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I. INTRODUCTION

Theoretical understanding of the behavior of materi-
als is a great intellectual challenge and may be the key to
new technologies. We now have a firm understanding of
simple materials such as noble metals and semiconduc-
tors. The conceptual basis characterizing the spectrum
of low-lying excitations in these systems is well estab-
lished by the Landau Fermi-liquid theory �Pines and No-
zieres, 1966�. We also have quantitative techniques for
computing ground-states properties, such as the density-
functional theory �DFT� in the local density and gener-
alized gradient approximation �LDA and GGA�
�Lundqvist and March, 1983�. These techniques can also

be successfully used as starting points for perturbative
computation of one-electron spectra, such as the GW
method �Aryasetiawan and Gunnarsson, 1998�.

The scientific frontier that one wants to explore is a
category of materials which falls under the rubric of
strongly correlated electron systems. These are complex
materials, with electrons occupying active 3d , 4f, or 5f
orbitals �and sometimes p orbitals as in many organic
compounds and in bucky-ball-based materials �Gunnars-
son, 1997��. The excitation spectra in these systems can-
not be described in terms of well-defined quasiparticles
over a wide range of temperatures and frequencies. In
this situation band theory concepts are not sufficient and
new ideas such as those of Hubbard bands and narrow
coherent quasiparticle bands are needed for the descrip-
tion of the electronic structure �for reviews see Georges
et al., 1996; Kotliar and Vollhardt, 2004�.

Strongly correlated electron systems exhibit complex
behavior, arising from frustrated or competing interac-
tion terms in their Hamiltonian. A very basic competi-
tion is between the tendency towards delocalization
leading to band formation and the tendency to localiza-
tion leading to atomiclike behavior. The delocalization
tendencies have a simple description in momentum
space but the localization tendencies are better de-
scribed in real space. At lower energies, strongly corre-
lated materials have conflicting tendencies towards dif-
ferent forms of long-range order �superconducting,
stripelike density waves, complex forms of frustrated
noncollinear magnetism, etc.� leading to complex phase
diagrams and exotic physical properties.

Strongly correlated electron systems have many un-
usual properties. They are extremely sensitive to small
changes in their control parameters resulting in large
responses, tendencies to phase separation, and forma-
tion of complex patterns in chemically inhomogeneous
situations �Mathur and Littlewood, 2003; Millis, 2003�.
This makes their study challenging, and the prospects
for applications particularly exciting.

The promise of strongly correlated materials contin-
ues to be realized experimentally. High superconducting
transition temperatures �above liquid-nitrogen tempera-
tures� were totally unexpected. They were realized in
materials containing copper and oxygen. Enormous
mass renormalizations are realized in systems containing
rare-earth and actinide elements, the so-called heavy-
fermion systems �Stewart, 2001�. Their large orbital de-
generacy and large effective masses give exceptionally
large Seebeck coefficients, and have the potential for
being useful thermoelectrics in the low-temperature re-
gion �Sales et al., 1996�. Colossal magnetoresistance, a
dramatic sensitivity of the resistivity to applied magnetic
fields, was discovered �Tokura, 1990� in many materials
including the prototypical LaxSr1−xMnO3. The canonical
phase diagram of these materials illustrates the complex-
ity and sensitivity to chemical doping and composition
�Schiffer et al., 1995; Mathur and Littlewood, 2003�. A
gigantic nonlinear optical susceptibility with an ultrafast
recovery time was discovered in Mott insulating chains
�Ogasawara et al., 2000�. A surprisingly large dielectric
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constant was recently found in the Mott insulator
CaCu3Ti4O12 �Lixin et al., 2002�, and there is a recent
surge of investigations in the field of multiferroics which
combine dielectric and magnetic responses �Fiebig,
2005�.

These noncomprehensive lists of materials and their
unusual physical properties are meant to illustrate that
discoveries in the areas of correlated materials occur ser-
endipitously. Unfortunately, lacking the proper theoret-
ical tools and daunted by the complexity of the materi-
als, there have not been success stories in predicting new
directions for even incremental improvement of mate-
rial performance using strongly correlated systems.

In our view, this situation is likely to change in the
very near future as a result of the introduction of a prac-
tical yet still powerful new many-body method, the dy-
namical mean-field theory �DMFT�. This method is
based on a mapping of the full many-body problem of
solid-state physics onto a quantum impurity model,
which is essentially a small number of quantum degrees
of freedom embedded in a bath that obeys a self-
consistency condition �Georges and Kotliar, 1992�. This
approach offers a minimal description of the electronic
structure of correlated materials, treating both the Hub-
bard bands and quasiparticle bands on equal footing. It
becomes exact in the limit of infinite lattice coordination
introduced in the pioneering work of Metzner and Voll-
hardt �1989�.

Recent advances �Anisimov, Poteryaev, et al., 1997;
Lichtenstein and Katsnelson, 1998, 2001� have combined
dynamical mean-field theory �DMFT� �Georges et al.,
1996; Kotliar and Vollhardt, 2004� with electronic struc-
ture techniques �for other DMFT reviews, see Held,
Nekkrasov, et al. �2001, 2003�; Lichtenstein et al. �2002a�;
Freericks and Zlatic �2003�; Georges �2004a, 2004b�;
Maier, Jarrell, Pruschke, et al. �2005��. DMFT may also
be formulated as an approximation to an exact spectral
density-functional theory �SDFT� �see Sec. II� �Chitra
and Kotliar, 2000a�. These developments, combined with
increasing computational power and novel algorithms,
offer the possibility of turning DMFT into a useful
method for computer-aided material design involving
strongly correlated materials.

This review is an introduction to the rapidly develop-
ing field of electronic structure calculations of strongly
correlated materials from a DMFT perspective. Our
primary goal is to present some concepts and computa-
tional tools that allow a first-principles description of
these systems. We review aspects from both the many-
body physics and electronic structure communities
which are currently making important contributions in
the development of this approach. For the electronic
structure community, the DMFT approach gives access
to new regimes for which traditional methods based on
extensions of DFT do not work. For the many-body
community, electronic structure calculations bring sys-
tem specific information needed to formulate many-
body problems related to a given material.

The Introduction, Sec. I, discusses the importance of
ab initio description in strongly correlated solids. We re-

view the main concepts behind the approaches based on
model Hamiltonians and density-functional theory to
put in perspective current techniques combining DMFT
with electronic structure methods. In the last few years,
the DMFT method has reached a great degree of gener-
ality which gives one the flexibility to tackle realistic
electronic structure problems, and we review these de-
velopments in Sec. II. This section describes how the
DMFT and electronic structure LDA theory can be
combined together. We stress the existence of new func-
tionals for practical electronic structure calculations of
spectra and total energy and review applications of these
developments for calculating various properties such as
lattice dynamics, optics, and transport. The heart of the
dynamical mean-field description of a system with local
interactions is the quantum impurity model. Its solution
is a bottleneck of DMFT algorithms. In Sec. III we re-
view various impurity solvers which are currently in use,
ranging from the formally exact but computationally ex-
pensive quantum Monte Carlo �QMC� method to vari-
ous approximate schemes. Section IV is devoted to ap-
plications to selected applications that illustrate the
power of the methodology. One important development,
a fully self-consistent implementation of the LDA
+DMFT approach, which sheds new light on the myste-
rious properties of plutonium �Savrasov et al., 2001� and
is covered in some detail. Other typical applications of
the formalism, the problem of the electronic structure
near a Mott transition, the problem of volume collapse
transitions in lanthanides, and the problem of the de-
scription of systems with local moments, are also
treated. We conclude our review with a brief look at
other applications in Sec. IV.D and with an outlook in
Sec. V. Some technical aspects of the implementations as
well as the description of DMFT codes are provided in
the appendixes, and in a web site �see Appendix B�.

A. Electronic structure of correlated systems

What do we mean by a strongly correlated phenom-
enon? We can answer this question from the perspective
of electronic structure theory, where one-electron exci-
tations are well defined and represented as delta-
function-like peaks showing the locations of quasiparti-
cles at the energy scale of the electronic spectral
functions �Fig. 1�a��. Strong correlations imply the
breakdown of the effective one-particle description: the
wave function of the system becomes essentially many-
body-like, represented by combinations of Slater deter-
minants, and the one-particle Green’s functions no
longer exhibit single-peaked features �Fig. 1�b��.

The development of methods for studying strongly
correlated materials has a long history in condensed-
matter physics. The efforts of the many-body commu-
nity have traditionally focused on the solution of model
Hamiltonians �usually written for a given solid-state sys-
tem on physical grounds� using techniques such as dia-
grammatic methods �Bickers and Scalapino, 1989�,
quantum Monte Carlo simulations �Jarrell and Guber-
natis, 1996�, exact diagonalization for finite-size clusters
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�Dagotto, 1994�, density-matrix renormalization-group
methods �White, 1992; Schollwöck, 2005�, and so on.
The development of LDA+U �Anisimov, Aryasetiawan,
et al., 1997� and self-interaction corrected �SIC� �Svane
and Gunnarsson, 1990; Szotek et al., 1993� methods,
many-body perturbative approaches based on GW and
its extensions �Aryasetiawan and Gunnarsson, 1998�, as
well as the time-dependent version of the density-
functional theory �Gross et al., 1996�, have been carried
out by the electronic structure community to address the
problem of strongly correlated materials. Some of these
techniques are already much more complicated and time
consuming compared to the standard LDA-based algo-
rithms, and therefore the real exploration of materials is
frequently performed by simplified versions utilizing ap-
proximations such as the plasmon-pole form for the di-
electric function �Hybertsen and Louie, 1986�, omitting
the self-consistency within GW �Aryasetiawan and Gun-
narsson, 1998� or assuming locality of the GW self-
energy �Zein and Antropov, 2002�.

To motivate the dynamical mean-field theory ap-
proach we recall the nature of the one-electron �or one-
particle� density of states of strongly correlated systems
may display both renormalized quasiparticles and atom-
iclike states simultaneously �Georges and Kotliar, 1992;
Zhang et al., 1993�. To describe this method one needs a
technique which is able to treat quasiparticle bands and
Hubbard bands on equal footing, and which is able to
interpolate between atomic and band limits. Dynamical
mean-field theory �Georges et al., 1996� is the simplest
approach which captures these features; it has been ex-
tensively developed to study model Hamiltonians. Fig-
ure 2 shows the development of the spectrum while in-
creasing the strength of Coulomb interaction U as
obtained by DMFT solution of the Hubbard model. It
illustrates the necessity to go beyond static mean-field
treatments in situations when the on-site Hubbard U be-
comes comparable with the bandwidth W.

Model Hamiltonian-based DMFT methods have suc-
cessfully described regimes U /W�1. However, to de-
scribe strongly correlated materials we need to incorpo-
rate realistic electronic structure calculations. The low-
temperature physics of systems near localization-

delocalization crossover is nonuniversal, system specific,
and sensitive to the lattice structure and orbital degen-
eracy which is unique to each compound. We believe
that incorporating this information into the many-body
treatment of this system is a necessary first step before
more general lessons about strong-correlation phenom-
ena can be drawn. In this respect, we recall that DFT in
its common approximations, such as LDA or GGA,
brings a system specific description into calculations.
Despite the great success of DFT for studying weakly
correlated solids, it has not been able thus far to address
strongly correlated phenomena. So, we see that both
density-functional-based and many-body model Hamil-
tonian approaches are to a large extent complementary
to each other and hence can be merged. One-electron
Hamiltonians, which are necessarily generated within
density-functional approaches �i.e., the hopping terms�,
can be used as input for more challenging many-body
calculations. This path was undertaken by Anisimov et
al. �Anisimov, Poteryaev, et al., 1997� who introduced the
LDA+DMFT method of electronic structure for
strongly correlated systems and applied it to the photo-
emission spectrum of La1−xSrxTiO3. Near the Mott tran-
sition, this system shows a number of features incompat-
ible with the one-electron description �Fujimori, Hase,
Nakamura, et al., 1992�. The electronic structure of Fe
has been shown to be in better agreement with experi-

FIG. 1. �Color online� Examples of a spectrum �a� for a weakly
correlated system and �b� for a strongly correlated system. The
situation in �a� can be modeled by the Kohn-Sham spectra of
LDA-like treatments while the description of �b� requires a
many-body treatment such as DMFT.

FIG. 2. Local spectral function of the fully frustrated Hubbard
model at T=0, for several values of the interaction strength U,
obtained with the iterated perturbation theory approximation
�Zhang et al., 1993�. The evolution from a weakly correlated
regime at small U, where the density of states resemble the
band density of states, to a Mott insulator at large U is shown,
characterized by two Hubbard bands separated by a gap of
order U. For intermediate U the metal exhibits a complex
spectral function with Hubbard bands at high energies and
quasiparticle bands at low energies. The Mott transition is
driven by transfer of spectral weight between these features.
From Zhang et al., 1993.
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ment within DMFT in comparison with LDA �Katsnel-
son and Lichentstein, 1999�. The photoemission spec-
trum near the Mott transition in V2O3 has been studied
�Held, Keller, et al., 2001�, as well as issues connected to
the finite-temperature magnetism of Fe and Ni were ex-
plored �Lichtenstein et al., 2001�.

Despite these successful developments, we also em-
phasize a more ambitious goal: to build a general
method which treats all bands and all electrons on the
same footing, determines both hoppings and interactions
internally using a fully self-consistent procedure, and ac-
cesses both energetics and spectra of correlated materi-
als. These efforts have been undertaken in a series of
papers �Chitra and Kotliar, 2000a, 2001� which gave us a
functional description of the problem in analogy to the
density-functional theory, and its self-consistent imple-
mentation is illustrated on plutonium �Savrasov et al.,
2001; Savrasov and Kotliar, 2004�.

To summarize, there are two roads in approaching the
problem of simulating correlated materials properties,
which we illustrate in Fig. 3. Dynamical mean-field
theory has been useful in both instances. To describe
these efforts in a language understandable by both elec-
tronic structure and many-body communities, and to
stress qualitative differences and great similarities be-
tween DMFT and LDA, we start our review with a gen-
eral many-body framework based on the effective action
approach to strongly correlated systems �Chitra and
Kotliar, 2001�.

B. Effective action formalism and the constraining field

The effective action formalism, which utilizes func-
tional Legendre transformations and the inversion
method �for a comprehensive review, see Fukuda et al.
�1995�; also see the website in Appendix B�, allows us to
present a unified description of many different ap-
proaches to electronic structure. The idea is very simple,
and has been used in other areas such as quantum field
theory and statistical mechanics of spin systems. We be-
gin with the free energy of the system written as a func-
tional integral,

exp�− F� = � D��†��e−S, �1�

where F is the free energy, S is the action for a given
Hamiltonian, and � is a Grassmann variable �Negele
and Orland, 1998�. One then selects an observable quan-

tity of interest A, and couples a source J to the observ-
able A. This results in a modified action S+JA, and the
free energy F�J� is now a functional of the source J. A
Legendre transformation is then used to eliminate the
source in favor of the observable yielding a new func-
tional,

��A� = F�J�A�� − AJ�A� . �2�

��A� is useful in that the variational derivative with re-
spect to A yields J. We are free to set the source to zero,
and thus the extremum of ��A� gives the free energy of
the system.

The value of the approach is that useful approxima-
tions to the functional ��A� can be constructed in prac-
tice using the inversion method, a powerful technique
introduced to derive the TAP �Thouless-Anderson-
Palmer� equations in spin glasses by Plefka �1982� and
by Fukuda �1988� to investigate chiral symmetry break-
ing in QCD �see also Georges and Yedidia �1991b�;
Fukuda et al. �1994�; Opper and Winther �2001�; Yedidia
�2001��. The approach consists of carrying out a system-
atic expansion of the functional ��A� to some order in a
parameter or coupling constant �. The action is written
as S=S0+�S1 and a systematic expansion is carried out,

��A� = �0�A� + ��1�A� + ¯ , �3�

J�A� = J0�A� + �J1�A� + ¯ . �4�

A central point is that the system described by S0
+AJ0 serves as a reference system for the fully interact-
ing problem. It is a simpler system which by construction

reproduces the correct value of the observable Â, and
when this observable is properly chosen, other observ-
ables of the system can be obtained perturbatively from
their values in the reference system. Hence S0+AJ0 is a
simpler system which allows us to think perturbatively
about the physics of a more complex problem. J0�A� is a
central quantity in this formalism and we refer to it as
the “constraining field.” It is the source that needs to be
added to a reference action S0 in order to produce a
given value of the observable A.

It is useful to split the functional in this way,

��A� = �0�A� + ���A� , �5�

since �0�A� =F0�J0� −AJ0 we could regard

��A,J0� = F0�J0� − AJ0 + ���A� �6�

as a functional which is stationary in two variables, the
constraining field J0 and A. The equation ��� /�A
=J0�A� together with the definition of J0�A� determines
the exact constraining field for the problem.

One can also use the stationarity condition of the
functional �6� to express A as a functional of J0 and ob-
tain a functional of the constraining field alone �i.e.,
��J0� =�†A�J0� ,J0‡�. In the context of the Mott transition
problem, this approach allowed a clear understanding of
the analytical properties of the free energy underlying
the dynamical mean-field theory �Kotliar, 1999a�.

FIG. 3. Two roads in approaching the problem of simulating
correlated materials properties. From Zhang et al., 1993.
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�� can be given a coupling constant integration rep-
resentation which is very useful, and will appear
throughout this review,

���A� = �
0

1

d�
��

��
= �

0

1

d��S1�J���,�. �7�

Finally it is useful in many cases to decompose ��
=EH+	xc, by isolating the Hartree contribution which
can usually be evaluated explicitly. The success of the
method relies on obtaining good approximations to the
“generalized exchange correlation” functional 	xc.

In the context of spin glasses, the parameter � is the
inverse temperature and this approach leads naturally to
the TAP free energy. In the context of density-functional
theory, � is the strength of the electron-electron interac-
tions as parametrized by the charge of the electron, and
can be used to present a very transparent derivation of
the density-functional approach �Fukuda et al., 1994; Va-
liev and Fernando, 1997; Argaman and Makov, 2000;
Chitra and Kotliar, 2000a; Georges, 2002; Savrasov and
Kotliar, 2004�. The central point is that the choice of
observable and the choice of reference system �i.e., the
choice of S0 which determines J0� determine the struc-
ture of the �static or dynamic� mean-field theory to be
used.

Note that above we coupled a source linearly to the
system of interest for the purpose of carrying out a
Legendre transformation. It should also be noted that
one is free to add terms which contain powers higher
than 1 in the source in order to modify the stability con-
ditions of the functional without changing the properties
of the saddle points. This freedom has been used to ob-
tain functionals with better stability properties �Chitra
and Kotliar, 2001�.

We now illustrate these abstract considerations with a
concrete example. We consider the full many-body
Hamiltonian describing electrons moving in the periodic
ionic potential Vext�r� and interacting among themselves
according to the Coulomb law vC�r−r�� =e2 / �r−r��. This
is the formal starting point of our all-electron first-
principles calculation. So, the “theory of everything” is
summarized in the Hamiltonian

H = 	



� dr�

+�r��− �2 + Vext�r� − ���
�r�

+
1
2 	


�

� drdr��

+�r��
�

+ �r��vC�r − r���
��r���
�r� .

�8�

Atomic Rydberg units, �=1, me=1/2, are used through-
out. Using the functional integral formulation in the
imaginary time-frequency domain it is translated into
the Euclidean action S,

S = � dx�+�x��
��x� + � d
H�
� , �9�

where x= �r

�. We ignore relativistic effects in this ac-
tion for simplicity. In addition, the position of the atoms

is taken to be fixed and we ignore the electron-phonon
interaction. We refer the reader to several papers ad-
dressing that issue �Freericks et al., 1993; Millis et al.,
1996a�.

The effective action functional approach �Chitra and
Kotliar, 2001� allows one to obtain the free energy F of a
solid from a functional � evaluated at its stationary
point. The main problem to solve is the choice of the
functional variable which is to be extremized. This is
highly nontrivial because the exact form of the func-
tional is unknown and the usefulness of the approach
depends on our ability to construct good approximations
to it, which in turn depends on the choice of variables.
At least two choices are very well known in the litera-
ture: the exact Green’s function as a variable which gives
rise to Baym-Kadanoff �BK� theory �Baym and
Kadanoff, 1961; Baym, 1962� and the density as a vari-
able which gives rise to the density-functional theory.
We review both approaches using an effective action
point of view in order to highlight similarities and differ-
ences with the spectral density-functional methods pre-
sented on equal footing in Sec. II.

1. Density-functional theory

Density-functional theory �Hohenberg and Kohn,
1964; Kohn and Sham, 1965; Lundqvist and March, 1983;
Jones and Gunnarsson, 1989� in the Kohn-Sham formu-
lation is the basic tool for weakly interacting electronic
systems and is widely used by the electronic structure
community. We will review it using the effective action
approach, which was introduced in this context by
Fukuda �Fukuda et al., 1994; Valiev and Fernando, 1997;
Argaman and Makov, 2000�.

• Choice of variables. The density of electrons ��r� is
the central quantity of DFT and it is used as a physi-
cal variable in derivation of DFT functional.

• Construction of exact functional. To construct the
DFT functional we probe the system with a time-
dependent source field J�x�. This modifies the action
of the system �9� as follows:

S��J� = S + � dxJ�x��+�x���x� . �10�

The partition function Z becomes a functional of the
auxiliary source field J,

Z�J� = exp�− F�J�� = � D��†��e−S��J�. �11�

The effective action for the density, i.e., the density
functional, is obtained as the Legendre transform of
F with respect to ��x�,

�DFT��� = F�J� − Tr�J�� , �12�

where trace Tr stands for
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Tr�J�� = � dxJ�x���x� = T	
i�

� drJ�r,i����r,i�� .

�13�

From this point forward, we restrict the source to be
time independent because we will only be construct-
ing the standard DFT. If the time dependence were
retained, one could formulate time-dependent
density-functional theory. The density appears as the
variational derivative of the free energy with respect
to the source

��x� =
�F

�J�x�
. �14�

• The constraining field in DFT. We demonstrate be-
low that, in the context of DFT, the constraining field
is the sum of the well-known exchange-correlation
potential and the Hartree potential Vxc+VH, and we
refer to this quantity as Vint. This is the potential
which must be added to the noninteracting Hamil-
tonian in order to yield the exact density of the full
Hamiltonian. Mathematically, Vint is a functional of
the density which solves the equation

��r� = T	
i�

�r��i� + � + �2 − Vext�r� − Vint�r��−1�r�ei�0+
.

�15�

The Kohn-Sham equation gives rise to a reference
system of noninteracting particles, the so-called
Kohn-Sham orbitals �kj which produce the interact-
ing density

�− �2 + VKS�r���kj�r� = �kj�kj�r� , �16�

��r� = 	
kj

fkj�kj
* �r��kj�r� . �17�

Here the Kohn-Sham potential is VKS=Vext
+Vint , �kj , �kj�r� are the Kohn-Sham energy bands
and wave functions, k is a wave vector which runs
over the first Brillouin zone, j is the band index,
and fkj=1/ �exp��kj−�� /T+1� is the Fermi function.

• Kohn-Sham Green’s function. Alternatively, the elec-
tron density can be obtained with the help of the
Kohn-Sham Green’s function, given by

GKS
−1 �r,r�,i�� = G0

−1�r,r�,i�� − Vint�r���r − r�� , �18�

where G0 is the noninteracting Green’s function,

G0
−1�r,r�,i�� = ��r − r���i� + � + �2 − Vext�r�� , �19�

and the density can then be computed from

��r� = T	
i�

GKS�r,r,i��ei�0+. �20�

The Kohn-Sham Green’s function is defined in the
entire space, where Vint�r� is adjusted such that the

density of the system ��r� can be found from
GKS�r ,r� , i��. It can also be expressed in terms of
the Kohn-Sham particles in the following way:

GKS�r,r�,i�� = 	
kj

�kj�r��kj
* �r��

i� + � − �kj
. �21�

• Kohn-Sham decomposition. Now we come to the
problem of writing exact and approximate expres-
sions for the functional. The strategy consists in per-
forming an expansion of the functional in powers of
electron charge �Plefka, 1982; Fukuda, 1988; Georges
and Yedidia, 1991a; Fukuda et al., 1994; Valiev and
Fernando, 1997; Chitra and Kotliar, 2001; Georges,
2002�. The Kohn-Sham decomposition consists of
splitting the functional into the zeroth-order term
and the remainder,

�DFT��� = �DFT��,e2 = 0� + ��DFT��� . �22�

This is equivalent to what Kohn and Sham did in
their original work. In the first term, e2=0 only for
electron-electron interactions, and not for the inter-
action of the electron and the external potential. The
first term consists of the kinetic energy of the Kohn-
Sham particles and the external potential. The con-
straining field J0 �see Eq. �4�� is Vint since it gener-
ates the term that needs to be added to the
noninteracting action in order to get the exact den-
sity. Furthermore, functional integration of Eq.
�11� gives F�Vint� =−Tr ln�G0

−1−Vint� �Negele and
Orland, 1998� and from Eq. �12� it follows that

�DFT��,e2 = 0� 
 KDFT�GKS�

= − Tr ln�G0
−1 − Vint�GKS��

− Tr�Vint�GKS�GKS� . �23�

The remaining part ��DFT��� is the interaction en-
ergy functional which is decomposed into the Har-
tree and exchange-correlation energies,

��DFT��� = EH��� + 	DFT
xc ��� . �24�

	DFT
xc ��� at zero temperature becomes the standard

exchange correlation energy in DFT, Exc���.

• Kohn-Sham equations as saddle-point equations. The
density functional �DFT��� can be regarded as a func-
tional which is stationary in two variables Vint and �.
Extremization with respect to Vint leads to Eq. �18�,
while stationarity with respect to � gives Vint
=��� /��, or equivalently

VKS����r� = Vext�r� + Vint����r�

= Vext�r� + VH����r� + Vxc����r� , �25�

where Vxc�r� is the exchange-correlation potential
given by
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Vxc�r� 

�	DFT

xc

���r�
. �26�

Equations �25� and �26� along with Eqs. �18� and �20�
or, equivalently, Eqs. �16� and �17�, form the system
of equations of the density-functional theory. It
should be noted that the Kohn-Sham equations give
the true minimum of �DFT���, and not only the
saddle point, in contrast to spectral functional
theories such as the BK method �Chitra and Kot-
liar, 2001�.

• Exact representation for 	DFT
xc . The explicit form of

the interaction functional 	DFT
xc ��� is not available.

However, it may be defined by a power series expan-
sion which can be constructed order by order using
the inversion method. The latter can be given, albeit
complicated, a diagrammatic interpretation. Alterna-
tively, an expression involving integration by a cou-
pling constant �e2 can be obtained using the Harris-
Jones formula �Harris and Jones, 1974; Gunnarsson
and Lundqvist, 1976; Langreth and Perdew, 1977;
Georges, 2002�. One considers �DFT�� ,�� at an arbi-
trary interaction � and expresses it as

�DFT��,e2� = �DFT��,0� + �
0

1

d�
��DFT��,�e2�

��
. �27�

Here the first term is simply KDFT�GKS� as given by
Eq. �23� which does not depend on �. The second
part is the unknown functional 	DFT

xc ���. The de-
rivative with respect to the coupling constant in
Eq. �27� is given by the average

��+�x��+�x����x����x�� = ���x,x�,i�� + ��+�x���x��

���+�x����x��� ,

where ���x ,x�� is the density-density correlation
function at a given interaction strength � computed
in the presence of a source which is � dependent and
chosen so that the density of the system is �. Since
��+�x���x�� =��x�, one obtains

	DFT��� = EH��� + 	
i�

� d3rd3r��
0

1

d�
���r,r�,i��

�r − r��
.

�28�

This expression has been used to construct more ac-
curate exchange correlation functionals �Dobson et
al., 1997�.

• Approximations. Since 	DFT
xc ��� is not known explic-

itly some approximations are needed. The LDA
assumes

	DFT
xc ��� = � ��r��xc���r��dr , �29�

where �xc���r�� is the exchange-correlation energy
of the uniform electron gas, which is easily param-
etrized. Veff is given as an explicit function of the
local density. In practice one frequently uses ana-

lytical formulas �von Barth and Hedin, 1972; Gun-
narsson et al., 1976; Moruzzi et al., 1978; Vosko et
al., 1980; Perdew and Yue, 1992�. The idea here is
to fit a functional form to quantum Monte Carlo
�QMC� calculations �Ceperley and Alder, 1980�.
Gradient corrections to the LDA have been
worked out by Perdew and co-workers �Perdew et
al., 1996�. They are also frequently used in DFT
calculations.

• Evaluation of the total energy. At the saddle point,
the density functional �DFT delivers the total free
energy of the system,

F = Tr ln GKS − Tr�Vint�� + EH��� + 	DFT
xc ��� , �30�

where the trace in the second term runs only over
spatial coordinates and not over imaginary time. If
temperature goes to zero, the entropy contribution
vanishes and the total energy formula is recovered

E = − Tr��2GKS� + Tr�Vext�� + EH��� + EDFT
xc ��� . �31�

• Assessment of the approach. From a conceptual point
of view, the density-functional approach is radically
different from the Green’s-function theory �see Sec.
I.B.2 below�. The Kohn-Sham equations �16� and
�17� describe the Kohn-Sham quasiparticles which
are poles of GKS and are not rigorously identifiable
with one-electron excitations. This is very different
from the Dyson equation �see below Eq. �41��
which determines the Green’s function G, which
has poles at the observable one-electron excita-
tions. In principle the Kohn-Sham orbitals are a
technical tool for generating the total energy. They
are, however, not a necessary element of the ap-
proach as DFT can be formulated without intro-
ducing the Kohn-Sham orbitals. In practice, they
are an excellent first step in perturbative calcula-
tions of the one-electron Green’s function in pow-
ers of screened Coulomb interaction, as, e.g., the
GW method. Both the LDA and GW methods are
very successful in many materials in which one can
apply the standard model of solids. However, in
correlated electron systems this is not always the
case. Our view is that this situation cannot be rem-
edied by either using more complicated exchange-
correlation functionals in density-functional theory
or adding a finite number of diagrams in perturba-
tion theory. As discussed above, the spectra of
strongly correlated electron systems have both cor-
related quasiparticle bands and Hubbard bands
which have no analog in one-electron theory.

The density-functional theory can also be formulated
for model Hamiltonians, the concept of density being
replaced by the diagonal part of the density matrix in
a site representation. It was tested in the context of
the Hubbard model by Schonhammer et al. �1995�,
Hess and Serene �1999�, and Lima et al. �2002�.
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2. Baym-Kadanoff functional

The use of functionals in many-body physics has a
long tradition going back to the work of Luttinger and
Ward �Luttinger and Ward, 1960; Luttinger, 1961� and
the work of Baym and Kadanoff shortly thereafter
�Baym and Kadanoff, 1961; Baym, 1962; see also the
work of Klein and Prange, 1958; Klein, 1961�. While
both the names Luttinger-Ward and Baym-Kadanoff are
often used to describe the same functionals in the litera-
ture, we use the name Baym-Kadanoff in this review.
The Baym-Kadanoff functional �Baym and Kadanoff,
1961; Baym, 1962� gives the one-particle Green’s func-
tion and the total free energy at its stationary point. It
has been derived in deDominicis and Martin �1964a,
1964b� and Cornwall et al. �1974� �see also Chitra and
Kotliar �2000a, 2001� and George �2004b�� using the ef-
fective action formalism.

• Choice of variable. The one-electron Green’s func-
tion G�x ,x�� =−�T
��x��+�x���, whose poles deter-
mine the exact spectrum of one-electron excitations,
is the main interest in this method and it is chosen to
be the functional variable.

• Construction of exact functional. As has been empha-
sized �Chitra and Kotliar, 2001�, the Baym-Kadanoff
functional can be obtained by the Legendre trans-
form of the action. The electronic Green’s function
of a system can be obtained by probing the system by
a source field and monitoring the response. To obtain
�BK�G� we probe the system with a time-dependent
two-variable source field J�x ,x��. Introduction of the
source J�x ,x�� modifies the action of the system �9� in
the following way:

S��J� = S + � dxdx�J�x,x���+�x���x�� . �32�

The average of the operator �+�x���x�� probes the
Green’s function. The partition function Z, or
equivalently the free energy of the system F, be-
comes a functional of the auxiliary source field,

Z�J� = exp�− F�J�� = � D��+��e−S��J�. �33�

The effective action for the Green’s function, i.e., the
Baym-Kadanoff functional, is obtained as the Le-
gendre transform of F with respect to G�x ,x��,

�BK�G� = F�J� − Tr�JG� , �34�

where we use the compact notation Tr�JG� for the
integrals

Tr�JG� = � dxdx�J�x,x��G�x�,x� . �35�

Using the condition

G�x,x�� =
�F

�J�x�,x�
, �36�

to eliminate J in Eq. �34� in favor of the Green’s
function, we finally obtain the functional of the
Green’s function alone.

• Constraining field in the Baym-Kadanoff theory. In
the context of the Baym-Kadanoff approach, the
constraining field is the familiar electron self-energy
�int�r ,r� , i��. This is the function which needs to be
added to the inverse of the noninteracting Green’s
function to produce the inverse of the exact Green’s
function, i.e.,

G−1�r,r�,i�� = G0
−1�r,r�,i�� − �int�r,r�,i�� . �37�

Here G0 is the noninteracting Green’s function given
by Eq. �19�. Also, if the Hartree potential is written
explicitly, the self-energy can be split into the Har-
tree VH�r� = �vC�r−r����r��dr� and the exchange-
correlation parts �xc�r ,r� , i��. Ultimately, having
fixed G0 the self-energy becomes a functional of G,
i.e., �int�G�.

• Kohn-Sham decomposition. We now come to the
problem of writing various contributions to the
Baym-Kadanoff functional. This development paral-
lels exactly what was done in the DFT case. The
strategy consists of performing an expansion of the
functional �BK�G� in powers of the charge of elec-
tron entering the Coulomb interaction term at fixed
G �Plefka, 1982; Georges and Yedidia, 1991a;
Fukuda et al., 1994; Valiev and Fernando, 1997; Chi-
tra and Kotliar, 2001; Georges, 2002, 2004a, 2004b�.
The zeroth-order term is denoted K, and the sum of
the remaining terms 	, i.e.,

�BK�G� = KBK�G� + 	BK�G� . �38�

K is the kinetic part of the action plus the energy
associated with the external potential Vext. In the
Baym-Kadanoff theory this term has the form

KBK�G� = �BK�G,e2 = 0�

= − Tr ln�G0
−1 − �int�G�� − Tr��int�G�G� . �39�

• Saddle-point equations. The functional �38� can be
regarded as a functional stationary in two variables,
G and constraining field J0, which is �int in this case.
Extremizing with respect to �int leads to Eq. �37�,
while extremizing with respect to G gives the defini-
tion of the interaction part of the electron self-
energy,

�int�r,r�,i�� =
�	BK�G�
�G�r�,r,i��

. �40�

Using the definition for G0 in Eq. �19�, the Dyson
equation �37� can be written in the following way:
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��2 − Vext�r� + i� + ��G�r,r�,i��

− � dr��int�r,r�,i��G�r�,r�,i�� = ��r − r�� . �41�

Equations �40� and �41� constitute a system of equa-
tions for G in Baym-Kadanoff theory.

• Exact representation for 	. Unfortunately, the inter-
action energy functional 	BK�G� is unknown. One
can prove that it can be represented as a sum of all
two-particle irreducible diagrams constructed from
the Green’s function G and the bare Coulomb inter-
action. In practice, we can separate the Hartree dia-
gram from the so-called exchange-correlation contri-
bution,

	BK�G� = EH��� + 	BK
xc �G� . �42�

• Evaluation of the total energy. At the stationarity
point, �BK�G� delivers the free energy F of the sys-
tem,

F = Tr ln G − Tr��intG� + EH��� + 	BK
xc �G� , �43�

where the first two terms are interpreted as the ki-
netic energy and the energy related to the external
potential, while the last two terms correspond to the
interaction part of the free energy. If temperature
goes to zero, the entropy part vanishes and the total-
energy formula is recovered,

Etot = − Tr��2G� + Tr�VextG� + EH��� + EBK
xc �G� , �44�

where EBK
xc =1/2 Tr��xcG� �Fetter and Walecka,

1971� �see also the website in Appendix B�.

• Functional of the constraining field: self-energy func-
tional approach. Expressing the functional in Eq. �38�
in terms of the constraining field �in this case �
rather than the observable G� recovers the self-
energy functional approach proposed by Potthoff
�2003a, 2003b, 2005�,

���� = − Tr ln�G0
−1 − �� + Y��� . �45�

Y��� is the Legendre transform with respect to G of
the Baym-Kadanoff functional 	BK�G�. A transpar-
ent derivation of this approach involves construct-
ing the functional � of G and � �see Eqs. �C16� and
�6��. Elimating, by stationarity, G leads to ���� while
eliminating � leads to ��G�. While explicit represen-
tations of the Baym-Kadanoff functional 	 are avail-
able, for example, as a sum of skeleton graphs, no
equivalent expressions have yet been obtained for
Y���.

• Assessment of approach. The main advantage of the
Baym-Kadanoff approach is that it delivers the full
spectrum of one-electron excitations in addition to
ground-state properties. Unfortunately, the summa-
tion of all diagrams cannot be performed explicitly
and one has to resort to partial sets of diagrams, such
as the famous GW approximation �Hedin, 1965�

which has only been useful in weak-coupling situa-
tions. Resummation of diagrams to infinite order
guided by the concept of locality, which is the basis
of the dynamical mean-field approximation, can be
formulated as truncations of the Baym-Kadanoff
functional as shown in the following sections.

3. Formulation in terms of the screened Coulomb interaction

It is sometimes useful to think of the Coulomb inter-
action as a screened interaction mediated by a Bose
field. This allows one to define different types of ap-
proximations. In this context, using the locality approxi-
mation for irreducible quantities gives rise to the so-
called extended DMFT, as opposed to the usual DMFT.
Alternatively, the lowest-order Hartree-Fock approxi-
mation in this formulation leads to the famous GW ap-
proximation.

An independent variable of the functional is the dy-
namically screened Coulomb interaction W�r ,r� , i��
�Almbladh et al., 1999; see also Chitra and Kotliar, 2001�.
In Baym-Kadanoff theory, this is done by introducing an
auxiliary Bose variable coupled to the density, which
transforms the original problem into electrons interact-
ing with the Bose field. The screened interaction W is
the connected correlation function of the Bose field.

By applying the Hubbard-Stratonovich transforma-
tion to the action in Eq. �9� to decouple the quartic Cou-
lomb interaction, one arrives at the following action:

S = � dx�+�x���
 − � − �2 + Vext�x� + VH�x����x�

+
1
2 � dxdx���x�vC

−1�x − x����x��

− ig � dx��x���+�x���x� − ��+�x���x��S� , �46�

where ��x� is a Hubbard-Stratonovich field, VH�x� is the
Hartree potential, g is a coupling constant to be set
equal to one at the end of the calculation, and the brack-
ets denote the average with the action S. In Eq. �46�, we
omitted the Hartree-Coulomb energy which appears as
an additive constant, but will be restored in the full free-
energy functional. The Bose field in this formulation has
no expectation value �since it couples to the “normal
order” term�.

• Baym-Kadanoff functional of G and W. Now we
have a system of interacting fermionic and bosonic
fields. By introducing two source fields J and K we
probe the electron Green’s function G and the boson
Green’s function W= �T
��x���x��� identified with
the screened Coulomb interaction. The functional is
thus constructed by supplementing the action Eq.
�46� with the following term:
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S��J,K� = S + � dxdx�J�x,x���†�x���x��

+ � dxdx�K�x,x����x���x�� . �47�

The normal ordering of the interaction ensures that
���x�� =0. The constraining fields, which appear as
the zeroth-order terms in expanding J and K �see Eq.
�4��, are denoted by �int and �, respectively. The
zeroth-order free energy is then

F0��int,�� = − Tr�G0
−1 − �int� +

1
2

Tr�vC
−1 − �� , �48�

therefore the Baym-Kadanoff functional becomes

�BK�G,W� = − Tr ln�G0
−1 − �int� − Tr��intG�

+
1
2

Tr ln�vC
−1 − �� +

1
2

Tr�� W�

+ 	BK�G,W� . �49�

Again, 	BK�G ,W� can be split into the Hartree
contribution and the rest,

	BK�G,W� = EH��� + �BK�G,W� . �50�

The entire theory is viewed as the functional of both
G and W. One of the strengths of such formulation is
that there is a very simple diagrammatic interpreta-
tion for �BK�G ,W�. It is given as the sum of all two-
particle irreducible diagrams constructed from G and
W �Cornwall et al., 1974� with the exclusion of the
Hartree term. The latter EH���, is evaluated with the
bare Coulomb interaction.

• Saddle-point equations. Stationarity with respect to
G and �int gives rise to Eqs. �40� and �37�, respec-
tively. An additional stationarity condition
��BK/�W=0 leads to equation for the screened Cou-
lomb interaction W,

W−1�r,r�,i�� = vC
−1�r − r�� − ��r,r�,i�� , �51�

where the function

��r,r�,i�� = − 2��BK/�W�r�,r,i��

is the susceptibility of the interacting system.

4. Approximations

The functional formulation in terms of a “screened”
interaction W allows one to formulate numerous ap-
proximations to the many-body problem. The simplest
approximation consists of keeping the lowest-order
Hartree-Fock graph in the functional �BK�G ,W�. This is
the celebrated GW approximation �Hedin, 1965; Hedin
and Lundquist, 1969� �see Fig. 4�. To treat strong corre-
lations one introduces dynamical mean-field ideas,
which amount to a restriction of the functionals
	BK,�BK to the local part of the Green’s function �see
Sec. II�. It is also natural to restrict the correlation func-

tion of the Bose field W, which corresponds to including
information on the four-point function of the fermion
field in the self-consistency condition, and is referred to
as the extended dynamical mean-field theory �EDMFT�
�Bray and Moore, 1980; Sachdev and Ye, 1993; Sengupta
and Georges, 1995; Kajueter, 1996; Kajueter and Kotliar,
1996a; Si and Smith, 1996; Smith and Si, 2000; Chitra
and Kotliar, 2001�.

This methodology has been useful in incorporating ef-
fects of the long-range Coulomb interactions �Chitra and
Kotliar, 2000b� as well as in the study of heavy-fermion
quantum critical points �Si et al., 1999, 2001� and quan-
tum spin glasses �Bray and Moore, 1980; Sachdev and
Ye, 1993; Sengupta and Georges, 1995�.

More explicitly, in order to zero the off-diagonal
Green’s functions �see Eq. �54�� we introduce a set of
localized orbitals 	R��r� and express G and W through
an expansion in those orbitals,

G�r,r�,i�� = 	
RR���

GR�,R���i��	R�
* �r�	R���r�� , �52�

W�r,r�,i�� = 	
R1�,R2�,R3�,R4�

WR1�,R2�,R3�,R4�
�i��

�	R1�
* �r�	R2�

* �r��	R3�
�r��	R4�

�r� . �53�

The approximate EDMFT functional is obtained by
restriction of the correlation part of the Baym-Kadanoff
functional �BK to the diagonal parts of the G and W
matrices:

�EDMFT = �BK�GRR,WRRRR� . �54�

The EDMFT graphs are shown in Fig. 4.
It is straightforward to combine the GW and EDMFT

approximations by keeping the nonlocal part of the ex-
change graphs as well as the local parts of the correla-
tion graphs �see Fig. 4�.

FIG. 4. The Baym-Kadanoff functional 	 for various approxi-
mations of the electron-boson action Eq. �46�. In all cases, the
bare Hartree diagrams have been omitted. The first line shows
the famous GW approximation where only the lowest-order
Hartree and Fock skeleton diagrams are kept. The second line
corresponds to extended-dynamical mean-field theory that
sums up all local graphs. Three dots represent all the remain-
ing skeleton graphs which include local G and local W only.
The combination of GW and EDMFT is straightforward. All
lowest-order Fock graphs are included �local and nonlocal�.
The higher-order graphs are restricted to one site only.
Adapted from Sun and Kotliar, 2002, 2004b.
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The GW approximation derived from the Baym-
Kadanoff functional is a fully self-consistent approxima-
tion which involves all electrons. In practice sometimes
two approximations are used: �a� in pseudopotential
treatments only the self-energy of the valence and con-
duction electrons are considered and �b� instead of
evaluating � and � self-consistently with G and W, one
does a “one-shot” or one iteration approximation where
� and � are evaluated with G0, the bare Green’s func-
tion which is sometimes taken as the LDA Kohn-Sham
Green’s function, i.e., ����G0 ,W0� and �=��G0�. The
validity of these approximations and importance of the
self-consistency for the spectra evaluation was explored
in Hybertsen and Louie �1985�; Holm and von Barth
�1998�; Holm �1999�; Arnaud and Alouani �2000�; Wei
Ku �2002�; Tiago et al. �2003�. The same issues arise in
the context of GW+EDMFT �Sun and Kotliar, 2004b�.

At this point, the GW+EDMFT has been fully imple-
mented on the one-band model Hamiltonian level �Sun
and Kotliar, 2002, 2004b�. A combination of GW and
LDA+DMFT was applied to nickel, where W in the
EDMFT graphs is approximated by the Hubbard U, in
Biermann et al. �2003, 2004� and Aryasetiawan, Bier-
mann, et al. �2004�.

5. Local basis set

In this section we connect the real space basis used in
the previous sections with a local basis set. We perform a
transformation to a more general basis set of possibly
nonorthogonal orbitals ���r� which can be used to rep-
resent all the relevant quantities in our calculation. Since
we wish to utilize sophisticated basis sets of modern
electronic structure calculations, we sometimes waive
the orthogonality condition and introduce the overlap
matrix

O��� = �������� . �55�

The field operator ��x� becomes

��x� = 	
�

c��
����r� , �56�

where the coefficients c� are new operators acting in the
orbital space 
���. The Green’s function is represented as

G�r,r�,
� = 	
���

���r�G����
����
* �r�� , �57�

and the free-energy functional �BK as well as the inter-
action energy 	 are now considered as functionals of the
coefficients G��� on either the imaginary time axis
G����
� or imaginary frequency axis G����i��, which can
be analytically continued to real times and energies.

In most cases we interpret the orbital space 
��� as a
general tight-binding basis set where the index � com-
bines the angular momentum index lm, and the unit cell
index R, i.e., ���r� =�lm�r−R� =���r−R�. Note that we
can add additional degrees of freedom to the index �
such as multiple kappa basis sets of the linear muffin-tin
orbital based methods �Andersen, 1975; Andersen and

Jepsen, 1984; Methfessel, 1988; Weyrich, 1988; Blöechl,
1989; Savrasov, 1992, 1996�. If more than one atom per
unit cell is considered, the index � should be supple-
mented by the atomic basis position within the unit cell,
which is currently omitted for simplicity. For spin unre-
stricted calculations � accumulates the spin index 
 and
the orbital space is extended to account for the eigen-
vectors of the Pauli matrix.

It is useful to write down the Hamiltonian containing
the infinite space of the orbitals,

Ĥ = 	
���

h���
�0� �c�

+c�� + H.c.� +
1
2 	
�������

V�������c�
+c��

+ c��c��,

�58�

where h
���
�0� = ���� −�2+Vext����� is the noninteracting

Hamiltonian and the interaction matrix element is
V�������= ����r�����r���vC�����r������r��. Using the tight-
binding interpretation this Hamiltonian becomes

Ĥ = 	
��

	
RR�

h�R�R�
�0� �c�R

+ c�R� + H.c.�

+
1
2 	
����

	
RR�R�R�

V����
RR�R�R�c�R

+ c�R�
+ c�R�c�R�, �59�

where the diagonal elements h�R�R
�0� 
 h��

�0� can be inter-
preted as the generalized atomic levels matrix ���

�0� �which
does not depend on R due to periodicity� and the off-
diagonal elements h

�R�R�
�0� �1−�RR�� as the generalized

hopping integrals matrix t
�R�R�
�0� .

6. Model Hamiltonians

Strongly correlated electron systems have been tradi-
tionally described using model Hamiltonians. These are
simplified Hamiltonians which have the form of Eq. �59�
but with a reduced number of band indices and assum-
ing a short-ranged Coulomb interaction. This approach
is used to describe a reduced number of degrees of free-
dom which are active in a restricted energy range to
reduce the complexity of a problem. This allows for a
more transparent and accurate treatment of the low-
energy physics. Famous examples are the Hubbard
model �one band and multiband� �Anderson, 1959;
Gutzwiller, 1963; Hubbard, 1963; Kanamori, 1963�.

The form of model Hamiltonians was originally pos-
tulated on physical grounds and its parameters chosen to
fit a set of experiments. More explicit construction can
be carried out using tools such as screening canonical
transformations used by Bohm and Pines to eliminate
the long-range Coulomb interaction �Bohm and Pines,
1951, 1952, 1953�, or the Wilsonian partial elimination
�or integrating out� of the high-energy degrees of free-
dom �Wilson, 1975�. The latter approach starts from an
action describing a large number of degrees of freedom
�site and orbital omitted�
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S�c+c� = � dx�c+O�
c + H�c+c�� , �60�

where the orbital overlap O�R�R� appears and the
Hamiltonian could have the form �59�. Second, one di-
vides the set of operators in the path integral in cH de-
scribing the “high-energy” orbitals which should be
eliminated, and cL describing the low-energy orbitals
that should be considered explicitly. The high-energy de-
grees of freedom are now integrated out. This operation
defines the effective action for the low-energy variables
�Wilson, 1983�:

1

Zeff
exp�− Seff�cL

+cL��

=
1

Z
� dcH

+ dcHexp�− S�cH
+ cL

+cLcH�� . �61�

The transformation �61� generates retarded interactions
of arbitrarily high order. If we focus on sufficiently low
energies, the frequency dependence of the coupling con-
stants beyond linear order and nonlinearities beyond
quartic order can be neglected since they tend to be
irrelevant in many fermionic theories �see, for example,
Shankar �1994��. The resulting physical problem can
then be cast in the form of an effective model Hamil-
tonian. Notice, however, that when we consider a broad
energy range the full frequency dependence of the cou-
plings has to be kept �see, for example, Aryasetiawan,
Imada, et al. �2004��. The same ideas can be imple-
mented using canonical transformations and examples
are provided using the method of cell perturbation
theory �Jefferson et al., 1992� and the generalized tight-
binding method �Ovchinnikov and Sandalov, 1989�. No-
tice, however, that any technique which can be used to
solve Hamiltonians approximately, such as weak- or
strong-coupling perturbation theory or even DMFT
�Oudovenko, Haule, et al., 2004�, can be also used to
perform the Wilsonian elimination �61�.

The process of eliminating degrees of freedom with
the approximations described above provides a physi-
cally rigorous way of thinking about effective Hamilto-
nians with effective parameters which are screened by
the degrees of freedom to be eliminated. Since we ne-
glect retardation and terms above fourth order, the ef-
fective Hamiltonian has the same form as Eq. �59� but
with a smaller number of bands and with different pa-
rameter values. Effective or renormalized parameters,
whose values have been modified from their bare values
by the degrees of freedom, have now been eliminated.
This effective Hamiltonian can be used to compute the
correlation functions of the relevant low-energy degrees
of freedom kept. If the dependence on the ionic coordi-
nates is kept, and additive constants are kept in the deri-
vation of the effective Hamiltonian, it can be also be
used to obtain the total energy as a function of the
atomic coordinates of the material. If the interaction
matrix turns out to be short ranged and has a simple
form, this effective Hamiltonian could be identified with

the Hubbard �Anderson, 1959; Gutzwiller, 1963; Hub-
bard, 1963; Kanamori, 1963� or periodic Anderson
�Anderson, 1961� model Hamiltonians.

In practice, the computation of the model Hamil-
tonian parameters has been carried out using other ap-
proaches such as the constrained LDA and the GW
method. A considerable amount of effort has been de-
voted to evaluations of the screened Coulomb param-
eter U for a given material. Note that this value is nec-
essarily connected to the basis set representation which
is used in deriving the model Hamiltonian. It should be
thought of as an effectively downfolded Hamiltonian
taking into account the fact that only interactions at a
given energy interval are included in the system. More
generally, one needs to include the frequency-dependent
interaction W which appears, for example, in the GW
method. The outlined questions have been addressed in
many previous works �Dederichs et al., 1984; McMahan
et al., 1988; Hybertsen et al., 1989; Springer and Aryase-
tiawan, 1998; Kotani, 2000�. One of the most popular
methods is a constrained density-functional approach
formulated with general projection operators �Dederichs
et al., 1984; Meider and Springborg, 1998�. First, one de-
termines the orbitals set which will be used to define
correlated electrons. Second, the on-site density matrix
defined for these orbitals is constrained by introducing
additional constraining fields in the density functional.
Evaluating the second-order derivative of the total en-
ergy with respect to the density matrix should in prin-
ciple give access to U’s. The problem is how one sub-
tracts the kinetic energy part which appears in this
formulation of the problem. Gunnarsson �1990� and oth-
ers �Norman and Freeman, 1986; Freeman et al., 1987;
McMahan, Martin, and Satpathy, 1988� have introduced
a method which effectively cuts the hybridization of ma-
trix elements between correlated and uncorrelated or-
bitals eliminating the kinetic contribution. This ap-
proach was used by McMahan et al. �1988� in evaluating
the Coulomb interaction parameters in high-
temperature superconductors. An alternative method
has been used by Hybertsen et al. �1989� who performed
simultaneous simulations using the LDA and solution of
the model Hamiltonian at the mean-field level. The total
energy under the constraint of fixed occupancies was
evaluated with both approaches. The value of U is ad-
justed to make the two calculations coincide.

Anisimov et al. have evaluated the Coulomb and ex-
change interactions for various systems such as NiO,
MnO, and CaCuO2 �Anisimov et al., 1991�. The values
of U deduced for itinerant systems such as Fe can be as
large as 6 eV �Anisimov and Gunnarsson, 1991�. This
highlights an important problem on deciding which elec-
trons participate in the screening process. As a rule of
thumb, one can argue that if we consider the entire d
shell as a correlated set, and allow screening by s and p
electrons, the values of U appear to be between 5 and 10
eV on average. Alternatively, in many situations crystal-
field splitting between t2g and eg levels creates a subset
of a given crystal-field symmetry �say, t2g�, which is
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screened by another subset �say, by eg�. This usually
leads to much smaller values of U within the range of
1–4 eV. For futher information see Pickett, Erwin, and
Ethridge �1998� and Cococcioni and de Gironcoli �2005�.

It is possible to extract the value of U from GW cal-
culations. The simplest way is to define the parameter
U=W ��=0�. There are also attempts to avoid the
double counting inherent in the procedure �Springer and
Aryasetiawan, 1998; Kotani, 2000; Zein and Antropov,
2002; Aryasetiawan, Imada, et al., 2004; Zein et al.,
2006�. The values of U for Ni deduced in this way ap-
peared to be 2.2–3.3 eV which are quite reasonable. At
the same time a strong energy dependence of the inter-
action has been pointed out which also addresses an im-
portant problem of treating the full frequency-
dependent interaction when information in a broad
energy range is required.

We end this section with a comment on the meaning
of an ab initio or first-principles electronic structure cal-
culation. The term implies that no empirically adjustable
parameters are needed in order to predict physical prop-
erties of compounds, only the structure and the atomic
charges and positions are used. First principles does not
mean exact or accurate or computationally inexpensive.
If the effective Hamiltonian is derived �i.e., if the func-
tional integral or canonical transformation needed to re-
duce the number of degrees of freedom is a well-defined
procedure which keeps the energy of the integrated out
degrees of freedom as a function of the ionic coordi-
nates� and the resulting Hamiltonian is solved systemati-
cally, then we have a first-principles method based on
the derivation and solution of model Hamiltonians. In
practice, the derivation of the effective Hamiltonian or
its solution may be inaccurate or impractical, and in this
case the ab initio method is not very useful. Note that
the Hamiltonian �59� has the form of a “model Hamil-
tonian” but in fact it is the full many-body Hamiltonian
written in a tight-binding basis. Very often a dichotomy
between model Hamiltonians and first-principles calcu-
lations is made. What makes a calculation using model
Hamiltonians semiempirical is the lack of a coherent
derivation of the form of the model Hamiltonian and
corresponding parameters.

II. SPECTRAL DENSITY-FUNCTIONAL APPROACH

We see that a variety of many-body techniques devel-
oped to attack real materials can be viewed from a uni-
fied perspective. The energetics and excitation spectrum
of the solid is deduced within different degrees of ap-
proximation from the stationary condition of a func-
tional of an observable. The different approaches differ
in the choice of variable for the functional which is to be
extremized. Therefore the choice of variable is the main
issue since the exact form of the functional is unknown
and existing approximations rely entirely on the given
variable.

In this review we present arguments that a “good vari-
able” in the functional description of a strongly corre-
lated material is a “local” Green’s function Gloc�r ,r� ,z�.

This is only a part of the exact electronic Green’s func-
tion, but can be computed with some degree of accuracy.
Thus we formulate a functional theory where the local
spectral density is the main quantity computed, i.e., we
develop a spectral density-functional theory �SDFT�.
Note that the notion of locality by itself is arbitrary since
we can probe the Green’s function in a certain space
such as reciprocal space or real space. These are the
most transparent forms where the local Green’s function
can be defined. We can also probe the Green’s function
in the Hilbert space like Eq. �57� when the Green’s func-
tion is expanded in some basis set 
���. Here our interest
can be associated, e.g., with diagonal elements of the
matrix G���.

As we see, locality is a basis set dependent property.
Nevertheless, it is a useful property because it may lead
to an economical description of the function. The appro-
priate Hilbert space is therefore crucial if we find an
optimal description of the system with the accuracy pro-
portional to the computational cost. Therefore we rely
on physical intuition when choosing a particular repre-
sentation tailored to a specific physical problem. There
has been significant progress in the systematic construc-
tion of localized basis sets from Kohn-Sham orbitals
�Marzari and Vanderbilt, 1997�, but the criteria for sys-
tematically choosing local orbitals for realistic DMFT
calculations is open and only beginning to be explored.
For example, Anisimov et al. �2005� apply the U on
maximally localized Wannier functions. For an alterna-
tive criteria to choose orbitals for DMFT calculations
see Paul and Kotliar �2005�.

A. Functional of local Green’s function

We start from the Hamiltonian of the form �59�. One
can view it as the full Hamiltonian written in some com-
plete tight-binding basis set. Alternatively one can re-
gard the starting point �59� as a model Hamiltonian, de-
scribing the physics in a restricted energy range, as
explained in the previous section.

• Choice of variable and construction of the exact func-
tional. The effective action construction of SDFT
parallels that given in the Introduction. The quantity
of interest is the local �on-site� part of the one-
particle Green’s function. It is generated by adding a
local source Jloc,���
 ,
�� to the action

S� = S + 	
R��

� Jloc,R���
,
��cR�
+ �
�cR��
��d
d
�. �62�

The partition function Z, or equivalently the free en-
ergy of the system F, according to Eq. �33� becomes a
functional of the auxiliary source field and the local
Green’s function is given by the variational deriva-
tive
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�F

�Jloc,R���
�,
�
= − �T
cR��
�cR�

+ �
��� = Gloc,���
,
�� .

�63�

From Eq. �63� one expresses Jloc as a functional of
Gloc to obtain the effective action with the stan-
dard procedure

�SDFT�Gloc� = F�Jloc� − Tr�JlocGloc� . �64�

The extremum of this functional gives rise to the ex-
act local spectral function Gloc and the total free
energy F.

Below, we introduce the Kohn-Sham representation
of the spectral density functional �SDFT similar to
what was done in Baym-Kadanoff and density-
functional theories. A dynamical mean-field approxi-
mation to the functional will be introduced in order
to deal with its interaction counterpart. The theory
can be developed along two alternative paths de-
pending on whether we stress that it is a truncation
of the exact functional when expanding �SDFT in
powers of the hopping �atomic expansion� or in pow-
ers of the interaction �expansion around the band
limit�. The latter case is the usual situation encoun-
tered in DFT and Baym-Kadanoff theory, while the
former has only been applied to SDFT thus far.

1. A noninteracting reference system: Bands
in a frequency-dependent potential

• Constraining field in the context of SDFT. In the con-
text of SDFT, the constraining field is defined as
Mint,���i��. This is the function that needs to be
added to the free Hamiltonian in order to obtain the
desired spectral function:

Gloc,���i�� = 	
k


�i� + ��Î − ĥ�0��k�

− Mint�Gloc��i�����
−1 , �65�

where Î is a unit matrix and ĥ�0��k� is the Fourier
transform �with respect to R−R�� of the bare one-
electron Hamiltonian h

�R�R�
�0� entering Eq. �59�. The

assumption that Eq. �65� can be solved to define
Mint,���i�� as a function of Gloc,���i�� is the SDFT
version of the Kohn-Sham representability condition
of DFT. For DFT this has been proven to exist under
certain conditions �for discussion of this problem, see
Gross et al. �1996��. The SDFT condition has not yet
been investigated in detail, but it seems to be a plau-
sible assumption.

• Significance of the constraining field in SDFT. If the
exact self-energy of the problem is momentum inde-
pendent, then Mint,���i�� coincides with the inter-
action part of the self-energy. This statement re-
sembles the observation in DFT: If the self-energy
of a system is momentum and frequency indepen-
dent then the self-energy coincides with the Kohn-
Sham potential.

• Analog of the Kohn-Sham Green’s function. Having
defined Mint,���i��, we can introduce an auxiliary
Green’s function G�R�R��i�� connected to our new
“interacting Kohn-Sham” particles. It is defined in
the entire space by

G�R�R�
−1 �i�� 
 G0,�R�R�

−1 �i�� − �RR�Mint,���i�� , �66�

where G0
−1= �i�+��Î− ĥ�0��k� �in Fourier space�.

Mint,���i�� was defined so that G�R�R��i�� coincides
with the on-site Green’s function on a single site
and the Kohn-Sham Green’s function has the
property

Gloc,���i�� = �RR�G�R�R��i�� . �67�

Note that Mint is a functional of Gloc and therefore G
is also a functional of Gloc. If this relation can be
inverted, the functionals that were previously re-
garded as functionals of Gloc can be also regarded as
functionals of the Kohn-Sham Green’s function G.

• Exact Kohn-Sham decomposition. We separate the
functional �SDFT�Gloc� into the noninteracting con-
tribution �this is the zeroth-order term in an ex-
pansion in the Coulomb interactions� KSDFT�Gloc�
and the remaining interaction contribution
	SDFT�Gloc�:

�SDFT�Gloc� = KSDFT�Gloc� + 	SDFT�Gloc� .

With the help of Mint or equivalently the Kohn-
Sham Green’s function G the noninteracting term
in the spectral density-functional theory can be
represented �compare with Eqs. �23� and �39�� as
follows:

KSDFT�Gloc� = − Tr ln�G0
−1 − �RR�Mint�Gloc��

− Tr��RR�Mint�Gloc�Gloc� . �68�

Since G is a functional of Gloc, one can view the
entire spectral density functional �SDFT as a func-
tional of G:

�SDFT�G� = − Tr ln�G0
−1 − �RR�Mint�G��

− Tr�Mint�G�G� + 	SDFT†Gloc�G�‡ , �69�

where the unknown interaction part of the free en-
ergy 	SDFT�Gloc� is a functional of Gloc and

�Gloc,��

�G�R�R�
= �RR�, �70�

according to Eq. �67�.

• Exact representation of 	SDFT. Spectral density-
functional theory requires the interaction func-
tional 	SDFT�Gloc�. Its explicit form is unavailable.
However, we can express it via an introduction of
an integral over the coupling constant �e2 multi-
plying the two-body interaction term similar to
density-functional theory �Harris and Jones, 1974;
Gunnarsson and Lundqvist, 1976� result. Consider-
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ing �SDFT�Gloc ,�� at any interaction � �which enters
vC�r−r��� we write

�SDFT�Gloc,e
2� = �SDFT�Gloc,0�

+ �
0

1

d�
��SDFT�Gloc,�e2�

��
. �71�

Here the first term is the noninteracting part
KSDFT�Gloc� as given by Eq. �68� which does not
depend on �. The second part is the unknown
functional �see Eq. �7��

	SDFT�Gloc� = �
0

1

d�
��SDFT�Gloc,�e2�

��

=
1
2�0

1

d� 	
RR�R�R�

	
����

V����
RR�R�R�

��c�R
+ c�R�

+ c�R�c�R���. �72�

One can also further separate 	SDFT�Gloc� into
EH�Gloc� +	SDFT

xc �Gloc�, where the Hartree term is a
functional of the density only.

• Exact functional as a function of two variables. The
SDFT can also be viewed as a functional of two in-
dependent variables �Kotliar and Savrasov, 2001�.
This is equivalent to what is known as the Harris-
Foulkes-Methfessel functional within DFT �Harris,
1985; Foulkes, 1988; Methfessel, 1995�,

�SDFT�Gloc,Mint�

= − 	
k

Tr ln��i� + ��Î − ĥ�0��k� − Mint�i���

− Tr�MintGloc� + 	SDFT�Gloc� . �73�

Equation �65� is a saddle point of the functional �73�
defining Mint=Mint�Gloc� and should be back-
substituted to obtain �SDFT�Gloc�.

• Saddle-point equations and their significance. Differ-
entiating the functional �73�, one obtains a functional
equation for Gloc,

Mint�Gloc� =
�	SDFT�Gloc�

�Gloc
. �74�

Combined with the definition of the constraining
field �65� this gives the standard form of the DMFT
equations. Note that thus far these are exact equa-
tions and the constraining field Mint�i�� is by defi-
nition “local,” i.e., momentum independent.

2. An interacting reference system: A dressed atom

We obtain the spectral density functional by adopting
a different reference system, namely, the atom. The
starting point for this approach is the Hamiltonian �59�
split into two parts �Chitra and Kotliar, 2000a; Georges,
2004a, 2004b�: H=H0+H1, where H0= 	RHat�R� with
Hat defined as

Hat�R� = 	
��

h�R�R
�0� �c�R

+ c�R + H.c.�

+
1
2 	
����

V����
RRRRc�R

+ c�R
+ c�Rc�R. �75�

H1 is the interaction term used in the inversion method
evaluated in powers of �H1 �� is a coupling constant set
to unity at the end of the calculation�.

• The constraining field in SDFT. After an unper-
turbed Hamiltonian is chosen the constraining field is
defined as the zeroth-order term of the source in an
expansion in the coupling constant. When the refer-
ence frame is the dressed atom, the constraining field
turns out to be the hybridization function of an
Anderson impurity model �AIM� ��Gloc����
 ,
��
�Anderson, 1961�, which plays a central role in the
dynamical mean-field theory. It is defined as the
�time-dependent� field which must be added to Hat in
order to generate the local Green’s function
Gloc,���
 ,
��,

�Fat

�����
�,
�
= − �T
c��
�c�

+�
���� = Gloc,���
,
�� , �76�

where

Fat��� = − ln � dc+dce−Sat�c
+c�−	�������
,
��c�

+�
�c��
��d
d
�,

�77�

and the atomic action is given by

Sat��� = � d
	
��

c�
+�
�� �

�

− ��c��
� + � d
Hat�
� .

�78�

Equation �77� corresponds to an impurity problem
and Fat��� can be obtained by solving an Anderson
impurity model.

• Kohn-Sham decomposition and its significance. The
Kohn-Sham decomposition separates the effective
action into two parts: the zeroth-order part of the
effective action in the coupling constant �0�Gloc�

�SDFT�Gloc ,�=0� and the rest �“exchange correla-
tion part”�. The functional corresponding to Eq. �73�
is given by

�SDFT�Gloc,� = 0� = Fat†��Gloc�‡ − Tr���Gloc�Gloc�

= Tr ln Gloc − Tr�Gat
−1Gloc�

+ 	at�Gloc� , �79�

with Gat,��
−1 �i�� = �i�+�����−h��

�0�. Fat is the free en-
ergy with �=0 and 	at is the sum of two-particle
irreducible diagrams constructed with the local
vertex V����

RRRR and Gloc.

• Saddle-point equations and their significance. The
saddle-point equations determine the exact spectral
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function �and the exact Weiss field�. They have the
form

− �T
c��
�c�
+�
���� = Gloc,���
,
�� , �80�

����
,
�� =
���

�Gloc,���
�,
�
, �81�

where �� can be expressed using coupling constant
integration as in Eq. �5� �Georges, 2004a, 2004b�.
This set of equations describes an atom or a set of
atoms in the unit cell embedded in the medium. � is
the exact Weiss field �with respect to the expansion
around the atomic limit� defined from the equation
for the local Green’s function Gloc �see Eq. �76��.
The general Weiss source � in this case should be
identified with the hybridization of the Anderson
impurity model. When the system is adequately
represented as a collection of paramagnetic atoms,
the Weiss field is a weak perturbation representing
the environment to which it is weakly coupled.
Since this is an exact construction, it can also de-
scribe the band limit when the hybridization be-
comes large.

3. Construction of approximations: Dynamical
mean-field theory as an approximation

The SDFT should be viewed as an exact theory whose
manifestly local constraining field is an auxiliary mass
operator introduced to reproduce the local part of the
Green’s function of the system, exactly like the Kohn-
Sham potential is an auxiliary operator introduced to
reproduce the density of electrons in DFT. However, to
obtain practical results, we need practical approxima-
tions. The dynamical mean-field theory can be thought
of as an approximation to the exact SDFT functional in
the same spirit as LDA appears as an approximation to
the exact DFT functional.

The diagrammatic rules for the exact SDFT functional
can be developed but they are more complicated than in
Baym-Kadanoff theory as discussed by Chitra and Kot-
liar �2000a�. The single-site DMFT approximation to this
functional consists of taking 	SDFT�Gloc� to be a sum of
all graphs �on a single site R�, constructed with V����

RRRR as
a vertex and Gloc as a propagator, which are two-particle
irreducible, namely, 	DMFT�Gloc� =	at�Gloc�. This to-
gether with Eq. �73� defines the DMFT approximation
to the exact spectral density functional.

It is possible to arrive at this functional by summing
up diagrams �Chitra and Kotliar, 2000a� or using the
coupling constant integration trick �Georges, 2004a,
2004b� �see Eq. �7�� with a coupling-dependent Green’s
function having the DMFT form, namely, with a local
self-energy. This results in

�DMFT�Gloc ii�

= 	
i

Fat���Gloc ii�� − 	
k

Tr ln��i� + ��Î − ĥ�0��k�

− Mint�Gloc ii�� + Tr ln�− Mint�Gloc ii�

+ i� + � − h�0� − ��i��� , �82�

with Mint�Gloc ii� in Eq. �82� the self-energy of the
Anderson impurity model. It is useful to have a formu-
lation of this DMFT functional as a function of three
variables �Kotliar and Savrasov, 2001�, namely, combin-
ing the hybridization with that atomic Green’s function
to form the Weiss function G0

−1=Gat
−1−�, one can obtain

the DMFT equations from the stationary point of a
functional of Gloc , Mint, and the Weiss field G0:

��Gloc,Mint,G0� = Fimp�G0
−1� − Tr ln�Gloc�

− Tr ln�i� + � − h0�k� − Mint�

+ Tr��G0
−1 − Mint − Gloc

−1 �Gloc� . �83�

One can eliminate Gloc and Mint from Eq. �83� using
stationary conditions and recover a functional of the
Weiss field function only. This form of the functional,
applied to the Hubbard model, allowed the analytical
determination of the nature of the transition and the
characterization of the zero-temperature critical points
�Kotliar, 1999a�. Alternatively eliminating G0 and Gloc in
favor of Mint one obtains the DMFT approximation to
the self-energy functional discussed in Sec. I.B.2.

4. Cavity construction

An alternative view to derive DMFT equations is by
means of the cavity construction. This approach gives
complementary insights to the nature of the DMFT and
its extensions. The key idea is that the summation over
all local diagrams can be performed exactly via introduc-
tion of an auxiliary quantum impurity model subjected
to a self-consistency condition �Georges and Kotliar,
1992; Georges et al., 1996�. If the impurity degrees of
freedom is taken to be a cluster of sites C, one regains
cellular DMFT equations. When the impurity is taken to
be a single unit cell in the lattice, or a point in a discrete
lattice, we obtain single-site DMFT equations. In the
cavity construction the effective action S in Eq. �60� is
separated into a part which is treated exactly �this is the
part involving the local degrees of freedom in the vol-
ume Vimp� while the remaining degrees of freedom in the
volume V−Vimp=Vbath will be treated approximately as
a Gaussian bath. The action is now represented as the
action of the degrees of freedom in the cluster cell, Vimp,
plus the action of the degrees of freedom outside the
cluster, Vbath, plus the interaction between those two. We
are interested in the local effective action Simp of the
cluster degrees of freedom only, which is defined by in-
tegrating out the bath in the functional integral,
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1

Zimp
exp�− Simp� =

1

Z
�

Vbath

D�c†c�exp�− S� , �84�

where Zimp and Z are the corresponding partition func-
tions, and the subscript Vbath indicates that the func-
tional integral should be performed with respect to the
degrees of freedom living outside the selected cluster. At
this point, one introduces an approximation in order to
be able to carry out the functional integral, namely, one
neglects all quartic- and higher-order terms involving the
bath degrees of freedom �an approximation which is rig-
orous in the infinite-dimensional limit� to arrive at the
result �Georges and Kotliar, 1992�

Simp = − 	
��

� d
d
�c�
+�
�G0,��

−1 �
,
��c��
��

+
1
2 	
����

� d
d
�c�
+�
�c�

+�
��V�����
,
��c��
��c��
� .

�85�

Here G0,���
 ,
�� or its Fourier transform G0,���i�� is
identified as the bath Green’s function which appeared
in the Dyson equation for Mint,���i�� and for the local
Green’s function Gloc,���i�� of the impurity, i.e.,

G0,��
−1 �i�� = Gloc,��

−1 �i�� + Mint,���i�� . �86�

Note that G0 cannot be associated with noninteracting
G0.

The impurity action �85� and the Dyson equation �86�,
connecting local and bath quantities as well as the origi-
nal Dyson equation �66�, constitute the self-consistent
set of equations of the spectral density-functional theory.
They are obtained as the saddle-point conditions ex-
tremizing the spectral density functional �SDFT�G�. Since
Mint is not initially known, the solution of these equa-
tions requires an iterative procedure. First, assuming
some initial Mint, the original Dyson equation �66� is
used to find the Green’s function G. Second, the Dyson
equation for the local quantity �86� is used to find G0.
Third, the quantum impurity model with the impurity
action Simp after Eq. �85� is solved by available many-
body techniques to give a new local Mint. The process is
repeated until self-consistency is reached. We illustrate
this loop in Fig. 5.

5. Practical implementation of the self-consistency condition in
DMFT

In many practical calculations, the local Green’s func-
tion can be evaluated via Fourier transform. First, given
the noninteracting Hamiltonian h��

�0��k�, we define the
Green’s function in k space,

G���k,i�� = 
��i� + ��Ô�k� − ĥ�0��k� − Mint�i���−1���,

�87�

where the overlap matrix O���k� replaces the unitary

matrix Î introduced earlier in Eq. �65� if one takes into
account possible nonorthogonality between basis func-

tions �Wegner et al., 2000; Kotliar et al., 2001�. Second,
the local Green’s function is evaluated as the average in
the momentum space,

Gloc,���i�� = 	
k

G���k,i�� , �88�

which can then be used in Eq. �86� to determine the bath
Green’s function G0,���i��.

The self-consistency condition in the dynamical mean-
field theory requires the inversion of the matrix, Eq.
�87�, and the summation over k of an integrand, Eq. �88�.
This may be accomplished by introducing left and right
eigenvectors of the inverse of the Kohn-Sham Green’s
function,

	
�

�h��
�0��k� + Mint,���i�� − �kj�O���k���kj�,�

R = 0, �89�

	
�

�kj�,�
L �h��

�0��k� + Mint,���i�� − �kj�O���k�� = 0. �90�

This is a non-Hermitian eigenvalue problem solved by
standard numerical methods. The orthogonality condi-
tion involving the overlap matrix is

	
��

�kj�,�
L O���k��kj��,�

R = �jj�. �91�

Note that the present algorithm just inverts the matrix
�87� with help of the “right” and “left” eigenvectors. The
Green’s function �87� in the basis of its eigenvectors be-
comes

G���k,i�� = 	
j

�kj�,�
R �kj�,�

L

i� + � − �kj�
. �92�

This representation generalizes the orthogonal case in
the original LDA+DMFT paper �Anisimov, Poteryaev,
et al., 1997�. Equation �92� can be used to compute the
Green’s function as the integral over the Brillouin zone,
because the energy denominator can be integrated ana-
lytically using the tetrahedron method �Lambin and
Vigneron, 1984�.

The self-consistency condition becomes computation-
ally very expensive when many atoms need to be con-

FIG. 5. Illustration of the self-consistent cycle in DMFT. Start-
ing from a bath function, the impurity solver delivers a local
M, which in turn defines a Kohn-Sham Green’s function G
defined for all R and R�. Only the diagonal part of the Kohn-
Sham Green’s function is important for the self-consistency
condition which gives Gloc, which in turn provides the new
bath function closing the iteration loop.
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sidered in a unit cell, as, for example, in compounds or
complicated crystal structures. A computationally effi-
cient approach was proposed by Savrasov, Haule, and
Kotliar �2006�. The self-energy is expressed by the ratio-
nal interpolation in the form

M���i�� = M������� + 	
i

w��
i

i� − Pi
, �93�

where wi are weights and Pi are poles of the self-energy
matrix. The nonlinear Dyson equations �89� and �90� can
be replaced by a linear Schrödinger-like equation in an
extended subset of auxiliary states. This is clear due to
the mathematical identity

	
k
��i� + ��Ôk − ĥ0�k� − M��� , �W

�W†, i� − P
�−1

= �	
k

��i� + ��Ôk − ĥ0�k� − M�i���−1,
¯

¯ , ¯

� ,

�94�

where M�i�� is given by Eq. �93�. Since the matrix P can
always be chosen to be a diagonal matrix, we have w��

i

=�W�i
�W�i

* .
The most important advantage of this method is that

the eigenvalue problem, Eqs. �89� and �90�, does not
need to be solved for each frequency separately but only
one inversion is required in the extended space includ-
ing “pole states.” In many applications, only a small
number of poles is necessary to reproduce the overall
structure of the self-energy matrix �see Sec. III.F.1�. In
this case, the DMFT self-consistency condition can be
computed by solving the usual Kohn-Sham equations.

The situation is even simpler in some symmetry cases.
For example, if the Hamiltonian is diagonal h��

�0��k�
=���h�

�0��k� and the self-energy Mint,���i�� =���
�Mint,��i��, the inversion in the above equations is
trivial and the summation over k is performed by intro-
ducing the noninteracting density of states N����,

N���� = 	
k
��� − h�

�0��k�� . �95�

The resulting equation for the bath Green’s function be-
comes

G0,�
−1 �i�� = �� d�

N����
i� + � − � − Mint,��i���

−1

+ Mint,��i�� . �96�

• Assessing the DMFT approximation. DMFT extends
and integrates two very different viewpoints. The
chemist’s local approach based on performing con-
figuration interactions at the atomic or molecular
level, with the band theory approach based on the
treatment of extended systems in momentum space.
The addition to a Weiss field to the atom, or a
frequency-dependent potential to the band theory

one-electron Hamiltonian, lead to the same well-
defined approach which provides an accurate inter-
polation between the itinerant and localized limits.

Both the dressed atom and dressed band points of
view indicate the same shortcomings of the ap-
proach. �DMFT is a poor approximation to
�SDFT�Gloc� when the interactions or the electronic
correlations are highly nonlocal. However, exten-
sions of the DMFT formalism allow us to tackle this
problem. The EDMFT �Kajueter, 1996; Kajueter and
Kotliar, 1996a; Si and Smith, 1996� allows the intro-
duction of long-range Coulomb interactions in the
formalism. The short-range Coulomb interaction is
more local in the nonorthogonal basis set and can be
incorporated using CDMFT �Kotliar et al., 2001� and
more general cluster approaches described in the
next section.

B. Extension to clusters

The notion of locality is not restricted to a single site
or a single unit cell, and it is easily extended to a cluster
of sites or supercells. We explain the ideas in the context
of model Hamiltonians written in an orthogonal basis
set to keep the presentation and notation simple. The
extension to general basis sets �Kotliar et al., 2001;
Savrasov and Kotliar, 2004� is straightforward.

Motivations for cluster extension of DMFT are mul-
tiple: �i� Clusters are necessary to study some ordered
states like d-wave superconductivity which cannot be de-
scribed by a single-site method �Katsnelson and Lichten-
stein, 2000; Maier et al., 2000a, 2000b, 2005; Maier,
Pruschke, and Jarrell, 2002; Maier, 2003; Macridin et al.,
2004, 2005; Maier, Jarrell, Macridin, et al., 2004�. �ii� In
cluster methods the lattice self-energies have some k de-
pendence �contrary to single-site DMFT� which is
clearly an important ingredient of any theory of the
high-Tc cuprates, for example. Cluster methods may
then explain variations of the quasiparticle residue or
lifetime along the Fermi surface �Parcollet et al., 2004;
Civelli et al., 2005�. �iii� Having a cluster of sites allows
the description of nonmagnetic insulators �e.g., valence
bond solids� instead of the trivial nonmagnetic insulator
of the single-site approach. Similarly, a cluster is needed
when Mott and Peierls correlations are simultaneously
present leading to dimerization �Poteryaev et al., 2004;
Biermann, Poteryaev, et al., 2005� in which case a corre-
lated link is the appropriate reference frame. �iv� The
effect of nonlocal interactions within the cluster �e.g.,
next-neighbor Coulomb repulsion� can be investigated
�Bolech et al., 2003�. �v� Since cluster methods interpo-
late between the single-site DMFT and the full problem
on the lattice when the size of the cluster increases from
1 to �, they resum 1/d corrections to DMFT in a non-
perturbative way. Therefore they constitute a systematic
way to assert the validity of and improve the DMFT
calculations.

Many cluster methods have been studied in the litera-
ture. They differ both in the self-consistency condition
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�how to compute the Weiss bath from the cluster quan-
tities� and on the parametrization of the momentum de-
pendence of the self-energy on the lattice. Different per-
spectives on single-site DMFT lead to different cluster
generalizations: analogy with classical spin systems lead
to the Bethe-Peierls approximation �Georges et al.,
1996�, short-range approximations of the Baym-
Kadanoff functional lead to the “pair scheme” �Schiller
and Ingersent, 1995; Georges et al., 1996� and its nested
cluster generalizations �which reduces to the cluster
variation method in the classical limit� �Biroli et al.,
2004�, approximating the self-energy by a piecewise con-
stant function of momentum lead to the dynamical clus-
ter approximation �DCA� �Hettler et al., 1998, 2000;
Maier et al., 2000b�, approximating the self-energy by
the lower harmonics lead to the work of Lichtenstein
and Katsnelson �2000�, and a real-space perspective
leads to cellular DMFT �CDMFT� �Kotliar et al., 2001�.
In this review, we focus mainly on the CDMFT method,
since it has been used more in the context of realistic
computations. For a detailed review of DCA, CDMFT,
and other schemes and their applications to model
Hamiltonians, see Maier, Jarrell, Pruschke, et al. �2005�.

• Cellular dynamical mean-field theory: Definition. The
construction of an exact functional of a “local”
Green’s function in Eqs. �62�–�64� is unchanged, ex-
cept that the labels � , � denote orbitals and sites
within the chosen cluster. The cluster DMFT equa-

tions have the form �65� and �86�, where ĥ0�k� is now
replaced by t̂�K� the matrix of hoppings in supercell
notation and we use the notation �C�i�n� for the
cluster self-energy �note that the notation Mint was
used for this quantity in the preceding sections�,

G0
−1�i�n� = � 	

K�RBZ
�i�n + � − t̂�K� − �C�i�n��−1�−1

+ �C�i�n� , �97�

where the sum over K is taken over the reduced Bril-
louin zone �RBZ� of the superlattice and normalized.
Just like single-site DMFT, one can view CDMFT
either as an approximation to an exact functional to
compute the cluster Green’s function or as an ap-
proximation to the exact Baym-Kadanoff functional
obtained by restricting it to the Green’s functions on
the sites restricted to a cluster and its translation by a
supercell lattice vector �see Eq. �98� below�
�Georges, 2002; Maier and Jarrell, 2002�. From a
spectral density-functional point of view, Eqs. �66�
and �67�, and the equation Mint�G� =�	SDFT/�Gloc
can be viewed as the exact equations provided that
the exact functional 	SDFT is known.

A good approximation to the exact functional,
whose knowledge would provide the exact cluster
Green’s function, is obtained by restricting the ex-
act Baym-Kadanoff functional. In this case, it is
restricted to a cluster and all its translations by a
supercell vector. Denoting by C the set of couples

�i , j� where i and j belong to the same cluster �see
Fig. 6 for an example�,

	CDMFT
SDFT = 	BK�Gij=0 if �i,j��C. �98�

Alternatively the CDMFT equations can be derived
from the point of view of a functional of the Weiss
field generalizing Eq. �82� from single sites to super-
cells as shown in Fig. 6.

A fundamental concept in DMFT is that of a Weiss
field. This is the function describing the environment
that one needs to add to an interacting but local
problem to obtain the correct local Green’s function
of an extended system, now expressed in terms of the
Weiss field of the cluster G0

−1=Gat
−1−�. This concept

can be used to highlight the connection of the
mean-field theory of lattice systems with impurity
models and the relation of their free energies
�Georges et al., 1996�. For this purpose it is useful
to define the DMFT functional of three variables
�Kotliar and Savrasov, 2001�, GC , �C, and the Weiss
field of the cluster:

�CDMFT�GC,�C,G0� = �CF�G0
−1� − Tr ln�GC�

− Tr ln�i� + � − t̂�k� − �C�

+ Tr��G0
−1 − �C − GC

−1�GC� . �99�

Extremizing this functional gives again the standard
CDMFT equations.

• CDMFT: Approximation of lattice quantities. The im-
purity model delivers cluster quantities. In order to
make a connection with the original lattice problem,
we need to formulate estimates for the lattice
Green’s function. A natural way to produce these
estimates is by considering the superlattice �SL� �see
Fig. 6� and constructing lattice objects from superlat-
tice objects by averaging the relevant quantities to
restore periodicity, namely,

Wlatt�i − j� �
1

Ns
	
k

Wk,k+i−j
SL , �100�

where Ns represents the total number of sites, and
i , j , k are site indices. Notice that Eq. �100� repre-
sents a superlattice average, not a cluster average. In

FIG. 6. �Color online� Example of a 2�2 superlattice con-
struction to define CDMFT on a plaquette. Notice that the
choice of superlattice is not unique.
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particular, if W is the cluster irreducible cumulant,
Mc

−1 
 Gc
−1+�+ tC �where � is the hybridization and

tC is the hopping within the cluster� or the cluster
self-energy � all the contributions with k and k+ i
− j belonging to different cells are zero by construc-
tion. The lattice Green’s function can then
be reconstructed from the lattice cumulant �Stanescu
and Kotliar, 2005� or the lattice self-energy �Kotliar
et al., 2001; Biroli and Kotliar, 2002�, namely,
G�k ,�� � ��− t�k� +�−��k ,���−1 or G�k ,�� � �−t�k�
+M�k ,��−1�−1. Criteria for more general periodiza-
tions respecting causality were derived by Biroli and
Kotliar �2002�. Another alternative suggested by
Sénéchal and Tremblay is to directly periodize the
Green’s function �Sénéchal et al., 2000�,

G�k,�� =
1

Ns
	
i,j

�M̂c
−1 − t̂k�ij

−1eik�ri−rj�, �101�

where t̂k is the Fourier transform of the “hopping”
on the superlattice.

For example, consider the two-dimensional Hubbard
model on a square lattice within a four-site approxi-
mation �plaquette� in which square symmetry is pre-
served. After performing the average �100� and then
taking the Fourier transform, we obtain the follow-
ing expressions for the self-energy and the irreduc-
ible cumulant of the lattice problem:

��k,�� = �0��� + �1�����k� + �2�����k� ,

M�k,�� = M0��� + M1�����k� + M2�����k� ,

where for the cluster quantities Wab
�c� we used the no-

tations W0 for the on-site values �a=b� , W1 if a and
b are nearest neighbors �on a link�, and W2 if a and b
are next-nearest neighbors �on the diagonal�, and
��k� =cos�kx� +cos�ky� and ��k� =cos�kx�cos�ky�.

For small clusters it is better to reconstruct on-site
quantities from the cluster Green’s function �Ca-
pone et al., 2004� and nonlocal quantities from lat-
tice quantities �Stanescu and Kotliar, 2005�. Using
cumulants there is not much difference between
estimates from the lattice or the local Green’s
function for either one of these quantities, and the
same is true for the lattice periodization. Alterna-
tively, periodizing the self-energy has the draw-
back that the local quantities inferred from Glatt
differ from Gc near the Mott transition.

• Other cluster schemes. We briefly comment on other
cluster schemes mentioned in the Introduction �see
also Maier, Jarrell, Pruschke, et al. �2005��. Nested
cluster schemes are defined by another truncation of
the Baym-Kadanoff functional:

	Nested
SDFT = 	BK�Gij=0 if �i,j��C, �102�

where C is the set of couples �i , j� with �i− j��L with
L the size of the cluster and we use the Manhattan

distance on the lattice. Those schemes combine in-
formation from various cluster sizes, and can give
very accurate determination of critical temperatures
using small cluster sizes, but they are not causal
when the range of the self-energy exceeds the size of
the truncation �Biroli et al., 2004� �see also Okamoto
and Millis �2004b��.

There is a class of cluster schemes which are guaran-
teed to be causal and which requires the solution
of one impurity problem: DCA, CDMFT, and
PCDMFT �periodized cluster cellular dynamical
mean-field theory�. The self-consistency condition of
all three schemes can be summarized into the same
matrix equation,

G0
−1�i�n� = �C�i�n� + � 	

K�RBZ
�i�n + � − t̂S�K�

− �S�K,i�n��−1�−1
, �103�

where the difference between the three schemes is
enclosed in the value of tS and of �S that enter in the
self-consistency condition. Namely, t̂S�K� = t̂�K� and
�S�K , i�n� =�C�i�n� yields the CDMFT case, t̂S�K�
= t̂�K� and �S=�latt corresponds to the PCDMFT
case, and DCA is realized when tS�K� = tDCA


 t���K�exp�−iK��−��� and �S�K , i�n� =�C�i�n�
�Biroli et al., 2004�. PCDMFT uses the lattice self-
energy in the sum over the reduced Brillouin zone in
the self-consistency equation �97�. It is similar to the
scheme proposed by Lichtenstein and Katsnelson
�2000�, but can be explicitly proven to be manifestly
causal. The dynamical cluster approximation �Het-
tler et al., 1998, 2000; Maier et al., 2000b� derives
cluster equations starting from momentum space. Its
real-space formulation of Eq. �103� was introduced
by Biroli and Kotliar �2002�. While in CDMFT �or
PCDMFT� the lattice self-energy is expanded on the
lowest harmonics in k, in DCA the self-energy is
taken piecewise constant in the Brillouin zone.

Simpler approximations, such as cluster perturbation
theory �CPT� and variational cluster perturbation
theory �VCPT�, can also be fruitfully viewed as lim-
iting cases of cluster DMFT. Indeed CPT is obtained
by setting the DMFT hybridization equal to zero.
The self-energy then becomes the atomic self-energy
of the cluster. The lattice self-energy is then obtained
by restoring the periodicity in the Green’s function
�Gros and Valenti, 1993; Sénéchal et al., 2000, 2002;
Zacher et al., 2000, 2002; Dahnken et al., 2002�. The
restriction of the functional �99� to a nonzero but
static Weiss field gives rise to the variational cluster
perturbation theory �VCPT� introduced by Potthoff
et al. �2003�; Dahnken et al. �2004�; Sénéchal and
Tremblay �2004�. Extensions of these ideas in the
context of EDMFT have recently been carried out
by Tong �2005�.

• Hartree-Fock terms. In realistic computations, it is
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natural to separate the Hartree-Fock term which can
be treated easily from the more complex “exchange”
contributions to the Baym-Kadanoff functional 	.
This idea can also be extended to CDMFT, in the
case of nonlocal interactions connecting different
clusters �e.g., spin-spin interactions�. The Hartree-
Fock contribution to the Baym-Kadanoff functional
induces a self-energy which is frequency independent
and therefore does not cause problems with causality
and can be evaluated with little computational cost.
As such it is convenient to separate 	=	HF+	int,
and apply the cluster DMFT truncation to only 	int
and to the self-energy it generates while treating the
Hartree contributions exactly �Biroli et al., 2004�.
More precisely, one can use Hartree-Fock terms that
connect the cluster to the exterior only, to avoid a
double-counting problem. This observation is par-
ticularly relevant in the treatment of broken symme-
tries induced by nonlocal interactions as exemplified
in the study of the transition to a charge density
wave in the extended Hubbard model in one dimen-
sion �Bolech et al., 2003�.

• Cluster size dependence. The cluster DMFT methods
are in an early stage of development but some inves-
tigations on the performance of the methods for dif-
ferent sizes have appeared �see Maier, Jarrell,
Pruschke, et al. �2005�, and references below�. There
are two distinct issues to consider. The first issue is
what can be achieved with very small clusters �e.g.,
two sites in one dimension or a 2�2 plaquette in two
dimensions�. Cluster studies have demonstrated that
in a broad region of parameter space, single-site
DMFT is quantitatively quite accurate �Capone et al.,
2004�. Similarly, one wants to know what are the
minimal clusters needed to capture the physics of
certain phenomena �e.g., the physics of the cuprates�.
The one-dimensional Hubbard model is a challeng-
ing test case to study the effect of cluster size. Appli-
cation of DMFT and cluster methods to this problem
was carried out by Capone et al. �2004� and is repro-
duced in Figs. 7 and 8. We note that �i� far from the
transition, single-site DMFT is quite accurate and �ii�
a cluster of two sites is already close to the exact
solution �obtained by the Bethe ansatz for thermody-
namics quantities or DMRG for dynamical ones�.
Even the sharp rise of the compressibility as the
Mott transition is approached in one dimension is
captured by a two-site cluster. More recent studies
using QMC as an impurity solver have confirmed
and strengthened this observation �Kyung et al.,
2006�. Even though no mean-field approach can pro-
duce a Luttinger liquid CDMFT is shown to perform
well when considering quantities related to interme-
diate or high energies or associated with the total
energy, even near the Mott transition. As the cluster
size is increased, the Luttinger liquid is approxi-
mated more accurately and the correct power-law
behavior can be obtained at lower frequencies �Gi-
amarchi et al., 2004; Kyung et al., 2006�.

The second issue is the asymptotic convergence of
the exact solution to the problem �in the infinite clus-
ter size limit�. At present, this is still an academic
issue because large clusters cannot be studied for
large U or at low temperature, but algorithmic ad-
vances and increase of computer power may soon
change the situation. The convergence properties of
the CDMFT method for large cluster size can be eas-
ily improved. Away from critical points, local quan-
tities in CDMFT converge exponentially to their
bulk value when measured at the core of the cluster.
However, averages over the cluster converge like
1/L, where L is the linear size of the cluster �Biroli
and Kotliar, 2004� �see also Aryanpour et al. �2005�
and Biroli and Kotliar �2005��, because in CDMFT
the cluster is defined in real space, and the error is
maximal and of order 1 �i.e., L0� at the boundary.
Therefore to estimate the value of a local quantity,
one should preferentially use the core of the cluster
�i.e., giving a lower weight to the boundary� assuming
of course that the cluster is large enough to distin-
guish between a core and a boundary. Failure to do
so in CDMFT can lead to nonphysical results, as il-
lustrated in the one-dimensional Hubbard model. In
this case, the critical temperature for the Néel order
does not reach zero when the size of the cluster in-
creases �Maier, Gonzalez, et al., 2002�. In fact, the
boundary of a large �chain� cluster sees an effective
field given by the other boundary, not by the sites at
the center of the cluster, which leads to spurious or-
dering. It is, however, possible to improve the con-
vergence properties of CDMFT in ordered phases by
weighting the self-energy at the core of the cluster, a
cluster scheme called weighted CDMFT �Parcollet
and Kotliar, 2005�: in the self-consistency condition
�97�, we replace the self-energy �C by �w,

FIG. 7. �Color online� Density n as a function of � for the
one-dimensional Hubbard model with on-site repulsion
strength U / t=4, number of cluster sites Nc=2, within single-
site DMFT, two-site CDMFT, two-site PCDMFT, and two-site
DCA compared with the exact solution by the Bethe ansatz
�BA�. Inset: A region near the Mott transition. Adapted from
Capone et al., 2004.
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���
w = 	

����

w��
���������

C , �104�

w��
�� = ��−�,�−�fc���fc��� , �105�

where fc is a normalized function that decays expo-
nentially from the center of the cluster towards the
boundaries and must satisfy 	�fc���2=1. This scheme
is causal, it does not present the spurious ordering in
one dimension, and has faster convergence of the
critical temperature compared to CDMFT in the
classical limit of the Falikov-Kimball model. There-
fore for applications to �quasi-�one-dimensional sys-
tems �chains or ladders� where relatively large cluster
size can be reached, weighted CDMFT should be
preferred to CDMFT.

• Numerical solutions. Since the impurity model to be
solved for a cluster method is formally a multiorbital
problem, most solvers used for single-site DMFT can
be extended to cluster methods, at the expense of an
increase of computational cost �see Sec. III�. The
computational cost of solving the impurity model en-
tering the CDMFT equations using QMC is the same
as that of an isolated system of the same cluster, or
sometimes less since it has been found empirically
that the presence of the bath reduces the sign prob-
lem. To solve the CDMFT equations with exact di-
agonalization, the bath needs to be discretized and
represented by free fermions. This results in an in-
crease in the size of the Hilbert space. ���� has to be
represented by a discrete set of poles and, as in
single-site DMFT, there are various approaches for
choosing a parametrization �Georges et al., 1996�. A
modification of the original procedure of Caffarel
and Krauth �1994� which gives stronger weight to the
low-frequency part of the Weiss field has been sug-
gested �Capone et al., 2004�.

Another possibility for parametrizing the bath is to

simply insert a discretized form of the Weiss field
into the CDMFT functional, which is viewed as a
function of three variables �the obvious generaliza-
tion of Eq. �83� to clusters�, and varying the func-
tional with respect to the free parameters param-
etrizing the Weiss field. An alternative choice of bath
parameters can be obtained by inserting approxi-
mate expressions of the self-energy parametrized by
a few sets of parameters into the self-energy func-
tional �Potthoff, 2003b�.

• Application to realistic calculations. In realistic stud-
ies of materials, applications of cluster methods are
only now beginning. An interesting class of problems
is posed by materials with dimerization or charge-
charge correlations in the paramagnetic phase, such
as NaV2O5. This compound, where the vanadium at-
oms are arranged to form two-leg ladders which are
quarter filled, served as a first application of LDA
+DMFT cluster methods. At low temperatures the
system is a charge ordered insulator, a situation that
is well described by the LDA+U method �Yaresko et
al., 2000�. Above the charge ordering temperature
the insulating gap persists, and cluster DMFT is re-
quired to describe this unusual insulating state �Ma-
zurenko et al., 2002�. The second application of this
approach focused on the interplay between Pauling-
Peierls distortions and Mott correlations �Poteryaev
et al., 2004� that occur in Ti2O3. Titanium sesquiox-
ide, Ti2O3, is isostructural to vanadium sesquioxide,
V2O3, the prototypical Mott-Hubbard system. In the
Corundum structure the pair of titanium atoms form
a structural motif. Titanium sesquioxide displays a
rapid crossover from a bad metal regime at high tem-
peratures to an insulating regime at low tempera-
tures. Standard first-principles electronic structure
methods have failed to account for this crossover.
While single-site DMFT was successful in describing
the high-temperature physics of V2O3, it cannot ac-
count for the observed temperature driven crossover

FIG. 8. �Color online� Im G11 and Re G12 for
the one-dimensional Hubbard model with
on-site repulsion strength U / t=1 and 7, num-
ber of cluster sites Nc=2, within single-
site DMFT, two-site CDMFT, and two-site
PCDMFT compared with a DMRG calcula-
tion. From Capone et al., 2004.
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in Ti2O3 with a reasonable set of parameters. A two-
site CDMFT calculation with a very reasonable set
of on-site interactions and an intersite Coulomb re-
pulsion successfully describes the observed crossover.
A surprising result of the cluster calculations �Pot-
eryaev et al., 2004� is the frequency dependence of
the intersite titanium self-energy which can be
viewed as a scale-dependent modification of the bare
bonding-antibonding splitting. The link reference
frame provides an intuitive picture of the synergistic
interplay of the lattice distortion �i.e., the Pauling-
Goodenough-Peierls mechanism �Goodenough,
1963� which decreases the distance between Ti at-
oms� and the Hubbard-Mott mechanism in corre-
lated materials having dimers in the unit cell. The
bare �high frequency� parameters are such that a
static mean-field calculation yields a metal. However,
as temperature and frequency are lowered, impor-
tant correlation effects develop. The bandwidth of
the a1g and eg bands is reduced by the correlations
while the crystal-field splitting between the bonding
and antibonding orbital increases in such a way that
the low-energy renormalized parameters result in a
band insulator. We have a case where the Coulomb
interactions enhance the crystal-field splitting and re-
duce the bandwidth, in a synergistic cooperation with
the lattice distortions to drive the system through a
metal-to-insulator crossover.

Another example of the interplay between the
Peierls and Mott mechanisms is provided by vana-
dium dioxide, VO2. This material undergoes a first-
order transition from a high-temperature metallic
phase to a low-temperature insulating phase near
room temperature. The resistivity jumps by several
orders of magnitude through this transition, and the
crystal structure changes from rutile at high tempera-
ture to monoclinic at low temperature. The latter is
characterized by a dimerization of vanadium atoms
into pairs, as well as a tilting of these pairs with re-
spect to the c axis. CDMFT studies of this material
�Biermann, Poteryaev, et al., 2005� account for the
metallic and insulating phases with reasonable inter-
action parameters.

C. LDA+U method

We now discuss how ideas of spectral density-
functional theory and conventional electronic structure
calculations can be bridged together. In many materials,
the comparison of LDA calculations with experiment
demonstrates that delocalized s and p states are satisfac-
torily described by local and frequency-independent po-
tentials. This leads to the introduction of hybrid meth-
ods which separate electrons into light and heavy.
Treating light electrons using LDA and heavy electrons
using many-body techniques, such as DMFT �see Sec.
II.D� has already proven to be effective.

As a first illustration, we consider the LDA+U
method of Anisimov and co-workers �Anisimov et al.,

1991�. Historically, this was introduced as an extension
of the local spin-density approximation �LSDA� to treat
the ordered phases of the Mott insulating solids. In this
respect, the method can be seen as a natural extension
of LSDA. However, this method was the first to recog-
nize that a better energy functional can be constructed if
not only the density, but also the density matrix of cor-
related orbitals is brought into the density functional. In
this sense, the LDA+U approach is the Hartree-Fock
approximation for the spectral density functional within
LDA+DMFT, which is discussed in the following sec-
tion.

• Motivation and choice of variables. From the effec-
tive action point of view, the LDA+U constructs a
functional of the density ��r�, magnetization m�r�,
and occupancy matrix of the correlated orbitals. The
latter is defined by projecting the electron creation
and destruction operators on a set of local orbitals,
caR= ��a

*�r−R���r�dr, i.e., by constructing the occu-
pancy matrix from the local Green’s function,

nab = T	
i�

ei�0+
Gloc,ab�i�� . �106�

In principle, an exact functional of the spin density
and occupancy matrix can be constructed so as to
give the total free energy at the stationary point us-
ing previously described techniques. The LDA+U is
an approximate functional of these variables which
can be written down explicitly. In the context of
LDA+U, the constraining field is designated as
�ab.

• Form of the functional. The total free energy now is
represented as a functional of ��r� , m�r� , nab , �ab,
the Kohn-Sham potential VKS�r�, and Kohn-Sham
magnetic field, BKS�r�. This representation parallels
the Harris-Methfessel form �see Eq. �73��. The
LDA+U functional is a sum of the kinetic energy,
energy related to the external potential and possible
external magnetic field, KLDA+U, as well as the inter-
action energy 	LDA+U�� ,m ,nab� �see Kotliar and
Savrasov �2001� for more details�, i.e.,

�LDA+U��,m,nab,�ab� = KLDA+U��,m,nab� − �abnab

+ 	LDA+U��,m,nab� . �107�

The form of the functional KLDA+U is analogous to
Eqs. �23�, �39�, and �68� for the DFT, BK, and
SDFT theories. The interaction energy
	LDA+U�� ,m ,nab� is represented as follows:

	LDA+U��,m,nab� = EH��� + Exc
LDA��,m� + 	U

Model�nab�

− 	DC
Model�nab� . �108�

This is the LDA interaction energy to which we have
added a contribution from the on-site Coulomb en-
ergy in the shell of correlated electrons evaluated in
the Hartree-Fock approximation,
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	U
Model�nab� =

1
2 	

abcd�lc

�Uacdb − Uacbd�nabncd. �109�

Here indexes a , b , c , d refer to the fixed angular
momentum lc of correlated orbitals and run over
magnetic m and spin 
 quantum numbers. The ma-
trix Uabcd is the on-site Coulomb interaction matrix
element V�=a�=b�=c�=d

RRRR from Eq. �59� given for the
sub-block of correlated orbitals. Since the on-site
Coulomb interaction is approximately accounted for
within LDA, the LDA contribution to the on-site
interaction needs to be removed. This quantity is re-
ferred to as the double-counting term, and is denoted
by 	DC

Model�nab�. Various forms of the double-
counting functional have been proposed. In par-
ticular, one of the popular choices is given by
�Anisimov, Aryasetiawan, et al., 1997�

	DC
Model�nab� =

1
2

Ūn̄c�n̄c − 1� −
1
2

J̄�n̄c
↑�n̄c

↑ − 1�

+ n̄c
↓�n̄c

↓ − 1�� , �110�

where n̄c

= 	a�lc

naa�
a

, n̄c= n̄c

↑+ n̄c
↓, Ū= �1/ �2lc

+1�2�	ab�lc
Uabba, and J̄=Ū− �1/2lc�2lc

+1��	ab�lc
�Uabba−Uabab�.

• Saddle-point equations. The Kohn-Sham equations
are obtained with the standard procedure which
gives definitions for the Kohn-Sham potential VKS�r�,
the effective magnetic field BKS�r�, and the con-
straining field matrix �ab. The latter is the differ-
ence between the orbital-dependent potential Mab

and the contribution due to double counting, Vab
DC,

i.e.,

�ab =
�	U

Model

�nab
−
�	DC

Model

�nab
= Mab − Vab

DC, �111�

Mab = 	
cd

�Uacdb − Uacbd�ncd, �112�

Vab
DC = �ab�Ū�n̄c −

1
2
� − J̄�n̄c


 −
1
2
�� . �113�

• Comments on the parametrization of the functional.
�i� The LDA+U functional and LDA+U equations
are defined once a set of projectors and a matrix of
interactions Uabcd are known. In practice, one can
express these matrices via a set of Slater integrals
which, for example, d electrons are given by con-
stants F�0�, F�2�, and F�4�. These can be computed
from constrained LDA calculations as discussed in
Sec. I.B.5 or taken to be adjustable parameters.
An important question is what is the form of the
double-counting term 	DC

Model in Eq. �110�. The
question arises whether the double-counting term

should include self-interaction effects or not. In
principle, if the total-energy functional contains
this spurious term, the same should be taken into
account in the double-counting expression. Judged
by the experience that the LDA total energy is
essentially free of self-interaction �the total energy
of the hydrogen atom is, for example, close to
−1 Ry, while the Kohn-Sham eigenvalue is only
−0.5 Ry�, the construction 	DC

Model is made such that
it is free of the self-interaction. However, given the
unclear nature of the procedure, alternative forms
of the double counting may include self-interaction
effects. This issue has been reconsidered by
Petukhov et al. �2003� who proposed more general
expressions of double-counting corrections.

• Assessment of the method. Introducing additional
variables into the energy functional allows for better
approximations to the ground-state energy in
strongly correlated situations. This is a major ad-
vance over LDA in situations where orbital order is
present. The density matrix for correlated orbitals is
the order parameter for orbital ordering, and its in-
troduction into the functional resembles the intro-
duction of the spin density when going from the
LDA to the LSDA.

Unfortunately it suffers from some obvious draw-
backs. The most noticeable one is that it only de-
scribes spectra which has Hubbard bands when the
system is orbitally ordered. We have argued in the
previous sections that a correct treatment of the elec-
tronic structure of strongly correlated electron sys-
tems has to treat both Hubbard bands and quasipar-
ticle bands on equal footing. Another problem
occurs in the paramagnetic phase of Mott insulators:
In the absence of broken orbital symmetry, the
LDA+U results are very close to the LDA-like so-
lution, and the gap collapses. In systems like NiO
where the gap is of the order of several eV, but the
Néel temperature is a few hundred K, it is unphysical
to assume that the gap and magnetic ordering are
related.

The drawbacks of the LDA+U method are the same
as those of the static Hartree-Fock approximation on
which it is based. It improves substantially the ener-
getics in situations where a symmetry is broken, but
it cannot predict reliably the breaking of a symmetry
in some situations. This is clearly illustrated in the
context of the Hubbard model where correlation ef-
fects reduce the double occupancy, and the Hartree-
Fock approximation can only achieve this effect by
breaking the spin system which results in magnetic
ordering. For this reason, the LDA+U predicts mag-
netic order in cases where it is not observed, as, e.g.,
in the case of Pu �Bouchet et al., 2000; Savrasov and
Kotliar, 2000�.

Finally, note that LDA+U can be viewed as an ap-
proximation to the LDA+DMFT treatment consist-
ing of taking the Hartree-Fock approximation for the
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exchange-correlation functional 	DMFT �see Eq.
�118��, which results in a static self-energy. Even in
the limit of large interaction U , LDA+DMFT does
not reduce to LDA+U. For example, LDA+U will
incorrectly predict spin-ordering temperatures to be
on the scale of U, while LDA+DMFT correctly pre-
dicts them to be on the order of J, the exchange in-
teraction. Hence LDA+DMFT captures the local
moment regime of various materials �see Sec. IV.C�,
while LDA+U does not.

D. LDA+DMFT theory

• Motivation and choice of variables. We now turn to
the LDA+DMFT method �Anisimov, Poteryaev, et
al., 1997; Lichtenstein and Katsnelson, 1998�. This
approach can be motivated from different perspec-
tives. It can be viewed as a natural evolution of the
LDA+U method to eliminate some of its difficulties.
It can also be viewed as a way to upgrade the DMFT
approach, which so far has been applied to model
Hamiltonians, in order to bring in realistic micro-
scopic details.

To compute the energy in a combination of LDA
and DMFT one can use an approximate formula to
avoid the overcounting of the free energy Ftot
=FLDA+FDMFT−FmLDA, where FmLDA is a mean-field
treatment of the LDA Hamiltonian. This procedure
was used by Held et al. in their work on cerium
�Held, McMahan, et al., 2001�. Alternatively, the ap-
proach proposed in this section uses an effective ac-
tion construction and obtains an approximate func-
tional merging LDA and DMFT. This has the
advantage of offering, in principle, stationarity in the
computation of the energy.

In this review we have built a hierarchy of theories,
which focus on more refined observables �see Table
I�. At the bottom of the hierarchy is density-
functional theory which focuses on the density, and
at the top of the hierarchy is the Baym-Kadanoff
approach which focuses on the full electronic Green’s

function. The LDA+DMFT is seen as an intermedi-
ate theory, which focuses on the density and local
Green’s function of the heavy electrons. It can be
justified by reducing theories containing additional
variables, a point of view put forward recently by
Savrasov and Kotliar �2004�.

• Construction of the exact functional. We derive the
equations following the effective action point of view
�Chitra and Kotliar, 2001�. To facilitate the compari-
son between the approaches discussed earlier we
have tabulated �see Table I� the central quantities
which have to be minimized, and the fields which are
introduced to impose a constraint in the effective ac-
tion method �Fukuda et al., 1994�. As in the LDA
+U method one introduces a set of correlated orbit-
als �a�r−R�. One then defines an exact functional of
the total density ��x� and of the local spectral func-
tion of the correlated orbitals:

Gloc,ab�
,
�� = − � 	
R

�Ra�r����x��+�x����Rb
* �r��drdr�,

�114�

where indexes a ,b refer to the correlated orbitals,
and cRb

+ creates �b�r−R�. Typical choices of corre-
lated orbitals are linear muffin-tin orbitals �Anisi-
mov, Poteryaev, et al., 1997� and Wannier functions
�Anisimov et al., 2005�. For an alternative approach
to select the orbitals, see Paul and Kotliar �2005�.

We now introduce the sources for the density L�x�
and for the local spectral function of correlated or-
bitals Jloc,Rab�
 ,
��. These two sources modify the ac-
tion as follows:

S� = S + � L�x��+�x���x�dx

+
1

N 	
Rab

� Jloc,Rab�
,
��cRa
+ �
�cRb�
��d
d
�. �115�

This defines the free energy of the system as a func-
tional of the source fields after Eq. �33�. Both density
and local Green’s function can be calculated as fol-
lows:

�F

�L�x�
= ��x� , �116�

�F

�Jloc,Rba�
�,
�
= Gloc,ab�
,
�� . �117�

Then, the functional of the density and spectral func-
tion is constructed with a Legendre transform. This is
an exact functional of the density and local Green’s
function ��� ,Gloc�, which gives the exact total free
energy, the exact density, and the exact local Green’s
function of heavy electrons at the stationary point.

• Exact representations of the constraining field. A per-
turbative construction can be carried out either

TABLE I. Parallel between the different approaches, indicat-
ing the physical quantity which has to be extremized, and the
field which is introduced to impose a constraint �constraining
field�. BL and AL correspond to the band and atomic limit
reference systems, respectively.

Method Physical quantity Constraining field

Baym-Kadanoff G���k , i�� �int,���k , i��
DMFT �BL� Gloc,���i�� Mint,���i��
DMFT �AL� Gloc,���i�� ����i��
LDA+DMFT �BL� ��r� , Gloc,ab�i�� Vint�r� , Mint,ab�i��
LDA+DMFT �AL� ��r� , Gloc,ab�i�� Vint�r� , �ab�i��
LDA+U ��r� , nab Vint�r� , �ab

LDA ��r� Vint�r�
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around the atomic limit or around the band limit fol-
lowing the inversion method. Unfortunately the lat-
ter is very involved and has not been yet evaluated,
except for the lowest order �so-called “tree”� level
neglecting nonlocal interactions. One can also per-
form a decomposition into the lowest-order term
�consisting of “kinetic energy”� and the rest �with an
exchange and correlation energy�.

• Constructing approximations. Given that DMFT has
proven to accurately describe many systems at the
level of model Hamiltonians, and that LDA has a
long history of success in treating weakly correlated
materials, LDA+DMFT is obviously a reasonable
choice for an approximation to the exact functional.
The functional implementation corresponding to this
approximation is given by

�LDA+DMFT��,Gloc,Vint,Mint�

= − Tr ln�i� + � + �2 − Vext − Vint

− 	
abR

�Mint,ab�i�� − MDC,ab��a�r − R�

��b
*�r� − R�� − � Vint�r���r�dr

− T	
i�

	
ab

�Mint,ab�i�� − MDC,ab�Gloc,ba�i��

+ EH��� + Exc
LDA��� + 	DMFT�Gloc,ab�

− 	DC�nab� . �118�

	DMFT�Gloc,ab� is the sum of two-particle irreduc-
ible graphs constructed with the local part of the
interaction and local Green’s function, and
	DC�nab� is the same as in the LDA+U method,
Eq. �110�. In a fixed tight-binding basis, −�2+Vext

reduces to hab
�0��k� and the functional �LDA+DMFT,

Eq. �118�, for a fixed density truncated to a finite
basis set, takes a form identical to the DMFT func-
tional as discussed in Sec. II.A. Note that the
LDA+DMFT functional depends on the choice of
correlated orbitals �, and for each physical prob-
lem an appropriate set of orbitals has to be chosen.
For a given choice of �, the functional can be ex-
panded in any available basis set �e.g., plane
waves�.

• Saddle-point equations. Minimization of the func-
tional leads to the set of equations with the Kohn-
Sham potential and

Mint,ab�i�� =
�	DMFT

�Gloc,ba�i��
, �119�

MDC,ab =
�	DC

�nba
, �120�

where the matrix Mint,ab�i�� is the self-energy of
the generalized Anderson impurity model in a
bath characterized by a hybridization function
�ab�i�� obeying the self-consistency condition

�i� + ��Ōab − �̄ab − �ab�i�� − Mint,ab�i��

= �	
k

��i� + ��Ô�k� − ĥ�LDA��k�

− Mint�i�� + MDC�−1�
ab

−1
. �121�

By examining the limiting behavior i�→�, we get

the definition of the average overlap matrix Ōab for
the impurity levels as inverse of the average inverse
overlap, i.e.,

Ōab = �	
k

Ô−1�k��
ab

−1
. �122�

Similarly, the matrix of the impurity levels has the
following form:

�̄ab = 	
cd

Ōac�	
k

Ô−1�k��h�LDA��k� + Mint�i�� − MDC�

�Ô−1�k��
cd

Ōdb − Mint,ab�i�� . �123�

Finally, minimization of Eq. �118� with respect to Veff
indicates that ��r� should be computed as follows:

��r� = T	
i�

�r��i� + � + �2 − Veff

− 	
abR

�Mint,ab�i�� − MDC,ab��a�r − R�

��b
*�r� − R��−1�r�ei�0+

. �124�

The self-consistency in the LDA+DMFT theory is
performed as a double iteration loop, the inside
loop is over the DMFT cycle and the outside loop

FIG. 9. Illustration of the self-consistent cycle in spectral
density-functional theory within the LDA+DMFT approxima-
tion: the double iteration cycle consists of the inner DMFT
loop and outer �density plus total energy� loop.
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is over the electron density, which modifies the
one-electron LDA Hamiltonian. The self-
consistent cycle is illustrated in Fig. 9.

• Evaluation of the total energy. In general, the free
energy is Ftot=Etot−TS, where Etot is the total en-
ergy and S is the entropy. Both energy and entropy
terms exist in the kinetic and interaction function-
als. The kinetic energy part of the functional is
given by KSDFT�G� =Tr�−�2+Vext�G while the
potential-energy part is 1

2Tr MintGloc therefore the
total energy within LDA+DMFT becomes

Etot = T	
kj

	
i�

gkj��kj� − � Vint�r���r�dr

− T	
i�

	
ab

�Mint,ab�i�� − MDC,ab�Gloc,ba�i��

+ EH��� + Exc
LDA���

+
1
2

T	
i�

	
ab

Mint,ab�i��Gloc,ba�i�� − 	DC�nab� ,

�125�

where frequency-dependent eigenvalues �kj� result
from diagonalizing the following non-Hermitian ei-
genvalue problem similar to Eq. �89�:

	
�

�h��
�LDA��k� + ��a��b�Mint,ab�i�� − MDC,ab�

− �kj�O���k���kj�,�
R = 0. �126�

Also,

gkj� =
1

i� + � − �kj�
�127�

is the Green’s function in the orthogonal left and
right representation which plays a role of a
“frequency-dependent occupation number.”

Evaluation of the entropy contribution to the free
energy requires finding the total energy at several
temperatures and taking the integral �Georges et al.,
1996�

S�T� = S��� − �
T

�

dT�
1

T�

dELDA+DMFT

dT�
. �128�

The infinite-temperature limit S��� for a well-
defined model Hamiltonian can be worked out. This
program was implemented for the Hubbard model
�Rozenberg et al., 1994� and for Ce �Held, McMahan,
et al., 2001�. If we are not dealing with a model
Hamiltonian construction, one has to take a suffi-
ciently high temperature so that the entropy S��� can
be evaluated with semiclassical considerations.

Differentiating the LDA+DMFT functional, Eq.
�118�, with respect to temperature and evaluating
the result at low temperatures one can show that S
=�T, with � the linear coefficient of the specific heat
given by

� = −
�kB

2

3
Im Tr��Ok −

�M
��

�Gk����
�=0

.

This can be interpreted as the density of states of
the quasiparticle Hamiltonian Z�HLDA�k� +M�0��,
where Z= �1− ��M /�i���i�=0�−1 and M are matrices
in which only the correlated block is nonzero.

• Choice of basis and double counting. The basis can
be gradually refined to obtain accurate solutions in a
certain energy range. In principle this improvement
is done by changing the linearization energies, and
the experience from density-functional implementa-
tions could be carried over to the DMFT case.

Note that the rationale for the double-counting term
described in Eq. �110� was chosen empirically to fit
the one-particle spectra of the Mott insulator �for
further discussion see Petukhov et al. �2003�� and de-
serves further investigations. The discussion of
double-counting terms in the LDA+U literature can
be extended to LDA+DMFT. Note that as long as
the equations are derivable from a functional, the
Luttinger theorem is satisfied �in the single-site
DMFT case�.

In addition to double-counting terms discussed in
Sec. II.C, it has been proposed to use the DMFT
self-energy at zero or infinity for double counting.
One possibility,

MDC,ab =
1

Ndeg
�ab	

a�

Mint,a�a��0� , �129�

was suggested and implemented by Lichtenstein et
al. on Fe and Ni �Lichtenstein et al., 2001�. The spin-
polarized version of this term has been applied to
iron with encouraging results �Katsnelson and Lich-
tenstein, 2000�.

• Assessment of the LDA+DMFT method. The addi-
tion of a realistic band theory to the DMFT treat-
ment of correlated electron systems has opened a
new area of investigation. To the many-body theo-
rist, the infusion of a realistic band theory allows one
to make system-specific studies. Some are listed in
Sec. IV on materials. For the electronic structure
community, the LDA+DMFT method allows for a
variety of materials which are not well treated by
the LDA or the LDA+U method, such as corre-
lated metals and systems with paramagnetic local
moments. The main shortcoming is in the arbitrari-
ness in the choice of the correlated orbitals, in the
estimation of U, and the ambiguity in the choice of
the double-counting correction. This may turn out
to be hard to resolve within this formalism. The
ideas described in the following section formulate
the many-body problem in terms of fluctuating
electric fields and electrons, treating all electrons
on equal footing, providing an internally consistent
evaluation of the interaction, and eliminating the
need for the double-counting correction.
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E. Equations in real space

• Functional of the local Green’s function in real space.
The success of the dynamical mean-field approxima-
tions is related to the notion that the local approxi-
mation is good in many situations. Thus far, the no-
tion of locality has only been explored after choosing
a set of tight-binding orbitals, but can also be formu-
lated in real space, as stressed by Chitra and Kotliar
�2000a� and Savrasov and Kotliar �2004�. This is nec-
essary in order to make contact with theories such as
density-functional theory, which is formulated di-
rectly in the continuum without resorting to a choice
of orbitals or preferred basis set. The theory is for-
mulated by defining the local Green’s function to be
the exact Green’s function G�r ,r� ,z� within a given
volume �loc and zero outside. In other words,

Gloc�r,r�,z� = G�r,r�,z� loc�r,r�� , �130�

where r is within a primitive unit cell �c positioned
at R=0 while r� travels within some volume �loc cen-
tered at R=0. The function  is unity when r
��c , r���loc and zero otherwise. This construc-
tion can be translationally continued onto the en-
tire lattice by enforcing the property  loc�r+R ,r�
+R� = loc�r ,r��.

The procedures outlined previously can be applied
to the continuum in order to construct an exact func-
tional which gives the exact free energy, the local
Green’s function �in real space�, its Kohn-Sham for-
mulation, and its dynamical mean-field approxima-
tion �by restricting the interaction in the full Baym-
Kadanoff functional to the local Green’s function�.
This approach has the advantage that the density is
contained in this definition of a local Green’s func-
tion, and therefore the density-functional theory is
naturally embedded in this formalism. Another ad-
vantage is that the approach contains the bare Cou-
lomb interaction, and therefore is free from phe-
nomenological parameters such as the Hubbard U.
However, this may create problems since it is well
known that significant screening of interactions oc-
curs within real materials. Therefore it is useful to
incorporate the effects of screening at a level of
functional description of the system.

• Motivation and choice of variables: Spectral density
functional of the local Green’s functions and of the
local interaction. We introduce two local source fields
Jloc and Kloc which probe the local electron Green’s
function Gloc and the local part of the boson Green’s
function Wloc�x ,x�� = �T
��x���x��� loc�r ,r��, the
screened interaction �see Sec. I.B.3�. This generaliza-
tion represents extended dynamical mean-field
theory now viewed as an exact theory. Note that for-
mally the cluster for the interaction can be different
from the defined local Green’s function �130� but we
will not distinguish between them for simplicity. The
auxiliary Green’s function G�r ,r� , i�� and auxiliary
interaction W�r ,r� , i�� are introduced which are the

same as local functions within nonzero volume of
 loc�r ,r��,

Gloc�r,r�,i�� = G�r,r�,i�� loc�r,r�� , �131�

Wloc�r,r�,i�� = W�r,r�,i�� loc�r,r�� . �132�

The spectral density functional is

�SDFT�Gloc,Wloc� = Tr ln G − Tr�G0
−1 − G−1�G + EH���

−
1
2

Tr ln W +
1
2

Tr�vC
−1 − W−1�W

+ �SDFT�Gloc,Wloc� . �133�

It can be viewed as a functional �SDFT�Gloc ,Wloc�
or alternatively as a functional �SDFT�G ,W�.
�SDFT�Gloc ,Wloc� is formally not a sum of two-
particle diagrams constructed with Gloc and Wloc,
but in principle a more complicated diagrammatic
expression can be derived from Fukuda et al.
�1994�; Valiev and Fernando �1997�; Chitra and
Kotliar �2001�. A more explicit expression involv-
ing a coupling constant integration can be given.
Examining stationarity of �SDFT yields saddle-point
equations for G�r ,r� , i�� and W�r ,r� , i��,

G−1�r,r�,i�� = G0
−1�r,r�,i�� − Mint�r,r�,i�� , �134�

W−1�r,r�,i�� = vC
−1�r − r�� − P�r,r�,i�� , �135�

where Mint�r ,r� , i�� is the auxiliary local mass op-
erator defined as the variational derivative of the
interaction functional:

Mint�r,r�,i�� =
�	SDFT�Gloc�
�G�r�,r,i��

=
�	SDFT�Gloc�
�Gloc�r�,r,i��

 loc�r,r�� , �136�

P�r ,r� , i�� is the effective susceptibility of the system
defined as the variational derivative

P�r,r�,i�� =
− 2��SDFT

�W�r�,r,i��
=

− 2��SDFT

�Wloc�r�,r,i��
 loc�r,r�� .

�137�

Note a set of parallel observations for P as well as
for Mint. Both P and Mint are local by construc-
tion, i.e., these are nonzero only within the cluster
restricted by  loc�r ,r��. Formally, they are auxiliary
objects and cannot be identified with the exact
self-energy and susceptibility of the electronic sys-
tem. However, if the exact self-energy and suscep-
tibility are sufficiently localized, this identification
becomes possible. If the cluster �loc includes the
physical area of localization, we can immediately
identify Mint�r ,r� , i�� with 	int�r ,r� , i�� , P�r ,r� , i��
with ��r ,r� , i�� in all space. However, both
G�r ,r� , i�� and G�r ,r� , i�� as well as W and W are
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always the same within �loc regardless of its size,
as it is seen from Eqs. �131� and �132�.

• Practical implementation and Kohn-Sham representa-
tion. The Kohn-Sham Green’s function can be calcu-
lated using the following representation:

G�r,r�,i�� = 	
kj

�kj�
R �r��kj�

L �r��
i� + � − �kj�

, �138�

where the left �kj�
L �r� and right �kj�

R �r� states satisfy
the following Dyson equations:

�− �2 + Vext�r� + VH�r���kj�
R �r�

+ � Mxc�r,r�,i���kj�
R �r��dr� = �kj��kj�

R �r� , �139�

�− �2 + Vext�r�� + VH�r����kj�
L �r��

+ � �kj�
L �r�Mxc�r,r�,i��dr = �kj��kj�

L �r�� . �140�

These equations should be considered as eigenvalue
problems with a complex, non-Hermitian self-
energy. As a result, the eigenvalues �kj� are complex
in general, and the same for both equations. The ex-
plicit dependence on the frequency i� of both the
eigenvectors and eigenvalues comes from the self-
energy. Note that the left and right eigenfunctions
are orthonormal,

� dr�kj�
L �r��kj��

R �r� = �jj�, �141�

and can be used to evaluate the charge density of a
given system using the Matsubara sum and the inte-
gral over the momentum space,

��r� = T	
i�

	
kj

�kj�
R �r��kj�

L �r�
i� + � − �kj�

ei�0+
. �142�

It has been shown �Savrasov and Kotliar, 2004� that
this system of equations reduces to the Kohn-Sham
eigensystem when the self-energy is frequency inde-
pendent.

Note that the frequency-dependent energy bands
�kj� represent an auxiliary set of complex eigenval-
ues. These are not the true poles of the exact one-
electron Green’s function G�r ,r� ,z�. However, they
are designed to reproduce the local spectral density
of the system. Note also that these bands �kjz are not
the true poles of the auxiliary Green’s function
G�r ,r� ,z�. Only in the situation when G is a good
approximation to G does the solution of the equa-
tion z+�−�kjz=0 give a good approximation for qua-
siparticle energies.

• Evaluation of the total energy. The energy-dependent
representation allows one to obtain a compact ex-
pression for the total energy. As we have argued,
entropy terms are more difficult to evaluate. How-

ever, at low temperatures, these contributions are
small and the total-energy approach is valid. In this
respect, the SDFT total energy formula is obtained
by utilizing the relationship �kj�= ��kj�

L �−�2

+Meff��kj�
R � = ��kj�

L �−�2+Vext+VH+Mxc��kj�
R �,

ESDFT = T	
i�

ei�0+	
kj

gkj��kj�

− T	
i�

� drdr�Meff�r,r�,i��G�r�,r,i��

+ � drVext�r���r� + EH���

+
1
2

T	
i�

� drdr�Mxc�r,r�,i��Gloc�r�,r,i�� ,

�143�

where Meff=Mint+Vext and gkj�=1/ �i�+�−�kj��.
For the same reason as in DFT, this expression
should be evaluated with the self-energy Meff
which is used as input to the routine performing
the inversion of the Dyson equation, and with the
value of the Green’s function G which is the output
of that inversion.

• Constructions of approximations. The dynamical
mean-field approximation to the exact spectral den-
sity functional is defined by restricting the interac-
tion part of Baym-Kadanoff functional
�SDFT�Gloc ,Wloc� to Gloc�r ,r� ,z� and Wloc�r ,r� , i��.
The sum over all diagrams, constrained to a given
site, together with the Dyson equations can be for-
mulated in terms of the solution of an auxiliary
Anderson impurity model, after the introduction
of a basis set. We introduce a bath Green’s func-
tion G0�r ,r� , i�� and a “bath interaction”
V0�r ,r� , i�� defined by the following Dyson equa-
tions:

G0
−1�r,r�,i�� = Gloc

−1 �r,r�,i�� + Mint�r,r�,i�� , �144�

V0
−1�r,r�,i�� = Wloc

−1 �r,r�,i�� + P�r,r�,i�� . �145�

Note that formally neither G0 nor V0 can be associ-
ated with noninteracting G0 and the bare interaction
vC, respectively. These two functions are to be con-
sidered as an input to the auxiliary impurity model to
give new Mint�r ,r� , i�� and P�r ,r� , i��.

To summarize, the effective impurity action, the
Dyson equations �144� and �145� connecting local
and bath quantities, as well as the original Dyson
equations �134� and �135�, constitute a self-consistent
set of equations as saddle-point conditions extremiz-
ing the spectral density functional �SDFT�G ,W�. They
combine cellular and extended versions of DMFT
and represent our philosophy in the ab initio simula-
tion of a strongly correlated system. Since Mint and
P are unknown initially, the solution of these equa-
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tions assumes self-consistency. First, assuming some
initial Mint and P, the original Dyson equations �134�
and �135� are used to find the Green’s function G and
screened interaction W. Second, the Dyson equa-
tions for the local quantities �144� and �145� are used
to find G0 , V0. Third, the quantum impurity model
with input G0 , V0 is solved with an available many-
body technique to give new local Mint and P: this is
a much more challenging task than purely fermionic
calculations �e.g., cluster DMFT in the Hubbard
model�, which can only be addressed with quantum
Monte Carlo methods using continuous Hubbard-
Stratonovich fields �Sun and Kotliar, 2002� or possi-
bly with continuous quantum Monte Carlo studied
by Rubtsov et al. �2005�. The process is repeated until
self-consistency is reached. This is schematically il-
lustrated in Fig. 10. Note that while the single-site
impurity problem has a well-defined algorithm to ex-
tract the lattice self-energy, this is not generally true
for cluster impurity models �Biroli et al., 2004�. The
latter provides the self-energy of the cluster, and an
additional prescription such as implemented within
cellular DMFT or DCA should be given to construct
the self-energy of the lattice.

An interesting observation can be made on the role
of the impurity model which in the present context
appeared as an approximate way to extract the self-
energy of the lattice using input a bath Green’s func-
tion and bath interaction. Alternatively, the impurity
problem can be thought of itself as the model which
delivers the exact mass operator of the spectral den-
sity functional �Chitra and Kotliar, 2001�. If the latter
is known, there should exist a bath Green’s function
and bath interaction which can be used to reproduce
it. In this respect, the local interaction Wloc can be
thought of as an exact way to define the local Cou-
lomb repulsion “U,” i.e., the interaction which deliv-
ers exact local self-energy.

• Local GW. A simplified version of the described con-
struction �Kotliar and Savrasov, 2001; Zein and

Antropov, 2002� is known as a local version of the
GW method �LGW�. Within the spectral density-
functional theory, this is an approximation to the
functional �SDFT�Gloc ,Wloc� taken in the form

�LGW�Gloc,Wloc� = −
1
2

Tr GlocWlocGloc. �146�

As a result, the susceptibility P�r ,r� , i�� is approxi-
mated by the product of two local Green’s functions,
i.e., P=−2��LGW/�Wloc=GlocGloc, and the
exchange-correlation part of our mass operator is
approximated by the local GW diagram, i.e., Mxc
=��LGW/�Gloc=−GlocWloc. Note that since the local
GW approximation �146� is relatively cheap from a
computational point of view, its implementation
for all orbitals within a cluster is feasible. The re-
sults of the single-site approximation for the local
quantities were already reported by Zein and
Antropov �2002�, and for clusters in Zein et al.
�2005�.

Note finally that the local GW approximation is just
one possible impurity solver to be used in this con-
text. For example, another popular approximation
known as the fluctuation exchange approximation
�FLEX� �Bickers and Scalapino, 1989� can be worked
out along the same lines.

• Assessment of the method. The described algorithm is
quite general, totally ab initio, and allows the deter-
mination of various quantities, such as the local one-
electron Green’s functions Gloc and the dynamically
screened local interactions Wloc. This challenging
project so far has only been carried out for a model
Hamiltonian �Sun and Kotliar, 2002�. On the other
hand, one can view the LDA+DMFT method as an
approximate implementation of this program, as dis-
cussed by Savrasov and Kotliar �2004�. Note also that
the combination of the DMFT and full GW algo-
rithm has been proposed and applied to Ni �Bier-
mann et al., 2003�. This, in principle, shows the way
to incorporate full k dependence of the self-energy
known diagrammatically within GW. The first imple-
mentation of a fully self-consistent spectral density-
functional calculation within the LDA+DMFT ap-
proximation was carried out by Savrasov et al. �2001�
using the full potential LMTO basis set �for details
see Savrasov and Kotliar �2004��. Since then the
method has been implemented in the exact muffin-
tin orbital basis set �Chioncel, Vitos, et al., 2003� as
well as in a fully Korringa-Kohn-Rostoker imple-
mentation �Minar et al., 2005�.

The spectral density-functional theory contains the
local or cluster GW diagrams together with higher-
order local corrections to construct an approxima-
tion to the exact Mxc. Just like the Kohn-Sham spec-
tra were a good starting point for constructing the
quasiparticle spectra for weakly correlated electron
systems, we expect that Mxc will be a good approxi-
mation for strongly correlated electron systems. This

FIG. 10. Illustration of the self-consistent cycle in spectral
density-functional theory within the local dynamical mean-
field approximation: both local Green’s function Gloc and local
Coulomb interaction Wloc are iterated. Here we illustrate one
possible explicit realization of the abstract general SDFT con-
struction. This requires an explicit definition of Gloc, which is
done by using a tight-binding basis set.
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is a hypothesis that can be checked by carrying out
the perturbation expansion in nonlocal corrections.

F. Application to lattice dynamics

Computational studies of lattice dynamics and struc-
tural stability in strongly correlated situations is another
challenging theoretical problem which has been ad-
dressed by Dai et al. �2003� and Savrasov and Kotliar
�2003�. LDA has delivered the full lattice dynamical in-
formation and electron-phonon related properties of a
variety of simple metals, transition metals, as well as
semiconductors with exceptional accuracy �Baroni et al.,
2001�. This is due to an introduction of a linear-response
approach �Zein, 1984; Baroni et al., 1987�. This method
overcame the problems of traditional techniques based
on static susceptibility calculations which generally fail
to reproduce lattice dynamical properties of real mate-
rials due to difficulties connected with summations in
high-energy states and the inversion of a large dielectric
matrix �Devreese and Camp, 1983�.

Despite these impressive successes, there is by now
clear evidence that the present methodology fails when
applied to strongly correlated materials. For example,
the local-density predictions for such properties as bulk
modulus and elastic constants in metallic plutonium are
approximately one order of magnitude off from experi-
ment �Bouchet et al., 2000�; the phonon spectrum of
Mott insulators such as MnO is not predicted correctly
by LDA �Massidda et al., 1999�.

Recently, a linear-response method to study the lattice
dynamics of correlated materials has been developed
�Dai et al., 2003; Savrasov and Kotliar, 2003�. The dy-
namical matrix being the second-order derivative of the
energy can be computed using spectral density-
functional theory. As with the ordinary density-
functional formulation of the problem �Savrasov, 1996�,
we deal with the first-order corrections to the charge
density �� as well as the first-order correction to the
Green’s function �G�i�� which should be considered as
independent variables in the functional of the dynamical
matrix. To find the extremum, a set of the linearized
Dyson equations has to be solved self-consistently,

�− �2 + M̂eff�i�� − �kj����kj�
R

+ ��M̂eff�i�� − ��kj���kj�
R = 0, �147�

which to first-order changes in the local mass operator

M̂eff�i��. Here and in the following we assume that the
phonon wave vector of the perturbation q is different
from zero, and therefore first-order changes in the ei-

genvalues ��kj� drop out. The quantity �M̂eff�i�� is a
functional of �G�i�� and should be found self-
consistently. In particular, the change in the self-energy

�M̂eff�i�� needs a solution of an AIM linearized with
respect to the atomic displacement, which in practice
requires the computation of a two-particle vertex func-
tion �=�2	SDFT�Gloc� / ��Gloc�Gloc�.

In practice, a change in the eigenvector ��kj� has to be
expanded in some basis set. Previous linear-response
schemes were based on tight-binding methods �Varma
and Weber, 1977�, plane-wave pseudopotentials �Zein,
1984; Baroni et al., 1987; Gonze et al., 1992; Quong and
Klein, 1992�, linear augmented plane waves �Yu and
Krakauer, 1994�, mixed orbitals �Heid and Bohnen,
1999�, and linear muffin-tin orbitals �Savrasov, 1992�.
Due to the explicit dependence on the atomic positions
of local orbital basis sets both Hellmann-Feynman con-
tributions and incomplete basis set corrections appear in
the expression for the dynamical matrix �Savrasov,
1996�. The functions ��kj� are represented as follows:

��kj� = 	
�


�A�
kj���

k+q + A�
kj����

k� , �148�

where we introduced both changes in the frequency-
dependent variational coefficients �A�

kj� as well as
changes in the basis functions ���

k. The latter helps us to
reach fast convergence in Eq. �148� with respect to the
number of the basis functions 
�� since the contribution
with ���

k takes into account all rigid movements of the
localized orbitals �Savrasov, 1992�.

The first-order changes in the Green’s function can be
found as follows:

�Gloc�i�� = 	
kj

��kj�
L �kj�

R + �kj�
L ��kj�

R

i� + � − �kj�
, �149�

which should be used to evaluate the first-order change
in the charge density and dynamical matrix �see Fig. 11�.

A simplified version of the approach, neglecting the
impurity vertex function, was applied to the paramag-
netic phases of Mott insulators �Savrasov and Kotliar,
2003� as well as to high-temperature phases of pluto-
nium �Dai et al., 2003�. We describe these applications in
Sec. IV.

G. Application to optics and transport

Optical spectral functions such as conductivity or re-
flectivity are important characteristics of solids and give
a direct probe of the electronic structure.

Here we outline an approach which allows us to cal-
culate the optical properties of a strongly correlated ma-

FIG. 11. Illustration of the self-consistent cycle to calculate
lattice dynamics using spectral density-functional theory.
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terial within the spectral density-functional framework
�Perlov et al., 2004; Haule et al., 2005; Oudovenko, Páls-
son, et al., 2006�. This work extends the methodology in
use for weakly correlated systems �see Maksimov et al.
�1988�� to correlated materials. The optical conductivity
can be expressed via the equilibrium state current-
current correlation function �Mahan, 1993� and is given
by


����� = �e2�
−�

+�

d!����! + �/2,! − �/2�

�
f�! − �/2� − f�! + �/2�

�
, �150�

where f�!� is the Fermi function, and the transport func-
tion ����! ,!�� is

����!,!�� =
1

�c
	
kjj�

Tr
���kj�!����kj��!��� , �151�

where �c is the unit-cell volume and

�̂kj�!� = −
1

2�i
�Gkj�!� − Gkj

† �!�� �152�

is expressed via the retarded one-particle Green’s func-
tion Gkj�!� of the system. Taking the zero-temperature
limit and using the solutions �kj� and �kj�

R,L of the Dyson
equations �139� and �140� on the real frequency axis we
express the optical conductivity in the form


����� =
�e2

�
	

ss�=±

ss�	
kjj�

�
−�/2

+�/2

d!
Mkjj�

ss�,���!−,!+�

� + �kj!−
s − �kj�!+

s�

�� 1

!− + � − �kj!−
s −

1

!+ + � − �kj�!+
s� � , �153�

where we have denoted !±=!±� /2, and used the abbre-
viated notations �kj!

+ 
�kj! , �kj!
− =�kj!

* .
The matrix elements Mkjj� are generalizations of the

standard dipole-allowed transition probabilities which
are now defined with the right and left solutions �R and
�L of the Dyson equation,

Mkjj�
ss�,���!,!�� = � ��kj!

s �s����kj!�
−s� �s�dr � ��kj�!�

s� �s�

�����kj!
−s �sdr , �154�

where we have denoted �kj!
+ =�kj!

L , �kj!
− =�kj!

R , and as-
sumed that ��kj!

s �+ 
�kj!
s while ��kj!

s �−=�kj!
s* . Equations

�153� and �155� represent generalizations of the formulas
for optical conductivity for a strongly correlated system,
and involve the extra internal frequency integral in Eq.
�153�.

Let us consider the noninteracting limit when

M̂xc���→ i�→0. In this case, the eigenvalues �kj!=�kj

+ i� , �kj!
R 
 �kj� , �kj!

L 
 �kj�* 
 �kj� and the matrix ele-

ments Mkjj�
ss�,���! ,!�� are all expressed via the standard

dipole transitions ��kj�� �kj���2. Working out the energy

denominators in Eq. �153� in the limit i�→0 and for �
�0 leads us to the usual form for the conductivity which
for its interband contribution has the form


����� =
�e2

�
	

k,j��j

�kj����kj���kj�����kj�

��f��kj� − f��kj������kj − �kj� + �� . �155�

To evaluate the expression 
����� numerically, one
needs to pay special attention to the energy denomina-

tor 1/ ��+�kj!−
s −�kj�!+

s� � in Eq. �153�. Due to its strong k
dependence the tetrahedron method of Lambin and
Vigneron �1984� should be used. On the other hand, the
difference in the square brackets of Eq. �153� is a
smooth function of k and one can evaluate it using linear
interpolation. This allows one to calculate the integral
over ! by dividing the interval −� /2"!" +� /2 into dis-
crete set of points !i and assuming that the eigenvalues
�kj! and eigenvectors �kj! can to zeroth order be ap-
proximated by their values at the middle between each
pair of points, i.e., !̄i

±=!i±� /2+ �!i+1−!i� /2. In this way,
the integral is replaced by the discrete sum over internal
grid !i defined for each frequency �, and the Dyson
equation needs to be solved twice for the energy !̄i

+ and
for the energy !̄i

− The described procedure produces a
fast and accurate algorithm for evaluating optical re-
sponse functions of a strongly correlated material
�Haule et al., 2005; Oudovenko, Pálsson, et al., 2006�.

Similar developments can be applied to calculate the
transport properties such as dc resistivity. The transport
parameters of the system are expressed in terms of so-
called kinetic coefficient, denoted here by Am. The
equation for the electrical resistivity is given by

� =
kBT

e2

1

A0
, �156�

and the thermopower and thermal conductivity are
given by

S =
− kB

�e�
A1

A0
, # = kB�A2 −

A1
2

A0
� . �157�

Within the Kubo formalism �Mahan, 1993� the kinetic
coefficients are given in terms of equilibrium state
current-current correlation functions of the particle and
heat current in the system. To evaluate these correlation
functions an expression for electric and heat currents are
needed. Once those currents are evaluated, transport
with DMFT reduces to the evaluation of the transport
function,

�xx��� =
1

�c
	
k

Tr
v̂k
x����̂k���v̂k

x����̂k���� , �158�

and the transport coefficients �Pruschke et al., 1995�,
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Am = ��
−�

�

d��xx���f���f�− ������m. �159�

The described methodology has been applied to calcu-
late the optical conductivity �Oudovenko, Pálsson,
Savrasov, et al., 2004�, the thermopower �Pálsson and
Kotliar, 1998�, the dc resistivity, and the thermal conduc-
tivity for LaTiO3 �Oudovenko, Pálsson, Kotliar, et al.,
2004�.

III. TECHNIQUES FOR SOLVING THE IMPURITY
MODEL

In practice the solution of the dynamical mean-field
�DMFT� equations is more involved than the solution of
the Kohn-Sham equations, which now appear as static
analogs. There are two central elements in DMFT: the
self-consistency condition and the impurity problem �see
Fig. 5�. The first step is trivial for model calculations but
becomes time consuming when realistic band structures
are considered. Usually it is done using the tetrahedron
method �see, e.g., Anisimov, Poteryaev, et al. �1997�; pro-
grams and algorithms for carrying out this step are de-
scribed at http://dmft.rutgers.edu�.

The second step in the DMFT algorithm, i.e., the so-
lution of the impurity problem, is usually the most diffi-
cult task. Fortunately, we can now rely on many years of
experience to devise reasonable approximations for car-
rying out this step. At present, there is no universal im-
purity solver that works efficiently and produces accu-
rate solutions for the Green’s function in all regimes of
parameters. Instead what we have is a large number of
techniques, which are good in some regions of param-
eters. In many cases when there are various methods
that can be applied, there is a conflict between accuracy
and computational cost, and in many instances one has
to make a compromise between efficiency and accuracy
to carry out the exploration of new complex materials. It
should be noted that the impurity solver is one compo-
nent of the various algorithms discussed, and that for a
given material or series of materials, one should strive to
use comparable realism and accuracy in the various
stages of the solution of a specific problem.

For space limitations, we have not covered all meth-
ods that are available for studying impurity models, but
we simply chose a few illustrative methods which have
been useful in the study of correlated materials using
DMFT. In this introductory section, we give an overview
of some of the methods, pointing out the strengths and
limitations of them and we expand on the technical de-
tails in the following subsections.

There are two exactly soluble limits of the multior-
bital Anderson impurity model, for a general bath: The
atomic limit when the hybridization vanishes and the
band limit when the interaction matrix U is zero. There
are methods which are tied to expansions around each
of these limits. The perturbative expansion in the inter-
actions is described in Sec. III.A. It is straightforward to
construct the perturbative expansion of the self-energy
in powers of U up to second order, and resum certain

classes of diagrams such as ring diagrams and ladder
diagrams. This is an approach known as the fluctuation
exchange approximation �FLEX�, and it is certainly re-
liable when U is less than the half bandwidth D. These
impurity solvers are fast since they only involve matrix
multiplications and inversions. They also have scaling
with N3 where N is the number of orbitals or the cluster
size.

The expansion around the atomic limit is more com-
plicated. A hybridization function with spectral weight
at low frequencies is a singular perturbation at zero tem-
perature. Nevertheless, approaches based on expansion
around the atomic limit are suitable for describing ma-
terials where there is a gap in the one-particle spectra, or
when the temperature is sufficiently high that one can
neglect the Kondo effect. This includes Mott insulating
states at finite temperatures, and the incoherent regime
of many transition-metal oxides and heavy-fermion sys-
tems. Many approaches which go beyond the atomic
limit exist: direct perturbation theory in the hybridiza-
tion, resummations based on equation of motion meth-
ods, such as the Hubbard approximations, resolvent
methods, and slave particle techniques such as the non-
crossing approximation �NCA� and their extensions. We
describe them in Secs. III.B and III.C.

There are methods, such as the quantum Monte Carlo
�QMC� or functional integral methods, which are not
perturbative in either U or bandwidth W. In the QMC
method one introduces a Hubbard-Stratonovich field
and averages over this field using Monte Carlo sampling.
This is a controlled approximation using a different ex-
pansion parameter, the size of the mesh for the imagi-
nary time discretization. Unfortunately, it is computa-
tionally expensive as the number of time slices and the
number of Hubbard-Stratonovich fields increases. The
QMC method is described in Sec. III.D. It also has a
poor scaling with the orbital degeneracy, since the num-
ber of Hubbard-Stratonovich fields increases as the
square of the orbital degeneracy. Mean-field methods
are based on a functional integral representation of the
partition function, and the introduction of auxiliary
slave bosons �Barnes, 1976, 1977; Coleman, 1984�. The
saddle-point approximation �Kotliar and Ruckenstein,
1986; Rasul and Li, 1988� gives results which are similar
to those of the Gutzwiller method, and corrections to
the saddle point can be carried out with a loop expan-
sion �Li et al., 1989�. Unfortunately, perturbative correc-
tions to the saddle point are complicated and have not
been evaluated in many cases. We review the mean-field
theory in Sec. III.E.

Interpolative methods bear some resemblance to the
analytic parametrizations of Vxc in LDA. One uses dif-
ferent approximations to the self-energy of the impurity
model, viewed as a functional of ��i��, in different re-
gions of frequency. The idea is to construct interpolative
formulas that become exact in various limits, such as
zero frequency where the value of the Green’s function
is dictated by Luttinger theorem, high frequencies where
the limiting behavior is controlled by some low-order
moments, and in weak- and strong-coupling limits where
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one can apply some form of perturbation theory. This
approach has been very successful in unraveling the
Mott transition problem for model Hamiltonians, and it
is beginning to be used for more realistic studies. We
review some of these ideas in Sec. III.F.

In this review, we have not covered techniques based
on exact diagonalization methods, and their improve-
ments such as Wilson renormalization-group �RG� tech-
niques and density-matrix renormalization-group meth-
ods. These are very powerful techniques, but due to the
exponential growth of the Hilbert space, they need to be
tailored to the application at hand. For model Hamilto-
nians, it is worth noting that the exact solution for criti-
cal properties of the Mott transition was obtained with
the projective self-consistent method �Moeller et al.,
1995�, which is an adaptation of Wilson RG ideas on the
DMFT study of the Mott transition. This method sets up
a Landau theory and justifies the use of exact diagonal-
ization for small systems to determine the critical prop-
erties near the transition. Further simplifications of
these ideas, which in practice amounts to exact diagonal-
ization methods with one or up to a few sites, have been
used by Potthoff and co-workers �Caffarel and Krauth,
1994; Potthoff, 2001�. The flow equation method of Wil-
son and Glazek and of Wegner �Glazek and Wilson,
1993, 1994; Wegner, 1994� is another adaptive technique
for diagonalizing large systems, and it has been applied
to the impurity model. Clearly, the renormalization-
group approach in the cluster DMFT context is neces-
sary to attack complex problems. Some ideas for com-
bining cellular DMFT with RG formalism were put
forward for model Hamiltonians �Bolech et al., 2003�.
The density-matrix renormalization-group �DMRG� ap-
proach has also recently been employed to solve the im-
purity model in the context of DMFT �Garcia et al.,
2004�.

Finally, we point out that insight is gained when nu-
merical methods are combined with analytic studies. As
in previous applications of DMFT to model Hamilto-
nians, fast approximate techniques and algorithms are
needed to make progress in the exploration of complex
problems, but they should be used with care and tested
with more exact methods.

A. Perturbation expansion in the Coulomb interaction

The application of perturbation theory in the interac-
tion U has a long history in many-body theory. For
DMFT applications, we consider a general multiorbital
Anderson impurity model �AIM� given by

H = 	
��

���d�
†d� +

1
2 	
����

U����d�
†d�

†d�d�

+ 	
k��

�Vk��
* d�

†ck� + H.c.� + 	
k�

�k�ck�
† ck�, �160�

where U���� is the interaction matrix and � combines
spin and orbital index �or position of an atom in the unit
cell or cluster, in cellular DMFT applications�.

The lowest-order term is the Hartree-Fock formula

�12
�HF� = 	

34
�U1342 − U1324�n43. �161�

The second-order term is given by

�12
�2��i�� = 	


3-8�
U1456U7832 � � � d�d��d���67����58����

��34����
f���f����f�− ��� + f�− ��f�− ���f����

i� − � + �� − ��
,

�162�

where f is the Fermi function and �12 is the spectral func-
tion of the impurity Green’s function.

Higher-order terms in perturbation theory that can be
easily summed up are those in the form of a ladder or,
equivalently, T matrix. There are two distinct types of
ladder graphs, the particle-particle type �Galitskii, 1958�
shown in the top row of Fig. 12 and particle-hole T ma-
trix depicted in the bottom row of Fig. 12. The one-
particle self-energy can then be constructed using those
two building blocks in the way shown in Fig. 13. Al-
though we did not plot the generating functional, which
in the general case is more involved, it can be con-
structed order by order from the above definition of the
self-energy. Hence the approximation is conserved if the
propagators are fully dressed, and therefore automati-
cally obeys certain microscopic conservation laws as well
as the Friedel sum rule. The method was first proposed
by Bickers and Scalapino in the context of lattice models
�Bickers and Scalapino, 1989� as the fluctuation ex-
change approximation �FLEX�. It is the minimal set of
graphs describing the interaction of quasiparticles with
collective modes �pairs, spin, and charge fluctuations�.

Particle-particle and particle-hole T matrices corre-
spond algebraically to

FIG. 12. Particle-particle �top row� and particle-hole �bottom
row� T matrices which appear in the FLEX approximation.
Full lines correspond to electron propagators and wiggly lines
stand for the bare interaction U.

FIG. 13. Definition of the FLEX self-energy constructed with
the particle-particle and particle-hole T matrices. Note that
lower-order terms appear many times and need to be sub-
tracted to avoid double counting.
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T̂pp�i�� = �1 − Û�̂i�
pp�−1Û�̂i�

ppÛ�̂i�
ppÛ , �163�

T̂ph�i�� = �1 − �V̂ + Ŵ��̂i�
ph�−1�V̂ + Ŵ� − �V̂ + Ŵ��̂i�

phV̂ ,

�164�

where V1234=U1324, W1234=−U1342 and

�1234
pp �i�� = − T	

i��

G23�i���G14�i� − i��� , �165�

�1234
ph �i�� = − T	

i��

G23�i���G41�i� + i��� . �166�

We assumed here a product of the form �ÂB̂�1234
= 	56A1256B5634. With these building blocks one can con-
struct the self-energy of the form

�12
�FLEX��i�� = T 	

i�34
�T1432

pp �i��G34�i� − i��

+ T1432
ph �i��G43�i� + i��� . �167�

The Feynman graphs in perturbation theory can be
evaluated self-consistently �namely, in terms of fully
dressed Green’s function G, including only skeleton
graphs� or non-self-consistently �namely, using G0�. In
practice the results differ once U is comparable to the
half bandwidth. The skeleton perturbation theory in G
sums more graphs than the bare perturbation theory, but
in many-body theory more does not necessarily imply
better. In the context of the single-band AIM model, the
perturbative approach in powers of the Hartree-Fock
Green’s function G0 was pioneered by Yamada and
Yoshida �Yosida and Yamada, 1970, 1975a, 1975b; Ya-
mada, 1975�. These ideas were crucial for the first imple-
mentation of DMFT �Georges and Kotliar, 1992� for the
one-band Hubbard model, where the expansion in G0
proved to be qualitatively and quantitatively superior to
the expansion in G. In the multiorbital case, the situa-
tion is far less clear as discussed by Drchal et al. �2005�.

Bulut et al. �1993� tested Kanamori’s �1963� observa-
tion that particle-hole bubbles should interact not with
the bare interaction matrix, U in Eq. �164�, but with an
effective interaction screened by the particle-particle
ladder �see Fig. 14�. This can be approximated by replac-
ing U by Ueff=Tpp��=0� in Eq. �164�. Note that those
diagrams are a subset of the parquet graphs, recently
implemented by Bickers and White �1991�. It is also
worth noting that the FLEX approach is exact to order
U3.

Within the realistic DMFT, the FLEX method was
implemented for iron and nickel �in its non-self-
consistent form� by Katsnelson and Lichtenstein �Licht-

enstein and Katsnelson, 1998; Katsnelson and Lichten-
stein, 1999; Chioncel, Vitos, et al. 2003� and by Drchal et
al. �1999� �these authors used the expansion in G0 where
an additional shift of the impurity level is implemented
to satisfy Luttinger’s theorem following Kajueter and
Kotliar �1996b�, and the screened interaction in the
particle-hole channel was assumed�.

When the interaction is less than the half bandwidth
the perturbative corrections are small and the ap-
proaches �self-consistent, non-self-consistent, screened,
or unscreened� are equivalent to the second-order
graph. However, when U becomes comparable to the
half bandwidth differences appear, and we highlight
some qualitative insights gained from a comparison of
the various methods �Putz et al., 1996; Drchal et al.,
2005�. The perturbation theory in G0 tends to overesti-
mate Z−1 and overemphasize the weight of the satellites.
On the other hand, the skeleton perturbation theory
tends to underestimate the effects of the correlations
and suppress the satellites. This is clearly seen in Fig. 15
where perturbative results are compared to QMC data,
analytically continued to the real axis with the maximum
entropy method �MEM� �Jarrell and Gubernatis, 1996�.

To gauge the region in which the approach is appli-
cable, we compare the quasiparticle weight from various
perturbative approaches to QMC data in Fig. 16. All
self-consistent approaches miss the existence of the Mott
transition, while its presence or at least a clear hint of its
existence appears in the second-order non-self-
consistent approach.

While FLEX performs reasonably well for two- and
three-band models, it is important to stress that this can-
not persist to very large degeneracy. With increasing
number of bands, the quasiparticle residue must in-
crease due to enhancement of screening effect and
therefore Z must grow and eventually approach unity.
This screening effect �Florens et al., 2002� is not captured

FIG. 14. Particle-hole Tph ladder contribution with screened
effective interaction Ueff mediated by Tpp.

FIG. 15. �Color online� Comparison of FLEX density of states
�using Tpp graphs only� with QMC results �full line�. The
dashed line corresponds to FLEX approximation with fully
dressed propagators and the dash-dotted line stands for the
same approximation with undressed propagators. The calcula-
tion was performed for a two-band Hubbard model for semi-
circular density of states with U=2D and T=1/16D. From
Drchal et al., 2005.
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by FLEX which displays the opposite trend as shown in
Fig. 17.

It is worth noting that for Ni the full d bandwidth is
approximately 4.5 eV and U is estimated to be around 3
eV so the approach is near the boundary of its applica-
bility.

B. Perturbation expansion in the hybridization strength

The perturbation expansion with respect to the hy-
bridization strength can be derived with the help of re-
solvent techniques or by decoupling of Hubbard opera-
tors in terms of slave particles. In the latter case, an
auxiliary operator an is assigned to each state of the local

Hilbert space, such that a slave particle creates an
atomic state out of the new vacuum,

�n� = an
†�vac� , �168�

where �vac� is a new vacuum state. The Hubbard opera-
tors are easily expressed in terms of the auxiliary par-
ticles Xn,m=an

†am. The creation operator of an electron is
expressed by

d�
† = 	

nm
�F�†�nman

†am, �169�

where Fnm
� = �n�d��m� are matrix elements of a destruc-

tion operator. In terms of pseudoparticles, the general
Anderson impurity model reads

H = 	
mn

Emnan
†am + 	

k�
!k�ck�

† ck�

+ 	
k,mn,��

�Vk��
* �F�†�nman

†amck� + H.c.� , �170�

where ck�
† creates an electron in the bath and � stands

for the spin and band index.
In order that electrons are faithfully represented by

the auxiliary particles, i.e., 
d� ,d�
† � =���, the auxiliary

particle an must be boson �fermion�, if the state �n� con-
tains even �odd� number of electrons, and the constraint

Q 
 	
n

an
†an = 1 �171�

must be imposed at all times. This condition expresses
the completeness relation for local states 	n�n��n� =1.
The constraint is imposed by adding a Lagrange multi-
plier �Q to the Hamiltonian and the limit �→� is car-
ried out.

The physical local Green’s function �electron Green’s
function in Q=1 subspace� and other observables are
calculated with the help of the Abrikosov trick �Abriko-
sov, 1965� which states that the average of any local op-
erator that vanishes in the Q=0 subspace is proportional
to the grand-canonical �all Q values allowed� average of
the same operator,

�A�Q=1 = lim
�→�

�A�G

�Q�G
. �172�

The advantage of the pseudoparticle approach is that
standard diagrammatic perturbation theory techniques
such as Wick’s theorem can be applied. The limit �→�
is to be taken after the analytic continuation to the real
frequency axes is performed. Taking this limit actually
leads to a substantial simplification of the analytic con-
tinuation �Haule et al., 2001�.

A different approach is to “soften” the constraint Q
=1, and replace it by

	
n

an
†an = q0N . �173�

The original problem corresponds to taking q0=1/N but
one can obtain a saddle point by keeping q0 of order of
1 while allowing Q to be large. This approach was stud-

FIG. 16. �Color online� Variation of quasiparticle residue with
interaction strength for the two-band half-filled Hubbard
model with a semicircular density of states of bandwidth D.
Schemes presented are second-order perturbation with fully
dressed propagators �dashed curve�, second-order with
Hartree-Fock dressing of propagators �dot-dashed�, FLEX
with electron-electron T matrix only but fully self-consistent
�solid line�, and FLEX with electron-electron T matrix only
and Hartree-Fock dressing of propagators �line with stars�.
From Drchal et al., 2005.

FIG. 17. �Color online� Variation of FLEX spectra with in-
creasing number of bands for U=D and T=0.001 on the Bethe
lattice. The self-consistency is obtained by fully dressed propa-
gators including FLEX channels. From Drchal et al., 2005.
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ied by Parcollet and Georges �1997� and Parcollet et al.
�1998�. While the standard NCA approach suffers from
exceeding the unitary limit leading to causality prob-
lems, the soft NCA’s do not suffer from that problem.
Other subunitary impurity solvers were developed based
on slave rotor methods �Florens and Georges, 2002,
2004� and on decoupling schemes �Costi, 1986; Jeschke
and Kotliar, 2005�.

The perturbation expansion in the hybridization
strength can be easily carried out in the pseudoparticle
representation. The desired quantity of the expansion is
the local Green’s function which is proportional to the
bath electron T matrix, therefore we have

Gloc = lim
�→�

1

V2�Q�G
�c, �174�

where �c is the bath electron self-energy calculated in
the grand-canonical ensemble. The latter quantity has a
simple diagrammatic interpretation.

The selection of diagrams is best illustrated using the
Baym-Kadanoff functional 	. The building blocks of 	
are dressed Green’s functions of pseudoparticles Gmn

�depicted as dashed lines� and bath electrons G�� �solid
lines�. Due to the exact projection, only pseudoparticles
are fully dressed while bath electron Green’s functions
are nondressed because the bath self-energy vanishes as
exp�−��� with �→�. The bare vertex Vk��, when com-
bined with the conduction electron propagator, can be
expressed in terms of the bath spectral function
A����� =−�1/2�i�������+ i0+� −�����− i0+��. Because
propagators are fully dressed, only skeleton diagrams
need to be considered in the expansion.

The lowest-order contribution, depicted in the first
line of Fig. 18, is known as noncrossing approximation
�NCA�. Pseudoparticle self-energies �mn, defined
through �G−1�mn= ��−���mn−Emn−�mn, are obtained by
taking the functional derivative of 	 with respect to the
corresponding Green’s function, i.e., �mn=�	 /�Gnm.
After analytic continuation and exact projection, the
self-energies obey the following coupled equations:

�mn�� + i0+� = 	
��,m�n�

�Fmm�
� �F�†�n�n � d�f���A�����

�Gm�n��� + � + i0+� + �F�†�mm�Fn�n
�

�� d�f�− ��A�����Gm�n��� − � + i0+�� .

�175�

The local electron Green’s function, obtained by func-
tional derivative of 	 with respect to the bath Green’s
function, becomes

G���� + i0+� = 	
mnm�n�

Fn�n
� �F�†�mm�

1

Q
� d�

�exp�− �����m�n����Gnm�� + � + i0+�

− Gm�n��� − � − i0+��nm���� , �176�

where A�� is the bath spectral function, Q= �d�
�exp�−���	m�mm��� is the grand canonical expectation
value of charge Q, and �mn=−�1/2�i��Gmn��+ i0+�
−Gmn��− i0+�� is the pseudoparticle density of states.
Note that equations are invariant with respect to shift of
frequency in the pseudoparticle quantities due to local
gauge symmetry, therefore � that appears in the defini-
tion of the pseudo-Green’s functions can be an arbitrary
number. In numerical evaluation techniques, we can use
this to our advantage and choose zero frequency at the
point where the pseudoparticle spectral functions di-
verge.

The NCA has many virtues: it is very simple, it cap-
tures the atomic limit, it contains the Kondo energy as a
nonperturbative scale, and it describes the incipient for-
mation of the Kondo resonance. However, it has several
pathologies that can be examined analytically by consid-
ering the pseudoparticle threshold exponents at zero
temperature �Müller-Hartmann, 1984�. Within NCA, the
infrared exponents are independent of doping and fol-
low the exact non-Fermi-liquid exponents in the multi-
channel Kondo problem �Cox and Ruckenstein, 1993�.
From the Friedel sum rule, however, it follows that the
fully screened local moment leads to doping-dependent
Fermi-liquid exponents that differ substantially from
NCA exponents �Costi et al., 1996�. When calculating
the local spectral function within NCA, this leads to a
spurious peak at zero frequency with the Abrikosov-
Suhl resonance exceeding the unitary limit. At the tem-
perature at which the Kondo resonance exceeds the uni-
tary limit the approximation breaks down when
combined with DMFT self-consistency conditions be-
cause it causes the spectral function to become negative
hence violating causality.

At finite U the NCA has a new problem, namely, it
severely underestimates the width of the Kondo reso-
nance and hence the Kondo temperature. This problem
is partly corrected by vertex corrections shown in
the second row of Fig. 18, which was introduced by
Pruschke and Grewe and called the one-crossing ap-
proximation �OCA�. This diagram is a natural generali-

FIG. 18. Diagrammatic representation of the noncrossing ap-
proximation �NCA� and one-crossing approximation �OCA�
functional for the Anderson impurity model.
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zation of NCA, namely, including all diagrams with a
single line crossing. It is also the lowest-order self-
consistent approximation exact up to V2. Although the
pseudoparticle self-energies within NCA are calculated
up to V2, the local Green’s function is not. Only the
conduction electron self-energy is exact up to V2 and
from Eq. �174� it follows that the physical spectral func-
tion is not calculated to this order within NCA.

Several attempts were made to circumvent the short-
comings of NCA by summing up certain types of dia-
grams to recover the correct infrared exponents and sat-
isfy the unitarity limit given by the Friedel sum rule. It
can also be shown analytically that an infinite resumma-
tion of skeleton diagrams is necessary to change the in-
frared exponents from their NCA values. The natural
choice is to consider the ladder type of scatterings be-
tween the pseudoparticle and bath electrons which leads
to crossings of conduction lines in the Baym-Kadanoff
functional. In the infinite U limit, only diagrams where
conduction electrons cross at least twice are possible.
Note that due to the projection any contribution to the
Baym-Kadanoff functional consists of a single ring of
pseudoparticles since at any time there must be exactly
one pseudoparticle in the system. The diagrams where
conduction electrons cross exactly twice is called CTMA
�Kroha et al., 1997� and has not yet been implemented in
the context of the DMFT. A typical contribution to the
CTMA Baym-Kadanoff functional is shown in the sec-
ond line of Fig. 19. In the impurity context, this approxi-
mation recovers correct Fermi-liquid infrared exponents
in the whole doping range and it is believed to restore
Fermi-liquid behavior at low temperature and low fre-
quency.

At finite U, however, skeleton diagrams with less
crossings exist. Namely, a ladder ring where conduction
lines cross exactly twice can be closed such that two con-
duction lines cross only once. This approximation, de-

picted in the first row of Fig. 19, is called SUNCA. It has
been shown in the context of single impurity calculation
�Haule et al., 2001�, that this approximation further im-
proves the Kondo scale bringing it to the Bethe ansatz
value and also restores Fermi-liquid exponents in the
strict Kondo regime. Unfortunately, this is not enough to
restore the Friedel sum rule in the local spectral function
at low temperatures. In this regime, CTMA has to be
combined with other approaches such as renormalized
perturbation theory or ideas in the spirit of the interpo-
lative methods discussed in Sec. III.F.

Results of a computationally less expensive SUNCA
calculation agree very well with the considerably more
time-consuming QMC calculation. The agreement is es-
pecially accurate around the Mott transition region
while the half-integer filling shows some discrepancy due
to the restriction to a small number of valences in the
SUNCA calculation.

We illustrate the agreement between these methods
by means of the real axis data of QMC+MEM and
SUNCA where the latter results are obtained on the real
axis. As shown in Fig. 20, both calculations produce an
almost identical quasiparticle peak, while some discrep-
ancy can be observed in the shape of Hubbard bands.
We believe that this is due to analytic continuation of
QMC data which do not contain high-frequency infor-
mation. Note that the width of the upper Hubbard band
is correctly obtained within SUNCA while QMC results
show redistribution of the weight in much broader re-
gion. Namely, in the large U limit, i.e., when a band is
separated from the quasiparticle peak, its width ap-
proaches the width of the noninteracting density of
states, in this case 2D.

Finally, we compare the imaginary axis data in Fig. 21
for the doping levels nd=0.8 and 0.9. Note that the re-
sults are practically identical with discrepancy smaller
that the error of the QMC data.

The NCA was used in the DMFT context to study
cerium �Zölfl et al., 2001�, La1−xSrxTiO3 �Zölfl et al.,
2000�, and Ca2−xSrxRuO4 �Anisimov et al., 2002�. In the
case of cerium, it does capture the most essential differ-
ences of the alpha and gamma phases, and compares

FIG. 20. �Color online� Comparison between SUNCA �full
line� and QMC �dashed line� density of states for the three-
band Hubbard model on the Bethe lattice for nd=0.8 at U
=5D and T=D /16.

FIG. 19. Diagrammatic representation of the two-crossing ap-
proximation �TCA� generating functional �i.e., the sum of
CTMA and SUNCA�. It consists of all skeleton diagrams �in-
finite number� where conduction lines cross twice at most.
Conserving T-matrix approximation �CTMA� is a subset of
diagrams where all conduction lines cross twice and have ei-
ther clockwise or counterclockwise direction. Symmetrized
U-NCA �SUNCA� is a subset of TCA where a conduction line
exists that crosses only once. Conduction lines can have either
clockwise or counterclockwise direction.
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favorably to quantum Monte Carlo results �Held, Mc-
Mahan, et al., 2001� and experiments. Using NCA in the
context of the SrRuO3, Anisimov et al. �2002� were the
first to predict the so-called orbitally selective Mott tran-
sition, the phase where one band is in a Mott insulting
state while the rest are metallic. These results are dis-
cussed further in Sec. IV.A. The SUNCA approach was
first tested in LaSrTiO3 where it is in a good agreement
with QMC results �Oudovenko, Haule, et al., 2004�.

C. Approaching the atomic limit: Decoupling scheme, Hubbard
I, and lowest-order perturbation theory

The AIM Hamiltonian can also be expressed in terms
of Hubbard operators Xnm by replacing an

†am in Eq.
�170� with Xnm:

H = 	
m

EmXmm + 	
k�

!k�ck�
† ck�

+ 	
k,mn,��

�Vk��
* �F�†�nmXnmck� + H.c.� . �177�

For convenience, we choose the local basis to be the
atomic eigenbasis, which makes the atomic Hamiltonian
diagonal.

The atomic Green’s function can be deduced from the
Lehmann representation of the Green’s function,

G��
�at��i�� =

1

Z 	
nm

Fnm
� �F�†�mn�e−�En + e−�Em�

i� − Em + En
, �178�

where Fnm
� = �n�d��m� as in Sec. III.B and Z= 	ne−�En is

the partition function. The atomic Green’s function has a
discrete number of poles at energies corresponding to
the atomic excitations, weighted with the appropriate
factors e−�En /Z that can be interpreted as probabilities
to find an atom in the atomic configuration �n�.

One can compute corrections to the Green’s function
�178� by expanding around the atomic limit, using the
technique of cumulants �Metzner, 1991�. However, there
are many resummations of these expansions, and no ex-

tensive test of this problem has been carried out. Vari-
ous methods start from the equations of motion for the
Green’s functions of the Hubbard operators, for the
Green’s functions of the conduction electrons, and for
the mixed Green’s functions of conduction electrons and
Hubbard operators.

Once the Green’s functions for the Hubbard opera-
tors,

Gn1n2n3n4
�
� = − �T
Xn1n2

�
�Xn3n4
�0�� , �179�

are determined, the local Green’s function G�� can be
deduced by the following linear combination of G’s:

G���i�� = 	
n1n2n3n4

Fn1n2

� Gn1n2n3n4
�i���F�†�n3n4

. �180�

In the decoupling method of Roth �1969�, one re-
places the commutator �Hhyb ,X� by a linear combination
of the operators c and X, namely,

�Hhyb,Xn1n2
� = 	

n3n4

An1n2n3n4
Xn3n4

+ 	
k�

Bn1n2

k� ck�

+ 	
k�

Cn1n2

k� ck�
† , �181�

and the coefficients A, B, and C are determined by pro-
jecting onto the basis set of X and c by means of a scalar
product defined by the anticommutator. This leads to a
set of closed equations for the coefficients A, B, and C.
The Green’s function for the Hubbard operators can
then be deduced from the following matrix equation:

G−1 = G�at�−1
− �̃ − Y , �182�

where the effective hybridization function �̃ and atomic
Green’s function for the Hubbard operators G�at� are

�̃n1n2n3n4
= 	

��

�F�†�n1n2
���Fn3n4

� , �183�

FIG. 21. �Color online� Imaginary axis QMC
data �dots� and SUNCA results �full lines�
compared for the three-band Hubbard model
on a Bethe lattice for �=16 and U=5D. The
left panel shows results for doping levels nd
=0.8 and the right panel corresponds to dop-
ing nd=0.9.
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Gn1n2n3n4

�at� �i�� =
�n1n4

�n3n2
+ �n2n3

�n1n4

�i� + En1
− En2

�
, �184�

and � is the “density matrix.” The equations close once
the density matrix � is computed from �n1n2

=−�1/��	i�e−i�0+Gn1n�n�n2
�i�� or �n1n2

= �1/��	i�ei�0+

�Gn�n1n2n��i�� or any combination. Therefore, there are
many possible implementations of the method.

Finally, the matrix Y, which is proportional to the co-
efficient A introduced in Eq. �182�, becomes

Yn1n2n3n4
=

1

��n1n1
+ �n2n2

���n3n3
+ �n4n4

�

�	
m

�Zmn2mn3
�n1n4

− Zn1mn4m�n2n3
� , �185�

with

Zn1n2n3n4
= − T 	

n5n6

	
i�

��̃n1n2n5n6
�i��Gn5n5n3n4

�i��

+ Gn3n4n5n6
�i���̃n5n6n1n2

�i��� . �186�

The equation for the Green’s function �182� is nonlin-

ear because of the coefficients X̄ and Y, and has to be
solved iteratively. Neglecting Y results in the famous
Hubbard I approximation,

G−1 = G�at�−1
− � . �187�

The Hubbard I approximation has been successfully ap-
plied, for example, to the TmSe compound and the para-
magnetic state of NiO �Lichtenstein and Katsnelson,
1998�, and to samarium monopnictides and monochalco-
genides �Svane et al., 2005�.

Perhaps the best approximate method for the system
in the Mott-insulating state is the straightforward pertur-
bation expansion in hybridization strength to the lowest
order. By expanding the S matrix,

exp�− 	
��

�
0

� �
0

�

d
1d
2d�
† �
1�����
1,
2�d��
2�� ,

�188�

to the lowest order, one immediately obtains the follow-
ing correction to the Green’s function:

G���i�� − G��
�at��i��

= G��
�at��i��	

�,�
	
i��

G��
�at��i�������i���

+ �
0

�

d
�
0

�

d
1�
0

�

d
2ei�
	
�,�

����
1 − 
2�

��T
d��
�d�
† �0�d�

†�
1�d��
2��0. �189�

It is straightforward to evaluate the two-particle
Green’s function for the atom in Eq. �189�. One can in-
sert the identity �m��m� between any pair of creation and
destruction operators and then integrate over time the
resulting exponential factors. The resulting six terms,

due to six different time orderings of the product, can
also be drawn by Feynman diagrams and evaluated with
the straightforward non-self-consistent expansion as dis-
cussed in Sec. III.B. To make the method exact in the
band U=0 limit, we calculate the lowest-order correc-
tion to the self-energy rather than to the Green’s func-
tion. The correction is

� = G�at�−1
�G − G�at��G�at�−1

− � . �190�

This self-energy is exact up to second order in hybrid-
ization V and in the noninteracting U=0 case. It also
gives the correct width of the Hubbard bands which is
underestimated by a factor of 2 with the Hubbard I ap-
proximation in the large U limit. This method has re-
cently been tested for the Hubbard model where it per-
formed very satisfactorily whenever the system has a
finite gap in the one-electron spectrum �Dai et al., 2005�.

Many other approaches have recently been used in a
DMFT context. The local moment method �Vidhya-
dhiraja and Logan, 2004, 2005; Logan and Vidhya-
dhiraja, 2005� has been successfully applied to the peri-
odic Anderson model. It would be interesting to extend
it to a full multiorbital case. Also decoupling technique,
mode coupling technique, the factorization technique,
the alloy analogy, the modified alloy analogy, and the
methods of moments were used. These approaches can
be applied directly to the lattice and simplified using the
DMFT locality ansatz, or applied directly to the AIM.
For a recent review with a DMFT perspective, see
Shvaika �2000�.

D. Quantum Monte Carlo: Hirsch-Fye method

The general idea underlying the Hirsch-Fye determi-
nantal QMC method is to discretize the path integrals
representing the partition function and the Green’s func-
tion of an interacting problem. These discretized path
integrals are then converted, using a Hubbard-
Stratonovich transformation, into a statistical average
over a set of noninteracting Green’s functions in a time-
dependent field, which can be either continuous or dis-
crete. The sum over the auxiliary fields is done using
Monte Carlo sampling methods. The QMC algorithm
for the solution of the Anderson impurity model was
introduced by Hirsch and Fye �1986� and Fye and Hirsch
�1989� and generalized to the multiorbital case in Bonca
and Gubernatis �1993� and Takegahara �1993�. Applica-
tions to the solution of the lattice models via DMFT was
introduced by Jarrell �1992�, see also Georges and
Krauth �1992�; Rozenberg et al. �1992�; Jarrell, Akhlagh-
pour, and Pruschke �1993� in the single-orbital case. In
the multiorbital context it was implemented by Rozen-
berg �1997�, see also Held and Vollhardt �1998�. Some
DMFT applications, such as the study of electron-
phonon interactions within single-site DMFT, require a
QMC implementation using continuous Hubbard-
Stratonovich fields �Jarrell, Akhlaghpour, and Pruschke,
1993� or a combination of discrete and continuous
Hubbard-Stratonovich field �Arrachea and Rozenberg,
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2005�. Continuous fields are essential for the imple-
mentation of extended dynamical mean-field theory
�EDMFT� �see, for example, Motome and Kotliar �2000�
and Pankov et al. �2002��, and for the combination of
EDMFT and GW methods �Sun and Kotliar �2002��. An
alternative algorithm for EDMFT using discrete spins
was introduced by Grempel and Rozenberg �1998�.
Zero-temperature QMC algorithms, which are closely
related to determinantal algorithms, have been devel-
oped for lattice models. DMFT applications have been
introduced by Feldbacher et al. �2004�. There are alter-
native methods of evaluating the partition and correla-
tion functions, which are amenable to Monte Carlo
methods �Rombouts et al., 1999�. These are free of dis-
cretization errors and have been introduced by Rubtsov
�2003�; Rubtsov et al. �2005�; Savkin et al. �2005� in the
DMFT context.

QMC has been used extensively in DMFT calcula-
tions. Due to space limitations, only a few illustrative
examples shall be described. The QMC method has
been applied to the study of cerium by McMahan and
collaborators �Held, McMahan, et al., 2001; McMahan et
al., 2003� and to iron, nickel, and manganese by Licht-
enstein and collaborators �Katsnelson and Lichtenstein,
2000; Lichtenstein et al., 2001; Biermann et al., 2004�.
DMFT with QMC as an impurity solver has been ap-
plied to many other d-electron systems. These include
perovskites with a d1 configuration such as LaTiO3
�Nekrasov et al., 2000�, SrVO3 and CaVO3 �Pavarini et
al., 2004; Sekiyama et al., 2004�, ruthenates such as
RuSrO4 �Liebsch and Lichtenstein, 2000; Liebsch,
2003a�, Ti2O3 �Poteryaer et al., 2004� and vanadates such
as V2O3 �Held, Keller, et al., 2001� and VO2 �Biermann,
Poteryaev, et al., 2005�.

Since a detailed review �Georges et al., 1996� for the
single-orbital case is available, we focus here on the gen-
eralization of the QMC method for multiorbital or clus-
ter problems �for the impurity solver, “cluster DMFT” is
a particular case of multiorbital DMFT where the clus-
ter index plays the role of an orbital�. The emphasis here
is on generality; for a more pedagogical introduction to
the method in a simple case, see Georges et al. �1996�.
This section is organized as follows. First in Sec. III.D.1,
we present the general impurity problem to be solved by
QMC. In Sec. III.D.2 we present the Hirsch-Fye algo-
rithm, where we discuss the time discretization, derive
the discrete Dyson equation, and present the algorithm.
In Sec. III.D.2.e, we present the case of density-density
interactions, which has been the most widely used. De-
tails of the derivations are provided in Appendix A for
completeness.

1. A generic quantum impurity problem

a. Definitions

We will focus on the solution of a generic quantum
impurity problem like Eq. �85� defined by the following
action:

Seff = − � �
0

�

d
d
� 	
1��,��N
1�
�N


d�

† �
�G0
��

−1 �
,
��d�
�
��

+ �
0

�

d
Hint�
� , �191a�

Hint 
 U�1�2�3�4


1
2
3
4 d�1
1

† d�2
2
d�3
3

† d�4
4
, �191b�

where G0
��
−1 is the Weiss function, 1�
�N
 are indices

in which the Green’s functions are diagonal �conserved
quantum numbers�, 1�� ,��N are indices in which the
Green’s functions are not diagonal, and repeated indices
are summed over. The value of N and N
 depends on
the problem �see Sec. III.D.1.c�. Hint is the interaction
part of the action. It should be noted that we have de-
fined a completely general Hint, which is necessary to
capture multiplets which occur in real materials. The
purpose of the impurity solver is to compute the Green’s
function

G
���
� = �Td�
�
�d�

† �0��Seff

�192�

and higher-order correlation functions. In this section,
we will use a different convention for the sign of the
Green’s function than in the rest of this review: in accor-
dance with Georges et al. �1996� and the QMC literature,
we define the Green’s functions without the minus sign.

b. Generalized Hubbard-Stratonovich decoupling

Hirsch-Fye QMC can only solve impurity problems
where the interactions have a decoupling formula of the
following form:

Hint = H1 + ¯ + Hn, �193a�

e−�
Hi = 	
Si�Si

wi�Si�exp� 	

��

d�

† V��

i
 �Si�d�
� , �193b�

where Si is an index �referred to in the following as a
“QMC spin”� in a set Si �discrete or continuous�, wi�Si�
$0 is a positive weight, V=V†, and Hi=Hi

†. Approxi-
mate decouplings, where Eq. �193� holds only up to
O��
m� , m%3, are discussed below �see also Gunnars-
son and Koch �1997��. Equation �193a� is a generalized
form of the familiar Hubbard-Stratonovich transforma-
tion. Multiple Hubbard-Stratonovich fields per time slice
allow the decoupling of more general interactions, as
exemplified below.

c. Examples

We consider a multiorbital or cluster DMFT solution
of the Hubbard model in the normal phase �nonsuper-
conducting�. In this case, N is the number of impurity
sites or orbitals, and N
=2: 
 is the spin index which is
conserved. The interaction term Hint is given by
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Hint = 	
��,
�"��,
��

U��


�n�


n�

�, �194�

where we use the lexicographic order �� ,
�" �� ,
�� if
�"� or �=� and 
"
�. In this case, the decoupling
formula uses the discrete Hubbard-Stratonovich trans-
formation using Ising spins introduced by Hirsch �1983�
�see also Bonca and Gubernatis �1993� and Takegahara
�1993��,

e−�
Hint =
1
2 	


S��


�=±1�

exp� 	
��,
�"��,
��

����


�S��



��n�

 − n�


��

− �

U��



�

2
�n�


 + n�

���� , �195�

���


� 
 arccosh�exp��


2
U��



��� . �196�

The weight w�S� = 1
2 is independent of the auxiliary Ising

fields S��


� defined for each U term. The matrix V of Eq.

�193� is diagonal and reads

V��

 �
S�� = ��� 	

�,
�

��,
�"��,
��

����


�S��



� −
�


2
U��



��

− ��� 	
�,
�

��,
�$��,
��

����

�
S��


�
 +
�


2
U��


�
� .

�197�

A general goal of the Hirsch-Fye algorithm is to mini-
mize the number of decoupling fields and to reduce the
size of the configuration space where the Monte Carlo is
done �see below�. In this respect, decoupling each U
term in the interaction with a different field is not opti-
mal, especially when there is a symmetry between orbit-
als. However, there is currently no efficient solution to
this problem.

A second example is the study of a superconducting
phase. We restrict our discussion to the Hubbard model
for simplicity, but the generalization to more realistic
models is straightforward. For the study of superconduc-
tivity in a two-band model see Georges et al. �1993�. For
the QMC calculation of d-wave superconductivity in a
cluster see Lichtenstein and Katsnelson �2000� and
Maier et al. �2000a�. We restrict ourselves to a case
where a possible antiferromagnetic order and the super-
conducting order are collinear. In this case, we introduce
the Nambu spinor notation at each site i: �† 
 �d↑

† ,d↓� so
that the Green’s function is

G�
� 
 �T
��
��†�0�� = �G↑�
� F�
�
F*�
� G↓�� − 
�

� , �198�

where F is the anomalous Green’s function F�
�
= �T
d↑�
�d↓�0��. We denote by + and − the Nambu indi-
ces, and n+=n↑ and n−=1−n↓. In this case, we take N


=1 �spin is not conserved� and N=2Nnormal case, twice the
number of sites. The index � is a double index �i , ± �,
where i is a site index. For simplicity, we take a local U
interaction, which is then decoupled as �for each cluster
site�

exp�− �
Uni↑ni↓� & 	
Si=±�

e−Si

2
eSi�ni++ni−�−��
U/2��ni+−ni−�

with �=arccosh�exp��
U /2�� �we drop a constant since
it cancels in the algorithm�.

A third example is a further generalization of the
Hirsch-Fye formula to decouple the square of some op-
erator. For example, if M has a spectrum contained in

0, ±1, ±2�, one can use

e�M2
= 	


=0,±S
w
e
M, �199a�

S = cosh−1� e3� + e2� + e� − 1
2

� , �199b�

wS = w−S =
e� − 1

e3� + e2� + e� − 3
, �199c�

w0 = 1 − 2wS. �199d�

This can be used to decouple a nearest-neighbor
density-density interaction in a Hubbard model �as an
alternative to the method that splits this interaction into
four terms using n=n↑+n↓ and the Hirsch-Fye formula�.

To illustrate a more general decoupling formula using
a nondiagonal Vi, we consider adding a spin-spin inter-
action between two sites �1 and 2� in a cluster DMFT
calculation of the Hubbard model. The interaction
Hamiltonian reads �we take J$0� up to a constant term,

Hint 
 ± JS�1 · S�2 = H1 + H2 + H3 +
3J

4
, �200a�

H1 
 −
J

2
��S1x ' S2x�2� , �200b�

H2 
 −
J

2
��S1y ' S2y�2� , �200c�

H3 
 −
J

2
��S1z ' S2z�2 +

3
4

��n1 − 1�2 + �n2 − 1�2�� ,

�200d�

where ni is the total number of particle on-site i=1, 2.
One can then decouple the terms H1 , H2 , H3 separately
�see discussion below in Sec. III.D.2.a�. H3 is a quadratic
polynomial in ni↑ , ni↓, which can therefore be decoupled
with the standard Hirsch-Fye formula described above.
H1 and H2 can be decoupled using Eq. �199�, since
�S1a'S2a� have a spectrum 
0, ±1/2 , ±1�. This leads to a
nondiagonal Vi. Note that at present the question of the
importance of the sign problem for a given decoupling
formula can only be investigated empirically, by imple-
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menting it �except for single-site DMFT, see below�.
Note that the last formulas presented in this paragraph
have not been implemented yet in a published calcula-
tion, contrary to the standard Hirsch-Fye formula.

In the case of a quantum impurity problem formu-
lated in a general nonorthogonal basis, we can orthogo-
nalize within the impurity degree of freedom �however,
there may still be an overlap between different unit
cells�, in order to reduce the problem to the case where
the c basis is orthogonal. The V matrix transforms as
V�= �P†�−1VP−1, where P is the matrix that transform
into the orthogonal basis. Note, however, that in general
a diagonal V will transform into a nondiagonal V�, which
will make the QMC more costly.

2. The Monte Carlo algorithm

a. Time discretization

We start by writing a Hamiltonian form H=H0+Hint
of the action using an effective generalized Anderson
model with ns bath sites,

H0 = 	
p=1

ns

	
��


�p
��
0 ap�


† ap�
 + 	
p��


Vp��

0 �ap�


† d�
 + H.c.�

+ ���
d�

† d�
. �201�

Kp�,p��

 is defined as follows:

H0

 
 	

p�p��

ap�

† Kp�,p��


 ap��
, �202�

where H0 
 	
H0

 and ap�
 is the annihilation operator

of the electron on the bath site for p$0 and for p=0 we
identify d=ap=0 which corresponds to the impurity site.
In the Hirsch-Fye algorithm, the imaginary time is dis-
cretized with L discrete times 
l= �l−1�� /L, with 1� l
�L. Using the Trotter formula, we approximate the par-
tition function by Z � Z�
 with

Z�
 
 Tr�
l=1

L �exp�− �
H0��
i=1

n

exp�− �
Hi�� , �203�

Z�
 = 	

Si

l�
��

l=1

L

�
i=1

n

wi�Si
l��

��



Tr�
l=1

L �e−�
H0�
i=1

n

exp�	
��

d�

† V��

i
 �Si
l�d�
�� ,

�204�

where Si
l are L copies of the decoupling QMC spins. The

Green’s function defined in Eq. �192� at time 
l,

G
;���
l1
,
l2

� =
1

Z
Tr�UL−l1d�
Ul1−l2d�


† Ul2� , �205a�

U 
 e−�
H, �205b�

for 1�� ,��N and l1% l2, is replaced by its discretized
version,

G
;�l1,��,�l2,��
�
 


1

Z�
Tr�ŨL−l1+1d�
Ũl1−l2d�

† Ũl2−1� ,

�206a�

Ũ 
 �
0�i�n

	
Si�Si

wi�Si�exp�d�

† V��

i
 �Si�d�
� ,

Ũ = �
0�i�n

e−�
Hi + O��
m� . �206b�

Since the Trotter formula is an approximation con-
trolled by �
, one may use approximate decoupling for-
mulas, up to order O��
m� �m%3�, that would not intro-
duce a priori a bigger error than the Trotter formula
itself. For density-density interactions exact formulas are
available �as described above� but for more general in-

teractions this may not be the case. A priori, Ũ=U
+O��
2� thus G�
=G+O��
� �since L�O��
2�
=O��
��. However, given that H is Hermitian, we see
that G is Hermitian G
;���
l1

,
l2
� = �G
;���
l1

,
l2
��*. Using

Ũ=U„1− ��
�2 /2	i"j�Hi ,Hj� +O��
3�…, the fact that the
commutator is anti-Hermitian when all the Hi are Her-
mitian, and U†=U, we get Z�
=Z+O��
2� and the re-
sult

G
;���
l1
,
l2

� =
G
;�l1,��,�l2,��

�
 + �G
;�l1,��,�l2,��
�
 �*

2

+ O��
2� . �207�

Equation �207� shows that �i� we gain one order in �

with symmetrization, �ii� various Hermitian Hi can be
decoupled separately to the same order, and �iii� we only
need a decoupling formula that is correct up to order
��
2� included.

b. The Dyson equation

Let us introduce a matrix of size Nns defined by

Vi
�S�p�,p�� 
 �pp��p0V��
i
 �S� �208�

and the notation 
S� 
 
Si
l ,1� i�n ;1� l�L� for a con-

figuration of the QMC spin, we have immediately from
Eq. �203�

Z�
 = 	

S�

��
l=1

L

�
i=1

n

wi�Si
l��Z�
S�� , �209�

Z�
S�� 
 �


�Tr�

l=L

1 �exp�− �
ap�

† Kp�,p��


 ap��
�

� �
i=1

n

exp�ap�

† Vi
�Si

l��p�,p��ap��
��� . �210�

Introducing Nns�Nns matrices Bl�S�, defined by
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Bl�S� 
 exp�− �
K
��
i=1

n

exp�Vi
�S�� , �211�

we can rewrite the partition function as �see Appendix
A�

Z�
S�� = �



det O
�
S�� , �212a�

O
�
S�� 
 �
1 � 0 BL


�Si
L�

− B1

�Si

1� � ¯ 0

0 � ¯ ¯

¯ � 1 0

¯ � − BL−1

 �Si

L−1� 1
� .

�212b�

Note that O
 has size LNns. Moreover, the Green’s
function for a fixed QMC-spin configuration, defined as
in Eq. �206a�, can be shown to be �see Appendix A�

g
S�

 = O


−1�
S�� . �213�

The formula for the partition function can be general-
ized to the average of any operator M,

�M� =

	

S�

�M�
S���
i,l

wi�Si
l���




det O
�
S��

	

S�

��
i,l

wi�Si
l���




det O
�
S��
, �214�

where �M�
S� is the average of the operator at fixed con-
figuration 
S�. In particular, the Green’s function is given
by averaging g
S�


 . Moreover, for a fixed QMC-spin con-
figuration, the action is Gaussian, allowing us to com-
pute any correlation functions with Wick’s theorem. As
noted by Hirsch and Fye �1986� �see also Georges et al.
�1996��, one can derive a simple Dyson relation between
the Green’s functions of two configurations gS and gS�,

g
S��

 = g
S�


 + �g
S�

 − 1�

���
i=n

1

e−Ṽi
�
S���
i=1

n

eṼi
�
S��� − 1�g
S��

 , �215�

with the notation

Ṽp�l,p��l�
i
 �
S�� = �l,l�Vp�,p��

i
 �Si
l� �216�

�see Appendix A�. Since Ṽ acts nontrivially only on the
p=0 subspace, we can project Eq. �215� on to it and
remove auxiliary variables. We obtain finally the Dyson
equation for the Green’s function G �defined as in Eq.
�206� and considered here as a matrix of size LN�

G


S�� = G



S� + �G


S� − 1�

���
i=n

1

e−Ṽi
�
S���
i=1

n

eṼi
�
S��� − 1�G


S��, �217�

where

Ṽ�l,�l�
i
 �
S�� = �l,l�V�,�

i
 �Si
l� . �218�

We used the fact that G and Ṽ are diagonal in the 

index. Equation �217� is for matrices of size NL.

We note that Eq. �217� also holds for a special case
V�
S�� =0, with G
S� =G0. This gives a simple way to com-
pute G
S� from G0, which requires the inversion of a
LN�LN matrix A
,

G


S� = A


−1G0
, �219a�

A
 
 1 + �1 − G0
���
i=1

n

eṼi
�
S�� − 1� . �219b�

Equation �219� is often referred to as the “full update
formula.”

Moreover, there is a simplified relation between con-
figurations 
S� and 
S�� which differ only for one QMC
spin Si

l, which allows a faster update of the Green’s func-
tion in the algorithm

G


S�� = A


−1G


S�, �220�

A
 
 1 + �1 − G


S����

j=n

i

e−Ṽj
�
S���
j=i

n

eṼj
�
S��� − 1� ,

can be reduced to

p 
 �



det O
�S��
det O
�S�

= �



det A
 = �



det All

, �221a�

All

 
 1 + �1 − G
;ll


S� �Cll

, �221b�

Cll

 
 �

j=n

i

e−Vj
�Sj
l��

j=i

n

eVj
�Sj�
l� − 1, �221c�

G
;l1l2

S�� = G
;l1l2


S� + �G
;l1l

S� − �l1l�Cll


�All

�−1G
;ll2


S� . �221d�

Equation �221� is often referred to as the “fast update
formula” �Hirsch, 1983�. It is a formula for matrices of
size N �compared to LN for the full update�. It does not
involve a big matrix inversion, therefore it allows a
faster calculation of G than Eq. �219�. For density-
density interactions, the fast update formula can be fur-
ther simplified �with no matrix inversion, see below�.
These equations are the generalizations of Eqs. �130�
and �131�1 of Georges et al. �1996�.

c. The Hirsch–Fye algorithm

In principle, the sum �214� could be done by exact
enumeration �Georges and Krauth, 1993; Georges et al.,
1996� but in practice one can reach much lower tempera-
tures by using statistical Monte Carlo sampling. It con-
sists of the generation of a sample of QMC-spin configu-

1Equation �130� in Georges et al. �1996� has a misprint and
should be read as Gl1l2

� =Gl1l2
+ �G−1�l1l�eV�−V−1�ll�All�−1Gll2

.
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ration 
S� with probability �i,lwi�Si
l��
det O
�
S��. If the

determinant is not positive, one needs to take the abso-
lute value of the determinant to define the probabilities
and sample the sign. After computing GS from G0 with
the “full update” formula �219�, a Markov chain is con-
structed by making local moves, one time slice at a time,
selecting a new value for one QMC spin and using the
fast update formula �221� to compute the Green’s func-
tion for the new QMC-spin configuration. It may also be
convenient to perform global moves that involve the si-
multaneous flipping of many spins in one move �e.g.,
simultaneous flipping all spins in all time slices�. This can
be accomplished directly using Eq. �219� or by generat-
ing the global move as a sequence of local moves with
Eq. �221� �one has then to keep and restore the Green’s
function to the original configuration in case the pro-
posed global move is rejected�. An interesting generali-
zation of this global move was proposed by Grempel
and Rozenberg �1998�, in which one updates different
Fourier components of the fields. As noted above, the
computation allows, in practice, the computation of any
higher-order correlation function since the theory is
Gaussian for a fixed QMC-spin configuration.

It should be noted that for some cases of cluster or
multiorbital problems, this QMC algorithm suffers se-
verely from the sign problem at low temperature, par-
ticularly in the case of frustrated systems �Parcollet et al.,
2004�. In the single-site DMFT case, this problem is ab-
sent: this had been known empirically for a while and
rigorously proved recently �Yoo et al., 2004�.

d. Remarks on the time discretization

There are three difficulties coming from the discreti-
zation of the time in the Hirsch-Fye algorithm:

�i� One has to take a large enough number of time
slices L, or in practice to check that the results are
unchanged when L is increased, which is costly
since the computation time increase approxi-
mately like L3.

�ii� Since the number of time slices is limited, espe-
cially for multiorbital or cluster calculation, the
evaluation of the Fourier transform of the Green’s
function �Matsubara frequencies� is delicate. In
practice, the time Green’s function is constructed
from the discrete function resulting from the
QMC calculation using splines, whose Fourier
transform can be computed analytically �see
Georges et al. �1996��. It turns out, however, that
for this technique to be precise, one needs to
supplement the discrete Green’s function by the
value of its derivatives at 
=0,�, which can be
reduced to a linear combination of two-particle
correlation functions computed by the QMC cal-
culation �Oudovenko and Kotliar, 2002�. Failure
to deal with this problem accurately can lead in
some calculations to huge errors, which can mani-
fest themselves by spurious causality violations.

�iii� When a computation is made far from the
particle-hole symmetric case, the Weiss function
G0 can be very steep close to 
=0 or 
=�. As a
result, it is not well sampled by the regular mesh
time discretization, leading to a potentially large
numerical error. A simple practical solution is to

replace G0 by Ḡ0
−1�i�n� 
G0

−1�i�n� −�, where � is a
diagonal matrix chosen as ���=lim�→��G0

−1������.
From Eq. �191a� we see that the new impurity
problem is equivalent if the � term �which is qua-
dratic in d and diagonal in the indices� is simulta-
neously added to the interaction �or equivalently
to the right-hand side of the corresponding decou-
pling formula�. In the new impurity problem,

however, Ḡ0 is less steep than G0 close to 
=0 or

=�, so the numerical error introduced by dis-
cretization is less important.

e. Density-density interactions

The fast update formula can be further simplified
when the matrix V is diagonal, particularly for density-
density interactions, which is used in most calculations
with the Hirsch-Fye algorithm. To be specific, we con-
centrate on the first example given above �the normal
state of a Hubbard model�. The matrix V of Eq. �193� is
diagonal and given by Eq. �197�. The fast update for-

mula �221� for the flip of the Ising spin S�̃�̃
l
̃
̃� at the time

slice 
l simplifies. The nonzero elements of the matrix C
are given by

Cll;�̃�̃

̃ = exp�2��̃�̃


̃
̃�S�̃�̃�
̃
̃�� − 1, �222a�

Cll;�̃�̃

̃� = exp�− 2��̃�̃


̃
̃�S�̃�̃�
̃
̃�� − 1. �222b�

Let us first consider the case 
̃= 
̃�. p reduces to

p = ��̃��̃ − G
̃;�l,�̃�,�l,�̃�

S� G
̃;�l,�̃�,�l,�̃�


S� Cll;�̃�̃

̃ Cll;�̃�̃


̃ , �223�

��̃ 
 �1 + �1 − G
̃;�l,�̃�,�l,�̃�

S� �Cll;�̃�̃


̃ � �̃ = �̃, �̃ . �224�

Defining M by

M11 = ��̃Cll;�̃�̃

̃ /p , �225a�

M22 = ��̃Cll;�̃�̃

̃ /p , �225b�

M12 = G
̃;�l,�̃�,�l,�̃�

S� Cll;�̃�̃


̃ Cll;�̃�̃

̃ /p , �225c�

M21 = G
̃;�l,�̃�,�l,�̃�

S� Cll;�̃�̃


̃ Cll;�̃�̃

̃ /p , �225d�

we have the fast update formula,

G
;�l1,��,�l2,��

S�� = G
;�l1,��,�l2,��


S� + �

̃��G
;�l1,��,�l,�̃�

S�

− ��l1,��,�l,�̃���M11G
;�l,�̃�,�l2,��

S�

+ M12G
;�l,�̃�,�l2,��

S� � + �G
;�l1,��,�l,�̃�


S�
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− ��l1,��,�l,�̃���M21G
;�l,�̃�,�l2,��

S�

+ M22G
;�l,�̃�,�l2,��

S� �� .

This equation can also be obtained by using the fast
update �Sherman-Morrison� formula twice.

The case where 
̃� 
̃� is more straightforward,

p = ���, �226a�

� 
 �1 + �1 − G
̃;�l,�̃�;�l,�̃�

S� �Cll;�̃�̃


̃ � , �226b�

�� 
 �1 + �1 − G
̃�;�l,�̃�;�l,�̃�

S� �Cll;�̃�̃


̃� � , �226c�

G
;�l1,��,�l2,��

S�� = G
;�l1,��,�l2,��


S� + �

̃Cll;�̃�̃

̃ G
;�l,�̃�,�l2,��


S�

��G
;�l1,��,�l,�̃�

S� − ��l1,��,�l,�̃��/�

+ �

̃�Cll;�̃�̃

̃� G
;�l,�̃�,�l2,��


S� �G
;�l1,��,�l,�̃�

S�

− ��l1,��,�l,�̃��/��. �227�

f. Analytic continuation

The quantum Monte Carlo simulation yields the
Green’s function in imaginary time G�
�. For the study
of the spectral properties, transport, or optics, the
Green’s functions on the real axis are needed and there-
fore the analytic continuation is necessary. This in prac-
tice amounts to solving the following integral equation:

G�
� = � d�f�− ��e−
�A��� , �228�

where A��� is the unknown spectral function and f��� is
the Fermi function. This is a numerically ill-posed prob-
lem because G�
� is insensitive to the spectral density at
large frequencies. In other words, the inverse of the ker-
nel K�
 ,�� = f�−��e−
� is singular and some regulariza-
tion is necessary to invert the kernel. Most often this is
done with the maximum entropy method �MEM� �Jar-
rell and Gubernatis, 1996; Beach, 2004�.

A new functional Q�A�, which is to be minimized, is
constructed as follows:

Q�A� = �S�A� −
1
2
�2�A� , �229�

where �2,

�2�A� = 	
ij=1

L

�Ḡi − G�
i���C−1�ij�Ḡj − G�
j�� , �230�

measures the distance between the QMC data, averaged

over many QMC runs �Ḡi�, and the Green’s function
G�
i� corresponding to a given spectral function A���
according to Eq. �228�. Cij is the covariant matrix needed
to be extracted from the QMC data when measurements
are not stochastically independent. The entropy term
S�A� takes the form

S�A� = � 
A��� − m��� − A���ln�A���/m����� ,

�231�

where m��� is the so-called default model, usually con-
stant, or, alternatively, taken to be the solution of the
same model but calculated by an approximation.

For each value of the parameter �, numeric minimi-
zation of Q gives as the corresponding spectral function
A����. If � is a large number, the solution will not move
far from the default model, while small � leads to un-
physical oscillations caused by overfitting the noisy
QMC data. In the so-called historic MEM, the param-
eter � is chosen such that �2=N, where N is the total
number of real frequency points at which A��� is deter-
mined. In many cases, this gives reasonable spectral
functions, however, in general the MEM method tends
to underfit the data and makes the resulting A��� too
smooth.

In the classical MEM, the parameter � is determined
from the following algebraic equation:

− 2�S��� = Tr
(�����I + (����−1� , �232�

where S��� is the value of the entropy in the solution A�,
which minimizes Q, and (��� is

(���ij = �Ai
��KTC−1K�ij

�Aj
�. �233�

Here Kij is the discretized kernel Kij 
 K�
i ,�j� and Ai is
the discretized spectral function Ai=A��i�d�i and Cij is
the above defined covariant matrix.

In applications of DMFT to real materials, the quasi-
particle peak can have a complex structure since at low
temperature it tends to reproduce the LDA bands
around the Fermi level, i.e., the spectral function ap-
proaches the LDA density of states contracted for the
quasiparticle renormalization amplitude. The MEM
method has a tendency to smear out this complex struc-
ture because of the entropy term. At low temperature,
this may lead to causality problems in the impurity self-
energy. Because of the uncertainties of the MEM it is
useful to compare the results of this regularization with
those of a direct inversion of the singular kernel with the
singular value decomposition �SVD� taking into account
only those singular values which are larger than preci-
sion of the QMC data.

The discretized imaginary time Green’s function G�
i�
can be SVD decomposed in the following way:

G�
i� = 	
j

KijAj = 	
jm

VimSmUmjAj, �234�

where UU†=1 and V†V=1 are orthogonal matrices and
S is diagonal matrix of singular values. The inversion is
then

Aj = 	
m"M,i

Umj
1

Sm
VimGi, �235�

where the sum runs only up to M determined by the
precision of the QMC data, for example, SM$ �ViM�Gi�,
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where �Gi is the error estimate for Gi. The magnitude of
the singular values drop very rapidly and only of order
10 can be kept.

The SVD does not guarantee the spectra to be posi-
tive at higher frequencies nor does it give a renormal-
ized spectral function. This, however, does not prevent
us from accurately determining those physical quantities
which depend on the low-frequency part of spectra as
needed, for example, transport or low-frequency photo-
emission. It is also a useful crosscheck of the MEM
method.

E. Mean-field slave boson approach

Here we describe a different slave boson representa-
tion, which allows a construction of a mean-field theory
closely related to the Gutzwiller approximation. In this
method we assign a slave boson �m to each atomic state
�m� and slave fermion f� to each bath channel such that
the creation operator of an electron is given by

d�
† = z̃�

†f�
† , �236�

with

z̃�
† = 	

m,n
�n

†�F̃�†�nm�m 
 �†F̃�†� . �237�

The matrix elements F̃nm
� are closely related to those in

Eq. �169� with an important difference: here one repre-
sents the electron operator by a product of a pseudofer-
mion and two pseudobosons. The fermionic sign is com-
pletely taken care of by the pseudofermion, and
therefore the matrix elements that appear in the defini-
tion of pseudobosons should be free of the fermionic

sign. In the occupation number basis, the definition of F̃�

is then

F̃nm
� = ��n�d��m�� . �238�

The enlarged Hilbert space contains unphysical states
that must be eliminated by imposing the set of con-
straints

Q 
 �†� = 1, �239�

f�
†f� = �†F̃�†F̃�� . �240�

The first constraint merely expresses the completeness
relation of local states, while the second imposes equiva-
lence between the charge of electrons on the local level
and charge of pseudofermions.

Introduction of these types of Bose fields allows one
to linearize interaction terms of type U��n�n�. For a
more general type of interaction, one needs to introduce
additional bosonic degrees of freedom that are tensors
in the local Hilbert space instead of vectors. Additional
constraints then can diagonalize a more general interac-
tion term.

Following Kotliar and Ruckenstein �1986� additional
normalization operators L� and R� are introduced
whose eigenvalues would be unity if the constraints

�239� are satisfied exactly but at the same time guarantee
the conservation of probability in the mean-field-type
theory,

R� = �1 − �†F̃�F̃�†��−1/2, �241�

L� = �1 − �†F̃�†F̃���−1/2. �242�

With this modification, the creation operator of an elec-
tron is d�

† =z�
†f�

† with projectors equal to

z�
† = R��

†F̃�†� L�. �243�

The action of the AIM may now be written in terms of
pseudoparticles as

S = 	
�

�
0

�

d
�f�
†� �

�

− � + i���f� + �†�− i��F̃�†F̃����

+ �
0

�

d
 �†� �

�

+ i( + E�� − i(

+ 	
�,�

�
0

�

d
�
0

�

d
�z�
† �
�f�

† �
�����
 − 
��

�f��
��z��
�� , �244�

where i( and i�� are introduced for the constraints Eqs.
�239� and �240�, respectively.

After integrating out pseudofermions, the following
saddle-point equations can be derived by minimizing
free energy with respect to classical fields �:

1

�
	
i�

	
�,�

�1
2

�Gg��z�
†���z� + z�

†���z�Gg���

��L�
2F̃�†F̃� + R�

2F̃�F̃�†� + L�R��Gg��z�
†���F̃�

+ ���z�Gg��F̃�†��� + �i( + E − 	
�

i��F̃�†F̃���
= 0, �245�

where �Gg
−1���= ��i�+�− i������−z�

†���z��. The local
electron Green’s function is finally given by

G�� = z�Gg��z�. �246�

Equation �245� with constraints �239� and �240� consti-
tutes a complete set of nonlinear equations that can be
solved by iterations.

In Fig. 22, we show a comparison between the QMC
and Gutzwiller quasiparticle renormalization amplitude
Z for the two-band Hubbard model on Bethe lattice. We
notice that the Gutzwiller method captures all the basic
low-frequency features of the model and compares very
favorably with the QMC results. Remarkably, the chemi-
cal potential also shows a very good agreement between
QMC and the Gutzwiller method as can be seen in Fig.
23.

The slave boson technique constructed by Kotliar and
Ruckenstein �1986� is closely related and inspired by the
famous Gutzwiller approximation, which appears as the
saddle point of the functional integral in terms of the
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auxiliary boson fields describing local collective excita-
tions of the system. However, there is a conceptual dif-
ference: rather than attempting to estimate the total
energy, the slave boson approach constructs an approxi-
mation for the Green’s function at low energy, Eq. �246�.
Fluctuations around the saddle point then allow us to
recover the Hubbard bands as demonstrated by Read
and Newns �1983�; Read �1985�; Lavagna �1990�; Castel-
lani et al. �1992�. The Gutzwiller approximation to the
Gutzwiller wave function becomes exact in infinite di-
mensions �Metzner and Vollhardt, 1988� and has been
recently evaluated in the general multiorbital case
�Bünemann and Weber, 1997; Bünemann et al., 1998�. In
the limit of density-density interactions, the form of the
renormalization function z is identical to the one ob-
tained from the slave boson method. The Gutzwiller ap-
proach is an approach that gives the total energy, and
also the Green’s function if one makes the slave boson

identification connecting the Gutzwiller renormalization
factor to the Green’s function. It has been applied to
iron and nickel by Bünmann and Weber �Ohm et al.,
2002; Bünemann et al., 2003�. Additionally, the slave bo-
son method gives the exact solution for the Mott transi-
tion in a system with large orbital degeneracy �Florens et
al., 2002�.

F. Interpolative schemes

This section covers a different type of approximation
to the functional ��Eimp,��. These are not controlled
approximations, in the sense that they are not based on
a small parameter, but instead are attempts to provide
approximations which are valid simultaneously for weak
and strong coupling, high and low frequency, by combin-
ing different techniques as well as additional exact infor-
mation. By combining various approaches one can ob-
tain a self-energy which is more accurate over a broader
range of parameters. The accuracy of interpolative solv-
ers has to be tested against more expensive and exact
methods of solution.

1. Rational interpolation for the self-energy

The iterative perturbation theory �IPT� method was
successful in unraveling the physics of the Mott transi-
tion in the one-band Hubbard model. Its success is due
to the fact that it captures not only the band limit but
also the atomic limit of the problem at half-filling. As
shown in Sec. III.F.2, the extensions of the IPT method
are possible, but less reliable in the multiorbital case.
There have been some attempts to construct interpola-
tive methods that are robust enough and give reasonable
results in the whole space of parameters of a multior-
bital impurity model.

Here we will review the ideas from Savrasov, Ou-
dovenko, et al. �2005� where a simple rational form for
the self-energy was proposed and unknown coefficient
from that rational expression were determined using the
slave boson mean-field �SBMF� method. This scheme
tries to improve upon SBMF, which gives the low-
frequency information of the problem, by adding Hub-
bard bands to the solution. For simplicity, only SU�N�
symmetry will be considered.

It is clear that Hubbard bands are damped atomic ex-
citations and to the lowest order approximation, appear
at the position of the poles of the atomic Green’s func-
tion. Therefore a good starting point to formulate the
functional form for the self-energy is the atomic self-
energy

�at�i�� = i� − !f − �Gat�i���−1, �247�

where

Gat�i�� = 	
n=0

N−1
Cn

N−1�P̃n + P̃n+1�
i� + � − En+1 + En

, �248�

and En=!fn+ 1
2Un�n−1� , P̃n is the probability to find an

atom in a configuration with n electrons, and Cn
N−1= �N

FIG. 22. �Color online� The quasiparticle residue Z from the
Gutzwiller method �open squares� compared to the QMC Z
�full circles� extracted from imaginary axis data. Calculations
were performed for the two-band Hubbard model on Bethe
lattice with U=4D for QMC and U=5.8D for the Gutzwiller.
The latter value was chosen to keep ratio U /UMIT the same in
both methods. MIT denotes metal-insulator transition.

FIG. 23. �Color online� Doping versus chemical potential ex-
tracted from QMC �circles� and from the Gutzwiller method
�squares� for the two-band Hubbard model on Bethe lattice
with U=4D.
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−1� ! /n ! �N−n−1�! arises due to the equivalence of all
states with n electrons in SU�N�.

The atomic self-energy can also be brought into the
form

��at��i�� = i� − !f −

�
i=1

N

�i� − Zi�

�
i=1

N−1

�i� − Pi�

, �249�

where Zi are zeros and Pi are the N−1 poles, which can
be calculated from Eqs. �247� and �248�. Using the same
functional form �249� for the self-energy at finite � and
calculating probabilities Xn self-consistently results in
the famous Hubbard I approximation �Sec. III.C�. It is
very simple but it has several deficiencies such as the
underestimation of the width of the Hubbard bands.

To add the quasiparticle peak in the metallic state of
the system, one needs to add one zero and one pole to
Eq. �249�. To see this, let us consider the SU�N� case for
the Hubbard model where the local Green’s function
can be written by the following Hilbert transform:
Gloc��� =H��−!f−�����. If self-energy lifetime effects
are ignored, the local spectral function becomes Aloc
=D��−!f−�����, where D is the noninteracting density
of states. The peaks in spectral function thus appear at
zeros Zi of Eq. �249� and to add a quasiparticle peak,
one needs to add one zero Zi. To make the self-energy
finite in infinity, one also needs to add one pole Pi to Eq.
�249�. This pole can control the width of the quasiparti-
cle peak. By adding one zero and one pole to the expres-
sion �249�, the infinite frequency value of the self-energy
is altered and needs to be fixed to its Hartree-Fock
value. The pole which is closest to zero is the obvious
candidate to be changed in order to preserve the correct
value of the self-energy at infinite frequency. The func-
tional interpolative form for the self-energy in the me-
tallic state of the system takes the following form:

��i�� = i� − !f −

�i� − X1��
i=1

N

�i� − Zi�

�i� − X2��i� − X3� �
i=1

N−2

�i� − Pi�

.

�250�

To compute the 2N+1 unknown coefficients in Eq.
�250�, the following algorithm was used �Savrasov, Ou-
dovenko, et al., 2005�:

�a� All N zeros Zi are computed from the atomic form
of the self-energy �247� and probabilities Xn are
calculated by the SBMF method.

�b� Poles of the atomic self-energy are also computed
from Eq. �247� with Xn obtained by SBMF. All but
one are used in constructing self-energy in Eq.
�250�. The one closest to Fermi level needs to be
changed.

�c� The self-energy at the Fermi level ��0� is given by
the Friedel sum rule

�n� =
1
2

+
1

�
arctan� �f + Re��i0+� + Re��i0+�

Im��i0+� �
+ �

−i�

+i� dz

2�i
Gf�z�

���z�
�z

ez0+
. �251�

This relation is used to determine one of three un-
known coefficients Xi.

�d� The slope of the self-energy at zero frequency is
used to determine one more unknown coefficient.
The quasiparticle weight z is calculated by the
SBMF method and the following relationship is
used:

�Re�

�� �=0 = 1 − z−1. �252�

�e� Finally, the infinite frequency Hartree-Fock value
of � is used to determine the last coefficient in Eq.
�250�.

The 2N+1 coefficients can be computed very effi-
ciently by solving a set of linear equations. The method
is thus very robust and gives a unique solution in the
whole space of parameters. Its precision can be im-
proved by adding lifetime effects, replacing � by second-
order self-energy as will be described in Sec. III.F.2.

A typical accuracy of the method is illustrated in Fig.
24 by plotting the density of states as a function of the
effective chemical potential �̃=−�f− �N−1�U /2 and fre-
quency in the regime of strong correlations. The corre-
sponding QMC results are shown in Fig. 25 for compari-

FIG. 24. �Color online� The density of states calculated by the
rational interpolative method plotted as a function of the
chemical potential �̃=−�f− �N−1�U /2 and frequency for the
two-band Hubbard model with SU�4� symmetry and at U
=4D.
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son. Several weak satellites can also be seen on this
figure �many atomic excitations are possible� which de-
cay fast at high frequency.

The semicircular quasiparticle band, which is strongly
renormalized by interactions, is seen at the central part
of Fig. 24. For doping levels �̃ between 0 and −1 and
between −3 and −5, the weight of the quasiparticle band
collapses while lower and upper Hubbard bands acquire
all the spectral weight. In the remaining region of pa-
rameters, both strongly renormalized quasiparticle
bands and Hubbard satellites remain. When the bands
are full or empty the quasiparticle band restores its
original noninteracting bandwidth and the Hubbard
bands disappear. From Figs. 24 and 25 it is clear that the
rational interpolation for the self-energy in combination
with the SBMF offers a satisfactory qualitative and
quantitative solution of the multiorbital AIM which is
useful for many applications of the LDA+DMFT to re-
alistic systems.

2. Iterative perturbation theory

Here we describe a different iterative perturbation
theory which uses the second-order self-energy �162� as
a main building block and also achieves correct limits in
the large frequency, zero frequency, band, and atomic
coupling limit. The idea originates from the work of
Martín-Rodero et al. �1982; see also Ferrer et al., 1987�
on the impurity model, and was later applied in the con-
text of DMFT �Georges and Kotliar, 1992; Zhang et al.,
1993�. The success of this approach can be understood
by noticing that 	�2� from Eq. �162� gives the correct
atomic limit although it is expected to work only in the
weak-coupling limit. The naive extension away from
half-filling or for the multiband model treatment, how-
ever, fails because the latter property holds only in the
special case of the half-filled one-band model. To cir-

cumvent this difficulty, a scheme can be formulated such
that the atomic limit is also captured by the construc-
tion. In the following discussion, only SU�N� symmetry
will be considered.

To combine various bits of information in a consistent
scheme, an analytic expression for the self-energy in the
form of continuous fraction expansion,

���i�� = ����� +
A�

i� − B� −
C�

i� − D� − ¯

, �253�

is set up �Oudovenko, Haule, et al., 2004�. All the nec-
essary coefficients, ����� ,A� ,B� ,C� ,D�, ¼, can be de-
termined by imposing the correct limiting behavior at
high and low frequencies. The basic assumption of this
method is that only a few poles in the continuous frac-
tion expansion �253� are necessary to reproduce the
overall frequency dependence of the self-energy.

Let us continue by examining the atomic limit of the
second-order self-energy �162� when evaluated in terms
of the bare propagator G�

0 �i�� =1/ �i�+ �̃0−���,

���→0
�2� =

��

i� + �̃0
, �254�

where ��= 	��U���2n�
0 �1−n�

0 � and n�
0 is a fictitious par-

ticle number,

n�
0 =

1

�
� f���Im G�

0 �� − i0+�d� , �255�

associated with the bare propagator. The choice of �̃0
will be discussed later.

The continuous fraction expansion in Eq. �253� can be
made exact in the restricted atomic limit, i.e., when the
three significant poles are considered in the Green’s
function, and coefficients are calculated from the mo-
ments of the self-energy. By replacing i� with �� /��

�2�

− �̃0 in expansion �253�, it is clear from Eq. �254� that the
resulting self-energy functional has the correct atomic
limit and reads

���i�� = �����

+

A�

��

��
�2�

1 −
�̃0 + B�

��

��
�2� −

�C�/�a
2����

�2��2

1 − ��̃0 + D����
�2�/�� − ¯

.

�256�

The coefficients A, B, C, and D can be determined from
the moment expansion

A� = ��
�1�, �257�

B� =
��

�2�

��
�1� , �258�

FIG. 25. �Color online� The density of states calculated by the
QMC method plotted as a function of the chemical potential
�̃=−�f− �N−1�U /2 and frequency for the two-band Hubbard
model within SU�4� and at U=4D.
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C� =
��

�3���
�1� − ���

�2��2

���
�1��2 , �259�

where the self-energy moments can be expressed in
terms of correlation functions �see Oudovenko, Haule,
et al. �2004��.

Finally, the parameter �̃0 can be determined by im-
posing the Friedel sum rule, which is a relation between
the total density and the real part of the self-energy at
zero frequency, thereby achieving the correct zero-
frequency limit. Since the Friedel sum rule is valid only
at zero temperature, the parameter �̃0 is determined at
T=0, and after having it fixed, Eq. �256� is used at arbi-
trary temperatures.

An alternative scheme for determining the
temperature-dependent �̃0 was proposed by Potthoff et
al. �1997�, and consists of the requirement that the ficti-
tious occupancy computed from G0 equals the true oc-
cupancy computed from G �Martín-Rodero et al., 1982�.
A careful comparison of these approaches was carried
out by Potthoff and co-workers �Potthoff et al., 1997;
Meyer et al., 1999�.

Note that one could continue the expansion in the
continuous fraction to the order in which the expansion
gives the true atomic limit. However, in practice this is
seldom necessary because only a few poles close to the
Fermi energy have a large weight.

It is essential that the self-energy �256� remains exact
to U2, which can be easily verified by noting that in the
U→0 the fictitious occupancy n0 approaches n therefore
A�=���1+O�U��, B→−�̃0, and C→0. At the same time,
the self-energy �256� has correct first moment because
expanding ��2� in the high-frequency limit yields ��

�2�

=�� / �i�� +¯ and A� is exact first moment.
Note that in the case of one-band model, the atomic

limit requires only one pole in self-energy therefore the
coefficient C in Eq. �256� can be set to zero and one has
�Kajueter, 1996�

���i�� = ����� +

A�

��

��
�2�

1 −
�̃0 + B�

��

��
�2�

. �260�

Furthermore, double and triple occupancies do not en-
ter the expression for the moments in the case of the
one-band model. If one chooses the moments in the
atomic limit, the interpolative self-energy �256� has the
same limiting behavior as discussed above. In this case,
no additional external information is necessary and the
system of equations �162�, �257�, �258�, and �260� is
closed.

For the multiband model, an approximate method is
needed to calculate moments which in turn ensure a lim-
iting form consistent with the simplified atomic limit.
Many approaches discussed in previous sections can be
used for that purpose, for example, the Gutzwiller
method or SUNCA. In Kajueter �1996� the coherent po-
tential approximation �CPA� was used to obtain mo-

ments in the functional form consistent with the atomic
limit, i.e., neglecting the last term in Eq. �258�. Another
possibility, also tested by Kajueter �1996�, is to use the
ansatz �260� in the case of the multiband model. In Fig.
26 the quasiparticle renormalization amplitude Z versus
particle number n is displayed for n less than one where
this scheme compares favorably with the QMC method.
CPA was used to obtain moments.

When the particle number slightly exceeds unity, the
simplified IPT scheme �260� does not provide an accu-
rate description of the multiorbital AIM. As shown in
Fig. 27, the Hubbard bands are completely misplaced.
Nevertheless, the quasiparticle peak is in good agree-

FIG. 26. �Color online� Comparison between QMC and the
simplified IPT Eq. �260� renormalization amplitude Z for the
three-band Hubbard model on Bethe lattice at U=3D and 5D.
Z was extracted at temperature T=1/16 for QMC and at zero
temperature for IPT.

FIG. 27. �Color online� Density of states for the two-band
Hubbard model on Bethe lattice at U=2.5D and nd=1.1. The
full line marks QMC curve at temperature T=1/16D while the
rest of the curves correspond to various IPT schemes at T=0.
The thin full line shows the IPT from Eq. �256� with coeffi-
cients determined by high-frequency moments in the func-
tional form of atomic limit. The inset enlarges the region
around the chemical potential where the above-mentioned IPT
scheme develops a spurious double-peak structure. The dot-
dashed line corresponds to simplified IPT Eq. �260� with coef-
ficients determined by moments. Finally, the dashed curve
stands for the IPT schemes described in Sec. III.F.1.
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ment with QMC result. By taking into account more
terms in the continuous fraction expansion �256�, the
high-frequency part of the spectra can be considerably
improved since the resulting approximation obeys more
high-frequency moments. Unfortunately, the quasiparti-
cle peak develops a spurious double-peak structure
which severely limits the applicability of the method, as
shown in the inset of Fig. 27. Systematically improving
only the high-frequency part of the spectra, by incorpo-
rating more moments into the approximation, can thus
spoil the low-frequency part. This type of unphysical
feature can be avoided using the scheme from Sec.
III.F.1 where the derivative as well as the value of the
spectra at zero frequency was imposed by the informa-
tion obtained by a more accurate technique at low fre-
quency, such as the Gutzwiller method.

The most general form of the IPT, and its simplified
form �260� �Kajueter, 1996�, was tested by Yeyati et al.
�1999� in the context of quantum dots where it per-
formed satisfactorily. However, Kajueter �1996� tested it
in the DMFT context, and the difficulties with the spu-
rious double-peak structure shown in Fig. 27 were found
close to integer filling in the case of occupancies larger
than 1. When the occupancies are less than 1, the sim-
pler formula �260� is accurate and free from pathologies.
It was used to compute the physical properties of
La1−xSrxTiO3 by Anisimov, Poteryaev, et al. �1997� and
Kajueter et al. �1997�. Various materials with strongly
correlated d bands were studied by Craco, Laad, and
Müller-Hartmann using the IPT method including CrO2
�Laad et al., 2001; Craco et al., 2003b�, LiV2O4 �Laad et
al., 2003a�, V2O3 �Laad et al., 2003b�, and Ga1−xMnxAs
�Craco et al., 2003a�.

IV. APPLICATION TO MATERIALS

Here we illustrate some applications of the realistic
dynamical mean-field methodology to various materials.
We chose situations where correlation effects are prima-
rily responsible for the behavior of a given physical sys-
tem. The examples include �i� phase transitions between
a metal and paramagnetic insulators in cases that the

insulating gap cannot be accounted by band theory ar-
guments, �ii� large volume collapse transitions where a
localization-delocalization transition in the electronic
structure drives the changes in lattice parameters, and
�iii� the behavior of systems with well-formed disordered
local moments which are not straightforward to study
within band theory methods. We conclude the section
with a brief, noncomprehensive list of other applications
of the dynamical mean-field method that, for lack of
space, could not be covered in this review.

A. Metal-insulator transitions

1. Pressure driven metal-insulator transitions

The pressure driven metal-insulator transition �MIT�
is one of the simplest and, at the same time, most basic
problems in the electronic structure of correlated elec-
trons. It is realized in many materials such as V2O3,
where the metal-insulator transition is induced as func-
tion of chemical pressure via Cr doping, quasi-two-
dimensional organic materials, and nickel selenide sul-
fide mixtures �for a review see Imada et al. �1998�, as
well as articles of Rosenbaum and Yao in Edwards and
Rao �1990��. The phase diagram of these materials is
described in Fig. 28. It is remarkable that the high-
temperature part of the phase diagram of these materi-
als, featuring a first-order line of metal-insulator transi-
tions ending in a critical point, is qualitatively similar in
spite of the significant differences in the crystal and elec-
tronic structure of these materials �Chitra and Kotliar,
1999; Kotliar, 1999b, 2001b�. This is illustrated in Fig. 29
where the schematic phase diagram of the integer-filled
Hubbard model is included.

V2O3 has a corundum structure in which the V ions
are arranged in pairs along the c hexagonal axis, and
form a honeycomb lattice in the basal ab plane. Each V
ion has a 3d2 configuration. The d electrons occupy two
of the t2g orbitals which split into a nondegenerate a1g

and a doubly degenerate eg
� orbital. The eg


 states lie
higher in energy �Castellani et al., 1978a, 1978b�. NiSeS
mixtures are charge transfer insulators, in the Zaanen-

FIG. 28. �Color online� The phase diagrams of V2O3, NiS2−xSex, and organic materials of the # family. Notice that these materials,
at high temperatures, exhibit a very similar universal phase diagram featuring a direct paramagnetic insulator to paramagnetic
metal transition. On the other hand, the low-temperature ordered phases in each material are very different, calling for a system
specific study of each material. �Adapted from McWhan et al., 1971 �left�, Edwards and Rao, 1990, middle, and taken from Kagawa
et al., 2004 �right�.�
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Sawatzky-Allen classification �Zaanen et al., 1985�, with
a pyrite structure. In this compound the orbital degen-
eracy is lifted, the configuration of the d electron in Ni is
spin 1, d8, and the effective frustration arises from the
ring exchange in this lattice structure. The #-�BEDT-
TSF�2X �X is an anion� �Ito et al., 1996; Lefebvre et al.,
2000� are formed by stacks of dimers and the system is
described at low energies by a one-band Hubbard model
with an anisotropic next nearest-neighbor hopping
�Kino and Fukuyama, 1996; McKenzie, 1998�.

The universality of the Mott phenomena at high tem-
peratures allowed its successful description by DMFT
applied to simple model Hamiltonians, the Hubbard
model at integer filling, on lattices that are sufficiently
frustrated so as to suppress the ordering temperature.
One of the great successes of DMFT was the demonstra-
tion that simple electronic models are capable of pro-
ducing such phase diagram and many of the observed
physical properties of the materials in question. The
qualitative features related to the Mott transition at fi-
nite temperature carry over to more general models
having other integer orbital and band degeneracy as well
as including coupling to the lattice. The dependence of
this phase diagram on orbital degeneracy has been in-
vestigated �Kajueter and Kotliar, 1997; Ono et al., 2001,
2003; Florens et al., 2002�.

The determination of the qualitative phase diagram
away from half-filling includes regions of phase separa-
tion near half-filling �Kotliar et al., 2002�. Determination
of the low-temperature phases, which are completely
different in the materials in Fig. 28, requires a more
careful and detailed modeling of the material. For ex-
ample, studing the dependence of the magnetic proper-
ties on the properties of the lattice is only in the begin-
ning stages �Chitra and Kotliar, 1999; Zitzler et al., 2004�.

Dynamical mean-field theory �Georges et al., 1996�
provided a fairly detailed picture of the evolution of the
electronic structure with temperature and interaction
strength or pressure. Surprising predictions emerged
from these studies: �a� The observation that for a corre-
lated metal, in the presence of magnetic frustration, the
electronic structure �i.e., the spectral function� contains
both quasiparticle features and Hubbard bands

�Georges and Kotliar, 1992�. �b� The idea that the Mott
transition is driven by the transfer of spectral weight
from the coherent to the incoherent features �Zhang et
al., 1993�. This scenario brought together the Brinkman-
Rice-Gutzwiller ideas and the Hubbard ideas about the
Mott transition in a unified framework. �c� The existence
of broad regions of parameters where the incoherent
part of the spectra dominates the transport. The impu-
rity model subject to the DMFT self-consistency condi-
tion is a minimal model to approach the understanding
of the incoherent or bad metal, the Fermi-liquid state,
the Mott insulating state, and a “semiconducting” or
“bad insulator” state where thermally induced states
populate the Mott Hubbard gap. �d� A detailed under-
standing of the critical behavior near the Mott transition
as an electronic Ising transition �Kotliar et al., 2000�.
This critical behavior had been anticipated by Castellani
et al. �1979�.

In the last few years experimental developments have
confirmed many of the qualitative predictions of the
DMFT approach. At the same time, new theoretical cal-
culations, LDA+DMFT, are providing more quantita-
tively accurate results. For recent reviews see Georges,
�2004a, 2004b� and Kotliar and Vollhardt �2004�.

�a� Photoemission spectroscopy has provided firm evi-
dence for a three-peak structure of the spectral
function in the strongly correlated metallic regime
of various materials and its evolution near the Mott
transition. This was observed in the pioneering ex-
periments of Fujimori et al. �Fujimori, Hase, Nama-
tame, et al., 1992�. The observation of a quasiparti-
cle peak near the Mott transition took some
additional work. Matsuura et al. �1998� presented
angle-resolved photoemission spectra �ARPES� in
NiSeS in the presence of a quasiparticle band and a
Hubbard band �see Figs. 30 and 31�. Recent tunnel-
ing experiments confirm this picture �Iwaya et al.,
2004�. These results are illustrated with a DMFT
calculation by Watanabe and Doniach, in the
framework of a two-band model are shown in Fig.
32.

Cubic SrVO3 and orthorhombic CaVO3 perov-
skites are strongly correlated metals. LDA
+DMFT calculations �Pavarini et al., 2004;
Sekiyama et al., 2004; Nekrasov, Held, et al., 2005;
Nekrasov, Keller, et al., 2005� find their spectral
functions to be very similar in agreement with re-
cent bulk-sensitive photoemission experiments
�Sekiyama et al., 2002, 2004�. The comparison of
the high-energy LDA+DMFT photoemission re-
sults with experiments is presented in Fig. 33. LDA
qualitatively fails as it cannot produce the Hubbard
band while LDA+DMFT successfully captures this
and compares well with experiment. Angular-
resolved photoemission experiments are in
progress �Fujimori, 2005�, while theoretical predic-
tions are already available �Nekrasov, Held, et al.,
2005�. It has already been pointed out that a full
understanding of the experimental situation will re-

FIG. 29. Schematic phase diagram of a material undergoing a
Mott metal-insulator transition.
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quire the separation of bulk and surface contribu-
tions �Sarma et al., 1996; Kajueter et al., 1997; Maiti
et al., 1998, 2001, 2004, 2005; Maiti and Sarma,
2000�.

Using high-energy photoemission spectroscopy,
Mo et al. �2003� studied the V2O3 system. The spec-
tral function, which exhibits a quasiparticle peak
and a Hubbard band, is displayed in Fig. 34 to-
gether with an LDA+DMFT calculation. The cal-
culation was performed using the LDA density of
states of the vanadium t2g electrons and a Hubbard
U of 5 eV.

Held and co-workers �Held, Keller, et al., 2001;
Keller et al., 2004� compared x-ray-absorption data
of V2O3 �Müller et al., 1997� with both LDA and

LDA+DMFT calculations �Fig. 35�. As shown,
LDA+DMFT is more accurate as compared to ex-
periment.

�b� Optical spectroscopy has confirmed the idea of
temperature driven transfer of spectral weight in
the vicinity of the Mott transition. The first indica-
tions had been obtained in the V2O3 system �Ro-
zenberg et al., 1995� where it was found that as
temperature is lowered, optical spectral weight is
transferred from high energies to low energies.
Similar observations were carried out in NiSeS
�Miyasaka and Takagi, 2004�, and in the kappa or-
ganics �Eldridge et al., 1991; Merino and McKen-
zie, 2000a, 2000b�, confirming the high-temperature
universal behavior of materials near a Mott transi-
tion.

FIG. 30. Near-Fermi-level ARPES spectra in
NiSeS taken nearly along the �001� direction
for �a� x=0 �insulating�, �b� x=0.4 �insulating�,
�c� x=0.45 �metallic�, �d� x=0.5 �metallic�, and
�e� x=2.0 �metallic�. From Matsuura et al.,
1998.

FIG. 31. Temperature dependence obtained in NiSeS of the
near-!F peak for x=0.45 at 22.4-eV incident photon energy.
Inset: Distance of the 50% point of the leading edge from !F
�solid circles�; reactivity �open circles, right-hand scale�; area
under the near-!F peak �solid diamonds, scaled in arbitrary
units�. Analyzer angle: 0 /9. From Matsuura et al., 1998.

FIG. 32. Single-particle Green’s functions at half-filling for a
fixed charge-transfer gap and varying temperature. Horizontal
axis is scaled in units of 2t. Vertical axis has arbitrary units.
From Matsuura et al., 1998.
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�c� The Ising critical behavior predicted by DMFT was
observed in Cr-doped V2O3 �Limelette, Georges, et
al., 2003�. The large critical region and experimen-
tal observation of the spinodal lines �Figs. 36 and
37� was ascribed to the importance of electron-
phonon coupling �Kotliar, 2003�. The actual behav-
ior in organic materials at this point is not clear
�Kagawa et al., 2003; Kanoda, 2004�.

�e� Transport studies in V2O3 �Kuwamoto et al., 1980�
and NiSeS �Imada et al., 1998� have mapped out
the various crossover regimes of the DMFT phase

diagram �see Fig. 29�, featuring a bad metal, a bad
insulator, a Fermi liquid, and a Mott insulator.
More recent studies in the two-dimensional kappa
organics �Limelette, Wzietek, et al., 2003� are con-
sistent with the DMFT picture, and can be fit quan-
titatively within single-site DMFT �see Fig. 38�.
The bad metal regime has been recently probed
with photoemission spectroscopy �Mo et al., 2004�.

FIG. 33. A comparison of �a� LDA, �d� LDA+DMFT �QMC�,
and the photoemission data for SrVO3 and CaVO3. From
Sekiyama et al., 2004.

FIG. 34. Comparison of h�=700 eV PES spectrum with
LDA+DMFT �QMC� spectrum for T=300 K and U=5.0 eV
in V2O3. From Mo et al., 2003.

FIG. 35. �Color online� Comparison of the LDA and LDA
+DMFT �QMC� spectra at T=0.1 eV �Gaussian broadened
with 0.2 eV� with the x-ray-absorption data of Müller et al.
�1997� in V2O3. The LDA and QMC curves are normalized
differently since the �g


 states, which are shifted towards higher
energies if the Coulomb interaction is included, are neglected
in these calculations. From Held, Keller, et al., 2001.

FIG. 36. Temperature dependence of �a� the conductivity, �b�
the order parameter, and �c� derivative of the conductivity
�analogous to a susceptibility� in Cr-doped V2O3. From
Limelette, Georges, et al., 2003.
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The dynamical mean-field studies have settled a long-
standing question. Is the Mott transition in V2O3, NiSSe,
and kappa organics driven by an electronic structure
mechanism or by the lattice �i.e., the position of the ions�
degrees of freedom?

This question can only be answered theoretically since
lattice deformations are generically induced by changes
in the electronic structure �see below� and vice versa. In
a theoretical study one can freeze the lattice while study-
ing a purely electronic model, and it is now accepted
that the simple Hubbard model can account for the to-
pology of the high-temperature phase diagram shown in
Fig. 28 �Georges et al., 1996�. Hence lattice deformations
are not needed to account for this effect even though

they necessarily occur in nature. A cluster study of the
frustrated, two-dimensional Hubbard model using
CDMFT �i.e., 2�2 plaquette� �Parcollet et al., 2004�
demonstrated that the single-site DMFT statement of
the existence of a finite-temperature Mott transition sur-
vives cluster corrections, even though qualitative modi-
fications of the single-site DMFT results appear at lower
temperatures or very close to the transition. Finally new
numerical approaches to treat systems directly on the
lattice have further corroborated the qualitative validity
of the single-site DMFT results �Onoda and Imada,
2003�.

The fact that the coupling of the lattice is important
near the electronically driven Mott transition was first
pointed out in the dynamical mean-field context by Ma-
jumdar and Krishnamurthy �1994�. The electronic de-
grees of freedom are divided into those described by the
low-energy model Hamiltonian �see Sec. I.B.5� and the
rest, and the total free energy of the system is given by
the sum of these two contributions and Fmodel. These
free energies depend on the volume of the material. For-
mally the energy of the model Hamiltonian is a function
of the model Hamiltonian parameters such as the band-
width t and Coulomb interaction U, but these param-
eters themselves depend on volume.

We have seen that in the absence of elastic interac-
tions the Hubbard model has two solutions, a metallic
and an insulating one, in a range of values of U / t. Hence
Fmodel„t�V�… can have two branches which cross as de-
picted in Fig. 39. The free-energy curve obtained by
picking at each volume the lowest of the free energies
has a cusp singularity �an infinitely negative second de-
rivative at the critical volume� indicating the formation
of a double-well structure.

The addition of Fother, which by construction is
smooth, cannot qualitatively modify this behavior. Fur-
thermore, the double-well structure, which must exist
below the Mott transition temperature, must also persist
slightly above the Mott transition point �given the infi-
nite second derivative at the critical volume below the
transition point of the model Hamiltonian�. The position
where the double well develops signals the position of
the true �i.e., renormalized by the lattice� metal-to-
insulator transition. The exact free energy is a concave
function of the volume and this concavity which is

FIG. 37. �Color online� Temperature dependence of the resis-
tivity in Cr-doped V2O3 at different pressures. The data
�circles� are compared to a DMFT-NRG calculation �dia-
monds�, with a pressure dependence of the bandwidth as indi-
cated. The measured residual resistivity �0 has been added to
the theoretical curves. From Limelette, Wzietek, et al., 2003.

FIG. 38. �Color online� Pressure-temperature phase diagram
of the #-Cl salt. From Limelette, Wzietek, et al., 2003.

FIG. 39. Schematic volume dependence of free energy for a
model within DMFT.
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missed in mean-field theory is restored through a Max-
well construction.

This qualitative discussion sketches how the spectral
density-functional theory formalism is used to predict
the volume of materials starting from first principles.
The self-consistent application of LDA+DMFT deter-
mines the energy of model Hamiltonian and the one-
electron Hamiltonian of both the low-energy and high-
energy degrees of freedom in a self-consistent fashion.
Results of realistic calculations for Ce and Pu are shown
in Figs. 46 and 47, respectively. In materials where the
model exhibits a transition, the LDA+DMFT studies
produce a double well as will be discussed for Ce and Pu
in Secs. IV.B.1 and IV.B.2, respectively. It has been em-
phasized �Amadon et al., 2006� that in cerium the double
well is of purely entropic nature, while calculations for
Pu only include the energy. The qualitative argument for
the existence of a double well applies to the finite-
temperature free energy of both materials. An analysis
of the influence of the coupling to the lattice on the
compressibility and the electron-phonon coupling has
been carried out by Hassan et al. �2005�.

2. Doping driven metal-insulator transition

Doping driven metal-insulator transitions in three-
dimensional perovskites La1−xSrxTiO3−� have been ex-
tensively explored in the past decade �Maeno et al.,
1990; Crandles et al., 1992; Sunstrom et al., 1992; Tokura
et al., 1993; Onoda and Yasumoto, 1997a, 1997b; Onoda
and Kohno, 1998; Hays et al., 1999�. The electronic prop-
erties of the La1−xSrxTiO3 series is governed by the t2g
subset of the 3d orbitals. When x=0, there is one elec-
tron per Ti, and the system is a Mott insulator. Doping
with strontium or oxygen introduces holes in the Mott
insulator.

In the cubic structure the t2g orbital is threefold de-
generate, but this degeneracy is lifted by an orthorhom-
bic distortion of the GdFeO3 structure resulting in the
space group Pbnm. For x$0.3 the material is found to
transform to another distorted perovskite structure with
space group Ibmm. For larger values of x$0.8 the
orthorhombic distortion vanishes and the material as-
sumes the cubic perovskite structure of SrTiO3 with
space group Pm3m. LaTiO3 is a Mott insulator which
orders antiferromagnetically at TN � 140 K, with a Ti
magnetic moment of 0.45�B and small energy gap of
approximately 0.2 eV.

The lifting of the degeneracy plays a very important
role for understanding the insulating properties of this
compound, and they have recently been discussed by a
single-site DMFT study of this compound �Pavarini et
al., 2004, 2005�. For moderate dopings La1−xSrxTiO3 be-
haves as a canonical doped Mott insulator. The specific
heat and susceptibility are enhanced, the Hall coefficient
is unrenormalized, and the photoemission spectral func-
tion has a resonance with a weight that decreases as one
approaches half-filling. Very near half-filling �for dopings
less than 8%� the physics is fairly complicated as there is
an antiferromagnetic metallic phase �Kumagai et al.,

1993; Okada et al., 1993; Onoda and Kohno, 1998�.
While it is clear that the parent compound is an antifer-
romagnetic Mott insulator, the orbital character of the
insulator is not well understood, as recent Raman-
scattering �Reedyk et al., 1997� and neutron-scattering
investigations reveal �Furukawa et al., 1997, 1999�.

Very near half-filling when the effective bandwidth
becomes small and comparable with the exchange inter-
actions and structural distortion energies, a treatment
beyond single-site DMFT becomes important in order to
treat spin-orbital degrees of freedom �Pavarini et al.,
2005�. Alternatively, for moderate and large dopings, the
Kondo energy is the dominant energy and DMFT is ex-
pected to be accurate. This was substantiated by a series
of papers reporting DMFT calculations of a single-band
or multiband Hubbard model with a simplified density
of states. Rozenberg et al. �1994� addressed the enhance-
ment of the magnetic susceptibility and the specific heat
as the half-filling is approached. The optical conductivity
and suppression of the charge degrees of freedom was
described by Rozenberg et al. �1996�, while the observa-
tion that the Hall coefficient is not renormalized was
reported by Kajueter and Kotliar �1997� and Kotliar and
Kajueter �1996�. The thermoelectric power was investi-
gated by Pálsson and Kotliar �1998� and the magne-
totransport by Lange and Kotliar �1999�.

Given the simplicity of the models used and various
approximations made in the solution of the DMFT
equations, one should regard the qualitative agreement
with experiment as satisfactory. The photoemission spec-
troscopy of this compound as well as of other transition-
metal compounds does not completely reflect the bulk
data, and it has been argued that disorder together with
modeling of the specific surface environment is required
to improve the agreement with experiment �Sarma et al.,
1996; Maiti et al., 2001�. More realistic studies were car-
ried out using LDA+DMFT. The results are dependent
on the basis set used, the value of U, the double-
counting correction, and impurity solver. This was dis-
cussed in Sec. III, and it becomes very critical for mate-
rials near the Mott transition since different impurity
solvers give slightly different values of critical U, and
hence very different physical spectra for a given value of
U �Nekrasov et al., 2000; Held, Nekrasov, et al., 2001�.
However, if we concentrate on trends, and take as a
given that U should be chosen as to place the material
near or above the Mott transition, nice qualitative agree-
ment with experiment is obtained.

Anisimov, Poteyaev, et al. �1997� considered a realistic
Hamiltonian containing oxygen, titanium, and lantha-
num bands and solved the resulting DMFT equations
using IPT. Nekrasov et al. �2000� solved the DMFT equa-
tions using the low-energy portion of the t2g density of
states obtained from an LMTO calculation. In this pro-
cedure, the bare density of states must be rescaled so
that it integrates to 1. They solved the DMFT equations
using QMC, IPT, and NCA.

Comparison of photoemission experiments with re-
sults obtained using the QMC impurity solver for differ-
ent values of U is presented in Fig. 40. One can find
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favorable agreement between experimental and LDA
+DMFT results for U=5 eV. LDA+DMFT reproduce
the quasiparticle and Hubbard bands while LDA cap-
tures only the spectra around the Fermi level.

The linear term of the specific-heat coefficient was
computed after fitting the t2g density of states to a tight-
binding parametrization. To capture the asymmetry in
tight-binding DOS, the next-nearest-neighbor term t� on
the Ti sublattice has to be taken into account. The dis-
persion which has been obtained from the fit is �k
=2t�cos kx+cos ky� +2t�cos�kx+ky� +2t�cos kz, where t
=−0.329 664, t�=−0.0816, and t�=−0.0205 in eV units.
Using the tight-binding density of states and the QMC
impurity solver, the Green’s function and the specific
heat were calculated. The specific heat is given in terms
of the density of states N��� at the Fermi level
by �=2.357�mJ/mol K2�
N����states/ �eV unit cell�� /Z�,
where Z is the quasiparticle residue or the inverse of the
electronic mass renormalization. In the LDA, the value
of Z is equal to 1 and the doping dependence can be
computed within the rigid-band model. The LDA
+DMFT results are plotted against the experiment in
Fig. 41. Despite some discrepancies, there is good semi-
quantitative agreement.

In general, the LDA data for � are much lower than
the experimental values, indicating a strong mass renor-
malization. Also we note that as we get closer to the
Mott-Hubbard transition the effective mass grows sig-
nificantly. This is consistent with DMFT description of
the Mott-Hubbard transition, which exhibits divergence
of the effective mass at the transition.

Oudovenko, Haule, et al. �2004� studied the optical
properties of La1−xSrxTiO3. The trends are in qualitative
agreement with those of earlier model studies �Kajueter
and Kotliar, 1997� but now the calculations incorporate

the effects of realistic band structures using a down-
folding and up-folding procedure. In Fig. 42 we plot the
calculated optical conductivity for LaxSr1−xTiO3 at dop-
ing x=0.1 using the DMFT �solid line� and compare it
with the experimental data �dashed line with open cycles
symbols� measured by Fujishima et al. �1992� and with
the LDA calculations �dot-dashed line�. The low-
frequency behavior for a range of dopings is shown in
Fig. 43.

First we notice that the DMFT result agrees with the
experiment up to the energy of 2 eV. Above 2 eV, both
the LDA and DMFT optics are quite close and fit the
experiment reasonably well.

It is worth emphasizing that corresponding calcula-
tions based on the local-density approximation would
completely fail to reproduce the doping behavior of the
optical conductivity due to the lack of the insulating

FIG. 40. Comparison of the experimental photoemission spec-
trum �Fujimori, Hase, Nakamura, et al., 1992; Fujimori, Hase,
Namatame, et al., 1992; Yoshida et al., 2002�, the LDA result,
and the LDA+DMFT �QMC� calculation for LaTiO3 with 6%
hole doping and different Coulomb interaction U=3.2, 4.25,
and 5 eV. From Nekrasov et al., 2000.

FIG. 41. �Color online� Filling dependence of the linear coef-
ficient of specific heat � of doped LaTiO3 obtained from LDA
�DMFT �QMC� calculations using QMC as an impurity solver
�solid line with stars� with U=5, temperature �=16, and LDA
calculations �solid line�. Experimental points are given by
crosses and a dot-dashed line is used as a guide for eye. Tight-
binding density of states was used in the self-consistency loop
of the DMFT procedure. Energy unit is set to half bandwidth.
From Oudovenko, Pálsson, et al., 2004.

FIG. 42. �Color online� Calculated optical conductivity spec-
trum for LaxSr1−xTiO3, x=0.10, in a large frequency interval
using the LDA�DMFT �QMC� method as compared with the
experimental data and results of the corresponding LDA cal-
culations. From Oudovenko, Pálsson, et al., 2004.
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state of the parent compound LaTiO3 within LDA. As a
result, the LDA predicts a very large Drude peak even
for zero doping, which remains nearly unchanged as a
function of doping. In view of these data, DMFT cap-
tures the correct trend upon doping as well as the proper
frequency behavior, which is a significant improvement
over the LDA.

3. Further developments

The understanding of the simplest prototypes of the
Mott transition has opened the way to many investiga-
tions of more general models which are necessary to
understand the rich physics of real materials. These ex-
tensions are the subject of current intensive investiga-
tions.

There are many materials with unfilled bands of very
different width near the Fermi level �examples include
ruthenates Ca2−xSrxRuO4 �Anisimov et al., 2002�, CrO2
�Laad et al., 2001; Craco et al., 2003b; Toropova et al.,
2005�, cobaltates �Marianetti et al., 2004; Ishida et al.,
2005; Lechermann et al., 2005b�, the classic Mott insula-
tor V2O3 �Ezhov et al., 1999�, the Lan+1NinO3n+1 system
�Sreedhar et al., 1994; Zhang et al., 1994; Kobayashi et
al., 1996�, and many other compounds �Imada et al.,
1998��. They raise the issue of the nature of the evolu-
tion of the electronic structure from a weakly correlated
metal to an insulating state with increasing interaction U
in these more general circumstances, and whether sepa-
rate, orbital-dependent, delocalization-localization tran-
sitions can take place in a subset of bands or orbitals.
The qualitative idea is that when two bands differ sub-
stantially in bandwidth, there should be a sequence of
Mott transitions as the interaction strength is increased.
First, the most narrow band undergoes a localization
transition with the broader band remaining itinerant,
while at large U both bands become localized. The term

orbital selective Mott transition �OSMT� was given for
this phenomenon by Anisimov et al. �2002� who studied
the Ca2−xSrxRuO4 system �Nakatsuji and Maeno, 2000;
Nakatsuji et al., 2003�.

This problem is currently receiving appreciable atten-
tion �Anisimov et al., 2002; Liebsch, 2003b, 2003d, 2004;
Koga et al., 2004a, 2004b, 2005; Arita and Held, 2005;
de’ Medici, Georges, and Biermann, 2005; Ferrero et al.,
2005; Knecht et al., 2005; Song and Zou, 2005�. Most of
the work so far has focused on the case of symmetric
bands in the particle hole symmetric point. It has been
shown that an OSMT is possible provided that the ratio
of the bandwidths th / tl is small enough �where th and tl

are the hopping matrix elements of the heavy and light
bands, respectively�. The OSMT is more clearly visible
as J, the on-site exchange interaction, is increased, in
particular if its spin rotationally invariant form is treated
�Anisimov et al., 2002; Koga et al., 2004b, 2005; Arita
and Held, 2005; de’ Medici, Georges, and Biermann,
2005; Ferrero et al., 2005; Knecht et al., 2005�.

It was shown by Liebsch �2004, 2005� and Biermann,
de’ Medici, et al. �2005� that in the regime where the
heavy orbital is localized and the light orbital is itiner-
ant, the heavy orbital forms a moment which scatters the
light electron resulting in the type of non-Fermi-liquid
behavior first identified in the context of the Falikov-
Kimball model �Si et al., 1992�. Dynamical mean-field
theory allowed the systematic study of this novel bad
metal or incoherent non-Fermi-liquid regime �Kotliar,
2001a�. Local collective modes �of charge spin or orbital
nature� scatter a broad band of conduction electrons,
without binding to these degrees of freedom to form
quasiparticles. When these systems are stable against the
Kondo effect and magnetic order, light electrons have a
short lifetime. The stability of this regime against hy-
bridization was considered by Kotliar and Si �1993� and
Si and Kotliar �1993�. This type of non-Fermi-liquid,
containing light electrons scattered by local collective
modes, is realized in transition-metal oxides and studied
extensively in the context of manganites where phonons
and spins play the role of collective modes. It is also
realized at temperatures above the coherence tempera-
ture in heavy-fermion materials �materials containing
atomiclike f electrons and broad spd bands�. The local
moments in these systems can be thought to arise from
an OSMT in the f subsystem.

Effects of interactions for three electrons in heavy
bands and one electron in the light band have not been
studied in detail. They can be eliminated at the expense
of generating a hybridization term, which at least in
some cases has been shown to be a relevant perturbation
turning the insulating band into a metallic state via hy-
bridization �de’ Medici, Georges, Kotliar, et al., 2005�.
Finally, we note that the effects of interaction terms
which arise in the description of real materials can
be studied in a system specific context using LDA
+DMFT.

Bands are not necessarily symmetric and their center
of gravity may be shifted relative to each other. A fun-
damental issue is how crystal-field splittings and spin-

FIG. 43. �Color online� Low-frequency behavior of the optical
conductivity for La1−xSrxTiO3 at x=0.1, 0.2, 0.3 calculated us-
ing the LDA+DMFT �QMC� method. Experimental results
�Okimoto et al., 1995� are shown by symbols for the case x
=0.1. Inset: The effective number of carriers plotted as a func-
tion of doping. Squares show the results of the LDA+DMFT
calculations. Circles denote the experimental data from
Okimoto et al. �1995�. From Oudovenko, Pálsson, et al., 2004.
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orbit splittings are renormalized by many-body interac-
tions. This is important not only for experiments which
measure the orbital occupancies but also because the
renormalization of the crystal-field splitting is a relevant
perturbation that can modify dramatically the nature of
the OSMT. This is already seen in the atomic limit,
where shifts in �h−�l �difference between the center of
gravity of the heavy and the light bands� can have a
dramatic effect, even in static approaches. For example,
in V2O3 �Held, Keller, et al., 2001; Keller et al., 2004;
Held et al., 2005� the “heavy” a1g orbital is quickly renor-
malized below the bottom of the LDA conduction band.
Note that if the heavy orbital is moved well above the
light orbital, one can have an essentially weakly corre-
lated situation, while if the heavy orbital moves well be-
low the light orbital and if the number of electrons is
such that the heavy orbital is not full, one encounters a
situation where local collective modes scatter light elec-
trons.

A related issue is how interactions renormalize the
Fermi surface beyond the LDA Fermi surface. While in
many cases the LDA Fermi surface provides a good ap-
proximation to the true Fermi surface of many materials
such as heavy fermions, there are materials where this is
not the case. The issue was first raised in connection
with de Haas–van Alphen and photoemission experi-
ments on CaVO3 �Inoue et al., 2002� and SrRuO4
�Kikugawa et al., 2004� �for a review see Mackenzie and
Maeno �2003��. This problem was approached theoreti-
cally by Liebsch and Lichtenstein using DMFT �Liebsch
and Lichtenstein, 2000� and then by Okamoto and Millis
�2004a�; Pavarini et al. �2004�; Ishida et al. �2005�; Lech-
ermann et al. �2005a�; Zhou et al. �2005�. For a review
and new information on this topic see Lechermann et al.
�2005b�. The shape of the Fermi surface is easily ex-
tracted from the LDA+DMFT Green’s function from
the zeros of the eigenvalues of the matrix h�LDA��k�
+Mint�0� −�−Mdc, while the occupancies are obtained
by integrating the relevant matrix elements of the
Green’s function over frequency na=T	i�Gaa�i��ei�0+

.
The self-energy matrix for a multiorbital system treated
within single-site DMFT cannot in general be absorbed
in a chemical potential shift, even if the self-energy at
zero frequency is diagonal, and therefore affects the
shape Fermi surface. Moreover, we note that since the
form of the double counting enters explicitly in the
equation, a definitive answer to this issue will require
first-principles determination of this term, as, for ex-
ample, from the GW method or from a careful analysis
of the atomic limit.

B. Volume collapse transitions

Several rare-earth and actinide materials undergo dra-
matic phase transitions as a function of pressure charac-
terized by a first-order volume decrease upon compres-
sion. A classical example of this behavior is the alpha to
gamma ��→�� transition in cerium �see phase diagram
in Fig. 44�, where the volume change is of the order of

15%, but similar behavior is observed in Pr and Gd �for
a review see McMahan et al. �1998��.

Volume collapse transitions as a function of pressure
were also observed in actinide materials �for example,
americium, at around 15 GPa �Lindbaum et al., 2001��.
However, unlike the �→� transition which is believed
to be isostructural, or perhaps having a small symmetry
change �Eliashberg and Capellmann, 1998; Nikolaev and
Michel, 1999, 2002�, the volume changing transitions in
actinides are accompanied by changes in the structure.

In the larger volume phase f electrons are more local-
ized than in the smaller volume phase, hence the volume
collapse is a manifestation of the localization-
delocalization phenomenon. Susceptibility measure-
ments indicate that, for example, in Ce the � phase is
paramagnetic with well-defined spins while the � phase
is nonmagnetic. The challenge is to understand how
small changes in pressure and temperature lead to
phases with different physical properties. A similar chal-
lenge is also posed by the generalized Smith-Kmetko
�Smith and Kmetko, 1983� phase diagram of actinides
whereby one interpolates between different elements by
alloying. Metallic plutonium displays a sequence of
phase transitions as a function of temperature between
phases with very different volumes, and the physics of
the localization-delocalization phenomena is believed to
be important for their understanding �Johansson et al.,
1995; Savrasov et al., 2001�. Realistic calculations have
been performed by McMahan et al. �2003� for Ce and
Savrasov et al. �2001� for Pu. Both groups concluded that
while the localized picture of both materials is impor-
tant, the delocalized phases ��-Pu and �-Ce� are not
weakly correlated. This is also in agreement with recent
optical measurements in Ce �van der Eb et al., 2001�.
From the DMFT point of view, the “metallic phase” is
more correlated than a naive band picture would sug-
gest, having not only quasiparticles but some weight in
the Hubbard band.

FIG. 44. The phase diagram of cerium. From Koskenmaki and
Gschneidner, 1981.
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1. Cerium

Johansson �1974� proposed a Mott transition scenario
where the transition is connected to the delocalization of
the f electron. In the alpha phase the f electron is itin-
erant while in the gamma phase it is localized and hence
does not participate in the bonding. In the absence of a
theory of a Mott transition, Johansson and collaborators
�Johansson et al., 1995� implemented this model by per-
forming LDA calculations for the alpha phase, while
treating f electrons as core in the gamma phase.

Allen and Martin �1982� and Lavanga et al. �1982� pro-
posed the Kondo volume collapse model for the �→�
transition. Their crucial insight was that the transition
was connected to changes in the spectra, resulting from
modification in the effective hybridization of the spd
band with the f electron. In this picture what changes
when going from alpha to gamma is the degree of hy-
bridization and hence the Kondo scale. In a series of
publications �Allen and Liu, 1992; Liu et al., 1992� they
implemented this idea mathematically by estimating
free-energy differences between these phases using the
solution of the Anderson-Kondo impurity model supple-
mented with elastic energy terms. The modern dynami-
cal mean-field theory is a more accurate realization of
both the volume collapse model and the Mott transition
model. In fact, these two views are not orthogonal, as it
is known that the Hubbard model is mapped locally to
an Anderson model satisfying the DMFT self-
consistency condition. Furthermore, near the Mott tran-
sition this impurity model leads to a local picture which
features a resonance, as does the Anderson lattice
model.

The cerium problem was recently studied by Zölfl et
al. �2001�, Held et al., and McMahan et al. �Held, McMa-
han, et al., 2001; McMahan et al., 2003�. Their approach
consists of deriving a Hamiltonian consisting of an spd
band and an f band, and then solving the resulting
Anderson lattice model using DMFT. Held et al. and
McMahan et al. used constrained LDA to evaluate the
position of the f level as well as the value of the interac-
tion U. The hopping integrals are extracted from the
LDA Hamiltonian written in an LMTO basis. Zölfl et al.
identified the model Hamiltonian with the Kohn-Sham
Hamiltonian of the LDA calculation in a tight-binding
LMTO basis after the f-level energy is lowered by U�nf

− 1
2

�.
Strong hybridization not only between localized f or-

bitals but also between localized f and delocalized spd
orbitals is the main reason to go beyond the standard
AIM or PAM and to consider the Hamiltonian with the
full �s ,p ,d , f� basis set. The starting one-particle LDA
Hamiltonian is calculated using the LMTO method con-
sidering 6s, 6p, 5d, and 4f shells. Assuming small ex-
change and spin-orbit interactions both groups used the
SU�N� approximation to treat the f orbitals with the
Coulomb repulsion Uf � 6 eV. McMahan et al. �2003�
used Uf=5.72 and 5.98 eV for �- and �-Ce, respectively,
extracted from the constrained LDA calculations.

The differences between these two approaches are at-
tributed to the impurity solvers used in the DMFT pro-
cedure and to the range of studied physical properties.
Zölfl et al. used the NCA impurity solver to calculate the
one-particle spectra for �- and �-Ce, Kondo tempera-
tures, and susceptibilities while McMahan et al. used
QMC and Hubbard I methods to address a broader
range of physical properties of Ce �for a discussion of
the basis set see Amadon et al., 2006�. Thermodynamic
properties such as the entropy, specific heat, and free
energy are studied by McMahan et al. �2003� in a wide
range of volume and temperatures in search of a signa-
ture of the �-� transition. Details of the spectral func-
tion obtained in both publications differ somewhat
mostly due to different impurity solvers used �NCA and
QMC� but the qualitative result, a three-peak spectra for
�-Ce and two-peak spectra of �-Ce, is clear in both
methods �the spectra from McMahan et al. �2003� are
presented in Fig. 45�. The Kondo temperatures TK,�
� 1000 K and TK,�� 30 K obtained by Zölfl et al. as well
as TK,�� 2100 K and TK,�"650 K obtained by McMa-
han et al., are reasonably close to the experimental esti-
mates of TK,�=945 and 1800–2000 K as well as TK,�
=95 and 60 K extracted from the electronic �Liu et al.,
1992� and high-energy neutron spectroscopy �Murani et
al., 1993�, respectively.

To find thermodynamic evidence for the �→� transi-
tion, the total energy was calculated. McMahan et al.
computed the total energy which consists of three terms:
all-electron LDA energy, DMFT total energy minus so-
called “model LDA” energy which originates from the
double-counting term in the DMFT calculations. The
volume dependence of the total energy Etot�eV� is re-
produced in Fig. 46. It was found that the DMFT con-
tribution is the only candidate to create a region of the
negative bulk modulus. In other words, the correlation

FIG. 45. Comparison of the LDA+DMFT �QMC� �solid line�
spectra with experiment �circles� �Liu et al., 1992�. From Mc-
Mahan et al., 2003.
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contribution is the main reason for the thermodynamic
instability revealing itself in the first-order phase transi-
tion. As seen from Fig. 46 the minimum of the total
energy in the zero-temperature limit corresponds to the
volume of the � phase, and for temperature T
=0.14 eV the minimum shifts to higher values of volume
roughly corresponding to the � phase.

With increasing temperature, the contribution to the
free energy from the entropy term becomes important.
Hence one can look for another signature of the �→�
transition: the behavior of the entropy. The transition
was attributed to rapid increase of the entropy in the
region of volumes 28.2–34.4 Å. At large volumes, when
spectral weight of the 4f electrons is removed from the
Fermi level, the entropy saturates at value kBln�2J+1�,
and in the case of the SU�N� approximation assumed in
the calculation, the logarithm tends to ln�14�. For
smaller volumes the quasiparticle peak grows which
causes changes in the specific heat and hence in the en-
tropy through �dTC�T� /T, substantially reducing it to
smaller values.

So, the general qualitative picture which comes out
from the LDA+DMFT calculations is the following. At
large volume �� phase� the 4f spectrum is split into Hub-
bard bands and therefore a local moment is present in
the system. With volume reduction a quasiparticle
�Abrikosov-Suhl resonance� develops in the vicinity of
the Fermi level which causes a drop in the entropy and
disappearance of the local moment. The temperature

dependence of the quasiparticle peak indicated a sub-
stantially larger Kondo temperature in the � phase than
in the �-Ce phase. The obtained results also suggest that
� and � phases of Ce are both strongly correlated.

Finally the optical properties of cerium were com-
puted in both the alpha and gamma phases by Haule et
al. �2005�. These authors observed that the Kondo col-
lapse and Mott transition scenario can be differentiated
by measuring the optical properties that are controlled
by light electrons, or by studying theoretically the pho-
toemission spectra of spd electrons. In a Mott transition
scenario, spd electrons are mere spectators, not strongly
affected by the localization of the f’s. Alternatively, in
the Kondo collapse scenario a typical hybridization gap
should open up in the spd spectra with a clear optical
signature. Their calculation as well as their interpreta-
tion of the optical data of van der Eb et al. �2001� sup-
ports the Kondo collapse scenario.

2. Plutonium

The properties of plutonium have been a long-
standing puzzle �Freeman and Darby, 1974�. Pu is known
to have six crystallographic structures with large varia-
tion in their respective volumes �Hecker and Timofeeva,
2000�. Pu shows an enormous volume expansion be-
tween � and � phases which is about 25%. The � phase
has a negative thermal expansion. The transition be-
tween � and the higher-temperature ! phase occurs with
a 5% volume collapse. Also, Pu shows anomalous resis-
tivity behavior �Boring and Smith, 2000� characteristic of
a heavy fermion or of a system with strong spin fluctua-
tions �Jullien et al., 1974�, but neither of its phases are
magnetic, displaying a relatively small and temperature-
independent �Pauli-like� susceptibility. Experimental
studies have failed to find either ordered or disordered
local moments in Pu thus far �see Heffner et al. �2005�
and Lashley et al. �2005�, for an up to date review of the
experimental situation�. For a different point of view,
see Meot-Reymond and Fournier �1996� and
Verkhovskioe et al. �2005�. Photoemission �Arko et al.,
2000; Gouder et al., 2001; Havela et al., 2002; Tobin et al.,
2003� exhibits a strong narrow quasiparticle �Kondo-like
peak� at the Fermi level on top of a broad incoherent
background consistent with large values of the linear
specific-heat coefficient.

Given its practical and theoretical importance, Pu has
been the subject of numerous studies using traditional
electronic structure approaches. We first review the re-
sults of LDA and GGA paramagnetic calculations. Elec-
tronic structure and equilibrium properties of Pu were
studied by Solovyev et al. �1991� and Soderlind et al.
�1994� as well as recently by Jones et al. �2000�; Nord-
strom et al. �2000�; Savrasov and Kotliar �2000�; Wan and
Sun �2000�; Soderlind �2001�; Soderlind et al. �2002�;
Kutepov and Kutepova �2003�; Robert �2004�. Using
nonmagnetic GGA calculations, the equilibrium volume
of the � phase was underestimated by 20–30 %. The
spread in the obtained values can be attributed to differ-
ent treatments of spin-orbit coupling for the 6p semicore

FIG. 46. Total LDA+DMFT �QMC� and polarized Hartree-
Fock �HF� energy as a function of volume at three tempera-
tures. While the polarized HF energy has one pronounced
minimum in the �-Ce phase, the LDA+DMFT �QMC� shows
a shallowness �T=0.054 eV�, which is consistent with the ob-
served �-� transition �arrows� within the error bars. These re-
sults are also consistent with the experimental pressure given
by the negative slope of the dashed line. From McMahan et al.,
2003.
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states. Nordstrom et al. �2000� recognized that many
electronic structure methods employ basis sets con-
structed from scalar-relativistic Hamiltonians and treat
spin-orbit interaction variationally �Andersen, 1975�.
Within the Pauli formulation �i.e., when only terms up to
the order 1/c2 are kept� the spin-orbit Hamiltonian is
given by

2

rc2

dV

dr
l̂ · ŝ , �261�

whose matrix elements are evaluated on the radial solu-
tions of the scalar relativistic version of Schrödinger’s
equation �l�r ,E� carrying no total �spin+orbit� moment
dependence. Nordstrom et al. �2000� pointed out that
in the absence of a proper evaluation of the
�j=1/2�r ,Ep1/2� �j=3/2�r ,Ep3/2� orbitals, one of the options
is to neglect the spin-orbital interaction for 6p states
completely. This results in the improvement of volume
which is of the order of 20% smaller than experiment as
compared to the relativistic Pauli treatment which gives
a 30% discrepancy. One can go beyond the Pauli Hamil-
tonian and treat the spin-orbital Hamiltonian as an
energy-dependent operator �Koelling and Harmon,
1977�,

2

rc2�1 +
1

c2 �E − V��2

dV

dr
l̂ · ŝ . �262�

For a narrow band, the energy in the denominator can
be taken approximately at the center of the band and
the average of the operator can be evaluated without a
problem. Our own simulations done with the full poten-
tial LMTO method show that the discrepancy in atomic
volume is improved from 27% when using Eq. �261� to
21% when using Eq. �262� and appear to be close to the
results when the spin-orbit coupling for the 6p states is
neglected. The origin of this improvement lies in a
smaller splitting between 6p1/2 and 6p3/2 states when in-
corporating the term beyond 1/c2.

If a spin and orbital polarization is allowed within
GGA, then this approach predicts that the � phase has
magnetic long-range order �ferromagnetic, antiferro-
magnetic, or ferrimagnetic� lower in energy than the
paramagnetic phase, a large spin moment �of the order
of 4 Bohr magnetons�, and a volume close to the equi-
librium volume of the � phase �Solovyev et al., 1991;
Soderlind et al., 1994, 2002; Antropov et al., 1995; Savra-
sov and Kotliar, 2000; Wan and Sun, 2000; Soderlind,
2001; Kutepov and Kutepova, 2003; Robert, 2004;
Soderlind and Sadigh, 2004�. The theoretical volumes
for the � phase have ranged from underestimates by as
much as 33% �Savrasov and Kotliar, 2000� to overesti-
mates by 16% �Soderlind et al., 2002� due to the sensi-
tivity of the results to the treatment of the spin-orbit
coupling for 6p semicore states among other factors.
Our investigation of this problem shows that a 33% dis-
crepancy found using the Pauli Hamiltonian �Savrasov
and Kotliar, 2000� can be removed if Eq. �262� is utilized.

This makes the result consistent with the calculations
when spin-orbit coupling for 6p states is completely
omitted �Soderlind et al., 2002; Robert, 2004� or when
using fully relativistic calculation �Kutepov and Kute-
pova, 2003�. Hence it seems that the main inconsistency
of magnetic GGA calculations applied to Pu, vis á vis
experiment, is the existence of a very large moment, and
not its inability to predict the correct volume.

Paramagnetic studies of the � phase �unlike the corre-
sponding studies of the � phase� predict the correct vol-
ume and structure �Jones et al., 2000; Soderlind, 2001;
Kutepov and Kutepova, 2003�. These results lead to the
interpretation of the alpha phase of Pu as a weakly cor-
related metal. Recent studies allowing spin and orbital
polarization, however, predict also sizable moments in
alpha plutonium �Soderlind, 2001; Kutepov and Kute-
pova, 2003�, in disagreement with experiments, which is
another puzzle.

Several approaches beyond standard LDA+GGA
schemes have been applied to Pu. The LDA+U method
was applied to �-Pu �Bouchet et al., 2000; Savrasov and
Kotliar, 2000�. It is able to produce the correct volume of
the � phase, for values of the parameter U � 4 eV con-
sistent with atomic spectral data and constrained
density-functional calculations. However, the LDA+U
calculation converges to a magnetically ordered state.
We interpret this convergence to an ordered state, as
well as the corresponding predictions of polarized GGA
calculations, as an indication of the importance of corre-
lations that cannot be treated within a Hartree-Fock pic-
ture without imposing spurious magnetic long-range or-
der as discussed in Sec. II.C. Another approach
proposed �Eriksson et al., 1999; Zwicknagl et al., 2002;
Efremov et al., 2003� is the constrained LDA approach
in which some 5f electrons are treated as core while the
remaining electrons are allowed to participate in band
formation. Results of the self-interaction-corrected
LDA calculations have been also discussed �Svane et al.,
1999; Petit et al., 2000�. Recent simulations based on the
disordered local moment method �Niklasson et al., 2003�
have emphasized that the volume of the �-Pu can be
recovered without an assumption of long-range mag-
netic order but postulating the presence of large local
moments in the system. Another phenomenological ap-
proach to Pu invokes the presence of self-generated dis-
order �Cooper et al., 1999; Cooper, 2000�.

DMFT was applied to Pu in a series of publications
�Savrasov et al., 2001; Dai et al., 2003� This method can
take into account strong correlations, assumed to be
present in Pu, with paramagnetic calculations. In the dy-
namical mean-field theory picture, the spin and orbital
moments �which point in opposite directions due to the
spin-orbit coupling which were frozen in the LDA+U
calculation� occur at short time scales while giving zero
time average values as they are quenched when they hop
to different sites and hybridize with spd electrons. These
effects leave a clear signature in the single-particle spec-
tra, namely, a resonance on top of a broad background.
Fully self-consistent LDA+DMFT calculations using
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Pauli Hamiltonians and an interpolative impurity solver
have been reported by Savrasov et al. �2001�. To illus-
trate the importance of correlations, Savrasov et al.
�2001� and Savrasov and Kotliar �2003� have discussed
results for various strengths of the on-site Coulomb in-
teraction U. The total energy as a function of volume of
the fcc lattice is computed for T=600 K using the self-
consistent determination of the density in a double itera-
tion loop as described in Sec. II. The total energy is
found to be dramatically different for nonzero U with
the possibility of a double minimum for U � 4 eV which
can be associated with the low-volume � and high-
volume � phases.

Calculations for the bcc structure using the tempera-
ture T=900 K have been also reported �Savrasov and
Kotliar, 2004�. Figure 47 shows these results for U
=4 eV with a location of the minimum around V /V�

=1.03. While the theory has a residual inaccuracy in de-
termining the �- and !-phase volumes by a few percent,
a hint of volume decrease with the �→! transition was
clearly reproduced. The values of U � 4 eV, which are
needed in these simulations to describe the �→� transi-
tion, were found to be in good agreement with the val-
ues of on-site Coulomb repulsion between f electrons
estimated by atomic spectral data �Desclaux and Free-
man, 1984�, constrained density-functional studies �Tur-
chi et al., 1999�, and LDA+U studies �Savrasov and Kot-
liar, 2000�. The double-well behavior in the total-energy
curve described in Fig. 47 is unprecedented in LDA or
GGA based calculations but is a natural consequence of
the proximity to a Mott transition, as explained in Sec.
IV.A. The double-well minima offer a natural explana-
tion for the negative volume expansion in pure delta Pu
and its dependence on Ga concentration �Kotliar, 2002;
Lawson et al., 2002, 2005; Kotliar and Savrasov, 2003�.
The calculated spectral density of states for the fcc struc-
ture using the volume V /V�=0.8 and 1.05 corresponding
to the � and � phases has been reported �Savrasov et al.,

2001; Savrasov and Kotliar, 2004�. Figure 48 compares
the results of these dynamical mean-field calculations
with the LDA method as well as with experiment. Fig-
ure 48�a� shows density of states calculated using LDA
+DMFT method in the vicinity of the Fermi level. The
solid black line corresponds to the � phase and the solid
gray line corresponds to the � phase. The appearance of
a strong quasiparticle peak near the Fermi level was pre-
dicted in both phases. Also, the lower and upper Hub-
bard bands can be clearly distinguished in this plot. The
width of the quasiparticle peak in the � phase is found to
be larger by 30% compared to the width in the � phase.
This indicates that the low-temperature phase is more
metallic, i.e., it has larger spectral weight in the quasi-
particle peak and smaller weight in the Hubbard bands.
Recent advances have allowed the experimental deter-
mination of spectra, and these calculations are consis-
tent with measurements �Arko et al., 2000; Gouder et al.,
2001; Havela et al., 2002; Tobin et al., 2003�. Figure 48�b�
shows the measured photoemission spectrum for �-
�black line� and �-Pu �gray line�. A strong quasiparticle
peak can clearly be seen. Also a smaller peak located at
0.8 eV is interpreted as the lower Hubbard band. The
result of the local-density approximation within the gen-
eralized gradient approximation is shown in Fig. 48�a� as
a thin solid line. The LDA produces two peaks near the
Fermi level corresponding to 5f5/2 and 5f7/2 states sepa-
rated by the spin-orbit coupling. The Fermi level falls
into a dip between these states and cannot reproduce
the features seen in photoemission.

The dynamical mean-field based linear-response tech-
nique �Savrasov and Kotliar, 2003� �see Sec. II.F� has
been applied to calculate the phonon spectra in �- and
!-Pu �Dai et al., 2003�. Self-energy effects in the calcula-
tion of the dynamical matrix have been included using

FIG. 47. Total energy as a function of volume in Pu for differ-
ent values of U calculated using the LDA+DMFT �interpola-
tive solver� approach. Data for the fcc lattice are computed at
T=600 K, while data for the bcc lattice are given for T
=900 K. From Savrason and Kotliar, 2004.

FIG. 48. �a� Comparison between calculated density of states
using the LDA+DMFT �interpolative solver� approach for fcc
Pu: the data for V /V�=1.05, U=4.0 eV �thick black solid line�,
the data for V /V�=0.80, U=3.8 eV �thick gray line� which cor-
respond to the volumes of the � and � phases, respectively.
The result of the GGA calculation �thin solid line� at V /V�

=1 �U=0� is also given. From Savrasov et al., 2001 and Savra-
sov and Kotliar, 2004. �b� Measured photoemission spectrum
of � �black line� and � �gray line� Pu at the scale from −1.0 to
0.4 eV. From Arko et al., 2000.
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the Hubbard I approximation �Hubbard, 1963�. A soft-
ening of transverse phonons is observed around the L
point in the calculated frequencies as a function of the
wave vector along high-symmetry directions in the Bril-
louin zone for the � phase �see Fig. 49�. This indicates
that the � phase may be close to an instability with a
doubling of the unit cell. Another anomaly is seen for
the transverse acoustic mode along �011� which is con-
nected to the nonlinear behavior of the lowest branch at
small q. Overall, phonon frequencies are positive show-
ing the internal stability of the positions of the nuclear
coordinates in �-Pu. The phonon calculations in the �
phase suggest that this phase is stabilized by the phonon
entropy.

Remarkably, the experimental results of Wong et al.
�2003�, which followed the theoretical calculations �Dai
et al., 2003�, confirmed these theoretical predictions. The
measured points are shown on top of the calculated
curves in Fig. 49.

While the fully self-consistent DMFT calculations can
be improved along several directions �more accurate im-
purity solvers can, for example, be used, and larger clus-
ters could be considered�, they are already in reasonably
good agreement with experiments, if one takes into ac-
count the crudeness of the approximations made in the
DMFT implementation. Just like cerium �see Sec.
IV.B.1�, DMFT leads to a new physical picture of both
delta and alpha Pu as two phases which are nonmagnetic
but strongly correlated �Savrasov et al., 2001; Dai et al.,
2003�. They differ slightly in their degree of correlation,
which is manifest in the photoemission spectroscopy by
a slightly different distribution of spectral weight be-
tween high and low frequency. Other aspects of the
physics of Pu, such as the volume contraction in the
delta to epsilon transition, and the negative thermal ex-
pansion in pure delta Pu, are also qualitatively well ex-
plained by the theory.

C. Systems with local moments

The magnetism of metallic systems has been studied
intensively �Moriya, 1985�. Metallic ferromagnets range

from very weak with a small magnetization to strong
with a saturated magnetization close to the atomic value.
For a review of early theories see, e.g., Herring �1966�;
Vonsovsky �1974�; Moriya �1985�. Weak ferromagnets
are well described by spin-density-wave theory, where
spin fluctuations are localized in a small region of mo-
mentum space. Quantitatively they are well described by
LSDA. The ferromagnetic to paramagnetic transition is
driven by amplitude fluctuations. In strong ferromagnets
there is a separation of time scales. � / t is the time scale
for an electron to hop from site to site with hopping
integral t, which is much shorter than � /J, the time scale
for the moment to flip in the paramagnetic state. Spin
fluctuations are localized in real space and the transition
to the paramagnetic state is driven by orientation fluc-
tuations of the spin. The exchange splitting is much
larger than the critical temperature.

Obtaining a quantitative theory of magnetic materials
valid in both the weak- and strong-coupling regimes,
both above and below the Curie temperature, has been
a theoretical challenge for many years. It has been par-
ticularly difficult to describe the regime above Tc in
strong ferromagnets when the moments are well formed
but their orientation fluctuates. A related problem arises
in magnetic insulators above their ordering temperature,
when this ordering temperature is small compared to
electronic scales. This is a situation that arises in
transition-metal monoxides �NiO and MnO� and led to
the concept of a Mott insulator. In these materials the
insulating gap is much larger than the Néel temperature.
Above the ordering temperature, we have a collection of
atoms with an open shell interacting via superexchange.
This is a local moment regime which cannot be accessed
with traditional electronic structure methods.

Two important approaches were designed to access
the disordered local moment �DLM� regime. One ap-
proach �Hubbard, 1979a, 1979b, 1981� starts from a
Hubbard-like Hamiltonian and introduces spin fluctua-
tions via the Hubbard-Stratonovich transformation
�Stratonovich, 1958; Wang et al., 1969; Cyrot, 1970;
Evenson et al., 1970� which is then evaluated using a
static coherent potential approximation �CPA� and im-
provements of this technique. A dynamical CPA �Al-
Attar and Kakehashi, 1999� was developed �Kakehashi,
1992, 2002; Kakehashi et al., 1998� and is closely related
to the DMFT ideas. A second approach begins with so-
lutions of the Kohn-Sham equations of a constrained
LDA approximation in which the local moments point
in random directions, and averages over their orienta-
tion using the KKR-CPA approach �Gyorffy and Stocks,
1979; Faulkner, 1982�. The average of the Kohn-Sham
Green’s functions then can be taken as the first approxi-
mation to the true Green’s functions, and information on
angle-resolved photoemission spectra can be extracted
�Gyorffy et al., 1985; Staunton et al., 1985�. These are
approaches that are based on a picture where there is no
short-range order to a large degree. The opposite point
of view where spin fluctuations far away from the critical
temperature are still relatively long ranged was put for-
ward in the fluctuation local band picture �Capellmann,

FIG. 49. Calculated phonon spectrum of �-Pu using LDA
�DMFT �Hubbard I� �from Dai et al., 2003� �squares con-
nected by full lines� in comparison with experiment �open
circles �Wong et al., 2003��.
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1974; Korenman et al., 1977a, 1977b, 1977c; Prange and
Korenman, 1979a, 1979b�.

To describe the behavior near the critical point re-
quires renormalization-group methods, and the low-
temperature treatment of this problem is still a subject
of intensive research �Belitz and Kirkpatrick, 2002�.
There is also a large amount of literature on describing
ferromagnetic metals using more standard many-body
methods �Liebsch, 1981; Tréglia et al., 1982; Nolting et
al., 1987; Steiner et al., 1992; Manghi et al., 1997, 1999�.

While the density-functional theory can in principle
provide a rigorous description of thermodynamic prop-
erties, at present there is no accurate practical imple-
mentation available. As a result, finite-temperature
properties of magnetic materials are estimated following
a simple suggestion �Lichtenstein et al., 1987�. Con-
strained DFT at T=0 is used to extract exchange con-
stants for a classical Heisenberg model, which in turn is
solved using approximate methods �e.g., RPA, mean-
field� from classical statistical mechanics of spin systems
�Lichtenstein et al., 1987; Antropov et al., 1996; Rosen-
gaard and Johansson, 1997; Halilov et al., 1998�. Imple-
mentation of this approach gives good values for the
transition temperature of iron but not of nickel �Pajda et
al., 2001�. However, it is possible that this is the result of
not extracting the exchange constants correctly, and a
different algorithm for carrying out this procedure was
proposed �Bruno, 2003�.

DMFT can be used to improve the existing treatments
of DLM to include dynamical fluctuations beyond the
static approximation. Note that single-site DMFT in-
cludes some degree of short-range correlations in the
two-particle Green’s function. Cluster methods can be
used to go beyond the single-site DMFT to improve the
description of short-range order on the quasiparticle
spectrum. DMFT also allows us to incorporate the ef-
fects of the electron-electron interaction on the elec-
tronic degrees of freedom. This is relatively important in
metallic systems such as Fe and Ni and absolutely essen-
tial to obtain the Mott-Hubbard gap in transition-metal
monoxides.

The dynamical mean-field theory offers a clear de-
scription of the local moment regime. Mathematically, it
is given by an effective action of an impurity model in a
bath which is sufficiently weak at a given temperature to
quench the local moment. This bath obeys the DMFT
self-consistency condition. If one treats the impurity
model by introducing the Hubbard-Stratonovich field
and treats it in a static approximation, one obtains equa-
tions as those previously used to substantiate the DLM
picture.

1. Iron and nickel

Iron and nickel were studied by Katsnelson and Lich-
tenstein �2000� and Lichtenstein et al. �2001�. The values
U=2.3 and 3.0 eV for Fe and Ni and an interatomic
exchange of J=0.9 eV for both Fe and Ni were used,
as obtained from the constrained LDA calculations
�Bandyopadhyay and Sarma, 1989; Anisimov, Poteryaev,

et al., 1997; Lichtenstein and Katsnelson, 1998, 2001�.
These parameters are consistent with those of earlier
studies and resulted in a good description of the physical
properties of Fe and Ni. Lichtenstein et al. �2001� used
the general form of the double-counting correction
V


DC= 1
2Tr
M
�0�. Note that because of the different

self-energies in eg and t2g blocks the DMFT Fermi sur-
face does not coincide with the LDA Fermi surface.

The LDA+U method, which is the static limit of the
LDA+DMFT approach, was applied to the calculation
of the magnetic anisotropy energies �Yang et al., 2001�.
This study revealed that the double-counting correction
induces shifts in the Fermi surface which brings it in
closer agreement with de Haas–van Alphen experi-
ments. The values of U used in this LDA+U work are
slightly lower than in the DMFT work, which is consis-
tent with the idea that DMFT contains additional
screening mechanisms, not present in LDA+U. This can
be mimicked by a smaller value of the interaction U in
the LDA+U calculation. However, the overall consis-
tency of the trends found in the LDA+U and DMFT
studies are satisfactory.

More accurate solutions of the LDA+DMFT equa-
tions have been presented as well. The impurity model
was solved with QMC by Lichtenstein et al. �2001� and
with the FLEX scheme by Katsnelson and Lichtenstein
�2002�. Nickel is more itinerant than iron �the spin-spin
autocorrelation decays faster�, which has longer lived
spin fluctuations. On the other hand, the one-particle
density of states of iron closely resembles the LSDA
density of states while the DOS of nickel, below Tc, has
additional features which are not present in the LSDA
spectra �Iwan et al., 1979; Eberhardt and Plummer, 1980;
Altmann et al., 2000�: the presence of the 6-eV satellite,
the 30% narrowing of the occupied part of d band, and
the 50% decrease of exchange splittings compared to
the LDA results. Note that the satellite in Ni has more
spin-up contributions in agreement with photoemission
spectra �Altmann et al., 2000�. The exchange splitting of
the d band depends weakly on temperature from T
=0.6TC to 0.9TC. Correlation effects in Fe are less pro-
nounced than in Ni due to its large spin splitting and the
characteristic bcc structural dip in the density of states
for the spin-down states near the Fermi level, which re-
duces the density of states for particle-hole excitations.

The uniform spin susceptibility in the paramagnetic
state �q=0=dM /dH was extracted from the QMC simu-
lations by measuring the induced magnetic moment in a
small external magnetic field. It includes the polarization
of the impurity Weiss field by an external field �Georges
et al., 1996�. Dynamical mean-field results account for
the Curie-Weiss law which is observed experimentally in
Fe and Ni. As the temperature increases above Tc, the
atomic character of the system is partially restored re-
sulting in an atomiclike susceptibility with an effective
moment �eff. The temperature dependence of the or-
dered magnetic moment below the Curie temperature
and the inverse of the uniform susceptibility above the
Curie point are plotted in Fig. 50 together with the cor-
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responding experimental data for iron and nickel �Wol-
farth, 1986�. The LDA+DMFT calculation describes the
magnetization curve and the slope of the high-
temperature Curie-Weiss susceptibility remarkably well.
The calculated values of high-temperature magnetic mo-
ments extracted from the uniform spin susceptibility are
�eff=3.09�B and 1.50�B for Fe and Ni, in good agree-
ment with the experimental data �eff=3.13�B and
1.62�B for Fe and Ni �Wolfarth, 1986�. Similar results
were obtained earlier using a model Hamiltonian ap-
proach �Ulmke, 1998�.

The Curie temperatures of Fe and Ni were estimated
from the disappearance of spin polarization in the self-
consistent solution of the DMFT problem and from the
Curie-Weiss law. The estimates for TC=1900 and 700
K are in reasonable agreement with experimental values
of 1043 and 631 K for Fe and Ni, respectively �Wolfarth,
1986�, considering the single-site nature of the DMFT
approach, which is not able to capture the reduction of
TC due to long-wavelength spin waves. These effects are
governed by the spin-wave stiffness. Since the ratio of
the spin-wave stiffness D to TC , TC /a2D, is nearly a fac-
tor of 3 larger for Fe than for Ni �Wolfarth, 1986� �a is
the lattice constant�, TC in CDMFT should be much
higher than the observed Curie temperature in Fe than
in Ni. Quantitative calculations demonstrating the siz-
able reduction of TC due to spin waves in Fe in the
framework of a Heisenberg model were performed by
Pajda et al. �2001�. This physics whereby the long-
wavelength fluctuations renormalize the critical tem-
perature would be captured by EDMFT �Pankov et al.,
2002�. Alternatively, the reduction of the critical tem-
perature due to spatial fluctuations can be investigated
with cluster DMFT methods.

The local susceptibility is easily computed within the
DMFT-QMC. Its behavior as a function of temperature
gives an intuitive picture of the degree of correlations in
the system. In a weakly correlated regime we expect the
local susceptibility to be nearly temperature indepen-

dent, while in a strongly correlated regime we expect a
leading Curie-Weiss behavior at high temperatures
�local=�loc

2 / �3T+const�, where �loc is an effective local
magnetic moment. In the Heisenberg model with spin
S , �loc

2 =S�S+1�gs
2 and for the well-defined local mag-

netic moments �e.g., for rare-earth magnets� this quan-
tity should be temperature independent. For the itiner-
ant electron magnets, �loc is temperature dependent due
to a variety of competing many-body effects such as
Kondo screening, the induction of local magnetic mo-
ment by temperature �Moriya, 1985� and thermal fluc-
tuations which disorder the moments �Irkhin and
Katsnelson, 1994�. All these effects are included in the
DMFT calculations.

The comparison of the values of the local and the q
=0 susceptibility gives a crude measure of the degree of
short-range order which is present above TC. As ex-
pected, the moments extracted from the local suscepti-
bility are a bit smaller �2.8�B for iron and 1.3�B for
nickel� than those extracted from the uniform magnetic
susceptibility. This reflects the small degree of the short-
range correlations which remain well above TC �Mook
and Lynn, 1985�. The high-temperature LDA+DMFT
clearly shows the presence of a local moment above TC.
This moment is correlated with the presence of high-
energy features �of the order of the Coulomb energies�
in the photoemission. This is also true below TC, where
the spin dependence of the spectra is more pronounced
for the satellite region in nickel than for that of the qua-
siparticle bands near the Fermi level. This can explain
the apparent discrepancies between different experi-
mental determinations of the high-temperature mag-
netic splittings �Kisker et al., 1984; Kreutz et al., 1989;
Kakizaki et al., 1994; Sinkovic et al., 1997� as results of
probing different energy regions. Resonant photoemis-
sion experiments �Sinkovic et al., 1997� reflect the pres-
ence of local-moment polarization in the high-energy
spectrum above the Curie temperature in nickel, while
the low-energy ARPES investigations �Kreutz et al.,
1989� results in nonmagnetic bands near the Fermi level.
This is exactly the DMFT view on the electronic struc-
ture of transition metals above TC. Fluctuating moments
and atomiclike configurations are large at short times,
which results in correlation effects in the high-energy
spectra such as spin-multiplet splittings. The moment is
reduced at longer time scales, corresponding to a more
bandlike, less correlated electronic structure near the
Fermi level.

2. Classical Mott insulators

NiO and MnO represent two classical Mott-Hubbard
systems �here we shall not distinguish between Mott-
Hubbard insulators and charge-transfer insulators
�Zaanen et al., 1985��. Both materials are insulators with
the energy gap of a few eV regardless whether they are
antiferromagnetic or paramagnetic. The spin-dependent
LSDA theory underestimates the energy gap in the or-
dered phase. This can be corrected using the LDA+U
method. Both theories, however, fail to completely de-

FIG. 50. �Color online� Temperature dependence of ordered
moment and the inverse ferromagnetic susceptibility calcu-
lated with LDA�DMFT �QMC� for Fe �open square� and Ni
�open circle� compared with experimental results for Fe
�square� and Ni �circle�. The calculated moments were normal-
ized to the LDA ground-state magnetization �2.2�B for Fe and
0.6�B for Ni�. From Lichtenstein et al., 2001.
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scribe the local moment regime reflecting a general
drawback of band theory to reproduce the atomic limit.
Therefore the real challenge is to describe the paramag-
netic insulating state where self-energy effects are cru-
cial both for the electronic structure and for recovering
the correct phonon dispersions in these materials. The
DMFT calculations have been performed �Savrasov and
Kotliar, 2003� by taking into account correlations among
d electrons. In the regime of large U, adequate for both
NiO and MnO in the paramagnetic phase, the correla-
tions were treated within the Hubbard I approximation.

The calculated densities of states using the LDA
+DMFT method for the paramagnetic state of NiO and
MnO �Savrasov and Kotliar, 2003� have revealed the
presence of lower and upper Hubbard subbands. These
were found in agreement with the LDA+U calculations
�Anisimov et al., 1991� which have been performed for
the ordered states of these oxides. Clearly, spin inte-
grated spectral functions do not show an appreciable de-
pendence with temperature and look similar below and
above the phase transition point.

The same trend is known to be true for phonon spec-
tra which do not depend dramatically on magnetic or-
dering since the Néel temperatures in these materials
are much lower than their energy gaps. Figure 51 shows
phonon dispersions for NiO along major symmetry di-
rections. Good agreement with experiment �Roy et al.,
1976� can be found for both acoustic and transverse
modes. A pronounced softening of the longitudinal op-
tical mode along both �X and �L lines is seen at the
measured data which are in part captured by the theo-
retical DMFT calculation: the agreement is somewhat
better along the �X direction while the detailed q de-
pendence of these branches shows some residual dis-
crepancies.

The results of these calculations have been compared
with the paramagnetic LDA, as well as with the antifer-
romagnetic LSDA and LSDA+U solutions by Savrasov
and Kotliar �2003�. The paramagnetic LDA did not re-
produce the insulating behavior and therefore fails to

predict the splitting between the LO and TO modes.
Due to metallic screening, it underestimates the vibra-
tions for NiO and predicts them to be unstable for MnO.
The spin-resolved LSDA solution imposes the existence
of long-range magnetic order and is an improvement
over LDA, but underestimates the energy gap. As a re-
sult, it underestimates the longitudinal optical modes
�Savrasov and Kotliar, 2003�. On the other hand, calcu-
lations with correlations produce much better results.
This is found for both the LSDA+U and LDA
+Hubbard I calculations which can be interpreted as
good approximations to the full LDA�DMFT solutions
for the ordered and disordered magnetic states, respec-
tively. Such agreement can be related to the fact that the
direct d-d gap is controlled by U, and the charge-
transfer gap comes out better in the theory. Thus the
local screening of charge fluctuations are treated more
appropriately.

D. Other applications

DMFT concepts and techniques are currently being
applied to investigate a broad range of materials and a
wide variety of strong correlation problems. This is a
very active research frontier, comprising topics as di-
verse as manganites, ruthenates, vanadates, actinides,
lanthanides, Buckminster fullerenes, quantum criticality
in heavy-fermion systems, magnetic semiconductors, ac-
tinides, lanthanides, Bechgaard salts, high-temperature
superconductors, as well as surfaces, heterostructures,
and alloys, and many other types of materials. DMFT
can be applied to inhomogeneous systems even in its
single-site DMFT version, where one assumes a self-
energy which is local but site dependent. This is impor-
tant to describe alloys, surfaces, interfaces, and hetero-
structures. We mention below a small subset of the
systems under investigation using techniques described
in this review, in order to give the reader a glimpse of
the breadth of this rapidly developing field and the great
potential of DMFT methods to investigate strongly cor-
related materials. For earlier reviews see Kotliar and
Savrasov �2001�, Nekrasov, Blumer, Held, et al. �2001�,
Lichtenstein et al. �2002a, 2002b�, Held et al. �2003�,
Georges �2004a, 2004b�, Kotliar and Vollhardt �2004�,
and Kotliar �2005�.

• Manganites. A large body of DMFT studies focused
on manganites with a perovskite structure, like
La1−xCaxMnO3 or La1−xSrxMnO3. These materials
attracted attention because of their “colossal” mag-
netoresistance, which is an extreme sensitivity of re-
sistance to an applied magnetic field �Tokura, 1990,
2003; Dagotto, 2002�. The phase diagram of these
materials in the temperature composition plane is
rich, displaying ferromagnetism, antiferromagnetism,
and charge and orbital ordering. Several physical
mechanisms and various interactions are important
in these materials such as the double-exchange
mechanism �i.e., the gain in kinetic energy of eg elec-
trons when the t2g electrons are ferromagnetically

FIG. 51. Comparison between calculated using the LDA
�DMFT �Hubbard I� method �filled circles� and experimental
�open circles� �Roy et al., 1976� phonon dispersion curves for
NiO. From Savrasov and Kotliar, 2003.
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aligned�, the coupling of eg electrons to Jahn-Teller
modes �i.e., distortions of oxygen octahedra which
lift the cubic degeneracy of eg orbitals�, and breath-
ing oxygen phonon modes. These materials, as well
as the copper oxides, also spurred studies on strong
electron-phonon coupling problems and their inter-
play with electron-electron interactions. Semiclassi-
cal treatments of the core spins and the phonons help
to dramatically simplify the solution of the DMFT
equations.2

• High-temperature superconductivity. The discovery
of high-temperature superconductivity in cuprates
posed a great theoretical and computational chal-
lenge of uncovering the mechanism of this phenom-
enon, which today is still not sufficiently understood.
Cluster extensions of DMFT have been applied in an
effort to unravel the mystery of high-temperature su-
perconductivity �Katsnelson and Lichtenstein, 2000;
Maier et al., 2000a, 2005; Huscroft et al., 2001; Ary-
anpour et al., 2002; Maier, Pruschke, et al., 2002;
Potthoff et al., 2003; Dahnken et al., 2004, 2005;
Macridin et al., 2004, 2005; Maier, Jarrell, Macridin,
et al., 2004; Civelli et al., 2005�. DMFT has been ap-
plied to situations involving long periodicities such as
stripes �Fleck et al., 1999�.

• Miscellaneous transition-metal oxides have been stud-
ied with DMFT. NaxCoO2 has received much interest
due to anomalous thermoelectric properties in addi-
tion to superconductivity upon hydration �Marianetti
et al., 2004; Ishida et al., 2005; Lechermann et al.,
2005b; Saha-Dasgupta et al., 2005�. LiVO2 displays
large effective mass for a d-electron system, which
gave rise to the idea that this may be an example of
a heavy-fermion d-electron material �Nekrasov et al.,
2003�. TiOCl displays 1D orbital ordering at low tem-
peratures, and exhibits a spin-Peierls transition
�Seidel et al., 2003; Hoinkis et al., 2005; Saha-
Dasgupta et al., 2005�. Ca2−xSrxRuO4 attracted a lot
of attention as it exhibits unconventional p-wave su-
perconductivity at low temperatures and a Mott tran-
sition �Liebsch and Lichtenstein, 2000; Anisimov et
al., 2002; Lichtenstein and Liebsch, 2002; Liebsch,
2003a, 2003c�. DMFT has also been applied to half
magnets such as CrO2 and nonoxides such as
NiMnSb �Chioncel, Katsnelson, et al., 2003; Irkhin et
al., 2004; Chioncel et al., 2005� and CrO2 �Laad et al.,
2001; Craco et al., 2003b�.

• Fullerenes KnC60 and supercrystals. The doped Buck-
minster fullerenes are solids formed from C60—a
molecule shaped like a soccer ball—with the alkali
metal sitting in the middle. Their proximity to the
Mott transition was pointed out by Gunnarsson
�1997�. At low temperatures K3C60 is an s-wave su-
perconductor, where both the strong electron-
phonon interaction and Coulomb repulsion need to
be taken into account. DMFT has been helpful in
understanding the transition to superconductivity
�Capone et al., 2000, 2002; Capone, Fabrizio, and To-
satti, 2002; Han et al., 2003�. A Mott-insulating state
has also been realized in another nanostructured su-
percrystal family, that of potassium-loaded zeolites,
and realistic DMFT calculations have been carried
out �Arita et al., 2004�.

• Bechgaard salts �Vescoli et al., 2000; Biermann et al.,
2001�. In addition to quasi-two-dimensional organic
compounds �Dressel et al., 2003; Drichko et al., 2005�,
there have been chain-DMFT studies of �TMTTF�2X
and �TMTSF�2X. These are strongly anisotropic ma-
terials made of stacks of organic molecules. Their
optical properties are very unusual. At high tempera-
tures electrons move mainly along the chains, before
undergoing inelastic collisions forming a “Luttinger
liquid”—one of the possible states of the one-
dimensional electron gas. By contrast, at sufficiently
low temperatures the electronic structure becomes
effectively three dimensional. For example, they ex-
hibit a very narrow Drude peak carrying only 1% of
the total optical weight �Vescoli et al., 2000; Bier-
mann et al., 2001�. Investigations of the unusual
properties of these materials, and in particular of the
crossover between the low- and high-temperature re-
gimes, using chain generalizations of DMFT have
been performed by Biermann et al. �2001�. Other as-
pects have recently been addressed by Georges et al.
�2000� and Giamarchi et al. �2004�.

• Heavy-fermion materials are compounds containing
both f electrons and lighter s ,p ,d electrons. They
can form a “heavy” Fermi-liquid state which super-
conducts at low temperatures where quasiparticles
are composites of f-electron spins and conduction
electron charges, or can order antiferromagnetically
at low temperatures �for a recent review see Stewart
�2001��.

The boundary between the Fermi liquid and the an-
tiferromagnet has been a subject of intensive theo-
retical and experimental study. Recent neutron-
scattering experiments are consistent with a local
spin self-energy, and have motivated extended dy-
namical mean-field descriptions of the Kondo lattice
model �Si et al., 1999, 2001, 2003; Si, 2001; Ingersent
and Si, 2002; Grempel and Si, 2003; Jian-Xin et al.,
2003� which reproduces many features of the experi-
ment at zero temperature. For a recent discussion
see Si �2003�. A corresponding study of the Ander-
son lattice model �Sun and Kotliar, 2003, 2004a,

2For various DMFT studies of the electron-phonon coupling
problem see Furukawa �1994�; Millis et al. �1996b�; Ciuchi et al.
�1997�; Benedetti and Zeyher �1999�; Ciuchi and de Pasquale
�1999�; Fratini et al. �2000, 2001�; Held and Vollhardt �2000�;
Imai and Kawakami �2000�; Izyumov Yu and Letfulov �2001�;
Deppeler and Millis �2002a, 2002b�; Fishman and Jarrell �2002,
2003a, 2003b�; Pankov et al. �2002�; Blawid et al. �2003�;
Chernyshev and Fishman �2003�; Michaelis and Millis �2003�;
Phan and Tran �2003�; Ramakrishnan et al. �2003, 2004�; Tran
�2003�; Venketeswara Pai et al. �2003�.
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2005� suggests that single-site EDMFT describes well
the physics of heavy-fermion systems not too close to
the critical point, but further extensions of the
EDMFT formalism are needed to access the quan-
tum critical point.

An interesting issue is whether the optical sum rule,
integrated up to some cutoff of the order of 1 eV, can
be a strong function of temperature in heavy-fermion
insulators. The f-sum rule states that if the integra-
tion is performed up to infinite frequency, the result
is temperature independent. In most materials, this
sum rule is obeyed even when a finite upper limit of
the order of an electronic energy is used. This was
found in Ce3Bi4Pt3 �Bucher et al., 1994� and FeSi
�Schlesinger et al., 1993�. Damascelli �1999� showed
that the integrated optical weight up to 0.5 eV is a
strong function of temperature, and if an insulating
gap much smaller than the cutoff is open, the spec-
tral weight is transferred to high frequencies. This
problem was theoretically addressed using single-site
DMFT applied to the Anderson lattice model, and
the theory supports a gradual filling of the gap with-
out area conservation �Rozenberg et al., 1995�. More
recent studies applied to a multiband Hubbard
model �Urasaki and Saso, 2000; Smith et al., 2003;
van der Marel, 2003� and to the Anderson lattice
�Vidhyadhiraja et al., 2003� yield excellent quantita-
tive agreement with recent experiments.

Of great interest is the behavior of these materials in
an external field, which is easily incorporated into
the DMFT equations �Meyer and Nolting, 2001; de’
Medici, Georges, Kotliar, et al., 2005�. One interest-
ing phenomenon is the possibility of metamagnetism,
namely, the anomalous increase of the magnetization
and concomitant changes in electronic structure as a
function of external field, known as a metamagnetic
transition. This is displayed in many heavy-fermion
systems such as CeRu2Si2 �van der Meulen et al.,
1991; Aoki et al., 1993, 1998; Sakakibara et al., 1995�.
An important issue is whether a transition between a
state with a large Fermi surface and a small Fermi
surface takes place as a function of magnetic field.

• Magnetic semiconductors are materials where the
magnetization is related to the carrier concentration
�Wolf et al., 2001�. They offer the possibility of con-
trolling the charge conductivity �as in usual semicon-
ductors� and the spin conductivity �by controlling the
magnetization�, by varying the carrier concentration.
Excitement in this field has been generated by the
discovery of high-temperature ferromagnetism in
these materials. One main challenge is to understand
the dependence of magnetization on the carrier con-
centration of magnetic atoms and on the concentra-
tion of conduction electrons or holes. This problem is
closely related to the Anderson lattice model and
several DMFT studies on this problem have ap-
peared �Chattopadhyay et al., 2001; Das Sarma et al.,
2003�. For a recent DMFT study of the dependence

of the critical temperature on various physical pa-
rameters see Moreno et al. �2005�.

• Strongly inhomogeneous systems: Systems near an
Anderson transition. The dynamical mean-field
theory has been formulated to accommodate inho-
mogeneous situations such as systems near an
Anderson transition, by allowing an arbitrary site de-
pendence of the Weiss field �Dobrosavljevic and Kot-
liar, 1997� which should not be replaced by a mean
value, and instead information on the distribution of
this quantity should be kept �statistical DMFT�. Re-
cent progress in simplifying the analysis and solution
of these equations was achieved using the typical me-
dium approach by Dobrosavljevic et al. �2003�. The
statistical DMFT approach can also be used to study
the interplay of disorder and the electron-phonon
coupling �Bronold and Fehske, 2003�.

• Heterostructures, surfaces, and interfaces. Another
application of DMFT is the study of correlation ef-
fects on surfaces, which are likely to be more pro-
nounced than in the bulk. For a discussion of these
effects see Sawatzky �1995� and Hesper et al. �2000�.
DMFT equations for the study of correlation effects
on surfaces and surface phase transitions were given
by Potthoff and collaborators �Potthoff and Nolting,
1999a, 1999b, 1999c� and applied to the study of cor-
related electrons and the Mott transition on surfaces
�Liebsch, 2003d; Perfetti et al., 2003�. DMFT studies
of heterostructures containing correlated and uncor-
related materials are also the subject of active inves-
tigations �Freericks, 2004; Okamoto and Millis,
2004b, 2004c, 2004d�. DMFT has been used to study
magnetic multilayers �Chioncel and Lichtenstein,
2004�.

V. OUTLOOK

The dynamical mean-field method represents a new
advance in many-body physics. The method provides an
excellent description of the strongly correlated regime of
many three-dimensional transition-metal oxides, which
had not been accessible to other techniques.

The many-body problem in solid-state physics is now
attacked systematically with DMFT by solving self-
consistently embedded clusters containing an increasing
number of sites or orbitals, as opposed to adding graphs
of increasing order in perturbation theory as done in
traditional approaches. Surprisingly, this is a rapidly con-
verging process even for sp-bonded materials such as Si
�Zein et al., 2005�, resulting in a systematic and practical
scheme for predicting the electronic structure of materi-
als.

The combination of advanced electronic structure
methods with dynamical mean-field theory has already
resulted in new powerful methods for modeling corre-
lated materials. Further improvements are currently be-
ing pursued, as the implementations of GW methods
and dynamical mean-field ideas �Aryasetiawan and
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Gunnarsson, 1998; Sun and Kotliar, 2002, 2004b; Zein
and Antropov, 2002; Biermann et al., 2003�.

In the field of statistical mechanics, the development
of mean-field theories was followed by the development
of renormalization-group approaches incorporating the
physics of long-wavelength fluctuations which become
dominant near critical points. The development of effec-
tive renormalization techniques for correlated electrons
and electronic structure applications is a major future
challenge. It will allow for accurate derivation of low-
energy Hamiltonians, and improve the solution of model
Hamiltonians beyond the cluster dynamical mean-field
theory.

Forces acting on the atoms have been evaluated in the
realistic DMFT treatment of phonons in correlated elec-
tron systems �Dai et al., 2003; Savrasov and Kotliar,
2003�. Indications that DMFT correctly captures the
forces on atoms in correlated materials bodes well for
combining this development with molecular dynamics to
treat the motion of ions and electrons simultaneously.
This remains one of the great challenges for the future.

In conclusion, DMFT is a theory which can accurately
capture local physics. We emphasized that the notion of
locality is flexible, and generically refers to some pre-
defined region in which correlations are treated directly
�e.g., a single site or a cluster of sites�. Current compu-
tational limitations restrict the local region to a rela-
tively small number of sites for lattice models. Despite
this restriction, DMFT and its cluster extensions have
been successful in describing a wide variety of material
properties where conventional techniques such as LDA
have failed. Therefore it seems that there exists a gen-
eral tool which can accurately treat many problems
posed by strong correlation in realistic materials. With
an increasing number of realistic DMFT implementa-
tions and studies of materials, more detailed compari-
sons with experiments will emerge. Ultimately, this ex-
perience will allow us to understand which aspects of the
strong correlation problem lie within the scope of the
method, and which aspects require the treatment of non-
Gaussian, long-wavelength fluctuations of collective
modes not included in the approach.
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APPENDIX A: DERIVATIONS OF THE QMC

1. Derivation of Eq. (212)

First, we show that

Trd†,d� �
1�k�K

ed†A�k�d� = det�1 + �
1�k�K

eA�k�� , �A1�

where di �1� i�n� are fermionic operators, A�k� �1�k
�K� n�n matrices, and the notation d†A�k�d

 	1�i,j�ndi

†Aij
�k�dj. Indeed using

�d†Ad,d†Bd� = d†�A,B�d �A2�

and the Baker-Campbell-Hausdorff formula eAeB=eM

with

M 
 A + B +
1
2

�A,B� + a2†A,�A,B�‡ + ¯ , �A3�

we have

exp�d†Ad�exp�d†Bd� = exp�d†Md� .

By recursion, this generalizes to K matrices, so we just
have to prove the result for K=1, A�1� =M. If M is diag-
onal, the result is straightforward. For a general matrix
M, by directly expanding the exponential of the left-
hand side and using Wick’s theorem, we see that
Trd†,ded†Md is a series in Tr Mk �k%0� and is therefore
invariant under any change of basis, and therefore
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det�1+eM�. Hence the result follows by diagonalizing M.
Second, we use the determinant formula

 
1 0 ¼ 0 BL

− B1 1 ¼ ¼ 0

0 − B2 1 ¼ ¼
¼ ¼ ¼ 1 0

¼ ¼ ¼ − BL−1 1
 

= det�1 + BLBL−1 ¯ B1� ,

where B1 ,¼ , BL are n�n matrices. This formula results
by recursion from the general formula for block matri-
ces:

det�A B

C D
� = det��1 B

0 D
��A − BD−1C 0

D−1C 1
��

= det D det�A − BD−1C� . �A4�

2. Derivation of Eq. (213)

The first step is to obtain an explicit formula for g
S�
�Blankenbecler et al., 1981�. A quick way is to replace
ap� and ap�

† in the trace by exp��†(�
† a� and exp�a†(���,

where � is an auxiliary fermion and �(��ij=��j0�i� where
0 is the index of �. Starting from the explicit trace ex-
pression of the Green’s function, distinguishing the cases
l1% l2 and l1" l2, using Eqs. �A1� and �A4�, we expand to
second order in � and obtain �see also Georges et al.
�1996��:

g
S�

 �l1,l2� = �Bl1−1



¯ Bl2


�1 + Bl2−1



¯ B1

BL



¯ Bl2


�−1 for l1 % l2

− Bl1−1



¯ B1

BL



¯ Bl2


�1 + Bl2−1



¯ B1

BL



¯ Bl2


�−1 for l1 " l2.
� �A5�

A straightforward calculation then shows that
g
S�

 O
�
S�� =1.

3. Derivation of Eq. (215)

Equation �215� follows from the observation that

O
�
S���i=n
1 e−Ṽi
�
S�� depends on the configuration 
S�

only on its diagonal blocks, which leads to

O
�
S���
i=n

1

e−Ṽi
�
S�� − O
�
S����
i=n

1

e−Ṽi
�
S���

= �
i=n

1

e−Ṽi
�
S�� − �
i=n

1

e−Ṽi
�
S���, �A6�

which yields Eq. �215�.

4. Derivation of the fast update formula (220)

We present here the steps to go from Eq. �220� to
�221�. Since the difference between the two V’s is in the
l block, A
 has the form

A
 =�
1 0 ¯ A1l



¯ 0

0 1 ¯ A2l



¯ 0

� � � � � �
0 0 ¯ All



¯ 0

� � � � � �
0 0 ¯ ALl



¯ 1

� .

Using Eq. �A4�, we have det A
=det All

. If det All


�0,
we use the Woodbury formula where M is a N�N ma-

trix and U and V are N�P matrices �Golub and Loan,
1996�:

�M + UtV�−1 = M−1 − M−1U�1 + tVM−1U�−1tVM−1,

with N=LN , P=N , M=1, tU= �Ail� , tV= ��il� , 1� i
�L, to get

A

−1 =�

1 0 ¯ − A1l

 �All


�−1
¯ 0

0 1 ¯ − A2l

 �All


�−1
¯ 0

� � � � � �
0 0 ¯ �All


�−1
¯ 0

� � � � � �
0 0 ¯ − ALl


 �All

�−1

¯ 1

� , �A7�

which leads to Eq. �221�.

APPENDIX B: SOFTWARE FOR CARRYING OUT
REALISTIC DMFT STUDIES

There is growing interest to apply DMFT to realistic
models of strongly correlated materials. In conjunction
with this review, we provide a suite of DMFT codes
which implement some of the ideas outlined in the re-
view �http://dmft.rutgers.edu�. These codes should serve
as a practical illustration of the method, in addition to
lowering the barrier to newcomers in the field who wish
to apply DMFT to materials. A strong effort was made
to isolate the various aspects of the DMFT calculation
into distinct subroutines and programs. This is a neces-
sity for conceptual clarity and due to the fact that vari-
ous pieces of the code are under constant development,
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which will be incorporated into future updates of the
webpage. Additionally, we hope that this will increase
the ability of others to borrow different aspects of our
codes and apply them in future codes or applications.
Each of the codes performs some task or set of tasks
outlined in the LDA+DMFT flow chart �see Fig. 9� or
the simpler DMFT flow chart �see Fig. 5�.

1. Impurity solvers

DMFT is a mapping of a lattice problem onto an im-
purity problem. Therefore at the heart of every DMFT
calculation is the solution of the Anderson impurity
model �Sec. III�. Solving the AIM is the most computa-
tionally demanding aspect of DMFT. No one solver is
optimum for all parameter space when considering both
accuracy and computational cost. Therefore we have
provided a variety of impurity solvers with this review.
Additionally, more impurity solvers will be added to the
webpage with time, and existing impurity solvers will be
generalized. It should be noted that some solvers are
more general than others, and some are already embed-
ded in codes which will perform DMFT on simple Hub-
bard models. The following solvers are currently avail-
able: QMC, FLEX, NCA, Hubbard I, and interpolative
solver �see Secs. III.A, III.B, III.C, III.D, and III.F, re-
spectively�.

2. Density-functional theory

Density-functional theory �see Sec. I.B.1� is the pri-
mary tool used to study realistic materials, and in prac-
tice is usually the starting point for the study of realistic
materials with strong correlations. Furthermore, current
implementations of DMFT require the definition of lo-
cal orbitals. Therefore DFT performed using an LMTO
basis set is an ideal match for DMFT. However, we
should emphasize that any basis set may be used �i.e.,
plane waves, etc.� as long as local orbitals are defined.

Savrasov’s full-potential LMTO code �i.e., LMTART� is
provided to perform both DFT and DFT+U �i.e.,
LDA+U or GGA+U� calculations �see Secs. I.B.1 and
II.C, respectively�. This code possesses a high degree of
automation, and only requires a few user inputs such as
the unit cell and the atomic species. The code outputs a
variety of quantities such as the total ground-state en-
ergy, bands, density of states, optical properties, and
real-space hopping parameters. The code additionally
calculates forces, but no automatic relaxation scheme is
currently implemented.

A Microsoft windows based graphical interface for
LMTART, MINDLAB, is also provided. This allows an un-
familiar user an intuitive interface to construct the input
files for LMTART, run LMTART, and analyze the results in
a point-and-click environment. This code is especially
helpful for plotting and visualization of various results
ranging from the projected density of states to the Fermi
surface.

3. DFT+DMFT

As stressed in this review, the ultimate goal of our
research is a fully first-principles electronic structure
method which can treat strongly correlated systems �i.e.,
see Secs. I.B.3 and II.E�. Because this ambitious meth-
odology is still under development, we continue to rely
on the simplified approach which is DFT+DMFT �Sec.
I.B.1�. One of the great merits of DFT+DMFT is that it
is a nearly first-principles method. The user only needs
to input the structure, the atomic species, and the inter-
actions �i.e., U�. The DFT+DMFT code suite is broken
into three codes.

The first part is the DFT code, which is simply a modi-
fied version of LMTART. It has nearly identical input files,
with minor differences in how correlated orbitals are
specified. Therefore the main inputs of this code are the
unit cell and the atomic species. The main role of this
code is to generate and export the converged DFT
Hamiltonian matrix in a local basis for each k point.
Therefore this code essentially generates the parameters
of the unperturbed Hamiltonian automatically. This in-
formation is needed to construct the local Green’s func-
tion.

The second part is the code which implements the
DMFT self-consistency condition �121�, which requires a
choice of correlated orbitals �Eq. �114�� and double
counting �Eq. �118��. This code takes the Hamiltonian
matrix and the self-energy as input, and provides the
bath function as output.

The third part is the various codes which solve the
Anderson impurity model, and have been described in
the first section. These codes take the bath function as
input and provide the self-energy, which is used in the
self-consistency condition in the preceding step.

These three pieces allow one to perform a non-self-
consistent DFT+DMFT calculation as follows. First, the
DFT code is used to generate the local, orthogonalized
Hamiltonian matrix at each k point. Second, one starts
with a guess for the self-energy and uses the DMFT self-
consistency condition code to find the bath function.
Third, the bath function is fed into the impurity solver
producing a new self-energy. The second and third steps
are then repeated until DMFT self-consistency is
achieved. This is considered a non-self-consistent DFT
+DMFT calculation. In order to be fully self-consistent,
one should recompute the total density after DMFT
self-consistency is achieved and use this as input for the
initial DFT calculation. This process should be contin-
ued until both the total density and the local Green’s
function have converged.

One should note that the above pieces which compose
the DFT+DMFT suite are three separate codes. There-
fore one must write a simple script to iterate the above
algorithm until self-consistency is reached �i.e., the self-
energy converges to within some tolerance�. Addition-
ally, the DFT portion of this code suite �i.e., the first
part� can in principle be replaced by any DFT code as
long as a local basis set is generated.
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4. Tight-binding cluster DMFT code (LISA)

The LISA �local impurity self-consistent approxima-
tion� project is designed to provide a set of numerical
tools to solve the quantum many-body problem of solid-
state physics using dynamical mean-field theory methods
�single site or clusters�. The input to the program can be
either model Hamiltonians or the output of other ab
initio calculations �in the form of tight-binding param-
eters and interaction matrices�. This should facilitate the
development of realistic implementations of dynamical
mean-field theory in electronic structure codes using ar-
bitrary basis sets.

This tool is provided to allow non-DMFT specialists
to make DMFT calculations with a minimal investment.
However, DMFT methods are still in development and
undergoing constant improvements. In particular, new
impurity solvers need to be developed and new cluster
schemes possibly be explored. Therefore numerical tools
have to be flexible to accommodate foreseeable exten-
sions of the methods. In particular, one needs to be able
to switch the solver easily while keeping the same self-
consistency condition. This can be achieved efficiently
with modern programming techniques �e.g., object ori-
entation, generic programming without sacrificing speed
since intensive parts of the program are quite localized
and can be easily optimized�. These techniques allow for
a standardization of DMFT solvers by using an abstract
solver class such that any new solver can be used imme-
diately in various DMFT calculations. The use of an ab-
stract lattice class allows for programs designed for
tight-binding models like the Hubbard model to also be
used for realistic calculations. A decomposition of the
self-consistency conditions into small classes is beneficial
in that various summation techniques on the Brillouin
zone can be used or new cluster schemes can be tested.

With LISA we hope to achieve flexible, reusable, and
efficient software that is general enough to solve a vari-
ety of models and to serve as a basis for future develop-
ments. Documentation, including examples, is provided
on the web page. At present, a library and a self-
contained DMFT program are provided to solve a gen-
eralized tight-binding Hamiltonian with single-site or
many variants of cluster DMFT described in Sec. II.B
with the Hirsch-Fye QMC method. The tight-binding
Hamiltonian may be very simple, such as the traditional
Hubbard model or the p-d model of the cuprates, or
complex, such as a real material with longer range hop-
pings. This is markedly different from the DFT
+DMFT code which takes the structure as input and
generates the Hamiltonian. The tight-binding Hamil-
tonian may be generated by a variety of different elec-
tronic structure methods and codes, or trivially specified
in the case of a model Hamiltonian.

APPENDIX C: BASICS OF THE BAYM-KADANOFF
FUNCTIONAL

The aim of these notes is to provide a more pedagogi-
cal description of the use of functionals by using the

Baym-Kadanoff functional as an example, and to derive,
step by step, a few simple relations and formulas which
are used in the main text.

In the Baym-Kadanoff theory, the observable of inter-
est is the following operator:

�†�x���x�� , �C1�

and its average is the electron Green’s function
G�x� ,x� =−�T
��x���†�x��. As in the main text of the re-
view we use the notation x= �r ,
�. The aim of the theory
is to construct a functional that expresses the free energy
of the system when the Green’s function is constrained
to have a given value.

First, we modify the action of the system so that it
gives rise to the observable of our choice. This is
achieved by adding a source term to the action in the
following way:

e−F�J� = � D��†��

�exp�− S − � dxdx��†�x�J�x,x����x��� ,

�C2�

where the action S is given by S=S0+�S1 with S0 the
free part of the action and S1 the interacting part. In
electronic structure calculations

S1 =
1
2
�� dxdx��†�x��†�x��vC�x − x����x����x� �C3�

and vC is the Coulomb interaction.
� is a coupling constant that allows us to “turn on” the

interaction. When �=0 we have a noninteracting prob-
lem and we have the interacting problem of interest
when �=1.

The modified free energy �C2� is a functional of the
source field J , F=F�J�. By varying modified free energy
�C2�, F with respect to J, we get

�F�J,��
�J

= G . �C4�

The solution of this equation gives J=J�� ,G�.
Its meaning is the source that results for a given

Green’s function G when the interaction is �. Note that
when � is set to unity and G is the true Green’s function
of the original problem �i.e., J=0, �=1� J vanishes by
definition.

When G is the true Green’s function of the original
problem and �=0, J��=0,G� is nonzero and is equal to
the interacting self-energy �int. This is because the inter-
acting self-energy is the quantity that needs to be added
to the noninteracting action to get the interacting
Green’s function. We will show how this works math-
ematically below.

We now make a Legendre transform from the source
J to the Green’s function G to get a functional of
Green’s function only,
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�BK�G,�� = F†J��,G�,�‡ − Tr�JG� , �C5�

with the differential

��BK = − Tr�J �G� . �C6�

�BK�G� is the functional which, as we will show below,
gives the free energy and the Green’s function of the
interacting system at its saddle point. It is very useful for
constructing numerous approximations. The Legendre
transform is used extensively in statistical mechanics,
and the above procedure parallels transforming from the
canonical to the grand-canonical ensemble where the
chemical potential replaces the density as the indepen-
dent variable.

Now we want to connect the solution of the interact-
ing system �=1 with the corresponding noninteracting
�=0 problem and split functional �BK�G� into the simple
noninteracting part and a more complicated interacting
part.

1. Baym-Kadanoff functional at �=0

If � is set to zero, the functional integral �C2� can
readily be computed,

e−F0�J0� = � D��†��exp�− � dxdx��†�x�

�� �

�

− � + H0 + J0���x���

= Det� �

�

− � + H0 + J0� , �C7�

and the free energy becomes

F0�J0� = − Tr ln�G0
−1 − J0� , �C8�

where we neglected a constant term Tr ln�−1�. Here J0 is
J��=0� and F0 is F��=0�, while G0= ��+�−H0�−1 is the
usual noninteracting Green’s function. Taking into ac-
count Eq. �C4�, the Green’s function at �=0 is

G =
�F0�J0�
�J0

= �G0
−1 − J0�−1. �C9�

Since the Green’s function G is fixed at the interacting
Green’s function, it is clear that the source field J0 is the
interacting self-energy, viewed as a function of the
Green’s function G, i.e.,

J0 
 �int�G� 
 G0
−1 − G−1, �C10�

viewed as a functional of G �since G0 is fixed and given
from the very beginning�. In general, J0 is the constrain-
ing field that needs to be added to the noninteracting
action S0 to get the interacting Green’s function. Finally,
the Baym-Kadanoff functional at �=0, being the Le-
gendre transform of F0�J0�, takes the form

�0�G� = − Tr ln†G0
−1 − �int�G�‡ − Tr†�int�G�G‡ .

�C11�

2. Baym-Kadanoff functional at �=1

When the interaction is switched on, the functional is
altered and in general we do not know its form. We
write it as

�BK�G� = − Tr ln†G0
−1 − �int�G�‡ − Tr†�int�G�G‡

+ 	BK�G� , �C12�

where 	BK is a nontrivial functional of � and G. We are
interested in �=1 but it is useful sometimes to retain its
dependence of � for theoretical considerations. It will be
shown �see the next section, C.3� that 	BK can be repre-
sented as the sum of two-particle irreducible skeleton
diagrams.

We have seen in the previous subsection that J van-
ishes at �=1, J��=1,G� =0. This has the important con-
sequence that the Baym-Kadanoff functional is station-
ary at �=1 �see Eq. �C6�� and is equal to the free energy
of the system �see Eq. �C5��.

Stationarity of �BK means that the saddle-point equa-
tions determine the relationship between the quantities
that appear in the functional, i.e.,

��BK�G�
�G

= Tr���int

�G
��G0

−1 − �int�−1 − G��
− �int +

�	BK�G�
�G

= 0. �C13�

The first term in parentheses vanishes from Eq. �C10�.
Therefore at the stationary point, which determines the
Green’s function of interest Gsp, the constraining field,
denoted by �int�G� in Baym-Kadanoff theory, is equal to
the derivative of the interacting part of functional, i.e.,

�int�Gsp� = ��	BK�G�
�G

�
Gsp

. �C14�

Using the definition of �int in Eq. �C10� we see that
this is nothing but the standard Dyson equation, a non-
linear equation that determines the Green’s function of
interest Gsp at the saddle point of the BK functional:

�G0
−1 − Gsp

−1� = ��	BK�G�
�G

�
Gsp

. �C15�

Equation �C14� offers a diagrammatic interpretation
of 	BK as a sum of two-particle irreducible skeleton
graphs. Namely, a functional derivative amounts to
opening or erasing one Green’s-function line and since
the self-energy by definition contains one-particle irre-
ducible graphs, 	BK must contain two-particle irreduc-
ible graphs �skeleton graphs, see deDominicis and Mar-
tin �1964a, 1964b��.

Note that the functional �BK can also be regarded as a
stationary functional of two independent variables, G
and �int,
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�BK�G,�int� = − Tr ln�G0
−1 − �int� − Tr��intG�

+ 	BK�G� . �C16�

The derivative with respect to �int gives Eq. �C10�, while
derivative with respect to G leads to Eq. �C14�.

Finally, by construction, the free energy of the inter-
acting system at ��=1� is obtained by evaluating �BK at
its stationary point, which is the true Green’s function of
the system, which we refer to as G �instead of Gsp�:

FBK = Tr ln G − Tr��G0
−1 − G−1�G� + 	BK�G� . �C17�

3. Interacting part of Baym-Kadanoff functional

Here we give an alternative proof that the interacting
part of the Baym-Kadanoff functional 	BK is the sum of
two-particle irreducible skeleton diagrams. To prove this
we go back and reintroduce the coupling constant �
which multiplies the interacting part of the Hamiltonian
Hint=�V and the interacting part of the action which was
used to define the path between the noninteracting �
=0 and interacting �=1 system.

We first evaluate the derivative of the Baym-Kadanoff
functional with respect to � at fixed G, namely,

��BK�G,��
��

=
�	BK�G,��

��
. �C18�

Using Eq. �C5� and the relation between J and G, Eq.
�C4� valid at any given � , ��BK�G� =F�J� ,�� −Tr�J� ,G��,
we obtain,

�	BK�G,��
��

= � �F�J,��
��

�
J=J��,G�

. �C19�

Here J is a function of both � and G, i.e., J�� ,G�.
The derivative of the free-energy functional with re-

spect to the coupling constant �at fixed source� is readily
obtained,

�F

��
=

1

Z
� D��†��Ve−S =

1

�
�Hint� �C20�

and

�	BK�G,��
��

=
1

�
�Hint���,J��,G�� . �C21�

Note that Hint or S1 is independent of J, but the average
� � is carried out with respect to a weight which contains
the source explicitly. Integrating Eq. �C21�,

	BK�G� = �
0

1 1

�
�Hint���,J��,G��d� . �C22�

This is another example of the coupling constant inte-
gration formula for the interaction energy of the effec-
tive actions constructed in our review. Equation �C22�
can be expanded in standard perturbation theory. We
take as the inverse unperturbed propagator G0

−1−J��
=0� �namely, G� and as interaction vertices Hint and
�J��� −J��=0���†�. This means that the perturbation

theory contains two kinds of vertices, the first carries
four legs and the second denoted by a cross carries only
two legs and represents �J��� −J��=0���†�. The role of
the second vertex is to eliminate graphs which are two-
particle reducible; this cancellation is illustrated in Fig.
52, which demonstrates that for each reducible graph
�i.e., one having a self-energy insertion� there is also a
cross, their sum is zero as a result of the equation

J��� − J�� = 0� + ���� = 0. �C23�

This equation is proved by noting that at a given value
of � the Green’s function of the problem is by definition
G0

−1−J��=0� −����−1=G and since by definition G0
−1

−J��=0�−1=G combining these two equations we obtain
Eq. �C23�. The role of the coupling constant integration
is to provide the standard symmetry factors in the free-
energy graphs.

4. Total energy

Here we derive the relationship between the total en-
ergy of the system and the corresponding Green’s func-
tion. Let us start by the definition of the Green’s func-
tion

G�x1,x2� = − �T
��x1��†�x2�� . �C24�

The noninteracting �quadratic� part of the Hamiltonian,

�H0 = � dx1dx2�
†�x1�H0x1x2

��
1 − 
2���x2� , �C25�

can be expressed by the Green’s function in the follow-
ing way:

��H0� = � dx1dx2H0x1x2
��
1 − 
2���†�x1���x2��

= � dx1dx2H0x1x2
G�x2,x1���
2 − 
1 + 0+� .

�C26�

To get the interacting part of the total energy, we exam-
ine the time derivative of the Green’s function which
follows directly from the definition �C24� and takes the
form

FIG. 52. �Color online� Mechanism of cancellation of reduc-
ible graphs. The “�” denotes J��� −J��=0� and circles the self-
energy insertions that make the graph reducible.
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� �G�x1,x2�
�
1

�
1→
2−0+

r1→r2

= ��†�x1��H − �n,��x1��� .

�C27�

The resulting commutator can be simplified by noting
that the following commutators take a very simple form:

� dx�†�x����x�,V� = 2V , �C28�

� dx�†�x����x�,H0� = H0, �C29�

where V is the normal-ordered electron-electron inter-
action. The factor 2 in the above equation follows from
the fact that the interaction term is quartic in � while H0
is quadratic.

It is more convenient to express the equations in
imaginary frequency than the imaginary time. Using the
transformation

G�x1,x2� = T	
i�

e−i��
1−
2�Gi��r1,r2� , �C30�

one obtains for the noninteracting part

T � dr1dr2H0r1r2	
i�

Gi��r2,r1�ei�0+
= �H0� , �C31�

while the time derivative from Eq. �C27� gives

T � dr1	
i�

�i��ei�0+
Gi��r1,r1� = �H0 + 2V − �n� .

�C32�

Combining Eqs. �C31� and �C32� leads to the following
expression for the interaction energy:

�V� =
1
2

T � dr1dr2	
i�

ei�0+��i� + ����r1 − r2�

− H0r1r2
�Gi��r2,r1�

=
1
2

Tr�ei�0+G0
−1G� =

1
2

Tr��G� . �C33�

Here we took into account that 	i�ei�0+=0. Finally, the
total energy becomes

�H� =
1
2

T � dr1dr2	
i�

ei�0+��i� + ����r1 − r2�

+ H0r1r2
�Gi��r2,r1� = Tr�H0G +

1
2
�G� . �C34�
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