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In the past ten years it has become clear that methods and techniques based on supersymmetry
provide deep insights into quantum chromodynamics and other nonsupersymmetric gauge theories
at strong coupling. This review summarizes major advances in critical (Bogomol'nyi-Prasad-
Sommerfield—saturated) solitons in supersymmetric theories and their implications for understanding
basic dynamical regularities of nonsupersymmetric theories. After a brief introduction to the theory of
critical solitons (including a historical introduction), three topics are discussed: (i) non-Abelian strings
in /=2 and confined monopoles, (ii) reducing the level of supersymmetry, and (iii) domain walls as

D-brane prototypes.
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I. INTRODUCTION

To begin with, we ask why supersymmetric solitons
have attracted so much attention in the past 15 years,
mainly in connection with non-Abelian gauge theories,
and why have advances in this area been so profound.
To answer these questions, one must return to the 1970s,
when quantum chromodynamics (QCD) was established
as the theory of strong interactions. What is the most
remarkable feature of quantum chromodynamics and
QCD-like theories? The fact that at the Lagrangian
level one deals with quarks and gluons while experimen-
talists detect pions, protons, glueballs, and other color
singlet states—never quarks and gluons—is the single
most salient feature of non-Abelian gauge theories at
strong coupling. Color confinement makes colored de-
grees of freedom inseparable. In a bid to understand this
phenomenon, Nambu, 't Hooft, and Mandelstam sug-
gested in the mid-1970s (independently and practically
simultaneously) a non-Abelian dual Meissner effect. At
that time, their suggestion was more of a dream than a
physical scenario. According to their vision, non-
Abelian monopoles condense in the vacuum, resulting in
the formation of non-Abelian chromoelectric flux tubes
between color charges, e.g., between a probe heavy
quark and antiquark. Attempts to separate these probe
quarks would lead to stretching of the flux tubes, so that
the energy of the system grows linearly with separation.
That is how linear confinement was visualized. However,
at that time the notions of non-Abelian flux tubes and
non-Abelian monopoles (let alone condensed mono-
poles in non-Abelian gauge theories) were nonexistent.
Nambu, 't Hooft, and Mandelstam operated with nonex-
istent objects.

One may ask, from where did these theorists get their
inspiration? There was one physical phenomenon
known from long ago and well understood theoretically
that yielded a rather analogous picture.

In 1933, Meissner discovered that magnetic fields
could not penetrate inside superconducting media. The
expulsion of magnetic fields by superconductors is re-
ferred to as the Meissner effect. Twenty years later,
Abrikosov posed the following question: What happens
if one immerses a magnetic charge and an anticharge in
type-1II superconductors (which in fact he discovered)?
One can visualize a magnetic charge as an end point of a
very long and very thin solenoid. We refer to the N end
point of such a solenoid as a positive magnetic charge
and the S end point as a negative magnetic charge.

In empty space, the magnetic field will spread in the
bulk, while the energy of the magnetic charge-
anticharge configuration will obey the Coulomb 1/r law.
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The force between them will die off as 1/r2.

What changes if the magnetic charges are placed in-
side a large type-II superconductor?

Inside the superconductor, Cooper pairs condense, all
electric charges are screened, while the photon acquires
a mass. According to modern terminology, the electro-
magnetic U(1) gauge symmetry is Higgsed. The mag-
netic field cannot be screened in this way; in fact, the
magnetic flux is conserved. At the same time, the super-
conducting medium does not tolerate the magnetic field.

The clash of contradictory requirements is solved
through a compromise. A thin tube is formed between
the magnetic charge and anticharge immersed in the su-
perconducting medium. Inside this tube, superconduc-
tivity is ruined—which allows the magnetic field to
spread from the charge to the anticharge through this
tube. The tube transverse size is proportional to the in-
verse photon mass while its tension is proportional to
the Cooper pair condensate. These tubes are referred to
as Abrikosov vortices. In fact, for arbitrary magnetic
fields he predicted lattices of such flux tubes. A dramatic
(and sometimes tragic) history of this discovery is nicely
described in Abrikosov’s Nobel Lecture.

Returning to the magnetic charges immersed in the
type-II superconductor under consideration, one can see
that increasing the distance between these charges (as
long as they are inside the superconductor) does not
lead to their decoupling—the magnetic flux tubes be-
come longer, leading to a linear growth of the system’s
energy.

The Abrikosov vortex lattices were experimentally
observed in the 1960s. This physical phenomenon in-
spired the ideas of Nambu, t Hooft, and Mandelstam on
non-Abelian confinement. Many have tried to quantify
these ideas in the context of non-Abelian gauge theo-
ries. It took three decades to pave the way for the cur-
rent understanding, and the road was not straight. It
turns out that it goes through the realm of supersymme-
try, and special solitons occurring in supersymmetric
gauge theories have played a crucial role in most of the
achievements made in the understanding of nonpertur-
bative gauge dynamics. These supersymmetric solitons
are referred to as Bogomol'nyi-Prasad-Sommerfield
(BPS) —saturated. BPS-saturated flux tubes, monopoles,
and domain walls are the main subjects of the present
review.

It has long been known that supersymmetric theories
may have BPS sectors in which some data can be com-
puted at strong coupling even when the full theory is not
solvable. Historically, this is how the first exact results on
particle spectra were obtained (Witten and Olive, 1978).
Seiberg-Witten’s breakthrough results (Seiberg and Wit-
ten, 1994a, 1994b) in the mid-1990s provided additional
motivation for studies of the BPS sectors.

BPS solitons can emerge in those supersymmetric
theories in which superalgebras are centrally extended.
In many instances the corresponding central charges are
seen at the classical level. In some interesting models,
central charges appear as quantum anomalies.

The first studies of BPS solitons (sometimes referred
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to as critical solitons) in supersymmetric theories at
weak coupling date back to the 1970s. de Vega and
Schaposnik (1976) were the first to point out that a
model in which classical equations of motion can be re-
duced to first-order BPS equations (Prasad and Sommer-
field, 1975; Bogomol’'nyi, 1976) is, in fact, a bosonic re-
duction of a supersymmetric theory. Already in 1977,
critical soliton solutions were obtained in the superfield
form in some two-dimensional models (Di Vecchia and
Ferrara, 1977). In the same year, miraculous cancella-
tions occurring in calculations of quantum corrections to
soliton masses were noted by D’Adda et al. (1978) [see
also Hruby (1980)]. Tt was observed that for BPS soli-
tons, the boson and fermion modes are degenerate and
their number is balanced. It was believed that the soliton
masses receive no quantum corrections. The modern
correct version of this statement is as follows: If a soliton
is BPS saturated at the classical level and belongs to a
shortened supermultiplet, it stays BPS-saturated after
quantum corrections, and its mass coincides exactly with
the central charge it saturates. The latter may or may
not be renormalized. Often—but not always—central
charges that do not vanish at the classical level and have
quantum anomalies are renormalized. Those that
emerge as anomalies and have no classical part typically
receive no renormalizations. In many instances, holo-
morphy protects central charges against renormaliza-
tions.

Critical solitons play a special role in gauge field theo-
ries. Numerous parallels between such solitonic objects
and basic elements of string theory have been revealed
in recent years. At first, the relation between string
theory and supersymmetric gauge theories was mostly a
“one-way street”—from strings to field theory. Now it is
becoming exceedingly more evident that field-theoretic
methods and results, in their turn, provide insights into
string theory.

String theory, which emerged from dual hadronic
models in the late 1960s and 1970s, and became a cani-
date for the “theory of everything” in the 1980s and
1990s, when it experienced an unprecedented expansion,
has seemingly entered a “return-to-roots” stage. The
task of finding solutions to “down-to-earth” problems of
QCD and other gauge theories by using results and tech-
niques of string/D-brane theory is currently recognized
as one of the most important and exciting goals of the
community. In this area, the internal logic of develop-
ment of string theory is fertilized by insights and hints
obtained from field theory. In fact, this is a very healthy
process of cross-fertilization.

If supersymmetric gauge theories are, in a sense, dual
to string/D-brane theory—as is generally believed to be
the case—they must support domain walls (of the
D-brane type) (Polchinski, 1995), and we know that they
do (Dvali and Shifman, 1997; Witten, 1997). A D-brane
is defined as a hypersurface on which a string may end.
In field theory, both the brane and the string arise as
BPS solitons, the brane as a domain wall and the string
as a flux tube. If their properties reflect those inherent to
string theory, at least to an extent, the flux tube must end
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on the wall. Moreover, the wall must house gauge fields
living on its worldvolume. The end of the string plays
the role of a source for these gauge fields.

The purpose of this review is to summarize develop-
ments in critical solitons in two, three and four dimen-
sions, with emphasis on four dimensions and on most
recent results. A large variety of BPS-saturated solitons
exist in four-dimensional field theories: domain walls,
flux tubes (strings), monopoles and dyons, and various
junctions of the above objects. A list of recent discover-
ies includes localization of gauge fields on domain walls,
non-Abelian strings that can end on domain walls, de-
veloped boojums, confined monopoles attached to
strings, and other remarkable findings. The BPS nature
of these objects allows one to obtain a number of exact
results. In many instances, nontrivial dynamics of the
bulk theories we consider leads to effective low-energy
theories in the world volumes of domain walls and
strings (they are related to zero modes) exhibiting novel
dynamical features that are interesting by themselves.

We do not try to review the vast literature that has
accumulated since the mid-1990s in its entirety. That
would be analogous to charting vast unmapped territory
which has not been fully explored. Instead, we suggest
“travel diaries” of the participants of the exploratory
expedition. Recent publications (Harvey, 1997, Tong,
2005; Eto et al., 2006b; Schaposnik, 2006) facilitate our
task, since they present the current developments in this
field from a complementary point of view.

The paper is organized in two parts. The first part
(Secs. II and III) is a bird’s-eye view of the territory. It
gives a brief and largely nontechnical introduction to
basic ideas behind supersymmetric solitons and particu-
lar applications. It is designed to present a general per-
spective that would be understandable to anyone with
an elementary knowledge of classical and quantum
fields, and supersymmetry.

Here we present some historical remarks, catalog rel-
evant centrally extended superalgebras, and review basic
building blocks with which we consistently deal—
domain walls, flux tubes, and monopoles—in their clas-
sic form. The word “classic” is used here not to mean
“before quantization” but, rather, to mean “recognized
and cherished in the community for years.”

The second part (Secs. IV-VII) is built upon other
principles. It is intended for those who would like to
delve into this subject thoroughly, with its specific meth-
ods and technical devices. We put special emphasis on
recent developments having direct relevance to QCD
and gauge theories at large, such as non-Abelian flux
tubes (strings), non-Abelian monopoles confined on
these strings, gauge field localization on domain walls,
etc. We start by presenting our benchmark model, which
has extended N'=2 supersymmetry. Here we go well be-
yond conceptual foundations, investing effort in detailed
discussions of particular problems and aspects of our
choosing. Naturally, we choose those problems and as-
pects that are instrumental in the phenomena mentioned
above.

Our subsequent logic is from A'=2 to 1 and further.
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TABLE 1. The minimal number of supercharges, the complex dimension of the spinorial representation, and the number of

additional conditions (i.e., the Majorana and/or Weyl conditions).

D 2 3 4 5 6 7 8 9 10
120 1" 2 2 4 8 8 8 16 16 16
Dim ()¢ 2 4 16 16 32
No. cond. 2 1 1 0 1 1 1 1 2

Indeed, in certain instances we are able to descend to
nonsupersymmetric gauge theories that are very close
relatives of QCD. In particular, we present a fully con-
trollable weakly coupled model of the Meissner effect
that exhibits quite nontrivial (strongly coupled) dynam-
ics on the string worldsheet. One can draw direct paral-
lels between this construction and the issue of k-strings
in QCD.

II. CENTRAL CHARGES IN SUPERALGEBRAS

In this section we review general issues related to cen-
tral charges (CC) in superalgebras.

A. History

The first superalgebra in four-dimensional field theory
was derived by Golfand and Likhtman (1971) in the
form

{QaQﬁ} = ZPM(O-M)aB7 {QaQﬁ} = {QaQﬁ} = 07

i.e., with no central charges. The possible occurrence of
CC (elements of superalgebra commuting with all other
operators) was first mentioned by Lopuszanski and
Sohnius (1974), where the last two anticommutators
were modified as

{0005} = Zap- (2.2)
The superscripts /,G mark extended supersymmetry. A
more complete description of superalgebras with CC in
quantum field theory was worked out by Haag et al
(1975). The only central charges analyzed in this paper
were Lorentz scalars (in four dimensions), Z,z~€,s
Thus, by construction, they could be relevant only to
extended supersymmetries.

A few years later, Witten and Olive (1978) showed
that in supersymmetric theories with solitons, central ex-
tension of superalgebras is typical; topological quantum
numbers play the role of central charges.

It was generally understood that superalgebras with
(Lorentz-scalar) central charges can be obtained from
superalgebras without central charges in higher-
dimensional space-time by interpreting some of the ex-
tra components of the momentum as CC’s [see, e.g.,
Gates et al. (1983)]. When one compactifies extra dimen-
sions, one obtains an extended supersymmetry; the extra
components of the momentum act as scalar central
charges.

Algebraic analysis extending that of Haag et al. (1975)
carried out in the early 1980s [see, e.g., van Holten and

(2.1)
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Van Proeyen (1982)] indicated that the super-Poincaré
algebra admits CC’s of a more general form, but the
dynamical role of additional tensorial charges was not
recognized until much later. Now it is common knowl-
edge that central charges that originate from operators
other than the energy-momentum operator in higher di-
mensions can play a crucial role. These tensorial central
charges take nonvanishing values on extended objects
such as strings and membranes.

Central charges that are antisymmetric tensors in vari-
ous dimensions were introduced (in the supergravity
context, in the presence of p-branes) in de Azcarraga et
al. (1989) [see also Abraham and Townsend (1991) and
Townsend (1999)]. These CC’s are relevant to extended
objects of the domain-wall type (membranes). Their oc-
currence in four-dimensional super-Yang-Mills theory
(as a quantum anomaly) was first observed by Dvali and
Shifman (1997). A general theory of central extensions
of superalgebras in three and four dimensions was dis-
cussed by Ferrara and Porrati (1998). It is worth noting
that those central charges that have the Lorentz struc-
ture of Lorentz vectors were not considered by Ferrara
and Porrati (1998). The gap was closed by Gorsky and
Shifman (2000).

B. Minimal SUSY

The minimal number of supercharges v, in various
dimensions is given in Table I. Two-dimensional theories
with a single supercharge, although algebraically pos-
sible, are quite exotic. In conventional models in D=2
with local interactions, the minimal number of super-
charges is two.

The minimal number of supercharges in Table I is
given for a real representation. Therefore, it is clear that
the maximal possible number of CC’s is determined by
the dimension of the symmetric matrix {Q;Q;} of the size
vo X vg, namely,

VQ(VQ + 1)
VCC = T.

(2.3)
In fact, D anticommutators have the Lorentz structure
of the energy-momentum operator P,. Therefore, in
general up to D central charges could be absorbed in P,.
In certain situations this number can be smaller, since
although algebraically the corresponding CC’s have the
same structure as P,, they are dynamically distinguish-
able. The point is that P, is uniquely defined through
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the conserved and symmetric energy-momentum tensor
of the theory.

Additional dynamical and symmetry constraints can
further diminish the number of independent central
charges; see, e.g., Sec. II.B.1.

The total set of CC’s can be arranged by classifying
CC’s with respect to their Lorentz structure. Below we
present this classification for D=2, 3, and 4, with special
emphasis on the four-dimensional case. In Sec. II.C, we
deal with N'=2 superalgebras.

1. D=2

Consider two-dimensional theories with two super-
charges. From the discussion above, on purely algebraic
grounds, three CC’s are possible: one Lorentz-scalar and
a two-component vector,

{0008 =2(¥*P)up(Pu+ Z,) +i(YW)upZ.  (2.4)

Z*#0 would require the existence of a vector order pa-
rameter taking distinct values in different vacua. Indeed,
if this central charge existed, its current would have the
form

O = &, A", Z":fg(’{dz,

where A* is the above-mentioned order parameter.
However, (A#) # 0 will break Lorentz invariance and su-
persymmetry of the vacuum state. This option will not
be considered. Limiting ourselves to supersymmetric
vacua, we conclude that a single (real) Lorentz-scalar
central charge Z is possible in /=1 theories. This cen-
tral charge is saturated by kinks.

2.D=3

The central charge allowed in this case is a Lorentz
vector Z,, i.e.,

{QaaQﬂ}:z(w’yo)aB(Pﬂ+ZM)- (25)

One should arrange Z, to be orthogonal to P,,. In fact,
this is the scalar central charge of Sec. I1.B.1 elevated by
one dimension. Its topological current can be written as

Luv=8upA, Z,= f d*x{ . (2.6)
By an appropriate choice of the reference frame, Z, can
always be reduced to a real number times (0,0,1). This
central charge is associated with a domain line oriented
along the second axis.

Although from the general relation (2.5) it is pretty
clear why BPS vortices cannot appear in theories with
two supercharges, it is instructive to discuss this question
from a slightly different standpoint. Vortices in three-
dimensional theories are localized objects, namely, par-
ticles [BPS vortices in 2+1 dimensions were previously
considered by Hlousek and Spector (1992) and Davis
et al. (1997); see also references therein]. The number of
broken translational generators is d, where d is the soli-
ton’s co-dimension, d=2 in this case. Then at least d
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supercharges are broken. Since we have only two super-
charges in the problem at hand, both must be broken.
This simple argument tells us that for a vortex, the
matching between bosonic and fermionic zero modes in
the (super)translational sector is one-to-one.

Consider now a putative 1/2-BPS vortex in a theory
with minimal A’=1 SUSY in (2+1)D. Such a configura-
tion would require a world volume description with two
bosonic zero modes, but only one fermionic mode. This
is not permitted by the argument above, and indeed no
configurations of this type are known. Vortices always
exhibit at least two fermionic zero modes and can be
BPS saturated only in A'=2 theories.

3.D=4

Maximally one can have 10 CC’s that are decomposed
into Lorentz representations as (0,1)+(1,0)+(1/2,1/2),

{Qa’ Qd} = z(yll‘)ad(P,U, + Z,u,) P (27)
{Qa’ Qﬂ} = (E#V)a,BZ[,u.V]a (28)
{Qda Qﬂ} = (iﬂy)dﬁz[uv]a (29)

where (3#7) 5= (O'M)Cm(&”)g is a chiral version of o*” [see,
e.g., Shifman and Vainshtein (1999)]. The antisymmetric

tensors Zp,,) and Z[W] are associated with domain walls,
and reduce to a complex number and a spatial vector
orthogonal to the domain wall. The (1/2,1/2) CC Z,, is
a Lorentz vector orthogonal to P,,. It is associated with
strings (flux tubes) and reduces to one real number and a
three-dimensional unit spatial vector parallel to the
string.

C. Extended SUSY

In four dimensions, one can extend superalgebra up to
N=4, which corresponds to 16 supercharges. Reducing
this to lower dimensions, we get a rich variety of ex-
tended superalgebras in D=3 and 2. In fact, in two di-
mensions the Lorentz invariance provides a much
weaker constraint than in higher dimensions, and one
can consider a wider set of (p,q) superalgebras compris-
ing p+g=2, 4, 8, or 16 supercharges. We will not pursue
a general solution; instead, we limit our task to (i) analy-
sis of central charges in N'=2 in four dimensions; (ii)
reduction of the minimal SUSY algebra in D=4 to D
=2 and 3, namely, the N'=2 SUSY algebra in those di-
mensions. Thus, in two dimensions we consider only the
nonchiral N'=(2,2) case. As should be clear from the
discussion above, in the dimensional reduction the maxi-
mal number of CC’s stays intact. What changes is the
decomposition in Lorentz and R-symmetry irreducible
representations.
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1. N=2in D=2

We focus on the nonchiral A'=(2,2) case correspond-
ing to dimensional reduction of the N'=1, D=4 algebra.
The tensorial decomposition is as follows:

(04,05 =2y V) (P, + Z,) 8 + 2]
+2i(y’y ),BZ{H}+217 Z (2.10)

Here Z/1 is antisymmetric in 7,7 (and I, J=1,2); ZUW/} is
symmetric while Z®) is symmetric and traceless. All
these CC’s are real. We can discard all vectorial central
charges ZU for the same reasons as in Sec. II.B.1. Then
we are left with two Lorentz singlets Z(), which repre-
sent the reduction of the domain wall charges in D=4
and two Lorentz singlets Tr Z!/} and ZIW], arising from
P, and the vortex charge in D=3 (see Sec. II.C.2). These
central charges are saturated by kinks.
Summarizing, the (2,2) superalgebra in D=2 is
{01, 08 =2(¥Y) 1pP 8" + 2i(¥*Y) 1pZ1""
+ 20y g7, (2.11)

It is instructive to rewrite Eq. (2.11) in terms of complex
supercharges (@, and Q; corresponding to four-

dimensional Q,,Q,, see Sec. ILB.3. Then

1- 1
(0O )py=2| Pur s 2=+ 2221 |
ay
{Qa? Qﬁ}(yo)ﬂy =- 2Z,(75)a/77
0L 0B (Y)py=2Z"1(¥5) 0y (2.12)

The algebra contains two complex central charges, Z
and Z'. In terms of components Q,=(Qr,Q;), the non-
vanishing anticommutators are

{0,,01}=2(H+P), {QxQkt=2(H-P),

{0.,0k}=2iZ, {Qx,Q}}=-2iZ",

{0,,0r}=2iZ", {0F0}}=-2iZ"".

It exhibits the automorphism Qp<« Q}Q,Z /7' associ-
ated (Dorey, 1998) with the transition to a mirror repre-
sentation (Hanany and Hori, 1998) The complex central
charges Z and Z’ can be expressed in terms of real Z}
and ZW1

(2.13)

Z=72 Lz zioan
2 b

7122}

VAL I, V2 S A RS
Z' = -1

2 2

(2.14)

Typically, in a given model either Z or Z' vanish. [Both
Z#0 and Z'+#0 simultaneously in a contrived model
(Losev and Shifman, 2003) in which the Lorentz symme-
try and a part of supersymmetry are spontaneously bro-
ken.]
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2. N=2in D=3

The superalgebra can be decomposed into Lorentz
and R-symmetry tensorial structures as follows:

{0808 =2(¥"V) (P, + Z,) 8" + Z]

+ 290 7, (2.15)

where all central charges above are real. The maximal
set of 10 CC’s enter as a triplet of spacetime vectors ZU
and a singlet ZI/], The singlet CC is associated with Vor—
tices (or lumps), and corresponds to the reduction of the
(1/2,1/2) charge or the fourth component of the momen-
tum vector in D=4. The triplet ZLJ is decomposed into
an R-symmetry singlet Z,, algebraically indistinguish-
able from the momentum, and a traceless symmetric
combination Z(H) The former is equivalent to the vec-

torial charge in the N=1 algebra, while ZﬁLm can be re-
duced to a complex number and vectors specifying the
orientation. We see that these are the direct reduction of
the (0,1) and (1,0) wall charges in D=4. They are satu-
rated by domain lines.

3. On extended supersymmetry (eight supercharges) in D=4

Complete algebraic analysis of all tensorial central
charges in this problem is analogous to the previous
cases and is rather straightforward. With eight super-
charges, the maximal number of CC’s is 36. The dynami-
cal aspect is less developed—only a modest fraction of
the above 36 CC’s are known to be nontrivially realized
in models studied. We limit ourselves to a few remarks
regarding the well-established CC’s. We use a complex
(holomorphic) representation of the supercharges. Then
the supercharges are labeled as follows:

0f. 046 a,@=12, F,G=12. (2.16)
On general grounds one can write

{00006} =28GP o+ 2(Z) e

{0505 =Z{1G) + e Z,

{Q4r QBG} = (Z{FG}){dB} + SaﬂsFGZ- (2.17)

Here (Zg)ad are four vectorial central charges (1/2, 1/2)
(16 components altogether) while Zigg} and the complex
conjugate are (1,0) and (0,1) central charges. Since the
matrix Zgg}} is symmetric with respect to F, G, there are
three flavor components, while the total number of com-
ponents residing in (1,0) and (0,1) central charges is 18.

Finally, there are two scalar central charges, Z and Z.
Dynamically, the above central charges can be de-

scribed as follows. The scalar CC’s Z and Z are satu-
rated by monopoles and/or dyons. One vectorial central
charge Z, (with the additional condition P*Z,=0) is
saturated (Vainshtein and Yung, 2001) by an Abrikosov-
Nielsen-Olesen (ANO) string (Abrikosov, 1957; Nielsen
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and Olesen, 1973). A (1,0) central charge with F=G is
saturated by domain walls (Shiftman and Yung, 2004a).

We now briefly discuss the Lorentz-scalar central
charges in Eq. (2.17) that are saturated by monopoles
and/or dyons. They will be referred to as monopole cen-
tral charges. Historically they were the first to be intro-
duced within the framework of an extended 4D superal-
gebra (Lopuszenski and Sohnius, 1974; Haag et al,
1975). On the dynamical side, they appeared as the first
example of the topological charge < central charge re-
lation revealed by Witten and Olive (1978). Twenty
years later, the A/'=2 model in which these central
charges first appeared was solved by Seiberg and Witten
(1994a, 1994b) and the exact masses of the BPS-
saturated monopoles and/or dyons found. No direct
comparison with the operator expression for the central
charges was carried out, however. Rebhan et al. (2004a)
noted that for the Seiberg-Witten formula to be valid, a
boson-term anomaly should exist in the monopole cen-
tral charges. Even before Rebhan er al (2004a) a
fermion-term anomaly was identified (Shiftman and
Yung, 2004a) which plays a crucial role (Shiftman and
Yung, 2004b) for the monopoles in the Higgs regime
(confined monopoles).

III. THE MAIN BUILDING BLOCKS

A. Domain walls
1. Preliminaries

In four dimensions, domain walls are two-dimensional
extended objects. In three dimensions they become do-
main lines, while in two dimensions they reduce to kinks
that can be considered as particles since they are local-
ized. Embeddings of bosonic models supporting kinks in
N=1 supersymmetric models in two dimensions were
first discussed by Di Vecchia and Ferrara (1977) and
Witten and Olive (1978). Occasional remarks on Kkinks in
models with four supercharges of the type of the Wess-
Zumino models (Wess and Bagger, 1992) can be found in
the literature of the 1980s, but they went unnoticed. The
only issue that caused much interest and debate in the
1980s was the issue of quantum corrections to the BPS
kink mass in 2D models with A’'=1 supersymmetry.

The mass of the BPS saturated kinks in two dimen-
sions must be equal to the central charge Z in Eq. (2.4).
The simplest two-dimensional model with the minimal
superalgebra, admitting solitons, was considered by
D’Adda and Di Vecchia (1978). In components, the La-
grangian takes the form

L£=10,00 ¢+ Jiby+ F2) + W (H)F - 20" (¢) s,
(3.1)

where W(¢) is a real superpotential, which in the sim-
plest case takes the form
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m2

A
WD) = — -~

a3 52

Moreover, the auxiliary field F can be eliminated by vir-
tue of the classical equation of motion F=-W'. This is a
real reduction (two supercharges) of the Wess-Zumino
model, which has one real scalar field ¢ and one two-
component real spinor .

The story of kinks in this model is long and dramatic.
In the very beginning, it was argued (D’Adda and Di
Viecchia, 1978) that, due to a residual supersymmetry,
the mass of the soliton calculated at the classical level
remains intact at the one-loop level. A few years later, it
was noted (Kaul and Rajaraman, 1983) that the non-
renormalization theorem (D’Adda and Di Viecchia,
1978) cannot possibly be correct, since the classical soli-
ton mass is proportional to m*/\?> (where m and \ are
the bare mass parameter and coupling constant, respec-
tively), and the physical mass of the scalar field gets a
logarithmically infinite renormalization. Since the soli-
ton mass is an observable physical parameter, it must
stay finite in the limit M ,— o, where M, is the ultra-
violet cutoff. This implies, in turn, that the quantum cor-
rections cannot vanish—they “dress” m in the classical
expression, converting the bare mass parameter into the
renormalized one. The one-loop renormalization of the
soliton mass was first calculated by Kaul and Rajaraman
(1983). Technically the emergence of the one-loop cor-
rection was attributed to a “difference in the density of
states in continuum in the boson and fermion operators
in the soliton background field.” Subsequent work (Im-
bimbo and Mukhi, 1984) dealt with the renormalization
of the central charge, with the conclusion that the cen-
tral charge is renormalized in just the same way as the
kink mass, so that the saturation condition is not vio-
lated.

Then many repeated one—loo]l) calculations for the
kink mass and/or central charge.” The results reported
and the conclusion of saturation or nonsaturation oscil-
lated with time, with little sign of convergence. Needless
to say, all agreed that the logarithmically divergent term
in Z matched the renormalization of m. However, the
finite (nonlogarithmic) term varied from work to work,
sometimes even in the successive works of the same au-
thors, e.g., Rebhan and van Nieuwenhuizen (1997) and
Nastase et al. (1999), or Uchiyama (1984, 1986a) and
Uchiyama (1986b). According to Nastase et al. (1999) the
BPS saturation is violated at one loop. This assertion
reversed the earlier trend (Kaul and Rajaraman, 1983;
Yamagishi, 1984; Chatterjee ans Majumdar, 1985) ac-
cording to which the kink mass and the corresponding
central charge are renormalized in a concerted way.

ISee D’Adda et al. (1978); Horsley (1979); Schonfeld (1979);
Rouhani (1981); Chatterjee and Majumdar (1984, 1985);
Uchiyama (1984, 1986a, 1986b); Yamagishi (1984); Rebhan and
van Nieuwenhuizen (1997); Graham and Jaffe (1999); and Nas-
tase et al. (1999).
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The story culminated in 1998 with the discovery of a
quantum anomaly in the central charge (Shiftman et al.,
1999). Classically, the kink central charge Z is equal to
the difference between the values of the superpotential
WV at spatial infinities,

Z=Wd(z=2)]-We(z=-=2)]. 3.3)

This is known from the pioneering paper of Witten and
Olive (1978). Due to the anomaly, the central charge gets
modified in the following way:

!

W—W+—

. (3.4)
where the term proportional to YW’ is anomalous (Shift-
man et al., 1999). The right-hand side of Eq. (3.4) must
be substituted in the expression for the central charge
(3.3) instead of W. Inclusion of the additional anomalous
term restores the equality between the kink mass and its
central charge. The BPS nature is preserved, which is
correlated with the fact that the kink supermultiplet is
short in the case at hand (Losev et al., 2001, 2002). All
subsequent investigations confirmed this conclusion
[see, e.g., the review paper by Goldhaber et al. (2004)].

Critical domain walls in theories with four super-
charges started attracting attention in the 1990s. The
most popular model of this time supporting such domain
walls is the generalized Wess-Zumino model with the
Lagrangian

L= J dzedZéK(cf),cp)+< J dZBW(CIJ)+H.c.>, (3.3)

where K is the Kdhler potential and ® stands for a set of
the chiral superfields. This model can be considered in
two and four dimensions. A popular choice was a trivial
Kéhler potential,

K=o0.

BPS walls in this system satisfy the first-order differen-
tial equations (Fendly et al, 1990; Abraham and
Townsend, 1991; Cecotti and Vafa, 1993; Chibisov and
Shiftman, 1997)

gdbé'zq)b = eiyﬁd)/_\/, (36)
where the Kihler metric is given by
8ab = 90K, (3.7)

gt

and v is the phase of the (1,0) central charge Z as de-
fined in Eq. (2.8). The phase y depends on the choice of
the vacua between which the given domain wall interpo-
lates,

Z= Z(ancf_ ancl-)- (3.8)

A useful consequence of the BPS equations is that
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vac, >

'V aci >

/

Transition domain

FIG. 1. (Color online) A field configuration interpolating be-
tween two distinct degenerate vacua.

W= e a7, (3.9)

and thus the domain wall describes a straight line in the
W plane connecting the two vacua.

Construction and analysis of BPS saturated domain
walls in four dimensions crucially depends on the real-
ization of the fact that the central charges relevant to
critical domain walls are not Lorentz scalars; rather they
transform as (1,0)+(0,1) under the Lorenz transforma-
tions. It was a textbook statement ascending to the pio-
neering paper of Haag ef al. (1975) that N'=1 superalge-
bras in four dimensions leave no place for central
charges. This statement is correct only with respect to
Lorenz-scalar central charges. Townsend was the first to
note (Townsend, 1988) that supersymmetric branes, be-
ing BPS-saturated, require the existence of tensorial
central charges antisymmetric in the Lorenz indices.
That the anticommutator {Q,,Qg in the four-
dimensional Wess-Zumino model contains the (1,0) cen-
tral charge is obvious. This anticommutator vanishes,
however, in super-Yang-Mills theory at the classical
level.

2. D-branes in gauge field theory

In 1996, Dvali and Shifman found in supersymmetric
gluodynamics (Davil and Shiftman, 1997) an anomalous
(1,0) central charge in superalgebra, not seen at the clas-
sical level. They argued that this central charge is satu-
rated by domain walls interpolating between vacua with
distinct values of the order parameter, the gluino con-
densate (A\), labeling N distinct vacua of super-Yang-
Mills theory with the gauge group SU(N).

What is the domain wall? It is a field configuration
interpolating between vacuum i and vacuum f with some
transition domain in the middle. Say, to the left you have
vacuum i, to the right you have vacuum f, and in the
middle you have a transition domain that is referred to
as the wall (Fig. 1).

There is a large variety of walls in supersymmetric
gluodynamics. Minimal, or elementary, walls interpolate
between vacua n and n+1, while k walls interpolate be-
tween n and n+k, see Fig. 2. Dvali and Shiftman (1997)
suggested a mechanism for localizing gauge fields on the
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FIG. 2. (Color online) N vacua for SU(N). The vacua
are labeled by the vacuum expectation value (AN)
=—6NA3 exp(2mik/N), where k=0,1,...,N-1. Elementary
walls interpolate between two neighboring vacua.

wall through bulk confinement. Later, this mechanism
was implemented in models at weak coupling, as we will
see below.

Shortly after, Witten interpreted the BPS walls in su-
persymmetric gluodynamics as analogs of D-branes
(Witten, 1997). This is because their tension scales as
N~1/g, rather than 1/gf typical of solitonic objects
(here g, is the string constant). Many promising conse-
quences ensued. One of them was the Acharya-Vafa
derivation of the wall world-volume theory (Acharya
and Vafa, 2001). Using a wrapped D-brane picture and
certain dualities, they identified the k-wall world-volume
theory as (1+2) dimensional U(k) gauge theory with the
field content of A’'=2 and the Chern-Simons term at
level N breaking N'=2 down to N'=1.

In N'=1 gauge theories with arbitrary matter content
and superpotential, the general relation (2.7) takes the
form

{Qa)Qﬁ}: _4201[32’ (310)
where
1 ¥ —n\a
Eaﬁz - E dX[M dx V]((T )ad(cr )ﬁ (311)
is the wall area tensor, and
3N - T(R))
Z-2A l3w EQW\/} ! fT w2
== - | | TIr
3 700y 1677
1 N20A LV
+32 D00 (3.12)
f 6=0

In this expression, A implies taking the difference at two
spatial infinities in the direction perpendicular to the
surface of the wall. The second term in the first line
presents the gauge anomaly in the central charge. The
second line is a total superderivative. Therefore, it van-
ishes after averaging over any supersymmetric vacuum
state. Hence, it can be safely omitted. The first term in
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the first line presents the classical result, cf. Eq. (3.8). At
the classical level, Q{dW/dQy) is a total superderivative
also, which can be seen from the Konishi anomaly
(Clark et al., 1979; Konishi, 1984; Konishi and Shizuya,
1985),

o W T(R
D2(QfeVQf)=4Qfa—Qf %})TrW?. (3.13)

If we discard this total superderivative (ignoring quan-
tum effects), we return to Z=2A(W), the formula ob-
tained in the Wess-Zumino model. At the quantum
level, QAdW/3Qy) ceases to be a total superderivative
because of the Konishi anomaly. It is still convenient to
eliminate Q{dW/JQ)) in favor of Tr W2 by virtue of the
Konishi relation (3.13). In this way, one arrives at

Z=20| w- (3.14)

1677 00
We see that the superpotential W is amended by the
anomaly; in the operator form,

N-> T(Ry
!

1672

Of course, in pure Yang-Mills theory only the anomaly
term survives.

We developed in 2002 a benchmark A'=2 model,
weakly coupled in the bulk (and, thus, fully control-
lable), which supports both BPS walls and BPS flux
tubes. We demonstrated that a gauge field is indeed lo-
calized on the wall; for the minimal wall this is a U(1)
field while for nonminimal walls the localized gauge field
is non-Abelian. We also found a BPS wall-string junc-
tion related to the gauge field localization, see Sec. VI.
The field-theory string does end on the BPS wall after
all. The end point of the string on the wall, after Polya-
kov’s dualization, becomes a source of the electric field
localized on the wall. In 2005, Sakai and Tong analyzed
generic wall-string configurations. Following condensed-
matter physicists, they called them boojums.2

Equation (3.12) implies that in pure gluodynamics
(super-Yang-Mills theory without matter), the domain-
wall tension is

W—W- Tr W2. (3.15)

N
= QKTI‘ )\2>vacf_ <TI' )\2>vaci| ’ (316)
where vac; ; stands for the initial (final) vacuum between
which the given wall interpolates. Furthermore, the
gluino condensate (Tr\?),,. was calculated long ago
(Shifman and Vainshtein, 1988), using the same methods
that were later advanced and perfected by Seiberg and
Seiberg and Witten in their quest for dualities in A'=1

2“Boojum” comes from Lewis Carroll’s children’s book Hunt-
ing of the Snark. Condensed-matter physicists adopted the
name to describe solitonic objects of the wall-string junction
type in helium-3.
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super-Yang-Mills theories (Seiberg, 1995; Intriligator
and Seiberg, 1996a, 1996b) and the dual Meissner effect
in N=2 [see Seiberg and Witten (1994a, 1994b)].
Namely,

2mik
2Tr A2 = (NN = — 6N A3 exp<%> . (3.17)

Here k=0,1,...,N-1 labels the N distinct vacua of the
theory, see Fig. 2, and A is a dynamical scale, defined in
the standard manner [i.e., in accordance with Hinchliffe
(2006)] in terms of the ultraviolet parameters M, (the
ultraviolet regulator mass) and g2 (the bare coupling
constant),

K 2M3<8ﬂ2> ( 8772>
=M | == |exp|— —=|.
37"\ Ngj Ng;

In each given vacuum, the gluino condensate scales
with the number of colors as N. However, the difference
of the values of the gluino condensates in two vacua that
lie not too far away from each other scales as N, Taking
into account Eq. (3.16), we conclude that the wall ten-
sion in supersymmetric gluodynamics

(3.18)

T~N.

(This statement just rephrases Witten’s argument why
the above walls should be considered as analogs of
D-branes.)

The volume energy density in both vacua, to the left
and to the right of the wall, vanishes due to supersym-
metry. Inside the transition domain, where the order pa-
rameter changes its value gradually, the volume energy
density is expected to be proportional to N2, because
there are N? excited degrees of freedom. Therefore, T
~ N implies that the wall thickness in supersymmetric
gluodynamics must scale as N~!. This is very unusual,
because normally we would say that the glueball mass is
O(NY), hence everything built of regular glueballs
should have thickness of order O(NY).

If the wall thickness is O(N~!), the question of what
consequences ensue immediately comes to mind. This
issue is far from being completely understood; for rel-
evant discussions, see Dvali and Kakushadze (1999), Ga-
badadze and Shifman (2000), and Armoni and Shifman
(2003).

As was mentioned, there is a large variety of walls in
supersymmetric gluodynamics as they can interpolate
between vacua with arbitrary values of k. Even if k;
=k;+1, i.e., the wall is elementary, we are dealing with
several walls, all having one and the same tension—we
call them degenerate walls. The first indication of wall
degeneracy was obtained by Kovner et al. (1997), where
two degenerate walls were observed in SU(2) theory.
Later, Acharya and Vafa calculated the k-wall multiplic-
ity (Acharya and Vafa, 2001) within the framework of
D-brane/string formalism,
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FIG. 3. (Color online) Two distinct degenerate domain walls
separated by the wall junction.
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For N=2, only elementary walls exist, and v=2. In the
field-theoretic setting, Eq. (3.19) was derived by Ritz et
al. (2002). The derivation is based on the fact that the
index v is topologically stable—continuous deformations
of the theory do not change v. Thus, one can add an
appropriate set of matter fields sufficient for complete
Higgsing of supersymmetric gluodynamics. The domain-
wall multiplicity in the effective low-energy theory ob-
tained in this way is the same as in supersymmetric gluo-
dynamics, albeit the effective low-energy theory, a Wess-
Zumino-type model, is much simpler.

(3.19)

3. Domain wall junctions

Two degenerate domain walls can coexist in one
plane—a new phenomenon that was first discussed by
Ritz et al. (2004). It is illustrated in Fig. 3. Two distinct
degenerate domain walls lie on the plane; the transition
domain between wall 1 and wall 2 is the domain-wall
junction (domain line).

Each individual domain wall is 1/2 BPS saturated.
The wall configuration with the junction line (Fig. 3) is
1/4 BPS saturated. We start from A/'=1 four-dimensional
bulk theory (four supercharges). Naively, the effective
theory on the plane must preserve two supercharges,
while the domain line must preserve one supercharge. In
fact, they have four and two conserved supercharges,
respectively. This is another new phenomenon—
supersymmetry enhancement—discovered by Ritz et al.
(2004). One can excite the junction line endowing it with
momentum in the direction of the line, without altering
its BPS status. A domain line with a plane wave propa-
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FIG. 4. (Color online) The cross section of the wall junction.

gating on it (Fig. 3) preserves the property of the BPS
saturation; see Ritz et al. (2004).

We pass now to more conventional wall junctions. As-
sume that the theory under consideration has a sponta-
neously broken Zy symmetry, with N=3, and, corre-
spondingly, N vacua. Then one can have N distinct walls
connected in the asterisk-like pattern; see Fig. 4. This
field configuration possesses an obvious axial symmetry:
the vacua are located cyclically.

This configuration is absolutely topologically stable, as
stable as the wall itself. Moreover, it can be BPS satu-
rated for any value of N. It was noted (Abraham and
Townsend, 1991) that theories with either a U(1) or Zy
global symmetry may contain 1/4-BPS objects with axial
geometry. The corresponding Bogomol’nyi equations
were derived by Chibisov and Shifman (1997) and
shortly after rediscovered by Gibbons and Townsend
(1999). Further advances in the issue of the domain-wall
junctions of the hub-and-spoke type were presented by
Oda et al. (1999), Carroll et al. (2000), Binosi and ter
Veldhusi (2000), and Shifman and ter Veldhuis (2000);
see also later works of Gauntlett er al (2001a),
Kakimoto and Sakai (2003), Eto et al. (2005b, 2006a),
and Eto, Fujimori, et al. (2007). We single out the work
of Oda et al. (1999) where the first analytic solution for a
BPS wall junction was found in a specific generalized
Wess-Zumino model. Among stimulating findings in this
work is the fact that the junction tension turned out to
be negative in this model. The model has Z; symmetry.
It is derived from a SU(2) Yang-Mills theory with ex-
tended supersymmetry (N=2) and one matter flavor
perturbed by an adjoint scalar mass. The original model
contains three pairs of chiral superfields and, in addition,
one extra chiral superfield. In fact, Oda et al. (1999)
model can be simplified and adjusted to cover the case
of arbitrary N, which was done by Shifman and ter
Veldhuis (2000). The latter work demonstrates that the
tension of the wall junctions is as a rule negative, al-
though exceptional models with the positive tension are
possible too. Note that the negative sign of the wall junc-
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tion tension does not lead to instability since wall junc-
tions do not exist in isolation. They are always attached
to walls that stabilize this field configuration.

Returning to SU(N) supersymmetric gluodynamics
(N=3), one expects to get in this theory the 1/4-BPS
junctions of the type depicted in Fig. 4. Of course, this
theory is strongly coupled; therefore, the classical
Bogomol’'nyi equations are irrelevant. However, assum-
ing that such wall junctions do exist, one can find their
tension at large N even without solving the theory. To
this end, one uses (Gabadadze and Shifman, 2000; Shif-
man and ter Veldhuis, 2000) the expression for the
(1/2,1/2) central charge3 in terms of the contour inte-
gral over the axial current (Gorsky and Shifman, 2000).
At large N, the latter integral is determined by the ab-
solute value of the gluino condensate and the overall
change of the phase of the condensate when one makes
the 27 rotation around the hub. In this way, one arrives
at the prediction

Tyan junction N2 (3.20)

The coefficient in front of the N? factor is model depen-
dent.

Can one interpret this N> dependence of the hub of
the junction? Assume that each wall has thickness 1/N
and there are N of them. Then it is natural to expect the
radius of the intermediate domain where all walls join
together to be of the order (1/N) X N~ N°. This implies,
in turn, that the area of the hub is O(NY). If the volume
energy density inside the junction is N? (i.e., the same as
inside the walls), one immediately gets Eq. (3.20).

B. Vortices in D=3 and flux tubes in D=4

Vortices were among the first examples of topological
defects treated in the Bogomol'nyi limit (Prasad and
Sommerfield, 1975; de Vega and Schaposnik, 1976; Wit-
ten and Olive, 1978) [see also Taubes (1980)]. Explicit
embedding of the bosonic sector in supersymmetric
models dates back to the 1980s. Bezerra de Mello (1990)
considered a three-dimensional Abelian Higgs model.
That model had N=1 supersymmetry (two super-
charges) and thus, according to Sec. I1.B.2, contained no
central charge that could be saturated by vortices.
Hence, the vortices discussed by Bezerra de Mello
(1990) were not critical. BPS-saturated vortices can and
do occur in N'=2 three-dimensional models (four super-
charges) with a nonvanishing Fayet-Iliopoulos term
(Shmidt, 1992; Edelstein et al., 1994). Such models can

3There is a subtle point here that must be noted. For a wall of
the hub-and-spokes type, the overall tension is the sum of two
tensions: the tension of the walls and the tension of the hub.
The first is determined by the (1,0) central charge, the second
by (1/2,1/2). Each separately is somewhat ambiguous in the
case at hand. The ambiguity cancels in the sum (Gorsky and
Shifman, 2000).
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be obtained by dimensional reduction from four-
dimensional N'=1 models. We start with a brief excur-
sion in SQED.

1. SQED in 3D

The starting point is SQED with the Fayet-Illiopoulos
term ¢ in four dimensions, The SQED Lagrangian is

1 _
L= {—2 J d*OW? + H.c.} +2 f d*00Q%e"" Q¢
!

de

- ¢ f d*6d*6V (x,6,0), (3.21)
where e is the electric coupling constant, Oy is the chiral
matter superfield (with charge n/=+1), and W, is the
supergeneralization of the photon field strength tensor,

Wo=1D2DV =i(\y+i0,D — 0°F o5~ iP3,:\%).
(3.22)

In four dimensions, the absence of the chiral anomaly
in SQED requires the matter superfields to enter in
pairs of the opposite charge. Otherwise the theory is
anomalous; the chiral anomaly renders it noninvariant
under gauge transformations. Thus, the minimal matter

sector includes two chiral superfields O and Q, with n
=1 and ri=-1, respectively. In three dimensions there is
no chirality. Therefore, one can consider 3D SQED with
a single matter superfield Q, with n=1. Classically it is

perfectly fine just to discard the superfield O from the
Lagrangian (3.21). However, such crudely truncated
theory may be inconsistent at the quantum level
(Alvarez-Gaumé and Witten, 1984; Redlich, 1984a,
1984b; Aharony et al., 1997). Gauge invariance in loops
requires, as we will see shortly, simultaneous introduc-
tion of a Chern-Simons term in the one matter super-
field model (Alvarez-Gaumé and Witten, 1984; Redlich,
1984a, 1984b; Aharony et al., 1997). The Chern-Simons
term breaks parity. That is the reason this phenomenon
is sometimes referred to as parity anomaly.

A perfectly safe way to get rid of Q is as follows. Start
from the two-superfield model (3.21), which is certainly
self-consistent at both the classical and quantum levels.
The one-superfield model can be obtained from two su-

perfields by making 0 heavy and integrating it out. If

one manages to introduce a mass m for Q without
breaking A'=2 supersymmetry, the large-#i limit can be
viewed as an excellent regularization procedure.

Such mass terms are well known; for a review, see
Nishino and Gates (1993), Aharony et al. (1997), and de
Boer et al. (1997). They go under the name of real
masses, are specific to theories with U(1) symmetries di-
mensionally reduced from D=4 to 3, and present a di-
rect generalization of twisted masses in two dimensions
(Alverez-Gaumé and Freedman, 1983; Gates, 1984;
Gates et al., 1984). To introduce a real mass, one couples
matter fields to a background vector field with a nonva-
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nishing component along the reduced direction. For in-
stance, in the case at hand we introduce a background
field V}, as

AL, = J d*00eV00,  V,=m(Q2i) (8¢ - 9.

(3.23)

The reduced spatial direction is along the y axis. We

couple V,, to the U(1) current of 0 ascribing to 0 charge
1 with respect to the background field. At the same time,
Q is assumed to have V, charge zero and, thus, has no
coupling to V. Then, the background field generates a

mass term only for Q, without breaking N'=2.

After reduction to three dimensions and passing to
components (in the Wess-Zumino gauge), we arrive at
the action in the following form (in the three-
dimensional notation):

1 1 1-
S = f d3x{— EFM’F#V + ﬁ(é’#a)z + ;)\iﬂ)\

1 3 _
+=5D?~ D + 2, n,qlqD + 2 [D*§'D 4y
2e f f

+ WiDyy] - a’qq - (i + a3 + agap— (i + a) g

+> nef[\E(thff)cjf+ H.c.]}. (3.24)
f

Here a is a real scalar field,

a=-A, iD,=id,+nA,,

\ is the photino field, and g, and ¢y are matter fields
belonging to Q and Q at f=1,2, respectively. Finally, D
is an auxiliary field, the last component of the superfield

V. Eliminating D via the equation of motion, we get the
scalar potential

_r \2 - - =~
V= 5(5— ; nequqf> +a*qq + (m+a)’Gq, (3.25)
which implies a potentially rather rich vacuum structure.
For our purposes—the BPS-saturated vortices—only the
Higgs phase is of importance. We assume that

>0, m=0. (3.26)

If ¢ and G are viewed as regulators (i.e., 1 — ), they
can be integrated out leaving the one matter superfield
model. It is obvious that by integrating them out, we get
a Chern-Simons term at one loop,* with a well-defined
coefficient that does not vanish in the limit m=%. We
prefer to keep m as a free parameter, assuming that m
#0.

“In passing from two to one matter superfield, in order to
justify integrating out 0, one must consider /m>eVé Given
that e?/¢<1, the condition 71> e\¢ does not necessarily imply
that m>&.
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From the standpoint of vortex studies, the model
(3.21) per se is not quite satisfactory due to the existence
of the flat direction [correspondingly, there is a gapless
mode that renders the theory ill-defined in the infrared;
see Shifman and Yung (2005)]. The flat direction is elimi-
nated at m # 0. Thus, there are free relevant parameters
of dimension of mass, €%, ¢, and 7. The weak-coupling
regime implies that e?/£<1.

If m #0, the field § can (and must) be set to zero, and
g, play a role only at the level of quantum corrections,
providing a well-defined regularization in loops. If g=0,
the vanishing of the D term in the vacuum requires
Gqyvac=&. Then the term a’Gq in Eq. (3.25) implies that
a=0 in the vacuum. Up to gauge transformations, the
vacuum is unique. The Higgs phase is enforced by our
choice m#0 and £+ 0.

a. Central charge

The general form of the centrally extended N'=2 su-
peralgebra in D=3 was discussed in Sec. I1.C.2. The cen-
tral charge relevant to the problem at hand—
vortices—is presented by the last term in Eq. (2.15). It
can be derived using the complex representation for su-
percharges and reducing from D=4 to 3. In four dimen-
sions (Gorsky and Shifman, 2000),

{Qw Qd} = 2Pdd + ZZad = 2(P,u + Z,u)(o-’u)ad’ (327)
where P, is the momentum operator and
ZM:§J d3xeoﬂyp(o7VA") 4+ (3.28)

Here the ellipses denote full spatial derivatives of
currents® that fall off exponentially fast at infinity. Such
terms are inessential.

In three dimensions, the central charge of interest re-
duces to P,+Z,. Thus, in terms of complex super-
charges, the appropriate centrally extended algebra
takes the form

{0.(0NY} =2(Pyy’ + P1y' + P3¥)
+ 2{% f &xV(Ea) + ngq - .fJ dsz},
(3.29)
where E is the electric field, B is the magnetic field,

IA; A,
ox 9z

) (3.30)

and ¢ is a conserved Noether charge,

’Moreover, these currents are not unambiguously defined; see
Gorsky and Shifman (2000).
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FIG. 5. Polar coordinates on the x,z plane.

q= f d’xj°,  j*= Wy e+ JiD gy (3.31)
The second line in Eq. (3.29) presents the vortex-related
central charge.6 The term proportional to a gives a van-
ishing contribution to the central charge. However, the ¢
term (sometimes omitted in the literature) plays an im-
portant role. It combines with the £ term in the expres-
sion for the vortex mass converting the bare value of &
into the renormalized one. In the problem at hand, the
vortex mass gets renormalized at one loop, and so does
the Fayet-Iliopoulos parameter.

b. BPS equation for the vortex

At the classical level, the fields a and ¢ play no role.
They will be set as

G=0, a=0. (3.32)

The first-order equations describing the ANO vortex in
the Bogomol’'nyi limit (Prasad and Sommerfield, 1975;
de Vega and Schaposnik, 1976; Witten and Olive, 1978)
take the form

B-é*ql*-9 =0,

(D,+iD,)g=0 (3.33)
with the boundary conditions

g E atr—o,

q—0 atr—0, (3.34)

where « is the polar angle on the x,z plane, while r is
the distance from the origin in the same plane (Fig. 5).

%The emergence of the U(1) Noether charge #1q/2 in the cen-
tral charge is in one-to-one correspondence with a similar phe-
nomenon taking place in the 2D CP(N-1) models with the
twisted mass (Shifman et al., 2006).
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Moreover k is an integer counting the number of wind-
ings.

If Egs. (3.33) are satisfied, the flux of the magnetic
field is 27k (the winding number k determines the quan-
tized magnetic flux), and the vortex mass (string tension)
is

M =2mék. (3.35)

The linear dependence of the k-vortex mass on k implies
the absence of their potential interaction.

For the elementary k=1 vortex, it is convenient to
introduce two profile functions s(r) and f(r) as follows:

. 1
q(x) = plr)ei, AA&=—;%J%D—ﬂH](3%)

The ansatz (3.36) goes through the set of equations
(3.33), and we get the following two equations on the
profile functions:
1df 5, 5 do
—_ = 4+ — = O’ - - = O.
(B -9=0, 1 fo
The boundary conditions for the profile functions are
rather obvious from the form of the ansatz (3.36) and
from our previous discussion. At large distances,

B() =g  fl)=0. (3.38)

At the same time, at the origin the smoothness of the
field configuration at hand (the absence of singularities)
requires

#(0)=0, f0)=1.

These boundary conditions are such that the scalar field
reaches its vacuum value at infinity. Equations (3.37)
with the above boundary conditions lead to a unique
solution for the profile functions, although its analytic
form is not known. The vortex size is ~e~1&1/2.

(3.37)

(3.39)

c. Fermion zero modes

Quantization of vortices requires knowledge of the
fermion zero modes for the given classical solution.
More precisely, since the solution under consideration is
static, we are interested in the zero-eigenvalue solutions
of the static fermion equations, which, therefore, effec-
tively become two rather than three dimensional,

(YD, + ¥D,)h+ \2\q = 0.

This equation is obtained from Eq. (3.24), where we
dropped the terms with tildes (since §=0) and, corre-
spondingly, set n,—1. The fermion operator is Her-
mitean, implying that every solution for {¢,\} is accom-
panied by that for {i,\}.

Since the solution to Eq. (3.33) discussed above is 1/2
BPS, two of the four supercharges annihilate it while the
other two generate the fermion zero modes—
superpartners of translational modes. One can show
(Rebhan et al., 2004b) that these are the only normaliz-
able fermion zero modes in the problem.

(3.40)
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d. Short versus long representations

The (1+2)-dimensional model under consideration
has four supercharges. The corresponding regular super-
representation is four dimensional (i.e., it contains two
bosonic and two fermionic states).

The vortex we discuss has two fermion zero modes.
Viewed as a particle in 1+2 dimensions, it forms a su-
perdoublet (one bosonic state plus one fermionic).
Hence, this is a short multiplet. This implies, of course,
that the BPS bound must remain saturated when quan-
tum corrections are switched on. Both the central charge
and the vortex mass get corrections (Rebhan et al,
2004b), but they remain equal to each other.

2. ANO string in four dimensions

The vacuum manifold is a “hyperboloid,”

Ggq-q4==¢& a=0. (3.41)

Thus, we deal with the Higgs branch of real dimension 2.
In fact, the vacuum manifold can be parametrized by a
complex modulus gg. On this Higgs branch, the photon
field and a, plus their superpartners, form a massive su-
permultiplet, while gg and superpartners form a mass-
less one.

As was shown by Penin ef al. (1996) no finite-size vor-
tices exist at a generic point on the vacuum manifold,
due to the absence of the mass gap (presence of the
massless Higgs excitations). The moduli fields get in-
volved in the solution at the classical level generating a
logarithmically convergent tail. Still certain infrared
regularizations remove this logarithmic divergence and
vortices become well defined but they are not BPS; see
Yung (1999).

At the base of the Higgs branch, at §=0 the classical
solution of the BPS equations per se is well defined. The
fact that there is a flat direction and, hence, massless
particles in the bulk theory does not disappear, of
course. Even though at g=0 the classical string solution
is well defined, infrared problems arise at the loop level.
One can avoid massless particles in the spectrum if one
embeds the theory (3.24) in SOED with eight super-
charges; see Shifman and Yung (2005). Then the Higgs
branch is eliminated, and one is left with isolated vacua.
After the embedding is done, one can break A'=2 down
to M=1, if one so desires.

C. Monopoles

In this section, we discuss magnetic monopoles—
interesting objects that carry magnetic charges. They
emerge as free magnetically charged particles in non-
Abelian gauge theories in which the gauge symmetry is
spontaneously broken down to an Abelian subgroup.’

"In the confining regime, monopoles can be obtained in some
theories with no adjoint fields, in which the gauge symmetry is
broken completely (Gorsky et al, 2007). This is a recent
development.
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The simplest example was found by ’t Hooft (1974) and
Polyakov (1974). The model they considered had been
invented by Georgi and Glashow (1972) for different
purposes. As it often happens, the Georgi-Glashow
model turned out to be more valuable than the original
purpose, which is long forgotten, while the model itself
is alive and well and is being constantly used by theo-
rists.

1. Georgi-Glashow model: Vacuum and elementary excitations

We begin with a brief description of the Georgi-
Glashow model. The gauge group is SU(2) and the mat-
ter sector consists of one real scalar field ¢* in the ad-
joint representation [i.e., SU(2) triplet]. The Lagrangian
of the model is

1 1 1
L=- 4_g2F7LVFW + (D #(D#") = M ' =07,
(3.42)

where the covariant derivative in the adjoint acts as

D, ¢"=3,¢" + e AL ¢ (3.43)
Below we focus on the limit of BPS monopoles. This
limit corresponds to a vanishing scalar coupling, A — 0.
The only role of the last term in Eq. (3.42) is to provide
a boundary condition for the scalar field. As seen from
Sec. II, the monopole central charge exists only in A
=2 and 4 superalgebras. Therefore, one should under-
stand the theory (3.42) (at A=0) as embedded in super-
Yang-Mills theories with extended superalgebra. In Secs.
IV-VII we extensively discuss such embeddings in the
context of N'=2.

The classical definition of magnetic charges refers to
theories that support long-range (Coulomb) magnetic
field. Therefore, in consideration of the isolated mono-
pole, the pattern of the symmetry breaking should be
such that some of the gauge bosons remain massless. In
the Georgi-Glashow model (3.42), the pattern is as fol-
lows:

SU2) — U(1). (3.44)
To see that this is indeed the case, we note that the ¢*
self-interaction term [the last term in Eq. (3.42)] forces
¢* to develop a vacuum expectation value,

(¢"y=v&".

The direction of the vector ¢ in the SU(2) space (to be
referred to as “color space” or “isospace”) can be cho-
sen arbitrarily. One can always reduce it to the form
(3.45) by a global color rotation. Thus, Eq. (3.45) can be
viewed as a (unitary) gauge condition on the field ¢.

This gauge is convenient for discussing the particle
content of the theory, namely elementary excitations.
Since the color rotation around the third axis does not
change the vacuum expectation value of ¢“,

(3.45)
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. T3 . T3 73
eXp la’? Dyac €XPY — laz = byaes DPyac= UE >
(3.46)

the third component of the gauge field remains

massless—we will call it photon,
3 _
A=A, F,=dA,-3A (3.47)

The first and second components form massive vector
bosons,

w 78

1
W= @(A;iAi). (3.48)
As usual in the Higgs mechanism, the massive vector
bosons eat up the first and second components of the
scalar field ¢”. The third component, the physical Higgs
field, can be parametrized as

S =v+o, (3.49)

where ¢ is the physical Higgs field. In terms of these
fields, the Lagrangian (3.42) can be rewritten as

1 1 . -
L=- @F,WF,W + E(%D)2 - (D W,)(DW))

+ (D W,)(D,W,)+ g v+ ¢y’ W W,

-2W'F

wt oy

2
W+ %(W;W; SWIWL?E,  (3.50)
where the covariant derivative now includes only the
photon field,

D Wt = (3, +iA,)W*. (3.51)

The last line presents the magnetic moment of the
charged (massive) vector bosons and their self-
interaction. In the limit A — 0, the physical Higgs field is
massless. The mass of the W* bosons is

My =gv. (3.52)

2. Monopoles—Topological argument

We explain why this model has a topologically stable
soliton [see, e.g., Coleman (1983)].

Assume that the monopole’s center is at the origin
and consider a large sphere Sy of radius R with the cen-
ter at the origin. Since the mass of the monopole is fi-
nite, by definition, ¢“¢*=v> on this sphere. ¢“ is a three-
component vector in the isospace subject to the
constraint ¢“¢“=v?, which gives us a two-dimensional
sphere Si. Thus, we deal here with mappings of Sy into
Sg- Such mappings split in distinct classes labeled by an
integer n, counting how many times the sphere Sg is
swept when we sweep once the sphere Sg, since

m[SUQ)UM)] = Z. (3.53)

S5=SU(2)/U(1) because for each given vector ¢ there
is a U(1) subgroup that does not rotate it. The SU(2)
group space is a three-dimensional sphere while that of
SU((2)/U(1) is a two-dimensional sphere.
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An isolated monopole field configuration (the
't Hooft-Polyakov monopole) corresponds to a mapping
with n=1. Since it is impossible to continuously deform
it to the topologically trivial mapping, the monopoles
are topologically stable.

3. Mass and magnetic charge

Classically the monopole mass is given by the energy
functional

E- J d3x{ 1 pges %(D@“)(Diqs“)},

3.54

2 (3:54)
where

B;l =— %Siij;lk. (355)

The fields are assumed to be time independent, B
=B{(x), ¢"=¢"(x). For static fields it is natural to assume
that Ag=0. This assumption will be verified a posteriori,
after we find the field configuration minimizing the func-
tional (3.54). Equation (3.54) assumes the limit A —0.
However, in performing minimization we should keep in
mind the boundary condition ¢*(xX)¢“(x) —v? at |x| —ce.
Equation (3.54) can be rewritten as follows:

E=| dx)=|-B¢-D;¢"|| —-B! - D;¢"
2\g g

1
+ —Bf’Diqba}. (3.56)
g

The last term on the right-hand side is a full derivative.
Indeed, after integrating by parts and using the equation
of motion D;B{=0, we get

f d3x{1B?Di¢”} 1 f d*x3{( B! ¢*)
g g

_1 J LS(B4).
8Js

R

(3.57)

In the last line, we made use of Gauss’s theorem and
passed from the volume integration to that over the sur-
face of the large sphere. Thus, the last term in Eq. (3.56)
is topological.

The combination Bf¢" can be viewed as a gauge-
invariant definition of the magnetic field B. More ex-
actly,

B;= %B?(ﬁ“. (3.58)
Indeed, far away from the monopole core one can al-
ways assume ¢“ to be aligned in the same way as in the
vacuum (in an appropriate gauge), ¢*=v&*“. Then B,
:B?. The advantage of the definition (3.58) is that it is
gauge independent.
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Furthermore, the magnetic charge Q,, inside a sphere
Sk can be defined through the flux of the magnetic field
through the surface of the sphere,8

1
Oy= f d’S—B.. (3.59)
S 8
From Eq. (3.71) (see below), we see that
i=-B{¢"—>n'5 atr— o, (3.60)
v r
and, hence,
4
== (3.61)
4

Combining Egs. (3.59), (3.58), and (3.57), we conclude
that

[ L))
E=vQy+ | &®xy=|-B*-D;¢"|| -B*-D;¢"| (.
2\g g

(3.62)
The minimum of the energy functional is attained at

1

é—}B? -D;¢*=0. (3.63)
The mass of the field configuration realizing this
minimum—the monopole mass—is equal to

41rv
My=——.
8

(3.64)
Thus, the mass of the critical monopole is in one-to-one
relation with its magnetic charge. Equation (3.63) is the
Bogomol'nyi equation in the monopole problem. If it is
satisfied, the second-order differential equations of mo-
tion are satisfied too.

4. Solution of the Bogomol’nyi equation for monopoles

To solve the Bogomol'nyi equations, we need to find
an appropriate ansatz for ¢. As one sweeps S, the vec-
tor ¢* must sweep the group space sphere. The simplest
choice is to identify these two spheres point by point,

xa

¢ = v7 =ynt,

, (3.65)

y — ©
where n'=x'/r. This field configuration belongs to the
class with n=1. The SU(2) group index a got entangled

with the coordinate x. Polyakov proposed to refer to
such fields as “hedgehogs.”

8Different conventions for the charge normalization may
vary. Dirac (1931) used the convention e’=a and the electro-
magnetic Hamiltonian H=(8m)'(E?>+B?). Then, the electric
charge is defined through the flux of the electric field as e
=dm)lJ SRd2Sl»E,», and analogously for the magnetic charge.
We use the convention according to which e?=4ma, and the
electromagnetic Hamiltonian H=(2g?)~'(E?>+B?. Then e
=g '[5,d*S;E; while Q=g [, d*S:B;.
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Next, observe that finiteness of the monopole energy
requires the covariant derivative D;¢” to fall off faster
than 2 at large r, cf. Eq. (3.54). Since

1, . |
o =v—{" - n"n't ~ —, (3.66)
r r
one must choose A’ in such a way as to cancel Eq.
(3.66). It is not difficult to see that

(3.67)

1.
Al =e"=nl, r— oo,
r
Then the term 1/r is canceled in D;¢".
Equations (3.65) and (3.67) determine the index struc-

ture of the field configuration which we use. The appro-
priate ansatz is now

1.
' =vn®H(r), A%=eI-niF(r), (3.68)
r

where H and F are functions of r with the boundary
conditions

H(r)—1, F(r)—1 atr—oo (3.69)

and

H(r)—0, F(r)—0 atr—0. (3.70)

The boundary condition (3.69) is equivalent to Egs.

(3.65) and (3.67), while the boundary condition (3.70)

guarantees that our solution is nonsingular at r—0.
After some straightforward algebra, we get

1

) 1 1
Bi =(8"-nn")-F +nn'5(2F - ),
r r

Di¢”=v{(5ai—fl”ni)%H(1—F)+n"niH’}, (3.71)

where the prime denotes differentiation with respect to
r.

We return now to the Bogomol’nyi equations (3.63).
This is a set of nine first-order differential equations.
Our ansatz has only two unknown functions. The fact
that the ansatz goes through and we get two scalar equa-
tions on two unknown functions from the Bogomol'nyi
equations is a highly nontrivial check. Comparing Eqgs.
(3.63) and (3.71), we get

1
—-F'=vH(1-F),
8
' 11 2
H' = ——=QF-F). (3.72)
gur

The functions H and F are dimensionless. It is conve-
nient to make the radius r dimensionless too. A natural
unit of length in the problem at hand is (gv)~!. From
now on we measure r in these units,
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FIG. 6. The functions F (solid line) and H (long dashes) in the
critical monopole solution vs p. The short-dashed line shows
the flux of the magnetic field B; (in the units 47) through the
sphere of radius p.

p=r(gv). (3.73)

The functions H and F are considered as functions of p,
while the prime denotes differentiation over p. Then the
system (3.72) takes the form

F' =H(1-F),

1
H' =—Q2F-F). (3.74)
p

These equations have known analytical solutions,

le_ p )

sinh p

h 1
=P 2 (3.75)

sinhp p

At large p, the functions H and F tend to unity [cf. Eq.
(3.69)] while at p—0,

F=0(p»), H=0(p).
They are plotted in Fig. 6. Calculating the flux of the
magnetic field through the large sphere, we verify that
for the solution (3.75) Q,,=4w/g.

5. Collective coordinates (moduli)

The monopole solution presented in the previous sec-
tion breaks a number of valid symmetries of the theory,
for instance, translational invariance. As usual, the sym-
metries are restored after the introduction of the collec-
tive coordinates (moduli), which convert a given solution
into a family of solutions.

Our first task is to count the number of moduli in the
monopole problem. A straightforward way to count this
number is counting linearly independent zero modes. To
this end, one represents the fields A, and ¢ as a sum of
the monopole background plus small deviations,
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a _ 4a(0) a a_ 4a(0 a
Al =A"+al, o= "0+ (59), (3.76)

where the superscript (0) marks the monopole solution.
At this point, it is necessary to impose a gauge-fixing
condition. A convenient condition is

éD,-a? — PP (5¢) =0, (3.77)
where the covariant derivative in the first term contains
only the background field.

Substituting the decomposition (3.76) in the Lagrang-
ian, one finds the quadratic form for {a,(5¢)}, and deter-
mines the zero modes of this form [subject to the condi-
tion (3.77)].

We will not track this procedure in detail, referring
the reader to the original literature (Mottola, 1978). In-
stead, we suggest a simple heuristic consideration.

We ask ourselves, what are the valid symmetries of
the model at hand? They are as follows: (i) three trans-
lations, (i) three spatial rotations, and (iii) three rota-
tions in the SU(2) group. Not all these symmetries are
independent. It is not difficult to check that the spatial
rotations are equivalent to the SU(2) group rotations for
the monopole solution. Thus, we should not count them
independently. This leaves us with six symmetry trans-
formations.

One should not forget, however, that two of those six
act nontrivially in the trivial vacuum. Indeed, the latter
is characterized by the condensate (3.45). While rota-
tions around the third axis in the isospace leave the con-
densate intact [see Eq. (3.46)], the rotations around the
first and second axes do not. Thus, the number of
moduli in the monopole problem is 6-2=4. These four
collective coordinates have a very transparent physical
interpretation. Three of them correspond to transla-
tions. They are introduced in the solution through the
substitution

f—) f— _)0. (378)

The vector x, now plays the role of the monopole center.
The unit vector 7 is now defined as 7= (x—x,)/|x—x|.

The fourth collective coordinate is related to the un-
broken U(1) symmetry of the model. This is the rotation
around the direction of alignment of the field ¢. In the
trivial vacuum, ¢ is aligned along the third axis. The
monopole generalization of Eq. (3.46) is

AQ L UtAOU - ivou,
¢(0) N U—1¢(0)U: ¢(0),

(3.79)

where the fields A¥ and ¢ are understood here in the
matrix form,

A0 =470 (772),

U = expliagV/v},

0 = ¢"O(712).

Unlike the vacuum field, which is not changed under Eq.
(3.46), the monopole solution for the vector field
changes its form. The change looks like a gauge trans-
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formation. Note, however, that the gauge matrix U does
not tend to unity at r— . Thus, this transformation is in
fact a global U(1) rotation. The physical meaning of the
collective coordinate « will become clear shortly. Now
we note that (i) for small @, Eq. (3.79) reduces to

1
8A{ = a— (D), S¢=0, (3.80)
U

and this is compatible with the gauge condition (3.77);
(i) the variable « is compact, since the points « and «
+27 can be identified (the transformation of A© is iden-
tically the same for @ and a+2r). In other words, « is an
angle variable.

Having identified all four moduli relevant to the prob-
lem, we can proceed to the quasiclassical quantization.
The task is to obtain quantum mechanics of the moduli.
We start from the monopole center coordinate x,. To
this end, we assume that x, depends weakly on time ¢, so
that the only time dependence of the solution enters
through x,(7). The time dependence is important only in
time derivatives, so that the quantum-mechanical La-
grangian of moduli can be obtained from the following
expression:

1 1
EQM = - MM + E(X())k(x(])] J d3x{ |:§F?1£O):|
X EF;(O)] + [Dk¢”(0)][Dj¢“(°)]} , (3.81)

where d,A and J,¢ were supplemented by appropriate
gauge transformations to satisfy the gauge condition
(3.77).

Averaging over the angular orientations of x yields

1 . 21
Lom=—My+ E(XO)Z f d3X{ ggB?(O)B;'(O)
1 a(0) a(0)
+ ng(ﬁ Dl¢

My, -
=— My + TM(xo)z. (3.82)

This last result follows if one combines Egs. (3.54) and
(3.63). Of course, this final answer could have been
guessed from the very beginning since this is merely but
the Lagrangian describing free nonrelativistic motion of
a particle of mass M,; endowed with the coordinate x,.

Now, having tested the method in the case in which
the answer was obvious, we apply it to the fourth collec-
tive coordinate «. Using Eq. (3.80), we get

1M
‘CaQM = __]V[dz,

(3.83)
2 M3,

or, equivalently,
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o WMy d
ZM a pa__lda’

(3.84)
where H,, is the part of the Hamiltonian relevant to a.
The full quantum-mechanical Hamiltonian describing
the moduli dynamics is, thus,

(3.89)

It describes free motion of a spinless particle endowed
with an internal (compact) variable «. While the spatial
part of H does not raise any questions, the « dynamics
deserves an additional discussion.

The a motion is free, but one should not forget that «
is an angle. Because of the 27 periodicity, the corre-
sponding wave functions must have the form

V(a) = ek (3.86)
where k is an integer, k=0, +1,+2,.... Strictly speaking,
only the ground state k=0 describes the monopole—a
particle with the magnetic charge 4m/g and vanishing
electric charge. Excitations with k#0 correspond to a
particle with the magnetic charge 47/g and the electric
charge kg, the dyon.

To see that this is indeed the case, we note that for
k+#0 the expectation value of p, is k and, hence, the
expectation value of da=(My,/My)p, is Mik/M,y,.
Moreover, we define a gauge-invariant electric field &;
[analogous to B; of Eq. (3.58)] as

E=—-FEi¢'= (3.87)

S | =

. 1
¢a(0)Al€}(0) _ ;dﬁﬁa(O)(Diqba(O)) .

Since for the critical monopole D;¢*”=(1/ g)B?(O), we
see that

1
&=a—1B,

3.88
MW 154 ( )

and the flux of the gauge-invariant electric field over the
large sphere is

1 Mk 1 1
- f d2S.&=—2=—— f d*S.3;,
8J s, My MygJs,

(3.89)

where we replaced « by its expectation value. Thus, the
flux of the electric field reduces to

1
= f d*S.E, = kg, (3.90)
S

§Jsg

which proves the above assertion of the electric charge
kg.

It is interesting to note that the mass of the dyon can
be written as
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1 M;
Mp =My + 57K = M3+ Mik> =0\ 07, + O
M

(3.91)

Although from our derivation it might seem that the
square root result is approximate, in fact, the prediction
for the dyon mass M p=v(Q3,+ Q%) is exact; it follows
from the BPS saturation and the central charges in the
N'=2 model (see Sec. II).

Magnetic monopoles were introduced by Dirac (1931).
He considered macroscopic electrodynamics and de-
rived a self-consistency condition for the product of the
magnetic charge of the monopole Q,, and the elemen-
tary electric charge e,

Qe =2m. (3.92)

This is known as the Dirac quantization condition. For
the 't Hooft—Polyakov monopole, we have just derived
that Qg=4, twice as large as in the Dirac quantiza-
tion condition. Note, however, that g is the electric
charge of the W bosons. It is not the minimal possible
electric charge that can be present in the theory at hand.
If quarks in the fundamental (doublet) representation of
SU(2) were introduced in the Georgi-Glashow model,
their U(1) charge would be e=g/2, and the Dirac quan-
tization condition would be satisfied for such elementary
charges.

6. The 6 term induces a fractional electric charge for the
monopole (the Witten effect)

There is a P- and T-odd term, the 6 term, which can
be added to the Lagrangian for the Yang-Mills theory
without spoiling renormalizability. It is given by

0 - =
L wy E“- B,
0= 32712 Fluf* 82

(3.93)

This interaction violates P and CP but not C. As is well
known, this term is a surface term and does not affect
the classical equations of motion. There is, however, 6
dependence in instanton effects that involve nontrivial
long-range behavior of the gauge fields. As was realized
by Witten (1979a), in the presence of magnetic mono-
poles @ also has a nontrivial effect, namely it shifts the
allowed values of electric charge in the monopole sector
of the theory.

Since the equations of motions do not change, the
monopole solution obtained above stays intact. What
changes is the effective quantum-mechanical Lagrang-
ian. As usual, we assume an adiabatic time dependence
of moduli. In the case at hand, we must replace the con-
stant phase modulus « by «(¢). This generates the elec-
tric field

°In Dirac’s original convention, the charge quantization con-
dition is, in fact, Qye=1/2.
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E* = & 8AY 60) = (D¢,
v

where Eq. (3.80) is used. The magnetic field does not
change, and can be expressed through (D;¢?)? using
Eq. (3.63). As a result, the quantum-mechanical La-
grangian for « acquires a full derivative term,
2
1, 6. My,

Loom=—d& — —a,
e T

My (3.94)

This changes the expression for the canonic momentum
conjugated to a. If previously p, was a/u, now

v 6
Doz . (3.95)
Mmoo 2T
Correspondingly,
. 0
a=,u<pa+—>. (3.96)
2m

From Sec. III.C.5, we know that the electric charge of
the field configuration under consideration is [see Eq.
(3.90)]

1
Op=—(a)| d°S,B;. (3.97)
Mg S
Substituting Eq. (3.96) and (p,)=k, we arrive at
0
Qp= <k+ —)g- (3.98)
21

We see that at ##0 the electric charge of the dyon is
noninteger. As 6 changes from zero to the physically
equivalent point #=2, the dyon charges shift by one
unit. The dyon spectrum as a whole remains intact.

D. Monopoles and fermions

The critical 't Hooft-Polyakov monopoles just dis-
cussed can be embedded in AN'=2 super-Yang-Mills.
There are no AN'=1 models with the ’t Hooft-Polyakov
monopoles [albeit N'=1 theories supporting confined
monopoles are found (Gorsky et al., 2007)]. The minimal
model with the BPS-saturated 't Hooft-Polyakov mono-
pole is the N'=2 generalization of supersymmetric gluo-
dynamics, with the gauge group SU(2). In terms of N
=1 superfields, it contains one vector superfield in the
adjoint describing gluon and gluino, plus one chiral su-
perfield in the adjoint describing a scalar A'=2 super-
partner for gluon and a Weyl spinor, an A/=2 superpart-
ner for gluino.

The couplings of fermion fields to boson fields are of a
special form; they are fixed by A'=2 supersymmetry. In
this section, we first present the Lagrangian of N'=2 su-
persymmetric gluodynamics, including the part with the
adjoint fermions, and then consider effects due to the
adjoint fermions. We conclude Sec. III.D with a com-
ment on fermions in the fundamental representation in
the monopole background.
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1. A/'=2 super-Yang-Mills (without matter)
Two N=1 superfields are used to build the model,

W,o=i(\y+i0,D — 0°F .5~ i6"D 1, \%) (3.99)

and

A=a+\2y0+ F. (3.100)

Here the notation is spinorial, and all fields are in the
adjoint representation of SU(2). The corresponding gen-
erators are

(Ta)bd:isbad' (3101)

The Lagrangian contains kinetic terms and their super-
generalizations. In components

1 1 ) _. 1
L=-31- —F"’”F;‘w+ ND (AN + —DD?
g 4 2

+ D o+ (DFE)(D ) =\ 284 (AN,

i

+aNo ) - EsabcD"dbaC}. (3.102)

As usual, the D field is auxiliary and can be eliminated
via an equation of motion,

(3.103)

There is a flat direction: if the field a is real, all D terms
vanish. If a is chosen to be purely real or purely imagi-
nary and the fermion fields ignored, we obviously return
to the Georgi-Glashow model discussed above. In the

general case, combining A* and ¢, into one Dirac spinor

)
v=|_ |,
e

(3.104)
we get
1 1 wv pa K i
L':g—z —ZF“ ;w+(D a)(D ,a) + ViDV
I~
1 2 _
+ g(sabcdbac)z - %Sabc[dawb(l + 75)‘1’”
—a"¥h(1 - ;ﬁ)wa]}, (3.105)

where the Dirac matrices are taken in the spinor repre-
sentation. For purely imaginary a=i¢/\2 (where ¢ is
real), the fermion interaction takes the form

1 -
Ly=——SVeW. (3.106)
g

2. Zero modes for adjoint fermions

Equations for the fermion zero modes can be derived
from the Lagrangian (3.102),
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D (N — \'Esabcauz_pz =0

iD it + \2e4p.a"N5 = 0, (3.107)
plus Hermitean conjugate. After a brief reflection, we
can get two complex (four real) zero modes."’ Two of
them are obtained if we substitute

N =FB g =\2D,.a. (3.108)
The other two solutions correspond to the following
substitution:

Y=FPB  N,=\2D .a. (3.109)
This result is easy to understand. Our starting theory has
eight supercharges. The classical monopole solution is
BPS saturated, implying that four of these eight super-
charges annihilate the solution (these are the
Bogomol'nyi equations), while the action of the other
four supercharges produces the fermion zero modes.

With four real fermion collective coordinates, the
monopole supermultiplet is four dimensional: it includes
two bosonic states and two fermionic. (The above count-
ing refers just to the monopole, without its antimono-
pole partner. The antimonopole supermultiplet also in-
cludes two bosonic and two fermionic states.) From the
standpoint of A/'=2 supersymmetry in four dimensions,
this is a short multiplet. Hence, the monopole states re-
main BPS saturated to all orders in perturbation theory
[in fact, the criticality of the monopole supermultiplet is
valid beyond perturbation theory (Seiberg and Witten,
1994a, 1994b)].

3. Zero modes for fermions in the fundamental representation

This topic, related to charge fractionalization, is a
marginal topic for this review and, therefore, we limit
ourselves to a brief comment. The interested reader is
referred to Harvey (1997) and Rubakov (2002) for fur-
ther details. The fermion part of the Lagrangian can be
obtained from Egs. (3.105) and (3.106) with replacement
of the adjoint Dirac fermion by the fundamental one,
which we denote by y,

1 1 1 _. -
L= ?{_ 7 Mt 7 (D#A)(D ) + XiDx ~ X¢X} :
(3.110)
The Dirac equation then takes the form
(iy*D,— $)x=0. (3.111)

Needless to say, the gamma matrices can now be chosen
in any representation. The one that is convenient here is

!This means that the monopole is described by two complex
fermion collective coordinates, or four real.
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0 h )

For the static 't Hooft—Polyakov monopole configuration
(with A(=0), the zero mode equations reduce to two
decoupled equations,

Dx = (io'D;+ ¢)x =0,

(3.112)

D'y = (id’D;- p)x* =0, i=172,3, (3.113)

provided we parametrize y(x) in terms of the following
two-component spinors:

(3.114)

Now we can use the Callias theorem, which says

dim ker D — dim ker D' =n,,, (3.115)

where n,, is the topological number, n,,=1 for the mono-
pole, and n,,=-1 for the antimonopole. This implies, in
turn, that Eq. (3.113) has one complex zero mode, i.e., in
this case we characterize the monopole by one complex
fermion collective coordinate (and its conjugate, of
course). This fact leads to a drastic consequence: the
monopole acquires a half-integer electric charge. It be-
comes a dyon with charge 1/2 even in the absence of the
0 term. This phenomenon—the charge fractionalization
in the cases with a single complex fermion collective
coordinate—is well known (Harvey, 1997; Rubakov,
2002; Shifman et al., 2006) and dates back to Jackiw and
Rebbi (1976).

IV. NON-ABELIAN STRINGS

Ever since Mandelstam (1976) and 't Hooft (1981) put
forward the hypothesis of the dual Meissner effect to
explain color confinement in non-Abelian gauge theo-
ries, many have tried to find a controllable approxima-
tion in which one could reliably demonstrate the occur-
rence of the dual Meissner effect in these theories. A
breakthrough achievement was the Seiberg-Witten solu-
tion (Seiberg and Witten, 1994a) of N'=2 supersymmet-
ric Yang-Mills theory. They found massless monopoles
and, adding a small (N=2)-breaking deformation,
proved that they condense creating strings carrying a
chromoelectric flux. It was a great success in the quali-
tative understanding of color confinement.

A more careful examination shows, however, that de-
tails of the Seiberg-Witten confinement are quite differ-
ent from those expected in QCD-like theories. Indeed, a
crucial aspect of Seiberg and Witten (1994a) is that the
SU(N) gauge symmetry is first broken, at a high scale,
down to U(1)V"!, which is then completely broken, at a
much lower scale where monopoles condense. Corre-
spondingly, the strings in the Seiberg-Witten solution
are, in fact, Abelian strings (Abrikosov, 1957; Nielsen
and Olesen, 1973) of the Abrikosov-Nielsen-Olesen
(ANO) type, which results, in turn, in confinement
whose structure does not resemble at all that of QCD. In
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particular, the hadronic spectrum is much richer than
that in QCD (Douglas and Shenker, 1995; Hanany et al.,
1998; Strassler, 1998; Yung, 2000; Vainshtein and Yung,
2001). To see this note that for the low-energy gauge
group U(1)V~!, one has N-1 Abelian strings associated
with each of N-—1 Abelian factors. Since

m[UMN 1= ZN1, 4.1)

Abelian strings and therefore the meson spectrum come
in N-1 infinite towers. This feature is not expected in
real world QCD. Moreover, there is no experimental in-
dication of dynamical Abelization in QCD.

In this section, we review a discovery of non-Abelian
strings (Auzzi et al., 2003; Hanany and Tong, 2003, 2004;
Shifman and Yung, 2004b) that appear in certain re-
gimes in A/'=2 supersymmetric gauge theories. The most
important feature of these strings is that they acquire
orientational zero modes associated with rotation of
their color flux inside the non-Abelian subgroup SU(N)
of the gauge group. This makes these strings genuinely
non-Abelian.

Actually the flux tubes in non-Abelian theories at
weak coupling were studied previously (de Vega and
Schaposnik, 1986a, 1986b; Heo and Vachaspati, 1998;
Schaposnik and Suranyi, 2000; Suranyi, 2000; Kneipp
and Brockill, 2001; Marshakov and Yung, 2002; Konishi
and Spanu, 2003). These strings are called Z, strings
because they are related to the center of gauge group
SU(N). Consider, say, SU(N) gauge theory with several
scalar fields in adjoint representation. Suppose adjoint
scalars condense breaking the gauge group down to its
center Zy. Then string solutions are classified according

to
SU(N
’771( Z(N )):ZN'

(4.2)

In these previous constructions of Z strings (de Vega
and Schaposnik, 1986a, 1986b; Heo and Vachaspati,
1998; Schaposnik and Suranyi, 2000; Suranyi, 2000;
Kneipp and Brockill, 2001; Marshakov and Yung, 2002;
Konishi and Spanu, 2003), the flux was always directed
in a fixed group direction (corresponding to a Cartan
subalgebra), and no moduli that would freely govern its
orientation in the group space were ever obtained.
Therefore, we prefer to call these Zy strings Abelian in
contrast to non-Abelian strings, which have orienta-
tional moduli.

In this section, we discuss a particular class of N'=2
supersymmetric gauge theories in which non-Abelian
strings were found. One can address the following ques-
tion: What is so special about these models that makes
an Abelian Zy string become a non-Abelian? Models
we are going to consider have both gauge and flavor
symmetries broken by the condensation of scalar fields.
The common feature of these models is that some global
diagonal combination of color and flavor groups survives
the breaking. We consider a case in which this diagonal
group is SU(N)c,p, where the subscript C+F means a
combination of global color and flavor groups. The pres-
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ence of this unbroken subgroup is responsible for the
appearance of orientational zero modes of the string,
which ensure its non-Abelian nature.

Clearly the presence of supersymmetry is not impor-
tant for the construction of non-Abelian strings. In par-
ticular, in this section we consider BPS non-Abelian
strings in A'=2 supersymmetric gauge theories while in
the next section we review non-Abelian strings in N'=1
supersymmetric and nonsupersymmetric theories.

A. Basic model: A'=2 SQCD

The model we deal with derives from N=2 SQCD
with the gauge group SU(N+1) and Ny=N flavors of the
fundamental matter hypermultiplets, which we call
quarks (Seiberg and Witten, 1994b). At a generic point
on the Coulomb branch of this theory, the gauge group
is broken down to U(1)N. We will be interested, how-
ever, in a particular subspace of the Coulomb branch, on
which the gauge group is broken down to SU(N)
X U(1). We enforce this regime by a special choice of the
quark mass terms.

The breaking SU(N+1)— SU(N) X U(1) occurs at the
scale m, which is supposed to lie very high, m
> Asuv+1), Where Agyyy) is the scale of SU(N+1)
theory. Correspondingly, the masses of the gauge bosons
from SU(N+1)/SU(N) X U(1) sector and their super-
partners are very large, proportional to m, and so are
the masses of the (N +1)th color component of the quark
fields in the fundamental representation. We are inter-
ested in phenomena at the scales <m. Therefore, our
starting point is in fact the SU(N) X U(1) model with
Ny=N matter fields in the fundamental representation of
SU(N), as it emerges after the SU(N+1)— SU(N)
X U(1) breaking. These matter fields are also coupled to
the U(1) gauge field.

The field content of SU(N) X U(1) N'=2 SQCD with N
flavors is as follows. The N'=2 vector multiplet consists
of the U(1) gauge fields A, and SU(N) gauge field AZ
(here a=1,...,N*~1), their Weyl fermion superpartners
(A\L.\?) and (A\!*,\?%), and complex scalar fields a and a“,
the latter in the adjoint of SU(N). The spinorial index of
N’s runs over w=1,2. In this sector, the global SU((2)g
symmetry inherent to the A'=2 model manifests itself
through rotations N« \2.

The quark multiplets of SU(N) X U(1) theory consist
of the complex scalar fields ¢4 and G, (squarks) and

the Weyl fermions y*4 and i, all in the fundamental
representation of the SU(N) gauge group. Here k
=1,...,N is the color index while A is the flavor index,
A=1,...,N. Note that the scalars g&* and G4 form a
doublet under the action of the global SU(2), group.
The original SU(N+1) theory was perturbed by add-
ing a small mass term for the adjoint matter, via the
superpotential W= u Tr ®2. Generally speaking, this su-
perpotential breaks A’'=2 down to N'=1. The Coulomb
branch shrinks to a number of isolated AV'=1 vacua
(Seiberg and Witten, 1994a, 1994b; Douglas and Shen-



M. Shifman and A. Yung: Supersymmetric solitons 1161

ker, 1995; Argyres et al., 1996; Carlino et al., 2000). In the
limit of ©— 0, these vacua correspond to special singular
points on the Coulomb branch in which N monopoles
and/or dyons or quarks become massless. The first (N
+1) of these points (often referred to as the Seiberg-
Witten vacua) are always at strong coupling. They cor-
respond to A'=1 vacua of pure SU(N+1) gauge theory.

The massless quark points—they present vacua of a
distinct type, to be referred to as quark vacua—may or
may not be at weak coupling, depending on the values of
the quark mass parameters m,. If m > Agyn.1), the
quark vacua do lie at weak coupling. Below we are in-
terested only in the quark vacua assuming that the con-
dition m 4> Agy3) is met.

In the low-energy SU(N) X U(1) theory, which is our
starting point, the perturbation W= uTr ®* can be trun-
cated, leading to a crucial simplification. Indeed, since
the A chiral superfield, the N'=2 superpartner of the
U(1) gauge field,"

A=a+\2\20+F, &, (4.3)
is not charged under the gauge group SU(N) X U(1), one
can introduce the superpotential linear in A,

(4.4)

Here we expand Tr ®? around its vacuum expectation
value (VEV) (see below) and truncate the series keeping
only the linear term in A. The truncated superpotential
is a Fayet-Iliopoulos (FI) F term.

Now, we explain this in more detail. In N=1 super-
symmetric theory with a gauge group SU(N) X U(1), one
can add the FI term to the action (Fayet and Iliopoulos,
1974) (we call it the FI D term here)

§3D,

where D is the D component of the U(1) gauge field. In
N=2 SUSY theory, field D belongs to the SU(2)y triplet
together with F components of the chiral field A, F, and

(4.5)

F. Namely, we introduce the triplet F, (p=1,2,3) using
the relations'

D:FS,

1
F=—=(F +iF,),
2

-1
F=—74=(F -iF,). (4.6)
V2

Now the generalized FI term can be written as

""The superscript 2 in Eq. (4.3) is the global SU(2) index of
\ rather than \ squared.
°The index p is a SU(2)g index rather than the color index.
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N
SFI =— E f d4X§pr. (47)
Comparing this with Eq. (4.4), we identify
§=(&-1&),
E= (& +i&). (4.8)

This is the reason we call superpotential (4.4) the FI F
term.

A remarkable feature of the FI term is that it does not
break N'=2 supersymmetry (Hanany et al., 1998; Vainsh-
tein and Yung, 2001). Keeping higher-order terms of the
expansion of u Tr ®? in powers of A would inevitably
explicitly break N'=2. For our purposes, it is crucial that
our model is exactly N'=2 supersymmetric. This ensures
that flux tube solutions of the model are BPS saturated.
If higher-order terms in A are taken into account, A/
=2 supersymmetry is broken down to N'=1 and strings
are no longer BPS. The superconductivity in the model
becomes of the type I (Vainshtein and Yung, 2001).

1. SUN) X U(1) N'=2 QCD

The bosonic part of our SU(N) X U(1) theory has the
form"® (Auzzi er al., 2003)

1 1 1
| dl — 2 — 24— 2
S—Jd x|:4g%( P-V) + 4g%(F,u.v) + g%|D,uaa|

1 = 8
+ g—zlﬂ,ﬂl2 + VP + 1V, + VighGasata) |-
1
(4.9)

Here D, is the covariant derivative in the adjoint repre-
sentation of SU(N), while

V:

i
w= Gy S A= iALT, (4.10)

where we suppress the color SU(N) indices, and 7" are
the SU(N) generators normalized as Tr(T"Tb)z%a“b.
The coupling constants g; and g, correspond to the U(1)
and SU(2) sectors, respectively. With our conventions,
the U(1) charges of the fundamental matter fields are
+1/2.

The potential V(g*,§4,a,a) in the action (4.9) is a
sum of D and F terms,

BHere and in the remainder of this review we use formally
Euclidean notations. This is appropriate since we study static
(time-independent) field configurations, and Ay=0. Then the
Euclidean action is merely the energy functional.
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V(ququaa’a) =

2/ - 2

82( 1 be- _ SO

f(;f"’ a"a‘+GaT'q" - qﬂ“éf‘)
2

2
81, - . =
+ gl(quA ~Gag" - N&)

2

2
. 8 N
+28%GaT g P + 51 Gaq” - €
N
+ = E{|(a+ \ZmA+2T“a”)q |2
A 1

+|(a+\2my + 2T, (4.11)

where the sum over repeated flavor indices A is implied
and f**¢ are structure constants of the SU(N) group. The
first and second lines represent D terms, the third line
the F 4 terms, while the fourth and fifth lines represent
the squark F terms. Using SU(2)y rotations, we can al-
ways direct FI parameter vector §, in a given direction.
Below we consider the case of the FI F term with real &,
in other words, we use SU(2)g rotations to get

5320’ §2=0, fzfl- (4-12)

2. Vacuum structure and excitation spectrum

Now we briefly outline the vacuum structure and the
excitation mass spectrum of our basic SU(N)XU(1)
model. The underlying A'=2 SU(N+1) QCD has a vari-
ety of vacua (Argyres et al., 1996; Carlino et al., 2000;
Marshakov and Yung, 2000). Besides N strong-coupling
vacua that exist in pure gauge theory, there are a num-
ber of so-called r quark vacua, where r is the number of
quark flavors that develop VEV’s in a given vacuum.
Here we focus on a particular isolated vacuum with a
maximal possible value of r, r=N." The theory (4.9) is
merely the low-energy truncation of the full SUN+1)
QCD, which describes physics around this vacuum.

The vacua of the theory (4.9) are determined by the
zeros of the potential (4.11). The adjoint fields develop
the following VEV’s:

1 my - 0
(P)=——+| -~ ) (4.13)
V2
0 oMy
where we defined the scalar adjoint matrix as
b= %a + Ta“. (4.14)

For generic values of quark masses, the SU(N) subgroup
of the gauge group is broken down to U(1)V~!. However,
for a special choice

YThere are singular points on the Coulomb branch of the
underlying SU(N+1) theory where more than N quark flavors
become massless. These singularities are roots of Higgs
branches (Argyres et al., 1996; Carlino et al., 2000; Marshakov
and Yung, 2000).
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my=my= - =my, (4.15)

in which we are mostly interested in this section, the
SU(N) X U(1) gauge group remains classically unbroken.
In fact, the common value m of quark masses deter-
mines the scale of breaking of SU(N+1) gauge symme-
try of the underlying theory down to SU(N)XU(1)
gauge symmetry of our low-energy theory (4.9).

If the value of the FI parameter is taken real, we can
exploit gauge rotations to make the quark VEV’s real
too. Then in this case they take the color-flavor locked
form

kAN _ (kA _ §
@)= >-\[2 ,

k=1,....N A=1,....N, (4.16)

where we write the quark fields as an N X N matrix in
color and flavor indices. This particular form of the
squark condensates is dictated by the third line in Eq.
(4.11). Note that the squark fields stabilize at nonvanish-
ing values entirely due to the U(1) factor—the second
term in the third line.

The vacuum field (4.16) results in the spontaneous
breaking of both gauge and flavor SU(N)’s. A diagonal
global SU(N) survives, however, namely,

U(N)gauge X SU(N)flavor - SU(N)C+F- (417)

Thus, color-flavor locking takes place in the vacuum. A
version of this scheme of symmetry breaking has already
been suggested (Bardakci and Halpern, 1972).

We move on to the issue of the excitation spectrum in
this vacuum (Vainshtein and Yung, 2001; Auzzi et al.,
2003). The mass matrix for the gauge fields (AZ,A ) can
be read off from the quark kinetic terms in Eq. (4.9). It
shows that all SU(N) gauge bosons become massive,
with one and the same mass

Mgy =82V E. (4.18)

The equality of the masses is no accident. It is a conse-
quence of the unbroken SU(N)c,r symmetry (4.17).
The mass of the U(1) gauge boson is

MU(l)—gl\/ 5

The mass spectrum of the adjoint scalar excitations is
the same as for the gauge bosons. This is enforced by
N=2.

What is the mass spectrum of the quark excitations? It
can be read off the potential (4.11). From 4N? real de-
grees of freedom of quark scalars g and §, N? are eaten
up by the Higgs mechanism making gauge bosons mas-
sive. The remaining 3N? states split in three and 3(N?
—1) states with masses (4.19) and (4.18), respectively.
Combining these states with massive gauge boson states
and adjoint scalar states, we get one long N'=2 BPS mul-
tiplet (eight real bosonic plus eight fermionic degrees of

(4.19)
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freedom) with mass (4.19) and N°-1 long N=2 BPS
multiplets with mass (4.18) (Vainshtein and Yung, 2001;
Auzzi et al., 2003). Note that these supermultiplets come
in representations of the unbroken SU(N)c,r group,
namely, scalar and adjoint ones.

To conclude this section, we discuss quantum effects
in the theory (4.9). At high scale m, the SU(N+1) gauge
group is broken down to SU(N) X U(1) by condensation
of adjoint fields provided the condition (4.15) is met. The
SU(N) sector is asymptotically free, and if uninterrupted
it would run into strong coupling. This would invalidate
our quasiclassical analysis. Moreover, strong-coupling
effects on the Coulomb branch would break the SU(N)
gauge subgroup [and the SU(N)c,r group] down to
U(1)N-! by the Seiberg-Witten mechanism (Seiberg and
Witten, 1994a, 1994b) and no non-Abelian strings would
emerge.

One way out has been proposed by Argyres et al.
(1996) and Carlino et al. (2000). One can add more fla-
vors to the theory making N>2N. Then the SU(N) sec-
tor is not asymptotically free and does not run into
strong coupling. However, ANO strings in a theory with
many flavors (on the Higgs branches) become semilocal
strings (Achucarro and Vachaspati, 2000) (see also Sec.
IV.G) and confinement is lost. We consider a different
route here taking the FI parameter ¢ large,

&> Asumy-

This condition ensures weak coupling in the SU(N) sec-
tor because SU(N) gauge coupling does not run below
the scale of quark VEV’s, which is determined by &. Ex-
plicitly,

(4.20)

[¢
57 =Nt

> 1. (4.21)
& Asum)

Alternatively, one has

s ) (4.22)

AN — §N/2 ex (_
e g

B. Zy Abelian strings

Strictly speaking, A'=2 QCD with the SU(N+1) gauge
group does not have stable flux tubes. They are unstable
due to monopole-antimonopole pair creation in the
SU(N+1)/SU(N) X U(1) sector. However, at large m
these monopoles become heavy. In fact, there are no
monopoles in the low-energy theory (4.9) (they can be
considered as infinitely heavy); therefore, the theory
(4.9) has stable string solutions. Moreover, when the per-
turbation u Tr ®? is truncated to the FI term (4.4), the
theory enjoys N'=2 supersymmetry and has BPS string
solutions (Fuertes and Guilarte, 1998; Hanany et al.,
1998; Edelstein et al., 2000; Vainshtein and Yung, 2001;
Marshakov and Yung, 2002; Auzzi et al., 2003). Note that
here we discuss magnetic flux tubes. They are formed in
the Higgs phase of the theory upon condensation of
quarks and lead to the confinement of monopoles.
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Now, we briefly review BPS string solutions in the
model (4.9). (Marshakov and Yung, 2002; Auzzi et al.,
2003; Hanany and Tong 2003). Here we consider the
case of equal quark masses (4.15) when the global
SU(N)c,r group is unbroken. First we review Abelian
solutions for Zy strings, and in the next subsection we
show that in this limit they acquire orientational moduli.
In fact, the Z5 Abelian strings considered are partial
solutions of vortex equations [see Eq. (4.32)], which are
exchanged by the action of the discrete Zy subgroup. In
the equal quark masses limit (4.15), the global SU(N)c, ¢
group is restored and a general solution for an elemen-
tary non-Abelian string has a continuous moduli space
isomorphic to CP(N-1), with Z, strings having N dis-
crete points on it.

In the case of generic unequal quark masses, the
SU(N)c.r group is broken and the continuous moduli
space of string solutions is lifted. Only Z, Abelian
strings survive this breaking. The case of generic quark
masses is considered in Sec. IV.D 4.

It turns out that string solutions do not involve adjoint
fields a and a“ strings are built from gauge and quark
fields only. Therefore, in order to find the classical solu-
tion, we can put adlioint fields equal to their VEV’s (4.13)
in the action (4.9)."° Moreover, we use the ansatz

- 1
qkA _ qkA _ J_qukA (423)
A}

reducing the number of squark degrees of freedom to
one complex field for each color and flavor. With these
simplifications, the action of model (4.9) reads

1 1
o Ry, 2 A2
S_de{‘*g%( )+ g )+ [V

g g
+ 3 @aT e+ e P - NEP (4.24)
while the VEV’s of quark fields (4.16) become
(@) = Ve diag{l1,1, ... ,1}. (4.25)

Since it includes a spontaneously broken gauge U(1),
the model supports conventional ANO strings (Abriko-
sov, 1957; Nielsen and Olesen, 1973) in which one can
discard the SU(N)gyy,e part of the action. The topologi-
cal stability of the ANO string is due to the fact that
m[U(1)]=Z. These are not the strings in which we are
interested. At first glance, the triviality of the homotopy
group, m[SU(N)]=0, implies that there are no other to-
pologically stable strings. This impression is false. One
can combine the Zy center of SU(N) with the elements
exp(2mik/N) e U(1) to get a topologically stable string
solution possessing both windings, in SU(N) and U(1).
In other words,

5This is consistent with equations of motion. Of course this
procedure is not correct on the quantum level.
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m[SUN) X U(1)/Zy] # 0. (4.26)

It is easy to see that this nontrivial topology amounts to
winding one element of ¢, say ¢!! or ¢*, for instance,'

Garing = VEdiag(1.1, ... W), x— oo, (4.27)

Such strings can be called elementary; their tension is
(1/N)th that of the ANO string. The ANO string can be
viewed as a bound state of N elementary strings.

More concretely, the Zy string solution (a progenitor
of the non-Abelian string) can be written as follows
(Auzzi et al., 2003):

dp(r) 0 - 0
©= s
0 - () 0
0 0 ey (r)
ASUWN) _
i Nl O - 1 0
0 0 -(N-1)

X ()~ 1+ fya(r)],

AVO é ;= %(&ia)[l -],

AJV =AYV =0, (4.28)
where i=1,2 labels coordinates in the plane orthogonal
to the string axis, » and « are the polar coordinates in
this plane, and 7 is the unit NX N matrix. The profile
functions ¢;(r) and ¢,(r) determine the profiles of the
scalar fields, while fy4(r) and f(r) determine the SU(N)
and U(1l) fields of the string solutions, respectively.
These functions satisfy the following boundary condi-
tions:

#1(0)=0,

Ina(0)=1,/(0)=1 (4.29)
at r=0, and

B2 =\E  hol0) = VE,

fna(®) =0, fl) =0 (4.30)

at r=oo,

Now we derive first-order equations that determine
the profile functions making use of the Bogomol'nyi rep-
resentation (Bogomol’'nyi, 1976) for model (4.24). We
have

16As explained, « is the angle of the coordinate x, in the
perpendicular plane.
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2 L w0 82, A 2
T=|dx)| 5"+ Z(@aT"¢")
V28, V2

L« 8 ap ?
+| =+ = - N
\Egl 3 2\5(|‘P | 13

N .
+ Vi + iV, + EgFg}, (4.31)

where Fy=3F), and F;*=1F, and we assume that fields
depend only on coordinates x;, i=1,2.

The Bogomol'nyi representation (4.31) leads to the
following first-order equations:

g1
Fi+ E(|<PA|2—N§) =0,

Fy'+ g3(e4T¢™") = 0,

(V1 +iV,)e? =0. (4.32)

Once these equations are satisfied, the energy of the
BPS object is given by the last surface term in Eq. (4.31).
Note that representation (4.31) can also be written with
a different sign in front of terms proportional to gauge
fluxes. This would give first-order equations for the an-
tistring with negative values of gauge fluxes.

For the elementary string, we substitute ansatz (4.28)
into Eqgs. (4.32) to get first-order equations for profile
functions of Zy string. We have (Marshakov and Yung,
2002; Auzzi et al., 2003)

d 1
r;dh(r) - N[f(r) + (N =Dfya(r)]ehi(r) =0,

d 1

r;éf’z(”) - X,[f(”) —fva(M1a(r) =0,
1d N

— =) + BN - 1) o) + 1 (1) - NE =0,
rdr 4

1d 2
— =L () + B2 (1= 0. (4.33)
rdr 2

These equations are a generalization of Bogomol'nyi
equations for ANO string (Bogomol’nyi, 1976) see also
Eq. (3.37) to the case of the Z string. They were solved
numerically for the U(2) case (N=2) in Auzzi et al
(2003). Clearly, the solutions to the first-order equations
automatically satisfy the second-order equations of mo-
tion.
The tension of this elementary string is

T, = 27é. (4.34)

Since our string is a BPS object, this result is exact and
has neither perturbative nor nonperturbative correc-
tions. Note that the tension of the ANO string is N times
larger,
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T'ano =27NE,

in our normalization.

We have many string solutions of type (4.28). They
can be obtained by changing the position of the quark
field, which winds at infinity in Eq. (4.28). Altogether we
have N elementary Zy strings.

Of course first-order equations (4.33) can also be ob-
tained using supersymmetry. We start from the super-
symmetry transformations for the fermion fields in the
theory (4.9),

N=3(0,6,6)F,,, + €D (7" + -,

(4.35)

NI = 3(0,6,€)F, + €PDM() + -
5{7/];14 = i\”EV/daq]]c(A Eaf‘i‘ Tty

5{2fdAk = i\’EY}/daC?fAkfaf-i- tee (436)

Here f=1,2 is the SU(2)y index so N and A9 are fer-
mions from the A'=2 vector supermultiplets of the U(1)
and SU(2) factors, respectively, while ¢4/ denotes the
SU(2)x doublet of squark fields g4 and §4¥ in the quark
hypermultiplets. The parameters of supersymmetry
(SUSY), transformations in the microscopic theory are
denoted as €Y. Furthermore, the D terms in Eq. (4.36)
are

2
D'+ iD2=i%(Tr|qo|2—N§), D=0 (4.37)

for the U(1) field, and
D™ +iD? = igiTr(¢T%), D"=0 (4.38)

for the SU(N) field. The ellipses in Egs. (4.36) represent
terms involving the adjoint scalar fields that vanish on
the string solution (for equal quark masses) because the
adjoint fields are given by their vacuum expectation val-
ues (4.13).

Vainshtein and Yung (2001) have shown that the four
supercharges selected by the conditions

e2=—¢l, =& (4.39)

act trivially on the BPS string. Namely, imposing condi-
tions (4.39) and requiring that the left-hand sides of Eqs.
(4.36) are zero, we get first-order equations (4.33) upon
substitution of ansatz (4.28)."

C. Elementary non-Abelian strings

The elementary Z strings in the model (4.9) give rise
to bona fide non-Abelian provided the condition (4.15) is
satisfied (Auzzi et al., 2003; Hanany and Tong, 2003; Ha-

71t instead of Eq. (4.39) we impose different combinations of
SUSY transformation parameters to vanish [change signs in
Eq. (4.39)], we get the equations for antistring with opposite
directions of gauge fluxes.

Rev. Mod. Phys., Vol. 79, No. 4, October—December 2007

nany and Tong, 2004; Shifman and Yung, 2004a). This
means that, besides trivial translational moduli, they
have moduli corresponding to spontaneous breaking of
a non-Abelian symmetry. Indeed, while the flat vacuum
(4.16) is SU(N) ¢, r symmetric, the solution (4.28) breaks
this symmetry down'® to U1)XSU(N-1) (at N>2).
This ensures the presence of 2(N-1) orientational
moduli.

To obtain the non-Abelian string solution from the Zy
string (4.28), we apply the diagonal color-flavor rotation
preserving the vacuum (4.16). To this end, it is conve-
nient to pass to the singular gauge where the scalar fields
have no winding at infinity, while the string flux comes
from the vicinity of the origin. In this gauge, we have

¢(r) 0 -0 0
N B
0 ¢o(r) 0
0 0 - A
1 0 0
AN = —U U
’ Nlo -1 0
0 0 ~(N-1)

X (d;0)fna(r),
A% —_ LG
1 N 1 9

AV Z A4S _ . (4.40)

where U is a matrix eSU(N)c,p. This matrix param-
etrizes orientational zero modes of the string associated
with flux rotation in SU(N). The presence of these
modes makes the string genuinely non-Abelian. Since
the diagonal color-flavor symmetry is not broken by the
VEV’s of the scalar fields in the bulk (color-flavor lock-
ing), it is physical and has nothing to do with the gauge
rotations eaten by the Higgs mechanism. The orienta-
tional moduli encoded in the matrix U are not gauge
artifacts.

The orientational zero modes of a non-Abelian string
were first observed by Auzzi et al. (2003) and Hanany
and Tong (2003). Hanany and Tong (2003) provided a
general index theorem that shows that the dimension of
elementary string moduli space is 2N=2(N-1)+2,
where 2 stands for translational moduli while 2(N-1) is
the dimension of the internal moduli space.19 In Auzzi et
al. (2003), an explicit solution for non-Abelian string,
which we reviewed here, was worked out.

In fact, nontranslational zero modes of strings were
discussed earlier in a U(1) X U(1) model (Witten, 1985;

BAt N=2, the string solution breaks SU(2) down to U(1).

The index theorem by Hanany and Tong (2003) deals with
more general multiple strings. It was shown that the dimension
of the moduli space of k-string is 2kN.
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Hindmarsh, 1989), and later, in more contrived models,
by Alford er al. (1991). It is worth emphasizing that,
along with some apparent similarities, there are drastic
distinctions between the non-Abelian strings reviewed
here and the strings discussed in the 1980s. In particular,
in the example treated by Alford et al. (1991), the gauge
group is not completely broken in the vacuum, and,
therefore, there are massless gauge fields in the bulk. If
the unbroken generator acts nontrivially on the string
flux (which is proportional to a broken generator), then
it can and does create zero modes. Some divergence
problems ensue.

In the case considered here, the gauge group is com-
pletely broken (up to a discrete subgroup Zy). The
theory in the bulk is fully Higgsed. The unbroken group
SU(N)c.p, a combination of the gauge and flavor
groups, is global. There are no massless fields in the
bulk. It is possible to model the example considered by
Alford et al. (1991) if we gauge the unbroken global sym-
metry SU(N)c,r of model (4.9) with respect to yet an-
other gauge field B,,.

We also note that the generalization of the solutions
for non-Abelian strings for six-dimensional gauge theory
with eight supercharges has been done by Eto et al.
(2004) while non-Abelian strings in strongly coupled
vacua have been considered by Bolognesi (2005).

D. Worldsheet effective theory

The non-Abelian string solution (4.40) is characterized
by two translational moduli [the position of the string in
(1,2) plane] and 2(N-1) orientational moduli. Below we
review the effective two-dimensional low-energy theory
on the string worldsheet. As usual, the translational
moduli decouple and we focus on the internal dynamics
of the orientational moduli. Our string is a 1/2-BPS
state in A/=2 supersymmetric gauge theory with eight
supercharges. Thus it has four supercharges acting in the
worldsheet theory. This means that we have extended
N=2 supersymmetric effective theory on the string
worldsheet. This theory turns out to be a two-
dimensional CP(N-1) model (Auzzi et al., 2003; Hanany
and Tong, 2003, 2004; Shifman and Yung, 2004a). In this
section, we first present a derivation of this theory and
then discuss underlying physics.

1. Derivation of the CP(N-1) model

Now following Auzzi et al. (2003), Shifman and Yung
(2004a), and Gorsky et al. (2005), we derive the effective
low-energy theory for the moduli residing in the matrix
U. As is clear from the string solution (4.40), not each
element of the matrix U will give rise to a modulus. The
SU(N-1)XU(1) subgroup remains unbroken by the
string solution under consideration; therefore, the
moduli space is
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SU(N)
SUN-1) x U(1)

~CP(N-1). (4.41)

Keeping this in mind, we parametrize the matrices en-
tering Eq. (4.40) as follows:

1 -0 0 !
1 cee eee e e 1
1 o I N B
Mo 1 o U
0 0 -(N=-1) »
(4.42)
where n' is a complex vector in the fundamental repre-

sentation of SU(N) and

nn'=1 (4.43)

(l,p=1,...,N are color indices). As we show below, one
U(1) phase will be gauged in the effective sigma model.
This gives the correct number of degrees of freedom,
namely 2(N-1).

With this parametrization, the string solution (4.40)
can be rewritten as

1 .1
p= N[(N— Dy + 1]+ (¢ - 4’2)(” n - N),

® 1 X;
AISU(M = (” no- N)sijr_zlfNA(r)a

1 X;
AZU(I) = _Sijpf(r),

N (4.44)

where for brevity we suppress all SU(N) indices. The
notation is self-evident.

Assume that the orientational moduli are slowly vary-
ing functions of the string worldsheet coordinates x,
k=0,3. Then the moduli n' become fields of a
(1+1)-dimensional sigma model on the worldsheet.
Since n! parametrize the string zero modes, there is no
potential term in this sigma model.

To obtain the kinetic term, we substitute our solution
(4.44), which depends on the moduli #/, in the action
(4.24), assuming that the fields acquire a dependence on
the coordinates x; via n/(x;). In doing so, we observe
that we have to modify the solution, including in it the
k=0,3 components of the gauge potential that are no
longer vanishing. In the CP(1) case, as was shown by
Shifman and Yung (2004a), the potential A; must be or-
thogonal [in the SU(N) space] to the matrix (4.42) as
well as to its derivatives with respect to x;. Generaliza-
tion of these conditions to the CP(N-1) case leads to
the following ansatz:

ASYN = ilgn -0 —n- g’ =20 n"(n"an)]

Xp(r)’ a:053’

where we assume the contraction of the color indices
inside the parentheses,

(4.45)
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(n"opn) = n;opn’,

and introduce a new profile function p(r).

The function p(r) in Eq. (4.45) is determined through
a minimization procedure (Auzzi et al, 2003; Shifman
and Yung, 2004a; Gorsky et al., 2005), which generates
p’s own equation of motion. Now we review its deriva-
tion. But first we note that p(r) vanishes at infinity,

p() = 0. (4.46)

The boundary condition at r=0 will be determined
shortly.

The kinetic term for n' comes from the gauge and
quark kinetic terms in Eq. (4.24). Using Eqs. (4.44) and
(4.45) to calculate the SU(N) gauge field strength, we
find

* # X
Fi.U(N) =(n-n +n-dn )Sij;ZLfNA[l - p(r)]

1

+iln-n"—n-on’

x; dp(r)

rodr

In order to have a finite contribution from the term

Tr Fy, in the action, we have to impose the constraint
p(0)=1. (4.48)

Substituting the field strength (4.47) into the action
(4.24) and including, in addition, the kinetic term of the
quarks, after tedious algebra we arrive at

—2n-n"(n"gn)] (4.47)

s+ =2p f dtdz{(an" dn) + (n"gn)?}, (4.49)
where the coupling constant 8 is given by
2
B="71, (4.50)
&2

and / is a basic normalizing integral,

” d 21
I= f rdr{(ap(r)) + ahal-p)?

0

2
+g§{%<¢% + ) + (1= )b - ¢1)2”. (4.51)

The theory in Eq. (4.49) is in fact the two-dimensional
CP(N-1) model. To see that this is indeed the case, we
can eliminate the second term in Eq. (4.49) by virtue of
introduction of a nonpropagating U(1) gauge field. We
review this in Sec. IV.D.3, and then discuss the underly-
ing physics of the model. Thus, we obtain the CP(N
—1) model as an effective low-energy theory on the
worldsheet of the non-Abelian string. Its coupling 8 is
related to the four-dimensional coupling g% via the basic
normalizing integral (4.51). This integral can be viewed
as an action for the profile function p.

Varying Eq. (4.51) with respect to p, one obtains the
second-order equation that the function p must satisfy,
namely,
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> 1d 1 &S o o
P L rzf%\'A(l -p)+ 5 (1 + d)p

gz
- (b= $)*=0. (4.52)

After some algebra and extensive use of the first-order
equations (4.33), one can show that the solution of Eq.
(4.52) is given by

[
&

This solution satisfies the boundary conditions (4.46) and
(4.48).

Substituting this solution back into the expression for
the normalizing integral (4.51), one can check that this
integral reduces to a total derivative and is given by the
flux of the string determined by fy4(0)=1. Therefore, we
arrive at

p=1- (4.53)

I=1. (4.54)

This result can be traced back to the fact that our
theory (4.24) is N'=2 supersymmetric theory, and the
string is BPS saturated. We will see in Sec. IV.E that this
fact is very important for the interpretation of confined
monopoles as sigma model kinks. Generally speaking,
for non-BPS strings I could be a certain function of N
[see Markov et al. (2005) for a particular example].

From Eq. (4.51), we get

B==. (4.55)

The two-dimensional coupling is determined by four-
dimensional non-Abelian coupling. This relation is ob-
tained at the classical level. In quantum theory, both
couplings run. So we have to specify a scale at which the
relation (4.55) takes place. The two-dimensional CP(N
—1) model (4.49) is an effective low-energy theory good
for the description of internal string dynamics at small
energies, much less than the inverse thickness of the
string, which is given by masses of the gauge/quark mul-
tiplets (4.18) and (4.19) in our bulk SU(N) X U(1) theory.
Thus, gV¢ plays the role of a physical ultraviolet (uv)
cutoff in Eq. (4.49). This is the scale at which Eq. (4.55)
holds. Below this scale, the coupling 8 runs according to
its two-dimensional renormalization-group flow; see Sec.
IV.D3.

Thus the model (4.49) describes the low-energy limit.
In principle, the zero-mode interaction has higher de-
rivative corrections that run in powers of

(8280 (4.56)
where gV¢é gives the order of magnitude of masses in
the bulk theory. The sigma model (4.49) is adequate at
scales below g,V¢, where higher-derivative corrections
are negligibly small.
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To conclude this subsection, we present the model
(4.49) for N=2. In this case, the CP! model is equivalent
to the O(3) sigma model and the action (4.49) can be
rewritten as

S<1+1>:§ f dtdz(9,8%)?, (4.57)
where S¢ is a real unit vector on a sphere S5, (§9)2=1,
a=1,2,3, defined as

S'=—n"n. (4.58)

The model (4.57) as an effective theory on the world-
sheet of the non-Abelian string in SU(2) X U(1) N'=2
QCD was first derived by Auzzi ef al. (2003) in the field
theory framework. This derivation was generalized for
arbitrary N in Gorsky et al. (2005), while the brane con-
struction of Eq. (4.49) was presented by Hanany and
Tong (2003).

2. Fermion zero modes

In the last subsection, we derived the bosonic part of
the effective N'=2 supersymmetric CP(N-1) model.
Now we find fermion zero modes of a non-Abelian
string and show that the internal worldsheet dynamics is
given by N'=2 supersymmetric CP(N—1) model as ex-
pected. This program was fulfilled for the N=2 case in
Shifman and Yung (2004a). Here we review this con-
struction.

The string solution (4.44) for SU(2) X U(1) theory re-
duces to

_ () 0 ) .
“"U( 0 ¢mn/Y

x.
A?(x) == Sasij;éfNA(r),

xA
Aj(x) = Sij;éf(”), (4.59)
while the parametrization (4.42) reduces to
S =U7U", a=1,2,3, (4.60)

with the help of Eq. (4.58).

Our string solution is 1/2 BPS saturated. This means
that four supercharges, out of eight of the four-
dimensional theory (Sec. IV.A), act trivially on the string
solution (4.59). The remaining four supercharges gener-
ate four fermion zero modes, which we call supertrans-
lational modes because they are superpartners to two
translational zero modes. The corresponding four fermi-
onic moduli are superpartners to the coordinates x, and
yo of the string center. The supertranslational fermion
zero modes were found by Vainshtein and Yung (2001)
for the U(1) ANO string in N'=2 theory, but the transi-
tion to the model considered here is absolutely straight-
forward.

We focus on four additional fermion zero modes that
arise only for the non-Abelian string. They are super-
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partners of the bosonic orientational moduli §¢; there-
fore, we refer to these modes as superorientational. Now
we work out these four zero modes explicitly and study
the impact of their presence in the CP(1) model on the
string worldsheet.

The fermionic part of the action of the model (4.9) for
the case N=2 reads

Sterm = f d'] SNADAY + SN + T iV ]
& 81
|
+ T iV ] + Tzs””%“(x}wf)
AY
1 . j 5
+ —=e P (NNl + “=Tr[G N + (I g’
\2 \2
- - i X
+(UNDg + F ()] + —ETr[q‘fT”(vf )
\!

+ (DT + (N Pq + P (Nf)]
+ %Tr[:}(a + a7 ] + irTr[z_p(a + a7 aZ]}
\2 \2
(4.61)

where matrix color-flavor notations are used for matter

fermions ()% and (¢#) ., and traces are performed
over color-flavor indices. Contraction of spinor indices is
assumed inside parentheses, say (Ai) =\ .

As mentioned in Sec. IV.B, the four supercharges se-
lected by the conditions (4.39) act trivially on the BPS
string in the theory with the FI F term. To generate the
superorientational fermion zero modes, the following
method was used by Shifman and Yung (2004a). Assume
that the orientational moduli $¢ in the string solution
(4.59) have a slow dependence on the worldsheet coor-
dinates x and x5 (or ¢ and z). Then the four (real) super-
charges selected by the conditions (4.39) no longer act
trivially. Instead, their action now gives fermion fields
proportional to x, and x5 derivatives of $?. This is ex-
actly what one expects from the residual N'=2 supersym-
metry in the worldsheet theory. The above four super-
charges generate the worldsheet supersymmetry in the
N'=2 two-dimensional CP' model.

5X¢{ = l.\/z[(ao + l.(?3)l’la82 + Sabcnb(&o + iﬂ3)nc7]2],

S = iN2[(dy — idy)ne, + £PnP(9y — idyn‘m], (4.62)

where x4 (a=1,2 is the spinor index) are real two-
dimensional fermions of the CP(1) model. They are su-
perpartners of §¢ and subject to the orthogonality con-
dition S$“x%=0. Real parameters of the AN=2 two-
dimensional SUSY transformation ¢, and 7, are
identified with parameters of the four-dimensional
SUSY transformations [with the constraint Eq. (4.39)] as
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1 =
81—i771=T§(€21+622)=V'2622,
N

1 =
e tiny= _5(6” —€?) =26, (4.63)
\!

The worldsheet supersymmetry was used to re-express
the fermion fields obtained upon the action of these four
supercharges in terms of the (1+1)-dimensional fermi-

ons. This procedure give us the superorientational fer-
mion zero modes (Shifman and Yung, 2004a),

,Ta
Yars = ( ) k2¢2(¢1 BN + i nb x5,

~kA ™ ka 2 a __ :_abc, b c
i =7 _(¢1 HX| — i nxi],

2) 24,
- kA
lvbAki = O’ % ’

i X1+ ix2 ¢1

A= S g D - e,
lx1 le
A= > fNA_[XzJFlSabC sz]
r b

)\012 )\all )\021 )\(122 (464)
where the dependence on x; is encoded in the profile
functions of the string, see Eq. (4.59).

Now we check directly that zero modes (4.64) satisfy
Dirac equations of motion. From the fermion action of
the model (4.61) we get relevant Dirac equations for \?,

i i - o=
DN+ —=Tr(prq’ + G 9) = 0 (4.65)
82 V2

and for matter fermions,
v i ~\\ a a 7
iVij+ V—E[qfxf — (PG + (a - a“#)§] =0,
iV + ia[quf NP + (a+a"P) =0, (4.66)

V

Next we substitute orientational fermion zero modes
(4.64) into these equations. After some algebra, one can
check that Egs. (4.64) do satisfy Dirac equations (4.65)
and (4.66) provided first-order equations for string pro-
file functions (4.33) are fulfilled.

It is instructive to check that the zero modes (4.64) do
produce the fermion part of the A'=2 two-dimensional
CP! model. To this end we return to the usual assump-
tion that the fermion collective coordinates x% in Eq.
(4.64) have an adiabatic dependence on the worldsheet
coordinates x; (k=0,3). This is quite similar to the pro-
cedure of the preceding section for bosonic moduli. Sub-
stituting Eq. (4.64) into the kinetic terms of fermions in
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the bulk theory (4.61), and taking into account the de-
rivatives of x? with respect to the worldsheet coordi-
nates, we arrive at

ﬁf dtdz {3 (3 - id5) X} + 3X5(d0 + i33) X5}, (4.67)
where B is given by the same integral (4.55) as for the
bosonic kinetic term, see Eq. (4.57).

Now we can use the worldsheet A’'=2 supersymmetry
to reconstruct the four fermion interactions. The SUSY
transformations in the CP(1) model look like [see No-
vikov et al. (1984) for a review]

s . I~
5)(({ = l\“’2(071 + 133)1’1“82 — \“’281”“()(?)(3),
5)(5 = i\E(&l - l'(?3)l’la81 + \“‘582]’1“(){?}(3),

a A
Sn’ = \2(e x5+ €2x1) s

where we set 7,=0 for simplicity. Imposing this super-
symmetry leads to the following effective theory on the
string worldsheet:

(4.68)

Scpay= Bf dtdz{5(9,S%)? + 3 X5i(dy — id3) X

1 4. . 1
+5x5i(dy + i33) x5 — 5(X1X3)-

This is the action of N=2 CP(1) sigma model (Novikov
et al. 1984).

(4.69)

3. Physics of the A'=2 CP(N-1) model

As usual in two dimensions, the Lagrangian of our
effective theory on the string worldsheet can be cast in
many different (but equivalent) forms. In particular, the
N=2 supersymmetric CP(N-1) model (4.49) can be un-
derstood as a strong-coupling limit U(1) gauge theory
(Witten, 1993). The bosonic part of the action is

1 1
5= J dzx{zmvknqz + 1 aFu+ Slaot + 4plofin

+2e*BA(|n* - 1)2} : (4.70)
where V,=d,—iA, and o is a complex scalar field. The
condition (4.43) is implemented in the limit e”
Moreover, in this limit the gauge field A, and its A'=2
bosonic superpartner o become auxiliary and can be
eliminated by virtue of the equations of motion,

%OO.

i . ¢
Ak——zneﬁkn (o

0. (4.71)

Substituting Eq. (4.71) into the Lagrangian, we can re-
write the action in the form (4.49).

The coupling constant B is asymptotically free
(Polykov, 1975). As a function of energy E, it is given by



1170 M. Shifman and A. Yung: Supersymmetric solitons

E
47B=Nln—, (4.72)

A

(o8

where A, is the dynamical scale of the sigma model. As
mentioned previously, the ultraviolet cutoff of the sigma
model at the string worldsheet is determined by g, VE At
this uv cutoff scale, Eq. (4.55) holds. Hence,

Af;/ — N2 efsq#/gé _ A]SVU(N)’ (4.73)

where we take into account Eq. (4.22) for the dynamical
scale Agy(y) of the SU(N) factor of the bulk theory. Note
that in the bulk theory per se, because of the VEV’s of
the squark fields, the coupling constant is frozen at ng’E;
there are no logarithms below this scale. The logarithms
of the theory on the string worldsheet take over. More-
over, the dynamical scales of the bulk and worldsheet
theories turn out to be the same. We explain the reason
why the dynamical scale of the (1+1)-dimensional effec-
tive theory on the string worldsheet equals that of the
SU(N) factor of the (3+1)-dimensional gauge theory, in
Sec. IVF.

The CP(N-1) model was solved by Witten in the
large-N limit (Witten, 1979b). Here we briefly summa-
rize Witten’s results and translate them in terms of
strings in four dimensions (Shifman and Yung, 2004a).

Classically, the field n’ can have arbitrary direction;
therefore, one might naively expect spontaneous break-
ing of SU(N) and the occurrence of massless Goldstone
modes. However, this cannot happen in two dimensions.
Quantum effects restore the symmetry. Moreover, the
condition (4.43) becomes in effect relaxed. Due to strong
coupling we have more degrees of freedom than in the
original Lagrangian, namely all N fields n become dy-
namical and acquire masses A,.

As shown by Witten (1979b), the model at large N has
N vacua. These N vacua differ from each other by the
expectation value of the chiral bifermion operator, see,
e.g., Novikov ef al.(1984). At strong coupling, the chiral
condensate is the order parameter. The U(1) chiral sym-
metry of the CP(1) model is broken down to a discrete
Z,n symmetry by chiral anomaly. The fermion conden-
sate breaks it down to Zy, hence the N-fold degeneracy.

The physics of the model becomes even more trans-
parent in the mirror representation (Hori and Yafa,
2000), which can be written for arbitrary N. In this rep-
resentation one describes the CP(N-1) model in terms
of the Coulomb gas of instantons [see Fateev et al.
(1979a, 1979b) and Polyakov (1987), where it was done
for the nonsupersymmetric CP(1) model] to prove its
equivalence to an affine Toda theory. The CP(N-1)
model (4.70) is dual to the following N'=2 affine Toda
model (Fendley and Intriligator, 1992a; Cecotti and
Vafa, 1993; Eguchi ef al. 1997; Hori and Vafa, 2000):
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N-1
Sp= J dxd*0d*68™' Y, VY,
i=1

N-1

+1A, f dzxdza(z exp(Y;)

i=1

N-1
+ [ exp(- Y,)) +H.c. (4.74)

i=1
Here the last term is a dual instanton-induced superpo-
tential. In fact, the exact form of the kinetic term is not
known because it is not protected from quantum correc-
tion in B. However, the superpotential in Eq. (4.74) is
exact. As soon as the vacuum structure is determined
entirely by a superpotential, it can be read off Eq. (4.74).
The scalar potential of this affine Toda theory has N
minima. For example, for N=2 this theory becomes N
=2 supersymmetric sine-Gordon theory with scalar po-
tential

2, (4.75)

B .
Vsg = m/\ch(lﬂsmh y

which has two minima, at y=0 and +iw (the points y
=i7 and —im must be identified; they present one and
the same vacuum).

This mirror model explicitly exhibits a mass gap of the
order of A,,. It shows that there are no Goldstone bosons
[corresponding to the absence of the spontaneous break-
ing of the SU(N)c,r symmetry]. In terms of strings in
four-dimensional bulk theory, this means in turn that the
string orientation vector n has no particular direction; it
is smeared all over. The strings with which we deal here
are genuinely non-Abelian. N vacua of the worldsheet
theory (4.70) correspond to N elementary non-Abelian
strings of the bulk theory. Note that these strings are in a
highly quantum regime. They are not the Z strings of
the quasiclassical U(1)N~! theory since the vector n’ has
no particular direction.

4. Unequal quark masses

The fact that we have N distinct vacua in the world-
sheet theory—AN distinct elementary strings—is not in-
tuitive in the above consideration. This is understand-
able. At the classical level, the A'=2 two-dimensional
CPN sigma model has a continuous vacuum manifold.
This is in one-to-one correspondence with continuously
many strings parametrized by n’. The continuous degen-
eracy is lifted only upon inclusion of quantum effects
that occur (in the sigma model) at strong coupling. Gone
with this lifting is the moduli nature of the fields n’.
They become massive which is difficult to understand.

To facilitate contact between the bulk and worldsheet
theories, it is instructive to start from a deformed bulk
theory so that the string moduli are lifted already at the
classical level. Then the origin of the N-fold degeneracy
of the non-Abelian strings become transparent. This will
help us to understand other features listed above. After
this understanding is achieved, nothing prevents us from
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returning to our case of strings with non-Abelian moduli
at the classical level, by smoothly suppressing the
moduli-breaking deformation. The N-fold degeneracy
will remain intact as it follows from the Witten index
(Witten, 1982).

Thus, we drop the assumption (4.15) of equal masses
of quark flavors and introduce small mass differences.
At nonequal quark masses the U(N) gauge group is bro-
ken by the condensation of adjoint scalars down to
U(1)V; see Eq. (4.13). Off-diagonal gauge bosons as well
as off-diagonal fields of quark matrix g4 (together with
their fermion superpartners) acquire masses propor-
tional to various mass differences (m4—mgp). The effec-
tive low energy theory now contains only diagonal gauge
and quark fields. The reduced action suitable for the
search of a string solution takes the form

1 1
o< [t g i

£ 8t
+ @A™+ Ll P - NE? (4.76)
where the index A=1,...,(N-1) runs over Cartan gen-
erators of the gauge group SU(N) while the matrix ¢4
is reduced to its diagonal components.

The same steps that lead us to Egs. (4.32) now give

first-order equations for strings in the Abelian model
(4.76),

. g
Fs+ 5(|<PA|2 -N§ =0,

B+ g(@aT"e™) =0,

(Vl + le)QDA =0. (477)

As soon as Zy string solutions (4.28) have diagonal
form, they automatically satisfy the above first-order
equations.

However, Abelian Zy strings (4.28) are now the only
discrete solutions of these equations. The global
SU(N)¢,r group is broken down to U(1)M! and the
continuous CP(N-1) moduli space of non-Abelian
string is lifted. In fact, the vector n’ gets fixed in N pos-
sible positions

nt = 8%,

which correspond to Abelian Zy, strings; see Eqs. (4.28)
and (4.44). If mass differences are much less than v‘zf, the
set of parameters n‘ becomes quasimoduli.

Now, our aim is to derive the effective two-
dimensional theory on the string worldsheet for the case
of unequal quark masses. At small mass differences, we
can still introduce the orientational quasimoduli n¢. In
terms of the effective two-dimensional theory on the
string worldsheet, nonequal masses lead to a shallow po-
tential for the quasimoduli n‘. We now derive this po-
tential. Below for simplicity we review the derivation
done in Shifman and Yung (2004a) for the SU(2)

€=1,....N, (4.78)

Rev. Mod. Phys., Vol. 79, No. 4, October—December 2007

X U(1) case. The case of general N is considered in Ha-
nany and Tong (2004). In the N=2 case, the two minima
of the potential at S={0,0, +1} correspond to two bona
fide Z, strings.

We start from the expression for the non-Abelian
string in the singular gauge (4.59) parametrized by
moduli §* and substitute it into the action (4.9). The only
modification that we have to make is to supplement our
ansatz (4.59) by that for the adjoint scalar field a%; the
neutral scalar field a will stay fixed at its vacuum expec-
tation value a=—\2m.

At large r, the field a“ tends to its VEV directed along
the third axis in the color space given by

Am
’/_ >
/

(@) =- Am =my — my; (4.79)

\

see Eq. (4.13). At the same time, at r=0 it must be di-
rected along the vector §¢ The reason for this behavior
is easy to understand. The kinetic term for a“ in Eq. (4.9)
contains the commutator term of the adjoint scalar and
the gauge potential. The gauge potential is singular at
the origin, as seen from Eq. (4.59). This implies that a*
must be directed along S* at r=0. Otherwise, the string
tension would become divergent. The following ansatz
for a” ensures this behavior:

A
at=— %[5{% + 59531 - b)]. (4.80)
\‘!

Here we introduced a new profile function b(r) that will
be determined from a minimization procedure. Note
that at §=(0,0,+1) the field a® is given by its VEV, as
expected. The boundary conditions for the function b(r)
are

b(x)=1, b(0)=0. (4.81)
Substituting Eq. (4.80) in conjunction with Eq. (4.59)
into the action (4.9), we get the potential

Am?
Vepny =y f d2x7(1 - 53, (4.82)

where vy is given by the integral

2 [~ d 21
== | rdr{|—b S b
Y g% . r r{(dr (r)) +r2ﬁVA

1
+ gi[zu = byt + 43) + bl - ¢2)2} } (4.83)

Here the first two terms in the integrand come from the
kinetic term of the adjoint scalar field a® while the term
in the square brackets comes from the potential in the
action (4.9).

Minimization with respect to b(r), with the constraint
(4.81), yields
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FIG. 7. (Color online) Meridian slice of the target space sphere
(thick solid line). Arrows present the scalar potential in Eq.

(4.85), their length representing the strength of the potential.
Two vacua of the model are denoted by closed circles.

b(r) =1-p(r) = L (r): (4.84)

&
cf. Egs. (4.51) and (4.53). Thus, y=127/g5=2m/g3. We
see that the normalization integrals are the same for
both the kinetic and potential terms in the worldsheet
sigma model, y=p. As a result, we arrive at the follow-
ing effective theory on the string worldsheet:

2
Scray =B f d%{%(aksa)z + @(1 - 53)}. (4.85)
This is the only functional form that allows AN=2
completion.”

The fact that we obtain this form shows that our an-
satz is fully adequate. The informative aspect of the pro-
cedure is (i) the confirmation of the ansatz (4.80) and (ii)
constructive calculation of the constant in front of 1
—S% in terms of the bulk parameters. The mass-splitting
parameter Am of the bulk theory coincides exactly with
the twisted mass of the worldsheet model.

The CP(1) model (4.85) has two vacua located at S°
=(0,0,+1); see Fig. 7. Clearly, these two vacua corre-
spond to two elementary Z, strings.

For the case of general N, the potential in the CP(N
—1) model has been worked out by Hanany and Tong
(2004). It has the form

- . 2
Vern-1) = 2,3{; |rie||n|* - ‘; rign’|? } (4.86)
where
- 1
Me=me—m, m= —> my. (4.87)

N7

This potential has N vacua (4.78), which correspond to N
Zy strings in the bulk theory.

The CP(N-1) model with the potential (4.86) is the
bosonic part of an /=2 two-dimensional sigma model,
which is usually referred to as the CP(N—1) model with
the twisted mass. This is a generalization of the massless
CP(N-1) model, which preserves four supercharges.

PNote that although the global SU(2)c,f is broken by Am,
the extended A'=2 supersymmetry is not.
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Twisted chiral superfields in two dimensions were intro-
duced by Alvarez-Gaumé and Freedman (1983); Gates
(1984); and Gates et al. (1984), while twisted mass as an
expectation value of twisted chiral multiplet was sug-
gested by Hanany and Hori (1998). CP(N-1) models
with twisted mass were studied by Dorey (1998) and, in
particular, BPS spectra in these theories were deter-
mined exactly.

From the bulk theory point of view, the two-
dimensional CP(N-1) model is an effective worldsheet
theory for the non-Abelian string, and emergence of N
=2 supersymmetry should be expected. As we know, the
BPS nature of the strings under consideration does re-
quire the worldsheet theory to have four supercharges.

The CP(N-1) model with twisted mass can be rewrit-
ten as a strong-coupling limit of U(1) gauge theory (Do-
rey, 1998). With twisted masses of nt fields taken into
account, the bosonic part of the action (4.70) becomes

1 1
S= f dzx{2B|an€|2 + EFil + ?|‘9k0'|2

+4B

1y
O— "=
1'2

2
|n)? + 22 B2(|n*|> - 1)2} . (4.88)

In the limit e2— o, the o field can be excluded via an
algebraic equation of motion, which leads to the poten-
tial (4.86).

As already mentioned, this sigma model gives an ef-
fective description of our string at low energies, i.e., en-
ergies much lower than the inverse string thickness.
Typical momenta in the theory (4.88) are of the order of
m. Therefore, for the action (4.88) to be applicable, we
must impose the condition

- I
|rite| < gV (4.89)

The description in terms of the CP(N—1) model with
twisted mass gives us a better understanding of the dy-
namics of non-Abelian strings. If masses 71, are much
larger than the scale of the CP(N—1) model A, the cou-
pling constant B is frozen at large scale (of order of
masses 771;) and the theory is in the weak coupling. Semi-
classical analysis is applicable. The theory (4.88) has N
vacua located at

My,

nezé‘wo, o=—F,
V2

(4.90)

They correspond to Abelian Zjy strings of the bulk
theory; see Eq. (4.44). As we reduce mass differences i,
and approach the value A,, the CP(N-1) model enters
the strong-coupling regime. At m,=0, the global
SU(N) ¢, r symmetry of the bulk theory is restored. Now
n’ has no particular direction. The condition (4.43) is
relaxed. Still we have N vacua in the worldsheet theory
(Witten index). They are seen in the mirror description
(see the preceding subsection). These vacua correspond
to N elementary non-Abelian strings in the strong-
coupling quantum regime. We see that for BPS strings,
the transition from Abelian to non-Abelian regimes
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FIG. 8. (Color online) Evolution of the confined monopoles.

goes smoothly. As we discuss in Sec. V, this is not the
case for non-BPS strings. In the latter case, two regimes
are separated by the phase transition (Gorsky et al.,
2005, 2006).

E. Confined monopoles as kinks of the CP(N-1) model

Our bulk theory (4.9) is in the Higgs phase so mono-
poles present in this theory should be in the confinement
phase. If we start from the theory with SU(N+1) gauge
group, which is broken to the SU(N) X U(1) gauge group
of the theory (4.9) by condensation of the adjoint scalar
a, the monopoles of the SUN+1)/SU(N) X U(1) sector
can be attached to the ends of the Zy strings considered
here. However, in the bulk theory (4.9) these monopoles
are considered as being infinitely heavy and the Zy
strings are stable. However, monopoles from the SU(N)
gauge group are still present in the theory (4.9). As we
switch on the FI parameter, £ quarks condense triggering
confinement of these monopoles. As shown in this sec-
tion, these monopoles become string junctions of non-
Abelian strings and are seen as kinks in the worldsheet
theory interpolating between different vacua of the
CP(N-1) model (Hanany and Tong, 2004; Shifman and
Yung, 2004a; Tong, 2004).

Our task is to trace the evolution of the confined
monopoles starting from the quasiclassical regime, deep
into the quantum regime. For illustrative purposes we
start from the limit of weakly confined monopoles, when
they present just slightly distorted 't Hooft-Polyakov
monopoles (Fig. 8). We start from the limit |71, |> V&
and take all masses of the same order. In this limit, the
scalar quark expectation values can be neglected, and
the vacuum structure is determined by VEV’s of the ad-
joint a“ field; see Eq. (4.13). In the nondegenerate case,
the gauge symmetry SU(N) of our bulk model is broken
down to U(1)""! modulo possible discrete subgroups.
This is the standard situation for the occurrence of the
SU(N) ’t Hooft-Polyakov monopoles. The monopole
core size is of the order of |#|™!. The 't Hooft-Polyakov
solution remains valid up to much larger distances of the
order of &2, At distances larger than ~¢& 2, the quark
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VEV’s become important. As usual, the U(l) charge
condensation leads to the formation of the U(1) mag-
netic flux tubes, with the transverse size of the order of
&2 (see the upper picture in Fig. 8). The flux is quan-
tized; the flux tube tension is small in the scale of the
square of the monopole mass. Therefore, what we deal
with in this limit is basically a very weakly confined t
Hooft—Polyakov monopole.

We now verify that the confined monopole is a junc-
tion of two strings. Consider the junction of two Zy
strings corresponding to two neighboring vacua of the
CP(N-1) model. For the €,th vacuum, n’ is given by Eq.
(4.90) while for the (€4+1)th vacuum it is given by the
same equations with €,— €+ 1. The flux of this junction
is given by the difference of the fluxes of these two
strings. Using Eq. (4.44), we get that the flux of the junc-
tion is

47 X diag3{...,0,1,-1,0, ...} (4.91)

with the nonvanishing entries located at positions € and
€9+1. These are exactly the fluxes of N—1 distinct
't Hooft-Polyakov monopoles occurring in the SU(N)
gauge theory provided that SU(N) is spontaneously bro-
ken down to U(1)V!. We see that in the quasiclassical
limit of large |r71,|, the Abelian monopoles play the role
of the Abelian Zy string junctions. Note that in various
models, the fluxes of monopoles and strings were shown
(Bais, 1981; Hindmarsh and Kibble, 1985; Everett and
Aryal, 1986; Preskill and Vilenkin, 1993; Morshakov and
Yung, 2002; Kneipp, 2003, 2004; Auzzi et al., 2004a,
2004b; Auzzi, Bolognesi, et al., 2005; Eto et al., 2006) to
match each other so that the monopoles can be confined
by strings in the Higgs phase.
Now, if we reduce |14, placing it the range

A< iy < g, (4.92)

the size of the monopole (~|r|™') becomes larger than
the transverse size of the attached strings. The mono-
pole gets squeezed in earnest by the strings—it becomes
a bona fide confined monopole (the lower left corner of
Fig. 8). A natural question is: How is this confined
monopole seen in the effective two dimensional CPN~!
model (4.88) on the string worldsheet? As soon as Zy
strings of the bulk theory correspond to N vacua of the
CPN-! model, the string junction (confined monopole) is
a domain wall (kink) interpolating between these vacua;
see Fig. 7.

Below we demonstrate that in the semiclassical re-
gime (4.92), the solution for the string junction of the
bulk theory corresponds to the kink in the worldsheet
theory. Then we show that masses of monopole and kink
match. This has been done by Shifman and Yung (2004a)
for the N=2 case. Below we review this derivation.

1. First-order equations for the string junction

In this section, we derive the first-order equations for
the 1/4-BPS junction of the Zy strings of SU(N)
X U(1) theory in the quasiclassical limit (4.92). In this
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limit, m2, is small enough so we can use our effective
low-energy description in terms of the CP(N—1) model
with the twisted mass (4.88). On the other hand, m14 is
much larger than the scale of CP(N-1) model, so the
latter is in the weak-coupling regime, which allows one
to apply the quasiclassical treatment.

The geometry of our junction is shown in the left cor-
ner of Fig. 8. Both strings are stretched along the z axis.
We assume that the monopole sits near the origin, the
n'= 5" string is at negative z, while the n=§%*! string
is at positive z. The perpendicular plane is parametrized
by x; and x,. What is sought is a static solution of the
BPS equations, with all relevant fields depending only
on xi, X5, and z.

Ignoring the time variable, we can represent the en-
ergy functional of our theory (4.24) as follows
[Bogomol'nyi representation (Bogomol’nyi, 1976)]:

E:fd3x |: ! F‘*a+g_2—(¢A7ﬂqDA)+lD3aa:|2
V2g 0 2\2 2

1 % gl 1 2
+| =—F+ ==Y =28+ —0 a]
[\Egl > 22 g

S P . ?
+ 5| FF+iF") + (D +iDy)a
8212
111 . . . ’ A oo AR
+ =5 | =(F +iF) + (0, +id)a| +|Vie" +iV,y¢
811\2
1 = ?
+|Vag + a7+ at \2my)e! (4.93)
\!

plus surface terms. As compared with the Bogomol’'nyi
representation (4.31) for strings, we keep here also terms
involving adjoint fields. Following our conventions, we
assume the quark masses to be real, implying that the
vacuum expectation values of the adjoint scalar fields
are real too. The surface terms mentioned above are

z:w
Esurface =§ Jd?’XF;‘f‘ \E§fd2x<a}
Z:—w
B as, e, (4.94)
82

where the integral in the last term runs over a large
two-dimensional sphere at x>— . The first term on the
right-hand side is related to strings, the second to do-
main walls, while the third to monopoles (string junc-
tions).

The Bogomol’'nyi representation (4.93) leads us to the
following first-order equations:

Fi +iF, + \E(al +idy)a=0,

Fi%+iFy" + \2(D, +iD,)a" =0,
Fy+ 8P -20) + 230 =0,
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2
F;a + %(Q_DATﬂQDA) + \"5D3a“ = O,

1 =
Vit =— ’—E(a”T“ +a+\2my) e,
\J

(Vl + lVZ)(PA =0. (495)

These are our master equations. Once these equations
are satisfied, the energy of the BPS object is given by
Eq. (4.94).

We now discuss the central charges (the surface terms)
of the string, domain wall, and monopole in more detail.
In the string case, the three-dimensional integral in the
first term in Eq. (4.94) gives the length of the string times
its flux. In the wall case, the two-dimensional integral in
the second term in Eq. (4.94) gives the area of the wall
times its tension. Finally, in the monopole case, the inte-
gral in the last term in Eq. (4.94) gives the magnetic-field
flux. This means that the first-order master equations
(4.95) can be used to study strings, domain walls, mono-
poles, and all their possible junctions.

It is instructive to check that the wall, string, and
monopole solutions, separately, satisfy these equations.
For the domain wall, this check was done by Shifman
and Yung (2004a), where these equations were used to
study the string-wall junctions (reviewed in Sec. VII).
Now consider the string solution. The scalar fields a and
a“ are given by their VEV’s. The gauge flux is directed
along the z axis, so that F;=F,=F"=F,"=0. All fields
depend only on the perpendicular coordinates x; and x,.
As a result, the first two equations and the fifth one in
Eqgs. (4.95) are trivially satisfied. The third and fourth
equations reduce to the first two equations in Eq. (4.32).
The last equation in Egs. (4.95) reduces to the last equa-
tion in Egs. (4.32).

Now we turn to the monopole solution. The 't Hooft—
Polyakov monopole equations ('t Hooft, 1974; Polyakoyv,
1974) arise from those in Eq. (4.95) in the limit £=0.
Then all quark fields vanish, and Eq. (4.95) reduces to
the standard first-order equations for the BPS 't Hooft—
Polyakov monopole,

Fy"+\2Dya"=0. (4.96)

The U(1) scalar field a is given by its VEV while the
U(1) gauge field vanishes.

Equation (4.94) shows that the central charge of the
SU(2) monopole is determined by (a”), which is propor-
tional to the quark mass difference; see Eq. (4.13). Thus,
for the monopole on the Coulomb branch (i.e., with ¢
vanishing), Eq. (4.94) yields

4m(meg —my)
M,, = % (4.97)
82
This coincides, of course, with the Seiberg-Witten result
(Seiberg and Witten, 1994a) in the weak-coupling limit.
As will be shown shortly, the same expression continues

to hold even if riy < \“% (provided that s, is still much
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larger than Agy ). An explanation is given in Sec. IV.F.
The Abelian version of the first-order equations (4.95)
was derived by Shifman and Yung (2003), where they
were used to find the 1/4-BPS-saturated solution for the
wall-string junction. Non-Abelian equations (4.95) in the
SU(2) X U(1) theory were derived by Tong (2004), where
a confined monopole as a string junction was considered
at Am # 0. Then non-Abelian equations (4.95) were used
in the analysis (Shifman and Yung, 2004a) of the wall-
string junctions for non-Abelian strings ending on a
stack of domain walls, see Sec. VII. Next, Egs. (4.95)
were solved for the confined monopole as a string junc-
tion by Shifman and Yung (2004a) for SU(2) X U(1)
theory. Below we review this solution. Later all 1/4-BPS
solutions for junctions (in particular, string junctions of
semilocal strings) were found by Isozumi et al. (2005).

2. String junction solution in the quasiclassical regime

We now apply our master equations for the N=2 case
in order to find the junction of the $*=(0,0,1) string and
the §=(0,0,-1) string via the SU(2) monopole in the
quasiclassical limit. We assume that the §9=(0,0,1)
string is at negative z, while the $°=(0,0,-1) string is at
positive z. We show that the solution of the BPS equa-
tions (4.95) of the four-dimensional bulk theory is deter-
mined by the kink solution in the two-dimensional sigma
model (4.85).

To this end, we look for the solution of Egs. (4.95) in
the following ansatz. Assume that the solution for the
string junction is given, to leading order in Am/ VE, by
the same string configuration (4.59), (4.45), and (4.80)
that we dealt with previously (in the case Am # 0) with
S“ slowly varying functions of z, to be determined below,
replacing the constant moduli vector S

Now the function $%(z) satisfies the boundary condi-
tion

Sd(_ OO) = (070’1)9 (498)
while
S“(OO) = (070’_ 1) (499)

This ansatz corresponds to the non-Abelian string in
which the vector §* slowly rotates from Eq. (4.98) at z
— - to Eq. (4.99) at z— . Now we show that the rep-
resentation (4.59), (4.45), and (4.80) solves the master
equations (4.95) provided the functions S(z) are chosen
in a special way.

Note that the first equation in Egs. (4.95) is trivially
satisfied because the field a is constant and F,=F,=0.
The last equation reduces to the first two equations in
Eqgs. (4.33) because it does not contain derivatives with
respect to z and, therefore, is satisfied for arbitrary func-
tions n%(z). The same remark applies also to the third
equation in Egs. (4.95), which reduces to the third equa-
tion in Egs. (4.33).
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Now consider the fifth equation in Egs. (4.95). Substi-
tuting our ansatz in this equation and using Eq. (4.53)
for p, we find that this equation is satisfied provided
S$%(z) are chosen to be the solutions of

8= Am(8 - §S°). (4.100)
Below we show that these equations are first-order
equations for a kink in the massive CP(1) model.

By the same token, we consider the second equation
in Egs. (4.95). Upon substitution our ansatz, this reduces
to Eq. (4.100) too. Finally, consider the fourth equation
in Egs. (4.95). One can see that in fact it contains an
expansion in the parameter Am?/¢. This means that the
solution we have just built is not exact; it has O(Am?/ &)
corrections. To the leading order in this parameter, the
fourth equation in Egs. (4.95) reduces to the last equa-
tion in Egs. (4.33). In principle, one could go beyond the
leading order. Solving the fourth equation in Eqgs. (4.95)
in the next-to-leading order would allow one to deter-
mine O(Am?/&) corrections to our solution.

We now focus on the meaning of Eq. (4.100). This
equation is merely an equation for the kink in the CP!
model (4.85). To see this, we write the Bogomol’nyi rep-
resentation for kinks in the model (4.85). The energy
functional can be rewritten as

- g J dz{|d,5" - Am(5° — S°S%)]2 + 2Ama,S3}.

(4.101)

The above representation implies the first-order equa-
tion (4.100) for the BPS-saturated kink. It also yields
2BAm for the kink mass.

Thus, we have demonstrated that the junction solu-
tion for the $=(0,0,1) and (0,0,-1) Z, strings is given
by the non-Abelian string with a slowly varying orienta-
tion vector §°. The variation of S¢ is described in terms
of the kink solution of the (1+1)-dimensional CP(1)
model with the twisted mass.

In conclusion, we want to match the masses of the
four-dimensional monopole and two-dimensional kink.
The string mass and that of the string junction is given
by the first and last terms in the surface energy (4.94)
(the second term vanishes). The first term reduces to

M giying = 27EL, (4.102)

i.e., proportional to the total string length L. Note that
both $=(0,0,1) and (0,0,-1) Z, strings have the same
tension (4.34). The third term should give the mass of
the monopole. The surface integral in this term reduces
to the flux of the §=(0,0,-1) string at z — o minus the
flux of the $“=(0,0,1) string at z——o. The F flux of
the §%=(0,0,-1) string is 27 while the F™ flux of the

$%=(0,0,1) string is —2r. Thus, taking into account Eq.
(4.13), we get
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4
M, =—Am.
2

(4.103)

Note that although we discussed the monopole in the
confinement phase at |[Am|<\& (which is a junction of
two strings in this phase), nevertheless the Am and g%
dependence of its mass coincides with the result (4.97)
for the unconfined monopole on the Coulomb branch
(i.e., at £€=0). This is no accident—there is a theoretical
reason explaining the validity of the unified formula. A
change occurs only in passing to the highly quantum re-
gime depicted in the right lower corner of Fig. 8. We
discuss this regime briefly in the next subsection.

Now compare Eq. (4.103) with the kink mass in the
effective CP! model on the string worldsheet. As men-
tioned, the surface term in Eq. (4.101) gives

Mkink = 2,8Am . (4 104)

Now expressing the two-dimensional coupling constant
B in terms of the coupling constant of the microscopic
theory, see Eq. (4.55), we obtain
4t
Myink = —5 Am,
82

(4.105)

thus verifying that the four-dimensional calculation of
M,, and the two-dimensional calculation of M,;,, yield
the same,

M, = Myink- (4.106)

Needless to say, this is in full accordance with the physi-
cal picture that emerged from our analysis that the two-
dimensional CP(1) model is merely the macroscopic de-
scription of confined monopoles occurring in the four-
dimensional microscopic Yang-Mills theory. Technically
the coincidence of the monopole and kink masses is
based on the fact that the integral in the definition (4.50)
of the sigma-model coupling B is unity.

3. Strong-coupling limit

In this subsection, we consider the limit of small 71,
when the effective worldsheet theory enters the strong-
coupling regime. For illustrative purposes, we consider
the simplest case with N=2. The generalization to gen-
eral N is straightforward.

As we further diminish |[Am| approaching A, and then
taking Am to zero, we restore SU(2)c,r symmetry. In
particular, on the Coulomb branch SU(2) X U(1) gauge
symmetry is restored. The monopole becomes a truly
non-Abelian object. In this limit, the size of the mono-
pole grows, and, classically, it would explode. Moreover,
the classical formula (4.103) shows that its mass goes to
zero [see the discussion of “monopole clouds” by Wein-
berg (1980, 1982) for a review on what becomes of
monopoles upon restoration of non-Abelian gauge sym-
metry]. Thus classically we would say that the monopole
disappears.

This is where quantum effects on the confining string
take over. As reviewed below they make the non-
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Abelian confined monopole a well defined stable state
(Shifman and Yung, 2004a). From the point of view of
the effective worldsheet theory this domain presents the
regime of highly quantum worldsheet dynamics. While
the thickness of the string (in the transverse direction) is
~¢& 12 the z-direction size of the kink representing the
confined monopole in the highly quantum regime is
much larger, ~A;1; see the lower right corner in Fig. 8.
Still it remains finite in the limit Am—0 stabilized by
nonperturbative effects in the worldsheet CP(1) model.
Remember that CP(N-1) models develop a mass gap
and no massless states are present in the spectrum; see
Sec. IV.D.3. Moreover, the mass of the confined mono-
pole [kink of the CP(1) model] is also determined by the
scale A,. This defines the notion of what is non-Abelian
confined monopole. It is a kink of massless two-
dimensional CP(N-1) model (Shifman and Yung,
2004a).

We can have a more quantitative insight in the physics
of worldsheet theory in strong coupling using an exact
BPS spectrum of the CP(N—1) model with twisted mass
obtained by Dorey (1998). This was obtained by gener-
alization of Witten analysis (Witten, 1993) as done for
the massless case. The exact central charge of BPS states
is given by

ZZD = lAmq + mDT. (4107)

Here T is the topological charge of the kink under con-
sideration, T=+1, while the parameter ¢ is

q=0,+1,+2,... . (4.108)

This U(1) charge of the “dyonic” states arises due the
presence of the U(1) group unbroken in Eq. (4.85) by
the twisted mass [the SU(2)q,r symmetry is broken
down to U(1) by Am].

The quantity mp is introduced in analogy with aj, of
Seiberg and Witten (1994a),

Am + VAm? + 4AZ \/ 4A§]
1+ > s
Am

(4.109)

Am| 1
mp=—|=1In -
) Am - \/Am2 + 4A?,

where Am is assumed to be complex. The two-
dimensional central charge is normalized such that
Myink=|Z>p|. The limit |Am|/A,— % corresponds to the
quasiclassical domain, while corrections of the type
(A,/Am)?* are induced by instantons.

What happens when one travels from the domain of
large |[Am| to small [Am|? If Am=0, we know, e.g., from
the mirror representation (Hori and Yafa, 2000), that
there are two degenerate two-dimensional kink super-
multiplets, corresponding to the CFIV index=2 (Cecotti
et al., 1992; Fendley and Intriligator, 1992b; Cecotti and
Vafa, 1993). They have quantum numbers {g,7}=(0,1)
and (1, 1). Away from the point Am=0, the masses of
these states are no longer equal; there is one singular
point with one of the two states becoming massless
(Shifman et al., 2006). The region containing the point
Am=0 is separated from the quasiclassical region of
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large Am by the curve of the marginal stability (CMS) on
which the infinite number of other BPS states, visible
quasiclassically, decay. Thus, the infinite tower of the
{q,T} BPS states existing in the quasiclassical domain
degenerates in just two stable BPS states in the vicinity
of Am=0.

As outlined above, there are no massless states in the
CP(1) model at Am=0. In particular, the kink (confined
monopole) mass is

2
M, ==A,, (4.110)
T

as is clear from Eq. (4.109). On the other hand, in this
limit both the last term in Eq. (4.94) and the surface
term in Eq. (4.101) vanish for the monopole and kink
masses, respectively. This puzzle is solved by the follow-
ing observation: Anomalous terms in the central charges
of both four-dimensional and two-dimensional SUSY al-
gebras emerge. In two dimensions, it was obtained by
Losev and Shifman (2003) and Shifman et al. (2006). In
four dimensions, it was worked out by Shifman and
Yung (2004a).

In the bulk theory, the central charge associated with
the monopole has the following general form:

{01,0%) = £,562Zyp5, (4.111)

where Z,p is an SU(2)y singlet. It is most convenient to
write Z,p as a topological charge (i.e., the integral over a
topological density),

Zip= f d*x(x) (4.112)
In this model,
Z”z%s”"""&( ia”P” + aF F“
\"’2 g% g2 po 2772
1
N (0,) () NP
+ AN T as
+ 2g§zZAa(ap)“‘*(&o)dﬁz/f4ﬁ]) . (4.113)

Note that the general structure of the operator in the
square brackets is unambiguously fixed by dimensional
arguments, the Lorentz symmetry, and other symmetries
of the bulk theory. The numerical coefficient was found
by Shifman and Yung (2004a) by matching monopole
and kink masses at Am=0. We also include the bosonic
part of the anomaly term associated with magnetic field
here (last term in the first line).

The anomalous term plays a crucial role in the Higgs
phase for the confined monopole. On the Coulomb
branch, it does not contribute to the mass of the mono-
pole due to too fast fall off of fermion fields at infinity.
On the Coulomb branch the bosonic anomalous terms
become important. The relationship between the
't Hooft-Polyakov monopole mass and the N'=2 central
charge has been analyzed by Rebhan er al. (2004a),
which identified an anomaly in the central charge ex-
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plaining a constant (i.e., nonlogarithmic) term in the
monopole mass on the Coulomb branch. The result of
Rebhan et al. (2004a) is in agreement with the Seiberg-
Witten formula for the monopole mass.

F. 2D kink and 4D Seiberg-Witten exact solution

Why is the 't Hooft-Polyakov monopole mass (i.e., on
the Coulomb branch at ¢=0) given by the same formula
(4.97) as the mass (4.103) of the strongly confined large-
& monopole (subject to condition \JE> Am)? This fact
was noted in Sec. IV.E.2. Now we explain the reason
behind this observation (Hanany and Tong, 2004; Shif-
man and Yung, 2004a). En route, we explain another
striking observation made by Dorey (1998). A remark-
ably close parallel between the four-dimensional Yang-
Mills theory with Ny=2 and the two-dimensional CP(1)
model was noted, by virtue of a comparison of the cor-
responding central charges. The observation was made
on the Coulomb branch of the Seiberg-Witten theory,
with unconfined ’t Hooft-Polyakov-like monopoles and
dyons. Valuable as it is, the parallel was quite puzzling
since the solution of the CP(1) model seemed to have no
physics connection to the Seiberg-Witten solution. The
latter gives the mass of the unconfined monopole in the
Coulomb phase at £=0 while the CP(1) model emerges
only in the Higgs phase of the bulk theory.

Now we show that the reason for the correspondence
mentioned above is that in the BPS sector (and only in
this sector) the parameter ¢, in fact, cannot enter rel-
evant formulas. Therefore, one can vary ¢ at will, in par-
ticular, making it less than |Am| or even tending to zero,
where CP(1) is no longer the worldsheet model for our
bulk theory. Nevertheless, the parallel expressions for
the central charges and other BPS data in 4D and 2D,
established at |Am|< & will continue to hold even on the
Coulomb branch. The strange coincidence observed in
Sec. IV.E.2 is no accident. We deal here with an exact
relation that stays valid, including both perturbative and
nonperturbative corrections.

Physically, the monopole in the Coulomb phase is dif-
ferent from the one in the confinement phase; see Fig. 8.
In the Coulomb phase it is a 't Hooft—Polyakov mono-
pole, while in the confinement phase it becomes related
to a junction of two non-Abelian strings. However, the
masses of these two objects are given by the same ex-
pression,

Mr(rlloulomb — M;(l)nfinement’ ( 411 4)

provided that Am and the gauge couplings are kept
fixed. The superscripts refer to the Coulomb and
monopole-confining phases, respectively.

Our point is that the mass of the monopole cannot
depend on the FI parameter & Start from the monopole
in the Coulomb phase at £€=0. Its mass is given by the
exact Seiberg-Witten formula (Seiberg and Witten,
1994a)
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TABLE II. The U(1)g charges of fields and parameters of the bulk theory.

Field/parameter a a“ A

q U my Asu, &

U(1)g charge 2 2 1

0 -1 2 2 0

A A - A\
= —mln n +Amzck(—> ,
T SU2) k=1 Am

(4.115)

where a3 is the dual Seiberg-Witten potential for the
SU(2) gauge subgroup, and we take into account that for
N;=2 the first coefficient of the g function is 2. Here
a’=—Am/\2 is the argument of a3, the logarithmic term
takes into account the one-loop result (4.21) for the
SU(2) gauge coupling at the scale Am, while the power
series is the expansion in instanton-induced corrections.

Now, if we introduce a small FI parameter £# 0 in the
theory, on dimensional grounds we expect in Eq. (4.115)
corrections to the monopole mass in powers of \c%/ Asu)
and/or &/ Am. These corrections are forbidden by the
U(1)g charges. Namely, the U(1)g charges of Agy(p) and
Am are equal to 2 [and so is the U(1)g charge of the
central charge under consideration] while ¢ has a vanish-
ing U(1)y charge. For convenience, the U(1)g charges of
different fields and parameters of the microscopic theory
are presented in Table II. Thus, neither (Ve Agy)* nor
(V&I Am)k can appear.

By the same token, we could start from the confined
monopole at large &, and study the dependence of the
monopole (string junction) mass as a function of ¢ as we
reduce & Again, the above arguments based on the
U(1)g charges tell us that corrections in powers of
Asu)/ V& and Am/\¢ cannot appear. This leads us to Eq.
(4.114).

Another way to arrive at the same conclusion is to
observe that the mass of the monopole is determined by
the central charge (4.112). This central charge is a holo-
morphic quantity and, thus, cannot depend on the FI
parameter & which is not holomorphic [it is a compo-
nent of the SU(2) triplet (Hanany et al., 1998; Vainsh-
tein and Yung, 2001)].

Now recall that the mass of the monopole in the con-
finement phase is given by the kink mass in the A'=2
CP! model; see Eq. (4.106). Thus, we obtain

Coulomb confinement
MEoulomb _, ppec

HMkink‘ (4116)

In particular, at the one-loop level the kink mass is de-
termined by one-loop renormalization of the CP(1)
model coupling constant 3, while the monopole mass on
the Coulomb branch is determined by the renormaliza-
tion of g2. This leads to the relation A, = Agy(z) between
the 2D and 4D dynamical scales, which we noted earlier
as a strange coincidence, see Eq. (4.73). Now we know
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the physical reason behind it. Note that the first coeffi-
cient of the B function is equal 2 (N for the generic N
case) for both theories.

The above relation can be generalized [cf. Dorey
(1998) and Hanany and Tong (2004)] to theories with the
SU(N)XU(1) gauge group and N/=N flavors on the
four-dimensional side, and CP(N-1) sigma models on
the two-dimensional side.

This correspondence can be seen in more quantitative
terms (Dorey, 1998; Hanany and Tong, 2004). The four-
dimensional A'=2 QCD with the U(N) gauge group and
Ng=N is described by the degenerate Seiberg-Witten
curve,

i :
4[1_[ (x+mi)—A’sVU(N)] (4.117)

2 _
yo =
i=1

in the special point (4.13) on the Coulomb branch, which
becomes a quark vacuum upon the ¢ perturbation. The
periods of this curve give the BPS spectrum of the two-
dimensional CP(N-1) model (Dorey, 1998) [this spec-
trum is given for the N=2 case in Egs. (4.107) and
(4.109)].

In fact, Dorey (1998) has shown that BPS spectra of
the N=2 2D CP(N-1) model and 4D SU(N) QCD co-
incide if one chooses a point on the Coulomb branch
corresponding to the baryonic Higgs branch defined by
>m4=0 [in the SU(2) case this amounts to taking m
=-m,]. However, one can check that BPS spectra of
massive states for SU(2) and U(2) theories coincide in
the corresponding quark vacua upon identification of
m,4 of SU(N) theory with r14 of U(N) theory [in the N
=2 case one should identify m;=-m, of SU(2) theory
with Am/2 of U(2) theory]. Note that vacuum (4.13) and
(4.16) of U(N) theory is an isolated vacuum rather than
a root of any Higgs branch. There are no massless states
in the U(N) bulk theory in this vacuum; see Sec. IV.A.2.

Note that BPS spectra of both theories include not
only monopole (kink) and dyonic states but also elemen-
tary excitations with 7=0 as well. On the 2D theory
side, they correspond to elementary fields n® in the
large-n1,4 limit. On the 4D side, they correspond to non-
topological (i.e., T=0 and g=+1) BPS excitations of the
string with masses proportional to ri, confined to the
string. They can be interpreted as follows. Inside the
string the squark profiles vanish, effectively bringing us
toward the Coulomb branch (é=0) where the W bosons
and quarks would become BPS-saturated states in the
bulk. For N=2 on the Coulomb branch the W boson and
off-diagonal quark mass would just equal Am. Hence,
the 7=0 BPS excitation of the string is a wave of such W
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bosons and/or quarks propagating along the string. One
could call it a confined W boson (or quark). It is local-
ized in the perpendicular but not in the transverse direc-
tion. What is important is that it has no connection with
the bulk Higgs phase W bosons, which are not BPS and
much heavier than Am, nor do these nontopological ex-
citations have a connection with the bulk quarks of our
bulk model, which are also not BPS saturated.

To conclude, conformal theory with massless quarks
and monopoles arising on the Coulomb branch of the
four-dimensional N'=2 QCD upon special choice of
mass parameters n1, [Argyres-Douglas point (Argyres
and Douglas, 1995)] was compared with the two-
dimensional CP(N-1) model with twisted mass (Tong,
2006a). The coincidence of monopole and kink masses
explained above ensures that CP(N—1) flows to a non-
trivial conformal point at these values of #1,. It has been
shown by Tong (2006a) that scaling dimensions of chiral
primary operators in four- and two-dimensional confor-
mal theories agree.

G. More quark flavors

In this section, we consider the theory (4.9) with more
fundamental flavors, Ny>N. In this case, we have a
number of isolated vacua like Egs. (4.13) and (4.16), in
which N quarks out of Ny develop VEV’s, while adjoint
VEV’s are determined by masses of these quarks as in
Eq. (4.13). Now consider the case of equal masses. In
this case isolated vacua coalesce and a Higgs branch de-
velops from the common root, whose location on the
Coulomb branch is given by Eq. (4.13) (with equal
masses). The dimension of this branch is 4N(N/~N),
(Argyres et al., 1996; Marshakov and Yung, 2002). The
Higgs branch is noncompact and has hyper-Kéhler ge-
ometry (Seiberg and Witten, 1994b; Argyres et al., 1996).
It has a compact base manifold defined by

Gk = g+, (4.118)

The dimension of this manifold is two times less than the
total dimension of the Higgs branch, 2N(N—N), which
gives 4 for Ny=3 and 8 for Ny=4 for the simplest N=2
case. BPS string solutions exist only on the base mani-
fold of the Higgs branch [strings become non-BPS if we
move in noncompact directions (Evlampier and Yung,
2003)], therefore we are interested in vacua that belong
to the base manifold.

Strings in theories with many flavors (typically on
Higgs branches) in many instances are not usual ANO
strings; they become so-called semilocal strings [see
Achucarro and Vachaspati (2000) for a review]. The sim-
plest model in which they appear is the Abelian Higgs
model with two complex flavors,

I 5 82
SAHZJd4x{4g2F,w+|V#CIA|2+§(|QA|2—§)2},
(4.119)
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where A=1,2 is the flavor index.

At nonzero ¢, scalar fields develop VEV’s breaking
U(1) gauge group. A photon becomes massive together
with one real scalar. For the particular choice of quartic
coupling made in Eq. (4.119), this scalar has the same
mass as the photon, model (4.119) is a bosonic part of a
supersymmetric theory, and vortices are BPS saturated.
The topological reason for the existence of ANO vorti-
ces is that for the gauge group U(1), m[U(1)]=Z. On
the other hand, we can go to the low-energy limit in Eq.
(4.119) integrating out massive photon and real massive
scalar. This leads us to the four-dimensional sigma
model on the vacuum manifold |¢g4|*?=¢& The vacuum
manifold has dimension 4—1-1=2, where we subtract
one real condition mentioned above as well as one
gauge phase. This represents the two-dimensional
sphere S,. Thus, the low-energy limit of theory (4.119) is
the O(3) sigma model. Now recall that m[S,]
=m[U(1)]=Z and this is a topological reason for the
existence of instantons in the two-dimensional O(3)
sigma model (Polyakov and Belavin, 1975). Lifted in
four dimensions, they become stringlike objects (lumps).

Like an instanton of the O(3) sigma model, the
semilocal string in the model (4.119) possesses two addi-
tional zero modes associated with its complex transverse
size p. The semilocal string interpolates between the
ANO string and the two-dimensional sigma model in-
stanton lifted in four dimensions (lump). At zero p, we
have the ANO string while at p— it becomes a 2D
instanton lifted in four dimensions. At nonzero p, the
semilocal string has power falloff of the profile functions
at infinity, instead of the exponential falloff for the ANO
string at p=0.

Now if we return to our non-Abelian theory (4.9), we
see that semilocal strings in this theory have, besides
2(N-1) orientational moduli n¢, also size moduli. The
total dimension of the moduli space of the semilocal
string is (Hanany and Tong, 2003)

2N;=2+2(N-1)+2(N;~ N), (4.120)

where the first, second, and third terms correspond to
translational, orientational, and size moduli.

The study of the moduli space geometry of the semilo-
cal string was not carried out for some time due to in-
frared problems. It was known that size zero modes are
logarithmically non-normalizable in the infrared (Ward,
1985; Leese and Samols, 1993), as is the case for the
sigma model instanton. This problem was addressed by
Shifman and Yung (2006a) for the case of non-Abelian
strings in the theory with U(2) gauge group, and it was
shown that the effective theory on the world of the
string has the form

1
n b
lp|om
(4.121)

2
§(1+1) :BMWJ d[dz{pz(ﬁksa)z-k |l9kpi|2}1

where My, is the mass of the W boson (4.18), i
=3,...,Ny, while p; denotes (N;~2) complex fields asso-
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ciated with size moduli. The parameter dm measures
small quark mass differences. One has to introduce this
parameter lifting slightly size moduli p; in order to regu-
larize the IR logarithmic divergence.

The metric (4.121) has been derived by Shifman and
Yung (2006a) for large but not too large values of |p|?
=|p?| inside the window,

1
M <|p|<5—.
w nm

(4.122)
The first inequality refers to the limit in which the
semilocal string becomes an O(3) sigma model lump,
while the second one ensures the validity of the logarith-
mic approximation.

For p; inside the window (4.122) with the logarithmic
accuracy, one can introduce new variables

12
z;= pl{M%‘, In } . (4.123)

lp|om

It has been shown by Shifman and Yung (2006a) that in
terms of these variables, the metric of the worldsheet
theory (4.121) become flat. There are corrections to this
flat metric in powers of both 1/My|p| and 1/In(1/|p|m)
that are have not been calculated so far within the field
theory approach.

On the other hand, using brane-based arguments it
was conjectured by Hanany and Tong (2003, 2004) [see
also Eto et al. (2004)] that the effective theory on the
worldsheet of a non-Abelian semilocal string is given by
the strong-coupling limit (e?— o) of two-dimensional
gauge theory,

1 1
S= f dzx{2,8|an€|2 + 28|V + EFil+ ?|(?k0'|2

i
g — =
/

2
n‘[*+4p

2

+4pB |z

ng
O- - ’f—
/

+2e*BA(|n"* - |z)* - 1)2}, (4.124)

where ¢=1,...,N, i=N+1,...N, while z; denotes N;
—N complex fields associated with size moduli. Fields n*
and z; have charges +1 and —1 with respect to the U(1)
gauge field in Eq. (4.124). This theory is similar to the
model (4.88) for non-Abelian string in the theory with
Ng=N.

There is another argument in favor of the above con-
jecture. As discussed in the preceding subsection, the
BPS spectrum of dyons on the Coulomb branch of 4D
theory should coincide with the BPS spectrum in 2D
effective theory on the string worldsheet. We expect that
this correspondence can be generalized to theories with
N;>N. The 2D theory (4.124) was studied by Dorey et
al. (1999), and it was shown that its BPS spectrum agrees
with the spectrum of U(N) four-dimensional QCD with
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Ny flavors.”' In particular, the one-loop coefficient of the
B function is equal to 2N—N; for both theories. This
leads to the identification of their scales; see Eq. (4.73).

This shows that 2D theory (4.124) is a promising can-
didate for the effective theory on the worldsheet of a
semilocal string. In particular, the metric in Eq. (4.124) is
asymptotically flat and variables z; in Eq. (4.124) should
be identified with the variables in Eq. (4.123) introduced
within the field theory approach in Shifman and Yung
(2006a). It is quite plausible that corrections to the flat
metric in powers 1/Myl|p| are correctly reproduced by
the worldsheet theory (4.124). As for logarithmic correc-
tions, Shifman and Yung (2006a) have shown the ap-
proximate nature of the worldsheet theory (4.124). In
particular, corrections at large p; suppressed by the large
infrared logarithm 1/In(1/|p|ém) are not captured by
Eq. (4.124).

The most physically important consequence of emer-
gence of semilocal strings is that we lose the monopole
confinement (Evlampiev and Yung, 2003; Shifman and
Yung, 2006a). To study monopole confinement upon
quark condensation, we consider a string of a finite
length L stretched between the heavy monopole and the
antimonopole of the SU(N+1)/S(N) X U(1) sector. The
ANO string has size 1/ gVE, and if L is much larger than
this size, the energy of this configuration is

V(L)=TL, (4.125)
where T is the string tension. This linear potential en-
sures confinement of monopoles.

In the presence of semilocal strings, this picture
changes drastically. Now the size of the string can be
arbitrarily large. Imagine the configuration in which
string size becomes much larger than L. Clearly, the
problem now becomes three dimensional. The mono-
pole flux is not trapped now in a narrow flux tube. In-
stead, it is freely spread over a large three-dimensional
volume of size of order of L. This produces a Coulomb-
type potential between a monopole and an antimono-
pole,

V(L)~1/L. (4.126)
The energy of this configuration is lower than that of the
stringy configuration (4.125) at large L, so it is more
preferable. We conclude that the semilocal string in-
creases its size and effectively disintegrates, resulting in
the Coulomb potential (4.126). In fact, lattice studies
show that the semilocal string width always increases
upon small perturbations (Leese, 1992).

We see that the formation of semilocal strings on
Higgs branches leads to a dramatic physical effect,
namely, deconfinement.

2n fact, as in Dorey (1998), Dorey et al. (1999) deal with
SU(N) theory at the root of the baryon Higgs branch. How-
ever, as explained, the BPS spectra of massive states in these
two 4D theories are the same.
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H. Non-Abelian k-strings

In this section, we review the construction of multiple
strings with winding number k. They can be considered
as a bound state of k& BPS elementary strings. The
Bogomol’'nyi representation (4.31) shows that the ten-
sion of the BPS k-string is determined by its total U(1)
flux, which is 2wk. This gives the tension of the k-string
in the theory (4.9),

T, = 27ké, (4.127)

and shows that elementary strings forming the compos-
ite k-string do not interact.

If we take elementary strings forming k-string at large
separations, the total moduli space factorizes into k cop-
ies of moduli spaces of elementary strings. This suggests
that the dimension of the moduli space is

2kNj=2k + 2k(N - 2) + 2k(N;— N); (4.128)

see Eq. (4.120). The total dimension is written as a sum
of dimensions of position, orientation, and size moduli
spaces. This result was confirmed by the index theorem
of Hanany and Tong (2003), which gives Eq. (4.128) at
any separations. The moduli space of well separated k
elementary strings forming the k-string, say for Ny=N, is

[C X CP(N-1)]F
Sk ’

(4.129)

where S stands for permutations of positions of elemen-
tary strings.

The explicit solution for a non-Abelian 2-string at
zero separations in the simplest bulk theory with N
=N;=2 was constructed by Auzzi et al. (2006). It has a
peculiar feature. If the orientation vectors of two strings
S1 and S are opposite, the composite 2-string becomes
an Abelian ANO string. It carries no non-Abelian flux.
Therefore, the rotation of the SU(2) ., r group acts trivi-
ally on this string. This means that the internal moduli
space of this string is singular (Hashimoto and Tong,
2005; Auzzi et al., 2006). The section of the orientational
moduli space corresponding to S{=-S59 degenerates to a
point. Auzzi et al. (2006) argued that the internal moduli
of a 2-string at zero separation is equivalent to
CP(2)!/ Z,. This differs by the discrete quotient from the
result CP(2) obtained by Hashimoto and Tong (2005).
Results obtained by Eto, Konishi, ez al. (2006) and Eto et
al. (2007) confirm the CP(2)/Z, metric.

The metric on the moduli space of k-strings is not
known. For Abelian k-strings, the exponential correc-
tions to the flat metric were calculated by Manton and
Speight (2003). Exponentially small corrections are natu-
ral since vortices have exponential falloff of their profile
functions at large distances.

Hanany and Tong (2003, 2004) used brane construc-
tion to construct the metric of the k-string in terms of
the Higgs branch of two-dimensional gauge theory; see
Egs. (4.88) and (4.124). The proposed theory is now an
N=2 supersymmetric U(k) gauge theory with N funda-
mental and Ny;-N antifundamental flavors nt (€
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=1,...,N) and p; (i=N, ... ,Np as well as the adjoint chi-
ral multiplet Z. The D-term condition for this theory
reads

L[Z,Z] +n'i,—ppi=1. (4.130)
2B

The metric defined by this Higgs branch has power cor-
rections in separations between elementary strings to
the factorized metric. Thus it has rather dramatic dis-
agreement with field theory expectations. It is believed
(Hanany and Tong, 2003, 2004; Tong, 2005; Eto et al.,
2006b) that it reproduces correctly some data protected
by supersymmetry, like the BPS spectrum.

Eto et al. (2006¢) used the so-called method of moduli
matrix to extract the moduli of the general solution for
the k-string. It was noticed that the last of the first-order
equations (4.32) can be solved by the substitution

©=S8(z,2)Hy(z), A, +iA,=5714,S, (4.131)

where z=x;+ix, and H is an N X Ny matrix with a ho-
lomorphic dependence on z. Then equations for gauge
strength in Eq. (4.32) produce an equation on S(z,z),
which is difficult to solve in the general case. However, it
was argued by Eto ef al. (2006¢c) that S does not involve
new moduli parameters. So all moduli parameters enter
the moduli matrix H(z). Finding H(z) gives the moduli
space, which agrees with the one given by the Higgs
branch (4.130).

V. NON-ABELIAN STRINGS IN NONSUPERSYMMETRIC
THEORIES

In this section, we review non-Abelian strings in non-
supersymmetric theories. We will see that although for
BPS strings in supersymmetric theories the transition
from quasiclassical to quantum regimes in the world-
sheet theory on the string goes smoothly (see Sec.
IV.D.4), for the non-Abelian strings in nonsupersymmet-
ric theories these two regimes are separated by a phase
transition.

In particular, we review works of Gorsky et al. (2005,
2006) that consider non-Abelian strings in nonsupersym-
metric gauge theories. The theory studied by Gorsky et
al. (2005) is the bosonic part of N'=2 supersymmetric
QCD with gauge group SU(N) X U(1) described in Sec.
IV in the supersymmetric setting. The action of this
model has the form

1 1 1
S = f d4x{—(F“ )2+ —(F,.)*+—|D a"?
4g5 M 4gi M g
g g1
+ VR + 3(¢AT{1(PA)2 + §(|<P“‘|2 - N§)?

- f Ap, U -
+ 2|(a“T“ +\2my) et F + 32772F7LVF/,LL1V}’ (5.1)
where F;“V: %8 uvaplap This model is the bosonic part of
N=2 supersymmetric theory (4.9) where instead of two
squark fields g€ and §, only one fundamental scalar ¢* is
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introduced for each flavor A=1,...,Ng see reduced
model (4.24) in Sec. IV.B. We also consider the case Ny
=N and drop neutral scalar a present in Eq. (4.9) as it
plays no role in string solutions. To keep the theory in
the weak coupling, we consider large values of the pa-
rameter & in Eq. (5.1), £> Agy(y).-

We assume that

N
E mA:().
A=1

Later on it will be convenient to make a specific choice
of the parameters m,, namely,

(5.2)

A

m? =m X diag{e>™N e*™N ..

’EZ(N—I)ﬂ'i/N,l}’ (53)

where m is a single common parameter, and the con-
straint (5.2) is automatically satisfied. We can assume m
to be real and positive. We also introduce a 6 term in the
model (5.1).

The vacuum structure of the model (5.1) is the same as
that of the theory (4.9); see Sec. IV.A. Moreover, solu-
tions for Z, strings are the same, given by Eq. (4.28).
The adjoint field plays no role in this solution and is
given by its VEV (4.13). The tensions of these strings are
given classically by Eq. (4.34). However, in contrast to
the case of supersymmetric theory, now tensions of Zy
strings acquire corrections in quantum theory.

If masses of the fundamental matter are zero in Eq.
(5.1), this theory has unbroken SU(N)c,r much in the
same way as the theory (4.9). In this limit, Z strings
acquire orientational zero modes and become non-
Abelian. The solution for an elementary non-Abelian
string is given by Eq. (4.40). We consider the two-
dimensional effective low-energy theory on the world-
sheet of the non-Abelian string. Its physics appears to be
quite different, as compared with the one in the super-
symmetric case.

A. Worldsheet theory

The derivation of the effective worldsheet theory for
the non-Abelian string in the model (5.1) can be done in
much the same way as for the supersymmetric case
(Gorsky et al., 2005), see Sec. IV.D. The worldsheet
theory is now the two-dimensional nonsupersymmetric
CP(N-1) model (4.49). Its coupling constant B is given
by the coupling constant g% of the bulk theory via Eq.
(4.50). Classically, the normalization integral I is given
by Eq. (4.51). Then it follows that /=1 as in the super-
symmetric case. However, now we expect that quantum
corrections modify this result. In particular, / can be-
come a function of N in the quantum theory.

Now we discuss the impact of the 6 term that is
present in our bulk theory (5.1). At first glance, seem-
ingly it cannot produce any effect because our string is
magnetic. However, if one allows for slow variations of
n' with respect to z and ¢, one immediately observes that
the electric field is generated via A ; in Eq. (4.45). Sub-
stituting F; from Eq. (4.47) into the # term in the action
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(5.1) and taking into account the contribution from F,
times Fj; (k,n=0,3 and i,j=1,2), we get the topological
term in the effective CP(N—1) model (4.49) in the form

S(l+l) — J dzdz{zﬁ[(ﬁan*&an) + (n*ﬁgn)z]

0 .

- Elasay(o"an ﬁ)n)}, (5.4)

where [, is another normalizing integral given by
dp d
Iy=- f dr{szA(l—p>d—+<2p—p2>l}
r dr

d 2

= d”;{szAP —pfnal- (5.5)

As is seen, the integrand here reduces to a total deriva-
tive, and the integral is determined by the boundary
conditions for the profile functions p and fy4. Substitut-
ing Eqgs. (4.46) and (4.48) and Egs. (4.30) and (4.29), we
get

(5.6)

independent of the profile function form. This latter cir-
cumstance is perfectly natural for the topological term.

The additional term in the CP(N—1) model (5.4) just
derived is the # term in standard normalization. The re-
sult (5.6) could have been expected since the physics is
27 periodic with respect to 6 both in the four-
dimensional bulk gauge theory and in the two-
dimensional worldsheet CP(N—-1) model. The result
(5.6) is not sensitive to the presence of supersymmetry. It
will hold in supersymmetric models as well. Note that
the complex bulk coupling constant converts to the com-
plex worldsheet coupling constant,

47 0 28 .0
=— 41— — +1—.
T g% 2 2

Now we introduce small masses for the fundamental
matter in Eq. (5.1). The diagonal color-flavor group
SU(N)c,r is now broken by adjoint VEV’s down to
U(1)N-1x Zy. The solutions for the Abelian (or Zy)
strings are the same as in Sec. IV.D.4 since the adjoint
field does not enter these solutions. In particular, we
have N distinct Zy string solutions depending on what
particular squark winds at infinity; see Sec. IV.D.4. The
string solution with the winding last flavor is still given
by Eq. (4.28).

What is changed with the color-flavor SU(N)c, r ex-
plicitly broken by m, # 0 is that the rotations (4.40) no
longer generate zero modes. In other words, the fields n*
become quasimoduli: a shallow potential (4.86) for the
quasimoduli #n’ on the string worldsheet is generated
(Hanany and Tong, 2004; Shifman and Yung, 2004a;
Gorsky et al., 2005). Note that we can replace 714 by m 4
due to the condition (5.2). This potential is shallow as
long as my < \E
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The potential simplifies if the mass terms are chosen
according to Eq. (5.3),

N
E ezm'e/N|n€|2
=1

2

Vepn-1)=2Bm*) 1 - (5.7)

This potential is obviously invariant under the cyclic Z
substitution,

¢ —>C0+k, nt—=n V¢, (5.8)

with k fixed. This property will be exploited below.

Now our effective two-dimensional theory on the
string worldsheet becomes a massive CP(N-1) model.
As in the supersymmetric case, the potential (5.7) has N
vacua at

n' = 8,

These vacua correspond to N distinct Abelian Zy strings
with ¢%% winding at infinity; see Eq. (4.44).

€=1.2,....N. (5.9)

B. Physics in the large-N limit

The massless nonsupersymmetric CP(N-1) model
(5.4) was solved long ago by Witten in the large-N limit
(Witten, 1979b). The massive case with potential (5.7)
was considered at large N by Gorsky et al. (2005, 2006)
in relation to non-Abelian strings. Here we review this
analysis.

As discussed in Sec. IV.D .4, the CP(N-1) model can
be understood as a strong-coupling limit of U(1) gauge
theory. The action has the form

1 1
S- f dzx{z,ewknqz + 2+ il
ny
Lt
\2

2

0
- _gkp[?kAp + 4B |n

2

+2¢* B - 1)2},

€|2

(5.10)

where we also included the # term. As in the supersym-
metric case in the limit e2— o, the o field can be ex-
cluded via an algebraic equation of motion, which leads
to the theory (5.4) with potential (4.86).

The Zy cyclic symmetry (5.8) now takes the form

i27Tk/N0_’ € (f+k’ \4 e’ (511)

o—e n —n

where k is fixed.

It turns out that the nonsupersymmetric version of the
massive CP(N-1) model (5.10) has two phases sepa-
rated by the phase transition (Gorsky et al., 2005, 2006).
At large values of mass parameter m we have the Higgs
phase, while at small m the theory is in the Coulomb-
confining phase.

C. The Higgs phase

At large m, m> A, the renormalization-group flow of
the coupling constant B8 in Eq. (5.10) is frozen at the
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scale m. Thus, the model is at weak coupling and quasi-
classical analysis is applicable. The potential (5.7) has N
degenerate vacua that are labeled by the order param-
eter (o), the vacuum configuration being

(5.12)

as in the supersymmetric case; see Eq. (4.90). In each
given vacuum, the Z, symmetry (5.11) is spontaneously
broken.

These vacua correspond to Abelian Zy strings of the
bulk theory. N vacua of worldsheet theory have strictly
degenerate vacuum energies. From the four-dimensional
point of view, this means that we have N strictly degen-
erate Zy strings.

There are 2(N-1) elementary excitations. Here we
count real degrees of freedom. The action (5.10) con-
tains N complex fields n’. The common phase of n‘ is
gauged away. The condition |n‘|/?=1 eliminates one more
field. These elementary excitations have physical masses

N (5.13)

M =|m - my,

There are also kinks (domain walls that are particles
in two dimensions) interpolating between these vacua.
Their masses scale as

MKk~ BM,. (5.14)

The kinks are much heavier than elementary excitations
at weak coupling. Note that they have nothing to do
with Witten’s n solitons (Witten, 1979b) identified as soli-
tons at strong coupling. The point of phase transition
separates these two classes of solitons.

As already discussed for the supersymmetric case (see
Sec. IVE), the flux of the Abelian 't Hooft-Polyakov
monopole is equal to the difference of the fluxes of two
neighboring strings, see Eq. (4.91). Therefore, the con-
fined monopole in this regime is a junction of two dis-
tinct Zy strings. It is seen as a quasiclassical kink inter-
polating between the neighboring €yth and (€,+1)th
vacua of the effective massive CP(N-1) model on the
string worldsheet. A monopole can move freely along
the string as both attached strings are tension degener-
ate.

D. The Coulomb-confining phase

Now we discuss the Coulomb-confining phase of the
theory occurring at small m. As mentioned, at m=0 the
CP(N-1) model was solved by Witten in the large-N
limit (Witten, 1979b). The model at small m is very simi-
lar to Witten’s solution. (In fact, in the large-N limit it is
the same.) Gorsky et al. (2006) presented a generaliza-
tion of Witten’s analysis to the massive case, which is
then used to study the phase transition between the Zy
asymmetric and symmetric phases. Here we summarize
Witten’s results for the massless model.

The nonsupersymmetric CP(N—1) model is asymp-
totically free (like its supersymmetric version) and devel-
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k=0 k=1 k=0

FIG. 9. Linear confinement of the n—n" pair. The solid straight
line represents the string. The dashed line shows the vacuum
energy density (normalizing & to zero).

ops its own scale A,. If m=0, classically the field n‘ can
have an arbitrary direction; therefore, one might naively
expect spontaneous breaking of SU(N) and the occur-
rence of massless Goldstone modes. This cannot happen
in two dimensions. Quantum effects restore the full sym-
metry, making the vacuum unique. Moreover, the condi-
tion |n¢|*>=1 becomes in effect relaxed. Due to strong
coupling, we have more degrees of freedom than in the
original Lagrangian, namely all N fields n become dy-
namical and acquire masses A,.

This is not the end of the story, however. In addition,
one gets another composite degree of freedom. The
U(1) gauge field A, acquires a standard kinetic term at
the one-loop level,”? of the form

NAT2Fy Fy,. (5.15)

Comparing Eq. (5.15) with Eq. (5.10), we see that the
charge of the n fields with respect to this photon is 1/ VN.
The Coulomb potential between two charges in two di-
mensions is linear in separation between these charges.
The linear potential scales as

2

A
V(R) ~ 7R,

N (5.16)

where R is separation. The force is attractive for pairs 7
and n, leading to the formation of weakly coupled
bound states (weak coupling is the manifestation of the
1/N suppression of the confining potential). Charged
states are eliminated from the spectrum. This is the rea-
son why the #n fields were called quarks by Witten. The
spectrum of the theory consists of 77n mesons. The pic-
ture of confinement of n’s is shown in Fig. 9.

The validity of the above consideration rests on large
N. If N is not large, the solution (Witten, 1979b) ceases
to be applicable. It remains valid in the qualitative sense,
however. Indeed, at N=2 the model was solved exactly
(Zamolodchikov and Zamolodchikov, 1979, 1992) [see
also Coleman (1976)]. Zamolodchikovs found that the
spectrum of the O(3) model consists of a triplet of de-
generate states (with mass ~A,). At N=2, the action
(5.10) is built of doublets. In this sense, one can say that
Zamolodchikovs’s solution exhibits confinement of dou-
blets. This is in qualitative accord with the large-N solu-
tion (Witten, 1979b).

Inside the 7in mesons, we have a constant electric
field; see Fig. 9. Therefore, the spatial interval between 7

22By loops here we mean perturbative expansion in 1/N per-
turbation theory.
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FIG. 10. The vacuum structure of the CP(N-1) model at 6
=0.

and » has a higher energy density than the domains out-
side the meson.

Modern understanding of the vacuum structure of the
massless CP(N—-1) model (Witten, 1998) [see also Shif-
man (1998)] allows one to reinterpret confining dynam-
ics of the n fields in different terms (Gorsky et al., 2005;
Markov et al., 2005). Indeed, at large N, along with the
unique ground state, the model has ~N quasistable local
minima, quasivacua, which become absolutely stable at
N=o. The relative splittings between the values of the
energy density in the adjacent minima are of the order
of 1/N, while the probability of the false vacuum decay
is proportional to N~! exp(—N) (Shifman, 1998; Witten,
1998). The n quanta (n quarks solitons) interpolate be-
tween the adjacent minima.

The existence of a large family of quasivacua can be
inferred from studying the 6 evolution of the theory.
Consider the topological susceptibility, i.e., the correla-
tion function of two topological densities

f ’x(0(x), Q(0)), (5.17)
where
Q = igkpﬁkAp = _Skp((9kn€(?pn€). (518)

2

The correlation function (5.17) is proportional to the
second derivative of the vacuum energy with respect to
the 0 angle. From Eq. (5.18), it is not difficult to deduce
that this correlation function scales as 1/N in the large-
N limit. The vacuum energy by itself scales as N. Thus,
we conclude that, in fact, the vacuum energy should be a
function of 6/N.

On the other hand, the vacuum energy must be a
2mr-periodic function of 6. These two requirements are
seemingly self-contradictory. A way to reconcile the
above facts is as follows. Assume that we have a family
of quasivacua with energies

a2 2wk + 0\?
E(6) ~ NA ) 1+ const X N ,

where k=0, ...,N-1. A schematic picture of these vacua
is given in Fig. 10. All these minima are entangled in the

(5.19)
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6 evolution. If we vary 6 continuously from 0 to 2, the
depths of the minima “breathe.” At 6=, two vacua be-
come degenerate, while for larger values of # the former
global minimum becomes local while the adjacent local
minimum becomes global. It is obvious that for the
neighboring vacua that are not too far from the global
minimum,

2

Ep—Ep~—.

N (5.20)

This is also the confining force acting between n and 7.
One could introduce order parameters that would dis-
tinguish between distinct vacua from the vacuum family.
An obvious choice is the expectation value of the topo-
logical charge. The kinks n’ interpolate, say, between the
global minimum and the first local one on the right-hand
side. Then 7’s interpolate between the first local mini-
mum and the global one. Note that the vacuum energy
splitting is an effect suppressed by 1/N. At the same
time, kinks have masses that scale as N,
ME™E~ A, (5.21)
The multiplicity of such kinks is N (Acharya and Vafa,
2001); they form an N-plet of SU(N). This is in full ac-
cord with the fact that the large-N solution of Eq. (5.10)
exhibits N quanta of the complex field n°.

Thus we see that the CP(N—-1) model has a fine struc-
ture of vacua that are split, with the splitting of the order
of A2/N. In four-dimensional bulk theory, these vacua
correspond to elementary non-Abelian strings. Classi-
cally, these strings have the same tension (4.34). Due to
quantum effects in the worldsheet theory, the degen-
eracy is lifted: the elementary strings become split, with
tensions

21k + 6\
T=2Wg+c1NA§{1+c2( ”N )}

where ¢; and ¢, are numerical coefficients. Note that (i)
the splitting does not appear to any finite order in the
coupling constants; (ii) since &> A, the splitting is sup-
pressed in both parameters A,/ V& and 1/N.

Kinks of the worldsheet theory represent confined
monopoles (string junctions) in the four-dimensional
bulk theory. Therefore, kink confinement in the CP(N
—1) model can be interpreted as follows (Gorsky et al.,
2005; Markov et al., 2005). The non-Abelian monopoles,
in addition to the four-dimensional confinement (which
ensures that monopoles are attached to the strings), ac-
quire a two-dimensional confinement along the string: a
monopole-antimonopole forms a mesonlike configura-
tion, with necessity; see Fig. 9.

In summary, the CP(N-1) model in the Coulomb-
confining phase, at small m, has a vacuum family with a
fine structure. For each given 6 (except 6=, 3, etc.)
the true ground state is unique, but there are a large
number of almost degenerate ground states. The Zy
symmetry is unbroken. The classical condition (4.43) is

(5.22)
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FIG. 11. Schematic dependence of string tensions on the mass
parameter m. At small m in the non-Abelian confinement
phase the tensions are split, while in the Abelian confinement
phase at large m they are degenerative.

replaced by (n*)=0. The spectrum of physically observ-
able states consists of kink-antikink mesons that form
the adjoint representation of SU(N).

Instead, at large m the theory is in the Higgs phase; it
has N strictly degenerate vacua (5.12); the Zy symmetry
is broken. We have N—1 elementary excitations n with
masses given by Eq. (5.13). Thus we conclude that these
two regimes should be separated by a phase transition at
some critical value m (Gorsky et al., 2005, 2006). This
phase transition is associated with the Z, symmetry
breaking: in the Higgs phase, the Zy symmetry is spon-
taneously broken, while in the Coulomb phase it is re-
stored. For N=2, we deal with Z,, which makes the situ-
ation akin to the Ising model.

In the worldsheet theory, this is a phase transition be-
tween the Higgs and Coulomb-confining phase. In the
bulk theory, it can be interpreted as a phase transition
between the Abelian and non-Abelian confinement. In
the Abelian confinement phase at large m, the Zy sym-
metry is spontaneously broken, all N strings are strictly
degenerate, and there is no two-dimensional confine-
ment of the 4D-confined monopoles. Instead, in the
non-Abelian confinement phase occurring at small m,
the Zy symmetry is fully restored, all N elementary
strings are split, and the 4D-confined monopoles com-
bine with antimonopoles to form a mesonlike configura-
tion on the string; see Fig. 9. We show schematically the
dependence of the string tensions on m in these two
phases in Fig. 11.

Gorsky et al. (2006) found the phase-transition point
using large-N methods developed by Witten (1979b). It
turns out that the critical point is

M. = A,. (5.23)

The vacuum energy is calculated in both phases and is
shown to be continuous at the critical point. If one ap-
proaches the critical point, say from the Higgs phase,
some composite states of the worldsheet theory (5.10)
such as photons as well as kinks become light. One is
tempted to believe that these states become massless at
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the critical point (5.23). However, this happen only in the
very narrow vicinity of the phase transition point where
the 1/N expansion fails. Thus the large-N approximation
is not powerful enough to determine the critical behav-
ior.

To conclude this section, we note that we encounter a
crucial difference between the non-Abelian confinement
in supersymmetric and nonsupersymmetric gauge theo-
ries. For BPS strings in supersymmetric theories, we do
not have a phase transition separating the phase of the
non-Abelian strings from that of the Abelian strings
(Hanany and Tong, 2004; Shifman and Yung, 2004a).
Even for small values of the mass parameters, supersym-
metric theory strings are strictly degenerate, and the Zy
symmetry is spontaneously broken. In particular, at m 4
=0 the order parameter for the broken Zy, which differ-
entiates N degenerate vacua of the supersymmetric
CP(N-1) model, is the bifermion condensate of two-
dimensional fermions living on the string worldsheet of
the non-Abelian BPS string; see Sec. IV.D.3.

Moreover, the presence of the phase transition be-
tween Abelian and non-Abelian confinement in nonsu-
persymmetric theories suggests a solution for the prob-
lem of enrichment of the hadronic spectrum mentioned
in Sec. IV. In the phase of Abelian confinement, we have
N strictly degenerative Abelian Zy strings that give rise
to too many hadron states, not present in the real world
QCD. Therefore, Abelian Zy strings can hardly play a
role of prototypes of QCD confining strings. Although
BPS strings in supersymmetric theories become non-
Abelian as we turn mass parameters m, to a common
value, still there are N strictly degenerative non-Abelian
strings and therefore still too many hadron states in the
spectrum.

As reviewed in this section, the situation in nonsuper-
symmetric theories is quite different. As we make mass
parameters m, equal, we enter the non-Abelian con-
finement phase. In this phase, N elementary non-
Abelian strings are split. At #=0, we have only one
lightest elementary string producing a single two-
particle meson with given flavor quantum numbers and
spin, exactly as observed in nature. If N is large, the
splitting is small, however if N is not so large, the split-
ting is of order of A(ZT. Therefore, mesons produced by
excited strings are unstable and may appear invisible ex-
perimentally.

VI. DOMAIN WALLS AS D-BRANE PROTOTYPES

D-branes are extended objects in string theory on
which strings can end (Polchinski, 1995). Moreover, the
gauge fields are the lowest excitations of open super-
strings, with the end points attached to D-branes. SU(N)
gauge theories are obtained as a field-theoretic reduc-
tion of a string theory on the worldvolume of a stack of
N D-branes.

In recent years, solitonic objects of the domain wall
and string type were extensively studied in supersym-
metric gauge theories in 143 dimensions. First, it was
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observed (Dvali and Shifman, 1997) that there should
exist critical (BPS-saturated) domain walls in N'=1 gluo-
dynamics, with the tension scaling as NA®. Here A is the
scale parameter. The peculiar N dependence of the ten-
sion prompted (Witten, 1997) a D-brane interpretation
of such walls. Ideas as to how flux tubes can end on the
BPS walls were analyzed (Kogan et al., 1998) at the
qualitative level shortly thereafter. Later on, BPS-
saturated domain walls and their junctions with strings
were discussed (Abraham and Townsend, 1992a, 1992b;
Gauntlett er al., 2001) in a more quantitative aspect in
N=2 sigma models. Some remarkable parallels between
field-theoretical critical solitons and the D-brane con-
struction were discovered.

In this and the next sections, we review the parallel
found between field-theoretical BPS domain walls in
gauge theories and D-branes/strings. In other words, we
discuss BPS domain walls that localize gauge fields on
their worldvolume, in this sense becoming a D-brane
prototypes in field theory.

Research on field-theoretic mechanisms of gauge field
localization on the domain walls has attracted much at-
tention in recent years. The only viable mechanism of
gauge field localization was put forward by Dvali and
Shifman (1997), where it was noted that if a gauge field
is confined in the bulk and is unconfined (or less con-
fined) on the brane, this naturally gives rise to a gauge
field on the wall [for further developments, see
Dubovsky and Rubakov (2001) and Dvali and Vilenkin
(2003)]. Although this idea seems easy to implement, in
fact it requires a careful consideration of quantum ef-
fects (confinement is certainly such an effect), which is
hard to do at strong coupling. Building on these initial
proposals, models with localization of gauge fields on
the worldvolume of domain walls at weak coupling in
N=2 supersymmetric gauge theories were suggested by
Shifman and Yung (2003, 2004a) and Sakai and Tong
(2005). The basic idea is that the gauge group is com-
pletely Higgsed in the bulk while inside the wall charged
scalar fields are almost zero and gauge fields can propa-
gate freely. Then the dual field lives on the wall. Shifman
and Yung (2003) considered domain walls in the simplest
N=2 QED theory, while Shifman and Yung (2004a) and
Sakai and Tong (2005) dealt with domain walls in non-
Abelian N'=2 gauge theories (4.9) with gauge group
U(N). We review the results obtained in these papers.

The moduli space of multiple domain walls in A/=2
supersymmetric gauge theories and sigma models were
studied by Gauntlett et al. (2001b), Tong (2002), Isozumi
et al. (2004a, 2004b), Eto et al. (2005a), and Sakai and
Yang (2006). Note also that domain walls can intersect
(Gauntlett, 2001a; Kakimoto and Sakai, 2003; Eto et al.,
2007). In particular, in Eto et al. (2005b, 2006a) obtained
honeycomb webs of walls in Abelian and non-Abelian
gauge theories, respectively.

We start by discussing BPS domain walls as D-brane
prototypes first in the simplest Abelian theory, A'=2
SQED with two flavors (Shifman and Yung, 2003). It
supports both the BPS-saturated domain walls and the
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BPS-saturated ANO strings if the Fayet-Iliopoulos term
is added to the theory.

A. N'=2 supersymmetric QED

The field content of A'=2 supersymmetric QED con-
sists of a U(1) vector N'=2 multiplet as well as Ny matter
hypermultiplets. The bosonic part of the action of this
theory is

1 1 -
S:fd“x{@Fi,ﬁ ;|&#a|2+V#qAVMqA

) _ 2 &
+ V,ﬁAV,ﬁA + §(|61A|2 - |67A|2 -&+ EWAQAP
1 . -
+ §(|61A|2 +1G4)|a + \’2mA|2}, (6.1)
where
Vumdu=3Au Vu=dut A, (6.2)

Here £ is the coefficient in front of the Fayet-Iliopoulos
term; we consider the FI D term here while g is the U(1)
gauge coupling. The index A=1,...,N; is the flavor in-
dex. In this section we consider the case Ny=2. This is
the simplest case that admits a domain wall interpolating
between quark vacua.

The mass parameters m,m, are assumed to be real.
In addition, we assume

(6.3)

Simultaneously, Am < (m;+m;)/2. There are two vacua
in this theory: in the first vacuum,

Am =my —my> g\E.

a=— \’Eml, q,= \"’E, q,=0; (6.4)
and in the second one,
a=—\2m, q=0, q,=\¢ (6.5)

The VEV of the field ¢ vanishes in both vacua. Hereaf-
ter in search for domain-wall solutions, we stick to the
ansatz g=0.

Now we discuss the mass spectrum of light fields in
both quark vacua. Consider for definiteness the first
vacuum, Eq. (6.4). The spectrum can be obtained by di-
agonalizing the quadratic form in Eq. (6.1). This was
done by Vainshtein and Yung (2001); the result is as fol-
lows: one real component of field ¢! is eaten up by the
Higgs mechanism to become the third components of
the massive photon. Three components of the massive
photon, one remaining component of ¢!, and four real
components of the fields §; and a form one long N'=2
multiplet (8 boson states+8 fermion states), with mass

mzyz %gzg. (6.6)

The second flavor g2, G, (which does not condense in

this vacuum), forms one short A'=2 multiplet (4 boson
states+4 fermion states), with mass Am, which is heavier
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than the mass of the vector supermultiplet. The latter
assertion applies to the regime (6.3). In the second
vacuum, the mass spectrum is similar—the roles of the
first and second flavors are interchanged.

If we consider the limit opposite to that in Eq. (6.3)
and set Am—0, the photonic supermultiplet becomes
heavier than that of g2, the second flavor field. There-
fore, it can be integrated out, leaving us with the theory
of massless moduli from ¢2, which interact through a
nonlinear sigma model with the Kihler term corre-
sponding to the Eguchi-Hanson metric. Domain walls in
this sigma model limit were considered by Gauntlett et
al. (2001, 2001b) and Tong (2002).

B. Domain walls in N'=2 QED

A BPS domain wall interpolating between the two
vacua of the bulk theory (6.1) was explicitly constructed
by Shifman and Yung (2003). Assuming that all fields
depend only on the coordinate z=xj3, it is possible to

write the energy in the Bogomol’nyi form (Bogomol’nyi,
1976),

2

1
E= J dX3{ ‘ V3qA * —/—qA(a + \EmA)
V2

21
+ 755(9361} (67)

+

1 8
—da+ —=(q"* - &
g 3 2\6 lg4* - ¢
Requiring the first two terms above to vanish gives us
the BPS equations for the wall. Assuming that Am >0,
we choose the upper sign in Eq. (6.7) and obtain

\

1 —
quA == ?CIA(” +\2my),
V2

gz 2
d,a=—-==(q"f-¢. 6.8
: 2\“‘,2(|61 R (6.8)
These first-order equations should be supplemented by
the following boundary conditions:

'~ =VE& GH-2)=0, a(-»)=—\2my;

q'=)=0, |@@)|=VE a(2)=-2m,, (6.9)

which show that our wall interpolates between the two
quark vacua. Here we use U(1) gauge rotation to make
q' in the left vacuum real.

The tension is given by the total derivative term [the
last term in Eq. (6.7)], which can be identified as the (1,0)
central charge of the supersymmetry algebra,

T, = tAm. (6.10)

Now we work out the solution to the first-order equa-
tions (6.8), assuming the conditions (6.9) to be satisfied.
The range of variation of the field a inside the wall is of
the order of Am [see Eq. (6.9)]. The minimization of its
kinetic energy implies this field to be slowly varying.
Therefore, we may safely assume that the wall is thick;
its size R>1/g\¢. This fact will be confirmed shortly.
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FIG. 12. (Color online) Internal structure of the domain wall:
two edges (domains Ej,) of the width ~(gVé&! are separated
by a broad middle band (domain M) of the width R; see Eq.
(6.13).

We arrive at the following picture for the domain wall.
The wall solution has a three-layer structure (Shifman
and Yung, 2003); see Fig. 12: in the two outer layers
(which have width O[(g\€)™']), the squark fields drop to
zero exponentially; in the inner layer, the field a interpo-
lates between its two vacuum values.

Then to the leading order we can set the quark fields
to zero in Egs. (6.8) inside the inner layer. The second
equation in Egs. (6.8) tells us that a is a linear function
of z. The solution for a takes the form

Z— Z())
R b
where the collective coordinate z is the position of the

wall center (and Am is assumed positive). The solution is
valid in a wide domain of z,

a=— \E(m—Am (6.11)

R
|z —zol < =, (6.12)

2

except narrow areas of size ~1/g\e’E near the edges of
the wall at z—-zo=+R/2.

Substituting the solution (6.11) into the second equa-
tion in Egs. (6.8), we get

3 4Am 2Am

CgE o ml

(6.13)

Since Am/gVé>1 [see Eq. (6.3)], this result shows that
R>1/g\£ which justifies our approximation.

Furthermore, we can now use the first relation in Egs.
(6.8) to determine tails of the quark fields inside the
wall. As mentioned above, we fix the gauge imposing the
condition that ¢' is real at z— —o; see the more detailed
discussion by Shifman and Yung (2003).

Consider first the left edge (domain E; in Fig. 12) at
z—2z9=—R/2. Substituting the above solution for a in the
equation for ¢!, we get
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' = Vge My - 2 RRP (6.14)
where m,, is given by Eq. (6.6). This behavior is valid in
the domain M, at (z—zo+R/2)>1/gV& and shows that
the field of the first quark flavor tends to zero exponen-
tially inside the wall, as expected.

By the same token, we can consider the behavior of
the second quark flavor near the right edge of the wall at
z—29=R/2. The first equation in Egs. (6.8) for A=2 im-
plies

q? = ey ~ 20 = RI2P-io (6.15)

which is valid in the domain M provided that (R/2-z
+z0)>1/gV& Here o is an arbitrary phase that cannot
be gauged away. Inside the wall, the second quark flavor
tends to zero exponentially too.

It is not difficult to check that the main contribution
to the wall tension comes from the middle layer while
edge domains produce contributions of the order of £2,
which makes them negligibly small.

Now we comment on the phase factor in Eq. (6.15). Its
origin is as follows (Shifman and Yung, 2003). The bulk
theory at Am+#0 has U(1) X U(1) flavor symmetry cor-
responding to two independent rotations of two quark
flavors. In both vacua, only one quark develops a VEV.
Therefore, in both vacua only one of these two U(1)’s is
broken. The corresponding phase is eaten by the Higgs
mechanism. However, on the wall both quarks have non-
vanishing values, breaking both U(1) groups. Only one
of the corresponding two phases is eaten by the Higgs
mechanism. The other one becomes a Goldstone mode
living on the wall.

Thus we have two collective coordinates characteriz-
ing our wall solution, namely, the position of the center
zo and the phase o. In the effective low-energy theory on
the wall, they become scalar fields of the worldvolume
(2+1)-dimensional theory z((f,x,y) and o(t,x,y), re-
spectively. The target space of the second field is ;.

This wall is a 1/2-BPS solution of the Bogomol'nyi
equations. In other words, the soliton breaks four of
eight supersymmetry generators of the N'=2 bulk theory.
In fact, as was shown by Shifman and Yung (2003), the
four supercharges selected by the conditions

2 . 21 _1 . 2
82'=—l8 . 82‘=—l8 .

1 2 .
& =ie?, & =ig"

; : (6.16)

act trivially on the wall solution. They become four su-
persymmetries acting in the (2+1)-dimensional effective
worldvolume theory on the wall. Here % and éfa are
eight supertransformation parameters.

C. Effective field theory on the wall

In this subsection we review the (2+1)-dimensional
effective low-energy theory of the moduli on the wall
(Shifman and Yung, 2003). To do so, we make the wall
collective coordinates zo and o (together with their fer-
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mionic superpartners) slowly varying fields depending
on x, (n=0,1,2). For simplicity, we consider the bosonic
fields zy(x,) and o(x,); the residual supersymmetry will
allow us to readily reconstruct the fermion part of the
effective action.

Because zy(x,) and o(x,,) correspond to zero modes of
the wall, they have no potential terms in the worldsheet
theory. Therefore, in fact, our task is to derive kinetic
terms, in much the same way as was done for strings; see
Sec. IV.D. For z(x,,), this procedure is very simple. Sub-
stituting the wall solution (6.11), (6.14), and (6.15) into
the action (6.7) and taking into account the x, depen-
dence of this modulus, we get

% f d*x(3,z20)%. (6.17)

As far as the kinetic term for o(x,,) is concerned, more
effort is needed. We start from Egs. (6.14) and (6.15) for
the quark fields. Then we have to modify our ansatz,
introducing n components for the gauge field,

A, = x(2)d,0(x,). (6.18)

We have introduced an extra profile function y(z). It
has no role in the construction of the static wall solution
per se. It is unavoidable, however, in constructing the
kinetic part of the worldsheet theory of the moduli. This
new profile function is described by its own action,
which will be subject to minimization. This is quite simi-
lar to the procedure of derivation of the worldsheet ef-
fective theory for non-Abelian string; see Sec. IV.D.

The gauge potential in Eq. (6.18) is not pure gauge. It
does lead to a nonvanishing field strength. It is intro-
duced in order to cancel the x dependence of the quark
fields far from the wall (in the quark vacua at z— )
emerging through the x dependence of of(x,); see Eq.
(6.15).

To ensure this cancellation, we impose the following
boundary conditions for the function )((z):23

x(z) — 0,

7— -,

X(z)— -2, z— +=. (6.19)

Next, substituting Egs. (6.14), (6.15), and (6.18) into the
action (6.7), we arrive at

85.1= |:J d3x%(‘9n0')2:| J-dZ{é(asz

+Xq') + (2+X)2|612|2}- (6.20)

The expression in the integral is an action for the y pro-
file function.

Now to find the function y, we have to minimize Eq.
(6.20) with respect to y. This gives

BRemember the electric charge of the quark fields is +1/2.
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- Zx+g°Xlq'[* + g2+ Ylg?*=0. (6.21)
Note that the equation for y is of the second order. This
is because the domain wall is no longer a BPS state once
we switch on the dependence of the moduli on the lon-
gitudinal variables x,,. a

To the leading order in g\&/ Am, the solution of Eq.
(6.21) can be obtained in the same manner as was done
previously for other profile functions. We first discuss
what happens outside the inner part of the wall. At z
— 279> R/2 the profile |g!| vanishes while |¢?| is exponen-
tially close to \E and, hence,

X — — 2+ const X ¢"Z7%0), (6.22)
At zog—z>R/2, x falls off exponentially to zero. Thus,
outside the inner part of the wall, at |z—z¢|>R/2, the
function y approaches its boundary values with the ex-
ponential rate of approach.

Of most interest, however, is the inside part, the
middle domain M (see Fig. 12). Here both quark profile
functions vanish, and Eq. (6.21) degenerates into 33)(:0.
As a result, the solution takes the form

Z—2
- 12220
X R

(6.23)

In narrow edge domains E;,, the exact y profile
smoothly interpolates between the boundary values [see
Eq. (6.22)] and the linear behavior (6.23) inside the wall.
These edge domains give small corrections to the lead-
ing term in the action.

Substituting the solution (6.23) into the y action, in
Eq. (6.20), we arrive at

Sy, = Ai f dx3(0,0)?. (6.24)
m

As is well known (Polyakov, 1977), the compact scalar
field o(t,x,y) can be reinterpreted to be dual to the (2
+1)-dimensional Abelian gauge field living on the wall.
The emergence of the gauge field on the wall is easy to
understand. The quark fields almost vanish inside the
wall. Therefore, the U(1) gauge group is restored inside
the wall while it is Higgsed in the bulk. The dual U(1) is
in the confinement regime in the bulk. Hence, the dual
U(1) gauge field is localized on the wall, in full accor-
dance with the general argument of Dvali and Shifman
(1977). The compact scalar field o(x,,) living on the wall
is a manifestation of this magnetic localization.

The result in Eq. (6.24) implies that the coupling con-
stant of our effective U(1) theory on the wall is given by

e’ =4 ¢

A (6.25)

In particular, the definition of the (2+1)-dimensional
gauge field takes the form
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2
FZD - 2e—snmk<9k0'. (6.26)
T

This finally leads us to the following bosonic effective
low-energy theory of the moduli fields on the wall:

T, 1
S21= f d3x{7<anzo>2 + 4—62(1”2%721))2}.

The fermion content of the worldvolume theory is given
by two three-dimensional Majorana spinors, as is re-
quired by N'=2 in three dimensions [four supercharges,
see Eq. (6.26)]. The full worldvolume theory is a U(1)
gauge theory in (2+1) dimensions, with four super-
charges. The Lagrangian and corresponding superalge-
bra can be obtained by reducing four-dimensional A'=1
SQED (with no matter) to three dimensions.

The field z, in Eq. (6.27) is the A/=2 superpartner of
the gauge field A,. To make it more transparent we
make a rescaling, introducing a new field

(6.27)

a),1 = 27T§ZQ. (628)

In terms of a,,, the action (6.27) takes the form

1 1
Sr41= f d3x{ﬁ(&na2+l)2 + @(F{mzzl))z}- (6.29)

The gauge coupling constant e? has dimension of mass in
three dimensions. A characteristic scale of massive exci-
tations on the worldvolume theory is of the order of the
inverse thickness of the wall 1/R; see Eq. (6.13). Thus
the dimensionless parameter that characterizes the cou-
pling strength in the worldvolume theory is €’R,

eR=—5. (6.30)
g

This can be interpreted as a feature of the bulk-wall
duality: the weak-coupling regime in the bulk theory
corresponds to strong coupling on the wall and vice
versa (Shifman and Yung, 2003, 2006b). Of course, find-
ing explicit domain-wall solutions and deriving the effec-
tive theory on the wall assumes a weak-coupling regime
in the bulk, g?<1. In this limit, the worldvolume theory
is in the strong-coupling regime and is not very useful.

The fact that each domain wall has two bosonic col-
lective coordinates—its center and the phase—in the
sigma model limit was noted by Abraham and Townsend
(1992a, 1992b) and Tong (2002).

To summarize, we showed that the worldvolume
theory on the domain wall is A'=2 U(1) gauge theory
(6.29). Thus the domain wall in the theory (6.1) presents
an example of D-brane in field theory—it localizes a
gauge field on its worldvolume. In string theory, gauge
fields are localized on D-branes because fundamental
open strings can end on a D-brane. It turns out that this
is also true for field theory D-branes. We postpone to
the next section reviewing 1/4-BPS solutions found for
junctions of field theory strings (flux tubes) with domain
walls (Gauntlett et al., 2001; Shifman and Yung, 2003,
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2004a). Below we consider generalizations of the effect
of localization of gauge fields on a domain-wall world-
volume to non-Abelian theories.

D. Domain walls in U(N) gauge theories

In this subsection, we review domain walls in N'=2
QCD (4.9) with gauge group U(N). We assume that the
number of quark flavors is Ny>N, so the theory has
many vacua of type (4.13) and (4.16) depending on which
N quarks out of Ny develop VEV’s. We can denote dif-
ferent vacua as (A;,A,,...,Ay) specifying which quark
flavors develop VEV’s. First we assume that all quark
masses are generically different.

1. Nondegenerate masses

We arrange quark masses as follows:

In this case, the theory (4.9) has
N
—L (6.32)
N!(N;=N)!

isolated vacua.

Domain walls interpolating between these vacua were
classified by Sakai and Tong (2005). Below we review
this classification. Bogomol’nyi representation of the ac-
tion (4.9) leads to the first-order equations for wall solu-
tions (Lambert and Tong, 2000), see also Shifman and
Yung (2004a),

1
d.¢"=—F=(a,” +a+ \’EmA)(pA,
V2
2
82 - A
aall:_ r—((P Ta(P )’
b4 2\“'2 A

2
da=-SL(g'P - 20, (6.33)
272
where we used ansatz (4.23) and introduce a single
quark field ¢*4 instead of two fields g4 and G 4.
Tensions of the walls satisfying the above equations
are given by the surface term

T, =1\2¢ f dzd.a. (6.34)
They can be written as (Sakai and Tong, 2005)
T, = ém, (6.35)
where we use Eq. (4.13) and m=(m,, ... ,me) while
Ny
g=> k. (6.36)
i=1

Here k; are integers while «; are simple roots of
SU(N Nj‘) algebra,
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a = (17_ 1’07 ’0)9
ay = (0’13_ 17 ’0)7

ay 1= (0,...,0,1,-1). (6.37)

Elementary walls arise when only one of k; is equal to
1 while all others are zero. Their tensions are

T,, = &m; = mp.y). (6.38)

The ith elementary wall interpolates between vacua
(...,i,...) and (...,i+1,...). All other walls can be con-
sidered as composite states of elementary walls.

Consider an example of the theory (4.9) with U(2)
gauge group and Ny=4. Explicit solutions for elementary
walls in the limit

(6.39)

were obtained by Shifman and Yung (2004a). They have
the same three-layer structure as in the Abelian case;
see Sec. VI.B. The elementary wall interpolating be-
tween vacua (1,2) and (1,3) has the following structure.
In the left domain, quark ¢* goes from its VEV V¢ to
zero exponentially, while in the right domain quark o
goes from zero to its VEV V¢ In the broad middle do-
main, fields a and a® linearly interpolate between their
VEV’s in two vacua. The novel feature of the domain-
wall solution as compared to the Abelian case (see Sec.
VI.B) is that quark ¢' is nonzero both outside and inside
the wall.

The solution for the elementary wall has two real
moduli as in the Abelian case: the position of the wall
and the compact phase. The phase can be rewritten as a
U(1) gauge field. Therefore, the effective theory on the
elementary wall is of the type (6.29) as in the Abelian
case. The physical reason for the localization of the U(1)
gauge field on the worldvolume of the wall is easy to
understand. Since quark g' is nonzero inside the wall,
only one U(1) field (namely A #—Ai) which does not in-
teract with this quark can propagate freely inside the
wall.

For composite domain walls in the case of generic
quark masses, the effective worldvolume theory contains
U(1) gauge fields associated with each elementary wall.
However, the metric on the moduli space can be more
complicated. For example, the metric for the a;+a,
composite wall is shown to have a cigarlike geometry
(Tong, 2002; Isozumi et al., 2003).

_
(m;—m; 1) > gVé

E. Degenerate masses

Now consider the case of degenerate quark masses.
As we know from Sec. IV.A, the non-Abelian gauge
group is not broken in this case by adjoint fields. It turns
out that in this case certain composite domain walls can
localize non-Abelian gauge fields (Shifman and Yung,
2004a).

Consider the following choice of quark mass param-
eters:
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my =nmy,
ms3 =Ny,

Am=m;—-m;3>0, (6.40)

assuming also that the condition Am > g\% is satisfied for
both Abelian and non-Abelian coupling constants g;
and g,. For this degenerate choice of masses, four of six
isolated vacua of the theory with nondegenerate masses
coalesce.

This theory has two isolated vacua, namely (1,2) and
(3,4) with unbroken SU(2) ¢, r symmetry while four other
vacua coalesce and a Higgs branch is developed from
the common root. We will denote this Higgs branch as
(A,B), where A=1, 2 and B=3, 4.

The elementary domain walls interpolating between
(1,2) and (A, B) vacua [or between (A, B) and (3,4)] have
the same structure as elementary walls described above
for the theory with nondegenerate masses. Following-
Shifman and Yung (2004a), we are mostly interested in
the composite (1,2)—(3,4) wall, which is a bound state
of the two elementary walls mentioned above.

The solution of the first-order equations (6.33) for this
wall also has a three-layer structure similar to solutions
for elementary walls. Now all quark fields (nearly) van-
ish inside the wall. The solution for the a fields in the

middle domain M is given by
= z-20+RI2
a=- \’Z(ml—Am—O~ ),

R

a3 = O’ (641)

where we introduced the thickness R of the composite

wall, to be considered large, R>1/ g\e’E; see below. The
equation for a® in Egs. (6.33) is trivially satisfied, while
the equation for a yields

-~ 2Am
R=——,

5 (6.42)

demonstrating that R>1/ g\s%.
Substituting the above solutions in the first two equa-
tions in Egs. (6.33), we determine the falloff of the quark

fields inside the wall. Near the left edge at (z-z,
+R/2)>1/g\¢,

oA = \,E(l 0 )e—(Am/zie)(z —zp+ 1%/2)2’ A=12,
01
(6.43)
while near the right one at (R/2—z+2z,)>1/gV¢,
(PkB — \‘JE( U)kBe—(Am/ZI%)(z -z0— ]}/2)2, B= 3,4’ (644)

where U is a matrix from the U(2) global flavor group,
which takes into account possible flavor rotations inside
the flavor pair B=3,4. It can be represented as a prod-
uct of a U(1) phase factor and a matrix U from SU(2),
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U=eU. (6.45)
This matrix is parametrized by four phases oy plus three
phases residing in the matrix U.

The occurrence of these four wall moduli—one re-
lated to U(1) and three to SU(2)—is quite similar to the
occurrence of one U(1) phase o for the domain wall in
Abelian theory; see Sec. VI.B. Shifman and Yung
(2004a) identified these four moduli with (2+1)-
dimensional gauge fields living on the wall worldvolume.
The phase oy is identified with the U(1) gauge field while
the SU(2) matrix U gives rise to the non-Abelian SU(2)
gauge field.

Thus, we get four gauge fields localized on the wall.
The physical interpretation of this result is as follows.
The quark fields are condensed outside the 12— 34 wall
while inside they almost vanish. Therefore, both U(1)
and SU(2) gauge fields of the bulk theory are Higgsed in
the bulk while they can freely propagate inside the wall.

The bosonic part of worldvolume theory derived by
Shifman and Yung (2004a) for the composite wall looks
like

1 1
AP 1:jd3x{ (9,a2,1)* + =—5—(D,a3,,)*
' 2 €241 2g§+1 2
Fv(2+1) 1 [Fv(2+1)a]2} , (646)
4 €211 82+1

where (2+1)-dimensional couplings in terms of the pa-
rameters of the bulk theory are given by

3
62+1 = ZWZE
gl §
g =2 Zam’ (6.47)

The domain wall is a 1/2-BPS object, so it preserves four
supercharges on its world volume. Thus, we must have
the extended A=2 supersymmetry, with four super-
charges, in the (2+1)-dimensional worldvolume theory.
This is in accord with Eq. (6.46) in which the U(1) and
SU(2) gauge fields are combined with the scalars a,,;
and a$,, to form the bosonic parts of N'=2 vector multi-
plets.

A few comments are in order. The first comment re-
fers to four noncompact moduli a,a“, which emerged in
Eq. (6.46). We can use gauge transformation in the
worldvolume theory to set two of them to zero, say
ay? =0. The other two a3,, and a,,; should be identified
with (linear combinations of) two centers of the elemen-
tary walls comprising our composite wall. More exactly,
as a,., has no interactions whatsoever, it should be iden-
tified with the center of mass of the composite wall,

ar.1 = mé(z1 + 25), (6.48)

where z; and z, are positions of the elementary walls
forming the composite wall, while a3, can be identified
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with the relative separation between the elementary
walls,

CRE Wf?(ll -2). (6.49)

2

The second comment is devoted to a technical ele-
ment of the derivation of Eq. (6.46) in Shifman and
Yung (2004a). In fact, this worldvolume action was ob-
tained through a calculational procedure similar to the
one described in Sec. VI.C for the Abelian case, only at
the quadratic level (i.e., omitting non-Abelian nonlin-
earities). To recover nonquadratic (truly non-Abelian)
terms in Eq. (6.46) and thus prove rigorously the non-
Abelian nature of the worldvolume theory, one needs to
go beyond the quadratic approximation.

Still there are rather convincing general arguments
showing that the proposal made by Shifman and Yung
(2004a) is correct. First, the number of fields matches.
We have four compact phases and two noncompact cen-
ters. Upon dualization, they fit into a vector multiplet of
3D N=2 theory with the SU(2) X U(1) gauge group. If
the gauge group were U(1)* [as for the case of nonde-
generate masses, see Sakai and Tong (2005)], we would
have four phases and four noncompact coordinates. 4
Thus, the non-Abelian gauge symmetry of the worldvol-
ume theory is supported by supersymmetry. Second,
there are only two distinct coupling constants in Eq.
(6.46) rather than four. This also indicates that three
phases, upon dualization, should be united in the SU(2)
gauge theory.

The 1/4-BPS solution for a junction of a non-Abelian
string (discussed in Sec. IV) with the composite wall de-
scribed above has been found by Shifman and Yung
(2004a). Thus non-Abelian string can end on the com-
posite (1,2)—(3,4) wall in the theory with degenerate
masses; see Eq. (6.40). Since the non-Abelian string car-
ries a non-Abelian flux with arbitrary direction of the
magnetic flux inside the SU(2) gauge subgroup, this be-
comes another argument in favor of localization of non-
Abelian gauge fields on the worldvolume of the compos-
ite wall.

VII. WALL-STRING JUNCTIONS

To make contact with this string-brane picture, one
may address the question of whether solitonic ANO
strings can end on a domain wall that localizes gauge
fields. The answer to this question is yes. Moreover, the
string end point plays the role of charge with respect to
the gauge field localized on the wall surface. This issue
was studied by Gauntlett et al. (2001) for the sigma
model setup, and by Dvali and Vilenkin (2003) for gauge
theories at strong coupling. A solution for the 1/4-BPS
wall-string junction in N'=2 supersymmetric U(1) gauge
theory at weak coupling was found by Shifman and

2For nondegenerate masses, the composite (1,2)—(3,4) wall
is a bound state of four elementary walls; see Sakai and Tong
(2005). However, two of them disappear in the limit (6.40).
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Yung (2003) while Shifman and Yung (2004a) deal with
its non-Abelian generalization. In the literature, the
wall-string junction goes under the name of boojum.
Further studies of the wall-string junctions were carried
out by Isozumi et al. (2005), where all 1/4-BPS solutions
of Egs. (4.95) were obtained, by Sakai and Tong (2005)
and Auzzi, Shifman, et al. (2005), where the energy as-
sociated with a wall-string junction (boojum) was calcu-
lated, and by Shifman and Yung (2006b) and Tong
(2006b), where the quantum version of the effective
theory in the domain-wall worldvolume taking into ac-
count charged matter (strings of the bulk theory) was
worked out.

The simplest 1/4-BPS wall-string junction in N'=2
QED was obtained by Shifman and Yung (2003). In both
vacua of this theory, the gauge field is Higgsed while it
can spread freely inside the wall. This is the physical
reason why ANO string, which carries magnetic flux, can
end on the wall.

Assume that at large distances from the string end
point at r=0, z=0 the wall is almost parallel to the
(x1,x,) plane while the string is stretched along the z
axis. As usual, we look for a static solution assuming
that all relevant fields can depend only on x, (n
=1,2,3). The Abelian version of first-order equations
(4.95) for various 1/4-BPS junctions for the theory (6.1)
looks like (Shifman and Yung, 2003)

. & A2 >y
F3—5(|q |*— & —\2d3a=0,

1 -
Vaq' == q(a+\2my),
\!

(V1= iVy)q" =0.

These equations generalize the first-order equations for
the wall (6.8) and for Abelian ANO string.

Needless to say, the solution of first-order equations
(7.1) for a string ending on the wall can be found only
numerically, especially near the end point of the string
where both the string and the wall profiles are heavily
deformed. However, far away from the end point of the
string, deformations are weak and one can find the
asymptotic behavior analytically. This has been de-
scribed in detail in the original publication. In this re-
view, we limit ourselves to the issue of the wall-string
junction energy.

There are two distinct contributions to the boojum
energy (Auzzi, Shifman, et al., 2005). The first contribu-
tion is due to the gauge field inside the wall,

(7.1)

1 w& [ dr wé r
ES =f—F-22 dr=——] —=—1 IEL).
2+1) 26§+1( 0i) 2mrdr | 7 Am n(gVéL)
(7.2)
The integral [dr/r is logarithmically divergent in both
the ultraviolet and infrared. It is clear that the uv diver-
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FIG. 13. String and antistring ending on the wall from differ-
ent sides. Arrows denote the direction of the magnetic flux.

gence is cut off at the transverse size of the string
~1/ g\e“E and presents no problem. However, the infrared
divergence is much more serious. We introduced a large
size L to regularize it in Eq. (7.2).

The second contribution, due to the z field, is associ-
ated with the bending of the wall. It is proportional to
Jdr/r too,

T, wé =
Eg”) = J 7(6’,10)2211'%17’ = E In(gVEL). (7.3)

Both contributions are logarithmically divergent in the
infrared. Their occurrence is an obvious feature of
charged objects coupled to massless fields in (2+1) di-
mensions due to the fact that the fields A, and a,,; do
not die off at infinity, which means infinite energy.

The above two contributions are equal (with the loga-
rithmic accuracy), even though their physical interpreta-
tion is different. The total energy of the string junction is

EG+H _ 2m¢ ln(g\'EL).
Am
Thus, the energy of an individual boojum is ill-
defined. What can be done? A way out was suggested by
Auzzi, Shifman, et al. (2005) and Shifman and Yung
(2006b). For the infrared divergences to cancel, we con-
sider strings and antistrings with incoming and outgoing
fluxes, as well as strings coming to the wall from the
right and from the left (see Fig. 13). Then the boojum-
antiboojum pair will have a finite energy. Auzzi, Shif-
man, ef al. (2005) have shown that the configuration de-
picted in Fig. 13 is a noninteracting 1/4-BPS
configuration. All logarithmic contributions are can-
celed; the junction energy in this geometry is given by a
finite negative contribution

(7.4)

8
E=-—Am.
8

(7.5)

[In fact, this energy was first calculated by Sakai and
Tong (2005).] The procedure of how to separate this fi-
nite energy from logarithmic contributions described
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above was discussed in detail by Auzzi, Shifman, et al.
(2005).
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