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Strong-field effects in laboratory and astrophysical plasmas and high intensity laser and cavity systems
are considered, related to quantum electrodynamical (QED) photon-photon scattering. Current
state-of-the-art laser facilities are close to reaching energy scales at which laboratory astrophysics will
become possible. In such high energy density laboratory astrophysical systems, quantum
electrodynamics will play a crucial role in the dynamics of plasmas and indeed the vacuum itself.
Developments such as the free-electron laser may also give a means for exploring remote violent
events such as supernovae in a laboratory environment. At the same time, superconducting cavities
have steadily increased their quality factors, and quantum nondemolition measurements are capable
of retrieving information from systems consisting of a few photons. Thus, not only will QED effects
such as elastic photon-photon scattering be important in laboratory experiments, it may also be
directly measurable in cavity experiments. Here implications of collective interactions between
photons and photon-plasma systems are described. An overview of strong field vacuum effects is
given, as formulated through the Heisenberg-Euler Lagrangian. Based on the dispersion relation for
a single test photon traveling in a slowly varying background electromagnetic field, a set of equations
describing the nonlinear propagation of an electromagnetic pulse on a radiation plasma is derived.
The stability of the governing equations is discussed, and it is shown using numerical methods that
electromagnetic pulses may collapse and split into pulse trains, as well as be trapped in a relativistic
electron hole. Effects, such as the generation of novel electromagnetic modes, introduced by QED in
pair plasmas is described. Applications to laser-plasma systems and astrophysical environments are
also discussed.
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I. INTRODUCTION

Nonlinear effects, in which a given phenomenon af-
fects its own evolution and dynamics, are prominent
components in a large variety of physical, chemical, and
biological systems. The examples range from optical and
nerve fibers, and autocatalytic chemical reactions, to
ocean waves (Scott, 2003). The field of hydrodynamics
has been especially important for the development of
nonlinear physics, both concerning analytical and com-
putational tools, since there the nonlinear effects can
play a major role in systems with important applications,
e.g., meteorology. The subject of plasma physics is a
natural generalization of the field of hydrodynamics,
since it builds on the fluid or kinetic equations, while
adding the electromagnetic interaction. The plasma state
of matter is prominent in large regions of the Universe,
such as our closest star, the Sun, accretion disks, and
even interstellar clouds. It has since long also been
noted within the field of plasma physics that both non-
linear effects and collective interactions can give rise to
new physical effects, such as the ponderomotive force
concept and Landau damping (Hasegawa, 1975). The
low-frequency ponderomotive force, which arises due to
nonlinear couplings between high-frequency electro-
magnetic fields, plays a central role in the physics of
laser-plasma interactions. This force in an unmagnetized
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plasma is expressed as the gradient of the electromag-
netic field intensity, which pushes electrons locally and
thereby creating large space-charge electric fields and
plasma density cavities. Due to the radiation pondero-
motive force, one opens the possibility of many interest-
ing nonlinear phenomena in plasmas, e.g., the genera-
tion of intense wake fields, stimulated scattering of
electromagnetic waves off plasmons and phonons, local-
ization of electromagnetic fields, etc. (Eliezer, 2002). The
momentum and energy transfer from the laser field to
plasma particles can be harnessed in, e.g., inertial con-
finement fusion (Eliezer, 2002). Moreover, intense elec-
tromagnetic radiation generated in state-of-the-art lasers
can be used to model certain astrophysical plasma con-
ditions in a laboratory environment (Remington, 2005).
Questions of astrophysical interest that can be ap-
proached within the field of high-energy-density labora-
tory astrophysics range from the equations of state of
planetary interiors to supernova shock formation [see
HEDLA (2005) for an overview]. In the next generation
laser-plasma systems the influence of quantum electro-
dynamics will become important, and fundamental ques-
tions related to the nonlinearity of the quantum vacuum
can be approached in laboratory systems (Mourou et al.,
2006).

Currently, lasers are capable of reaching intensities of
10?'-10%> W/cm? (Mourou et al., 1998, 2006; Tajima and
Mourou, 2002; Tajima, 2003; Bahk et al., 2004). At such
high field strengths, the quiver velocity of electrons is
highly relativistic, and the radiation pressure, manifest-
ing itself as a ponderomotive force term in the evolution
equations for the plasma, gives rise to local electron ex-
pulsion. Moreover, at these intensities, the nonlinear
relativistic dynamics of the laser-plasma system gives
rise to a number of other interesting phenomena as well,
such as soliton formation and pulse collapse (Shukla et
al., 1986). The latter could be of interest when using
laser-plasma systems to generate electromagnetic field
intensities approaching the Schwinger intensity limit
(Bingham, 2003; Bulanov et al, 2003; Bingham et al.,
2004; Cairns et al., 2004; Shukla, Marklund, and Elias-
son, 2004; Mourou et al., 2006; Shukla et al., 2005).

The event of future ultrashort (in the femtosecond
range) intense (10%°-10% W/cm?) lasers (Mourou et al.,
1998, 2006; Tajima and Mourou, 2002; Tajima, 2003)
could generate new physics within the next few years
(see Fig. 1). This is based on the development of chirped
pulse amplification, and the evolution of laser power is
predicted to continue evolving for some time (Mourou et
al., 1998, 2006). The x-ray free-electron lasers (XFEL)
under construction at SLAC (SLAC LCLS, 2005) and
DESY (DESY XFEL, 2005) will be a major source of
experimental data not achievable with today’s systems,
ranging from molecular properties (Patel, 2002) to astro-
physical conditions (Chen, 2003), such as supernova
shocks (Woolsey et al., 2004). The XFEL focus is ex-
pected to reach intensities making the quantum vacuum
directly accessible for observations (Ringwald, 2001a,
2001b, 2003; see Fig. 3). Moreover, combined effects of
laser pulse collapse and ponderomotive force electron
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FIG. 1. (Color online) The evolution of laser intensity. Re-
printed with permission from Tajima and Mourou, 2002.

expulsion would create plasma channels in which ultra-
high intensity field strengths are reached (Yu et al,
1982), such that the nonlinear vacuum effect of elastic
photon-photon scattering become important (Shen and
Yu, 2003; Shen et al., 2003).

A majority of studies have not taken into account the
influence of electron-positron pair creation or elastic
photon-photon scattering on the dynamics of laser-
plasma systems [there are, however, important excep-
tions; see, e.g., Bulanov et al. (2005)]. Effects of this kind
will be of the utmost importance when laser compres-
sion schemes approach the critical field strength

m,c?

Ecrit = eN

~ 10" V/m, (1)

e

as the nonlinearity of the quantum vacuum becomes
pronounced. Here m, is the electron rest mass, ¢ is the
speed of light in vacuum, e is the magnitude of the elec-
tron charge, \,=%/m,c is the Compton wavelength, and
f is the Planck constant divided by 2. Thus, for such
extreme plasma systems, the concept of photon-photon
scattering, both elastic and inelastic, has to be taken into
account.

The interaction of high-intensity laser pulses with
plasmas has applications to other fields of science, e.g.,
tabletop particle accelerators (Bingham, 2003). Also,
achieving field strengths capable of producing pair plas-
mas in the laboratory could facilitate a means of produc-
ing antimatter on a more or less routine basis, as they
currently are at high energy accelerators. However, it
should be emphasized that the production of pairs from
intense lasers requires that severe technical constraints
can be overcome, such as phasing of two interacting
short electromagnetic pulses. Even if routine pair pro-
duction via laser systems is not to be reached within the
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FIG. 2. (Color online) The connection between different high-
energy regions in physics and experiments. Reprinted with per-
mission from Chen, 2003.

near future, the possibility of directly detecting elastic
photon-photon scattering is a fascinating possibility (Sol-
jadic and Segev, 2000b; Brodin et al., 2001). Furthermore,
the creation of multidimensional high intensity electro-
magnetic pulses, using guiding structures (such as
plasma boundaries), could result in pulse collapse (Bro-
din et al., 2003; Shukla, Eliasson, and Marklund, 2004).
Such pulse collapse would give rise to intensities close to
the Schwinger critical field (1). Thus the combination of
laser-plasma interactions and QED effects, such as pair
production and photon-photon scattering, could spark
new methods for producing conditions reminiscent of
astrophysical environments in future experiments (see
Fig. 2). In fact, the most pertinent fundamental physics
research, such as the question of dark matter [e.g.,
through the effects of light pseudoscalar fields, such as
the axion field, on QED interactions and light propaga-
tion, see Bernard (1999); Bradley et al. (2003); Dupays et
al. (2005)], cosmic accelerators [such as through labora-
tory plasma wakefield accelerator tests (Chen, 2003)],
and possible new high-density states of matter (Reming-
ton, 2005), are related to the high-energy events for
which laboratory astrophysics would yield valuable in-
sight. Thus it is of interest to study such high energy
scenarios, e.g., photon-photons scattering in the context
of laser-plasma systems (Bulanov, 2004), as these are, in
the near future, likely to yield the right conditions for
such events to take place.

A. Nonlinear quantum electrodynamics

In classical electrodynamics, as described by Max-
well’s equations, photons are indifferent to each other as
long as there is no material medium present. This is not
so in quantum electrodynamics (QED). Due to the in-
teraction of photons with virtual electron-positron pairs,
QED offers the possibility of photon-photon scattering
(Heisenberg and Euler, 1936; Schwinger, 1951). This is
commonly expressed through the effective-field theory
approach represented by the Heisenberg-Euler La-
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grangian (Heisenberg and Euler, 1936; Weisskopf, 1936;
Schwinger, 1951; Greiner et al., 1985; Grib et al., 1988;
Fradkin et al., 1991), neglecting dispersive effects. This
Lagrangian [see Eq. (5) below] and its generalizations
(Dittrich and Gies, 2000; Valluri et al.,, 2003; Dunne,
2004) gives nonlinear corrections to Maxwell’s vacuum
equations, similar to self-interaction terms encountered
in nonlinear optics due to the presence of a Kerr me-
dium (Bloembergen, 1996; Agrawal, 2001) and higher-
order corrections can be incorporated by taking into ac-
count higher vertex order diagrams. Since the lowest-
order effective self-interaction term is proportional to
the fine-structure constant squared, field strengths need
to reach appreciable values until these effects become
important, see Eq. (1) (Greiner et al., 1985; Grib et al.,
1988; Fradkin et al., 1991). The corrections give rise to
single-particle effects, such as closed photon paths (No-
vello et al., 2001), vacuum birefringence (Heyl and Hern-
quist, 1997a), photon splitting (Adler, 1971) and lensing
effect in strong magnetic fields [see, e.g., Harding (1991);
De Lorenci et al. (2000)], as well as collective effects, like
the self-focusing of beams (Soljaci¢ and Segev, 2000b) or
the formation of light bullets (Brodin ef al., 2003). Re-
cently, it has also been shown, using analytical means,
that these effects give rise to collapsing structure in ra-
diation gases (Marklund et al., 2003), results that have
been extended and confirmed by numerical simulations
(Shukla and Eliasson, 2004). Possible detection tech-
niques, as well as physical implications, of the effects of
photon-photon scattering have attracted interest since
first discussed [e.g., Erber (1966); Bialynicka-Birula and
Bialynicki-Birula (1970); Tsai (1974a, 1974b); Greiner et
al. (1985); Grib et al. (1988); Ding and Kaplan (1989);
Fradkin et al. (1991); Latorre et al. (1995); Dicus et al.
(1998); Kaplan and Ding (2000)], and the concept of self-
trapping of photons due to vacuum nonlinearities was
discussed independently by Rozanov (1993, 1998) and
Soljac¢i¢ and Segev (2000b) in the context of the nonlin-
ear Schrodinger equation.

The above studies assume that the dispersive or dif-
fractive effect of vacuum polarization is negligible, and
this, of course, puts constraints on the allowed space and
time variations of the fields (Solja¢i¢ and Segev, 2000b).
In the context of pair creation, rapidly varying fields
have been analyzed, since when individual photons pass
the pair-creation energy threshold 2m,c?, real electron-
positron pairs may be created from the vacuum by a
“down-conversion” process of photons. Similar pro-
cesses are thought to be of importance in the neighbor-
hood of strongly magnetized stars, where the magnetic
field induces photon splitting (Erber, 1966; Adler et al.,
1970; Adler, 1971; Adler and Shubert, 1996; Baring and
Harding, 2001), and may effectively absorb photons
(Heyl and Hernquist, 1997a; Duncan, 2002). It has been
suggested that the nontrivial refractive index due to
photon-photon scattering could induce a lensing effect
in the neighborhood of a magnetar (Shaviv et al., 1999).

The physics of elastic photon-photon scattering has
interested researchers for a long time, and several sug-
gestions for ways to detect this scattering in the labora-
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tory have been made during the last decades (Dewar,
1974; Alexandrov et al., 1985), and the recent increase in
available laser intensities have stimulated various
schemes (Ding and Kaplan, 1992; Rozanov, 1993, 1998).
It has been suggested by Brodin ef al. (2001, 2002) that
the effect of photon-photon scattering could be detected
using fields significantly weaker (10 MV/m) than state-
of-the-art laser fields.

Next, we present some physical systems in which the
effects of photon-photon interactions may either be of
importance (magnetars) or become important in the
near future (such as state-of-the-art laser-plasma sys-
tems).

1. Intense field generation

a. Electromagnetic cavities

High performance, i.e., large electromagnetic fields
combined with low dissipative losses, can be found in
superconducting cavities, which among other things are
used for particle acceleration (Graber, 1993). Waves that
can be sustained within such a cavity can have a field
strength £~10 MV/m, i.e., close to the maximum that
can be tolerated by the walls without field emissions. For
such cavities, the different high intensity wave modes
can act as pump waves for the quantum vacuum.
Through the interaction between these waves and vir-
tual electron-positron pairs, new modes with well-
defined frequencies and wave numbers will be gener-
ated. Those satisfying the dispersion criteria for the
given cavity could then also reflect within the cavity with
very small losses, thus yielding a method for detection of
the quantum vacuum nonlinearities. For example, for a
cavity resistance R~ 1 n{), corresponding to supercon-
ducting niobium at a temperature 1.4 K and a frequency
0~2x10'° rad/s of the wave mode generated via the
nonlinear quantum vacuum, one finds that the saturated
energy flux P; of the generated mode is of the order of
107 W/m? (see Secs. I1I.A.4 and IV.A.5) (Brodin et al.,
2001; Eriksson et al., 2004). This energy flux is above the
detection level by several orders of magnitude. How-
ever, one should note the importance of superconduct-
ing walls for the output level of the excited mode. For
copper at room temperature, the cavity resistance in-
creases by a factor ~107 as compared to the above ex-
ample, and consequently the energy flux of the excited
mode falls by a factor ~107, In the latter case, it is
questionable whether the excited signal can be detected.
Concepts of cavity mode interactions and cavity experi-
ments will be further discussed in Secs. III.A.4 and
IV.AS.

b. Laser development

The event of ultrashort (in the femtosecond range)
intense (102-10%* W/cm?) lasers (Mourou et al., 1998,
2006; Tajima and Mourou, 2002; Tajima, 2003) holds the
promise of generating large amounts of new physics
within the next few years. This is based on the develop-
ment of chirped pulse amplification, and the increase of
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laser power is predicted to continue for some time
(Mourou et al., 1998, 2006). There are two ways for
reaching high intensities within laser systems. The
method most common is to shorten the pulse duration
(=100 fs), while keeping the energy content in each
pulse rather modest (~1-10J). Such pulse generation
techniques can have high repetition rates, which can be
advantageous in certain experiments where a large num-
ber of shots is needed. The other route is to increase the
pulse contents while keeping the pulse duration of the
order of 0.5-1 ps. Such a system has the advantage of
providing a high signal-to-noise ratio for some experi-
ments. The Nova Petawatt laser at the Lawrence Liver-
more National Laboratory, USA, used this principle,
and each pulse, which had a duration of ~500 fs, had an
energy content of ~500 J. Similar systems are operating
at ILE/Osaka, Japan (ILE/Osaka, 2005) and the Ruther-
ford Appleton Laboratory, UK, CCLRC (2005). The
OMEGA EP laser under construction at the University
of Rochester, USA, will also work according to the high-
energy principle, and have pulse energies 1-2.6 kJ with
durations 1-10 ps (OMEGA EP, 2005). Apart from be-
ing a tool for practical use, such as inertial confinement
fusion and material science, intense laser facilities are
now of international interest for basic research [such as
at, e.g., the National Ignition Facility at the Lawrence
Livermore National Laboratory (USA), the Laboratory
for Laser Energetics at the University of Rochester
(USA), the Advanced Photon Research Center (Japan),
the Institute for Laser Engineering at Osaka University
(Japan), LULI Laboratoire pour ’Utilisation des Lasers
Intenses (France), LIL/Laser Mégajoule at CEA
(France), or the Central Laser Facility, Rutherford
Appleton Laboratory (UK)], and the increased laser
output power also gives the opportunity to obtain astro-
physical energy scales in a controlled laboratory setting
(Chen, 2003; HEDLA, 2005; Remington, 2005).

The generation of high (electromagnetic) field
strengths is at the heart of understanding a variety of
phenomena, such as astrophysical shocks and jets, in a
laboratory setting, and furthermore forms the basis for a
number of applications, e.g., tabletop plasma accelera-
tors. Thus schemes and mechanisms for generating such
high fields, other than the direct laser pumping, will be
of importance to the development of a wide range of
scientific areas.

c. Free-electron laser

The x-ray free-electron laser (XFEL) is an alternative
to the current laser generation techniques, and it has as
its base the particle accelerator, where high-energy elec-
trons are generated to obtain high-frequency radiation
(DESY XFEL, 2005; SLAC LCLS, 2005). Within these
lasers, a large number of coherent photons are gener-
ated (ten orders of magnitude more than regular syn-
chrotron sources). The XFEL concept has a wide variety
of interesting applications, among these the possibility
to probe the structure of large molecules, commonly
found within molecular biological systems (Patel, 2002).
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FIG. 3. (Color online) Evolution of peak brilliance, in units
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Here, ESRF stands for the European Synchrotron Radiation
Facility in Grenoble. (Source: DESY Hamburg, http:/
xfel.desy.de/)

It is also hoped that XFEL could form the basis of
electron-positron pair creation (Alkhofer et al., 2001;
Ringwald, 2001a; Roberts et al, 2002). Both at the
TESLA collider at DESY and LCLS at SLAC, the en-
ergy density at the focus (with a spatial width ~1071° m
and on the time scale 107'3 s) of the XFEL is expected to
reach energy densities of 10*° J/m? (Ringwald, 2001a),
see Fig. 3. This corresponds to electric-field strengths of
the order 10 V/m, i.e., two orders of magnitude above
the Schwinger critical field (1), at which pair creation is
expected to take place. The possibility to “fuel” the gen-
eration of electron-positron pairs by nonlinear effects is
a promising prospect, and as some authors have noted
this essentially amounts to “boiling the vacuum” (Ring-
wald, 2001b, 2003). Moreover, it is believed that nonlin-
ear QED effects will be an important component of the
interaction of XFEL generated radiation with dense me-
dia. Therefore it is of interest to achieve an understand-
ing of the influence of those nonlinear effects within the
parameter regime obtainable by the XFEL.

2. Laser-plasma systems

High laser powers generate enormous radiation pres-
sures, and accelerate particles to relativistic velocities.
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Fields generated by particles will therefore backscatter
and create a nonlinear feedback, something which can
give rise to, e.g., laser pulse compression and electron
density cavitation. This may play a significant role in
different proposed schemes of laser self-focusing (Bul-
anov et al., 2003; Shorokhov et al., 2003; Shukla et al.,
2005), completely changing the dynamics of suggested
methods and altering final results in nontrivial ways.
This serves as an important example of nonlinear effects
in the evolution of laser-plasma systems.

The interaction of high power lasers, reaching intensi-
ties of 10?°-10?> W/cm?, with plasmas has long been the
backbone in different schemes for tabletop particle ac-
celerators (Bingham, 2003), and is also essential for the
concept of inertial confinement fusion (Eliezer, 2002).
The ponderomotive force generated in high power laser-
plasma systems due to laser intensity gradients may give
rise to a plethora of phenomena, such as laser pulse self-
focusing and filamentation, soliton formation, paramet-
ric instabilities, and magnetic-field generation [see
Eliezer (2002), and references therein].

Laser-plasma systems have been suggested as sources
of high intensity radiation. Due to the laser ponderomo-
tive force plasma electrons will be pushed out of the
path of the laser pulse, trapping and compressing the
laser pulse, such that further electrons are pushed out.
The plasma can sustain high-field strengths, and the
pulse compression can therefore reach appreciable in-
tensity values (Mourou ef al, 2006). In fact, using a
Langmuir wave as a plasma “mirror” for the laser pulse,
pulse intensities could reach, and even surpass, the
Schwinger critical field (1) (Bulanov ef al., 2003; Mourou
et al., 2006). Thus the interaction between intense lasers
and plasmas is an intriguing tool for generating pulse
intensities above the laser limit (Mourou et al., 1998).

3. Astrophysical and cosmological environments

Astrophysical environments and events display enor-
mous energy releases. Supernova explosions, black-hole
accretion, magnetar, and pulsar systems are a few ex-
amples of such extreme situations. Moreover, the energy
scales in the early Universe are equally immense, or
even greater, and our understanding of the origin of the
Universe is hampered by the fact that the energy density
scales are so far from anything that can be generated in
a laboratory, except perhaps in relativistic heavy-ion col-
lisions (RHIC, 2005). It is therefore not surprising that
these environments can often act as laboratories for
phenomena that we currently do not have technology to
reproduce in Earth-based laboratories. Quantum elec-
trodynamical nonlinear vacuum effects have received a
fair amount of attention in strongly magnetized systems,
such as pulsars (Curtis, 1982; Beskin e al, 1993) and
magnetar environments (Harding, 1991; Kouveliotou et
al., 1998). The magnetic-field strengths of magnetars can
reach energy levels comparable to, or even surpassing,
the energy corresponding to the Schwinger critical field
strength 10'® V/m, thus making the vacuum truly non-
linear [nonlinear QED effects in the magnetized vacuum
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are described in a number of publications, and for a rep-
resentative but incomplete list, see Erber (1966); Adler
et al. (1970); Adler (1971); Tsai (1974a, 1974b); Mentzel
et al. (1994); Adler and Shubert (1996); Baier et al.
(1996); Chistyakov et al. (1998), and references therein].
The effect of a nonlinear vacuum may even be of crucial
importance for our understanding of these objects (Bar-
ing and Harding, 2001).

Il. EFFECTIVE-FIELD THEORY OF PHOTON-PHOTON
SCATTERING

The development of quantum electrodynamics was
the result of a long and collective effort, and paved the
way for an understanding of weak and strong forces as
well. It has, since its advent, been confirmed to an un-
precedented accuracy, compared to any physical theory.
It solved some of the long-standing conceptual problems
of relativistic quantum theory, as proposed by Dirac and
others, and it furthermore changed the way we look at
elementary interactions between particles and fields.
The theoretical proposal, due to Dirac, of antimatter as
a result of relativistic quantum theory was put on a firm
foundation with QED.

The quantization of the vacuum has lead to remark-
able insights and discoveries. Consider, for example, the
Casimir effect (Casimir, 1948; Casimir and Polder,
1948),! in which two parallel conducting plates with area
A are separated by a distance d. Due to the different
boundary conditions between and outside the plates,
there will be a net attractive force FxA/d* between the
plates. In a heuristic sense, the vacuum between the
plates is “emptier” than outside, since fewer states are
allowed due to the finite distance between the plates.
Related to this is the much debated Scharnhorst effect
(Barton, 1990; Scharnhorst, 1990, 1998; Barton and
Scharnhorst, 1993), at which the phase (and group)
speed exceeds the speed of light ¢ in vacuum. As dem-
onstrated later, the opposite occurs in the electromag-
netic vacuum, i.e., phase and group velocities decrease
due to the electromagnetic influence on the quantum
vacuum.

In conjunction with any description of photon-photon
scattering, it should also be mentioned the large amount
of literature and interest in finite-temperature effective-
field theory effects. Thermal effects generalize the clas-
sical results of Schwinger in the weak-field limit (Heisen-
berg and Euler, 1936; Weisskopf, 1936; Schwinger, 1951).
It was pioneered by Dittrich (1979) who investigated
thermal effects in combination with an external mag-

!Casimir considered particle-particle and particle-plate (Ca-
simir and Polder, 1948), and plate-plate systems (Casimir,
1948), since the problem stemmed from research on colloidal
solutions, but is most clearly represented by the parallel plate
example. The Casimir effect has since been confirmed by many
different experiments [see, e.g., Sukenik er al (1993);
Mostepanenko and Trunov (1997); Lamoreaux (1998); Bordag
et al. (2001); Bressi et al. (2002); Harber et al. (2005), and ref-
erences therein].
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FIG. 4. The Feynman box diagram for the lowest-order
photon-photon scattering at the one-loop level.

netic field, and later a comprehensive study using the
real time formalism in the case of a general electromag-
netic field background was performed by Elmfors and
Skagerstam (1995) [see also Gies (1999a)]. The disper-
sion relation, including dispersive effects, was discussed
by Gies (1999b), and it was later shown that in a thermal
vacuum, in contrast to the nonthermal one, two-loop
corrections dominate over one-loop effects (Gies, 2000).
However, treating these studies (we have by no means
exhausted the list of papers here) in detail is outside the
scope of the present paper, and since we, moreover, are
interested in the problem of collective effects, the treat-
ment of thermal effects, although of interest, is left for a
future review.

A. Concept of elastic scattering among photons

Photon-photon scattering is a nonclassical effect aris-
ing in quantum electrodynamics (QED) due to virtual
electron-positron pairs in vacuum; see Fig. 4. In the low-
energy limit, i.e., iw<m,c?, the magnitude of photon-
photon scattering can be described in terms of the dif-
ferential cross section (Berestetskii et al., 1982)

do,, 1394 6
a0 32400712(3 cos* ) ( c) @

where o is the photon frequency in the center-of-mass
system, r, is the classical electron radius, and «
=e?/4meyhc~1/137 is the fine-structure constant. Inte-
grating Eq. (2) gives the total cross section
6
1)
) cm?.

973a2r§< ho
€
3)

)6~o7>< 1065< i

10125 2 ' 1

We note that the cross section decreases fast with de-
creasing photon energy. In the high-energy limit, the
cross section, on the other hand, goes as w™2. The cross
section reaches a maximum of ¢,,~2X107" cm? for
photon energies iw~m,c> (Berestetskii et al., 1982), in-
deed a very small number.

Instead of a microscopic description, interactions of
photons may be described by an effective-field theory.
Formulated in terms of such an effective-field theory,
using the Heisenberg-Euler Lagrangian [valid in the
long-wavelength and weak-field limit, see Eq. (4)]
(Heisenberg and Euler, 1936; Schwinger, 1951), this re-
sults in nonlinear corrections to Maxwell’s vacuum equa-

g
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tions, which to lowest order in the fine-structure con-
stant are cubic in the electromagnetic (EM) field. These
corrections take the same form as in nonlinear optics,
where the material properties of, e.g., optical fibers, give
rise to cubic nonlinear terms in Maxwell’s equations, so-
called Kerr nonlinearities (Agrawal, 2001; Kivshar and
Agrawal, 2003). Since the effective self-interaction term
is proportional to the fine-structure constant squared,
this means that field strengths under most circumstances
need to reach values close to the critical field (1) until
these effects becomes important (Greiner et al., 1985;
Grib et al., 1988; Fradkin et al., 1991). With this at hand,
we now focus on the concept of photon-photon scatter-
ing.

B. Weak-field limit

We first derive the general dispersion relation in the
low photon energy and weak-field limit, assuming [see

Eq. (1)]

w<w,=m,’fh and |E|<Eg, (4)

where E; is given by Eq. (1), and w,~8 X 10% rad/s is
the Compton frequency. When these constraints are
valid, pair creation, due to both single photons and col-
lective effects, will be unimportant, and the effective La-
grangian may therefore be treated solely in terms of its
real part. It should be remembered that the second of
these constraints comes from the pair-creation probabil-
ity of Schwinger (Schwinger, 1951), which was derived
for a pure electric field and may therefore not strictly be
applied to the case of a radiation gas. Thus this investi-
gation goes far beyond the description of the thermody-
namics of nonlinearly interacting incoherent photons
with a photon gas in a plasma environment (Tsintsadze
and Mendonga, 1998).

Photon-photon scattering is a second-order effect (in
terms of the fine-structure constant «), and for constant
or weakly varying fields it can be formulated in standard
notation using the Euler-Heisenberg Lagrangian density
(Heisenberg and Euler, 1936; Schwinger, 1951)

L=Ly+L.= eF + ex(4F +7G7), (5)
where
2807 a1 1
K= 45= 29 3- (6)
45m_c 90 450ECrlt 3 X107 J/m

Moreover, the field invariants are defined in terms of the
field tensor F,, according to

F={FpF" =3B~ E?),
(7
Ezlt abFﬂb:_CE'Ba

Fo=gbedfr /2 and 72 and G* are the lowest-order
QED corrections. We note that #=G=0 in the limit of
parallel propagating waves. The latter terms in Eq. (5)
represent the effects of vacuum polarization and magne-
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tization, and the QED corrected Maxwell’s vacuum
equations take the classical form, using

D=¢E +P, H:lB—M, (8)
Mo
where P and M are of third order in the field amplitudes
E and B [see Egs. (11) and (12) below], and uy=1/c?¢,.
Furthermore, they contain terms F and G such that P
=M=0 in the limit of parallel propagating waves. It is
therefore necessary to use nonparallel waves in order to
obtain an effect from these QED corrections.
From the constituent relations (8) we can deduce the
general wave equations for E and B according to

17E V2E = ﬂ+ V(V P)+ﬁ(v><M)
A ar T e T at ’
9)
and
1B J
S— -V B=p| VX(VXM)+—(VXP)|. (10
C2 atz Iu,0|: ( )+ al‘( ):| ( )

Furthermore, the effective polarization and magnetiza-
tion, appearing in Eq. (8), in vacuum due to photon-
photon scattering induced by the exchange of virtual
electron-positron pairs can be obtained from the La-
grangian (5) and are given by [see, e.g., Soljaci¢ and Se-
gev (2000b)]

P =2«e[2(E* - ¢’BY)E + 7¢X(E - B)B] (11)

and

M =2k c’[- 2(E* - *B*)B + 7(E - B)E]. (12)

Equations (9)—(12) offer the starting point for the study
of a weakly nonlinear electromagnetic vacuum in terms
of the classical field strength vectors E and B.

The correction in the Lagrangian (5) is the power-
series expansion in the field strengths of the full one-
loop correction given by (Heisenberg and Euler, 1936;
Weisskopf, 1936; Schwinger, 1951)

jd dZ ~
'Cc_ 2 EOEgritJ 36 ‘
0
a b
{z —— coth —z)cot(—z)
Crlt Crlt Ecrlt
b2
RalGla 1}, (13)
3 ECrl[
where

a= [(]_—2 + g2)1/2 + ]:]1/2’ b= [(.7:2 + g2)1/2 _ ]_—]1/2.

(14)
Thus F=(a>-b?)/2 and |G| =ab. The Lagrangian correc-
tion (13) is the starting point of the effective-field theory
analysis of a strongly nonlinear quantum vacuum, such

as used in studies of photon splitting [see Dittrich and
Gies (1998, 2000), and references therein], and defining
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some of the properties of a strongly nonlinear gas of
photons (Marklund, Shukla, and Eliasson, 2005).

C. Dispersion function

One may find the dispersion relation of photons in an
arbitrary constant, or weakly varying, electromagnetic
background (Bialynicka-Birula and Bialynicki-Birula,
1970; De Lorenci et al, 2000; Thoma, 2000). Starting
from the Lagrangian (5), introducing the four-potential
AP such that F,,=d,A,-d,A,, the Maxwell equations re-
sulting from the variation with respect to the four-
potential becomes

9 F = 2€0kd,[(FogFY)F* + 2(F <) F**], (15)

where we adopt the convention (—1 ,1,1,1) for the met-
ric 7., used for raising and lowering four-indices
a,b,...=0,1,2,3. Next, assuming that F,,=f,,+ P,
where f,;, denotes the varying background field, and ¢,
(<f,) is a weak field propagating on this background,
we find that the background satisfies d,/°=0, and

aaﬁwb =0 is identically satisfied due to the definition of
F,, in terms of the four-potential A®.

Linearizing Eq. (15) with respect to ¢, and Fourier
decomposing perturbations according to ¢,,(x)=(k,e€,
—kye,)exp(ik-x)+c.c., where €, is the polarization vector,
k-x=k,x" and c.c. denotes the complex conjugate, we
obtain the following algebraic set of equations for the
polarization vector:

M2b6b = [kzgab - kakb - KEO(Saaab + 14dadb)]6b = Oa
(16)

where a,=f, k¢ and a4,= fbckc has the properties k’a,,
=kbd,0. From this it follows that M%,k?=0 and the po-
larization may therefore, without loss of generality, be
taken to obey €,k’=0, corresponding to the Lorentz
gauge. In order to simplify the analysis, it is assumed
that the background is slowly varying in spacetime com-
pared to the perturbation. Using a; and 4, as the polar-
ization eigenvectors gives two equations,

=8keyfnf“kPk, and k?=1ldkef ,f*kPk,., (17)

from Eq. (16) for the polarization a” and 4“, respectively.
Since we can decompose f,,=u,E,—u,E,+€,,.B¢ for an
observer with four-velocity u“, we have

a*=-(k-E)>- 2k - B)?> + «’E? + ¢’k’B?
—2cwk - (E X B) (18)

and 4’~a’. Equations (17) can be written in the clear
and compact form (Bialynicka-Birula and Bialynicki-
Birula, 1970),

o = c|k|(1 - 2\|QPY), (19)

where N\ is 8« or 14k, respectively, depending on the
polarization state of the photon, and
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|Q]> = |k X E + ck X (k X B)J?
= e[E*+ *B>— (k- E)? - c*(k - B)?
~2¢ck-(E X B)]. (20)

Here the hat denotes the unit vector. Equation (19) is
valid for arbitrary, slowly varying background fields. It is
straightforward to show that Eq. (20) vanishes in the
case of a self-interacting plane-wave field. Two different
possible polarization directions can be given in a similar
manner [see Bialynicka-Birula and Bialynicki-Birula
(1970)].

D. Corrections due to rapidly varying fields

As shown in the previous section, it is possible to de-
rive a dispersion relation for photons moving in a given
background field. However, field variations were ne-
glected, and in order to take them into account a modi-
fied weak-field Lagrangian must be used.

It is well known that the weak-field theory of photon-
photon scattering can be formulated using the effective
Lagrangian density £=Ly+Lyg+Lp, Where L, is the
classical free-field Lagrangian Lyg is the Heisenberg-
Euler correction as given in Eq. (5). The derivative cor-
rections are given by (Mamaev ef al., 1981)

Lp = oel(3,F°)(8.F;) — F,, O F*], (21)

where (J=4d,¢ and o=(2/15)ac’/ w’=~14Xx102 m>. As
we have seen in the dispersion relation (19), the param-
eter « gives the nonlinear coupling. Here we find that
the parameter o gives dispersive effects in the polarized
vacuum. Physically setting the parameter o#0 corre-
sponds to taking correction due to rapidly varying per-
turbation into account. Since the Compton frequency is
~10% rad/s, we see that w/w,<1 in most applications.
Thus the dispersive term is normally a small correction.

In the previous section, the requirement (4) was as-
sumed to be satisfied. Here even though we include ef-
fects of the rapidly varying fields, we require that there
is no electron-positron pair creation, neither by single
photons nor by collective effects, i.e., the conditions (4)
should still hold. Furthermore, dispersive or diffractive
effects must be small, otherwise the limit of weak fields
would imply unphysical branches in the dispersion rela-
tion (Rozanov, 1998).

As in the previous section, we set F,,=d,A,—d,A,,
and obtain field equations from the Euler-Lagrange
equations dy[ 9L/ IF,,]=0. Thus we have (Rozanov, 1998;
Shukla, Marklund, Tskhakaya, et al., 2004)

1 +200)8,F" = €yid,[(FoqF*?)F*
+ F(F o) ). (22)

Equation (22) describes the nonlinear evolution of the
electromagnetic field through the nonlinear dispersive
vacuum. We note that when o, k— 0, we obtain the clas-
sical Maxwell’s equations, as we should.
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Repeating the procedure leading up to Eq. (16), we
find the corresponding expression in the case of a disper-
sive vacuum,

M € =[M2, — 20Kk (k*gy — koky)]€ =0, (23)

where M, is given by Eq. (16). With a,, and d, as the
principal polarization direction, Eq. (23) yields

(1 - 20k k?* = Skeof kK, (24a)

and

(1 - 20k k?* = 14keyf,,f*k k.., (24b)
for the two different polarizations a;, and d,, respec-
tively. When =0, Eqgs. (24) reduce to Egs. (17), which
yield the dispersion relation (19). With o # 0, we may use
Eq. (19) in the dispersive term of Egs. (24). Thus the
final dispersion relation is of the form (Rozanov, 1998;
Shukla, Marklund, Tskhakaya, et al., 2004)

o= c[k|[1-3N|QI*(1 + 20N Q[ Kk}, (25)

where |Q[? is given by Eq. (20). Thus we see that the
effect of the dispersive parameter is, as expected, to
make w a nonlinear function of k.

E. Special cases of weak-field dispersion
1. Magnetized background

In the case of a background magnetic field B, the
dispersion relation (19) becomes (Erber, 1966; Adler et
al., 1970; Adler, 1971; Adler and Shubert, 1996; Dittrich
and Gies, 1998)

o = c|k|(1 - 2x&c?[By|*sin? 6), (26)

where 6 is the angle between the background magnetic
field B, and the wave vector k. Thus photons propagat-
ing parallel to the background magnetic field will not
experience any refractive effects, while a maximum re-
fraction is obtained for perpendicular propagation. This
dispersion relation will be relevant for photon propaga-
tion in pulsar magnetospheres and in magnetar environ-
ments, where, for example, the vacuum becomes bire-
fringent (Tsai and Erber, 1975; Heyl and Hernquist,
1997a). This in turn may affect the optical depth of neu-
tron star thermal emission, and thereby also influence
the interpretation of pulsar observations (Lodenqual et
al., 1974; Ventura, 1979; Heyl and Shaviv, 2002; Heyl et
al., 2003).

For a magnetar with surface field strength |B|
=10"' T (Kouveliotou et al., 1998), the field has the en-
ergy density €,c?|Bo[>~8%x10% J/m?>. Since \~10«
~1/(3x10% J/m?) [see Egs. (6) and (19)], we find from
Eq. (26) that the phase velocity v=w/|k| satisfies v/c
~1-0.13 sin? §. However, the magnetar field strength
does not qualify as a weak field, and one may question if
it is appropriate to use Eq. (26) in this case (see Sec.
ILF.1).
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2. Random photons in a magnetic field

From the previous example, the effect of a magnetic
field on the thermal or random distribution of photons
could be observationally important. Thus for a random
ensemble of photons in a strong magnetic field we have
a direction-independent dispersion relation

o = c|k|(1 - $heyc?[By?). (27)

We note that the value of the effective action charge A\
depends on the polarization of thermal photons. As the
crust of magnetars is subject to enormous stresses due to
immense field strengths [~10'°-10!!' T (Kouveliotou et
al., 1998)], it will suffer from crust quakes, at which
bursts of low-frequency random photons are released
(Kondratyev, 2002). In such a scenario, the above disper-
sion relation may be of relevance.

3. Random photons in a plane-wave field

Analogously, we may treat the case of incoherent pho-
tons on an intense plane-wave background E,. Then, in
the equilibrium state of the radiation gas the propaga-
tion directions of the photons in the gas are random and
the EM pulse is a superposition of unidirectional plane

waves such that Bp:lA(pXEp/c. Thus we obtain the
direction-independent dispersion relation

o= ck|(1 - s\g|E,P). (28)

Equation (28) is the proper dispersion relation to use in
some laser-plasma interaction applications, where a
large number of incoherent photons are produced (Bing-
ham, 2003; Bingham et al., 2004; Cairns et al., 2004).

4. Radiation gas background

Consider a single photon transversing a dense back-
ground radiation gas with energy density £ Then the
dispersion relation can be written as (Dittrich and Gies,
2000; Marklund et al., 2003)

o = ck|(1 - 3\E). (29)

As one considers higher redshifts z, the cosmic micro-
wave background will increase in energy density, since
E(z)=(1+2)*&, [we note that radiation decouples from
matter at a redshift ~10° (Peacock, 1998)], where &,
:aT?) denotes the current energy density and a
=87k /1533 ~7.6X1071° J/m3K* is the radiation
constant. Thus Eq. (29) gives v/c=1—-(2/3)\a(1+z)*T},
for the phase velocity v. Using 7,=2.7 K, a correction of
10% to the phase velocity in vacuum is obtained for a
redshift z.~ 10, i.e., roughly at the time for neutrino-
matter decoupling (Peacock, 1998).

Including the dispersive correction, as given by Eq.
(25), the dispersion relation for a background of incoher-
ent photons takes the form

o= c|k|[1 - 3\E(L + SonékP)], (30)
i.e., high-frequency pulses may suffer spectral dilution

when propagating through a radiation gas.
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5. Other field configurations

Similar dispersion relations can be found for other
background field configurations, e.g., plane-wave back-
grounds or partially coherent electromagnetic fields, as
is relevant in ultrahigh intensity laser applications. Of
special interest for detection purposes is the configura-
tion of photon propagation perpendicular to a collection
of constant electric and magnetic fields (Bakalov et al.,
1998; Rikken and Rizzo, 2000, 2003).

We should also note that in the above cases the group
and phase velocities of test photons are subluminal, as
expected, since we have excited the quantum vacuum by
using electromagnetic fields, analogous to a normal dis-
persive material medium. This can be contrasted with
the Scharnhorst effect (Barton, 1990; Scharnhorst, 1990,
1998; Barton and Scharnhorst, 1993), for which we ob-
tain superluminal phase and group velocities between
two conducting plates. This can be traced back to the
Casimir effect (Casimir, 1948; Casimir and Polder, 1948),
where the quantization between two conducting plates
allows fewer states than for fields with boundary condi-
tions at infinity. Thus, in this sense, the vacuum between
the plates is “emptier” than outside, giving rise to super-
luminal velocity.

F. Ultraintense fields

The dispersion relations treated so far have used the
weak-field expansion of the general Heisenberg-Euler
correction (13). However, both from an application point
of view and due to theoretical issues, the inclusion of
fully nonlinear vacuum effects deserves attention [see
also Dittrich and Gies (2000) for a thorough discussion
of the strong magnetic-field case].

Within astrophysical and cosmological settings, such
as neutron stars and magnetars (Kouveliotou et al,
1998), strong-field conditions can be met. Even in labo-
ratory environments, such conditions could be encoun-
tered in future high-energy laser configurations. While
today’s lasers can produce 10?!-10*2 W/cm? (Mourou et
al., 1998), it is expected that the next generation laser-
plasma systems could reach 10> W/cm? (Bingham, 2003;
Bingham ez al., 2004; Cairns et al., 2004), where field
strengths close to the Schwinger critical value could be
reached (Bulanov et al., 2003). Thus nonlinear effects
introduced by photon-photon scattering will be signifi-
cant, and the weak-field approximation no longer holds.
In terms of Feynman diagrams the discussion to follow
will consider the full one-loop correction,

RNRCYE o3 o N

The general dispersion relation for a test photon in a
vacuum dressed by a strong electromagnetic field is
given by (Dittrich and Gies, 1998)
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2
[1+ INe(E? + 2B2)] - 2\eyck - (E X B)~
c c

+ e 5(E>+ ?B?) - (k- E)> - *(k - B)?] =1,
(32)
where v=w/|k| =c/n is the photon phase velocity and n
is the refractive index. The effective action charge \ is

no longer a constant, but instead defined through (Dit-
trich and Gies, 1998)

oL (T + )L
€= 205L + F(Fr+ B)L - 2 FF5+ GFrg) L

(33)

In many cases, the part of the denominator of Eq. (33)
stemming from the nonlinear QED correction (13) can
be neglected, since it will be much smaller than the re-
maining terms, even for fields >FE .

1. Pure magnetic field

The case of pure magnetic fields enables a simplifica-
tion of the evaluation of the Lagrangian (13). The refrac-
tive index for a strongly magnetized vacuum can be de-
termined in terms of special functions. For a pure
magnetic field B,, we obtain using Eq. (14) that a
=c|By| and b=0, respectively. Dittrich and Gies (1998)
[see also Dittrich and Gies (2000)], starting from the La-
grangian (13), devised the general expression (33) for the
effective action charge \ [also found in the work of, e.g.,
Bialynicka-Birula and Bialynicki-Birula (1970)].

Using a=c|By|, =0, and the approximation A=~ (%
+dg)L/2¢) [see Eq. (33)], the effective action charge
takes the form

e — %
 2meyc? By

{(2}52—%)1#(1 +x) —x —3x?

1 1
—dxInT'(x)+2xIn27+—-+4(-1,4x) + — |,
6 6x

(34)

where x=E_;/2¢|By|, # is the logarithmic derivative of
the I' function, and ' is the derivative of the Hurwitz
zeta function with respect to the first index. Thus the
refractive index, given in Eq. (32), becomes

n2=1-\ec?|By|*sin> =0, (35)

where higher-order terms in the fine-structure constant
a have been neglected, and 6 is the angle between the
background magnetic field By and the wave vector k.

Refractive effects of a superstrong magnetic field are
of interest in neutron stars and in magnetar environ-
ments, since they generate extreme conditions in terms
of the field strength. Comparing with the case presented
in Sec. IILE.1 we see that given the magnetic-field
strength |By|~10'' T we have \eyc?|Byf>*=15a/w
~0.03. Thus the effect of the magnetic field on the re-
fractive index is weaker than predicted by the lowest-
order calculation.
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2. Crossed field background

For a crossed field configuration, i.e., |[E|=c|B| and
E-B=0, it immediately follows that a=b=0. For a test
photon belonging to an ensemble of random photons
(such as in a photon gas), we obtain (Marklund, Shukla,
and Eliasson, 2005)

1+ \glEP? |\
=\t e/ (36)
1- 5)\60|E|
from Eq. (32), where the effective action charge in Eq.
(33) is a constant due to the random properties of test
photons, \"1=(45/22)(47/ @) €y E2,;,. Note that this is the
same charge as the geometrical average of the coeffi-
cient obtained from the polarization tensor in the weak-
field limit (Bialynicka-Birula and Bialynicki-Birula,
1970), i.e., an average over polarization states. The re-
fractive index diverges as €| E|*—3\"'. As these field
strengths are reached, it is not correct that the test ra-
diation gas is in thermodynamical equilibrium, and the
assumptions behind the derivation of Eq. (36) are no
longer valid.

3. Incoherent radiation background

We may characterize single photons in terms of plane
electromagnetic waves. Thus for an electromagnetic
wave moving in an isotropic and homogeneous medium
with the refractive index n we have |B|=n|E|/c,
G=—-cE-B=0, and F=3(n>~1)|E|*=0. Here we have as-
sumed that n>1, which implies a=[(n*-1)&/¢]"*#0
and b=0, while for superluminal velocities we have a
=0 and b # 0, which allows for spontaneous pair produc-
tion (Schwinger, 1951). The n>1 assumption is consis-
tent with elastic photon-photon scattering. The vacuum
is now treated nonlinearly so we have to take into ac-
count the backreaction of the random photons onto
themselves, an interaction mediated by the refractive in-
dex. The effective action charge (33) will therefore de-
pend on both the field strength and the refractive index.
Since the refractive index itself depends on the effective
action charge \, it will be nonlinearly determined via Eq.
(32). For incoherent photons the Poynting flux in the gas
rest frame vanishes, and we may uniquely characterize
the gas by its energy density £ From Eq. (32) we then
obtain (Marklund, Shukla, and Eliasson, 2005)

1 1-3E+V1-20E+5(08)?
—= , (37)
n 2+\E

while the effective action charge takes the form

N = o F(a/ECm)
 4mepa’ 2 + (al8m[F(alE o) + G(alE )]

(38)

Here
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FIG. 5. The phase velocity v in units of c, as given by Egs. (37)
and (38), plotted as a function of the normalized energy den-
sity £/ & Reprinted with permission from Marklund, Shukla,
and Eliasson, 2005.
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F(a/E i) = a—joaziinéw% RIL

1 (*d l-zcothz 1
= — —Ze_EcritZ/a(# +—z COth Z)
47y z sinh” z 3
(39)
and
8w . )
G(a/Eyy) = —lm[- 20£L, — a*FL.]. (40)
AE€)b—0

Note that the latter function gives only a small correc-
tion to the effective action charge, and can in most cases
safely be neglected. Moreover, the function F may be
expressed in terms of special functions, see Eq. (34) (Dit-
trich and Gies, 2000).

The weak-field limit of Eqgs. (37) and (38) takes the
form (29) (Bialynicka-Birula and Bialynicki-Birula, 1970;
Dittrich and Gies, 1998; Marklund et al., 2003). On the
other hand, in the ultrastrong-field limit (£/ eOEgm—> ©),
we obtain the asymptotic constant phase velocity (Mark-
lund, Shukla, and Eliasson, 2005)

v, = c/\5 =~ 0.45¢, (41)

valid in the low-frequency approximation. Thus for very
high radiation densities, we expect the phase and group
velocities to be approximately half that of the speed of
light in vacuum. In this limit, one-loop radiation gas es-
sentially evolves by free streaming, and it is therefore
likely that higher-order loop corrections are important
(Ritus, 1976). The phase velocity as a function of inten-
sity is depicted in Fig. 5.

Under most circumstances, the contribution propor-
tional to « in the denominator of Eq. (38) is small and
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may be neglected. When &= eOEzm, we obtain F

~a/3E.; from Eq. (39), and we have (Marklund,
Shukla, and Eliasson, 2005)

@ o 1 1
N=——F@alE.,) = —=. (42
8meya’ (@/Eeri) 24776(1)/2Ecm N | \E‘ “2)

This expression for the effective action charge can be
used in conjunction with Eq. (37) to analyze the propa-
gation of single photons in a radiation gas where the
energy density is in the intermediate range.

Ill. NONLINEAR COLLECTIVE PHOTON INTERACTIONS

In the preceding section, we presented dispersion re-
lations for special cases of single photons interacting
nonlinearly with the vacuum. The single-photon picture
contains many interesting physical phenomena, such as
photon splitting and the birefringence of the quantum
vacuum. However, in many applications, collective ef-
fects among photons may be dominant (Mendonga,
2001).

A. Coherent field interactions

The formulation of the interaction between coherent
electromagnetic waves and possible background field
configurations is a starting point for the discussion con-
cerning possible detection techniques of elastic photon-
photon collisions. Experiments for detecting elastic
photon-photon scattering are important tests of QED,
and constitute a new type of tests of, e.g., Lorentz invari-
ance in extensions of the Standard Model such as super-
symmetric field theories (Colladay and Kostelecky, 1998;
Jackiw and Kostelecky, 1999; Lipa et al., 2003; Nibbelink
and Pospelov, 2005).

The Maxwell equations that results from the weak-
field Heisenberg-Euler corrected electromagnetic La-
grangian (5) are

V-E=(p-V-P)e, (43a)
V-B=0, (43b)
B

— +VXE=0, (43¢)
at

1 JE VXB ( s V X M) (43d)
——— =— +—+

ot Ko\I "o ’

where the vacuum polarization and magnetization are
given by Eqgs. (11) and (12), respectively, and p and j are
the charge and current densities, respectively. From
these it is straightforward to derive the wave equations
(9) and (10). These may in turn be used to derive the
dispersion function for the appropriate wave field on a
given background.

As noted above, the interaction between waves in par-
allel propagation does not yield any interaction due to
the vacuum dispersion function D, = w’—|k|>*c?> appear-
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ing as an overall factor in the wave equations (9) and
(10). Thus dispersive effects need to be introduced in the
wave propagation. This can be done in a multitude of
ways, such as crossing light beams (Solja¢ic and Segev,
2000b), photon propagation on a constant coherent field
background (Ding and Kaplan, 1989, 1992; Rozanov,
1993, 1998; Bakalov et al., 1998; Kaplan and Ding, 2000;
Rikken and Rizzo, 2000, 2003) cavity fields (Brodin et
al., 2001, 2002), waveguide propagation (Brodin et al.,

2003; Shen and Yu, 2003; Shen et al., 2003; Shukla, Elias-
son, and Marklund, 2004), plasma interactions (Shen and
Yu, 2003; Shen et al., 2003; Marklund et al., 2004a, 2005d;
Stenflo et al., 2005), and interaction between coherent
and incoherent photons (Marklund et al., 2003, 2004b;
Marklund, Eliasson, and Shukla, 2004; Shukla and Elias-
son, 2004; Shukla, Marklund, Brodin, et al, 2004;
Shukla, Marklund, Tskhakaya, et al, 2004; Marklund,
Shukla, Brodin, et al., 2005).

1. Nonlinear vacuum magneto-optics

We have seen that the propagation of photons on a
magnetized background can be expressed according to
the dispersion relation (26). We may also start from the
constituent relations (8) together with Egs. (11) and (12)
for the polarization and magnetization, respectively.
This was first done by Klein and Nigam (1964a, 1964b),
and later for arbitrary intensities by Heyl and Hernquist
(1997a). If we denote the slowly varying background
magnetic field by By, and the perturbation fields by E
and B, then we find that D;=¢;E; and H;=pu;;B;, where
the quantum vacuum electric permittivity and magnetic
permeability are given by

€= &L 8+ 4xBy(— 8+ 3b,b))], (44)

wij = pol 6+ 4xBy(5; +2b;b))], (45)

respectively. Here we have introduced the background
magnetic-field energy density By=|B|*/ u and the back-
ground magnetic-field direction b=By/|By|. Thus the
permittivity and permeability are diagonal when using
the magneto-optical axis as the eigendirection. Denoting
this direction by z, we have €,=¢,,=¢€)(1-4«B)) and
€..=€(1+10xB), while w,=pu,,=po(1+4xBy) and u.,
=uo(1+12x8).

For an electromagnetic wave propagating perpendicu-
lar to B, there are essentially two different polarization
states, and we may write €;=€J;, u;=ud;. When E L B,
we have e=€,, u=u, accordmg to

€ = 60(1 - 4KBo) and M= /.Lo(l + 12K80), (46)

while if E|By, we find e=¢), =g, where

’Here it should be noted that the paper by Bakalov et al.
(1998) is a progress report to one of the few actual experimen-
tal setups within photon-photon scattering, and their detection
techniques are based on the work by lacopini and Zavattini
(1979) and Bakalov et al. (1994).
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€= 60(1 + 10K30) and Mm= ,(Lo(l + 4KB()). (47)

Thus we see that for strong magnetic fields there is a
significant difference in the behavior of the two polariza-
tion modes. This has been exploited in various scenarios
[e.g., Ding and Kaplan (1989, 1992); Bakalov et al. (1994,
1998); Heyl and Hernquist (1997a); Kaplan and Ding
(2000); Rikken and Rizzo (2000, 2003)]. The procedure is
straightforward to perform for other unidirectional
background field configurations.

2. Nonlinear self-interactions

Based on these results, the self-action of an electro-
magnetic pulse on a given background can also be con-
sidered. Taking into account the lowest-order cubic non-
linear terms of the (complex) pulse amplitude E, and
employing the slowly varying envelope approximation
(Hasegawa, 1975; Kivshar and Agrawal, 2003), one can
derive a nonlinear Schrodinger equation (NLSE) for E.
Letting E=[Eexpli(k—kg) r—i(w—wytldk, and ex-
panding the frequency around the background values
(denoted by 0), we obtain

%0 gy + - =k
O Gk T Gk ok |y
X (kj— ko])+&|Q|2 (1QF - 1QoP, (48)

where |Q|? is given by Eq. (20). Thus the envelope will
satisfy the NLSE,

d 149
j Vi |E 19V V,E 1(|Q[?
l(ﬁt ) 3 ko]V + )\koc Q) =0,

(49)

where v, is the group velocity and /(|Q[*)=/E(|Q[?
—|Qy|?)expli(k—kg) - r—i(w—wy)t]dk is the nonlinear re-
sponse. We note that the term containing |Qy|> repre-
sents a phase shift, and can be removed by a transfor-
mation. When high-frequency corrections are added, the
NLSE will attain a second-order derivative along the
propagation direction. The group velocity v,=dw/dk on
an arbitrary background can be written as (Bialynicka-
Birula and Bialynicki-Birula, 1970)

Vo= ck — (Ne/2)[|EP* + 2B + (k - E)?
+cXk-B) ]k - chgl(k-E)E + (k- B)B
+cE X B]

in the weak-field case. We note that |v,|=w/k<c. We

now discuss some special cases.

g|:

a. Constant background fields

For a constant background configuration, the back re-
action of the photon propagation may, in some cases, be
neglected. Then the nonlinear contribution to the self-
interaction of the pulse occurs via a coupling of higher
order in the parameter A.



604 Mattias Marklund and Padma K. Shukla: Nonlinear collective effects in photon-photon. . .

Rozanov (1998) considered the perpendicular propa-
gation of high intensity laser pulses on a background
E,=Ex, By=B,y. By choosing the polarization direc-
tions of the laser pulse in the dlrectlon of the back-
ground fields, one obtains the NLSE,?

J J
i(a—t Vs >E+ ~v;ViE+HEPE=0, (50)

where v;=c(1-\|Qq|*/2)/ky is the group velocity disper-
sion, &= koceo)\3|QO|4/8 and |Qq*=€)(Ey—cBy)?* The
NLSE (50) could be of interest for laboratory applica-
tions, when studying high intensity laser pulse propaga-
tion in given background electromagnetic fields.

b. Crossing beams

When the background is given by the source itself, the
nonlinear self-interaction term will be of first order in \,
thus requiring weaker background conditions.

Soljaci¢c and Segev (2000b) derived a NLSE for the
dynamics of the envelope A(x) of the interaction region
due to crossing laser beams. By symmetry arguments
concerning the QED corrected Maxwell’s equations,
they reduce the problem to a 1D stationary NLSE,

2
213 +TA + 3k%keA> =0 (51)

where k is the wave number of the laser beam, I' is the
eigenvalue of the equation, and the beams are assumed
to be polarized in the x direction. The lowest-order soli-
tary wave solution is given by (Kivshar and Agrawal,
2003) A(x)=A,sech(y-2I'z), where we have denoted
the eigenvalue I'=—k’keyA5/8. This one-dimensional
soliton solution is stable, as opposed to higher dimen-
sional solitons (Berge and Rasmussen, 1996; Kivshar and
Agrawal, 2003). Furthermore, Soljac¢ic and Segev
(2000b) suggested the possibility of higher dimensional
soliton formation, e.g., necklace solitons (Soljadic et al.,
1998; Soljacic and Segeyv, 2000a).

3. Propagation between conducting planes

Similar to the case of a Casimir vacuum, one of the
simplest geometries where dispersive effects makes the
presence of QED vacuum nonlinearities apparent is
given by two parallel conducting planes. They are the
first example where multidimensional photon configura-
tions can self-compress to reach intensities above the
laser limit (Mourou et al., 1998; Brodin et al., 2003;
Shukla ez al., 2004).

a. Variational formulation

Consider the propagation between two parallel con-
ducting planes with spacing x, of one TE,, mode (¢
=1,2,...) given by

3We note that Rozanov (1998) obtained the NLSE (50) with
the dispersive correction.
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¢
A=A sin(ix>exp[i(kz - wh)]y+c.c. (52)
X0

in the radiation gauge (¢$=0). The linear dispersion re-
lation is w?/c?*—k*—€27?/x3=0. From Maxwell’s equa-
tions (43) a nonlinear dispersion relation can be derived
by inserting the linear expression for the fields and sepa-
rating into orthogonal trigonometric functions. The co-
efficients in the NLSE can be found from the resulting
equation. One may also start from the Heisenberg-Euler
Lagrangian (5), and minimize the resulting expression
for the action. This may appear more elegant and gives
the same result (Brodin et al., 2003).

We follow the results of Brodin et al. (2003). Let A
=A(t,y,z) and assume A to be weakly modulated so
. To lowest order,
nonlinear terms and slow derivatives in £ are omitted.
Averaging over the plate spacing x, shows that this low-
est order Lagrangian is identically zero due to the dis-
persion relation. To the next order of approximation in
the Lagrangian, first-order slow derivatives are included.
After variation of the corresponding action, this leads to
an equation where the envelope moves with the group
velocity. The next order and final approximation in-
cludes second-order slow derivatives. After performing
the averaging between the plate interspacing, the final
expression for the Lagrangian is

9A IA” 9A A"
L =iwe, —A - —A|-ikPeg| —A - —A
ot 0z Jz
A Rl Aty ar
(= VDeg| |+ A, (53)
a9z xo

The variation of the action due to the Lagrangian (53)
with respect to A" leads to the NLSE

J a A PA v PA
(— + vg—>A AL S 5>+ L*APPA =0,
at iz 20y 2 9z
(54)
where v, and v, =dv,/dk follow from the linear disper-

sion relation and L?=3¢*c*m*ke)/ wx;. The nonlinear
correction in Eq. (54) is due to the self-interaction of the
TEy mode (52) via the quantum vacuum. In one space
dimension, i.e., #A/dy>’=0, Eq. (54) reduces to the cubic
Schrodinger equation having an envelope soliton solu-
tion (Kivshar and Agrawal, 2003).

Changing to a system moving with the group velocity
while rescaling the coordinates and the amplitude ac-
cordmg to r=wt/2, v=wy/c, {=(w/V! )1/2(z v ), and a
=\2LA, and assuming cylindrical symmetry, Eq. (54)
takes the form

da 190 ( da

— p-) +lala =0, (55)

+
0"7' pdp\ dp

where a=a(t,p) and p>’=1v*+ 2.

Equation (55) is a two-dimensional radially symmetric
NLSE, to which exact solutions are not available. How-
ever, an accurate analytical approximation of pulselike
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solutions of Eq. (55) can be obtained by means of
Rayleigh-Ritz optimization based on suitably chosen
trial functions [see, e.g., Desaix et al. (1991); Anderson,
Cattani, and Lisak (1999), and references therein]. An
accurate approximate solution, mimicking the solitary
behavior as well as capturing the collapse properties of
Eq. (55), is given by (Desaix ef al., 1991)

ar(1,p)= F(T)SCCh|: :|€Xp[ib(7’)p2], (56)

f()
where* f(7)=[20)+y(1-1,/1,)7]"2, showing the insta-
bility of the stationary solution /=1, either collapsing
to zero width in a finite time when [,> 1, or diffracting
monotonously towards infinite width when [,<I..

In the next section, a perturbation analysis shows that
the exact equations produced unstable solutions.

b. Instability analysis

Following Shukla, Eliasson, and Marklund (2004), a
rescaling of Eq. (54) gives the dimensionless equation

(57)

where B={mc/xyw and the time is scaled by ™!, the
spatial variables by c¢/w, and the vector potential by
(key/2?) 12,

Conditions for the modulational and filamentation in-
stabilities can be obtained as follows. Let A=[A,
+A exp(i) + Arexp(—i¢)lexp(—iwyt), where p=K-r—QOt
is a phase, wy is a constant frequency, and the constants
Ag, Ay, and A, are the complex amplitudes of the pump
wave and the two electromagnetic sidebands, respec-
tively. The wave vector and the frequency of modulating
perturbations are denoted by K=yK,+2K, and (), re-
spectively, where y and z are unit vectors along x and y
axes, respectively. Following the standard procedure of
the modulational and filamentational instability (Shukla
et al., 1986; Anderson, Fedele, et al., 1999), the nonlinear
dispersion relation becomes

(Q-KAN1- ) +[|A? - (K2 + BKD)]
X(K;+ B°K2) =0. (58)

Letting Q=K_\1-B*+iy in Eq. (58), one obtains the
modulational instability growth rate

y=0A0P - §(K; + BEDTPKS + BKD. (59)

The instability grows quadratically with the amplitude
Ay, and attains a maximum value at a critical wave num-
ber. The values of B different from unity make the insta-
bility region asymmetric with respect to K, and K. On

*The complex amplitude F(7) and the phase function b(7) can
be expressed in terms of the pulse width f(7) (Desaix et al.,
1991). Here y=4(In4+1)/27{(3)=0.29, I(D=F(7)|F(n?
=£2(0)|F(0)|*=1Iy, and I,.=(2In2+1)/(41In2-1)=1.35.
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FIG. 6. (Color online) The growth rate y given by Eq. (59) of
the modulational instability for an initially homogeneous ra-
diation field as a function of the wave number (K, K,), for
different values of 8 and pump strength A,. Reprinted from
Shukla, Eliasson, and Marklund, 2004. Copyright 2004, with
permission from Elsevier.

the other hand, the spatial amplification rate I'=iK, of
the filamentation instability in the quasistationary limit
(viz., Q=0), and for B2F2<K§, is
12y K
I=(j4yf - 1K) ——=. (60)
!1 B

Shukla, Eliasson, and Marklund (2004) performed a
numerical study of Eq. (58) showing the instabilities in-
dicated by the approximate solution (56); see Fig. 6. Us-
ing the normalized Eq. (57) an initially Gaussian pulse
was shown to collapse or disperse in accordance to the
collapse criterion presented in Brodin et al. (2003); see
Fig. 7. The collapse is unbounded in the weakly nonlin-
ear model given by Eq. (57). As the collapse pursues, the
intensity of the pulse will reach values at which the
weakly nonlinear theory breaks down and higher order
effects (Bialynicka-Birula and Bialynicki-Birula, 1970;
Marklund, Shukla, and Eliasson, 2005), and possible
pair-creation processes (Schwinger, 1951), has to be
taken into account. For the latter, a significant energy
dissipation into the electron-positron plasma will take
place.

In practice, the trapping of an electromagnetic pulse
can be achieved by two highly conduction layers. As an
example, consider the generation of two-dimensional
plasma channels due to the interaction of a plasma with
high-intensity lasers (Shen er al., 2003). In this case, a
vacuum will be created within the plasma due to the
complete evacuation of electrons by the ponderomotive
force of intense laser beams. The resulting plasma
waveguides can sustain very high-field intensities (Bing-
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FIG. 7. (Color online) The time evolution of |A|*> given by Eq.
(57) for an initially Gaussian shaped electromagnetic pulse.
The pulse slowly self-focuses and finally collapses. Here S
=0.5 and a Gaussian pulse A=10"2exp[—(y*>+z%)/(2 X 10%)?] is
used. In the upper-right and lower-left panels, the pulse self-
compresses and in the lower-right panel the field strength of
the pulse has reached a critical limit where Eq. (57) is no
longer valid. Reprinted from Shukla, Eliasson, and Marklund,
2004. Copyright 2004, with permission from Elsevier.

ham, 2003), and with future laser systems (Mourou et al.,
1998, 2006) the intensities could surpass even the theo-
retical laser limit (Mourou et al, 1998; Shen and Yu,
2002; Shorokhov et al., 2003). The trapping of intense
laser fields could yield the right conditions for electro-
magnetic modes to self-interact via the nonlinear quan-
tum vacuum, giving rise to pulse evolution according to
Eq. (57).

4. Cavity mode interactions

Wave-wave interactions give rise to a host of interest-
ing phenomena, well known in optics and plasma physics
(Weiland and Wilhelmsson, 1977; Agrawal, 2001;
Kivshar and Agrawal, 2003). As cubic nonlinearities act
within a cavity environment, they produce wave-wave
couplings, and given certain resonance conditions a new
mode will be generated that will satisfy the cavity disper-
sion relation. Brodin et al. (2001) showed that these new
modes could reach detectable levels within state-of-the-
art cavities, and Brodin et al. (2002) were able to derive
a NLSE for the self-interaction of a single mode in a
rectangular cavity.

Calculations of the three-wave coupling strength be-
tween various eigenmodes can be done including the
nonlinear polarization (11) and magnetization (12); see,
e.g., Brodin et al. (2001). However, a more convenient
and elegant approach, which was pioneered by Brodin ef
al. (2003) and gives the same result, starts directly with
the Lagrangian density (5).

A general procedure for finding the cavity eigenmode
coupling and saturated amplitudes of the excited mode
can be formulated (Weiland and Wilhelmsson, 1977;
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Brodin et al., 2001, 2002; Eriksson et al., 2004):

(1) Determine the linear eigenmodes of the cavity in
terms of the vector potential.

(2) Choose resonant eigenmodes fulfilling frequency
matching conditions for modes 1, 2, and 3, such as
(,()3:2(1)1 — Wy. (61)

(3) Assume a slowly varying amplitude of the vector
potential eigenmode amplitudes and minimize the
effective action obtained from the Lagrangian (5)
and follow steps (1) and (2). The lowest-order linear

terms vanish, since the dispersion relation of each
mode is fulfilled.

(4) In the absence of dissipation, the mode coupling
equations imply steady growth of mode 3, until the
energy of that mode is comparable to that of the
pump modes. A damping mechanism, such as finite
conductivity of the cavity walls, may be inserted on
phenomenological grounds. This saturates the am-
plitude at a level depending on the mode-coupling
growth versus losses.

a. Rectangular cavities

For a rectangular prism cavity with dimensions
(x9,V0,20), choosing the radiation gauge, the pump
modes have vector potentials of the form

¢
A=A sm(—xl>sin<—ﬂ>exp(— ion)y+cc., (62)
]O 20

where j=1,2, {;=1,2,3,... are the mode numbers for
pump waves, and x;=x, xX,=Y, X19=Xg, and x,y=y,. The
dispersion relations are

OGP 22
=t T (63)
20 on

The mode excited due to the QED nonlinearities is
given by

€
As= A3sin(7r—y>sin( 37TZ)exp(— iws)X +c.c., (64)
Yo 20
where
G w3
W= 25—+ —. (65)
<0 Yo

Following the scheme given by Brodin et al. (2001,
2003) and Eriksson et al. (2004), with the resonance con-
dition w;=2w;—w,, one obtains the following evolution
equation for mode 3:

%_ lsOKw3
d 8

KrecAzAZ’ (66)

where the dimensionless coupling coefficient K, is



Mattias Marklund and Padma K. Shukla: Nonlinear collective effects in photon-photon. . . 607

In(E) -3.05

In(E) -2.84

0.12

0.08

0.04

08 04 0 , 04 08 12 08 04 0 , 04 08 12 07

(a) (b)

In(E) -2.81

08 04 0 , 04 08 12 28

(©

FIG. 8. (Color online) The mode structure for the filtering geometry. The small region to the right is the entrance region, the large
middle region is where the interaction takes place, and the region to the left is the filtering region. Here In| E| is plotted using an
arbitrary normalization. We have the cavity distance z and the cylindrical radius p in units of meter. (a) Pump mode 1: We see that
spatial exponential decay has diminished the amplitude by a factor 107° in the filtered region to the left. (b) Pump mode 2: As for
mode 1, exponential decay diminishes the amplitude in the filtering region, here by a factor 108, (c) Excited mode: The amplitude
of the mode excited by the QED vacuum nonlinearities is almost unaffected when passing into the filtering region. Figure adopted
from Eriksson et al., 2004.

2 8w (4 762 4
Koo = ﬁ—i{(_ — ){Z—CZ + (—2 + 5wy A = AJ\(pBla)sin| —= |exp(— iwt) + c.c. (68)
w 20

3 XoYo X0 2o
Ol (763 3 Tw €y gives a complete description of the fields. Here a is the
+ z_% - x_% + 2 cylinder radius, z, the length of the cavity, J; the first-
order Bessel function, ¢ the mode number, and B one of

67) its zeros. The cylinder occupies the region 0=z <z, cen-
tered around the z axis. We have introduced here cylin-

drical coordinates p and z as well as the unit vector ¢ in

the azimuthal direction. The eigenfrequency is given by

2
<0

X[(=, +,= w3+ ,— ,— )wsfz]}-

The different signs in Eq. (67) for the coupling strength
correspond to the mode number matchings 2€;—{€,+¢;
=0, 2¢;+€,—€3=0, and 2¢;—¢,—€3=0 that must be ful-
filled for nonzero coupling. The coupling coefficient for
specific mode numbers and geometries can thus be
evaluated. If a saturation mechanism is included in Eq.
(66), one may solve for the steady-state value of As;.

b. Cylindrical cavities

As shown by Eriksson et al. (2004), the efficiency of
the mode conversion can be slightly improved by the
choice of a cylindrical cavity. The results can be obtained
along the lines of the previous example. For TE modes
with no angular dependence, the vector potential
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w?*=c[(Bla)*+ (€l z0)?], for all modes w=w,;. From
the matching condition w;=2w;—w, it follows that the
eigenmodes cannot have the same order of their respec-
tive B, and one thus introduces B=p;,3. Proceeding
along the lines of the previous section, one obtains

dA, iggKw)

o= g KeAld; (69)
for the mode number matching ¢3=2¢;+¢,. Here the
cylindrical coupling coefficient K, is defined in terms of
integrals of Bessel functions and can be found in Eriks-
son et al. (2004). As in the case of a rectangular geom-
etry, the linear growth of A; as dictated by Eq. (69) will
be saturated by dissipative mechanisms. The intensity of
the generated field amplitudes and the pump field am-
plitudes is shown in Fig. 8.
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B. Incoherent field interactions

We have considered the interaction via the nonlinear
quantum vacuum between coherent electromagnetic
waves. However, in many situations where the
Heisenberg-Euler Lagrangian is important, such as in
astrophysical and laser-plasma applications, there can be
intense incoherent electromagnetic fields present. We
will below study two scenarios. First, a plane-wave pulse
propagating on a vacuum dressed by an intense gas of
incoherent photons is analyzed, and, second, effects on a
radiation gas by the quantum vacuum excited by an in-
tense electromagnetic (EM) pulse is investigated. These
two results are then used in conjunction to obtain the
relevant equations governing the nonlinear interaction
between the pulse and the radiation gas.

1. Coherent pulse interaction with incoherent photons

The dispersion relation (30) represents the propaga-
tion of test photons in an intense incoherent radiation
background. Using standard methods for slowly varying
envelopes (Hasegawa, 1975) in conjunction with Eq.
(30), we obtain the special case of Eq. (49), for a pulse in
an intense photon gas background (Marklund et al.,
2003; Marklund, Eliasson, and Shukla, 2004; Shukla,
Marklund, Tskhakaya, et al, 2004) [see also Rozanov
(1998) for a similar result using a different strong back-
ground field],

(o 9 Ve (s &
l<(7_t + vgé?_z)Ep + j;(vl - 'Bzﬁ_zz)Ep + po€E, =0,

(70)

where 66=E-&, is a radiation gas perturbation due to
the pulse propagation and &, is the unperturbed back-
ground radiation energy density. Here we have adapted
coordinates such that k,=kgz, k, being the background
wave vector of the pulse, included the high-frequency
correction represented by 3., and denoted the (complex)
pulse amplitude by E,. Moreover, v,=(dw/dk), is the
group velocity on the background, B,=(32/3)o\2E3k3 is
the vacuum dispersion parameter, wu=(2/3)ckoA[1
+(16/3)o’)\5’0k(2]] is the nonlinear refraction parameter,
V2 =V2—(k,-V)?, and A=8« of 14« depending on the po-
larization of the pulse (see Sec. IL.C).

2. Radiation gas response of pulse propagation

We have seen that the effects of a plane wave on in-
coherent photons can be expressed via the dispersion
relation (28). Following Marklund et al. (2003), the re-
sponse of the radiation gas can be determined using a
kinetic theory. For a dispersion relation w=ck/n(r,?),
where 7 is the spacetime-dependent refractive index, we
have the Hamiltonian ray equations
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J o .
i=22-%k and k=-Vo=2va, 71)
Jk n n

where r denotes the group velocity of the photon, k the
force on a photon, and the dot denotes a time derivative.

The equation for the collective interaction of photons
can then be formulated as (Mendonga, 2001)

If(k,r,1)

LY i)+ % [Kfkrn]=0,  (72)

where the distribution function f(k,r,f) has been nor-
malized such that [f(k,r,t)dk gives the photon gas num-
ber density. In what follows, we neglect dispersive ef-
fects on the evolution of the radiation gas.5 Taking the
moments of the kinetic equation (72) (Marklund, Elias-
son, and Shukla, 2004), we obtain the energy conserva-
tion equation

9E Eon

—+V-(Cu+q)=-——

, 73a
ot n Jdt ( )

where &(r,f)=[h wfdk is the energy density and q(r,?)
=[fh wwfdk is the energy (or Poynting) flux. Here we
have introduced r=u+w, where [wfdk=0. Thus w rep-
resents the random velocity of the photons. Equation
(73a) is coupled to the momentum conservation equa-
tion
Jll &
—+V:-[u®ll+P]=—-Vn, (73b)
ot n
where II=[#7kfdk is the momentum density and P

=[w® (fk)fdk is the pressure tensor. It follows from the
definition of the pressure tensor that the trace satisfies

Tr P:fﬁkw-f(fdk:(n/c)fﬁww-f(fdk. For an observer
comoving with the fluid, i.e., a system in which (u)y=0
(the 0 denoting the comoving system), Eq. (71) shows

that (w-lA()Oz(n)o/ ¢, so that the trace of the pressure ten-
sor in the comoving system becomes (Tr P)y=(€),. For
an isotropic distribution function, the pressure can be
expressed in terms of the scalar function P=Tr P/3, sat-
isfying the equation of state P=£/3. We will henceforth
adopt the comoving frame, in which u=0, and the equa-
tion of state P;;=P5;E/3, in order to achieve closure of
the fluid equations.

3. Quasilinear theory

We now assume that the radiation gas is perturbed
around the equilibrium state £y= const and II;=0, letting
E=E&y+ 6, where |8E| <&;. Then, using Egs. (73) we ob-
tain an acoustic equation

>The dispersive correction, due to the variations in the pho-
ton field, will give rise to higher-order effects in the final fluid
equation for the energy density of the radiation gas. Thus we
may at this stage neglect the dispersive term from the fluid
equations.
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P 2 2) 27\6050(32 22) 2
(E_EV S5 = — 3 E+CV |E[, (74

to lowest order in 6€. This gives the dynamics of a ra-
diation gas due to the pulse propagation (Marklund,
Eliasson, and Shukla, 2004). Equations (70) and (74)
were first presented by Marklund, Eliasson, and Shukla
(2004), and generalize the Marklund-Brodin-Stenflo
equations (Marklund et al., 2003), to the case of a disper-
sive vacuum. The Marklund-Brodin-Stenflo equations
are different from the Karpman equations (Karpman,
1971, 1998) that govern the dynamics of small amplitude
nonlinearly interacting electromagnetic waves and ion-
sound waves driven by the radiation pressure in an
electron-ion plasma, due to the difference in the driving
term on the right-hand side of Eq. (74).

The dispersion-free case admits pulse collapse (Mark-
lund et al., 2003; Shukla and Eliasson, 2004), and similar
features appear within the dispersive case, with the dif-
ference that pulse splitting may occur, resulting in a train
of ultrashort pulses. If the time response of the radiation
background is slow, Eq. (74) may be integrated to yield
SE=~2NEy€ | E,|%, and from Eq. (70) we obtain the stan-
dard equation for analyzing ultrashort intense pulses in
normal dispersive focusing media; see Chernev and
Petrov (1992); Rothenberg (1992); Gaeta (2003); Kivshar
and Agrawal (2003); Zharova et al. (2003), and refer-
ences therein. It is well known that the evolution of a
pulse within this equation displays first self-focusing,
then pulse splitting (Chernev and Petrov, 1992; Rothen-
berg, 1992), and the approximate description of the so-
lutions can be given as a product of bright and dark
soliton solutions (Hayata and Koshiba, 1993). A modu-
lational instability can be found as well (Kivshar and
Agrawal, 2003).

4. Instability analysis
a. Two-dimensional case

As B, goes to zero in Eq. (70), we regain the
Marklund-Brodin-Stenflo equations (Marklund et al.,
2003). In this case, the dispersion relation for the modu-
lational and filamentational instabilities of a constant
amplitude photon pump (wy,k) can be found by linear-
izing the simplified set of Egs. (70) and (74) around the
unperturbed state E,=FEj=const and 6£=0. Following
the standard procedure of parametric instability analysis
(Shukla, 1992; Kivshar and Agrawal, 2003) (see also next
section), we consider perturbations varying according to
expli(K-r—Qt)]. Here Q and K are the frequency and
wave vector of the acousticlike disturbances. Then, Egs.
(70) and (74) yield the nonlinear dispersion relation
(Shukla and Eliasson, 2004; Shukla, Marklund, Tskha-
kaya, et al., 2004)
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FIG. 9. The pulse width as a function of normalized time (7
—cky7) in the two-dimensional case. Note that the solitary
solution (y=1) is unstable.

. K* 2
{(Q —cky-K)> - 4;];} (30% - K*c?)
0

4K ¢
_ TLC(QZ L K2\ e, E2, (75)

where K?= K2+K2+K2—K2 +K2. Defining Q=cK,
+ivp, | vop| <cKz, we obtam the approximate modula-
tional instability growth rate

c K> 42K ¢ 12
~{—K> —Z_ —K , (76
72D {Zko J_|:X2DK%__2K§ 2k, }} (76)

where xop=(8/3)cko\*EyeE2.
Similarly, in the quasistationary limit =0 a filamen-
tational instability may occur. For K, <K |, we obtain

oo K 4

a3

Thus filamentation of an intense photon beam on a ra-

diation background takes place when & E,f*

>3K>% /16kj\2E), due to elastic photon-photon scatter-
ing.

In the case of a slow acoustic response, we integrate
Eq. (74) in comoving coordinates, to obtain a relation
between the radiation gas perturbation and pulse inten-
sity. By inserting the relation into Eq. (70) (with B8,=0),
we obtain

i —V2 E,+ 4)\2Ck080(€0|E E,=0. (78)
ar 2k
The collapse properties of Eq. (78) can be obtained by
approximate analytical means. Starting from a two-
dimensional  approximately =~ Gaussian pulse E,
=A(7)sech[r /a(n)]exp[ib(n)r’], where 7> =x*+y?, an
approximate solution can be found (Desaix et al., 1991).
The relation |A|/|Ay|=ag/a is found, where the 0 de-

notes the initial value. Moreover, the parameter vy

—K*\&ye)E3. (77)
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FIG. 10. The growth rate and real part of the frequency, re-
spectively, as a function of the orthogonal wave number for
different values of the parallel wave number [see Eq. (76)].
The dimensionless pump strength is A=\2£yyE5=0.02. Re-
printed with permission from Shukla and Eliasson, 2004.

= (413)\2€Eoki| AolPad(Iy /1), where I =[gx sech*(x)dx
=(41n2-1)/6 and I,= [{x’sech?(x)dx=9¢(3)/8, and ¢ is
the Riemann zeta function, characterizes the critical be-
havior of the solution in terms of the initial data. The
collapse criteria can be seen in Fig. 9.

Exact results regarding the two-dimensional modula-
tional and filamentational instabilities were found by
Shukla and Eliasson (2004), where numerical solutions
of Eq. (75) were presented; see Figs. 10 and 11. The
growth of random seeds on a radiation gas background
was also investigated and is shown in Fig. 12.

b. The three-dimensional case

We now show the presence of modulational and fila-
mentational unstable modes for the three-dimensional

0.06 T 7 T 7
Growth rate
K =0K
0.04F x L .
= A=0.02
2 / /
e}
0.02f A=0.01 A=0.04 R
g
0 . . . .
0 0.1 0.2 0.3 0.4 0.5
K /k
Lp
0.15 T 7 T 7
Real frequency
Ar =
0 K=0K,
xo.
S_0.05f
G
0
-0.05 ! ! ! !
0 0.1 0.2 0.3 0.4 0.5

FIG. 11. The growth rate and real part of the frequency, re-
spectively, as a function the orthogonal wave number for dif-
ferent dimensionless pump strengths A:)\ZEOEOE% [see Egq.
(76)]. Reprinted with permission from Shukla and Eliasson,
2004.

Rev. Mod. Phys., Vol. 78, No. 2, April-June 2006

Energy density, kpct=1 00

Energy density, kpct: 300
0.02 ky - :

2on 100 0.022
0.021
0.02
0.02
0.02 50
0.019
0.02

0.018

100 ., 0 50 100 Kz
[ P

0 50

100 K z
P

FIG. 12. (Color online) The two-dimensional evolution, as
given by Egs. (70) and (74) with B,=0, of the dimensionless
pulse energy density N>Ey€| E,|* for initially random perturba-
tions on a radiation gas background. The color bars give the
dimensionless pulse energy density. Reprinted with permission
from Shukla and Eliasson, 2004.

case, as given by Egs. (70) and (74). Fourier analyzing
Eq. (74) according to &€ and |E,[*cexp[i(K-r-Qt)], we
obtain

? (79)

2
55 = 5)\80W60|Ep

where W=(Q%+c*K?)/(-Q?+c?K?/3), with Q and K the
frequency and wave vector, respectively, of the Fourier
component. Next, following Shukla (1992) [see also
Kivshar and Agrawal (2003)], we let E,=(E,
+E)exp(iéf), where § is the nonlinear phase shift and
Ey(>|E]) is a real constant. To zeroth order in E; we
have the nonlinear phase shift 5=—KE(2). We let E;
=dexpli(K-r—Qt)]+dyexp[—i(K-r—Q1)], with d; and d,
real constants. Linearizing Eq. (70) with respect to Ej,
we obtain a coupled system of equations for djand d.,.
Eliminating d; and d,, we obtain the dispersion relation
(Shukla, Marklund, Tskhakaya, et al., 2004)

v
(- Koygf =5 (K] - BKD)

1
YL (K2 - BKY) — —xW 80
2k0( 1= BK) = xW, (80)

where X=4/.L)\5060E%. Remembering that W depends on
the perturbation frequency and wave vector, we see that
the solution to Eq. (80) in terms of () is nontrivial.

Letting Q=K v,+iy,, in Eq. (80), |y,,| <K,v,, we ob-
tain the approximate modulational instability growth
rate
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FIG. 13. (Color online) The normalized growth rate y/(cky), as
given through the dispersion relation (80), as a function of
K, /ky and K,/ky. We note that due to cylindrical symmetry,
the area of nonzero growth rate is really a conelike structure.
Here A:)\zé'oe()E%. Reprinted with permission from Shukla,
Marklund, Tskhakaya, et al., 2004. Copyright 2004, American
Institute of Physics.

K + (1 +ViAK?
g K2 K2 L g z
Vn= {Zko( & Z){X 1+ (1=-3vJAK:
12
Yo K> - B.K? ) 81
2ko( B: Z)} (81)

Thus when v,~c, we see that, unlike the standard
modulational instability, we have larger growth rate for
smaller length scale, with the occurring asymptotically
for K | \2K,, where the approximate expression (81) di-
verges.

If the perturbations are stationary, Eq. (80) yields

1 12
K,~+—) %K &K - 82
T {2k0 [2k0 H (82)

when B.KZ<K”?, and we see that a filamentation insta-
bility will occur for x>v K7 /2k.

Solving Eq. (80) for the growth rate, one obtains the
instability regions shown in Fig. 13. We note that the
results found by Shukla, Marklund, Tskhakaya, et al.
(2004) concerning the modulational instability are simi-
lar to the ones obtained by Karpman and Washimi
(1977), where it was found that the largest growth rates
are due to parametric instabilities for wave vectors ob-
lique to the pulse propagation direction. Shukla, Mark-
lund, Tskhakaya, et al. (2004) performed a numerical
simulation of the three-dimensional system of
Egs. (70) and (74). In Fig. 14 the collapse of the
initially weakly modulated beam E,=(\%E)&) "A[1
+0.1 s1n(4077k0z)]exp( r L/ 2a%) can be seen. Using A
=+0.02 and a= 10k0 , the beam interact with the 1n1tlally
homogenous radiation gas background. The collapse is
seen by the decrease in the beam width r, = \x?+y? and
the increase in the beam energy density. In Fig. 15
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FIG. 14. (Color online) The three-dimensional evolution of a
normalized modulated beam energy density }\ZEOEO\EPP (left
panels) and the normalized radiation gas energy density \ 6
(right panels). The color gives the intensity. The beam col-
lapses after a finite time, as does the inhomogeneity in the
radiation gas. Reprinted with permission from Shukla, Mark-
lund, Tskhakaya, et al., 2004. Copyright 2004, American Insti-
tute of Physics.

the evolution of an initially spherical pulse E),
=(\2&y€))"2A exp(~r, /2a?) is seen. As the pulse propa-
gated through the initially homogeneous radiation gas,
collapse ensues, as can be seen by the decrease in the
pulse width r=yx”>+y?+z? and the increase in the pulse
energy density. The values of A and a are the same as in
the beam case. We note that the pulse in the last panel
undergoes splitting, and the radiation gas response de-
velops a photon wedge, analogous to a Mach cone,
through which energy is radiated.

5. Pulse collapse and photonic wedges

The approximate analytical results in conjunction with
the numerical simulations presented above shows col-
lapse, filamentation, and pulse splitting as generic fea-
tures of the system (70) and (74). On the other hand,
both these methods of investigation have shortcomings,
and it is therefore of great interest to obtain more ana-
lytical predictions valid for a wider range of parameters.
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FIG. 15. (Color online) The evolution of a normalized spheri-
cal pulse energy density )\ZSOEO\EPP (left panels) and the nor-
malized radiation gas energy density NSE (right panels). The
pulse first undergoes compression, and later splitting, while the
radiation gas develops a high intensity region, from which pho-
ton wedges (similar to a Mach cone) are radiated. Reprinted
with permission from Shukla, Marklund, Tskhakaya, er al.,
2004. Copyright 2004, American Institute of Physics.

In this section we show that under very general condi-
tions pulse split and collapse are essential features of the
photon pulse-acoustic system (70) and (74).

As we have seen, the dynamics of an intense short
photon pulse and the radiation background response is
described by the system of Egs. (70) and (74).

Following Shukla, Marklund, Tskhakaya, et al
(2004), we renormalize the system of Eqgs.
(70) and (74), by introducing the new variables E
:(4k0m\60€0/v§)”2Ep(t,rl,z—vgt), T=vgtlky, and &F
=(vg/2kou)(|E* = N). It is implied that the wave packet
has cylindrical symmetry and moves along the z axis.
From Egs. (70) and (74) we obtain

JE &
ZiE +ViE—ﬁZa—Z2E+ |E*’E+NE=0 (83a)

and
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&2 k2 2
— =~ —|E(tr 2 —v), 83b
((972 3vg )N 3(972' (tr1,z = vl (83b)
respectively.

Representing &€ in terms of |E|* and A, the perturba-
tion part of the radiation gas that is concentrated in the
region of localization of the wave packet and takes part
in its compression has been isolated. The second part of
o€ corresponds to the interaction of the pulse with the
radiation field NV. This interaction is described by the last
term in Eq. (83a). As seen by Eq. (83b) [or Eq. (74)],
the velocity Vg=c of the source (the pulse) exceeds the
velocity c/ \3 of the radiation waves, i.e. vg>c/ \3 and
it is therefore expected that the radlatlon field n will be
localized behind the pulse. Hence it is assumed that the
pulse and radiation field are localized in different vol-
umes, and in the region with a possible overlap the re-
lation N'<|E|? is satisfied (see also the end of the next
section). This inequality allows us to neglect the last
term in Eq. (83a), which means neglecting the back re-
action of the radiation on the pulse. In this approxima-
tion, the pulse field E drives the radiation field A
through Eq. (83b), while the pulse propagation is unaf-
fected by the radiation field.

From Eq. (83a) we have the conservation of the “field
mass” parameter of the pulse

N= f |E|%dr  dz, (84a)
and the Hamiltonian
H-= f Hdr, dz, (84Db)

where the Hamiltonian density is given by H=|V  E[?
_Bz | (91E|2— |E|4/2'

Some information on the spatiotemporal behavior of
the initially localized wave packet can be found by fol-
lowing the evolution of the characteristic widths of the
packet in the transversal and longitudinal directions.
These widths are defined by

1
Rz(r)zﬁfrﬂEFdrldz (85)
and
2 1 212
Z (T)ZN Z*|E|dr  dz. (86)

Straightforward calculations give the following evolution
equations:

FR* 2

TN (|VLE|2——|E|4>erdz (87)
and

a2 - NP ) P " ruaz

for the widths (85) and (86), respectively.
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In the two-dimensional (2D) case, the process of self-
compression of the wave packet can be clearly seen
(Tskhakaya, 1982; Kuznetsov et al., 1995). A necessary
condition for collapse in this case consists in the pre-
dominance of the field mass N of the given state over
some critical value N, i.e., N> N, where N, is the field
mass calculated for the stationary ground state (Kuz-
netsov et al., 1995). The ground state is described by the

(positive) radially symmetric solution WY=FE(r,7)
Xexp(—i\7) of the equation
VAW - ANV +P3=0, (89)

derived from Eq. (83a) and computed with A=1. In the
2D case, the right-hand side of the expression for the
mean-square transverse radius (87) is 2H/N, i.e., a com-
bination of the conserved quantities. Thus integrating
Eq. (87) twice, we obtain

R*(1) = R¥0) + Cr+ (HIN) 7, (90)

where the constants R%*(0) and C are defined by initial
conditions. Hence a sufficient condition for 2D self-
focusing, ultimately leading to complete collapse in a
finite time, is H <0. Because this is independent of the
value of C, there will always exists a finite time ¢, for
which the transverse radius vanishes. In the three-
dimensional (3D) case and for 8,<0 (corresponding to
anomalous dispersion) the equality (90) must be re-
placed by the inequality

RY(1) < Cy+ Cy7+ (HIN) 7, (91)

and the sufficient condition for the collapse of the wave
packet is again H <0 (Kuznetsov et al., 1995).

Equation (83a) with B,>0 and A'=0 corresponds to
the normal dispersion region of the wave packet. In
Berge et al. (1996), Berge and Rasmussen (1996), and
Berge et al. (1998) the features of the pulse self-focusing,
described by the solution to Eq. (83a), have been inves-
tigated in detail. Their conclusions can be applied di-
rectly to the numerical results presented here concern-
ing the breakup of the wave packet. Berge et al. (1996)
showed that the characteristic length Z%(7) of the wave-
packet localization along the direction of propagation is
bounded from below by a positive constant. The relation
(88) indicates an asymptotic longitudinal spreading.
Thus a 3D (global) collapse cannot take place in media
with normal dispersion, since the necessary conditions
for the pulse self-focusing to occur is JR*/3dr<0 and
37?/97>0, which explicitly excludes the 3D case. The
self-focusing in the transverse direction is accompanied
by a longitudinal spreading and in the following by the
splitting of the pulse. This does not, however, immedi-
ately exclude partial (local) collapse scenarios.

The process of pulse splitting close to the time of self-
focusing t— £ has been described by Berge and Rasmus-
sen (1996) and Berge et al. (1998) employing a quasi-self-
similar analysis. This approach uses, besides the
description of the solution of Eq. (83a) (neglecting V),
the time-dependent characteristic lengths in the longitu-
dinal /,(f) and transversal [/ (f) directions. Berge and
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Rasmussen (1996) and Berge ef al. (1998) found that the
transverse scale /, (f) exhibits a changing behavior as one
passes some critical point z"(f) on the z axis. Inside the
localized region z<z'(f), the transverse width collapses
with the rate [, (t)~ (ty—t)">/(In{In[1/(t,—1)]}) "%, while
in the complementary (delocalizing) domain, z>z"(¢),
the transverse pulse width spreads out with the rate
[, (t) ~tIn{In[1/(¢y—1)]}. Hence the time derivative of
[, (t) changes sign around the point z"(¢). Meanwhile, the
self-similar longitudinal scale /() increases slowly in
time. Berge and Rasmussen (1996) and Berge et al.
(1998) found that near the self-focusing time t— ¢, [ (¢)
~t, which implies a linear increase of z'() in time such
that z"(¢,) [~\£'Elz(to)]. The presence of the coefficient
\E leads to a decrease in the distance of the critical
point z"(¢y) from the origin for small 3,. The scale [, (¢)
remains strictly positive at times t=<t,. Consequently, the
transversal scale reaches a minimum value at a finite
distance z"(t).

Since the wave packet is assumed to be cylindrically
symmetric and also symmetric relative to the origin z
=0, the total field distribution during self-focusing must
exhibit two maxima located at z=+z"(¢), respectively.
The wave packet has therefore been split into two iden-
tical smaller cells, symmetrically placed on each side of
the origin z=0.

Hence a wave packet, propagating in media with an-
isotropic dispersion, will be spread out along the direc-
tion of the negative dispersion, and split up into smaller
cells. These analytic results have been confirmed by nu-
merical solutions (Luther et al., 1994; Berge et al., 1998).
The duration At of self-focusing, accompanied by the
pulse splitting, can be estimated using Eq. (87) as

_ ko \E
At~VgR(O) 0 (92)

The first part of our numerical solution—where the
splitting of the wave packet takes place—coincides with
these results. The small coefficient 8,, which determines
the negative dispersion, changes the distance (from the
origin) along the z axis, at which the field is localized
after splitting.

Berge and Rasmussen (1996) and Berge et al. (1998)
have shown that this splitting process can be continued
(multisplitting process) if newly formed cells possess a
transverse energy higher than the self-focusing threshold
N.. In our case, the wave packet only splits into two
cells, as the energy localized in each new cell is below
the threshold N.. Furthermore, the wave packet also
loses energy to the radiation gas during the splitting pro-
cess. The formation of these photonic wedges, or the
radiation Mach cone, can be analyzed in accordance
with the results of Shukla, Marklund, Tskhakaya, et al.
(2004), such that, e.g., the energy loss from the pulse can
be estimated.

In conjunction with pulse collapse in a radiation gas it
should be mentioned that if the field invariant E?
—¢?B?>0 pair creation will occur as the pulse intensity
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increases, and the loss of energy through photonic
wedges will be negligible in comparison to the energy
radiated into fermionic degrees of freedom. This will
give rise to a rich and complex dynamical interplay be-
tween pulse photons, the radiation gas, and the pair
plasma (Bulanov et al., 2005). For interactions between a
pulse and a pure radiation gas, we have c¢|B|>|E|, due
to zero dispersion, and pair creation would not occur.
However, since we will in practice always have some
ionized particles present, pair creation is likely to be the
result of pulse collapse due to weak dispersive plasma
effects.

6. Strong-field case

Our knowledge of nonlinear refractive properties of
the radiation gas gives a means for investigating effects
of higher-order nonlinear corrections to the standard
first-order Heisenberg-Euler Lagrangian, and to probe
the significance of higher-order effects for photonic col-
lapse (Marklund et al., 2003; Marklund, Eliasson, and
Shukla, 2004; Shukla and Eliasson, 2004). The dynamics
of coherent photons, traveling through an intense radia-
tion gas, may be analyzed as above, following Marklund
et al. (2003). We obtain a nonlinear Schrodinger equa-
tion for the slowly varying pulse envelope E, according
to (Kivshar and Agrawal, 2003)

[ Vo w2 nnl(c%’)
— -VIE,+ —V.E E, =0, (93
l<&t+v0 ) p+2k0 s p+w0 no 14 > ( )

where the subscript 0 denotes the equilibrium back-
ground state, V2 =V?— (ko' V)2, 66=E-&, is a perturba-
tion, vo=v(&y), no=n(&y), nu(8)=27_n"" 6" Im!, nJ™
=d"ny/d&;', and the refractive index n is given through
Egs. (37) and (38).

For a dispersion relation w=|k|c/n(r,?), the motion of
a single photon may be described by the Hamiltonian
ray equations (71) (Mendonga, 2001). Since n=n(€) and
dn/d&>0 always hold [see Marklund, Shukla, and Elias-
son (2005)], a denser region of the radiation gas will ex-
ercise an attractive force on the photon (Partovi, 1994),
thus creating lensing effects. The single-particle dynam-
ics thus supports that photonic self-compression is an
inherent property of the one-loop radiation gas, but we
note that as the density of a region increases, the phase
velocity approaches a constant value, given by Eq. (41),
1e., Vinn—0.

Following Marklund et al. (2003), the response of the
radiation gas to a plane-wave pulse may be formulated
in terms of an acoustic wave equation, generalizing Eq.
(74) to the strong-field case, according to (Marklund,
Shukla, and Eliasson (2005))

& v Eof &
<ﬁ—§°V2 55:—'1—‘; %wgvz nu(lE,[»).  (94)

If the time response of &€ is slow, Eq. (94) gives
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Using Eq. (95) and the expression for n,(86), we can
write Eq. (93) as

] 3&mg\?
i<—+v0-V>Ep+ﬂViEp+w0< 0 0)
ot Zko ny
x(l +n—0,|Ep|2)|Ep|2Ep:O. (96)
2ny

When n{|E,|*/2nj<1, we have a self-focusing nonlinear-
ity in Eq. (96), but as |E,| grows the character of the
nonlinear coefficient changes. The coefficient is positive
when |E,[><EZ, =[2n{/nj|, but since nj<0 for all &
(Marklund, Shukla, and Eliasson, 2005), the sign changes
as the pulse amplitudes grow above the saturation field
strength E,, making the nonlinearity defocusing and ar-
resting the collapse. The numerical value of this turning
point is dependent on the background parameter &,. For
low intensity radiation gases, ng=0, and Eq. (96) always
displays self-focusing, i.e., field strengths can reach val-
ues above the Schwinger field. When &, roughly reaches
the critical value &y, the weak-field approximation
breaks down, and Egs. (37) and (42) can be used to de-
rive an expression for E ;. As an example displaying the
general character of the intense background case, con-
sider £,=E&.,;X10°>. We find that E,~2x10"7 V/cm
> E i, 1.€., the pulse saturates above the Schwinger criti-
cal field. Thus both the weak and moderately strong in-
tensity cases, the latter described here by Eq. (96), dis-
play self-compression above the Schwinger critical field.

This analysis can be generalized to take into account
the statistical spread in the coherent pulse, giving rise to
a damping of instabilities (Marklund, 2004).

7. Other field configurations

Above we have seen that the propagation of an elec-
tromagnetic pulse through a radiation field gives rise to
instabilities, wave collapse, self-focusing, and pulse split-
ting. These concepts can be carried over to the case of
multiple beams or pulses propagating through a radia-
tion gas, including pulse incoherence. Marklund, Shukla,
Brodin, et al. (2005) showed that when several pulses are
present, they can exchange energy via a background ra-
diation gas and instabilities can occur, even if their
propagation is parallel.

Shukla, Marklund, Brodin, et al. (2004) considered an
incoherent nonthermal high-frequency spectrum of pho-
tons. As will be shown, this spectrum can interact with
low-frequency acousticlike perturbations. The high-
frequency part is treated by means of a wave kinetic
description, whereas the low-frequency part is described
by an acoustic wave equation with a driver (Marklund et
al., 2003) which follows from a radiation fluid descrip-
tion. The high-frequency photons drive low-frequency
acoustic perturbations according to (Marklund et al.,
2003)
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;o 2) 2)‘50<’92 2 2)
(at2_3v E=-3 \z2 eV
xf h of(k,r,0)d’k, (97)

where the constant & is the background radiation fluid
energy density and fis the high-frequency photon distri-
bution function. This hybrid description, where the high-
frequency part is treated kinetically, and the low-
frequency part is described within a fluid theory, applies
when the mean-free path between photon-photon colli-
sions is shorter than the wavelengths of low-frequency
perturbations. We note that the specific intensity I
=hwf/ €, satisfies Eq. (72), and is normalized such that
(|E|*»=[1,d°k, where E is the high-frequency electric-
field strength. These equations resemble the photon-
electron system in the paper by Shukla and Stenflo
(1998), where the interaction between randomly phased
photons and sound waves in an electron-positron plasma
has been investigated.

Next, we consider a small low-frequency long-
wavelength perturbation of a homogeneous background
spectrum, i.e., f=fy+fiexpli(Kz-Q0)], |fi|<f, and &
=& expli(Kz—Qr)], and linearize our equations. Thus we
obtain the nonlinear dispersion relation

g
Z- ﬁal3k

1=— .
Q-Kck-2 K

uK Q2+ K2c2 K>
3 02— K233 > 09

where pu=3N1E.

(a) For a monoenergetic high-frequency background,
we have fy=ny8(k—kg). The nonlinear dispersion rela-
tion (98) then reduces to

(Q% - K2c*3)(Q — Kc cos 6,)*
koK
= m(ﬂz + K2c?)
X[Kc + (2Q — 3Kc cos 6y)cos 6], (99)

where we have introduced cos 005120-2. This monoener-
getic background has a transverse instability when 6,
=r/2, with the growth rate

4 2 2 1/2
r:K—f{\/<V—T) +14(V—T> +1—<V—T) —1} :
) C C C

(100)

where I'=-iQ) and v;=(ungkyc)'? is a characteristic
speed of the system. The expression in the square brack-
ets is positive definite.

In fact, when &% ckony/ E4; <1, a condition which is
satisfied due to Eq. (4), we have vy<c. Using Eq. (99),
we then have two branches. The branch corresponding
to Q~Kc/\3 is always stable for small v, while for the
branch corresponding to ()=~ Kc cos 6, we obtain the
growth rate
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FIG. 16. (I'/Kv)?, according to Eq. (101), plotted as a func-
tion of ay=cos 6, in the monoenergetic case. Reprinted from
Shukla, Marklund, Brodin, et al., 2004. Copyright 2004, with
permission from Elsevier.

rex [ 1-cos 6,
= V —’
"N '1-3cos 6
which is consistent with Eq. (100) in the limit 6,— /2.
In Fig. 16, the behavior of the growth rate (101) is de-
picted.
(b) High-frequency photons have generally a spread in

momentum space. For simplicity, we choose the back-
ground intensity distribution as a shifted Gaussian, i.e.,

(101)

I [ (k- kﬂ
Lo= ————exp| - ——2— |, 102
kO 773/2]{%4/ p k%}v ( )
where Z,=(|Ey|?) is the (constant) background intensity
and kyy is the width of the distribution around k. As-
suming that the deviation of k, from the z axis is small,
and that §=ky/ky<1, we can integrate Eq. (98) with
Eq. (102), keeping terms linear in &, to obtain

7+1 {3\,'77

7173 —— +8dmcos b + <5cos 0y

2
3\"77 :
- 487 cos 6, |(2 arctanh —im) |, (103)

1~—mh?

for  0<p<1.  Here n=Q/Kc and  b?
=(4/9m)\?€)EoToexp(~ki/ k). Thus we see that the
nonzero width of the distribution complicates the char-
acteristic behavior of the dispersion relation consider-
ably. It is clear that the width will reduce of the growth
rate compared to the monoenergetic case.

We may also look at the case when the time depen-
dence is weak, i.e., €/ > <c’V?E, such that Eq. (97)
yields £=2\E, [ % wifd’k. Upon using this relation, we
find that Vo=—ukV [k'f'd°k’. Hence Eq. (72) becomes
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d d J J
—f+v -—]C+Mk(a—fk’f’d3k’)-a—£:0.
r

104
at & or (104)

A similar equation may be derived for the specific inten-
sity I;. Equation (104) describes the evolution of high-
frequency photons on a slowly varying background ra-
diation fluid, and it may be used to analyze the long-
term behavior of amplitude modulated intense short
incoherent laser pulses. The results in this section can be
generalized to several partially coherent pulses (Mark-
lund, Shukla, Brodin, et al., 2005).

C. Effects due to plasmas

Plasma channels are closely connected to both the
plasma dispersion and propagation of wave modes in
waveguides. Shen and Yu (2003) and Shen et al. (2003)
first suggested the use of plasma cavitation as a means of
fostering conditions in which nonlinear quantum
vacuum effects, such as photon-photon scattering, could
take place. As a high intensity electromagnetic pulse
propagates through a plasma, the interaction with the
plasma may completely evacuate regions giving condi-
tions similar to the that of Secs. III.A.3 and III.A 4.

Moreover, although in many cases the presence of a
plasma will swamp effects due to photon-photon scatter-
ing, it can under certain circumstances provide a means
for the propagation of nonclassical plasma modes. Due
to the nontrivial dispersion of electromagnetic waves in
plasmas, there will be a net effect due to photon-photon
scattering, such that low-frequency modes will be gener-
ated. In general, effects of a nonlinear quantum vacuum
is expected to become pronounced for next generation
lasers (Bulanov et al., 2000, 2004; Mourou et al., 2006).

Also, for future applications, the combination of
photon-photon scattering induced pulse compression in
conjunction with pair creation (Nitta et al., 2004) could
provide interesting insights both into fundamental prop-
erties of the quantum vacuum as well as into the pros-
pects of creating high power electromagnetic sources.
The effects of plasmas within the environment of a
quantum vacuum therefore deserve further investiga-
tions.

1. Plasma cavitation and plasma channels

If the power of the laser pulse propagating through
the plasma surpasses the critical value P
=17(w/ wp)2 GW, where o is the laser frequency and w),
is the electron plasma frequency, there may be complete
expulsion of plasma particles from the high intensity re-
gion (Max et al., 1974), thus forming a waveguide (Shen
and Yu, 2003). In such waveguides, the effects of
photon-photon scattering could be of importance (Shen
et al., 2003).

The nonlinear interactions of plasmas with high inten-
sity lasers is of great current interest [see, e.g., Tajima
and Taniuti (1990); Goloviznin and Shep (1999); Shen
and Yu (2002); Bulanov et al. (2003); Pukhov (2003);
Cairns er al. (2004); Shukla, Eliasson, and Marklund
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(2004); and Mourou et al. (2006), for recent reviews]. In
the context of doing fundamental physics and mimicking
astrophysical events in laboratory environments, the
evolution of laser intensities has received a lot of atten-
tion. Examples of experimental suggestions are axion
detection (as a dark matter candidate) (Bernard, 1999;
Bradley et al., 2003; Dupays et al., 2005); pair production
[see, e.g., Ringwald (2001a, 2001b, 2003), and Burke et
al. (1997), Meyerhofer (1997), and Bamber et al. (1999)
for a discussion of the detection of pair production from
real photons]; laboratory calibration of observations,
relativistic jets, analog general relativistic event horizon
experiments [such as Hawking and Unruh radiation
(Hawking, 1974; Unruh, 1976)], and probing quantum
spacetime properties (Chen and Tajima, 1999; Chen,
2003). The possibility of reaching extreme power levels
with such setups is one of the promising aspects of laser-
plasma systems (Bingham, 2003), and also holds the po-
tential of overcoming the laser intensity limit
~10% W/cm? (Mourou et al., 1998). As the field strength
approaches the critical Schwinger field FE;
~10'" V/cm (Schwinger, 1951), there is possibility of
photon-photon scattering, even within a plasma (Shen et
al., 2003), as the ponderomotive force due to the intense
laser pulse gives rise to plasma channels (Yu et al., 1982).
Under such extreme circumstances, the effects of pair
creation will be pronounced. Electron-positron plasmas
are also produced by interactions of matter with power-
ful multiterawatt and petawatt laser pulses (Liang et al.,
1998; Gahn et al., 2000). The concept of trident pair pro-
duction, as described within the framework of perturba-
tion theory, could give a means for creating electron-
positron pairs by intense laser pulses in vacuum
(Berezhiani et al., 1992). Moreover, the future x-ray free-
electron laser systems (Ringwald, 2001a, 2001b, 2003;
Patel, 2002) could result in methods for creating pair
plasmas in the laboratory (Alkhofer e al., 2001). The
possible field strength output could reach E=~0.1E_;
(Alkhofer et al., 2001). Even on an experimental level,
pair production due to collisions of electron backscat-
tered photons with the original photon beam has been
observed (Burke ef al., 1997). Thus there is ample evi-
dence that the investigation of nonlinear interactions of
pair plasmas and high intensity electromagnetic fields
deserves attention (Kozlov et al., 1979a; Farina and Bu-
lanov, 2001a).

a. Effect of relativistic nonlinearities

Here we follow the results of Shukla et al. (2005). The
propagation of a circularly polarized intense laser pulse
in an unmagnetized plasma is governed by (Yu et al,
1982) (7;-c*VH)A+(w)N/y)A=0, where A is the
vector potential of the laser pulse, w,=(n¢e*/eym,)"?
is the unperturbed electron plasma frequency, vy
=\1+e*| A|?/m?*c? is the relativistic gamma factor includ-
ing the electron mass variation in intense laser fields,
and N=n,/n, is the ratio of the electron number density
to the background plasma number density #.
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FIG. 17. (Color online) The variation of I, as given by Eq.
(106), and N vs r (the radial coordinate) and z for an initial
laser pulse which initially has a Gaussian shape. We observe
pulse compression and formation of a light bullet. Reprinted
with permission from Shukla et al., 2005.
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At intensities beyond 10'® W/cm?, the electron quiver
speed Vo =6 X 1071%\ I exceeds the speed of light, and
hence nonlinear effects in plasmas cannot be ignored.
Here I is the intensity in W/cm? and X\ is the laser wave-
length in microns. Thus the relativistic ponderomotive
force (Yu et al, 1982; Shukla et al, 1986)
F=-m,c?V vy of intense laser pulses will separate charges
and thereby would create a huge ambipolar electric po-
tential ¢ in the plasma. At equilibrium, the balance be-
tween the relativistic ponderomotive force and a slow
electric force eV ¢ will yield ¢=(m,c?/e)(y—1), which
when substituted into Poisson’s equation gives N=1
+)\§V2y. Here \,=c/w, is the electron skin depth, and
ions are assumed to be immobile. The electron density
will be locally evacuated by the relativistic ponderomo-
tive force of ultraintense nonuniform laser fields. The
laser pulse localization and compression would then oc-
cur due to nonlinearities associated with relativistic laser
ponderomotive force created electron density evacua-
tion and relativistic electron mass increase in the laser
fields. This phenomena can be studied by means of the
equation

A 2 A 2 2
VA Vm(l +V21+]A) =0, (105)
where A=eA/m,c, and the time and space variables are
in units of w;l and A,, respectively. For the propagation
of a modulated laser pulse along the z axis, we obtain
from Eq. (105) after invoking the slowing varying enve-
lope approximation,

al  al I
2iw(— + vg—) + V2 +1-—=(1+V?P)=0, (106)
ot 0z P

where we have set A=(1/2)I(r,z,t)(X+iy)exp(—iwt
+ikz)+c.c., and denoted P=(1+1?)"2. Here the normal-
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ized laser frequency and normalized laser group velocity
are denoted by w=(1+k?"? and v,=k/w, respectively.
In the one-dimensional case [viz., set V>=¢/dz* in Eq.
(106)], we have the localization of intense electromag-
netic waves in the form of a large-amplitude one-
dimensional bright soliton (Yu et al., 1982). We have nu-
merically solved Eq. (106) in order to study the
evolution of a cylindrically symmetric modulated laser
pulse. The results are displayed in Fig. 17.

Initially, the pulse is assumed to have a Gaussian
shape, I=1Iyexp[—(z>+7%)/200], and we used the normal-
ized wave number k=2 and initial pulse amplitude I,
=1. We notice that the compression of the pulse enve-
lope (left panels), which is correlated with the excava-
tion of the normalized electron density (right panels).
Our numerical results reveal that self-compression of
the pulse occurs more rapidly when one accounts for the
relativistic light ponderomotive force induced electron
density depletion, contrary to the constant density case
(viz., N=1). Physically, the enhanced compression and
self-focusing of an intense laser pulse occur due to the
localization of light in a self-created electron density
cavity.

The fact that evacuation of the plasma takes place as
the light intensification due to self-compression occurs
means that the situation discussed in Shen et al. (2003),
where the quantum electrodynamical effect of photon-
photon scattering at high intensities takes place, could
be realized in the next generation laser-plasma systems.
Moreover, as intensities in the evacuated region in-
crease, the concept of vacuum catastrophic collapse, at
which the pulse due to quantum vacuum nonlinearities
self-compresses, may ensue (Marklund, Eliasson, and
Shukla, 2004). The intensities that can be reached at this
stage, in principle, surpass the Schwinger field, but then
the process of pair creation has to be investigated and
removed, since this would otherwise quickly dissipate
the electromagnetic energy into fermionic degrees of
freedom. The problem of self-consistent analysis of pair
production in a plasma environment has been ap-
proached by Bulanov et al. (2005) where a model for
incorporating a particle source term was given [see also
Eq. (136)].

b. Self-interaction in electron-positron plasmas

Consider the propagation of intense light in an
electron-positron plasma. By averaging the inertialess
equations of motion for electrons and positrons over
one electromagnetic wave period, the expression for
electron and positron number densities n, and n,, re-
spectively, in the presence of relativistic ponderomotive
force (Shukla et al., 1986) of an arbitrary large amplitude
laser pulse takes the form

Clyet)- ey
Y- - 5
kB Te kBTe,p

where g,=—e and g,=e are the electron and positron
charges, kj is Boltzmann’s constant, 7, (7)) is the elec-

N, =NgeEXp| — (107)

tron (positron) temperature, and y=11+e* A|*/m2c? for
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circularly polarized light. The ambipolar potential ¢ as-
sociated with the plasma slow motion is found from
Poisson’s equation

e
Vip= e_o(”f -n,). (108)
From particle momentum conservation equations
the electron and positron Velocmes are given by v,
=—q,,A/m,Y,,, where y,,=(1-v’ L=y

The dynamics of the intense hght is obtained from
Maxwell’s equations and reads

( s
P
where A is the vector potential.

For a circularly polarized electromagnetic wave A
=(1/2)A(r,0)(X+i§)exp(ik-r—iwyt), using the scalings
Nep=1oNep, t:TwO/wIZ,, r=c(é-u,7)/ w,, uy=(wy/ w,)v,/c,

A=(m,cle)A, and ¢=(m,c2/e)®, Egs. (108) and (109)
can be written in the dimensionless form as

2
c2V2)A + &(ne +n,)A =
Yo

0, (109)

A 1 N,+N
i v (1 % A=0, (110)
ar 2 2y |a|2
and V*®=N,-N,, respectively, where N,=exp[B,(1
_\1+|A|2+q))] N—eXP[ﬁp(l \/1+|A|2 (I))] :Be,p

—cz/vTep, and vre,=(kpT,,/m,)"?. Here the dispersion

relation wj=c?k>+ o’ (n€0+np0)/n0 has been used, and
v —(c2/ wp)k is the group velocity. In the quasineutral
11m1t N,=N,, we have ®=(1-y1+|AP)(B,-B.)/(B,
+8,). Equation (110) then becomes

dA 1 11+ AP
A1 VZA _exp[B -y +|A]%)] A0,
aT \/1+|A|2

(111)

where 8=28,8,/(B,+B,) is the temperature parameter.

The dispersion relation for the modulational and fila-
mentational instabilities for an arbitrary large amplitude
electromagnetic pump can be derived from Eq. (111) fol-
lowing standard techniques (Shukla et al., 1987, 1988).
From the ansatz A=(ay+a;)exp(idér), where a; is
real, ay>|a;| and & is a constant nonlinear frequency
shift, the lowest-order solution gives &=1-exp[B(1
—\J’Taﬁ)]/ Vm. Linearizing Eq. (111) with respect to
ay, with the ansatz a;=(X+iY)exp(iK-£-iQ7), where X
and Y are real constants and Q(K) is the frequency
(wave vector) of the low-frequency (in comparison with

the light frequency) modulations, the nonlinear disper-
sion relation reads

4 2 2 f 2 —
02 = KT _ Kjao(t;'g—weﬁ(l\lwg)’ (112)
+ 4

which gives the modulational instability growth rate I"
=-1Q) according to
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FIG. 18. The modulational instability growth rate I" as given
by Eq. (113) vs the wave number K, for =200 and a,=0.1
(dashed lines), B=100 and ay=0.1 (solid line), B=100 and a
=0.2 (dash-dotted lines), and for =100 and ay=0.05 (dotted
line). Reprinted from Shukla, Marklund, and Eliasson, 2004.
Copyright 2004, with permission from Elsevier.
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The growth rate increases with larger g3 values (i.e., for
lower temperature), while for the intensity field we do
not necessarily obtain higher growth rates for higher in-
tensities; see Fig. 18. This is attributed to an interplay
between the relativistic particle mass variation and rela-
tivistic light ponderomotive driven density responses.
From Eq. (113) one observes a decrease in the growth
rate for large enough B. However, this result should be
interpreted with caution since for large-amplitude fields
in a low-temperature plasma electron inertia effects will
become important and may dominate over thermal ef-
fects. Then, in this case the assumption that electrons
(and positrons) obey a modified Boltzmann distribution
may no longer be valid.

Since N,=N,=exp[B(1 - y1+|A[*)], the increase of the
pulse intensity will cause an almost complete expulsion
of electrons and positrons from that region; see Figs. 19
and 20. Simulations show the evolution of an initially
weakly modulated beam

A=107[1+0.02 sin(z/8) + 0.02 cos(z/4)
+0.02 cos(3z/8)Jexp(— r*/32),

where r?=x%+y?, while the electron perturbation is zero
initially. Thus, as can be seen in Figs. 19 and 20, the
modulated beam self-compresses and breaks up into lo-
calized filaments. This gives rise to electron and positron
holes, and as the pulse intensity grows the conditions for

pure elastic photon-photon scattering improve within
these holes.
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FIG. 19. (Color online) The light amplitude A in log;q scale at
five different times 7 [see Eq. (111)]. The horizontal axis rep-
resents the distribution along the radial (r) coordinate, and the
axial (z) distribution is on the vertical axis. Reprinted from
Shukla, Marklund, and Eliasson, 2004. Copyright 2004, with
permission from Elsevier.

c. Thin-foil amplification

As noted in the previous two sections, trapping and
amplification of laser pulses can take place given the
right plasma environment. This could be an important
tool for stepping up available electromagnetic intensi-
ties, and could therefore be important for investigations
into photon-photon scattering. Here we will describe a
method which could yield high intensity pulses.

Laser-foil interactions have been used as a method for
proton acceleration on tabletop scales (Zepf et al., 2003;
Silva et al., 2004; McKenna et al., 2005). By letting a high
intensity laser pulse impinge normally on a thin metal
foil the foil material is ionized, creating a plasma in
which protons are accelerated up to MeV energies. The
exact mechanism(s) behind the proton acceleration is
still not completely clear although there exists a number
of plausible suggestions [see Zepf et al. (2003), for a dis-
cussion]. It was suggested by Shen and Meyer-ter-Vehn
(2001a) that this could be used to create confined high
density relativistic electron plasmas. Letting two coun-
terpropagating laser beams illuminate a thin foil nor-
mally, a spatially confined high density plasma could be
created, and be used for, e.g., harmonic generation, pair
production, and y photon generation (Shen and Meyer-
ter-Vehn, 2001b).

Building on the work of Shen and Meyer-ter-Vehn
(2001a), Shen and Yu (2002) suggested to let two oppo-
sitely directed laser beams interact via two closely
placed thin foils. As above, when the high intensity la-
sers impinges normally on thin foils, the foil material
will be ionized and a plasma will be produced. Shen and
Yu (2002) showed that this may lead to electromagnetic
trapping.

Shen and Yu (2002) started with the trapping of a cir-
cularly polarized electromagnetic pulse propagating in
the z direction in a positive electron density profile, us-
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FIG. 20. (Color online) The normalized electron number den-
sity N,=exp[B(1-\1+|A]>)] as a function of r and z at five
different times 7 [A is given by Eq. (111)]. Note the efficient
expulsion of plasma particles in the later panels, and their cor-
relation to the intensity peaks in Fig. 19. Reprinted from
Shukla, Marklund, and Eliasson, 2004. Copyright 2004, with
permission from Elsevier.

ing the stationary equations of Shen and Meyer-ter-Vehn
(2001a, 2001b),

M=(y-1)ct'w, (114a)

W=1(2-1)"[(cy'/w)* + M*]+ 1 1(y-2N), (114b)

where M and W are two constants of motion, 7y
=\1+e?|A]?/m>c? is the relativistic gamma factor, o is
the laser frequency, A is the vector potential «expl[iwt
+i6(z)], N;=n;/n., n; is the constant ion density, n.=1.1
%X 10?1 (\/um)? cm™ is the critical electron density, \ is
the laser wavelength, and the prime denotes differentia-
tion with respect to z. It is possible to find solitary solu-
tions of Eq. (114) representing trapped electromagnetic
pulses between parallel high-density plasma regions
(Esirkepov et al., 1998; Kim et al., 2000). These analytical
soliton solutions suggest the possibility to trap laser light
between foils. Shen and Yu (2002) performed particle-in-
cell simulations of the system (114). Using the foil spac-
ing A=0.46\ they showed that such configurations would
yield a 100-fold amplification of initial laser pulse inten-
sities, over a trapping time of 26 laser cycles, which is in
the fs range for um lasers.

In multidimensional environments, true analytical
soliton solutions are not known, but it is a well-
established fact, due to approximate and numerical in-
vestigations (Kivshar and Agrawal, 2003), that solitary-
like solutions exists in dimensions =2. However, these
solutions are unstable, and will suffer either attenuation
or self-compression, depending on intensity and pulse
width (Desaix et al., 1991) (see Fig. 9). Thus in a two-
dimensional thin-foil environment, light intensification
could take place. The production of high-intensity pulses
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by these thin-foil amplification also has the valuable
property of being realizable in a relatively small scale
setting.

d. Laser plasmas and relativistic flying parabolic mirrors

As we have seen above, the propagation of intense
electromagnetic pulses in plasmas yields interesting non-
linear dynamics, and effects such as pulse self-
compression can occur. These nonlinear effects act as a
very promising tool for, e.g., producing intense ion
beams (Esirkepov et al., 1999, 2004; Bulanov et al., 2004),
which is of importance in laboratory astrophysics (Chen,
2003). With regards to the nonlinear quantum vacuum,
an interesting proposal has been put forward by Bul-
anov et al. (2003). The self-compression of laser pulses,
towards intensities close to the Schwinger limit, can take
place by using relativistic flying parabolic mirrors.

Bulanov et al. (2003) consider a plasma wakefield in
the wave-breaking regime. They let a short intense laser
pulse create a wakefield in a plasma, such that the wake-
field phase velocity equals the laser pulse group velocity
(which is close to ¢) in an underdense plasma (Tajima
and Dawson, 1979).° Due to nonlinearity, the resulting
wakefield will experience wave steepening entering the
wave-breaking regime, together with a local electron
density spike approaching infinity. With such a setup, a
sufficiently weak counterpropagating laser pulse will be
partially reflected from the electron density maximum.
The relativistic dependence of the Langmuir “mirror”
on the driving laser pulse intensity will cause bending of
the surfaces of constant phase, thus creating a parabolic
plasma mirror (Bulanov and Sakharov, 1991). This cur-
vature of the plasma mirror will focus the counterpropa-
gating (weak) pulse to a spot size N/4? along the mirror
paraboloid axis in the laboratory frame, where \ is the
wavelength of the source of the reflected pulse and vy is
the relativistic gamma factor of the wakefield. Similarly,
the focal spot width is N/2vy in the transverse direction.
With this, Bulanov et al. (2003) showed that the intensity
gain will be roughly 64(D/\)?y*, where D is the width of
the pulse effectively reflected by the mirror. The focal
spot intensity of the reflected pulse can then be esti-
mated to

2 2
, D
Ifocalz8< d) <_) 731’
® A

where w,; is the frequency of the pulse driving the Lang-
muir wave, w is the frequency of the source of the re-
flected pulse, and [ is the intensity of the source of the
reflected pulse. Bulanov et al. (2003) gave the following
example of light intensification through Eq. (115). A
1-pum pulse generates the Langmuir mirror in a plasma

(115)

SWe note that the formation of subcycle intense solitary
waves could penetrate into a highly overdense plasma (Shen et
al., 2004), transferring energy between low- and high-density
regions of the plasma, which could be of importance in, e.g.,
laser fusion.
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FIG. 21. (Color online) Typical electron density profile in the
wakefield, where isosurfaces represent densities n=0.15ny,
and n.; denotes the density at which the plasma goes from
underdense to overdense. Reprinted with permission from Bu-
lanov et al., 2003.

where n,~10"7 cm™. The estimate y= w,/w, then gives
v~100. The pulse to be reflected is assumed to have [/
~10"7 W/ecm?, and D=400 um. Then I~ 10%°
W/cm?, to be compared with the critical intensity I,
=ceyE2, =3 %10 W/cm?. The estimated focal intensity
thus seems to reach the Schwinger limit. However, with
the given value on [ it is likely that the backreaction on
the Langmuir wave has to be taken into account thus
altering the estimate.

Bulanov et al. (2003) also presented numerical results
using a fully relativistic code, see Figs. 21 and 22. Using
a three-dimensional particle-in-cell code, an intense la-
ser pulse drives the Langmuir wave along the x axis,
while the counterpropagating source pulse for the re-
flected wave has an intensity ~10'> W/cm? in the um
wavelength range. The value of the of the source pulse
intensity is chosen in order to avoid degradation of the

j —=< M _0.1

FIG. 22. (Color online) The electric-field components at differ-
ent times. Reprinted with permission from Bulanov et al., 2003.
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Langmuir mirror. Figure 21 shows the electron density
profile of the Langmuir wave. Using a Langmuir laser
driver with an intensity of 4 X 10'® W/cm? and um wave-
length, the plasma waves move with a phase velocity
0.87c, and the gamma factor is 2. The density profile is
shown along the x axis, and a steep gradient can be seen.
Figure 22 shows the electric-field components of the
source pulse and its reflection (y=0 plane) and the Lang-
muir driver (z=0 plane). The focusing of the reflected
can be seen. The intensity increase in the focal spot
is 256 times the source intensity, 1i.e., Ijycal
~107-10'"® W/cm?for a um source laser. This is similar
to the intensification obtained for the thin foil setup in
Sec. III.C.1.c.

e. Electromagnetic wave localization

The nonlinear interaction of high-intensity ultrashort
electromagnetic waves with hot plasmas is of primary
interest for the fast ignitor concept of inertial confine-
ment fusion and for the development of high power
sources of hard EM radiation, as well as for laser-plasma
particle and photon accelerators, and compact astro-
physical objects containing intense electromagnetic
bursts. Recent progress in the development of super-
strong electromagnetic pulses with intensities [
~10*'-10%* W/cm? has also made it possible to create
relativistic plasmas in the laboratory by a number of ex-
perimental techniques. At the focus of an ultraintense
short electromagnetic pulse, electrons can acquire ve-
locities close to the speed of light, opening the possibil-
ity of simulating in laboratory conditions, by using di-
mensionless simulation parameters, phenomena that
belong to the astrophysical realm. In the past, several
authors presented theoretical (Kozlov et al., 1979b; Kaw
et al., 1992; Esirkepov et al., 1998; Farina and Bulanov,
2001b) and particle-in-cell simulation (Bulanov et al.,
1999; Naumova et al., 2001) studies of intense electro-
magnetic envelope solitons in a cold plasma, where the
slow plasma response to the EM waves is modeled by
the electron continuity and relativistic momentum equa-
tions, supplemented by Poisson’s equation. Assuming
beamlike particle distribution functions, relativistic elec-
tromagnetic solitons in a warm quasineutral electron-ion
plasma have been investigated (Lontano et al., 2003).
Experimental observations (Borghesi et al., 2002) show
bubblelike structures in proton images of laser-produced
plasmas, which are interpreted as remnants of electro-
magnetic envelope solitons.

Shukla and Eliasson (2005) presented a fully relativis-
tic nonlinear theory and computer simulations for non-
linearly coupled intense localized circularly polarized
EM waves and relativistic electron hole (REH) struc-
tures (Eliasson and Shukla, 2006) in a relativistically hot
electron plasma, by adopting the Maxwell-Poisson-
relativistic Vlasov system that accounts for relativistic
electron mass increase in electromagnetic fields and
relativistic radiation ponderomotive force (Shukla et al.,
1986; Bingham et al., 2004), in addition to trapped elec-
trons which support the driven REHs. Such a scenario
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of coupled intense EM waves and REHs is absent in any
fluid treatment (Kozlov et al., 1979b; Kaw et al., 1992;
Esirkepov et al., 1998; Farina and Bulanov, 2001b) of
relativistic electromagnetic solitons in a plasma. Electro-
magnetic wave localization is a topic of significant inter-
est in photonics (Mendonga, 2001), as well as in compact
astrophysical objects, e.g., gamma-ray bursts (Piran,
2004).

The electromagnetic wave equation accounting for
the relativistic electron mass increase and electron den-
sity modification due to the radiation relativistic pon-
deromotive force (Mendonga, 2001) F=-m,c>dyldz,
where y=(1+p2/m2ic?+e?|A2/m2c?)' is the relativistic
gamma factor, are included. Here p, is the z component
of the electron momentum and A is the perpendicular
(to z, where Z is the unit vector along the z axis) compo-
nent of the vector potential of the circularly polarized
EM waves. The dynamics of nonlinearly coupled EM
waves and REHs is governed by

&Z_A L&z_A foo ]_Cd A=0 (116)
PP B el
d af - yld®) 9
o  p0f NS yle) of (117)
at 1y az 9z ap,

and
;o (7
Sk -1 11
02 wfdpz , (118)

where A is normalized by m.c/e, ¢ by kzT,/e, p, by
m,Vr, and z by rp. Here y:(1+a2p§+|A|2), Ve
=(kT,/m,)? a=Vr/c,and rp=Vr,/ w,. In Eq. (116), we
used the Coulomb gauge V-A =0 and excluded the lon-
gitudinal (z) component #¢/dtdz=j., where jis the par-
allel current density, by noticing that this component is
equivalent to Poisson’s equation (118) (Shukla and Elias-
son, 2005).

Shukla and Eliasson have discussed stationary as well
as time-dependent solutions of Egs. (116)—(118) in the
form of REH which traps localized electromagnetic
wave envelopes. Typical profiles for the amplitude of the
localized EM vector potential W and potential and den-
sity of the REH, as well as the local electron plasma
frequency squared (Q2?) including the relativistic electron
mass increase, are depicted in Fig. 23. We observe that
for large electromagnetic fields the REH potential
becomes larger and the REH wider, admitting larger ei-
genvalues N\ that are associated with the nonlinear fre-
quency shift. This is due to the relativistic ponderomo-
tive force of localized EM waves pushing electrons away
from the center of the REH, leading to an increase of
the electrostatic potential and a widening of the REH.
We see that the depletion of the electron density in the
REH is only minimal, while the local electron plasma
frequency () is reduced owing to the increased mass of
electrons accelerated by the REH potential; the maxi-
mum potential ¢~ 15 in Fig. 23 corresponds in physi-
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FIG. 23. Large-amplitude trapped EM wave envelope (upper
panel), the potential (second panel), the electron number den-
sity (third panel), and the square of the local electron plasma
frequency (lower panel) for large-amplitude EMW waves with
a maximum amplitude of W, =1.5 (solid lines) and W,
=1.0 (dashed lines), and as a comparison a REH with small-
amplitude EM waves which have W, <1 (dotted lines). The
parameters are as follows: normalized speed v(=0.7, a=0.4,
and trapping parameter S=-0.5, corresponding to a vortex dis-
tribution presented by Bujarbarua and Schamel (1981) and
Schamel (2000) involving an equilibrium Synge-Jiittner distri-
bution function (de Groot et al., 1980). The selected value of 8
is related to the maximum REH potential according to a spe-
cific relation similar to one in Bujarbarua and Schamel (1981)
and Schamel (2000). Reprinted with permission from Shukla
and Eliasson, 2005.

cal units to a potential @y X0.5X100=~1.2x10°V,
accelerating electrons to gamma factors of =6.

In order to study the dynamics of interacting solitary
structures composed of localized REHs loaded with
trapped EM waves, Shukla and Eliasson (2005) numeri-
cally solved the time-dependent, relativistic Vlasov
equation (117) together with the nonlinear Schrodinger
equation, that is deduced from Eq. (116) in the slowly
varying envelope approximation. The results are dis-
played in Figs. 24 and 25. As an initial condition to the
simulations, Shukla and Eliasson used solutions to the
quasistationary equations described above, where the
left REH initially has speed vy=0.7 (normalized by c)
and is loaded with EM waves with W, =1.5, while the
right REH has speed vy=-0.3, and is loaded with EM
waves with W ,.=2.5. Furthermore, Shukla and Elias-
son (2005) used ky=v,=0 in the initial condition for A
and in the solution of the nonlinear Schrodinger equa-
tion (Shukla and Eliasson, 2005). Figure 24 displays the
phase-space distribution of electrons and the electro-
magnetic field amplitude at different times. We see that
the REHs loaded with trapped EM waves collide,
merge, and then split into two REHSs, while there are
two strongly peaked EM wave envelopes at z=~30 and
z=70 remaining after the splitting of the REH. A popu-
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FIG. 24. (Color online) Phase-space plots of the electron dis-
tribution function (left panels) and the modulus of the electro-
magnetic field (right panels) for =0, t=50, t=125, and t=162.
Reprinted with permission from Shukla and Eliasson, 2005.

lation of electrons has also been accelerated to large
energies, seen at z=100 in the lower left panel of Fig. 24.
The time development of the EM wave amplitudes,
REH potential, the squared local plasma frequency, and
the electron number density is shown in Fig. 25. Colli-
sion and splitting of the REHs can be observed, as well
as creation of the two localized EM envelopes at z=70;
clearly visible in the left two panels at > 150.

Al

4
30
150 3 20
100 9 10
t t 0
50 1 -10
-20
0
12
150 1 2
100 o 15
t 06 t i
50 0.4
02 05
0
4100 0 100
b4 b4

FIG. 25. (Color online) The electromagnetic field (upper left
panel), potential (upper right panel), squared local plasma fre-
quency (lower left panel), and electron density (lower right
panel) for two colliding REHs. Reprinted with permission
from Shukla and Eliasson, 2005.
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2. Photon-photon scattering within plasmas

a. Charged particle effects and Cherenkov radiation

As presented by Dremin (2002) and Marklund, Bro-
din, et al. (2005), similar to a charged particle moving in
a isotropic dielectric, a charged particle can suffer Cher-
enkov losses when propagating through a intense gas of
photons. The main difference compared to the case of a
regular medium is the frequency spectrum of the emit-
ted radiation. Since the natural cutoff in the quantum
vacuum is given by the Compton frequency, y rays may
be emitted by such a particle.

In 1934, Cherenkov observed the type of radiation
now bearing his name (Cerenkov, 1934). His experimen-
tal result was explained by Tamm and Frank (1937). In
an isotropic dielectric medium, a charged particle in rec-
tilinear motion satisfying the so-called Cherenkov con-
dition, i.e., its velocity exceeds the (parallel) phase speed
in the medium in which it moves, will radiate (Chefra-
nov, 2004). The radiation shock front, called the Cheren-
kov cone, is analogous to the Mach cone formed as ob-
jects move with supersonic speeds through air. In
quantum-mechanical terms, the Cherenkov condition
corresponds to energy and momentum conservation.
Cherenkov radiation has technological uses, e.g., in de-
termining particle velocities.

The dispersion relation for electromagnetic waves in
an isotropic and homogeneous photon gas with refrac-
tive index n is w=kc/n, where n>=1+6 and 6=4\E/3
(Bialynicka-Birula and Bialynicki-Birula, 1970; Mark-
lund et al., 2003) [see Eq. (29)]. Thus the refractive index
in this case is always larger than 1, and a particle may
therefore have a speed u exceeding the phase velocity in
the medium. The Cherenkov condition u=c/n for emis-
sion of radiation can thus be satisfied. This condition can
also be expressed in terms of the relativistic gamma fac-
tor y=(1-u?/c*)~"2, namely, §”=1. We will here as-
sume that a particle with charge Ze, satisfying the Cher-
enkov condition, moves through an equilibrium
radiation gas. The energy loss at the frequency w per
unit length of the path of the charged particle is then

dv, , _ Za(dy-1)
ds T ¢ (¥-1)

and the number of quanta N emitted per unit length
along the particles path is

i, Za(oy -1
ds 7T ¢ (¥ -1) @
Since ¢ is normally much less than 1, we need a large

gamma factor to satisfy the Cherenkov condition. Sub-
sequently, for §y7=1, we have

hodw, (119)

(120)

U=Nhtw, and N=Z’Ladl\,, (121)

respectively, where we have used the Compton fre-
quency as a cutoff. Here L is the distance traveled by
the charge.

At the present time, the cosmic microwave back-
ground has an energy density of the order &
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~1075 J/m?, i.e., 6~107%, i.e., the gamma factor has to
be y=10?! for the Cherenkov condition to be satisfied.
Thus Cherenkov radiation is not likely to occur in to-
day’s radiation background. In fact, it is well known that
cosmic rays contain nonthermal hadrons, of which some
are protons, that can reach gamma factors 10'!, but
larger values are improbable due to the GZK cutoff
(Greisen, 1966; Zatsepin and Kuzmin, 1966). As a com-
parison, we consider the situation at the time of matter-
radiation decoupling. Since Emitted=Ereceived( T/2.7)%,
where the temperature 7 is given in K, we have &
~1072 J/m? at the time of decoupling (7=8000 K), im-
plying 5~10728, Thus the limiting value on the gamma
factor for the Cherenkov condition to be satisfied is y
=10"-10", still out of reach for high-energy cosmic
rays. However, as we demonstrate below, the situation
changes drastically for earlier processes at even higher
T. In particular, we will focus on the era with 10°<T
<10"' K when the required y factors range from 7y
~10* to y>3.

The effect presented above is naturally compared with
inverse Compton scattering. Setting Z=1, the cross sec-
tion for this scattering is o= mr’m?/ M?y, where r, is the
classical electron radius and M is the charged particle
mass. We thus obtain a collision frequency v=cNo,
where A is the number density of the photons. Com-
paring this frequency with the frequency vy,
=(yMc)~'dU/dt, we note that fast particles are mainly
scattered due to the Cherenkov effect when v<<wg, i.e.,

o M T

<——= . 122
am(mJMNN,  m, Te, (122

Here T is the temperature of the photon gas, N
=[30¢(3)alkym*]T?, E=aT*, kg is the Boltzmann con-
stant, a=mky/158%c>=7.6X1071° J/m>K*, and Ty,
=[2025¢(3) /447 alm,c?/ ky~10'? K using the polariza-

tion averaged effective action charge A=(8k+14x)/2
=11«. Thus for a single fast proton to be scattered
mainly due to the Cherenkov effect, we need T> Ty,
x103~10° K, well within the valid limit of photon-
photon scattering theory. We note that at radiation gas
temperatures around 10'2 K the quantum vacuum be-
comes truly nonlinear, and higher-order QED effects
must be taken into account.

For the early Universe considered above, a moder-
ately relativistic plasma is also present, which means that
collective charged particle interactions can play a role.
We take these plasma effects into account by introduc-
ing the plasma frequency w,. The photon dispersion re-
lation is w?=k*c*(1-6)+ wﬁ. Thus the Cherenkov condi-

tion is satisfied for charged particles with relativistic
factors y=1/8-w,/k*c%. For temperatures where the
Cherenkov radiation starts to dominate over inverse
Compton scattering, T~10°-10""K, we have o,
~10%-10 rad/s, and thus Cherenkov radiation is emitted
in a broad band starting in the UV range, w
~10" rad/s, and continuing up to the Compton fre-

quency ~8 % 10% rad/s.
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The Cherenkov radiation emitted during the era when
T~10° K will be redshifted due to the cosmological ex-
pansion. Thus the present value of the cutoff frequency
will be approximately 2 10'? rad/s, i.e., in the short-
wavelength range of the microwave spectrum. However,
we do not expect direct detection of this radiation in the
present Universe, since the process is only expected to
be of importance before the time of radiation decou-
pling. Still, there are possible important observational
implications due to the Cherenkov mechanism pre-
sented here. As shown by the inequality (122), the effect
will be more pronounced for massive particles with a
given gamma factor, and protons are therefore expected
to be more constrained than electrons by the QED
Cherenkov emission. In particular, Eq. (122) puts stron-
ger limits than Compton scattering for suprathermal
protons observed today to be relics of the early Uni-
verse. In fact, it seems rather unlikely, given the inequal-
ity (122), that such protons could survive during the T
=10°-10'"K era.

b. Unmagnetized plasmas

Pair production and pair plasmas play an important
role in the dynamics of environments surrounding pul-
sars [see, e.g., Beskin er al. (1993); Arendt and Eilek
(2002); Asseo (2003)]. Charged particles will attain rela-
tivistic energies close to the pulsar magnetic poles and
radiate y-ray photons. This, together with the super-
strong magnetic field present around these objects (Be-
skin et al., 1993), is believed to produce a pair plasma
(Tsai and Erber, 1975). Thus nonlinear QED effects are
already known to be an important ingredient for pulsar
physics. Since the pair plasma gives rise to radio-wave
emissions, and because of the large energy scales in-
volved, pulsar atmospheres are likely to host other QED
effects as well, such as vacuum nonlinearities in the form
of photon-photon scattering.

As presented by Stenflo er al. (2005), for circularly
polarized electromagnetic waves propagating in a cold
multicomponent plasma rather than in vacuum, the
wave operator on the left-hand sides of Egs. (9) and (10)
is replaced by

2 2
- w +2ij/)/j

1 & o’
2 J 2
Dﬂgﬁ—v +;2E—> (;2 +k, (123)

where the sum is over particle species j, and we have
assumed that the EM fields vary as exp(ikz—iwt), the
relativistic factor of each particle species is y=(1
+quES/ m]zczwz)l/z, where E, denotes the absolute value
of the electric-field amplitude (Stenflo, 1976; Stenflo and
Tsintsadze, 1979). Due to the symmetry of circularly po-
larized EM waves, most plasma nonlinearities cancel,
and the above substitution holds for arbitrary wave am-
plitudes. Here ij:(nojqf/eomj)m is the plasma fre-
quency of particle species j and ng; denotes the particle
density in the laboratory frame.

Next, we investigate the regime w?<k?c?. From Fara-
day’s law and the above inequality we note that the
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dominating QED contribution to Eq. (10) comes from
the term proportional to B>B. Combining Egs. (10) and
(12), noting that B>=B3=k>E}/ w* is constant for circu-
larly polarized EM waves, and using o’ <k’c?, ie., M
~4xec*B’B and [M| > w|P|/k, we obtain from Eq. (10)
the nonlinear dispersion relation

, 2a (&)2 kic*

=— . (124)
457 Ecrit Z a)lzjj/’yj + k2C2
j

@

This low-frequency mode makes the particle motion ul-
trarelativistic even for rather modest wave amplitudes.
For electrons and positrons in ultrarelativistic motion
(y;>1) with equal densities n, and elementary charge
+e, we thus wuse the approximation ijf,j/y/-
~2enycw! €Ey=2w,(w/ 0,) Ei/ Eq [see Egs. (1) and (4)],
where w,=(e’ny/eym,)""?. The dispersion relation (124)
then reduces to

3_i(&)(ﬂ)3 ket
© 7457\ w0, )\ Eay) @ + (Ey/ Eqi)(kcw2ww,)kc’
(125)

We note that the ratio o,/w, is much larger than unity
for virtually all plasmas, i.e., for electron densities up to
~10* m=3. In some applications, such as in pulsar astro-
physics, it is convenient to reexpress the dispersion rela-
tion in terms of the relativistic gamma factor using
Ey/ Eg i~ (w/w,)y. Thus we obtain

4 1/2 16 2 |12
x:m(—“) [1+ 1+—“<5’2) y} (126)

457 W,

from Eq. (125) for the wavelength N=27/k.

c. Magnetized plasmas

Following Marklund, Shukla, Stenflo, et al. (2005) [see
also Marklund et al. (2004a)], for a circularly polarized
wave Eg=Eq(X+iy)exp(ikz—iot) propagating along a
constant magnetic field By= Bz, the electromagnetic in-
variants satisfy

d 2 k*c? 212 red
FogF“==2E)\1-—5 | +2c¢°B; and F. 7 =0.
w

(127)

Thus Eq. (43) can be written as

a 2 kQCz 2np2 a -
A" = —degi| Eo| 1= | = Bj | D A"~ g

(128)

in the Lorentz gauge, and [0=4,¢". For circularly polar-
ized electromagnetic waves propagating in a magnetized
cold multicomponent plasma, the four-current can be
“absorbed” in the wave operator on the left-hand side
by the replacement (as in the previous section) [
——D(w,k), where D is the plasma dispersion function,
given by [see, e.g., Stenflo (1976); Stenflo and Tsintsadze
(1979)]
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2
W,
D(w,k) =k*? — *+ >, —

j @YE O

(129)

Here the sum is over the plasma particle species j, w,
=q;Bo/m; and ij:(nojq]z/eomj)”z is the gyrofrequency
and plasma frequency, respectively, and y;=(1+ ;)" is

the gamma factor of species j, with v; satisfying

i (eE0>2 "
vi=|— .
/ cm;) [o(l + v]z)”2 + wcj]z

Here n; denotes particle density in the laboratory frame
and m; particle rest mass.
The dispersion relation, obtained from Eq. (128),

reads
_ 4_a(w2_k2cz){<ﬁ>2w2——2<262 B (c_BO>2]
457 Ecrit & Ecrit

(131)

(130)

We note that as the plasma density goes to zero, the
effect due to photon-photon scattering, as given by the
right-hand side of Eq. (131), vanishes since then w’
—k?c*=0.

Next, we focus on low-frequency (w<<kc) mode
propagation in an ultrarelativistic electron-positron
plasma (y,>1), where two species have the same num-
ber density ng. Then, Eq. (131) gives

% 457 |\ E ¢ »? E »?

2
o, E ;i
: p CT1l

. 132
oo, E (132)

For background magnetic-field strengths B, in the
pulsar range ~10°-~10" T, ¢B,<E_;, and we therefore
drop the term proportional to B[Z) in Eq. (132). Next,
using the normalized quantities Q=ww,/ wlz,, K

=(4a/45m) kew /0, and E=(4al45m)Ey/Eyy, the
dispersion relation (132) reads

N o3
VP =FK7 —. (133)
EK?
The dispersion relation (133) describes three different
modes, two with + polarization and one with — polariza-
tion. We note that for K <1, the dispersion relation (133)
agrees with that of Stenflo and Tsintsadze (1979),
whereas in the opposite limit K>1, the QED term in
Eq. (133) dominates. For the given density, the latter
regime applies, except for extremely long wavelengths
(>108 m), and thus we note that QED effects are highly
relevant for the propagation of these modes in the pul-
sar environment. For small K there is only one mode,
but two new modes appear for K=2.6. Thus for large K,
applicable in the pulsar environment, there are three
low-frequency modes (w<<kc) that depend on nonlinear
QED effects for their existence.
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The effects of the quantum vacuum on electromag-
netic wave dispersion also allows for nonlinear effects,
such as wave steepening, shock front formation, and
soliton propagation (Marklund, Tskhakaya, and Shukla,
2005).

d. Magnetohydrodynamic plasmas

When analyzing low-frequency magnetized plasma
phenomena, magnetohydrodynamics (MHD) gives an
accurate and computationally economical description.
Specifically, a simple plasma model is obtained if the
characteristic MHD time scale is much longer than both
the plasma oscillation and plasma particle collision time
scales, and the characteristic MHD length scale is much
longer than the plasma Debye length and gyroradius.
These assumptions make it possible to describe a two-
component plasma in terms of a one-fluid description.
The one-fluid description means a tremendous computa-
tional simplification, especially for complicated geom-
etries. Moreover, if the mean fluid velocity, the mean
particle velocity, and the Alfvén speed are much smaller
than the speed of light in vacuum, the description be-
comes nonrelativistic and simplifies further.

Heyl and Hernquist (1999) considered the propaga-
tion of MHD modes, including the effects of photon-
photon scattering and an axion field. Following Thomp-
son and Blaes (1998), Heyl and Hernquist start with the
Lagrangian [see Eq. (13)]

L=Lopp+ 360G = Lo+ L.+ 206G, (134)

where the field invariant G is defined by Eq. (7) and 6 is
the axion field, that acts as a Lagrange multiplier for the
MHD condition G=0. The modified Maxwell’s equations
can be derived from Eq. (134). They become [cf. Eq.
(15)]

aL - L
aapﬂb=_4<ﬂ) F“bﬁc(2a600+ 8¢ ;)
IF 9G

L
+ 4beac< C) ] .
a

Given a background magnetic field, these equations al-
low for both fast and Alfvén modes. The fast modes will
suffer the same type of shock-wave formation as pre-
sented by Heyl and Hernquist (1997b), in the absence of
the MHD effects. A single Alfvén mode will not experi-
ence the effects of photon-photon scattering due to the
absence of self-interactions. This is not true for the case
of counterpropagating Alfvén modes for which photon-
photon scattering introduces higher-order corrections to
their propagation.

(135)

IV. APPLICATIONS
A. Measuring photon-photon scattering

Classically, electromagnetic waves only interact indi-
rectly, via scattering, by passing through a suitable me-
dium such as a nonlinear optical fiber (Hasegawa, 1975;



626 Mattias Marklund and Padma K. Shukla: Nonlinear collective effects in photon-photon. . .

(b)

FIG. 26. Feynman box diagrams for (a) Delbriick scattering
and (b) photon splitting, respectively. Here each cross denotes
external field legs, e.g., an atomic Coulomb field or a strong
background magnetic field.

Kivshar and Agrawal, 2003). To some extent, this is still
true in QED. One may view the quantum vacuum as a
medium through which photons scatter off virtual
charged particles, predominantly electron-positron
pairs, producing nonlinear effects similar to the ones
found in nonlinear optics. However, since nonlinear ef-
fects enter the effective Lagrangian through Lorentz in-
variants, a plane wave will not self-interact, and more
sophisticated techniques are needed in order to excite
the nonlinear quantum vacuum. In this section, such
means will be reviewed with the aim of establishing
methods for direct detection of low-energy elastic real
photon-photon scattering.

The concept of elastic photon-photon scattering is
theoretically well established. Furthermore, the scatter-
ing of virtual photons is routinely observed in particle
accelerator environments, and is thus well confirmed in
experiments. Moreover, inelastic photon-photon scatter-
ing is also experimentally well confirmed, but this is not
the case for elastic photon-photon scattering [although
experiments have been made where it in principle would
have been possible to make modification such that a di-
rect measurement of elastic photon-photon scattering
could have been made (Bamber et al., 1999)]. Thus as a
fundamental test of QED and its predictions about the
properties of the quantum vacuum, an experiment on
the latter type of scattering may be considered an impor-
tant issue.

Closely related to photon-photon scattering is Del-
briick scattering (Delbriick, 1933) and photon splitting
(Adler et al., 1970; Adler, 1971; Chistyakov et al., 1998);
see Fig. 26 (cf. Fig. 4 for a comparison with photon-
photon scattering). Delbriick scattering is the elastic
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FIG. 27. Feynman diagram for the pair-creation process.

scattering of photons in a Coloumb field, e.g., an atomic
nucleus, mediated by virtual electron-positron pairs,
while photon splitting is the down-conversion of a pho-
ton into two photons of lower frequency through an ex-
ternal field, e.g., a strong magnetic field. These processes
contain external fields mediating the interaction be-
tween photons, making the cross section larger than for
pure photon-photon scattering. In fact, using high-Z
atomic targets, Delbriick scattering for high-energy pho-
tons has been detected (Jarlskog et al., 1973), and pho-
ton splitting, although not detected in a laboratory envi-
ronment, is assumed to be a prominent component of
many astrophysical environments, such as magnetars
and soft y-ray repeaters (Adler and Shubert, 1996; Bar-
ing and Harding, 1997, 2001; Harding et al., 1997). In
fact, the splitting of photons in the atomic Coulomb field
has been reported by Akhmadaliev et al. (2002), where
good agreement with the calculated exact Coulomb field
cross section was obtained.

The effects of photon scattering also manifest them-
self in the anomalous magnetic moments of the electron
and muon (Calmet et al., 1977; Bailey et al., 1979; Ber-
estetskii et al., 1982; Rodionov, 2004). Even so, the de-
tection of direct light-by-light scattering of real photons
remains elusive, even though considerable efforts have
been made in this area. The possibility to detect low-
energy photon-photon scattering would open up for new
tests of QED, since fermion loop diagrams could give
gauge-invariant tests of the fermion propagator, as well
as discerning between QED and other theories predict-
ing or postulating photon properties. Thus photon-
photon scattering can both produce interesting effects,
as described, as well as produce important tests for fun-
damental physical theories.

1. Pair production in external fields

The case of inelastic photon-photon scattering de-
serves some attention in this context. Here the aim is, to
some extent, antimatter production on a large scale (see
Fig. 27). There are a number of ways, both experimen-
tally confirmed as well as schemes suggested on numeri-
cal or theoretical grounds, to produce and store (Oshima
et al., 2004) positronium and antimatter, e.g., laser gen-
erated relativistic superthermal electrons interacting
with high-Z materials (Liang ef al., 1998), the trident
process in conjunction with ultraintense short laser
pulses in plasmas (Berezhiani et al., 1992), pair produc-
tion by circularly polarized waves in plasmas (Bulanov,
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2004), laser thin foil interactions (Shen and Meyer-ter-
Vehn, 2001b; Shen and Yu, 2002), using Bose-Einstein
condensation traps (Surko et al., 1989; Greaves et al.,
1994) [see Surko and Greaves (2004) for an overview]
and using fullerenes (Oohara and Hatakeyama, 2003).
The formation of antiplasmas and long lifetime trapping
of antimatter is currently studied, and could shed light
on the fundamental laws of nature, e.g., giving new CPT
and Lorentz invariance tests (Bluhm et al., 1999; Bluhm,
2004), or producing an annihilation laser (Mills, 2002).
Since electron-positron pairs also constitute a unique
type of plasma, prominent in, e.g., the pulsar magneto-
sphere, the formation of large collections of pairs in the
laboratory will further enable the study of astrophysical
conditions (Greaves and Surko, 1997), which we so far
have only been able to observe over astronomical dis-
tances, and without control over the physical parameter
range. Antimatter production in most laboratory appli-
cations rely on the plasma being cold. However, as laser
powers approach the Schwinger critical regime, we will
see an increased interest in using these for producing
high-temperature pair plasmas as well, and for exciting
the quantum vacuum.

After the laser was introduced, it was realized that
future laser systems could be tools for fundamental
physics research, and the pair creation process was re-
considered by Reiss (1962), Nikishov and Ritus (1964a,
1964b, 1965, 1967), and Narozhny et al. (1965). Thus the
mechanism behind the production of electron-positron
pairs from electromagnetic fields and photons is well
known, and was first directly observed by Burke et al.
(1997) at the SLAC facility. Since this observation,
schemes making use of the next generation laser systems
have therefore been the focus of research efforts using
immense laser intensities for producing, not necessarily
cold, pair plasmas in the laboratory. Indeed, as reported
by Gahn et al. (2000), femtosecond tabletop lasers can
indirectly create positrons due to electron acceleration
in plasma channels.

Since the pair production from the nonlinear quantum
vacuum formally depends crucially on the invariant
|[E[>~c?|BJ? being positive (Schwinger, 1951), schemes
with strong electric fields have been also attracted inter-
est (Sauter, 1931; Schwinger, 1951; Brezin and Itzykson,
1970; Narozhny and Nikishov, 1970; Popov, 1971, 1972,
1973, 1974; Popov and Marinov, 1973; Mostepanenko
and Frolov, 1974; Marinov and Popov, 1977; Casher et
al., 1979; Grib et al., 1988; Kluger et al., 1991; Ringwald,
2001a) (by the same argument, strong static magnetic
fields do not excite the quantum vacuum, unless per-
turbed). The pair-production rate per unit volume at the
one-loop level is given by (Schwinger, 1951)

4 2%
E 1 E.;
Le (—| | ) > = exp(—m-r Cm)

w =
(2776)3 Eit n=1 |E|

(136)

for a uniform electric field E. Here the sum is over real
poles in the imaginary part of the integral (13). Thus the
pair-creation rate is vanishingly small in most circum-
stances. The electron-nucleus electric field (although not
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uniform) requires a nucleus charge of the order ! for
vacuum breakdown, and such nuclei are unlikely to exist
in any other state than a transient one (Reinhardt and
Greiner, 1977; Greiner et al., 1985; Milonni, 1994). How-
ever, the situation may be different for laser fields,
where ultrashort high intensity fields are available.
Brezin and Itzykson (1970) derived the pair-creation rate
for varying fields and generalized the pair-creation rate
(136). In the low-frequency limit (i.e., < w,, where o, is
the Compton frequency), their expression coincides with
Eq. (136), taking into account only the first term in the
sum. Thus Eq. (136) can be used, with good accuracy, to
predict the pair-production efficiency of different pro-
cesses, even if the fields are alternating.

In above cases, derivations of the pair-creation rate
rely on the assumption of an electric field dominating
over the magnetic field. In plasmas, the phase velocity v
can exceed the velocity of light. This was used by Bul-
anov (2004) to analyze pair production in the field of a
circularly polarized electromagnetic wave in an under-
dense plasma. Since for a circularly polarized wave
c|B|=(kc/w)|E|=(c/v)|E|, we see that |E|*-c?|B|>>0.
Thus the condition for pair creation according to
Schwinger (1951) is satisfied, and positrons are therefore
predicted to be produced in a laser-plasma environment.
Moreover, Avetisyan et al. (1991) solved the Dirac equa-
tion perturbatively to find the production of electron-
positron pairs by inelastic multiphoton scattering in a
plasma. They found the probability distribution for
transverse electromagnetic perturbations in the plasma,
and used this (Avetissian et al., 2002) to investigate pair
production due to nonlinear photon-photon scattering
from oppositely directed laser beams. Analytical results
for the number of particles created on short interaction
time scales were found. Fried et al. (2001) investigated
the possibility for pair production via crossing laser
beams, and concluded that laser intensities have to reach
10? W/m? before this could be used as a means for
electron-positron generation.

Pair production may possibly also be achieved without
the intervention of a plasma or other dispersive media.
According to Narozhny et al. (2004a, 2004b), focused
and/or counterpropagating laser pulses can interact via
the nonlinear quantum vacuum as to produce real
electron-positron pairs. The prediction of Narozhny et
al. (2004b) is that pair creation for colliding pulses is
expected for intensities of the order 10?® W/cm?, which
is two orders of magnitude lower than for single pulse
generation. Moreover, Narozhny et al. (2004a) claim that
the effect of pair creation puts an upper theoretical limit
on laser focusing, since the electromagnetic energy will
be dissipated into fermionic degrees of freedom for high
intensities.

As intense fields create electron-positron pairs, the
particle density increases. If intense photon beams can
be sustained for long enough times, this will create a pair
plasma. In this case, plasma effects on the electromag-
netic field need to be taken into account. The backreac-
tion of pair creation on the electromagnetic field was
considered by Kluger ef al. (1991) in 1+1 dimensions.
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Starting from a semiclassical approximation, a kinetic
model taking pair production into account using an
emissive term in the electron equation of motion was
presented. From a numerical analysis of the governing
equations it was found that high enough field intensities
will induce plasma oscillations. Due to the realization
that the right conditions for pair creation by lasers could
soon be at our disposal, the problem of backreaction
and the dynamics of the interaction of the electron-
positron plasma on photons has produced an increasing
number of publications over the years. Prozorkevich et
al. (2000), Alkhofer et al. (2001), and Roberts et al.
(2002) have similarly developed self-consistent schemes
where a collisionless plasma is coupled to the time-
dependent electric field, via Maxwell’s equations and the
pair-creation source term. In their application to the
x-ray free-electron laser, they arrived at plasma behavior
reminiscent of a modulational instability, and suggested
necessary and sufficient conditions to generate a pair
plasma using the x-ray free-electron laser. Collisions in
plasmas created due to intense electromagnetic fields
may also be taken into account using a quantum kinetic
description with a pair-creation source term (Bloch et al.,
1999, 2000).

A somewhat different scheme using intense lasers was
suggested by Liang et al. (1998). Letting two intense la-
ser pulses impinge on the surface of a thin foil made of a
suitable material, e.g., gold, plasma formation takes
place. The jitter energy for a large fraction [~50%
(Wilks et al., 1992)] of produced plasma electrons is sug-
gested to exceed the pair-creation threshold 2m,c?. Thus
in this scheme pair creation is a result of the thermal
plasma, instead of direct laser interaction with the quan-
tum vacuum. Similarly, Helander and Ward (2003) sug-
gested that runaway electrons in tokamak plasmas could
have the same effect. Since electrons with sufficient en-
ergy experience a decreasing plasma friction force as the
energy increases, such particles will in effect be acceler-
ated to very high energies until direct collisions with
plasma particles occur. The typical runaway electron en-
ergy is =3m,c?, and these collisions could therefore trig-
ger positron production, as electrons lose their energy
via brehmsstrahlung in the Coulomb field, the so-called
Bethe-Heitler process. The number of positrons in a fa-
cility such as JET was estimated to ~10*-~10', a very
large number compared to other laboratory positron
production methods.

The predicted pair-production rates normally assume
spatially uniform electromagnetic fields, which is often
in good agreement with experimental parameters. Re-
cently, however, oriented crystals have become an im-
portant tool in studying effects of quantum electrody-
namics in strong fields, such as spin effects in electron
energy loss and crystal assisted pair production [see
Kirsebom et al. (2001), and references therein]. In these
experiments, the fields may not be considered uniform,
and the models described above can therefore only par-
tially account for observed effects. Nitta et al. (2004)
remedied this shortcoming by using the trial trajectory
method (Khokonov and Nitta, 2002), based on the
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FIG. 28. Nonlinear Compton scattering, as given in Eq. (137).
Reprinted with permission from Bamber et al., 1999.

method developed by Baier and Katkov (1968). Previous
attempts to analyze experimental results were based on
numerical schemes, but Nitta et al. (2004) found an ana-
lytical expression for the pair-creation rate in an inho-
mogeneous field, in good agreement with the observed
pair-creation rate. Furthermore, the inhomogeneous
case also displayed pair creation for low-amplitude
fields, where the uniform field treatment effectively
gives a zero pair-creation rate. This result could be of
interest in the case of strongly magnetized stars, which
have a characteristic dipole behavior.

Since waves in vacuum are described in terms of their
behavior along the null coordinates u=z—ct and v=z
+ct, it is of interest to generalize the Schwinger results
of pair creation to the case of fields depending on u
and/or v. This was done by Tomaras et al. (2000), and
later generalized by Avan et al. (2003) to a more compli-
cated coordinate dependence. Furthermore, the momen-
tum spectrum of produced pairs was derived for arbi-
trary time-dependent gauge fields by Dietrich (2003), via
the exact solution of the equation of motion for the
Dirac Green’s function.

2. Laser-induced pair creation

The production of antimatter is of great importance
for a variety of experimental tests of fundamental issues
in physics, e.g., Lorentz invariance tests, as well as being
of interest in its own right. Moreover, there can also be a
test of the nonlinear properties of QED, since high-
energy photons may create matter and antimatter out of
the quantum vacuum. This process is well established as
a model for pair production in the vicinity of neutron
stars, and corresponds to the imaginary part of the full
Heisenberg-Euler Lagrangian, and can thus be inter-
preted as energy being dissipated from bosonic to fermi-
onic degrees of freedom.

The implications of pair creation was understood very
early on in the history of QED, but the direct creation of
electron-positron plasmas from photons has long es-
caped experimental efforts. Thus an important piece in
our view of the quantum vacuum had long eluded the
attempts of detection. However, with rapid advances in
laser intensity, the prospects for performing a successful
experiment in pair creation using laser sources took a
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turn for the better. As described below, inelastic photon-
photon scattering, where two real photons gives rise to a
real electron-positron pair, has now been experimentally
confirmed (Burke et al., 1997, Bamber et al., 1999), and
holds the promise of further elucidating our picture of
the nonlinear quantum vacuum [see also Meyerhofer
(1997)].

In nonlinear Compton scattering, multiphoton ab-
sorption by an electron results in the emission of a single
high-energy photon according to (see Fig. 28)

(137)

The effect (137) was first measured by Bula et al. (1996)
using a GeV electron beam and a terawatt laser source,
obtained by chirped-pulse amplification. In the experi-
ment up to four laser photons interacted with a single
electron. High-energy photons produced by nonlinear
Compton scattering can be used in the laser-assisted
production of a pair plasma. The usage of laser-
produced photons for the electron-positron pair produc-
tion was suggested long before lasers reached the neces-
sary intensities (Reiss, 1962; Nikishov and Ritus, 1964a,
1964b, 1965, 1967; Narozhny et al., 1965) (the direct pro-
duction of pairs by photons requires Aw=2m,c? in the
center-of-mass system). By recolliding high-frequency
photons with original laser photons, according to the
Breit-Wheeler’ process (Bethe and Heitler, 1934; Breit
and Wheeler, 1934)

e+nw—e' +7.

(138)

the production of electron-positron pairs can be
achieved in a laboratory environment. This can be com-
pared to the trident process

v+nw—ete,

e +nw—e'ee.

(139)

While the multiphoton process (138) requires n=4 with
experimental values used by Burke et al. (1997), the tri-
dent process requires n=5 with the same experimental
data. The two-step process (137) and (138) was first used
by Burke et al. (1997) in the laser production of electron-
positron pairs.

Bula et al. (1996) reported on the observation of non-
linear Compton scattering (137), where scattered elec-
trons were detected using a 46.6-GeV electron beam in
conjunction with a 1054- and 527-nm laser with focal
intensity ~10'® W/cm?. This process can also be under-
stood in terms of a plane-wave interaction with an elec-
tron. For a weak electromagnetic field with amplitude E,
the maximum speed attained by an electron (initially at
rest) due to the passing of a plane wave is

eE

—_—, (140)
m,w

Vmax =
where m, is the rest mass of the electron and w is the

frequency of the plane wave. As the field strength in-

"Breit and Wheeler (1934) considered single-photon scatter-
ing w;+w,—e*e” thus somewhat different from the multipho-
ton process discussed here.
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creases, higher-order radiation effects becomes impor-
tant as v,,—c¢, which in terms of light quanta can be
interpreted as multiphoton absorption by the electron,
with the release of a single distinguishable light quanta
as a result, i.e., the process (137). In this sense, nonlinear
Compton scattering becomes important as the param-
eter

E elA Ab 1/2
B _eldy 2' (141)

_ Vmax _

c m,cw m,c

approaches unity. Here the four-vector potential A® sat-
isfies the Lorentz gauge.

For an electron with initial energy &, the absorption
of n photons of the frequency w at an angle 6 between
the electron and laser beam, results in the minimum
electron energy

&y
4

—— 142
1+ ns/m2ye (142)

gmin =

where s=2&,w(1+cos 0) is the scattering parameter and
meg=m(1+ 772 is the effective mass. With the experi-
mental parameters used by Bula et al. (1996), the inten-
sity parameter becomes 7=0.6. Linear Compton scat-
tering (<1, n=1) would then result in &y,
~25.6 GeV at 6=17°. Since the spectrum of multipho-
ton Compton scattered electrons extends below
25.6 GeV, it was possible to identify nonlinear effects
(Bula et al., 1996).

In the same way, as the intensity parameter 7 ap-
proaching unity signifies the onset of the nonlinear
Compton effect, the parameter (Burke et al., 1997, Bam-
ber et al., 1999)

|Fabpb|

Y="7—
m,c Ecrit

(143)

characterizes the strength of the vacuum polarization, as
it contains information on the photon frequency as well
as the background field strength, the two important pa-
rameters for vacuum breakdown. Here F,, is the Max-
well tensor of the background electromagnetic field and
p. is the four-momentum of the probe photon. As Y
approaches unity, the pair-production rate according to
the process (138) becomes significant (Nikishov and Ri-
tus, 1964a, 1964b, 1965, 1967; Narozhny et al., 1965;
Burke et al, 1997). For the case of single-particle (n
=1) Breit-Wheeler scattering, laser wavelengths of
527 nm would require single-photon energies of
111 GeV in order for significant pair production to oc-
cur, while for the multiphoton Breit-Wheeler process
photons of the same wavelength colliding with backscat-
tered photons with energies 29 GeV give Y=0.59
(Burke et al., 1997). Thus for large enough 7, the pair-
production rate would yield a well-defined energy spec-
trum (Fig. 29) with a detectable level of electrons and
positrons (see Figs. 30 and 31).

Burke et al. (1997) presented the first results of a suc-
cessful measurement along the lines presented above.
The signal consisted of ~100 positrons above the back-
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FIG. 29. Calculated positron energy spectra for a 30-GeV pho-
ton interacting with a 527-nm laser beam. (a) The polarization
is parallel while in (b) the polarization is perpendicular. n gives
the number of photons involved in the interaction. Reprinted
with permission from Bamber et al., 1999.

ground value using a 46.6-GeV electron beam and a
527-nm Nd:glass laser with focal intensity ~10'® W/cm?
(Meyerhofer, 1997).

3. Other mechanisms for pair production

Narozhny et al. (2004a) considered pair production in
an electromagnetic field created by two counterpropa-
gating laser pulses, and showed that pair production can
be experimentally observed when the intensity of each
beam is similar to 10 W/cm?, three orders of magni-
tude lower than that of a single pulse. However, the
cross section for the Schwinger process at optical fre-
quencies (or below) is so small at any laser intensity that
this effect is insignificant (Mittleman, 1987).

Production of pairs is also possible in the Coulomb
field of a nucleus via virtual photons (“tridents”), which
is a dominant energy-loss mechanism at high energies.
In a trident Bahba process high-energy electrons, with
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FIG. 30. Positron production rate per Compton scatterer as a
function of the intensity parameter 7, as given by Eq. (141).
The solid line is the numerical estimate from the two-step pro-
cess (137) and (138), while the dashed line represents the tri-
dent process (139). The measurements performed by Burke et
al., 1997 are given by the dots in the plot. Reprinted with per-
mission from Burke, 1997.

kinetic energies exceeding the pair-production threshold
2m,c?, can produce electron-positron pairs by scattering
in the Coulomb potential of the nucleus. In the past,
some authors (Bunkin and Kasakov, 1970; Scharer et al.,
1973) had presented a preliminary discussion about pair
production by relativistic electrons accelerated by in-
tense laser, while others (Berezhiani et al., 1992) pre-
sented a detailed investigation of pair production due to
scattering of high-energy electrons produced in strong
wakefields driven by intense short laser pulses. This was
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FIG. 31. Pair-production rate, as compared with the multipho-
ton Breit-Wheeler process (138) and trident process (139), as a
function of Y given by Eq. (143). Reprinted with permission
from Bamber et al., 1999.
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found to be an efficient mechanism for a “pair factory.”
Recently, Berezhiani et al. (2005) carried out computer
simulations of laser plasma dynamics in overdense plas-
mas and showed that an intensive production of pairs by
the drive motion of plasma electron takes place due to
the trident process. Furthermore, Bulanov et al. (2005)
have shown that electromagnetic waves could be
damped due to electron-positron pair production [see
also Mikheev and Chistyakov (2001), for a discussion on
the process in a strong magnetic field].

4. Laser experiments on photon-photon scattering

The evolution of laser intensity is truly astounding
(Perry and Mourou, 1994; Mourou et al., 1998, 2006;
Tajima and Mourou, 2002) (see Fig. 1), and with the
event of the x-ray free-electron laser a new domain in
experimental physics will open up. There have been an
interesting set of both suggested and performed experi-
ments using lasers of previous and current intensities.
Note that one of the major obstacles in these investiga-
tions has been residual gas components in the vacuum
environment. However, depending on the problem of
study, the means for inhibiting the residual gas to have a
detrimental effect on the measurement varies. In high-
intensity laser experiments on elastic photon-photon
scattering, the electron expulsion at the leading edge of
the laser pulses will in fact make the generation of back-
ground radiation weaker (at a vacuum of 10~ torr), and
particle effects would therefore have a negligible effect
in these experiments (Lundstrom et al, 2006). This is
contrast to a weak-field experiment, such as cavity envi-
ronments, where the effects due to a residual gas may be
significant. However, it is possible to design the mode
interaction such as to produce a unique signature of
photon-photon interaction, thus making it possible, in
principle, to detect scattering by the proper filtering
techniques (Eriksson et al., 2004).

a. Vacuum birefringence

The concept of vacuum birefringence is well known
and has been theoretically explored in many publica-
tions (Klein and Nigam, 1964a, 1964b; Erber, 1966;
Adler, 1971; Adler and Shubert, 1996; Heyl and Hern-
quist, 1997a). The birefringence of the vacuum manifests
itself as the difference in the refractive index between
the propagating ordinary and extraordinary modes
(Rikken and Rizzo, 2000). Thus although a very difficult
high precision experiment, this difference may in prin-
ciple become measurable in strong enough background
magnetic (or electric) fields. This idea has been exploited
in the Polarizzazione del Vuoto con LASer (PVLAS)
Collaboration setup (Bakalov et al, 1994; Melissinos,
2002), for which the difference (Bakalov et al., 1998)

An=n—n, =3kec?By|> = 4 X 10724B,|? (144)

is to be measured. Here |By| is given in T.
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FIG. 32. The interferometric setup for detection of vacuum
birefringence. The figure reference in the above setup is Fig. 1
in Luiten and Petersen, 2004b. Reprinted with permission from
Luiten and Petersen, 2004b.

A linearly polarized laser beam is sent through the
static field B,, with E-B=|E||B]|cos 6. Due to the bire-
fringence of the magnetized vacuum, as given by An, the
beam will attain an ellipticity

I
V= ”TAn sin(26) (145)

over a propagation distance L, where \ is the wave-
length of radiation. The change in ellipticity is proposed
as a measurement of the birefringence of vacuum.
Bakalov et al. (1998) also presented a detailed discussion
of noise sources as well as a rather detailed description
of the actual experimental setup. Current superconduct-
ing magnets can reach field strengths up to 5-25 T, and
could in principle yield detectable changes in the polar-
ization state of a laser beam traversing it. Unfortunately,
strong magnetic fields generate forces within the detec-
tion equipment which may interfere with the ellipsomet-
ric measurement. Moreover, magnetic fields cannot be
shielded in any efficient way, and this is therefore a
problem that is likely to persist (Cameron et al., 1993).
Another approach towards measuring vacuum bire-
fringence is using laser interferometry. This technique
can reach astonishing accuracy and sensitivity, and is cur-
rently the most promising method of choice in gravita-
tional wave detection (Saulson, 1994). Using laser inter-
ferometry for detecting light-by-light scattering through
vacuum birefringence rests on the same principle as de-
scribed above, but replacing the strong magnetic field by
ultrashort laser pulses (Partovi, 1993; Boer and van Hol-
ten, 2002; Luiten and Petersen, 2004b). Since laser
beams, i.e., laser light with typical pulse length much
larger than its wavelength, has a very low-energy density
compared to the strongest laboratory magnetic fields,
one has instead to resort to ultrashort highly focused
laser pulses. Such configurations could indeed result in
magnetic-field components of the order 10° T, orders of
magnitude larger than quasistationary magnetic fields
produced by superconducting coils (Lee and Fairbanks,
2002). Due to the degree of pulse focusing, interaction of
the strong field with the detector can be almost elimi-
nated. On the other hand, the ultrashort time and length
scales require a very high resolution in the detection. An
experimental suggestion along these lines was put for-
ward by Luiten and Petersen (2004a, 2004b), using a
high precision birefringence measuring technique (Hall
et al., 2000). Luiten and Petersen (2004b) argue that this
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technique may be used to construct a tabletop detector
of vacuum polarization using current state-of-the-art op-
tical techniques. The setup consists of two concentric
resonant cavities with an interaction cross section. One
of the cavities acts as the vacuum polarizer, while the
other cavity supplies test photons for which the elliptic-
ity is to be detected (see Fig. 32). Depending on the
Fabry-Perot resonator reflectivity, the integration time
was estimated. With a reflectivity R=99.97% the neces-
sary operation time of the device would be 2.6 years,
R=99.994% vyields 1.7 days, and R=99.997% gives 2.5 h,
using a 20-W, 200-fs laser and a resonator of length 3 m.

Jeah-Sheng et al. (2004) have built and tested a 3.5-m
Fabry-Perot inteferometer with a precision ellipsometer
for QED tests and axion search, along the lines of the
vacuum birefringence test presented above. Note that
the results presented by Jeah-Sheng et al. (2004) are for
a prototype detector, and, although promising, a mea-
surement of the vacuum polarization has not been per-
formed [see also Sheng-Jui et al. (2003)]. Moreover, the
PVLAS Collaboration has recently claimed (Zavattini et
al., 2006) to have measured the dichroism of a magne-
tized vacuum, an effect possible due to interaction be-
tween light pseudoscalars and photons.

b. Harmonic generation

Ding and Kaplan (1989) suggested that the nonlinear
vacuum could be given measurable properties by the
possible harmonic generation of radiation in an external
field. The work attracted lots of attention, and some
questions as to whether the result was correct or not was
raised (Ding and Kaplan, 1990; Ford and Steel, 1990;
Raizen and Rosenstein, 1990). While some of the cri-
tiques were flawed, the main problem in the work of
Ding and Kaplan was the assumption of a constant back-
ground field (Ford and Steel, 1990). It is well known that
a homogeneous and time-independent background field
cannot transfer momentum to photons, and such a field
is therefore not capable of driving a frequency upshift as
suggested by Ding and Kaplan [see McKenna and Platz-
man (1963)]. However, Ding and Kaplan (1992) showed
that a spatially inhomogeneous background field could
indeed result in higher harmonics. This idea was further
developed by Kaplan and Ding (2000), where Maxwell’s
equations were analyzed with a weakly varying back-
ground magnetic field.

Using the slowly varying amplitude approximation
(Hasegawa, 1975), Kaplan and Ding (2000) showed that
the envelope of the electromagnetic field satisfies the
second harmonic generation equation

L da o .
41k5+via=—2szF, (146)
where
1{oD?
= —( +V X H<2>>exp(2ikz —iwt) (147)
K

is the second harmonic generation background source
term. Here D® and H® are derived from the
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Heisenberg-Euler Lagrangian (5) from nonlinear field
combinations giving rise to terms proportional to
exp(2iwt). Kaplan and Ding (2000) use Eq. (146) to study
the evolution of 2D Gaussian beams propagating in an
external nonconstant magnetic field, giving the esti-
mated output power. Moreover, a discussion of more
complicated background magnetic-field geometries, e.g.,
the magnetic quadrupole case, was given. Considering
wm lasers with focal intensities ~10?> W/cm? generating
a pulse propagating through the background magnetic
field strengths 10° T [which in the paper by Kaplan and
Ding (2000) is suggested to be produced by explosive
mechanisms], a rough estimate gives a production of 85
photons/day by second harmonic generation. However,
in this estimate temporal effects, which may be of impor-
tance in the next generation ultrashort intense lasers,
have been omitted, and could yield alterations in their
estimates.

c. Four-wave interactions

In the second harmonic generation presented above,
the interaction of photons is mediated by a background
magnetic field. However, crossing electromagnetic waves
would similarly interact and yield new modes of differ-
ent frequencies. One of the more prominent modes in
such a mechanism is given by the four-wave interaction
mediated mode satisfying the resonance condition be-
tween frequencies and wave vectors (i.e., photon energy
and momentum conservation) (Rozanov, 1993). It is
therefore not a surprise, given the evolution of laser
powers and frequencies, that the search for photon-
photon scattering using resonant four-wave interactions
has caught the attention of researchers in this area. This
approach has also come furthest in the experimental at-
tempts to detect elastic scattering among photons (Ber-
nard, 1998, 1999, 2000; Moulin and Bernard, 1999; Ber-
nard et al., 2000).

Moulin et al. (1996) presented experiments on light-
by-light scattering performed in the optical regime. With
this, they managed to put new experimental upper limits
on the photon-photon scattering cross section. Unfortu-
nately, no scattering was detected, but stimulated the
continued research along the lines of four-wave interac-
tions as an experimental tool for probing the quantum
vacuum. Using the resonance conditions” ws=w;+ w,
— w3 and k,=k; +k,—Kk3, one may, in general, derive a set
of wave interaction equations for slowly varying ampli-
tudes a;, i=1,...,4, of the form (Weiland and Wilhelms-
son, 1977)

da; "
7; = Cajazay ,
given any type of media through which the waves may
interact. Here the coupling constants C depend on the

(148)

%The interaction between modes of different frequencies
gives rise to several new modes, but resonance conditions and
time averaging, mimicking the act of detection over certain
time scales, yield the desired equations.
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interaction in question, as well as on the physical param-
eters of the system around which the waves are modu-
lated. In the case of a nonlinear quantum vacuum, the
coupling constant will depend on « of the Lagrangian
5).

The coupling constants may be interpreted in terms of
the nonlinear susceptibility of the vacuum. Moulin and
Bernard (1999) considered the interaction of three cross-
ing waves, characterized by their respective electric-field
vectors E;, producing a fourth wave E,. Starting from
Maxwell’s equations with the usual weak-field limit
Heisenberg-Euler third-order nonlinear corrections [see
the Lagrangian (5)], they derive

J J C2 Wy w
| —+c— |Es+ —V?>E,=— —OE E,E;, (149
l((% C&z) 4 2w, 1Ly 2X 1L ( )

for the driven wave amplitude E,, where the overall har-
monic time dependence exp(—iwf) has been factored
out. Here ¥ is the third-order nonlinear susceptibility
given by

K
(3) — o A 3% 1071 K m2/ V2
X 45 B2 e

(150)
where K is a dimensionless form factor of order unity.
The value of K depends on the polarization and propa-
gation directions of the pump modes, and reaches a
maximum of K=14 for degenerate four-wave mixing
(Moulin and Bernard, 1999). Moulin and Bernard (1999)
furthermore discuss the influence of a nonperfect
vacuum, where the susceptibility of the gas will intro-
duce a threshold, in terms of a critical gas pressure, for
the nonlinear QED effect to be detected. Bernard (2000)
and Bernard et al. (2000) recently presented experiments
on four-wave mixing in vacuum, improving previous at-
tempts by nine orders of magnitude, although no direct
detection of photon-photon scattering was achieved. Ex-
periments along the same lines as described for four-
wave mixing above can also be used for a large number
of other, non-QED, test, such as axion’ search (Bernard,
1999; Bradley et al., 2003; Dupays et al, 2005). Thus
progress of low-energy QED experiments could also
prove to be useful for, e.g., dark matter searches.

There are more recent proposals for detection of
photon-photon scattering using four-wave interactions.
Lundstrom et al. (2006) have done more detailed calcu-
lations concerning experimental constraints, in particu-
lar for the Astra Gemini laser (operational in 2007) at
the Rutherford Appleton Laboratory (CCLRC, 2005),
as well as nonperfect vacuum problems, etc., and con-
cluded that it will be feasible to detect elastic scattering
among photons if using a high-repetition-rate, high-
intensity laser system.

Axions are bosons which were introduced in order to ex-
plain the absence of CP symmetry breaking in QCD (Peccei
and Quinn, 1977; Weinberg, 1978; Wilczek, 1978), and the ax-
ion is still to be detected.
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5. Cavity experiments

As mentioned in Sec. III.A.4, the effects of photon-
photon scattering on cavity EM fields is to produce new
wave modes. The new modes excited in the cavity will
(approximately) satisfy the cavity dispersion relation.
Thus by varying the cavity cross section the pump modes
may be filtered out, leaving the new modes for detec-
tion. The treatment of cavity mode interaction in the
quantum vacuum was described by Brodin et al. (2001,
2002) and Eriksson et al. (2004).

If no damping or dissipation is present, Egs. (69) yield
a linear growth of the vector potential amplitude Az of
mode 3. In order to gain an understanding of the satu-
ration level, we make the following modification to Eq.
(69). Let d/dt—d/dt—(w3/27Q), where Q is the cavity
quality factor. A steady-state amplitude

_imQKy a wiA] A
T4 90w E%., 7

crit

As (151)
is thus obtained. Here ws is the frequency of the mode
generated by the third-order QED nonlinearities. The
number of excited photons in the cavity mode can be
described by N= (¢, [|E;|* d°r)/ hw;. Using the satura-
tion value (151) for the vector potential of mode 3, the
number of photons generated by the nonlinear interac-
tion of two cavity modes is given by

6’ VQ* R KZJ0(B5)| A4,
129 600 % E* ’

crit

Nqep = (152)
where the coupling constant K can be found in Eriks-
son et al. (2004), V=ma’z, a is the cylindrical cavity ra-
dius, z, is the cavity length, and B; is a zero for the
Bessel function J; corresponding the generated mode
satisfying the resonance condition (61). We note that the
number of generated photons depends on a large
number of parameters, and one thus needs to specify
the cavity geometry, etc., in order to obtain an estimate
of the magnitude of the effects. Eriksson et al
(2004)  choose  the  following wave  mode
numbers: (€1,€,,€3)=(3,15,21) (fulfilling €3=2¢;+¢,),
B>=B5=3.83, corresponding to the first zero of J;, and
B1=7.01 corresponding to the second zero. This gives
zo/a=9.53 through the frequency matching condition
(61) and determines the frequency relations to w3/ w,
=1.26 and w;/w;=1.12. Substituting these values gives
K=3.39 [see Eriksson et al. (2004)]. The remaining key
parameters are the quality factor and pump field
strength. Liepe (2000) has shown that it is possible to
reach intense cavity surface fields, of the order
|Ai|,]A5] ~0.01-0.03 Vs/m, with quality factors as
high as Q=4x10'" at temperatures of 1 K. Thus in this
case Eq. (152) gives

Nogp =~ 18. (153)

For a cavity wall temperature of 0.5 K, the number of
thermal photons is Niyerma=1/[exp(fhws/kgT)—1]=17,
which is thus lower than Ngp. In order to reach further
accuracy in the measurement, a cavity filtering system
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can be set up so that pump modes may be reduced or
eliminated. It can furthermore be shown that the nonlin-
earities of the cavity walls will not generate modes
swamping QED photons (Eriksson et al., 2004).

B. Laser-plasma systems and the x-ray free-electron laser

The x-ray free-electron laser (XFEL) promises new
and exciting applications for a coherent electromagnetic
source. Applications range from probing astrophysical
conditions in the laboratory to new possibilities to do
molecular biology. Could the XFEL also provide insight
into quantum electrodynamical nonlinearities, such as
photon-photon scattering? If affirmative, this would en-
hance our understanding of the quantum vacuum, as
well as providing new prospects of testing fundamental
properties of physical laws, such a Lorentz invariance
and symmetry breaking. Indeed, it has been stated that
the facilities at DESY and SLAC would be able to pro-
duce electron-positron pairs directly from the vacuum
(Ringwald, 2001a, 2001b, 2003), due to the estimated fo-
cal intensities at these sources. If this scenario is demon-
strated, it is likely that effects of elastic photon-photon
scattering would come into play at an even earlier stage.
Due to the possible effects of scattering amongst pho-
tons, such as photonic self-compression and collapse, it
is therefore of interest to include such effects into the
analytical and numerical models used in predicting the
behavior of these systems. Furthermore, the creation of
a pair plasma in the laboratory could be affected by new
low-frequency modes from nonlinear quantum vacuum
effects, thus altering the properties of energy transfer
within such plasmas, as well as providing indirect tests
for QED. XFEL also gives the opportunity to do labo-
ratory astrophysics in a new parameter regime, making
the quantum vacuum more accessible.

However, it is not necessary to enter the new regime
of XFEL in order to facilitate tests of QED and Lorentz
invariance, as well as doing laboratory astrophysics. Ef-
fects such as Unruh radiation (Unruh, 1976) and the re-
lated Hawking effect (Hawking, 1974) can hopefully be
investigated using the next generation laser-plasma sys-
tems (Bingham, 2003), such as the high-repetition-rate
Astra Gemini laser (to be operational in 2007) (CCLRC,
2005). In such regimes it will also be of interest to inves-
tigate QED effects, such as photon-photon scattering.
As seen in the previous sections, the introduction of
plasma dispersion allows for new electromagnetic wave
modes in both unmagnetized and magnetized plasmas
(Marklund et al., 2004a; Marklund, Shukla, Stenflo, et al.,
2005), when nonlinear quantum vacuum effects are in-
cluded. For example, at the laboratory level, current
high laser powers are able to accelerate particles to
highly relativistic speeds. Furthermore, pulse self-
compression in laser-plasma systems may play an impor-
tant role in attaining power levels well above current
laser limits [see, e.g., Bulanov et al. (2003); Shorokhov et
al. (2003)]. As intensities approach the Schwinger limit
in future laser-plasma setups, effects of pair-creation and
photon-photon scattering have to be taken into account
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(Bulanov et al., 2003; Bulanov, 2004). Laser-plasma sys-
tems can have electron densities of the order 10%° m=3,
and laser intensities can be close to 102-10% W/cm?
(Mourou et al., 1998; Bingham, 2003). Moreover, as
stated by Bulanov et al (2003), laser self-focusing in
plasmas could come close to E_;, from which pair cre-
ation is likely to follow. In fact, it has been estimated
that the National Ignition Facility would be able to pro-
duce pairs by direct irradiation of a deuterium pellet
(Lee et al., 1995). On the other hand, the creation of
laboratory electron-positron plasmas is already a fea-
sible task (Surko et al., 1989; Greaves et al., 1994), as is
the usage of these plasmas for making pair plasma ex-
periments (Greaves and Surko, 1995). Thus the possibil-
ity to study laser-plasma interactions in pair plasmas
could be a reality in the nearby future. Currently avail-
able positron densities in laboratories are well below
those of regular laser-plasma systems, but according to
Lee et al. (1995) there is a possibility of reaching densi-
ties of the order of 10>’ m~>. Using ny~10* m~ and a
field intensity 10'® V/m [due to laser self-compression
(Bulanov et al., 2003)] at the wavelength 0.3 107° m, we
find from Eq. (125) that w~7.8 X 10’ rad/s, i.e., the fre-
quency is in the low-frequency band, as an example of
QED effects in laboratory plasmas.

In combination with plasma particle expulsion due to
electromagnetic wave trapping, the possibility of cata-
strophic collapse due to photon-photon collisions arises
(Bulanov et al., 2003; Marklund, Eliasson, and Shula,
2004). This scenario it highly interesting, since it would
make three-dimensional ultraintense solitonic structures
possible in vacuum bounded by a plasma or wave-guide
structure a truly exciting prospect. This may even prove
a valuable tool for intense pulse storage, if a successful
cavity nonlinear QED experiment is performed.

C. Astrophysical importance

The implications of the QED vacuum are well known
within astrophysics, and the pair plasma in pulsar sur-
roundings is partly dependent on mechanisms which has
no classical counterpart (Asseo, 2003). Furthermore,
photon splitting (Adler er al., 1970; Bialynicka-Birula
and Bialynicki-Birula, 1970; Adler, 1971) supports the
notion that strongly magnetized objects, such as neutron
stars and magnetars, could be used as probes of nonlin-
ear QED effects.

However, most effects discussed within astrophysical
applications concerning QED deals with single-photon
effects, and thus do not take collective effects into ac-
count. It is well known from plasma physics that collec-
tive effects alter the charged particle behavior in non-
trivial and important ways. In fact, it would not be
possible to understand most plasma effects without re-
sorting to a collective description. The analogy between
the quantum and a plasma system has been stated be-
fore (Dittrich and Gies, 2000), and is both useful and
imaginative. Thus, in line with this, it is likely that col-
lective quantum vacuum effects could yield crucial infor-
mation about astrophysical systems, where extreme en-
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ergy levels are reached. Even kinetic effects, such as
Landau damping, could play a role in the dynamics of
photons in the vicinity of strongly magnetized objects.
This could prove a new realm of photon kinetics, and
applications to astrophysical sources, such as magnetar
quakes (Kondratyev, 2002), are of interest for future re-
search directions.

Especially strong magnetic field effects due to the
quantum vacuum is of great interest in astrophysical ap-
plications. Since Earth-based magnetic field strengths
are very limited, and are likely to remain so for the fore-
seeable future, magnetars and similar objects offers a
unique perspective on the quantum vacuum (Erber,
1966; Baring and Harding, 2001). Pulsar magnetospheres
exhibit extreme field strengths in a highly energetic pair
plasma. Ordinary neutron stars have surface magnetic
field strengths of the order of 10°~10° T, while magne-
tars can reach 10°-10'! T (Kouveliotou et al., 1998),
coming close to, or even surpassing, energy densities
€yE%,, corresponding to the Schwinger limit. Such strong
fields will make the vacuum fully nonlinear, due to the
excitation of virtual pairs. Photon splitting can therefore
play a significant role in these extreme systems (Hard-
ing, 1991; Baring and Harding, 2001).

The pair plasma creation in pulsar environments itself
rests on nonlinear QED vacuum effects. The emission of
short-wavelength photons due to the acceleration of
plasma particles close to the polar caps results in a pro-
duction of electrons and positrons as photons propagate
through the pulsar intense magnetic field (Beskin et al.,
1993). The precise density of the pair plasma created in
this fashion is difficult the estimate, and the answer is
model dependent. However, given the Goldreich-Julian
density ng;=7x10(0.1 s/P)(B/108 T) m~3, where P is
the pulsar period and B is the pulsar magnetic field, the
pair plasma density is expected to satisfy ng=Mngy, M
being the multiplicity (Beskin et al., 1993; Luo et al,
2002). The multiplicity is determined by the model
through which the pair plasma is assumed to be created,
but a moderate estimate is M =10 (Luo et al., 2002). Thus
with these prerequisites the density in a hot dense pair
plasma is of the order 10'"® m~3, and the pair plasma ex-
periences a relativistic factor ~10>°~10° (Asseo, 2003).
We may use these estimates to obtain estimates for par-
ticular QED processes in plasmas. For example, insert-
ing the above values in Eq. (126) we obtain A
~1072-10""! m. On the other hand, the primary beam
will have ny~ng; and y~10°-107 (Asseo, 2003), from
which Eq. (126) yields A ~ 10781077 m. Thus in this case
we obtain short-wavelength effects.

The field of laboratory astrophysics ties the experi-
mental domain of laser-plasma systems to areas of re-
search where we so far have been restricted to observa-
tions (HEDLA, 2005). Interesting studies, such as shock
front formation relevant to supernova explosions, could
in principle be achieved in facilities such as NIF. How-
ever, the scales of the astrophysical event and laboratory
setup differ by orders of magnitude. Thus it is reason-
able to ask if it is possible to apply laboratory findings to
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astrophysical events. Ryutov et al. (2000) consider the
prospects of investigating MHD phenomena of rel-
evance for supernova hydrodynamics. From self-
similarity in the governing system of equations and
boundary conditions, as well as from dimensionless vari-
ables (such as the magnetic Reynolds number Re,,) they
argued that laboratory results could be translated to as-
trophysical settings (however, Re,, in the laboratory can-
not reach the extreme values of supernova ejecta but
can reach values much larger than 1). Similarly, Budil ez
al. (2000) discussed the applicability of petawatt lasers to
radiative-hydrodynamics relevant to, e.g., supernova
remnant evolution. The testbed experimental results
presented by Budil ez al. (2000) indicated that the results
could be useful in calibrate models of radiation hydro-
dynamics in supernova remnants [see also Shigemori et
al. (2000)]. Thus the use of high-intensity lasers for prob-
ing astrophysical phenomena, in particular as tool for
testing and calibrating simulations of certain events, has
undergone rapid development over the last decade. For
testing QED effects within astrophysical systems the rel-
evant dimensionless parameters are the frequency com-
pared to the Compton frequency, the field strength over
the Schwinger critical field strength (1), as well as the
sign of the relativistic invariant ¢?B?>~E?. As can be seen
by the second of these requirements, laboratory experi-
ments of today will at most be weakly nonlinear,
whereas the effects in astrophysical systems, such as
magnetars, can be strongly nonlinear. However, the
combined effect of laser-plasma dynamics and vacuum
nonlinearities would yield unique signatures, and could
be probes of more exotic phenomena in astrophysical
plasmas. One such example in the testing of the Unruh
effect (Unruh, 1976; Chen and Tajima, 1999) as a means
of understanding the Hakwing effect (Hawking, 1974).

V. CONCLUSION AND OUTLOOK

The possibility of simulating astrophysical events in a
laboratory environment has, during the last decade, pro-
gressed (Chen, 2003; Remington, 2005). Apart from as-
trophysical tests, laser-plasma systems also provide an
opportunity to test certain aspects of fundamental phys-
ics, e.g., the properties of the quantum vacuum, via
strong fields. Strong (~10-100 MV/m) coherent elec-
tromagnetic fields can nowadays be produced in super-
conducting cavities (Graber, 1993), and fields within
plasmas can come close to the Schwinger limit (1).
Moreover, QED effects are part of many astrophysical
phenomena, such as pair cascading, and thus laboratory
astrophysics has a natural connection to investigations of
the quantum vacuum.

Here we have reviewed implications of QED correc-
tions to classical electrodynamics and the propagation of
electromagnetic waves and pulses. In particular, QED
corrections on photon-plasma interactions were de-
scribed. Modifications introduced by the nonlinear
quantum vacuum were considered for, e.g., coherent and
incoherent pulse propagation. Analytical, perturbative,
and numerical ways of analyzing the governing equa-
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tions were presented. Moreover, properties of nonlinear
collective effects were presented, such as three-
dimensional pulses collapse and the formation of light
bullets.

The application of the results can be seen both in an
astrophysical context as well as in a laboratory setting.
For example, in magnetar environments (Kouveliotou et
al., 1998) photon splitting (Adler, 1971) is important and
it is believed to give a plausible explanation for the radio
silence of magnetars (Harding, 1991). On the other
hand, collective effects, such as the ones presented here,
could give valuable insight of QED phenomena in astro-
physical environments. In the laboratory, the formation
of ultrahigh-intensity pulse trains, due to self-
compression and pulse splitting, is a truly exciting pros-
pect. The fact that such configurations are within labo-
ratory reach, using the next generation laser-plasma
facilities, makes the predicted effects and their connec-
tion to astrophysical events even more interesting and
may open up new possibilities for basic and applied re-
search in the future.
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