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This review presents recent developments in the understanding of how impurities influence the
electronic states in the bulk properties of superconductors. The focus is on quasilocalized states in the
vicinity of impurity sites in conventional and unconventional superconductors and the goal is to
provide a unified framework for their description. The nonmagnetic impurity resonances in
unconventional superconductors are directly related to the Yu-Shiba-Rusinov states around magnetic
impurities in conventional s-wave systems. The physics behind these states, including the quantum
phase transition between screened and unscreened impurities, are reviewed and recent work on
d-wave superconductors is emphasized. The bound states are seen in scanning-tunneling spectroscopy
measurements on high-Tc cuprates, which are described in detail. This paper discusses very recent
progress in our understanding of states coupled to impurity sites, which have their own dynamics. Also
reviewed are inelastic electron-tunneling spectroscopy features that could be seen by
scanning-tunneling microscopy in real space and their Fourier-transformed images and impurity
resonances in the presence of an order competing with superconductivity. The last part of the review
is devoted to the influence of local deviations of the impurity concentration from its average value on
the density of states in s-wave superconductors. Discussed is how these fluctuations affect the density
of states and it is shown that s-wave superconductors are, strictly speaking, gapless in the presence of
an arbitrarily small concentration of magnetic impurities.
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I. INTRODUCTION

A. Aim and scope

Real materials are not pure. Often, excessive impuri-
ties hinder observations of beautiful physics that exists
in cleaner systems. For example, magnetic disorder de-
stroys the coherence of the superconducting state. At
the very least, in conventional metals impurities lead to
higher resistivity. It is therefore very tempting to treat
impurities as unfortunate obstacles to understanding the

true underlying physics of the systems under consider-
ation, to strive to make cleaner and better materials, and
to ignore imperfections whenever possible.

Yet sometimes impurities lead directly to desired
physical properties. They are crucial in achieving the
functionality of doped semiconductors. Undoped semi-
conductors are just band insulators and not useful for
applications in electronics. The entire multibillion-dollar
semiconducting electronics industry is based on the pre-
cise control and manipulation of electronic states due to
dopant �impurity� states.

Consequently, sensitivity of a physical system to disor-
der can be a blessing in disguise. It can lead not only to
achieving new applications but also to uncovering the
nature of exotic ground states, elucidating details of
electronic correlations, and producing electronic states
that are impossible in the bulk of a clean system. Until
recently, this idea has not been emphasized in the study
of correlated electron systems, but now more efforts are
focused on understanding changes produced by disorder
in a wide variety of strongly interacting electronic mat-
ter. One of the most promising directions is the study of
disorder near quantum critical points, where several
types of ordering compete and exist in a delicate balance
that impurities have the power to tip in favor of one of
the orders �Millis, 2003�.

This is a review of the impurity effects on the elec-
tronic states in superconductors. The main purpose of
our article is to give the reader an appreciation of recent
developments, review the current understanding, and
outline further questions on how impurities affect con-
ventional, and especially unconventional, superconduct-
ors. Superconductors present probably the first example
of a nontrivial many-electron system in which the con-
sequences of disorder on the electronic states were stud-
ied experimentally and theoretically, and this review fo-
cuses on these effects.

The main classical results on impurity effects in super-
conductors, such as the Abrikosov-Gor’kov theory of
pair breaking by magnetic impurities �Abrikosov and
Gorkov, 1960� and the Anderson theorem �Anderson,
1959�, are well covered in textbooks and reviews �Abri-
kosov et al., 1963; Schrieffer, 1964; Fetter and Walecka,
1971; de Genmes, 1989; Annett, 1990; Sigrist and Ueda,
1991; Tinkham, 1996�. The need to review the subject
arises since �a� there are many new results, �b� the analy-
ses of the classical papers have been substantially modi-
fied in applications to novel materials, and �c� the em-
phasis of the study of the impurity effects has shifted
from macroscopic to atomic length scales.

From the early days, impurity doping was one of the
most important tools for identifying the nature of the
pairing state and microscopic properties. A classical ex-
perimental study of the role of magnetic impurities in
conventional superconductors was carried out by Woolf
and Reif �1965� and followed by many detailed investi-
gations; see e.g., Edelstein �1967�, Dumoulin et al. �1975,
1977�, Bauriedl et al. �1981�.

In the past two decades we have witnessed a tremen-
dous growth in the number of novel superconductors.
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Many of them belong to the general class of strongly
correlated electron systems, and as a result of the Cou-
lomb interaction the superconductivity is unconven-
tional. Both magnetic and nonmagnetic impurities are
pair breakers in unconventional superconductors, and
often impurity suppression of superconductivity is an
early hint of the unconventional pairing state. For ex-
ample, rapid suppression of the transition temperature
Tc in Al-doped SrRuO4 was the first indication that it is
a p-wave superconductor �Mackenzie et al., 1998; Mack-
enzie and Maeno, 2003�. The study of the effect of im-
purities on unconventional superconductors is still a de-
veloping field, yet it is mature enough to warrant an
overview.

Sometimes a superconducting state emerges from
competition between different phases, such as magneti-
cally ordered and paramagnetic phases in high-
temperature cuprates, organic materials, and heavy-
fermion systems. Experimentally, superconductivity is
often strongest when two competing states are nearly
degenerate, near quantum critical points, as in Ce-based
“115” heavy-fermion materials �Sidorov et al., 2002� and
UGe2 �Saxena et al., 2000�. The study of impurity effects
allows us �at least, in principle� to characterize the su-
perconducting state and uncover competing electronic
correlations.

The same reasoning has driven the study of impurity
effects in high-Tc superconductors. Despite much
progress, at present there is no complete microscopic
description and certainly no consensus on the mecha-
nism of superconductivity. The study of impurity-
induced states has the potential to reveal the nature and
origin of the superconducting state. Much of the recent
experimental work has focused on high-Tc systems, and
our comparison of theory and experiment inevitably em-
phasizes these materials. Nonetheless, this is emphati-
cally not a comprehensive review of impurity effects in
the cuprates. Their main properties are described in
many excellent reviews, including those on scanning-
tunneling microscopy �STM� �Fischer et al., 2005�, on
angle-resolved photoemission spectroscopy �ARPES�
�Damascelli et al., 2003; Campuzano et al., 2004�, and on
the pseudogap state �Timusk and Statt, 1999�, to which
we refer interested readers.

The new states and structures that appear due to dis-
order are often confined to microscopic or mesoscopic
length scales. They would remain in the realm of aca-
demic discussion were it not for the development of new
techniques and probes of disorder. At the time of the
classical work, experimental interest was solely on mac-
roscopic properties of materials: transition temperature
Tc, specific heat, and the average density of states �DOS�
�deduced from measuring the tunneling conductance of
planar junctions�. These were the experimentally mea-
sured quantities. With the perfection of more local
probes such as nuclear magnetic resonance �NMR�, and
especially with the development of scanning-tunneling
microscopy and spectroscopy �STM/STS�, it became pos-
sible to experimentally determine the structures on
atomic scales around impurity sites. Therefore the em-

phasis of theoretical work also shifted to the study of
local properties. It is thus timely and useful to review
new results and ideas about impurity-generated states in
superconductors.

We had to be selective about the topics covered in this
article. In the spirit of examining new approaches, our
review primarily discusses the physics of the single-
impurity bound or quasibound states at atomic scales
and local electronic effects in the vicinity of defects. We
also discuss mesoscopic effects and impurity effects in
the presence of orders competing with superconductiv-
ity. The latter idea is applied to the pseudogap state of
high-Tc materials.

We have restricted ourselves to the study of the den-
sity of states. A comprehensive review of the effects that
have been studied experimentally and discussed theo-
retically is a much more difficult task that would take
substantially more space. We do not analyze the behav-
ior of transport coefficients. While this is a subject of
intense current interest and many important results have
been obtained, it is beyond the scope of this article.

To keep this review useful for people entering the
field, we start with the Bardeen-Cooper-Schrieffer
�BCS� model for superconductivity and use a modified
version of this model throughout. In doing so, we ne-
glect corrections due to strong coupling; in the known
case of electron-phonon interactions these are quantita-
tive rather than qualitative �Schachinger et al., 1980;
Schachinger, 1982; Schachinger and Carbotte, 1984; Car-
botte, 1990�. In many unconventional materials, such as
cuprates, the dynamical glue in the self-consistent theory
is not known. Yet most people agree that the supercon-
ducting state of cuprates is not very anomalous and has
a d-wave symmetry superconducting gap. We take the
view that in cuprates and other compounds at low ener-
gies, for the purposes of this review, superconductivity is
adequately described by the BCS theory with an aniso-
tropic gap.

B. Unconventional superconductivity

Examples of exotic superconductors discovered in the
last two decades include high-Tc superconductors,
heavy-fermion and organic superconductors, and
SrRuO4. A common feature of all is that the supercon-
ductivity is unconventional, i.e., the pairing symmetry is
non-s-wave �in contrast to conventional materials, such
as lead�.

A superconducting order parameter describes the
pairing of fermions with time-reversed momenta, k and
−k,

��k��,� = ��k,��−k,�� , �1.1�

where � ,� are the spin indices. If the order parameter
transforms according to a nontrivial representation of
the point group of the crystal, the superconductor is
called unconventional. If it transforms according to a
trivial representation of the group, it is a labeled s wave.
We distinguish between the spin-singlet pairing �total
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spin of the pair S=0�, for which ��k��,�=��k��i�y,���,
where �y is the Pauli matrix in spin space, and the spin-
triplet state �S=1�, when ��� is a symmetric spinor in
� ,�. Since the order parameter has to be antisymmetric
under permutation of the fermion operators in Eq. �1.1�,
the spatial part of ��k��,� is even for spin-singlet super-
conductors and odd in the spin-triplet case. Expanding
in eigenfunctions of orbital momentum, it follows that
spin-singlet pairing corresponds to an even orbital func-
tion of momentum k and hence we call it an s-wave �for
l=0�, d-wave �for l=2�, etc., superconductor in analogy
with the notation for the atomic states. For a spin-triplet
superconductor, the orbital part is an odd function of k,
and hence the spin-triplet superconductor can be p wave
�l=1�, f wave �l=3�, etc. More rigorously, pairing states
are characterized by the irreducible representation of
the crystal lattice symmetry group, including the spin-
orbit interaction �Volovik and Gor’kov, 1984; Blount,
1985; Sigrist and Ueda, 1991�. Characterization in terms
of orbital moment is an oversimplification, and we use
this terminology with an understanding that the correct
symmetries are implied for a given crystal structure. This
classification is given for BCS-like or even-frequency su-
perconductors. The classification is opposite for odd-
frequency pairing, in which the spin-singlet state has odd
parity because the pairing wave function is an odd func-
tion of time �Berezinskii, 1974; Balatsky and Abrahams
1992�. We consider here only even-frequency supercon-
ductors.

We restrict ourselves to the most common examples
of the unconventional pairing state, for which the order
parameter averaged over the Fermi surface vanishes,

�
k
��k��� = 0. �1.2�

Hence superconductors with constant or nearly constant
order parameter on the Fermi surface are s wave, while
p-, d-, or higher-wave states, where Eq. �1.2� holds, are
signatures of an unconventional superconductor. There
are several excellent recent reviews that address the un-
conventional nature of superconducting pairing states in
specific compounds, such as p-wave superconductivity in
SrRuO4 �Mackenzie and Maeno, 2003� and the d-wave
state in high-Tc materials �Annett, 1990; Harlingen,
1995; Tsuei and Kirtley, 2000�.

C. Outline

We start with a general overview of BCS-like super-
conductivity. To review effects of impurities, we discuss
the properties of superconductors in general. In cu-
prates, as well as in some heavy-fermion systems and
other novel superconductors, there is some evidence for
the existence of an order competing with superconduc-
tivity on all or parts of the Fermi surface. The exact
nature of the competing order parameter is only conjec-
tured. A general feature of all such models is the en-
hancement of the competing order once superconductiv-
ity is destroyed, for example, in the vicinity of a

scattering center. It has been suggested that the reaction
of the system to the introduction of impurities can be an
important test of the order, or even growing correlations
towards such an order, in the superconducting state.

The prerequisite for such a test is the detailed under-
standing of the behavior of “simple” superconductors
with impurities. Work aimed at developing this under-
standing spans a period of more than 40 years, and some
of the very recent results continue to be fresh and unex-
pected. Therefore we devote a large fraction of this re-
view to a discussion of the properties of superconductors
with impurities in the absence of any competing order.
In this case, from a theoretical standpoint, before dis-
cussing impurity effects we need to agree upon methods
to describe the very phenomenon that makes the impu-
rity effects so interesting: superconductivity. Even in the
most exotic compounds investigated so far, the super-
conducting state itself is not anomalous in that it results
from the pairing of fermionic quasiparticles, and these
Cooper pairs may be broken by interaction with impu-
rities or external fields.

Impurity effects in conventional superconductors
were the subject of early studies by Anderson, who pro-
vided the Anderson theorem �Anderson, 1959� and by
Abrikosov and Gor’kov �1960�. This pioneering work
laid the foundation for our understanding of impurity
effects in conventional and unconventional supercon-
ductors, described in terms of electron lifetime due to
scattering on an ensemble of impurities. Abrikosov and
Gor’kov predicted the existence of gapless superconduc-
tivity that was subsequently observed in experiments
�Woolf and Reif, 1965�. A brief summary of the
Abrikosov-Gor’kov �AG� theory and its extension to
non-s-wave superconductivity is given in Table I, where
the effect of impurities on the superconducting state on
average or globally is listed.

After intense interest in early BCS theory, the subject
was considered closed in the mid 1960s, with most ex-
perimentally relevant problems solved. Recently, how-
ever, there has been a revival of interest in the studies of
“traditional” low-temperature s-wave superconductors

TABLE I. Effects of potential and magnetic impurity scatter-
ing on the s-, p-, and d-wave superconductors are shown quali-
tatively. “	” indicates that impurity scattering is a pair breaker
and “�” indicates that impurity scattering is not a pair
breaker. There is a qualitative difference between the potential
scattering in s-wave superconductors and any other case. Po-
tential scattering impurities are not pair breakers in the s-wave
case due to the Anderson theorem. This is an exceptional case.
For any other case impurity scattering, magnetic or nonmag-
netic, suppresses superconductivity, although the details are
model dependent. At high enough concentrations both mag-
netic and nonmagnetic impurities will suppress superconduc-
tivity regardless of symmetry.

s wave p wave d wave

Potential scattering � 	 	

Magnetic scattering 	 	 	

376 Balatsky, Vekhter, and Zhu: Impurity-induced states in conventional and¼

Rev. Mod. Phys., Vol. 78, No. 2, April–June 2006



with magnetic and nonmagnetic impurities, with many
new theoretical and experimental results changing our
perspective on this classical problem.

A special place in this review is devoted to the study
of impurity-induced local bound states or resonances.
This is an old subject, going back to the 1960s when
bound states near magnetic impurities in s-wave super-
conductors were predicted in the pioneering works of
Yu �1965�, Shiba �1968�, and Rusinov �1969�. They con-
sidered pair breaking by a single magnetic impurity in a
superconductor and found that there are quasiparticle
states inside the energy gap that are localized in the vi-
cinity of the impurity atom. The corresponding gap sup-
pression occurs locally and the concept of lifetime
broadening is inapplicable. In general, in this situation it
is more useful to focus on local quantities, such as local
density of states �LDOS�, local gap, etc., rather than on
average impurity effects �which vanish for the single im-
purity in the thermodynamic limit�. Yet it is clear that
this local physics at some finite concentration of impuri-
ties suppresses superconductivity completely. This con-
nection was discussed by Yu �1965�, Shiba �1968�, and
Rusinov �1969�. In particular, the formation of an in-
tragap bound state and impurity bands due to magnetic
impurities leads to filling of the superconducting gap and
therefore connects to the Abrikosov-Gor’kov theory
�Abrikosov and Gorkov, 1960�.

At that time, there were no experimental techniques
for directly observing single-impurity states. As a result,
the entire subject was largely forgotten until STM was
used by Yazdani et al. �1997� to study impurity states.
This reinvigorated the field and led to a firm shift in
interest from global to local properties. Soon afterwards,
STM was used to observe local impurity states near va-
cancies and impurities in high-Tc cuprates �Hudson et al.
1999, 2001; Yazdani et al., 1999; Pan, Hudson, Lang et al.,
2000�. These discoveries led to a new field of research in
which impurities opened a window into the electronic
properties of exotic materials with atomic spatial resolu-
tion. As a first test of theories, this allowed a direct com-
parison of local electronic features in tunneling charac-
teristics with the theoretical predictions for the density
of states.

We start by briefly reviewing the BCS theory in Sec.
II. Our main goal is to review three approaches used to
analyze impurity effects: direct diagonalization of the
Hamiltonian via the Bogoliubov-Valatin transformation,
the variational wave function of the original BCS paper,
and the Green’s-function method which is well suited to
the analysis of multiple impurity problems. Then we de-
fine different types of impurity scattering in Sec. III. We
pay special attention to distinguishing between magnetic
and nonmagnetic impurities and differentiating between
static and dynamic scatterers. The basic features of non-
magnetic scattering in s-wave superconductors are out-
lined in Sec. IV.

To keep the review readable by graduate students and
researchers entering the field, we begin the discussion of
localized states by considering an example of an impu-
rity bound state in a two-dimensional �2D� metal in Sec.

V. Then we discuss the low-energy bound state in s- and
d-wave superconductors in Secs. VI and VII, respec-
tively. We briefly touch upon the possible existence of
impurity resonances in different models of the
pseudogap state of the cuprates in Sec. VIII. Recent
STM measurements on both conventional and uncon-
ventional superconductors are discussed in Sec. IX.
Changes in the ground state of a superconductor con-
taining a classical spin as a function of the coupling
strength between the spin and conduction electrons are
discussed in Sec. X.

We proceed by considering situations when impurities
have their own dynamics, so that their effect on elec-
trons is more complicated, see Secs. XI and XII, and in
Sec. XII.C we also study the combined influence of col-
lective modes and impurities. The final two parts of our
review are devoted to a discussion of the effects of im-
purities on the mesoscopic and macroscopic scale. For
completeness, in Sec. XIII we briefly review the basic
ideas of computing the average density of states for a
macroscopic sample. Due to a lack of space, we cannot
do justice to this rich subject and use it instead to discuss
new results of the impurity effect on scales that are small
compared to the sample size, but large relative to the
superconducting coherence length. In that situation,
there are dramatic consequences of local impurity real-
izations that may be different from the average, and we
give an overview of the results for the density of states in
Sec. XIV. We conclude with a summary in Sec. XV.

D. Other related work

In focusing largely on the properties of impurities on
atomic or mesoscopic scales, we cannot give due atten-
tion, within the confines of this review, to several other
questions that have been important in the studies of im-
purities. One of these is how exactly does the impurity
band grow out of bound states on individual impurity
sites, i.e., what is the effect of interference between such
sites in real space? We briefly review some of the recent
work in Sec. XIII but do not discuss the subject in depth,
listing some recent work that addresses the issue.

The usual finite-lifetime diagrammatic approach, ne-
glecting multiple impurity scattering �Gorkov and Kalu-
gin, 1985; Ueda and Rice, 1985; Hirschfeld et al., 1986;
Schmitt-Rink et al., 1986�, yields a constant density of
states at the Fermi level in a nodal superconductor with
impurities. In three-dimensional systems, neglected con-
tributions are smaller by either a factor �kFl�−1
1,
where kF is the Fermi wave vector and l is the mean free
path, or by an additional power of impurity concentra-
tion, nimp
1. In two dimensions, and for d-wave super-
conductors, neglected diagrams contain a low-energy
singularity, and therefore some of them contribute to the
density of states at leading order �Nersesyan et al., 1995�.
The result of Nersesyan et al. spawned a number of at-
tempts to solve the problem of many impurities in a
two-dimensional �2D� d-wave superconductor nonper-
turbatively. Some of the approaches and results are re-
viewed �from different standpoints� by Altland et al.
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�2002� and Hirschfeld and Atkinson �2002�.
Many of these nonperturbative solutions gave con-

flicting results for the residual density of states, including
finite �Ziegler, 1996; Ziegler et al., 1996�, infinite �Pepin
and Lee, 1998, 2001�, and vanishing with different power
laws in energy �Nersesyan et al., 1995; Nersesyan and
Tsvelik, 1997; Senthil and Fisher, 1999�; see also Bhaseen
et al. �2001�. Further study demonstrated that different
results are due to subtle differences in the symmetry of
the model used �Altland and Zirnbauer, 1997; Altland et
al., 2000� and can be partly understood by analyzing the
diffusion or Cooperon mode of near-nodal quasiparti-
cles �Yashenkin et al., 2001�, in analogy to dirty metals
�Altshuler, 1985; Lee and Ramakrishnan, 1985�. De-
tailed self-consistent numerical studies confirm that the
behavior of the DOS depends on the details of the im-
purity scattering and electronic structure �Atkinson et
al., 2000; Zhu, Sheng, and Ting, 2000�. In particular, the
divergence only occurs in perfectly particle-hole sym-
metric systems, and generically Atkinson et al. �2000�
found that there is a nonuniversal suppression of the
DOS over a small energy scale close to the Fermi level.
Chamon and Mudry �2001� conjectured that the residual
DOS always diverges when the single-impurity reso-
nance is tuned to the Fermi level. This divergence was
not found in numerical simulations of a model with large
but finite on-site potential �Hirschfeld and Atkinson,
2002�.

The interference between many impurities has been
recently investigated �Zhu, Ting, and Hu, 2000, Zhu
et al., 2003; Zhu, Atkinson, and Hirschfield, 2004; Morr
and Stavropoulos, 2002, 2003a; Atkinson et al., 2003�
with an eye on the importance of these effects for the
interpretation of the features in the STM data on high-
Tc cuprates collected over a large area of the sample.
The interference is also responsible for the formation of
impurity bands and therefore is crucial for determining
transport properties, which we do not address in this
review. Within the framework of the T-matrix approxi-
mation, transport properties of unconventional super-
conductors in general �Pethick and Pines 1986; Schmitt-
Rink et al., 1986; Arfi et al., 1988; Hirschfeld et al., 1986,
1988, 1989; Graf et al., 1996� and high-Tc cuprates in
particular �Hirschfeld and Goldenfeld, 1993; Hirschfeld
et al., 1994, 1997; Quinlan et al., 1994, 1996; Graf et al.,
1995; Duffy et al., 2001� have been extensively discussed.
Experiments on microwave, optical, and thermal con-
ductivity are used to extract properties of impurity
scattering.1

The question of localization in both s wave �Ma and
Lee, 1985� and d-wave superconductors �Lee, 1993;

Senthil et al., 1998; Senthil and Fisher, 2000; Vishvesh-
wara et al., 2000; Yashenkin et al., 2001; Atkinson and
Hirschfeld, 2002� continues to be investigated. Some of
these results have been summarized in recent reviews on
high-Tc systems �Timusk and Statt, 1999�. We also do not
touch upon the rich phenomena related to surfaces play-
ing the role of extended impurities that can also lead to
the formation of bound states �Buchholtz and Zwich-
nagl, 1981; Blonder et al., 1982; Hu, 1994; Covington et
al., 1997; Fogelström et al., 1997; Aprill et al., 1998;
Kashiwaya and Tanaka, 2000�.

Now there are also a few reviews available on the
subject of impurity states. Joynt �1997� reviewed early
work on impurity states within the T-matrix theory fo-
cusing on anomalous transport due to the finite lifetime
of quasibound states around impurities. Byers, Flatte,
and Scalapino were among the pioneers of the detailed
electronic structure studies of the resonance state and
interference patterns �Byers et al., 1993; Flatté and By-
ers, 1997a, 1997b; Flatte and Yers, 1998� and reviewed
their and related work �Flatté and Byers, 1999�. An ex-
cellent review of thermal and transport properties of
low-energy quasiparticles in nodal superconductors was
recently given by Hussey �2002�.

The subject is so rich and well developed that it does
not seem possible to do justice to both local quasiparti-
cle properties around a single-impurity site and ques-
tions of interference and transport within the confines of
a single paper. Therefore, in the following we focus pri-
marily on the effect of impurities on the local density of
states, rather than transport properties, and leave the
discussion of nontrivial effects of interference effects in
low dimensions to future reviewers.

II. A BCS THEORY PRIMER

We begin by reviewing the BCS theory. This section
briefly summarizes results pertinent to our discussion;
many textbooks provide an in-depth view of the theory
�Schrieffer, 1964; de Gennes, 1989; Tinkham, 1996;
Ketterson and Song, 1999�. Consider a general Hamil-

tonian HBCS=Ĥ0�r�+Hint, where

Ĥ0�r� = �
�
� ddr��

†�r����− i�r� − �����r� �2.1�

is the band Hamiltonian of quasiparticles with disper-
sion ��k�, � is the chemical potential, and the interaction
part is given by

Hint = −
1
2 �
�,�

,�

� ddrddr���
†�r���

†�r��V����r,r��

���r�����r� . �2.2�

Here r is the real-space coordinate, � and � are spin
indices, and �† and � are fermionic creation and annihi-
lation operators, respectively. The mean-field approxi-
mation consists of decoupling the four-fermion interac-
tion into a sum of all possible bilinear terms, so that

1See Timusk and Statt �1999� for a review. For very recent
results in experiment, see Hosseini et al., 1999; Carr et al., 2000;
Chiao et al., 2000; Corson et al., 2000; Segre et al., 2002; Tu et
al., 2002; Turner et al., 2003; Hill et al., 2004; Lee et al., 2004
and in theory, see Hettler and Hirschfeld, 1999; Berlinsky et al.,
2000; Chubukov et al., 2003; Nicol and Carbotte, 2003; Howell
et al., 2004.
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Hint = �
�,�

� ddrddr�	Ṽ���r,r����
†�r����r��

+ ����r,r����
†�r���

†�r�� + ���
� �r,r�����r����r��
 .

�2.3�

The effective potential Ṽ���r ,r�� is the sum of the Har-
tree and Fock �exchange� terms, and the last two terms
account for superconducting pairing. The pairing field �
is determined self-consistently from

����r,r�� = −
1
2�
,�

V����r,r�����r�����r�� . �2.4�

The pairing occurs only for positive V��� and only
below the transition temperature Tc; above Tc, ���=0.
In contrast, Hartree and Fock terms are finite at all tem-
peratures and can be incorporated into the quasiparticle
dispersion ��k�. These terms do change upon entering
the superconducting state, but their relative change is on
the order of a fraction of electrons participating in su-
perconductivity and therefore is small for weak-coupling
superconductors ��� /W
1, where W is the electron

bandwidth�. Therefore, the effective potential Ṽ is not
explicitly included in the following discussion except
where specified.

We consider a reduced mean-field BCS Hamiltonian,

HBCS = �
�
� ddr��

†�r�Ĥ0�r����r�

+ �
�,�

� ddrddr�	����r,r����
†�r���

†�r�� + H.c.
 .

�2.5�

The spatial and spin structure of ����r ,r�� determines
the type of superconducting pairing. In most of this
review, we consider singlet pairing, ����r ,r��
= �i�y�����r ,r��, where � is a scalar function; see Sec.
I.B.

In a uniform superconductor, the interaction depends
only on the relative position of electrons, so that
V�r ,r��=V��� with ��r−r�. Therefore in the absence of
impurities, the structure of the order parameter in real
space depends on the symmetry properties of V���.
These are easier to consider in momentum rather than
coordinate space. In models with local attraction, when
V���=V0����, the Fourier transform of the interaction is
featureless, and ��k�=�0—an example of an isotropic or
s-wave superconductor.

In the remainder of this section, we give an overview
of the main methods for solving the BCS Hamiltonian
since similar methods are commonly applied to impurity
effect studies in superconductors. The approaches that
we consider are �a� direct diagonalization via the
Bogoliubov-Valatin transformation, �b� variational de-
termination of the ground-state energy from the trial
wave function, and �c� the Green’s-function formalism.

A. Bogoliubov transformation

Since the effective Hamiltonian of Eq. �2.5� is bilinear
in fermion operators � and �†, it can be diagonalized by
a canonical transformation of the form

���r� = �
n

�un��r�n − �vn�
* �r�n

†� , �2.6�

subject to the condition un��r�2+ vn��r�2=1. The coef-
ficients u and v are determined by solving the
Bogoliubov–de Gennes equations �de Gennes, 1989�,

Eu��r� = H0�r�u��r� +� ddr�����r,r��v��r�� , �2.7�

Ev��r� = − H0
��r�v��r� +� ddr����

� �r,r��u��r�� . �2.8�

Here we have suppressed the label n for brevity. Clearly,
when �=0, the coefficients u and v do not couple and
there is no particle-hole mixing.

For each n there are four functions,
u↑�r� ,u↓�r� ,v↑�r� ,u↓�r�, that need to be determined.
However, for a singlet superconductor the matrix ��� is
off-diagonal in the spin indices, so that u↑ �u↓� couples
only to v↓ �v↑�, and hence only two of the equations are
coupled. In the presence of the general impurity poten-
tial, however, all four components are interdependent.

Equations �2.7� and �2.8� are coupled integro-
differential equations for the functions un��r� and vn��r�.
They have to be complemented by the self-consistency
equations on ���, which can be obtained directly from
Eq. �2.4�,

����r,r�� =
1
2

V����r,r���
n

��un�r��vn�
� �r�f�− En�

+ vn
� �r��un��r�f�En�� . �2.9�

Here the Fermi function is given by f�E�= �exp�E /T�
+1�−1.

In a uniform superconductor, the Fourier transform of
the Bogoliubov–de Gennes equations �2.7� and �2.8� into
momentum space gives

��k − Ek�uk� + ����k�vk� = 0, �2.10�

��k + Ek�vk� + ���
� �− k�uk� = 0, �2.11�

where �k is the bare quasiparticle energy measured with
respect to the chemical potential �k=��k�−�. In a singlet
superconductor,

��k − Ek�uk↑ + ��k�vk↓ = 0, �2.12�

��k + Ek�vk↓ + ���k�uk↑ = 0, �2.13�

and we recover the familiar energy spectrum Ek

=��k
2 + ��k�2, with the coefficients u and v given by

�uk
2

vk
2 � =

1
2
�1 ±

�k

Ek
� . �2.14�
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B. BCS variational wave function

Superconductivity originates from the instability of
the Fermi sea towards the pairing of time-reversed qua-
siparticle states. The variational wave-function ap-
proach, originating with the BCS paper, is to restrict the
trial wave function to the subspace of either empty or
doubly occupied states,

�BCS�r�� = �
n

�an + bncn↑
† cn̄↓

† �0� , �2.15�

and to minimize the energy, EBCS= ��H��. This is an
excellent approximation at low temperatures. In Eq.
�2.15�, the vacuum state 0� denotes the filled Fermi sea,
and cn↑

† creates a quasiparticle with spin up, cn̄↓
† creates a

quasiparticle with spin down, and with the wave function
�n�r� ��n

*�r�� that is the eigenfunction of the single-
particle Hamiltonian. Normalization requires that an2
+ bn2=1.

In the absence of impurities, the eigenfunctions �n
can be labeled by the same indices, k and �, as in the
previous section. Consequently, the variational approach
is equivalent to the Bogoliubov analysis with the choice
un�r�=an�n�r� and vn�r�=bn�n�r�. In general, however,
an interaction with impurities may lead to the appear-
ance of single-particle states in the ground-state wave
function; see Sec. X. It is worth reminding that the en-
ergy of the BCS state is greater than or equal to that of
the exact ground state.

C. Green’s functions

The third approach used is the Green’s-function
method, which originates with the work of Gor’kov. Fol-
lowing Nambu, we introduce a four-component vector
that is a spinor representation of particle and hole states,

�†�r� = ��↑
†,�↓

†,�↑,�↓� . �2.16�

The matrix Green’s function is defined as the ordered
average �a hat denotes a matrix in Nambu space�

Ĝ�x,x�� = − �T���x��†�x��� , �2.17�

where the four-component vector x= �r ,�� combines the
real-space coordinate r and imaginary time �. The time
evolution of operators in the Heisenberg approach is
given by �� /��= �HBCS,��.

For a singlet homogeneous superconductor, the
Hamiltonian of Eq. �2.5� in Nambu notation takes the
form

HBCS =� dr�†�r����− i � ��3 + ��1�2���r� , �2.18�

and we find �Maki, 1969�

Ĝ0
−1�k,�� = i�n − ��k��3 − ��k��2�1. �2.19�

Here �n=�T�2n+1� is the Matsubara frequency, �i are
Pauli matrices acting in spin space, �i are Pauli matrices
in particle-hole space, and �i�j denotes a direct product

of matrices operating in four-dimensional Nambu space.
The Fourier transform in � is defined as

Ĝ�k ;�� = kBT�
�n

Ĝ�k,�n�e−i�n�. �2.20�

The self-consistency equation for a single supercon-
ductor takes the form

��k� = −
T

4 �
�n

� dk�V�k,k��Tr��1�2G0� . �2.21�

In BCS, the interaction is restricted to a thin shell of
electrons near the Fermi surface, and therefore

���̂� = −
T

4
N0�

�n

� d�̂�V��̂,�̂��Tr��1�2� d�kG0� ,

�2.22�

where �̂ denotes a direction on the Fermi surface and
N0 is the normal-state density of states.

The off-diagonal component �Ĝ0�12=F is often called
the Gor’kov anomalous Green’s function since it de-
scribes the pairing average

F���x,x�� = − �T����x����x��� . �2.23�

In general F���x ,x��=g��F�x ,x��, where the matrix g de-
scribes the spin structure of the superconducting order.
For singlet pairing g= i�y, and in a spatially uniform su-
perconductor,

G��n,k� =
i�n + �k

�i�n�2 − �k
2 − ��k�2

, �2.24�

F��n,k� =
��k�

�i�n�2 − �k
2 − ��k�2

. �2.25�

The connection with Bogoliubov’s transformation is
obtained by rewriting the Green’s functions as

G��n,k� =
uk

2

i�n − Ek
+

vk
2

i�n + Ek
, �2.26�

F��n,k� = ukvk
�� 1

i�n − Ek
−

1

i�n + Ek
� , �2.27�

where uk and vk are given by Eq. �2.14�.
The three approaches discussed above are comple-

mentary and equivalent in the case of homogeneous su-
perconductors. However, some of them are better suited
for addressing specific questions in the presence of im-
purities. In particular, the Green’s-function method is
advantageous for determining thermodynamic proper-
ties of a material and averaging over many impurity con-
figurations. For inhomogeneous problems, in which we
are interested in spatial variations of the superconduct-
ing order and electron density, both the Bogoliubov–de
Gennes equations and Green’s functions are often used.
The choice of method depends on the type of question
asked, and we describe the basic models and issues re-
lated to impurity scattering in superconductors below.
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III. IMPURITIES IN SUPERCONDUCTORS

A. Single-impurity potential

Grain and surface boundaries, twinning planes, and
other structural inhomogeneities scatter conduction
electrons and therefore affect order parameters. Here
we focus on only one type of imperfection: impurity at-
oms.

1. Potential scattering

First and foremost, an impurity atom has a different
electronic configuration than the host solid and there-
fore interacts with the density of conduction electrons
via a Coulomb potential,

Himp = �
�
� dr��

†�r�Upot�r����r� . �3.1�

In good metals the Coulomb interaction is screened at
length scales comparable to the lattice spacing, and
therefore the scattering potential is often assumed to be
completely local, Upot�r�=U0��r−r0�, with the impurity
at r0. The resulting scattering occurs only in the isotro-
pic, s-wave, angular momentum channel. If the finite
range of the interaction is relevant, scattering in l�0
channels needs to be considered. In that case, the treat-
ment is similar to that of magnetic scattering in conven-
tional superconductors, see Sec. VI, and was applied to
unconventional superconductors in, for example, Bal-
atsky et al. �1994� and Kampf and Devereaux �1997�.

In the four-component vector notation of the previous
section, the potential scattering has the same matrix
structure as the chemical potential, or ��k� in Eq. �2.19�,
so that

Himp =� dr�†�r�Ûpot�r���r� , �3.2�

Ûpot = U0�3��r − r0� . �3.3�

2. Magnetic scattering

In addition to electrostatic interactions, if the impurity
atom has a magnetic moment, there is an exchange in-
teraction between the local spin on the impurity site and
conduction electrons,

Himp = �
��
� drJ�r���

†�r�S · ������r� . �3.4�

The range of interaction is determined by the quantum-
mechanical structure of the electron cloud associated
with the localized spin. Again, in reality we often con-
sider a simplified exchange Hamiltonian with J�r�
=J0��r−r0�, which captures the essential physics of the
problem. In four-component vector notations, the
electron-spin operator becomes �Maki, 1969�

� =
1
2

��1 + �3�� + �1 − �3��3��3� . �3.5�

Therefore

Himp =� dr�†�r�Ûmag�r���r� , �3.6�

Ûmag = J�r�S · � . �3.7�

3. Anderson impurity

However, even if the ground state of an isolated atom
has a spin, putting such an impurity into a host matrix
may modify the spin configuration as impurity electrons
couple to the conduction band. Therefore a more realis-
tic model for an impurity site is the Anderson model,
with the Hamiltonian

HA = �
�

E0d�
†d� + Und↑nd↓ + Hsd, �3.8�

Hsd = �
k,�

Vsdck,�
† d� + H.c. �3.9�

Here E0 is the position of the impurity level relative to
the Fermi energy, d† and d operate on the impurity site,
U is the Coulomb repulsion for the electrons localized
on the impurity site, and ck

† ,ck create and annihilate con-
duction electrons. This Hamiltonian allows electrons to
hop on and off the impurity site, resulting in a finite
width of the impurity level �=�Vsd2N0; see, e.g., Hew-
son �1993� for a detailed analysis in a host normal metal.
The model describes potential scattering when U
�.
On the other hand, when E0
EF, E0+U�EF, and U
��, the local levels remain split so that the impurity
state is singly occupied and has a local spin. Therefore
the model allows a natural interpolation between poten-
tial and magnetic scattering. The price to pay for such
rich behavior is the difficulty of studying the model ana-
lytically, and in practice many results have been ob-
tained in the simplified treatments of 1 and 2 above,
although a number of very thorough numerical renor-
malization-group studies of Anderson impurities in su-
perconductors exist. We review some of them, but do
not focus extensively on those.

B. Scanning-tunneling microscopy as a tool to measure
local density of states

STM/STS is a powerful and versatile tool for studying
electronic properties of solids. Its remarkable energy
and spatial resolution are particularly well suited for
characterization of materials at small energy and short
length scales. STS measures the tunneling current be-
tween the metallic tip and sample as a function of volt-
age bias, and the tip position is controlled with atomic
resolution �Yazdani et al., 1997; Pan et al., 1998; Suderow
et al., 2001; Martinez-Samper et al., 2003�. From the tun-
neling Hamiltonian, the differential conductance—the
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derivative of the current with respect to the bias—is re-
lated to the electron spectral function of the sample,
A��� ,��=−�1/��Im G��� ,�+ i��, with �→0+, by

dI

dV
� −� d��

�,�
T�2A���,��fFD� �� − eV� . �3.10�

Here fFD is the Fermi distribution function and � is the
electronic eigenstate for states in the sample �for a trans-
lationally invariant system, � is often chosen to be a mo-
mentum index k�. The tunneling matrix element is
T�2=��M��2Atip�� ,��, where M�� is the matrix ele-
ment for the overlap of electronic states in the tip and
sample. If the DOS of the tip is featureless around the
Fermi energy, T�2 is nearly energy independent. If we
assume a �-independent tunneling matrix element and
consider low temperatures �T→0�, the tunneling con-
ductance is proportional to the local density of state
�LDOS� at the bias energy at the tip position, dI /dV�r�
���eV ,r�=��,�A��� ,�=eV���� r��2. This in turn is re-
lated to the electronic Green’s function via ��r ,eV�
=−�−1�� Im G��r ,r ;eV+ i��. Therefore tunneling spec-
troscopy provides a real-space image of the local density
of states computed theoretically. For more details, see
Fischer et al. �2005�.

C. Many impurities

In our discussions we assume noninteracting
impurities2 so that the net impurity potential is

Ûimp�r� = �
i

Ûimp�r − ri� �3.11�

=� dr��i�r��Ûimp�r − r�� . �3.12�

Here Û is a matrix in both spin- and particle-hole space,
and we introduce the impurity density

�i�r� = �
i
��r − ri� . �3.13�

We also work in the dilute limit, where the average im-
purity concentration ni=�dr��r� /V
1, with V the system
volume.

A local physical quantity, such as the LDOS at the
position r measured by STM, depends on the distance to
nearby impurities and therefore is different for different
impurity distributions. In contrast, thermodynamic
quantities such as Tc or the density of states measured in
planar junctions are averaged over the sample and
hence over many random local configurations of impu-
rities. Therefore in computing their values we average
over all impurity configurations �Abrikosov et al., 1963�
so that �the bar denotes impurity average�

Ḡ��n,k� = �
i=1

Ni � 1
V � driG��n,k,r1, . . . ,rNi

�� . �3.14�

By definition, �̄imp=ni. We also assume an uncorre-
lated, or random, impurity distribution, which means

��r���r�� = ni��r − r�� + ni
2.

For dilute impurities, ni
2
ni, and we neglect the second

term compared to the first. In Sec. XIII we implement
this procedure to determine the impurity-averaged
DOS.

D. The self-energy and T-matrix approximation

To compute the Green’s function in the presence of
impurities, we employ the T-matrix approximation. This
method is described elsewhere �Hirschfeld et al., 1986,
1988; Hirschfeld and Goldenfeld, 1993; Hotta, 1993; Ma-
han, 2000; Hussey, 2002� and we only summarize it.

For a single impurity with scattering potential Ûk,k� in
momentum space, the T matrix exactly accounts for
multiple scattering off that impurity. In the language of
Feynman diagrams, the corresponding process is shown
in Fig. 1. Since translational invariance is broken by the
impurity, the Green’s function depends on two mo-
menta, k and k�,

Ĝ�k,k�� = Ĝ0�k� + Ĝ0�k�Ûk,k�Ĝ0�k��

+ �
k�

Ĝ0�k�Ûk,k�Ĝ0�k��Ûk�,k�Ĝ0�k�� + ¯ ,

�3.15�

where Ĝ0 is given by Eq. �2.19�. We have suppressed the
frequency index as the scattering is elastic. The series
can be summed to write �see Fig. 1�

Ĝ�k,k�� = Ĝ0�k� + Ĝ0�k�T̂k,k�Ĝ0�k�� , �3.16�

where the T matrix is given by an infinite series,

2For magnetic scatterers, the effect of the RKKY interaction
between impurities on superconducting properties is small
�Larkin et al., 1971; Galitskii and Larkin, 2002�.

FIG. 1. �Color online� Multiple scattering on a single impurity.
The thick line denotes the full Green’s function, the thin line
the bare Green’s function, and the dashed line denotes the
scattering process. The second line defines the T matrix ac-
cording to Eq. �3.18�.
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T̂k,k� = Ûk,k� + �
k�

Ûk,k�Ĝ0�k��Ûk�,k� + ¯ �3.17�

=Ûk,k� + �
k�

Ûk,k�Ĝ0�k��T̂k�,k�. �3.18�

This equation needs to be solved for T̂. If the impurity
scattering is purely local, the scattering is isotropic,

Ûk,k�=Û, greatly simplifying the equation as T̂ depends
only on energy and not on momentum.

Note that we can draw the set of diagrams in Fig. 1 in
real space and write the corresponding set of equations

for the T matrix and Green’s function Ĝ�r ,r��,

Ĝ�r,r�;�� = Ĝ0�r,r�;�� + Ĝ0�r,r0;��T̂���Ĝ0�r0,r�;�� .

�3.19�

The T matrix lends itself easily to describing the effect
of an ensemble of impurities. In the context of uncon-
ventional superconductors, the first such treatment of
transport properties was done by Pethick and Pines
�1986�. The so-called self-consistent T-matrix approach
considers multiple scattering on a single site of electron
that has already been scattered on other impurity sites
�Hirschfeld et al., 1986, 1988; Schmitt-Rink et al., 1986�.
This results in replacing the bare Green’s function in Eq.

�3.18� by its impurity-averaged counterpart Ĝ�k ,��. Af-
ter averaging over the random impurity distribution,
translational invariance is restored, and the Green’s
function depends on a single momentum k. The com-
bined effect of impurities is given by the self-energy,

�̂�k ,��=niT̂k,k, namely,

Ĝ−1�k,�� = Ĝ0
−1�k,�� − �̂�k,�� . �3.20�

In contrast to the single-impurity case, where Eq. �3.16�
with the T matrix given by Eq. �3.18� is the exact solu-
tion of the problem, the Green’s function given above is
an approximation, and much recent research is moti-
vated by questions about how accurately it describes
properties of nodal superconductors with impurities.

E. Static and dynamic impurities

So far we have only considered static impurities. How-
ever, for potential scattering it is possible that a vibra-
tional mode modulates the charge on the impurity site
and Upot acquires a characteristic frequency. Such a
mode can be extended, such as a phonon, or local. The
influence of the dynamical impurity on the local proper-
ties of a superconductor is a relatively new subject dis-
cussed in Sec. XII; see however, Brandt �1970�.

For magnetic scattering, the situation is more com-
plex. Degeneracy between spin-up and spin-down states
on the impurity site and nontrivial commutation rela-
tions between different spin components ensure that
quantum dynamics of the impurity is relevant. The dy-
namics of the local spin flips leads to the screening of the
impurity spin by conduction electrons in a metal below

the Kondo temperature TK; see Hewson �1993� for a
review. In Sec. XI, we review the current status of
Kondo effect studies in superconductors.

Impurity spin dynamics does not play a major role: �a�
for large spins S�1 �except in a magnetic field�, or �b�
when the Kondo temperature is low and measurements
are done at T�TK. In these limits, the approximation of
classical spin suffices and the corresponding local and
global density of states are analyzed in Secs. VI and
XIII, respectively.

IV. NONMAGNETIC IMPURITIES AND ANDERSON’S
THEOREM

One important early experimental result was the ro-
bustness of conventional superconductivity to small con-
centrations of nonmagnetic impurities. The theoretical
underpinning of this result is known as Anderson’s theo-
rem �Anderson, 1959�. Anderson noticed that since su-
perconductivity is due to the instability of the Fermi sur-
face to pairing of time-reversed quasiparticle states, any
perturbation that does not lift the Kramers degeneracy
of these states does not affect the mean-field supercon-
ducting transition temperature.

This is most clearly seen from the BCS analysis, which
we carry out following Ma and Lee �1985�, for an isotro-
pic pairing potential V����r ,r��=V��r−r�������. In the
absence of a magnetic field, the coefficients an=sin �n
and bn=cos �n in Eq. �2.15� can be taken as real, without
loss of generality, so that the self-consistency condition,
Eq. �2.9�, reads

�n = V �
m�n

�m

��m
2 + �m

2 � ddr�n
2�r��m

2 �r� . �4.1�

Here �m are the energies of the eigenstates and

�n =� ddr��r��n
2�r� . �4.2�

As noted above, in the BCS approach the �’s are eigen-
functions of the single-particle Hamiltonian. In a pure
system, ��r�=�n=�0. The most important assumption
underlying Anderson’s theorem is that in the presence of
impurities, when �n�r� are rather complicated functions,
the superconducting order parameter can still be taken
to be uniform, ��r�=�1. Then the gap equation, Eq.
�4.1�, takes the form

1

V
=� ddrd��n

2�r�
N��,r�

��2 + �1
2

. �4.3�

If the density of states of the system with impurities,

N��,r� = �
m
�m

2 �r���� − �m� , �4.4�

is unchanged compared to that of the pure metal,
N�� ,r���0, the solution of the gap equation, Eq. �4.3�, is
�1=�0. Therefore, the transition temperature and gap
are insensitive to impurity scattering at the mean-field
level.
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The Anderson theorem explained why superconduc-
tivity was robust to disorder in early experiments. It is
important to realize, however, that it is an approximate
statement about thermodynamic averages of the system.
In the next section we analyze changes that impurities
create in superconductors. We shall see that even purely
potential scattering does induce changes in local proper-
ties of superconductors, although the corresponding
change in the transition temperature remains minimal.
The Anderson theorem suggests the separation of the
studies of impurity effects on different length scales,
from lattice spacing to the coherence length to sample
size.

Before proceeding, we discuss extensions of Ander-
son’s treatment of impurities. In weakly disordered sys-
tems, N�� ,r���0. Ma and Lee �1985� argued that Ander-
son’s theorem remains valid even in strongly disordered
systems provided the localization length L� ��0�0�1/d. In
that case, a large number of states localized within en-
ergy �0 of the Fermi surface form a local superconduct-
ing patch. The Josephson interaction between patches
then leads to global phase coherence at T=0. Ma and
Lee also argued that the theorem holds to the limit of
site localization.

At the same time, the superfluid stiffness, i.e., the abil-
ity to carry supercurrent, is affected by disorder: When
the quasiparticle lifetime � becomes sufficiently short,
�0�
1, the superfluid density �s��0�. Consequently,
the local phase fluctuations of the order parameter are
strong, and the experimentally observed transition tem-
perature is severely suppressed compared to the mean
field Tc. Studies of such granular superconductors are
outside the scope of this review.

For dilute impurities, Anderson’s theorem is valid
provided the superconducting order parameter is nearly
uniform. The “healing length” of ��r� over which it can
change appreciably is the coherence length �0�vF /�0,
where vF is the Fermi velocity, while the Coulomb
screening length for the charged impurities in metals is
of the order of the lattice spacing a. Hence for �0�a, the
order parameter remains essentially uniform and Ander-
son’s theorem holds. Recent studies considered impurity
scattering in superconductors with ultrashort coherence
length, and found that when the pairing range is of the
order of the electron bandwidth, Anderson’s theorem is
violated �Ghosal et al., 1988; Tanaka and Marsiglio,
2000; Moradian et al., 2001�.

Xiang and Wheatley �1995� and Ghosal et al. �1998�
explored the difference between the single-particle exci-
tation gap and superconducting order parameter as a
function of disorder. When disorder depletes the density
of states, both quantities at first decrease simultaneously.
However, the spectral gap persists even when supercon-
ducting off-diagonal long-range order vanishes. This
may be related to the formation of local pairs without
phase coherence �Ma and Lee, 1985�.

In most experimentally relevant situations, however,
corrections to the main statement of Anderson’s theo-
rem are quantitative rather than qualitative. Therefore,

it is generally sufficient to consider impurity effects in
BCS-like superconductors.

V. SINGLE-IMPURITY BOUND STATE
IN TWO-DIMENSIONAL METALS

Before we proceed to discuss superconductors, it is
very instructive to review the simpler problem of an im-
purity in a metal. We show here a T-matrix calculation
for finding bound states due to a single impurity in d
dimensions with an on-site attractive potential U�r�
=U0��r�, where U0�0. The Hamiltonian is

H = �
k

���k� − ��ck,�
† ck,� + �

k,k�

U0ck,�
† ck�,�. �5.1�

We consider, for simplicity, the single-particle case ��
=0�, although the results for a normal metal follow by
replacing ��k� with ��k�=�k−� below.

The bare Green’s function for a free particle is

G0��,k� = �� − ��k��−1. �5.2�

Since the vertex of the impurity interaction U0 is mo-
mentum independent, the equation for the T matrix is
particularly simple and follows from Eq. �3.18�,

T��� = U0 + U0�
k

G0��,k�T��� ,

T��� =
U0

1 − U0�
k

G0��,k�
. �5.3�

Summation over k is performed using the DOS

N��� = �
k
�„� − ��k�… = �d�

�d/2�−1, �5.4�

where �d is a constant dependent on dimension. As an
example for d=3 we find

g0��� =
1

N�
k

G0��,k�

= �
0

W d�N���
� − �

� − 2�3
�W + 2�3��W , �5.5�

where W is the bandwidth. Here N represents the sys-
tem size. Consequently, the T matrix for d=3 is given by

T��� =
1

1/U0 + 2�3
�W − 2�3��W

. �5.6�

A similar expression can be obtained for d=2 by substi-
tuting gd���=−�2ln�W /�−1  �.

The poles of the Green’s function give the energy
spectrum of single-particle excitations. The poles of the
Green’s function in the presence of impurity scattering,
G=G0+G0TG0, see Eq. �3.16�, consist of the poles of

the original Ĝ0 and poles of the T matrix. The latter
signify the appearance of new states. We find the energy
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of this state �0 from Eq. �5.6�. The bound state ��0�0,
see Fig. 2� is formed for an arbitrarily small potential
U0 in d=1,2, but requires a critical coupling for d=3.
The energy of this state is given by

�0 � �g1�2 if d = 1, �5.7�

�0 = W exp�−
1

g2
� if d = 2, �5.8�

�0 � �g3 − g3c� if d = 3, �5.9�

where for d=3 the critical coupling is given by g3c
�W /2U0 and g3=1.

We focus on the two-dimensional case, when g2
=�2U0 and �2=m /2� is the electron density of states.
The bandwidth, W��2 /2ma2, is the ultraviolet cutoff
corresponding to the lattice parameter a for a free par-
ticle. This result can be compared to the solution of
Schrödinger’s equation for a particle in the 2D attractive
potential U0 �Landau and Lifshitz, 2000, Chap. 45�. For
an arbitrary potential U�r�, the solution obtained using
the T matrix is asymptotically correct if the scattering
length is greater than a. For a shallow potential, the
bound-state energy −�0 is exponentially small, and the
characteristic extent of the bound-state wave function is
l0= ��2 /2m�0�1/2�a. Therefore in this limit we can safely
approximate U�r�=U0��r�, where U0=�U�r�dr.

Finding the energy of the bound state, Eq. �5.8�, is
only one part of the solution. We also want to determine
corrections to the local density of states due to the
bound state. We write the equation for the Green’s func-
tion in real space, Eq. �3.19�,

G�r,r�;�� = G0�r,r�;�� + G0�r,0;��T���G0�0,r�;�� ,

and read off the position-dependent DOS,

N�r,�� = −
1

�
Im G�r,r ;�� = N0�r,�� + �N�r,�� .

�5.10�

The first term is the DOS of a clean system and the
second is the correction due to the bound state. Con-
sider ���0. Since the bound state is below the bottom
of the band, the unperturbed Green’s function G0 has no
imaginary part in this range. Therefore, the only contri-
bution to Im G�r ,r ;�� in Eq. �5.10� is from the T matrix,

Im T��� = Im
1

1/g2 − ln�W/�− ���

= Im ln−1�� + i�

�0
� = ���� − �0� , �5.11�

and the correction to the DOS of a clean system is

�N�r,�� = G0�r,�0�2��� − �0� , �5.12�

where G0�r ,��=N0J0�kFr�ln�W /�� is the real part of the
Green’s function in 2D systems. Equations �5.9� and
�5.12� are the main results of this section. They establish
the strategy to which we adhere in finding the impurity-
induced bound states: �a� find the poles of the T matrix
and the new poles of the full Green’s function and �b�
compute the inhomogeneous DOS due to the impurity-
induced state. There are other approaches to searching
for scattering-induced bound states. For example, the
exact numerical solution for a finite system is the only
approach available for calculations accounting for the
self-consistent suppression of the superconducting order.

VI. LOW-ENERGY STATES IN s-WAVE
SUPERCONDUCTORS

A. Potential scattering

Even though potential scattering does not change the
bulk properties of isotropic superconductors, it may af-
fect the local density of states. The first analysis of con-
ditions for the existence of the bound state and the
structure of Friedel oscillations around a spherically
symmetric impurity in an s-wave superconductor was
carried out by Fetter �1965�. Here we follow Machida
and Shibata �1972� and Shiba �1973� and consider the
Anderson impurity model, Eqs. �3.8� and �3.9�, in the
limit U=0 �resonance scattering�. As discussed above,
the localized state acquires a finite width, �=�Vsd2N0,
due to hybridization with the conduction band. Conse-
quently, the effective scattering potential varies signifi-
cantly over the bandwidth energy, violating provisions of
Anderson’s theorem. The T-matrix approach gives
�Machida and Shibata, 1972; Shiba, 1973�

T̂��� = Vsd2�3�� − E0�3 − Vsd2�3�
k

Ĝ0�k,���3�−1
�3.

�6.1�

The poles �0 of the T matrix determine the location of
bound states,

�2�1 +
2�

��2 − �2� = E0
2 + �2. �6.2�

In most physical situations ���, so that

�0 = ± �ˆ1 − 2�2��Nd�0��2
‰ , �6.3�

where Nd�0�=�−1� / ��2+E0
2� is the density of states of

the resonant impurity level. Typically �Nd�0��10−3, so
that the bound state lies essentially at the gap edge.
Shiba �1973� considered a finite but small value of the

FIG. 2. �Color online� Impurity bound state in a metal at en-
ergy �0 formed as a result of multiple scattering.
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Coulomb repulsion and allowed for induced pairing on
the impurity site. He concluded that even though the
bound state may be shifted to lower energies, it still lies
within 10−3� of the gap edge and therefore can be ne-
glected in discussions of physical properties.

B. Classical spins

If impurities are magnetic, time-reversal symmetry is
violated and superconductivity is thus suppressed. We
consider a combination of the scattering potential

Ûpot�r�=V�r��3 and the magnetic scattering, Eq. �3.6�,
written in momentum space,

Hex =
1

2N �
k,k�
��

J�k − k��ck,�
† ��� · Sck��. �6.4�

As discussed in Sec. III.E, for S�1 or T�TK, we ignore
Kondo screening and consider the scattering on classical
spins first studied by Shiba, Rusinov, and Yu �Yu, 1965;
Rusinov, 1968, 1969; Shiba, 1968�. Technically this is
achieved by taking S→ , while simultaneously J→0 so
that JS=const. In this limit the localized spin acts as a
local magnetic field.

The impurity location is chosen at the origin for a
BCS s-wave superconductor with the unperturbed
Hamiltonian of the form

H0 = �
k�
!kck,�

† ck� + �0�
k

	ck↑
† c−k↓

† + c−k↓ck↑
 . �6.5�

This problem serves as a starting point for all subse-
quent analysis of resonance states in superconductors.

To find a localized state with energy 0�E��0 near a
single paramagnetic impurity, we perform a Bogoliubov
transformation �Yu, 1965; Rusinov, 1968� to find

Eu��r� = !�k�u��r� + i����
y v��r� + U���r�u��r� , �6.6�

Ev��r� = − !�k�v��r� − i����
y u��r� − U���r�v��r� .

�6.7�

This system is solved by Fourier transforming the equa-
tions and expanding the impurity potentials in spherical
harmonics in k space, Jl and Vl, and has solutions at

El

�0
=

1 + ��N0Vl�2 − ��N0JlS/2�2

��1 + ��N0Vl�2 − ��N0JlS/2�2�2 + 4��N0JlS/2�2
,

�6.8�

where N0 is the normal-state DOS at the Fermi energy.
This result can be written in a more elegant form using
the phase shifts �l of scattering for up �	� and down ���
electrons in each angular channel,

tan �l
± = ��N0��Vl ± JlS/2� . �6.9�

Then the energies of the states in the gap become

�l =
El

�0
= cos��l

+ − �l
−� . �6.10�

Clearly, for purely potential scattering ��l
+=�l

−� the spec-
trum begins at the gap edge, and there are no intragap
states. However, as magnetic scattering increases, low-
energy states appear below the gap edge. Purely mag-
netic scattering corresponds to �l

+=−�l
−, and strong scat-

tering �unitarity limit, ��� /2� yields a localized state
deep in the gap, while weak scattering ��
1� results in a
bound state close to the gap edge.

The same result can be obtained using the Green’s-
function formulation �Shiba, 1968; Rusinov, 1969� and
solving the single-impurity problem via the T matrix. In
Nambu notation

Ĝ�k,k�;�� = Ĝ0�k,����k − k��

+ Ĝ0�k,��T̂�k,k��Ĝ0�k�,�� . �6.11�

Here the T matrix is computed as in Sec. III.D for a
matrix Hamiltonian of Sec. III.A, and we sum over in-
dices of the matrix � in each vertex. The lth angular

component T̂l satisfies �for a spherical Fermi surface and
isotropic gap�

T̂l��� = Ûl + Ûl� d!Ĝ0�k,��T̂l��� . �6.12�

The full expression for Tl is straightforward to obtain
�Rusinov, 1969� but is rather cumbersome, so that we do
not give it here. Even for spherically symmetric scatter-
ing �l=0 only� with both V0�0 and J�0, the T matrix is
simple yet lengthy �Okabe and Nagi, 1983�. The bound-
state energy is, of course, still given by Eq. �6.10�.

For a purely magnetic spherically symmetric ex-
change, J�k−k��=J, the T matrix has a particularly
simple form �Shiba, 1968�, with the diagonal �in spin in-
dices� component

T�1���� =
1

N

�JS/2�2ĝ0���
I − �JSĝ0���/2�2 . �6.13�

Here ĝ0 is the local matrix Green’s function,

ĝ0��� =
1

N�
k

Ĝ0�k,�� = − �N0
� + �0�2�2

��0
2 − �2

. �6.14�

The bound-state energy is

�0 =
E0

�0
=

1 − �JS�N0/2�2

1 + �JS�N0/2�2 . �6.15�

The wave functions of bound states at El can be com-
puted using the Bogoliubov equations above. In the sim-
plest case of isotropic scattering at distances r�pF

−1,
both u�r� and v�r� vary as �Fetter, 1965; Rusinov, 1969�

sin�pFr − �0
±�

pFr
exp�− rsin��0

+ − �0
−�/�0� , �6.16�

that is, the state is localized near the impurity site at
distances
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r0 �
�0

sin��0
+ − �0

−�
=

�0

�1 − �0
2

. �6.17�

The square of these coefficients gives the spatial depen-
dence of the particle and hole components of the density
of states at a given position r �Yazdani et al., 1997�.

The analysis above was carried out under the assump-
tion that the variation of the order parameter � around
the impurity site does not change the position of the
resonance state. There are several characteristic length
scales for this variation, ���r�. Far from the impurity r
��0, at temperatures close to Tc, where this variation
can be determined perturbatively, ���r� /�0�1/pFr
�Heinrichs, 1968; Rusinov, 1968�. This power law is in-
sensitive to phase shifts of scattering on the impurity. At
low temperatures, a fully self-consistent treatment is re-
quired, which leads to ���r� decaying as �pFr�−3 and os-
cillating on the scale of �0�0 /�D, where the Debye tem-
perature �D sets the scale for the interaction between
electrons �Schlottmann, 1976�.

In the immediate vicinity of impurity vF /�D
r
�0
the variation of the order parameter is ���r� /�0
�1/ �pFr�2 in the linear-response approximation �Rusi-
nov, 1968�. In the fully self-consistent treatment at dis-
tances r
�0�D /EF, this dependence was found to ac-
quire an oscillating factor sin2 pFr �Schlottmann, 1976�.

In the Anderson model the local change ��r� is re-
lated to the impurity T matrix �Kim and Muzikar, 1993�
and can be determined if a reliable approximation for
the T matrix exists for the given parameter range. In
principle, the method of Kim and Muzikar covers both
Kondo and mixed-valence regimes and is useful in de-
termining local structures of the order parameter.

In all cases, the suppression of the order parameter is
determined by the Fermi wavelength and does not affect
the position of the bound state.

VII. IMPURITY-INDUCED VIRTUAL BOUND STATES
IN d-WAVE SUPERCONDUCTORS

We now extend our discussion to impurity-induced
states in d-wave superconductors. Scalar �nonmagnetic�
impurities are pair breakers for higher-orbital-
momentum states, such as d-wave states. The change of
the quasiparticle momentum upon scattering disrupts
the phase assignment for particular directions of the mo-
menta in a nontrivial pairing state �Anderson, 1959; Tsu-
neto, 1962; Markowitz and Kadanoff, 1963�. This also
follows from the analysis of the self-energy in the
Abrikosov-Gorkov theory �Abrikosov et al., 1963�. An
early argument about pair-breaking effects of potential
scattering was put forth by Larkin �1965�.

As emphasized above, for pair-breaking impurities lo-
cal properties of the superconductor near the impurity
site, such as the LDOS and gap amplitude, are modified
dramatically. To capture these modifications, we use a
variation of the Yu-Shiba-Rusinov approach �Yu, 1965;
Rusinov, 1968; Shiba, 1968�; see Sec. VI. We restrict our
consideration to s-wave scatterers �l=0� close to the uni-

tarity limit, �0�� /2, when the bound-state energy is far
from the gap edge. In contrast to s-wave superconduct-
ors, in d-wave systems the density of states below the
gap maximum �0 is nonzero and varies linearly with en-
ergy in a pure system, N��� /N0�� /�0. Consequently,
the overlap with the particle-hole continuum only allows
the formation of resonance, or virtual bound states, with
a finite lifetime.

We focus on pointlike defects and use the T-matrix
approach. A closely related method uses the quasiclassi-
cal approximation and the ideas of Andreev scattering
to reproduce the same results �Choi and Muzikar, 1990;
Chen, Rainer, and Sauls, 1998; Shnirman et al., 1999�.
Interesting extensions are obtained within the quasiclas-
sical formalism for extended defects: for example, the
index theorem dictates the existence of a low-energy
quasibound state in unconventional superconductors
�Adagideli et al., 1999�.

High-Tc cuprates with Zn substitution for in-plane Cu
are a well-studied example of an impurity system. Zn
ions have a full d shell and are nominally nonmagnetic.
The high stability of this configuration and the rapid
suppression of Tc by Zn doping �Ishida et al., 1991;
Hotta, 1993� support the view that Zn ions are strong
nonmagnetic scatterers. Another point of view, that Zn
induces a localized moment on neighboring Cu sites
�Bobroff et al., 2001; Polkovnikov et al., 2001� leads
naturally to the Kondo problem in gapless supercon-
ductors, and is discussed in Sec. XI.

Based on strong anisotropy of the electronic trans-
port, we model cuprates as 2D d-wave superconductors
and analyze virtual impurity-induced bound states,
closely following Buchholtz and Zwicknagl �1981�,
Stamp �1987�, Balatsky et al. �1995�, and Salkola et al.
�1996, 1997�. Our results are easily extended to any non-
trivial pairing state and to higher dimensions and are
relevant, for example, for heavy-fermion superconduct-
ors with impurities.

The main results of this section are as follows. �i� A
strongly scattering scalar impurity produces a localized,
virtual, or virtually bound state �or resonance� in a
d-wave superconductor. It is intuitively obvious that
any strong pair-breaking impurity—magnetic or
nonmagnetic—will induce such a state. Indeed, low-
lying quasiparticle states close to nodes in the energy
gap will be influenced even by a nonmagnetic impurity
potential, resulting in a virtual bound state in the unitary
limit. �ii� This should be compared to the fact that in
s-wave superconductors magnetic impurities produce
bound states inside the energy gap �Machida and Shi-
bata, 1972�. The energy �� and decay rate �� of this
state are given by

���� + i�� = − �0
�c/2

ln�8/�c��1 +
i�

2

1

ln�8/�c�� , �7.1�

where c=cot �0. These results are valid provided
ln�8/�c��1 and assuming band particle-hole symmetry.
The impurity breaks local particle-hole symmetry, how-
ever, since �� has a definite sign. In the unitary limit c
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→0 the virtual bound state is a sharp resonance at �
→0 with �� /��→0. In the opposite case of weak scat-
tering, c"1, the energy of the state formally approaches
����0 and the state is ill defined since ����� �see Fig.
10 in Sec. VIII�. The wave function of the bound state
decays as a power law, ��r��1/r, and is not normaliz-
able. The wave function is localized along the directions
where the gap vanishes �nodal directions�.

A. Single potential impurity problem

Consider a potential impurity at r=0 described by

Hint = �
kk��

U0ck�
† ck��, �7.2�

where U0 is the strength of the isotropic scattering, re-
sulting in phase shift �0. The T matrix is independent of
the wave vector, and the Green’s function is given by

Ĝ�k,k�;�� = Ĝ0�k,���kk� + Ĝ0�k,��T̂���Ĝ0�k�,�� ,

�7.3�

where in Ĝ0 we choose the dx2−y2 gap �k=�0 cos 2#.

For s-wave scattering, the matrix T̂=T0�̂0+T3�̂3
�Shiba, 1968; Pethick and Pines, 1986; Schmitt-Rink et
al., 1986; Stamp, 1987; Hirschfeld et al., 1988; Hirschfeld
and Goldenfeld, 1993; Lee, 1993; Balatsky et al., 1994;
Pogorelov, 1994; Loktev and Pogorelov, 2002� and its
diagonal element is

T���11 = 1/�c − g11���� , �7.4�

where g11���= �1/2�N0��k�Ĝ�0��k ,����̂0+ �̂3��11. Quasi-
bound states are given by the poles of the T matrix,

c = g11��� , �7.5�

which is an implicit equation for the energy of the im-
purity resonance �0 as a function of c=cot �0.

For the particle-hole symmetric case, g11=g0���
= �� /���#�2−�2�FS, where the angular brackets denote
an average over the Fermi surface; for simplicity, we
take �·�FS=� ·d# /2�.3 For �
�0, we find

g0��� = −
2�

��0
�ln

4�0

�
−

i�

2
� . �7.6�

Using its solution in Eq. �7.5�, Eq. �7.1� follows immedi-
ately. In Fig. 3 we illustrate a solution of Eq. �7.5� for
fermions with a finite bandwith.

The solution of Eq. �7.5� is complex, indicating a reso-
nant nature of the quasiparticle state, better described as
a virtual state. This is easily seen from Eq. �7.1�, which
solves Eq. �7.5� to logarithmic accuracy. However, as c
→0, the resonance can be made arbitrarily sharp. For
c=0, the virtual state becomes a sharp resonance state
bound to the impurity �Balatsky et al., 1995�. As c→1−,
�� and �� increase without bound so that �� /��→1−,
and the solution becomes unphysical. For c�1, no solu-
tion has been found for �.4

To solve the single-impurity problem, one has to re-
tain both the T0 and T3 components of the T matrix,

T0 =
g0���

c2 − g0
2���

, T3 =
c

c2 − g0
2���

. �7.7�

Each of them has two poles at c= ±g0���, however, T11
=T0+T3 has only one pole; see Eq. �7.4�. The sign of the
resonance energy reflects a particle-hole asymmetry in-
troduced by the on-site impurity potential U0.

Now we turn to the physical implications of these vir-
tual bound states in a d-wave superconductor and con-
sider the most interesting case of unitary impurities in
the dilute limit, separated by a distance l��0. These
bound states are nearly localized close to the impurity
sites �see below� and substantially modify the local char-
acteristics of the superconductor, such as the density of
tunneling states, observed in STM, and the local NMR
relaxation rate close to the impurity site.

Consider a local density of electronic states,

N�r,�� = −
1

�
Im g11�r,r ;� + i0+� , �7.8�

with the Green’s function in real space,

3We assume that the energy gap has line nodes in three di-
mensions with weak quasiparticle dispersion along the z axis;
an extension to a general three-dimensional case is straightfor-
ward.

4A related model of the Anderson impurity model in an un-
conventional superconductor was considered by L. Borkowskii
and P. Hirschfeld, Phys. Rev. B 46, 9274 �1992�. The results
found here for pure potential scattering require generalization
of the Anderson model to include the impurity-potential phase
shift, independent of the Kondo temperature. This aspect of
impurity scattering has not been addressed previously.

FIG. 3. �Color online� Real and imaginary parts of the Green’s
function. Graphic solution of Eq. �7.5� for U0�0. We show a
physically relevant solution with �0�
�0�. If Im g0��0�
�Re g0��0�, the resonance is broadened and merges with the
continuum. Resonances below �or above, for U0�0� the band
are sharp, with most of the spectral weight. The virtual bound
state inside the gap is well resolved for large U0 �small c�.
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Ĝ�r,r�;�� = Ĝ0�r − r�,�� + Ĝ0�r,��T̂���Ĝ0�r�,�� .

The local density of states N�r ,��=N���+Nimp�r ,�� has
two contributions. The first, position independent, is due
to bulk delocalized quasiparticles with Ek=��k

2 +�k
2. Us-

ing g�0��0,��=�k�uk
2 / ��−Ek�+vk

2 / ��+Ek��, where uk and
vk are Bogoliubov factors, we find for a superconductor
with line nodes, N��� /N0=� /�0, at �
�0. The second
term,

Nimp�r,�� = −
1

�
Im�Ĝ0�r,��T̂���Ĝ0�r,���11, �7.9�

describes a local change in the DOS due to the virtual
bound state created around the impurity site.

In a 2D d-wave superconductor, this impurity state is
cross shaped in real space, with long tails extending
along the gap nodes as shown in Fig. 4. Consider unitary
scattering, for which the resonance is at Eimp,n��→0;
see Sec. V. As Im G�0��r ,�=0�=−�N��=0�=0 for bulk
quasiparticles, only the imaginary part of the T matrix
contributes to Nimp. The probability density for the
bound state decays quadratically in distance from the
impurity. Along the gap nodes

Nimp�r,� = 0� = Re�Ĝ�0��r,� = 0��2 � r−2, �7.10�

while in the direction of the maximal gap

Nimp�r�,� = 0� �
�0

2

EF
2 r−2. �7.11�

In addition to the power-law asymptotic decay at large
distances, there is an additional contribution that decays
exponentially with the angle-dependent coherence
length of the superconductor ��#�=�vF / ��#�. This con-

tribution is important for the detailed comparison of the
induced LDOS to that measured by STM near the im-
purity site, since the intensity near the impurity is
mapped out only within a few lattice spacings. For reso-
nance energy away from the Fermi energy, the wave
functions of the resonance decay exponentially with the
characteristic length scale �vF / �0. A detailed discus-
sion of this decay and the particle-hole asymmetry due
to the impurity potential is given by Aristov and Yash-
enkin �1998� and Balatsky and Salkola �1998�.

Gap nodes lead to the power-law decay of the wave
function along all directions at large distances r��. This
follows from the power counting of the d-wave propaga-
tor:

G�r,�→ 0� � � d2k exp�ik · r�G�k,�→ 0�

� � kdk exp�ik · r�
vFk

k2 � 1/r .

The logarithmically divergent normalization reflects the
fact that the impurity state is virtually bound. At a finite
impurity concentration, the divergence is cut off at the
average distance between impurities. For an arbitrary
position of the resonance, taking into account that only
one state has been produced with Eimp,n=��+ i��, we
find

Nimp�r,�� =
�i�

�
�

i
� u�r − ri�2

�� −�i��
2 +�i�

2

−
v�r − ri�2

�� +�i��
2 +�i�

2� . �7.12�

Here the sum is over impurity positions ri and u�r

FIG. 4. The cross-shaped nature of the impu-
rity state. The spectral density A��r , ±�0� is
shown as a function of position and spin in
units of N0�0 for �a� �=0 and �b� �=−W; 2W
is the bandwidth in a two-dimensional d-wave
superconductor as a function of position
around a classical magnetic moment �N0J0
=10 and U0=0� located at r=0; a is the lattice
spacing. These results are computed self-
consistently with �=10a. At half-filling, the
spectral density obeys particle-hole symme-
try: A↑�r ,�0�=A↓�r ,−�0�. The energies of the
shown virtual-bound states are �a� �0
=0.05�0 and �b� �0=0.5�0. From Salkola et
al., 1997.
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−ri� ,v�r−ri� are the eigenfunction of the Bogoliubov–de
Gennes equation with an impurity.

Local effects of impurities are best revealed by local
probes. NMR experiments on Cu in Zn-doped cuprates
are quite useful in this regard. From Eq. �7.10� and be-
low, one concludes immediately that the NMR signal
shows two distinct relaxation rates �or even a hierarchy
of rates� depending on the distance of the Cu sites from
the impurity location. The Cu sites near the impurities
couple to the higher LDOS and have a faster relaxation
rate at low T. At a finite impurity concentration
��2% �, the volume-averaged density of states is finite
as �→0, and therefore the relaxation rate of Cu atoms
close to and away from an impurity has the same tem-
perature dependence, �T1T�−1=const, but is of a differ-
ent magnitude. Precisely this behavior has been ob-
served experimentally. Ishida et al. �1991� measured
two NMR relaxation rates for Cu in Zn-doped
YBa2Cu3O7−�. The second NMR signal with faster relax-
ation was inferred to arise from sites near the impurities.
Alloul and collaborators �1991� pointed out that the
NMR signal from sites close to impurities shows a dis-
tribution of relaxation rates, which reflects local elec-
tronic and magnetic distortions produced by the impu-
rity in the host system; see Bobroff et al. �2001�, and
references therein.

More direct evidence for impurity-induced resonances
in high-Tc superconductors came from scanning-
tunneling microscopy. These experiments were crucial in
establishing the existence of the impurity-induced reso-
nances in cuprates and their anisotropic nature �Hudson
et al., 1999; Pan, Hudson, Lang, et al., 2000� and are
discussed in Sec. IX.

We contrast our picture of the dilute limit of strongly
scattering centers with the usual approach of averaging
over a finite concentration of impurities. In the latter
approach, two distinct NMR relaxation rates, arising
from inequivalent sites, cannot be resolved. Similarly,
the inhomogeneous LDOS due to localized states is lost
after averaging over impurity positions.

The distinction between true bound states and the
continuum in nodal superconductors is not as well de-
fined as in s-wave systems. Any finite temperature leads
to a finite lifetime for bound states, and they hybridize
with the continuum of low-energy extended quasiparti-
cles since the two are not separated by an energy gap.

B. Single magnetic impurity problem

A full analysis for magnetic impurity is more involved.
For a quantum spin one needs to address the Kondo
effect, which is discussed in Sec. XI. In the simplified
treatment of a classical spin �S�1 or T�TK� the mean-
field analysis is similar to that in the previous section
�Salkola et al., 1997�. In that case the main effect of the
exchange coupling between the local moment S and
electron spin is the renormalization of the effective scat-
tering potential for electrons of two different spin orien-
tations: they see a net impurity potential U0±J, where

U0 is the potential scattering strength and J is the ex-
change coupling to the impurity spin. There are two vir-
tual bound states, one for each electron-spin orientation,
with energies

�1,2 = −
�0

2N0�U0 ± J�ln8N0�U0 ± J�
. �7.13�

STM data on the Ni-doped high-Tc cuprate
Bi2Sr2CaCu2O8+� are fit well using this simple formula;
see Sec. IX. Even in the classical limit the spin S may
have its own dynamics, which was omitted in the mean-
field approach of Salkola et al. �1997�. Further studies
are certainly desirable.

C. Self-consistent gap solution near impurity

Impurity scattering locally modifies the order param-
eter, and we discuss the self-consistent gap in 2D d-wave
systems. To address these effects, one has to use the
�numerically determined� exact electron spectra near the
impurity and solve the self-consistent equation on the
d-wave gap, defined on the bonds of a square lattice,

��i,i + �� =
Vi,i+�

2 �
n

�un�i + ��vn
*�i� + un

*�i�vn�i + ���

� tanh� En

2kBT
� . �7.14�

Such numerical solutions were presented by Franz et al.
�1996�, Salkola et al. �1997�, Tsuchiura et al. �2000�, and
Zhu, Lee, et al. �2000�. Impurity scattering clearly sup-
presses the gap magnitude, and the suppression is the
strongest at the impurity site. The gap quickly recovers
to a bulk value, although there are oscillating tails at
long distances due to 2kF oscillations, as shown in Fig. 5.

Realistically the difference between the self-consistent
and non-self-consistent solutions is not important be-

FIG. 5. Self-consistently determined gap function near the sca-
lar impurity in a 2D d-wave superconductor. The gap suppres-
sion is strongly localized near the impurity site aside from
weak oscillating tails. From Franz et al., 1996.
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yond a few lattice spacings from the impurity site. Near
such a site local gap suppression is clearly seen in the
STM data; see Sec. IX.

For superconducting order parameters with complex
internal structure there is a possibility that impurity
couples to a soft mode other than the amplitude mode
�Rainer and Vuorio, 1997�. This was investigated for the
nonunitary A-phase superconductor by Choi and Muz-
ikar �1990�, who concluded that an indirect coupling to
the rotational mode may produce a local magnetic mo-
ment around the impurity site.

D. Spin-orbit scattering impurities

Spin-orbit coupling in impurity scattering in supercon-
ductors is much less thoroughly investigated than purely
magnetic or potential scattering. The standard form of
the spin-orbit-scattering equation due to Elliott �1954�
and Yafet �1963� is

HSO,imp = �
k,k�

�SOck,�
† �� �� · �k� k��ck��, �7.15�

where �SO is the scattering strength. This coupling is
present even for nonmagnetic impurities, provides pair
breaking, and produces additional quasibound states in-
side the gap. The structure of these additional reso-
nances and their response to a Zeeman magnetic field
were studied by Grimaldi �1999, 2002�, who concluded
that in the limit of strong spin-orbit scattering the local
DOS exhibits off-site particle-hole symmetric resonance
�in contrast to potential scatterers�, which is not split by
the field.

In a different type of spin-orbit scattering from a mag-
netic impurity, the impurity spin is coupled to the orbital
motion of conduction electrons. For 2D d-wave systems,
this was investigated by experiments on Ni-doped
Bi2212 �Movshovich et al., 1998; Neils and Harlingen,
2002� and studied by Barash et al. �1997�, Balatsky et al.
�1998�, and Graf et al. �2000�. We write the Hamiltonian,

HSO,imp=SOL̂ ·S, in second quantized notation,

HSO,imp = �
k,k�

SOck,�
† S · �k� k��ck��, �7.16�

where SO is the strength of coupling and S is the impu-
rity spin. Predominantly in-plane motion of electrons �as
is the case in Bi2212� couples the angular momentum Lz

with respect to the impurity site L̂z= i��� to Sz. The net
effect of this term is twofold. First, it is pair breaking, so
that the gap is locally suppressed, and a resonance is
formed. Even more interesting is the distortion of the
dx2−y2-wave order parameter in the vicinity of an impu-
rity, which results from the nontrivial orbital structure of
the d-wave order. This state is a linear combination of
the state with lz=2 and lz=−2, ����=�0 cos�2��
�exp�2i��+exp�−2i���x2−y2. The two orbital compo-
nents are affected differently by scattering. Treating
HSO,imp perturbatively, one generates in first order the
correction to the order parameter ��= i�0SO sin�2��

�xy. There is a finite amplitude for the incoming
d-wave pair in�� x2−y2� to scatter into the out�� ixy�
channel,

out� = iSO�0L̂ · Sin� = i�SO�0 sin�2�� , �7.17�

generating an out-of-phase component of the order pa-
rameter near a spin-orbit impurity, coexisting with and
induced by the original dx2−y2 symmetry.

This illustrates nontrivial effects of impurity scattering
in superconductors with orbital structure to the Cooper-
pair wave function. For more details, see Balatsky
�1998�, Graf et al. �2000�, and Zhu and Balatsky �2002�.
An applied magnetic field �which couples to Lz similarly
to the Sz term in Eq. �7.17�� not only suppresses the
d-wave order parameter but also produces the second-
ary dxy component; see Franz and Tešanović �1998�,
Kuboki and Sigrist �1998�, Laughlin �1998�, Tanuma et
al. �1998�, and Balatsky �2000�.

E. Effect of Doppler shift and magnetic field

The main effect of the Zeeman field is to split
impurity-induced resonances �Grimaldi, 1999, 2002�.
The orbital effect of a magnetic field can be analyzed by
considering the Doppler shift of the quasiparticle en-
ergy.

In the simplest approach, due to Galilean invariance,
in the presence of a superflow with velocity vS�r� elec-
tron propagators are modified by G�k ,��→G�k ,�
−k ·vS� for a planar wave state at k. The rest of the
calculation for the impurity state follows exactly the pre-
vious analysis. The local scattering potential of the im-
purity requires summing over momenta to obtain the
local Green’s function G0���, and only this local propa-
gator enters the solution for the resonance, Eq. �7.1�.
Therefore changes in the resonance state are due to an
increase in the density of states arising from the Doppler
shift.

The effect of superflow produced by screening cur-
rents on the impurity resonance was studied by
Samokhin and Walker �2001�, who pointed out that the
Doppler shift leads to broadening of the resonance. The
scale of the effect is set by the ratio of the typical Dop-
pler shift vSkF at the impurity site to the resonance en-
ergy ��. If the Doppler shift is small, the effect is negli-
gible, while in the opposite limit vSkf���, superflow
broadens the resonance significantly. Superflow does not
shift the resonance energy.

Tsai and Hirschfeld �2002� analyzed the effect of an
isolated impurity on the penetration depth of a d-wave
superconductor. They concluded that the effect leads to
a divergent 1/T contribution at finite temperatures, in
close analogy with Andreev bound states �Walter et al.,
1998; Barash et al., 2000�.

F. Sensitivity of impurity state to details of band structure

Above we used a single-band model with particle-hole
symmetry to prove the existence and explore the basic
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features of impurity-induced resonances. Real bands are
asymmetric, and the effect of asymmetry was considered
by Joynt �1997�, who modeled it by a constant DOS with
different energy cutoffs at the upper and lower limits. To
make a quantitative comparison with the experimental
data on impurity resonances �see Sec. IX�, we have to
understand the details of the band structure. For ex-
ample, in cuprates in-plane Cu dx2−y2 and O px,y bands
are relevant. Above we assumed that by reducing the
complicated band structure of a high-Tc �or another�
material to a single-band model, one can describe the
nonmagnetic impurity by a single parameter, the on-site
potential U0. Reality is more complex.

Even within the one-band approach one can still ex-
plore the change in the position of the impurity-induced
resonance beyond the simplest assumptions. The reso-
nance position depends on the sign of the impurity po-
tential, electron occupation numbers, and band struc-
ture. To illustrate the sensitivity to the latter we
performed an exact diagonalization for the t-t�-V model
with nearest-neighbor hopping t, next-nearest-neighbor
hopping t�, and a negative V that describes the nearest-
neighbor attraction and produces d-wave pairing. The
single-particle energy dispersion in the normal state is

�k = − 2t�cos kx + cos ky� − 4t� cos kx cos ky − � ,

�7.18�

and � is the chemical potential. The impurity was mod-
eled by an on-site potential U0. We considered three
possibilities: �i� t=1, t�=0, �=0 �the filling factor n=1.0�,
with band particle-hole symmetry present, see Fig. 6; �ii�
t=1, t�=−0.2, �=−0.784 �n=0.84�, with no band particle-
hole symmetry, see Fig. 7; and �iii� t=1, t�=−0.3, �
=−1.0 �n=0.85�, again with band particle-hole symmetry

absent, see Fig. 8. We consider the band particle-hole
symmetry because the local particle-hole symmetry is
broken by the potential U0.

As shown in Figs. 6–8, for �i� and �ii�, the band DOS
has two coherent peaks. Also for �ii�, the DOS is asym-
metric with respect to the zero energy. In these two situ-
ations, a repulsive potential U0�0 leads to an impurity
state at �0��0, manifested by a peak in the LDOS below
the Fermi energy at the impurity site. In contrast, the
peaks are above the Fermi energy at the four nearest-
neighbor sites. Correspondingly, an attractive impurity
potential U0�0 induces a state at �0��0 at the impurity
site, but below the Fermi energy at its nearest neighbors.

For �iii�, in addition to two coherent peaks, there are
also two Van Hove singularity peaks �more pronounced
on the negative-energy side and faint at the positive
side�. For a repulsive impurity, the on-site resonance
peak does shift from the negative-energy side slightly
above the zero energy. This phenomenon is absent for �i�

FIG. 6. �Color online� The LDOS as a function of energy at
the impurity site �left panels� and at one of its nearest neigh-
bors �right panels� in a 2D lattice. The upper panels are for the
repulsive potential, U0=0,2 ,5 ,10, while the lower panels are
for the attractive potential, U0=0,−2,−5,−10. Note that the
resonance peak is pushed toward the Fermi energy as the po-
tential strength is increased.

FIG. 7. �Color online� Same as Fig. 6 for t=1, t�=−0.2, and
�=−0.784.

FIG. 8. �Color online� Same as Fig. 6 for t=1, t�=−0.3, and
�=−1.0.
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and �ii�. For U0�0, the result is similar to �i� and �ii�.
Here we consider the optimal doping regime for �ii� and
�iii�. At other dopings all possibilities discussed above
could occur depending on band structure.

The sign of the impurity potential for Zn and Ni at-
oms in cuprates is still an unsettled issue. It is believed
that these atoms substitute Cu in the Cu-O plane and do
not change the hole doping. Then Zn2+ is in the d10 con-
figuration, and the third ionization energy is a rough
measure of the impurity potential U0 �even though the
Cu d orbitals form a band�. By comparing the energies
of the Cu atom ECu2+ =−36.83 eV and the Zn atom
EZn2+ =−39.722 eV, we estimate U0�−2.89 eV. There-
fore the Zn atom plays the role of a strong attractive
potential in the Cu-O lattice. The location of the level at
negative energy is consistent with the d10 configuration.

Ni2+ has a 3d8 shell and a spin S=1 ground state.
Therefore to describe the effect of the Ni impurity we
need to account for both potential �U0� and magnetic �J�
scattering. We estimate the energy U0 by taking the dif-
ference between atomic energies using ENi2+

=−35.17 eV to find U0�1.66 eV for Ni. Compared to
Zn, its potential is weaker and repulsive. Similar conclu-
sions about the sign and strength of Zn and Ni impuri-
ties were reached recently in a more sophisticated three-
band model �Xiang et al., 2002�.

For a detailed comparison of the results from model
calculations with the experimental data, the band-
structure effects need to be well understood. Ultimately
we need realistic band-structure calculations with impu-
rities for these complex materials.

VIII. SINGLE-IMPURITY BOUND STATE IN A PSEUDOGAP
STATE OF TWO-DIMENSIONAL METALS

A. General remarks on impurities in a pseudogap state

A natural question to address is whether supercon-
ductivity, or even any off-diagonal long-range order, is
required for a resonance state, and we address this in the
experimentally relevant context of cuprates. Many ex-
periments �Norman et al., 1998; Renner et al., 1998; Lo-
ram et al., 2000� show that in high-Tc systems the elec-
tronic density of states near the Fermi surface is
suppressed above the superconducting transition tem-
perature Tc, but below a characteristic temperature T*.
The energy range of this suppression, �PG, is known as
the pseudogap, and its origin has been hotly debated;
see Timusk and Statt �1999� and Timusk �2003�. Sce-
narios for this anomalous phenomenon include precur-
sors to superconductivity, such as a preformed pair with
phase fluctuations �Emery abd Kivelson, 1995�, Bose-
Einstein condensation of Cooper pairs �Chen et al.,
1998�, as well as various competing orders not related to
superconductivity, such as the time-reversal–symmetry-
breaking circulating current �Varma, 1999� and the un-
conventional d-density wave �Chakravarty et al. 2001�.
The latter is a variant of the staggered flux state �Affleck
and Marston, 1988; Marston and Affleck, 1989; Hsu et

al., 1991�. In the first scenario, the “normal” state con-
tains preformed Cooper pairs, but phase fluctuations of
the pairing field destroy the long-range order, that is, the
bulk superconductivity. Since at the onset the pairing
field has d-wave symmetry in the momentum space, a
d-wave pseudogap follows.

Here, instead of discussing the origin of the
pseudogap, we model it phenomenologically in some of
these scenarios and study electronic properties around a
single impurity. If a STM measurement is done at differ-
ent temperatures, there are two possibilities for the evo-
lution of an impurity resonance at T�Tc: �a� it gradually
broadens and disappears when the superconductivity
vanishes, as in a conventional superconductor; and �b�
the resonance broadens but survives above in the
pseudogap state. It was argued experimentally �Krasnov
et al., 2000; Loram et al., 2000� that in underdoped cu-
prates the superconducting gap and pseudogap are sepa-
rate phenomena, and we show below that the resonance
survives above Tc. We find that its position and width
depend on both the impurity scattering strength and the
pseudogap energy scale.

Our simplest model of the �unrelated to superconduc-
tivity� pseudogap is a metallic state with linearly vanish-
ing DOS around the Fermi energy, but no off-diagonal
order; see Fig. 9. This simplification allows analytical cal-
culations and provides a “reference point” for the impu-
rity state in the pseudogap regime. Once again we focus
on the Zn substitution for Cu and use the T-matrix ap-
proach. We find that the depletion of the DOS alone is
sufficient to produce a resonance near a nonmagnetic
impurity.

The analysis is quite general and similar to that of Sec.
V and Balatsky et al. �1995�. The states generated by the
impurity are given by the poles � of the T matrix,

FIG. 9. An impurity state in a high-Tc superconductor: �a� The
DOS in the pseudogap regime used here �see also Altland and
Zirnbauer �1997�� and �b� the DOS in the superconducting
state as used by Abanov and Chubukov �2000�. In both phases
there is a resonant state.
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g0��� =
1

U0
. �8.1�

This is an implicit equation for ��U0�, and complex so-
lutions indicate the resonant nature of the state. To solve
it, we need the unperturbed local Green’s function on
the impurity site, g0�E�=g0�+ ig0�, where the imaginary
part is given by g0����=−�N0��� and N0��� is the bulk
DOS.

Measurements of the electronic specific heat by Lo-
ram et al. �2000� showed that the pseudogap opens be-
low hole doping pcrit�0.19 hole/CuO2 and has a
V-shaped energy profile. Guided by these data, we as-
sume that low-energy electronic states are partially de-
pleted, so that N0���=N0� /�PG for ���PG and
N0���=N0 for �PG� ��W /2 with W the bandwidth;
see Fig. 10�a�. We use this DOS to generate solutions of
Eq. �8.1�. Clearly, the precise position and width of the
resonance depend on the specific form chosen for N���
�in our case linear�. Results for other forms of N��� are
very similar.5

Using this DOS for g0� and invoking the Kramers-
Kronig relation �see, e.g., Mahan 2000�,

g0���� =
1

�
�

− 

 

d��g0�����P� 1

�� − �
� , �8.2�

with P the Cauchy principal value, we find

g0���� = − N0 ln�
W

2
− �

W

2
+ �� + N0 ln��PG − �

�PG + �
�

− N0
�

�PG
ln��PG

2 − �2

�2 � . �8.3�

Figure 10�b� shows g0���� together with 1/U0 to obtain a
graphical solution as in Fig. 3. For 2U0N0�1, Eq. �8.1�
has four solutions. Since the width of the resonance is
proportional to �, only solutions with � close to zero
are sharp. Expanding in � in Eq. �8.3� we find

g0��� = −
2�N0

�PG
�ln��PG

�
� + 1 −

i� sgn�U0�
2

� =
1

U0
.

�8.4�

This equation can be solved exactly in terms of Lam-
bert’s W functions,6 which to logarithmic accuracy in
ln2U0N0�1, gives �=��+ i�� with7

�� = −
�PG

2U0N0

1

ln2U0N0�1 −
1

ln2U0N0� , �8.5�
5We argue that the appearance of the ingragap impurity state

is a robust feature of any depleted DOS around the Fermi
surface. We have considered a model with N0���=N0�a+ �1
−a��2 /�PG

2 �, which is similar to a resonant state at

� = − �PG�1 + i�aN0U0�/�4N0U0�1 − a�PG/W��

� − �PG�1 + i�aN0U0�/�4N0U0�1 − a��

when �PG/W
1. For a fully gapped DOS, N���=N0 for �
� ��PG,W /2� and zero otherwise. The resonant state is at �
=−�PG/ �2U0N0�.

6The exact solution in terms of Lambert’s W function,
Lw�−1,x�, defined from Lw�x�exp�Lw�x��=x, is �
=−�PGsgn�U0�exp	Lw†−1,−sgn�U0�exp�i� /2−1� / �2N0U0�‡+1
− i� /2
.

7The simplest model for thermal broadening is to assign the
temperature-dependent width. Thermal broadening at high
temperatures T�Tc substantially broadens the impurity reso-
nance peak ���T�=�����T=0��2+T2.

FIG. 10. �Color online� Impurity-induced resonance states. �a�
The density of states N���=−g0���� /� for the model discussed
in the text. �b� The real part g0���� of the Green’s function
together with 1/U0 and U0 positive. �� is the real part of the
solution of g0���=1/U0. �c� The impurity-induced resonance at
��=−�PG/2U0N0 ln�2U0N0�. The other three solutions of Eq.
�8.1� are much broader and are not depicted. All plots are at
the impurity site. From Kruis, Martin, and Balatsky �2001�.
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�� = −
��PG sgn�U0�

4U0N0 ln22U0N0
. �8.6�

Here �� is the energy position and �� is the decay rate.
Using Eq. �8.5� for Zn doping in cuprates and setting

N0=1 state/eV, �PG�300 K�30 meV, and the scatter-
ing potential U0� ±2 eV, we estimate �� ±2 meV
� ±20 K as found by Loram et al. �2000�. This value is
close to the Zn resonance energy �0=−16 K, seen in the
superconducting state �Pan, Hudson, Lang et al., 2000�.
By combining these results with band-structure argu-
ments �Martin et al., 2002�, we conclude that the Zn im-
purity in Bi2212 is strongly attractive, with U0�−2 eV.
This value, as we show below, is modified due to the
particle-hole asymmetry expected in doped cuprates.

A similar calculation can be done in the absence of
particle-hole symmetry. The simplest way to introduce
the asymmetry is by making the upper and lower cutoffs
in the DOS different, i.e., keep the bare density of states
featureless, but move the chemical potential � away
from the middle of the band. The pseudogap is still cen-
tered at the chemical potential. Therefore the calcula-
tion proceeds as above with the sole change being in the
first logarithmic term of Eq. �8.3�,

− N0 ln�W/2 − � − �

W/2 + � + �
� . �8.7�

Neglecting the frequency � relative to the chemical po-
tential � and assuming that � is small relative to the
bandwidth, we find that the asymmetric case can be
mapped onto the symmetric situation by the substitution

1

U 0 →
1

U 0 −
4N0�

W
. �8.8�

The effect of the asymmetry can be estimated. In cu-
prates, for 20% hole doping, ��−�1/5�W /2=−W /10.
Hence the modified value for the Zn impurity strength
in Bi2212 can be obtained from the symmetric result,
1 /U*=1/U0+4N0� /W. The new value is U*�−1 eV,
which is a strongly attractive potential, as is expected
from band-structure arguments.

The solution for the resonance state involves deter-
mining the energy position and width of the resonance,
as well as the real-space shape of the impurity state. The
energy of the resonance for a local impurity potential U0
depends only on the local propagator g0���. Hence
knowledge of the DOS �related to the imaginary part of
the on-site propagator� is sufficient to determine �via
Kramers-Kronig relations� the real part of g0 and to find
the energy of the impurity state. On the other hand, to
determine the real-space image of the resonance, one
requires more knowledge of the state and its Green’s
function. Quite generally, for a d-wave-like pseudogap
with nearly nodal points along the �±� /2 , ±� /2� direc-
tions, the impurity resonance is fourfold symmetric,
similar to superconducting solutions �Balatsky et al.,
1995�. However, any detailed calculation requires a
more specific model for the pseudogap state. Some of
these are considered below.

B. Impurity state in pseudogap models

1. d-density wave

This model postulates the mean-field Hamiltonian
�Chakravarty et al., 2001�

H0 = �
ij,�

�− tij + �− 1�iiWij�ci�
† cj� − ��

i,�
ci�

† ci�, �8.9�

with the order parameter Wij defined at the bonds of
a square lattice, Wi,i±x̂=W±x̂=W0 /4 and Wi,i±ŷ=W±ŷ

=−W0 /4, and zero otherwise. The prefactor i=�−1 indi-
cates that the d-density-wave state breaks the time-
reversal symmetry. In momentum space,

H0 = �
k,�
�kck�

† ck� + �
k,�

iWk�ck�
† ck+Q,� − ck+Q,�

† ck�� .

�8.10�

We take the single-particle energy �k from Eq. �7.18�,
with t�=0 for simplicity. For kx and ky in the first Bril-
louin zone, the d-density-wave gap is d-wave-like,

Wk =
W0

2
�cos kx − cos ky� . �8.11�

d-density-wave order breaks the symmetry with respect
to translations by a lattice constant a along x or y, but
preserves translations by �2a along the diagonals of the
square lattice. Therefore it is convenient to rewrite the
Hamiltonian in the reduced Brillouin zone. Introducing
a two-component operator �k�

† = �ck�
† ,ck+Q,�

† � with Q
= �� ,��, we find

H0 = �
k�rBZ,�

�k�
† � �k i2Wk

− 2iWk �k+Q
��k�, �8.12�

where rBZ denotes the reduced Brillouin zone.
In analogy with Gor’kov-Nambu notation, we intro-

duce the matrix Green’s functions �cf. Sec. II.C�

Ĝ�0��k ;�� = �G11
�0� G12

�0�

G21
�0� G22

�0� � , �8.13�

where

G11
�0��k ;�� = − �T��ck����ck�

† �0��� , �8.14a�

G12
�0��k ;�� = − �T��ck����ck+Q,�

† �0��� , �8.14b�

G21
�0��k ;�� = − �T��ck+Q,����ck�

† �0��� , �8.14c�

G22
�0��k ;�� = − �T��ck+Q,����ck+Q,�

† �0��� . �8.14d�

From the Hamiltonian Eq. �8.12�, using an equation of
motion for the operators ck� and ck�

† , and by performing
a Fourier transform with respect to �, we find

Ĝ�0��k ;i�n� = �i�n − �k − 2iWk

2iWk i�n − �k+Q
�−1

. �8.15�

To solve for the bound state we need the Green’s func-
tion in real space,
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G�0��i,j ;i�n� =
1

N �
k�rBZ

eik·Rij�G11
�0��k ;i�n� + G22

�0��k ;i�n�

+ e−iQ·RjG12
�0��k ;i�n� + eiQ·RiG21

�0��k ;i�n�� ,

�8.16�

where Ri are lattice vectors and Rij=Ri−Rj. From Eqs.
�8.15� and �8.16�, the local Green’s function is

G�0� =
1

N �
k�rBZ

2i�n − �k+Q − �k

�i�n − �k��i�n − �k+Q� − 4Wk
2 . �8.17�

We now analyze the scattering on a single nonmag-
netic impurity in the d-density-wave state. Without loss
of generality, hereafter we assume that the impurity is
located at the origin. The poles of the T matrix give the
energy of the resonance state, i.e., once again

G�0��0,0;� + i0+� =
1

U0
. �8.18�

The real-space map of resonant states is manifested in
the local density of states,

Ni��� = −
2

�
Im G�i,i ;� + i�� . �8.19�

Numerical results are displayed in Figs. 11 and 12. It is
clear that the electronic excitation spectrum around the
impurity in the d-density-wave state is very sensitive to
the band structure. For t�=0 and at half-filling ��=0�,
the electron density of states of a pure d-density-wave
system vanishes at the Fermi energy. Therefore in the
presence of an impurity resonance states appear at low
energies. With t�=0 and with the system doped away
from half-filling, the resonant peak in the LDOS is
shifted away from the Fermi energy. This is because the

energy at which the band DOS vanishes no longer coin-
cides with the Fermi energy. For more realistic param-
eter values, the density of states in the clean limit shows
essentially no reduction at low energies, and the LDOS
near the impurity does not exhibit any signature of a
resonance state. These results were independently ob-
tained by Zhu et al. �2001�, Morr �2002�, and Wang
�2002�. The quasiparticle states in the d-density-wave
state with a finite concentration of nonmagnetic impuri-
ties have been investigated by Ghosal and Kee �2004�.

2. Phase-fluctuation scenario

We now discuss the impurity state in a phase-
fluctuating superconductor; see Wang �2002� for details.
The mean-field Hamiltonian for a d-wave supercon-
ductor on a square lattice is

H = �
ij
�i

†�− tij − ��ij − �ij

− �ij
* − �− tji − ��ij�

��j, �8.20�

where �i
†= �ci↑

† ,ci↓� is the Nambu spinor, �ij is defined on
the bonds in analogy to Sec. VII.C, and its phase is al-
lowed to fluctuate, while its amplitude is fixed,

FIG. 11. d-density wave �DDW� DOS for the clean case �solid
line� and in the presence of a nonmagnetic impurity with U0
=1 eV: �1� DOS on the impurity site, �2� DOS on the nearest-
neighbor site, and �3� DOS on the next-nearest-neighbor site.
The other parameter values are t=300 meV, W0=25 meV, t�
=0, and �=0. From Morr, 2002. FIG. 12. DDW-DOS for the clean and iimpure cases. �a� Fermi

surface in the DDW state with t�=−0.3t, �=−0.91t �hole dop-
ing of 10%�, and W0=25 meV. The hole pockets are centered
around �±� /2 , ±� /2�. �b� DOS in the DDW state with the
same band parameters as in �a�, for the clean case �solid line�
and in the presence of a nonmagnetic impurity with U0
=1 eV: �1� DOS on the impurity site, �2� DOS on the nearest-
neighbor site, and �3� DOS on the next-nearest-neighbor site.
Inset: Superconducting DOS for the same band parameters as
in �a�. From Morr, 2002.
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�ij =
�0$ij

4
ei#ij = �̃ije

i#ij. �8.21�

For d-wave pairing, $ij=1 �−1� for x �y� direction bonds
and phase #ij= �#i+#j� /2. Spatial variation of the phase
gives rise to superfluid flow of the Cooper pairs. By per-
forming a gauge transformation,

�̃i = e−i#i�3/2�i, �8.22�

where �3 is the Pauli matrix, we transfer the phase from
the pairing field to the hopping t, so that

H̃ = �
ij
�̃i

†�− t̃ij − ��ij − �̃ij

− �̃ij
* − �− t̃ji − ��ij�

��̃j, �8.23�

where t̃ij= tije
−i�#i−#j�/2. Assuming that the length scale of

the phase variation �the London penetration depth� is
much greater than the Fermi wavelength, we can define
the phase for the Cooper pair #i=2qs ·Ri, where qs is the
average momentum per electron in the superfluid state.
This ansatz gives the Green’s function

Ĝ�0��k ;qs;i�n� = �i�n − �k+qs
− �k

− �k
* i�n + �k−qs

�−1

, �8.24�

for pure systems, where �k= ��0 /2��cos kx−cos ky� and
the �k is given by Eq. �7.18�.

In the presence of a nonmagnetic impurity at site i
= �0,0�, the Green’s function becomes

Ĝ�i,j ;qs;i�n� = Ĝ�0��i,j ;qs;i�n� + Ĝ�0��i,0;qs;i�n�

� T̂�qs;i�n�Ĝ�0��0,j ;qs;i�n� , �8.25�

T̂−1�i�n;qs� = �̂3/U0 − Ĝ�0��0,0;qs;i�n� . �8.26�

For fixed qs, the LDOS at site i is given by

N�i ;qs;�� = − �2/��Im G11�i,i ;qs;� + i0+� . �8.27�

Averaging over fluctuating phases in �ij is equivalent
to averaging over qs. If the fluctuations are thermal,
the statistical distribution of qs is Gaussian, ��qs�
=e−qs

2/2nv /�qs
e−qs

2/2nv, where nv=exp�−�aTc / �T−Tc�� is
the vortex concentration, as in the Kosterlitz-Thouless
theory �Kosterlitz and Thouless, 1973, 1974; Sheehy et
al., 2001�. In the continuum limit, ��qs

2�=�nv. The aver-
aged LDOS is caculated as N�i ;��= �N�i ;qs ;���.

The results are shown in Fig. 13. For small nv, the
resonance peak is sharp and similar to that in the super-
conducting state �nv=0�. As nv is increased, the peak is
broadened and its height is reduced until the spectrum
at low energies becomes featureless.

We can therefore compare the predictions of different
models. In the phase-fluctuation scenario, the electron
excitation spectrum around the impurity is very sensitive
to how far the temperature is from the actual Tc. In
contrast, in the normal-state ordering scenario, reso-
nance states are not sensitive to the temperature up to
the closing of the pseudogap. Notice that the energy of

the resonance state in the phase-fluctuation scenario is
not sensitive to doping while in the state with normal
�particle-hole� ordering it shifts with doping. Generally,
if superconducting fluctuations are present, a satellite
peak appears at the opposite bias due to the particle-
hole nature of Bogoliubov quasiparticles. The relative
magnitude of the particle and hole parts of the impurity
spectrum can be used to determine the extent to which
the pseudogap is governed by superconducting fluctua-
tions. For a fully nonsuperconducting pseudogap �e.g.,
the d-density-wave state�, there is no counterpart state.
Together with other proposals �Janko et al., 1999; Martin
and Balatsky, 2000�, the study of impurity resonances
can help to better understand the mysterious pseudogap
state.

IX. SCANNING-TUNNELING MICROSCOPY RESULTS

A. STM results around a single impurity

Experimental attempts to detect and accurately re-
solve subgap features in the density of states in super-
conductors with impurities have a long history. Their sig-
natures were found early in planar junctions doped with
magnetic impurities �Dumoulin et al., 1975, 1977�, but a
direct observation using scanning-tunneling spectros-
copy �STS� only became possible in the late 1990s.
Yazdani et al. �1997� deposited adatoms, Mn, Gd, and
Ag, on the �110�-oriented surface of a superconducting
Nb sample and examined the electronic structure
around them. Figure 14 shows the tunneling spectra.
The main findings are as follows: �i� The local density of
states is essentially identical in the vicinity of Ag impu-
rity atoms and far away from them. This is consistent
with the belief that Ag is nonmagnetic. �ii� Near mag-
netic Mn and Gd atoms the LDOS is enhanced at the
length scale of 10 Å, at energies below the Nb supercon-
ducting gap, indicating that the impurity states are
bound. �iii� The LDOS spectra are asymmetric about the
Fermi energy. Within the Bogoliubov–de Gennes theory,
a two-parameter magnetic impurity model was used, in
which electrons are coupled with the impurity through
both a magnetic exchange interaction J and a nonmag-

FIG. 13. Local density of states with �0=0.68t, �=−0.3t, t�=0,
and U0=100t. �a� N�rnn ,�� vs �. Solid lines: nv=10−6, 10−4,
10−3, and 5�10−3 with decreasing peaks. The dotted line is the
LDOS at nv=0 and U0=0 for comparison. �b� N�r ,0.05t� at
nv=0. The impurity is at the center. �c� The same as �b� for
nv=5�10−3. The gray scale is the same in �b� and �c�. From
Wang, 2002.

397Balatsky, Vekhter, and Zhu: Impurity-induced states in conventional and¼

Rev. Mod. Phys., Vol. 78, No. 2, April–June 2006



netic potential scattering U. The results obtained were
consistent with the Yu-Shiba-Rusinov prediction and
more recent theories �Yazdani et al., 1997� and fit the
experimental data. However, the model calculation re-
quired the value of J of the order of 4 eV in the strong
coupling limit and failed to capture the detailed spatial
dependence of the spectra around the Gd site.

Byers, Flatte, and Scalapino �1993� were the first to
suggest the use of STM to study local effects of impuri-
ties in the superconducting state. Balatsky and co-
workers �Balatsky et al., 1995; Salkola et al., 1996� pre-
dicted that quasiparticle resonance states are induced
around a nonmagnetic impurity in a d-wave supercon-
ductor, in striking contrast to s-wave systems. The pio-
neering STM experiments which tested these predictions
were carried out in nominally pure samples of the high-
Tc cuprate Bi2Sr2CaCu2O8+� �BSCCO� by Eigler
�Yazdani et al., 1999� and Davis �Hudson et al., 1999�.
The STM spectra clearly showed enhancement of the
local density of states close to zero bias near chemically
induced defects. These experiments provided strong evi-

dence for the existence of low-energy quasiparticle reso-
nance states around single nonmagnetic impurities, as
predicted theoretically. The asymmetry or splitting of
the measured resonance was conjectured to be the result
of the breaking of the particle-hole symmetry by local
defects or from the asymmetry of the underlying realis-
tic band structure of BSCCO �Flatte and Byers, 1998;
Zhu, Lee, et al., 2000�. However, in these experiments
the location in the crystal and identity of these scattering
centers were unknown. Moreover, since enhancement of
the LDOS at these scattering centers is not large, and
since the coherence of high-Tc superconductors is short,
it was difficult to investigate in detail the LDOS at the
atomic scale.

STM studies on Bi2Sr2Ca�Cu1−xZnx�2O8+� single crys-
tals intentionally doped with x=0.6% Zn were reported
by Pan, Hudson, Lang, et al. �2000�. Zn2+ has a filled d
shell and hence acts as a strong potential scatterer for
holes in the CuO2 plane. Therefore, according to the
predictions of Balatsky et al., the quasiparticle resonance
is expected close to the Fermi energy. To search for it,

FIG. 14. Differential local tunneling conductance in the vicinity of single impurity in s-wave superconductor. Left panel: The
dI /dV spectra measured near �a� Mn, �b� Gd, and �c� Ag atoms and far away from the impurity. Right panel: Constant-current
topographs and simultaneously acquired dI /dV images show the spatial extent of the bound state near Mn and Gd adatoms. �a�
Constant-current �32 Å by 32 Å� topograph of a Mn adatom. �b� Image of dI /dV near the Mn adatom acquired simultaneously
with the topograph in �a�. Reduced dI /dV �dark areas� marks the bound state. The contrast is reversed because dc bias voltage was
chosen well above the energy of the bound state, and the resonance affects dI /dV only indirectly. �c� Constant-current �32 Å by
32 Å� topograph of a Gd adatom. �d� Image of dI /dV near the Gd adatom acquired simultaneously with the topograph in �c�.
From Yazdani et al., 1997.
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Pan, Hudson, Lang, et al. mapped the differential tun-
neling conductance at zero bias over a large area and
found randomly distributed sites corresponding to high
LDOS, which they associated with Zn dopants. A typi-
cal tunneling spectrum at the center of such a site is
shown in Fig. 15: it exhibits a very strong peak �up to six
times greater than the normal-state conductance� at the
energy �=−1.5±0.5 meV. At the same location, the in-
tensity of the superconducting coherence peak is
strongly suppressed, indicating almost complete local
destruction of superconductivity. Both features are in
agreement with the predictions for quasiparticle scatter-
ing off of a strong nonmagnetic impurity in a d-wave
superconductor.

The high intensity of the intragap peak allowed close
inspection of the electronic structure around the Zn im-
purity. As shown in Fig. 16, the differential conductance
map at �=−1.5 meV exhibits two novel features. First,
the intensity is the strongest directly at the impurity site,
and local maxima and minima occur at the sites belong-
ing to the different sublattices with respect to the impu-
rity. Second, the intensity decays much faster along the
nodal direction than along the bond direction. These
features are at variance with the theory based on a
purely potential scattering, which predicts vanishingly
small intensity at the impurity near the unitarity limit.
The discrepancy motivated additional studies. One ap-
proach focused on the Kondo resonance as a contribu-
tion to the zero-bias peak �Polkovnikov et al., 2001;
Zhang et al., 2001; Zhu and Ting, 2001a�; as discussed in
Sec. XI. An alternative explanation considers the tun-
neling path via the BiO layer which is exposed when the

sample is cleaved �Zhu et al., 2000; Zhu and Ting, 2001b;
Martin et al., 2002�; this is outlined later.

When the Ni atom is substituted for the plane Cu in
BSCCO it is in the 3d8 state and therefore has spin S
=1. The potential part of scattering is also present, but is
much weaker than for Zn. The experimental study of
Ni-doped samples in which two resonance states were
found was reported by Hudson et al. �2001� as shown in
Fig. 17 and 18. Observation of two distinct resonance

FIG. 15. �Color online� Differential tunneling spectra taken at
the Zn-atom site �open circles� and a location far away from
the impurity �filled circles�. Note that on the impurity site one
has peaks at both positive and negative bias albeit of very
different magnitude that are a reflection of the particle-hole
character of the impurity resonance. To fit the data use a
simple potential scattering model with an essentially unitary
scattering phase shift �=0.48�. The phase shift is related to an
impurity potential U0 via cot �=1/�NFU0. From Pan, Hudson,
Lang, et al., 2000.

FIG. 16. �Color online� High-spatial-resolution image of the
differential tunneling conductance at a negative tip voltage
bias eV=−1.5 meV at a 60�60 Å2 square. Also shown is
d-wave gap nodes orientation and lattice sites to indicate that
the impurity state is registered to the lattice. From Pan, Hud-
son, Lang, et al., 2000.

FIG. 17. �Color online� Tunneling DOS for tunneling on a Ni
impurity site. Note that there are always states at opposite bias
as well. The peak intensity is largest on either positive or nega-
tive bias depending on the position. To fit the data one needs
to use both U0 and J. From Hudson et al., 2001.
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energies is in agreement with theoretical models that
include both nonmagnetic and magnetic scattering
�Salkola et al., 1997; Tsuchiura et al., 2000� and predict
spin-resolved states at the energies ±�1,2 given by Eq.
�7.13� �Salkola et al., 1997�. In experiment, �1
=9.2±1.1 meV and �2=18.6±0.7 meV. Using the value
for the superconducting energy gap �0=28 meV, one
finds NFU=−0.67 and NFJ=0.14. This implies that the
scattering on Ni atoms is dominated by potential inter-
actions, even though the impurity has a magnetic mo-
ment. The experiment also showed that the intensity at
the gap edge in the tunneling conductance directly at the
Ni impurity site is almost unaffected.

B. Filter

As mentioned above, for strong potential scattering it
is difficult, if not impossible, to produce a large intensity
on the impurity site. Indeed, independent of the model,
scattering in the near-unitarity limit produces a node in
the wave function. Yet experimentally in the STM im-
ages the Zn-impurity site is bright �Pan, Hudson, Lang,
et al., 2000� indicating an enhanced low-energy DOS.
One possible explanation for this discrepancy is that the
image seen by STM is not simply the local intensity of
the impurity state directly underneath the tip. The
sample is cleaved, and the conduction plane where reso-
nance resides is buried below the exposed layer so that
tunneling occurs predominantly via a particular combi-
nation of atomic orbitals that allow electron transfer
from the STM tip to the conduction plane. This provides
a “filter” that emphasizes or hides certain features of the
bare LDOS. Martin et al. �2002� proposed that the inten-
sity seen by STM is a convolution of initial intensity due
to impurity scattering and the filter function that ac-
counts for the matrix element of hopping between CuO
planes, tk� cos kx−cos ky2.

In a simplified form this idea is based on the essential
role of copper s orbitals for interplane tunneling �Ander-
sen et al., 1995; Xiang and Wheatley, 1995�. The DOS
near the Fermi surface is dominated by the dx2−y2 orbit-
als of Cu �for simplicity we treat hybridization with oxy-
gen p orbitals perturbatively�, while s orbitals are far
from the chemical potential. However, interplane tun-
neling between dx2−y2 orbitals in different planes via the
apical oxygen pz shell is prohibited by symmetry and
therefore must occur via virtual hopping on s orbitals.
Locally, dx2−y2 and s orbitals are orthogonal on a given
site, and the next available s orbitals are on the four
nearest copper atoms. Therefore the electron hops vir-
tually onto px or py orbitals of nearest O and then onto
the Cu s orbital, as shown in Fig. 19.

It is clear from Fig. 19 that the sign of the hopping
amplitude Cudx2−y2→Opx,y→Cu s is different for mo-
tion along horizontal and vertical directions. Compare
the amplitudes Ai,i+x�y� for the hopping to the Cu site on
the right and on the top,

Ai,i+x �
�dipx��pxsi+x�

�Ep − Ed��Es − Ep�
�

�− 1�exp�ikxa�
�Ep − Ed��Es − Ep�

,

Ai,i+y �
�dipy��pysi+y�

�Ep − Ed��Es − Ep�
�

�+ 1�exp�ikxa�
�Ep − Ed��Es − Ep�

.

�9.1�

So far we consider plane waves that describe states with-
out impurity scattering. It was argued �Martin et al.,
2002� that the same holds for states produced by impu-
rity scattering. Quantum-mechanical hopping from one
site to its nearest-neighbor s orbital has contributions
from four processes,

Atot = Ai,i+x + Ai,i−x + Ai,i+y + Ai,i−y

� cos�kxa� − cos�kya� . �9.2�

Here the second line refers to the pure plane wave in
connection with band structure calculations �Andersen
et al., 1995�. Upon hopping onto the s orbitals, the elec-

FIG. 18. �Color online� Differential conductance spectra
above the Ni atom and at several nearby locations. Differential
conductance spectra obtained at four positions near the Ni
atom showing the maxima at eV= ±�1. Intensity as a function
of position relative to the impurity site reverses upon change
of the bias sign. This effect is explained as a result of particle
and hole components of the impurity state. From Hudson et
al., 2001.

FIG. 19. The real-space image of different orbitals on Cu;
nearest O and nearest Cu sites are shown. Dark orbitals and
lobes represent the positive phase of the orbital wave function,
white represents the negative phase. Quantum-mechanical in-
terference produces the filter effect that changes the distribu-
tion of the impurity state intensity. From Martin
et al., 2002.
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tron moves to the next layer and retraces its path.
Therefore the net amplitude for the hopping will be pro-
portional to Atot2 and has dx2−y2 modulations,

Atot2 � cos�kxa� − cos�kya�2. �9.3�

This particular filter appears in the interplane hopping
matrix element obtained using the band-structure calcu-
lation �Andersen et al., 1995; Xiang and Wheatley, 1995�.
However, the Cu s orbitals are also relevant for probing
an exposed Cu-O layer since electrons tunnel from the
STM tip predominantly into these states �Misra et al.,
2002�. The 4s-orbital-assisted hopping was also argued
to have profound consequences for the experimental
measurement of vortex core states in cuprates �Wu et al.,
2000�.

Filters of another type, due to blocking of certain hop-
ping, were considered by Zhu, Ting, and Hu �2000�, who
analyzed the local tunneling matrix elements that con-
nect impurity orbitals to s orbitals on neighboring Cu
atoms. The net effect is to add probabilities �nn�Ai,i+�2
rather than interfering amplitudes. This filter was argued
to produce a large spectral intensity on an impurity site
and to suppress it on nearest-neighbor sites. More re-
cently, STM data have been converted to a set of LDOS
defined on a two-dimensional lattice �Wang and Hu,
2004�, which has allowed for a rigorous comparison be-
tween tight-binding model studies and STM experimen-
tal data.

An important observation arises from comparing
STM and NMR results on a Li-doped YBCO supercon-
ductor �Bobroff et al., 2001�. Li appears to be a strong
scatterer, and the maximum intensity of the NMR signal
comes from four nearest-neighbor Cu sites, hence it is
localized near the impurity. This is consistent with the
notion that a strongly scattering impurity produces large
density of states on nearest sites. The crucial difference
between NMR and STM is that no electron tunneling is
associated with NMR observations, and therefore it
measures real-space distribution of spin. Consequently,
NMR results provide another confirmation, albeit indi-
rect, of scattering resonance theory.

C. Spatial distribution of particle and hole components

It is clear by comparing the left and right panels of
Fig. 18 that the tunneling intensity is not symmetric with
the bias voltage. On the contrary, the maxima and
minima in the LDOS map are interchanged: bright spots
in the STS map at a positive bias V corresponding to
dark spots at −V, and vice versa. This effect is a general
property of superconductors and is seen in both s- and
d-wave systems �Yazdani et al., 1997; Pan, Hudson,
Gupta, et al., 2000; Hudson et al., 2001�; see also Sec. X.
It results from the interplay between particle and hole
components of Bogoliubov quasiparticles, which are
“native” elementary excitations of a superconductor. In
the spatial LDOS pattern created by the quasiparticle
resonance, sites with large particle components have a
large intensity on the positive bias site, while sites with

large hole components are bright at negative bias; see
Fig. 20.

Formally, we define the particle and hole amplitudes
of the Bogoliubov quasiparticle, un�i� and vn�i�, at site i
and for a particular eigenstate n; see also Eq. �7.12�.
They obey the normalization condition �nun�i�2
+ vn�i�2=1 at each site. Therefore at a site where un�i� is
large, vn�i� is small, and vice versa. A large un�i� compo-
nent means that the quasiparticle state is predominantly
electronlike at that site, and the probability for electron
tunneling into a superconductor is locally enhanced.
Hence the tunneling intensity at the positive sample bias
is large. At the same site the hole amplitude vn�i�

 un�i� and the intensity at negative sample bias is
small. Similarly, sites with large hole amplitudes vn�i�
are bright at negative bias. It follows that if a particular
intensity pattern is observed at positive bias �electron
tunneling�, quite generally, the complementary pattern is
found at negative bias �hole tunneling�. This is simply a
consequence of particle-hole mixing in superconductors
and lies at the heart of the intensity pattern change upon
switching bias, seen in experiments �Pan. Hudson,
Gupta, et al., 2000; Hudson et al., 2001�; see Fig. 19.

D. Fourier-transformed STM maps

The spatial dependence of the impurity-induced state
has additional information on the underlying system.

FIG. 20. Particle and hole components of the impurity wave
function for a magnetic impurity in an s-wave superconductor.
�a� Impurity wave function �B�r� and �b� r2�B�r�. The maxima
of particle and hole components occur at different positions.
This results in the different image of the impurity state, seen
on the positive and negative bias. This effect is a general prop-
erty of a superconductor regardless of the symmetry of the
pairing state. From Yasdani et al., 1997.
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Consider the simple case of a metal surface with an im-
purity atom; see Sec. V. Modifications of the DOS in-
duced by the impurity, such as Friedel oscillations, vary
at the wave vector kF and decay a distance from the
scattering center; see, for example, Eq. �5.12�. There-
fore, if an area of the surface contains a number of di-
lute randomly distributed impurities, the LDOS exhibits
a pattern of standing waves. A Fourier transform of the
intensity map at a given bias therefore shows a pro-
nounced maximum at the Fermi wave vector �or its 2D
slice� and can be used to map out the Fermi surface of
the underlying compound. This technique was pioneered
by Sprunger et al. �Sprunger et al., 1997; Petersen et al.,
1998� for Be, Cu, and other metallic surfaces and be-
came known as the Fourier-transform STM �FT-STM�
method. In simple cases, this method directly reveals the
Fermi surface of a metallic band; see Fig. 21.

The above discussed technique was recently extended
to the superconducting state of the cuprates �Hoffman,
Hudson, et al., 2002; Hoffman, McElroy, et al., 2002;
Howald et al., 2003; McElroy et al., 2003�. In unconven-
tional superconductors, the information contained in FT-
STM maps is more extensive than in metals. In cuprates
not all experimental features are understood, and theory
generally followed experiment, so that here we review
several aspects of the data.

The enhanced signal in the FT-STM image at a wave
vector q and bias eV=� corresponds to a large ampli-
tude for scattering off of an impurity. Qualitatively, this
amplitude depends on the number of available initial
and final states at a given energy in regions of the Bril-
louin zone separated by q, i.e., the amplitude is propor-
tional to �Nk���Nk+q���dk, where Nk��� is the
momentum-dependent DOS. The greater the number of
“matching” pairs of initial and final states, the more a
quasiparticle scatters from one into another, producing a
feature in the FT-STM image �we consider low tempera-
tures and therefore ignore Fermi factors�. In most met-
als the density of states is constant around the Fermi
surface. In nodal superconductors the loci of low-energy
excitations depend on the location of the nodes and

shape of the Fermi surface. Experiment and analysis for
BSCCO have first been carried out by McElroy et al.
�2003�. At energies below the gap maximum �
�0 the
energy contours E�k=�� are banana shaped, as shown in
Fig. 22. The dominant contribution to the density of
states, N�E=�����„E�k�−�…�kEk−1dk, arises from re-
gions of the greatest curvature of E�k�, i.e., from the tips
of each banana. Therefore the primary contribution to
N��� is from small regions around eight wave vectors
�octet� kj�E� , j=1,2 , . . . ,8, at the banana tips ��red�
circles in Fig. 22�.

Consequently, the maximal scattering intensity at a
given � is from one element of the octet to another,
simply due to the large DOS of the initial and final
states. For each kj, there are seven counterparts for en-
hanced scattering, producing a total of 56 scattering
wave vectors. Of these, 32 are inequivalent, and there-
fore 16 distinct ±q pairs can be detected by Fourier-
transformed scanning-tunneling spectroscopy. The ex-
perimental data �McElroy et al., 2003� were found to be
in good agreement with this model. The samples were
not intentionally doped, so that scattering was on intrin-
sic disorder. It is important to note that the model pre-
dicts the dispersion of each resonance wave vector with
energy �bias voltage� determined by the underlying
Fermi surface and shape of the gap, i.e., by the growth of
bananas with energy. The peaks associated with these
Friedel oscillations of quasiparticles scattering on impu-
rities have been extensively investigated �Byers et al.,
1993; Wang and Lee, 2003; Zhang and Ting, 2003, 2004�,
and interference effects from many impurities have been
analyzed by Capriotti et al. �2003� and Zhu, Atkinson,
and Hirschfeld �2004�.

However, results on cuprates show features beyond
the simple Fermi-surface resonances. First, it has been
argued that some of the Fourier-transform features do
not disperse �Howald et al., 2003�, and LDOS modula-

FIG. 21. �Color online� Example of Fourier-transformed
scanning-tunneling microscopy �FT-STM�. �a� Be �001� surface,
as seen by STM, with standing waves �Friedel oscillations� pro-
duced by defects. �b� A Fourier transform of �a� reveals a cut
through the Fermi surface corresponding to the surface states.
From Sprunger et al., 1997; Petersen et al., 1998.

FIG. 22. �Color online� A representative set of seven scatter-
ing vectors qi�E� of the “octet” model. Reproduced with per-
mission from McElroy et al., 2003.
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tions should be interpreted by invoking a static �or fluc-
tuating� competing charge- or spin-ordered state �Kivel-
son et al., 2003; Podolsky et al., 2003; Polkovnikov et al.,
2003�. Experimentally observed nanoscale inhomogene-
ities �Howald et al., 2001; Pan et al., 2001; Lang et al.,
2002� also indicate the proximity to such a state. Fur-
thermore, electronic states at low energies in the
pseudogap state in BSCCO exhibit spatial modulations
with an energy-independent incommensurate periodicity
�Vershinin et al., 2004�.

Second, a static Cu-O bond-oriented “checkerboard”
pattern with 4a0 periodicity was found near the vortex
core in the mixed state �Hoffman, Hudson, et al., 2002�.
This charge modulation is consistent with the field-
induced spin modulation with period 8a0 observed in
neutron scattering �Lake et al., 2001, 2002; Khaykovich
et al., 2002� with other cuprate materials. The checker-
board pattern was interpreted as the onset of the com-
peting spin-density wave order around the vortex core
where the superconductivity is suppressed �Zhu and
Ting, 2001c; Zhu et al., 2002; Andersen and Hedegård,
2003; Takigawa et al., 2003�, nucleation of the antiferro-
magnetic order brought about by local quantum fluctua-
tions of a vortex �Franz et al., 2002�, and crystallization
of d-wave hole pairs by the magnetic field �Chen et al.,
2002�. A similar pattern has also been predicted around
a single strong impurity with an induced local moment in
optimally doped cuprates �Liang and Lee, 2002; Zhu et
al., 2002; Chen and Ting, 2003, 2004�. These predictions
depend on the details of a complete microscopic model
that has not yet been developed.

X. QUANTUM PHASE TRANSITION IN s-WAVE
SUPERCONDUCTORS WITH MAGNETIC IMPURITY

A. Introduction

Here we revisit the well-studied problem of a local-
ized classical magnetic moment in a superconductor. We
focus on one aspect of this model: the first-order zero-
temperature transition that takes place in an s-wave su-
perconductor as a function of the effective magnetic mo-
ment J0S, where S is the local impurity spin and J0 is the
exchange coupling between spin and the spins of con-
duction electrons. In this transition, the spin quantum
number s of the electronic ground state �0� changes
from zero for a subcritical moment J0�Jcrit to 1/2 for
J0�Jcrit. The total spin becomes S±1/2 depending on
the sign of J0. Sakurai �1970� was the first to point out
this transition, which corresponds to a level crossing be-
tween two ground states as a function of the exchange
coupling. In a singlet superconductor the level crossing
occurs between the state with the partially screened im-
purity spin and that with S unscreened. The two states
have different spin quantum numbers, and hence level
crossing is generally allowed. This quantum phase tran-
sition is of first order and thus is not associated with
divergent time or length scales.

We address the above problem at zero temperature
using the mean-field approximation within the T-matrix

formulation and utilizing the self-consistent approach,
which takes into account local gap-function relaxation.
The local Coulomb interaction U breaks particle-hole
symmetry and leads to an asymmetric spectral density
for the impurity-induced quasiparticle states. Figure 23
illustrates the local effect of a magnetic moment on the
low-energy spectral density in an s-wave supercon-
ductor. Since we limit our considerations to a classical
spin S�1, the impurity moment cannot be screened
completely by quasiparticles. We show that the gross
features of impurity-induced quasiparticle states in s-
and d-wave superconductors can be qualitatively under-
stood within the non-self-consistent T-matrix formalism.
The transition itself is not restricted to the classical spin:
a similar effect is found in a Kondo model; see Sec. XI.

B. Quantum phase transition as a level crossing

The physical picture of the quantum transition follows
from the behavior of the impurity-induced bound state.
The transition results from the instability of the spin-
unpolarized ground state. For a large enough value of J0,
the energy of the impurity-induced quasiparticle state
falls below the chemical potential.

In the Yu-Shiba-Rusinov solution for a classical spin,
see Sec. VI, the energy of the impurity state is always
below the gap threshold:

�0/�0 =
1 − ��J0SN0�2

1 + ��J0SN0�2 �10.1�

and the particle �u−1� and hole �v−1� amplitudes at posi-
tive and negative energies. The level crossing and
change of the ground state follow from this result. Ignor-
ing the self-consistent solution and using Eq. �10.1�, we
find that the transition occurs at

J0 = Jcrit = 1/�N0S . �10.2�

For weak coupling J0�Jcrit, the ground state of the
superconductor is a paired state of time-reversed single-
particle states in the presence of impurity scattering,
with the BCS-like ground-state wave function,

FIG. 23. The local effect of a magnetic moment on the low-
energy spectral density in an s-wave superconductor.
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�0�J0�Jcrit
� �

n
�un + vn�n

†�−n
† �0� = �0� . �10.3�

Here, since the translational symmetry is broken by the
impurity, we consider eigenstates of the scattering prob-
lem in the presence of an impurity. These states are la-
beled by a discrete index n=1, . . . , and form the basis
for the Bogoliubov Hamiltonian with an impurity. The
n=1 state corresponds to an impurity bound state, local-
ized on an impurity site. The index −n corresponds to a
time-reversal state, i.e., the localized state with opposite
spin. The first excited state above the condensate corre-
sponds, at J0�Jcrit, to a single-quasiparticle excitation,
and its energy is that of the intragap Yu-Shiba-Rusinov
state at energy �0; see Fig. 24.

The wave function of this excited state is

�−1�J0�Jcrit
� −1

† �0� = %−1� ,

%−1� = �−1
† �

n�1
�un + vn�n

†�−n
† �0� , �10.4�

with the standard quasiparticle definitions 1=u1�1

−v1�−1
† , 1

†=u1�1
†−v1�−1, −1

† =u1�−1
† +v1�1, etc., where

un
2 +vn

2 =1. We introduce the notation

�̃0� = �
n�1

�un + vn�n
†�−n

† �0� , �10.5�

so that %−1�=�−1
† �̃0�. The state 1

†�0� is far above the
superconducting gap and hence is not relevant for this
discussion. Note that �0� is a true vacuum for all qua-
siparticles: e.g., ±1�n�0�un+vn�n

†�−n
† �0�=0.8 This is a

true spin-singlet state, ��0Selectron�0�=0. To avoid con-
fusion with impurity spin S, we explicitly indicate that
Selectron is the net spin of conduction electrons. Hence if
�0�J0�Jcrit

= �0� is a ground state, the total spin of elec-
trons is zero, and only the spin of impurity counts. The
first excited state at energy �0 has a spin 1/2 quasipar-
ticle in it: �%−1Selectron

z %−1�=−1/2.
Upon increasing the coupling constant J0 one reaches

the critical value where energies of the two states cross,
Fig. 25. Beyond that point, the excited and ground states
change roles,

�0�J0�Jcrit
= �−1� = %−1� ,

�−1�J0�Jcrit
= �0� . �10.6�

A clear way to see this quantum phase transition is by
examining the energy levels as a function of J0 /Jcrit. For
variational wave functions �0,−1�, we define the respec-
tive energies as expectation values of the Hamiltonian,

E0,−1�J0/Jcrit� = ��0,−1H�0,−1� . �10.7�

The energy of the first excitation is then

�0�J0/Jcrit� = E−1 − E0, J0 � Jcrit,

�0�J0/Jcrit� = E0 − E−1, J0 � Jcrit. �10.8�

There are several implications of this result. First, the
ground state of a superconductor with a magnetic impu-
rity in the strong-coupling limit is a non-BCS state: there
is one unpaired occupied single-particle state in the
ground state. In contrast, all states are paired in the BCS
theory. A similar result was observed for Kondo screen-
ing in a superconductor �Sakai et al., 1993�. One can
understand the result by considering the strong-coupling
limit J0N0�1, when, well before any superconducting

8Here the spin of state n=1 is determined by the sign of the
exchange coupling J0. We assume it to be antiferromagnetic.
The electronic spin of the state n=−1 in Eq. �10.4� is opposite
to the local spin S, assumed to be up, without loss of generality.
The case of ferromagnetic coupling is similar. Indeed, the clas-
sical spin solution Eq. �10.1� is symmetric between J0→−J0 as
it contains only even powers of exchange.

FIG. 24. �Color online� Two variational states are shown sche-
matically. �0� is a standard BCS wave function that contains
only paired particles and has unscreened impurity spin S. �1�
is a variational wave function that describes the formation of
the bound state between particles with the spin opposite to the
local spin �for antiferromagnetic coupling�; this state is inher-
ently a non-BCS state and the electronic-spin quantum num-
ber differs by one unpaired spin compared to �0�.

FIG. 25. �Color online� Energies of two variational states are
shown. �0� is a standard BCS state with energy E0. �1� is a
variational state that describes the formation of the bound
state between particles with the spin opposite to the local spin
with energy E1. Level crossing between states with different
symmetry occurs at some critical value of the coupling Jcrit.
This is an example of a first-order quantum phase transition
with no divergent length or time scale associated with it.
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correlations are established, a single electron state is
bound to the impurity site. This is equivalent to the
strong-coupling limit for Kondo screening. In our case
the bound electron partially screens the large impurity
spin. For spin S=1/2, the screening is complete and the
state is a singlet �Sakai et al., 1993�. Thereafter, a super-
conducting state emerges with one unpaired electron
bound to the impurity; it is stabilized by the energy bal-
ance between superconducting and magnetic energies. A
single electron state bound to a local spin yields an en-
ergy gain �J0, which is large compared to the pairing
energy �0. The crossing point and related quantities are
shown in Fig. 26. This level crossing point corresponds
to a quantum phase transition.

The crossing point occurs exactly at the critical point
of Eq. �10.1� only in a non-self-consistent treatment in
which single-particle levels provide the only contribu-
tion to the total energy. The true phase transition occurs
slightly earlier. The gap suppression and quasiparticle
interaction also contribute to the free energy and, in the

self-consistent mean-field approximation, the order-
parameter relaxation shifts Jcrit downwards and the en-
ergy of the impurity-induced bound state does not reach
zero when a first-order transition between two ground
states occurs. In practice the analytical results are within
10% of numerical results obtained in a self-consistent
treatment �Salkola et al., 1997�. In contrast, a d-wave
superconductor has no quantum transition for any mag-
netic moment value when its quasiparticle spectrum in
the normal state has particle-hole symmetry. The ab-
sence of the transition follows from the behavior of
impurity-induced quasiparticle states, which are pinned
at the chemical potential for an arbitrarily large mag-
netic moment; see Sec. VII. However, if particle-hole
symmetry is broken or if the pairing state acquires a
small s-wave component, the transition is possible for a
large enough moment. The impurity moment induces
two virtual bound states which have fourfold symmetry
and extend along the nodal directions of the energy gap.

C. Particle and hole component of impurity bound
state

In this section we show that excited states inside the
gap in a superconducting state appear in pairs at positive
and negative energies. This is a direct consequence of
the fact that natural excitations are Bogoliubov excita-
tions. Particle and hole coefficients of the excited state
�−1�J0�Jcrit

are given by the u and v components of the
quasiparticle operators n; see Sec. II. To be specific we
confine subsequent discussion to the s-wave case, how-
ever, the results are applicable to a superconducting
state of any symmetry.

Consider two independent processes: �a� an electron
at energy �0 and spin down, n=−1, and �b� a hole with
spin up, n=1, injected in a superconductor with the same
energy �0. Hole creation means that an electron with
spin up is extracted from a superconductor. In experi-
ment, this is achieved by reversing the bias of the STM
tip, corresponding to the negative-energy axis. Varia-
tional wave functions that describe these processes are

�−1
† �0�J0�Jcrit

= − u1%−1� ,

�1�0� = v1%−1� . �10.9�

Here, to be specific, we consider the case J0�Jcrit. This
illustrates the point that in a BCS-like ground state the
particle excitation with energy �0 and hole excitation
with negative energy −�0, aside from irrelevant normal-
ization factors, is the same excited state, namely, %−1�.
Therefore, the poles in the density of states �and contri-
butions to the electronic LDOS� come in pairs at posi-
tive and negative energies. True quasiparticles in a su-
perconducting state are Bogoliubov excitations n that
have finite particles and holes with amplitudes un and vn.
The strength of the electron absorption and emission
process is controlled by coherence factors. This is true
for a BCS superconductor even without impurities. For
the case at hand, impurity states are distinct from the

FIG. 26. Magnetic-impurity-induced bound state in s—wave
superconductor. �a� The bound-state energy �0, �b� the spec-
tral weight of the pole Z± for positive and negative energies in
units of N0J0 ,N0=NF, �c� the spin polarization �s�r=0��, and �d�
the gap function ��r=0� /�0 at the impurity site r=0 as a func-
tion of J0 in the s-wave superconductor. Lines denote the
T-matrix results for the uniform order parameter and symbols
denote the self-consistent mean-field results on a square lattice
at half-filling. The quantities of the impurity-induced intragap
quasiparticle state belonging to the branch J0�Jcrit are de-
noted by solid lines and solid symbols, whereas those belong-
ing to the branch J0�Jcrit are marked by dashed lines and
open symbols. Taken from Salkola et al., 1997.
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continuum. The two poles at ±�0 are part of the same
physical excitation. The local spectral function A1�r ,��
=−Im G11�r ,�� /� at the impurity site is

A1��� = Z+��� −�0� + Z−��� +�0� , �10.10�

and the relative strength of the particle and hole com-
ponents is Z+�u−1

2 and Z−�v−1
2 , so the net strength of

poles Z++Z−&1 as it should be for a physical excitation.
For more details and references, the reader is referred
to Salkola et al. �1997�.

The analysis for J0�Jcrit is more involved. The
ground-state wave function is now %−1�. Injection of an
electron with spin opposite to the bound state and ex-
traction of an electron with the same spin produces

�1
†%−1� = �1

†�−1
† �̃0�, �−1%−1� = �̃0� , �10.11�

respectively, with the complementary annihilated states
�1

†%−1�=0 and �−1
† %−1�=0. Although the two states

written in Eq. �10.11� are different, the sole difference is
that one of them has an extra Cooper pair. For a mac-
roscopically large system with the number of Cooper
pairs N�1 this produces a negligible difference in the
energies and matrix elements. Therefore the injection of
an electron with spin up �in our convention� and extrac-
tion of an electron with spin down produce the same
physical state. This state has a particle and hole projec-
tion as discussed in the case of J0�Jcrit.

A similar quantum phase transition occurs in a d-wave
superconductor for a nonmagnetic impurity. In the case
of a particle-hole symmetric band unitary scattering pro-
duces a zero energy state; see Sec. VII, Eq. �7.1�. How-
ever, for the particle-hole asymmetric band the impurity
state reaches zero energy and eventually changes sign as
a function of impurity strength. This transition occurs at
U0�Ucrit��, where � is the chemical potential which
leads to a particle-hole asymmetric band. It is known
that a single-quasiparticle bound state forms at U0
�Ucrit, and the ground-state wave function has a single
unpaired quasiparticle in addition to the BCS pairs; see
Salkola et al. �1996, 1997�.

D. Intrinsic � phase shift for J0�Jcrit coupling

Here we point out a little known but important fact
that near an impurity site the phase of the superconduct-
ing order parameter changes by �. As shown Fig. 26�d�,
the self-consistent solution indicates that at J0�Jcrit the
phase of the order parameter on the impurity site is
shifted by � with respect to the phase in the bulk. This is
illustrated in Fig. 27.

In numerical calculations the spatial extent of the
�-shifted region was found to be a few atomic sites. Such
a sharp change in the phase of the order parameter costs
significant superconducting condensate energy and is
not preferred under normal circumstances. In the case at
hand, however, in the strong-coupling limit near the im-
purity site, the condensate energy is secondary to the
magnetic exchange energy, and the physics is driven by
magnetic interactions. Even though the phase shift is �,

it does not lead to any time-reversal-violating observ-
able effects as there are no superconducting currents
near the impurity: I=Ic sin �=0. These results were ob-
tained with the self-consistent treatment using a nega-
tive U model that allows for on-site pairing �Salkola et
al., 1997�.

We are not aware of a simple explanation of this ef-
fect. It appears to be general and not restricted to a
particular model. It is related to the �-shift supercon-
ducting junctions with tunneling barriers containing a
magnetic impurity or a ferromagnetic layer. This subject
is covered extensively; see, e.g., a recent review and
other papers �Bulaevskii et al., 1977; Buzdin et al., 1982;
Glazman and Matveev, 1989; Spivak and Kivelson, 1991;
Buzdin, 2005�.

XI. KONDO EFFECT AND QQUANTUM IMPURITIES

Above we have concentrated on static impurities. In
the next two sections, we consider examples when impu-
rity atoms have their own internal degrees of freedom
and impurities are dynamically coupled to conduction
electrons. The fact that dynamical behavior often leads
to qualitatively new results is well known from Kondo
effect studies �Kondo, 1964�: scattering of conduction
electrons off of a single magnetic impurity.

At low T, dilute magnetic impurities doped into an
otherwise nonmagnetic metallic host have dramatic ef-
fects on the resistivity and susceptibility. The anomalies
are due to screening of the impurity spin by conduction
electrons. For a local spin S= 1

2 and antiferromagnetic
exchange, a global singlet is formed by coupling an elec-
tron state to the impurity site; quantum dynamics of spin
flips is crucial for its formation. The process is mani-
fested in the crossover of the susceptibility from Curie-
like at high temperatures, '=C /T with C=4�B

2 S�S
+1� /3kB, to Pauli-like below a characteristic Kondo
temperature, TK�W exp�−1/2JN0�. Here W is the elec-
tron half bandwidth and J is the exchange constant. Im-
portantly, �a� Kondo screening occurs only for the anti-
ferromagnetic exchange constant J�0, and �b� the
process is nonperturbative, as is clear from the nonana-

FIG. 27. �Color online� Cartoon of the intrinsic � junction
near the magnetic impurity in an s-wave superconductor.
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lytic dependence of TK on the exchange constant. A full
understanding of the single-impurity Kondo problem in
a metal required concerted use of the renormalization
group �Anderson, 1970; Anderson et al., 1970�, numeri-
cal renormalization group �Wilson, 1975�, exact solutions
via the Bethe ansatz �Andrei, 1980; Wiegmann, 1980�,
and large-N expansions �Read and Newns, 1983a, 1983b;
Coleman, 1984, 1985; Read, 1985�. Many results were
summarized in reviews �Hewson, 1993; Cox and Zawad-
owski, 1998�.

Kondo screening involves quasiparticles near the
Fermi energy EF. In metals, the density of states near EF

varies weakly, N����N0, which simplifies the analysis. In
contrast, if N��� varies strongly with ��EF the Kondo
effect is realized differently. In a band-gap insulator this
was investigated by Ogura and Saso �1993�, who found
that the ground state of the magnetic impurity changes
from a singlet to multiplet when the band gap increases,
as in the case of the magnetic impurity in a conventional
BCS superconductor. In superconductors, however, the
Cooper instability that gaps the Fermi surface and de-
pletes the density of states is itself driven by the finite
DOS in the normal state. Consequently, the two effects
compete.

For simplicity, and following the historical develop-
ment, we have so far considered properties of classical
spin for which no reduction in magnitude due to Kondo
screening is possible; see Sec. VI. We now overview the
current understanding of the Kondo screening in super-
conductors, focusing especially on the similarities and
differences between the cases of quantum and classically
impurity spins.

A. Kondo effect in fully gapped superconductors

In normal metals antiferromagnetic exchange leads to
Kondo screening below TK, while ferromagnetic ex-
change does not. In superconductors, within the Shiba-
Rusinov analysis the sign of the exchange interaction
between conduction electrons and impurity spins is irrel-
evant. Consequently, treatment of quantum impurity
spins must bring out the differences between the two
signs of J.

For J�0 the opening of the superconducting gap
competes with Kondo screening as both instabilities are
driven by the finite DOS at zero energy. Clearly, if TK
�Tc, the impurity is completely screened at the onset of
superconductivity. In contrast, for TK
Tc Kondo
screening is suppressed by the depletion of states upon
the opening of the superconducting gap.

In the renormalization-group picture, Kondo screen-
ing is viewed as growth �and divergence� of the effective
exchange coupling Jeff as we focus on the properties of
the system at lower energies. Therefore Jeff and, with it,
the phase shift of scattering on the impurity, depends on
the energy of the incoming electron. Consequently, the
effect of scattering varies with temperature.

1. Ferromagnetic exchange

Early analytical attempts were carried out �Zittartz
and Müller-Hartmann, 1970, Müller-Hartmann, 1973� in
the framework of the Nagaoka decoupling scheme �Na-
gaoka, 1965, 1967; Hamann, 1967�. For J�0 the bound
state splits off the band edge and was found to move
towards an asymptotic value,

��
E0

�
= �1 + g2�2S�S + 1��−1/2, �11.1�

where g=�N0 and � is the superconducting coupling
constant. For weak coupling g
1 the bound state re-
mains close to the gap edge for values of J�0. This
qualitative result was later confirmed by numerical-
renormalization-group calculations �Satori et al., 1992;
Sakai et al., 1993�, which showed the binding energy ap-
proximated by ��1−�2Jeff

2 /8, where

Jeff =
2J/W

1 + �2J/W�ln�W/��
. �11.2�

where W is the bandwidth. Therefore, the ferromagnetic
case corresponds to weak coupling and small phase shift
of scattering at low temperatures.

The ground state of this system was argued to be a
doublet �Soda et al., 1967; Satori et al., 1992; Sakai et al.,
1993� since the ferromagnetic interaction renormalizes
to weak coupling and the impurity spin remains essen-
tially free. Recently it was suggested that the supercon-
ducting interaction is relevant �in the renormalization-
group sense� in this model, and therefore above a critical
�-dependent coupling JC �JC is larger for smaller �� the
ground state of the coupled superconductor-impurity
system is a triplet �mz=0, ±1� �Yoshioka and Ohashi
1998�. This suggestion needs to be explored further.

2. Antiferromagnetic coupling

In a normal metal Kondo screening corresponds to
Jeff→ and hence to the scattering in the unitarity limit,
with the scattering phase shift �→� /2. The Hartree-
Fock analysis �Shiba, 1973� is insufficient to describe this
effect.

Several authors considered the limit TK
� �Soda et
al., 1967; Zittartz and Müller-Hartmann, 1970; Müller-
Hartmann, 1973� and found the position of the localized
excited state with various degrees of accuracy. In this
regime the localized state lies close to the gap edge, as it
does for ferromagnetic coupling. In the opposite limit
TK�� the approximate solution for the position and
residue of the bound state was obtained by Zittartz and
Müller-Hartmann �1970� and Müller-Hartmann �1973�,
however, the results were inexact due to the nature of
their approximation. Later, within the local Fermi-liquid
approach, the energy of the bound state in this limit was
found to be �Matsuura, 1977�

� =
1 − �2

1 + �2 , �11.3�

where

407Balatsky, Vekhter, and Zhu: Impurity-induced states in conventional and¼

Rev. Mod. Phys., Vol. 78, No. 2, April–June 2006



��
��

4TK
ln

4eTK

��
. �11.4�

This result clearly shows that the phase shift of scatter-
ing depends on the ratio Tc /TK.

The properties of the bound state, including its posi-
tion and spectral weight, for arbitrary values of TK /Tc
were obtained with the help of numerical-
renormalization-group calculations �Satori et al., 1992;
Sakai et al., 1993�. They found level crossing similar to
the quantum phase transition �discussed above� at
TK /��0.3. For TK /��0.3, the impurity moment is
mostly quenched when the depletion of states caused by
superconductivity begins to affect screening. In that case
the ground state is a Kondo-screened singlet, while the
excited intragap state is a doublet with spectral weight
(�2 for TK��1, corresponding to a single-particle
state. Here ( is defined from

−
1

�
Im G�� + i��/� =

(

2
���� − E0� + ��� + E0�� .

�11.5�

On the other hand, for TK /��0.3 the Kondo effect is
suppressed by the opening of the superconducting gap,
the ground state is a doublet corresponding to a free-
spin state, while the bound excited state is a Kondo sin-
glet. The spectral weight (�0.5 for TK
�, and changes
discontinuously at the phase transition point.

Level crossing means that the bound state is at zero
energy for TK /��0.3, while it is close to the gap edge
for both TK�� and TK
�. Numerical results show that
the energy of the bound state is not symmetric with re-
spect to the crossing point: E0 /��0.5 for 0.03"TK /�
"1 �Satori et al., 1992�.

3. Anisotropic exchange and orbital effects

Several more complicated aspects of Kondo screening
in superconductors have attracted attention in recent
years, and we review them briefly, referring the reader to
the original papers for further information. An aniso-
tropic exchange interaction, Jz�J±, allows the investiga-
tion of the crossover between the Ising regime, J±=0,
when the spin flip is disallowed and there is no Kondo
screening, and the isotropic exchange considered so far.
The main features of the phase diagram are discussed by
Yoshioka and Ohashi �1998�, and new phases occur on
the ferromagnetic side. In particular, these authors
found an extended regime of the Ising-dominated
ground state for J±�0. In addition, they found small
regions of the phase diagram around isotropic ferromag-
netic and Ising antiferromagnetic lines, where two local-
ized intragap states exist. They also obtained a perturba-
tive analytic expression for the shift of the bound-state
energy due to anisotropy of the interaction.

Using the numerical-renormalization-group approach
to analyze Anderson’s model allows us to interpolate
between asymmetric magnetic scattering, the Kondo
problem, and nonmagnetic scattering, including the

resonance U=0 limit �Yoshioka and Ohashi, 2000�. In
particular, the crossover from the magnetically induced
bound state to the resonance nonmagnetic scattering re-
gime �Machida and Shibata, 1972� was studied.

Finally, so far we have only discussed purely s-wave
superconductors. Fully gapped systems also include ma-
terials with a complex order parameter combining two
�or more� out-of-phase unconventional gaps, such as
dx2−y2 + idxy or px+ ipy. In both of these cases, Cooper
pairs have orbital degrees of freedom that also couple to
impurity spins, leading to the multichannel Kondo ef-
fect. In addition, for p-wave pairing the total spin of
Cooper pairs is s=1, so that nontrivial changes in screen-
ing occur depending on whether the impurity spin S
=1/2 or 1. The numerical-renormalization-group analy-
sis of the Kondo problem in this system was carried out
very recently �Koga and Matsumoto, 2002a, 2002b; Mat-
sumoto and Koga, 2002�. It was found that two order
parameters are indistinguishable when only the l=0 im-
purity scattering partial wave is taken into account, i.e.,
only the depletion of the density of states due to the gap
rather than the spin structure of the Cooper pair dic-
tated the Kondo screening. In that case the ground state
moment is determined by the orbital structure of the
Cooper pair. However, inclusion of higher harmonics
with l�0 for scattering �extended impurity potential�
leads to dependencies of the screening and ground states
on exchange couplings.

B. Kondo effect in gapless superconductors

The systems analyzed above are either metals with a
constant DOS at the Fermi surface or superconductors
with a hard gap. Gapless superconductors, such as
d-wave superconductors, with the power law DOS
N�E�� Er with r�0, present new situations that have
attracted much attention in recent years. The Kondo ef-
fect in systems in which the host single-particle density
of states follows a power law has been studied
intensively.9 Notice that considering the Kondo effect in
a system with the power-law dependence of the DOS is
not the same as analyzing the competition between su-
perconducting and Kondo correlations for d-wave sys-
tems.

Fradkin and co-workers �Withoff and Fradkin, 1990;
Cassanello and Fradkin, 1996, 1997� first employed a
combination of the poor man’s scaling argument and
large-N approach to spin-1

2 impurity for 0�r�1 and
showed that for r�0 there is a critical coupling value Jc
such that �i� at J�Jc the system is in the weak-coupling

9See, for example, Withoff and Fradkin, 1990; Borkowski and
Hirschfeld, 1992, 1994; Itoh, 1993; Chen and Jayaprakash,
1995; Cassanello and Fradkin, 1996, 1997; Ingersent, 1996;
Bulla et al., 1997, 2000; Conzalez-Buxton and Ingersent, 1998;
Ingersent and Si, 1998; Logan and Glossop, 2000; Polkovnikov
et al., 2001; Vojta, 2001; Vojta and Bulla, 2001; Zhang et al.,
2001, 2002; Zhu and Ting, 2001a, 2001b; Han et al., 2002, 2004;
Polkovnikov, 2002.
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regime when the Kondo interaction is irrelevant �J=0 is
a stable fixed point�, and the impurity decouples from
the band; and �ii� for J�Jc Kondo screening takes place.
Further studies based on the numerical-renormalization-
group approach �Chen and Jayaprakash, 1995; In-
gersent, 1996� identified particle-hole asymmetry as a
key factor in determining the low-temperature physics.
Their analysis indicated that at J= the impurity spin is
only partially screened. In the particle-hole symmetric
case, for 0�r� 1

2 , there exists a critical coupling Jc
above which the J= fixed point becomes stable. In con-
trast, for r� 1

2 the moment remains unscreened as the
exchange 0�J� renormalizes to zero. When the
particle-hole symmetry is broken by introducing a static
potential scattering at the impurity, a critical Jc exists for
an arbitrary r. For a fixed value of r �& 1

2
�, the critical

coupling depends on the potential scattering. A detailed
dependence of Jc on the potential scattering is compli-
cated and readers are referred to the article by Ingersent
�1996�.

In real systems the power-law variation of N��� is re-
stricted to an energy range ���0, with N����N��� for
�0� ��W. The numerical-renormalization-group ap-
proach gave results entirely consistent with those known
for gapped systems �the full gap 2�0 in the spectrum
corresponds to the r= limit�. For the particle-hole sym-
metric case an impurity in an insulator retains its mo-
ment, no matter how large J is. Away from particle-hole
symmetry, the spin is screened provided that J�Jc
�2W / ln�W /�0� �Takegahara et al., 1992�. Formation
and screening of the local moments in d-wave supercon-
ductors was investigated using the variational wave-
function approach �Simon and Varma, 1999�.

The Hamiltonian of a magnetic impurity in a metal
with a nontrivial DOS is

H = �
�
�

− 

 

d�N����c��
† c�� +

1

NL
�
k,k�

��U0 +
J

2
�ck↑

† ck�↑

+ �U0 −
J

2
�ck↓

† ck�↓� +
J

2 �
k,k�

�ck↑
† ck�↓S−

+ ck↓
† ck�↑S+� , �11.6�

where N��� is the electron density of states, NL is the
lattice size, and we included both potential scattering
and exchange.

Interest in the Kondo impurities in d-wave systems is
motivated by the recent STM and NMR experiments
around single impurities in high-Tc cuprates. Zn and Ni
are believed to replace Cu in the copper-oxide plane and
change the local electronic structure without changing
the net carrier concentration. Simple valence counting
suggests that if Zn and Ni impurities maintain a nominal
Cu2+ charge, Zn2+ has a �3d�10, S=0 configuration and
acts as a nonmagnetic impurity. In contrast Ni2+ is in a
�3d�8, S=1 state and is magnetic. Direct comparison be-
tween the two cases is difficult.

Nuclear magnetic resonance �NMR� experiments per-
formed with nonmagnetic spin 0 �Zn,Li,Al� in doped cu-
prates �Alloul et al., 1991; Ishhida et al., 1993, 1996; Ma-
hajan et al., 1994, 2000; Mendels et al., 1999� clearly
showed these impurities induce a local S= 1

2 moment on
the nearest-neighbor Cu. It was also demonstrated that
the magnetic properties associated with the substitution
of these impurities depend on hole doping. In the under-
doped regime the susceptibility obeys Curie’s law below
the superconducting transition temperature Tc. Near op-
timal doping the Kondo screening �albeit strongly re-
duced� may persist to the lowest T.

NMR shows that the induced moment is spatially dis-
tributed around the impurity. It is important to empha-
size that this moment is merely a particular bound state
of conduction electrons near the impurity and the pre-
cise form of the interaction of the induced moment with
other conduction electrons is a priori unknown. The
Kondo effect in cuprates does not stem simply from the
screening of the preformed local moment: Moment for-
mation and screening �as well as pairing� result from the
same bare interactions.

Nonetheless, in the absence of a microscopic theory
for high-Tc superconductivity, many authors use Kondo
screening as a starting point for the analysis of experi-
ments. Moreover, in most unconventional superconduct-
ors other than cuprates, the properties of a magnetic
impurity embedded in a superconductor are a well-
defined theoretical problem. The Hamiltonian consists
of an unconventional �d-wave in our case� BCS state
HBCS, a potential scattering term Hpot, and a magnetic
term Hmag. The magnetic term can be described by ei-
ther the Anderson impurity model or the Kondo ex-
change model, and the impurity spin can be either local-
ized at a single site or spatially distributed in its vicinity.
For the Anderson model with single-site coupling, the
magnetic term is given by

Hmag = �
k�

�Vkdck�
† d� + H.c.� + �d � d�

†d� + Udnd↑nd↓.

�11.7�

In the strong Ud limit, the Anderson model can be
mapped onto a Kondo s-d exchange model through the
Schrieffer-Wolff transformation �Hewson, 1993� leading
to

Hmag = Js0 · S , �11.8�

where s0= 1
2����c0�

† ����c0�� is the spin operator for the
conduction electron at the impurity site. For multisite
coupling

Hmag = �
I�

�VIdcI�
† d� + H.c.� + �d�

�

d�
†d� + Udnd↑nd↓,

�11.9�

where I is the set of nearest-neighbor sites

Hmag = �
I

JIsI · S . �11.10�
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The Anderson impurity model for a single-site cou-
pling in d-wave superconductors, Eq. �11.7�, was studied
by Zhang, Hu, and Yu �2001�. A sharp localized reso-
nance above the Fermi energy was predicted for the im-
purity state. The marginal Fermi-liquid behavior, i.e., a
logarithmic �in frequency� real part of the self-energy,
along with a linear relaxation rate, was also obtained,
indicating a new universality class for the strong-
coupling fixed point. Almost at the same time, the
multisite-coupling Anderson impurity model, Eq. �11.9�,
was considered by Zhu and Ting �2001a, 2001b�, while
the multisite-coupling Kondo impurity was studied by
Polkovnikov, Sachdev, and Vojta �Polkovnikov et al.,
2001; Polkovnikov, 2002�. These works show the exis-
tence of Kondo resonance. The low-energy structure of
spectral weight of conduction electrons was found to be
sensitive to the local environment surrounding the dy-
namic impurity. The on-site potential scattering was
taken to be either zero �Zhang et al., 2001� or very weak
�Polkovnikov et al., 2001; Polkovnikov, 2002� and the
resonance peak was close to the Fermi energy. Zhu and
Ting �2001a� took into account quasiparticle scattering
from a geometrical hole, where electrons are allowed to
hop onto four neighbors of the impurity site and ob-
tained a double-peak structure around the Fermi energy.
Furthermore, Zhu and Ting �2001b� considered the po-
tential scattering term to be in the unitary limit �U
→ � and found that the Kondo screening and strong
potential scattering determine the low-energy quasipar-
ticle states. The influence of the potential scattering on
the Kondo physics as well as the local electronic struc-
ture in d-wave superconductors has been reemphasized
by Vojta and Bulla �2001�.

Here we present a discussion based on the multisite-
coupling Kondo impurity model, as given by Eq. �11.10�.
As demonstrated previously, the problem of a single-site
potential scattering can be exactly solved. In Nambu
space, the full-matrix Green’s function is

G�i,j ;i�n� = G0�i,j ;i�n�

+ G0�i,0;i�n�T�i�n�G0�0,j ;i�n� , �11.11�

where the T matrix due to the potential scatterer is

T−1�i�n� = �3/U − G0�0,0;i�n� , �11.12�

and G0 is the Green’s function for the clean system. In
the presence of both potential and magnetic scattering,
the Green’s function is

G̃�i,j ;i�n� = G�i,j ;i�n� + �
l,l�

#l#l�G�i,l ;i�n�TK�i�n�

�G�l�,j ;i�n� . �11.13�

Here l and l� label the nearest neighbors to the impurity
site at �0,0� and TK is the T matrix for the Kondo impu-
rity. The variables #l have a different meaning depend-
ing on the approach to TK. In the large-N approximation
�equivalent to the slave-boson mean-field theory�,

TK
−1 = i�n − ��3 − �

l,l�

#l#l��3G�l,l�;i�n��3, �11.14�

and #l are the complex Hubbard-Stratonovich fields,
which are determined, together with the Lagrange mul-
tiplier �, by the saddle-point solution. Within the
numerical-renormalization-group approach, only the
strongest d-wave scattering channel is considered, and
the variables are taken to be #l= + �−�1 depending on
the bond orientation. Note that this d-wave pattern is
simply a band-structure effect and is not related to the
d-wave symmetry of the superconducting order param-
eter of the host. The LDOS is

�i��� = −
1

�
Im�Tr�G̃�i,i ;� + i0+�

1 + �3

2
�� . �11.15�

Figures 28–30 show the LDOS for a four-site Kondo
impurity model and different strengths of the poten-
tial scattering, calculated using the numerical-
renormalization-group technique �Vojta and Bulla,

FIG. 28. �Color online� Calculated tunneling density of states
for the four-site Kondo impurity model at 15% hole doping
with a realistic band structure �t=0.15 eV, t�=−t /4, t�= t /12�,
�0=0.04 eV, and �=−0.14 eV. The Kondo coupling is J
=0.09 eV and the potential scattering is U=0. Top: Local DOS
vs energy for the impurity site �with largest peak intensity
without filter while smallest peak intensity with filter �red�� and
the nearests- �with smallest peak intensity without filter while
largest peak intensity with filter �blue�� and second- �with in-
termediate peak intensity with/without filter �green�� neighbor
sites. Bottom: Spatial dependence of the local DOS at �=
−2 meV. Left: Local DOS in the CuO2 plane. Right: Local
DOS after applying the filter effect proposed by Martin, Bal-
atsky, and Zaanen �2002�. From Vojta and Bulla, 2001.
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2001�. It is clear that the spatial structure of the reso-
nance state is sensitive to the strength of the potential
scattering: if it is absent, a sharp resonance peak appears
directly on the impurity site, as well as on its next-
nearest neighbors, with reduced intensity. This is consis-
tent with experimental observations �Pan, Hudson,
Lang, et al., 2000�. For a moderate potential scattering
value, as shown in Fig. 29, the global particle-hole asym-
metry changes sign and the Kondo peak appears at the
opposite side of the Fermi level as compared to Fig. 28.
For strong �but finite� potential scattering, the resonance
peak due to impurity scattering becomes dominant, and
the Kondo effect is weaved into the overall structure of
the LDOS. In this case, the intensity of the on-site peak
is strongly suppressed and a double-peak structure with
enhanced intensity is seen in the LDOS at the nearest-
neighbor sites. The same results were also obtained by
Zhu and Ting �2001a� based on the Anderson impurity
model. In this simple model the large LDOS from the
resonance state induced by the strong potential scatterer
dramatically reduces the critical Kondo coupling, indi-
cating that the fate of the Kondo effect is determined by
a local rather than a global environment in which the
magnetic impurity is embedded. In the unitary limit �in-
finite impurity potential� LDOS has a zero intensity at
the impurity site and a sharp single peak at its nearest
neighbors. Consequently, to achieve agreement with the
pattern observed in experiment, one needs to invoke the
filter effect �Zhu, Ting, and Hu, 2000; Martin et al.,
2002�, which is detailed in Sec. IX.

XII. INELASTIC SCATTERING IN d-WAVE
SUPERCONDUCTORS

A. Inelastic scattering: General remarks

The previous section provided the simplest example
of an impurity with an internal degree of freedom—spin
for the Kondo effect. As a result, we extended the pre-
vious treatment of static impurities to account for scat-
tering processes that involve spin flips, which resulted in
a qualitatively new behavior. We now take this idea fur-
ther and explore inelastic-scattering processes.

By definition, impurity scattering changes the direc-
tion of the quasiparticle momentum. However, purely
potential scattering is elastic, i.e., the quasiparticle en-
ergy does not change. The Kondo impurity affects elec-
tron spin, however, scattering remains elastic: energies
of spin-up and spin-down impurity states are identical;
this degeneracy is at the origin of the Kondo singlet for-
mation. In this section we consider inelastic-scattering
processes that involve not only momentum but also en-
ergy transfer. There are two distinct scenarios for inelas-
tic scattering. One possibility is that impurities them-
selves are dynamic, and energy is transferred to/from
electrons during scattering only when they are in the
immediate vicinity of the impurity. This is an extension
of the previous treatment. Another possibility is that
electrons scatter off of a delocalized �extended� collec-
tive mode, such as a spin wave or a phonon, while scat-
tering on impurities remains elastic.

We consider the two situations separately. In the
former case the impurity-induced electron self-energy

FIG. 29. �Color online� Same as Fig. 28, but with potential
scattering U= t=0.15 eV. Here, J=0.065 eV. The lower panel
shows the local DOS at �= +2 meV. From Vojta and Bulla,
2001.

FIG. 30. �Color online� Same as Fig. 28, but with potential
scattering U=4t=0.6 eV. Here, J=0.04 eV. The lower panel
shows the local DOS at �= +3 meV. From Vojta and Bull,
2001.
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contains information about both the spatial and tempo-
ral, or dynamical, structure of the impurity. The latter
case is even more interesting, as information about the
extended collective mode is encoded in real-space Frie-
del oscillations around the impurity site, and its determi-
nation is only possible due to the presence of impurities.
Below we discuss a proposal to combine Fourier trans-
form and inelastic electron-tunneling spectroscopy
�IETS�. Fourier-transformed IETS, which is an exten-
sion of the FT-STM discussed above, allows, in principle,
the investigation of both characteristic momentum and
energy for inelastic scattering. The central object we
deal with in this technique is d2I�q ,eV� /dV2, similar to
real-space IETS STM �Stipe et al., 1998; Hahn and Ho,
2001�: Extension of the IETS analysis to reciprocal space
reveals nontrivial features in the spectra with simulta-
neous momentum and energy resolution.

The rest of the section is devoted to IETS in d-wave
superconductors. A similar analysis can be done for the
s-wave case �Brandt, 1970�. We expect IETS features at
energies above the gap to be similar for s- and d-wave
superconductors, while below the gap a detailed analysis
is required.

B. Localized modes in d-wave superconductors

Two examples reviewed explicitly are the local vibra-
tional mode �arising, for example, from a substitution
atom in the lattice� and scattering on an impurity spin in
an applied magnetic field. Essentially the same tech-
niques are used to analyze both situations, and here we
follow the work of Balatsky et al. �2003� and Morr and
Nyberg �2003�.

The Hamiltonian for a local distortion coupled to
electrons is known from the standard electron-phonon
coupling theory. Here, however, the interaction occurs
only at the impurity site, so that

H = �
k�
�kck�

† ck� + �
k

��kck↑
† c−k↓

† + H.c.�

+ g�
�

�b† + b�c0�
† c0�. �12.1�

The Hamiltonian for a spin S interacting with elec-
trons via a contact exchange JS ·� is quite different,

H = �
k
��k�ck�

† ck� + �
k

���k�ck↑
† c−k↓

† + H.c.�

+ �
k,k�,�,��

JS · ck�
† ����ck��� + g�BS · B . �12.2�

The external magnetic field B � ẑ leads to Zeeman split-
ting of spin states by the Larmor frequency �0=g�BB. If
the spin is in an equilibrium with a thermal bath, Zee-
man splitting of spin levels is analogous to the frequency
of a local mode, and electrons can scatter off the spin
inelastically. We focus on the latter case.

In Eq. �12.2� we used a mean-field description of a
superconducting state and ignored both the orbital and
Zeeman effect of the field with conduction electrons.

This is justified for B
Hc2.10 In the following we choose
S=1/2 and consider a d-wave superconductor, ��k�
= �� /2��cos kx−cos ky�, at low temperatures T
Tc.
Clearly, this treatment is only justified when the spin is
not screened via the Kondo interaction at low T.

Since spin splitting �and hence inelastic scattering� in-
volves only components transverse to the field, informa-
tion about scattering, to second order, is contained in the
self-energy with the normal Green’s function,

���l� = J2T �
k,�n

G�k,�l −�n�'+−��n� . �12.3�

Here the spin propagator '���= �T�S
+���S−�0�� in the fre-

quency space is given by '0���= �Sz� / ��0
2− ��+ i��2�. For

a local mode that is present on a single site there is no
contribution to � from the anomalous Green’s function,
�kF�k ,��=0. For a free spin in a field �Sz�
=tanh��0 /2T� /2, but we keep the notation �Sz� to ac-
count for magnetic anisotropy. The functional form of
the propagator is identical to that of a phonon mode,
and therefore subsequent analysis is applicable to both
situations.

In Eq. �12.3� the Green’s function is determined self-
consistently, G−1=G0−1−�, where G0 is the Green’s
function of the pure d-wave superconductor and �l ��l�
are bosonic �fermionic� Matsubara frequencies. After
analytic continuation to the real axis, i�n→�+ i�, we
find for the imaginary part of the self-energy

Im ���� = − J2�Sz�Im G�� − �0��nF�� − �0�

− nB��0� − 1� , �12.4�

where nF�B����=1/ �exp����+ �−�1� are Fermi �Bose� dis-
tribution functions. Information on the tunneling DOS
is contained solely in the self-energy. Modifications of
the superconducting order parameter and bosonic
propagator are ignored here.

Figure 31 shows the results for the local density of
states at the impurity site, solved numerically by finding
� and G. To proceed with an analytical treatment, below
we limit ourselves to second-order scattering in �.
We find that the differences between the self-consistent
solution and the second-order calculation are only
quantitative. To that accuracy, the corrections to the
Green’s function are G�r ,r� ,��=G0�r ,r� ,��
+G0�r ,0 ,������G0�0,r� ,��+F0�r ,0 ,������F*0�0,r ,��.
We define K�T ,� ,�0�=−�nF��−�0�−nB��0�−1� and fo-
cus on T
�0, when K�T ,� ,�0��)��−�0�. From this
expression, the correction to the LDOS at point r is

�N�r,�� = �1/��Im�G0�r,0,������G0�0,r,��

± F0�r,0,������F*0�0,r,��� .

Here a plus �minus� sign corresponds to the coupling to

10To minimize the orbital effect of the magnetic field one can
apply it parallel to the surface of a superconductor. The mag-
netic field is screened on the penetration depth scale so that its
effect on superconducting electrons is small.
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the local vibrational �spin� mode, i.e., to the cases of
preserved �broken� time-reversal symmetry. The modifi-
cation of the LDOS is most pronounced at the impurity
site, where we find

�N�r = 0,��
N0

=
�2

2
�JSN0�2� − �0

�
K�T,�,�0�

� �2�

�
ln��

�
��2

, �
 � , �12.5�

�N�r = 0,��
N0

= 2�2�JSN0�2K�T,�,�0�ln2� � − �
4�

�
� ln� 4�

� + �0 − �� + ��0 → − �0�,

�� � . �12.6�

To obtain this result we retained only the dominant real
part of G0�0,0 ,��=N0�2� /��ln�4� /�� for �
� and
the dominant imaginary part of G0�0,0 ,��= i�N���
=−2iN0 ln��−� /4��, in the opposite limit ���. The
results for the LDOS N��� and its derivative dN��� /d�
are shown in the lower panel of Fig. 31.

Away from the impurity site N�r ,�� exhibits Friedel
oscillations. A standing wave produced by inelastic scat-
tering has fingerprints of the energy transfer: there is a
peak �or a cusp� in the derivative of the DOS with re-
spect to energy. These oscillations can be called inelastic
Friedel oscillations, stressing the oscillating nature of the
inelastic signal d2I /dV2 in real space. These oscillations
can also be analyzed in reciprocal space, similar to
the elastic case in Sec. IX.D. The real-space pattern at
�
� is given by *�r�= �G0�r ,��2± F0�r ,��2�
�sin�kFr� / ��kFr��2+ �r� /��2�. Here we have separated r
= �r� ,r�� into components along �r�� and normal to �r��
the Fermi surface near the nodal point. The existence of
nodes in the superconducting gap leads to the power-law
decay of *�r� in all directions and to its fourfold modu-
lation due to gap anisotropy; see Salkola et al. �1997� and
Sec. VII.

It is important to emphasize the differences between
the resulting LDOS behavior for a nodal supercon-
ductor and a normal metal. For a d-wave supercon-
ductor, using the connection between the differential
conductance in STM experiments and DOS, we find

�
dI

dV� dI

dV
� �N�r = 0,V�/N0

� �JSN0�2V − �0

�
)�V − �0� ,

�
d2I

dV2 � �JSN0�2)�V − �0� . �12.7�

In contrast, for a metal with the energy-independent
normal-state DOS, from Eq. �12.5� for T
�0,

dI

dV
� �N�r = 0,V� � J2N0

3)�V − �0� , �12.8�

and the second derivative reveals a delta function
d2I /dV2�J2N0

3���−�0�. We emphasize that the domi-
nant effect is due purely to the energy dependence of
the DOS, and therefore both in a d-wave supercon-
ductor and in a metal with vanishing DOS N���
=N0�� /�� �such as in some of the models of the
pseudogap� there is a step discontinuity in d2I /dV2 at
the energy of a local mode with the strength J2N0

2 �see
Fig. 31�.

FIG. 31. �Color online� The DOS thick �black� line and its
energy derivative thin �red� line for a local boson-mode scat-
tering in a d-wave superconductor. The normal self-energy was
treated self-consistently in Eq. �12.4�. We ignored vertex cor-
rections and gap modification. In addition to the feature at �
=�0 we find strong satellite peaks at �+�0 resulting from the
coherence peak in the DOS of a d-wave superconductor. Sat-
ellites are not present in the pseudogap state with no off-
diogonal long-range order �ODLRO�. These features are best
seen in dN /d�. Energy is in units of �; the dimensionless cou-
pling constant is 1. The top three panels are for local mode
frequencies �0 /�=0.2,0.4,0.6. The lower panel shows the
asymptotic analytic solution, which assumes �0
� and uses
Eq. �12.2�, for �0=0.4. The overall features are similar for both
cases, however, the analytic solution shows a somewhat larger
feature. From Balatsky et al., 2003.
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The result can be generalized to a metal with a power-
law DOS, N���= �1/��Im G0�0,0 ,��= �� /��N0, with 
�0. From Eqs. �12.4� and �12.5� we have for �
�,

�
dI

dV� dI

dV
� �N�r = 0,V�/N0 � �V − �0�)�V − �0� ,

�
d2I

dV2 � �V − �0�−1)�V − �0� . �12.9�

Thus we find a singularity at �0 for �1 and a power
law for &1. For =1 we recover the result for a d-wave
superconductor.

These results can be expressed more generally via the
energy spectrum of the superconductor. Using a spectral
representation for G�r ,�� with Bogoliubov’s functions
u��r� ,v��r� for the eigenstate �,

G�r,�� = �
�
� u��r�2

� − E� + i�
+

v��r�2

� + E� + i�
� . �12.10�

For T
�0, we find

Im ���� =
�J2

2�0
�Sz��u��r = 0�2��� − �0 − E��

+ v��r = 0�2��� − �0 + E���, �� 0.

�12.11�

In the preceding equation for ��0 we need to symme-
trize, �0→−�0. Consider a magnetic impurity resonance
in a d-wave superconductor at energy �imp �such as a Ni
resonance in cuprates� �Salkola et al., 1997; Hudson et
al., 2001�. Then the sum is dominated by the term with
resonance level E�=�imp in the vicinity of the impurity
site. Inelastic scattering produces satellites of the main
level split from it by energy �0; see Fig. 32. Similar split-
ting occurs for a phonon mode with energy �0.

For cuprates, taking the experimentally measured
DOS N0�1/eV with JN0�0.14, �=30 meV �Hudson et
al., 2001� and assuming a field of �10 T we find �0
=1 meV. Then from Eqs. �12.5�–�12.7�

�N�r = 0,��/N0 � 10−2� − �0

�
)�� − �0� . �12.12�

To observe this effect one has to sample DOS in the
vicinity of eV=�0�B. Assuming �−�0=�0 we have
from Eq. �12.12� ��dI /dV� /dI /dV�10−2. Expressed as a
relative change of DOS of a superconductor N���
=N0� /� the effect is

�
dI

dV� dI

dV
� �N�r = 0,��/N��0�

� 10−2� − �0

�0
)�� − �0� . �12.13�

It is of the same order as the observed vibrational modes
of localized molecules in inelastic electron-tunneling
spectroscopy STM, IETS-STM �Stipe et al., 1998; Hahn
and Ho, 2001�. The satellites at �+�0 produce an order
unity effect and are clearly seen even for small coupling.

The important difference with phonons is that for a lo-
calized spin scattering the kink in DOS is tunable with
magnetic field, which makes its detection easier.

The proposed extension of inelastic tunneling spec-
troscopy on strongly correlated electron states, such as
d-wave superconductor and pseudogap normal states,
opens the possibilities for studying the dynamics of local
spin and vibrational excitations. The DOS in these sys-
tems often has power-law energy dependence, N���
��, �0, resulting in weaker features than in normal
metals. This technique allows for Zeeman-level spec-
troscopy of a single magnetic center, thus allowing, in
principle, single-spin detection. The feature in dI /dV
���−�0�−1)��−�0� near the threshold energy �0 is
due to inelastic scattering. One also finds strong satellite
features near the gap edge due to the coherence peak
for a superconducting case. The singularity in the deriva-
tive of the conductance is of a power-law type and quali-
tatively different from the results for metallic DOS
�Stipe et al., 1998; Hahn and Ho, 2001�. For the relevant
values of parameters for high-Tc materials, the feature is
expected to be on the order of several percent and
should be observable. Similar predictions are also appli-
cable to local vibrational modes in which �0 is the mode
frequency.

C. Interplay between collective modes and impurities
in d-wave superconductors

We have focused so far on the IETS for local modes in
which inelastic scattering occurs only on one site. Here
we extend the discussion to the case of a collective
mode. In real systems this may be a spin mode �Norman
and Ding, 1998; Campuzano et al., 1999; Eschrig and

FIG. 32. �Color online� Satellite peaks for an impurity reso-
nance �imp at �imp±�0 shown schematically. The satellites
have different spectral weight. If an electron with energy
�imp+�0 is injected into the system, it can excite a local mode
and form the bound state at �imp. Similarly, an injected elec-
tron at energy �imp−�0 can absorb local mode energy to reach
�imp. For the latter process to occur, the mode has to be ex-
cited, and hence this peak has very low weight at low T. The
two processes have different matrix elements. Relative weight
of the side peaks is proportional to J2N0

2, which we assumed to
be small. For magnetic scattering ��0=g�BB�, the splitting is
tunable by the field. From Balatsky et al., 2003.
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Norman, 2000; Abanov et al., 2002; Kee et al., 2002� or
lattice mode �Damascelli et al., 2003; Gweon et al., 2004;
Lanzara et al., 2004�.

We are motivated by the possible connection between
the kink in the quasiparticle dispersion found in ARPES
data on cuprates and phonon modes �and, possibly, in-
teractions that lead to superconductivity� �Damascelli et
al., 2003; Gweon et al., 2004; Lanzara et al., 2004�. Ef-
forts to relate the data from ARPES, STM, and trans-
port measurements in cuprates have recently intensified
�Scalapino et al., 2004; Zhu, Hirschnfeld and Scalapino,
2004�. It has also been suggested that the full Eliashberg
function in frequency and momentum space may be ex-
tracted from ARPES �Vekhter and Varma, 2003�, and
the challenge is to design a similar procedure to use with
IETS STM.

At first glance it seems that local probes have poor
momentum resolution since they couple to LDOS,
which is summed over all momenta, and cannot identify
the momentum dependence of collective modes. We ar-
gue that this is a misconception, and the FT IETS can
provide the momentum spectroscopy of modes that pro-
duce inelastic scattering.

The elastic FT STM can identify Fermi wave vectors
because of Friedel oscillations in the electron density
due to impurities; see Sec. IX.D. For FT IETS, we need
impurity scattering to produce interference waves in real
space. Hence we look at features arising from the inter-
play between dynamic scattering off the collective mode
and static disorder. We use the Fourier transform of the
LDOS as a tool to investigate characteristic momentum
and energy features containing fingerprints of bosonic
excitations �Zhu, Sun, et al., 2004�.

We call this approach the Fourier-transformed inelas-
tic electron-tunneling spectroscopy STM �FT IETS
STM�. The central object in this technique is the Fourier
transform of the second derivative of the tunneling cur-
rent d2I /dV2�q ,eV�. The energy signatures of the quasi-
particle interaction with the collective mode, and the
real-space pattern of the scattering of the same quasipar-
ticles from a local impurity, combine to produce features
containing information on the energy and momentum of
the mode in d2I /dV2�r ,eV�. A Fourier-transform map of
this quantity could help to uncover the characteristic
momenta of the mode, just as conventional Friedel os-
cillations encode the Fermi wave vector in d2I /dV2�r ,E�;
see Sec. XII.B.

To illustrate this idea consider a spin-resonance mode,
such as that revealed by neutron scattering in cuprates
�Norman and Ding, 1998; Campuzano et al., 1999; Es-
chrig and Norman, 2000; Abanov et al., 2002; Kee et al.,
2002�. To detect this mode, it has been proposed that
STM be used �Zhu, Sun, et al., 2004�. We limit consider-
ation to the example of a sharp mode at wave vector
Q= �� ,�� with energy �0=42 meV. This assumption al-
lows us to highlight the effect, but the formalism pre-
sented here is equally applicable to the case in which the
mode spectral density is distributed in energy and mo-
mentum.

We have to keep track of self-energy effects as a func-
tion of energy as well as momentum. Inelastic scattering
of quasiparticles requires considering off-shell excita-
tions, up to energies �+�0�70 meV. At these energies
Fermi-surface effects, typical wave vectors of the collec-
tive mode and typical wave vectors of the impurity po-
tential all determine the momentum dependence of the
inelastic tunneling features seen in FT IETS STM.11

We start with a model Hamiltonian describing two-
dimensional electrons coupled to a collective spin mode
and in the presence of disorder,

H = HBCS + Hsp + Himp. �12.14�

Here the BCS-type Hamiltonian is given by HBCS

=�k,��!k−��ck�
† ck�+�k��kck↑

† c−k↓
† +�k

*c−k↓ck↑�, where !k
is the normal-state dispersion, � is the chemical poten-
tial, and �k= ��0 /2��cos kx−cos ky� is the d-wave super-
conducting energy gap. The coupling between electrons
and the resonance mode is modeled by Hsp=g�iSi ·si,
where g, si, and Si are the coupling strength, the
electron-spin operator at site i, and the operator for the
collective spin degrees of freedom, respectively. The dy-
namics of the collective mode is specified by spin S sus-
ceptibility 'ij���, defined below. Quasiparticle scattering
from impurities in the Hamiltonian is given by Himp

=�i�Uici�
† ci�, where Ui is the strength of the impurity

potential, and we consider weak �Born� scattering. One
of the interesting findings is that characteristic wave vec-
tors of the impurity potential Uq=�iUi exp�iq ·ri� play a
crucial role in defining characteristic wave vectors of the
DOS modulation. For simplicity, we consider only non-
magnetic scattering.

By introducing a two-component Nambu spinor op-
erator, �i= �ci↑ ,ci↓

† �T, one can define the matrix Green’s

function for the full Hamiltonian system, Ĝ�i , j ;� ,���
=−�T���i��� ��j

†������. Simple algebra leads to the full-
electron Green’s function with impurity scattering,

G�i,j ;i�n� = G̃�0��i,j ;i�n� + �
j�

Uj��G̃
�0��i,j�;i�n�

�G̃�j�,j ;i�n� − F̃�0��i,j�;i�n�F̃�0�

��j�,i ;i�n�� . �12.15�

Here G̃�0� , F̃�0� , F̃*�0� are the dressed by scattering of the
collective mode normal and anomalous Green’s func-
tion, with its Fourier component given by 11, 12, and 21
components of the full-matrix Green’s function,

11We limit ourselves to second-order scattering between car-
riers and bosonic excitations and at this level there is no con-
ceptual difference in the method for spin or phonon bosonic
mode.
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�G̃ˆ �0��−1�k ;i�n� = �i�n − �k − �11 − �k − �12

− �k − �21 i�n + �k − �22
� ,

�12.16�

where �k=!k−�, �n= �2n+1��T is the fermionic Mat-
subara frequency. When quasiparticles scatter inelasti-
cally off of the collective mode, the self-energy, to sec-
ond order in the coupling constant, is

�̂�k ;i�n� =
3g2T

4 �
q

�
�l

'�q ;i�l�Ĝ�0��k − q ;i�n − i�l� ,

�12.17�

where '�q ; i�l� is the dynamical spin susceptibility
'ij���= �T��Si

x���Sj
x�0���, �l=2l�T is the bosonic Matsub-

ara frequency, Ĝ�0� is the bare superconducting Green’s

function, and G̃
ˆ �0� is the superconducting Green’s func-

tion, dressed by scattering of the collective mode, but
without disorder. We assume that the d-wave pair poten-
tial is real. For a single-site impurity, the equation of
motion for the full Green’s function can be exactly
solved; see above. For multiple impurities, and espe-
cially for the inhomogeneous situation, an approxima-

tion scheme for �̂ is in order. In the Born limit, the
normal Green’s function G is found to be

G�i,j ;i�n� = G̃�0��i,j ;i�n� + �G�i,j ;i�n� , �12.18�

with

�G�i,j ;i�n� = �
j�

Uj��G̃
�0��i,j�;i�n�G̃�0��j�,j ;i�n�

− F̃�0��i,j�;i��F̃*�0��j�,j ;i�n�� . �12.19�

The LDOS at site i, summed over spin components, is

��ri,E� = −
2

�
Im G�i,i ;E + i� , �12.20�

where =0+. We are especially interested in the correc-
tion to the LDOS from the impurity scattering,

���ri,E� = −
2

�
Im �G�i,i ;E + i� , �12.21�

and its Fourier transform,

���q,E� = �
i
���i,E�e−iq·ri

= −
Uq

N�i�k
�G̃�0��k + q ;E + i�G̃�0��k ;E + i�

− G̃�0�*�k − q ;E + i�G̃�0�*�k ;E + i�

− F̃�0��k + q ;E + i�F̃*�0��k ;E + i�

+ F̃�0�*�k − q ;E + i�F̃�0��k ;E + i�� .

�12.22�

Here Uq=�iUie
−iq·ri is the Fourier transform of the scat-

tering potential. It multiplies the entire result and di-

rectly affects the FT IETS image. For example, if Uq has
a strong peak at q=q0, it will result in a spurious peak in
the image, not related to the characteristic momenta for
inelastic scattering. Detailed knowledge of impurity
scattering is necessary for extracting the intrinsic scatter-
ing momenta from FT IETS STM.

The local density of states is proportional to the local
differential tunneling conductance �i.e., dI /dV�. In look-
ing at the renormalization effect of collective bosonic
excitations in the STM, we see that the energy derivative
of the LDOS, corresponding to the derivative of the lo-
cal differential tunneling conductance �i.e., d2I /dV2�, is
more favorable to signal enhancement. For a fixed value
of energy, one first gets a set of ����i ,E� �the prime
means the energy derivative� in real space and then per-
forms the Fourier transform,

����q,E� = �
i
����ri,E�e−iq·ri, �12.23�

to obtain a map of the Fourier spectrum in q space,

P�q,E� = ����q,E� . �12.24�

Up to now discussion and formulation are quite gen-
eral and can be used to study the effects of any dynamic
mode once the susceptibility ' is known. For the specific
case of a magnetic mode, we take a phenomenological
form �based on inelastic neutron-scattering observa-
tions� �see, also, Eschrig and Norman, 2000�,

'�q ;i�l� = −
f�q�

2 � 1

i�l −�0
−

1

i�l +�0
� . �12.25�

Here the spin-resonance-mode energy is also denoted by
�0. The quantity f�q� describes the momentum depen-
dence of the mode and is assumed to be enhanced at the
Q= �� ,�� point. Using the correlation length �sf �chosen
to be 2 here�, it can be written as

f�q� =
1

1 + 4�sf
2 �cos2 qx/2 + cos2 qy/2�

. �12.26�

This form captures the essential feature of a resonant
peak observed by neutron-scattering experiments in the
superconducting state of cuprates �Zhu, Sun, et al.,
2004�. Note that strong impurity scattering will shift the
position and broaden the width of the �� ,�� spin-
resonance peak �Li et al., 1998�. However, in the Born
limit, the above form of the susceptibility should still be
valid for this discussion. For normal-state energy disper-
sion, we adopt a six-parameter fit to the band structure
used previously for optimally doped Bi-2212 systems
�Norman et al., 1995� having the form

�k = − 2t1�cos kx + cos ky� − 4t2 cos kx cos ky

− 2t3�cos 2kx + cos 2ky� − 4t4�cos 2kx cos ky

+ cos kx cos 2ky� − 4t5 cos 2kx cos 2ky − � ,

�12.27�

where t1=1, t2=−0.2749, t3=0.0872, t4=0.0938, t5
=−0.0857, and �=−0.8772. Unless specified explicitly,
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the energy is measured in units of t1 hereafter. Since the
maximum energy gap for most of the cuprates at the
optimal doping is about 30 meV, while the resonance-
mode energy is in the range between 35 and 47 meV, we
take �0=0.1 and �0=0.15 �i.e., 1.5�0�. To mimic the in-
trinsic lifetime broadening, in our numerical calculation
we use =0.005 in Eq. �12.20�. The system size is Nx
�Ny=1024�1024.

We present in Fig. 33 the results of the DOS and its
energy derivative as a function of energy for a clean �i.e.,
U0=0� d-wave superconductor with electronic coupling
to �� ,�� spin-resonance modes. For comparison, the
DOS for the case of no mode coupling is also shown.
When there is no electron-mode coupling, there is a Van
Hove singularity peak appearing outside the supercon-
ducting gap edge. When electrons are coupled to
�� ,��-spin-resonance modes, the Van Hove singularity
peak is strongly suppressed. Instead, one sees a dip
structure following the coherent peak at the gap edge.
The distance between this dip and the coherent peak
defines the resonance energy �0. These results, for the
clean case, are consistent with earlier ARPES studies
�Dessau et al., 1991; Shen and Schrieffer, 1997; Norman
and Ding, 1998; Campuzano et al., 1999; Eschrig and
Norman, 2000; Abanov et al., 2002; Kee et al., 2002� and
DOS studies �Abanov and Chubukov, 2000�. The shift of
states due to inelastic scattering is also expected for scat-
tering off the local mode; Sec. XII.B. Taking the second
derivative d2I /dV2 emphasizes these features. As shown
in the right column of Fig. 33, when electrons are
coupled to spin-resonance modes there is a strong peak
structure at E=−��0+�0� in the ���E� spectrum.

In Fig. 34, we show the Fourier spectrum of the de-
rivative of the LDOS at the energy −��0+�0� �i.e., the
peak position in d2I /dV2 in the presence of the mode

coupling� with a structureless scattering potential Uq

=U0, arising from a single-site impurity. In the absence
of electron-mode coupling, the Fourier spectrum inten-
sity is strongest at q= �0,0� and its equivalent points and
has moderate weight along the edges of the square
around q= �� ,��. When the electron-spin mode coupling
is present, as shown in Fig. 34, the spectrum has the
strongest intensity at the diamonds around �� ,��. Inde-
pendent of the coupling to the collective mode, the spec-
trum has an intensity minimum q= �� ,��. The Fourier-
transformed image of d2I /dV2 is greatly affected in this
case by the underlying band structure.

In this simple model, the inelastic feature is expected
at Er=�0+�0�70 meV for optimal doping. Since the
observed gap is position dependent, so is Er. The wave
vectors in which inelastic features are most prominent
depend on the momentum dependence of the disorder
potential U�q�, doping, and the band structure. These
combine to produce the “diamonds” seen in Fig. 34. In
addition to structure at large momenta, there are fea-
tures at small q in d2I�q ,V� /dV2 �Zhu, Balatsky, et al.,
2005; Zhu, McElroy, et al., 2005�. Although we have fo-
cused on the spin mode, FT IETS STM is applicable to
lattice �Zhu, Balatsky, et al., 2005, Zhu, McElroy, et
al.,2005� and local inelastic modes �Balatsky et al., 2003;
Morr and Nyberg, 2003�.

The FT-IETS STM technique can be applied to a va-
riety of systems, such as conventional and organic super-
conductors, and systems exhibiting charge- and spin-
density waves. Disorder and “inelastic Friedel”
oscillations produced by disorder are necessary ingredi-
ents of this new technique. The real potential of this
technique can only be assessed when a comparison is
made between experimental data and theoretical predic-
tions on model systems. We are optimistic that this tech-
nique will be useful in the near future and refer the
reader to recent literature on this rapidly developing
field �Balatsky et al., 2003; Morr and Nyberg, 2003; Zhu,
Sun, et al., 2004; Zhu, Balatsky, et al., 2005; Zhu, McEl-
roy, et al., 2005�.

FIG. 33. Density of states �left column� and its energy deriva-
tive �right column� as a function of energy for a clean d-wave
superconductor with the electronic coupling to the �� ,�� spin-
resonance mode �g=2.30�. The case of no mode coupling �g
=0� is also shown for comparison.

FIG. 34. �Color online� The Fourier spectral weight of the
energy derivative of the LDOS at E=−��0+�0� for a d-wave
superconductor with the electronic coupling to the spin-
resonance modes �g=2.30�. For comparison, the quantity is
also shown for the case of no mode coupling �g=0�.
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XIII. AVERAGE DENSITY OF STATES IN
SUPERCONDUCTORS WITH IMPURITIES

The Green’s-function formalism is well suited to the
analysis of the combined effect with many uncorrelated
impurities in the bulk of a superconductor. The first
treatment was given in a pioneering paper by Abrikosov
and Gor’kov �1960�. The basic assumptions underlying
the calculations were given in Sec. III.C. After averaging
over different impurity distributions following Eq.
�3.14�, the translational symmetry is restored, and the
Green’s function takes the form

Ĝ−1�k,�� = i�n − ��k��3 − �0�2�2 − �̂ �13.1�

�i�̃ − !̃�k��3 − �̃�2�2. �13.2�

Here we have taken into account the matrix structure of

the self-energy, �̂=�i�̂i, where sum over the index i is
implied. The superconducting gap in the presence of im-
purities is determined by the self-consistency condition,
Eq. �2.22�, which reads here

���̂� = �TN0�
�n

� d�̂�V��̂,�̂��
�̃��̂��

��̃n
2 + �2��̂��

.

�13.3�

Tc is the temperature at which a nontrivial solution of
the self-consistency equation first appears. Equation
�13.3� with the recipe for computing the self-energy form
the basis for treating superconductors with impurities.
We always ignore the contribution of �3 as it simply
renormalizes the chemical potential. This is justified in
computing the density of states, although corrections
may be relevant for some response functions �Hirschfeld
et al., 1988�. In computing the self-energy, we neglect the
interaction between spins on different impurity sites
�Larkin et al., 1971; Galitskii and Larkin, 2002� and in-
terference effects of scattering on different impurities
�of the order �pFl�−1, where l is the mean free path�.

A. s-wave superconductors

1. Born approximation and Abrikosov-Gor’kov theory

We begin by reviewing the seminal results of Abriko-
sov and Gor’kov for impurity scattering in the Born
limit �phase shift �0
1�. This sets the standard for com-
parison with theories going beyond the Born approxima-
tion. We follow the notations of Maki �1969�.

Consider an impurity potential combining the poten-
tial and magnetic scattering,

Ûimp�k − k�� = Upot�k − k���3 + J�k − k��S · � , �13.4�

where � is defined in Eq. �3.5�. Abrikosov and Gor’kov
considered the self-energy in the second-order �Born�
approximation,

�̂��,k� = nimp� dk�

�2��3Ûimp�k − k��Ĝ�k�,��

�Ûimp�k� − k� . �13.5�

Integrating over k� we find

�̃ = �n +
1
2
� 1

�p
+

1

�s
� �̃

��̃n
2 + �2

, �13.6�

�̃ = � + � 1

�p
−

1

�s
� �̃

��̃n
2 + �2

. �13.7�

The potential ��p� and spin-flip ��s� scattering times are

1

�p
= nimpN0� d�̂Upot�k − k��2, �13.8�

1

�s
= nimpN0S�S + 1� � d�̂J�k − k��2, �13.9�

and we averaged over directions of the impurity spin.
In the absence of spin-flip scattering both � and � are

renormalized identically, and it follows from Eq. �13.3�
that the gap remains unchanged compared to the pure
case. This is in accordance with Anderson’s theorem.
The spin-flip scattering violates the time-reversal sym-

metry, and �s enters the equations for �̃ and �̃ with op-

posite sign. Introducing u= �̃ / �̃, we find

�

�
= u�1 −

���s�−1

�1 + u2� . �13.10�

It follows that the gap in the single-particle spectrum is
Egap=��1− ���s�−2/3�3/2 for ��s�1 and vanishes for ��s
�1. This gapless region starts at the value of the pair-
breaking parameter �

�� = �s
−1 = �00 exp�− �/4� , �13.11�

where �00 is the gap in the pure material at T=0.
The transition temperature is determined from

��1
2

+
1

2��sTc
� − ��1

2
� = ln

Tc0

Tc
, �13.12�

where ��x� is the digamma function and Tc0 is the tran-
sition temperature of the pure material. Consequently,
superconductivity is destroyed �Tc=0� when

�c = �s
−1 = �Tc0/2 = �00/2� ��, �13.13�

where �1.78. As ���0.912�c, Abrikosov and Gor’kov
predicted that gapless superconductivity exists for a
range of impurity scattering �Abrikosov and Gor’kov,
1960�. This was later confirmed by experiment �Woolf
and Reif, 1965�.

The evolution of the density of states with increasing
disorder was investigated in detail �Skalski et al., 1964;
Ambegaokar and Griffin, 1965; Gong and Cai, 1966� and
is shown in Fig. 35. For ���� a hard gap in the single-
particle spectrum persists up to the critical impurity con-
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centration, as shown in Fig. 36. This result is clearly at
odds with our discussion in Sec. VI, which shows that
even a single magnetic impurity creates a localized state
in the superconducting gap.

2. Shiba impurity bands

In the Abrikosov-Gor’kov theory the impurity con-
centration and strength of the exchange coupling con-
tribute to the suppression of superconductivity as a
single pair-breaking parameter, �=�s

−1= �2nimp/
�N0�sin2 �0�nimpJ2S�S+1� for isotropic exchange; see
Eq. �13.9�. This is a result of the Born approximation; in
general, the phase shift �0 and concentration of impuri-
ties nimp are separate variables that control different as-
pects of impurity scattering. For example, in the limit of
dilute concentration with strong magnetic impurities, the
Abrikosov-Gor’kov approach yields a small scattering

rate and a single-particle spectral gap virtually identical
to that in a pure limit. On the other hand, we have
learned that in this regime each impurity is accompanied
by a bound state with an energy below the gap, and
therefore we expect a finite number of these subgap
states to exist in a superconductor. This section ad-
dresses this dichotomy.

Analysis of the strong-scattering regime requires use
of the self-consistent T-matrix approach �Hirschfeld et
al., 1986; Schmitt-Rink et al., 1986�, where the self-

energy �̂�p ,��=nimpT̂p,p and

T̂p,p� = Ûp,p� +� dp1Ûp,p1
Ĝ�p1,��T̂p1,p�. �13.14�

Following the treatment described in Sec. VI, we ana-
lyze the pair breaking in different angular momentum
channels. The effective pair-breaking parameter in the
lth channel is �l=nimp�1−�l

2� / �2�N0�, where �l is the po-
sition of the corresponding bound state; see Eq. �6.10�.
In analogy with the Abrikosov-Gor’kov treatment, we

find that the ratio un= �̃n / �̃��n� satisfies the equation
�Rusinov, 1969; Chaba and Nagi, 1972�

�n

�
= un�1 − �

l=0

 

�2l + 1�
�l

�

�1 + un
2

�l
2 + un

2 � , �13.15�

where the gap is determined self-consistently from

� = 2�TN0g�
n

�1 + un
2�−1/2. �13.16�

This equation should be contrasted with Eq. �13.10�. The
pair-breaking parameter �l now depends separately on
the position of the single-impurity resonance state �l and
the impurity concentration, in contrast to the
Abrikosov-Gor’kov theory.

The growth of the impurity band was investigated for
the spherically symmetric case of purely magnetic scat-
tering �Shiba, 1968; Rusinov, 1969; Chaba and Nagi,
1972�. The critical concentration of impurities at which
the transition temperature vanishes is obtained by set-
ting Tc=0 in the gap equation,

ln�Tc0/Tc� = ��1/2 + �/2�Tc� − ��1/2� , �13.17�

where now �Ginzberg, 1979�

� = �
l

�2l + 1��l. �13.18�

Since the gap equation is identical to that considered by
Abrikosov and Gor’kov, the critical pair-breaking pa-
rameter is �cr=�0 /2. However, now the critical concen-
tration of impurities depends on the phase shift of scat-
tering by individual impurities and on the position of the
single-impurity resonance; see Fig. 37,

ncr = �N0�0��
l

�2l + 1��1 − �l
2��−1

. �13.19�

FIG. 35. Density of states in the Abrikosov-Gor’kov theory of
magnetic impurities in superconductors. Here �=�s

−1. Repro-
duced with permission from Skalski et al., 1964.

FIG. 36. Plot of the dependence of the order parameter �,
transition temperature Tc, and the single-particle spectral gap
�G, here on the scattering rate �=�s

−1. Reproduced with per-
mission from Skalski et al., 1964.
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The width of the gapless regime depends on the de-
tails of scattering. For l=0 the gap vanishes when the
pair-breaking parameter exceeds the value �Shiba, 1968;
Rusinov, 1969�

��/�cr = 2�0
2 exp�− ��0

2/2�1 + �0�� . �13.20�

In the Born approximation the bound state moves to the
gap edge, �0=1, and we regain the result of Abrikosov
and Gor’kov. For stronger scattering, �0�1, the realm of
gapless superconductivity is enhanced compared to the
Abrikosov-Gor’kov theory. As higher-order harmonics
are included, the threshold at which the density of states
at the Fermi energy becomes nonzero shifts even lower
�Ginzberg, 1979�. This behavior is modified by inclusion
of Kondo screening �see the next section�, but the over-
all shape of the DOS observed in planar tunneling mea-
surements �Dumoulin et al., 1975, 1977; Bauriedl et al.,
1981� is in agreement with these expectations.

For l=0 in the limit �0
� the width of the impurity
band around E0 is estimated to be W= �8�0��1/2�1
−�0�1/4 and therefore varies as nimp

1/2 �Shiba, 1968�. There-
fore if the resonance state at E0 is sufficiently close to
the gap edge, the concentration c0 at which the top of
the impurity band merges with the continuum above � is
smaller than the critical concentration c� at which the
bottom of the impurity band reaches the Fermi surface
and the superconductor becomes gapless �Shiba, 1968�;
see Fig. 38. The Abrikosov-Gor’kov result is an extreme
example of this behavior when states due to individual
impurities are infinitely close to the gap edge, and there-
fore upon increasing impurity concentration the gap de-
creases until the onset of gapless behavior.

3. Quantum spins and density of states

In the quantum treatment of the impurity spin, Sec.
XI, we have discussed the competition between gapping
the density of states due to superconductivity and the
onset of Kondo screening of the impurity moment. We
have concluded that, in contrast to classical spin, the

position of the bound state is not simply given by the
value of the bare exchange coupling but depends on the
ratio TK /Tc. Once the position of the bound state is es-
tablished, for independent impurities the growth of the
impurity band is analogous to that in the previous sec-
tion. As discussed above, for ferromagnetic coupling of
the impurity to the conduction electrons the bound state
is always close to the gap edge, the scattering is weak,
and the Abrikosov-Gor’kov theory gives correct results.

The behavior of the density of states and transition
temperature for antiferromagnetic coupling when
Kondo screening is effective was studied in the 1970s
�Müller-Hartmann and Zittartz, 1971; Zittartz et al.,
1972; Müller-Hartmann, 1973; Schuh and Müller-
Hartmann, 1978�. The appearance of the predicted sub-
gap band of localized states �qualitatively similar to the
Shiba-Rusinov band above� was confirmed experimen-
tally �Dumoulin et al., 1975, 1977; Bauriedl et al., 1981�.
The main new result was the prediction of the reentrant
behavior for small TK /Tc"1. In that case the phase shift
of the scattering increases upon lowering temperature
but remains moderate at Tc enabling the transition to
the superconducting state. Upon further decrease in
temperature, scattering becomes stronger and sup-
presses superconductivity in a range of the phase dia-
gram of Fig. 39. Finally, at temperatures below TK, the
system reenters the local Fermi-liquid regime and super-
conductivity may reappear. While further work �Mat-
suura et al., 1977; Jarrell, 1990� cast doubt on the exis-
tence of the third transition, a region of two solutions for
Tc�nimp� was confirmed by theoretical studies. In particu-
lar, a combination of the quantum Monte Carlo tech-
nique with Eliashberg equations gave the dependence of
the reentrance transition on the electron-phonon cou-
pling constant, while accounting nonperturbatively for
the Kondo effect �Jarrell, 1990�; see Fig. 39. Moreover,
the initial decrease of Tc with increasing impurity con-
centration is fast �Müller-Hartmann and Zittartz, 1971;
Jarrell, 1990� and depends on the coupling strength �Jar-

FIG. 37. �Color online� Evolution of the spectral gaps and
density of states for strong magnetic impurities ��0
�0�. Left
panel: Available states �shaded� as a function of the impurity
concentration. Right panel: Qualitative features of the DOS
for different impurity concentrations; following cuts A ,B ,C ,D
on the left. Critical concentration corresponds to line B, when
the impurity band touches �=0. The spectral gap between the
top of the impurity band and the bottom of the continuum
persists to higher impurity concentration �line D�.

FIG. 38. �Color online� Evolution of the spectral gaps and
density of states for weak magnetic impurities ��0"�0�. Left
panel: Available states �shaded� as a function of the impurity
concentration. Right panel: Qualitative features of the DOS
for different impurity concentrations; following cuts A ,B ,C on
the left. The impurity band and the continuum merge at a low
impurity concentration �line B�, and further evolution of the
DOS is very close to the predictions of the Abrikosov-Gor’kov
theory. At the critical concentration �line C� gapless supercon-
ductivity sets in.
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rell, 1990�. The behavior of the density of states in this
limit was investigated in detail �Bickers and Zwicknagl,
1987; Jarrell et al., 1990�. The overall shape of the tran-
sition temperature as a function of impurity concentra-
tion with reentrant transition was observed in the
�LaCe�Al2 alloy series �Maple, 1973�.

B. d-wave superconductors

As mentioned above, scalar �nonmagnetic� impurities
are pair breakers for any nonconventional supercon-
ductor and substantially change the low-energy quasi-
particle spectrum. This problem was addressed with the
self-consistent T-matrix approximation �Gor’kov and
Kalugin, 1985; Hirschfeld et al., 1986, 1988; Schmitt-Rink
et al., 1986; Hirschfeld and Goldenfeld, 1993; Lee, 1993;
Balatsky et al., 1994�, which gives a finite density of
states at the Fermi level. Here we briefly review only the
main results; see Sec. I.D for details.

The self-consistent Green’s function, averaged over
impurity positions, is

Ĝ−1�k,�� = Ĝ0
−1�k,�� − �̂��� , �13.21�

with �̂���=nimpT̂���. For particle-hole symmetry
�Hirschfeld et al., 1988� and an unconventional gap �de-
fined as having a zero average over the Fermi surface;
see Sec. I�, the only nonvanishing component of the T
matrix is proportional to �0,

T0��� =
g0���

c2 − g0���
. �13.22�

The T matrix has to be determined self-consistently with

g0���= �2�N0�−1�kTrĜ�k ,���̂0. Solution of this equation
leads to a finite density of states at the Fermi level. This
result was first obtained for Born scattering �Gor’kov
and Kalugin, 1985; Ueda and Rice, 1985�, leading to an
exponentially small N�0� /N0�4�2�0

2 exp�−2�0��, where
� is the normal-state scattering rate. The results are

more dramatic for unitarity scattering �c=0� �Hirschfeld
et al., 1986; Schmitt-Rink et al., 1986� when

� �nimp��0/�N0� , �13.23�

where =−Im ���→0� is the scattering rate for low-
energy quasiparticles. For �", the density of states is
determined by impurities and is finite: Nimp�0� /N0
=2 /��0. The characteristic width of the impurity-
dominated region is �*���nimp.

The origin of the finite DOS is the impurity band,
growing from impurity-induced states. Scaling of the im-
purity bandwidth ��nimp was found for paramagnetic
impurities in an s-wave superconductor �Shiba, 1968�.
The fact that ��nimp is valid for a d-wave supercon-
ductor is consistent with the picture of low-energy states
formed from the bound states at finite impurity concen-
tration. Many questions about localization of low-energy
quasiparticles in unconventional superconductors re-
main unanswered; see Sec. I.

The results above are for isotropic impurity scattering.
Anisotropic impurities may preferentially scatter elec-
trons between regions with the same, or close, values of
the gap so that scattering is inefficient in suppressing Tc.
For general impurity phase shifts this has been consid-
ered by Haran and Nagi �1996, 1998�, Choi �1999�, Gol-
ubov and Mazin �1999�, and Kulic and Dolgov �1999�,
while for a model with dominant small-angle scattering
in cuprates �Abrahams and Varma, 2000� the effect was
analyzed by Kee �2001�.

XIV. OPTIMAL FLUCTUATION

A. Introduction

So far we have discussed the effect of a single impu-
rity on its immediate surrounding and the combined ef-
fect of an ensemble of scattering centers on spatially
averaged properties of a superconductor. In the case of a
single pair-breaking impurity the characteristic length is
simply the superconducting coherence length �0. In the
Abrikosov-Gor’kov approach, the gap is assumed to be
uniformly suppressed, after averaging over all possible
configurations of impurity atoms at the mean-field level
�Abrikosov et al., 1963�.

It is clear, however, that some physics is missing in
such an approach. Among the realizations of the impu-
rity distribution in a sample of size L0 there exist regions
where the local impurity concentration, on some charac-
teristic scale L
L0, differs significantly from the aver-
age concentration ni. If the local impurity concentration
is sufficiently high, for L��0 superconductivity may be
locally destroyed or sufficiently suppressed to generate a
bound quasiparticle state at an energy E
�0.

Of course, such regions are rare. There is a high en-
tropy cost to create an impurity droplet with a concen-
tration significantly different from the average, hence
the probability of finding these regions is small. How-
ever, states localized in such droplets make a nonpertur-
bative contribution to the density of states averaged

FIG. 39. Reduced transition temperature normalized to a pure
system as a function of the impurity concentration for different
electron-phonon coupling �0. The impurity concentration is c̄
=nimp/ �2��2N0Tc0. From Jarrell, 1990.
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over the entire sample, N�E�, and qualitatively modify
its behavior compared to the mean-field �Abrikosov-
Gor’kov and Shiba� treatment. Quite dramatically, they
make any s-wave superconductor with a small concen-
tration of magnetic impurities ���s�1� gapless �Balatsky
and Trugman, 1997�. It is due to such a dramatic modi-
fication that the interest in these “tail” states stretching
below the mean-field gap edge has peaked in recent
years.

The problem of tail states did not originate in the
study of superconductivity. The contribution of regions
of anomalous impurity concentration to the net density
of states below the gap edge was first considered in
doped semiconductors by Lifshitz �1964a, 1964b, 1967�.
He showed that such rare impurity configurations create
a local profile in the Coulomb potential that can have
bound states and therefore give rise to the nonvanishing
density of states below the bottom of the band Eg.
Henceforth states localized in droplets of impurities
have become known as Lifshitz tails and have been ex-
tensively studied �Halperin and Lax, 1966; Zittartz and
Langer, 1966; Van Mieghem, 1992�.

While in retrospect it seems natural that inhomogene-
ities would lead to a low-energy tail in the density of
states in superconductors in much the same way, little
attention was paid to this problem until the paper by
Balatsky and Trugman �1997�. Their study was stimu-
lated by experimental observations that the tunneling
density of states in s-wave superconductors with mag-
netic impurities is far greater at low energies than the
Abrikosov-Gor’kov theory suggests �Woolf and Reif,
1965; Edelstein, 1967; Bader et al., 1975�. A number of
theoretical studies of the tail states followed, and this
topic is now a subject of active interest.

Below, we review the physical picture of tail states in
semiconductors and then apply it to the subgap states in
superconductors.

B. Tail states in semiconductors and optimal fluctuation

We distinguish between heavily and lightly doped
semiconductors. In the former case a localized tail state
with energy E�Eg forms in the impurity-rich region,
and the extent of its wave function greatly exceeds the
average distance between individual shallow sites.
Therefore the exact impurity potential can be replaced
by a smooth function, averaged over regions containing
many impurities. The probability of realizing the poten-
tial with the “right” energy of the bound state among all
impurity distributions determines its contribution to the
DOS. In the latter case the number of impurity sites
needed to form a bound state depends on how deep
below the band edge the energy of such a state is. For
example, if each impurity binds an electron at energy E1,
while E2 is the energy of the state bound by two impu-
rities on neighboring lattice sites, to obtain a localized
state below E1 but above E2 one simply needs to find a
region where the two impurities are at a particular finite
distance from each other. The probability of finding such

an impurity pair determines the density of states �Lif-
shitz, 1964b, 1967�. As we go to energies below E2, we
need to position three impurities, etc.

For energy E the most probable �albeit still rare� con-
figuration of impurities that creates a potential U, such
that �Hband+U��=E�U��, with E�U�=E, and therefore
contributes the most to N�E�, is called the optimal fluc-
tuation. Given the probability density for the potential
P�U� and the density of states in it,

N�E� =� DUP�U���E − E�U�� , �14.1�

the optimal fluctuation is obtained by using the saddle-
point approximation and minimizing the resulting func-
tional with respect to U. This approach finds the entropi-
cally cheapest impurity potential that creates a bound
state at E. Therefore it optimizes the nonuniform impu-
rity distribution �fluctuation from the uniform average�
to the given energy, hence the name. The technical dif-
ficulty of minimization lies in its essential nonlinearity:
the optimal potential depends on the wave function of
the particle in this potential.

Consider many uncorrelated shallow impurity centers
forming an extended potential. It is described by the
Gaussian probability density,

P�U� � exp�−
1

2U0
� ddrU2�r�� . �14.2�

The saddle-point approximation for Eq. �14.1� gives

ln
N�E�

N0
� − S�Uopt� , �14.3�

where the optimal fluctuation is obtained by minimizing
the functional

S�U� =
1

2U0
2 � ddrU2�r� + ��E�U� − E� �14.4�

with respect to the potential U and the Lagrange multi-
plier �. At the simplest level it is sufficient to consider
only potentials where E�U�=E is the lowest energy state
in the potential U; fluctuations where E coincides with
higher eigenstates are exponentially less probable. In a
semiconductor the kinetic energy of quasiparticle is
p2 /2m*, where m* is the effective mass. Consequently, in
a potential well of depth U �all energies are measured
from the band edge� and size L the energy of the local-
ized state is of the order of U+1/ �mL2�=E ��=1�. In the
optimal fluctuation E�U�L−2, so that the action is
S�U��LdU2 /U0

2, or ln�N�E� /N0��−E2−d/2 /U0
2 �Lifshitz

1964b; Halperin and Lax, 1966�. Importantly, the size of
the optimal fluctuation, L� E−1/2, increases as the en-
ergy approaches the band edge, while its depth, U
�E, decreases.

More formally, since the energy of the bound state is
the expectation value of the Hamiltonian over the wave
function of the bound state ��r�, we have
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E�U� = �Ĥ� = ��
p2

2m* + U�� = E . �14.5�

Minimization in Eq. �14.4� with respect to U dictates that

U�x� = − �U0
2��

�Ĥ

�U
�� = − �U0

2�2�x� , �14.6�

while minimization with respect to � requires that the
bound state is at energy E, i.e. �setting m*=1�,

�− 1
2�2 − �U0

2�2�r����r� = E��r� . �14.7�

In one dimension this equation is exactly solved to give
�Halperin and Lax, 1966�

��x� =�+

2
sech +x , �14.8�

�U0
2 = 8+ , �14.9�

with E=−+2 /2. Therefore the “optimal action” is
S�Uopt��+2 /U0

2�E3/2 as expected.
In higher dimensions the corresponding equation is

not solvable. However, one can extract the energy de-
pendence of the action by assuming a spherically sym-
metric optimal fluctuation and an exponentially decay-
ing �at large distances� bound state to find the Lifshitz
tail N�E��exp�−E2−d/2� �Lifshitz, 1964b; Lifshitz et al.,
1988�. To obtain the preexponential factor, one needs to
consider all wave functions in the potential, and this
analysis has only been carried out in low dimensions
�Halperin and Lax, 1966�.

C. s-wave superconductors

1. Magnetic and nonmagnetic disorder

The effect of tails is most dramatic for fully gapped
superconductors with magnetic impurities. The general
route is similar to the above approach: Given the prob-
ability density of different impurity configurations, we
find the most probable configuration of impurities that
gives rise to a state at a given energy within the gap.
Technical implementations of this algorithm vary de-
pending on the specifics of the problem at hand; see
below.

There are important differences between the physics
of the optimal fluctuation in a superconductor and a
semiconductor. First, since the superconducting quasi-
particles consist of electron pairs close to the Fermi sur-
face, their kinetic energy is not simply that of a band
particle, but is given instead by the Hamiltonian

Ĥ = �̂�3 + ��r��1�2. �14.10�

Here we use Nambu notation with �i and �i the Pauli
matrices in the particle-hole and spin space, respectively.
Therefore while the envelope of the tail-state wave func-
tion still varies smoothly over the length scale of inho-
mogeneities in the impurity distribution, there are also
rapid oscillations on the atomic scale due to the Fermi
surface. As shown below, these considerations substan-

tially modify the behavior of the tail states.
Second, the scattering potential is a matrix in particle-

hole and spin space,

Û�r� = �
i

�U0�3��r − ri� + J�r − ri�Si · �� . �14.11�

The potential part of the scattering U0 is not pair break-
ing in accordance with Anderson’s theorem. However,
since the size of the optimal fluctuation is large com-
pared to the correlation length, it is necessary to distin-
guish between cases where the motion of quasiparticles
within the optimal fluctuation is diffusive �strong poten-
tial scattering ��
1, �
�s, where � is the transport life-
time� and ballistic �weak potential scattering ���s�.
Moreover, we also distinguish between strong and weak
magnetic scattering: If magnetic scattering is strong
there are resonance �Shiba-Rusinov� states in the gap,
and tails states stretch not from the mean-field gap edge
but from the localized impurity band. If magnetic scat-
tering can be treated in the self-consistent Born approxi-
mation, tail states emerge below the Abrikosov-Gor’kov
renormalized single-particle spectral gap, �0=��1
− ���s�−2/3�3/2, where � is the superconducting order pa-
rameter. In the Abrikosov-Gor’kov limit the probability
density for the magnetic impurity potential is Gaussian,
as it is averaged over a large number of impurity sites. In
contrast, in the unitarity limit there are subgap states
localized on one or a few impurities; consequently, the
Poisson density distribution is appropriate. These possi-
bilities provide for a rich variety of behavior that is still
a subject of active interest.

All models ignore interactions between the impurity
spins: this is justified as discussed in Sec. III.C. The mod-
els also treat impurity spins as classical, and therefore do
not account for the Kondo effect. This is justified either
when the Kondo temperature TK
Tc �and depletion of
states at the Fermi level prevents screening of the local
moment� or in the opposite limit, TK�Tc, when the mo-
ments are already quenched in the normal state �Müller-
Hartmann and Zittartz, 1971�.

To our knowledge, the first discussion of the influence
of nonuniform impurity distribution on the transition
temperature appeared in 1968 �Kulik and Itskovich,
1968�. These authors found that, in the limit of average
impuritity concentration n
ncr of the Abrikosov-
Gor’kov theory, there are localized regions that become
superconducting at a temperature Tc��Tc�n�, where
Tc�n� is the corresponding Abrikosov-Gor’kov transition
temperature. The difference between the two was evalu-
ated for parabolic one-dimensional variations of the ef-
fective impurity potential. Kulik and Itskovich �1968�
noted that their results are modified if there is nonmag-
netic as well as magnetic scattering, but did not address
this further.

2. Diffusive limit, weak magnetic scattering

If the scattering on individual magnetic impurities is
weak, the optimal fluctuation is created by large droplets
of these scattering centers. Since impurities are uncorre-
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lated, the probability density for the impurity potential
is Gaussian, which greatly simplifies the analysis.

Historically, most of the studies have been carried out
in the diffusive limit. Larkin and Ovchinnikov �1972� in-
vestigated the smearing of the gap edge due to local
fluctuations in the effective interaction between elec-
trons. If the correlation length of the inhomogeneities,
rc��, where ���D /��1/2 is the coherence length of the
dirty superconductor and D is the diffusion constant, the
order parameter simply locally adjusts to the local value
of the interaction. In that case the density of states is
determined by the local gap amplitude,

N�E� = �
0

 

N�E,��P���d� , �14.12�

where P��� is the probability density of the gap.
In the opposite limit of short-range correlations in the

pairing interaction, the finite density of states below the
mean-field gap edge is due to states spatially localized in
correlated droplets of size r0�����0−E� /��−1/4 �increas-
ing rapidly as E→�0 as in a semiconductor�, which leads
to N�E��exp	−���0−E� /��5/4
 in d=3. As in semicon-
ductors, the high entropy cost of a large droplet is offset
by the lowering of the kinetic energy of the bound state.
Indeed, in a clean system with ��s�1, and therefore
�0��, we find the characteristic kinetic energy D /r0

2

���0
2−E2.

Recently, it was argued that the above result is flawed
since it does not properly account for rapid oscillations
of the bound-state wave function on the Fermi wave-
length scale �Meyer and Simons, 2001�. These authors
used a field-theoretical approach that maps the disor-
dered superconducting system onto a nonlinear � model
�for a review, see Altland et al. �2000�� to show that while
the droplet size for the optimal fluctuation is identical to
that obtained by Larkin and Ovchinnikov, the subgap
density of states is N�E��exp	−���0−E� /���6−d�/4
, which
gives the exponent 3/4, rather than 5/4, for d=3.

The paper that brought the investigation of subgap
states in superconductors into the limelight after a
quarter-century-long hiatus was the study of the density
of states due to regions where the impurity concentra-
tion is sufficient to locally destroy superconductivity
�Balatsky and Trugman, 1997�. The fluctuation region
spectrum is similar to that of a disordered metallic grain
of the same size L and depends on the mean level spac-
ing �L. The average density of states was obtained in two
steps. First, an average over all realizations of disorder
for grains of size L yielded NL�E���L

−1. Second, the
probability of finding a fluctuation region of size L with
the critical concentration of impurities nc for a given
average impurity concentration n, PL�nc ;n�, was used to
define the average DOS, N�E���dVPL�nc ;n�NL�E�.
This integral was estimated to give

N�E� � �L0

−1 exp	− L0
d�nc ln�nc/n� − nc + n�
 , �14.13�

as E→0. Here L0= ��0l�1/2 is of the order of the coher-
ence length in a dirty superconductor with l
�0.

At energies closer to the gap edge it is not necessary
to destroy superconductivity completely to generate tail
states. Using the instanton approach for the nonlinear �
model, Lamacraft and Simons �2000, 2001� demon-
strated how these states arise out of inhomogeneous in-
stanton configurations for the action. The resulting opti-
mal action reads

S0 = ad���s�2/3�1 − ���s�−2/3�−�2+d�/8��0 − E

�
��6−d�/4

�14.14�

and the DOS varies as N�E��exp�−4�g�� /L�d−2S0�
�exp	−���0−E� /���6−d�/4
. Here g is the bare conduc-
tance and ad�1.

The same approach was used to derive �Lamacraft
and Simons, 2001� universal gap fluctuations in small
metallic grains, first obtained using random-matrix
theory �Vavilov et al., 2001�, namely N�E�
�exp�−��0−E�3/2�, valid for �0−E
�0. In this regime,
the spatial extent of the optimal fluctuation is greater
than the size of the grain, so that effectively we are in
dimension d=0, and the exponent 3/2 agrees with the
general result of Lamacraft and Simons, �6−d� /4. In the
same d=0 limit, but at E
�0, the random-matrix theory
gives N�E���E /�3/2�1/2�exp�−��s��0−E�2 /��, where �
is the mean level spacing in the grain �Beloborodov et
al., 2000�.

3. Diffusive limit, strong scattering

Recently, the field-theoretical treatment has been ex-
tended to the case of strong scatterers �Marchetti and
Simons, 2002�. When the probability distribution of the
scattering strength is Poissonian rather than Gaussian,
the action cannot be expanded to second order in the
magnetic potential, as done for the weak potential. Mar-
chetti and Simons circumvented this difficulty by consid-
ering the dominant contribution of droplets densely
populated by magnetic impurities, so that �
 ls
 l. As
shown above, an impurity band already emerges within
the superconducting gap in the limit of near-unitary scat-
tering at the level of the mean-field theory. Conse-
quently, tail states extend from the edge of the con-
tinuum above �0 as well as from the top and bottom of
the impurity band; see Fig. 41. According to Marchetti
and Simons in these cases the density of states varies as
N�E��exp�−�E−Ei /���6−d�/4�, where Ei is the appropri-
ate band edge. The exponent of the action is identical to
that found above in the diffusive limit.

4. Ballistic limit, weak scattering

It was noticed early on that in some systems magnetic
scattering is dominant: Upon increasing the concentra-
tion of impurities, the increase in the residual resistivity
ratio correlates with the suppression of the supercon-
ducting transition temperature �Edelstein, 1967�. Since
both magnetic and nonmagnetic scattering contribute to
the resistivity, but only the magnetic part suppresses Tc,
this is an indication of almost purely spin-dependent
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scattering. Shytov et al. �2003� considered subgap states
in this clean �l��0 or ��s�1� limit, when the spectral
gap obtained in the self-consistent Born approximation
nearly coincides with the order parameter, �0��.

Once again, since impurities are weak, the optimal
fluctuation is large and shallow, and the spin-dependent
potential has Gaussian probability density. When the
size of the optimal fluctuation is much greater than the
coherence length, l�L��0, the motion of the quasipar-
ticles in this potential is ballistic. As a result, mapping on
the nonlinear � model is not feasible, and the problem
requires a quantum-mechanical treatment akin to that in
a semiconductor.

We first consider the one-dimensional problem as
shown above. An important assumption �discussed be-
low� is that a ferromagnetic fluctuation maximizes the
effect of the impurity potential. Choosing the direction
of the impurity spins along the y axis and performing the
rotation �2→�3, we remove the vector character of the
slowly varying potential U and consider the Hamiltonian

Ĥ± = �̂�3 ± �0�1 ± U�r� . �14.15�

The Hamiltonian, however, still remains a matrix in
particle-hole space, and the wave functions of the opti-
mal fluctuation are the Nambu spinors �.

Let us discuss the physical behavior qualitatively. We
linearize the kinetic energy near the Fermi surface, so
that the typical kinetic energy in an optimal fluctuation
of size L is ��vF /L. Then the energy of a quasiparticle
in the optimal fluctuation �measured from the Fermi en-
ergy� is E�U+��0

2+vF
2 /L2. For energies close to the

superconducting gap, ��0−E� /�0
1, the optimal fluc-
tuation is large �L��0=vF /�0� and shallow �U /�0
1�,
so that E−�0�U+vF

2 /�0L2. Introducing the dimension-
less energy �=E /�0, we obtain, in analogy with above
arguments, U /�0��0

2 /L2�1−�. Notice that the size of
the fluctuation is L��0 /�1−���0. As a result, we find
�see Eq. �14.4�� S�U��LU2 /U0

2=�0
2�0�1−��3/2 /U0

2. From
the definition of U0,

− ln
N�E�

N0
� S�Uopt� � ��0�s��1 − ��3/2. �14.16�

The energy dependence in Eq. �14.16� is identical to the
result of Lifshitz in d=1, despite the linear, rather than
quadratic, dependence of the kinetic energy on the size
of the droplet. This follows from the smallness of this
energy compared to the gap: even though ��1/L, the
expansion is in �2.

The minimization of the saddle-point action proceeds
exactly as in Sec. XIV.B. For spin-up particles, E+�U�
= ��Ĥ+��. Minimization with respect to U gives

U�x� = − �U0
2��

�Ĥ+

�U
�� . �14.17�

In principle this variational derivative includes the effect
of the self-consistent suppression of the gap. However,
this effect is small �Shytov et al., 2003�. Then, in exact

analogy with the semiconductor problem, U�x�
=−�U0

2����x���x��, where ����� denotes the scalar
product in particle-hole space. In turn, the Schrödinger
equation takes the form

�− ivF
�

�x
�3 + �0�1 − �U0

2������� = E� . �14.18�

This equation is solved by introducing bilinear forms
Ri=���x��̂i��x�, which play the role of the Halperin-
Lax wave function in Nambu space. We find

R0 =
1 − �2

�0 arccos �

1

� + cosh�2x�1 − �2/�0�
, �14.19�

R1 = R0�� + �0R0 arccos �� , �14.20�

R2 = �R0
2 − R1

2, �14.21�

and R3=0 �Shytov et al., 2004�. The physical potential of
the optimal fluctuation is �Shytov et al., 2003�

U�x�
2�0

= −
1 − �2

� + cosh�2x�1 − �2/�0�
, �14.22�

which corresponds to the value of the action

S�U� = 8���0�s���1 − �2 − � arccos �� . �14.23�

For ��1 the length scale of the optimal fluctuation is
�0 /�1−�2, its depth is U��0�1−�2�, and the density of
states is N�E��exp�−�1−�2�3/2�, in complete agreement
with qualitative estimates.

The most important observation of Shytov et al. �2003�
is that in higher dimensions the optimal fluctuation is
strongly anisotropic, in contrast to both conventional
semiconductors and superconductors in the diffusive
limit. This is a direct consequence of the composite na-
ture of superconducting quasiparticles: they are made
out of objects that move with Fermi velocity. The wave
function of the subgap state is concentrated along the
quasiclassical trajectory, which is a chord in a potential
of any shape. Consequently, there is little energy cost in
reducing the size of the optimal fluctuation in the “trans-
verse” direction, while the smaller volume makes such
fluctuations more probable; see Fig. 40. As a result, the

FIG. 40. �Color online� The spatial structure of the optimal
fluctuation in the ballistic and diffusive limits.
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optimal fluctuation is strongly elongated in one �x� di-
rection. The wave function of the bound state can be
written as ��x ,y�=exp�ikFx�%�x ,y�, where y denotes
the transverse d−1 coordinates and % is a slowly varying
function. The kinetic energy of the quasiparticle is

�̂�� − eikFx�ivF
�

�x
+

�y
2

2m
�%� � vF

Lx
+

1

mLy
2�� .

�14.24�

The transverse size of the fluctuation can therefore be
reduced until the second term becomes comparable to
the first, i.e., Ly���FLx�1/2, where �F�kF

−1 is the Fermi
wavelength. Consequently, U /�0�1−� and Lx

��0 /�1−�, and

S�Uopt� � LxLy
d−1U2

U0
2 � ��0�s��EF

�0
��d−1�/2

�1 − ���7−d�/4,

�14.25�

where EF is the Fermi energy. Consequently, the density
of states is given by N�E��exp�−�1−���7−d�/4�. The ac-
tion for this anisotropic fluctuation is smaller than that
for an isotropic droplet with the same energy of the
bound state, by a factor of �EF /�0��d−1�/2�1−��−�d−1�/4, so
that the corresponding DOS is exponentially higher.

Since the optimal fluctuation is a result of a saddle-
point approximation for the functional integral, Eq.
�14.1�, it is only valid when S�Uopt��1, or

1 − � � ��0�s�4/�d−7�� �0

EF
��2�d−1��/�7−d�

. �14.26�

For d=1 this condition is 1−�� ��0�s�−2/3, while for d
=3 it does not depend on the gap, 1−�� �kFl�−1.

It is possible to compare the DOS given by different
approaches at the crossover scale between the diffusive
and ballistic regimes �Vekhter et al., 2003�. A transition
to the diffusive regime occurs when the size of the opti-
mal fluctuation L&vF�s, or 1−�� ��0�s�−2. The result of
Lamacraft and Simons �2000� for �0�s�1 was SD

= ��0�s�5/3�EF /�0�d−1�1−���6−d�/4. Consequently, at the
crossover point the action from Eq. �14.25� is smaller,
SD /S0��EF /�0��d−1�/2��0�s�7/6�1, and the optimal fluc-
tuation found by Shytov et al. �2003� corresponds to a
greater DOS. Therefore the structure of the optimal
fluctuation near the crossover between the ballistic and
diffusive regimes still closely resembles that given
above. As the size of the optimal fluctuation increases
even further, the anisotropic fluctuation becomes insup-
portable due to diffusive motion.

Balatsky and Trugman �1997� considered the DOS at
E=0 due to the suppression of superconductivity by the
paramagnetic impurity potential. They needed a large
volume fluctuation, V&�d, which is less probable and
yields lower DOS than that of Eq. �14.25�. Vekhter et al.
�2003� have checked whether local suppression of the
gap from �0 to E due to a large number of impurities
with uncorrelated spins �as opposed to a ferromagnetic
optimal fluctuation above� is advantageous. For 1−�


1 the local pair-breaking rate  needed to reduce the
gap to E is �s�1+ �1−����0�s�2/3, and the volume of the
region has to be at least equal to that of the anisotropic
optimal fluctuation to avoid high kinetic-energy cost
�this is an underestimate since it ignores proximity cou-
pling to bulk�. In that case the optimal action SBT/S0

���0�s�1/3�EF /�0�c̄, where c̄=nimp�F
d is the atomic con-

centration of impurity atoms. As a result, for realistic
values of c̄ and clean samples SBT�S0, the DOS given
by the action in Eq. �14.25� is higher. Therefore the bal-
listic limit of the action obtained by Shytov et al. �2003�
is expected to be valid up to the crossover to the diffu-
sive regime.

5. Ballistic regime, strong scattering

As of today, we are not aware of any investigations of
the optimal fluctuation structure in the ballistic regime
when there exist bound states on individual magnetic
impurities. It is reasonable to assume that the result dif-
fers from the standard Lifshitz formula for the same rea-
son as above: The wave functions of the states localized
on magnetic impurities in superconductors oscillate with
the Fermi wavelength; see Sec. VI. As a result, in the
dilute impurity limit the shift of the energy level local-
ized on, for example, two impurities located at distance
R�pF

−1 will be suppressed by the typical factor
exp�−R /�0� �Rusinov, 1968�. Consequently, states signifi-
cantly below the impurity band must be created by a
large number of impurities or impurities located on
neighboring lattice sites. This problem still awaits fur-
ther investigation.

6. Summary

In s-wave superconductors with magnetic impurities,
the density of states does not vanish irrespective of the
concentration and nature of the impurity scattering. The
tails of the density of states extend into the mean-field
gap. Therefore, all superconductors with magnetic impu-
rities are gapless. This behavior is illustrated in Fig. 41.

XV. SUMMARY AND OUTLOOK

While considering the role of impurities in conven-
tional and unconventional superconductors, this review
has focused on theoretical and experimental results that
highlight the physics beyond the standard Abrikosov-
Gor’kov theory, the Anderson theorem, and average
lifetime effects. Studies of disorder in s-wave supercon-
ductors were carried out in detail in the 1960s. We have
discussed more recent results in this field. Our main em-
phasis has been on how individual impurities influence
local electronic states in their immediate vicinity and on
deviations from the standard Abrikosov-Gor’skov
theory on mesoscopic scales. This focus is dictated by
advances in experimental techniques, NMR methods
and STS measurements for probing electronic states
with atomic spatial resolution at the scales where impu-

426 Balatsky, Vekhter, and Zhu: Impurity-induced states in conventional and¼

Rev. Mod. Phys., Vol. 78, No. 2, April–June 2006



rities perturb their surrounding �Fischer et al., 2005�, and
the concomitant development of new theoretical ap-
proaches.

The stimulus for such extensive studies is that impuri-
ties are markers that allow us to reveal the nature of
correlations and pairing of the state where impurities
are placed. Indeed, the particular pattern of impurity-
induced electronic states is closely connected to the sym-
metry of the superconducting gap and to the underlying
electronic band structure and helps us to understand the
nature of superconducting pairing. If strong electronic
correlations in the ground state are present, they also
are reflected in details of impurity-induced states.
Therefore watching the waves created by throwing a
pebble in the pond of correlated electrons helps us un-
derstand the properties of the underlying electronic liq-
uid.

We have kept the discussion general in order to allow
applications to other systems and materials. For in-
stance, this was our rationale for employing the BCS
state to describe superconductivity. We believe that it is
a good approximation in heavy-fermion systems, organic
superconductors, and SrRuO4, at very low energy. At
the same time, deviations from this mean-field picture
may provide additional details on the underlying physics
of the particular material. The majority of the data at
the moment are obtained in high-Tc materials. It is clear
that similar local effects are present around impurities
in other unconventional superconductors, e.g., in
NaxCoO2·yH2O superconductors �Wang and Wang,
2004�, although we are not aware of any data on single-
impurity states in these materials. Given the importance
of the impurity states, this field will undoubtedly be ex-
tended to other systems by future experiments.

New ideas and directions continue to emerge in elec-
tronic properties induced by impurities. The suite of new

experimental tools that address local electronic effects,
such as STM, will help to clarify the role of interference
between several impurities and pave the way towards
connecting the microscopic local states with average
properties. Recent theoretical work addressed some as-
pects of this subject �Andersen, 2003; Atkinson et al.
2003; Morr and Balatsky, 2003; Morr and Stavropoulos,
2003b; Zhu et al., 2003; Zhu, Atkinson, and Hirschfeld,
2004� and is awaiting direct comparison with experi-
ment.

Another promising avenue is combining the spatial
resolution of STM-STS with the time resolution. The
subject is still in its infancy, both theoretically and ex-
perimentally, but holds immense promise for the future.
Section XI reviewed some recent work in this direction.
Temporal and spatial characterization of states gener-
ated by dynamical impurities allows exploration of cor-
relations inside the electronic state in which the impurity
is placed. One obvious example in which such character-
ization is crucial is the Kondo effect in a superconduct-
ing state. It is desirable to have time-resolved measure-
ments that allow us to visualize the Kondo effect in a
superconductor. Another interesting problem that needs
further elaboration is the role of collective modes in
impurity-induced states. We are only starting to investi-
gate these questions, as discussed in Sec. XII.C.

Real progress on these problems will be made when
we have real data. As usual, one should expect that the
data will have surprises that were not anticipated in
simple theoretical models. This will motivate further
theoretical studies, stimulate more measurements, and
therefore will lead to a further rapid development of the
field. They can provide a space- �and time-� resolved
window into the intimate workings of correlated elec-
tron matter. We have every reason to be enthusiastic and
optimistic about the future of the field of impurity states
in superconductors and in other correlated electron sys-
tems.
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FIG. 41. �Color online� Sketch of the density of states in an
s-wave superconductor with magnetic impurities. The �blue�
dome at !0 and the area beyond �0 are regions where the
mean-field density of states is finite. The thick �red� lines
within the range �0,�0� signifies the finite but exponentially
small DOS induced by the fluctuations in the local impurity
distribution. If impurities are weak, the impurity band is ab-
sent and the tail extends from the mean-field gap edge.
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LIST OF SYMBOLS
Quantity Explanation
a Lattice parameter
b �b†� Bosonic annihilation �creation� op-

erators
c �c†� Fermionic annihilation �creation� op-

erators
d Spatial dimension
D Half-energy bandwidth
�0 Superconducting energy gap
�k Momentum-dependent supercon-

ducting energy gap
�n�r� Electron eigenfunction
EF Electron Fermi energy
G�� ,��� ,G�� ,r� Electron Green’s function in coordi-

nate space
G��n ,k� ,G�k ,�n� Electron Green’s function in Matsub-

ara frequency and momentum space
H ,H ,Hint Hamiltonian
J ,J0 ,Jc Exchange coupling
L Linear dimension of a system
� Chemical potential
N��� Electron density of states
N�� ,r� ,N�E , i� Electron local density of states
��r���†�r�� Fermionic field operators in con-

tinuum space
�� , �0� BCS variational wave function
�−1� , %−1� Excited variational wave function

with single-particle excitation
present

r Spatial coordinates
� Pauli matrices in spin space
� Pauli matrices in Nambu space

V��� , Ṽ�� Superconducting pairing interaction
S Local spin operator
t , t� Electron hopping integral
u Electronlike Bogoliubov quasiparti-

cle wave-function amplititude
T��� T matrix
T Temperature
v Holelike Bogoliubov quasiparticle

wave-function amplitude
U Hubbard on-site electron-electron

interaction
U0 Impurity scattering potential
W Energy bandwidth
Wk d-density-wave order parameter
�0 BCS superconducting coherence

length at low temperatures
��T� BCS temperature-dependent coher-

ence length
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