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Photonic crystal heterostructures, like their semiconductor quantum electronic counterparts, generate
complex function from simple, well-understood building blocks. They have led to compact photonic
crystal-based waveguides and record-quality-factor resonant cavities. Here the progress on the
experimental realization of photonic crystal heterostructure devices, and on the development of
convenient, intuitive, and computationally efficient models of devices that unite multiple finite-sized
photonic crystal media to engineer photon localization and guidance is summarized.
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I. INTRODUCTION

Semiconductor heterostructures are made by combin-
ing at least two materials that have distinct band struc-
tures. Heterostructures such as quantum wells confine
electronic wave particles on the quantum length scale,
enabling refined control over electronic states and car-
rier transport. Heterostructure engineering is now
widely practiced, producing the most efficient semicon-
ductor lasers �Tsang, 1982�, highest-speed transistors
�Hafez and Feng, 2005�, and novel quantum electronic
devices �Sakaki, 1982; Capasso et al., 1989; Heiblum and
Fischetti, 1990�.

Photonic crystals �John, 1987; Yablonovitch, 1987�—
artificial materials with a periodic modulation of their
dielectric constant �Joannopoulos et al., 1995�—display
many properties analogous to semiconductors, including
the appearance of pass bands, band gaps, and a complex
dispersion relation. Early resonant devices based on
photonic crystals, however, have differed from the het-
erostructures typically found in semiconductor devices.
The first photonic crystal device proposals and demon-
strations were based on much smaller point and line de-
fects.

Recently, photonic crystal heterostructures have been
introduced, and they have been shown to extend many
of the attractive features of their semiconductor counter-
parts into the optical domain. Heterostructures have led
to low loss photonic crystal waveguides, record resona-
tor quality factors, and high-efficiency add-drop filters.
As with semiconductors, photonic heterostructures can
be either abrupt or graded.

Semiconductor heterostructures are usually modeled*Electronic address: e.istrate@utoronto.ca
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by separating the spatial variation of the structure into
two distinct length scales on which the potential energy
varies. Atomic periodicity, with its potential profile un-
dulating on the angstrom scale, produces a band struc-
ture conveniently distilled in terms of band edges and
effective masses. Individual regions made up of a par-
ticular type of crystal, with linear dimensions on the or-
der of multiple nanometers and above, are then treated
as quasihomogeneous materials. Semiconductor quan-
tum wells, for example, are reduced to finite-depth
square wells.

This intuitively tractable approach, rooted in the
mathematics of the multiple scale method, is equally at-
tractive in the case of photonic crystal-based devices
that deviate from periodicity. Several such methods have
been introduced including envelope approximations,
methods based on Wannier functions, tight-binding ap-
proximations, and methods based on interface reflection
and transmission coefficients.

This article reviews proposed and demonstrated het-
erostructure devices, along with successful demonstra-
tions of single heterojunctions. Many of the methods
used in the design and analysis of heterostructures are
also applicable to other photonic crystal structures. For
this reason we will review methods used to consider
photonic crystals with deviations from periodicity for de-
vices involving both heterostructures and junctions be-
tween photonic crystals and other media. At the same
time, contrasts and similarities with analogous methods
developed for semiconductors will be described.

II. REVIEW OF SEMICONDUCTORS AND PHOTONIC
CRYSTALS

Photonic crystal heterostructures form a natural ex-
tension to the analogy between semiconductors and
photonic crystals. In this section a brief review of semi-
conductor heterostructures will be given.

Infinitely periodic crystals have attractive features
such as a complex dispersion relation that includes al-
lowed and forbidden bands. They are, however, of lim-
ited practical use in isolation because, as described by
the Bloch theorem, allowed modes propagate much the
way plane waves do in a homogeneous medium. To pro-
duce a sufficiently functionally sophisticated device, it is
necessary to differentiate material properties in space
within the heart of a device. The fermionic nature of
electrons makes available two methods that can produce
such a differentiation in semiconductors: altering the
carrier concentration through doping or varying the
band structure by changing the semiconducting material.
The former produces homojunctions, whose discovery
led to the fabrication of diodes and transistors. The lat-
ter produces heterostructures.

Semiconductor heterostructures, invented by Herbert
Kroemer �Kroemer, 1957, 1963� and Zhores Alferov,
have played an essential part in the development of
high-speed transistors and semiconductor lasers �Alf-
erov, 2000�, earning their inventors the Nobel Prize in
2000. They are formed by the junction of two or more

semiconductors in a single crystal �Sharma and Purohit,
1974�. By using semiconductors with different band gaps
and electron affinities, considerable freedom is obtained
in selecting the band arrangements of resulting struc-
tures, leading to the concept of band-gap engineering
�Capasso, 1992�. Moreover, ternary and quaternary
semiconductors allow a continuous tuning of the band
gap.

Since a heterostructure is composed of multiple semi-
conductors, it has different band gaps in different re-
gions. Charge carriers in the conduction and valence
bands experience different potential energies in differ-
ent areas of the structure. As a result, heterostructures
provide a convenient method to engineer the confining
potential for charge carriers, giving rise to many
quantum-mechanical structures such as wells and barri-
ers. This forms the basis of most electronic and opto-
electronic devices employing heterostructures. A variety
of devices have been proposed and demonstrated, as re-
viewed by Weisbuch and Vinter �1991� and Mitin et al.
�1999�, and summarized below.

One of the simplest structures that can be fabricated
using heterostructures is a quantum well, obtained by
inserting a low-band-gap semiconductor between two
higher-gap materials. Carriers will see a lower potential
in the center region, and will be confined there, just like
a particle in a finite potential well. Electrons and holes
exist in this structure only at certain resonant energies.
This band arrangement is used in semiconductor lasers
to reduce the energy spread of carriers participating in
the gain mechanism. Similar structures form resonant
tunneling barriers �Chang et al., 1974�, used in transistor
structures to select the energy of charge carriers injected
across the device �Capasso et al., 1989�.

A periodic alternation of two semiconductors forms
a superlattice �Esaki, 1986�. The name is derived from
the fact that the superperiod structure develops its own
set of allowed and forbidden bands—known as
minibands—on top of the underlying semiconductor
bands. Superlattices are therefore used to separate a
band of the semiconductor into several minibands. This
allows transitions to occur within the conduction band
only, or alternatively in the valence band. These intra-
band transitions have been used with great success in
quantum cascade lasers �Capasso et al., 2002�, which
emit light in the midinfrared region, a range of frequen-
cies where conventional interband transitions are diffi-
cult to control for emission.

Heterostructures are also used to improve the high-
speed performance of transistors. In bipolar junction
transistors, a higher-band-gap material can be used in
the emitter compared with the material used in the base
and collector regions. It allows the base of the transistor
to be doped more heavily while maintaining a good
emitter injection efficiency. The higher doping in the
base reduces its resistance and gives the transistor a
higher cutoff frequency. Such transistors are called het-
erojunction bipolar transistors �Kroemer, 1982�. They
are one of the original motivations for the development
of the heterostructure �Kroemer, 1957�.
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The high-frequency response of field-effect transistors
can also be increased using semiconductor quantum
structures. A channel with a high carrier concentration
can be obtained in a lightly doped material by creating a
quantum well and doping only the barriers. The charge
carriers will be captured by the well, resulting in a chan-
nel with the mobility of an undoped material in a region
with a carrier concentration similar to that of a heavily
doped semiconductor, maximizing both elements needed
for a large drift current. Such devices are called high
electron mobility transistors �Fritzsche, 1987�.

Photonic crystal have many characteristics similar to
electronic semiconductors, such as the appearance of
bands and band gaps. As is the case with semiconduc-
tors, most functional devices rely on careful spatial dif-
ferentiation of material properties. Photons in a crystal,
however, do not have a completely analogous role to
electrons. Concepts such as Fermi levels and equilibrium
carrier concentrations are not directly extensible to the
photonic case. As a result, differentiation of material
properties in a device through nonuniform doping can-
not be achieved. For this reason, photonic crystal de-
vices use either heterostructures—the subject of this
review—or smaller point and line defects.

III. EXPERIMENTAL REALIZATIONS OF PHOTONIC
CRYSTAL HETEROSTRUCTURES

Many different methods have been introduced for the
fabrication of photonic crystals, some producing two-
dimensional and others three-dimensional crystals. Pho-
tonic crystal fabrication methods can be divided into
three broad categories: micromachining and growth us-
ing semiconductor processing techniques �Yablonovitch
et al., 1991; Krauss et al., 1996; Robbie et al., 1996;
Painter et al., 1999; Lin et al., 2001; Sato et al., 2002;
Kawakami et al., 2003; Lidorikis et al., 2004�, self-
assembly of three-dimensional crystals �Jiang, Bertone,
et al., 1999; Kumacheva et al., 1999�, and holographic
exposure of photoresist �Campbell et al., 2000�. Hetero-
structures have been fabricated successfully with several
of these methods.

A. Self-assembly

The fabrication of photonic crystals by self-assembly
has become a widespread method, since it produces
large volumes of high-quality crystals rapidly �Wong et
al., 2003�. If made of glass spheres, the resulting crystals
are referred to as artificial opals in view of their similar-
ity with natural opals. The fabrication of self-assembled
crystals is done in two steps. First, a monodispersed so-
lution of polymer �Lovell and El-Asser, 1997; Kalinina
and Kumacheva, 1999� or silica �Stöber et al., 1968; van
Blaaderen and Vrij, 1993� spheres is produced in a suit-
able solvent, such as water or ethanol. Many of the de-
velopments in this area have been reviewed by Xia et al.
�2000�. The spheres are then induced to assemble into an
ordered array. A variety of methods exist, but the
highest-quality crystals are obtained by assembling the

array on a substrate placed vertically in the solution.
This is accomplished by convection forces in the menis-
cus between the solution and substrate. Two-
dimensional crystals were first obtained on a horizontal
substrate surrounded by a Teflon ring. A dispersion of
spheres in water placed inside the ring forms a positive
meniscus, with the thinnest layer at the center. During
evaporation, the water flux toward the center results in
crystal growth starting at this point �Denkov et al., 1993�.
Later the arrangement was changed to a vertical sub-
strate that is lifted slowly out of the solution, still relying
on the positive meniscus to create a two-dimensional
crystal �Dimitrov and Nagayama, 1996�. The same
method was then used to obtain three-dimensional pho-
tonic crystals �Jiang, Bertone, et al., 1999�. While most
self-assembly methods produce crystals oriented along
the �111� direction, large defect-free domains of �100�-
oriented crystals were obtained recently �Jin et al., 2005�.

If desired, the resulting crystal can be inverted by fill-
ing the voids between the spheres with various materi-
als, such as silica �Velev et al., 1997; Ye et al., 2002�,
titania �Wijnhoven and Vos, 1998�, zirconia �Schroden et
al., 2002�, carbon �Yan, Ziou, et al., 2005�, and gold
�Landon et al., 2003�. Many of the results have been
summarized by Velev and Kaler �2000�. One of the most
important classes of materials for infiltration, however,
are high-index semiconductors, such as silicon. Their
high index of refraction results in a complete photonic
band gap in a colloidal crystal �Blanco et al., 2000; Vla-
sov et al., 2001�.

Although point defects can be placed randomly in a
colloidal crystal by mixing a small volume of dopant
spheres into the monodispersed solution �Vlasov et al.,
2001�, the controlled placement of defects is more diffi-
cult. As a result, research effort has instead concen-
trated on heterostructures. Large-area line defects were
obtained recently through a combination of self-
assembly and photolithography �Vekris et al., 2005; Yan,
Zhou, et al., 2005�. Controlled placement of point de-
fects was also demonstrated recently using a nanoim-
printing technique �Yan, Chen, et al., 2005�.

Heterostructures are fabricated using self-assembled
crystals by repeating the assembly process with different
types of spheres �Jiang et al., 2001; Egen et al., 2003;
Wong et al., 2003�. The first photonic crystal is deposited
directly on the substrate. Subsequent crystals use previ-
ous layers as a substrate. They differ in the dielectric
constant and size of the spheres. An image of a hetero-
structure in a colloidal crystal heterostructure is shown
in Fig. 1.

Heterostructures between self-assembled opals do not
require lattice matching at the interface. As a conse-
quence, crystals differing in sphere diameter can be
joined in a heterojunction. Sometimes, however, a small
gap can appear between the two crystals �Gaponik et al.,
2004�, which will have an impact on the optical proper-
ties of the junction.

Heterostructures have also been produced by modify-
ing a single self-assembled crystal. Through nonuniform
infiltration of air voids in the crystal, the band structure
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can be modified locally. This can be obtained through
infiltration only near the surface of the crystal �Ro-
manov et al., 2000�. Alternatively, a uniformly infiltrated
crystal can be obtained first, which is then patterned. A
poly�methyl methacrylate� �PMMA� photonic crystal is
first infiltrated with silica. The resulting crystal is then
patterned using electron-beam lithography, to which
PMMA is sensitive. Upon development, the exposed ar-
eas will contain an inverted silica opal, while unexposed
areas still contain the PMMA crystal infiltrated with
silica �Galisteo-Lopez et al., 2004�. Using nonuniform in-
filtration, photonic crystal heterostructures are obtained
with a lattice-matched junction.

B. Autocloning

The autocloning technique is a versatile method used
to fabricate three-dimensional photonic crystals for vis-
ible and infrared wavelengths �Kawakami, 1997�. Alter-
nating layers of two materials, such as silica and tanta-
lum oxide, are deposited on a patterned substrate.
Deposition is achieved by sputtering and sputter-etching
at the same time. Conditions are chosen in such a way
that the substrate pattern is not washed out by subse-
quent layers, but a periodic modulation is preserved,
shown as a cross section in Fig. 2. A three-dimensional
crystal is obtained by combining a substrate pattern pe-
riodic in two dimensions with alternating layers which
are periodic in the third dimension.

Photonic crystal heterostructures have been fabri-
cated successfully with autocloned crystals. Heterostruc-
tures in the horizontal directions are obtained by chang-
ing the periodicity of the substrate pattern. Since this
pattern is produced lithographically, there is complete
freedom in the arrangement of periodic sections. Junc-
tions in the vertical direction are obtained by changing
the thicknesses of the two alternating layers �Kawakami
et al., 2003�. Examples of both cases are shown in Fig. 3.
Since horizontal and vertical heterostructures can be
combined as desired, optical modes can be completely
confined in all three directions in such a device.

C. 2D crystals

The most widely used implementation of photonic
crystals are two-dimensional crystals fabricated using
lithographic techniques. Usually, a periodic array of
holes is etched in a semiconductor slab waveguide. Re-
fractive index guiding is used to keep light in the slab.
Triangular lattices are encountered most often, due to
the large photonic band gaps that they form, although
square lattices are also used. Alternatively, crystals con-
sisting of arrays of dielectric cylinders in air were also
demonstrated �Tokushima et al., 2004�. Since crystals are
defined through lithography, usually electron-beam li-
thography, there is complete freedom to introduce any
deviation from periodicity necessary for device opera-
tion. This freedom has been used to fabricate photonic
crystals with point and line defects, which act as
waveguides and resonators, respectively, as well as com-
binations of the two.

The lithographic process can also be used to produce
photonic crystal heterostructures, by changing the lattice
constant, hole size, or even lattice geometry in the crys-
tal. This can be done either abruptly �Song et al., 2003,
2004� or gradually to produce a graded heterostructure
�Srinivasan et al., 2003�. An example of an abrupt het-
erojunction is shown in Fig. 4.

It should be noted that graded heterostructures can
also be obtained with photonic crystals fabricated by au-
tocloning, and also with infiltrated opals, by slowly vary-
ing the infiltration amount.

FIG. 1. An example of a heterostructure using colloidal crys-
tals.

FIG. 2. A photonic crystal fabricated using the autocloning
technique. Reprinted with permission from Sato et al., 2002.
Copyright 2002, Kluwer Academic Publishers.

FIG. 3. A photonic crystal heterostructure waveguide fabri-
cated using autocloned photonic crystals. The dashed lines rep-
resent the positions of the junctions. Both horizontal and ver-
tical junctions are shown. Reprinted with permission from
Kawakami et al., 2003. Copyright 2003, IEEE.
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D. Other methods

For millimeter waves, photonic crystal heterostruc-
tures have been fabricated by varying the spacing be-
tween directly placed spheres �Yano et al., 2001�. Peri-
odic two-dimensional arrays of vertical cavity surface
emitting lasers �VCSELs� have also been interpreted as
photonic crystals. By changing the periodicity of these
crystals, heterostructures were obtained, which were
used to control the modes of the laser array �Guerrero et
al., 2004�.

IV. PHOTONIC CRYSTAL HETEROSTRUCTURE DEVICES

Photonic crystal heterostructures provide the neces-
sary variation in material properties to turn a photonic
crystal raw material into a functional device. In particu-
lar, they result in a spatial variation of the crystal disper-
sion relation. Usually, photonic crystal devices are de-
signed in such a way that light at the frequency of
interest will encounter a stop band in certain areas and a
pass band in others. In this way, the stop bands are used
to confine light to certain parts of the device, while the
dispersion characteristics of the crystals in the pass
bands are used to fine-tune the propagation properties.

Heterostructures, compared to junctions between
crystals and other media, have the advantage that the
amount of variation between the two crystals can be
chosen to be quite small. As shown in this section, this is
necessary to achieve certain device properties such as
confinement and minimization of radiation losses, espe-
cially in two-dimensional crystals. Often, this small
variation will necessitate larger device areas than for the
usual point and line defects. Heterostructures accommo-
date this conveniently, as will be seen in the next ex-
amples.

A. Resonant cavities

The fabrication of photonic crystal resonant cavities
with high-quality factors is one of the most important
practical achievements of photonic crystals. The simplest
heterostructure cavities are modeled after the semicon-
ductor quantum well and provide a direct demonstration

of the quantization of energy levels in a confined system.
Using photonic crystal heterostructures, resonant cavi-
ties can be obtained by enclosing a thin photonic crystal
slab between two crystals with different band gaps, as
shown schematically in Fig. 5�a�. The two crystals are
chosen in such a way that, at the frequency of interest,
the center crystal presents a pass band, while the side
crystals have a band gap, confining light to the center
region. An electromagnetic mode will be allowed in the
cavity if it has a frequency corresponding to a resonant
state. Using band diagrams similar to those in common
use for semiconductor devices, the band alignment and
position of the resonant states can be represented as
shown in Fig. 5�b�.

Resonant cavities are used to select electromagnetic
modes of specific frequencies. As such, most photonic
crystal heterostructure cavities function like resonant
double barriers since the entire structure is embedded in
a uniform medium where light propagation is allowed.
This medium also contains the optical source and detec-
tors. Light will not be able to traverse the barrier crys-
tals unless it can resonate in the center well, at which
point it will tunnel resonantly through both barriers. The
transmittance through the entire device reaches unity,
similar to the transmittance through a Fabry-Perot eta-
lon. The width and strength of the barriers determine
the quality factor of the resonator and corresponding
transmission linewidth.

Photonic crystal heterostructure cavities have been
used to demonstrate a record-level quality factor of
600 000 �Song, Noda, et al., 2005�. The structure is fabri-
cated using two-dimensional photonic crystals in a semi-
conductor slab. The cavity is formed by a photonic crys-
tal waveguide traversing two heterojunctions, so that
light is only allowed in the center section of the wave-
guide. No waveguide mode exists at that frequency in
the barriers. Heterostructures are employed rather than
point defects in order to engineer the reflecting proper-
ties of the barriers. It was found that a gentle confine-
ment of the mode in the cavity leads to a reduction of
the field components with a propagation vector that can
radiate out of the slab. A Gaussian profile of the field
envelopes is ideal. In earlier attempts, holes surrounding
a point defect were moved in order to provide the gentle

FIG. 4. A photonic crystal heterostructure fabricated litho-
graphically in a semiconductor slab. The arrow shows the po-
sition of the junction. Reprinted with permission from Song et
al., 2004. Copyright 2004, American Institute of Physics.

FIG. 5. Example of a resonant cavity realized using photonic
crystal heterostructures. �a� Refractive index profile. �b� Band
diagram. The dashed line represents the frequency of a reso-
nant state.
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confinement, leading to quality factors of 45 000 �Aka-
hane et al., 2003�. The Gaussian profile was not
achieved, however. By using a heterostructure with the
well and barrier crystals almost identical, a nearly ideal
mode profile was obtained. It was found that the disper-
sion relation for the imaginary part of the propagation
vector in the barriers is highly nonparabolic, approxi-
mating a step function. This leads to strong attenuation
at frequencies close to the band edge, resulting in a
small increase of the modal volume compared to a
point-defect cavity and high-quality factor at the same
time.

As was already known from semiconductors, photonic
crystal heterostructures can be either abrupt or graded.
In a graded structure, the crystal properties vary
smoothly, with no apparent discontinuity. Resonant cavi-
ties based on graded heterostructures have also been
demonstrated, again taking advantage of the many de-
grees of freedom available to optimize the resonator
quality factor �Srinivasan, Barclay, and Painter, 2004�. A
quality factor Q of 40 000 was obtained.

Photonic crystal heterostructure resonators have also
been used with periodic VCSEL arrays �Guerrero et al.,
2004�. The confinement properties of the resonator were
used to control the intensity of each VCSEL in the array,
giving a direct optical image of the cavity modes, and of
the similarity between photonic crystal resonators and
semiconductor quantum wells. More recently, coupling
between two heterostructure cavities was demonstrated
in a similar structure �Lundeberg et al., 2005�.

B. Waveguides

Photonic crystal waveguides are a special case of reso-
nant device, where light is confined in two lateral direc-
tions, and is allowed to propagate in the third direction.
Traditionally this was achieved by placing line defects in
an otherwise uniform crystal. Photonic crystal hetero-
structures, however, are also suitable for this function.
The required structure is again similar to that shown in
Fig. 5�a�. Light in the center crystal, which acts as the
core, will be blocked by the side claddings, and can only
propagate in the vertical direction. Here again, photonic
crystal heterostructures have the advantage of offering
more degrees of freedom in tuning the dispersion rela-
tions of both the core and cladding. As a consequence,
single-mode propagation can be obtained in a guide with
a wider core, allowing more efficient end coupling to the
waveguide.

One of the first demonstrations of high transmission
through a photonic crystal waveguide used heterostruc-
tures �Lin et al., 2000� with two-dimensional triangular
photonic crystals of air holes in a GaAs slab. The wave-
guide core is made of a three-period-thin photonic crys-
tal, surrounded by claddings which are made of two
crystals with smaller holes. As is usually the case for
photonic crystal waveguides, the claddings present a
band gap at the wavelength of operation, while the core
allows propagation. As mentioned above, the waveguide
was made wide enough, which helped efficient coupling

to conventional waveguides. A homogeneous core of
this width produces a waveguide with a large number of
modes. Using the heterostructure, the confinement of
the mode in the core is made weaker, such that even the
wide core used only leads to three modes. The guide can
operate as a single-mode guide over significant fre-
quency ranges. The increased width of the core reduces
both coupling and radiation losses, reaching a guiding
efficiency of 100% at certain frequencies.

Autocloned photonic crystal heterostructures, such as
the cross section shown in Fig. 3, can be used to produce
photonic crystal waveguides �Kawakami et al., 2003;
Miura et al., 2003� that use photonic stop bands to con-
fine light in all three directions. This reduces losses due
to leakage out of the plane. As before, the use of het-
erostructures allows a much wider core and reduces cou-
pling losses to other waveguides. Autocloned
waveguides also have the advantage that the periodicity
of the crystals can be reduced to two or even one dimen-
sion in parts of the device where full 3D periodicity is
not necessary. This can be done, for example, in the core
of the waveguides, and reduces scattering losses.

C. Graded heterostructure cavities and waveguides

While the above examples have covered abrupt het-
erostructures, graded heterostructures have also been
employed in waveguides and resonators. Fabrication has
been demonstrated using two-dimensional crystals
etched in semiconductor membranes. The graded struc-
tures, such as the one shown in Fig. 6, minimize radia-
tion losses in resonant cavities �Srinivasan, Barclay, and
Painter, 2004; Srinivasan, Barclay, et al., 2004�, by reduc-
ing the intensity of the mode components with momen-
tum values below the light line. Grading of the crystal
parameters along a line-defect waveguide was used to
design waveguides optimized for evanescent coupling to
optical fibers �Barclay et al., 2003�, and in order to local-
ize light in certain sections of the guide �Baba et al.,
2004�.

D. Other structures

Other than the formation of resonant cavities and
waveguides, junctions between photonic crystals can

FIG. 6. A graded photonic crystal resonator. Reprinted with
permission from Srinivasan, Barclay, and Painter, 2004. Copy-
right 2004, Optical Society of America.
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also be used for a number of other purposes. An array
of photonic crystals of differing lattice constants with a
point defect in each section was used as a multichannel
add-drop filter �Song et al., 2005b�. The varying lattice
constant resulted in a different resonant wavelength in
each defect, while maintaining similar quality factors. A
waveguide traversing all photonic crystal sections was
used to couple light to the point defects. Heterostruc-
tures are also used as wavelength-selective mirrors. A
line-defect waveguide traversing this heterojunction will
have different cutoff frequencies on two sides of the
junction, resulting in a wavelength-dependent reflection
coefficient. This was used to improve the efficiency of
add-drop filters using point-defect resonantors. Nor-
mally, the efficiency of these filters is limited to either
50% or 25% since some of the light coupled from a
waveguide to the resonator will couple back. The
wavelength-selective heterostructure reflector can be
used to reflect this light back to the point defect �Song et
al., 2005a�. A drop efficiency higher than 80% was dem-
onstrated �Takano et al., 2005�.

A cascade of photonic crystal heterostructure reso-
nant cavities leads to a photonic superlattice, with its
own set of allowed and forbidden minibands �Istrate et
al., 2002�. These can be used to engineer complex optical
filtering functions. Colloidal photonic crystal hetero-
structures have been used to fabricate such photonic su-
perlattices by alternating the growth of two photonic
crystals �Rengarajan et al., 2001�. The separation of the
individual photonic bands into miniband pass and stop
bands, expected from semiconductor superlattices, was
observed.

Junctions between different photonic crystals also ap-
pear naturally when waveguides with different orienta-
tions are needed. Photonic crystal lattices only allow
line-defect waveguides to be fabricated in a very small
number of directions. Lattices of different symmetries,
however, allow waveguides in different directions. Mul-
tiple cladding crystals can be used, with the waveguide
crossing from one to the other as needed, in order to
accommodate the necessary bends in a photonic circuit
�Sharkawy et al., 2002�.

Junctions between crystals of different dimensionality
have also been proposed �Chutinan et al., 2003; Chuti-
nan and John, 2004�. It is well known that three-
dimensional photonic crystals can exhibit a complete
band gap and inhibit propagation in all directions. Two-
dimensional crystals do not have this ability. They can be
processed, however, with better control especially when
small defects must be introduced. It would, therefore, be
beneficial to enclose an optical circuit fabricated in a
two-dimensional crystal between two three-dimensional
crystals, in order to reduce the out-of-plane loss inherent
in most two-dimensional implementations.

Finally, photonic crystal heterostructures have also
been proposed for the simple task of increasing the
width of stop bands. By cascading photonic crystals with
slightly different stop bands, a structure with a wider
effective stop bandwidth is obtained �Zhang et al., 2000;

Wang et al., 2002�, in a way similar to the use of chirped
gratings for wide-band reflectors in optical fibers.

E. Similarities and differences from semiconductors

A surprisingly high number of similarities has been
found between photons, governed by the wave equation,
and electrons obeying Schrödinger’s equation, due in
large part to the similarities between these two equa-
tions. Differences appear, however, as a consequence of
the fermionic nature of electrons and bosonic nature of
photons, and also because electrons have a scalar wave
function compared to vectorial photons. It is interesting
to note, however, that the vectorial properties of pho-
tons lead to two orthogonal polarizations, analogous
with the two spins of electrons �Bhandari, 1990�.

The analogies between photons and electrons have
been investigated in detail �van Haeringen and Lenstra,
1990�. For photonic crystals, the fundamental analogy is
between Anderson localization of electrons �Anderson,
1958� and localization of light in disordered media
�John, 1987�.

Several pairs of analogous experiments have been per-
formed on electrons and photons. The quantized con-
duction of point contacts has been observed for elec-
trons in a two-dimensional electron gas �van Wees et al.,
1988� and for photons in a narrow slit �Montie et al.,
1991�. Tunneling of electrons between two neighboring
semiconductor quantum wells has been observed
through its submillimeter wave emission �Roskos et al.,
1992�. Its optical equivalent—coupling of light between
two parallel waveguides �Yariv and Yeh, 1984�—is
widely used in many optical systems. Bloch oscillations
have been observed for electrons in semiconductor su-
perlattices �Feldmann et al., 1992; Waschke et al., 1993�.
A similar effect is predicted for photons in chirped
Bragg gratings �Wilkinson, 2002�, chirped photonic crys-
tals �Malpuech et al., 2001�, and in arrays of curved op-
tical waveguides �Lenz et al., 1999�.

One must be careful, however, in observing the limits
of the analogies between electrons and photons. Semi-
conductor resonant double barriers �Chang et al., 1974�
are widely assumed to be analogous to the optical
Fabry-Perot interferometer. Space-charge buildup in the
electronic device, however, leads to hysteresis in the
current-voltage relationships �Eaves, 1990�, which does
not exist in the optical equivalent. This example shows
that electron transport results in changes in the energy
bands. Such changes in energy levels due to the move-
ment of charge carriers also affects band alignments and
band offsets at a junction. In semiconductors, the energy
levels on two sides of a junction influence each other
through the process of reaching thermal equilibrium be-
tween the two carrier populations. The band offsets can
be changed by doping the materials, which sets up slopes
in the bands in order to return to a constant Fermi en-
ergy. A balance must form between the tendency of car-
riers to diffuse away from regions of high concentration
and resulting electrostatic forces which oppose this dif-
fusion. This is the well-known effect that gives rise to a
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built-in potential in p-n junctions. The situation is differ-
ent in photonic crystals where the absolute positions of
bands are determined by the crystal periodicity and re-
fractive indices.

Electrons in semiconductors are constantly exchang-
ing energy with the lattice through collisions. Thermali-
zation is an important aspect in the operation of most
electronic devices. It is possible for electrons to change
energy levels, and jump from one band to another. This
allows, among others, the injection of current into a
quantum-well laser over the barriers of the well. Elec-
trons will be captured by the well and will relax into its
lowest level.

The motion of photons, however, is more closely re-
lated to ballistic electron transport. Photons do not usu-
ally exchange energy with the surrounding material, ex-
cept through emission and absorption or through
nonlinear interactions at high intensities. As a result, the
frequency of light in a heterostructure will normally not
change. One must inject light at the frequency of inter-
est in a device. As was mentioned above, however, the
acceleration of waves in Bloch oscillation experiments
can be simulated through chirping of the optical lattice
�Wilkinson, 2002�.

V. MODELING AND DESIGNING PHOTONIC CRYSTAL
HETEROSTRUCTURES

A. Methods for infinitely periodic and arbitrary structures

Analysis and design of photonic crystal devices is usu-
ally done using numerical methods. A few analytic ap-
proximations exist for evaluating the position and width
of stop bands in one-dimensional photonic crystals.
Even when using computers, numerical simulations of
photonic crystals are challenging since the entire device
to be simulated consists of many photonic crystal unit
cells. Each cell must be represented with high accuracy
in both its shape and position.

Photonic crystal modeling tools can be divided into
three broad categories. Methods in the first category as-
sume an infinitely periodic crystal, for which they com-
pute the band structure and Bloch modes. In the second
category are general electromagnetic solvers that find
the transmittance and reflectance or resonant modes of
arbitrary structures. In the third category are more effi-
cient methods developed for specific photonic crystal
configurations.

The methods in the first category are fairly efficient,
since only one photonic crystal unit cell needs to be rep-
resented. They provide the positions of pass and stop
bands, and are often used to obtain rapidly information
about the general behavior of the crystals, such as the
frequency ranges where light is allowed or forbidden, as
well as the dispersion encountered by a wave. Since they
are based on the assumption that the crystal is infinite,
however, they cannot be used for the accurate simula-
tion of most photonic crystal devices, which are of finite
size and contain deviations from periodicity.

The most common algorithm to compute photonic
band structures is the plane-wave-expansion method
�PWEM� �Ho et al., 1990; Busch and John, 1998�. The
dielectric profile of the crystal is expanded in a two- or
three-dimensional Fourier series. The electromagnetic
mode is expressed as a superposition of plane waves.
Inserting these two elements into the wave equation
transforms it into a matrix eigenvalue equation with the
mode frequencies as the eigenvalues and mode profiles
as the eigenvectors.

Band structures can also be found using the finite dif-
ferences in time domain �FDTD� method by finding
resonant states when applying periodic boundary condi-
tions with a complex phase shift �Chan et al., 1995�. The
band structure has also been calculated using transfer
matrix methods �Pendry, 1996�. While the preceding
three methods are applicable to any implementation of
photonic crystal, other methods have been developed
for more specific cases, such as a scattering matrix
method based on Korringa-Kohn-Rostoker �KKR� tech-
niques for photonic crystals made of spheres �Stefanou
et al., 1992, 2000�.

The methods in the second category have the freedom
to represent arbitrary structures, and are therefore the
tools of choice for photonic crystal devices, such as
waveguides or resonators. They are also able to compute
the response of photonic crystal heterostructures. Since
they ignore the periodicity of the crystal, however, they
are quite inefficient, requiring significant computational
resources. This is especially true for heterostructures,
where large periodic areas are found often. The most
widely used tool in this category is the FDTD method
�Yee, 1966; Taflove and Hagness, 2000�, which is based
on a discretization of Maxwell’s equations on a finite
grid.

Arbitrary structures can also be considered using the
transfer matrix method. Originally developed for one-
dimensional problems �Yeh, 1988�, it has also been ex-
tended to higher dimensions �Pendry and MacKinnon,
1992; Bell et al., 1995�. The structure is divided into ho-
mogeneous units, with the electric and magnetic fields
represented on a fine lattice. Transfer matrices are used
to relate fields on neighboring planes in this lattice. As
with FDTD simulations, the transfer matrix equations
can be used together with the Bloch theorem to yield an
eigenvalue problem for the band structure of a crystal.

It should be noted that most methods used to find the
band structure of crystals can also be used to find the
modes of photonic crystal waveguides and other reso-
nant cavities, by introducing a periodic supercell
�Johnson et al., 1999�. In directions without periodicity
an artificial periodicity is introduced, with a period
larger than the dimensions of the mode confined in the
resonator. The artificial periodicity makes it possible to
represent the structure with a spatial Fourier series,
while large periods ensure that resonators will not be
coupled together. Therefore, the modes of the periodic
array of resonators will be the same as the modes of an
isolated resonator.
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The PWEM deployed on a supercell belongs to the
second category, since the periodic unit is made large
enough to cover the entire device. The method is, how-
ever, more efficient with structures that are naturally pe-
riodic in one or two dimensions, such as waveguides. In
such cases, the artificial periodicity is introduced only in
directions where natural periodicity is missing.

The third category is a result of the effort to find
methods that are more efficient than those in category
two, but do not have the requirements of infinite peri-
odicity from the first category. These methods usually
impose restrictions on the types of structures that can be
considered. For example, they may only be applicable to
a certain type of photonic crystal, or may be limited to
certain types of defects. The following subsections will
present a survey of such methods.

While the discussions in the previous sections have
concentrated on photonic crystal heterostructures, many
of the modeling tools are applicable to devices using
both heterostructures as well as point or line defects. As
a result, this review includes methods applicable to both
types of photonic crystal devices.

Due to the striking similarity between semiconductors
and photonic crystals �van Haeringen and Lenstra, 1990;
Gaylord et al., 1993�, many of the analysis methods for
semiconductor devices have been transferred to the pho-
tonic case. A review of the relevant analysis methods
developed for semiconductor quantum structures is
given in Sec. V.H.

B. Transfer, scattering, and R-matrix methods

A large number of methods has been introduced
based on transfer and scattering matrices. Common to
all of them is the representation of the device as a set of
adjacent parallel layers, with the relationship between
fields on the two sides of the layers described by a ma-
trix equation. Neighboring layers can be combined by
combining their matrices, the end result being a matrix
relating fields on the two sides of the new larger layer.
This is repeated until a matrix is found that relates fields
on the two sides of the entire device. In this discussion,
the parallel layers will be assumed to lie in the x-y plane,
and the evolution of the fields in the z direction will be
investigated.

The most common method is the transfer matrix
method �Pendry, 1996� mentioned already in Sec. V.A
for arbitrary structures. In the x-y plane, fields are
stored on a rectangular grid for each layer of the struc-
ture. Transfer matrices are used to relate fields on adja-
cent layers. This method can be described as belonging
to the third category, as well as to the second one, be-
cause transfer matrices can be obtained for layers corre-
sponding to one photonic crystal period in the z direc-
tion. With such matrices, results for large photonic
crystal volumes can be obtained quickly by repeatedly
applying this matrix. A different matrix is only needed
where deviations from periodicity are encountered. Pe-
riodic sections of the crystals are therefore considered in
an efficient manner, while deviations from periodicity

are permitted. The matrices provide the reflection and
transmission spectra directly, or can be used to find the
resonant frequencies and mode shapes of resonant struc-
tures �Yeh, 1988�.

The transfer matrix method �TMM� described above
represents the dielectric constant and fields in real space,
as opposed to reciprocal space, in all three directions.
This gives it the greatest flexibility to consider arbitrary
structures. An alternative implementation of the TMM
continues to describe the structure in real space along
the z direction. In the x-y plane, however, the structure
is expressed in Fourier, or reciprocal, space �Li and Lin,
2003�. This assumes that the structure is perfectly peri-
odic in the x and y directions: each layer behaves like a
two-dimensional diffraction grating, diffracting each in-
cident wave into a number of directions, both transmit-
ted and reflected. The transfer matrices relate the inci-
dent and diffracted waves on the left-hand side of the
layer to the incident and diffracted waves on the right-
hand side. Rather than storing fields on a grid in the
x-y plane, as is done by the real-space TMM, the ampli-
tudes and phases of the different diffraction orders are
stored.

Matrix-based methods can be used to compute the
response of photonic crystal heterostructures directly
�Jiang, Niu, and Lin, 1999�. Furthermore, for planar and
parallel heterointerfaces that preserve the lattice period-
icity, reciprocal-space methods can be used in an effi-
cient manner. These methods can also be used to de-
couple the interaction between different areas of a
device. By representing the field profiles in each layer as
a superposition of waves with a component of their
propagation vector in the positive z direction, and some
in the negative z direction, it is easy to separate the
incoming and reflected waves from a section of the de-
vice. This makes it possible, for example, to calculate the
reflection coefficients from semi-infinite photonic crys-
tals �Li and Ho, 2003�. Such coefficients are very useful
in the intuitive understanding of photonic crystal de-
vices, as will be discussed in detail in Sec. V.F.3.

Transfer matrix methods often suffer from stability
problems when applied to thick photonic crystals. Wave
propagation in the transfer matrix approach is described
using familiar complex exponentials. Evanescence in
stop bands, however, is given by real exponentials, both
positive and negative. Positive exponentials pose stabil-
ity problems. Over the width of a photonic crystal, they
can amplify near-zero field amplitudes, which appear
due to numerical errors, to very large, unphysical, val-
ues.

A number of variations on the transfer matrix have
been proposed to eliminate the stability problems. A
comparison of some of these has been published �Li,
1996�. One solution is to replace the transfer matrix by a
scattering matrix. The transfer matrix relates fields on
one side of a layer to fields on the other side. With scat-
tering matrices, the incident waves on a layer from both
sides are related to the outgoing waves. In the scattering
matrix framework, layers cannot be simply combined by
matrix multiplication, but recursive algorithms exist for
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this purpose �Li, 1996�. In return, exponential terms are
avoided in the matrices, leading to a stable algorithm �Li
and Ho, 2003; Li and Lin, 2003�.

The R-matrix methods are similar in concept. They
use a matrix to relate the electric fields on both sides of
a layer to the magnetic fields. The matrix, therefore, rep-
resents an impedance of layers. As with the TMM, fields
in the x-y plane have been represented in both recipro-
cal space �Elson and Tran, 1995� and real space �Elson
and Tran, 1996�. In a similar way to the scattering matrix
method, the R-matrix method does not have stability
problems due to exponentially growing components.

For photonic crystals made of arrays of spheres, scat-
tering and transfer matrices can be calculated efficiently
using KKR-based methods �Stefanou et al., 1992, 1998;
Yannopapas et al., 2001�. The scattering of light from
each plane of spheres is computed analytically, using
spherical harmonics, while interactions of waves scat-
tered by each plane are calculated using transfer or scat-
tering matrices.

C. Calculation of interface states

Interfaces are an important part of many photonic
crystal devices, based both on heterostructures as well as
point and line defects. In heterostructures, heterointer-
faces appear at every junction. In line-defect devices,
such as waveguides, interfaces between photonic crystals
and homogeneous materials appear at the junctions be-
tween the core and claddings. Most resonant photonic
crystal devices do not rely on interface states directly;
confinement is formed instead by pairs of photonic crys-
tal reflectors. Interface states do appear, however, under
certain circumstances. These are states bound to the in-
terface between two semi-infinite materials. They decay
exponentially in both of these materials. In the cases
presented here, either one or both of these materials is a
photonic crystal.

Interface states can affect strongly the transmission of
light between two media. It was found that these states
can be used to overcome the diffraction limit for light
emerging from an aperture of the same size as the wave-
length �Kramper et al., 2004; Moreno et al., 2004�. It is
therefore important to know the frequency bands where
such states appear, their dispersion relations, and mode
profiles. Bound surface modes are also important for
many devices, due to the possibility of light coupling
from nearby waveguides into these modes. Such cou-
pling was investigated theoretically in a two-dimensional
photonic crystal of air holes �Lau and Fan, 2002�, be-
tween a double-trench photonic crystal waveguide core
and neighboring photonic crystal surfaces. Later mea-
surements of the waveguide transmission �Vlasov et al.,
2004� were found to be in good agreement with the dis-
persion of surface modes.

Interface states between a photonic crystal and homo-
geneous material were first studied �Meade et al., 1991�
for a three-dimensional Yablonovite crystal �Yablono-
vitch et al., 1991�. The analysis was done with a plane-
wave method on a supercell. Such states must have

propagation vectors that are large enough to prevent
radiation into air. Their frequency must correspond to a
photonic crystal band gap to prevent radiation into the
crystal. Besides these conditions, interface modes were
found to be dependent on the interface properties, in
particular on the position in the unit cell where the in-
terface is placed. Bound interface states do not appear
for every surface termination, but at any frequency
bound states will appear at least for some terminations.
Similar simulations for two-dimensional crystals of di-
electric rods in air have found surface modes only if the
crystal is terminated with a plane that cuts through the
cylinders. This was confirmed experimentally �Robert-
son et al., 1993� at microwave frequencies using a prism
coupling setup to excite surface modes. For crystals of
air cylinders etched in a dielectric, surface modes were
found even when the interface plane does not cut
through the cylinders �Ramos-Mendieta and Halevi,
1999�.

Similar simulations were performed for heterointer-
faces between two different two-dimensional photonic
crystals �Lin and Li, 2001�. Again a supercell of two crys-
tals was considered using a plane-wave expansion. It was
found that heterostructures formed by changing the fill-
ing fraction of the crystals while maintaining lattice
matching do not support states. States may appear, how-
ever, if two crystals are shifted with respect to each other
by half a lattice constant, or if they are separated from
each other by a similar amount.

Previous simulations on a supercell require significant
computing resources, due to the large cells that must be
considered. One of the most important parameters for
these modes, however, is the decay length into the crys-
tal. This decay length can be obtained directly from the
complex band diagram of crystals in the band gap �Ste-
fanou et al., 1992; Suzuki and Yu, 1995; Hsue et al., 2004;
Istrate et al., 2005�. This will be described in more detail
later.

D. Envelope approximations

The envelope approximation is used often for the
analysis of semiconductor heterostructures, since it al-
lows such devices to be understood with quantum-
mechanical methods developed for much simpler quan-
tum structures, without taking into account intricate
details of the crystalline atomic potential. An effective
Schrödinger equation is obtained in which confining po-
tentials are determined by band offsets at the hetero-
junctions. The energy states of electrons in the hetero-
structure are then obtained from these equations, in
which there remains no explicit dependence on the po-
tential variations on the scale of the crystal lattice pe-
riod. Phenomena accessible in this approximation in-
clude quantum-confined discrete quantum-well states,
interband and intraband transition matrix elements,
resonant tunneling, and the formation of superlattice
subbands �Bastard, 1988; Weisbuch and Vinter, 1991;
Coldren and Corzine, 1995�.
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The envelope approximation has been applied suc-
cessfully to photonic crystal structures. Since it considers
the envelope of the potential profile, instead of its fine
variation, the results will also only provide the envelopes
of modes in the devices, instead of the true wave pro-
files. This, however, is acceptable in almost all cases,
since the envelope gives sufficient information about
quantities of interest, such as mode frequencies and
quality of confinement.

1. k ·p theory in photonic crystals

In the electronic domain, the envelope approximation
relies on the k ·p theory to calculate band curvatures and
from there the effective masses. When using k ·p theory,
the Hamiltonian for a state in the neighborhood of a
propagation vector k0 is expressed as a perturbation of
the Hamiltonian at k0. The modes are also expressed as
superpositions of states at k0, with the assumption that
these states form a complete set. This is indeed so for
the electronic case, but is not true for photonic crystals.
A larger number of basis states, including some unphysi-
cal solutions of the wave equation, must be used in the
photonic case, as was found from a rigorous k ·p theory
developed for photonic crystals �Sipe, 2000�, summa-
rized here.

The modes of periodic dielectric structures are found
from the wave equation �Joannopoulos et al., 1995�, writ-
ten here in terms of the magnetic field,

� � � 1

��r�
� � H�r�� = ��

c
�2

H�r� , �1�

where ��r� is the periodic dielectric constant, H�r� is the
magnetic field vector, � is the frequency of the mode,
and c is the speed of light in vacuum.

As opposed to the Schrödinger equation for electrons,
which only produces physical solutions, the wave equa-
tion also produces some unphysical solutions of zero fre-
quency. The physical solutions must also satisfy the di-
vergence condition, which requires the fields to be
transverse,

� · H�r� = 0. �2�

This requirement does not have an equivalent in semi-
conductor theory where the wave function is scalar.

Photonic crystal Bloch modes form a complete set for
the expansion of modes at neighboring propagation vec-
tors only if unphysical solutions are also included �Sipe,
2000�. In other words, the entire set of solutions of the
wave equation must be used, including those that would
normally not be associated with photonic bands.

For numerical calculations, however, where the ex-
pansion is truncated to a finite number of basis func-
tions, the zero-frequency solutions can be neglected,
since they only provide small corrections, similar to the
corrections from other remote bands.

In semiconductors, the k ·p theory results in a param-
eter known as the effective mass, which describes the
curvature of the bands, as summarized in Sec. V.H. This
parameter has units of mass and determines the accel-

eration of Bloch waves in the crystal under the influence
of external forces. For photonic crystals, similar param-
eters can be extracted from the Bloch modes. In analogy
to the semiconductor case, the term “effective” is used
sometimes to describe these parameters. In this case,
however, these terms are unrelated to a physical mass.
They only serve as parameters in the dispersion relation
encountered by photons.

2. The envelope equation

In periodic optical structures, the envelope approxi-
mation was first used to model the propagation of opti-
cal pulses in nonlinear periodic structures �de Sterke and
Sipe, 1988�. It calculates the response to slow variations
in refractive index induced by the presence of an optical
pulse, in an otherwise uniform crystal. The approxima-
tion was also applied to photonic crystal heterostruc-
tures �Istrate et al., 2002�. The objective of this technique
is to replace the full wave equation, Eq. �1�, with an
equation that treats each section of the photonic crystal
as a uniform material. In other words, the wave equation
is manipulated to remove the dependence on ��r�. This
dependence will be replaced by effective parameters,
similar to the effective mass in the electronic case. Such
an equation can be obtained by following a procedure
similar to the k ·p calculation in semiconductors. The
electric field is expanded as a sum of Bloch waves at a
chosen k vector. This expansion is then inserted into the
wave equation, leading to the envelope equation

�W� = ��
2�W�. �3�

Here W� is a column vector whose elements W�,n repre-
sent the envelopes of the different photonic crystal
bands in the heterostructure. �� is the frequency of the
heterostructure mode and � is the magnetic permeabil-
ity. The matrix operator � has elements

�n,m � − �� �2

�z2 + k0z
2 �sn,m + �n,m�1

j

�

�z
− k0z�

− �n
2�	n,m� . �4�

Here the heterostructure is assumed to be perpendicular
to the z direction. k0,z is the z component of the propa-
gation vector at which the k ·p expansion is performed.
It is usually absent in such equations for semiconductors,
since the expansion is normally performed at the k=0
point, where charge carriers accumulate. In photonic
crystals, photons do not accumulate at the band edge.
Hence, k0,z must be determined by the frequency of in-
terest in relation to the band structure. sn,m and �n,m are
constants derived from the Bloch modes of the infinitely
periodic photonic crystals �Istrate et al., 2002�. sn,m is
obtained in a manner very similar to the effective mass
of semiconductors, and plays an analogous role in deter-
mining the curvature of the bands, since it is multiplied
by the second derivative operator. It should be noted,
however, that it is not related to a physical mass. �n,m
and the entire term involving the first derivative opera-
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tor are new in photonic crystals. It is again a conse-
quence of the nonzero value of k0,z, where bands have a
finite slope, in addition to the curvature.

Equation �3� can now be solved independently in each
periodic section of the heterostructure. Its solutions will
be either propagating or decaying exponentials, depend-
ing on the presence or absence of a stop band.

3. Envelope boundary conditions

Boundary conditions are required at the junctions, in
order to connect the envelope solutions. For dielectric
structures, the well-known boundary conditions are the
continuity of the wave and its derivative. This is a result
of the requirement for continuity of both the tangential
electric and magnetic fields, since the magnetic field is
proportional to the derivative of the electric field, and
vice versa. Such an approach cannot be taken to obtain
boundary conditions for heterostructure envelopes,
since the two vector fields have been reduced to a single
scalar function. Boundary conditions can instead be ob-
tained �Istrate et al., 2002� using a similar method to the
one used to derive the familiar quantum-mechanical
boundary conditions �Cohen-Tannoudji et al., 1977�.

Although the heterointerface separates two different
crystals, it does not usually also correspond to a materi-
als interface. As a consequence, the electric fields at the
position of the junction are continuous. The envelope of
these fields must therefore also be continuous across the
interface. Assuming an interface at z=0, the continuity
is written as

W�,A�0� = W�,B�0� , �5�

In addition to the condition on the envelopes them-
selves, a condition is also necessary for their first deriva-
tives, in order to satisfy the requirements of a second-
order differential equation. The condition to be satisfied
by this derivative at the interface is obtained by integrat-
ing Eq. �3� from z=−� to z= +�, and taking the limit of �
approaching zero,

lim
�→0
�

−�

�

�W�dz = lim
�→0

��
2��

−�

�

W�dz . �6�

The right-hand side of Eq. �6� contains a finite function,
integrated over a vanishing interval. Hence it ap-
proaches zero. The left-hand integral contains terms in-
volving the wave envelope and its first and second de-
rivatives. Assuming that the envelope and its first
derivative have no infinite jumps, these two terms van-
ish, leaving

lim
�→0

	
m
�

−�

� �2

�z2sn,mW�,mdz = 0, �7�

which leads to the condition on the first derivative of the
envelope,

	
m

sn,m
�

�z
W�,m = const. �8�

This set of boundary conditions is similar to those for
electrons in GaAs/AlGaAs heterojunctions �Galbraith

and Duggan, 1988�, where the product of effective mass
times the derivative of the wave function must be con-
served.

The boundary conditions provide the connection rules
for the envelope functions on two sides of the interface.
Together with the envelope equation, which provides in-
formation about the wave inside the uniform sections of
photonic crystals, they describe the behavior of light in
the entire heterostructure.

Since only envelopes of both the dielectric constant
and modes are considered, however, the exact position
of the interface within one unit cell is not taken into
account. As such the envelope equations are better
suited for calculating colloidal crystal heterostructures,
where interface conditions are not controlled perfectly.
In later subsections, other methods are presented that
calculate the boundary conditions using the exact posi-
tion of the interface in the unit cell.

4. Other comments

The mode envelope equations, shown above in matrix
form, are a system of equations with one equation for
each photonic crystal band included in the expansion. It
was observed that in many cases at frequencies near the
first stop band, where most experiments are performed,
a weak heterostructure does not introduce a significant
mixing between bands, since the perturbation that it in-
troduces is not strong. As a result, the matrix � in Eq.
�3� is nearly diagonal. This means that the heterostruc-
ture supports a number of independent modes, one de-
rived from each band. The other bands only provide
small corrections. In many instances the system of equa-
tions can be reduced to a single equation, by concentrat-
ing on the band at the frequency of interest. The other
equations in the system describe modes that will appear
at other frequencies, and which usually are of lower in-
terest.

The boundary conditions presented above were for
uniform crystals separated by abrupt interfaces. The en-
velope approximation can also be used with graded het-
erostructures, where properties of the underlying crys-
tals vary smoothly over many periods. For graded
junctions it is not possible to break up the structure into
a number of uniform sections. The properties of such
crystals vary continuously along with the parameters
necessary to compute the envelope, such as the coeffi-
cients in Eq. �4�. They must be evaluated at a number of
points along the structure, and interpolated for all other
positions �Istrate and Sargent, 2002�. If the variation is
small, it is possible to include its effects as an additional
slowly varying term 
s�r� in the envelope equation. This,
however, leads to a generalized eigenvalue equation.

5. Multiple-scale techniques

The preceding subsections have described the enve-
lope equation, a differential equation to be obeyed by
the envelope of the electromagnetic wave. This equation
does not depend on the fast variation of the refractive
index and can therefore be solved much more easily. In
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essence, the envelope equation works by separating two
length scales of the problem—the rapidly varying pho-
tonic crystal dielectric profile from the slower hetero-
structure variation. This is part of a general class of
problems in differential equations that are usually
solved using multiple-scale techniques �Kevorkian,
2000�. Developments in the preceding paragraphs were
derived in a more intuitive fashion, in a form closely
resembling the k ·p techniques in solid-state physics.
This section presents a summary of the wave equation
solution in heterostructures using multiple-scale tech-
niques, which are mathematically more general. Regard-
less of the method used, equivalent results are obtained.
As with the envelope approximation, multiple-scale
techniques have been used to model pulse propagation
through nonlinear photonic crystals. Results for crystals
with an arbitrary number of dimensions were obtained
�Bhat and Sipe, 2001�.

To find the modes of photonic crystal heterostructures
using multiple-scale techniques �Poon et al., 2003�, coor-
dinates are introduced to represent two length scales,

R = �r, X = �x, Y = �y, Z = �z , �9�

where again the heterostructure varies in the z direction.
Here the lowercase variables represent fast features of
the structure, while the uppercase parameters represent
slower changes. The heterostructure is assumed to be a
perturbation to the bulk crystals. The modes and their
frequencies in the perturbed structure are expressed as
corrections from the bulk values,

�n�
2 = �n

2 + ���1� + �2��2� + ¯ , �10�

E = e0 + �e1 + �2e2 + ¯ , �11�

where ��i� represent frequency corrections to different
orders while ei are expansion coefficients of the modes,

e1 = A�Z�Enk, �12�

e2 = 	
l�n

Blk�Z�Elk, �13�

e3 = 	
m�n

Cmk�Z�Emk. �14�

The above equations imply that to the first order of ap-
proximation the heterostructure modes are given by
bulk modes modulated by an envelope, A�Z�. Higher-
order corrections use the bulk modes from other bands
as well. Truncating this expansion at the second order
and using it in the wave equation leads to an equation
for the mode envelope and frequency correction,

��1� = 0, �15�

1

2mx

�2A

�X2 +
1

2my

�2A

�Y2 +
1

2mz

�2A

�Z2 + ��2�A = 0, �16�

where the following definitions are made:

1

mx
=

�2�n
2

�kx
2 ,

1

my
=

�2�n
2

�ky
2 ,

1

mz
=

�2�n
2

�kz
2 . �17�

Equation �16� must again be solved in each hetero-
structure layer separately, and individual solutions
matched at the interfaces with appropriate boundary
conditions. The parameters mx, my, and mz represent
effects of the infinite photonic crystals on the hetero-
structure, in a similar way to the use of the sn,m and �n,m
parameters from Eq. �3�. They are related to the curva-
ture of the bands. As was seen from k ·p theory, there is
an equivalence between the information conveyed by
the shapes of the Bloch modes and curvatures of corre-
sponding bands.

E. Analysis using Wannier functions

1. Wannier-like envelope equations

The envelope approximation has been derived in the
previous section using parameters extracted from Bloch
modes of the photonic crystals. It is possible to obtain
similar information not from Bloch modes, but instead
from curvatures of the photonic crystal dispersion rela-
tion. This is a phenomenon also encountered in semi-
conductors. The effective masses of semiconductors are
normally defined in terms of the curvature of the bands.
Formally, however, they are computed from a k ·p analy-
sis which uses the semiconductor Bloch modes instead
of the shapes of the dispersion relations. The envelope
equations presented in Sec. V.D.2 are very similar to the
k ·p analysis. The expressions are, however, more com-
plex due to the vectorial nature of the electromagnetic
waves and the lack of symmetry in photonic crystal
Bloch modes at arbitrary points in the Brillouin zone, as
described below Eq. �4�.

In the present section, an alternative envelope ap-
proximation is introduced that uses band curvatures in-
stead of Bloch modes to parametrize bulk photonic crys-
tals �Charbonneau-Lefort et al., 2002�. As before, the
goal is to simplify the wave equation to a form that does
not include the periodicity of the crystal directly. The
starting point is again the wave equation for light in the
medium including the fast and slow variations,


��� · � − �2�E� = �2��f�r�
1 + 
s�r��E�, �18�

where E� is the optical mode, �f�r� is the fast component
of the dielectric constant, and 
s�r� is the slower hetero-
structure variation. The background dielectric constant
is included in �f. The heterostructure mode is expanded
as before in terms of Bloch modes of the bulk crystals,

E��r� = 	
n,k

Wn,kEnk�r�dk . �19�

Wn,k represents the inverse Fourier transform of the
mode envelopes Fn�r� given by Fn�r�=eik0·rfnk0

�r�, assum-
ing they are obtained using a Taylor expansion of the
band structure near k=k0. In the previous sections, the
Bloch modes Enk had been expanded in terms of func-
tions at a single propagation vector k0. This is not done
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here, but the above form is used directly in the wave
equation, yielding an equation for the envelopes similar
to the Wannier equation for electronic states in per-
turbed semiconductors �Wannier, 1962�. Making the
same assumptions as before that the heterostructure var-
ies in the z direction only, the equation can be simplified
to

1
2
� �2�n

2

�kz
2 �

k0

�2fnk0

�z2 = �n�k0� − ��
2
1 + 
s�z���fnk0

�z� .

�20�

The above equation is for modes in a heterostructure in
terms of the curvature of the bands of the bulk crystal.
There is one solution for each band. The complete het-
erostructure mode is given by the summation of bulk
modes of each band multiplied by their envelope func-
tions. The above equation neglects band mixing, which
was found to be almost nonexistent in many cases, as
described in the previous section.

The first term in the envelope equation �20� above
contains the curvature of the energy-momentum rela-
tion, represented by the second derivative of �2 with k.
It should be noted that the square of the frequency � is
used, since the �−k relationship is normally linear in the
photonic case. In analogy with the situation in semicon-
ductors, the curvature is called the effective mass for the
photonic crystal,

1

m* = � �2�n
2

�kz
2 �

k0

. �21�

It determines the propagation properties of light in the
crystal, in the same way that the effective mass affects
electrons in a semiconductor. It is not, however, related
to an acceleration.

The envelope approximations shown here and in the
previous section have been used to calculate modes in
photonic crystal quantum wells and superlattices �Istrate
and Sargent, 2002; Istrate et al., 2002�, heterostructure
waveguides �Charbonneau-Lefort et al., 2002; Poon et
al., 2003�, and more recently square cavities made of
photonic crystals surrounded by homogeneous materials
�Xu et al., 2005�.

A similar Wannier equation for the envelopes of
modes in photonic crystal devices has been derived
�Painter et al., 2003� using magnetic fields, taking into
account mixing among degenerate satellite extrema of a
band edge. This results in a set of coupled eigenvalue
equations for the envelopes. These equations were used
to compute modes of graded photonic crystal resonators
and waveguides.

2. Localized Wannier function bases

The Bloch modes in photonic crystals are expressed
often as superpositions of plane waves, which are ob-
tained directly from the plane-wave-expansion method
�PWEM� when computing the band structure. Plane
waves form a natural basis for representing Bloch modes
of infinite extent. Plane waves, however, are inefficient

for representing tightly confined modes in photonic crys-
tal defects. This case appears often in PWEM methods
using supercells to calculate point-defect modes. Basis
sets formed of localized functions are a more natural
choice here. The similarity with semiconductors is again
explored in order to find such a basis set, by transferring
the tight-binding approximation �Ashcroft and Mermin,
1976� to photonic crystals. When using a localized basis
set, bulk photonic crystal modes are first expressed as a
superposition of the localized functions, centered on
each lattice site. The response of defects is obtained by
calculating the eigenmodes of the perturbed structure.

This approximation uses the orbitals of independent
atoms as a basis. For atomic crystals, orbitals are natu-
rally confined around each nucleus. Finding a set of
atomic orbitals in the photonic case, however, is more
complex than in the electronic case, since individual
scatters do not produce localized states. Different meth-
ods are therefore needed to obtain such a localized set
of atomic orbitals. They are normally based on Wannier
functions, which can be chosen to be well localized. A
review of the different methods has been given by Busch
et al. �2003�.

In order to find the Wannier functions for bulk crys-
tals, the Bloch modes of the crystals must first be calcu-
lated. This is done conveniently using the plane-wave-
expansion method. With the bulk Bloch modes known,
the Wannier function centered at position R is given by
�Albert et al., 2000�

am�r − R� =
1

�N
	
k

e−ik·R�m�k,r� , �22�

where N is the number of unit cells, used for normaliza-
tion, and �m is a generalized Bloch mode of the photo-
nic crystal. The wave equation in this basis takes the
form

	
m�

�mm��k�Um�n�k� = ��n�k�
c

�Umn�k� , �23�

where Umn are eigenvectors and

�mm��k� = 	
R

eik·R� am
* �r��− �2�am��r − R�d2r . �24�

The above integrals are considered to be free param-
eters, which are fitted to the solution of the wave equa-
tion, trying to match its results to those from the plane-
wave expansion. The resulting Wannier functions are
indeed well localized, decaying to nearly zero over one
or two lattice constants �Albert et al., 2000�.

Instead of computing the Wannier functions using the
empirical tight-binding parametrization shown above,
the localization of bands can also be optimized by mini-
mizing a spread functional �Souza et al., 2002; Busch et
al., 2003�.

The field profiles in the defect modes are expressed in
this basis as follows:
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E�r� = 	
mR

Cm�R�am�r − R� . �25�

The expansion coefficients Cm can be calculated using
the tight-binding method coupled with either Green
functions or supercell approximations.

Since the Wannier functions are so well localized, the
amplitudes of the expansion coefficients at different lat-
tice sites can be used directly to measure the intensity of
the defect modes at different points in the structure.

The localized Wannier function basis can also be used
instead of the plane-wave basis to set up a transfer ma-
trix method for two-dimensional structures that are pe-
riodic in one direction, but have arbitrary deviations
from periodicity in the other one �Albert et al., 2002�.
Each unit cell of the device is described by a set of Wan-
nier functions related to those in neighboring cells by
transfer matrices.

F. Photonic crystal effective medium boundary conditions

The envelope approximation described in the previ-
ous sections is an efficient method to compute the re-
sponse of photonic crystal heterostructures. It requires,
however, solutions of an equation different from the
wave equation. This section introduces an alternate ap-
proach for the analysis of interfaces in photonic crystals,
which is very similar to our intuitive thinking about the
problem, and also similar to the way in which interfaces
between homogeneous dielectrics are normally consid-
ered.

The method is best described with the example of a
dielectric slab waveguide, composed of a high-index pla-
nar core in the x -y plane enclosed by two claddings.
Geometric solutions exist for computing resonant modes
in such a structure. In each one of the three layers, the
field profile is expressed in terms of infinite material
modes. In the uniform materials assumed here, the
modes will be plane waves of the form E=E0e±ik·r,
where k may be complex. These waves are matched at
the two core-cladding interfaces. Two conditions must
be satisfied at the interfaces. First, the propagation vec-
tor of the plane waves in the plane of the interface must
be conserved, as required by Snell’s law. Second, the
boundary conditions of continuity of the electric field
and its derivative must be enforced. If these conditions
are applied at the two interfaces, it is no longer neces-
sary to solve the wave equation at every point in the
device, since the modes of the infinite materials are as-
sumed to be the correct solutions in each layer.

Such an approach is also possible with photonic crys-
tals, if the boundary conditions are provided. This sec-
tion will review the methods to calculate the boundary
conditions. The envelope approximation presented in
the previous section, with the boundary conditions de-
rived there, appear to be similar to the approach pre-
sented in this section. Here, however, no envelopes will
be employed. The true modes of each crystal will be
matched at the boundary, resulting in a simpler solution.

At an interface between homogeneous dielectrics it is
well known that for each incident wave a reflected and
transmitted wave will be generated, with the possibility
that the transmitted wave is evanescent. These waves
are modes of the infinite material. If the propagation
vector of the incoming wave is known, Snell’s law can be
used to find the allowed propagation vectors for the new
waves. Hence, for photonic crystal interfaces the first
step would be to find the equivalent of Snell’s law. Once
the propagation or evanescent decay vectors are found,
the amplitudes and phases of the waves propagating
with these vectors must be calculated. This is equivalent
to the information provided by the Fresnel coefficients
for dielectric structures. Their equivalent for photonic
crystals must also be found. These two steps are de-
scribed in the following two subsections.

1. Snell’s law equivalent

For homogeneous materials, Snell’s law is based on
the requirement that all waves at an interface have the
same propagation vector in the plane of the interface.
This ensures that the wavefronts have the same period-
icity on the two sides of the interface,

k�
A = k�

B � k� . �26�

The superscripts A and B denote two sides of the inter-
face. Besides this condition, the dispersion relations of
the two materials must be obeyed, which give the al-
lowed propagation vectors for each frequency. For ho-
mogeneous materials, this is

�k�
A�2 = �nA�

c
�2

− �k��2, �27�

�k�
B�2 = �nB�

c
�2

− �k��2, �28�

where nA and nB are the indices of refraction of the two
materials. Using these relations, kB can be calculated if
kA is given.

A similar approach can be taken with photonic crys-
tals, to calculate the propagation vector of photonic
crystal Bloch modes leaving the interface, in response to
an incoming wave �Notomi, 2000, 2002�. Equation �26� is
relaxed to allow propagation vectors to differ by a
reciprocal-lattice vector. Equations �27� and �28� cannot
be applied directly, but similar conditions can be found
from the crystal band diagram: the unknown perpen-
dicular propagation vector component, together with the
fixed parallel component, must result in an allowed state
at the given frequency. In other words, the perpendicu-
lar component is found by computing the equifrequency
surface of the crystal, and searching for points on this
surface with the required parallel wave-vector compo-
nent.

It should be noted, however, that the direction of the
propagation vector obtained with the above analysis is
not the direction of power flow in the crystal. Power
flows in the direction given by the gradient of the
equifrequency surface �Notomi, 2000� at a given point in
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k space. Sharp changes in the direction of this gradient
are responsible for the superprism effect observed in
photonic crystals �Kosaka et al., 1998; Wu et al., 2002�.
Knowledge of the exact propagation vector will be re-
quired, however, in order to evaluate the amplitudes and
phases of the modes excited at the interface.

The above analysis was done first for interfaces corre-
sponding to high-symmetry directions in the crystal. It
was then extended to cover interfaces in arbitrary direc-
tions �Yu and Fan, 2004� by considering equifrequency
surfaces in a set of neighboring Brillouin zones. For light
incident from the photonic crystal onto an air interface it
was also found that in special cases total internal reflec-
tion may occur, but in general some light will leave the
crystal, again through interaction between the incident
wave vector and equifrequency surfaces in remote Bril-
louin zones. This happens even if the incident wave is
below the light line in the first Brillouin zone.

2. Reflection, transmission, and diffraction coefficients
found using the complex plane-wave expansion
method

The preceding subsection describes methods to calcu-
late which modes could be excited at an interface, or, in
other words, the allowed directions for scattered waves.
This subsection and the following one describe methods
to calculate the amplitude and phases of these modes.
These determine how much optical power is transmitted
across the interface and how much is reflected. The pa-
rameters to be computed are the equivalent of the well-
known Fresnel reflection and transmission coefficients
for dielectric interfaces. The photonic crystal surface,
however, may diffract light into multiple directions. In-
side the photonic crystal, light of a single frequency may
also excite multiple propagating and decaying modes.
For these reasons, the Fresnel coefficients are conve-
niently expressed as a set of diffraction coefficients, re-
lating each wave incident on the interface to diffracted
waves.

For generality, the diffraction coefficients are com-
puted at an interface between a homogeneous dielectric
and a photonic crystal. Heterostructures between two
photonic crystals can then be represented as a three-
layer structure with a thin homogeneous layer between
the two crystals. Airy formulas are then used to account
for multiple reflections in this layer. Setting the thickness
of the homogeneous layer to zero provides the response
of the heterostructure. The diffraction coefficients can
be computed using two methods, starting either with the
Bloch modes of the crystal or with a transfer matrix rep-
resentation of the structure. The first method will be
summarized here while the second one is the subject of
the next subsection.

When using the Bloch modes of the crystal, the
boundary conditions are found by matching modes of
the structures on two sides of the interface. In the pho-
tonic crystal, modes are the propagating or decaying
Bloch waves described below. On the other side of the
interface, modes are usually plane waves. At the inter-

face, the well-known electromagnetic boundary condi-
tions of continuity of tangential components of the elec-
tric and magnetic fields must hold. The superposition of
modes on two sides of the interface must therefore have
the same profile. In the photonic crystal, the fields are
periodic with the periodicity of the lattice, as required
by the Bloch theorem. This means that the superposition
of waves on the other side of the interface must have the
same periodicity. Therefore, fields in the plane of the
interface may be decomposed in a two-dimensional spa-
tial Fourier series. The fields must be matched for each
spatial Fourier frequency independently, as shown in
Fig. 7.

In order to provide the necessary information for
mode matching, the band-structure concept must be ex-
tended to include details of the decaying stop band
modes in crystals. The normal band structure provides
extensive information about the propagating Bloch
modes, but it does not describe decaying modes. In
many photonic crystal-based devices, such as resonators
or waveguides, the stop band properties of the crystal
are more important than the pass bands, since they de-
termine how light is confined and how rapid the decay is.
The band structure can be augmented to include decay-
ing modes, with complex propagation vectors. The
imaginary part of these vectors gives the decay constant.
The band structure including both propagating and de-
caying bands is referred to as the complex band struc-
ture of a crystal. It will be used in this section in order to
obtain results valid both inside and outside photonic
stop bands. Several methods exist to calculate the com-
plex band structure. The plane-wave-expansion method
�Ho et al., 1990� can be used directly by providing a
complex propagation vector, and trying to obtain a real
frequency eigenvalue �Suzuki and Yu, 1995�. This, how-
ever, leads to an extensive search since, in general, com-
plex propagation vectors lead to complex eigenvalues. A
method based on the KKR method and scattering ma-
trices has been demonstrated for photonic crystals com-
posed of spherical scatterers �Stefanou et al., 1992, 1998�.
Complex propagation vectors can also be obtained from

FIG. 7. Graphical illustration of mode matching: The triangu-
lar wave represents the field profile just inside the crystal. It
has the periodicity of the lattice and must be matched to plane
waves. The periodic profile is separated in a Fourier series,
shown on the right. Each Fourier component corresponds to a
superposition of plane waves in the homogeneous material
shown at the bottom.
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band-structure calculations using transfer or scattering
matrices �Li and Lin, 2003�, as will be reviewed in the
next section, or through a modification of the PWEM,
described in the next paragraphs.

The PWEM must be modified to express propagation
vectors as eigenvalues, for given frequency inputs �Is-
trate et al., 2005�. Decaying Bloch modes are of impor-
tance only near interfaces, since they decay to zero in
bulk crystals. Hence, only the component of the Bloch
wave vector perpendicular to the interface should be
complex. The wave vector is decomposed, therefore,
into components perpendicular and parallel to the inter-
face. Assuming that the interface is perpendicular to the
ẑ direction, this can be written as k=k� + ẑk�.

For simplicity of notation, the following summary will
assume a two-dimensional photonic crystal of cylinders
with the electric field polarized along the cylinder axis.
The same derivation can be applied to other polariza-
tions or three-dimensional crystals. In the two-
dimensional case, the eigenvalue equation for the
PWEM can be rewritten as �Busch and John, 1998�

	
G

G−G��k + G�2AG
k =

�2

c2 AG�
k , �29�

where G are the reciprocal-lattice vectors, G−G� repre-
sents the Fourier expansion of the inverse of the dielec-
tric constant, k is the wave vector of the mode, and AG

k

is the plane-wave expansion of the mode: E�r�
=	GAG

k ei�k+G�·r. � is the unknown frequency eigenvalue.
Equation �29� can be rewritten in matrix form as

PA =
�2

c2 A , �30�

with the column vector A containing the plane-wave
amplitudes AG

k . Matrix P contains terms with powers of
k� up to second order. These terms can be isolated and
Eq. �30� rewritten �Istrate et al., 2005� using a method
first published for semiconductor heterostructures
�Smith and Mailhiot, 1990�,

k�
2 MaA + k�MbA + Mc���A = 0, �31�

Equation �31� can then be manipulated to obtain an ei-
genvalue equation for k�, which can be written in block
form as

� 0 I

− Ma
−1Mc��� − Ma

−1Mb
�� A

k�A
� = k�� A

k�A
� .

�32�

Equation �32� provides both the real and imaginary
parts of the band structure along with the corresponding
propagating or decaying Bloch modes. It has the further
advantage that the frequency is the input, simplifying
calculations for devices where the input frequency is
known. It should be noted that decaying solutions also
appear outside the photonic crystal pass bands. These
solutions represent surface modes.

Other similar methods have been published for isotro-
pic �Hsue and Yang, 2004� and anisotropic �Hsue et al.,

2005� materials. It should be noted that the imaginary
dispersion relation near the band edge can also be ap-
proximated using an analytic continuation of the real
dispersion �Kohn, 1959�.

With knowledge of the complex band structure and
Bloch modes, the diffraction coefficients can be found
by enforcing boundary conditions between the photonic
crystal modes and plane waves in the homogeneous re-
gion. These conditions are the continuity of the tangen-
tial electric field, along with its first derivative, at the
interface. Since at the interface photonic crystal modes
have the periodicity of the lattice, these fields are de-
composed in a spatial Fourier series, with the boundary
conditions enforced between each Fourier order and its
corresponding diffraction order in the homogeneous
material. Not all diffraction orders will be propagating
waves. Most higher orders will be evanescent, confined
near the interface. In the same way, most Bloch modes
excited at the interface will be decaying; only a few, if
any, will be propagating. The modes decaying in both
directions from the interface serve to adapt the modes of
the infinite crystals to the interface.

With the interface perpendicular to the z direction
and the assumption that one wave is incident on the
interface from the homogeneous material, superposi-
tions of plane waves in this material can be written as

E�r� = E0
+eik0

+·r + 	
m

Em
− eikm

− ·r. �33�

Here the superscripts + and − represent wave propagat-
ing toward the interface and away from it, respectively.
m counts the diffraction orders. All propagation vector
components along the interface are related by
reciprocal-lattice vectors of the periodic surface,

km,�
− = k0,�

+ + Gm,� . �34�

In the photonic crystal, the modes are denoted by Ej
C�r�.

The spatial Fourier components of these modes in the
plane of the interface are denoted by Ej,m

C , where m
counts the Fourier orders. At the interface, the usual
conditions of continuity of the electric field and its de-
rivative must be enforced for each Fourier component
separately,

Em
+ + Em

− = 	
j

CjEj,m
C , �35�

km,��Em
+ − Em

− � = 	
j

CjFj,m
C , �36�

with Em
+ =E0

+ if m=0 and Em
+ =0 otherwise. Fj,m

C is the z
derivative of the mth Fourier component of crystal
mode j, taken in the plane of the interface. The above
equations can be solved for the unknown amplitudes Em

−

and Cj, which represent the reflection, transmission, and
diffraction coefficients.

From these diffraction coefficients, the most impor-
tant value is the specular reflection coefficient. It is real
for reflection outside the stop band, but becomes com-
plex with unit magnitude inside the stop band. As an
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example, the reflection coefficient from a semi-infinite
two-dimensional square photonic crystal of silicon cylin-
ders in air is shown in Fig. 8. The cylinders have a radius
of 0.3 lattice constant. The electric field is polarized
along the cylinders.

The interface conditions for surfaces that do not cor-
respond to Miller indices, as well as for input waves that
are not plane waves, have also been calculated �Jiang et
al., 2005�. For Gaussian input beams, the equifrequency
surface of the crystal dispersion relation, which is re-
sponsible for the direction of propagation in the crystal,
can be approximated as a quadratic function �Momeni
and Adibi, 2003�. This allows one to calculate an effec-
tive refractive index that can be used to compute the
angle of propagation of light entering a crystal with the
usual Snell equation.

The magnitude of reflection coefficients has been
measured by many groups. The reflection phase has also
been measured in a few cases. At microwave frequencies
it was measured directly using a network analyzer
�Özbay and Temelkuran, 1996�. At optical frequencies it
was measured for a three-dimensional colloidal crystal
using resonance frequencies of a large Fabry-Perot reso-
nator �Istrate et al., 2005a�. For a two-dimensional pho-
tonic crystal, the standing waves in front of the crystal
have been measured using coupling of the evanescent
tail of the mode into a tapered fiber �Flück et al., 2003�.

3. Transmission and reflection coefficients calculated
with transfer matrices

An alternative method to calculate the response of
semi-infinite photonic crystals is through the use of scat-
tering or transfer matrices �Li and Ho, 2003�, using a
reciprocal-space representation of the crystal in direc-
tions parallel to the interface, and a real-space represen-
tation perpendicular to the interface. As before, the first
step is to calculate the band structure of the crystal. It is
convenient to obtain this from the scattering matrix �Li
and Lin, 2003�. The structure is separated into thin slices
parallel to the interface plane. It is assumed that all

slices are separated by infinitesimally thin air regions.
This allows fields in the air regions to be expressed in a
plane-wave basis, the same basis as is used outside the
crystal. As they do not have any width, these air regions
will not affect the electromagnetic modes.

Assuming again for simplicity a two-dimensional pho-
tonic crystal with the electric field polarized along the
cylinders and the interface parallel to the ẑ direction, the
electric field in the air regions is expanded as

E�r� = 	
m


Em
+ �z� + Em

− �z��eikm,�·r� , �37�

where m counts again the diffraction orders, the + and −
superscripts denote the waves propagating to the right
and the left, respectively, the � subscript denotes compo-
nents in the plane parallel to the interface, and km dif-
fers from the incident wave vector k0 by a reciprocal-
lattice vector of the periodic slice: km=k0+Gm.

The amplitudes of the plane waves in each air region,
Em

+ and Em
− , are written as column vectors �i

+ and �i
−.

The subscript i counts slices in the crystal. Transfer ma-
trices are then computed to relate electric fields in adja-
cent slices, assuming that these slices are thin enough to
be approximated as constant in the ẑ direction,

��i
+

�i
− � = Ti��i−1

+

�i−1
− � , �38�

where Ti is the transfer matrix for slice i.
In order to obtain the band structure of the crystal,

the transfer matrix for a whole unit cell must be ob-
tained by multiplying the transfer matrices for all slices
inside the unit cell. Calling this matrix T, it can be in-
serted into the Bloch equation,

T��0
+

�0
− � = eik·a3��0

+

�0
− � , �39�

where k is the Bloch propagation vector of the crystal,
whose components k� have been used to set up the
plane-wave basis. a3 is the lattice vector that does not lie
in the plane of the interface. Equation �39� forms an
eigenvalue equation for the unknown propagation vec-
tor perpendicular to the interface, given the frequency
and propagation vector components parallel to the inter-
face.

The transfer matrix method described above suffers
from instability, due to growing exponential functions.
This can be avoided by working with scattering matrices,
instead of transfer matrices, which provide the following
relations:

� �i
+

�i−1
− � = Si��i−1

+

�i
− � . �40�

Scattering matrices for adjacent slices can be combined
using a recursive algorithm �Li, 1996; Pendry, 1996� to
yield a scattering matrix for an entire unit cell. Using the
Bloch theorem again, the band structure can be com-
puted using the following generalized eigenvalue equa-
tion:

FIG. 8. Magnitude and phase of the reflection coefficient from
a semi-infinite photonic crystal. The inset shows the geometry
considered.
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�S11 0

S21 − I
���0

+

�0
− � = eik·a3�I − S12

0 − S22
���0

+

�0
− � . �41�

The transfer matrices computed above relate the elec-
tric fields in neighboring unit cells, keeping track of
which waves are traveling to the right and which to the
left. It is therefore possible to compute the response of a
semi-infinite crystal by considering a single unit cell of a
crystal, setting the wave that enters the crystal from the
far end to zero. This is done �Li and Ho, 2003� by first
finding a matrix D that diagonalizes the transfer matrix
for a unit cell: T=D�D−1, where � is the diagonal ma-
trix containing eigenvalues of the transfer matrix. The
eigenvalue equation can then be rewritten as

��0 = ��0, �42�

where �=eik·a3 is the eigenvalue of the transfer matrix.
�i is defined as

�i = ��i
+

�i
− � = D−1��i

+

�i
− � . �43�

Since � is diagonal, the vector � after propagation
through n unit cells can be written as

��n
+

�n
− � = �n�0 = ��+

n 0

0 �−
n ���0

+

�0
− � . �44�

If the crystal is semi-infinite, there will be no reflec-
tion from its back facet. Hence, there will be no modes
propagating toward the front of the crystal, resulting in
�0

−=0. This condition produces the following relations
for electric fields in front of the structure:

�0
+ = D11�0

+, �45�

�0
− = D21�0

+. �46�

The reflection of light from the crystal can then be writ-
ten as

�0
− = D21D11

−1�0
+ �47�

and a similar expression can be obtained for transmit-
tance into the crystal.

Instead of explicitly setting the reflection from the
back facet to zero, as was described above, this reflec-
tion can also be eliminated by including a small amount
of loss �Botten et al., 2001�. A similar method was also
derived for photonic crystals composed of a periodic ar-
ray of metallic disks �Contopanagos et al., 1999�, using
the impedance of each lattice plane. The derivation,
however, did not include the effects of diffraction into
multiple plane waves. For opal photonic crystals, the re-
flection has also been estimated from overlap integrals
with bulk modes �Ochiai and Sánchez-Dehesa, 2001�.

The preceding two subsections have described two
different methods to compute reflection and transmis-
sion coefficients at photonic crystal boundaries, one
based on the Bloch modes of the infinite crystals and
one based on transfer matrices. These two methods can
be combined to extract the efficiency of the PWEM

when dealing with large, perfectly periodic areas, while
allowing arbitrary defects �Green et al., 2005�.

4. Device analysis using effective medium boundary
conditions

The methods presented in the previous section allow
homogenization of photonic crystals, replacing each pe-
riodic section by an effective medium, characterized by
boundary conditions at the interfaces and by their dis-
persion relations between the interfaces. Now photonic
crystal devices can be interpreted as a succession of ef-
fective materials, some periodic and some homoge-
neous.

Calculation of the response of dielectric devices with
few interfaces is done by assuming propagation in plane
waves in each material, connected by the well-known
boundary conditions at the interfaces. This approach is
now possible with photonic crystal devices as well.

The simplest case to consider is that of light traversing
a photonic crystal slice of finite size �Istrate et al., 2005�.
The well-known Airy formula developed for thin dielec-
tric slabs can be applied directly, since the reflection co-
efficients are known,

r = r12 +
t12t21r23e

2i�

1 − r21r23e
2i� , �48�

where rij represents the reflection coefficient at the in-
terface from material i to j and �=k�L is the phase
change of the wave across the photonic crystal, calcu-
lated from the photonic crystal dispersion relation. r is
the reflection from the slab. Since Eq. �48� takes into
account multiple reflections from the two facets, it rep-
resents correctly the resonant transmittance fringes and
other surface effects that were observed previously �Sa-
koda, 1995a�.

For localized light sources, a similar calculation was
performed �Yang et al., 2005� where the input fields are
first decomposed into Fourier components. The transfer
matrix method from the previous section was also used
to compute the states of photonic crystal quantum wells
�Feng et al., 2005�, again taking into account multiple
reflections inside the cavity.

The resonant states of point-defect cavities are calcu-
lated in an equally intuitive fashion, starting from the
requirement that the wave interfere resonantly with it-
self after one round-trip through the cavity. For a defect
in a square photonic crystal, the round-trip condition
must be enforced in two orthogonal directions at once.
Inside the defect, light propagates as a superposition of
plane waves. These plane waves must all undergo a
phase change of a multiple of 2� after a round trip. For
the two directions this can be written as

kxLx + �x�kz,�� = l� ,

kzLz + �z�kx,�� = m� , �49�

where l and m are integers. kx and kz are components of
the propagation vectors in the cavity. They are related
by the energy conservation requirement kx

2+kz
2=k2
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= �n� /c�2. Lx and Lz are the dimensions of the cavity in
the two directions, and �x and �z are the phase shifts
encountered upon reflection from the photonic crystal
interfaces. �x�kz ,�� is the phase change upon reflection
from an interface parallel to the z direction. It depends
on frequency and also on the angle of the incoming
wave. This incident angle is determined by kz. In the
same manner, �z describes reflections at interfaces par-
allel to the x direction and depends on kx and �.

The same conditions of constructive interference after
one round trip can also be used for the design of photo-
nic crystal waveguides �Istrate and Sargent, 2005b�. Us-
ing a ray-optics picture, light travels along the guide by
reflecting off two claddings. Since the cladding interfaces
are periodic, they may also diffract waves. The mode
condition can be found by insisting that all diffracted
waves return after one round trip across the waveguide
with the same amplitude and phase relations.

In most practical devices, when waves diffract at the
periodic interfaces, up to three propagating diffraction
orders can appear. The rest will be evanescent with a
decay strong enough so that they will not be able to
carry any significant optical power from one cladding
interface to the other one. These evanescent diffraction
orders are therefore ignored. The derivation shown here
assumes that three propagating diffraction orders are in-
deed present. The equations can be simplified easily if
there are fewer orders.

The various plane waves in the core of the waveguide
are denoted by the complex amplitudes E1, E2, and E3
measured at a point just before they reach the cladding
interface. At the interface they will diffract into each
other, as given by the complex diffraction coefficients dij
described in Sec. V.F.2 denoting diffraction from plane
wave i to j. After diffraction at the interface and propa-
gation to the opposite cladding, the complex amplitudes
of the fields will be denoted by E1�, E2�, and E3�. The two
sets of amplitudes are related by

E1� = �E1d11 + E2d21 + E3d31�eikx1L,

E2� = �E1d12 + E2d22 + E3d32�eikx2L, �50�

E3� = �E1d13 + E2d23 + E3d33�eikx3L.

The above set of equations can be written in matrix
form by using vectors E and E� to contain the fields Ei

and Ei�, respectively, and the matrix M to relate the two,

E� = ME. �51�

The matrix M essentially describes propagation through
half of a round trip. A similar matrix N can be set up to
complete the round trip, relating the fields E� at the
second interface to the fields E� at the first interface.
The mode condition then requires that E�=E,

E� = NME = E , �52�

which means that the matrix NM must have an eigen-
value equal to 1. For symmetric waveguides, whose
modes can be divided into symmetric and antisymmetric

classes, matrices M and N will be equal. The mode con-
dition in this case can be simplified by requiring that
matrix M have an eigenvalue equal to ±1.

In a similar way, the response of photonic crystal
waveguide couplers can be computed using diffraction
coefficients to calculate the even and odd supermodes of
the couplers, from which the coupling lengths and cou-
pling constants are easily obtained. The coupling con-
stant can then be used to calculate the coupling from a
photonic crystal waveguide to a point defect lying next
to the guide.

As was seen here, the devices are separated into sec-
tions of effective materials connected by boundary con-
ditions. Similar structures involving uniform dielectrics
have been solved using transfer or scattering matrices,
assigning one matrix to each interface and one to each
uniform section. The same matrix formalism can also be
applied to the photonic crystal interfaces described here
�Istrate and Sargent, 2005b� to provide a systematic way
of writing the necessary equations for structures with
multiple interfaces.

The above examples have used interfaces between
photonic crystals and homogeneous materials. The same
techniques can be used for heterostructure devices. As
mentioned above, such a heterostructure can be de-
scribed by a three-layer structure with two photonic
crystals separated by an infinitely thin homogeneous
layer. As the thickness of the center layer vanishes, the
resulting transmission, reflection, and diffraction tend to
the correct values for the heterostructure. One problem
encountered in this case is that two crystals may have
different lattice constants, resulting in different propaga-
tion vectors for the various diffraction orders. This
means that the Fourier decomposition of the field pro-
files in the interface plane will have different compo-
nents. A possible solution is to perform the decomposi-
tion on a larger section of the interface, corresponding
to an integer number of lattice constants in each crystal
�Feng et al., 2005�.

The boundary conditions described here replace uni-
form photonic crystal sections with effective materials,
assuming that the modes of the infinite materials are a
good representation of the finite crystals. If these crystal
sections become very thin, however, the assumption will
introduce errors. This usually happens for crystals less
than four layers thick. For such thin crystals, a better
solution is to combine the reflection and diffraction co-
efficients in larger crystals with a scattering matrix rep-
resentation in the thin crystals �Green et al., 2005�. This
preserves both generality and efficiency.

The above interface properties and associated transfer
matrices have been calculated for simple planar inter-
faces. Similar matrices can also be computed for much
more complex structures, such as entire sections of
waveguides and waveguide bends �Mingaleev and
Busch, 2003�. This allows complex optical circuits to be
assembled from a set of building blocks, such as various
types of bent and straight waveguide sections and other
optical elements. The response of the entire system can
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then be computed easily, if the responses of the indi-
vidual sections are known.

G. Defect analysis and design based on symmetry and
momentum considerations

The goal of the preceding sections has been to provide
simplified methods to solve the wave equations in pho-
tonic crystals with deviations from perfect periodicity. It
is possible, however, to obtain significant information
about resonant cavities and defects from considerations
of the crystal and defect symmetries. One particular area
where this information is of value is in the design of
two-dimensional crystal devices that minimize out-of-
plane radiation.

For one-dimensional photonic crystals with a weak
modulation in refractive index, the Bloch modes may be
approximated by sinusoids arranged according to the
well-known requirement that the electric field is concen-
trated in the high-dielectric regions at the lower band
edges and in the low-dielectric regions at the upper
edges �Joannopoulos et al., 1995�. Even when the dielec-
tric modulation increases, many of the qualitative prop-
erties of this simple model still hold. Such an approxi-
mate representation of the modes is also useful in
crystals of higher dimensionality. The symmetries of the
crystal, as given by space group theory, can be used to
determine the shapes of photonic crystal modes �Sa-
koda, 1995b�. The same group theory is then used to
classify resonant modes in photonic crystal defects, re-
sulting in a set of allowed mode profiles in the defects
�Painter and Srinivasan, 2003� based on the symmetry of
the defect.

The symmetry properties of the resonant states are
well suited to the investigation and reduction of radia-
tion losses from two-dimensional photonic crystal reso-
nators fabricated in slab waveguides. The bulk Bloch
modes in such crystals can be divided in two classes:
those above and below the light cone. The ones above
have a small enough in-plane wave vector to be able to
couple to radiating modes above the slab. Those below
have a wave vector larger than what is possible for
propagating modes outside the slab. These modes are
therefore well confined to the slab in the absence of
fabrication imperfections. A similar effect is also seen
with photonic crystal waveguides fabricated in semicon-
ductor slabs. Guided modes with propagation constants
larger than what is possible outside the slabs will not
radiate �Johnson et al., 1999�, with the mode being con-
fined to the slab by index guiding.

For photonic crystal resonators fabricated in two-
dimensional crystals, however, it is impossible to com-
pletely eliminate radiation. Since the optical mode is
confined to the neighborhood of the defect, it has a lim-
ited spatial extent. Its profile, expressed in two-
dimensional spatial Fourier space, will have Fourier
components small enough to fall in the radiating region.
While it is not possible to completely eliminate this ra-
diation, it can be reduced to negligible levels. One of the
first methods that was introduced to reduce radiation

losses required that radiated fields cancel in the far field
leading to a set of nulls in the far-field pattern �Johnson
et al., 2001�. This was obtained by a cavity mode with
odd symmetry, making sure that the spatial Fourier com-
ponents near zero vanish. Optimizing a cavity using this
approach led to a quality factor of approximately 30 000.

Even when using odd modes in the cavities, the mo-
mentum distribution of the modes can be further opti-
mized to push most of the mode energy to momentum
values that fall outside the light cone �Srinivasan and
Painter, 2002, 2003�. Symmetry considerations are used
to select the best unoptimized mode. This will, for ex-
ample, indicate whether the best starting point is a de-
fect of increased or reduced dielectric constant, and also
the best position for the center of the mode. Further
optimizations are then performed to distribute the mo-
mentum components in the most favorable way while
still maintaining good confinement in the plane of the
slab. The best structures for this purpose have been
found to be graded photonic crystals, with a gradual in-
crease in the strength of the stop band away from the
center of the defect �Srinivasan and Painter, 2002�, as
well as abrupt heterostructures.

Engineering the Fourier components of the defect
modes has been used for a number of record-breaking
quality factor measurements. In a graded photonic crys-
tal defect, the quality factor Q was measured to be
40 000 �Srinivasan, Barclay, et al., 2004�. Optimizing the
positions of the cylinders in the neighborhood of a point
defect led to a cavity with Q=45 000 �Akahane et al.,
2003�. Using heterostructure cavities for the same pur-
pose produced Q=600 000 �Song, Noda, et al., 2005�.

H. Analysis methods for semiconductor devices

Many of the techniques presented earlier have been
derived from developments in semiconductor hetero-
structures. This subsection gives a brief review of the
analysis methods for equivalent electronic devices.

Due to the crystalline periodicity, electrons in semi-
conductors exist in Bloch states. These states are com-
posed of a traveling-wave component modulated by a
periodic function. The relationship between the wave
vector of the traveling-wave component and energy is
given by the semiconductor dispersion relation. Since in
most semiconductors this dispersion relation is parabolic
near the band extrema, similar to the dispersion of free
space, one can approximate the movement of an elec-
tron in this material with movement in free space, but
with a different mass, called the effective mass.

The effective mass depends on the semiconductor ma-
terial and band. It includes all of the necessary crystal
properties in order to describe the electron motion as a
particle propagating through a region of constant poten-
tial, when in fact the electron feels the periodic attrac-
tion of all atoms. The effective mass makes it possible to
employ many equations from classical mechanics, such
as Newton’s law of motion, to calculate the acceleration
of an electron. By collecting the salient properties of the
semiconductor into a small number of parameters—the
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energetic locations of the band extrema and effective
masses—many devices can be understood very easily,
usually with sufficient numerical precision.

In most cases the parabolic band approximation—
required by the effective mass—is valid, especially near
the band edges where the highest charge-carrier concen-
trations are found. Far from the edges, however, the
bands deviate significantly from a parabola reducing the
validity of such approximations.

The effective masses can be measured using cyclotron
resonance experiments �Dresselhaus et al., 1955�. The
results are tabulated for most semiconductors for both
the conduction and valence bands. They can, however,
also be computed from the curvature of the dispersion
relation. An easier method, however, is given by the k ·p
analysis �Bastard, 1988�, where the effective mass is
computed from the Bloch modes instead of the band
curvature. Further improvements to the band curvature
approximations are given by the Kane �1957� model.

Semiconductor heterojunctions involve two or more
semiconductors which form a single crystal. The poten-
tial energy experienced by electrons in such structures is
a superposition of the periodic potential due to the crys-
tals and the potential steps representing the differences
in band energies across the junction. It is impractical to
consider the potential of all atoms when calculating the
properties of the structure. The envelope approximation
�Sai-Halasz et al., 1977; Bastard, 1981� is used to address
this issue.

As was done with bulk semiconductors, the periodic
potential profile of each crystal can be replaced by a
material parameter, which is again the effective mass.
With this approximation, the only varying potential left
in the problem is that of the heterojunction. In most
practical cases the number of heterointerfaces is quite
small leading to simple quantum-mechanical problems,
as illustrated in Fig. 9.

When using this approximation, only the envelope of
the atomic potential energy is used. All other properties
of the semiconductors are hidden in the effective mass.
As a result, one does not obtain the exact wave function
of the electron in the heterojunction, but only its enve-
lope. The envelope is usually sufficient to find confine-
ment of electrons, resonant frequencies, and most other
parameters of practical interest for an electronic device.

While the envelope approximation can be used effec-
tively to compute electronic states in semiconductor het-
erostructures, the wave function at the heterojunction,
the plane where the two semiconductors meet, is not
described well. In usual quantum structures, simple
boundary conditions of continuity of the wave function
and its derivative at an interface are imposed. This is,
however, no longer the case when using the envelope
approximation, since the envelope obeys its own equa-
tion instead of the Schrödinger equation. While the en-
velope of the wave function must remain continuous, its
first derivative does not. Several boundary conditions
have been proposed �Zhu and Kroemer, 1983; Galbraith
and Duggan, 1988; Grinberg and Luryi, 1989; Foreman,
1998� over the past three decades, each valid for differ-

ent semiconductors, and in different situations.
Envelope function approximations express the hetero-

structure modes as superpositions of the bulk modes,
modulated by slowly varying envelopes. In particular,
decaying wave functions in a semiconductor band gap
are expressed as superpositions of traveling solutions,
modulated by a decaying envelope. An alternative
method has been described that uses the true semicon-
ductor Bloch modes at every point in the heterostruc-
ture �Smith and Mailhiot, 1990�. In the first step of the
method, eigenstates of the bulk material Hamiltonian
are found in each semiconductor. Since the electron en-
ergy ��� and propagation vector parallel to the interface
�k�� are conserved across the interface, eigenstates are
calculated with � and k� as inputs. This will result in a
set of Bloch modes which in general have a complex
propagation vector perpendicular to the interface �k��.
Eigenstates with real k� correspond to propagating
modes, while complex values represent decaying modes
which have significant amplitude only near the interface.
This is the case for all modes in the band gap, but also
appears for energies outside the gap. The imaginary part
of k� describes the decay length in the crystal �Smith
and Mailhiot, 1986�.

The complex eigenmodes of two crystals, with equal �
and k�, are then matched at the interface �Aversa and
Sipe, 1993�. The condition to be enforced there is the
continuity of electron flux �Bastard, 1988�. For a given
set of waves incident on the interface, the corresponding
set of outgoing waves is obtained. The most significant
difference between this approach and the envelope ap-
proximation is that the amplitudes of the bulk Bloch
modes are constant. Decay in the stop band is described
by decaying Bloch modes. As a result, there is no enve-

FIG. 9. The use of the envelope approximation and effective
mass in semiconductor structures. �a� True atomic potential.
�b� Heterostructure potential and effective mass.
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lope equation to be solved at each point in the hetero-
structure.

The use of the k ·p approach described above is based
on the nearly free electron model for semiconductors,
where the crystal lattice is assumed to form a small per-
turbation from free space. A complementary approach
has also been taken in the tight-binding method. Here
the electronic wave functions are assumed to be very
similar to those of independent atoms. The effects of
neighboring atoms are treated as perturbations �Ash-
croft and Mermin, 1976�. Using this method, electron
states are represented in a basis of functions that are
highly localized at the lattice sites.

Both the effective mass and tight-binding approxima-
tions have been applied to photonic crystal devices. Ef-
fective masses are useful for devices with large periodic
sections, such as heterostructure waveguides. In con-
trast, tight-binding approaches are most efficient for de-
vices with defect modes of small extent, such as those
produced by point-defect resonators and line-defect
waveguides.

VI. CONCLUSIONS

Semiconductor heterostructures have revolutionized
optoelectronics and high-speed electronics through their
ability to confine electrons of precise kinetic energies in
specific device areas. Photonic crystal heterostructures
provide a similar amount of control over the wavelength
and localization of light in photonic crystals. For this
reason they have become an important building block
for photonic crystal devices. While the initial device pro-
posals were based on point and line defects, some of the
best-performing waveguides and resonators were fabri-
cated using heterostructures including both abrupt and
graded junctions.

The simulation of heterostructure devices is difficult
with standard tools, due to the large device volumes that
must be treated with great accuracy. The analogy be-
tween semiconductors and photonic crystals, however,
has allowed the introduction of several highly optimized
design and analysis methods derived from their solid-
state counterparts.

While individual heterojunctions and simple devices
have been demonstrated and reviewed here, improve-
ments in the quality of fabricated heterostructures, espe-
cially using self-assembled colloidal crystals, will lead to
more complex optical devices. Such heterostructures are
expected to provide a means for the realization of mul-
tiple devices, integrated on a common platform, where
active and passive functions are obtained by selective
infiltration of the porous structures with different mate-
rials. This will lead to the necessary devices for more
complex optical systems required in the future.
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