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Restricted diffusion is a common feature of many physicochemical, biological, and industrial
processes. Nuclear magnetic resonance techniques are often used to survey the atomic or molecular
motion in confining media by applying inhomogeneous magnetic fields to encode the trajectories of
spin-bearing particles. The diversity and complexity of diffusive NMR phenomena, observed in
experiments, result from the specific properties of reflected Brownian motion. Here the focus is on the
mathematical aspects of this stochastic process, their physical interpretations, and their practical
applications. The main achievements in this field, from Hahn’s discovery of spin echoes to present-day
research, are presented in a unified mathematical language. A long-standing problem of restricted
diffusion under arbitrary magnetic field is reformulated in terms of multiple correlation functions of
the reflected Brownian motion. Many classical results are retrieved, extended, and critically discussed.
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I. INTRODUCTION

A particle diffusing in a confining medium is a general
model for a number of physical, chemical, biological,
and industrial processes. It may describe organic mol-
ecules or metabolites in biological cells1 or brain tissue,2

reactive species near porous catalysts,3 ions near rough
electrodes or cellular membranes,4 oxygen in human
lungs,5 water molecules in cements6 or rocks,7 etc. When
such a particle encounters an interface, they may inter-
act in different ways depending on their physical and
chemical properties. The interaction at the microscopic
level can often be represented in terms of “reflection”
and “absorption” at the interface. In the former case,
the particle does not change its state and continues to
diffuse in the bulk. In the latter case, the motion of the
particle is terminated, either by absorption on or trans-
fer through the interface, by chemical transformation
into another particle, or by surface relaxation in a
nuclear magnetic resonance �NMR� experiment, etc.8 As
a consequence, the random motion of a labeled particle
is additionally complicated by multiple reflections on the
interface.

In mathematics, this stochastic process is known as
�partially� reflected Brownian motion.9 It can be rigor-
ously constructed for confining domains with smooth
boundaries as a solution of the stochastic differential
equation accounting for reflections on the boundary.10

Although still governed by a Laplacian field, this Brown-
ian process presents many new and interesting features
due to the geometrical restriction. Its effects have been
noted in areas as diverse as physiology �diffusional
screening in mammalian lungs, Felici et al. �2005��, elec-
trochemistry �e.g., constant phase angle frequency re-
gime of the spectroscopic impedance of a rough metallic
electrode11�, and nuclear magnetic resonance �e.g., a
multiexponential decay of the water proton signal in
biological cells, Brownstein and Tarr �1977, 1979�; see
below�.

NMR is of particular interest as being a method to
“label” or “encode” Brownian trajectories of spin-
bearing particles by using magnetic fields.12 To illustrate
the idea, consider nuclei of spin 1/2, e.g., water protons.
Under a constant magnetic field B0, these nuclei have
two states with energies �B0 and −�B0, respectively,
where � is the nuclear magnetic moment.13 The energy
difference corresponds to the resonant or Larmor fre-
quency �0=2�B0 /�=�B0, 2�� being Planck’s constant
and �=2� /� the nuclear gyromagnetic ratio.14 At ther-
mal equilibrium, a difference of state populations cre-
ates a magnetization that is oriented along the direction
of the magnetic field �traditionally, it is denoted as the z
axis�. A brief application of a periodic magnetic field B1
rotating in the transverse plane xy with Larmor fre-
quency �B0 flips the spin magnetizations into this plane.
When this so-called 90° radio-frequency �rf� pulse
ceases, the spin magnetizations precess with the same
Larmor frequency �B0 in the transverse plane and relax
to their equilibrium states �parallel to the axis z�. For a

1Finkelstein �1987�; Alberts et al. �1994�; Pfeuffer et al. �1998�.
2Nicholson �1985, 2001�; Le Bihan �2003�.
3Sahimi et al. �1990�; Coppens �1999�.
4Nyikos and Pajkossy �1986�; Halsey and Leibig �1992�; Sa-

poval �1994, 1996�.
5Weibel �1984�; Sapoval et al. �2002�; Felici et al. �2004, 2005�;

Grebenkov, Filoche, et al. �2005�.
6Halperin et al. �1994�; Nestle et al. �2001�; Plassais et al. �2003,

2005�.
7Kenyon �1992�; Kleinberg et al. �1994, 1996a�; Song et al.

�2000�; Sen �2004�.
8In the two last examples, the particle can still diffuse, but its

state has been changed, for example, the nuclear magnetiza-
tion has been lost. Since this particle does not contribute to the
process in question any more, it can be thought of as being
absorbed.

9Itô and McKean �1965�; Port and Stone �1978�; Freidlin
�1985�; Borodin and Salminen �1996�; Bass �1998�; Revuz and
Yor �1999�; Yor �2001�; Grebenkov �2006a�.

10As for ordinary differential equations, an infinitesimal in-
crease of the stochastic process Ŵt can be expressed as dŴt

=dWt+n�Ŵt�I�	�Ŵt�d�t , Ŵ0=r0 , �0=0, where Wt is the �or-
dinary� Brownian motion, n�r� is the unit normal to the bound-
ary �	 at r, I�	 is the indicator function of the boundary, r0 is
the starting point, and �t is the measure of how much time the
walker spent on the boundary until t. The first term governs
the usual Brownian dynamics in the bulk, while the second
term contributes only for collisions with the boundary and en-
sures that Brownian motion is indeed reflected. Note that this

equation simultaneously determines both processes, the re-
flected Brownian motion Ŵt and its local time �t �see Freidlin
�1985� for details�.

11de Levie �1965�; Armstrong and Burnham �1976�; Nyikos
and Pajkossy �1985�; Sapoval et al. �1988�; Halsey and Leibig
�1992�; Grebenkov �2006a, 2006c�.

12An introduction to NMR can be found in Abragam �1961�
and Callaghan �1991�. Various aspects of NMR are collected in
the encyclopedia by Grant and Harris �1996�. Some general
aspects of Brownian motion are discussed by Duplantier �2005�
and Frey and Kroy �2005�. Principles and application of self-
diffusion measurements by NMR are described by Kärger et al.
�1988� and Ardelean and Kimmich �2003�. There is a special
emphasis on diffusive motion in porous media and its applica-
tions in Klafter and Drake �1989�, Kimmich �1997�, Blümich
�2000�, and Havlin and ben Avraham �2002�. Tutorials for using
NMR to probe a geometry were written by Song �2003� and
Sen �2004�. Characterization of porous media with NMR meth-
ods is reviewed by Watson and Chang �1997�, Barrie �2000�,
and Watson et al. �2002�. Transport and geometrical properties
of porous media are discussed in Scheidegger �1974�, Dullien
�1991�, Kärger and Ruthven �1992�, Sahimi �1995�, and Wong
�1999�. A collection of papers on fundamental properties of
diffusion is published in Kärger et al. �2005�. Stochastic prob-
lems in physics were discussed by Chandrasekhar �1943�.

13For protons, �=1.410 606 71
10−26 J /T �Mohr and Taylor,
2005�.

14For protons, ��2.675
108 rad T−1 s−1, and ��2.038

108 rad T−1 s−1 for helium-3 �Mohr and Taylor, 2005�.
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simple spin-echo experiment, the second 180° rf pulse at
time T /2 is applied to refocus the magnetizations to
form an echo at time T, as illustrated in Fig. 1.

If the magnetic field B0 is not spatially homogeneous,
some spins precess faster than others, depending on
their location in space. Consequently, application of a
time-dependent inhomogeneous magnetic field Bt�r�, di-
rected along the z axis, can be used to encode the posi-
tions of nuclei. The total phase accumulated along the
trajectory r�t� of a nucleus during the time from 0 to T is
then

� = ��
0

T

dt Bt„r�t�… . �1�

The macroscopic signal E measured at time T is formed
by the entire ensemble of the spins diffusing in the con-
fining domain 	. The individual transverse magnetiza-
tions, conveniently written in a complex form ei�, have
thus to be averaged over this ensemble. In most experi-
ments, the number of spins is so large that one can av-
erage over all stochastic trajectories of reflected Brown-
ian motion r�t�,

E = E�ei�� , �2�

with � being considered here as a functional of r�t�. For
convenience, the signal in Eq. �2� is normalized to 1 if
Bt�r�	0 and no relaxation is present. Note that the ex-
pectation E includes the average over starting points
with a given initial density �0�r� of spins distributed in
the bulk. Since each Brownian trajectory is “weighted”
by the functional in Eq. �1�, some parts of this complex
process can be emphasized by varying the temporal and
spatial dependences of the applied magnetic field Bt�r�.
One thus has a powerful experimental tool to survey
reflected Brownian motion. Studying the attenuation of
the macroscopic signal E in different magnetic fields,
one can retrieve useful information about the diffusive
motion itself �e.g., the diffusion coefficient� and the con-
fining geometry. For this reason, NMR is widely used to
probe complex morphology of natural and artificial ma-
terials �e.g., rocks, soils, cements, colloids� or biological
tissues �e.g., brain, lung, bone, kidney�. In such experi-
ments, the time scale typically ranges between millisec-
onds and seconds during which the nuclei travel dis-
tances between a few microns �for liquids� and a few
millimeters �for gases�, depending on their diffusion co-
efficient.

In this review, we indicate and discuss the main theo-
retical achievements in this field, from Hahn’s discovery
of spin echoes in 1950 to present-day research. The ac-
tual understanding of diffusive phenomena comes from
the intensive work of many scientists over half a century.
Different theoretical approaches and mathematical con-
cepts have been employed during the course of this long
investigation: random walks and stochastic processes,
partial differential equations, density matrices, Green
functions, the Laplace operator eigenbasis, spectral and
Fourier analysis, random fields, etc. If Hahn’s original
work described the simplest case of unrestricted diffu-
sion in a time-independent linear magnetic-field gradi-
ent, further progress consisted of extending these results
to include, for instance, geometrical restriction of diffus-
ing nuclei or temporal dependence and spatial inhomo-
geneity of the magnetic field. Each technique was fo-
cused on a particular extension. So Stejskal and Tanner
included an arbitrary temporal dependence for unre-
stricted diffusion while Robertson, and later Neuman,
studied restricted diffusion in simple domains for spe-
cific temporal and spatial profiles. The diversity of theo-
retical approaches developed in the last few decades
made the comparison between them and the under-
standing of fundamental properties of reflected Brown-
ian motion difficult. A single mathematical approach
to diffusive NMR phenomena should clarify the state
of the art and could bring new ideas to this field.
The multiple-correlation-function description is used
throughout this review to retrieve, discuss, and extend
many classical results. This technique allows one to
tackle the problem of diffusive motion in any geometri-
cal confinement and for arbitrary temporal and spatial
profiles of the magnetic field.

To keep the review to a reasonable size, the scope of

FIG. 1. Schematic illustration of echo formation. In a static
field B0 along the z axis, the spins precess around this axis with
the Larmor frequency �0=�B0, and their magnetizations are
directed along z. �a� At time t=0, one applies a periodic mag-
netic field B1 �rf pulse� rotating in the transverse plane xy with
frequency �0. �b� Still precessing, each magnetization is turn-
ing, linearly in time, toward the transverse plane. �c� When t
=� /2 �here �B1�=��, the magnetizations lie in the transverse
plane, and the periodic magnetic field ceases. �d� During the
period �T=T /2−�, the magnetizations slowly relax to the
longitudinal direction �axis z�. At t=T /2−� /2, another rf
pulse is applied. �e� Acting during the time �, it inverts the
longitudinal direction of the magnetizations. �f� When this 180°
rf pulse is turned off, the slow relaxation during the subse-
quent time period �T returns the magnetizations into the
transverse plane �f�. Moreover, these magnetizations turn out
to be partially refocused so that they form a macroscopic signal
�an echo� at t=T−� /2. To get a simpler view of the action of
the rf pulses, one could consider the coordinate frame rotating
around the z axis with the frequency �0. Throughout this re-
view, the rf pulses are assumed to be very short allowing their
durations �� /2 and �� to be neglected.
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issues presented herein has been carefully considered.
The main focus is on mathematical aspects of restricted
diffusion and their physical interpretation. The slow-
diffusion and motional-narrowing regimes as well as the
underlying Gaussian phase approximation and the re-
lated notion of the apparent diffusion coefficient are in-
vestigated in detail. Many other concepts like the local
gradient approximation, the problem of odd moments,
cumulant expansion, the localization regime, and the
narrow-pulse approximation naturally appear. The use
of NMR to probe complex morphologies is also dis-
cussed, in particular the problem of finding the surface-
to-volume ratio. At the same time, a number of interest-
ing issues could not be included; for example, diffusion
in anisotropic media and the related tensorial formalism
�see Güllmar et al. �2005�; Kingsley �2006��, multidimen-
sional distribution functions involving diffusion, and lon-
gitudinal and transverse relaxations,15 or numerous ap-
plications in medicine and the oil industry. Anomalous
diffusion, Knudsen ballistic motion, and other “strange”
kinetics, which may occur, for instance, in nanoporous
materials, are not considered.16

The paper is organized as follows. In the next section,
we give a short historical overview to emphasize the
main contributions to this field. In Sec. III, the multiple
correlation function �MCF� description will be presented
in detail to investigate the macroscopic signal attenua-
tion due to restricted diffusion in the presence of an
arbitrary magnetic field. The moments of the accumu-
lated phase will be expressed in a compact matrix form
involving the Laplace operator eigenbasis in a confining
domain. This general description will then be applied to
study spin echoes, the most typical experimental situa-
tion. In fact, the rephasing condition, required for echo
formation, will make this technique more appropriate
for theoretical and numerical use. Different choices of
temporal and spatial profiles of the magnetic field will be
discussed, including linear gradients and parabolic mag-
netic fields. The explicit formulas of the two matrices B
and �, determining all the moments, will be given for
three basic domains �slab, cylinder, and sphere�. Section
IV is devoted to a detailed study of the slow-diffusion
regime, where the classical results will be retrieved in a
general form and then critically discussed. In Sec. V, the
leading and correction terms of the moments will be
found for the motional-narrowing regime. In Sec. VI, we
tackle several related topics, from the numerical imple-
mentation of the MCF description to the cancellation of
odd moments. A comparison between theoretical and
experimental measurements will be reported. The issues
of the localization regime, cumulant expansion, and un-
restricted diffusion will also be discussed. The problems

of studying realistic porous media and their potential
solutions will be outlined. In the Conclusion, we summa-
rize the essential results and reveal a number of un-
solved problems and further perspectives. Some inter-
esting but cumbersome techniques outlined in the
review are placed in the Appendixes.

II. A HISTORICAL OVERVIEW

We start with a short historical overview to emphasize
the main contributions and steps in understanding diffu-
sive NMR phenomena. This section serves as a guide to
numerous results that are briefly discussed here, while a
more detailed analysis is presented in the following sec-
tions.

A. Free diffusion by NMR

The origin of diffusive NMR phenomena can be at-
tributed to Hahn’s discovery of spin echoes in 1950.
Application of a 180° rf pulse17 �Fig. 2�a�� leads to
refocusing of spin magnetizations, which creates an ex-
perimentally measurable signal called a “spin echo.”
Since this macroscopic signal is formed by local contri-
butions of numerous nuclei, it somehow reflects the
properties of the whole ensemble. Spin-spin interaction,
field inhomogeneities, motion of nuclei, and other re-
lated effects determine the spin-echo amplitude and can

15Song et al. �2002�; Hürlimann and Venkataramanan �2002�;
Venkataramanan et al. �2002�; Callaghan et al. �2003�; Seland et
al. �2004�; McDonald et al. �2005�; Wilson and Hürlimann
�2006�, and references therein. See also Kleinberg �1994,
1996b� for transverse relaxation times distributions.

16Bouchaud and Georges �1990�; Metzler and Klafter �2000�;
Kimmich �2002�; Zaslavsky �2002�.

17In the original Hahn experiment, the second rf pulse was of
90° that could invert the spin magnetizations as well. In par-
ticular, the prefactor in Eq. �3� was 1/3 which would corre-
spond to a steady gradient without a 180° rf pulse. The factor
1/12 was found by Carr and Purcell �1954�. The produced spin
echo is often called “Hahn’s echo” regardless of the duration
of the second rf pulse �90° or 180°�.

FIG. 2. Typical spin-echo sequences. �a� Formation of a spin
echo at time T by application of a 180° rf pulse in steady gra-
dient profile �Hahn experiment�. �b� Periodic repetition of 180°
rf pulses creates a train of spin echoes �Carr-Purcell experi-
ment�. �c� Pulsed gradient spin-echo formation �Stejskal-
Tanner experiment�.
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thus be investigated by means of NMR measurements.
For instance, the attenuation of the macroscopic signal
E due to free �or unrestricted� diffusion under steady
magnetic field of a linear gradient g and duration T was
found to be

E = exp�− D�2g2T3/12� , �3�

where D is the free self-diffusion coefficient. On the one
hand, the above relation helps to estimate the effect of
diffusive motion when studying, for example, spin-spin
relaxations. On the other hand, it accesses a direct ex-
perimental measurement of the diffusion coefficient by
NMR. Hahn’s averaging procedure was improved by
Das and Saha in 1954. Another approach involving the
spectral density function was proposed by Schearer and
Walters in 1965.

This fundamental result was further extended by dif-
ferent authors. Carr and Purcell �1954� proposed repeat-
edly applying 180° rf pulses in order to produce a train
of multiple spin echoes as shown in Fig. 2�b�. They used
a random-walk approach to derive the signal attenuation
due to free diffusion for the kth echo:18

E = exp�− D�2g2T3/12k2� . �4�

Again, the effect of diffusive motion can either be elimi-
nated by taking a large number of echoes or be investi-
gated by studying the dependence on k. Its experimental
realization was later improved by Meiboom and Gill
�1958� and it is now known as the Carr-Purcell-
Meiboom-Gill �CPMG� sequence.

Douglass and McCall �1958� improved Hahn’s analysis
and gave another experimental verification. From the
probabilistic point of view, the accumulated phase � is a
random variable whose distribution is determined by the
properties of the diffusive motion, the applied magnetic
field, and the geometry of confining medium. If there is
no geometrical restriction, the Brownian motion can be
thought of as a sum of independent infinitesimal spatial
displacements of a diffusing nucleus. In this case, the
central limit theorem �Feller, 1971� ensures a Gaussian
distribution of the random phase � in Eq. �1�:

P��� = �2�E��2��−1/2 exp
−
�2

2E��2�� . �5�

Like its Fourier transform, the signal is completely de-
termined by the second moment E��2�:

E = exp�− E��2/2�� . �6�

Douglass and McCall found the second-order moment
E��2 /2� to be equal to 2D�2g2�3−2T+T3 /6�, where  is
the moment of the 180° pulse. Taking =T /2, one gets
E��2 /2�=D�2g2T3 /12 in agreement with Eq. �3�.

Stejskal and Tanner �1965� proposed to replace a
steady gradient by a pulsed gradient to facilitate the
measurement and to enlarge the ranges of applicability.
A typical pulsed gradient profile is shown in Fig. 2�c�. If
there is no gradient during the rf pulses, their amplitude
has no need to be particularly large; in turn, no gradient
at echo time T makes the determination of the echo
amplitude more precise. In their paper, Stejskal and
Tanner found the signal attenuation due to free diffusion
for an arbitrary temporal profile of a linear magnetic-
field gradient g�t�:

E = exp�− D�2
�
0

T

dt G2�t� − 4G�T/2��
T/2

T

dt G�t�

+ 2TG2�T/2�� , �7�

where G�t�=�0
t dt�g�t�� and the 180° rf pulse is applied at

time T /2. This general relation and its derivatives for
particular temporal profiles were widely used until the
present day for theoretical and experimental purposes.
For instance, the signal attenuation for the pulsed gradi-
ent shown in Fig. 2�c� was found to be

E = exp�− D�2g2�2�T/2 − �/3�� . �8�

One retrieves Eq. �3� by taking �=T /2. We thoroughly
discuss these results in the following sections.

B. Bloch-Torrey equation

An alternative description of diffusive NMR phenom-
ena was proposed by Torrey �1956�. To account for the
diffusive motion, he modified the Bloch equation
�Bloch, 1946� for the spin magnetization m�r , t�,


 �

�t
− D� + i�g · r�m�r,t� = 0, �9�

by introducing the Laplace operator �=�2, � being the
gradient operator. Looking for a solution of the one-
dimensional equation in the form m�x , t�=A�t�e−i�gxt,
Torrey retrieved Eqs. �3� and �4� in a simpler way. A
bulk relaxation might be incorporated into this Bloch-
Torrey equation through an additional constant term in
parentheses.

Introduction of appropriate boundary conditions
makes Eq. �9� suitable for describing restricted diffusion
in a confining domain 	. In general, the Fourier �also
known as Robin, or mixed, or relaxing� boundary condi-
tion is used to take into account the surface relaxation
or permeability of the boundary �	:

D
�

�n
m�r,t� + �m�r,t� = 0, �10�

where � is the surface relaxivity �or interface permeabil-
ity� and � /�n is the outward normal derivative. The
above relation is nothing else than a conservation law: at
each boundary point, the fluxes of magnetization from
the bulk and through the boundary are equal. The sur-

18Throughout the review, T denotes the time of the last mea-
surement, i.e., the whole duration of the sequence. For ex-
ample, T is the moment of the last echo in Eq. �4�. Note that T
is often denoted as 2� in the literature.

1081Denis S. Grebenkov: NMR survey of reflected Brownian motion

Rev. Mod. Phys., Vol. 79, No. 3, July–September 2007



face relaxivity � can widely range from being negligible
in some tissues to being of the order of several microns
per second or greater for sedimentary rocks. The role of
the Fourier boundary condition for the Laplacian trans-
port phenomena has been thoroughly discussed �Sa-
poval, 1994; Filoche and Sapoval, 1999; Grebenkov et
al., 2003, 2006�. Even without the diffusion-sensitizing
gradient g, the surface relaxation would attenuate the
magnetization �Brownstein and Tarr, 1977, 1979�. This
situation is described in Sec. II.G.

If the interface is impermeable for spin-bearing par-
ticles and does not contain magnetic impurities which
could lead to surface relaxation ��=0�, the above rela-
tion is reduced to the Neumann �or reflecting� boundary
condition on the interface �	:

�

�n
m�r,t� = 0. �11�

The Neumann boundary condition �11� was used by Ka-
plan �1959� to describe electron-spin resonance in met-
als.

The initial condition to this boundary value problem
is determined by the spin density �0�r� at time t=0 and
by the way these spins were excited. In most cases, the
initial spin density is uniform over the sample. If the 90°
rf pulse is spatially homogeneous, each spin magnetiza-
tion is flipped into the transverse plane in a similar way,
so that the initial magnetization is proportional to the
initial density. On the other hand, inhomogeneous rf
pulses �e.g., with a linear gradient� can be used to create
a nonuniform initial magnetization.

Once the magnetization m�r , t� is found by solving the
Bloch-Torrey equation with a given initial condition, the
signal amplitude E at time T is obtained by the integra-
tion of m�r ,T�, weighted by some pickup function �̃�r� of
the measuring coil or antenna, over the whole confining
domain 	:

E = �
	

dr m�r,T��̃�r� . �12�

After Wayne and Cotts �1966� solved numerically the
Bloch-Torrey equation in a laminar system with the re-
flecting boundary condition, this approach became a
common tool to investigate diffusive NMR phenomena.

C. Effect of a geometrical restriction

Relations �3�–�7� were derived for unrestricted diffu-
sion, when nuclei diffused freely in an infinite reservoir.
The presence of a restrictive frontier drastically influ-
ences the motion and the consequent signal attenuation
�Fig. 3�. Woessner used the spin-echo technique to ex-
perimentally demonstrate the effect of a geometrical re-
striction, measuring the signal attenuation for water
molecules in a geological core and in aqueous suspen-
sions of silica spheres �Woessner, 1960, 1961, 1963�. Al-
though ln E was still proportional to g2, the ratio D�
=−ln E / ��2g2T3 /12� was not equal to the free diffusion
coefficient D of water. Woessner called this ratio a spin-

echo diffusion coefficient: it is now known as the effec-
tive, time-dependent, or apparent diffusion coefficient.
The decrease of D� with T was attributed to the growing
proportion �DT /L of molecules whose motion was re-
stricted by boundaries of the reservoir of size L.

The size of a geometrical confinement is a natural
length scale for restricted diffusion. At this point, it is
worth mentioning the other length scales of the prob-
lem:

• diffusion length Lp=�DT, showing the average dis-
tance explored by spins during time T;

• gradient length Lq= ��gT�−1, over which the
magnetic-field gradient g yields a phase spread of the
order of 2�;19

• relaxation length Lh=D /�, which is the distance a
particle should travel near the boundary before sur-
face relaxation effects reduce its expected
magnetization.

As we will see, different regimes of restricted diffusion
depend on how short some of these lengths are with
respect to the others.

D. Narrow-pulse approximation

The first theoretical treatment of restricted diffusion
was proposed by Stejskal �1965� and Tanner and Stejskal
�1968�. Stejskal modified the Bloch-Torrey equation �9�
to include the case of anisotropic, restricted diffusion,
and flow. Then restricted diffusion was studied by using
the pulsed �field� gradient spin-echo �PGSE� method
which relates the signal attenuation to the intermediate
scattering function:

ISF�k� = E�e−ik·r��eik·r�0�� . �13�

In fact, if the duration � of the gradient pulses is much
smaller than their separation time20 , the integral in Eq.
�1� can be reduced to

19In the literature, one can also find the dephasing length
Ldeph= �D /�g�1/3 over which the spins travel to gain a phase
spread of the order 2� with their diffusion coefficient D. It
is simply a combination of the two other lengths, Ldeph
= �Lp

2Lq�1/3.
20The separation  between two gradient pulses is not neces-

sarily related to the echo time T �albeit �T�. For conve-

FIG. 3. Random-walk simulations of reflected Brownian mo-
tion confined inside a circle of radius L, for three values of the
ratio p=DT /L2: �a� 0.1, �b� 1, �c� 10. In all cases, diffusion is
started from the center.
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�� ���g · r�0� − g · r��� , �14�

known as the short-gradient-pulse or narrow-pulse ap-
proximation �NPA�. The sign is changed due to the 180°
rf pulse. The first gradient pulse encodes the position r
of a nucleus at time t=0 by the factor ei��g·r�0�, while the
second gradient pulse labels the position r� of the same
nucleus at time t= by the factor e−i��g·r��. The probabil-
ity density G�r ,r�� to diffuse from r=r�0� to r�=r��
during time  is known as the propagator, heat kernel, or
Green’s function of diffusion equation �see Sec. III.B�.
The average over initial and final positions with a uni-
form initial density �0�r�=1/V leads to the macroscopic
signal

E �
1

V
�
	

dr�
	

dr�G�r,r��ei��g·�r−r��, �15�

where V is the volume of the domain 	. When �→0 and
simultaneously �g�→� in such a way that k=��g remains
fixed, one gets ISF�k�. This function can also be directly
measured in dynamic light scattering �Bishop et al.,
1986� and employed in theoretical studies of transport in
disordered systems �Guyer, 1988�.

The crucial simplification of this approach relies on an
explicit manifestation of the confining geometry via the
propagator. The PGSE method allows the Fourier trans-
form of the propagator to be measured experimentally,
thus providing a simple way to probe a complex mor-
phology by NMR. This technique, also called the
q-space imaging method, was widely applied for both
theoretical and experimental studies �Callaghan, 1984,
1991; Stilbs, 1987�. For instance, Packer and Rees �1972�
used this method to determine droplet size distributions
in emulsions. Kärger and Heink �1983� performed a
PGSE experiment to characterize molecular transport in
microporous crystallites �zeolites of different kinds and
sizes� through the properties of the propagator. Cory
and Garroway �1990� pointed out how an NMR mea-
surement of translational displacement probabilities
could be used as an indicator of compartmentation.

The related effect of diffusive diffraction was experi-
mentally discovered by Callaghan et al. �1991, 1992�
from proton NMR studies of a water-saturated, orienta-
tionally disordered, loosely packed array of monodis-
perse polystyrene spheres. The analogy with light, x-ray,
and neutron scattering was also discussed by Cotts
�1991� and by Barrall et al. �1992�. The diffusive diffrac-
tion in a slab geometry and in a cylindrical pore was
reported by Coy and Callaghan �1994�, and by Söder-
man and Jönsson �1995� and by Gibbs �1997�, respec-
tively. Balinov et al. �1994� observed similar effects in a
highly concentrated water-oil emulsion. Their manifesta-
tion in the case of porous media was discussed by Berg-
man and Dunn �1994� and by Sen et al. �1995�. Frey et al.
�1988� analyzed the pulsed gradient spin-echo experi-
ments with absorbing walls. Mitra and Sen �1992� and

Callaghan �1995� considered the effect of surface relax-
ation. In particular, its influence on the apparent diffu-
sion coefficient in the long-time limit was studied by Sen
et al. �1994�. Lennon and Kuchel �1994� reported the
enhancement of the diffractionlike effect in the presence
of surface relaxation sinks. Sen �2003� studied restricted
diffusion between permeable walls by using the PGSE
technique. The relation between pulsed gradient NMR
measurements of restricted diffusion and the return-to-
the-origin probability was pointed out by Mitra et al.
�1995� and by Schwartz et al. �1997�. Modal analysis of
correlations between relaxation and diffusive diffraction
measurements in fluid-saturated isolated pores with re-
laxing surfaces was developed by Marinelli et al. �2003�.
King et al. �1994� used the q-space concept for imaging
of the brain. The time-dependent diffusion coefficient of
water in a biological system �packed erythrocytes� was
measured by Latour et al. �1994�. In turn, Mair et al.
�2001� utilized PGSE measurements with xenon-129 gas
to find both the pore surface-to-volume ratio and the
tortuosity of porous media �glass bead packs�. An origi-
nal approach to describe the diffusive diffraction in a
porous medium was developed by Stepišnik �1998� who
proposed expressing the nonuniform spin phase distri-
bution in a pore as a series of waves with wave vectors
characterizing the geometry and boundaries of confine-
ment. Rodts and Levitz �2001� suggested a time-domain
analysis allowing the interpretation of PGSE data in po-
rous systems in terms of the material’s length scale. This
approach gave new insight into the micro-macro transi-
tion for diffusive transport. An overview of spatial co-
herence phenomena arising from translational spin mo-
tion in gradient spin-echo experiments was given by
Callaghan et al. �1999�. The use of a PGSE technique as
a tool for studying translational diffusion was reviewed
by Price �1997, 1998�.

In experiments, the gradient pulses cannot be made
with arbitrarily small duration � and arbitrarily large in-
tensity �g� since both these quantities are limited by the
hardware setup. The validity of the approximate rela-
tions �14� and �15� depends on whether the nuclei can be
considered as immobile during time �. The characteristic
diffusion time L2 /D might be a time scale for compari-
son to �. This condition is particularly difficult to satisfy
for gas diffusion which has seen a considerable rise in
interest during the last decade.

The applicability of the NPA in various NMR contexts
was investigated by different authors. Blees �1994� nu-
merically solved a modified Bloch-Torrey equation by
using a finite-difference method in order to quantify the
effect of finite-duration gradient pulses. For the same
purpose, Linse and Söderman �1995� performed Brown-
ian dynamic simulations for molecules entrapped in pla-
nar, cylindrical, and spherical geometries. Mitra and
Halperin �1995� showed how the finite duration of gra-
dient pulses made isolated pores appear smaller than
their actual size. Wang et al. �1995� proposed a criterion
of applicability of the NPA by considering restricted dif-
fusion in simple domains �slab, cylinder, and sphere�.
Monte Carlo simulations were also implemented by Duh

nience, we use =T /2 in the review �note that one often takes
=T�.

1083Denis S. Grebenkov: NMR survey of reflected Brownian motion

Rev. Mod. Phys., Vol. 79, No. 3, July–September 2007



et al. �2001� to demonstrate a strong deviation from ap-
proximate theoretical results in the case of intermediate
and long sequences. Mair, Sen, et al. �2002� showed a
breakdown of the narrow-pulse approximation by ana-
lyzing the restricted diffusion of xenon in model porous
media �random packs of monodisperse glass beads�. For
the case of unbounded homogeneous porous media,
Zielinski and Sen �2003c� used a Padé approximation of
the time-dependent diffusion coefficient to compare the
effects of narrow- and finite-width pulses. Malmborg et
al. �2004� studied highly concentrated emulsions to show
how the duration of the gradient pulse influences NMR
diffusion experiments. It should be noted that the un-
avoidable heterogeneity in natural materials reduces dif-
fraction effects, making it even more challenging to use
this technique in practice for experimental characteriza-
tion of porous structures. We discuss the narrow-pulse
approximation in Sec. VI.E.

E. Restricted diffusion in simple domains

Robertson �1966� applied a quantum-mechanics op-
erator formalism to study restricted diffusion in a slab
geometry between two parallel planes. Using a formal
analogy, the Laplace operator in the Bloch-Torrey equa-
tion �9� with the Neumann boundary condition �11�
could be interpreted as a Hamiltonian of a free particle
in a specific potential well, while the term containing a
linear magnetic-field gradient represented a perturbative
interaction. The magnetization m�r , t� was then ex-
panded over eigenfunctions um�r� of the Laplace opera-
tor in an interval

m�r,t� = �
m

cm�t�um�r� . �16�

An infinite-dimensional system of linear differential
equations was obtained for unknown coefficients cm�t�
�see also Sec. VI.A�. A further analysis of the density
matrix cm�t�cm�

* �t� led to

− ln E � q2 �
m=0

�
8

�4�2m + 1�4
 1

�2�2m + 1�2p

−
3 − 4e−�2�2m + 1�2p/2 + e−�2�2m + 1�2p

�4�2m + 1�4p2 � , �17�

where q=�gLT and p=DT /L2. For small time T �p
�1/�2�, a series expansion of the exponential functions
in Eq. �17� yields the relation �3�. For long enough
T �p�2/�2�, Robertson found a new behavior of the
signal attenuation due to restricted diffusion in a slab
geometry, which is now called the motionally averaging
or motional-narrowing regime:

E � exp�− �2g2L4T/120D� . �18�

Although ln E is still proportional to g2, the dependence
on the echo time T, the diffusion coefficient D, and the
slab width L is drastically different in comparison with
Eq. �3� for free diffusion. For instance, the nuclei with
higher D diffuse more rapidly, but the related signal at-

tenuation is, contrarily to intuition, smaller. A sharp de-
pendence on the size of the confining domain appears
here as a characteristic feature of restricted diffusion.
This behavior was experimentally observed in a laminar
system by Wayne and Cotts �1966�. We discuss the
motional-narrowing regime in detail in Sec. V.

Robertson’s work had deep impact on the further de-
velopment of this field. High sensitivity to geometrical
confinement stimulated interest in restricted diffusion as
a method for probing confining morphologies of porous
materials and biological tissues by using NMR. A num-
ber of far-reaching extensions were made. Another
quantum-mechanics-oriented approach was suggested
by Cates, Schaefer, and White �1988� and Cates, White,
et al. �1988�. They used standard perturbative theory to
study the slow-diffusion and motional-narrowing re-
gimes for any magnetic-field inhomogeneity, with special
emphasis on restricted diffusion in a sphere. Stepišnik
�1981, 1985� developed the density matrix calculation for
a more general case including, for instance, strong dipo-
lar coupling. In particular, the NMR spin-echo attenua-
tion in a magnetic-field gradient was related to the ve-
locity autocorrelation function.21

The eigenfunction expansion became the usual tool
to investigate restricted diffusion. For instance, Brown-
stein and Tarr �1979� used it to explain multiexponential
relaxation for water in biological cells �see Sec. II.G�.
Bergman �1997� studied the low-lying diffusion eigen-
states and their contribution at long times. Song �2000a�
reported an experimental demonstration of the excita-
tion and detection of a wide range of eigenmodes in
porous media by exploring the inhomogeneous internal
magnetic field in the pore space. This technique was
then applied to characterize multiple length scales in
rocks by Song et al. �2000�.

Finally, Robertson’s operator formalism can be con-
sidered as a prototype for efficient numerical techniques
like multiple-propagator or stepwise-gradient ap-
proaches �see Sec. II.M�. In particular, the concepts of
the multiple-correlation-function description given in
Sec. III were first seen in the work of Robertson.

F. Gaussian phase approximation

Neuman �1974� retrieved and extended Robertson’s
results by considering the accumulation of phase shifts
during diffusive motion. In the limit of short diffusion
times, only a small fraction of nuclei can “feel” the pres-
ence of reflecting boundaries, and their contribution to
the accumulated phase can be neglected. One thus re-
trieves a Gaussian distribution �5�. In the opposite limit
of very long diffusion times, each spin explores the bulk
several times during a small time interval. At this time
scale, the spatial displacements of a spin can be seen as
independent “jumps” at randomly chosen bulk points,
and the central limit theorem leads again to the relation

21See Stepišnik �1993�; Stepišnik and Callaghan �2000�;
Stepišnik et al. �2001�.
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�5�. Neuman assumed that the Gaussian distribution was
valid for the intermediate case as well. This assumption,
now known as the Gaussian phase approximation
�GPA�, reduces the difficult problem of resolving the
Bloch-Torrey equation in a confining medium to the cal-
culation of the second moment E��2�, which is generally
simpler. In particular, Neuman used Dini’s expansions
�Watson, 1962� to carry out an analytical calculation of
restricted diffusion in a slab, a cylinder, and a sphere.
For these basic domains, the heat kernel and the
Laplace operator eigenbasis are known explicitly �see
Table I�.

After Neuman’s work, the Gaussian phase approxima-
tion was repeatedly used by many authors. Murday and
Cotts �1968� experimentally observed restricted diffu-
sion of liquid lithium in spherical droplets and confirmed
the GPA. McGregor �1990� related the transverse relax-
ation rate to autocorrelation functions, calculated them
for three basic domains, and then retrieved and checked
the GPA predictions experimentally with the diffusion
of helium-3 nuclei. To explain transverse relaxation pro-
cesses in porous sedimentary rocks, Kleinberg and Hors-
field �1990� modeled pores as spherical cavities and then
applied Neuman’s results. Hayden et al. �2004� used
them to fit their experimental measurements for re-
stricted diffusion of hyperpolarized helium-3 in a cylin-
drical pore. Kuchel et al. �1996� extended Neuman’s re-
lation for a sphere to account for surface and bulk
relaxation. The theory of macroscopic signal formation
in the presence of structure-specific magnetic-field inho-
mogeneities developed by Sukstanskii and Yablonskiy
�2003, 2004� was based on the Gaussian phase approxi-
mation. The accuracy of the GPA was numerically inves-
tigated by different authors. For example, Balinov et al.
�1993� used Brownian dynamics to simulate the motion
of spins confined to spheres and between planes.

The Gaussian phase approximation and Neuman’s re-
sults will be discussed in detail in Secs. IV and V.

G. Multiexponential magnetization decay

Mathematical analysis of the Bloch-Torrey equation is
significantly complicated by the fact that the operator on
the left-hand side of Eq. �9� is not Hermitian. In con-
trast, without a diffusion-sensitizing gradient, the Bloch-
Torrey equation is reduced to the ordinary diffusion or
heat equation. The surface relaxation mechanism is still
represented through the Fourier boundary condition
�10�. Expanding the magnetization m�r , t� over the
Laplace operator eigenbasis, Brownstein and Tarr �1977,
1979� found multiexponential signal decay

E = �
m

Ime−T/Tm, �19�

where Tm and Im are the relaxation time and the relative
intensity of the mth eigenmode. Both these quantities
contain useful information about the confining geom-
etry. For weak surface relaxation, the ground eigenmode
is nearly constant and its inverse relaxation time is pro-
portional to the surface relaxivity and the surface-to-

volume ratio. Brownstein and Tarr gave several ex-
amples �simple domains like a slab, a cylinder, and a
sphere� and illustrated the efficiency of their formalism
by explaining a multiexponential decay of the proton-
spin relaxation for water in biological cells.

Many authors employed or extended these results. In
the case of weakly coupled pores, the magnetization de-
cay inside each pore depends on its size. The multiexpo-
nential decay of the overall signal at long time yields
thus directly the pore size distribution22 �Mendelson,
1990�. On the other hand, an excitation of particular
eigenmodes by NMR can be used to extract further in-
formation on the pore geometry �Song, 2002�. It should
also be stressed that the related boundary value problem
is not specific to NMR, being applicable to diffusion
through permeable membranes, heterogeneous cataly-
sis, electric potentials in electrolytes, etc. �see, for in-
stance, Klafter and Drake �1989�; Mendelson �1990�;
Wilkinson et al. �1991�; Sapoval �1994, 1996��. As this
problem has been thoroughly considered elsewhere, it is
not discussed at length in the review.

H. Non-Gaussian behavior

Neuman’s relations were in such good agreement with
numerical and experimental observations that the
Gaussian phase approximation was often applied for any
set of physical parameters.23 In particular, Stepišnik
�1999� gave a phenomenological estimate for the gradi-
ent intensity under which the Gaussian phase approxi-
mation was supposed to be correct.24

Stoller et al. �1991� studied the spectral properties of
the Bloch-Torrey equation for a constant gradient over

22See also Torquato and Avellaneda �1991�; Halperin et al.
�1994�; Kleinberg �1994, 1996b�; Latour et al. �1995�.

23It is worth noting that the Gaussian phase approximation
fails for PGSE experiments at long enough time separation 
between two narrow gradient pulses. For a bounded domain,
the propagator in Eq. �15� approaches 1/V in the limit →�,
making the positions r and r� independent from each other.
Therefore the signal becomes simply the square of the form
factor of the domain �the Fourier transform of its indicator
function� which does not exhibit a Gaussian-like behavior:

E � � 1

V�
	

dr exp�i��g · r��2

.

This failure of the GPA, already known from Tanner and Ste-
jskal �1968�, was experimentally observed by Callaghan et al.
�1991� �see Sec. II.D�. This case, however, is rather special
since the macroscopic signal turns out to be independent of the
diffusive motion at long times. This is a very specific, deliber-
ately introduced feature of the narrow-pulse approximation. In
this subsection, we discuss the opposite case when the signal
depends on the whole Brownian trajectory of a diffusing spin.
The Gaussian character of this motion was believed to ensure
the GPA, and its failure was unexpected in this case.

24This estimate �g�40 T/m for gases and g�100 T/m for
liquids� should be taken with caution, as discussed in this
subsection.
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TABLE I. Summary of spectral characteristics of the Laplace operator in three basic domains. The Fourier boundary condition �10� is written explicitly in L1. The eigenvalues
�L2� are determined by the positive roots �m or �nk of the equation in L3. The normalization constants L5 are defined by condition �35� for the eigenfunctions L4. The vector U
is calculated for uniform initial density �0�r�=1/V �L6�. The asymptotic behavior of the lowest eigenvalue as h→0 is shown in L7. The matrix B �L8� is computed for a linear
magnetic-field gradient �the limit of Bm,0 as h→0 is given in L9�. The matrix eiq�B is calculated for a linear gradient at h=0 �L10�. The matrix B �L11� is found for an isotropic
parabolic magnetic field �the limit of Bm,0 as h→0 is given in L12.

Slab, 	= �x�R :0�x�1� �V=1� Cylinder, 	= �r�R2 : �r��1� �V=�� Sphere, 	= �r�R3 : �r��1� �V=4� /3�

L1 ��um

�x
−hum�

x=0
=0, ��um

�x
+hum�

x=1
=0 ��unk

�r
+hunk�

r=1
=0 ��unk

�r
+hunk�

r=1
=0

L2 �m=�m
2 , �m,m�=�m,m��m �nk=�nk

2 , �nk,n�k�=�n,n��k,k��nk �nk=�nk
2 , �nk,n�k�=�n,n��k,k��nk

L3 tan��m�

�m
=

2h

�m
2 −h2

�nkJn���nk�+hJn��nk�=0 �nkjn���nk�+hjn��nk�=0

L4 um�x�=�2�m�cos��mx�+
h

�m
sin��mx�� unk�r ,��=

�n

��
�nk

Jn��nk�
Jn��nkr�cos�n�� unkl�r ,� ,��=

�nk

�2� jn��nk�
jn��nkr�Pn�cos ��eil�

0�x�1 0�r�1, 0���2� 0�r�1, 0����, 0���2�

J��z� =
z�

2��k=0

�
�− 1�kz2k

22kk!��� + k + 1�
j��z� = ��/2z�1/2J�+1/2�z�

L5 �m= � �m

�m+2h+h2 �1/2

��0→1/�2� �nk= � �nk

�nk−n2+h2 �1/2

��00→1� �nk= � �2n+1��nk

�nk−n�n+1�+h�h−1� �1/2 ��00→�3
2 �

L6 Um= �1+ �−1�m�
�2h

��m��m+2h+h2�
Unk=�n,0

2h

��0k��0k+h2�
Unk=�n,0

�6h

��0k��0k+h�h−1��

L7 �0=2h− 1
3h2+ 2

45h3− 4
945h4+O�h5� �00=2h− 1

2h2+ 1
12h3− 1

192h4+O�h5� �00=3h− 3
5h2+ 12

175h3+O�h5�
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TABLE I. �Continued.�

Slab, 	= �x�R :0�x�1� �V=1� Cylinder, 	= �r�R2 : �r��1� �V=�� Sphere, 	= �r�R3 : �r��1� �V=4� /3�

Linear magnetic-field gradient: B�x�=x for a slab, B�r�=r cos � for a cylinder, and B�r�=r cos � for a sphere

L8
Bm,m�=2��−1�m+m�−1��m�m�

�m+�m�+2h2

��m−�m��
2

Bnk,n�k�=�n,n�±1�1+�n,0+�n�,0�1/2
Bnk,n�k�=

�n+n�+1��n,n�±1

�2n+1��2n�+1�
�nk�n�k�

and Bm,m=1/2

�nk�n�k�

�nk+�n�k�−2nn�+2h�h−1�

��nk−�n�k��
2 


�nk+�n�k�−n�n�+1�−n��n+1�+1+2h�h−2�

��nk−�n�k��
2

L9 lim
h→0

B0,m= ��2��−1�m−1� /�m, m�0

1/2, m=0 � lim
h→0

B00,1k=
�2

��1k��1k−1�
lim
h→0

B00,1k=
�2

��1k��1k−2�

L10 �eiq�B�0,m=
�−1�m�mq�

�q��2− ��m�2


 �sin q�+ i��−1�m−cos q���

�eiq�B�00,nk=2�n�nk

inq� Jn��q��

�nk− �q��2 �eiq�B�00,nk=�6�nk

inq� jn��q��

�nk− �q��2

Isotropic parabolic magnetic field: B�r�= �r�2

L11

Bm,m�=4�−1�m+m��m�m�
Bnk,n�k�=4�n,n��nk�nk� Bnk,n�k�=4�n,n��nk�nk�



�m+�m�+2h�h+ �−1�m+m�+1�

��m−�m��
2



�nk+�nk�−2n2+2h2

��nk−�nk��
2 , k�k� 


�nk+�nk�−2n�n+1�+2h�h−1�

��nk−�nk��
2 , k�k�

Bm,m=
1
3
�m

2 �1+
3+6h+2h2

2�m
−

3h�h+2�

2�m
2 � Bnk,n�k=

1
3
�n,n��nk

2 �1+
n2+h�h+2�

�nk
� Bnk,n�k=

1
3
�n,n��nk

2 �1+
n�n+1�+h�h+1�−1/2

�nk
�

−�2�n2−1��n2−h2�

�nk
2 �, k=k� −� �2n−1��2n+3��n�n+1�+h�1−h��

2�nk
2 �, k=k�

L12 lim
h→0

B0,m= �2�2�−1�m /�m, m�0

1/3, m=0 � lim
h→0

B00,0k= �4/�0k, k�0

1/2, k=0 � lim
h→0

B00,0k= �2�6/�0k, k�0

3/5, k=0 �
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an interval that corresponds to restricted diffusion in a
slab geometry. For a large gradient intensity g, they
demonstrated a non-Gaussian stretched-exponential de-
crease of the macroscopic signal as a function of g. The
physical consequences of this new and unexpected be-
havior were discussed by de Swiet and Sen �1994�. This
so-called localization regime was experimentally ob-
served for the first time by Hürlimann et al. �1995�. They
studied the restricted diffusion of water molecules be-
tween two parallel plates separated by a distance of
0.16 mm. A drastic deviation from the Gaussian g2 de-
pendence of ln E was observed at gradient intensities
higher than 15 mT/m �see Sec. VI.F and Fig. 9�. In this
case, the dephasing length �D /�g�1/3 over which the
spins travel to gain a phase spread in the order of 2�
becomes shorter than both the diffusion length �DT and
the plate separation L. Consequences of the localization
regime for diffusion edge enhancement were experimen-
tally investigated by many authors; see, e.g., de Swiet
�1995�, Saam et al. �1996�, and Song et al. �1998� �see Sec.
II.K�. The manifestation of the localization regime for a
CPMG sequence was analyzed by Sen et al. �1999� and
by Zhang and Hirasaki �2003�. We continue this discus-
sion in Sec. VI.F.

The discovery of the localization regime forced physi-
cists to revise a common belief in the Gaussian phase
approximation and stimulated theoretical research in
this field. For instance, Bergman and Dunn �1995� �see
also Dunn and Bergman �1995�� developed a formalism
to calculate the fourth moment in the case of a periodic
porous medium. Some of their ideas will be used in Sec.
III to compute the multiple correlation functions of re-
flected Brownian motion.

I. Studying porous media

In the 1990s, a series of papers25 was devoted to re-
stricted diffusion in porous media in the short-time limit.
Starting from Woessner’s qualitative arguments, Mitra et
al. developed and experimentally checked a quantitative
theory to account for the contribution of nuclei whose
motion was restricted by boundaries of the confining
medium. Using the method of boundary perturbation,
they found the effective or apparent diffusion coefficient
�ADC� at short times:

Dapp � D
1 − ��DT
S

V
� , �20�

where S /V is the surface-area-to-pore-volume ratio of
the confining medium. The numerical prefactor � was
analytically computed for steady and pulsed gradient
profiles shown in Figs. 2�a� and 2�c� �see Sec. IV.E�. The
higher-order correction O�DT� was related to the aver-
age value of the mean curvature of the boundary and to

surface relaxation �see footnote 58 and Mitra et al.
�1993� for details�. NMR techniques appeared as prom-
ising experimental tools to measure the surface-to-
volume ratio, the intrinsic characteristic of porous me-
dia, which plays an important role in the oil industry and
in medical diagnostics alike. The notion of an effective
time-dependent diffusion coefficient was applied by
Helmer, Dardzinski, et al. �1995� to investigate in vivo
systems and by Mair and co-workers �Mair et al., 1998,
1999; Mair, Rosen, et al., 2002� to the case of granular
materials. Zielinski and Hürlimann �2005� proposed the
use of the CPMG sequence to probe short length scales
in a static gradient. A tutorial about the time-dependent
diffusion coefficient and its application to probe geom-
etry was given by Sen �2004�. We discuss the result �20�
in detail in Sec. IV.

In the limit of long time T, another asymptotic behav-
ior of the apparent diffusion coefficient was found for
“open” �or unbounded� geometries

Dapp � D� +
�1

T
+
�3/2

T3/2 + ¯ , �21�

where the coefficients �1, �3/2, … depend on the confin-
ing geometry �Haus and Kehr, 1987; Latour et al., 1993;
de Swiet and Sen, 1996�. In this regime, the free diffu-
sion coefficient D is reduced to D� by a geometrical
factor T called the tortuosity. This is an important mac-
roscopic characteristic of porous materials and biologi-
cal tissues. Through the tortuosity, the ADC is con-
nected to many transport properties of fluids confined in
porous media: the porosity, permeability, electrical con-
ductivity of electrolytes, and velocity of sound in super-
fluidic helium �see Bear �1972�; Johnson et al. �1982��.
Since this review is primarily devoted to closed
domains26 such as isolated pores, we do not consider in
detail this tortuosity regime �see, for instance, Sen
�2004��.

The role of the connectivity in a material matrix has
also been intensively studied. McCall and co-workers27

investigated magnetization evolution in multiply con-
nected pore systems in the fast-diffusion regime when
the coupling between individual pores is important. To
have a specific model of a pore system, they chose a
hypercubic lattice whose sites and bonds were identified
with pores and throats, respectively. A volume and a
surface area were assigned to each site, while each bond
was characterized by a cross-sectional area and a length.
In this coarse-grained model, the evolution of magneti-
zation at each site followed a master equation whose
spectral properties were analyzed. Knowledge of re-
stricted diffusion within individual pores �or groups of
pores� may provide a better coarse graining for such
models.

25See Mitra et al. �1992, 1993�; Latour et al. �1993�; de Swiet
and Sen �1994�; Helmer, Dardzinski, et al. �1995�; Helmer, Hür-
limann, et al. �1995�; Sen �2004�; and references therein.

26As discussed in Sec. VI.I, the mathematical methods devel-
oped originally for closed systems can still be applied, to some
extent, to investigate open systems.

27McCall et al. �1991, 1993�; Guyer �1993�. See also Cohen and
Mendelson �1982�.
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J. Nonlinear magnetic fields

While the investigation of restricted diffusion in a lin-
ear magnetic-field gradient reveals hundreds of works, a
much smaller number of theoretical publications have
been devoted to nonlinear magnetic fields. This situation
may seem a bit surprising since the difference in mag-
netic susceptibilities of porous matrix and bulk fluid
often induces structure-dependent nonlinear internal
fields. The role of diffusion through such locally inhomo-
geneous magnetic fields was pointed out by Packer
�1973� and later investigated by many authors. On the
other hand, ex situ or mobile sensor measurements are
in general also realized in nonlinear magnetic fields.

The first theoretical study into the effect of nonlinear
magnetic fields on restricted diffusion was proposed by
Tarczon and Halperin �1985�. In the case of one-
dimensional diffusion restricted over a finite interval, an
arbitrary spatial profile of the magnetic field was repre-
sented by a Fourier series. Its coefficients were shown
to determine the second moment of the accumulated
phase, and the Gaussian phase approximation gave the
macroscopic signal. In particular, Tarczon and Halperin
proposed an approximate relation in the short-time
limit:

E � exp�− D�2geff
2 T3/12� , �22�

where geff
2 = �„�B�r�…2� is the spatial average of the

squared gradient of the magnetic field. Tarczon and Hal-
perin argued that the signal attenuation in a nonlinear
magnetic field B�r� could be characterized by an effec-
tive gradient geff. This result was applied by Hürlimann
�1998� to consider the effect of susceptibility-induced in-
ternal magnetic fields in porous media. In the simple
case of a linear gradient B�r�=g ·r one could get geff

2

=g2 and retrieve the relation �3�. Tarczon and Halperin
suggested a more accurate result, which is now known as
the local gradient approximation:

E �
1

V
�
	

dr exp
−
D�2T3

12
��B�r��2� . �23�

We discuss this result in Sec. IV.
Other theoretical treatments of nonlinear magnetic

fields in the whole space �that is, unrestricted diffusion�
should be mentioned. The first was given by Majumdar
and Gore �1988�, who proposed modeling the spatial dis-
tribution of susceptibility-induced magnetic-field inho-
mogeneities as discrete random fields. The effective dif-
fusion coefficient was found to be proportional to the
variance of the distribution of the magnetic-field gradi-
ents. The case of continuous Gaussian random fields was
considered by Mitra and Le Doussal �1991�. In the long-
time limit, they found an exponential decrease of the
macroscopic signal in time T with a power-law correc-
tion. The problem of large fluctuations in finite-size sys-
tems was discussed.

Le Doussal and Sen �1992� derived an exact solution
of the Bloch-Torrey equation in the whole space for a
quadratic �or parabolic� magnetic-field profile B�z�=g0

+g1z+g2z2. In the short-time limit, the signal attenua-
tion was similar to that of the effective linear gradient, in
agreement with the approximate relation �22�. In the
long-time limit, however, Le Doussal and Sen found that
ln E was proportional to T instead of Hahn’s T3 depen-
dence. A natural length scale �8D /�g2�1/4 was shown to
govern the problem. Parabolic magnetic fields were
studied experimentally by Bendel �1990�.

Zielinski and Sen �2000� reported a numerical solution
of the one-dimensional Bloch-Torrey equation with
parabolic and cosine spatial profiles of the magnetic
field. The evolution of the signal was argued to be
largely determined at all times solely by the two mo-
ments of the magnetic field, ���B�2� and �„�dx B�x�…2�,
and not by the details of its local spatial distribution.
They also showed that the local gradient approximation
holds only in the short-time limit and becomes invalid
for longer times. Grebenkov �2007a� applied the mul-
tiple correlation function description, presented in Sec.
III, to study theoretically the restricted diffusion be-
tween parallel planes in a cosine magnetic field. The par-
ticular choice of this spatial profile as proportional to an
eigenfunction of the related Laplace operator consider-
ably simplified the underlying mathematics and allowed
exact and explicit formulas for several high-order mo-
ments of the accumulated phase � to be obtained.

The presence of susceptibility-induced internal mag-
netic fields was employed by Song et al.28 to obtain the
pore size distribution in porous media. Instead of using a
uniform initial density and diffusion-sensitizing gradi-
ents, the spins can be excited selectively within a narrow
frequency range to create a nonuniform magnetization
at time t=0. Further relaxation to the equilibrium state
is governed by the Laplace operator eigenvalues which
are related to the characteristic length scales of the do-
main. For instance, this experimental technique was
used to determine multiple length scales in rocks �Song
et al., 2000�.

K. Diffusive edge enhancement

In this review, we consider restricted diffusion in the
whole sample. At the same time, position-encoding
gradients can be additionally applied to excite and ac-
quire the spin magnetizations within a small region of
the sample. This technique, known as magnetic reso-
nance imaging �MRI�, is widely used in medical and ma-
terials research as a noninvasive experimental tool. A
separate review would be required to list and comment
on various imaging methods developed during the last
decades.29 In this subsection, we briefly mention the role

28See Song �2000b�; Song et al. �2000, 2003�; Lisitza and Song
�2001, 2002�; Chen and Song �2002�. An excellent review of this
decay-due-to-diffusion-in-internal-field method is by Song
�2003�.

29A general review of MRI is given by Wehrli �1995�. The
concepts of NMR imaging of materials and biological cells are
described by Miller �1998� and Ciobanua et al. �2003�, respec-
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of diffusive motion for MRI.
On the one hand, the study of diffusive motion in each

of the small regions �called voxels� creates a diffusion-
weighted map of the sample, providing useful informa-
tion about its geometry. For instance, diffusion-weighted
proton imaging allows one to detect abnormal modifica-
tions in the structure and functionality of the brain.30

Highly spin-polarized noble gases �like helium-3 or
xenon-129� have been used for human lung imaging.31

Gas diffusion was also recognized as a powerful experi-
mental tool for imaging of materials �see Song et al.,
1995; Mair, Rosen et al., 2002, and references therein�
and for dynamical monitoring of temperature gradients
�Schmidt et al., 1997�.

On the other hand, diffusive motion is known to play
an important role in classical MRI, where the image rep-
resents the spatial distribution of the signal intensity in
different voxels. If diffusion was unrestricted, the at-
tenuation would be the same in different voxels and the
signal would be uniform throughout the sample.32 Dif-
ferent “obstacles” �walls, membranes, grains, etc.� lead
to inhomogeneous signal attenuation. Since the motion
is more restricted near the boundary, the spins travel
smaller distances, resulting in less pronounced dephas-
ing than that of the spins in the bulk. As a consequence,
a stronger macroscopic signal near an obstacle would
“highlight” its boundary. This effect, known as diffusive
edge enhancement, was first predicted in numerical
simulations by Hyslop and Lauterbur �1991� and Putz et
al. �1992�. It was later explored experimentally by Bar-
sky et al. �1992� and Callaghan et al. �1993� using water
proton NMR. In particular, Hyslop and Lauterbur
�1991� suggested using the effect of diffusion to detect
impermeable and semipermeable membranes.

A quantitative theory for the shape of the image dis-
tortion in the slow-diffusion and motional-narrowing re-
gimes was proposed by de Swiet �1995�. He showed that
frequency encoding is preferable to enhance the edges,
while pure phase encoding is better to reduce edge en-
hancement. Song et al. �1998� systematically character-
ized the effects of diffusion on MRI in a one-
dimensional �1D� sample using polarized xenon gas.
They found that the contrast between the boundaries
and the interior of the sample should become more pro-

nounced if sufficient time is allowed for diffusion.

L. Conventional numerical techniques

To fully discuss all numerical aspects of restricted dif-
fusion would require another review, so conventional
techniques only are mentioned in this subsection. To cal-
culate the attenuation of the macroscopic signal, either a
numerical resolution of the Bloch-Torrey equation or
Monte Carlo simulations of reflected Brownian motion
are generally employed. In the former case, the bulk of a
confining domain is discretized by a regular lattice or a
more complicated mesh, so that a discrete version of the
Bloch-Torrey equation can be numerically solved by
finite-difference or finite-element methods.33 The distri-
bution of the spin magnetization m�r , t� over lattice sites
is successively calculated step by step with a small time
interval . The macroscopic signal is then given as the
spatial average of m�r , t�. In contrast, Monte Carlo tech-
niques are used to simulate diffusive motion and to com-
pute accumulated phase of an individual spin.34 Brown-
ian trajectories are usually modeled as a sequence of
independent random jumps in the bulk with �partial� re-
flections on the boundary. The jump distance is either
fixed or normally distributed with dispersion �2D in
each spatial direction.35 Once the accumulated phase
distribution P��� is approximately found by launching a
large number of particles undergoing a random walk,
the signal can be deduced as the expectation of ei�. A
number of improvements can be introduced to speed up
Monte Carlo simulations. For instance, Leibig �1993�
suggested performing jumps of variable length depend-
ing on the distance between the particle and the bound-
ary.

Aside from these classical methods for diffusive pro-
cesses, we mention the lattice Boltzmann procedure de-
veloped by Guyer and McCall �2000� to numerically
simulate the time evolution of magnetization in a porous
medium. This technique, based on a coarse-grained pic-
ture of the particle system, is well suited to problems in
which a flow field is also present. Some other methods
were also employed, for instance, neural networks to
interpret pulsed-gradient restricted-diffusion data �Len-
non and Kuchel, 1994�.tively. The clinical impact of the magnetic resonance spectros-

copy is analyzed by Smith and Stewart �2002�. Medical appli-
cations for functional MRI are discussed in Le Bihan �1995�.

30See Le Bihan �1995, 2003�; Darquié et al. �2001�; Assaf et al.
�2004�; Frahm et al. �2004�, and references therein.

31Among a variety of published results, we mention Albert et
al. �1994�; Bachert et al. �1996�; Macfall et al. �1996�; Saam et al.
�2000�; Yablonskiy et al. �2002�; Bidinosti et al. �2003�; Swift et
al. �2005�; Fain et al. �2006�; Shanbhag et al. �2006�. Further
information can be found in reviews by Möller et al. �2002�;
van Beek et al. �2004�; Kadlecek et al. �2005�; Conradi et al.
�2006�.

32It should be also noticed that diffusion presents one of the
main limitations to increase spatial resolution of MRI �e.g., see
Brandl and Haase �1994��.

33Finite-difference technique was implemented by many au-
thors; see, e.g., Wayne and Cotts �1966�; Putz et al. �1992�;
Blees �1994�; Sen et al. �1999�; Zielinski and Sen �2000�; Hwang
et al. �2003�, although the list is far from complete.

34Among others, see Mendelson �1990�; Hyslop and Lauter-
bur �1991�; Balinov et al. �1993�; Coy and Callaghan �1994�;
Linse and Söderman �1995�; Mitra and Halperin �1995�; Kuchel
et al. �1996�; Duh et al. �2001�; Valckenborg et al. �2002�;
Grebenkov et al. �2007�.

35See Bergman et al. �1995� for comparison between a
random-walk method and a Fourier series expansion of diffu-
sion eigenmodes for periodic arrangements of spherical grains.
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M. Matrix formalisms

Although efficient for some purposes, the above clas-
sical techniques present inconveniences and limitations.
For instance, the statistical error of Monte Carlo simu-
lations decreases slowly with the number of particles un-
dergoing a random walk. In turn, the study of intensive
gradients requires a very fine resolution �or discretiza-
tion� of the Bloch-Torrey equation. Long-time analysis is
generally difficult with both techniques. To overcome
these problems, Caprihan et al. �1996� proposed an origi-
nal numerical approach. The idea was to approximate a
given temporal gradient profile �or wave form� g�t� by a
large sum of equidistant very narrow gradient pulses at
times k,  being a short time interval between two suc-
cessive pulses. These gradient pulses encode the succes-
sive positions rk=r�k� of a diffusing nucleus by factors
ei��gk·rk, where gk=g�k�. The random displacements of
nuclei during the time interval  is determined by the
propagator G�rk ,rk+1�. To calculate the average over all
positions rk, Caprihan et al. used the expansion of this
heat kernel over the Laplace operator eigenfunctions
�see Appendix D for details�. A general but cumber-
some expression for the macroscopic signal was derived.
As an example, they considered the case of restricted
diffusion between two parallel planes.

This approach was reformulated by Callaghan �1997�
in a simple and elegant matrix form. He showed that the
macroscopic signal can be written within a matrix for-
malism involving the eigenbasis of the Laplace operator
�see Appendix D for details�. In practice, the numerical
problem of finding the signal attenuation under an arbi-
trary temporal gradient profile was reduced to symbolic
manipulation with two matrices which depend on sev-
eral physical parameters. Callaghan illustrated the effi-
ciency of this multiple propagator approach by consider-
ing restricted diffusion between two parallel planes. In
further work, Callaghan and Codd �1998� and Codd and
Callaghan �1999� studied restricted diffusion in a cylin-
der and a sphere and discussed the role of surface relax-
ation. Price et al. �2003� used this technique to check the
validity of the narrow-pulse approximation. Grebenkov
�2006b� developed a spectral analysis of the underlying
matrices to show multiexponential signal attenuation for
CPMG sequences.

Callaghan’s matrix formalism was reformulated in
terms of random walks by Sukstanskii and Yablonskiy
�2002�. Using the modified approach, they obtained a
number of interesting results; in particular, they found a
transition between oscillatory and monotonic behaviors
of the free induction decay signal as a function of time.
The accuracy of the Gaussian phase approximation was
also discussed.

Finally, Barzykin �1998, 1999� proposed an equivalent
matrix formalism by considering a stepwise approxima-
tion of the temporal gradient profile. In his approach,
the two matrices determining the macroscopic signal de-
pend solely on the confining geometry. These matrices
have thus to be calculated only once for a chosen con-
fining medium �e.g., a sphere�, after which the computa-

tion of the signal is straightforward and rapid for any set
of physical parameters. This was an important improve-
ment of the above matrix techniques and a crucial sim-
plification for numerical analysis.

The different matrix approaches outlined above were
intended mainly for numerical computation of the mac-
roscopic signal. Axelrod and Sen �2001� developed a sys-
tematic formalism for calculating the magnetization of
spins diffusing in a bounded region in the presence of
surface relaxation and general magnetic field inhomoge-
neity. Following an analogy with quantum mechanics,
they considered the magnetization m�r ,T� at time T as a
result of application of an evolution operator U to its
initial state m�r ,0�. This operator was obtained by a for-
mal integration of the Bloch-Torrey equation with an
arbitrary time-dependent magnetic field f�t�B�r�,

U = T�exp
− �
0

T

dt�D� + i�f�t�B̂��� , �24�

where T�¯� denotes a time-ordered product and B̂ is
the operator of multiplication by B�r�. A perturbative
expansion of this relation in powers of the magnetic field
allowed many theoretical results to be derived and ex-
tended. Axelrod and Sen gave special emphasis to the
CPMG spin echoes.

In the next section, we reformulate36 their approach
using an alternative method �Grebenkov, 2007b�. The
central focus of our consideration will be reflected
Brownian motion and its multiple correction functions,
so we shall call it the multiple correlation function
�MCF� description. There will be no a priori favor given
to any particular temporal dependence of the magnetic
field. The results for CPMG spin echoes, as well as for
many other temporal profiles, will be derived from gen-
eral relations. Unlike Axelrod and Sen, we introduce the
normal modes of the Laplace operator as a natural
eigenbasis for this problem from the beginning. From
this point of view, the MCF approach can be seen as an
extension of Barzykin’s numerical technique to tackle
the problem of restricted diffusion in an arbitrary mag-
netic field theoretically. Throughout the review, this ap-
proach will be applied to retrieve, extend, and critically
discuss numerous results briefly presented in the above
overview.

III. MULTIPLE CORRELATION FUNCTIONS

In this section, the moments of the random phase ac-
cumulated by a diffusing spin are found in a matrix form
involving the Laplace operator eigenbasis in a confining
domain. The spatial inhomogeneities and time depen-
dence of the magnetic field enter the multiple correla-

36The author is thankful to one of the referees for pointing
out the article by Axelrod and Sen �2001�. The multiple corre-
lation function �MCF� approach developed independently by
the author and described below turns out to reproduce many
ideas and methods from their work.
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tion functions as functionals and weight factors. After
formulation for a general case in Sec. III.B, this MCF
description is applied to spin echoes in Sec. III.C. Dif-
ferent choices for temporal and spatial profiles of the
magnetic field are considered in Secs. III.D and III.E,
respectively. In Sec. III.F, the analytical results are de-
rived for restricted diffusion in three simple domains
�slab, cylinder, and sphere�.

A. Physical assumptions

Before starting the mathematical description, we first
specify and comment on the underlying physical as-
sumptions and limitations of this approach.

�i� The system consists of two kinds of matter: a
“solid” matrix �rock, grains, bone, tissue, mem-
branes, glass beads, colloids, proteins, etc.� and a
“fluid” substance �liquid or gas�. The fluid sub-
stance undergoes a motion that is confined by a
solid matrix �fixed and unchanged�. From the geo-
metrical point of view, the fluid substance fills a
volume �domain 	� restricted by the frontier be-
tween fluid and solid �boundary �	�. The domain
and its boundary remain unchanged during the
experiment.37

�ii� The fluid substance may be composed of different
particles �molecules or atoms�, but there is only
one kind of particle that bears nuclear spin of 1/2.
Their interaction with the magnetic field is de-
scribed in a classical way �via the accumulated
phase �1� or Bloch-Torrey equation �9��. We ne-
glect the bulk relaxation �spin-spin as well as spin-
lattice interactions�. Its effect is trivial, and it can
be measured and factored out by a NMR se-
quence without diffusion-weighting magnetic
fields. As a result, the signal can be renormalized
in such a way as to account for attenuation due to
restricted diffusion alone. In contrast, surface re-
laxation will be taken into account.

�iii� The spin-bearing particles of the fluid substance
undergo ordinary Brownian dynamics. This condi-
tion excludes stationary flow �convection or ad-
vection� and other hydrodynamic effects.38 Ther-
mal exchange between the liquid and its saturated

vapor is neglected.39 The mean free path of diffus-
ing particles should be much shorter than geo-
metrical features of the confining domain. More-
over, the elementary displacements of each
particle are supposed to be �almost� independent.
There are no traps in the bulk40 or other events
that may considerably affect the dynamics �except
reflections on the boundary; see below�. More
generally, there is no anomalous diffusion �like
Lévy flights�.41 Throughout the review, the
Brownian dynamics are assumed to be governed
by the Laplace operator, that is, the collisions of
the spin-bearing particles can be effectively de-
scribed by a single free diffusion coefficient D.
This coefficient is time independent and uniform
over the confining domain �that is, the fluid sub-
stance should be isotropic�. Note that many re-
sults presented below can be extended for more
general dynamics governed by a second-order el-
liptic operator.

�iv� The microscopic structure and physicochemical
properties of the frontier between solid matrix
and fluid substance are taken into account
through the Fourier boundary condition �10� for
the magnetization. In particular, surface relax-
ation may be caused by paramagnetic impurities
uniformly distributed over the boundary, absorp-
tion, or transfer of the spin-bearing particles
through the boundary to the external environ-
ment, specific spin-exchange processes, etc. In
contrast, there is no “tunneling” effect: the inter-
face separating two distinct compartments of the
bulk is supposed to be impenetrable.42 In other
words, the particle trajectory cannot pass across

37In many systems, the boundary may vary with time. For
instance, breath causes inflation and deflation of the pulmo-
nary acini �i.e., motion of the acinar tissue�. Membranes of
biological cells may change their shapes under external pertur-
bations. Chemical reactions lead to a time evolution �propaga-
tion� of the boundary between the solid grains and water in
cements. In all these cases, however, the characteristic time
scale for the boundary evolution is much longer than the du-
ration of the NMR experiment so that the boundary can be
considered as fixed.

38For some experiments, it may be difficult to completely sub-
tract convection in a sample. Unlike the stochastic character of
diffusion, a stationary flow yields systematic bias that may con-
siderably affect the results.

39The related enhancement of the self-diffusion for a liquid
partially filling a porous medium was observed by different
groups; for instance, see D’Orazio et al. �1989� and Kimmich et
al. �1994�.

40The effect of randomly distributed traps on diffusion was
thoroughly studied by different authors, e.g., Bixon and Zwan-
zig �1981�; Grassberger and Procaccia �1982�; Kirkpatrick
�1982�; Kayser and Hubbard �1983, 1984�.

41For a review of anomalous diffusion, see Bouchaud and
Georges �1990�, Metzler and Klafter �2000�, Kimmich �2002�,
and Zaslavsky �2002�. Anomalous diffusion on percolating
clusters was analyzed by Gefen et al. �1983�. The propagator
representation and its use in NMR was discussed by Zavada et
al. �1999�. The statistics of Lévy processes and Brownian flights
and their role in NMR were studied in Bychuk and
O’Shaughnessy �1995�, Stapf et al. �1995�, Shlesinger et al.
�1999�, Levitz �2005�, Levitz et al. �2006�, and Li et al. �2006�.

42This last assumption is not satisfied in most biological cells.
On the contrary, the fundamental role of a cellular membrane
is to allow such a tunneling, for instance, entry of metabolites
or exit of waste �see Alberts et al. �1994��. To some extent,
these effects can be taken into account by the surface perme-
ability. In general, one can describe the transport in such sys-
tems by considering two �or more� Bloch-Torrey equations
with appropriate boundary conditions �see Tanner �1978�; Sen
�2003�; Sukstanskii et al. �2004��.
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the boundary. If present, surface relaxation is sup-
posed to be time independent and uniform over
the whole boundary. When its magnetization is
not lost after collision with the boundary, the spin-
bearing particle is normally43 reflected to the bulk
to continue its diffusive motion.

�v� The macroscopic signal is formed by the spins dif-
fusing in a bounded region. We suppose that the
whole confining domain and its boundary are con-
tained inside this region. It is equivalent to saying
that the domain is closed: no particle can enter or
escape. Among the various assumptions, the ap-
propriateness of this is probably the most disput-
able. If the considered bounded region is a part of
a bigger system, the diffusing spins can freely en-
ter and escape the bounded region during a NMR
experiment. We propose three strategies that
could help one to consider this open system in a
similar way to the closed one. First, if the
bounded region is big enough, the transport pro-
cesses across the boundary are in general less sig-
nificant than that in the bulk, so that they can be
neglected in a first approximation. Second, if the
computation could be performed for the whole
�bigger� system, the macroscopic signal from a
bounded region would be found by using a non-
uniform pickup function in Eq. �12� and related
formulas. Third, some kind of a periodic bound-
ary condition can be employed to model the sur-
face exchange between the bounded region and
its environment. In this review, we do not focus on
these subtle points �see also the discussion in Sec.
VI.I�.

�vi� In many systems, differences in the magnetic sus-
ceptibility between the solid matrix and the fluid
substance induce high internal magnetic fields
near their frontier. These geometry-dependent
fields are, in general, difficult to access and con-
trol. In this review, the susceptibility effects are
supposed to be either neglected or effectively
taken into account through the spatial profile of
the magnetic field. Note that the last option would
require elaborate models of internal magnetic
fields.44

�vii� There is no hardware imperfection: one assumes
exact Larmor frequency, precise timing, and high
homogeneity of the radio-frequency pulses, no
eddy currents, etc. The rf pulses are assumed to

be very short so that the diffusive motion of the
spins during their application can be neglected.

Although these assumptions may appear too restric-
tive at first sight, many experiments and most theoretical
research have been performed under these conditions,
as illustrated in Sec. II.

B. General formulation

As a first step, we reformulate the general physical
description �1� and �2� of diffusive NMR phenomena in a
way that will allow for further theoretical and numerical
study. For this purpose, the exponential function in Eq.
�2� is expanded in a power series

E = �
n=0

�
in

n!
E��n� , �25�

where the moments of the random variable � are

E��n� = �nE��
0

T

dt1 ¯ �
0

T

dtnBt1
„r�t1�… ¯ Btn

„r�tn�…� .

�26�

The multiple integral of the product of similar functions
can be written as an ordered time average,

E��n� = n!�n�
0

T

dt1 ¯


�
tn−1

T

dtnE�Bt1
„r�t1�… ¯ Btn

„r�tn�…� , �27�

where the time moments t1 , . . . , tn are now in ascending
order. The multiple correlation function
E�Bt1

„r�t1�…¯Btn
„r�tn�…� can be calculated according to

its probabilistic meaning:

• the starting position r0 of the reflected Brownian mo-
tion is chosen with a given initial density45 �0�r0�;

• the probability density for arriving from this point to
a random position r1=r�t1� at time t1 is given by the
propagator, heat kernel, or Green’s function
Gt1

�r0 ,r1� of the diffusion equation in a bounded do-
main 	,

43In many thermal systems, particles are reflected in random
directions with the cosine distribution of angles �as diffuse re-
flection of light�. On average, however, this microscopic
mechanism is equivalent to normal reflections.

44See Brown and Fantazzini �1993, 1994�; Borgia et al. �1995�;
Sen and Axelrod �1999�; Sun and Dunn �2002�; Audoly et al.
�2003�. The effect of internal gradients on the time-dependent
diffusion coefficient in model porous systems has been mea-
sured by different groups, e.g., Zhong et al. �1991� and Seland
et al. �2000�; see also Weisskoff et al. �1994�.

45As mentioned in Sec. II.B, the magnetization density at
time t=0 is proportional to the initial spin density when rf
pulses are spatially homogeneous. In some circumstances,
however, inhomogeneous rf pulses may be preferred or un-
avoidable. For instance, Song �2000a� proposed an experimen-
tal technique to detect the pore geometry, when the uniformly
distributed spins are excited selectively within a narrow fre-
quency range to create a nonuniform magnetization at time t
=0. As a consequence, the initial magnetization is in general a
complex-valued function of r0. Strictly speaking, such probabil-
ity density has no meaning. However, one can still use the
subsequent matrix formalism to compute the moments of the
total dephasing and the resulting macroscopic signal.
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 �

�t
− D��Gt�r,r�� = 0 in 	 , �28�

with the appropriate Fourier or Neumann boundary
condition,


D
�

�n
+ ��Gt�r,r�� = 0 on �	 , �29�

and the initial condition

Gt=0�r,r�� = ��r − r�� ,

� being the Dirac distribution �delta function�;

• the subsequent positions r2=r�t2� , . . .,rn=r�tn� are also
distributed according to the corresponding probabil-
ity densities Gt2−t1

�r1 ,r2� , . . .,Gtn−tn−1
�rn−1 ,rn�.

Since reflected Brownian motion is a Markovian pro-
cess �without memory�, the multiple correlation function
is46

E�Bt1
„r�t1�… ¯ Btn

„r�tn�…�

= �
	

dr0 ¯ �
	

drn+1�0�r0�


Gt1
�r0,r1�Bt1

�r1�Gt2−t1
�r1,r2�Bt2

�r2� ¯


Gtn−tn−1
�rn−1,rn�Btn

�rn�GT−tn
�rn,rn+1��̃�rn+1� .

�30�

A similar relation was used by Bergman and Dunn
�1995� to describe the signal attenuation in periodic po-
rous media.

To proceed, one can use the spectral decomposition of
the heat kernel over the eigenfunctions um�r� of the
Laplace operator �Arfken and Weber, 2001�

Gt�r,r�� = �
m=0

�

um�r�um
* �r��exp�− Dt�m/L2� , �31�

where L is a characteristic dimension of the confining
domain 	 �e.g., its diameter�, and the asterisk denotes
the complex conjugate. The eigenvalues �m are defined
to be dimensionless:

− �um�r� = 
�m

L2�um�r� in 	 , �32�

and the Fourier �or Neumann� boundary condition is
imposed according to the physical properties of the in-
terface:

�

�n
um�r� +

h

L
um�r� = 0 on �	 , �33�

where the dimensionless surface relaxivity h is defined
as the ratio between the size L and the surface relax-
ation length D /�, which is the distance a particle should
travel near the boundary before surface relaxation ef-
fects reduce its expected magnetization:

h = �L/D . �34�

The eigenfunctions um�r� are orthonormal in the space
L2�	� of measurable and square integrable functions:

�
	

dr um�r�um�
* �r� = �m,m�, �35�

where �m,m� is the Kronecker symbol.47 For theoretical
analysis, it is convenient to introduce the dimensionless
diffusion coefficient

p = DT/L2. �36�

The substitution of the spectral decomposition �31� into
Eq. �30� for each propagator leads to

E�Bt1
„r�t1�… ¯ Btn

„r�tn�…�

= �
m1=0

�

¯ �
mn+1=0

�

Um1
e−p�m1

t1/T


Bm1,m2
�t1�e−p�m2

�t2−t1�/TBm2,m3
�t2� ¯


Bmn,mn+1
�tn�e−p�mn+1

�T−tn�/TŨmn+1

* , �37�

where the infinite-dimensional matrix B and vectors U

and Ũ are defined as48

46Throughout this review the pickup function �̃�rn+1� is con-
sidered to be 1. The function GT−tn

�rn ,rn+1� in Eq. �30� ensures
that the spin magnetization survives until the echo time T �oth-
erwise it would not contribute to the macroscopic signal�. In
the presence of surface relaxation, the omission of this factor
would result in some artifacts �see Kuchel et al. �1996��. In
contrast, if there is no surface relaxation �h=0�, the integral
over drn+1 can be omitted, being equal to 1 due to the normal-
ization of the heat kernel.

47It may also be useful to mention that each eigenvalue can
be expressed through the integrals of the associated eigenfunc-
tion:

�m = L2�
	

dr ��um�2 + hL�
�	

dr �um�2.

In particular, this relation shows that all eigenvalues are posi-
tive. In analogy with quantum mechanics or acoustics, these
terms can be respectively interpreted as the bulk kinetic en-
ergy and the potential energy which is localized in the surface
region �Ryu, 2001�. Moreover, one can associate to each eigen-
mode its characteristic length scale according to

�m =�
�	

dr�um�2��
	

dr��um�2.

Note that a similar parameter was introduced by Johnson et al.
�1986� to characterize transport in porous media.

48The initial density �0�r� might alternatively be set to the
inverse of the domain volume V provided that eigenfunctions
um�r� are appropriately normalized �see, for example, Barzykin
�1999��. In practice, however, such a normalization is difficult,
and the classical expansion �31� for the heat kernel is
preferred.
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Bm,m��t� = �
	

dr um
* �r�Bt�r�um��r� , �38�

Um = V1/2�
	

dr um�r��0�r� , �39�

Ũm = V−1/2�
	

dr um�r��̃�r� , �40�

V being the volume of the domain 	. The summation
over indices m1 , . . . ,mn+1 can be thought of as a matrix
product yielding a compact representation of a scalar
product for the multiple correlation function,

E�Bt1
„r�t1�… ¯ Btn

„r�tn�…�

= U
��
j=1

n

e−p�tj/TB�tj�ep�tj/Te−p�Ũ*� , �41�

with the diagonal infinite-dimensional matrix �:

�m,m� = �m,m��m. �42�

The ordered time average of the above correlation func-
tion gives the moment E��n� of the random phase � and
determines the nth-order contribution to the signal ex-
pansion �25�. An unbounded increase of the eigenvalues
�m with m ensures a rapid convergence in the matrix
product �41� and allows one to truncate the matrices B
and � to a limited dimension for numerical analysis.

At first thought, one may wonder what is the interest
of such a formal approach? The compact and transpar-
ent physical description by Eqs. �1� and �2� is “reduced”
to a cumbersome mathematical formalism involving the
multiple time integration of the product of time-
dependent infinite-dimensional matrices. Even for nu-
merical simulations, modeling reflected Brownian mo-
tion might seem to be simpler and more efficient.
However, this thought is misleading. The deceptive sim-
plicity of Eqs. �1� and �2� relies on the fact that the di-
versity of diffusive NMR phenomena is hidden in a very
complex behavior of reflected Brownian motion. The
stochastic character of diffusive motion is entangled as
with particular properties of the confining domain and
applied magnetic field. The complexity of these phe-
nomena has made them attractive to physicists since
Hahn’s seminal paper in 1950 to the present day. The
above matrix formalism is in fact a general mathematical
basis to study the diffusive motion in any confining ge-
ometry under arbitrary magnetic field. In this formal
way, the physical problem of finding the macroscopic sig-
nal of diffusing spins is entirely reduced to the analysis
of the Laplace operator eigenmodes, and is thus solved
as a physical problem. In what follows, we show how this
mathematical basis can be applied for a theoretical
analysis in many cases of particular interest. As the most
usual NMR technique, the spin-echo formation will be
examined in the next subsection.

C. Application to spin echoes

In the classical Hahn experiment �Hahn, 1950�, the
second rf pulse is emitted at time T /2 to refocus the spin
magnetizations. For immobile spins, dephasing during
the time interval �0,T /2� is completely compensated by
rephasing during the following time interval �T /2 ,T�, if
the applied magnetic field satisfies the rephasing condi-
tion

�
0

T/2

dt Bt�r� − �
T/2

T

dt Bt�r� = 0 �43�

at any spin location r inside 	. In this case, the accumu-
lated phase � is strictly zero for all spins �i.e., their mag-
netizations are in phase at time T�, which leads to echo
formation at time T. When spins diffuse, rephasing is not
complete, and the echo amplitude is decreased. This at-
tenuation can be experimentally measured to study the
spin motion.

In a typical situation, the magnetic field Bt�r� is com-
posed of a constant field B0 generated by a static mag-
net, and a time-dependent diffusion-sensitizing inhomo-
geneous field �F�t�B�r� of maximum intensity �. The
temporal and spatial profiles F�t� and B�r� are defined to
be dimensionless and normalized to 1. For mathematical
convenience, the temporal profile is supposed to be a
piecewise-smooth function on the interval �0,T�, while
the spatial profile is a smooth function in the bulk �do-
main 	�. These formal assumptions are satisfied in prac-
tice.

Throughout this review, the application of the 180° rf
pulse will be taken into account by inverting the sign of
the function F�t� for t�T /2. The above rephasing con-
dition is reformulated for such an effective temporal
profile of the magnetic field as

�
0

T

dt F�t� = 0. �44�

Since the contribution of a constant field vanishes after
rephasing, the total phase �, accumulated during the
time T, can be written in the same form as before, with
Bt�r�=�F�t�B�r�:

� = ��
0

T

dt �F�t�B„r�t�… . �45�

The time dependence of the matrix B�t� in Eq. �38� can
thus be factored out,

B�t� = F�t�B , �46�

where

Bm,m� = �
	

dr um
* �r�B�r�um��r� . �47�

For convenience, the integral variable t can be replaced
by a dimensionless parameter t /T:
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� = ��T�
0

1

dt f�t�B�Xt� , �48�

where

Xt 	 r�tT� and f�t� 	 F�tT� �49�

correspond to the time rescaling of reflected Brownian
motion and the effective temporal profile. In the remain-
der of this paper, t will denote the dimensionless time
ranging between 0 and 1. In particular, the rephasing
condition �44� reads as

�
0

1

dt f�t� = 0. �50�

The dimensionless parameter

q = ��T �51�

quantifies the effective dephasing of spins with gyromag-
netic ratio � in a magnetic field of strength � applied
over time T.49 The presence of three independent dimen-
sionless parameters p, q, and h will result in different
NMR regimes for restricted diffusion.

According to Eq. �48�, the physical phase � is propor-
tional to the random variable

� = �
0

1

dt f�t�B�Xt� , �52�

which we still call the “phase.”50 Relation �2� shows that
the macroscopic signal E is in fact a characteristic func-
tion of this variable:

E = E�eiq�� . �53�

Since the phase � is a bounded random variable, its
characteristic function is analytic �Feller, 1971�. In par-
ticular, its series expansion

E = �
n=0

�
�iq�n

n!
E��n� �54�

absolutely converges for any q. The moments E��n� may
be straightforwardly deduced from the results of Sec.
III.B:

E��n

n! � = �E�B�Xt1
� ¯ B�Xtn

���n, �55�

where �¯�n denotes the f-weighted �ordered� time aver-
age, with the effective temporal profile f�t�. For any
function h�t1 , . . . , tn� of time variables t1 , . . . , tn, this aver-
age is defined as

�h�t1, . . . ,tn��n

= �
0

1

dt1 ¯ �
tn−1

1

dtnf�t1� ¯ f�tn�h�t1, . . . ,tn� . �56�

For example, one has

��t1 − t2��2 = �
0

1

dt1f�t1��
t1

1

dt2f�t2��t1 − t2� . �57�

Note that a similar concept of the ordered time average
has been used by Axelrod and Sen �2001�, with special
emphasis on the CPMG spin echoes.

The multiple correlation function E�B�Xt1
�¯B�Xtn

��
represents the spatial average of reflected Brownian mo-
tion, weighted by the magnetic field profile B�r�. It can
be written according to Eq. �41� in the matrix form

E�B�Xt1
� ¯ B�Xtn

�� = U
��
j=1

n

e−p�tjBep�tje−p�Ũ*� .

�58�

The multiple correlation function does not depend on
the temporal profile f�t� of the magnetic field. The cru-
cial advantage of the last relation in comparison with
Eq. �41� is that the temporal and spatial averages can
now be calculated separately. First, the matrix B is
constructed for a given domain 	 and spatial profile
B�r�, independently of the function f�t�. Second, the
f-weighted time average of the multiple correlation func-
tion is calculated. This is a significant simplification for
the theoretical analysis and numerical computation.

In the case of the Neumann boundary condition �11�,
there is no loss of magnetization at the interface, so that
its steady-state distribution does exist and has to be uni-
form. This means that

• for any geometry of the domain 	, the ground eigen-
mode corresponds to the constant eigenfunction
u0�r�=V−1/2, with eigenvalue �0=0;

• the initial density of spins is typically uniform,51

�0�r�=1/V.

49The dimensionless variable q should not be confused with
the q-space parameter �g� /2� introduced in the literature in
the pulsed gradient spin-echo technique and the related
narrow-pulse approximation �Callaghan, 1991�, where � is the
duration of the narrow gradient pulses. Note that both param-
eters quantify the strength of the magnetic-field inhomogene-
ity. For instance, a linear gradient g over a characteristic length
L yields a magnetic-field variation �=gL, giving q=�gTL �in-
stead of �g� /2��. The dimensionless variable q can thus be
seen as an extension of the q-space parameter for arbitrary
temporal and spatial profiles of the magnetic field.

50For given temporal and spatial profiles f�t� and B�r�, � is a
functional of the reflected Brownian motion Xt. In mathemati-
cal literature, similar integral forms are sometimes called “Kac
functionals,” while the relation between their characteristic
functions and partial differential equations is known as
Feynman-Kac formula �Kac, 1949, 1951; Freidlin, 1985; Ma-
jumdar, 2005�.

51At thermal equilibrium, the initial spin density �0�r� is uni-
form for reflecting boundaries so that the magnetization
m�r , t=0� is uniform too. If this is not the case �see footnote
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In this case, the orthogonality of the eigenfunctions im-

plies Um=Ũm=�m,0 according to the definitions �39� and

�40� of the vectors U and Ũ. Moreover, the first diagonal
element of the matrices e−p�t1 and e−p��1−tn� in Eq. �58� is
equal to 1, independently of p, t1, and tn. All these sim-
plifications lead to the following expression for the mul-
tiple correlation functions in the case of reflecting
boundaries:

E�B�Xt1
� ¯ B�Xtn

��

= �Be−p�t2−t1��Be−p�t3−t2��B ¯ Be−p�tn−tn−1��B�0,0,

�59�

where the subscript 0 ,0 denotes the first diagonal ele-
ment of the matrix product in brackets. In the next sec-
tions, we show how this representation can be applied to
derive different NMR regimes of restricted diffusion.
For the sake of clarity, we focus our attention on the
reflecting boundary condition, bearing in mind that tak-
ing into account surface relaxation is in general straight-
forward but more cumbersome.

D. Temporal profiles of the magnetic field

1. Simple spin echo

The application of two identical linear gradients of
duration ��1/2 before and after the 180° rf pulse is
probably the most common way to encode the diffusive
motion. The temporal profile of these pulses �i.e., their
“shape”� is typically trapezoidal in an experiment �Fig.
4�d�� and rectangular for theoretical analysis �Fig. 4�c��:

f�t� =��t� −��t − �� −��t − 1/2� +��t − � − 1/2� ,

�60�

where ��t� is the Heaviside step function, ��t�=1 for t
�0, and 0 otherwise. Two specific cases have been par-
ticularly favored by theoreticians. These are the steady
profile ��=1/2� employed in the first spin-echo experi-
ment by Hahn �1950� and the narrow-pulse profile ��
�1/2� first introduced by Tanner and Stejskal �1968�.
Whatever the value of �, the function �60� will be called
the Stejskal-Tanner temporal profile.

2. CPMG spin echoes

A train of k 180° rf pulses at times tj= �2j−1� /2k, j
=1, . . . ,k, yields the successive refocusing of spin mag-
netizations �i.e., echo formation� at times t̃j= j /k. Due to
its relatively simple implementation, this Carr-Purcell-
Meiboom-Gill �CPMG� sequence is commonly used in
experiments to study restricted diffusion. Its effective
temporal profile can be represented as a shifted periodic
repetition of the rectangular template f0�t� in Eq. �60�
with �=1/2:

f�t� = �
j=0

k−1

f0�kt/2 − j + 1/4� . �61�

Its example for k=3 is shown in Fig. 4�b�.
45�, the given magnetization m�r , t=0� can be inserted through
the vector U.

FIG. 4. Several effective temporal profiles f�t�: �a� steady, �b�
CPMG, �c� Stejskal-Tanner rectangular, �d� trapezoidal, �e� pe-
riodic, and �f� stimulated echo. Profiles �a�–�c� correspond to
the gradient shapes shown in Fig. 2 �for convenience, the rect-
angular profile �c� was shifted to the left�. The case �e� is re-
lated to a frequency modulated magnetic field. The 180° rf
pulse is already taken into account for �a�–�e� by changing the
sign of the effective profile. The stimulated echo profile �f�
represents a steady gradient with three 90° rf pulses applied at
times 0, �, and 1−�. In this case, the echo shown corresponds
to the coherence pathway �1,0 ,−1�.
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3. Oscillating profile

Another interesting situation occurs when the mag-
netic field is applied periodically with time. In this case,
one samples molecular dynamics in the frequency do-
main rather than in the time domain. Callaghan and
Stepišnik �1995, 1996� showed that such frequency-
modulated gradient spin-echo measurements provide
access to much shorter time scales than that of the tra-
ditional Stejskal-Tanner profile. We consider the sine
and cosine temporal profiles f�t�=sin�2�kt� and f�t�
=cos�2�kt�, where k is the number of periods until echo
formation at time t=1 �Fig. 4�e��.

4. Arbitrary coherence pathway

A repetition of 180° rf pulses in a CPMG sequence is
only one example among many other pulse sequences
employed in current NMR experiments. In general, one
can use a sequence of k rf pulses applied at times tj.
Each of them rotates a fraction of the magnetization
into the transverse plane xy and a fraction into the lon-
gitudinal z direction. These fractions are determined by
a flip angle � that is proportional to the duration  and
the amplitude B1 of the rf pulse: �=�B1. Since the
transverse and longitudinal components of the magneti-
zation evolve differently in time, the subsequent pulse
splits them again into transverse and longitudinal com-
ponents, and so on. Each branch of this splitting cascade
is called a coherence pathway and represents the history
of a magnetization component over the entire pulse se-
quence. Since the rotation by the rf pulse is a linear
transformation, the total magnetization is the sum over
the various coherence pathways. This concept was first
introduced by Kaiser et al. �1974� and further developed
by others �see McDonald �1997�; Hürlimann �2001�;
Song �2002�, and references therein�. A general ap-
proach to this problem was developed by Zielinski and
Sen �2003b� and Zielinski and Hürlimann �2004� who
generalized the Bloch-Torrey equation to account for a
chosen coherence pathway. In the case of a time-
independent magnetic field, a set of coherences �cj� can
be incorporated through the effective temporal profile
f�t�:

f�t� = �
j=1

k

cj���t − tj� −��t − tj+1��

�here tk+1=1�. If the magnetic field itself evolves in time,
its temporal profile should be multiplied by the right-
hand side of the above relation. For example, a typical
stimulated echo sequence is formed by three 90° rf
pulses at times t1=0, t2=�, and t3=1−�, with c1=1, c2
=0, and c3=−1. The corresponding temporal profile is
shown in Fig. 4�f�.

It is important to stress that the signal attenuation due
to restricted diffusion for arbitrary pulse sequences can
be studied by the same theoretical and numerical tools
as used for simple spin echoes. The only difference with
respect to Hahn or CPMG echoes is that one needs to
compute the transverse magnetizations for each coher-

ence pathway and then average them with the appropri-
ate geometrical factors �see Zielinski and Sen �2003a�
for further details�.

E. Spatial profiles of the magnetic field

1. Linear gradient

A linear magnetic-field gradient covers the majority of
theoretical, numerical, and experimental NMR studies
of the diffusive motion. If nonlinear effects can be ne-
glected, the magnetic field of a linear gradient g is pro-
portional to the projection of the coordinate vector r
onto the gradient direction eg, i.e., �=gL and

B�r� = �eg · r�/L . �62�

The dimensionless magnetic-field strength q is then

q = �gTL . �63�

Substitution of the linear magnetic-field gradient �62�
into Eq. �47� leads to the matrix B which was first intro-
duced by Robertson �1966� and then extended by
Barzykin �1998, 1999� to describe signal attenuation due
to restricted diffusion.

2. Parabolic magnetic field

As mentioned in Sec. II.J, nonlinear magnetic fields
may have different origins such as hardware device fea-
tures or susceptibility effects. In this review, the normal-
ized isotropic parabolic magnetic field

B�r� = r2/L2 �64�

is considered as a paradigm for nonlinear fields. Its in-
tensity g2 determines the dimensionless magnetic-field
strength q:

q = �g2TL2. �65�

Note that parabolic magnetic fields can also be experi-
mentally generated �Bendel, 1990�.

Other choices for the spatial profile of magnetic field
can be straightforwardly implemented, at least at the nu-
merical level. In particular, Zielinski and Sen �2000� and
later Grebenkov �2007a� paid special attention to the
cosine profile of the magnetic field in the one-
dimensional case because it can be thought of as a crude
model for microscopic field inhomogeneities induced by
susceptibility differences.

F. Basic confining domains

Before proceeding with the analysis of the moments
E��n�, we give three examples of confining media for
which the Laplace operator eigenbasis is explicitly
known �Carslaw and Jaeger, 1959; Crank, 1975�. Many
theoretical studies of restricted diffusion are actually fo-
cused on these basic domains. Although their shapes are
quite simple, the use of these structures to mimic a geo-
metrical confinement considerably helped to compre-
hend the diffusive motion in more realistic media.
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1. Slab

Restricted diffusion between two parallel infinite
planes separated by a unit distance is the most studied
case. This problem is equivalent to one-dimensional dif-
fusion on the interval �0,1� with reflections at end points
0 and 1. The eigenbasis of the Laplace operator with
Neumann boundary condition �11� is simple and well
known:

�m = �2m2, um�x� = �m cos��mx� , �66�

where �m=�2 for m�0 and �0=1 to normalize the eigen-
functions um�x�. The eigenvalues �m directly give the el-
ements of the matrix �.

The elements of the matrix B depend on the choice of
the spatial profile B�x� of the magnetic field. In the case
of a linear gradient applied in the direction normal to
the planes, B�x�=x, one calculates52

Bm,m� =
�m�m�

�2 ��− 1�m+m� − 1�
m2 + m�2

�m2 − m�2�2 �67�

for m�m�, and Bm,m=1/2. In particular, one gets for
m�0

B0,m = �2��− 1�m − 1��m
−1. �68�

For the parabolic magnetic field �64�, one finds

Bm,m� =�
2�m�m��− 1�m+m��m2 + m�2�

�2�m2 − m�2�2 , m � m�

1
3

+
1

2�2m2 , m = m�� 0,�
�69�

and B0,0=1/3. In particular, one has for m�0

B0,m = 2�2�− 1�m�m
−1. �70�

If the surface relaxation is significant, the Neumann
boundary condition �11� should be replaced by a more
general Fourier boundary condition �10�. The eigenval-
ues and eigenfunctions of the Laplace operator have to
be recalculated �see Table I�. Although the expressions
become more cumbersome and less transparent, the
same concept is applied. We should mention, however,
two differences with respect to the reflecting boundary
condition. First, one has to use the general relation �58�
for the multiple correlation functions instead of its sim-
pler form �59�. In particular, computation of the vectors

U and Ũ is required �see Table I�. Second, the matrices
B and � depend on the dimensionless surface relaxivity
h. If this value is fixed, there is no conceptual difference

with respect to the case h=0. Alternatively, if one stud-
ies the dependence of the signal �or correlation func-
tions� on this parameter, the matrices B and � have to
be recalculated for each value of h. Although their nu-
merical computation is very rapid, theoretical analysis of
the dependence on h is more difficult since the eigenval-
ues and eigenfunctions of the Laplace operator vary
with this parameter in a complex manner.

2. Cylinder

For an infinite cylinder of unit53 radius �or a disk�, the
classical representation of the eigenfunctions involves
two positive indices n and k,

unk�r,�� =
�n

��
�nk

Jn��nk�
Jn��nkr�cos�n�� , �71�

where Jn�z� are the Bessel functions of the first kind.
The normalization constants �nk and the positive roots
�nk are defined in Table I. In our notation, the pair of
indices n and k can still be thought of as a single index
m. For numerical implementation, one has to sort the
eigenvalues �nk=�nk

2 in ascending order to truncate the
infinite-dimensional matrices B and �. The position of
the eigenmode in such a sequence can be used for its
single index m.

The matrix B for a linear magnetic-field gradient in a
cylinder was first considered by Barzykin �1999� who
wrote its elements as the integrals involving the Bessel
functions. In Table I, we give the explicit representation
for the matrix B and vector U in terms of the eigenval-
ues �nk for linear gradient and parabolic magnetic
fields.54 Finding these eigenvalues �or roots �nk� requires
a numerical computation that is simple and has to be

52The matrix B was calculated for a linear magnetic-field
gradient in basic domains by Barzykin �1999�. This com-
putation is elementary for a slab geometry since the eigenbasis
is formed by sine and cosine functions. Note that the
relations presented here correspond to restricted diffusion in
an interval �0,1�, while Barzykin considered a centered interval
�−1/2 ,1 /2�.

53The physical radius L will reappear in dimensionless coef-
ficients p, q, and h. At this point, we stress that the term “char-
acteristic dimension of the confining medium” is somewhat
ambiguous. For example, if one considers restricted diffusion
in a long thin tube, the motion is essentially confined along the
transverse direction �perpendicular to the axis of the tube�. In
this case, the characteristic dimension means the width and not
the height of the tube. The situation is more complicated still
in porous media when different length scales are present. We
shall not discuss these subtle points here, maintaining a formal
position in which L can be thought of as an appropriate length
scale to get dimensionless parameters p, q, and h �their defini-
tions are conventional as well, up to a constant factor�. For a
slab, L will always be the separation width of the parallel
plates �length of an interval�. For a cylinder and a sphere, L
will be the radius.

54Quite surprisingly, the elements of the matrix B are fully
determined by eigenvalues in all considered cases: for three
different confining domains �slab, cylinder, and sphere� and
two choices of the spatial profile �linear gradient and parabolic
magnetic fields�. This means that the matrix B �representing
perturbative interaction in quantum-mechanics language� does
not bring new information about these geometries with respect
to the matrix � �unperturbed Hamiltonian of a free particle�.
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performed only once55 for a chosen spatial profile of the
magnetic field. The stored matrices B and � can then be
used to study restricted diffusion. Note that the dimen-
sionless surface relaxivity h is still defined by Eq. �34�,
where L is the physical radius of the cylinder.

3. Sphere

For a sphere of unit radius, the eigenfunctions are

unkl�r,�,�� =
1

�2�

�nk

jn��nk�
jn��nkr�Pn�cos ��eil�, �72�

where Pn�x� are the Legendre polynomials and jn�z� the
spherical Bessel functions. The normalization constants
�nk and the positive roots �nk are defined in Table I.
Although the eigenfunctions are formally enumerated
by triple index �n ,k , l�, the last index l will be omitted
throughout this paper since the polar coordinate � is not
involved in the following analysis. In particular, the in-
tegration over � will simply give a factor 2�. If the spa-
tial profile of the magnetic field was dependent on �, this
coordinate would be taken into account.

For a linear magnetic-field gradient in a sphere,
Barzykin �1999� expressed the elements of the matrix B
as integrals involving the spherical Bessel functions. In
Table I, we give the explicit representation for the ma-
trix B and vector U in terms of the eigenvalues �nk for
linear gradient and parabolic magnetic fields. As men-
tioned previously, the elements of the matrices B and �
have to be numerically computed only once, and then
their stored values can be used for further analysis of
restricted diffusion in a sphere. In what follows, we focus
mainly on the reflecting boundary condition, while the
accounting for surface relaxation is straightforward but
more cumbersome.

IV. SLOW-DIFFUSION REGIME „p™1…

Now we show how many classical results on diffusive
NMR phenomena can be retrieved within the MCF de-
scription. We start with the analysis of the moments
E��n� in the slow-diffusion regime, when the dimension-
less diffusion coefficient p goes down to 0. This regime is
also known as the short-time limit since T→0 implies
p→0. We first calculate the leading term of the second
moment and conjecture its general form for the higher-
order moments. Then corrections to the leading term
are discussed. Throughout this section, the surface relax-
ation is neglected �h=0�.

A. Leading term of the second moment

According to the general relation �59�, the second mo-
ment of the random phase � can be written as

E��2

2 � = ��Be−p�t2−t1��B�0,0�2. �73�

In the limit p→0, one can formally expand the exponen-
tial function in a power series up to the first order:

E��2

2 � = �1�2�̃0 − p�t2 − t1�2�1 + ¯ , �74�

where the f-weighted time averages �1�2 and �t2− t1�2 are
defined by Eq. �56�, while the coefficients �k denote the
following spatial averages:

�k = �
m=1

�

B0,m�m
k Bm,0 �for k� 1� �75�

and

�̃0 = �0 + �B0,0�2. �76�

Note that the above expansion is formal since higher-
order terms �B�2B ,B�3B , . . . � diverge, strictly speaking
�this divergence can be renormalized as discussed in the
next subsections�.

The coefficients �̃0 and �1 can be further simplified by
considering the spatial averages �B2�0,0 and �B�B�0,0 us-
ing a field theory technique. Indeed, the matrix B con-
tains and represents a scalar field B�r�, while the matrix
� acts like a field operator: one can replace the combi-
nation �mum�r� by −L2�um�r�, and then apply the second
Green’s formula56 to transpose the Laplace operator to
the adjacent field B�r�. For example, one starts from the
definition

�̃0 =
1

V �
m=0

� �
	

dr um�r�B�r��
	

dr�um
* �r��B�r�� �77�

�where u0�r�=V−1/2 is substituted� and obtains

�̃0 =
1

V
�
	

dr B2�r� , �78�

since there is no matrix � to act on the field B�r�, while
the summation over m gives ��r−r��. For the reflecting
boundary condition, this coefficient is equal to the ex-
pectation of the squared field57

55If one considers the dependence on the dimensionless sur-
face relaxivity h, �nk have to be recalculated for each value of
h.

56If u and v are twice continuously differentiable functions in
	, then

�
	

dr�u�v − v�u� =�
�	

dr
u
�v
�n

− v
�u

�n
� .

57As a consequence, the second correlation function
E�B�Xt1

�B�Xt2
�� can be written as

E�B�Xt1
�B�Xt2

�� = �̃0 − 1
2E��B�Xt1

� − B�Xt2
��2� ,

where the second term is referred to as the field scattering
kernel and quantifies the amount of field inhomogeneity expe-
rienced by diffusing spins between times t1 and t2 �Zielinski
and Sen, 2003a; Zielinski, 2004�. For a linear magnetic-field
gradient, the field scattering kernel is reduced to the time-
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E�B�Xt�2� = �̃0. �79�

Note that the coefficient �̃0 does not contribute to the
second moment since the f-weighted time average of a
constant vanishes due to the rephasing condition �50�.

In a similar way, one writes the definition of the coef-
ficient �1 and obtains by the second Green’s formula

�1 =
L2

V �
m=1

� 
�
	

dr um�r��B�r� − �
�	

dr um�r�
�B

�n �

�

	

dr�um
* �r��B�r�� , �80�

where the boundary condition �um�r� /�n=0 canceled an-
other integral over the boundary �	. The summation
over m gives ��r−r��−1/V yielding

�1 =
L2

V
�
	

dr ��B�r��2, �81�

where �B�r� is the gradient of the magnetic field B�r�. In
particular, for the linear gradient profile �62�, the spatial
average �1 is equal to 1 for any confining geometry.

The leading term of the second moment is then

E��2

2 � � p�t1 − t2�2
L2

V
�
	

dr ��B�r��2� . �82�

We stress that this slow-diffusion behavior is valid for
arbitrary temporal and spatial profiles of the magnetic
field. In the particular case of a Stejskal-Tanner tempo-
ral profile �60�, one has

�t1 − t2�2 = �2�1/2 − �/3� , �83�

and Eq. �82� is reduced to the result of Tarczon and
Halperin �1985� derived for the restricted diffusion be-
tween two parallel planes by Fourier expansion of the
magnetic field.

B. Higher-order moments

A similar analysis can in principle be applied to calcu-
late the leading terms for higher moments of even or-
ders. However, the computation becomes much more
cumbersome, since a large number of particular cases
have to be carefully considered. Moreover, the un-
bounded increase of the elements �m,m when m→� re-
quires a renormalization procedure. From a direct com-
putation of the fourth moment in Appendix A, we
conjecture a general form of the leading terms for even
order moments in the slow-diffusion regime:

E� �2n

�2n�!� �
pn

n!
��t1 − t2�2�nL2n

V
�
	

dr ��B�r��2n. �84�

A systematic computational technique to rigorously
demonstrate this relation would be of great interest.

In the particular case of a linear magnetic-field gradi-
ent, one has L2n��B�r��2n=1, and

E� �2n

�2n�!� �
1

n!

E��2

2 ��n

, �85�

where the leading term of the second moment is simply

E��2

2 � � p�t1 − t2�2. �86�

Substituting the leading terms �85� into the series expan-
sion �54�, one finds a compact form of the Stejskal-
Tanner formula �7�,

E � exp�− q2p�t1 − t2�2� , �87�

where the f-weighted time average �t1− t2�2 can be writ-
ten in the standard manner as

�t1 − t2�2 = �
0

1

dt
�
0

t

dt�f�t���2

. �88�

For example, it is equal to 1/12 for a steady temporal
profile, leading to a widely used expression �3�.

Interestingly, the relation �85� becomes exact in the
free- �or unrestricted-�diffusion limit, when the charac-
teristic dimension L of the confining domain goes to in-
finity. In this case, the dimensionless diffusion coefficient
p tends to 0 while the dimensionless magnetic-field
strength q diverges, but their combination q2p remains
constant. Since the moment E��2n� appears in front of
q2n, its leading term of order pn gives a nontrivial con-
tribution, while the correction terms of order higher
than pn vanish. As a consequence, the Gaussian form
�87� is exact for a linear magnetic-field gradient in the
free-diffusion limit. It is worth noting that the passage
from restricted to unrestricted diffusion is in general
more delicate than presented here �see Sec. VI.I�.

We stress that there is a significant difference between
the slow- and free-diffusion regimes, although in both
cases p goes to 0. In the free-diffusion limit �L→� and
q→��, each combination �q2p�n provides a nontrivial
contribution, while the correction terms for each mo-
ment vanish. Brought together, these contributions lead
to the Gaussian form �87�. In contrast, L and q are kept
fixed in the slow-diffusion limit. The second moment,
being of the order of p, thus gives a major contribution,
while the other moments of higher orders appear as its
vanishing corrections. Consequently, the series expan-
sion �54� of the signal becomes

E � 1 − q2E��2/2� �89�

or, with the same accuracy,

dependent diffusion coefficient measuring the average dis-
placement of diffusing spins between times t1 and t2 along the
gradient direction �see Sec. VI.D�.

1101Denis S. Grebenkov: NMR survey of reflected Brownian motion

Rev. Mod. Phys., Vol. 79, No. 3, July–September 2007



E � exp�− q2E��2/2�� . �90�

Although one retrieves again the Gaussian form �87�,
this relation is just a convenient representation of the
first-order approximation �89�. In the literature, there is
much speculation about the slow-diffusion approxima-
tion �90�. The same relation can be written in the limit
q→0 with a fixed p. In both cases, its applicability is
limited to relatively small values of q and p. A potential
extension of its validity is called the Gaussian phase ap-
proximation. In contrast, the very same relation �87� is
exact in the free-diffusion limit for any values of p and q.
The confusion between the free- and slow-diffusion re-
gimes is quite common and may be misleading. Extend-
ing the confining domain is not equivalent to reducing
the diffusion length due to the presence of a nonuniform
magnetic field.

For nonlinear magnetic fields, the substitution of the
moments �84� in the series expansion �54� gives

E �
1

V
�
	

dr exp�− q2p�t1 − t2�2L2��B�r��2� . �91�

This relation can be seen as an extension of the local
gradient approximation �23� by Tarczon and Halperin
�1985� to an arbitrary temporal profile f�t�. Moreover,
the present derivation is not restricted to the one-
dimensional case �but it is based on the conjectural ex-
pression �84��. Note that the relation �91� remains an

approximation involving only the leading terms of all
even moments in the slow-diffusion regime. So the free-
diffusion limit �L→�� of Eq. �91� in the case of nonlin-
ear magnetic fields may not exist �or be trivial�.

C. Correction term to the second moment

A careful revision of the derivation in Sec. IV.A re-
veals a gross defect. As mentioned at the beginning of
this section, the series expansion of the exponential
function in Eq. �73� is not mathematically allowed since
the terms B�2B, B�3B , . . . are divergent due to an un-
bounded increase of the elements �m,m with m. At the
same time, this very increase ensures a rapid conver-
gence of the exponential function exp�−p�t2− t1��� itself.
Some renormalization procedure must therefore be in-
troduced.

Consider again the second moment and expand the
exponential function in a power series:

E��2

2 � = �
m=0

�

B0,mBm,0�
n=0

�
�− p�n

n!
�m

n ��t2 − t1�n�2. �92�

To extract the coefficient in front of pn, one has to ex-
change the order of summation. However, this operation
is not allowed since it would lead to a divergent series.
As we see below, this difficulty can be formally over-
come by taking the sum over m up to a large but finite
cutoff M:

E��2

2 � � �
n=0

�
�− p�n

n!
��t2 − t1�n�2��

m=0

M

B0,mBm,0�m
n  .

�93�

As we have already seen, the zeroth term �n=0� van-
ishes after we take the f-weighted time average, while
the first term �n=1� converges as M goes to infinity and
provides the leading contribution of order p. In contrast,
higher-order terms �n 2� are divergent in the limit M
→�. For three basic domains and two choices of the
magnetic-field spatial profile considered above, the
asymptotic behavior of the divergent sum at large M is

�
m=0

M

B0,mBm,0�m
n ! cB�

2n−4 M2n−3

n − 3/2
, �94�

where cB is a geometry-dependent constant �see below�.
The correction term is then

cB�
−4M−3�

n=2

�
�− p�t2 − t1��2M2�n

n!�n − 3/2�
. �95�

This series can be calculated explicitly with the help of
the identity

�
n=2

�
�− x�n

n!
1

n − 3/2
= x3/2�

0

x

d��e−� − 1 + ���−5/2.

The substitution of x=p�t2− t1��2M2 leads to the correc-
tion

TABLE II. Several coefficients �k for a slab, a cylinder, and a
sphere under linear gradient and parabolic magnetic fields. Co-
efficients �̃0 and �1 are directly obtained by Eqs. �78� and �81�.
The values of �−1 and �−2 were calculated by Robertson and
Neuman for a magnetic field with a linear gradient profile. The
case of the parabolic magnetic field, as well as the computation
of the coefficients �3/2, �2, and �5/2, is considered in Appendix
B.

Slab Cylinder Sphere

Linear �5/2 0 −1/ �15��� 0

gradient �2 0 −1/4 −1/2
�3/2 8 / �3��� 4/ �3��� 4/ �3���
�1 1 1 1
�0 1 /12 1/4 1/5

�̃0
1 /3 1/4 1/5

�−1 1 /120 7/96 8/175
�−2 17/20160 11/512 83/7875

Parabolic �5/2 0 8/ �5��� 32/ �5���
field �2 2 6 12

�3/2 16/ �3��� 32/ �3��� 48/ �3���
�1 4 /3 2 12/5
�0 4 /45 1/12 12/175

�̃0
1 /5 1/3 3/7

�−1 8 /945 1/192 8/2625
�−2 4 /4725 1/2880 148/1010625
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cBp3/2�t2 − t1�3/2�−1��− 3/2� , �96�

where the integral over � was replaced by its limit
��−3/2�=4�� /3 for M �or x� going to infinity. The com-
plete expression for the second moment is then

E��2

2 � � p�1��t1 − t2��2 + p3/2�3/2��t2 − t1�3/2�2, �97�

where

�3/2 =
4

3��
cB. �98�

Note that a similar form of Eq. �97� was derived by Ax-
elrod and Sen �2001�. In Appendix B, the Laplace trans-
form summation technique is used to obtain, in a more
rigorous way, the p3/2 dependence and higher-order cor-
rection terms for restricted diffusion in three basic do-
mains under linear gradient and parabolic magnetic
fields �see also Table II�. Unlike the coefficients �k with
k�1, the new coefficient �3/2 is not defined by Eq. �75�,
which is divergent for k 3/2, at least for linear gradient
and parabolic magnetic fields. When k 3/2, the coeffi-
cients �k can be defined by series expansion of the sec-
ond moment in powers of p:

E��2/2� = �
k=2

�

�− 1�kpk/2�− �t2 − t1�k/2�2�k/2. �99�

Note that this expansion may contain a finite number of
terms with exponentially small corrections as in the case
of restricted diffusion in a slab �see Appendix B for de-
tails�.

As shown in Sec. IV.A, the coefficients �̃0 and �1 are
related to the spatial averages of B2�r� and ��B�r��2 over
the confining domain. Axelrod and Sen �2001� adapted
the heat content asymptotics for operators of Laplace
type58 to give

�3/2 =
4

3��
L3

V
�

�	

dr
 �B

�n
�2

. �100�

As a consequence, the coefficient cB characterizing the
asymptotic decrease of the elements B0,mBm,0 as m→�
is proportional to the above integral. For example, in the
case of restricted diffusion in a slab under a linear gra-
dient, the boundary �	 consists of two end points, and
hence the integral is simply equal to 2 �see Table II�.
While the leading term is determined by the bulk aver-
age of the squared magnetic-field gradient ��B�2 �coeffi-
cient �1�, the surface average of this squared gradient is
taken into account through the correction �3/2. Axelrod
and Sen �2001� pointed out the physical importance of
the appearance of the surface gradient �B /�n. In fact,
the presence of paramagnetic impurities near pore
boundaries or a susceptibility contrast between the wall
and the bulk often make the field at the pore wall con-
siderably different from that in the interior. These inter-
nal fields, which are in general difficult to control, may
enhance the contribution of the p3/2 correction and lead
to erroneous determination of the surface-to-volume ra-
tio �see below�. On the other hand, the coefficient �3/2
may vanish for specific spatial profiles of the magnetic
field for which �B /�n=0 �e.g., the cosine field cos���x�
with a positive integer � in a slab considered by Greben-
kov �2007a��.

Although the correction of order p3/2 vanishes in the
limit p→0 faster than p, it is significant for practical
applications �see Fig. 5�. This correction is related to
restriction of spins in the neighborhood of the interface,

58The integral representations for coefficients �3/2, �2, and �5/2,
including Eq. �100�, are based on results by Desjardins and
Gilkey �1994� �see also Branson and Gilkey �1990�; McAvity
and Osborn �1991�; McAvity �1992�; van den Berg and Gilkey
�1994��. In our notation, one has

�2 = −
L4

V � 1
2�

	

dr ��B�2 +�
�	

dr�− ��B�
�B

�n
+

1
2R
 �B

�n
�2� ,

with the mean curvature of the boundary R−1= �1/R1
+1/R2� /2, where R1 ,R2 are the radii of its principal curva-
tures. In general, R is a function of the boundary point r. For
a linear gradient in direction eg, one gets

�2 = −
L2

2V�
�	

dr
1

R�r�
�n�r� · eg�2,

where n is the unit normal to the boundary at r. In this case,
the coefficient �2 is proportional to the average of the mean
curvature weighted by cos2���, � being the angle between n
and eg. A microroughness of the boundary may increase this
coefficient. There is a more cumbersome expression for �5/2,

�5/2 =
2

15��
L5

V �
�	

dr�8
���B�

�n

�B

�n
− 2
 �

�"1

�B

�n
�2

− 2
 �

�"2

�B

�n
�2

+ �2R−2 + R1
−2 + R2

−2�
 �B

�n
�2 ,

where "1 and "2 are the local boundary coordinates �for further
details, see Desjardins and Gilkey �1994��.

FIG. 5. �Color online� The second moment E��2 /2� �solid line�
as a function of p for the restricted diffusion between two
parallel planes �in a slab� under a steady linear magnetic-field
gradient. For small p, this moment is compared to its leading
term in the slow diffusion regime with �circles� and without
�dashed line� the correction term in Eq. �97�. One clearly sees
the importance of this correction.
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within the diffusion length �DT�1/2. These spins are more
confined than those of the bulk, resulting in less pro-
nounced dephasing. The fraction of these spins can be
estimated as �DT�1/2 /L, explaining the additional factor
p1/2 in the p3/2 dependence. The numerical prefactor �3/2
accounts for the specific geometry of the confining me-
dium and for the spatial profile of the magnetic field,
while the f-weighted time average ��t2− t1�3/2�2 assesses
the choice of the temporal profile f�t�. In this way, Eq.
�97� is an extension of the results by Mitra et al. �1992�
and by de Swiet and Sen �1994� to the general case of
arbitrary temporal59 and spatial profiles of the magnetic
field �see discussion in Sec. IV.E�.

D. Several temporal profiles

For the Stejskal-Tanner temporal profile f�t� shown in
Fig. 4�c� �two rectangular pulses of duration ��, the
f-weighted time average of the function �t2− t1�� for any
positive power � can be found explicitly:

��t2 − t1���2

=
2��+2 + 2�1/2��+2 − �1/2 + ���+2 − �1/2 − ���+2

�� + 1��� + 2�
.

�101�

Note that a similar relation was derived by Kärger et al.
�1988� in the context of anomalous diffusion. For a
steady profile ��=1/2, Fig. 4�a��, the above relation is
reduced to

��t2 − t1���2 =
2−� − 1

�� + 1��� + 2�
. �102�

The other case of particular interest is the narrow-pulse
approximation ��→0�, for which one derives for ��0

��t2 − t1���2 � − �1/2���2. �103�

The analytical computation of the f-weighted time av-
erage of the function �t2− t1�� for arbitrary � is more
difficult for other profiles, but its numerical realization is
simple and straightforward. The most important case �
=1 can still be tackled theoretically. For instance, one
retrieves a classical expression for the trapezoidal
Stejskal-Tanner profile shown in Fig. 4�d�:

��t1 − t2��2 = 1
2

2 + � + 1
2�

2 − 7
15

3 − 7
6

2� − �2 − 1
3�

3.

�104�

If the ramp time  is equal to 0, the trapezoidal profile is
replaced by the rectangular one, while the above rela-
tion is reduced to Eq. �83�.

For a CPMG sequence, the 180° rf pulse is repeatedly
applied to generate a train of spin echoes. The corre-
sponding effective temporal profile f�t� is a shifted peri-

odic repetition of a chosen template f0�t� �see Fig. 4�b��.
For the classical case of a rectangular pulse f0�t�, a te-
dious but elementary combinatorial computation gives60

��t2 − t1���2 =
�1/2k��+2

�� + 1��� + 2�
�− 1�k�2k��+2

− 4�
j=1

k

�− 1�j�2j − 1��+2

− 4�
j=1

k−1

�− 1�j�k − j��2j��+2� . �105�

It is easy to check that this expression reduces to Eq.
�102� for k=1. The computation for a general shape of
the repeated pulse f0�t� can be performed numerically. In
the particular case �=1, the representation �88� allows
one to show that the f-weighted time average ��t2− t1��2
for a CPMG profile f�t� with k echoes is k2 times smaller
than the f0-weighted time average ��t1− t2��2. For ex-
ample, if one repeats k times the rectangular Stejskal-
Tanner profile shown in Fig. 4�c�, the corresponding time
average for this CPMG sequence is

��t1 − t2��2 =
�2�1/2 − �/3�

k2 . �106�

For �=1/2, one retrieves the Carr-Purcell relation �4�.
Finally, a simple calculation of the f-weighted time av-

erage ��t1− t2��2 for the sine and cosine profiles f�t�
=sin�2�kt� and f�t�=cos�2�kt� gives 3/ �8�2k2� and
1/ �8�2k2�, respectively.

E. Discussion of the correction term

As mentioned above, Eq. �97� is an extension of the
results by Mitra et al. �1992, 1993�, de Swiet and Sen
�1994�, and Sen et al. �1994�. To compare the two ap-
proaches, consider restricted diffusion under a linear
magnetic-field gradient, for which the Eq. �97� becomes

E��2

2 � � p��t1 − t2��2
1 − �3/2p1/2 ��t2 − t1�3/2�2

��t2 − t1��2
� .

�107�

Two particular choices of the temporal profiles have
been discussed in the literature.

• In the narrow-pulse approximation ��→0�, one uses
Eq. �103� to write

59A similar kind of time dependence in the case of multiple-
pulse PGSE diffusion measurements was proposed by
Fordham et al. �1996�.

60This temporal average for a CPMG sequence was consid-
ered by Axelrod and Sen �2001� who computed it for several
values of k and �. Their results can be directly deduced from
our general relation �105�. To this end, Eq. �105� should be
multiplied by the factor �2k��+2 coming from a difference in
notations.

1104 Denis S. Grebenkov: NMR survey of reflected Brownian motion

Rev. Mod. Phys., Vol. 79, No. 3, July–September 2007



E��2

2 � � �p/2��2
„1 − �3/2�p/2�1/2

… . �108�

Taking the value �3/2=8/ �3��� for the slab geom-
etry, one obtains

E��2

2 � � �p/2��2
1 −
4

3��
�DT/2

2

L� , �109�

where the definition of p was explicitly used in pa-
rentheses. In this relation, the factor 2/L can be as-
sociated with the surface-to-volume ratio of the slab.
For a cylinder and a sphere, the value of �3/2 is twice
smaller than for the slab �see Table II�, so that the
last factor will be 1/L, where L is the radius. An
elementary calculation shows that 1/L is equal to
S /Vd for both cases, where d is the spatial dimen-
sion. Consequently, the above relation can be written
in a unique form for three basic domains as

E��2

2 � � �p/2��2
1 −
4

3��
�DT/2

S

Vd� . �110�

This result was derived by Mitra et al. �1992� using
the properties of Green’s functions near a flat re-
flecting boundary. Equation �110� was argued to be
valid for any geometry, providing a way to measure
the surface-to-volume ratio of the confining medium.

• A steady magnetic-field gradient ��=1/2� is another
commonly considered choice for the temporal pro-
file. In this case, one finds

��t1 − t2��2 =
1
12

,
��t2 − t1�3/2�2

��t2 − t1��2
=

12�4 − �2�
35

. �111�

For a sphere, the relation �107� can be reduced to

E��2

2 � �
p

12
1 − �DT/2
32�2�2 − 1�

105��
S

V� , �112�

where 3/L was replaced by the surface-to-volume ra-
tio of a sphere. One retrieves the result by de Swiet
and Sen �1994�, which was argued to be valid for any
statistically isotropic confining medium. A similar ex-
pression can be obtained for a slab geometry,

E��2

2 � �
p

12
1 − 3�DT/2
32�2�2 − 1�

105��
2

L� , �113�

where the factor 2/L can again be associated with
the surface-to-volume ratio of the slab. Since this ge-
ometry is not isotropic, Eq. �112� can be applied only
after averaging over all spatial orientations of the
confining domain. This operation would suppress the
additional prefactor 3 which appeared in Eq. �113�. If
one considers a fixed slab, the spatial orientation is
not applicable, and the prefactor 3 should be taken
into account. The case of a cylinder can be similarly
treated.

Although the shapes of the basic domains are different,
the leading and correction terms are the same for all
three cases. This is a characteristic feature of the slow-

diffusion regime when the signal attenuation is essen-
tially independent of the particular confining domain ge-
ometry. One can expect that a similar relation will hold
for more realistic structures in porous materials or bio-
logical tissues. Numerical studies of more complicated
domains would be useful to clarify this point.

The dependence of the correction term on the
surface-to-volume ratio was considered by Mitra et al. as
a way to determine this important characteristic of po-
rous materials by NMR. In this perspective, the exten-
sion �97� to the arbitrary temporal profile f�t� of the
magnetic field may become valuable. On the one hand,
it allows calculation of this correction for specific gradi-
ent profiles used in experiment. On the other hand, one
can attempt to optimize the temporal profile f�t� in order
to enhance the contribution of the correction term in a
way that facilitates the determination of the surface-to-
volume ratio.

At the same time, we stress a certain ambiguity of this
notion in the present context. The surface-to-volume ra-
tio naturally appears in Eq. �113� as the fraction of spins
in the neighborhood of the interface, within the diffu-
sion length �DT, with respect to the total number of
spins �proportional to the volume�. However, depending
on the orientation with respect to the linear gradient,
various regions of the boundary provide different con-
tributions. To illustrate this point, consider restricted dif-
fusion in a parallelepiped of size L
H
H. If the linear
magnetic-field gradient is applied along the x axis, the
presence of restrictive walls along the y and z directions
does not change the signal attenuation. This is a simple
consequence of the fact that the three components �or
coordinates� of Brownian motion with normal reflec-
tions on the boundary are independent in this geometry.
As a result, two planes orthogonal to the gradient direc-
tion give 2/L as for the slab, while the other four planes
do not contribute at all. In general, the contribution of
each boundary point is weighted, according to Eq. �100�,
by projection of the gradient direction onto the normal
vector at this point. For spatially isotropic media, this
weighting can be taken into account effectively by aver-
aging over all spatial directions, which gives the supple-
mentary prefactor 1/3 in three dimensions. However,
this averaging is not applicable to anisotropic porous
systems. If we consider again the above parallelepiped,
one gets Eq. �113� with ratio 2/L, while the surface-to-
volume ratio is �2H2+4HL� /H2L=2/L+4/H. By chang-
ing the dimension H of this domain, one can vary this
ratio between 2/L and infinity. In this case, there is no
apparent relationship between the geometrical surface-
to-volume ratio and its physical counterpart from Eq.
�113�. A more profound analysis of this problem is re-
quired, especially in view of applications to systems with
anisotropic internal structure like, for example, pulmo-
nary acinus. The MCF description appears to be an ef-
ficient theoretical and numerical tool for investigating
the correction terms for various confining geometries.
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V. MOTIONAL-NARROWING REGIME „pš1…

When the diffusion length �DT exceeds the character-
istic dimension L �p�1�, the diffusing spins explore the
whole domain several times during their motion.61 This
regime is often called motional narrowing or motional
averaging since magnetic-field inhomogeneities are aver-
aged out by diffusion, yielding a Gaussian distribution of
the accumulated phase. As this motion is strongly re-
stricted, the geometrical properties of the confining do-
main become significant. In this section, we first obtain
the leading terms and then discuss their corrections. As
previously, the surface relaxation is neglected �h=0�.

A. Leading terms

As with the slow-diffusion regime, we first calculate
the leading term of the second moment:

E��2

2 � = �
m=1

�

B0,m�e−p�t2−t1��m�2Bm,0, �114�

where the constant term with m=0 �for which �0=0�
vanished due to the rephasing condition. In the limit
p→�, the exponential function in Eq. �114� converges
to a delta function allowing it to be replaced by
�p�m�−1��t2− t1� in a first approximation.62 One gets

E��2

2 � � p−1���t2 − t1��2 �
m=1

�

B0,m�m
−1Bm,0. �115�

The f-weighted time average of the delta function is

���t2 − t1��2 = �
0

1

dt f2�t� . �116�

The sum over m, denoted as �−1 according to Eq. �75�,
depends on the confining geometry and the spatial pro-
file B�r� of the magnetic field. In the next subsection,
this constant will be calculated explicitly for basic con-

fining domains and different spatial profiles.
The leading term of the second moment in the mo-

tional narrowing regime is then

E��2

2 � � p−1�−1�
0

1

dt f2�t� . �117�

In a similar way, one can compute the leading terms for
higher-order moments. From a direct computation of
the fourth moment in Appendix C, we conjecture their
general form for even orders:

E� �2n

�2n�!� �
p−n

n!
�−1

n 
�
0

1

dt f2�t��n

, �118�

but a systematic computational technique is required for
a rigorous demonstration of this relation. Bringing to-
gether the leading terms of even moments, one derives
an extension of the classical result for the motional-
narrowing regime:

E � exp
−
q2

p
�−1�

0

1

dt f2�t�� . �119�

The dependence of ln E as a function of q2 /p was first
outlined by Robertson �1966� for one-dimensional diffu-
sion under a steady linear gradient, and then extended
to the case of a cylinder and a sphere by Neuman �1974�.
In fact, Neuman’s approach might be directly applied to
any confining domain.

B. Corrections to the leading term

While the leading asymptotic behavior in Eqs. �117�
and �118� is general for any �non-narrow� temporal pro-
file f�t�, the correction terms strongly depend on the par-
ticular choice of the function f�t�. To illustrate this point,
we calculate the correction to the leading term of the
second moment for two typical profiles used in NMR
experiments.

1. Stejskal-Tanner temporal profile

Once the temporal profile f�t� is chosen, the f-
weighted time average of the exponential function in
Eq. �114� can be calculated explicitly. In particular, for
the two rectangular pulses shown in Fig. 4�c�, one gets

�e−p�m�t2−t1��2

=
2�

p�m

−
2 + e−p�m�1/2+�� + e−p�m�1/2−�� − 2e−p�m/2 − 2e−p�m�

p2�m
2 .

�120�

The right-hand side of this relation was proposed by
Murday and Cotts �1968� to calculate the self-diffusion
coefficient of confined liquid lithium within a spherical
restriction.

The spatial average of this function with B0,mBm,0
�summation over m from 1 to infinity� gives the second

61To avoid possible ambiguity, we stress again that the con-
fining domain is considered here to be bounded. This situation
is significantly different with respect to a commonly used open
model of porous structure, e.g., in rocks �Hürlimann et al.,
1994; Latour et al., 1995�. In the latter case, diffusion of nuclei
is restricted within small cavities that are interconnected, form-
ing an infinite pore network. In the long-time limit, nuclei can
travel between several pores, but they never explore the whole
structure. The results of this section are not applicable to such
pore networks �for further discussion, see Sec. VI.I�.

62This approximation is applicable for non-narrow temporal
profiles. On the opposite, the specific properties of a narrow
profile formed by very short-time gradient pulses can be em-
ployed to calculate the time averages. For instance, for
Stejskal-Tanner rectangular profile with �→0, one has

�e−p�m�t2−t1��2 � �2�1 − e−p�m/2� .

In this case, there is no p−1 behavior. Since the results for
narrow profiles are easier to obtain using the narrow-pulse ap-
proximation, we do not consider them in this section.
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moment E��2 /2�. If p is large enough, the exponential
functions in Eq. �120� rapidly vanish since the eigenval-
ues �m progressively increase. For ��1/2, one obtains
the second moment to a very good approximation:

E��2

2 � � �−1�2��p−1 − 2�−2p−2, �121�

where both coefficients �−1 and �−2 are defined by Eq.
�75�. In addition, one can recognize the factor 2� as the
integral of the squared temporal profile �60� in this case:

�
0

1

dt f2�t� = 2� . �122�

One sees that, for the second moment in the motional-
narrowing regime with the Stejskal-Tanner temporal
profile �60�, all the possible complexity of the confining
geometry and the magnetic-field spatial distribution is
represented via the two constants �−1 and �−2 only.
Moreover, if q is small or p is relatively large, the second
moment gives the most significant contribution to the
signal, so that one can use the first-order approximation

E � exp�−
q2

p
��−1�2�� − 2�−2p−1� . �123�

For the particular case of a steady profile ��=1/2�, the
exponential function e−p�m�1/2−�� in Eq. �120� is constant,
and one has

E��2

2 � = �
m=1

�

B0,mBm,0
 1

p�m
−

e−p�m − 4e−1/2p�m + 3

p2�m
2 � .

�124�

This very same structure of the second moment was
given by Robertson �compare to Eq. �18� taking �m and
B0,m from Eqs. �66� and �68��, and then reproduced by
others. For large enough p, one gets

E��2

2 � � �−1p−1 − 3�−2p−2. �125�

In this case, the integral of the squared temporal profile
is equal to 1. Comparison between this asymptotic result
and the precise numerical computation of the second
moment is shown in Fig. 6. One can see that Eq. �125� is
applicable even for p around 1, where the motional-
narrowing regime was not expected to be valid.

Interestingly, Eq. �124� can already be recognized
in the paper of Tarczon and Halperin �1985� where there
was no sign of the Laplace operator eigenbasis. In that
work, restricted diffusion over an interval was consid-
ered for a steady magnetic field of arbitrary spatial pro-
file periodically extended over the coordinate axis. The
elements B0,m then appeared as Fourier coefficients of
the spatial profile B�r�, while the time average �120� was
derived by a specific and cumbersome technique. Simi-
larly, Eq. �81� for �1 was also found in the one-
dimensional case by Tarczon and Halperin �1985�.

Both coefficients �−1 and �−2 in the case of a linear
magnetic-field gradient were found by Robertson �1966�

for a slab and by Neuman �1974� for a cylinder and a
sphere. Their values are reproduced in Table II.63 The
calculation for the parabolic magnetic field �64� can be
performed in a similar way. In the case of a slab geom-
etry, one uses the explicit formulas �66� and �70� for �m
and B0,m to get

�−1 =
8

�6 �
m=1

�
1

m6 =
8

945
,

�−2 =
8

�8 �
m=1

�
1

m8 =
4

4725
. �126�

Note that the above value of the coefficient �−1 for the
parabolic magnetic field was found by Zielinski and Sen
�2000�. A general technique to compute these coeffi-
cients is presented in Appendix B �the values found are
shown in Table II�.

2. CPMG temporal profile

Similar results can be deduced for a CPMG sequence
producing a train of k echoes, for which the effective
temporal profile is given by Eq. �61�. Brown and Fan-
tazzini �1993� computed the signal attenuation by assum-
ing a given form of the time correlation function, while
Axelrod and Sen �2001� explicitly calculated the tempo-
ral average of the exponential function. In our notations,
their result reads as

�e−p�m�t2−t1��2 =
1

p�m
−

1

p2�m
2 �2k tanh�p�m/2k�

+ �1 − �− 1�ke−p�m�



1 −
1

cosh�p�m/2k��
2 . �127�

In the limit p→�, the only remaining terms are

63Note a typographical error in Neuman �1974�: for a cylinder,
the coefficient �−1 was misprinted as 7/296 instead of 7/96.

FIG. 6. �Color online� The second moment E��2 /2� �solid line�
as a function of p for the restricted diffusion between two
parallel planes �in a slab� under steady linear magnetic-field
gradient. For large p, the second moment is compared to its
leading term in the motional narrowing regime with �circles�
and without �dashed line� correction term in Eq. �125�.
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�e−p�m�t2−t1��2 �
1

p�m
−

2k + 1

p2�m
2 , �128�

yielding

E��2

2 � � �−1p−1 − �2k + 1��−2p−2. �129�

To avoid possible ambiguity, it is useful to remember
that the time T was defined as the moment of signal
acquisition. Here T is the moment of the last kth echo.
For CPMG experiments, however, it is natural to ex-
press formulas in terms of the echo period . The sub-
stitution of T=k and of p and q from their definitions
leads to the following explicit signal attenuation for the
case of a linear magnetic-field gradient g �within the
GPA�:

E � exp�−
�2g2L4

D

k�−1 − �2k + 1��−2

L2

D
� .

Further discussion of this behavior can be found in Sen
et al. �1999�.

3. Oscillating temporal profile

In the case of the sine temporal profile f�t�
=sin�2�kt�, one gets

�e−p�m�t2−t1��2 =
1
2

p3�m
3 + 4�2k2p�m + 8�2k2

�p2�m
2 + 4�2k2�2

−
4�2k2e−p�m

�p2�m
2 + 4�2k2�2 . �130�

The second term vanishes rapidly in the limit p→�,
while the first term can be expanded into a series in
powers of p−1:

�e−p�m�t2−t1��2 = 1
2p−1�m

−1 − 2�2k2p−3�m
−3 + O�p−4� .

�131�

The prefactor 1/2 in front of p−1 is indeed equal to the
integral of the squared temporal profile f�t� as required.
In contrast to the case of the Stejskal-Tanner profile, the
correction terms start from p−3 and contain higher or-
ders in a series expansion.

A similar analysis for a cosine temporal profile f�t�
=cos�2�kt� leads to a different result:

�e−p�m�t2−t1��2 =
1
2

p�m�p2�m
2 − 2p�m + 4�2k2�

�p2�m
2 + 4�2k2�2

−
p2e−p�m

�p2�m
2 + 4�2k2�2 . �132�

In the limit p→�, one gets

�e−p�m�t2−t1��2 = 1
2p−1�m

−1 − p−2�m
−2 − 2�2k2p−3�m

−3

+ O�p−4� , �133�

where the first correction to the leading term p−1 is of
order p−2. While the leading term is always of order 1/p,
independently of the temporal profile, the form of cor-

rection terms strongly depends on a particular choice of
f�t�.

VI. DISCUSSION

In the two previous sections, the MCF description has
been applied to retrieve, extend, and reinterpret many
classical results on diffusive NMR phenomena. After a
sketch of the numerical implementation of this ap-
proach, we discuss some related issues as well as open or
poorly understood questions which can now be better
investigated.

A. Numerical implementation

The implementation of the MCF description for a nu-
merical analysis is straightforward and simple for the
basic domains: a slab, a cylinder, and a sphere. The ma-
trices B and �, determining all moments E��n�, have to
be computed numerically only once for a chosen confin-
ing geometry and spatial profile of the magnetic field.
The signal can then be found through the series expan-
sion �54�.

Interestingly, the numerical computation of the signal
can be performed in a much simpler way. The technique
that we summarize was developed by Robertson and
further extended by Barzykin �1998, 1999� to study re-
stricted diffusion under a linear magnetic field gradient.
To illustrate the idea, consider the Bloch-Torrey equa-
tion �9� with time-independent magnetic field �B�r�:


 �

�t
− D� + i��B�r��m�r,t� = 0. �134�

In general, the Fourier boundary condition �10� is
imposed.64 The magnetization m�r , t� can be expanded
over the Laplace operator eigenbasis:

m�r,t� = �
m�=0

�

cm��t�um��r� . �135�

The macroscopic signal E is then obtained by integrating
m�r ,T� over the domain 	 with a given pickup function
�̃�r�:

E = �
m�=0

�

cm��T��
	

dr um��r��̃�r�

= V1/2 �
m�=0

�

cm��T�Ũm�, �136�

where the infinite-dimensional vector Ũ was defined by
Eq. �40�.

64We recall a formal analogy with quantum mechanics, when
the Laplace operator can be interpreted as a Hamiltonian of a
free particle, while the last term represents a perturbative
interaction.
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To find the unknown coefficients cm��T�, one substi-
tutes the expansion �135� into the Bloch-Torrey equation
�134�, multiplies it by the eigenfunction um

* �r�, and inte-
grates over 	. These operations lead to a set of ordinary
differential equations

d

dt
cm�t� +

D�m

L2 cm�t� + i�� �
m�=0

�

Bm,m�cm��t� = 0, �137�

where the matrix B is defined by Eq. �47�.65 The initial
condition m�r , t=0�=�0�r� implies that

cm�0� = �
	

dr �0�r�um
* �r� = V−1/2Um

* , �138�

where the definition �39� of the vector U was used.
The coefficients cm�t� can be thought of as compo-

nents of an infinite-dimensional vector C�t�, and the
above set of equations become

T
d

dt
C�t� = − �p� + iqB�C�t� , �139�

where the matrix � is defined by Eq. �42�. The solution
of this differential equation is simply

C�t� = exp�− �p� + iqB�t/T�C�0� . �140�

Bringing together the above relations, one can write the
macroscopic signal in the compact form of a scalar
product66

E = „Ũ exp�− �p� + iqB��U*
… . �141�

A particular simplification can be achieved for the
Neumann boundary condition. Since the initial density is

uniform �and �̃�r�=1�, one gets Um=Ũm=�m,0. In this
case, the macroscopic signal is simply equal to the first
diagonal element of the exponential matrix:

E = �e−p�−iqB�0,0. �142�

We stress that Eqs. �141� and �142� are exact for any
time-independent magnetic field.

In fact, this result can be applied to numerically com-
pute the signal for a given time-dependent profile f�t�.
For this purpose, the time interval �0,1� is divided into a
large number K of subintervals of duration =1/K. On

the kth subinterval, the function f�t� is approximated by
a constant f�k�. The signal can be numerically found
with67

E � 
Ũ��
k=0

K

exp�− �p� + iqf�k�B��U*� �143�

or, for the Neumann boundary condition, with

E � 
�
k=0

K

exp�− �p� + iqf�k�B���
0,0

. �144�

This is an approximate representation of the time-
ordered product in Eq. �24�. On the other hand, this
relation appears as an extension of Barzykin’s numerical
approach to an arbitrary spatial profile B�r� of the mag-
netic field.

The efficiency of this numerical technique is based
upon an unbounded increase of the eigenvalues �m with
m: the matrix � representing the argument of the expo-
nential function allows one to truncate the infinite-
dimensional matrices B and � to moderate sizes. A very
rough estimate of the truncation size m̃ could be given
by the strong inequality

p�m̃� q . �145�

It states that the “damping” real part p� of the expo-
nential function in Eq. �143� or �144� dominates its “os-
cillating” imaginary part iqB. This inequality shows that
the matrices � and B can be truncated to smaller sizes
for smaller q and larger p. For instance, many results
corresponding to the Gaussian phase approximation �for
q�1� can be computed with m̃�10. In contrast, the
study of the localization regime �q�1� requires large
matrices. Note that this study would be much easier for
a slab than for a cylinder or a sphere. In fact, Weyl’s
asymptotics for eigenvalues states that �m!m2/d, where
d is the dimension of the space �see, for instance, Lapi-
dus �1991��. As a consequence, the condition �145� is
easier to satisfy in dimension d=1 �smaller m̃ is needed�.

Once the matrices B and � are constructed, computa-
tion of the matrix product in Eq. �143� or �144� with the
help of mathematical softwares such as MATLAB, MAPLE,
or MATHEMATICA is rapid and very accurate. This tech-
nique can be readily implemented for basic domains for
which the matrices B and � are explicitly known.68 The
surface relaxivity h can also be included.69 When the

65In the language of quantum mechanics, Bm,m� are nothing
else than the matrix elements of the interaction B�r� in the
unperturbed basis �um�r�� of the Hamiltonian of a free particle.

66The surface relaxation attenuates the signal even in the case
when no diffusion-sensitizing magnetic field is applied �q=0�.
It is then convenient to normalize the signal with q�0 by the
signal at q=0,

Enorm =
„Ũ exp�− �p� + iqB��U*

…

�Ũ exp�− p��U*�
.

This normalization is not needed for the Neumann boundary
condition, for which �Ũ exp�−p��U*�=1.

67It is worth noting that the matrices B and � do not com-
mute, so that the product in Eq. �143� cannot be reduced to

exp�− �
k=0

K

�p� + iqf�k�B� .

68This technique has been implemented for MATLAB software
and called the Multiple Correlation Function Approach Li-
brary �MCFAL�. This library is freely available at http://
pmc.polytechnique.fr/pagesperso/dg/MCF/MCF�e.htm

69It is worth noting that the eigenvalues �m with increasing m
become less dependent on the surface relaxivity h. This is il-
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geometry of the confining domain 	 is more complex,
one needs first to compute the eigenbasis of the Laplace
operator in order to build B and �. This is a classical
problem in applied mathematics for which a number of
numerical algorithms have been developed.70 As for the
basic domains, one needs only a relatively small number
of eigenmodes.

Note that the general matrix representation �59� of
the moments E��n� could be derived from Eq. �144� in
the limit →0 and K→�. The main steps of this deriva-
tion for a similar case of the multiple propagator ap-
proach are shown in Appendix D.

B. Odd-order moments

The series expansion �54� of the signal E involves, in
general, both even and odd moments E��n� of the ran-
dom phase �. In the literature, the odd moments form-
ing the imaginary part of the signal somehow disappear:
some authors proposed heuristic arguments or specific
assumptions to neglect them �e.g., inversion symmetry of
the confining domain�, and others simply ignored them.
In this subsection, we discuss why the odd moments do
not contribute, at least for typical cases considered in
the literature. At the same time, several counterex-
amples will be given to illustrate possible deviations
from this common belief.

1. First moment

Although the results of this subsection could be de-
rived directly from Eq. �59�, we first provide an intuitive
explanation for why odd moments may or may not dis-
appear under certain conditions. For the sake of simplic-
ity, we consider the case without surface relaxation,
when the density �0�r� is uniform. The first moment E���
is equal to the f-weighted time average of the expecta-
tion E�B�Xt��. Here the magnetic-field spatial profile
B�r� is averaged over all possible trajectories of reflected
Brownian motion starting from a uniformly distributed
initial position. In other words, the expectation E�B�Xt��
can be written as

E�B�Xt�� =
1

V
�
	

dr v�r,t� , �146�

where v�r , t� is the expectation for the reflected Brown-
ian motion starting from a fixed point r:

v�r,t� = E�B�Xt��X0 = r� . �147�

This function is a solution of the diffusion equation


 �

�t
− D��v�r,t� = 0, �148�

with the Neumann boundary condition and v�r , t=0�
=B�r�. Therefore the function v�r , t� can be interpreted
as a density of some kind of pseudoparticles diffusing in
domain 	 with a reflecting boundary. The magnetic field
B�r� formally appears as the initial density of these
pseudoparticles, while the expectation E�B�Xt�� gives
the total number of pseudoparticles at time t. Note that
this is only a formal illustration since the magnetic field
B�r� can be negative. Since the boundary is reflecting,
there is no loss of these pseudoparticles, and E�B�Xt�� is
constant for any t:

E�B�Xt�� = E�B�X0�� =
1

V
�
	

dr B�r� . �149�

This result could be derived directly from Eq. �59� for
n=1:

E�B�Xt�� = �B�0,0 =
1

V
�
	

dr B�r� . �150�

From this point, different situations can be considered:

�i� If the magnetic field B�r� is such that its integral
over domain 	 is equal to 0, then the first mo-
ment E��� is zero for any temporal profile f�t�.
This is the case for a linear gradient B�r�=r cos �
in a cylinder and a sphere. However, this condi-
tion is limited to symmetric domains and linear
gradients. For example, it is impossible to satisfy
this condition for a linear gradient in a nonsym-
metric domain or for a parabolic magnetic field.71

�ii� If the temporal profile f�t� satisfies the rephasing
condition �50�, the constant expectation E�B�Xt��
vanishes for any spatial profile B�r� of the mag-
netic field, leading to E���=0.

�iii� If none of the above conditions are satisfied, the
first moment E��� is not zero, providing a non-
trivial contribution to the imaginary part of the
signal E.

Nontrivial contribution from the first moment can also
be expected for the Fourier boundary condition in non-

lustrated by the first relation in footnote 47. Since the eigen-
functions um oscillate more rapidly with increasing m, the con-
tribution of the first integral with ��um�2 becomes dominant on
the second integral with �um�2, and the dependence on h van-
ishes. This property may be useful for theoretical and numeri-
cal analysis.

70Investigation of the Laplace operator eigenbasis is a vast
domain ranging from rigorous analysis of partial differential
equations to approximate schemes and practical applications.
Depending on the specific problem at hand, different numeri-
cal methods can be used, from sparse matrix techniques to
variational principles. For this reason, it is difficult to give
a thorough list of references. In addition to classical books
on numerical methods, one may see Ciarlet �1987�; Wesseling
�1991�; Saad �1992�; Trottenberg et al. �2001�; Buhmann �2003�;
Heuveline �2003�; Platte and Driscoll �2004�.

71Of course, the averaged magnetic field in Eq. �150� can al-
ways be made 0 by adding a constant to the spatial profile B�r�.
But the contribution of this constant vanishes only under the
rephasing condition that brings us to the second item.
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symmetric domains. In this case, E�B�Xt�� can still be
interpreted as the total number of pseudoparticles
which, in turn, decreases in time due to surface relax-
ation. As a consequence, its f-weighted time average
�i.e., the first moment� may contribute.

These examples show that the situation with odd mo-
ments is not as simple as is commonly believed. More-
over, the above analysis cannot be directly applied to
higher-order moments. For instance, the zero integral of
the magnetic-field spatial profile �B0,0=0� is not suffi-
cient to cancel higher odd moments since Bm,m are not
necessarily zero for m�0. On the other hand, their can-
cellation due to the rephasing condition �50� remains an
open question. In the next subsection, we give the proof
in one case, as more detailed analysis, which would
clarify the role of these moments, is beyond the scope of
this review.

2. Antisymmetric temporal profiles

The most interesting situation corresponds to a can-
cellation of odd moments for an arbitrary spatial profile
of the magnetic field due to the rephasing condition.
However, its derivation is much more difficult and would
require a more profound study of the f-weighted time
averages. Here we focus on a specific case when the tem-
poral profile is antisymmetric with respect to the point
1/2:

f�1 − t� = − f�t� . �151�

A simple algebraic proof is based on the approximate
relation of Sec. VI.A. Initially, the matrix product in Eq.
�144� can be separated into two parts: the first K /2 fac-
tors remain unchanged, while the next K /2 factors are
modified according to a simple matrix identity XY
= �Y*X*�*:

E ���
k=0

K/2

e−�p�+iqBf�k��
�
k=0

K/2

e−�p�−iqBf„�K−k�…��*
0,0

.

�152�

In the second product, one uses f„�K−k�…=−f�k� to
obtain

E ��
�
k=0

K/2

e−�p�+iqBf�k���
�
k=0

K/2

e−�p�+iqBf�k���*
0,0

.

�153�

It is clear now that the matrix in large square brackets is
real valued as the product of two matrices, one of them
being the complex conjugate of the other. Consequently,
the imaginary part of the signal E is zero, so that all odd
moments vanish. To complete the derivation, one takes
the limit →0 �and K→��.

Another demonstration of the odd moment cancella-
tion for antisymmetric temporal profiles was given by
Bergman and Dunn �1995�. It is based on the fact that
any possible trajectory Xt is as probable as the time re-

versed trajectory X̃t	X1−t when h=0. This property fol-

lows from the symmetry of the propagator, Gt�r ,r��
=Gt�r� ,r�, and the Markovian nature of Brownian mo-
tion. For the antisymmetric function f�t�, contributions

of any trajectory Xt and its time reversed counterpart X̃t
to the total phase � differ only by the sign. As a result,
these contributions compensate each other for odd mo-
ments.

Since the usual temporal profiles �Stejskal-Tanner,
sine, etc.� satisfy the condition �151� or its variations, the
problem of the odd moments in such typical cases is now
solved. We conjecture that the rephasing condition �50�
is generally sufficient for cancellation of the odd mo-
ments. Its mathematical demonstration remains an inter-
esting open problem.

C. Cumulant expansion

Knowledge of the even moments of the random phase
� gives the macroscopic signal in the form of a series
expansion �54�. The basic properties of the exponential
function allow one to find the series representation of
the logarithm of the signal, which is known as the cumu-
lant expansion:

ln E = �
n=1

�
�− q2�n

�2n�!
� �2n�c. �154�

Here ��2n�c denote so-called cumulants or cumulant
moments which can be expressed through the ordinary
moments, for example,

��2�c = E��2� ,

��4�c = E��4� − 3�E��2��2 �155�

�under the condition that odd moments are zero�. The
characteristic feature of the cumulant expansion is that
fourth- and higher-order cumulant moments are exactly
zero for a Gaussian phase �. In this case, the cumulant
expansion is naturally truncated to the second moment,
and one obviously retrieves the Gaussian form of the
signal. If the phase is not Gaussian, the cumulant expan-
sion provides higher-order corrections to the Gaussian
behavior. The fourth- and higher-cumulant moments in-
dicate to which extent the Gaussian phase approxima-
tion remains valid. For this reason, the cumulant expan-
sion has been preferred by some to the ordinary
expansion. At the same time, it should be clear that both
representations contain exactly the same information
about the signal E.

In spite of an apparent convenience of the cumulant
expansion, Frøhlich et al. �2006� pointed out its math-
ematical “defect”: a limited convergence radius. This
means that the series expansion �154� converges only
inside a certain disk in the complex plane of values q. In
other words, there exists a critical value qc such that the
above relation is divergent for q qc �see Frøhlich et al.
�2006� for a more detailed discussion on this topic�. At
the same time, the ordinary expansion �54� is absolutely
convergent for any value of q.
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D. Apparent diffusion coefficient

Under a weak diffusion-sensitizing magnetic field �q
�1�, the signal is mainly determined by the second mo-
ment E��2 /2�, while higher-order moments can be ne-
glected,

E � 1 − q2E��2/2� � exp�− q2E��2/2�� , �156�

whatever the magnitude of the dimensionless diffusion
coefficient p. In the limit p→0, the second moment
E��2 /2� is proportional to p according to Eq. �82�, yield-
ing −ln E!q2p!D. When p increases, the second mo-
ment is not necessarily dominated by its leading term,
and ln E is not proportional to the free diffusion coeffi-
cient D any more. This deviation was experimentally ob-
served by Woessner �1963� and traditionally character-
ized by effective or apparent diffusion coefficients
�ADCs�.72 In our notation, the ADC can be defined as

Dapp

D
=

E��2/2�
p�1��t1 − t2��2

. �157�

In the limit p→�, the ratio Dapp/D goes to 0 for the
closed systems considered in this review. For open sys-
tems, the inverse of this ratio was shown to converge to
the tortuosity �Haus and Kehr, 1987; de Swiet and Sen,
1996�; see Sec. II.I.

The apparent diffusion coefficient shows how diffu-
sion of spins is effectively slowed down by the presence
of restrictive boundaries. In other words, unrestricted
diffusion of spins with the apparent diffusion coefficient
Dapp is supposed to represent restricted diffusion of
spins with their free diffusion coefficient D. Of course,
this qualitative picture is just a simplified interpretation
of restricted diffusion. Nonetheless, the apparent diffu-
sion coefficient was used for a long time as a convenient
characteristic for the confining geometry of porous ma-
terials or biological tissues. For example, human lung

diseases like emphysema were suggested to be identified
by an increase of the ADC due to enlargement or partial
destruction of the alveolar tissue �Saam et al., 2000;
Möller et al., 2002; Yablonskiy et al., 2002; van Beek et
al., 2004�. In spite of numerous applications of the ADC
in different branches of the NMR industry, this notion
remains limited to the first-order approximation �156� of
the general series expansion �54�.

The apparent diffusion coefficient is directly related to
another widely used concept of b value or b coefficient.
To find the ADC in experiment, one measures the mac-
roscopic signal as a function of the parameters of the
applied magnetic field �typically, gradient intensity g or
duration T�. The substitution of the second moment, ex-
pressed from Eq. �156� as E��2 /2��−ln E /q2, to Eq.
�157� leads to

Dapp �
− ln E

b
, �158�

where the b value is defined as

b =
q2p

D
��t1 − t2��2
L2

V
�
	

dr ��B�r��2� . �159�

This is an extension of the classical definition b
=�2g2T3 /12 to the case of an arbitrary spatial and tem-
poral profile of the magnetic field. Equation �158� is of-
ten written as

E � exp�− bDapp� . �160�

While the ADC is intended to represent the effect of the
confining geometry, the b value holds all information
about the applied magnetic field. The fact that a single
parameter might be used to describe the whole experi-
mental setup was widely employed in practical applica-
tions, particularly in medical imaging. For example,
some have given the b value without even mentioning
the gradient intensity, duration, or temporal profile. It
should, however, be clear that such a simplification is
exaggerated. Since diffusive NMR phenomena are gov-
erned by at least two independent parameters p and q
�assuming h=0�, the b value alone cannot capture the
whole picture. We stress that the b value is only a useful
notation for the combination of different parameters in
Eq. �159�. We illustrate this point with the following ex-
ample.

For the slow-diffusion regime �p�1�, the second mo-
ment E��2 /2� is given by Eq. �97�, yielding

Dapp � D
1 − �p
�3/2

�1

��t2 − t1�3/2�2

��t2 − t1��2
� . �161�

For a linear magnetic-field gradient, one retrieves the
results by Mitra et al. �1992� and de Swiet and Sen �1994�
for narrow-pulse and steady temporal profiles, respec-
tively:

Dapp

D
� 1 −

4

3��
�DT/2

S

Vd
, �162�

72We should note that this NMR definition is not equivalent
to the dynamical definition, when the time-dependent diffusion
coefficient D�t� appears as a measure of the mean-square dis-
placements in time t,

E��r�t� − r�0��2� = 2dD�t�t .

As a dynamical characteristic of reflected Brownian motion,
D�t� is totally independent of the applied magnetic field, while
the NMR diffusion coefficient �ADC� is sensitive to its tempo-
ral and spatial profiles. In our notation, the dynamical diffu-
sion coefficient can be written as

D�p� = D�2pd�−1E��B�X1� − B�X0��2� ,

where B�r�=r /L. For a reflecting boundary, one obtains a com-
pact matrix form

D�p� = D�pd�−1�B�I − e−p��B�0,0.

In the limit p→0, one retrieves D�p�→D as required. A simi-
lar relation, written in the form of a series expansion, has been
recognized by Mitra et al. �1993�, where it was derived for a
sphere with reflecting boundary. In the remainder of this re-
view, we consider the NMR diffusion coefficient only.
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Dapp

D
� 1 −

32�2�2 − 1�

105��
�DT/2

S

V
, �163�

where Eqs. �110� and �112� were used. Equation �161�
does not depend at all on dimensionless gradient inten-
sity q. Consequently, the parameters q and p can be
changed in such a way that Dapp would be substantially
modified according to Eq. �161�, while the b value is
kept fixed. This simple example shows that two experi-
ments with the same b value can give very different val-
ues of the ADC. Knowledge of the b value alone is thus
not sufficient to compare different medical measure-
ments presented in the literature �e.g., ADC maps of the
lungs�. At this point, it is important to recall that the
notion of the ADC and Eqs. �158� and �160� are appli-
cable only when the Gaussian phase approximation is
valid.

In the motional-narrowing regime �p�1�, one gets the
second moment from Eq. �117� so that

Dapp � D�p0/p�2, �164�

where

p0
2 =

�−1

��t1 − t2��2
�

0

1

dt f2�t� . �165�

The coefficient p0
2 represents the relevant information

about the temporal and spatial profiles of the magnetic
field, as well as about the confining geometry. We
propose a simple interpolation formula between very
slow diffusion �Dapp�D� and the motional-narrowing
regime:73

Dapp �
D

1 + �p/p0�2 . �166�

Note that this relation does not account for the p3/2 cor-
rection in the slow-diffusion regime. In the same manner
as for the apparent diffusion coefficient itself, this for-
mula may be used only for magnetic fields of relatively
small intensity when the Gaussian form of the macro-
scopic signal is still valid.

To illustrate the use of the theoretical relations �161�
and �166�, we compare them to the experimental mea-
surement of the apparent diffusion coefficient by Hay-
den et al. �2004�. In their setup, a cylindrical borosilicate
glass cell of diameter L=4.82 cm was filled with

helium-3 gas ���2.04
108 rad T−1 s−1� to a pressure of
1 Torr. The rescaling of the experimental conditions
�temperature and pressure� to a reference measurement
�Bendt, 1958; Barbé et al., 1974� gave the free-diffusion
coefficient D�0.14 m2/s. The steady linear magnetic-
field gradient was applied in a perpendicular direction to
the cylinder axis. The apparent diffusion coefficient Dapp
was measured for different echo times T. We recall that,
for this particular case, one has �3/2=4/ �3��� and �−1
=7/96, while the f-weighted time averages ��t2− t1��2 and
��t2− t1�3/2�2 are given by Eq. �111� for the steady tempo-
ral profile. One then finds p0

2=7/8.
Comparison between the experimental data and the-

oretical relations is shown in Fig. 7. For the slow-
diffusion regime �small p�, Eq. �161� remains in good
agreement with experiment, until the correction term
exceeds unity. From this point, the apparent diffusion
coefficient is negative, and the slow-diffusion regime be-
comes invalid. In the motional-narrowing regime �large
p�, one observes the expected behavior p−2. The use of
the interpolation formula �166� allows one to avoid an
unphysical divergence when p becomes smaller. Note
that this formula provides good results even for very
small p, when the motional-narrowing regime is not for-
mally applicable. In this region, small deviation from the
experimental data is related to the slow-diffusion correc-
tion term which was not taken into account in Eq. �166�.
In summary, one can see that both theoretical relations
are in good agreement with experimental measurements
over four orders of magnitude. This result may appear
more exciting if one recalls that there are no adjustable
parameters in the theoretical relations.

E. Narrow-pulse approximation

The Stejskal-Tanner profile �60� in the limit of vanish-
ing pulse duration �, known as the narrow-pulse ap-
proximation, has been applied for a long time to study

73This interpolation formula should not be confused with the
two-point Padé approximation suggested by Latour et al.
�1993� to fit ADCs between short- and long-time regimes in
open systems:

Dapp

D
= 1 − �

c�T + �T/T0

� + c�T + �T/T0

,

where c= �4/9����S /V��D, �=1−1/T �here T is the tortuos-
ity�, and T0=�1 /� to give the first-order correction �1 /T in Eq.
�21�.

FIG. 7. �Color online� Apparent diffusion coefficient as a func-
tion of p for a cylindrical cell. The slow-diffusion correction
�161� and the interpolation formula �166� are compared to the
spin-echo measurements in a borosilicate glass cell by Hayden
et al. �2004�. Experimental data shown have been provided by
Dr. M. E. Hayden.
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restricted diffusion.74 Its main advantage is that diffusive
motion during these short pulses can be neglected, so
that the accumulated phase becomes

�� �B�X0� − �B�X1/2� , �167�

and one gets the signal in the simple form

E = �
	

dr �0�r��
	

dr� exp�iq��B�r� − B�r����


GT/2�r,r�� , �168�

where the time T /2 corresponds to the application of the
second narrow pulse. The combination q� is kept fixed
in the limit �→0, so that the magnetic-field strength q
must go to infinity. For a linear magnetic-field gradient,
the macroscopic signal �168� appears as the Fourier
transform of the propagator, as in Eq. �15�. A complete
separation of the geometrical properties of the confining
domain �represented by the propagator� and spatial in-
homogeneities of the magnetic field allows a number of
important theoretical results to be obtained. This con-
cept of q imaging provides a direct experimental mea-
surement of the propagator �or heat kernel�. In particu-
lar, one can expect an oscillatory behavior related
to the geometrical structure of the confining medium
�Callaghan, 1991�. To illustrate this effect, one can again
expand the heat kernel over the Laplace operator eigen-
basis. For uniform initial density �0�r�, the macroscopic
signal from Eq. �168� takes a simple matrix form:

E = �eiq�Be−p�/2e−iq�B�0,0. �169�

The matrix eiq�B can be found using the following prop-
erty of the Laplace operator eigenbasis: for an analytic
function F�z� one has75

�F�B��m,m� = �
	

dr um
* �r� F„B�r�…um��r� . �170�

The elements of the matrix eiq�B for three basic domains
are given in Table I. For instance, the calculation for a
slab geometry with reflecting boundary reads as76

�eiq�B�m,m� =
�m�m�

2
�#�m−m���q�� + #m+m��q��� , �171�

where

#m�q�� =
�− 1�mq�

�q��2 − ��m�2 �sin q� + i��− 1�m − cos q��� .

�172�

The substitution of this result into Eq. �169� leads to the
classical form of the signal attenuation in a slab geom-
etry within the narrow-pulse approximation �Tanner and
Stejskal, 1968�:

E =
sin2�q�/2�

�q�/2�2 + 4�q��2 �
m=1

�

e−�2m2p/21 − �− 1�m cos q�

��q��2 − ��m�2�2 .

�173�

If the echo time T is long enough �p�2/�2�, the second
term can be omitted, and the signal exhibits diffraction-
like oscillations. Since the dimensionless parameter q is
defined as �gLT, the behavior of the macroscopic signal
as a function of the gradient intensity g allows one to
determine the distance L between parallel plates of a
slab geometry.

The applicability of the narrow-pulse approximation
has been thoroughly studied �Blees, 1994; Wang et al.,
1995; Mair, Sen et al., 2002; Lori et al., 2003; Price et al.,
2003; Malmborg et al., 2004, etc.� Its practical application
is limited by the assumption that the duration � of the
gradient pulses should be short enough to neglect the
diffusion during them, that is �p�1. If p is too small, the
diffraction effects are dumped by a number of terms in
the sum. In fact, it can be shown that Eq. �173� is re-
duced to E�1−q2p��2 /2� that can be written in a clas-
sical Gaussian form

E � exp�− q2p�2/2� . �174�

In this case, there is no need to use the narrow-pulse
approximation. In the opposite limit of large p, the dif-
fraction effects would appear �Fig. 8�, but the condition
�p�1 is more difficult to realize experimentally �since
the gradient pulse duration � is limited by instrumental
constraints�. In spite of this difficulty, the diffusive dif-
fraction was experimentally observed for the first time in
a water-saturated, orientationally disordered, loosely
packed array of monodisperse polystyrene spheres by
Callaghan et al. �1991�.

The narrow-pulse approximation may also be valu-
able to give an intuitive feeling how other more sophis-
ticated techniques work. For instance, its use as a sim-
plified temporal profile helps to better understand the
properties of the f-weighted time average in the MCF
approach. In the limit �→0, the f-weighted time average
of a smooth function F�t1 , . . . , tn� is reduced to

74Tanner and Stejskal �1968�; Callaghan �1991�; Callaghan et
al. �1991�; Balinov et al. �1994�; Coy and Callaghan �1994�; King
et al. �1994�; Sen et al. �1995�; Söderman and Jönsson �1995�;
Kuchel et al. �1996�. See also references in Sec. II.D.

75This relation can also be applied in the opposite sense, es-
pecially in one dimension. Once the matrix Bx is found for a
linear gradient B�x�=x, its computation for any analytic spatial
profile F�x� is direct: B=F�Bx�. For example, the matrix Bx2 for
the parabolic magnetic field might be found as �Bx�2. Similar
relations hold in two and three dimensions, although a more
careful analysis is required.

76The matrix eiq�B naturally appears in the multiple propaga-
tor approach �see Appendix D�. For a cylinder and a sphere,
its elements �eiq�B�m,m� for any m and m� were obtained by
Codd and Callaghan �1999� for the Fourier boundary condition
�10�. Another representation for the Neumann boundary con-
dition �11� was given by Sukstanskii and Yablonskiy �2002�. In
both cases, the expressions are cumbersome and have to be
computed numerically. However, the calculation of the signal

by Eq. �169� requires knowledge of the elements �eiq�B�0,m
alone, and their expressions are simpler �see Table I�.
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�175�

where Cn
k are the binomial coefficients. For example,

�F�t1,t2��2 �
�2

2
�F�0,0� − 2F�0, 1

2 � + F� 1
2 , 1

2 �� . �176�

This general result can now be used to write the mo-
ments as

E��n

n! � �
�n

n!
�1 + �− 1�n��Bn�0,0

+ �
k=1

n−1

�− 1�kCn
k�Bke−p�/2Bn−k�0,0� . �177�

Further analysis is significantly simplified using this rela-
tion. For instance, one can easily check that all odd mo-
ments vanish since �Bke−p�/2Bn−k�0,0= �Bn−ke−p�/2Bk�0,0.
Note that Eq. �177� could be derived directly from Eq.
�168� by using the spectral decomposition �31� of the
heat kernel within the narrow-pulse approximation.

Another representation for the even moments can be
derived by expanding the exponential function in Eq.
�168�:

E� �2n

�2n�!� =
�2n

�2n�!�	 dr0�0�r0��
	

dr GT/2�r0,r�


 �B�r0� − B�r��2n. �178�

The spectral decomposition of the heat kernel allows
one to study the dependence of these moments on the
parameter p. In particular, one can rigorously obtain
their leading terms �see Appendix E for a sketch of this
derivation�:

E� �2n

�2n�!� �
pn

n!
��2/2�n
L2n

V
�
	

dr ��B�r��2n� . �179�

This is a particular form of the general relation �84� for
the narrow-pulse profile, for which the f-weighted time
average ��t1− t2��2 is �2 /2. While the general result was
demonstrated for n=1,2 and only conjectured for higher
n, Eq. �179� is shown to be valid for any n. This example
illustrates the use of the narrow-pulse approximation as
an investigation tool.

F. Localization regime

In previous sections, we considered the behavior of
the moments E��2n� in two asymptotic limits, when the
dimensionless diffusion coefficient p goes to zero or in-
finity. In both cases, the leading terms could be satisfac-
tory only for very small or large values of p. The use of
correction terms significantly improved the quality of
the results, but was still insufficient to describe the be-
havior for intermediate values of p. Moreover, our
analysis was essentially focused on the second moment.
If the dimensionless magnetic-field strength q is small,
this moment provides the most significant contribution
to the signal and contains exhaustive information about
its attenuation. However, when q increases, a larger
number of moments is needed to accurately compute
the signal E. One may thus expect to observe a new kind
of behavior for sufficiently intense magnetic fields. In
fact, if the dephasing length �D /�g�1/3 is much smaller
than the diffusion length �DT and the characteristic di-
mension L of the domain, a new localization regime ap-
pears �Stoller et al., 1991; de Swiet and Sen, 1994�. In this
case, the spins of the bulk diffuse over several dephasing
lengths so that they have no net contribution to the total
magnetization. The macroscopic signal is thus formed by
spins close to the interface whose dephasing is less pro-
nounced. In our notation, this situation corresponds to
q�p and q2p�1.

Stoller et al. �1991� gave the first theoretical study of
this regime for one-dimensional diffusion. Using an ex-
act resolution of the one-dimensional Bloch-Torrey
equation �9� and analyzing of the underlying spectral
problem, they showed non-Gaussian stretched-
exponential behavior of the signal E:

E � C�p/q�1/3 exp�−
a1

2
�pq2�1/3 , �180�

where a1�1.0188 is the absolute value of the first zero
of the derivative of the Airy function. The numerical
prefactor C was found to be 5.884 for a slab geometry.
The dependence �180� and its significance for NMR ap-
plications have been discussed �de Swiet and Sen, 1994;
Hürlimann et al., 1995; Sen et al., 1999�. In particular, the
coefficient a1 /2 was argued to be independent of the
confining geometry.

Four years later, the above theoretical prediction was
observed by using the spin-echo technique. An elegant
experiment of Hürlimann et al. �1995� confirmed the

FIG. 8. �Color online� Macroscopic signal as a function of q� is
found analytically within the narrow-pulse approximation
�circles�, and numerically by the MCF approach for �=0.01
�solid line� and �=0.1 �dashed line�. The physical parameters
�D=2.3
10−9 m2/s, L=1.6
10−5 m, T=0.22 s� are from Cal-
laghan et al. �1991�. One sees that the approximate relation
�173� is not applicable for �=0.1 since the condition �p�1 fails
�here p�2�.
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breakdown of the GPA and the relevance of the local-
ization regime. Hürlimann et al. studied restricted diffu-
sion of water molecules �D�2.3
10−9 m2/s� between
two parallel plates at distance L=0.16 mm. The signal
attenuation was measured as a function of the gradient
intensity g. Even for gradient pulses of long duration
�T=120 ms�, the dimensionless diffusion coefficient p
was small �p�0.01� so that the slow-diffusion regime,
with a Gaussian g2 dependence, could be expected. This
was actually observed for the gradient applied in a lon-
gitudinal �unrestricted� direction. Figure 9 shows good
agreement between experimental points �squares� and
theoretical prediction �dash-dotted line� by the classical
relation �3�.

The situation becomes completely different when the
gradient is turned to the direction perpendicular to the
plates �circles in Fig. 9�. A spectacular deviation from
the Gaussian g2 dependence of ln E can be seen clearly
at gradient intensities higher than 15 mT/m �q2 0.6

104�. This behavior can be attributed neither to the
slow-diffusion limit nor to the motional-narrowing re-
gime. Neither an apparent diffusion coefficient nor any
related concept has meaning in this localization regime.

Figure 9 shows that the experimental data are in
qualitative agreement with the predictions by Stoller et
al. �diamonds�. A small deviation from the theoretical
relation �180� can be attributed to surface relaxation. To
illustrate this point, we have numerically calculated the
macroscopic signal by using the MCF approach. The
dashed line, corresponding to the Neumann boundary
condition �11�, confirms the good precision of Eq. �180�
when surface relaxation can be neglected ��=0 or h=0�.
To better fit the experimental points, we calculated the
signal for different values of the dimensionless surface
relaxivity h. The solid line corresponds to the Fourier

boundary condition �10� with h=2 �or ��28.8 �m/s�.77

The most exciting feature of the work by Hürlimann
et al. is that the localization regime is observed under
ordinary experimental conditions. In view of the above
results, a number of theoretical questions arises. A for-
mal expansion of the exponential function in Eq. �180�
leads to a series of fractional powers of p and q. This is
probably not surprising with respect to p, since we have
already seen fractional powers of p in the correction
term to the slow-diffusion regime. In contrast, the frac-
tional powers of q would be in contradiction to the fact
that the signal E must be an analytic function of q. Of
course, Eq. �180� has to be considered as an asymptotic
behavior for pq2�1 so that the above expansion is for-
mally not allowed. Nevertheless, the passage from the
general expansion �54� to this asymptotic form is intrigu-
ing. The general MCF description may help to shed new
light on this interesting problem. Since this description is
not restricted to a particular choice of parameters p and
q, it can reproduce, at least numerically, any feature of
the signal attenuation, including the localization regime
�see, for instance, Fig. 9�. Its theoretical analysis would
require a systematic technique for calculating the mo-
ments E��n� of high orders. Such a technique has been
partially implemented for a specific spatial profile of the
cosine magnetic field �Grebenkov, 2007a�.

At first sight, the problematics of the localization re-
gime may look like a mathematical puzzle of limited
practical interest. We believe, however, that better un-
derstanding of the nature of this specific non-Gaussian
behavior will enrich our knowledge about diffusive
NMR phenomena in general. Moreover, some recent
research has shown potential importance of the localiza-
tion regime for restricted diffusion in lungs �Grebenkov
et al., 2007�.

G. Transition between different regimes

From a mathematical point of view, the breakdown of
the GPA always takes place for sufficiently large q. It
may happen, however, that the transition between the
GPA and the localization regime occurs when the signal
is negligible. In such experimental conditions, the local-
ization regime cannot be observed.

To illustrate this statement, a pq diagram of different
NMR regimes is depicted in Fig. 10 for restricted diffu-
sion in a slab under two spatial profiles of a steady �bi-
polar� magnetic field. The signal is attenuated by a fac-
tor of 2 at each line separating two adjacent gray-scale
regions �appearing as pale and dark stripes�. The first

77This value of the surface relaxivity � is given for illustrative
purpose only. Note that typical surface relaxivity of sandstones
is of the same order �Sun and Dunn, 2002�. A more profound
analysis of the localization regime in the presence of surface
relaxation is certainly required and will be helpful to deter-
mine this characteristic accurately. Some other possible
sources of deviation between theory and experiment were dis-
cussed by Hürlimann et al. �1995�.

FIG. 9. �Color online� Illustration of a drastic deviation from
the Gaussian behavior at high gradient intensity. On a logarith-
mic scale, experimental data for free diffusion �when the gra-
dient applied along unrestricted direction� fall onto the straight
line −q2p /12 as expected. In contrast, experimental data for
restricted diffusion follow the theoretical relation �180�. A
small deviation from this behavior is mainly caused by surface
relaxation as confirmed by numerical analysis. Experimental
data have been provided by Dr. M. D. Hürlimann.
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large pale region on the left is composed of points �q ,p�
for which the signal E lies between 1/2 and 1. The next
dark stripe regroups points �q ,p� for which 1/4�E
�1/2, and so on. The white area on the right corre-
sponds to pairs �q ,p� for which the signal is below 10−3.
Since such a small signal is often comparable to noise,
this area is referred to as inaccessible experimentally. On
this pq diagram, the bold line delimits the region on the
left in which the GPA predictions of the signal attenua-
tion are valid with an accuracy of at least 5%. The thin
and dashed lines show the limits of the slow-diffusion
and motional-narrowing regimes, in which Eqs. �82� and
�117� give results with an accuracy of at least 5%.

For the whole region to the right of the bold line, the
Gaussian phase approximation fails to predict accurate
results. Apart from the transient region in vicinity of this
line, the localization regime is expected for larger q.
However, if p is not small enough, the signal attenuation
is too strong for large q, driving us to the area inacces-
sible experimentally. Conversely, the localization regime
can be experimentally observed for relatively small p.
For instance, Hürlimann et al. �1995� performed an ex-
periment for water molecules with p on the order of
0.01.

It is worth noting that the GPA in the slow-diffusion
regime �p�1� is valid for weakly attenuated signals only
�the first pale region�. In contrast, the GPA in the

motional-narrowing regime describes the signal attenua-
tion in a much wider range. Surprisingly, the GPA based
on a rough leading-order approximation �117� seems to
better approximate the signal attenuation for large q
than that for the precisely computed second moment �in
Fig. 10, the dashed line intersects the bold line and goes
in a deeper region to the right�. This anomalous behav-
ior is caused by the contribution of higher-order mo-
ments which become significant for large q.

Comparison of the pq diagrams for two spatial pro-
files shows that their structures are very similar. One can
see that the stripes are thinner for a linear gradient than
for the parabolic field. Moreover, similar results can be
obtained for a cylinder and a sphere �not shown�.78 Such
diagrams can be used in practice to estimate the value of
the signal for given parameters p and q. From this plot,
one can also determine which kind of restricted diffu-
sion is to be expected, and which formula should be ap-
plied to fit experimental data. Note that this information
is rather qualitative since the particular location of dif-
ferent regions on the diagram depends on the confining
geometry.

H. Inverse spectral problem

The main question we addressed in the review was:
How does a geometrical restriction influence Brownian
dynamics and the consequent signal attenuation? To
give a quantitative answer, we computed the Laplace
operator eigenbasis for a given �and thus known� confin-
ing domain and then expressed the signal within the
MCF description. This analysis is useful to discover new
features of diffusive NMR phenomena, to calculate
transport characteristics �e.g., ADCs�, to explore a wider
range of physical parameters, to optimize them for a
better realization of experiment, to check and fit ac-
quired data, etc. One may wonder, however, to which
extent this knowledge may serve to identify the geo-
metrical restriction from the signal attenuation. More
precisely, the new question would be to know which in-
formation on the confining geometry is available from
measuring the signal attenuation. There is no need to
argue neither the practical importance of this inverse
problem nor the difficulty of its resolution.79

78As noted in Sec. VI.A, the numerical computation of the
signal for large q and small p is more difficult for a cylinder
and a sphere than for a slab. According to the rough estimate
�145�, one needs �m̃�105 to get the signal for q=103 and p
=0.01 �right lower corner of the pq diagram�. For a slab, this
inequality can be safisfied with m̃�200 �in practice, m̃�50 is
already sufficient�. For a cylinder and a sphere, much bigger
matrices are needed. To overcome this difficulty, one can re-
duce the range of the parameters p and q.

79For instance, Zielinski et al. �2002� considered the inverse
spectral problem for two coupled one-dimensional pores with-
out diffusion-sensitizing gradient. Even in such a simplified
model, the identification of individual pores from the spectral
features of the diffusion eigenmodes required significant sepa-
ration of their lengths and moderate coupling.

FIG. 10. �Color online� Transition between different regimes
of restricted diffusion in a slab under a linear gradient �on the
left� and parabolic �on the right� magnetic fields �see descrip-
tion in the text�.
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This problem goes back to the famous question “Can
one hear the shape of a drum?” formulated by Kac
�1966�. In fact, the drum frequencies that one hears are
uniquely determined by the eigenvalues of the Laplace
operator for the drum shape. Figuratively speaking,
these eigenvalues appear as fingerprints of the geometry,
although they may not be sufficient to identify it. This
was indeed shown by Gordon et al. �1992�, who con-
structed two different �nonisometric� polygons in two di-
mensions with the identical Laplace operator spectra,
for both the Dirichlet and Neumann boundary condi-
tions �Fig. 11�. Experimental evidence for this inability
to hear the shape of drums was given by Sridhar and
Kudrolli �1994�.

The situation is slightly different for restricted diffu-
sion in NMR. The macroscopic signal is determined by
two matrices � and B. If the matrix � simply represents
the eigenvalues �as for the Kac problem�, the matrix B
involves the Laplace operator eigenfunctions and the
spatial profile B�r� of the magnetic field. This gives two
advantages with respect to the Kac problem. First, more
information is encoded in the signal through the matrix
B and might thus be extracted, at least in principle. Sec-
ond, a voluntary choice of the magnetic field B�r� can
also be employed. On the other hand, we have shown
that the elements of the matrix B in the case of a slab, a
cylinder, or a sphere are fully expressed in terms of the
Laplace operator eigenvalues. This means that the ma-
trix B does not actually contain more information about
these particular geometries than the matrix �. The ques-
tion whether the matrix B can provide additional infor-
mation about the confining geometries in general re-
mains open.

For practical applications �e.g., in medicine or the oil
industry�, there is no way and no need to determine the
precise shape of the confining geometry. What one is
looking for are rather statistically averaged geometrical
characteristics like pore size distribution, surface-to-
volume ratio, tortuosity, etc. �see also Ryu �2001�; Song
�2003�; Sen �2004��. As we have seen above, many of
these important characteristics can be determined using
NMR.

I. Application to porous media

In spite of the generality of the multiple correlation
function description, this review has been focused on
three basic shapes: a slab, a cylinder, and a sphere. Par-
ticular symmetries of these domains �translational, axial,

and rotational� permit reduction of the Laplace equation
to separate one-dimensional equations whose solutions
can be expressed in terms of known special functions
�like Bessel functions for a cylinder�. However, even a
minor geometrical defect would destroy such a symme-
try so that the basic domains appear as useful but very
idealized models of confinement. One may thus be curi-
ous as to what extent the obtained analytical results can
serve in studying more realistic porous media.

Apart from the specific symmetries, the basic domains
exhibit another important property: their shapes are
characterized by a single relevant geometrical scale L
�separation of plates in a slab or the radius for a cylinder
and a sphere�. Comparison of this scale to the diffusion
length �DT, the gradient length ��gT�−1, and the relax-
ation length D /� naturally brought us to the three di-
mensionless parameters p, q, and h that determine the
signal attenuation. In particular, we observed a transi-
tion between the slow-diffusion and motional-narrowing
regimes when �DT became comparable to L.

In contrast, multiple length scales are characteristic
features of porous media �Sahimi, 1993; Song et al.,
2000�. For instance, the architecture of sedimentary
rocks can be represented by interconnected rough chan-
nels with a spread pore size distribution �Kleinberg,
1994; Latour et al., 1995�. The diameter of pores is typi-
cally between a few and one or several hundreds of mi-
crons, while rocks may reach hundreds of meters �of
course, much smaller samples are investigated in prac-
tice�. Human respiratory systems present another ex-
ample where the characteristic length varies from hun-
dreds of microns �alveoli� to a few decimeters �size of
the lungs� �Weibel, 1984�. Such broad ranges of geo-
metrical length scales make questionable the use of a
single dimensionless diffusion coefficient p.

The microscopic roughness of realistic interfaces may
considerably influence the signal attenuation in two dif-
ferent ways. First, irregular boundaries exhibit highly in-
homogeneous accessibility for Brownian motion due to
diffusional screening.80 If surface relaxation is high, this
effect may yield a considerable deviation between the
measured and real surface-to-volume ratios. In the op-
posite case of a small surface relaxivity, the roughness of
the boundary �e.g., its fractal dimension� can be probed

80The diffusional screening was originally studied for the Di-
richlet boundary condition, when diffusing particles are ab-
sorbed �or lose their magnetization� the first time they collide
with the interface. Even at an intuitive level, it is clear that
most particles are absorbed by a few prominent spikes or ir-
regularities which screen other parts of the boundary. For frac-
tal boundaries, the proportion of the accessible regions with
respect to screened ones is negligible. In NMR, the diffusional
screening would have a less dramatic effect since surface relax-
ation is in general small. The interested reader may find more
details in Sapoval �1994, 1996�; Grebenkov, Lebedev, et al.
�2005�; Grebenkov �2005, 2006c�; Grebenkov et al. �2006�. The
role of the diffusional screening for human respiration was dis-
cussed by Felici et al. �2004, 2005�; Grebenkov, Filoche, et al.
�2005�.

FIG. 11. Example constructed by Gordon et al. �1992� of two
nonisometric domains with the identical Laplace operator
spectra.
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�de Gennes, 1982; Banavar et al., 1985; Devreux et al.,
1990; Sapoval et al., 1996; Stallmach et al., 2002�. Alter-
natively, the geometrical singularities drastically en-
hance susceptibility effects that may lead to very high
magnetic-field gradients near the boundary. This would
bring another source of discrepancy between the ob-
served and real properties of porous media.

In addition, many porous structures may be open,
when transport is allowed not only inside the sample,
but also to and from the external environment �as for
human lungs, for instance�. Such structures were often
modeled as infinite unbounded systems. In fact, when
the size of a sample is much bigger than the pore size
and other physical lengths, the sample can be extended
to infinity. Roughly speaking, if the majority of diffusing
spins cannot reach the frontier of the sample, it does not
matter whether this frontier exists or not. In this case,
the motion of spins can be modeled as unrestricted dif-
fusion �ordinary Brownian motion in the whole space�,
which is thought to be simpler for theoretical analysis
since the propagator Gt�r ,r�� takes an explicit Gaussian
form:

Gt�r,r�� = �4�Dt�−d/2 exp�−
�r − r��2

4Dt
 , �181�

d being the dimension of the space. The presence of
paramagnetic impurities, sinks, traps, or other obstacles
can be effectively taken into account through an appar-
ent diffusion coefficient or in a more sophisticated way.81

It should be noted, however, that unrestricted diffu-
sion causes a number of specific unphysical artifacts like
infinite volume of the bulk or unbounded increase of a
linear magnetic-field gradient. In some cases, these arti-
facts do not influence the underlying analysis, but some-
times, they do. For instance, one cannot use a uniform
spin density since it would require an infinite amount of
spins producing an infinite signal at time t=0. As a con-
sequence, the correlation functions E�B�Xt1

�¯B�Xtn
��

given by Eq. �30� would diverge after integration with a
uniform initial density �0�r0�. Although this divergence
can be overcome by some tricks, it makes the applica-
tion of the MCF description to unrestricted diffusion
challenging. Many concepts of this approach might be
applied to unbounded domains, but the analysis would
become extremely difficult due to the continuous spec-
trum of the Laplace operator.

In practice, there is no need to follow this sophisti-
cated approach. The same physical argument which sup-
ported the modeling of porous media by infinite systems
allows one to introduce a fictitious frontier to any un-
bounded domain. Since the transport occurs in the bulk,
the fraction of diffusing spins that saw this frontier and
felt its presence can be made negligible by placing it far
away. To illustrate this point, consider again the respira-

tory system. Although the human lungs are connected to
the external environment, diffusion of helium-3 nuclei
during one second �a long period for in vivo experi-
ments� allows them to explore distances no longer than
1 cm. Since the size of the human lungs is a few decime-
ters, most spins do not feel whether the domain in which
they diffuse is bounded or not. In this spirit, even a truly
infinite system can be treated, to some extent, as a large
but bounded domain, and the MCF description may be a
complementary technique to study these systems.

The price to pay for the introduction of a large ficti-
tious frontier is that the numerical analysis may become
much more difficult. In particular, the Laplace operator
spectrum, albeit still discrete, becomes very dense. A
new challenge is now to compute, at least approximately,
the governing matrices B and �. For this purpose, some
model structures of porous media �like hierarchical mor-
phologies, self-similar fractals, ordered or random packs
of spherical beads, etc.� are of great interest. Some kind
of statistical averaging may possibly be required to re-
duce information about irrelevant geometrical details. If
this computation is done, further analysis can proceed as
described in the previous sections. For instance, the sig-
nal attenuation in the slow-diffusion regime should have
a Gaussian form �90�, in which the second moment is
expected to follow Eq. �113� or similar. Here L=Lmin
would be the size of internal pores, the smallest length
scale. In contrast, the motional-narrowing regime is not
attainable for open systems since the condition DT
�L2 is formally forbidden �here L=Lmax is the size of
the sample, the largest length scale�. A broad separation
between the smallest and largest geometrical scales
leaves space for a number of intermediate regimes. For
example, the classical long-time approach to the tortu-
osity regime �21� in open homogeneous systems is ex-
pected to hold for Lmin��DT�Lmax. A better under-
standing of this and other possible regimes presents an
exciting area for future research. In particular, a coarse-
graining procedure like the regular lattice representa-
tion of multiply connected pores considered by McCall
et al. �1991, 1993� and Guyer �1993� may be the first step
along this way.

VII. CONCLUSION

The fascinating properties of Brownian motion have
attracted scientists for almost two centuries from its dis-
covery by Brown �1828�. Among a variety of related sci-
entific domains, nuclear magnetic resonance provides an
efficient experimental tool to survey diffusive motion by
a direct measurement of different functionals of this sto-
chastic process. A voluntary choice of the temporal and
spatial profiles of applied magnetic field makes possible,
in principle, a complete experimental analysis of Brown-
ian trajectories. The presence of a confining boundary
makes this problem still more intriguing. On the other
hand, the specific properties of reflected Brownian mo-
tion are at the origin of the diversity and complexity of
diffusive NMR phenomena observed in experiments. In

81See, for instance, Grassberger and Procaccia �1982�; Ma-
jumdar and Gore �1988�; Weisskoff et al. �1994�; de Swiet and
Sen �1996�; Sukstanskii and Yablonskiy �2003, 2004�.
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spite of intensive theoretical investigation during the last
five decades, a lot of important questions remain unan-
swered.

The main aim of this review was to show, in a unified
way, the progressive development in this field from
Hahn’s discovery of spin echoes to the present day. For
this purpose, the multiple correlation function descrip-
tion was first established and then used to retrieve, ex-
tend, and critically discuss a number of classical results.
This description allows a theoretical analysis of re-
stricted diffusion in confining media under arbitrary
magnetic fields. Its spatial inhomogeneities are naturally
included via matrix elements Bm,m� in the Laplace opera-
tor eigenbasis. In turn, the dependence on time was
taken into account as the f-weighted time average of the
multiple correction functions. A thorough analysis of the
second- and higher-order moments of the random phase
accumulated by a diffusing spin in a magnetic field al-
lowed us to retrieve and extend many classical results.
For instance, the slow-diffusion and motional-narrowing
regimes were derived for arbitrary temporal and spatial
profiles of the magnetic field. A further analysis of high-
order moments will help to specify the validity ranges of
the Gaussian phase approximation. For this purpose, a
systematic computational technique to operate with the
temporal and spatial averages for high-order moments
will be valuable.82

Two simplifications were used to clarify the analysis.
First, the computation of the f-weighted time averages
was significantly easier due to the rephasing condition
which, in turn, was required for echo formation. Second,
the Neumann boundary condition involved the spatial
averages, for instance, the analytical computation of the
coefficients �k. It is important to stress that neither as-
sumption is crucial for the analysis; they were intro-
duced only to lighten the underlying mathematics. For
instance, one could derive the coefficients �k in a more
general case including surface relaxation. Analytical cal-
culations were performed for three basic domains �slab,
cylinder, and sphere�, for which the Laplace operator
eigenbasis is well known. Even for these idealized cases,
the interplay between physics and geometry led to so-
phisticated diagrams of different restricted-diffusion re-
gimes and highly nontrivial signal attenuation. Systems
of practical interest �like rocks or biological tissues� ex-
hibit far more complex, often multiscale, geometries.
The theoretical description can still be applied, but the
analysis rests on the related computational challenges.
An efficient numerical technique to construct the gov-
erning matrices B and � would be of great interest. This
technique may help to develop many aspects of the
transport in porous media. For instance, the respective
roles of the whole internal architecture of the confining
medium, and of the local boundary properties like mi-

croroughness, could be better understood.
The lack of a complete operational theory of re-

stricted diffusion in confining media under arbitrary
magnetic fields was probably one of the obstacles in de-
veloping experimental NMR techniques with specifically
designed temporal and spatial profiles. The use of non-
linear fields beyond simple linear gradients may help to
enhance particular geometrical features of a sample. For
instance, a spatial profile with local minima at fixed lo-
cations or with a local minimum valley would enable one
to study the diffusive motion of spins between these lo-
cations �since the contribution of other spins would be
much more attenuated by higher magnetic field else-
where�. A periodic distribution of B�r� might also be of
practical interest to enhance diffusive diffraction. More-
over, susceptibility-induced or even random magnetic
fields can now be treated in an efficient theoretical or
numerical way. This would be a promising extension for
some techniques,83 developed originally for the whole
space, to the more realistic case of confining media. On
the other hand, the opportunity to use various temporal
profiles of the magnetic field has not yet been explored
at length. While the induction of a nonlinear magnetic
field presents an experimental challenge in itself, the de-
sign of specific temporal profiles is already somewhat
accessible. For instance, temporal profile optimization
might be useful to increase the contribution of the cor-
rection terms in the slow-diffusion regime.

Recent years were marked by rapidly growing interest
in development of mobile single-sided NMR sensors84

and “inside-out” instrumentation for samples that do
not fit into the bore of a standard NMR magnet. Such
devices are invaluable for well logging, materials tests,
and cultural heritage. When the sample is outside the
magnet �as in the case of stray field measurements85�,
magnetic fields are inevitably inhomogeneous. An accu-
rate analysis of these effects would require either elabo-
rate models for these fields or their numerical computa-
tion. From this perspective, the MCF description would
be a mathematical basis for a new branch of computa-
tional NMR analysis. Combined with numerical tools in
electrodynamics,86 it would make possible a complete
study of diffusive phenomena for these devices. Indeed,
if the magnetic field is computed for a chosen setup, its
spatial profile can then be used to predict the conse-
quent signal attenuation in NMR experiments. This
analysis might also help to design the gradient coils that
could generate nonlinear diffusion-sensitizing magnetic

82For instance, the choice of a cosine spatial profile of the
magnetic field considerably simplifies the structure of the ma-
trix B, allowing one to obtain higher-order moments in an ex-
act and explicit form �Grebenkov, 2007a�.

83See, for instance, Mitra and Le Doussal �1991�; Kiselev and
Posse �1998�; Kiselev and Novikov �2002�; Sukstanskii and
Yablonskiy �2003, 2004�.

84Eidmann et al. �1996�; Meriles et al. �2001�; Brill et al. �2002�;
Perlo et al. �2005�.

85McDonald �1997�; Hürlimann and Griffin �2000�; Hürli-
mann �2001�; Hürlimann and Venkataramanan �2002�; Kim-
mich and Fischer �1994�.

86For instance, see Bondeson et al. �2005�; Taflove and Hag-
ness �2005�.
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fields in order to focus on particular properties of re-
stricted motion.

The scientific interest in diffusive phenomena actually
goes far beyond their role in probing porous materials or
biological tissues. As we have shown in this review, the
close relation to probability theory should make them
attractive for mathematicians investigating reflected
Brownian motion. A rigorous reformulation of numer-
ous physical results dispersed in the literature should
help to bring new ideas to this long-standing field. A
number of open mathematical problems were outlined
in previous sections. Among them, we should stress a
better understanding of the transitions between differ-
ent diffusion limits, especially the passage to the local-
ization regime. Finally, the inverse problem of determin-
ing the confining geometry from knowledge of the signal
attenuation is unsolved and of primary practical impor-
tance, for instance, to detect the mineral oil in rocky
structures or pathological diseases in human organs.
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APPENDIX A: FOURTH MOMENT IN THE SLOW-
DIFFUSION REGIME

In the slow-diffusion regime, the leading term of the
fourth moment is expected to be of order of p2. To show
this behavior, the exponential functions in Eq. �59� can
be formally expanded up to second orders in p. The
f-weighted average of a constant �order p0� vanishes due
to the rephasing condition. We first show that there is no
contribution of the first order, and then calculate the
coefficient in front of p2.

1. First-order contribution

There are three terms of order p:

�B�B3�0,0��t2 − t1��4 + �B2�B2�0,0��t3 − t2��4

+ �B3�B�0,0��t4 − t3��4. �A1�

The spatial averages are found by a field theory tech-
nique briefly outlined in Sec. IV.A:

�B3�B�0,0 = �B�B3�0,0 =
3
4

�B2�B2�0,0

=
3L2

V
�
	

dr B2�r���B�r��2.

�A2�

The f-weighted time averages are

��t2 − t1��4 = ��t4 − t3��4 = − 2
3 ��t3 − t2��4 = − 1

6F4, �A3�

where

Fk = �
0

1

dt �f̂�t��k, �A4�

and the primitive

f̂�t� = �
0

t

dt�f�t�� �A5�

satisfies f̂�0�= f̂�1�=0 due to the rephasing condition �50�.
Consequently, the sum of the three terms in Eq. �A1� is
strictly zero. We have thus shown that there is no con-
tribution of the first order in p.

2. Second-order contribution

The second-order contribution to a formal series ex-
pansion is given by the first diagonal element of the ma-
trix

1
2 �t2 − t1�2B�2B3 + 1

2 �t3 − t2�2B2�2B2 + 1
2 �t4 − t3�2B3�2B

+ �t2 − t1��t3 − t2�B�B�B2 + �t2 − t1��t4 − t3�B�B2�B

+ �t3 − t2��t4 − t3�B2�B�B , �A6�

where the f-weighted time average has to be taken. The
computation of this coefficient in front of p2 is compli-
cated by the fact that the six individual terms in this
expression are divergent �while their combination
should converge�. One thus need to use a renormaliza-
tion procedure to regroup these terms in a convergent
way.

The computation of the f-weighted time averages is
simple:

��t2 − t1�2�4 = − 1
6F1F3,

��t3 − t2�2�4 = 1
4F2

2,

��t4 − t3�2�4 = − 1
6F1F3,

��t2 − t1��t3 − t2��4 = 1
4 �F1F3 − F2

2� ,

��t2 − t1��t4 − t3��4 = − 1
2 �F1F3 − F2

2� ,

��t3 − t2��t4 − t3��4 = 1
4 �F1F3 − F2

2� . �A7�
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The field theory technique used in Sec. IV.A to derive
Eqs. �78� and �81� can be applied here to calculate the
spatial averages. For example, the first diagonal element
of the matrix B�2B3 can be written as

1

V�
m
�
	

dr1�
	

dr2B�r1�um
* �r1��m

2 um�r2�B3�r2� , �A8�

where the sum is taken from m=1 to a large but finite
cutoff. As previously, one replaces �mum

* �r1� by
−L2�um

* �r1� and �mum�r2� by −L2�um�r2�, and then uses
the second Green’s formula for both integrals. The result
can be conveniently represented as

�B�2B3�0,0 = 3�
m

�2Xm
�2� + Ym

�2� − Zm
�2��*�Ym

�0� − Zm
�0�� ,

�A9�

where the following notations are introduced to lighten
the expressions:

Xm
�k� =

L2

V1/2�
	

dr um�r�Bk−1�r���B�r��2,

Ym
�k� =

L2

V1/2�
	

dr um�r�Bk�r��B�r� ,

Zm
�k� =

L2

V1/2�
�	

dr um�r�Bk�r�
�

�n
B�r� . �A10�

In a similar way, one finds five other spatial averages,

�B2�2B2�0,0 = 4�
m

�Xm
�1� + Ym

�1� − Zm
�1��2,

�B3�2B�0,0 = 3�
m

�2Xm
�2� + Ym

�2� − Zm
�2��*�Ym

�0� − Zm
�0�� ,

�B2�B�B�0,0 = 2�
m

�Xm
�2� + Ym

�2� − Zm
�2��*�Ym

�0� − Zm
�0�� ,

�B�B2�B�0,0 = �
m

�Ym
�2� − Zm

�2��*�Ym
�0� − Zm

�0�� ,

�B�B�B2�0,0 = 2�
m

�Xm
�2� + Ym

�2� − Zm
�2��*�Ym

�0� − Zm
�0�� .

�A11�

The substitution of the temporal and spatial averages
into Eq. �A6� and further algebraic simplification gives
the leading term of the fourth moment as

E��4

4! � = 1
2p2F2

2�
m

��Xm
�1� + Ym

�1� − Zm
�1��2

− �2Xm
�2� + Ym

�2� − Zm
�2��*�Ym

�0� − Zm
�0��� . �A12�

This expression does not contain divergent terms, so
that the sum can be extended up to infinity. One then
substitutes the notations �A10� and sums over m to get
��r1−r2�. After integration, a number of terms in the

above expression vanish. One finally gets the leading
terms of the fourth moment:

E��4

4! � =
1
2

p2���t1 − t2��2�2
L4

V
�
	

dr ��B�r��4� ,

�A13�

where the f-weighted time average ��t1− t2��2 is substi-
tuted instead of F2. A similar analysis could be used to
compute higher moments, but a more systematic tech-
nique would certainly be helpful.

APPENDIX B: LAPLACE TRANSFORM SUMMATION
TECHNIQUE

In Sec. IV.C, the p3/2 correction term to the second
moment was obtained in the slow-diffusion regime �p
�1�. The use of a renormalization procedure to over-
come the formal divergence of the series expansion �92�
may appear unsatisfactory from the mathematical point
of view. Here we show how the Laplace transform sum-
mation technique can be used to study the second-order
moment in a more general and rigorous way.87 In what
follows, we are looking for the spatial average

�Be−p�t2−t1��B�0,0 = �B0,0�2 + H„p�t2 − t1�…

and its dependence on the variable p̃=p�t2− t1�, where

H�p̃� = �
m=1

�

B0,me−p̃�mBm,0.

For the sake of clarity, we focus on the case of the Neu-
mann boundary condition �11�, when h=0.

The Laplace transform of the function H�p̃� is simply

L�H��s� = �
m=1

� B0,mBm,0

s + �m
. �B1�

Note that L�H��s� appears as the generating function for
the coefficients �k defined by Eq. �75�:

L�H��s� = �
k=0

�

�− 1�k�−k−1sk; �B2�

hence for k 0, one gets

�−k−1 =
�− 1�k

k!

 �k

�skL�H��s��
s=0

. �B3�

Once the function L�H��s� is found, its inverse Laplace
transform provides the spatial average for the second
moment. In particular, we shall demonstrate the
asymptotic behavior of H�p̃� in the slow-diffusion re-
gime �p̃→0�

87Note that a similar technique was applied by Mitra et al.
�1993� to calculate the time-dependent diffusion coefficient for
a sphere.
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TABLE III. Laplace transform L�H��s� and related quantities for three basic domains and two spatial profiles of the magnetic field �here h=0�.

Slab Cylinder Sphere

Linear gradient �m= �2m−1��, y�z�=cos�z /2� �m=�1m, y�z�=J1��z� �m=�1m, y�z�= j1��z�

L�H��s�
1
12

s−1−s−2+
2

s2

tanh��s /2�
�s

1
4

s−1−2s−2+
1

s2 �1+
iJ1�i�s�

�sJ0�i�s� �−1 1
5

s−1−
3
2

s−2+
1

4s �1+s /2−
�s

tanh �s �−1

L�H��s�
�s→0�

1
120

−
17

20160
s+

31
362880

s2+O�s3�
7
96

−
11
512

s+
73

11520
s2+O�s3�

8
175

−
83

7875
s+

2458
1010625

s2+O�s3�

L�H��s�
�s→��

1
12

s−1−s−2+2s−5/2+O�exp�
1
4

s−1−s−2+s−5/2+
1
2

s−3−
1
8

s−7/2+¯

1
5

s−1−s−2+s−5/2+s−3−
1
2

s−4+¯

H�p̃�
�p̃→0�

1
12

− p̃+
8

3��
p̃3/2+O�exp�

1
4

− p̃+
4

3��
p̃3/2+

1
4

p̃2−
1

15��
p̃5/2+¯

1
5

− p̃+
4

3��
p̃3/2+

1
2

p̃2−
1
3

p̃3+¯

Parabolic field �m=m�, y�z�=sin�z� �m=�0m, y�z�=J0��z� �m=�0m, y�z�= j0��z�

L�H��s�
4
45

s−1−
4
3

s−2−4s−3+
4

s3

�s

tanh �s

1
12

s−1−2s−2−16s−3+
8

s2 � iJ0�i�s�
�sJ1�i�s� � 12

175
s−1−

72
5

s−2−36s−3+
12

s2 �1−
tanh �s

�s �−1

L�H��s�
�s→0�

8
945

−
4

4725
s+

8
93555

s2+O�s3�
1

192
−

1
2880

s+
13

552960
s2+O�s3�

8
2625

−
148

1010625
s+

472
65690625

s2+O�s3�

L�H��s�
�s→��

4
45

s−1−
4
3

s−2+4s−5/2−4s−3+O�exp�
1
12

s−1−2s−2+8s−5/2−12s−3+3s−7/2+¯

12
175

s−1−
12
5

s−2+12s−5/2−24s−3+12s−7/2+¯

H�p̃�
�p̃→0�

4
45

−
4
3

p̃+
16

3��
p̃3/2−2p̃2+O�exp�

1
12

−2p̃+
32

3��
p̃3/2−6p̃2+

8

5��
p̃5/2+¯

12
175

−
12
5

p̃+
48

3��
p̃3/2−12p̃2+

32

5��
p̃5/2+¯
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H�p̃� = �0 − �1p̃ + �3/2p̃3/2 + O�p̃2� , �B4�

where the values of the coefficients �0, �1, and �3/2 are
given in Table II for three basic domains and two spatial
profiles of the magnetic field.

1. Consequences of the Mittag-Leffler theorem

For basic domains, a rigorous analytical computation
of the second moment and related quantities is based on
a simple consequence of the Mittag-Leffler theorem in
complex analysis �Markushevich, 1965�. Let �zn� be a se-
quence of all zeros �with multiplicities mn� of an entire
function y�z� �i.e., an analytic function in the whole com-
plex plane� so that it can be formally written as

y�z� = a0�
n

�z − zn�mn

�here a0 is a constant�. Taking the derivative and divid-
ing it by y�z�, one gets

y��z�
y�z�

= �
n

mn

z − zn
. �B5�

In the case of infinite sequence of simple zeros �with
multiplicities mn=1�,88 this relation can be made rigor-
ous by requiring that zn go to infinity, and

�
n

1

�zn�
= � .

This relation provides an efficient tool to compute infi-
nite sums involving the Laplace operator eigenvalues �m
for basic domains, in particular, the function

$�s� 	 �
m=1

�
1

s − �m
. �B6�

According to Table I, the eigenvalues �m are equal to
�m

2 , where �m are the positive simple zeros of a certain
explicit entire function y�z�. When the set �±�m� con-
tains all zeros of y�z�, one can apply the Mittag-Leffler
theorem to get

$�s� =
1

2�s
�
m=1

� 
 1
�s − �m

+
1

�s + �m
� =

1

2�s

y���s�
y��s�

.

�B7a�

If z=0 is also a zero of y�z�, it should be explicitly sub-
tracted:

$�s� =
1

2�s

y���s�

y��s�
−

1
�s
� . �B7b�

As a consequence, the infinite sum in Eq. �B6� is now
expressed in terms of the explicit and known function
y�z�. Its examples for basic domains and different spatial
profiles are given in Table III.

Once $�s� is known, one can establish a number of
useful results for more complicated sums involving the
Laplace operator eigenvalues. For instance, one deduces

�
m=1

�
1

�s1 − �m��s2 − �m�
=
$�s1� − $�s2�

s2 − s1
. �B8�

More generally, one can compute the sum

$�k��s1, . . . ,sk� 	 �
m=1

�

�
j=1

k
1

sj − �m
�B9�

iteratively, applying the identity

$�k��s1, . . . ,sk� =
$�k−1��s1, . . . ,sk−1� − $�k−1��s1, . . . ,sk�

sk − sk−1

�B10�

with $�1��s�	$�s�. Multiple differentiation of Eq. �B9�
with respect to the variables sj further extends the set of
useful relations for any positive integers �1 , . . . ,�k:

�
m=1

�

�
j=1

k
1

�sj − �m��j+1

=
�− 1��1+¯+�k

�1! ¯ �k!
��1+¯+�k

�s1
�1
¯ �sk

�k
$�k��s1, . . . ,sk� . �B11�

Although cumbersome, these expressions allow one to
rigorously compute many sums and related quantities
involving the Laplace operator eigenvalues.

2. Example: Slab geometry and parabolic profile

To illustrate the efficiency of the Laplace transform
summation technique, we consider restricted diffusion in
a slab geometry under a parabolic magnetic field. The
substitution of the elements B0,m from Eq. �70� into Eq.
�B1� leads to

L�H��s� = 8 �
m=1

�
1

�m
2 �s + �m�

, �B12�

where the eigenvalues are simply �m= ��m�2. Since
�±�m� are zeros of the entire function y�z�=sin z, Eq.
�B7b� yields

$�s� =
1

2�s

 cos �s

sin �s
−

1
�s
� �B13�

�here the zero z=0 is explicitly subtracted�. In this case,
the sum in Eq. �B12� can be found according to Eq.
�B11� as

88This mathematical result can be significantly extended as
described by Markushevich �1965�. Here we do not discuss
convergence of the series in the right-hand side of Eq. �B5�,
especially since the most attention will be focused on the func-
tion $�s� defined by the convergent series in Eq. �B6�.
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L�H��s� = 8
 �

�s1

$�s1� − $�s2�
s2 − s1

�
s1=0,s2=−s

.

Substitution of the explicit function $�s� from Eq. �B13�
into the above relation gives

L�H��s� =
4
45

s−1 −
4
3

s−2 − 4s−3 +
4

s3

�s

tanh �s
. �B14�

This is an exact rigorous result. Its series expansion in
the limit s→0 allows determination of the coefficients
�−k for k�0 given in Table II:

L�H��s� =
8

945
��−1�

−
4

4725
��−2�

s +
8

93555
��−3�

s2 + O�s3� .

Although the inverse Laplace transform on the right-
hand side of Eq. �B14� cannot be expressed in elemen-
tary functions, its numerical computation and series
expansion are simple and useful. For instance, the
asymptotic behavior of L�H��s� in the limit s→� de-
scribes the spatial average of the second moment in the
slow diffusion regime �p̃→0�. Since tanh �s in Eq. �B14�
exponentially converges to 1 as s→�, one finds

L�H��s� �
4
45

s−1 −
4
3

s−2 + 4s−5/2 − 4s−3

with exponentially small corrections �which are formally
denoted in Table III as O�exp��. Using the identity
L−1�s−��= p̃�−1 /����, one obtains

H�p̃� �
4
45
��0�

−
4
3

��1�

p̃ +
4

��5/2�
��3/2�

p̃3/2 − 2p̃2

��2�
�as p̃ → 0� .

Numerical computation shows that the maximum rela-
tive error of this formula is below 1% for p̃�0.2. Com-
parison with Eq. �B4� allows determination of the coef-
ficients �0, �1, �3/2, and �2 given in Table II. Note that
higher-order polynomial corrections vanish: �5/2=�3
= ¯ =0.

In a similar way, one can rigorously calculate
L�H��s� and related quantities for other basic domains
and spatial profiles. These results are summarized in
Table III. For three basic domains, the function $�s� is
given by Eqs. �B7a� and �B7b� for a linear gradient and a
parabolic magnetic field, respectively. The asymptotic
expansion of L�H��s� as s→� �and of H�p̃� as p̃→0� for
a slab geometry is cut off after the p3/2 correction, that is,
�2=�5/2= ¯ =0. This specific feature expains why the
only p3/2 correction gives very accurate results in the
slow-diffusion regime for a slab geometry �Fig. 5�. In
contrast, similar expansions for a cylinder and a sphere
contain an infinite number of terms. As a result, the very
same p3/2 correction is not accurate enough for a cylin-
der and a sphere since higher-order polynomial correc-
tions are present.

3. Analogy with the return-to-the-origin probability

For basic domains, the spatial average of the second
moment and related quantities appear as infinite sums
involving the Laplace operator eigenvalues �m alone.
This curious fact bridges a number of interesting links to
other mathematical fields. For instance, the function

$̂�s�	− $�− s� = �
m

1

s + �m

turns out to be the Laplace transform of the spectral
function

H0�p̃� = �
m

e−p̃�m

over the eigenvalues �m that contribute to the second
moment. For three basic domains, the following
asymptotic behavior holds:89

$̂�s� �
1

2�s
�as s → �� �B15�

which implies the asymptotic behavior of H0�p̃� in the
slow-diffusion regime:

H0�p̃� �
1

2��
1
�p̃

�as p̃ → 0� . �B16�

At this point, we outline a similarity between this func-
tion and the averaged return-to-the-origin probability
considered by Mitra et al. �1995� and Schwartz et al.
�1997�:

P�p̃� = �
	

dr Gt2−t1
�r,r� = �

m=0

�

e−p̃�m. �B17�

The only difference is that the last sum contains all ei-
genvalues �m, while H0�p̃� is defined for specific eigen-
modes, for which B0,m�0. In the limit p̃→0, the heat
kernel in Eq. �B17� can be roughly approximated by the
free-diffusion heat kernel �181�, giving P�p̃���4�p̃�−d/2.
Since L�H0��s� contains a smaller number of terms, its
convergence as s→� is better, and the behavior of H0�p̃�
as p̃→0 is less sharp than for P�p̃�. Note that the prop-
erties of the function P�p̃� were investigated by Kac
�1966� in attempt to answer the famous question: Can
one hear the shape of a drum? Although interesting, a
further discussion on this topic is beyond the scope of
this review.

4. Relation to spectral zeta functions

At the end of this section, we outline the relationship
between the coefficients �k defined by Eq. �75� and spec-

89The coefficient 1/2 stands in front of s−1/2 and p̃−1/2 in Eqs.
�B15� and �B16� for all considered cases except slab geometry
under a linear gradient, for which the coefficient 1/4 should be
used.
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tral zeta functions. Consider again the case of slab ge-
ometry and parabolic magnetic field. The substitution of
Eq. �B12� into Eq. �B3� yields

�−k = 8 �
m=1

�
1

�m
k+2 =

8

�2k+4 �
m=1

�
1

m2k+4 . �B18�

The last sum is the Riemann zeta function

��z� = �
m=1

�

m−z

that is defined for any complex z with Re�z��1 and has
a meromorphic continuation to the whole complex
plane. This function found numerous applications in
mathematics and physics �see Lapidus and Pomerance
�1993�; Elizalde �1995�; Lapidus and van Frankenhuysen
�2000�, and references therein�. In turn, the intermediate
sum in Eq. �B18� is often referred to as a spectral zeta
function since it is formed by eigenvalues of an operator
�in our case, this is the Laplace operator�. In this light,
the coefficients �−k for three basic domains under para-
bolic magnetic field can be considered as spectral zeta
functions. For instance, Table I gives for a cylinder

�−k = 16�
m

1

�m
k+2 ,

where �m=�0m
2 ,�0m being the positive roots of J0��z�=0.

We stress again that the above sum is carried out over
specific eigenmodes, for which B0,m�0. Finally, the co-
efficients �−k for a linear gradient are slightly more com-
plicated. For example, one has for a cylinder

�−k = 2�
m

1

��m − 1��m
k+1 ,

which can still be seen as a kind of spectral zeta func-
tion. Further discussion of the exciting properties of
spectral zeta functions is beyond the scope of the
present review.

APPENDIX C: FOURTH MOMENT IN THE MOTIONAL-
NARROWING REGIME

As an illustrative example, we calculate the leading
term of the fourth moment E��4� in the motional-
narrowing regime. Although the calculation is as el-
ementary as for the second moment, the variety of spe-
cific cases makes it cumbersome for higher moments.

Consider the f-weighted time average for the fourth
moment:

�e−p�m1
�t2−t1�e−p�m2

�t3−t2�e−p�m3
�t4−t3��4. �C1�

As for the second moment, one might simply replace
each exponential function by its leading asymptotic term
�p�mi

�−1��ti+1− ti� as p→�, so that the fourth moment
would behave as p−3. However, a more accurate analysis
requires one to account for special cases when certain
�mi

are zero. We briefly consider these cases.

• For m1=m2=m3=0 �all �mi
are zero�, the f-weighted

time average of a constant vanishes.

• When two of three eigenvalues are zero �m1=m2=0
or m1=m3=0 or m2=m3=0�, one replaces the re-
maining exponential function by its leading
asymptotic term. The summation over nontrivial ei-
genvalues gives the same constant for three cases:

�
m=1

�

�m
−1B0,mBm,0B0,0

2 = B0,0
2 �−1. �C2�

Then one calculates the f-weighted time averages of
� functions:

2���t2 − t1��4 = 2���t4 − t3��4 = − ���t3 − t2��4

= �
0

1

dt f2�t� f̂2�t� , �C3�

where the primitive f̂ is defined by Eq. �A5�. One
concludes that the sum of three terms is equal to 0.

• For the cases m1=0 or m3=0, one obtains

���t2 − t1���t3 − t2��4 = − �
0

1

dt f3�t�f̂�t� ,

���t3 − t2���t4 − t3��4 = �
0

1

dt f3�t�f̂�t� , �C4�

while the spatial averages are identical, so that these
contributions cancel each other.

• The only nontrivial case is m2=0 �with m1�0 and
m3�0�. One has

���t2 − t1���t4 − t3��4 =
1
2
�0

1

dt f2�t��2

, �C5�

i.e., the time average of these two delta functions is
split in two. The same happens for the sums over
indices m1 and m3,

�
m1,m3

�m1

−1B0,m1
Bm1,0B0,m3

Bm3,0�m3

−1 = �−1
2 . �C6�

One finally obtains the leading term of the fourth
moment in the motional-narrowing regime in the
form �118� with n=2.

APPENDIX D: MULTIPLE PROPAGATOR APPROACH

Considerable progress in the numerical analysis of dif-
fusive NMR phenomena was achieved by the multiple
propagator approach first proposed by Caprihan et al.
�1996�, further developed by Callaghan �1997�, and
equivalently reformulated by Sukstanskii and
Yablonskiy �2002�. Although this approach was intended
to study the particular case of a linear magnetic-field
gradient, we describe its extension for any spatial profile
B�r�.
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Dividing the time interval �0,1� into K subintervals of
duration =1/K, one can approximate the integral in
Eq. �52� by a finite sum

E � E�exp�iq�
k=0

K

fkB�Xk�� , �D1�

where fk	 f�k�. To calculate the expectation, all pos-
sible values of the random variables Xk should be
weighted with the corresponding probabilities. Indeed,
the starting position r0 is distributed according to a given
initial density �0�r0�. The probability distribution of the
next position r1 after time  is given by the propagator
G�r0 ,r1�, and so on. One thus obtains

E � �
	

dr0�
	

dr1 ¯ �
	

drK�0�r0�eiqf0B�r0�


G�r0,r1�eiqf1B�r1�G�r1,r2� ¯ eiqfKB�rK�.

The spectral expansion �31� of the heat kernel allows the

signal E to be written as the scalar product E= �WHW̃�,
where an infinite-dimensional matrix H is

H = RA�f1�R ¯ A�fK−1�R .

Two infinite-dimensional matrices R and A and two vec-

tors W and W̃ are defined as

Am,m��fk� = �
	

dr um
* �r�um��r�exp�iqfkB�r�� ,

Rm,m� = �m,m� exp�− p�m� ,

Wm = V1/2�
	

dr um�r��0�r�exp�iqf0B�r�� ,

W̃m = V−1/2�
	

dr um
* �r�exp�iqfKB�r�� .

Although the multiple propagator approach provided an
efficient numerical tool, its use for theoretical analysis
has been quite limited since the dependence on the main
parameters p and q is hidden in the matrices R and A

and the vectors W and W̃. In contrast, the MCF descrip-
tion is given in terms of the matrices B and � that de-
pend only on the confining geometry and the spatial pro-
file of the magnetic field. In addition, the dependence on
p and q is explicit and easy to investigate. For this rea-
son, the MCF approach turns out to be more appropiate
for theoretical and numerical analysis.

One may wonder what happens with the multiple
propagator approach in the limit →0. To the first order
in , one has

A�fk� � I + iqfkB, R � I − p� ,

where the matrices � and B are defined by Eqs. �42� and
�47�, respectively, and I stands for the identity matrix.
For the sake of simplicity, consider the case of reflecting

boundaries, for which the elements Wm and W̃m can be

approximated by �m,0. The matrix H becomes

H � �
k=0

K

�I + �iqfkB − p��� ,

which can be formally expanded as

H � I + �
k1

K

�iqfk1
B − p�� + ¯

+ n �
k1�¯�kn

K

�iqfk1
B − p�� ¯ �iqfkn

B − p��

+ ¯ . �D2�

This expansion contains all possible products of matrices
B and �. A general form of the term containing n ma-
trices B and m matrices � can be written as

�D3�

where the positive indices �0 , . . .,�n are such that �0
+ ¯ +�n=m. The coefficient in front of this term is

�iq�n�− p�mn+m �
k1�¯�kn+m

K

Fk1
Fk2

¯ Fkn+m
, �D4�

where Fkj
= fkj

if the matrix B stands at the jth place in
the sequence �D3�, and Fkj

=1 otherwise. If the subdivi-
sion  is small enough, these coefficients can be consid-
ered as integral sums, yielding in the limit →0

�iq�n�− p�m�
0

1

dt1�
t1

1

dt2 ¯ �
tn−1

1

dtn
t1
�0

�0!
f�t1�

�t2 − t1��1

�1!


 f�t2� ¯
�tn − tn−1��n−1

�n−1!
f�tn�

�1 − tn��n

�n!
.

Taking all possible combinations of indices �0 , . . .,�n
from 0 to infinity, one obtains the nth-order contribution
to the sum �D2� as

Hn = �iq�n�
0

1

dt1�
t1

1

dt2 ¯ �
tn−1

1

dtnf�t1� ¯ f�tn�


 e−pt1�Be−p�t2−t1��B ¯ Be−p�tn−tn−1��Be−p�1−tn��.

According to Eq. �59�, the first diagonal element of the
matrix Hn is exactly the f-weighted time average of the
correlation function E�B�Xt1

�¯B�Xtn
��, multiplied by

�iq�n. Consequently, we retrieved the series expansion
�54� for the signal E. On the one hand, this derivation
reveals how the limit →0 can be taken within the mul-
tiple propagator approach. In particular, it justifies the
convergence of this method for →0 which was not
proved earlier. On the other hand, the direct relation
between the multiple propagator approach and the se-
ries expansion may be fruitful for further investigation.
Note that a very similar analysis allows one to derive the
series expansion �54� from the approximate relation
�144� in the limit →0.
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APPENDIX E: EVEN-ORDER MOMENTS IN THE
NARROW-PULSE APPROXIMATION

The compact form �179� of the even-order moments
can be used to study their dependence on the dimen-
sionless diffusion coefficient p. For this purpose, the
heat kernel GT/2�r1 ,r2� is represented by the spectral de-
composition �31�

E� �2n

�2n�!� �
�2n

�2n�! �
m=0

�

e−p�m/2�
	

dr1�
	

dr2um
* �r1�


um�r2��B�r1� − B�r2��2n. �E1�

To obtain the leading term, the function e−p�m/2 can be
formally developed in a power series up to order n:

E� �2n

�2n�!� �
�2n

�2n�! �
m=0

�

�
j=0

n
�p/2�j

j! �
	

dr1


�
	

dr2�− 1�j�m
j um

* �r1�um�r2�


�B�r1� − B�r2��2n. �E2�

As earlier, �−1�j�m
j can be considered as multiple �j

times� application of the Laplace operator to um
* �r1�.

Then the Green’s formula is used to differentiate by
parts. For instance, for j=1, one has

�r1
�B�r1� − B�r2��2n = 2n�2n − 1��B�r1� − B�r2��2n−2


 ��B�r1��2 + 2n�B�r1�

− B�r2��2n−1�B�r1� . �E3�

The summation over m gives ��r1−r2�, and the integral
vanishes due to the term �B�r1�−B�r2��2n−2 if 2n−2�0.
In a similar way, all terms vanish for j�n. In contrast,
the case j=n leads to Eq. �179�. A renormalization pro-
cedure would of course be required to operate with the
divergent terms of orders higher than n and to derive
the correction terms.

LIST OF SYMBOLS
B0 constant magnetic field
B�r� spatial profile of the diffusion-sensitizing

magnetic field
Bm,m� matrix elements of the magnetic field in the

Laplace operator eigenbasis, Eq. �47�
Cn

k binomial coefficients, Cn
k=n! / ��n−k�!k!�

D free self-diffusion coefficient
Dapp effective or apparent diffusion coefficient
E expectation
E macroscopic signal �the notations M and S

can be also found in the literature�
F�t� auxiliary notation, f�t�	F�tT�
Gt�r ,r�� diffusive propagator, heat kernel, or, equiva-

lently, Green’s function of diffusion equation
in the confining domain

Jn�z� Bessel functions of the first kind
L Laplace transform

L characteristic size of the confining domain
Pn�x� Legendre polynomials
Ri principal radii of curvature
S total surface area
T echo time or total gradient duration
T tortuosity

U, Ũ infinite-dimensional vectors, Eqs. �39� and
�40�

V volume of the confining domain
Xt reflected Brownian motion, Xt	r�tT�
b b value or b coefficient, Sec. VI.D
cB structure-dependent coefficient, Sec. IV.C
cm�t� time-dependent coefficients, Eq. �135�
d dimension of the space �d=3 by default�
f�t� effective temporal profile of magnetic field
g, g1 gradient intensity
g2 intensity of the parabolic magnetic field
h dimensionless relaxation rate, Eq. �34�
i imaginary unity, i2=−1
jn�z� spherical Bessel functions
m�r , t� magnetization, solution of Eq. �9�
p dimensionless diffusion coefficient, Eq. �36�
q dimensionless magnetic field intensity, Eq.

�51�
r radial coordinate, radius
r�t� stochastic trajectory of a diffusing nucleus
t �dimensionless� time variable
um�r� eigenfunctions of the Laplace operator in the

confining domain
�	 boundary of the confining domain
� /�n normal derivative at the boundary
� gradient
�·�n f-weighted time average of a function, Eq.

�56�
� ·�c cumulant average, Sec. VI.C
! factorial, n!=1
2
¯
n
��z� Euler gamma function
� Laplace operator, �=�2=�2 /�x1

2+ ¯ +�2 /�xd
2

��t� Heaviside step function, ��t�=1 for t�0, and
0 otherwise

� diagonal matrix formed by eigenvalues �m
	 confining domain
�m, �nk positive roots of the equations representing

the boundary condition, Table I
� magnetic-field intensity
�m, �nk normalization constants for eigenfunctions,

Table I
� nuclear gyromagnetic ratio
� �normalized� duration of gradient pulses
�m,m� Kronecker symbol, �m,m=1, and 0 otherwise
��r−r�� Dirac distribution �delta function�
�m coefficients, �0=1 and �m=�2 for m�0
�k structure-dependent coefficients, Eq. �75�
� azimuthal angle, 0����
�i coefficients for tortuosity regime, Eq. �21�
�m dimensionless eigenvalues of the Laplace op-

erator in the confining domain
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� nuclear magnetic moment
� surface relaxivity or permeability
�0�r� initial density of nuclei
�̃�r� pickup function �assumed to be 1�
 small time step
 ramp time for the trapezoidal profile, Fig.

4�d�
� normalized total phase, �=q�
� total phase of a diffusion nucleus, Eq. �1�
� polar angle, 0���2�
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