interpretation argue that the enhanced trans-
mission relies in this case on plasmonlike lattice-surface-
bound modes sustained by patterned perfect-conductor
surfaces �Pendry et al., 2004�. Actually, evidence of such
modes had been observed before in periodically perfo-
rated metallic screens for wavelengths several times
larger than the period �Ulrich and Tacke, 1972�. We il-
lustrate below how these are in fact complementary
views of the same phenomenon and how diffraction in
particle arrays contains already the essential features
that can be translated to understand the phenomenology
of hole arrays. But we first summarize experimental and
theoretical findings in this area.

II. OVERVIEW OF EXISTING RESULTS

A large amount of literature has been accumulated on
transmission through periodic structures, and it is an in-
teresting exercise to reexamine it in connection to recent
developments.

A. Single holes

Bethe’s predicted cutoff in the transmission of a single
hole in a perfect-conductor thin screen as �b /��4 is the
leading-order term in the expansion of the transmission
cross section in powers of b /� �Bethe, 1944�. Subsequent
higher-order analytical corrections �Bouwkamp, 1954;
Chang et al., 2006�, and eventually rigorous numerical
calculations �Roberts, 1987; García de Abajo, 2002�,
demonstrated that the cross section lies below the hole
area up to a radius b�0.2�. These results have found
experimental corroboration down to the NIR regime
�Obermüller and Karrai, 1995�, with new localized plas-
mon resonances showing up at shorter wavelengths �De-
giron et al., 2004; Rindzevicius et al., 2007�.

Two different mechanisms have been, however, sug-
gested to achieve enhanced transmission in a single hole:
filling it with a material of high permittivity �García de
Abajo, 2002; García-Vidal et al., 2005; Webb and Li,
2006�, thus creating a partially bound cavity mode that
couples resonantly to incident light �see Sec. III.E�; and
decorating the aperture with periodic corrugations
�Lezec et al., 2002� in much the same way as highly di-
rectional antennas are capable of focusing electromag-
netic radiation on a central dipole element by means of
concentric, periodically spaced metallic rings �James,
1977�.
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B. Optical transmission through hole arrays

The intensity of light passing through holes is boosted
at certain wavelengths when we arrange them periodi-
cally. Pioneering calculations and microwave experi-
ments showed zero reflection in thin films perforated by
periodic arrays of small apertures of radius b�0.36�
�Chen, 1971�. Further seminal experiments focused on
the relation between hole arrays in thin metal screens
and their complementary screens �Ulrich, 1967�, putting
Babinet’s principle to a test in the far-infrared region.
This was followed by numerous applied studies of hole
arrays �regarded as frequency-selective surfaces� in the
engineering community, including filters for solar energy
collection and elements to enhance antennae perfor-
mance �Maystre, 1980; McPhedran et al., 1980; Cwik
et al., 1987; Mittra et al., 1988�.

Ebbesen et al. �1998� demonstrated in the optical do-
main extraordinary light transmission for openings of ra-
dius below the cutoff of the first propagating mode in a
circular waveguide, b�0.29�. Since then, this phenom-
enon has been consistently observed for a varied list of
metallic materials �Przybilla, Degiron, et al., 2006�, over
a wide range of wavelengths �e.g., for microwaves
�Gómez-Rivas et al., 2003; Cao and Nahata, 2004�, to
which metals respond as nearly perfect conductors, in
the infrared �Selcuk et al., 2006�, and in the vacuum ul-
traviolet �vuv�, using a good conductor in this regime
like Al �Ekinci et al., 2007��, and with different types of
array symmetries, including 2D quasicrystal arrange-
ments �Przybilla, Genet, and Ebbesen, 2006; Schwa-
necke et al., 2006; Sun et al., 2006; Matsui et al., 2007;
Papasimakis et al., 2007�.

Two examples of enhanced transmission, from Krish-
nan et al. �2001� and Martín-Moreno et al. �2001�, are
shown in Fig. 1. The transmission is several times larger
in the infrared peak than the prediction of Bethe for
noninteracting holes in a thin screen, and four orders of
magnitude larger than what is expected for noninterac-
tion apertures in a perfect-conductor film of the same
thickness �dashed curves�.

Light transmission through hole arrays has been ex-
amined theoretically for four decades �Eggimann and
Collin, 1962; Chen, 1971; McPhedran et al., 1980, Dawes
et al., 1989�, although a detailed account of extraordi-
nary optical transmission in real metals had to wait until
the new century began �Popov et al., 2000; Martín-
Moreno et al., 2001; Salomon et al., 2001, Wannemacher,
2001; Sarrazin et al., 2003� and the advance in computa-
tion power allowed predictive capacity �Klein
Koerkamp et al., 2004; Chang et al., 2005�.

The influence of various geometrical and environmen-
tal factors has been studied. In particular, the role of
hole shape has been shown to yield nontrivial effects
�Elliott et al., 2004; Gordon et al., 2004; Klein Koerkamp
et al., 2004; Krasavin et al., 2005; van der Molen et al.,
2005�, such as larger enhancement and redshift of the
transmission peaks with respect to the Rayleigh condi-
tion for light polarized along the short axis of elongated
apertures. Finite arrays exhibit interesting shifts in the

transmission maxima as well, depending on the number
of apertures �Bravo-Abad et al., 2004; Lezec and Thio,
2004�. More exotic shapes like annular holes have also
been simulated �Roberts and McPhedran, 1988; Baida
and Van Labeke, 2002� and measured �Fan et al., 2005�,
with the additional appeal that annular waveguides sup-
port always one guided mode at least �Jackson, 1999�.

The transmission is exponentially attenuated with
hole depth because it is mediated by evanescent modes
of the apertures regarded as narrow subwavelength
waveguides. However, strong signatures of interaction
between both metal interfaces have been reported �De-
giron et al., 2002�, as well as high sensitivity to dielectric
environment, so that maximum transmission is achieved

FIG. 1. �Color online� Extraordinary optical transmission in
hole arrays. The measured transmittance �solid curves� is
shown for apertures drilled in �a� gold and �b� silver films, from
Krishnan et al. �2001� and Martín-Moreno et al. �2001�, respec-
tively. The silver film is self-standing in air, while the gold film
is deposited in quartz and immersed in an index-matching liq-
uid. The lattice constant is a=600 nm in Au and a=750 nm in
Ag. The transmittance of the perforated gold goes well above
that predicted for noninteracting apertures in a perfect-
conductor film or by Bethe’s formula for a thin screen �dashed
curves�. Rayleigh’s condition for the �1,0� and �1,1� beams be-
coming grazing are indicated by vertical dashed lines. Analyti-
cal results are shown as arrows in �a� and as a dashed curve in
�b� �see Sec. IV.D�. The transmittance is presented vs wave-
length in the dielectric environment of the metal, normalized
to the lattice constant.
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when the permittivity is the same on the two sides of the
film �Krishnan et al., 2001�.

Extraordinary optical transmission has expanded to a
wide range of phenomena �Genet and Ebbesen, 2007�,
like the interaction of hole arrays with molecules for
potential applications in biosensing �Dintinger, Klein,
and Ebbesen, 2006� and all-optical switching �Smolyani-
nov et al., 2002; Janke et al., 2005; Dintinger, Robel, et
al., 2006�, and the demonstration of the quantum nature
of plasmons through photon entanglement preservation
after traversing a hole array �Altewischer et al., 2002�.

C. Particles

The field of light scattering by small particles has a
rich research tradition �van de Hulst, 1981; Bohren and
Huffman, 1983� that is being continued by hot topics
such as, for example, novel near-field effects in the cou-
pling of metallic nanoparticle arrays �Krenn et al., 1999�
and strong interparticle interactions in dimers �Atay
et al., 2004; Nordlander et al., 2004; Romero et al., 2006�.
Here we single out two recent developments in line with
the rest of our discussion. The first one refers to coupled
metallic nanoparticle arrays. These particles can sustain
localized plasmon excitations that hop across neighbors.
It has been suggested �Quinten et al., 1998�, and later
confirmed by experiment �Maier et al., 2001, 2003�, that
this phenomenon can be utilized to transmit light energy
along chains of subwavelength particles, thus providing
some basic constituents for future plasmonic devices.

In a different development, the scattering spectra
from 1D and 2D arrays of metallic nanoparticles were
predicted to exhibit very narrow plasmon line shapes
produced by dynamical scattering �Zou and Schatz,
2004; Zou et al., 2004�. Experiments performed on litho-
graphically patterned particle arrays confirmed this ef-
fect and achieved reasonable control over spectral line
shapes �Hicks et al., 2005�. We discuss this further in Sec.
III.A.2.

III. TUTORIAL APPROACH

A tutorial model will be presented next that becomes
exact in the limit of narrow holes or small particles in
perfect-conductor films. This model describes the basic
physics involved both in extraordinary light transmission
and in lattice surface modes of structured metals, but
leads to simple analytical expressions that permit under-
standing these phenomena in a fundamental way and
making several challenging predictions.

A. Basic relations

We start with some basic analytical relations for the
scattering of an external light plane wave on a periodic
array of identical particles that are small compared to
both the wavelength and their separation �see Fig. 2�.
Within linear, nonmagnetic response, the particle at po-
sition Rn can be assumed to respond with an induced
dipole pn=�EE�Rn�, determined by its electric polariz-

ability tensor �E and the self-consistent field acting on it
E�Rn�. This dipole induces an electric field at point r
that can be written G0�r−Rn�pn in terms of the dipole-
dipole interaction tensor,

G0�r� = �k2 + ���
eikr

r
, �1�

where k is the light momentum in free space.1 Now, the
self-consistent dipole of our particle is found to be

pn = �E�Eext�Rn� + �
n��n

G0�Rn − Rn��pn�� , �2�

where Eext�Rn�=Eext exp�ik	 ·Rn� is the external electric
field, which depends upon the site position Rn through a
phase factor involving components of the incoming wave
momentum parallel to the array k	, as illustrated in Fig.
2, and the second term inside the square brackets repre-
sents the field induced by the rest of the particles.
Bloch’s theorem guarantees that the solution of Eq. �2�
must have the form pn=p exp�ik	 ·Rn�. Direct insertion
of this expression into Eq. �2� leads to

p =
1

1/�E − G�k	�
Eext �3�

and

G�k	� = �
n�0

G0�Rn�e−ik	·Rn, �4�

where we have chosen R0=0. Notice that the denomina-
tor of Eq. �3� separates the properties of the particles
��E� from those of the lattice �the structure-factor-type
of sum G�k	��, in the spirit of the Korringa-Kohn-
Rostoka �KKR� method in solid-state physics �Ashcroft
and Mermin, 1976�. The lattice sum in Eq. �4� can be
converted into rapidly converging sums using Ewald’s
method �Glasser and Zucker, 1980�, and we have used in
particular the procedure by Kambe �1968�.

Incidentally, Eqs. �2�–�4� can be also applied to 3D
particle arrays with k	 replaced by a 3D crystal momen-
tum. This type of approach has been shown to lead to
robust band gaps in atomic lattices �van Coevorden
et al., 1996�. Furthermore, Eq. �2� together with the

1More explicitly, G0�r�p= �exp�ikr� /r3�
��kr�2+ ikr−1�p
− ��kr�2+3ikr−3��r ·p�r /r2�.

FIG. 2. �Color online� Two-dimensional array of small identi-
cal particles illuminated by a light plane wave. k	 is the mo-
mentum component parallel to the array. The particle at posi-
tion Rn displays a dipole pn.

1270 F. J. García de Abajo: Colloquium: Light scattering by particle and …

Rev. Mod. Phys., Vol. 79, No. 4, October–December 2007



Clausius-Mossotti formula �Ashcroft and Mermin, 1976�
constitute the basis of the discrete-dipole approximation
method for solving Maxwell’s equations in arbitrary ge-
ometries �Purcell and Pennypacker, 1973; Draine and
Flatau, 1994�. It should also be noted that the present
approach can be extended to larger particles arranged in
ordered �Stefanou et al., 1998, 2000� or disordered arrays
�García de Abajo, 1999� by including higher-order mul-
tipoles, and that this is one of the methods that can be
actually applied to deduce effective optical properties of
composite materials �Milton, 2002; Romero et al., 2006�.

It is useful to represent the dipole-dipole interaction
in 2D momentum space in the plane of the array, which
we take to coincide with z=0. This is done by expressing
the scalar interaction at the right end of Eq. �1� as

eikr

r
=

i

2�
� d2Q

kz
ei�Q·R+kz
z
�,

where kz=�k2−Q2 is the normal momentum and the no-
tation r= �R ,z�, with R= �x ,y�, has been adopted. From
here and Eq. �1� one obtains expressions like

Gxx
0 �r� =

i

2�
� d2Q

kz
�k2 − Qx

2�ei�Q·R+kz
z
� �5�

for the components of the interaction tensor, here speci-
fied for the xx directions. This allows us to recast Eq. �4�
into a sum over 2D reciprocal-lattice vectors g, using the
relation

�
n

exp�iQ · Rn� =
�2��2

A �
g

��Q − g� , �6�

where A is the area of the lattice unit cell. For example,
the Gxx component under normal incidence �k	 =0� be-
comes

Gxx�0� = lim
z→0

�2�i

A �
g

1

kz
g �k2 − gx

2�eikz
g
z


−
i

2�
� d2Q

kz
�k2 − Qx

2�eikz
z
� , �7�

where kz
g=�k2−g2 and the integral represents the sub-

traction of the n=0 term in the sum of Eq. �4�. This
expression is important to elucidate some properties of
the lattice sums, as we show below.

1. Reflection and absorption in particle arrays

The scattered field is given by a Rayleigh expansion
similar to the one in Eq. �7� �García de Abajo et al.,
2006�, with each vector g labeling one reflected and one
transmitted beam of parallel momentum k	 +g �Lord
Rayleigh, 1907�. In the far field in particular, the zero-
order �g=0� reflection and transmission coefficients un-
der normal incidence reduce to2

r =
2�ik/A

1/�E − Gxx�0�
�8�

and

t = 1 + r , �9�

where the first term in the right-hand side of Eq. �9�
represents the unscattered beam, and the numerator of
Eq. �8� is the far-field amplitude produced by a lattice of
unit dipoles.

Interestingly, the absorbance of the array is given by
1− 
1+r
2− 
r
2 �see Eq. �9��, which when regarded as a
function of the complex variable r has a maximum of
50% coinciding with r=−1/2 and t=1/2. This condition
is easily attainable near a lattice singularity �see Sec.
III.B�, using, for instance, weakly dissipative spherical
particles. Similar results have been predicted for narrow
cylinder arrays �Laroche et al., 2006�, in which 100% ab-
sorption is possible in one of the polarization compo-
nents for the right choice of parameters.

A particularly simple situation is encountered when
the wavelength is larger than the lattice spacing, so that
all diffracted beams other than the zero-order beam are
evanescent �
k	 +g
�k�. Then, upon inspection of Eq.
�7�, one finds the useful relation

Im
Gxx�0�� = 2�k/A − 2k3/3, k � g1, �10�

where g1 denotes the period of the reciprocal lattice
�g1=2� /a for square arrays�. Moreover, if the particles
are nonabsorbing, the optical theorem constrains their
polarizability by the condition Im
−1/�E�=2k3 /3 �van
de Hulst, 1981�. Combining these expressions, one ob-
tains

r = −
1

1 + �iA/2�k�Re
1/�E − Gxx�0��
�11�

for the reflection coefficient of nondissipative particles
under normal incidence below the diffraction threshold.

The electrostatic approximation provides a reasonable
description of the electric polarizability of small particles
�E

es. However, this needs to be amended in order to com-
ply with the mentioned optical-theorem constrain, for
instance, via the prescription �E=1/ �1/�E

es−2ik3 /3� �We-
ber and Ford, 2004�. Analytical expressions for �E

es exist
for a variety of particle shapes, including homogeneous
spheres ��E

es=b3�	−1� / �	+2�, where b is the radius and 	
is the permittivity� and ellipsoids �Jones, 1945�.

We illustrate the applicability of Eq. �11� through an
example consisting of square lattices of perfectly con-
ducting thin disks. Figure 3 compares the analytical re-
sult of Eq. �11� �dashed curves� with the full solution of
Maxwell’s equations obtained by following a layer-KKR
multiple-scattering formalism �Stefanou et al., 1998,
2000� to simulate the array together with a modal expan-
sion solution of the isolated disk similar to the one avail-
able for isolated holes �Roberts, 1987; García de Abajo,
Gómez-Medina, and Sáenz, 2005�. In the analytical so-
lution we have used the polarizability of thin metallic
disks as derived from an ellipsoid of vanishing height,

2We assume that the array possesses specular symmetry with
respect to the XZ plane.
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�E
es=4b3 /3�, where b is the radius. The results of the

analytical model describe qualitatively the presence of
zero- and full-reflection points in the spectra, irrespec-
tively of the disk size, and we discuss this point further
in Sec. III.C.

2. Narrowing line shapes through dynamical scattering

The above formalism can be used to explain the effect
of narrowed plasmon line shapes in the scattering spec-
tra of 1D and 2D particle arrays �Zou and Schatz, 2004;
Zou et al., 2004; Hicks et al., 2005�. For simplicity, we
discuss metallic spherical particles described by the
Drude dielectric function

	�
� = 1 −

p

2


�
 + i��
, �12�

where 
p is the bulk plasma frequency and the plasmon-
amplitude damping rate is �� /2�
p.

Using this expression to obtain the polarizability of a
small sphere of radius b �see Sec. III.A.1�, we recast Eq.
�3� into a Lorentzian of width �� /2+ �
pb3 /2�3�Im
G�.
The natural width of the isolated particles is now supple-

mented by a term proportional to Im
G� �see Eq. �10��,
which can take negative values that compensate the � /2
term to render arbitrarily narrow collective plasmon
resonances for an appropriate choice of array param-
eters.

Applying this to a 2D square array under normal in-
cidence with ��a, we find that Eq. �10� yields complete
cancellation of the width for b /a�0.24�� /
p�1/3. Under
such conditions, the narrowing of the width is limited by
the physical requirement that 
r
2+ 
t
2�1 �see Eqs. �8�
and �9��.

B. Lattice singularities

The interaction among particles in the periodic arrays
of Sec. III.A appears to be governed by the lattice sums
G�k	� and is dominated by their singularities, which
originate in accumulation of in-phase scattered fields.
Following similar arguments to previous expositions of
this idea �Lord Rayleigh, 1907; Fano, 1941�, we consider
a 1D periodic chain of particles illuminated by an inci-
dent plane wave with both propagation direction and
electric field perpendicular to the array, so that the field
induced by a given particle on a distant one scales with
the inverse of their separation, and thus the contribution
of distant particles to the interaction lattice sum has the
convergence properties of the series �n=1


 eikan /n, which
diverges as the wavelength approaches the period a as
−ln
ka−2�
 �Gradshteyn and Ryzhik, 1980�. The same is
true for 2D arrays. These singularities in G�k	� are sig-
naled by the Rayleigh condition of a diffracted beam
becoming grazing �Lord Rayleigh, 1907�, as can be seen
from Eq. �7�, where divergent terms g�k �i.e., terms
with zero normal momentum kz

g� dominate the sum.
A consequence of this analysis is that the array be-

comes invisible to the incoming light right at the lattice
sum divergence �Gxx�0�→
, so r→0, according to Eq.
�8��, showing 100% transmission even for absorbing par-
ticles.

Focusing for simplicity on a square array of period a,
the normal-incidence lattice sum �7� diverges as �García
de Abajo, Gómez-Medina, and Sáenz, 2005�

Gxx�0�a3 � 4�2�2
1

��/a − 1
− 118 �13�

for ��a, where a fitted constant has been subtracted in
order to extend the validity of this expression well be-
yond the singularity.

For oblique incidence with k	 along one of the lattice
unit vectors 	x̂, proceeding as in the derivation of Eq.
�7�, one finds that G�k	� is diagonal and its components
diverge as

G�k	� �
1

��k	 + 2�n/a�2 + �2�l/a�2 − k2
, �14�

FIG. 3. �Color online� Reflectance spectra of square arrays of
perfectly conducting thin circular disks. The wavelength � is
normalized to the lattice constant a. The disks radius is �a� b
=a /5 and �b� b=a /9. Light is impinging normal to the array
and 100% reflection is observed in these two cases at the maxi-
mum. Solid curves, full numerical results. Dashed curves, ana-
lytical model for 
r
2 �Eq. �11��.
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where n and l run over integral numbers �excluding l
=0 in Gxx�. This behavior is illustrated in Fig. 4, showing
the lattice singularities exhibited by Re
Gzz�k	��.

C. Hole arrays

1. Babinet’s principle and hole arrays in thin screens

The behavior of hole arrays in perfect-conductor
screens can be directly connected to the properties of
the disk arrays considered in Fig. 3. Indeed, one can
invoke the exact Babinet principle �Born and Wolf,
1999; Jackson, 1999�, which connects the reflected fields
of the disk array for a given incident polarization with
the transmitted fields of its complementary hole array
with orthogonal polarization, as illustrated in Fig. 5
�García de Abajo, Gómez-Medina, and Sáenz, 2005�.
Therefore the reflectance spectra shown in Fig. 3 are
identical with the transmittance spectra of the comple-
mentary perforated screens.

Focusing again on square arrays and normal inci-
dence, we observe two characteristic features in the
transmittance spectra: �i� the transmission vanishes when
the wavelength � equals the period a, and �ii� a 100%
transmission maximum takes place at a wavelength

slightly above a. The origin of these effects can be traced
back to Wood’s anomalies in gratings �Wood, 1902, 1912,
1935� and to their interpretation in terms of the follow-
ing two mechanisms �Fano, 1936, 1941�: �i� accumulation
of in-phase scattering events when the wavelength
equals the period �see explanation in Sec. III.B�, and �ii�
coupling of the incident light to a surface resonance.
These phenomena persist in hole arrays perforated in
thicker films of nonideal absorbing metals, for which the
maximum transmission is reduced but justifies the term
extraordinary optical transmission �Ebbesen et al., 1998�.

The analytical simplicity of the transmission coeffi-
cient for our thin-screen hole array, given by the right-
hand side of Eq. �11�, allows deeper insight into the ori-
gin of this phenomenon. The lattice sum Gxx�0� was
shown to diverge when �=a, as Fig. 6 illustrates. This
leads to vanishing transmission, which we can interpret
in terms of accumulation of in-phase scattering �see dis-
cussion in Sec. III.B�. Furthermore, 100% transmission
is achieved if the second term in the denominator of Eq.
�11� becomes zero, a condition that can be rigorously
fulfilled for arbitrarily tiny apertures �García de Abajo,
Gómez-Medina, and Sáenz, 2005�: the smaller the holes,
the larger 1/�E, because the polarizability is propor-
tional to the cube of their radius, but no matter how
large this fraction becomes, there is always one wave-
length at which the divergent lattice sum matches it.
This statement is illustrated by geometrical construction
in Fig. 6, in which the point of intersection of the hori-
zontal dotted line and the solid curve �Fig. 6�a�� signals

FIG. 5. �Color online� Babinet’s principle applied to disk and
hole arrays. The transmittance �reflectance� of the disk array
for light of a given polarization � �s or p� is identical to the
reflectance �transmittance� of the complementary hole array
for orthogonal polarization �� �p or s, respectively�.

FIG. 6. �Color online� Geometrical construction of the condi-
tion of full transmission in a hole array. �a� Wavelength depen-
dence of the real part of the lattice sum Gxx �Eq. �4�� for k	

=0. �b� Normal-incidence transmittance of a hole array
complementary of the disk array of Fig. 3�a� �b=a /5�: exact
calculation �solid curve�, analytical model of Eq. �11� �dashed
curve�, and Fano profile of Eq. �15� �dotted curve�. The trans-
mission minimum at �=a results from the divergence of Gxx,
while the transmission maximum �see vertical dashed line� is
derived from the condition that Re
Gxx� equals the inverse of
the hole polarizability, according to Eq. �11�.
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FIG. 4. �Color online� Lattice sum Gzz�k	� �Eq. �4�� for a
square lattice of period a as a function of parallel momentum
k	 and wavelength �. The direction of k	 is along one of the
axes of the lattice.
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the condition Re
1/�E−Gxx�0��=0.3 The possibility of
100% transmission in nonabsorbing structures has al-
ready been pointed �Maystre, 1980; McPhedran et al.,
1980�, and the theory presented goes further to show
that this is possible for arbitrarily small holes. Neverthe-
less, the number of apertures needed to accomplish high
transmission will increase as they become smaller, and at
the same time the transmission resonance will be in-
creasingly narrower and closer to �=a. Therefore these
transmission maxima involve long-range interaction
among holes, dominated by dynamical diffraction �i.e.,
multiple-scattering paths�. In fact, if only single scatter-
ing were considered, Eq. �3� would become p=�E�1
+�EG�k	��E�Eext, which wrongly predicts simultaneous
divergence of transmittance and reflectance at �=a.

This collective response in planar periodic arrays can
be regarded as a lattice surface resonance �Fano, 1941�,
which becomes a true surface-bound state when evanes-
cent incoming waves are considered, as we explain in
Sec. III.D. However, the resonance is strongly coupled
to propagating light for external plane-wave illumina-
tion, a situation described by Fano �1961� studing a dis-
crete resonance state �our lattice surface-bound mode�
coupled to a continuum �the transmitted light�. This type
of approach has been shown to work rather well in
theory �Sarrazin et al., 2003; Chang et al., 2005� and in
comparison with measured transmission spectra �Genet
et al., 2003�. Our transmittance calculations should also
respond to Fano profiles of the form �Fano, 1961�

T = C
�q + ��2

1 + �2 , �15�

where � can be assimilated to the light frequency and q
is the strength of the coupling to the lattice surface reso-
nance. Figure 6�b� compares our exact calculation of the
transmittance �solid curve� with a Fano profile corre-
sponding to parameters q=−3 and C=0.1 �dotted curve�,
in which we assume a linear relationship between � and
the light frequency, with �=−0.33 ��=3� for T=1 �T
=0�. The agreement is reasonable, considering that no
dependence of the coupling parameter on wavelength is
taken into account. This further supports an interpreta-
tion of extraordinary transmission in terms of coupling
to the lattice surface resonance set up by dynamical dif-
fraction in the array.

The geometrical construction of Fig. 6 provides a vi-
sual explanation of transmission in arrays of elongated
apertures: an elongated piece of planar metal �e.g., a
rectangle� has larger electric polarizability along its long-
axis direction, and this has direct consequences for the
Babinet-related situation of an elongated hole with the
electric field along the short axis; larger polarizability

involves more redshifted and broader transmission
maxima �this is because the point of crossing in Fig. 6�a�
occurs where Gxx is less steep�, as observed experimen-
tally �Gordon et al., 2004; Klein Koerkamp et al., 2004�.

Incidentally, Eqs. �3� and �4� constitute a good ap-
proximation to describe the extraordinary transmission
observed in 2D quasicrystal hole arrays �Przybilla,
Genet, and Ebbesen, 2006; Schwanecke et al., 2006; Sun
et al., 2006; Matsui et al., 2007; Papasimakis et al., 2007�,
in which the lattice sum G exhibits pronounced, but fi-
nite maxima related to bright spots in the Fourier trans-
form of the hole distribution. These spots define the re-
ciprocal lattice for periodic arrays, but have quasicrystal
angular symmetry in quasicrystals. In the spirit of Ray-
leigh’s explanation of Wood’s anomalies �Lord Rayleigh,
1907�, the cumulative effect of long-distance interaction
among apertures can be claimed to create these
reciprocal-space hot spots, so that the effect of neighbor-
ing holes can be overlooked and an effective homoge-
neous p describes qualitatively the extraordinary trans-
mission effect in quasicrystal arrays �Papasimakis et al.,
2007�, as well as the rich Talbot-like structure and sub-
wavelength light localization observed at distances up to
several wavelengths away from the array �Huang et al.,
2007�.

2. Single holes in thick films

Our use of Babinet’s principle indicates that, similar to
small particles, small holes in perfect conductors can be
assimilated to equivalent induced dipoles, in line with
Bethe’s pioneering description of the field scattered by a
single aperture in a thin screen �Bethe, 1944�, which he
regarded as arising from a magnetic dipole parallel to
the screen plus an electric dipole perpendicular to it.

Narrow holes can still be represented by induced di-
poles in thick screens, as illustrated in Fig. 7�a�. Parallel
electric dipoles and perpendicular magnetic dipoles are
forbidden by the condition that the parallel electric field
and the perpendicular magnetic field vanish at a perfect-
conductor surface. This allows defining electric �E� and
magnetic �M� polarizabilities both on the same side as
the applied field ���, with �=E ,M� and on the opposite
side �����. Furthermore, energy flux conservation under
arbitrary illumination leads to an exact optical-theorem
type of relationship between these polarizabilities
�García de Abajo et al., 2006�: by considering two plane
waves incident on either side of the film and by imposing
that the incoming energy flux equals the outgoing one
�because perfect conductors cannot absorb energy�, we
obtain the condition

Im
g�
±� =

− 2k3

3
, �16�

where

3We rely here on the condition Re
1/�E��0, which is satis-
fied by the polarizability of planar, perfectly conducting disks.
Interestingly, lattice resonances will be absent in arrays of par-
ticles with negative polarizability, such as metallic nanopar-
ticles under blue-detuned illumination relative to a nearby
plasmon band.
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g�
± =

1

�� ± ���

is defined as hole response functions. The remaining real
parts of g�

± are obtained numerically from the field scat-
tered by a single hole �Roberts, 1987; García de Abajo,
2002�. These functions are represented in Figs. 7�b� and
7�c� within the electrostatic limit, showing 
Re
g�

+�
→


in the thin-film limit, where ���=−�� �Jackson, 1999�.

3. Hole arrays in thick films

Periodic arrays of sufficiently narrow and spaced holes
can also be described by perpendicular electric dipoles p
and p� and parallel magnetic dipoles m and m�, where
primed �unprimed� quantities are defined on the entry
�exit� side of the film, as determined by the incoming

light �see Fig. 7�a��. We consider first a unit-electric-field
p-polarized plane-wave incident on a hole array with
parallel momentum k	 along x̂, so that the external field
�incident plus reflected� in the absence of the apertures
has parallel magnetic field Hy

ext=2 along the y direction
and perpendicular electric field Ez

ext=−2k	 /k along z.
Then, one can generalize Eq. �3� and write a set of
multiple-scattering equations for the self-consistent di-
poles �Collin and Eggimann, 1961; Eggimann and Collin,
1962�. Symmetry considerations demand that our mag-
netic and electric dipoles be oriented as m=mŷ and p
=pẑ, respectively. Following the notation of Sec. III.A,
we can write

p = �E�Ez
ext + Gzzp − Hm� + �E� �Gzzp� − Hm�� ,

p� = �E� �Ez
ext + Gzzp − Hm� + �E�Gzzp� − Hm�� ,

m = �M�Hy
ext + Gyym − Hp� + �M� �Gyym� − Hp�� ,

m� = �M� �Hy
ext + Gyym − Hp� + �M�Gyym� − Hp�� ,

with a new lattice sum defined as

H = − ik �
n�0

e−ik	xn�xn

eikRn

Rn
.

This sum stands for the interaction between mixed elec-
tric and magnetic dipoles. We can understand the above
equations in an intuitive way; for instance, the first one
of them states that the electric dipole on the entry side
�p� results from the response to the z component of the
self-consistent field on that side �Ez

ext+Gzzp−Hm� via
the polarizability �E plus the response to the self-
consistent field on the opposite film side �Gzzp�−Hm��
via �E� . The solution to these equations can be written as

p ± p� = − 2��gM
± − Gyy�k	/k + H�/�±, �17�

m ± m� = 2��gE
± − Gzz� + Hk	/k�/�±, �18�

with

�± = �gE
± − Gzz��gM

± − Gyy� − H2.

The zero-order transmittance of the film with holes is
then obtained from the far field set up by the infinite
2D array of induced dipoles, Tp= 
�2�k2 /Akz��m�
−p�k	 /k�
2, where kz=�k2−k	

2.
Similar considerations for s-polarized light show that

its transmittance reduces to T= 
2�km� /A
2, with mag-
netic dipoles parallel to k	 and no electric dipoles what-
soever �Ez

ext=0�. More precisely, m±m�= �2kz /k� / �gM
±

−Gxx�, from which one obtains

FIG. 7. �Color online� Response of a small hole in a perfect-
conductor thick film. �a� The field scattered by a subwave-
length aperture in response to external electric �Eext� and mag-
netic �Hext� fields is equivalent �at large distance compared to
the radius b� to that of effective electric �p� and magnetic �m�
dipoles, which allow defining polarizabilities ��E and �M, re-
spectively� both on the same side as the external fields ���� and
on the opposite side �����. Only the perpendicular component
of the electric field and the parallel component of the magnetic
field can be nonzero at the surfaces of the perfect-conductor
film. �b�,�c� Thickness dependence of the real part of the hole
response functions g�

± for ��b �the imaginary part satisfies Eq.
�16��.
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Ts = �2�kz

A
�2� 1

gM
+ − Gxx

−
1

gM
− − Gxx

�2

= � 1

1 + iA/2�kz Re
gM
+ − Gxx�

−
1

1 + iA/2�kz Re
gM
− − Gxx�

�2

�19�

for the transmittance. The last identity in Eq. �19� comes
from Eqs. �10� and �16� for diffractionless arrays.

Interestingly, Eq. �19� predicts 100% transmission if

1 + � A

2�kz
�2

Re
gM
+ − Gxx�Re
gM

− − Gxx� = 0. �20�

This is a second-order algebraic equation in Re
Gxx�
that admits positive real solutions provided

A

4�kz

gM

+ − gM
− 
 � 1. �21�

Actually, Re
Gxx� can match those roots near the l�0
singularities of Eq. �14�, where it can be chosen arbi-
trarily large within a narrow range of wavelengths �see
Eq. �13��. It should be noted that the difference gM

+

−gM
− falls off rapidly to zero when the film thickness h is

made much larger than the hole radius b �see Fig. 7�b��.
However, if we fix both the h /b ratio and the angle of
incidence, the left-hand side of Eq. �21� reduces to a
positive real constant times �A /b3, leading to the con-
clusion that 100% transmission is attainable at a wave-
length close to the Rayleigh condition �e.g., ��a for
normal incidence on a square lattice of spacing a� re-
gardless how narrow the holes are as compared to the
film thickness. Surprisingly, this requires that the ratio of
the lattice constant to the hole radius be increased for
deeper holes in order to compensate the fall in gM

+ −gM
−

for larger h /b.
The transmittance shows a complex dependence on

film thickness h �Martín-Moreno et al., 2001�, as illus-
trated in Fig. 8. The maximum of Fig. 6 is initially blue-
shifted closer to �=a for small h, accompanied by a sec-
ond narrower peak at even shorter wavelengths4 �these
are the two solutions of Eq. �20� under the condition
�21��. As h increases, interside interaction weakens and
the two 100% maxima approach each other. At some
point only one transmission maximum is observed when
the left-hand side of Eq. �21� is exactly 1. For even
thicker films, the condition �21� cannot be met any
longer and the transmission maximum departs from
100%. The Fano character of these lattice resonances is

again visible through vanishing transmission at a wave-
length immediately below the maximum �see h /a=0.5 in
Fig. 8�.

Incidentally, perfect conductors are perfectly nonlossy,
so that light dissipation must take place only at the
openings if they are infiltrated with some dissipative ma-
terial. For deep enough holes, the transmission is negli-
gible and the absorbance becomes 1− 
r
2, which can
reach 100% values under suitable resonant conditions,
for instance in the IR by combining holes drilled in
noble metals �behaving nearly as perfect conductors� in-
filtrated with phonon-polariton materials. In fact, a simi-
lar effect has been observed in the visible using Au grat-
ings �Hutley and Maystre, 1976� and in the infrared
using SiC gratings �Greffet et al., 2002�.

D. Lattice surface modes in structured metals

The flourishing area of plasmonics is demonstrating
how confining electromagnetic fields to a surface can
find many potential applications on the nanoscale
�Ozbay, 2006�. Zenneck waves at radio frequencies
�Zenneck, 1907; Barlow, 1958�, phonon polaritons in the
infrared �Greffet et al., 2002; Hillenbrand et al., 2002�,
and plasmons in the visible are in fact different manifes-
tations of the same phenomenon: confinement of elec-
tromagnetic fields to curved or planar surfaces. Even
perfect-conductor screens, which are unable to trap light
when they are flat, were experimentally shown by Ulrich
and Tacke �1972� to host confined surface modes of p
polarization when molded into films pierced by periodic
arrays of holes spaced a distance much smaller than the
wavelength �see Fig. 9�b��.

In a recent independent development, Pendry et al.
�2004� studied surface modes in drilled semi-infinite
metal, suggesting the possibility to extend plasmonlike
behavior to lower-frequency domains via the flattening
of the mode dispersion relation driven by propagating

4In fact, there are two lattice resonances for h=0, which in
the language of Fano arise from coupling to different light
continua on either side of the film, but one of these resonances
has vanishing width and is placed at �=a due to strong inter-
side interaction.

FIG. 8. �Color online� Thickness dependence of the normal-
incidence transmittance spectra of square arrays of circular
holes drilled in perfect-conductor films, according to Eq. �19�.
The hole radius b=0.2a, the wavelength �, and the film thick-
ness h are given relative to the period a �see insets�.
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modes of the holes, and stimulating new microwaves ob-
servations �Hibbins et al., 2005�. The analysis of Pendry
et al. �2004� relied on a description of the holes based
upon their lowest-order guided modes �i.e., TE1,0
modes�, which allowed extracting local permittivity and
permeability functions in a metamaterial approach to
holey metals. However, García de Abajo and Sáenz
�2005� showed later that higher-order modes �and in par-
ticular TM modes� are important, giving rise to large
quantitative modifications to the dispersion relation and
revealing finer details in the metal response with holes
that go beyond a simple local metamaterial description
�e.g., the angular dependence of the reflection coeffi-
cient does not follow the Fresnel equations with local
optical constants�.

At variance with planar perfect conductors and their
lack of surface modes, corrugated metallic surfaces can
support bound states even in the long-wavelength limit.
In an intuitive picture, surface confinement in a drilled
semi-infinite perfect conductor can be related to the eva-
nescent penetration of the electromagnetic field inside
the holes, in much the same way as surface plasmons
enter a distance of the order of the skin depth inside a
metal in the visible and NIR regimes �Barnes and
Sambles, 2004�. Actually, these modes share with plas-
mons their character of p-polarized evanescent waves.

Next, we elaborate a tutorial, analytical formulation
of this phenomenon that becomes exact in the limit of
small holes of size s�a��, arranged in a square lattice
of period a �García de Abajo and Sáenz, 2005�. Al-
though we focus our analysis on periodic hole arrays
drilled in a semi-infinite perfect conductor, it must be
emphasized that periodicity is not really needed and that
similar modes should exist for patterns other than holes
�e.g., small protuberances or particles deposited on an
otherwise flat surface�.

Using the formalism of Sec. III.C, we find that Eqs.
�17� and �18� offer a simple description of lattice surface-
bound modes in metallic films. For infinitely deep square
holes as sketched in an inset of Fig. 9�a�, the surface
modes must correspond to nonvanishing values of the
induced dipoles p and m in the absence of external
fields. This can only be accomplished if the denominator
�± is zero in those equations, leading to

�1/�E − Gzz��1/�M − Gyy� = H2, �22�

where we have set ���=0 for infinitely deep holes �see
Fig. 7�. The interaction sums Gyy, Gzz, and H are gener-
ally small for s�a, except near the lattice singularities
discussed in Sec. III.B. In particular, near the light line
for k	 �k, one has

Re
Gzz� � Re
Gyy� � Re
H� �
2�k2

a2�k	
2 − k2

,

which corresponds to Eq. �14� with n= l=0. Further-
more, upon inspection of an expansion for H similar to
Eq. �7�, we find Im
H�=0 outside the light cone, k	 �k,
and the remaining imaginary parts of all quantities in
Eq. �22� cancel out exactly because Im
Gjj�=Im
��

−1�
=−2k3 /3 in that region. Combining these results, we ob-
tain an approximate long-wavelength dispersion relation
from Eq. �22�:

k	
2 = k2 + �

S3k4

a4 �23�

with

� =
4�2

S3 � 1

Re
1/�E�
+

1

Re
1/�M��
2

. �24�

Equation �24� is exact in the s�a�� limit, and predicts
the existence of lattice surface-bound modes under the
condition 1/Re
1/�E�+1/Re
1/�M��0. Here we have
used the area of each hole S to make � dimensionless.

Calculated values of � are offered in Fig. 10�c� for
various hole geometries. The polarizability �E ��M� is
obtained from the electrostatic �magnetostatic� far field
induced by an external electric �magnetic� field, as
shown in Fig. 10�a� �Fig. 10�b��. Interestingly, circular
and square openings of the same area give rise to similar
values of �. This parameter increases by an order of
magnitude when the holes are made on thin screens in-
stead of semi-infinite metals, producing lattice surface
modes that are further apart from the light line �see Ul-
rich and Tacke, 1972�, and therefore, more confined to
the metal, as a result of cooperative interaction between
both sides of the film �see analytical solutions for circu-
lar apertures �Jackson, 1999� in last column of Fig.
10�c��. Another suggestive possibility is offered by split
annular holes, which present resonant electric polariz-
ability �Falcone et al., 2004�, and by holes filled with
high-permittivity materials �see Sec. III.E�, for which the
interaction with single-hole modes produces large depar-
tures of the extended surface states from the grazing
light condition.

FIG. 9. �Color online� Lattice surface modes in a perforated
perfect conductor. �a� The contour plot shows the modulus of
the specular reflection coefficient of a semi-infinite metal for
incident p-polarized light as a function of wavelength � and
parallel momentum k	 �see insets for parameters�. The upper-
right inset shows a detail of the reflectivity as compared to the
mode position predicted by Eqs. �23� and �24� �see arrow�. A
reflection coefficient larger than 1 is only possible for evanes-
cent waves outside the light cone. �b� Lattice modes in a per-
forated thin film, as measured by Ulrich and Tacke, 1972 �sym-
bols�.
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Figure 9�a� shows calculated results for the reflection
coefficient of a drilled metal, obtained by rigorous solu-
tion of Maxwell’s equations in which we use a plane-
wave expansion of the field outside the metal and a
guided-mode expansion inside the holes �García de
Abajo and Sáenz, 2005�. The lattice surface mode can be
observed as a bright region with a dashed line showing
the position at which the reflection coefficient becomes
infinite. A detail of 
r
 for a specific wavelength �see dot-

ted straight line� is shown in the inset. The position of
the resonance predicted by Eqs. �23� and �24� �see arrow
in the inset� is in reasonably close agreement with the
exact calculation, considering that the analytical model
neglects neighboring-hole multipolar interaction, which
is important for openings occupying 64% of the surface.
Finally, Fig. 9�b� shows experimental results for a drilled
thin film from Ulrich and Tacke �1972�. These surface
modes are more bound in perforated thin films than in
semi-infinite metals, as can be seen from the values of �
given in Fig. 10�c�. Actually, the measured dispersion
relation departs substantially from the light line close to
the boundary of the first Brillouin zone.

E. Interplay between lattice and site resonances

The description of extraordinary optical transmission
in terms of quasibound surface states driven by lattice
singularities can be extended to other types of binding.
In particular, a single hole filled with a dielectric of high
permittivity can trap light in its interior, giving rise to
cavity modes even for subwavelength apertures, pro-
vided the permittivity is sufficiently large to shrink the
wavelength inside the dielectric to a value comparable
to the diameter of the hole. This concept is explored in
Fig. 11, in which higher permittivities are seen to pro-
duce larger contraction of the wavelength inside the
hole, so that the cavity mode condition is met at longer
free-space wavelengths for fixed aperture size �García de
Abajo, 2002; García-Vidal et al., 2005�. This process is
accompanied by weaker coupling to external light �due
in part to higher reflectivity of the dielectric-air inter-
face�, and therefore narrower transmission resonances
of increasingly larger height. Original predictions of this
effect �García de Abajo, 2002� have been recently cor-
roborated by experiment using microwaves �García de
Abajo et al., 2006�.

An interesting situation is presented when localized
modes like the ones described are mixed with extended
lattice modes, like surface states underlying extraordi-
nary optical transmission �García de Abajo et al., 2006;
Ruan and Qiu, 2006�. The interplay between both types
of modes is illustrated in Fig. 12 through the zero-order
transmittance of hole arrays filled with high-permittivity
dielectric, calculated from the formalism presented in
Sec. III.C.3. Incident light interacts with the cavity
modes, giving rise to omnidirectional extraordinary
transmission and invisibility behavior near the individual
hole resonance �Borisov et al., 2005; García de Abajo,
Gómez-Santos, et al., 2005�. However, only p-polarized
light couples to the n=1, l=0 lattice singularity of Fig. 4,
which results in an avoided crossing of the hybridized
modes �Fig. 12�a��. Similar avoided crossings have been
recently found in microwave experiments �Hibbins et al.,
2006�, confirming lattice surface modes and localized
modes as two distinct mechanisms leading to enhanced

FIG. 10. �Color online� Polarization of holes in perfect con-
ductors. �a� Electrostatic electric-field flow lines for a circular
hole drilled in a semi-infinite perfect conductor subject to an
external field Eext perpendicular to the surface, giving rise to
an electric dipole p=�E Eext as seen from afar. �b� Magneto-
static magnetic-field flow lines for the same hole subject to an
external parallel field Hext and leading to a magnetic dipole
m=�M Hext. �c� Summary of polarizabilities for square and
circular holes in perfect-conductor surfaces, normalized using
the aperture area S. The values for the circular hole are taken
from the h�b limit of Fig. 7. The circular opening in a thin
screen is analytical �Bethe, 1944; Jackson, 1999�, but we must
correct the right-hand side of Eq. �24� by a factor of 4 in this
case because of cooperative interaction between both sides of
the film.

FIG. 11. �Color online� Enhanced transmission driven by a
localized resonance. The normal-incidence transmission of a
circular aperture drilled in a perfect-conductor film and filled
with dielectric material is represented for different values of
the permittivity 	 �see labels�. The transmitted power is nor-
malized to the incoming flux within the hole area. Evidence of
Fabry-Perot resonances is clear in the 	=50 spectrum.
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transmission.5,6 Notice that s-polarized light is immune
to the l=0 lattice singularities of Fig. 4, and this results
in a reduced number of transmission features as com-
pared to p polarization, in qualitative agreement with
experimental observations �Barnes et al., 2004�.

Site resonances can occur in coaxial waveguides as
well, via the so-called TEM mode, which does not have
a cutoff in wavelength �Jackson, 1999�. This led Roberts
and McPhedran �1988� to theoretically explore the per-
formance of periodic annular-hole arrays as band filters.
More recently, Fan et al. �2005� measured the increased
transmission of infrared light assisted by these modes.
Similar coupling to localized TEM modes occurs as well
in slits, as we discuss in Sec. III.F.

The type of interplay phenomenon that we are de-
scribing has been observed as well for localized and ex-
tended surface plasmons in the visible regime through
the absorption features of porous metals, in which Mie
modes of spherical cavities in otherwise planar surfaces
display a rich structure of hybridization and avoided
crossings �Kelf et al., 2005, 2006; Baumberg 2006; Tep-
erik, Popov, Garcia de Abajo, Abdelsalam, et al., 2006;
Teperik, Popov, Garcia de Abajo, Kelf, et al., 2006�. The
absorption can be even complete under attainable ex-
perimental conditions �Teperik et al., 2005�, implying

black-body-like emission according to Kirchhoff’s laws
of thermal radiation �Reif, 1965�.

F. Slit and cylinder arrays

Although we have extracted conclusions for particles
and holes from his works, Wood reported his anomalies
for ruled gratings rather than 2D structures �Wood,
1902, Wood 1935�.7 In fact, like gratings, cylinder and slit
arrays exhibit lattice-resonance phenomena. But in con-
trast to holes, a single arbitrarily narrow slit in a perfect
conductor supports at least one guided wave, the TEM
mode �Jackson, 1999�, which can couple to external
p-polarized light �magnetic field parallel to the slit� giv-
ing rise to predicted �Takakura, 2001� and observed
�Yang and Sambles, 2002� Fabry-Perot resonances in
transmission �i.e., like the multiple peaks of the 	=50
curve in Fig. 11�. As a consequence, light passage
through slit arrays can be assisted either by coupling to
the TEM mode or by lattice resonances for p polariza-
tion �Porto et al., 1999�, leading to similar interplay be-
tween localized and extended resonances as discussed
above �Marquier et al., 2005�. Incidentally, the analogy
with annular hole arrays is clear �see Sec. III.E�.

We consider first a periodic array of parallel narrow
cylinders, the axes of which define a single plane. Con-
tinuing with our tutorial approach, and focusing for sim-
plicity on light incident with its electric field parallel to
the cylinders, we note that Eqs. �2�–�4� are still appli-
cable here, provided �E and G0 are conveniently rede-
fined. In particular, the polarizability has now dimen-
sions of area rather than volume, and it is given, for
instance, by �E

es=�b2�	−1� for homogeneous cylinders
of radius b and permittivity 	 �Bohren and Huffman,
1983�, with the optical theorem now leading to
Im
1/�E�=−k2 /4. The relevant dipole-dipole interaction
component is given by the Green’s function of the Helm-
holtz equation in two dimensions, G0= �ik2 /4�H0

�1��kR�,
where R is the distance measured in a plane perpendicu-
lar to the cylinders and H0

�1� is a Hankel function
�Abramowitz and Stegun, 1972�. Then, proceeding with
the lattice sum G�k	� analogous to Eq. �7�, one finds a
relation similar to Eq. �11� for the reflection coefficient
of an array of lossless cylinders:

r =
− 1

1 + �2ia/k�Re
1/�E − G�0��
.

Under normal incidence �k	 =0�, G is found to diverge as

G�0� �
�

a2�2

1
��/a − 1

for ��a, where a is the lattice period. This is similar to
particle arrays �see Eq. �13��, so that the main conclu-
sions from our previous discussion of those arrays apply

5In a related context, avoided crossing of lattice modes are
well known to occur in coinciding Wood anomalies �Stewart
and Gallaway 1962�.

6Incidentally, lattice modes are observed outside the light
cone for p polarization. The transmission outside that cone is
defined as the squared-amplitude ratio of incident and trans-
mitted evanescent waves at the exit and entrance surfaces of
the film, respectively.

7The reader is referred to the papers collected by Maystre
�1993� for an exciting historical overview of twenty century
milestones on gratings.

π !! !

 
/λ

�����������	
 ��
� �	��
�
�3×10−4 �2

ε=��
"/#=���
#/ =�� 

� � � �
��������
� �#� � �
��������
�

!!!

0
0 01 1

1

π !! !

FIG. 12. �Color online� Interplay between localized �site� and
extended �lattice� resonances. The contour plots show the
zero-order beam transmittance of a square array of circular
holes drilled in a perfect-conductor film and filled with dielec-
tric material of permittivity 	=50 as a function of parallel mo-
mentum k	 and wavelength �. The orientation of k	 and the
ratios between the hole radius b, the lattice constant a, and the
film thickness h are specified in the insets. The light is �a� p
polarized and �b� s polarized. A transmission coefficient larger
than 1 is only possible for evanescent waves below the light
cone.
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here as well, and more precisely the reflectivity can be
made 100% for arbitrarily narrow or weakly scattering
�	�1� cylinders.

A complete analysis along these lines has been re-
cently reported for all possible incident polarizations
�Gómez-Medina et al., 2006; Laroche et al., 2006�, sug-
gesting that similar lattice resonances, somewhat less
pronounced, are obtained for Eext perpendicular to the
cylinders and with nonvanishing projection normal to
the plane of the array. However, polarization compo-
nents parallel to the plane and perpendicular to the cyl-
inders cannot generate lattice resonances, because the
interaction between distant dipoles aligned with their
separation vector R decays as 1/R3/2 in 2D, which is
insufficient to produce a divergence in G.8

Finally, we establish a relation between cylinder ar-
rays and slit arrays using arguments similar to those of
Sec. III.C.1 for particle and hole arrays. More precisely,
a slit array cut into a thin metal screen and illuminated
with Eext perpendicular to the apertures can be analyzed
using the above results as applied to the Babinet-related
stripe array �i.e., a periodic array of stripes cut in a pla-
nar thin screen� for Eext parallel to the stripes. Under
normal incidence, the required component of the polar-
izability reads �E�−2� /k2�ln�kb /8�+�+ i� /2�, where
�=0.577 21 is the Euler constant and b�� is the stripe
width �van de Hulst, 1981�. Interestingly, �E diverges in
the electrostatic limit, so that even a single narrowing
slit will exhibit a divergent transmission cross section.
This scenario can be traced back to the above-
mentioned site resonances produced by the TEM mode
of slits in thick screens. As a consequence, the interac-
tion between slits can be very large, resulting in strong
redshifts of the transmission peaks relative to the Ray-
leigh condition.

IV. REAL METALS VS PERFECT CONDUCTORS

Metals of finite conductivity show significant differ-
ences with respect to the perfect conductors considered

so far, the most remarkable of which is the existence of
intrinsic surface-plasmon excitations. The basic under-
standing of these differences were laid out by Maystre
�1972� in the context of diffraction gratings �see also
McPhedran and Maystre �1974� and Maystre �1984��.
Next we examine the consequences for the interaction
between particles and holes decorating metal surfaces.

A. Surface plasmons

Conduction electrons in metals behave like a plasma
that is capable of sustaining collective oscillations known
as plasmons �e.g., longitudinal bulk modes, signalled by
the vanishing of the dielectric function�. The existence of
genuine surface plasmon oscillations was predicted by
Ritchie �1957� and confirmed by electron energy-loss ex-
periments �Powell and Swan, 1959�. Since then, surface
plasmons have developed into the rapidly growing field
of plasmonics �Barnes et al., 2003; Ozbay, 2006; Zia et al.,
2006� owing to their potential applicability to areas as
diverse as biosensing �Schuster et al., 1993�, signal pro-
cessing through plasmonic circuits �Bozhevolnyi et al.,
2006�, or laser technology �Colombelli et al., 2003�.

Planar surfaces possess translational invariance that
provide plasmons with well-defined parallel momentum
k	 exceeding that of light outside the metal and thus
becoming truly surface-bound modes. Their dispersion
relation can be readily derived from the divergence of
the Fresnel coefficients for p polarization �surface-
bound fields without external sources�, leading to
�Raether, 1988�

k	
SP = k� 	

	 + 1
�25�

for a metal-air interface. This surface plasmon disper-
sion relation is represented in Fig. 13�a� for a Drude
metal described by Eq. �12�. In the long k	 limit, the
surface plasmon frequency saturates to Ritchie’s nonre-
tarded plasmon �Ritchie, 1957�.

Surface plasmons are characterized by three different
length scales, as depicted in Fig. 13�b�: their propagation
distance along the surface ��1/2 Im
k	

SP��, their penetra-8This is because �n=1

 1/n3/2 is finite. See also Sec. III.B.

FIG. 13. �Color online� Summary of surface plasmon properties. �a� Surface plasmon dispersion relation for a Drude metal of bulk
plasmon frequency 
p. �b� Extension of the plasmon field into the metal �skin depth�, into the vacuum, and along the surface
�propagation distance� for several metals, as obtained from measured optical constants �Johnson and Christy, 1972; Palik, 1985�.
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tion into the surrounding medium ��1/2 Im
k��, where
k�=−k /�	+1 is the normal momentum�, and their pen-
etration into the metal �the skin depth �1/2 Im
−	k���.
Interestingly, the interaction between plasmons on ei-
ther sides of a thin film gives rise to two plasmon
branches, as measured by electron microscopy �Vincent
and Silcox, 1973; Pettit et al., 1975�, one of which has
been found to propagate along very long distances
thanks to exclusion of the electric field from the metal
�Sarid, 1981�. Well-defined plasmons require Im
	�
�Re
−	�, but similar long-range surface-exciton polari-
tons exist in thin films for Im
	�� 
Re
	�
 �Yang et al.,
1990�.

Features in metal surfaces produce scattering of plas-
mons in a similar way as light is dispersed by particles.
This is actually a way to couple externally incident light
to plasmons, for instance, using gratings �Ritchie et al.,
1968; Loewen et al., 1984�. We find a demonstration of
these ideas in the observation of surface-plasmon bands
for periodic surface decoration �Stewart and Gallaway,
1962; Ritchie et al., 1968; Kitson et al., 1996�, and in the
reflection of surface plasmons at point scatterers ar-
ranged as parabolic mirrors �Nomura et al., 2005�. Simi-
larly, holes perforating films have a strong influence on
surface plasmons, which play an important role in their
optical transmission �Ghaemi et al., 1998�. However, in
the perfect-conductor limit, with 
	
→
, Eq. �25� yields
k	

SP=k, with zero skin depth and infinite penetration into
the vacuum, that is, there are no longer surface-bound
modes. In the following we explore the transition be-
tween plasmonic and perfect-conductor regimes, in an
attempt to clarify contradictory statements regarding the
role of surface plasmons to enhance �Schröter and Heit-
mann, 1998� or to suppress �Cao and Lalanne, 2002� ex-
traordinary optical transmission in striped thin films, or
the debate opened by the explanation of recent experi-
ments dealing with the interaction between a slit and a
groove �García-Vidal et al., 2006; Gay et al., 2006; La-
lanne and Hugonin, 2006�.

B. Polarization schemes

The condition that parallel electric dipoles and per-
pendicular magnetic dipoles are excluded from perfect-
conductor surfaces �see Fig. 10� is relaxed in metals of
finite conductivity. Polarization charges in a hole for in-
stance can lead to a net parallel electric dipole in a thin
metallic film �Rindzevicius et al., 2007�.

In order to illustrate this concept, we consider in Fig.
14 the effective polarizability of a silver spherical par-
ticle in front of a silver surface for a constant ratio of the
radius to the wavelength, b /�=0.1. We observe an elec-
tric Mie mode �Mie, 1908� in the visible, accompanied by
negligible magnetic response. However, the metal be-
haves increasingly closer to a perfect conductor at
longer wavelengths, so that currents compete eventually
with polarization, thus displaying magnetic polarizability
that becomes �M=−b3 /2 for an isolated perfect-
conductor sphere in the long-wavelength limit �Jackson,

1999�, to be compared with the electric polarizability
�E=b3. Nevertheless, the latter is quenched by proxim-
ity of the metal flat surface under normal-incidence illu-
mination conditions. The onset of magnetic response oc-
curs when the particle becomes large compared to the
skin depth �20 nm �see Fig. 13�b��. These results follow
from dipolar Mie scattering, conveniently corrected by
surface reflection coefficients, which qualitatively de-
scribe the polarizability strength of the coupled particle-
surface system.

This has important consequences for understanding
patterned surfaces and hole arrays. Electric dipoles
dominate the response of features smaller than the skin
depth, whereas magnetic dipoles can be significant for
larger sizes, and only parallel electric dipoles and per-
pendicular magnetic dipoles survive in the limit of neg-
ligible skin depth. We are of course restricting our dis-
cussion to particles or apertures that are small compared
to the wavelength, but these conclusions can be general-
ized to higher-order multipoles for bigger features.

C. Dipole-dipole interaction

New dipole orientations and the presence of surface
plasmons in real metals demand that we revisit the in-
teraction between features in tailored surfaces. In par-
ticular, the dipolar field in free space, which decays away
from the source as

G0 �
eikR

R
�26�

and governs the interaction between small features in
perfect-conductor surfaces �see Sec. III.A�, must be

FIG. 14. �Color online� Effective polarization strength of a
silver sphere near a silver planar surface. The sphere radius is
a tenth of the wavelength. The polarization is normalized to
the sphere volume. The dielectric function of silver is from
Johnson and Christy, 1972.
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supplemented by reflected fields near real metals, lead-
ing to an interaction tensor of the form9

G = G0 + Gr.

As a result, light impinging on a hole can couple to cir-
cular surface-plasmon waves �Wannemacher, 2001; Yin
et al., 2004; Chang et al., 2005; Popov et al., 2005�, whose
field strength shows a rather different decay dependence
with distance as

G �
eik	

SPR

�R
. �27�

This expression is consistent with energy flux conserva-
tion for any surface-bound mode,10 with dissipation de-
scribed through the imaginary part of k	

SP. The slow drop
of Eq. �27� with distance compared to Eq. �26� can ex-
plain the observed enhancement of the interaction be-
tween small particles in plasmonic metals �Stuart and
Hall, 1998�, and is illustrated in Fig. 15, showing the field
produced by a dipole near a metallic surface calculated
from an extension of our tutorial approach formalism
presented below.

The interaction between pairs of electric and magnetic
dipoles near a metal surface is analyzed in Fig. 16�a� for
all possible orientations except perpendicular magnetic
dipoles, which are forbidden in perfect conductors and
should take small values in real metals. Moreover, sym-
metry forbids the interaction of all other pairs that are
not shown in the figure. For surface features inducing

9In the perfect conductor limit, Gr has the effect of canceling
exactly some of the components of G0 and multiplying by 2 the
remaining ones. In fact, that factor of 2 was absorbed in the
polarizabilities considered in Sec. III. The self-consistent equa-
tions for interaction among holes presented in that section can
be still applied to plasmonic metals, with the dipole-dipole in-
teraction G now approaching 2G0 �and the hole polarizability
going to half the value of Fig. 7� in the perfect-conductor limit.

10The Poynting vector produced by a dipole when fields are
propagated by Eq. �27� dies off as 1/R, if we neglect the at-
tenuation produced by Im
k	

SP�. The integral of the radial
Poynting vector over a circle of radius R centered around the
dipole and lying on the surface is independent of R, so that the
photon flux is conserved, indicating surface-bound
propagation.

FIG. 15. �Color online� Instantaneous induced electric field set up by a perpendicular electric dipole �see vertical arrows� sitting at
a distance � /20 from the surface of a metal described by Eq. �12� with 
p=15 eV and damping �=0.6 eV �typical of Al� at
frequency 
=
p /2. The electric-field component parallel to the surface �this is radial with respect to the position of the dipole� and
the component along the surface normal are represented separately. Poynting vector flow lines are superimposed on the plot of the
normal component.

FIG. 16. �Color online� Dipole-dipole interaction in metallic
surfaces. �a� Schematic representation of the scaling of dipole-
dipole interactions for electric and magnetic dipoles with re-
spect to their separation R near a metallic surface. The inter-
action decays as exp�ikR� /Rn near a perfect conductor or as
exp�ik	

SPR� /Rm near a metal with a dominant surface plasmon
�see insets for values of the exponents n and m�. �b� Dipole-
dipole interaction near a silver surface at a wavelength of
750 nm �three upper solid curves� as compared with the
plasmon-pole approximation �three upper dashed curves, see
text�. We also show the interaction at a wavelength of 10 mm
�lower curve, perfect-conductor limit�. The dipole-dipole sepa-
ration vector R is taken along x̂.
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electric dipoles under normal incidence in a plasmonic
metal �see Fig. 14�, the dominant interactions originate
in electric-dipole pairs aligned with their separation vec-
tor R �see Fig. 16�, quite different from perfect conduc-
tors, which are governed by magnetic dipoles perpen-
dicular to R. However, the latter can contribute in
plasmonic materials as well for large features compared
to the skin depth, as discussed in Sec. IV.B. As a rule of
thumb, mutual dipole orientations that lead to the long-
range interaction dependence given by Eq. �27� are com-
patible with nonvanishing surface-plasmon field compo-
nents emanating from those dipoles �i.e., plasmons with
m=0 azimuthal symmetry for normal electric dipoles,
like in Fig. 15, or m= ±1 for parallel dipoles�.

The interaction between dipoles in front of a planar
surface admits a representation in parallel momentum
space similar to Eq. �5�, but involving now the Fresnel
reflection coefficients for s and p polarization �Weyl,
1919; Blanco and García de Abajo, 2004�, rs= �kz

−kz�� / �kz+kz�� and rp= �	kz−kz�� / �	kz+kz��, respectively

�Jackson, 1999�, where kz=�k2−Q2 and kz�=�k2	−Q2. In
particular, for electric dipoles parallel to the surface x
direction, one finds �Weyl, 1919; Ford and Weber, 1984�

Gxx
r =

i

2�
� d2Q

kzQ2ei�Q·R+kz
z
��k2Qy
2rs − kz

2Qx
2rp� , �28�

where z is the sum of distances from the dipoles to the
surface, and we are interested in the z→0 limit. This
expression is general and leads to Gxx=0 in perfect con-
ductors, for which rp=−rs=1.

The strong surface-plasmon-mediated interaction de-
scribed by Eq. �27� arises from the pole of the Fresnel
coefficient rp at Q=k	

SP, which admits the Laurent ex-
pansion �Ford and Weber, 1984�

rp �
2Bk

Q − k	
SP , �29�

with

B = �	/�1 + 	��3/2/�1 − 	� .

Performing asymptotic analysis for large R and retaining
only the contribution from this pole in the integral of
Eq. �28� �plasmon-pole approximation; see Ford and
Weber, 1984�, we obtain11

Gxx � −
�k3B�	

	 + 1
�H0

�1��k	
SPR� + H2

�1��k	
SPR�

�y2 − x2�
R2 �

�
− 2k3B

	 + 1
�2�	

ik	
SP

x2

R2

eik	
SPR

�R
, �30�

where the second approximation comes from the
asymptotic behavior of Hankel functions for large argu-
ments �Abramowitz and Stegun, 1972�, so that one ob-
tains the result anticipated in Eq. �27�. The above ex-
pression in terms of Hankel functions is compared with
the direct numerical evaluation of Eq. �28�, and similar
expressions for other dipole orientations, in Fig. 16�b�.
The agreement at �=750 nm is excellent for R��, indi-
cating that lattice resonances in an array will be domi-
nated by surface plasmons at that wavelength. Figure 16
also illustrates a much faster decay of Gyy as 1/R3/2 for
electric dipoles oriented orthogonal to R and parallel to
the surface, and as 1/R for normal electric dipoles in the
perfect-conductor limit.

D. Discrepancies in lattice resonances and enhanced
transmission

The dissimilar behavior of plasmonic metals and per-
fect conductors discussed leads to qualitative differences
in extraordinary optical transmission, arising in part
from the 1/ �Q−k	

SP� dominant pole of the interhole in-
teraction in momentum space �see Eqs. �28�–�30��.

Considering for simplicity a square array under nor-
mal incidence, we analyze the lattice sum in a real metal
�i.e., Eq. �4� with G substituted for G0� following the pro-
cedure that led to Eq. �7�, but starting now from Eqs. �6�
and �28�. In a diffrationless array, there are two identical
singular terms in the corresponding sum over reciprocal-
lattice vectors, leading to

Gxx
EE � C�4�

a�
�2 �SP

�SP/a − 1
�31�

for Re
�SP��a, where �SP=2� /k	
SP is the surface-

plasmon wavelength and C= iB /�	+1. We have explic-
itly indicated with superscripts that Gxx

EE describes the
interaction between electric dipoles �E�, which can coex-
ist with parallel magnetic dipoles �M� �see Fig. 16�. The
remaining relevant lattice sums are Gyy

MM�−�	+1�Gxx
EE

and Gxy
EM=−Gyx

ME��	+1Gxx
EE. Now, the formalism pre-

sented in Sec. III can be easily extended to patterned
surfaces and hole arrays in real metals using these ex-
pressions of the lattice sums rather than those for per-
fect conductors �see footnote 9�.12

In the polaritonic regime of surface plasmons, in
which their dispersion relation approaches the light line
�see Fig. 13�, 
	
 is large and the dominant lattice sum

11It should be noted that the asymptotic behavior of G0 �see
Eq. �26�� comes from the stationary phase of the exponential in
the integral of Eq. �5�. This contribution is canceled exactly by
Eq. �28�, in which rp=rs=−1 at grazing incidence �i.e., for Q
=k�. Therefore the only relevant contribution to G for large R
originates in the plasmon pole of Gr.

12Our analysis can be applied to metals embedded in a dielec-
tric of refraction index n simply by using the reduced wave-
length � /n everywhere instead of � and by interpreting 	 as the
ratio of permittivities in the metal and in the dielectric.
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scales as Gyy
MM�1/�−	 in the plasmon-pole approxima-

tion, so that for sufficiently high 
	
 the perfect-
conductor limit of Eq. �13� dominates over the plasmon.

A descriptive example of the transition from plas-
monic to perfect-conductor behavior is given in Fig. 17,
in which the energy released by an electric dipole sitting
near and parallel to a surface is divided into plasmon
launching �ISP� and emitted light �Ifree�. This relates to
the question, which of the two mechanisms �plasmons or
propagating radiation� produces stronger interaction
with a nearby surface feature. Plasmon launching domi-
nates near the electrostatic plasmon, reaching an effi-
ciency close to 100% in silver. As the wavelength ad-
vances towards to infrared, the plasmon is less bound to
the surface and has weaker coupling to our dipole. As an
example, when light emits out of a narrow hole after
being guided through a TE mode �e.g., in a circular hole
infiltrated with a dielectric of refraction index n�1 and
for � /n�3.4b�, the equivalent dipole describing the hole
lies parallel to the surface. This is the situation depicted
in the inset of Fig. 17.

A more explicit comparison of discrepancies between
both metallic regimes for holes is given in Fig. 18, which
shows the lattice sum Gyy

MM for parallel magnetic dipoles
�obtained by summing Eq. �28� for gold, with the expres-
sion in square brackets replaced by k2Qx

2rp−kz
2Qy

2rs�, to-
gether with a geometrical construction like in Fig. 6, ap-
plied now to two different aperture sizes. It should be
noted that the exact calculation �solid curves� compares
well with analytical expressions �symbols, obtained from
Eq. �13� for the perfect conductor and from Eq. �31� for
the plasmonic metal, which needs to be multiplied by

−�	+1� in order to apply it to magnetic rather than elec-
tric dipoles�. The lattice sum singularity in perforated
gold takes place to the red as compared to the perfect-
conductor case, because the surface-plasmon wave-
length is shorter than the light wavelength in the sur-
rounding dielectric. Moreover, the lattice sum diverges
as 1/�� /n−a and 1/ ��SP−a� in perfect conductors and
plasmonic metals, respectively, according to Eqs. �13�
and �31�, thus leading to different dependence of the
position of the lattice surface resonance on hole size �see
points of intersection with horizontal lines in Fig. 18�;
the lattice resonance is further away from the interac-
tion sum singularity �and a given change in hole diam-
eter produces larger peak shift� in the plasmonic case
considered in the figure.

The crossover between both types of behavior is ex-
plored in Fig. 19 through the absorbance of �i� a silver-
particle array in silica, �ii� the same array near a silver-
silica interface, and �iii� an array of silica inclusions right
underneath the metal-dielectric interface. We have done
these calculations using a layer KKR method to solve
Maxwell’s equations �Stefanou et al., 1998, 2000�. In the
case �i� a maximum in absorption occurs near the Ray-
leigh condition for light propagating in silica �i.e., � /n
=a�, whereas case �iii� shows a single maximum shifted
to the right of the Rayleigh condition for the planar in-
terface plasmon ��SP=a� �Ghaemi et al., 1998�. The con-

FIG. 17. �Color online� Relation between the power radiated
after transmission through a deep subwavelength hole �Ifree�
and the power emanating as surface plasmons �ISP� for gold
and silver, derived in the small-hole limit. �We obtain the emit-
ted light intensity from integration of the radial Poynting vec-
tor corresponding to the field of Eq. �28� plus the dipole direct
field over the upper hemisphere, far from the hole. The SP
intensity comes from the Poynting vector normal to a cylindri-
cal surface centered at the hole, with the field given by Eq.
�30�.� The metal dielectric function is from Johnson and
Christy, 1972.

FIG. 18. �Color online� Lattice sums and lattice resonances in
a square array of holes drilled in gold vs a perfect conductor.
The real part of the exact lattice sum for interaction of parallel
magnetic �M� dipoles is shown for gold �black curve� and for a
perfect conductor �PC, gray curve�, as compared to analytical
approximate expressions �symbols�. The Rayleigh condition
for a period a=600 nm is indicated by gray and black vertical
dashed lines for light in the dielectric �� /n=a� and for surface
plasmons ��SP=a�, respectively. Changes in the inverse mag-
netic polarizability of circular holes of different size �horizontal
lines, as obtained from Fig. 7�b� �see footnote 9��, lead to dif-
ferent wavelengths of the lattice surface modes, as indicated by
vertical arrows for the condition that the real part of the de-
nominator of Eq. �3� be zero.
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clusion is that plasmons are mediating the interaction
among the dielectric inclusions, with no signature of any
anomaly near � /n=a whatsoever. An intermediate situ-
ation is encountered in case �ii�, showing features near
the two types of Rayleigh conditions.

It should be noted that �SP has an imaginary part aris-
ing from absorption, and although it is small for noble
metals, in which plasmons can travel long distances
along the surface, as shown in Fig. 13�b�, we find that
Eq. �31� does not describe a true divergence, but rather
a Lorentzian of finite width. This affects the height of
the transmission maxima, below 100% in lossy metals.
Furthermore, apertures perforated in metals of finite
conductivity will appear to be wider with the skin depth
effect, and their effective polarizability must be lossy.

Without entering into further considerations regard-
ing how finite conductivity affects the hole polarizability,
we point out that the wavelength at which the noted
intersection takes place in Fig. 18 �i.e., the wavelength of
the lattice surface-bound mode� is in agreement with the
transmission peaks measured by Krishnan et al. �2001�
and reproduced in Fig. 1�a�. The vertical arrows in Fig. 1
indicate the predicted positions of the transmission
maxima, obtained by increasing the hole size by the skin
depth to an effective diameter of 250 nm. This agree-
ment is remarkable, given our neglect of higher-order
multipolar terms in the hole polarization. The shift with
respect to the Rayleigh condition for surface plasmons
�vertical solid lines in Fig. 1� is significant, triggered by
large, plasmon-mediated interaction between apertures.
Similar conclusions can be drawn for the silver film of

Fig. 1�b�, in which the results from the above analytical
model are shown as dashed curves �divided by a factor
of 5�. Only magnetic dipoles are taken into account, with
the hole polarizability calculated for a perfect conductor.
The transmittance is obtained from Eq. �19� with Gxx

replaced by its plasmonic counterpart Gyy
MM. Although

the Rayleigh condition for plasmons �solid vertical lines
in Fig. 1� agrees only with the transmission minima in
silver �presumably because gold is more dissipative in
this spectral region, so that the polarizability of the holes
requires a more realistic description including absorp-
tion�, comparison with experiment is excellent, given the
simplicity of the analytical model, which should become
exact in the limit of small scattering features �e.g., for
nanoparticle arrays on a metal substrate�.

V. CONCLUSION

Light scattering in planar periodic systems gives rise
to resonant phenomena that have common origins in
particle and hole arrays, both for reflection and for
transmission. Namely, �i� the interaction between lattice
sites shows a divergent behavior when a diffracted beam
becomes grazing �Lord Rayleigh, 1907�, producing a
minimum in both the reflectivity of particle arrays and
the transmission of hole arrays; �ii� a lattice resonance
can be established at a wavelength to the red of this
condition, leading to maxima in both the reflectivity of
particle arrays and the transmission of hole arrays; �iii�
these effects have the same origin as Wood’s anomalies
�Wood, 1935� and can be described in the language of
Fano line shapes �Fano, 1961�; �iv� the noted lattice reso-
nance persists for incident evanescent light, with the re-
flectivity’s becoming infinite in nondissipative systems
�e.g., patterned perfect conductors, but also patterned
dielectrics�, thus defining truly surface-bound states �Ul-
rich and Tacke, 1972; Pendry et al., 2004; García de
Abajo and Sáenz 2005; Hibbins et al., 2005�; �v� these
extended lattice resonances mix strongly with other
modes localized at specific sites, like those created by
nanoparticle and nanovoid plasmons �Kelf et al., 2006;
Teperik, Popov, García de Abajo, Abdelsalam, et al.,
2006�; �vi� for metals with well-defined surface plasmons,
the interaction between holes or particles in the vicinity
of the surface is mediated by these excitations, so that
we have to reformulate the condition of a diffracted
beam’s becoming grazing using the surface plasmon
wavelength rather than the incoming or transmitted light
wavelength.

We have shown that particle arrays and hole patterns
in perfect conductors share in common the asymptotic
form of their interaction, summarized by Eq. �26�, which
produces singularities at the Rayleigh condition when
summed over the lattice, for instance, for �=a under
normal incidence on square arrays, and gives rise to sur-
face states at slightly larger wavelengths. However, the
plasmon-mediated interaction in noble metals is more
intense, as shown in Eq. �27�, thus producing sharper
divergences and stronger collective interaction. In this
case, singularities occur at the band-folded plasmon

FIG. 19. �Color online� Normal-incidence absorbance of �i� a
silver particle array embedded in silica �refraction index n
=1.45�, �ii� the same array near a planar silver-silica interface,
and �iii� an array of silica inclusions buried in silver below a
silver-silica interface. All particles are spheres of 200 nm in
diameter. The arrays have square symmetry with lattice con-
stant a=500 nm. The distance from the sphere surfaces to the
planar interface is 10 nm in the buried silica particles and
900 nm for the silver particles. The Rayleigh conditions for the
reduced wavelength of light in the silica �� /n=a� and for the
wavelength of the silver-silica interface plasmon ��SP=a� are
indicated by arrows A and B, respectively.

1285F. J. García de Abajo: Colloquium: Light scattering by particle and …

Rev. Mod. Phys., Vol. 79, No. 4, October–December 2007



lines �e.g., when �SP=a under normal incidence on
square arrays�, and the lattice surface-bound states �i.e.,
plasmons of the patterned metal� exist again to the red
with respect to those lines.

All these effects have been described here within a
common approach based upon interacting dipoles that is
not only able to explain the observed effects; its simplic-
ity has allowed us to extract some surprising conclusions.
One of them is that arbitrarily weak scatterers forming a
periodic structure and made of nondissipative materials
can also produce intense lattice resonances: given an ar-
ray of arbitrarily small particles of positive polarizability,
it is always possible to find a wavelength �close to the
period for square symmetry and normal incidence� at
which light is totally reflected; accordingly, it is possible
to obtain full transmission through holes however nar-
row, drilled in arbitrarily thick perfect-conductor films.

Interestingly, the lattice periodicity alone determines
the magnitude of the induced dipoles needed to produce
complete reflection by small particles or total transmis-
sion through narrow holes. Moreover, the polarizability
scales with the cube of the hole or particle diameter.
Combining these two statements, we find that the self-
consistent electric field acting on particles or apertures
under such resonant conditions increases when they
shrink and can reach extremely high values only limited
by absorption and lattice imperfections, thus opening
new possibilities for applications in nonlinear all-optical
switching and biosensing.

The simplicity and power of the model presented here
will find application to explain many other effects re-
lated to light scattering in planar periodic systems and
can be inspiring for devising new phenomena.
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