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Matter waves inside periodic potentials are well known from solid-state physics, where electrons
interacting with a crystal lattice are considered. Atomic Bose-Einstein condensates inside
light-induced periodic potentials (optical lattices) share many features with electrons in solids, but also
with light waves in nonlinear materials and other nonlinear systems. Generally, atom-atom
interactions in Bose-Einstein condensates lead to rich and interesting nonlinear effects. Furthermore,
the experimental control over the parameters of the periodic potential and the condensate make it
possible to enter regimes inaccessible in other systems. In this review, an introduction to the physics
of ultracold bosonic atoms in optical lattices is given and an overview of the theoretical and
experimental advances to date.
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. INTRODUCTION

The 1980s and 1990s saw two major breakthroughs in
atomic physics. Two Nobel prizes were awarded for
these achievements: for laser cooling of atoms in 1997
(Chu, 1998; Cohen-Tannoudji, 1998; Phillips, 1998) and
for Bose-Einstein condensation (BEC) in 2001 (Cornell
and Wieman, 2002; Ketterle, 2002). Laser cooling led to
record low temperatures in the micro-Kelvin regime
and, among other things, to the realization of artificial
crystals bound by light, so-called optical lattices. It also
paved the way for even more powerful cooling tech-
niques, in particular evaporative cooling, which made
possible the Bose-Einstein condensation of a dilute gas
of alkali atoms in 1995.! In this review, we shall take a
closer look at the merger of these two fields: optical lat-
tices and Bose-Einstein condensates. Shortly after the
first realization of BEC, a number of research groups
started investigating the properties of BECs in periodic
potentials, often preceded and sometimes followed by
theoretical efforts. Nearly ten years on, BECs in optical
lattices have matured into an active field of research in
its own right, which means that, on the one hand, it is
exciting and thriving and holds a lot of promise for fu-
ture developments. On the other hand, the amount of
literature on the subject has reached dimensions that
make it difficult for a newcomer to get a systematic over-
view on what has been done thus far and what remains
to be done in the future. The present paper aims to pro-
vide exactly that.

Apart from being a marriage of two very recent disci-
plines within atomic and laser physics, BECs in optical
lattices have relatives in many other fields of physics.
One obvious connection is that with condensed matter
physics: electrons in crystal lattices® bear more than a
passing resemblance to the subject of this paper, and a
large amount of theoretical and experimental work on,
for instance, the Bose-Hubbard model and the Mott in-
sulator transition, has dealt with this analogy. The
amount of literature on this system alone is so large that
we refer the interested reader to more specialized
reviews® (Bloch, 2005; Jaksch and Zoller, 2005). In the
present paper we shall, however, focus our attention on

'For theoretical and experimental reviews, see Dalfovo et al.
(1999) and Leggett (2001) and Ketterle et al. (1999), respec-
tively. Textbook-style monographs are Pethick and Smith
(2000); Pitaevskii and Stringari (2003).

%For an introduction, see, e.g., Kittel (1996).

3For a popular account, see Bloch (2004).
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another interesting analogy, namely, that with nonlinear
optics and nonlinear physics in general. We shall, there-
fore, present in some detail the theoretical treatment of
the dynamics of condensates in periodic potentials. As
the atoms in a BEC can, in some cases, interact with
each other rather strongly through collisions, nonlineari-
ties can play an important role in the behavior of the
system. This link with nonlinear optics can, we believe,
in future lead to useful exchanges.

The aim of this review is to satisfy the needs both of
newcomers and of experts in the field. As these two aims
are not easy to achieve at the same time, we have opted
for a two-part approach. In order to cater to the needs
of newcomers, we devote Sec. II of this paper to a
tutorial-style introduction to the history, methods, and
main research motivations concerning optical lattices,
Bose-Einstein condensates, and the combination of
these two phenomena. A reader entirely new to the field
should be able get a good overview from this part. Next,
in Secs. III-V we present a systematic and comprehen-
sive account of the theoretical treatment of Bose-
Einstein condensates in periodic potentials. Section VI
discusses the experiments carried out to date and links
them to the theoretical work presented in the preceding
sections. Finally, in Sec. VII we present some current
trends and speculate on possible research directions for
the future.

Il. A TUTORIAL OVERVIEW

With hindsight, the idea of taking a Bose-Einstein
condensate and combining it with the periodic potential
of an optical lattice* may seem perfectly obvious, seeing
as both of these experimental techniques were well es-
tablished by the late 1990s. Moreover, by that time a
number of theoretical papers had been published point-
ing out the intriguing phenomena that could probably be
observed in such a system. The versatility and vast po-
tential for doing interesting physics with BECs in lat-
tices, though, only became clear once some of the theo-
retical proposals were actually tested in the laboratory.
Since then, the field has progressed in leaps and bounds.
In this part of our review, we want to give the reader a
taste of what BECs and optical lattices are, how the sub-
ject of BEC:s in lattices was born, and how the system is
actually realized in the lab. Finally, we give a motivation
for studying this particular physical system. In this way,
we pave the way for a more in-depth discussion.

A. From laser cooling to BEC

The first proposals for cooling atoms with laser light’
were made when the laser itself was still in its infancy.
As early as 1970, it was suggested that the Doppler ef-

“For reviews on optical lattices, see, e.g., Jessen and Deutsch
(1996); Meacher (1998); Grynberg and Robilliard (2001).

’See Metcalf and van der Straten (1999) for a comprehensive
introduction.
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fect due to the thermal motion of atoms could be ex-
ploited in order to make them absorb laser light at a
different rate depending on whether they moved away
from or toward the laser. The net momentum kick felt
by the atom could then be used to slow down an atomic
beam or, if the light came from all spatial directions, to
cool a gas of atoms. When this simple principle was fi-
nally applied in the early 1980s, it immediately led to
unprecedentedly low temperatures only a few hundreds
of micro-Kelvins above absolute zero. These tempera-
tures were even lower than the researchers had hoped
for because (previously neglected) optical pumping
forces led to sub-Doppler cooling mechanisms. It was
also soon realized that the spatial interference pattern
created by the laser beams used for cooling effectively
represented a three-dimensional egg carton for the at-
oms. Experiments confirmed the suspicion that one was,
indeed, able to create artificial crystals bound by light.
While initially near-resonant lattices were used in which
atoms continuously scattered photons (leading to the
cooling force), later studies were done with far-resonant
conservative potentials. It is the latter kind of optical
lattices that we shall deal with in this review.

Laser cooling of atoms soon became a versatile tool in
atomic physics, with applications ranging from precision
spectroscopy to atomic clocks and atom interferometers.
Ultracold atoms also turned out to be an ideal raw ma-
terial for the realization of magnetic traps for neutral
atoms. Held in place by magnetic dipole forces, such
atomic gases can then be evaporatively cooled by suc-
cessively lowering the trap depth, thus letting the most
energetic atoms escape and allowing the remaining ones
to rethermalize. In this way, the fundamental limitations
of laser cooling due to photon scattering can be over-
come and temperatures as low as a few nano-Kelvins
can be reached. If at the same time the density of the
trapped gas is large enough, the phase-space density
condition for Bose-Einstein condensation can be satis-
fied: a BEC is created.

Inspired by a paper on photon statistics by Satyendra
Nath Bose, in 1926 Einstein predicted this new kind of
phase transition in identical bosons when their phase
space density exceeds unity. In that case, a macroscopic
occupation of the lowest quantum level of the system
occurs. The resulting Bose-Einstein condensate can be
represented by a single order parameter, the macro-
scopic wave function . Despite the discovery of several
phenomena that could be explained by invoking the
concept of Bose-Einstein condensation, notably super-
fluidity, it was only in 1995 that BEC was observed for
the first time in its “ideal” form in a cloud of cold alkali
atoms.’

Once the first Bose-Einstein condensates had been
created, a flurry of experimental and theoretical activi-
ties started. Within a few years, the most important char-
acteristics of BECs were measured and explained. To-

oA good account of the early BEC experiments and the rel-
evant references can be found in Ketterle ef al. (1999).
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day, in a typical BEC experiment the protocol used is
very similar to that of the first demonstrations:

(1) Atoms are cooled and collected in a magneto-
optical trap (MOT).

(i)  The cold atom cloud is transferred into a conser-
vative trap (either magnetic or optical).

(iii) By lowering the trap depth, forced evaporative
cooling is achieved.

At the end of the evaporative cooling cycle, conden-
sates with up to 107 atoms are now routinely created
with alkali atoms. Although Bose-Einstein condensation
has been achieved with a considerable number of atomic
species, most of the experiments described in this review
were carried out using BECs of rubidium (Rb) and so-
dium (Na). It is very likely, though, that in future experi-
ments with optical lattices BECs of cesium, lithium, and
other elements will be used too.” For the purposes of
this review, the details of a typical experimental BEC
setup are not crucial, and we refer the reader to the
technical accounts published in the literature (Ketterle et
al., 1999).

Once a Bose-Einstein condensate has been created by
evaporative cooling in a harmonic trap, the next logical
step is to look at it and probe its properties. This can be
done either in situ, i.e., with the condensate inside the
trap, or using a time-of-flight technique. Although in situ
diagnostics are a valuable tool for some applications, we
shall concentrate here on the time-of-flight technique,
which is very versatile and is also directly applicable to
condensates in periodic potentials (see Sec. VI.A). This
method consists in simply switching off the trapping field
(magnetic or optical) at time =0 and taking an image of
the BEC a few (typically 5 to 25) milliseconds later. The
image is most often taken by absorption, i.e., shining a
resonant laser beam onto the atomic cloud and observ-
ing with a CCD camera the shadow cast by the absorp-
tion of photons. This and other methods, notably phase
contrast imaging, are described in detail in Ketterle et al.
(1999).

B. Optical lattices

In order to trap a Bose-Einstein condensate in a peri-
odic rather than a harmonic potential, it is sufficient to
exploit the interference pattern created by two or more
overlapping laser beams and the light force exerted on
the condensate atoms. In the following, we shall briefly
remind the reader of the basic notions associated with
the interaction between atoms and laser light and then
proceed to explain the techniques used to create and
manipulate optical lattices.

’ Another interesting line of research has been opened up by
ultracold fermions, which we shall briefly discuss in Sec. VIL.B.
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1. Light forces

Optical lattices and other optical traps (also called di-
pole force traps or simply dipole trapss) work on the
principle of the ac Stark shift. When an atom is placed in
a light field, the oscillating electric field of the latter in-
duces an electric dipole moment in the atom. The inter-
action between this induced dipole and the electric field
leads to an energy shift AE of an atomic energy level
equal to

1
AE =— Ea(w)(Ez(t», (1)

where a(w) with w=w,+A is the dynamic polarizability
of the atomic level exhibiting a resonance at w,, A is
the detuning of the light field from the atomic reso-
nance, and the brackets ( ) denote a cycle average.

If the frequency of the light field is smaller than the
atomic resonance frequency, i.e., A<0 (“red-detuned”),
the induced dipole D=a(w)E will be in phase with the
electric field. Therefore, the resulting potential energy
will be such that its gradient, which results in a force on
the atom, points in the direction of increasing field. A
stable optical trap can then be realized by simply focus-
ing a laser beam to a waist of size w. If the cross section
of the beam is Gaussian, the resulting position-
dependent ac Stark shift [and hence the atom’s potential

energy V(r,z)]
2
2r ) ’ 2

AE(r,z)=V(r,z) = VoeXP<— Wizl

7 \2
wlz]=w, 1+(—) , (3)
ZR
where Vo« I,/A is the trap depth, with /, the peak inten-
sity of the beam, and w, and z sz%w/ A\, are the spot
size (waist) and Rayleigh length, respectively, of the
Gaussian beam. Expanding this expression at the waist
(i.e., z=0) around r=0, we find that in the harmonic ap-
proximation the radial oscillation frequency (i.e., per-
pendicular to the propagation direction of the beam) of
an atom of mass m in such a potential is given by

N @)
w N m

The depth Vj, of an optical trap scales as I,/ A, whereas
the rate I' at which atoms at the center of the trap will
spontaneously scatter photons is proportional to I,/ A2,
This means that I'/Vo1/A, and hence the ratio of the
spontaneous scattering rate to the trap depth can be
made small by working at a large detuning.

Apart from the radial trapping force, there is also a
longitudinal force acting on the atoms. Owing to the
much larger length scale in that direction (given by the
Rayleigh length zy), however, this force is far smaller

8For a comprehensive review on dipole traps, see Grimm et
al. (2000).
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FIG. 1. A one-dimensional optical lattice created from coun-
terpropagating laser beams (a) and with beams enclosing an
angle 6 (b). The parameters V| (lattice depth) and d (lattice
spacing) are defined in the text.

than the radial one. In order to confine the atoms tightly
in all spatial directions, one can use two (or more)
crossed dipole traps or superpose an additional magnetic
trap. Forced evaporative cooling can be achieved by
continuously lowering the trap depth (i.e., decreasing
the laser intensity).

2. A simple 1D lattice

Let us now consider what happens when we take two
identical laser beams of peak intensity /,, and make them
counterpropagate in such a way that their cross sections
overlap completely (see Fig. 1). Furthermore, we ar-
range their polarizations to be parallel. In this case, we
expect the two beams to create an interference pattern,
with a distance A; /2 between two maxima or minima of
the resulting light intensity. The potential seen by the
atoms is then simply

V(x) = Vycos*(mx/d), (5)

where the lattice spacing d=\;/2 and V is the lattice
depth. Typically, rather than calculating the lattice depth
V, from the atomic polarizability through Eq. (1), one
uses the saturation intensity /, of the transition and ob-
tains

_arkel

Vo= gﬁrlo e (6)
where the prefactor ¢ of order unity depends on the
level structure of the atom in question through the
Clebsh-Gordan coefficients of the various possible tran-

sitions between sublevels.
Let us look at the potential described by Eq. (5) more
closely now and define some key parameters. Two obvi-
ous quantities associated with this potential are the lat-
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tice depth V,, which measures the depth of the potential
from a peak to a trough, and the lattice spacing d. Typi-
cally, the lattice depth is measured’ in units of the recoil
energy

B2

R omd®

™)

and often the dimensionless parameter s=V,/ E is used.
Making a power series expansion around a potential
minimum (e.g., at x=d/2) we find, in analogy with our
calculation of the dipole trap frequency derived in the
previous section, that

a 2V0
=T 8
Wiat d m ( )

gives the harmonic oscillation frequency of an atom
trapped inside one of the lattice wells. Comparing this to
the frequency w, of the dipole trap, we see that both
contain the inverse of their respective length scales.
From the previous section we know that for a typical
dipole trap with wy=10 um, frequencies up to a few
hundred Hz are possible. The length scale d of a lattice
with A\; =800 nm is roughly 20 times smaller. This means
that with the same laser intensity, we can realize a trap
that (locally) has a harmonic trapping frequency of up to
a few kHz.

3. Technical considerations

In practice, a one-dimensional optical lattice can be
created in several ways. The easiest option is to take a
linearly polarized laser beam and retro-reflect it with a
high-quality mirror. In order to be able to control the
intensity of the beam and hence the lattice depth, one
can use an acousto-optic modulator (AOM). This device
allows for a precise and fast (less than a microsecond)
control of the lattice beam intensity and introduces a
frequency shift of the laser light of tens of MHz.

If the retro-reflected beam is replaced by a second
phase-coherent laser beam (which can be obtained, for
instance, by dividing a laser beam in two with a polariz-
ing beam splitter and using a wave plate to obtain the
correct polarization), another degree of freedom is in-
troduced. It is now possible to have a frequency shift
Av; between the two lattice beams. The periodic lattice
potential will now no longer be stationary but move at a
velocity

Vige = dAvy. 9)

If the frequency difference is varied at a rate dAv;/dt,
the lattice potential will be accelerated with

’Note that different conventions and symbols (such as Ejq,
E,, and E;) are found in the literature, often differing by fac-
tors of 4 or 8 from the convention used in this review. The
reader is advised to check the definition in each paper care-
fully.
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dAv
Aat = dTL :

(10)
Clearly, in the rest frame of the lattice there will be a
force F=may, acting on the condensate atoms. We shall
see later that this gives us a powerful tool for manipu-
lating a BEC inside an optical lattice.

Another degree of freedom of a 1D lattice realized
with two laser beams is the lattice constant. The spacing
d=N\; /2 between two adjacent wells of a lattice resulting
from two counterpropagating beams can be enhanced by
making the beams intersect at an angle §<<180° [see Fig.
1(b)]. Assuming that the polarizations of the two beams
are perpendicular to the plane spanned by them, this
will give rise to a periodic potential with lattice constant
d(6)=d/cos(6/2). To simplify the notation, in this review
we shall always denote the lattice constant by d (and all
the quantities derived from it, particularly Eg) regard-
less of the lattice geometry that was used to achieve it.

4. General and higher-dimensional potentials

Up to now we have only considered one-dimensional
lattices. Naturally, by adding more laser beams one can
easily create two- or three-dimensional lattices. In fact,
in the early experiments with near-resonant lattices, a
huge variety of different geometries was tested (Jessen
and Deutsch, 1996; Meacher, 1998). Experiments with
BEC:s in far-detuned lattices, however, have so far only
used a very simple extension to the one-dimensional
scheme discussed above. This extension consists in add-
ing a set of laser beams perpendicular to the first pair in
order to create a 2D lattice, and yet another pair along
the third spatial direction. The interference pattern cre-
ated by more than three laser beams is rather compli-
cated and depends sensitively on the polarizations and
relative phases of the beams and on their orientation.
This dependence can be exploited to realize a variety of
lattice geometries, but a simpler approach consists in
building up the lattice potentials from pairs of indepen-
dent laser beams. This can be achieved by introducing a
frequency offset (using AOMs) of several tens of MHz
between the pairs of lattice beams. Interference effects
in directions other than the desired lattice directions are
then washed out because they move much faster than
the typical oscillation frequency of the atoms in the lat-
tice wells.

As an example, Fig. 2 shows two very different two-
dimensional potentials created with the same geometry
of two sets of counterpropagating lattice beams at right
angles to each other. By changing the angle between the
polarizations of the two beam pairs, one can create very
different potentials. The relative phase between the two
standing waves is an additional degree of freedom which
can be exploited to control the topology of the potential
(Greiner et al., 2001a, 2001b). This, in fact, requires an
active (interferometric) stabilization of the phases, since
any phase variation will result in a deformation of the
potential. A 2D potential can be realized more simply
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FIG. 2. Examples of two-dimensional potentials created by
two alternative methods. In (a), the polarizations of the two
waves are orthogonal, i.e., two noninterfering lattices are su-
perimposed. In (b), on the other hand, the polarizations are
parallel to each other, leading to four-beam interference. The
potential shown in (a) can also be realized with parallel polar-
izations and a (large enough) frequency difference between the
two standing waves.

by introducing a frequency difference between the two
beam pairs that is much larger than the trapping fre-
quencies of the wells (see above).

The creation of one-, two-, and three-dimensional pe-
riodic structures in which atoms can be trapped and ac-
celerated, with the possibility of switching or modulating
the lattice at will, already gives the experimenter great
flexibility. But that is not all. By adding a few extra laser
beams and/or controlling the polarizations and relative
phases of the lattice beams, even more complex poten-
tials, such as quasiperiodic or kagomé lattices, can be
realized (Santos et al., 2004).

By controlling the polarizations of the lattice beams, it
is also possible to create state-dependent potentials that
can be shifted relative to each other (Jaksch et al., 1999;
Mandel et al., 2003b). In order to obtain such a potential,
one uses two linearly polarized laser beams whose po-
larization vectors enclose an angle 6. This configuration
leads to a superposition of ¢* and o~ standing waves
with associated potentials V., (x, 6) =V cos?(kx+ 6/2) and
V_(x,0)=Vcos*(kx—6/2) whose relative position de-
pends on 6, which, in an experiment, can be controlled
through an electro-optical modulator.
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C. Why study BECs in optical lattices?

In the last section of this brief tutorial introduction,
we want to make some general comments about the
physical concepts associated with condensates in lattices
and point out why it is worthwhile studying these sys-
tems. The question that forms the title of this section can
be asked in two different ways: “Why study condensates
in optical lattices?” and “Why study condensates in opti-
cal lattices?” We shall try to answer both of them.

Since optical lattices have been around for longer
than BECs, let us start with the latter of the two ques-
tions. What is the difference between putting ultracold
atoms, on the one hand, or BECs, on the other hand,
into optical lattices? First of all, we can say that the
temperatures and densities of ultracold atoms and BECs
differ considerably. For cold atoms, temperatures are in
the micro-Kelvin regime and densities are around
10" cm™3, whereas for BECs typical values are on the
order of tens to hundreds of nano-Kelvins for the tem-
perature and up to 10'* cm™ or more for the densities.
This order-of-magnitude difference in the physical pa-
rameters has several consequences. First, lower tem-
peratures mean that a BEC will usually be in the lowest
energy levels of the lattice wells without the need for
further cooling after the lattice is applied. Second, the
higher densities lead to an increased filling factor of the
lattice, which can easily exceed unity for BECs, whereas
for ultracold atoms filling factors are usually around
1073. So, rather than ending up with a light-bound “crys-
tal” with lots of vacancies, after applying the lattice each
site will be occupied. Third, higher densities also imply
that effects due to interatomic interactions can become
important. Typical effects associated with the periodicity
of the lattice, such as Bloch oscillations and Landau-
Zener tunneling (see Sec. VI.D.1), are appreciably influ-
enced by atom-atom interaction. Thus, putting BECs
rather than “just” cold atoms into an optical lattice im-
mediately leads to much richer physics as a nonlinearity
is introduced into the problem.

Approaching the problem from the other end and
starting with Bose-Einstein condensates, we can ask why
it is interesting to study them in optical lattices. The
immediate answer is that in this way (a) one adds a new
length scale to the system, namely, the lattice spacing d,
which is typically less than a micron and therefore much
smaller than the BEC itself, and (b) periodicity is intro-
duced where before we only had harmonic confinement.
The new length scale d leads to very large local trapping
frequencies, and in the limit of large lattice depths it is
possible to have completely isolated minicondensates
that do not interact (or only very weakly) through tun-
neling. The periodicity, on the other hand, makes it pos-
sible to study, for instance, models originally developed
in condensed matter physics such as the Bose-Hubbard
model, which predicts a quantum phase transition be-
tween a superfluid and a Mott insulator.

Many features of condensates in lattices are manifes-
tations of more general concepts of nonlinear systems,
such as solitonic propagation and instabilities. Quite a
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few of these are also important in nonlinear optics, and
we shall point out these similarities throughout this
review.

In general, we can say that optical lattices offer sev-
eral advantages: a vast number of potentials can be cre-
ated with almost complete control over the parameters
(such as lattice depth and spacing), and the potential can
be altered or switched off entirely during the experi-
ment. At least the latter feature is certainly not available
in any solid-state experiment, making optical lattices
also an ideal test bed for condensed matter theories.

With these general remarks we end this tutorial intro-
duction, hoping to have prepared the reader for the
more systematic and technical account that forms the
remainder of this review.

lll. THEORY I: GENERAL CONSIDERATIONS

After the general introduction of the first section, we
discuss in more detail the theoretical description of a
Bose-Einstein condensate in periodic potentials. We
mainly concentrate on the physical situation in which we
deal with a very large number of atoms. In this case,
atom number fluctuations are negligible and a mean-
field approach can be used. We only briefly discuss the
situation in which quantum fluctuations are crucial
(Bose-Hubbard model) at the end of this section.

The general mathematical description of BEC of a
weakly interacting gas has already been addressed in dif-
ferent review articles (Dalfovo et al., 1999; Leggett,
2001). In this review we, therefore, concentrate on the
results obtained for a BEC in periodic potentials.

The mathematical description of the interacting
many-particle system under consideration is significantly
simplified due to the fact that the interaction term be-
tween the particles results from binary collisions at low
energies. These collisions can be characterized by a
single parameter, the s-wave scattering length (in the fol-
lowing denoted by a,), which is independent of the de-
tails of the two-body potential. This approximation leads
to the many-body Hamiltonian describing N interacting
bosons in an external trapping potential V.,

2
H= f d3x«2ﬁ(x){— LT V} #(x)
2m
2
+ 14”:;ﬁ f P (%) 7 (%) (%) gi(x), (11)

with #(x) a boson field operator for atoms in a given
internal atomic state. The ground state of the system, as
well as its thermodynamic properties, can be calculated
from this Hamiltonian. In general these calculations can
get very complicated and, in most cases, impracticable.
In order to overcome the problem of solving exactly the
full many-body Schrodinger equation, mean-field ap-
proaches are commonly developed. A detailed deriva-
tion can be found in Dalfovo et al. (1999).

The basic idea for a mean-field description of a dilute
Bose gas was formulated for the homogeneous case
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V=0 by Bogoliubov (1947). The generalization of the
original Bogoliubov description to the physical situation
in real experiments, i.e., including nonuniform and time-
dependent configurations, is given by describing the field
operators in the Heisenberg representation by

W(x,1) = g(x,1) + SV (x,0), (12)

where /(x,t) is a complex function defined as the expec-

tation value of the field operator, i.e., gb(x,t)z(lff(x,t)),
and its modulus represents the condensate density
through ny(x,?)=|p(x,0)? [i.e., N,=[|p(x,0)[>d*x, with N,
the total number of atoms]. The function ¢(x,¢) is a clas-
sical field and is often called the “macroscopic wave
function of the condensate.” This description is particu-

larly useful if ¥ (x,f) is small, meaning that the
so-called quantum depletion of the condensate is small.
We shall see in the following that for BECs in optical
lattices this assumption can become invalid in the con-
text of very deep periodic potentials.

In the limit of negligible depletion of the condensate,
the time evolution of the condensate wave function
(x,t) (normalized to the total atom number) at tem-
perature 7T=0 is obtained by taking the ansatz for the
field operator given in Eq. (12) and using the Heisenberg

equation iﬁ&;&(x)/ &tz[l]/,ﬁ]. This leads to the celebrated
Gross-Pitaevskii equation for the mean field ¢(x,1),

L h*v? )
lﬁ_ant) =\- + VeXt(X) + g|¢(xat)| I,D(X,t) )
ot 2m
47ha
g= . (13)
m

In the context of one-dimensional periodic potentials,
a further simplification can be obtained by assuming a
quasi-one-dimensional situation. This description is
valid if the BEC is confined in a cylindrically symmetric
trap with a transverse trapping frequency w, and negli-
gible longitudinal (axial, x direction) confinement.'’ Ad-
ditionally, the energy arising from the atom-atom inter-
action has to be smaller than the energy splitting of the
transverse vibrational states E | =fiw,. Within this ap-
proximation, the radial part ¢, (y,z) of the macroscopic
wave function =4, (y,z)i.(x) can be described by a
Gaussian having a width corresponding to the transverse
ground state. The resulting equation (Steel and Zhang,
1998) is given by

2

i + Vext(x)) (1)

- Eaﬁ

+ g1p| ¥ (e, D (x,0),

9 _
ih P P(x,1) = (

"%In this context, “negligible” means that the periodic poten-
tial in the longitudinal direction is only slightly modified by the
additional harmonic potential over the extent of the BEC. In
practice, this will usually mean that the longitudinal harmonic
trapping frequency is of the order of a few Hz.
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FIG. 3. (Color) Realization of a spin-dependent potential (a)
and resulting potential V, (b) for 6=0° (solid line) and §=45°
(dashed line). Adapted from Mandel et al., 2003b.

gip =2ahw, . (14)

Thus the condition that the interaction energy must be
smaller than the energy splitting of the transverse vibra-
tional states implies that the linear density of the con-
densate is limited to nyp<<1/2a,, which in the case of
rubidium (a,=5.7 nm) leads to a maximum linear density
of =100 atoms/um. In most of the experiments, this
simple situation is not realized.

It has been shown that it is also possible to assume the
transverse state to be in the self-consistent ground state
[nonlinearity is not negligible, see Baym and Pethick
(1996)]. This also reduces the description to one dimen-
sion, but one ends up with a nonpolynomial nonlinear
Schrodinger  equation  (Salasnich er al., 2002).
Nonpolynomial implies that the nonlinear term in
Eq. (14) is modified, |[>— | */1+2a,N| [, and
an additional nonlinear term appears, given by

hw, 1201/ (14 2aN i) + (1 +2a,N |9, P)].

Before discussing how the Gross-Pitaevskii equation
can be used to describe nonlinear phenomena in a BEC,
we first give a brief overview of the linear theory of a
single particle in a periodic potential. Since the non-
trivial dynamics of BECs in optical lattices results from
the interplay between the discrete translational invari-
ance of the periodic potential (which is a linear prop-
erty) and the nonlinearity arising from the interatomic
interaction, the knowledge of the linear propagation
properties is an essential prerequisite for understanding
the dynamics of BECs in optical lattices.
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IV. THEORY II: THE LINEAR CASE
A. The band structure

The description of the propagation of noninteracting
matter waves in periodic potentials is straightforward
once one has found the eigenstates and corresponding
eigenenergies of the system.

For simplicity we shall restrict our discussion to a one-
dimensional sinusoidal periodic potential of the form

Vey = Vocos?(kx) = sE gcos?(kx), (15)

with k=m/d, where d is the periodicity of the potential.
The extension to two- and three-dimensional situations
and even nonsinusoidal potentials is straightforward.

The method for finding the eigenenergies and eigen-
states of this system is described on the first pages of
almost any textbook on solid-state physics—after all,
electrons in a solid also move within a periodic potential
(which, in that case, is produced by the crystal ions). In
the context of ultracold atoms in standing light waves,
this connection was discussed in the early days of atom
optics (Letokohov and Minogin, 1977, Wilkens et al.,
1991).

The stationary solutions are found in a simple way by
applying Bloch’s theorem, which states that the eigen-
wave-functions have the form

bng¥) = €T uy, 4 (x), (16)

where g is referred to as quasimomentum'' and # indi-
cates the band index, the meaning of which will become
clear in the following discussion. The functions u,, ,(x)
are periodic with period d, i.e., u, ,(x+d)=u, ,(x). This
allows us to rewrite the wave function and the potential
in a Fourier series, with the reciprocal-lattice vector de-
fined by G=27/d,

q)n,q(x) — eiqxz CZ1eimGX’
m

V(x)= > V,,emox. (17)

Putting this ansatz for the eigenfunctions into the
Schrodinger equation and truncating the sum at |m|=N,
one ends up with a 2(2N+1)-dimensional system of lin-
ear equations,

K2 )
%(6] -mG)"+ Vi (Comi + V6Coimenc
+ Vchqf(mfl)G = EcquGa (18)
with m=-N,-N+1,...,N=1,N, and for the chosen po-

tential of Eq. (15) one finds V.5=Vy/4 and V,,_,=V,/2.
For a given quasimomentum ¢, this equation leads to

11Strictly speaking, fiq.
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FIG. 4. Band structure for different potential depths: (a) weak
potential with s=1, (c) deep potential with s=10. In both cases,
the closed formulas given in the text are depicted with the
dotted line. In graphs (b),(d) we visualize the spatial depen-
dence of the corresponding Bloch states. The periodic poten-
tials are represented by the dashed lines. For each energy, the
absolute square value of the corresponding Bloch states is de-
picted in the gray scale plot (high probability is represented by
black). Additionally, the wave functions are shown for the en-
ergies at the gaps indicated with the arrows. One clearly sees
that the wave functions at the first gap change sign from well to
well, i.e., there is a phase slip of 7. These modes are also
known as “staggered modes.”

2N+1 different eigenenergies usually referred to as the
band energies E, with n=0,1,...,2N. Each eigenenergy
has a corresponding eigenfunction that is given by the
Fourier components cj_,,g.

The eigenenergies and eigenstates depend on the po-
tential depth V|, and, additionally, on the quasimomen-
tum ¢. In Fig. 4, we summarize the properties of the
eigenbasis for a shallow potential Vy=FEx and a deep
potential V,=10Ek. Obviously the presence of a peri-
odic potential significantly modifies the energies of a
free particle. The eigenenergies form bands that are
separated by a gap in the energy spectrum, i.e., certain
energies are not allowed.

In the weak potential limit [see Fig. 4(a)], the eigenen-
ergies depend critically on the quasimomentum g. Since
the so-called gap energy E’g’ap between the nth and
(n+1)th band scales with Vg‘” in the weak potential
limit (Giltner et al., 1995), it only has appreciable mag-
nitude between the lowest and first excited band. Thus a
particle with high energy is very well described as a free
particle and the influence of the periodic potential is
negligible in this case.

In the weak potential limit, the band structure is ap-
proximately given by
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E@G§ ., _ L 8
—t = \/4G2+ — 1
E, T+ 4+ e (19)

with g=q/k-1 and s=V,/Eg. The minus (plus) sign
gives the lowest (first excited) band. This well-known
result can be found in Ashcroft and Mermin (1976) and
is depicted in Fig. 4 with the dotted line. In this graph a
constant energy was added to the energy given in Eq.
(19) in order to match the numerically obtained band
structure.

In Fig. 4(b), we depict the energies in real space. In
the same graph we have added information on the real
space probability distribution of the eigenfunctions. The
gray scale was chosen in such a way that areas with high
probability are dark. It is apparent that the eigenfunc-
tions at the lowest and highest energy are almost con-
stant, which implies that the atomic wave function is
mainly given by a plane wave corresponding to an “al-
most” free particle. It is important to note that for ener-
gies near the upper band edge of the lowest band, the
probability distribution is periodic and its maxima coin-
cide with the potential minima. For this energy we addi-
tionally depict the wave function, which reveals that the
relative phase of adjacent potential minima is 7. This is
the well-known sinusoidal Bloch state at the band edge
(Brillouin zone edge). In the literature this Bloch state is
also referred to as a “staggered mode,” i.e., the phase
changes by 7 between adjacent wells. From this graph
one can also see that the Bloch state in the first excited
band is also sinusoidal but it is in-phase with the peri-
odic potential. Thus the energy of this state is higher due
to the bigger overlap with the periodic potential.

In the limit of deep periodic potentials, also referred to
as the tight-binding limit, the eigenenergies of the low-
lying bands are only weakly dependent on the quasimo-
mentum [see Fig. 4(c)]. The quasimomentum depen-
dence of the lowest band energy can also be given
analytically (Zwerger, 2003),

E -
% = \s — 2Jcos(qd),

R

4 -
J=—(s)*e2v. (20)

N

This energy expression, in which a constant energy was
added, is plotted in Fig. 4(c) as a dotted line and reveals
the good agreement with the numerically obtained
eigenenergies. The corresponding eigenfunctions are de-
picted on the right-hand side. Although the absolute
value of the eigenfunctions for the lowest band shows no
significant dependence on the quasimomentum, the
wave functions at g=0 and at g=/d differ by the rela-
tive phase between adjacent potential minima [see solid
lines in Fig. 4(d)]. As in the weak periodic potential
limit, the wave function at the upper band edge of the
lowest band is staggered, i.e., there is a 7 phase jump
between different sites.

Typical phenomena studied in this regime only in-
volve the lowest band, which is well described by local-
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ized wave functions at each site. Therefore, in this limit
the dynamics can be described using the localized Wan-
nier functions, which are given as a superposition of the
Bloch functions defined in Eq. (16),

¢n(R,x)=§ f dge”™1®, ,(x), (21)

where R indicates the center of the Wannier function.
The dynamics is described via interwell tunneling. The
characteristic energy scale of tunneling coupling be-
tween two sites is given by the width of the band, which
is 4J.

The linear properties of the periodic potential are
uniquely defined by the potential modulation depth Vi,
In the following, we distinguish between the weak peri-
odic potential and the deep periodic potential limit. The
transition between these two extreme regimes is con-
tinuous and thus no well-defined boundary can be given.
A characteristic potential modulation for this transition
may be found by equating the bandwidth and the gap
energy, which have the same magnitude at a potential
modulation depth of Vy=14F.

B. Dynamics in the linear regime

For the theoretical description of linear matter-wave
propagation, we shall distinguish between the situation
in which only Bloch states in one band are involved (in-
traband dynamics) and interband dynamics, which in-
volves processes leading to a variation of the band popu-
lations. Moreover, we shall discuss the dynamics when
an additional external potential is present.

1. Intraband dynamics: Pure periodic potential

Generally the description in the linear regime is very
simple, because the momentum wave function changes
in time solely due to the momentum-dependent energy,
which results in a phase factor linearly increasing in time
for each momentum. Thus the temporal evolution of a
wave packet in an optical lattice can be described by
decomposing the initial wave function into Bloch states
with the corresponding amplitude f,(¢), and the subse-
quent evolution is purely a consequence of the accumu-
lated phase ¢, ,(t)=E,(q)t/#,

wld

P, =2 dqf,(q)®, ,(x)e'Pna?). (22)

n —arld

Obviously, if the width of the quasimomentum distribu-
tion of the wave function is comparable to the Brillouin
zone width, the dynamics cannot be condensed into a
simple analytic formula but can still be computed nu-
merically in a straightforward way.

The description becomes very simple if the quasimo-
mentum distribution only involves a small range of
quasimomenta centered around g, (as indicated in Fig.
5) and only one band (e.g., the lowest band) is involved.
In solid-state physics, this is also known as the semiclas-
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FIG. 5. Summary of the linear propagation of a wave packet in
a weak periodic potential. (a) The band structure correspond-
ing to s=1, which can be harmonically approximated at g=0
and g=/d. This corresponds to the effective-mass approxima-
tion. (b) The group velocity (in units of vg=7%ik/m) correspond-
ing to the lowest band reveals that at the center and at the
edge of the Brillouin zone the wave packet does not move.
Additionally, the velocity in the lowest band is limited to a
maximum velocity. (¢) The spreading of a wave packet is a
consequence of the group velocity dispersion described by the
effective mass. The effective mass can be larger (and, indeed,
even infinite at g%) than the free mass, but also smaller and
negative at g=m/d. The evolution of the wave packets for the
momentum distributions indicated in black (gray) shading is
shown in (d) [(e)]. (d) The real space evolution of the envelope
of the wave packet prepared in the region of constant effective
mass. The wave packet spreads without distortion. (e) If the
broad quasimomentum distribution does not allow the qua-
dratic approximation of the energy, higher-order terms in the
Taylor expansion become relevant and lead to a distortion of
the wave packet. (f) The evolution of a wave packet prepared
at the infinite mass point gy=g., for a propagation time 2.5 and
5 times longer than that of (d) and (e). This wave packet moves
with the maximum velocity associated with the lowest band
and reveals strongly suppressed spreading.

sical approximation. In this case, the energy dispersion
relation (band structure) can be approximated by a Tay-
lor expansion as

JE(q)
aq

(q - q0)* PE(q)
2 aq?

E(q) = E(q0) + (q-q0)

40

(23)

90

Furthermore, we assume that @n’q(x)%uqo(x)eiqﬂ. This
approximation neglects the temporal evolution on the
length scale of the periodicity. Consequently, the dynam-
ics of the wave packet is given by
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TABLE I. Analytical solutions for the effective masses at the
center (¢=0) and the Brillouin zone edge (g=/d).

s[Vo/ER] Meg/m(q=0) Mmegt/ m(q=m/d)
1 1
2 8 8
0-3 1- 8
Va1 5216 | (4+5716)" =5
72 A2
5 2d%] 4%

— —(ilh)E(qq)t
1) = g (D) D0

8 f dqf(q)e "a-90)lx—vglaorl-ilhlq - 40)*2meg(qo) e ,

(24)
where we have defined
1 90E(q)
ve(qo) =7 ——— (25)
§ i dq %
and
FE@| \™
meff(‘]O):ﬁ2( Py . (26)
q O

From Eq. (24), we conclude that the wave packet
moves with the group velocity v,. In analogy to the
spreading of a wave packet in free space due to the dis-
persion relation E=#/2k?/2m, the matter wavelet in the
optical lattice also spreads, but with a modified disper-
sion described by the effective mass. In Fig. 5, the group
velocity and effective mass are also depicted.

For the special cases corresponding to the central
quasimomenta qo=0 and gy=/d, the wave packet does
not move and spreads as in free space, albeit with a
modified mass. It is important to note the effective mass
at g¢=0 is positive and larger than the free mass, while at
g=m/d it is negative and its absolute value is smaller
than the free-particle mass (for weak potentials, V|
<4Eyp). For a given potential depth, there exists a qua-
simomentum ¢, where the group velocity is extremal,
which implies that the second derivative of the disper-
sion relation is zero and thus the effective mass diverges.
In other words, linear wave packets prepared at g=q..
move with the maximum velocity allowed in the lowest
band and do not spread in first approximation. Gener-
ally higher-order terms in the Taylor expansion Eq. (23)
need to be taken into account, which eventually leads to
a distortion of the wave packet on a longer time scale
[see Fig. 5(f)].

For both shallow and deep periodic potentials, closed
formulas for the effective masses can be derived and are
given in Table I.
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FIG. 6. Characteristic linear energies as a function of potential
modulation depth. (a) Numerically calculated absolute value of
the effective mass for the center ¢=0 (solid line) and the edge
g=/d (dashed line) of the Brillouin zone where the mass is
negative. The analytical results discussed in the text are repre-
sented by the dashed lines in (c) and (d). For potentials with
deep modulation, the absolute values of the masses become
equal and there is no quasimomentum dependence. (b) The
width of the band decreases exponentially with increasing po-
tential modulation depth. In the deep potential limit, this en-
ergy scale is associated with the tunneling rate between two
adjacent wells.

In the context of deep optical lattices, the description
can be significantly simplified if one treats the dynamics
locally, in which case the dynamics is described by tun-
neling from one well to the next. The tunneling rate J is
sometimes also referred to as “hopping rate” and can be
calculated by evaluating

- -
J=- J dr|:2_v¢n ’ V975n+1 + ¢nvext¢n+1 s (27)
m

where ¢, are the localized wave functions of the nth
potential minimum (normalized to unity). These wave
functions are also known as Wannier states [as defined
in Eq. (21)] and are not Gaussians. In fact, by making a
Gaussian ansatz for the local wave function, one overes-
timates the tunneling rate significantly. In the deep peri-
odic potential limit, there is also a direct connection be-
tween the width of the band and the tunneling rate,
namely, E,,=4J. The comparison of the exact solution
for the width of the band representing the characteristic
energy for tunneling and the effective mass describing
the dispersion of a wave packet are depicted in Fig. 6.

2. Intraband dynamics: With additional potential

The wave-packet dynamics in a periodic potential in
the presence of an additional external potential, i.e.,
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FIG. 7. Wave-packet dynamics in a periodic potential in the
presence of a constant force. (a),(b) An external force leads to
a variation of the central quasimomentum g¢=0. Since the
group velocity changes sign when the quasimomentum exceeds
the Brillouin zone, the wave packet will show an oscillatory
behavior in real space. This is known as Bloch oscillations and
is one example of intraband dynamics. (c),(d) For strong exter-
nal forces, nonadiabatic transitions to the first excited band can
occur near the band edge. This is known as Landau-Zener
tunneling and leads to a splitting of the wave packet. All
graphs reveal clearly the Bloch state structure. Near g=0, the
wave packet is only weakly modulated with the period of the
periodic potential, while at the band edge it is fully modulated
revealing the sinusoidal Bloch state at the Brillouin zone edge.

with an external force, is generally not easy to solve. The
problem becomes relatively simple, though, as soon as
the width of the wave packet in quasimomentum space
is small and thus the wave packet can be characterized
by a single mean quasimomentum ¢,. The external force
then leads to a time-dependent gy(1) via figy(t)=F,. In
the case of a constant force F (e.g., due to the gravita-

tional field), this results in g,(t)=qy(t=0)+Ft/m (Ash-
croft and Mermin, 1976; Scott et al., 2002; Anker et al.,
2004). Since the group velocity of a wave packet de-
pends on the quasimomentum, the position of the wave
packet continuously changes, as is indicated in Fig. 7. As
the group velocity of the wave packet alters sign when
the central quasimomentum crosses the Brillouin zone
boundary, the result of the force is not an acceleration of
the wave packet but leads to oscillations. The latter are
known as Bloch oscillations in real space.

Bloch oscillations have also been studied in the
regime of deep periodic potential by analyzing a
variational Gaussian profile wave packet whose exten-
sion is much bigger than the lattice spacing. The equa-
tion of motion for the four variational parameters—
center-of-mass position, width of the packet, linear
phase gradient across the packet, and quadratic phase
across the packet—leads essentially to the same result as
in the weak potential limit. The motion of a wave packet
in an additional harmonic potential has been discussed
in the weak potential limit (Anker et al., 2004) and in the
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deep potential limit (Cataliotti et al., 2001; Trombettoni
and Smerzi, 2001; Kriamer et al., 2002).

3. Interband dynamics

In the case of a strong external force acting on matter
waves in periodic potentials, transitions into higher
bands can occur (see Fig. 7). In the context of electrons
in solids, this is known as the Landau-Zener breakdown,
occurring if the applied electric field is strong enough for
the acceleration of the electrons to overcome the gap
energy separating the valence and conduction bands.

It was shown by Zener (1932)'* that for a given accel-
eration 4., corresponding to a constant force, one can
deduce a tunneling probability

_ (a_) _Vid
r=exp , ac_16h2

aexp

across the gap' in the adiabatic limit. The resulting
wave-packet dynamics is shown in Fig. 7, where Landau-
Zener tunneling leads to a splitting of the wave function.
It has also been shown theoretically and experimentally
that the influence of nonlinearity can drastically change
this behavior (Wu and Niu, 2000; Morsch et al., 2001; Liu
et al., 2002).

(28)

V. THEORY IiIl: PERIODIC POTENTIALS AND NONLINEAR
THEORY

So far we have only considered the linear regime for
which the theoretical description is straightforward and
fully defined by the band structure. As we have seen, the
equation of motion of the condensate wave function is
defined via a nonlinear Schrodinger equation due to the
interaction between the particles. This introduces a new
energy scale and thus, in contrast to the linear propaga-
tion, new parameter regimes with associated new phe-
nomena and dynamics for special potential parameters
are expected. One of the most striking of these is the
appearance of solitonic propagation (nonspreading wave
packets) and instabilities (i.e., small perturbations of the
condensate wave function can grow exponentially in
time). The “catastrophe” associated with these instabili-
ties implies that the description using a mean-field ap-
proach, which assumes that only one wave function is
macroscopically populated, becomes invalid. Some ex-
amples for this can be found in the review by Brazhnyi
and Konotop (2004).

A. Characteristic nonlinear energy

The mean-field energy [see Eq. (11)] per atom corre-
sponding to a given condensate wave function, which is
normalized to 1, is defined as

2A more recent study can be found in Iliescu et al. (1992).
BThis has been observed experimentally with cold atoms
(Niu et al., 1996).



0. Morsch and M. Oberthaler: Dynamics of Bose-Einstein condensates in ... 191

10'H

0 2 4 6 8 10 12 14 16 18 20

quasimomentum [§] potential modulation [E,]

FIG. 8. Characteristic energies as a function of potential
modulation depth. (a) 7 represents the number of atoms per
site. (b) Definition of bandwidth and band gap. (c) The graph
reveals that the linear energy scales—bandwidth and band
gap—divide the parameter space into three distinct regimes
(dark shading, energy is smaller than band gap and bandwidth;
light shading, energy is between band gap and bandwidth; no
shading, energy is higher than both characteristic linear energy
scales). The on-site interaction energy for different atom num-
bers per site is also given (assuming a radial trapping frequency
of w, =27 X200 Hz). The solid (dotted) line indicates the on-
site interaction energy associated with the Bloch state at the
Brillouin zone center (edge). With 100 atoms per site, the re-
gimes I and II exhibiting very different dynamics can be ex-
plored by simply changing the potential modulation depth.

U=gf x| p(x)|*. (29)

In the case of periodic potentials, it is more sensible to
calculate the on-site interaction energy, which measures
the strength of the interaction within one period of the
lattice. The integral in Eq. (29) is then evaluated over
one period of the lattice.

In order to obtain an estimate for the on-site interac-
tion energy given in Eq. (29), we assume the following
simple situation: The condensate has been realized in a
cylindrically symmetric trap with radial trapping fre-
quency o, and vanishing longitudinal (along the lattice
direction) confinement. The periodic potential is real-
ized in the x direction. Furthermore, we assume that the
wave function in the radial direction is described by the
self-consistent ground state of the harmonic trap ap-
proximated by a Gaussian function as described in
Baym and Pethick (1996). In the longitudinal direction,
we assume that the wave function does not significantly
deviate from the linear Bloch or Wannier states, calcu-
lated as discussed in Sec. IV.A. Obviously this is an ap-
proximation, but it allows one to estimate at which point
the nonlinearity becomes important by comparing this
energy to the other characteristic energies of the prob-
lem, such as the width of the energy band and the gap
energy.

In Fig. 8, we compare the tunneling splitting (energy
bandwidth) and the gap energy with the on-site interac-
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tion energy as a function of the lattice depth. The de-
pendence of the linear energies can be understood
straightforwardly. The gap energy in the limit of deep
potentials has to converge to the energy difference be-
tween the ground and first excited states near the har-
monic minimum of the periodic potential. This is given
by @=2\sEg. The width of the band is a consequence of
the possibility to tunnel from one well to the other. In
the limit of deep potentials, this probability will be ex-
ponentially small and the bandwidth, therefore, de-
creases exponentially as a function of potential modula-
tion depth.

In order to get more insight into the absolute energy
scales, we now calculate the on-site interaction energy
for a typical experimental situation. We assumed a con-
densate of ¥Rb atoms confined in a trap with a trans-
verse trapping frequency of w, =277 X200 Hz. Increasing
the atom number per well 7 leads to an increase of the
density and thus the on-site energy. The gain in on-site
interaction energy does not depend linearly on the atom
number because the width of the self-consistent ground
state will increase as the number of atoms in this state
grows, leading to a smaller increase in density. In order
to reveal the dependence of this characteristic nonlinear
energy on the quasimomentum, we depict in Fig. 8 the
two extreme cases g=0 and g=m/d. Obviously, in the
deep potential limit no difference is visible, which is ex-
pected since the absolute value of the eigen-wave-
functions in the lowest band depends only weakly on the
quasimomentum (see Fig. 4). In the limit of weak peri-
odic potentials, the nonlinear energy is higher at the
Brillouin zone edge. This is due to the fact that the
Bloch states at g=0 are hardly modulated, while at the
edge of the Brillouin zone the Bloch state is fully modu-
lated (see Fig. 4), leading to an increased local density.

Having introduced the characteristic energies of our
problem, we are now in a position to classify BECs in
optical lattices using the following three parameters:

(i) Bandwidth 4J: describes the energy associated
with tunneling between adjacent potential
minima.

(i)  U: gives the on-site interaction energy per atom
on a single lattice site.

(i)  Egp: represents the energy difference between
the bands at g=7/d; in a deep optical lattice this
is the energy difference between the lowest and
first vibrational state in a single potential well of
the lattice.

Although the concept of linear band theory breaks
down as soon as the nonlinear energy is no longer the
smallest energy scale in the problem, it still allows us to
distinguish between different regimes indicated in Fig. 8.

The regime in which the nonlinearity is the smallest
energy scale is indicated in Fig. 8 by the dark shaded
area. Clearly, in practice it is easy to realize experiments
in which the nonlinearity is the smallest energy scale. It
is more challenging, on the other hand, to enter the re-
gime for which the nonlinearity is /arger than the band-
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width but still smaller than the band-gap energy. This
can be achieved by increasing the atom number per well
or by increasing the transverse trapping frequency. Fi-
nally, the third regime—for which the nonlinearity is the
largest energy scale—is very difficult to reach with the
chosen transverse trapping frequency of o, =27
X200 Hz, since putting more atoms into each well does
not significantly increase the density. This is because of
the expansion of the self-consistent ground state in the
transverse direction with increasing atom number. This
regime can, therefore, only be reached by realizing a
high transverse trapping frequency and a small potential
modulation depth.

With this classification scheme in mind, we now dis-
cuss the theoretical descriptions already existing for
these regimes. We start our discussion in the regime that
is closest to the linear situation, i.e., for which the non-
linear interaction energy is the smallest energy scale of
the problem.

B. Nonlinear energy scale is the smallest

In contrast to what one might naively expect, namely,
only a small change of the dynamics due to the presence
of the interaction between the atoms, the following will
clearly show that nonlinear physics contains a lot of
counterintuitive and dramatic phenomena. Since the
mathematical description is different for the weak and
deep potential limits (similarly to the linear case, see
Sec. 1V), we will discuss these two regimes separately.

1. Weak periodic potential limit

If the nonlinearity is the smallest energy scale of the
system, a simplified description can be found by starting
from the linear description of matter wave packets in a
periodic potential. As already discussed above, wave
packets with a small momentum distribution centered
around ¢, in one specific band (for simplicity we assume
that n=0) are well described by a slowly varying ampli-
tude A(x,?) (on the scale of the periodicity) multiplied
by the Bloch state corresponding to the central quasimo-
mentum,

Plx,t) = A, ) D, , (x)e E@O, (30)
>4

Assuming this functional dependence, it has been shown
in different works (Lenz et al., 1994; Steel and Zhang,
1998; Konotop and Salerno, 2002; Pu et al., 2003) that in
the case of weakly interacting matter waves, a nonlinear
Schrodinger equation for the envelope A(x,f) can be de-
rived employing “multiple scales analysis” [a general in-
troduction into this theoretical method can be found in
Bender and Orszag (1978)]. The resulting differential
equation for the envelope has the same form as the
Gross-Pitaevskii equation but with a modified linear
(dispersion) and interaction energy,
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+ Vi(x,t)A(x,t)
+ gipan A, DA,  (31)

where m; is the effective mass as discussed in Sec. IV.A.
The coefficient ay,=(1/d) f/(iz/zdx|uq0|4~ 1-2 describes
the renormalization of the interaction energy which in-
creases due to the stronger localization in the periodic
potential (see the Bloch states in Fig. 4). This has al-
ready been discussed in the context of characteristic
nonlinear energy in Sec. V.A, where the dependence of
the eigenstates on the quasimomentum led to different
characteristic energies (see Fig. 8).

Even though the stationary solutions of this equation
do not differ significantly from the linear case, the dy-
namics of this system is totally different. Especially note-
worthy is the formation of bright solitons, i.e., non-
spreading wave packets, even for a repulsive atom-atom
interaction provided that the central quasimomentum is
in the regime of negative effective mass. In the work by
Steel and Zhang (1998), these so-called “gap solitons” in
periodic potentials were first predicted. The stability of
these gap solitons realized in a quasi-one-dimensional
waveguide is analyzed by Hilligsoe et al. (2002) and Scott
et al. (2003). Their main result is that the soliton is de-
stroyed due to coupling to the bands corresponding to
the higher transverse vibrational states and by the for-
mation of vortex-antivortex pairs. In this context, we
point out that the prediction of solitonic propagation in
the regime of anomalous dispersion (i.e., for negative
effective mass) was also suggested by Zobay et al. (1999).
In that work, the use of the velocity dependence of the
energy of a gray state resulting from the coupling be-
tween two magnetic substates with light was put forward
as a way of generating the necessary anomalous disper-
sion. The appearance of a new class of solitons—also
called “out-of-gap solitons”—was predicted by Yulin
and Skryabin (2003), who applied the coupled mode de-
scription developed in the field of nonlinear optics to the
case of Bose-Einstein condensates in periodic potentials.

Another very intriguing phenomenon arising in the
presence of nonlinearity is modulational instability.
Since this is a very well investigated effect, we shall de-
vote a separate section, Sec. V.E, to this topic. Generally,
instability means that a small perturbation on the con-
densate wave function grows exponentially fast. This can
be qualitatively understood on the basis of the given
effective nonlinear Schrodinger equation (31) by realiz-
ing that this equation implies that a repulsive interaction
in the negative effective-mass regime leads to an effec-
tive attractive interaction between the particles with a
reversed time evolution. For an attractive interaction it
is well known that collapse dynamics can occur, i.e., a
small perturbation can grow exponentially fast.

In the work by Konotop and Salerno (2002), this
modulational instability is discussed in the context of
“multiple scales analysis” and in analogy to nonlinear
photon optics. Essentially, it turns out that the instabili-
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FIG. 9. The temporal evolution of a condensate wave function
of repelling atoms prepared in the negative and positive
effective-mass regime [from Konotop and Salerno (2002)]. The
modulation of the condensate wave function reveals the sinu-
soidal spatial dependence of the Bloch state at the Brillouin
zone edge. Clearly, the initial wave function in the negative
mass regime is not stable and decays into bright solitons and
background. It is important to note that although the atom-
atom interaction is repulsive, nonspreading wave packets are
formed. In the positive mass regime (i.e., in the second band at
the Brillouin zone edge), the wave function is also spatially
modulated, yet no instability is present.

ties can be exploited in order to prepare solitons. In Fig.
9, the temporal evolution of a homogeneous condensate
prepared at the edge of the Brillouin zone (gy=m/d) is
shown. Clearly, the condensate wave function is periodi-
cally modulated, revealing the sinusoidal Bloch state at
the Brillouin zone edge. Very quickly the wave function
breaks up into four localized structures, which represent
the gap solitons mentioned above. In Konotop and Sal-
erno (2002), it was also shown that in the positive mass
regime the macroscopic wave function is stable against
small spatial modulations. It is important to note that a
more thorough analysis by Wu and Niu (2001) revealed
that in the weak potential limit, effective negative mass
(deduced from the linear analysis of the problem) is only
a sufficient criterion for modulation instabilities but not
a necessary one, i.e., even in the positive mass regime
instabilities may arise. This demonstrates the limited
range of applicability of the effective-mass approxima-
tion for quantitative predictions.

2. Deep periodic potential limit—tight-binding limit

The regime in which the width of the band becomes
smaller than the gap energy is usually referred to as the
“tight-binding regime.” As one can see in Fig. 4, the
linear Bloch waves exhibit strong localization in the
deep potential limit. This suggests that the ongoing
physics becomes more transparent by describing the
condensate wave function with localized Wannier states
b, (x;t)=p,-1(R=nd,x) [¢, defined in Eq. (21)] associ-
ated with the lowest band (Chiofalo et al., 2000; Alfimov
et al., 2002a). It is important to note that the strong lo-
calization leads to high atomic densities and thus the
linear Wannier states are modified due to the presence
of the atom-atom interaction. The self-consistent ground
state, therefore, depends on the atom number within
one potential minimum, and the condensate wave func-
tion is better described by
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Wr,t) = 2 (DD, (x;N, (1), (32)

where the functions ®,(x;N,) are localized at the nth
minimum of the potential and represent the self-
consistent ground states within one potential well. By
applying this ansatz to the Gross-Pitaevskii equation,
Smerzi and Trombettoni (2003) derived a discrete non-
linear equation describing the dynamics through the
single amplitudes ¢,,(z). This approach also allows one to
describe situations that are not in the true one-
dimensional limit [see Eq. (14)] by taking into account
the atom number dependence of the transverse width of
the wave function.

Since the general differential equation taking into ac-
count transverse degrees of freedom is very complicated
(Smerzi and Trombettoni, 2003), in the following we
shall only discuss the regime in which the local wave
function does not depend on the local atom number,
corresponding to the zero-dimensional case of Smerzi
and Trombettoni (2003), and thus ®,(r;N,(t))=g¢,(r).
This was already discussed earlier by Trombettoni and
Smerzi (2001). The resulting equation is the well-known
discrete nonlinear Schrodinger equation

d .
iﬁa¢n21(¢n+1+¢n,1)+ U|¢n|2¢n+en‘//n, (33)

which describes the special dynamics arising from the
interplay between discreteness and nonlinearity. The ba-
sic processes result from next-neighbor coupling due to
tunneling described by the parameter J (which is equiva-
lent to the tunneling parameter K used in the cited lit-
erature), the on-site linear energy ¢,, and the nonlinear

coefficient U=U/ N, [note that U is proportional to the
characteristic nonlinear on-site energy U given in Eq.

29)],
ar - -
J=- J dr|:2_(v¢n : V¢n+1) + ¢nvext¢n+1:| 5 (34)
m

en:fdr[ﬁ(ﬁ(ﬁn)z_"vext 31:|’ (35)
2m

U=¢gN, f dr g, (36)

with g=4mh%a/m and N, the total number of atoms in
the condensate.

3. Intraband dynamics: Pure periodic potential

Further insight into the global dynamics of a Bose-
Einstein condensate in deep periodic potentials can be
gained by studying the temporal evolution of a Gaussian
profile which varies slowly on the scale of the periodicity
of the potential. This approach is called the collective
variable approach (Trombettoni and Smerzi, 2001;
Menotti et al., 2003b). The Gaussian wave packet is pa-
rametrized by four quantities: the center-of-mass posi-
tion, the width of the wave packet described by vy (half
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FIG. 10. Classification of the nonlinear propagation in deep
periodic potentials [from Trombettoni and Smerzi (2001)]. The
propagation of a Gaussian wave packet initially centered
around gy=p/d in a given periodic potential depends critically
on the total atom number A« N, and the quasimomentum g.
For large nonlinearity, after some initial dynamics the wave
packet stops expanding independently of the initial quasimo-
mentum (self-trapping regime). For small nonlinearities (small
atom number), the wave packet will expand indefinitely. This is
also called the diffusive regime. The solitonic propagation or
“breathers” (time periodic and spatially localized excitations)
are only possible for quasimomenta with corresponding nega-
tive mass. Since this excitation relies on a delicate balance be-
tween nonlinearity and linear spreading, it only appears for
very well-defined atom numbers.

of the 1/e width of the Gaussian wave function), the
linear phase describing the group velocity of the wave
packet, and the quadratic phase over the wave packet.
The latter phase allows us, on the one hand, to describe
the linear evolution of the wave packet for which the
quadratic dispersion in momentum space directly trans-
lates into a quadratic phase in real space. On the other
hand, the nonlinear energy due to interaction also leads
to a quadratic phase in first approximation since the
density near the Gaussian maximum is quadratic.

From the equations of motion for these variational
parameters, one can characterize the dynamics by two
basic parameters cosp and A. The parameter cosp
e[-1,1] is directly connected to the quasimomentum
p=qd as indicated in Fig. 10. The other parameter is

given by A=(Ng/2J)[ dr¢i=(7/2] and arises from the
nonlinearity due to the atom-atom interaction. The dia-
gram in Fig. 10 shows the propagation characteristics
depending on the two basic parameters and reveals that
the resulting evolution can be characterized by diffusion,
solitonic propagation, and self-trapping.

The solitonic evolution is found by imposing the con-
dition that neither the width nor the quadratic phase is
time dependent, which leads to the condition A,
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=2/m|cosp|e 120/ y,, where 7, represents the 1/e width
of the initial Gaussian wave function in units of the lat-
tice constant. From this condition equation it follows
that the atom number in a soliton is inversely propor-
tional to the width of the soliton. It is important to note
that these solitons are very closely related to the solitons
discussed in the weak potential limit (Steel and Zhang,
1998; Zobay et al., 1999; Alfimov et al., 2002b).

The discrete solitons described here, which populate
only a few lattice sites, exhibit a reduced mobility in
comparison to the gap solitons described in the weak
potential. This is due to the so-called Peierls-Nabarro
barrier, which will be discussed below (see Sec. V.C).
The qualitative differences between discrete solitons
and continuous solitons were pointed out by Dauxois
and Peyrard (1993): “The world of discrete solitons is as
merciless for the weak as the real world; in the presence
of discreteness, breather interactions show a systematic
tendency to favor the growth of the large excitation at
the expense of the others.”

An extension of this treatment to discrete solitons liv-
ing on a constant background was published by Abdul-
laev et al. (2001). In this work, the authors show that in
the limit of deep periodic potentials a small excitation
on top of a homogeneous background can also exhibit
solitonic propagation. While the solitons discussed
above are solutions of the nonlinear Schrodinger equa-
tion, the solitons living on the background are solutions
of the Korteweg—de Vries equation. This equation is
very famous for solitonic propagation since it describes
the solitonic waves in water (Russel, 1845).

In the limit we have discussed here, excitations on a
condensate have also been studied. The results can be
found in Javanainen (1999), Martikainen and Stoof
(2003a), and Menotti et al. (2003a).

4. Intraband dynamics: With additional potential

The dynamics of a wave packet in a deep periodic
potential with an additional harmonic potential in the
limit of small oscillations was studied theoretically by
Kriamer et al. (2002). Furthermore, the breakdown of
those oscillations for large oscillation amplitudes was in-
vestigated by Chiofalo and Tosi (2000, 2001), Smerzi et
al. (2002), and Menotti et al. (2003b).

In the case of small oscillation amplitudes (Kramer et
al., 2002), the motion of the condensate wave function is
found by employing the tight-binding ansatz [see Eq.
(32)] which, for further calculations, is smoothed over
the periodicity leading to equations for the envelope of
the wave function characterized by the parameters
n,,(x,y,z) as the “macroscopic” (smoothed) density, and
the “smoothed” phase S(x,y,z) of the wave function.'*

One very intriguing result is obtained by assuming a
constant phase gradient across the condensate wave
function and hence a constant phase difference between

Note that in the original publications the periodic potential
is applied in the z direction.
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adjacent wells, d,.S=P(t)/h with P, as a time-dependent
parameter. With this assumption, the motion of the cen-
ter of mass X(t)=JdVxn,,(t)/N, is given by

. . Px
hX =2Jd sm(d;),
(37)
Px =- mwjch.

This simple differential equation system is well known
in the context of the dynamics of superconducting Jo-
sephson junctions as the “resistively shunted junction”
model (Barone, 2000). In the context of BECs in optical
lattices, this was investigated theoretically as well as ex-
perimentally by Cataliotti et al. (2001). It is important to
note that the resulting equation does not depend on the
interaction between the atoms and thus describes the
linear dynamics of a wave packet oscillating with the
corresponding effective mass. The effective-mass ap-
proximation is generally applicable for any small-
amplitude oscillations [collective excitations (Stringari,
1996)] by replacing w,— w,\m/my, where x indicates
that the frequency is only modified in the direction of
the periodic potential (Krdmer et al., 2002). In order to
make an absolute comparison between theory and ex-
periment, care has to be taken when calculating the ef-
fective mass or, alternatively, the tunneling parameter J.

C. Nonlinear energy scale in the intermediate range

The regime of self-trapping as indicated in Fig. 10 is
defined by the condition that the width of a packet for
infinitely long times is finite and does not change in time.
This leads to a critical value of the parameter A given by
A.=2\my, cos py exp(~1/ 2%). The condition A <A, im-
plies that the nonlinear on-site interaction energy per
particle is smaller than the width of the band and thus
the evolution can be qualitatively described by assuming
a wave packet with a mean quasimomentum. We have
already mentioned that in this limit the wave packet will
just spread (this is the diffusive regime in Fig. 10). In the
case of A>A_, the on-site interaction energy is larger
than the width of the band and thus the description
based on a single central quasimomentum fails. Al-
though in these circumstances even the variational ap-
proach is a very crude approximation, it still gives a
good estimate for the parameters for which this effect
will occur. The detailed dynamics in the self-trapping
regime is very complicated and involves modulational
instabilities [general treatment by Dauxois et al. (1997)],
the formation of breathers (time periodic and spatially
localized excitations), solitons, and so forth (Tsukada,
2002; Menotti et al., 2003b). In spite of the complicated
dynamics, the suppression of wave-packet spreading can
be attributed to local dynamics at the edges of the wave
packets. There macroscopic self-trapping known from
Josephson-junction physics (Smerzi et al., 1997) occurs,
which effectively leads to “walls” keeping the wave
packet together (Anker et al., 2005).
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FIG. 11. Selection of stationary solutions in the regime of in-
termediate nonlinear on-site interaction energy (Louis et al.,
2003). Clearly, the atom-atom interaction leads to new station-
ary solutions whose energies lie in the energy gap of the linear
system. Since these are nonlinear solutions, their energies u
depend on the atom number N. The main graph shows that
there are different branches of solutions. In the lower three
graphs, we show three solutions corresponding to the indicated
energies. In contrast to the solutions expected from a tight-
binding approximation treatment, they show structure within
the potential minima.

The treatment of the dynamics with intermediate non-
linearity given above is an approximation that is good as
long as the nonlinearity does not become too big. For a
better theoretical description of the regime 4/<U
< Eg,p, techniques developed in the field of nonlinear
physics (e.g., nonlinear optics discussed in Sec. V.F) can
be applied.

In the work of Louis et al. (2003) and Ahufinger and
Sanpera (2005) it becomes clear that although solitonic
solutions do exist, they exhibit structure on the length
scale of the periodicity, which in the discussion thus far
has not been included. Additionally, the solitonic solu-
tions can be classified in terms of their symmetry with
respect to the minima of the periodic potential. A set of
solutions found by Louis et al. (2003) is depicted in Fig.
11.

A further feature of these discrete solitons is their
reduced mobility due to the Peierls-Nabarro barrier
(Ahufinger et al., 2004). This barrier can be understood
by looking at two extreme situations for a moving dis-
crete soliton. If the initial condition of the propagation is
described by an antisymmetric excitation [see Fig.
11(b)], i.e., the center of the envelope coincides with a
maximum of the periodic potential, a moving soliton im-
plies that at a certain time later the envelope will be
symmetric [see Fig. 11(a)]. Tt follows directly from the
results shown in Fig. 11 that this motion can only be
excited if the kinetic energy overcomes the difference in
chemical potentials for these two collective excitations.
This barrier is essential for the-formation of stable soli-
tons in two dimensions (Kalosakas et al., 2002; Efremidis
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et al., 2003; Ostrovskaya and Kivshar, 2003, 2004b;
Ahufinger et al., 2004) which are not stable in the weak
potential limit (Baizakov et al., 2002). This instability can
be eliminated by applying a time-dependent nonlinear-
ity or time-dependent dispersion (Abdullaev er al.,
2003).

The situation Ey,,<U <4/ implies the weak potential
limit and it makes clear that the dynamics cannot be
described within a single band approximation anymore.
In this regime, the linear concept of a band structure
does not even allow for qualitative predictions and only
concepts of nonlinear physics lead to reasonable results.

Generally one can state that in the regime of interme-
diate nonlinearity it is very difficult to find analytical
solutions since all energy scales involved are of compa-
rable magnitude. Thus the usual simplifying approach of
neglecting terms associated with energy scales much
smaller than the characteristic energy scale cannot be
applied.

D. Nonlinear energy scale is dominant

This regime implies that the nonlinear on-site interac-
tion energy is even larger than the gap energy. The con-
cept of a linear band is, therefore, no longer suitable.
First of all, we discuss the description employing the
concept of an effective potential, which is obtained by
using perturbation theory. This leads to a very simple
description of the dynamics in this regime. Subsequently,
we present the quite surprising fact that in this regime
even analytical solutions exist. Finally, we present the
energies of stationary solutions as a function of the qua-
simomentum, which reveal interesting loop structures in
the regime discussed here.

1. Effective potential approximation

The basic idea of this approach is to describe the mo-
tion of each atom in an effective potential given by the
sum of the external periodic potential and the energy
variation due to the [W|* term in the Gross-Pitaevskii
equation. Since in the case of a periodic potential the
atomic density is highest at the potential minima, the
potential energy will be effectively reduced (increased)
due to the repulsive (attractive) atom-atom interaction.
Choi and Niu (1999) derived an explicit analytic expres-
sion for the effective potential using perturbation theory,
leading to

y =Y
79 L 4cC

cos?(kx) + const, (38)

with C=mnga/k* which is the nonlinear energy U for the
homogeneous case in units of 8 E. This result is a good
approximation as long as the condensate density is
nearly uniform, which is the case for weak external po-
tentials or strong atomic interaction.

Within this approximation it was predicted that the
motion of a homogeneous Bose-Einstein condensate in
a periodic potential for dominating nonlinearity is
hardly changed due to the presence of the periodic po-
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FIG. 12. Evolution of perturbed trigonometric solutions (k
=0) with nontrivial phase (Bronski et al., 2001a). (a),(c) The
temporal dynamics of a stable and unstable solution, respec-
tively. The difference of the initial conditions is shown in
(b),(d), where r represents the absolute square value and 6 the
phase of the initial wave function. The main difference is the
constant background, which is smaller in the case of the un-
stable mode. Taken from Bronski et al., 2001a.

tential. Furthermore, an increase in the Landau-Zener
tunneling probability was first suggested by Choi and
Niu (1999) and studied in more detail by Liu et al. (2002).
This increase in tunneling probability can be understood
straightforwardly by realizing that in the case of repul-
sive atom-atom interaction the modulation of the effec-
tive potential is smaller than in the linear case and thus
the gap energy is also smaller.

2. Analytic stationary solutions

Although most of the solutions in the regime we dis-
cuss here cannot be derived analytically, there is one
special case for which a class of analytical solutions can
be given. This is the homogeneous case, i.e., without an
additional external potential. Bronski er al. (2001a,
2001b) derived the solution for a potential of the form
V(x)=—-Vysn?(x,k), where sn(x,k) denotes the Jacobian
elliptic sine functions with the elliptic modulus 0<k
=<1. In the limit of k=0, the potential is sinusoidal and
thus describes the case of an optical lattice.

The main result is that there exist stationary solutions
with and without a nontrivial phase. One set of solutions
with a nontrivial phase is shown in Fig. 12 for the case of
k=0 corresponding to a sinusoidal potential. As one can
see, the stability of the solutions depends on the back-
ground density of atoms. If the background is below a
critical value, the solution becomes unstable. This be-
havior will be discussed in more detail in Sec. VE on
stability. This is another example of the striking phe-
nomena one encounters in nonlinear physics—
nonlinearity leads to instability in the first place, but by
adding a constant background of atoms leading to a ho-
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FIG. 13. Energy per particle as a function of the quasimomen-
tum (Machholm et al., 2003). The energy spectrum can be in-
terpreted as a modified linear band structure. Significant modi-
fications are observed for quasimomenta at which two bands of
the linear system come close to each other. The structure be-
comes less pronounced when the potential modulation is in-
creased (right graph).

mogeneous nonlinear energy the solutions can be stabi-
lized.

3. Loops in the band structure

When the nonlinear on-site interaction energy is
larger than the gap energy, one cannot expect the linear
concept of band structure to be applicable. Nevertheless,
the solutions of the nonlinear problem that minimize the
energy still reveal some connection to the linear band
structure, although new features such as loops come into
play (see Fig. 13).

The first indications of the appearance of loops were
found by Wu and Niu (2000) who investigated a two-
mode model. They showed that for large nonlinearity
(U> Eg,p) instabilities appear in the band structure near
the boundary of the first Brillouin zone. Further works
more clearly revealed nonanalytic behavior at the zone
boundary (Wu et al., 2002; Wu and Niu, 2003), as dis-
cussed in detail by Diakonov et al. (2002). In Fig. 13, two
numerically calculated energy spectra are shown that re-
veal a swallowtail shape near the center and the edge of
the Brillouin zone.

Although loops seem to be a feature of the periodic
potential, Machholm et al. (2003) discuss that for the
center of the Brillouin zone they are a general phenom-
enon that even persists in the limit of vanishing periodic
potential. In the zero potential limit, the loop formed
between the second and third bands becomes degener-
ate with a very special excited state of a condensate,
namely, a train of dark solitons.

The connection of the appearance of the loop struc-
ture with superfluidity and hysteretic behavior was dis-
cussed by Mueller (2002). The loop structure appears
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because the energy landscape has two local minima (cor-
responding to the lower part of swallowtail and the nor-
mal band) separated by a state corresponding to a local
maximum of the energy (upper part of the swallowtail).

Although finding stationary solutions is very impor-
tant, in the laboratory one will only actually see solu-
tions that are also stable against perturbations. There-
fore, a thorough stability analysis of the solutions is
necessary to make a direct connection between theory
and possible experiments.

E. Stability analysis

The analysis of the stability of solutions in nonlinear
systems is essential. In the context of periodic potentials,
two classes of instabilities can be identified: Landau/
energetic instabilities, for which small perturbations lead
to a lowering of the systems’s energy, and dynamical/
modulational instabilities, for which small perturbations
grow exponentially (Wu and Niu, 2000, 2001, 2002, 2003;
Burger et al., 2002; Wu et al., 2002; Machholm et al.,
2003).

1. Landau (energetic) instability

Landau instability is often discussed in the context of
Bose liquids and their remarkable property of superflu-
idity, i.e., a liquid flows through capillaries or other types
of tight spaces without friction if its speed is below a
critical value. Landau argued that a quantum current
suffers friction only when the creation of excitations
(phonons) on the liquid lowers the energy of the quan-
tum system. The same is true for a Bose-Einstein con-
densate in the presence of an optical lattice.

In order to find out whether small excitations lower
the energy of a given Bloch state ¢'#*¢,(x), one calcu-
lates the energy of a slightly perturbed Bloch state given
by

‘I’q(x) = eiQx[¢q(x) " uq(x, Q)eiQx + V;(X,Q)e_iQx].
(39)

The functions u,(x,Q) and v;(x,Q) have the same pe-
riod as the periodic potential and Q e [-7/d,w/d]. The
energy deviation due to the perturbation can be found
by evaluating the expectation value of the energy given
in Eq. (11) with the mean-field approximation. A de-
tailed discussion of the mathematical method is given in
Berg-Sgrensen and Mglmer (1998), Machholm et al
(2003), and Wu and Niu (2003).

If the energy of the perturbed Bloch state increases,
the original Bloch wave corresponds to a local energy
minimum and thus exhibits superflow. In the situations
for which SE is negative, normal flow is expected. Since
the general situation of an arbitrary initial Bloch wave is
very complicated and not solvable analytically, numeri-
cal calculations are necessary. The results are summa-
rized in the stability phase diagram shown in Fig. 14.

The physical situation is defined by three parameters:
the potential modulation depth V), the nonlinearity U,,
where 7 is the mean density and U is defined in Eq. (29)
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FIG. 14. Stability diagram obtained by Wu and Niu (2001).
The parameters describing the physical situation are the poten-
tial modulation V|, the nonlinearity nU for the homogeneous
case, and the quasimomentum of the homogeneous condensate
(flow of the condensate). The parameter Q is the correspond-
ing wave vector of the perturbation. It is important to note that
O=m/d implies a modulation of the density with twice the
period of the periodic potential. The regime in which the sta-
tionary states exhibit a Landau instability are indicated by the
light shaded area and associated critical quasimomentum g¢,.
The dark shaded area represents the dynamically unstable re-
gime with associated critical quasimomentum g.

assuming a homogeneous wave function, and the quasi-
momentum ¢g corresponding to the flow of the homoge-
neous Bose-Einstein condensate. For each parameter
the energy deviation 6F is calculated as a function of the
free parameter Q =/ D, which describes a perturbation
with the spatial period D. The light shaded area in Fig.
14 represents the Landau unstable region in which the
system’s energy can be lowered by emitting phonons.

If the quasimomentum of the Bose-Einstein conden-
sate g is slowly increased, the first excitation modes
which can lower the energy have very long wavelength
0 —0 and occur when g=g¢,. Machholm et al. (2003) sys-
tematically explore the dependence of g, on the nonlin-
earity and on the potential modulation depth. The onset
condition of these long-wavelength instabilities can be
obtained analytically by the hydrodynamic approach al-
ready discussed (Krdmer et al., 2003; Menotti et al.,
2003b).
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2. Dynamical instability

One unique feature of Bose-Einstein condensates in
optical lattices is the occurrence of dynamical instability,
which in a homogeneous system is only present for at-
tractive interactions but can be induced by the presence
of a periodic potential even when the interactions are
repulsive. Dynamical instability implies that small devia-
tions from the stationary solution grow exponentially in
time.

The analysis is analogous to the energetic instability
analysis, but now the modified state is inserted into the
time-dependent Gross-Pitaevskii equation. By keeping
only the linear term in the perturbation, one ends up
with linear differential equations describing the time
evolution of the small perturbation (Machholm et al.,
2003; Wu and Niu, 2003).

If the corresponding eigenvalues are real, the Bloch
state is stable. Complex eigenvalues, however, indicate
that the perturbation will grow exponentially. The re-
sults obtained by Wu and Niu (2003) are given in Fig. 14
with the dark shaded areas. It is important to note that
dynamical instability can only occur for Bloch states that
are also energetically unstable. The mode that becomes
unstable for the quasimomentum of the condensate g
=q, is specified by Q=m/d. This implies that the corre-
sponding exponentially growing mode represents a pe-
riod doubling (Machholm et al., 2004), since the func-
tions u(x) and v(x) in Eq. (39) have the same period as
the periodic potential. A very general discussion of dy-
namical instabilities for weakly interacting many-body
systems is given by Anglin (2003)

A systematic analysis giving the quasimomentum g,
and g, for the onset of the energetic and dynamic insta-
bilities, respectively, as a function of potential depth and
nonlinearity can be found in Machholm et al. (2003). It is
important to note that in the discussion so far we have
always assumed a one-dimensional situation. As already
stated at the very beginning, most of the experiments
carried out to date have not been in this regime. Only
recently has the instability analysis been extended to
more realistic cases by taking into account the trans-
verse degrees of freedom (Modugno et al., 2004).

There have also been investigations of dynamical in-
stability in the context of an effective-mass approxima-
tion. In this case one also speaks of a “modulational
instability,” which is well known in the field of nonlinear
optics. It has been shown that within this approximation
the stability of the Bloch waves at the band differs dra-
matically between the lower and upper bands (Konotop
and Salerno, 2002). While the modes in the lower band
are unstable due to the negative mass, the lower edge of
the first excited band is stable, as one would expect from
the positive effective mass. It is important to note that a
negative mass (deduced from the linear theory) is only a
sufficient criterion for instability, but not necessary.

F. Analogy to nonlinear optics

Many of the effects discussed so far have already been
treated in the field of nonlinear photon optics. There is a
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TABLE II. Translation between the notation in the BEC com-
munity and the nonlinear optics community. Here we only
specify the limit of weak periodic potentials and Bragg-grating
fibers.

Light optics Atom optics

t,x — x,t
B « il meg
Y - 2apam;

direct connection between Bose-Einstein condensates in
periodic potentials and the physics of intense laser
pulses in spatially modulated refractive index structures
exhibiting a Kerr nonlinearity (Agrawal, 2001). In optics
the refractive index modulation can be realized in the
direction of the propagation of the laser pulse by Bragg
fibers [Eggleton and Slusher (1996); for an overview, see
deSterke and Sipe (1994)], which is the optical analog of
the weak periodic potential limit discussed in Sec. V.B.
The equation describing the propagation of the enve-
lope A of an intense laser pulse is given by (Agrawal,
2001)

JA 1 FA APA 40

Yox 2P o Hafa. (40)
The relevant parameters are the group velocity disper-
sion parameter B and the nonlinearity parameter .
Thus the results obtained in the optical regime can
be directly transferred to the atomic system by using
Table II.

By realizing weakly coupled optical wave guide arrays
[for an overview, see Christodoulides et al. (2003)] one
has the optical analog of the deep potential limit dis-
cussed in Sec. V.B.2. The main advantage of the atomic
system lies in the fact that very large nonlinearities can
be realized that are not accessible in optical systems.

G. The Bose-Hubbard model

In the preceding discussion of the theoretical treat-
ment of Bose-Einstein condensates in periodic poten-
tials, we have distinguished different regimes depending
on the relative importance of the nonlinear interaction
and the lattice parameters. In all these regimes, how-
ever, our starting point was the Gross-Pitaevskii equa-
tion treating the condensate as a classical field. When
the number of atoms per lattice well becomes small,
however, the “granular structure” of the condensate
starts being important and particle correlations need to
be taken into account properly. For this regime, Jaksch
et al. (1998) suggested using the Bose-Hubbard model
originally conceived for superfluid He in restricted ge-
ometries [such as Vycor, or other porous media; see
Fisher and Weichman (1989)]. As a number of important
recent experiments with BECs in lattices operated in
this regime (see Sec. VL.E.3), we give here a brief sum-
mary of the theoretical approach.
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For a condensate confined in the combined potential
of an optical lattice and a harmonic trap, the Bose-
Hubbard Hamiltonian can be written as (Zwerger, 2003)

. n U
H=-J, bjb, + EE A —1) + D ey, (41)
ar ! L

where (/') denotes the sum over nearest-neighbor pairs
(with double counting), and ¢; is the energy at site / as-
sociated with the harmonic trapping potential. In this

equation, l;;f and b, are the destruction and creation op-
erators for a boson at lattice site /, respectively, and 7;
denotes the number operator for site /. This Hamil-
tonian supports a zero-temperature quantum phase
transition between superfluid and insulating phases con-
trolled by the ratio U/J of the on-site interaction and
tunneling energies. Intuitively, one can understand what
happens at the critical value (U/J), by considering N
atoms in a lattice with M =N sites: When the tunneling
between adjacent sites is sufficiently small, hopping
events that increase the on-site energy because of mul-
tiple occupancy of a single site are suppressed, and the
system assumes the lowest energy state. This corre-
sponds to having exactly one atom per lattice site, and
the overall wave function in the Mott insulator state is
simply the product of the corresponding local Fock
states.

A more thorough analysis (Zwerger, 2003) reveals that
Mott insulator phases exist also for 1=2.,3,4,... atoms per
lattice site. For two- and three-dimensional lattices, it
can be shown that the critical value for U/J is given by

(UI), =58z for i =1, (Ul]), =45z for i>1, (42)

where z is the number of nearest neighbors. In one di-
mension, increased quantum fluctuations lead to devia-
tions from these formulas, giving (U/J).=2.27 for large
n and (U/J).=3.84 for n=1.

Furthermore, the Bose-Hubbard model has also been
used to make predictions about Bloch oscillations in the
regime where atom number fluctuations are crucial

(Kolovsky, 2003). Recently, it has been worked out that
there is a close connection between quantum chaos and
irreversible decay of Bloch oscillations in the context of
the Bose-Hubbard model (Buchleitner and Kolovsky,
2003).

VI. EXPERIMENTS

In the following two sections, we give an account of
the experimental studies to date on BECs in optical lat-
tices. We focus mainly on those experiments that are
relevant to the theoretical discussion of the previous sec-
tions. In a number of other experiments, interfering la-
ser beams were used mainly as a tool to probe proper-
ties of the condensate on its own. Some of these
experiments will be discussed briefly in Sec. VLF.
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A. Detection and diagnostics

Doing experiments with condensates in optical lattices
is useful only if one is able to extract information from
the system once the experiment has been carried out. As
with BECs in harmonic traps (see Sec. II), there are es-
sentially two methods for retrieving information from
the condensate: in situ and after a time of flight. In the
former case, one can obtain information about the spa-
tial density distribution of the condensate, its shape, and
any irregularities on it that may have developed during
the interaction with the lattice. Also, the position of the
center of mass of the condensate can be determined.

Looking at a condensate released from a lattice after a
time of flight (typically on the order of a few millisec-
onds) amounts to observing its ~momentum
distribution."” A harmonically trapped condensate has a
Gaussian momentum distribution in the limit of small
interactions, whereas in the Thomas-Fermi limit (in
which the interactions dominate over the kinetic energy
contribution) it has a parabolic density profile and ex-
pands self-similarly after being released. By contrast, a
condensate in a periodic potential contains higher mo-
mentum contributions in multiples of 24k, , their rela-
tive weights depending on the depth of the lattice. In
fact, in the tight-binding limit (see Sec. IV) we can con-
sider the condensate to be split up into an array of local
wave functions that expand independently after the lat-
tice has been switched off. Eventually they all overlap
and form an interference pattern that (in the absence of
interactions) is the Fourier transform of the initial con-
densate. In the case of a very elongated (along the lattice
direction) condensate, to a good approximation we ini-
tially have an array of equally spaced Gaussians of a
width <d determined by the lattice depth. Since such an
array can be written as the convolution of a single
Gaussian wave function with a comb of § functions with
spacing d, the Fourier transform of this object is simply
the product of the individual transforms, i.e., another
array of 6 peaks multiplied by a Gaussian that deter-
mines the relative heights (intensities) of the peaks.

Figure 15 shows a typical time-of-flight interference
pattern of a condensate released from an optical lattice
(plus harmonic trap) for a lattice depth V=10E. From
the spacing of the interference peaks and the time of
flight, one can immediately infer the recoil momentum
of the lattice and hence the lattice constant d. Further-
more, from the relative height of the side peaks corre-
sponding to the momentum classes +27%k;, one can cal-
culate the lattice depth (see Sec. VL.B).

So far, we have assumed that the local wave functions
in the lattice wells have the same phase (or differ by a
constant). If this is no longer true, i.e., if there are ran-

Note that after the lattice is switched off, s-wave collisions
between condensate atoms can lead to deviations from this
idealized picture. In fact, for high densities s-wave spheres can
be visible in the time-of-flight picture, leading to a reduced
contrast of the interference pattern.
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FIG. 15. (Color) Interference pattern of a Bose-Einstein con-
densate released from a one-dimensional optical lattice of
depth Vj=10E}, after a time of flight of 20 ms. In (a), the lattice
was at rest, whereas in (b) it had been accelerated to v, i.e.,
the quasimomentum of the condensate was at the edge of the
Brillouin zone.

dom phase differences between adjacent lattice sites, the
interference pattern becomes less distinct. Depending
on the nature and magnitude of the phase differences,
the appearance of the interference pattern can range
from a slight broadening of the peaks to their complete
disappearance. The degree of the “smearing out” of the
interference pattern can be quantified through the fol-
lowing parameters (see Fig. 16):

(i)  The visibility, defined in analogy with interferom-
etry as the normalized difference between the
maxima A.,,, and minima /,;, of an interference
pattern, i.e.,

FIG. 16. Quantities used to characterize the interference pat-
tern of a condensate released from an optical lattice. Shown
here is an absorption image integrated perpendicular to the
lattice direction. Similarly to Fig. 15, the condensate was accel-
erated to the edge of the Brillouin zone before being released.
The x axis of this figure has been rescaled (in units of the recoil
momentum p...=mvg) to reflect the condensate momentum
before the release from the lattice.
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V= hmax — hrnin (43)
- hmax + hmin '

(i)  The width of the peaks, which reflects the effective
number of wells that contribute coherently to the
interference pattern. If all condensates are in
phase, this width reaches a minimum that is di-
rectly related to the finite number of wells V oc-
cupied by the condensate, i.e., the width is propor-
tional to 1/V.

When interpreting the results of measurements of the
visibility or the peak width of an interference pattern,
care must be taken in order to understand properly the
origin of a possible variation in these quantities. In fact,
contrary to intuition, even an array of condensates
whose phases are completely independent and, there-
fore, uncorrelated can exhibit a clear interference pat-
tern after a time of flight (Hadzibabic e al., 2004), albeit
with a fluctuating longitudinal position and modulation
depth.

B. Calibration of optical lattices

In the following discussion of experiments with con-
densates in lattices, we often quote lattice depths (in
units of the recoil energy Ey), and we have to worry
about how and with what precision these can be mea-
sured. Especially in experiments in which the agreement
with theory depends critically on an exact knowledge of
the lattice depth (e.g., when the tunneling rate, which
depends exponentially on the depth, is involved), it is
important to have a reliable tool for calibrating the ex-
periment.

In principle, the lattice depth can be calculated from
Eq. (6) if one knows the saturation intensity of the
atomic transition and the parameters of the lattice
beams, i.e., their waists, detunings, and powers. While
the atomic polarizability is usually well known for the
atomic species typically used in lattice experiments, and
the detuning of the lattice laser can be measured with
great accuracy by using spectroscopy, the waist and
power of the beam (and hence its intensity at the posi-
tion of the condensate) are more difficult to measure.
Even if the waist is accurately measured at some point
along the optical path of the lattice beam, further propa-
gation and passage through the windows of the vacuum
system can distort the beam and lead to deviations from
the calculated intensity profile. Absolute optical powers,
on the other hand, are notoriously difficult to measure,
resulting in combined systematic errors on the order of
10-20 % or more.

Measuring the magnitude of a well-understood effect
of the optical lattice on the atoms will, therefore, lead to
more precise values of the lattice depth. It is important,
however, to make sure that the density of the conden-
sate is sufficiently low so that mean-field effects that
could influence the result are minimized. This can be
achieved by either choosing a small harmonic trapping
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frequency or by releasing the condensate from the trap
and allowing it to expand slightly before doing the mea-
surement. With this proviso, we now list the methods
typically used to calibrate optical lattices:

(i)  Rabi oscillations (Pendellosung). By suddenly
switching on a lattice moving at vg, the conden-
sate is loaded into a coherent superposition of
population in the ground state and the first ex-
cited band. The relative phases of the populations
and hence the weights of the 0 and 2%k; momen-
tum components (measured after a time of flight)
evolve with frequency Qg,,;=Vy/2% in the shal-
low lattice limit, from which V|, can be calculated
(Ovchinnikov et al., 1999).

(i)  Raman-Nath diffraction. If the lattice is switched
on suddenly for a time Ar<<1/w,, the resulting
diffraction pattern is in the Raman-Nath regime
and the value of V|, can be calculated from the
relative populations in the 0 and +27k; momen-
tum components (Gould et al., 1986). This method
has the advantage of needing only a short interac-
tion time with the lattice.

(iii)  Expansion from the lattice. In this method, one
loads the condensate adiabatically into the lattice
(see below) and then switches off the lattice lasers.
The diffraction pattern observed after a time of
flight is the product of a series of momentum
peaks of spacing 2vztrop and a Gaussian envelope
whose width reflects the localization of a local
wave packet in a lattice well. From the relative
weight P, of the 0 and +2%k; momentum peaks,
the lattice depth can be calculated from

16
— P1/4
" (PP !

in the limit of deep lattices (s=5) (Cristiani ef al.,
2002).

(iv)  Landau-Zener tunneling. As described in Sec.
IV.B.3, if the lattice is accelerated across the edge
of the Brillouin zone, Landau-Zener tunneling oc-
curs with a probability r=exp(—a/a.) in the shal-
low lattice limit, for which the energy gap at ¢
=hk; is roughly half the lattice depth.

(44)

(v)  Parametric heating. By periodically modulating
the depth of the optical lattice, the condensate at-
oms can be parametrically excited (Friebel et al.,
1998). If the modulation frequency is equal to
twice the harmonic trapping frequency in the lat-
tice wells, heating will occur. From this resonant
modulation frequency, the lattice depth can be
calculated via Eq. (8).

C. Preparation of a Bose condensate in an optical lattice

In order to do experiments with Bose condensates in
optical lattices, one first has to create such a condensate.
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There are two possibilities to do this: one either first
creates a BEC in a conventional harmonic (magnetic or
optical) trap, and then adiabatically adds the periodic
potential, or else one performs evaporative cooling with
the periodic potential already present and reaches con-
densation in the combined trap.

The latter of these approaches was pioneered by the
Florence group (Burger et al., 2001) and uses a conven-
tional protocol for evaporative cooling in a magnetic
trap down to temperatures just above the threshold for
Bose-Einstein condensation. At this point, the optical
lattice potential is switched on and evaporative cooling
continues. In this way, the system condenses directly into
the ground state of the harmonic plus periodic potential.
The use of this method presupposes that the optical lat-
tice is sufficiently far-detuned so that during the time
needed for evaporative cooling (on the order of a few
seconds) with the lattice present no photons are scat-
tered that could disturb the condensate.

The alternative approach, namely, adding the periodic
potential once condensation has occurred, requires some
careful thought as to the conditions for adiabaticity. If
the condensate density is low and the mean-field inter-
action is negligible, the adiabaticity criterion follows
straightforwardly from the band structure of the BEC in
the lattice. Essentially, in order to end up with the con-
densate in the lowest energy band of the lattice, one has
to switch on the lattice lasers sufficiently slowly in order
to avoid excitation into higher bands. This consideration
leads to an adiabaticity criterion for loading into a single
Bloch state |n,q) of the form (Denschlag et al., 2002)

i,q 0,q

ot

where AE is the energy difference between the ground
state and the first excited state |i). Typically, the lattice is
at rest in the lab frame when switched on, i.e., ¢=0. In
this case, it can be shown that the adiabaticity criterion
Eq. (45) is satisfied if dV/dt<16 E%/h. For typical po-
tential depths of a few Ei and a recoil energy Egr=h
X 3.7 kHz (for Rb atoms), one finds that switching on
the lattice linearly from O to its full depth in more than 1
ms should ensure adiabaticity. A method for circumvent-
ing this adiabaticity criterion while still loading the con-
densate entirely into the lowest energy band is described
in Mellish et al. (2003).

When g #0, i.e., the lattice is moving while it is being
ramped up, the adiabaticity criterion becomes more and
more difficult to satisfy as the distance between the
ground state band and the first excited band shrinks with
increasing ¢g. In fact, at the edge of the first Brillouin
zone, where g=1, it is impossible to load the condensate
into the ground state band as the latter is degenerate
with the first excited band when V,=0. If the lattice is
switched on suddenly with g=1, the two lowest energy
bands are equally populated, leading to Rabi oscillations
that can, e.g., be used to calibrate the lattice depth (see
Sec. VL.B).

< AEX(q,1)/h, (45)
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FIG. 17. Adiabaticity of the loading process. The faster the
potential is ramped up, the larger the parameter ¢ (ratio of the
width of the interference peaks to the separation of the peaks)
describing the dephasing of the condensate (from Orzel et al.,
2001).

Loading the condensate adiabatically into the lattice
for #i|q| > 1%k, is also possible. In this case the quasimo-
mentum lies outside the first Brillouin zone and the con-
densate will, therefore, not end up in the lowest energy
band but in one of the excited bands. For instance, load-
ing the condensate into a lattice with 7ig=1.5%k; means
(assuming adiabaticity) populating the state |n=1,%q
=-0.5hk;) where the quasimomentum has been pro-
jected back into the first Brillouin zone. This follows
from the conservation of energy and momentum and has
been verified experimentally in both cold atoms (Dahan
et al., 1996) and BECs (Jona-Lasinio et al., 2003).

In both the ground state and excited state bands it is
possible to change the quasimomentum of the conden-
sate after loading by accelerating the optical lattice. By
applying a known acceleration a for a certain time, any
value of ¢ can be selected. Care must be taken to chose
a sufficiently small value for a if the edge of the Brillouin
zone is to be crossed, as otherwise Landau-Zener tun-
neling can occur. If the condensate is to be kept at the
final g for some time, the lattice must keep moving at
the velocity it reached at the end of the acceleration. In
this case, the restoring force of the harmonic potential in
which the condensate is held must be taken into account
if the spatial movement of the condensate during the
interaction time with the lattice is appreciable.

If the condensate density is sufficiently large for the
mean-field interaction to be important, a new energy
scale enters the problem. One now has to consider the
lowest-lying phonon modes that can be excited in the
condensate (Javanainen, 1999; Orzel et al, 2001). The
lower the ramping speed, the less the condensate is “dis-
turbed” by the lattice. This can be quantified by measur-
ing the width of the interference peaks as a function of
the ramping speed (see Fig. 17). Conversely, one can ob-
serve the effects of a deliberately nonadiabatic ramping
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FIG. 18. Initial dephasing (a) and eventual rephasing (b) of a
condensate nonadiabatically loaded into an optical lattice. In
this experiment, the criterion describing the phase coherence
of the condensate is the visibility of the interference pattern
[from Morsch et al. (2003b)]. Note that (a) and (b) refer to
different harmonic trapping frequencies, leading to different
time scales for dephasing.

of the lattice depth16 by looking at the interference pat-
tern after the condensate was released from the trap.
Morsch et al. (2003a, 2003b) observed that, after an ini-
tial washing out of the interference peaks due to dephas-
ing of adjacent lattice wells through the different local
mean-field energies (see Fig. 18), phase coherence was
restored on the time scale of interwell tunneling
(=200 ms for their experimental parameters), but at the
expense of a decrease in the condensate fraction. In Fig.
18(b), the rephasing is indicated by the lower envelope
of the scattered visibility points, showing that after the
initial dephasing the shot-to-shot fluctuations of the vis-
ibility decrease as condensates in adjacent lattice wells
regain a stable phase relationship.

D. Experiments in shallow lattices

1. Bloch oscillations and Landau-Zener tunneling

The formal resemblance between electrons in crystals
and BEC:s in optical lattices inspired a number of experi-
ments that probed their band structure and interband
tunneling properties. The most striking effect of the

16A theoretical analysis of this experiment can be found in
Plata (2004).
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FIG. 19. Bloch oscillations (in momentum space) of a conden-
sate in an optical lattice. If the instantaneous lattice velocity
Uy, (indicated on the horizontal axis) is subtracted from the
mean velocity of the condensate measured in the laboratory
frame of reference (a), one clearly sees Bloch oscillations in
the lattice frame (b). From Cristiani et al., 2002.

band structure of periodic potentials, namely, the occur-
rence of Bloch oscillations and Landau-Zener tunneling
when a constant force is applied to the atoms, had al-
ready been observed in ultracold atoms before conden-
sates entered the scene (Dahan et al., 1996; Niu et al.,
1996). Bose-Einstein condensates, however, offered the
possibility to investigate them more systematically and
in different regimes. The first experiment along these
lines with Bose condensates in optical lattices was car-
ried out by Anderson and Kasevich (1998), sparking
considerable interest in both the theoretical and experi-
mental communities.

a. Linear regime

In order to observe Bloch oscillations in the linear
regime using a Bose-Einstein condensate, it is necessary
to reduce its density sufficiently so that the mean-field
term in the Gross-Pitaevskii equation becomes negli-
gible. This can be achieved either by reducing the fre-
quency of the magnetic trap, and hence the density of
the condensate before switching on the optical lattice, or
else by releasing the condensate from the magnetic trap
and allowing it to expand. Morsch et al. (2001) carried
out experiments in this regime, loading BECs of ru-
bidium atoms into a shallow (V,=2FEpy) optical lattice
that was subsequently accelerated with acceleration a by
chirping the frequency difference between the lattice
beams (Morsch et al., 2001; Cristiani et al., 2002). After a
variable acceleration time z,.., the trap and lattice were
switched off and the condensate was observed after a
time of flight. From the resulting interference pattern,
the condensate group velocity in the frame of reference
of the lattice could be calculated and plotted against the
lattice velocity uj,=at,.. (see Fig. 19), clearly showing
the Bloch oscillations.
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FIG. 20. (Color) Coherent “droplets” tunneling out of a con-
densate held in a vertical 1D optical lattice. This effect can be
interpreted in terms of the condensate undergoing Bloch oscil-
lations under the influence of the gravitational force and part
of the condensate leaving the lattice due to Landau-Zener tun-
neling at successive crossings of the Brillouin zone edge. Hold-
ing times in the lattice are (a) 0, (b) 3, (c) 5, (d) 7, and (e) 10 ms,
respectively. In (f), an integrated profile of the absorption im-
age (e) is shown together with a theoretical fit (solid line).
Taken from Anderson and Kasevich, 1998.

Another phenomenon occurring in an accelerated lat-
tice is Landau-Zener tunneling, previously observed for
ultracold atoms in a lattice (Niu et al., 1996). When a is
sufficiently large, the condensate cannot adiabatically
follow the variation of energy with quasimomentum in
the lowest band of the lattice. At the edge of the Bril-
louin zone (g=1), there is a finite probability r [given by
Eq. (28)] for the condensate to tunnel into the first ex-
cited band, with the critical acceleration a, given by Eq.
(28). In the experiment by Anderson and Kasevich
(1998), a vertically oriented lattice was used, with the
Earth’s acceleration g driving the atoms. The Landau-
Zener tunneling events led to atomic “droplets” falling
out of the lattice (see Fig. 20).

Another way of probing the band structure of a con-
densate inside an optical lattice is by coherently trans-
ferring population between the bands. This can be done
either by shaking the lattice, i.e., periodically accelerat-
ing it forward and backward, or by modulating the lat-
tice depth (Denschlag et al., 2002). Starting with the con-
densate in the lowest energy band, the former method
will transfer population into the first excited band,
whereas in the latter case the second band will be popu-
lated. The transfer is most efficient if the modulation
frequency matches exactly the energy separation be-
tween the two bands at the value of g chosen through
the velocity of the lattice. Hence, by scanning ¢ and
finding the resonant modulation frequency in each case,
one can map out the separation between two bands. If
the g dependence of one of the bands is known, the
other band can thus be reconstructed.

b. Nonlinear regime

When the nonlinear term in the Gross-Pitaevskii
equation is not negligible any longer, the behavior of a
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FIG. 21. Variation of the effective potential U (correspond-
ing to V. in the notation of this review) with the nonlinear
parameter C. The square symbols are experimental data points
(obtained by measuring the tunneling probability and using the
linear Landau-Zener formula to infer an effective lattice
depth, i.e., the equivalent lattice depth in the linear problem
giving the experimentally measured tunneling probability), and
the solid and dashed lines are the theoretical prediction by
Choi and Niu (1999) and a best fit with a rescaled nonlinearity
parameter, respectively. From Morsch et al., 2001.

BEC in an accelerated lattice deviates appreciably from
the linear case (Morsch and Arimondo, 2002; Kolovsky,
2003). In particular, performing Landau-Zener tunneling
experiments as a function of the nonlinear parameter C
(see Sec. V.D.1), Morsch et al. (2001) found that the tun-
neling probability increased with increasing C. This can
be explained in the effective potential approximation in-
troduced by Choi and Niu (1999) as a decrease in the
effective potential depth and hence the band gap at the
Brillouin zone edge, leading to increased tunneling (see
Fig. 21).

Interestingly, if the same experiment is carried out in
the opposite direction, i.e., starting out with the conden-
sate in the first excited band, the effect of the nonlinear
term is exactly reversed. While in the linear case
Landau-Zener tunneling from the lowest to the first ex-
cited energy band or vice versa occurs with the same
probability, the mean-field interaction leads to an asym-
metry in the tunneling. Jona-Lasinio et al. (2003) showed
that in the nonlinear case one expects the tunneling
probability from the first excited to the lowest band to
be reduced rather than enhanced, as is the case for tun-
neling from the lowest to the first excited band. This
asymmetry gets bigger as C increases and ultimately
leads to a complete suppression of tunneling from the
excited to the lowest energy band.

2. Instabilities and breakdown of superfluidity

In the previous section, we discussed a number of ex-
periments in which the band structure of a BEC in a
lattice was probed in the linear and nonlinear regimes.
These experiments provide us with information about
the eigenenergies of the Gross-Pitaevskii equation in the
presence of a periodic potential, but they do not imme-
diately reveal anything about the stability of the corre-
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sponding wave functions. Such knowledge is important,
however, if one wants to coherently manipulate a Bose
condensate with an optical lattice. In Sec. V.E we dis-
cussed how a stability analysis can be carried out in
theory and what kinds of instabilities one expects to en-
counter in the system we are dealing with. In this sec-
tion, we look at the experimental results to date on in-
stabilities in optical lattices.

In order to investigate instabilities experimentally, one
first needs to find a measurable quantity that reflects this
instability. For a Bose condensate in a lattice, the growth
of an unstable mode will lead to a loss of phase coher-
ence across the condensate which can be detected in a
time-of-flight measurement. In Cristiani e al. (2004), a
BEC was loaded into a lattice and subsequently acceler-
ated up to a final velocity vg,,>Vvg, thus eventually
crossing the edge of the Brillouin zone. The time-of-
flight interference pattern was then characterized by its
contrast (or visibility) as a function of the lattice accel-
eration. The latter determined the time the condensate
spent in the quasimomentum region in which unstable
modes are expected to be present. For small accelera-
tions, beyond a critical quasimomentum the contrast of
the interference pattern started to decrease, indicating
the presence of unstable modes. In a similar experiment,
Fallani et al. (2004) loaded the condensate into a lattice
moving at a finite velocity and hence at a finite quasimo-
mentum ¢ (see Fig. 22). After a waiting time ranging
from a few milliseconds up to several seconds, the con-
densate was imaged after a time of flight and the num-
ber of atoms in the condensate fraction was determined.
Again, it was found that beyond a critical quasimomen-
tum g;; =~ 0.55 the condensate started to be “destroyed,”
i.e., atoms were lost from the condensed fraction. In
contrast to Cristiani et al. (2004), this experiment inves-
tigates a single value of ¢ at a time rather than an inte-
grated effect over a range of quasimomenta.

Both of the experiments described above can be inter-
preted in terms of a dynamical instability arising above a
critical quasimomentum and growing with a characteris-
tic rate, as predicted by several authors (Machholm et
al., 2003; Wu and Niu, 2003). Although Fallani et al.
(2004) and Sarlo et al. (2005) compare their results with
numerical simulations, thorough and systematic mea-
surements, e.g., of the growth rates of the unstable
modes in different regions of parameter space (charac-
terized by the lattice depth and the nonlinear parameter
() have yet to be done. An interesting prospect lies in
the careful characterization of just one unstable mode!’
such as the period-doubling mode'® theoretically dis-
cussed by Machholm et al. (2004). The need for more
careful (and more quantitative studies) is highlighted by
the difficulty in interpreting the experimental results and

In a recent experiment, Chin et al. (2003) investigated a
single unstable mode in a condensate with attractive interac-
tions but not confined by an optical lattice.

A similar period doubling has recently been observed by
Gemelke et al. (2005).
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FIG. 22. Signatures of dynamical instability of a Bose conden-
sate in an optical lattice. (a) The loss rates from a condensate
held at a fixed quasimomentum ¢ of a lattice with s=1.15. (b)
The theoretically calculated growth rates for the dynamically
most unstable mode are plotted as a function of g. Taken from
Fallani et al., 2004.

determining the kind of instability involved. In an early
experiment by Burger et al. (2001), the observed break-
down of superfluidity of the condensate was initially as-
cribed to an energetic (Landau) instability, i.e., to the
lowering of the energy of the condensate through pho-
non emission. Although a theoretical analysis in this di-
rection gave plausible results, a recent calculation by
Modugno et al. (2004) suggested that, as pointed out ear-
lier by Burger et al. (2002) and Wu and Niu (2002), the
onset of instability occurs well beyond the critical veloc-
ity for an energetic instability but is, in fact, consistent
with a dynamic instability.

3. Dispersion management and solitons

a. Dispersion and effective mass

A matter wave inside a periodic potential exhibits a
radically different response to an external force com-
pared to the same matter wave in free space. One of the
consequences of this behavior is the occurrence of Bloch
oscillations as described in Sec. VI.D.1. An intuitive way
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of taking into account the effect of the lattice on the
dynamics is the introduction of the quasimomentum-
dependent effective mass mc(qo)=h*[FE(q)/dq|4]™"
(see Sec. IV.B.1). The dynamics of the matter wave can
then be easily explained in terms of my, whose value
can be positive, negative, or zero and describes the dis-
persion of a wave packet.

Quantum mechanically, any wave packet with a finite
width Ax will undergo dispersion in free space, i.e., it
will expand with a velocity that is inversely proportional
to its original size. In the presence of a periodic poten-
tial, dispersion still takes place, but now the effect of the
periodicity of the potential acting on the matter wave
has to be taken into account through the effective mass.
As the latter can be positive or negative, the resulting
dispersion can be either normal (i.e., the wave packet
expands) or anomalous (i.e., the wave packet contracts).
In Eiermann et al. (2003), Fallani et al. (2003), and Anker
et al. (2004) experimentally both regimes were explored
and show that an optical lattice can be used to effec-
tively control the dispersion of a Bose-Einstein conden-
sate. Such a dispersion management is analogous to
similar schemes used in fiber optics.

The concept of effective mass can also be applied to
collective excitations of the condensate. In Kridmer et al.
(2002), the modification of the frequencies of the dipole
and quadrupole oscillations modes is calculated. The
former corresponds to the condensate performing
center-of-mass oscillations inside a harmonic trap,
whereas the latter is a “breathing” oscillation. When a
periodic potential is present, the frequencies of these
modes are modified by a factor ym/me and, therefore,
depend on the depth of the optical lattice. This depen-
dence was verified experimentally by Fort et al. (2003).

b. Solitons

When the mean-field interaction in the condensate is
appreciable, new phenomena appear. If the atom-atom
interaction is repulsive, it is possible to choose a negative
effective mass m(q,.) (through the corresponding qua-
simomentum ¢,.) such that the effective attractive inter-
action term in the Gross-Pitaevskii equation leads to the
formation of stable bright solitons if the number of at-
oms is sufficiently small (see Fig. 23). These so-called
gap solitons were recently observed by Eiermann et al.
(2004).

E. Experiments in deep lattices

In the experiments discussed so far, we considered the
condensate wave function to be spread out over the en-
tire lattice. The presence of the periodic potential was
taken into account through the band structure, and in-
teraction effects were discussed within this framework.
As we saw in the theoretical discussion of Sec. III, such
a picture is valid when the tunneling rate between adja-
cent lattice sites is large compared to the band gap. If
this is no longer true, it is more intuitive to look at the
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FIG. 23. (Color) Experimental demonstration of gap solitons
(bright solitons for repulsive interaction in an optical lattice).
(a) Absorption images revealing the in situ density distribution
in a one-dimensional wave guide for different evolution times.
Clearly, a nonspreading wave packet is formed after 25 ms. (b)
The systematic measurement of the widths of the wave packets
in the negative and positive mass regimes. While in the nega-
tive mass regime a soliton is formed whose width is constant, in
the normal mass regime the initial atom distribution spreads
out as expected. Adapted from Eiermann et al., 2004.

condensate inside the lattice as an array of localized
wave functions coupled to each other through tunneling
between the wells.

1. Chemical potential of a BEC in an optical lattice

If the depth of the optical lattice is increased further,
i.e., well above a few Ep, tunneling between the wells
will quickly become negligible on the time scale of the
experiments (usually a few milliseconds) as it depends
exponentially on the lattice depth. At the same time, the
wave functions at the individual lattice sites will be more
tightly confined, resulting in an increased density. For
this scenario, Pedri et al. (2001) calculated the “local”
chemical potential of a condensate in an optical lattice
with additional harmonic confinement. By letting a con-
densate expand freely inside a 1D lattice after switching
off the initial harmonic confinement, Morsch et al. (2002)
confirmed these calculations.

2. Josephson physics in optical lattices

Isolated condensates in the wells of a deep optical
lattice can be viewed as an array of Josephson junctions.
It is then useful to discretize the Gross-Pitaevskii equa-
tion (see Sec. V.B.2) and introduce a discrete nonlinear
Schrodinger equation consisting of a set of coupled dif-
ferential equations related to sets of neighboring lattice
sites. One can further introduce “macroscopic” variables
that describe the experimentally observable envelope of
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FIG. 24. Variation of the sloshing frequency of a condensate in
the presence of an optical lattice of depth s. The circles are
experimental data points from Cataliotti et al. (2001), the tri-
angles represent the theoretical prediction based on a Joseph-
son model (discrete nonlinear Schrodinger equation), and the
solid line is a calculation based on an effective-mass approach.
Taken from Kramer et al., 2002.

the individual local BECs (which, in most experiments,
cannot be resolved). Using this approach, Cataliotti et al.
(2001, 2003a, 2003b) observed the motion of this enve-
lope when the harmonic trap superposed onto the opti-
cal lattice was suddenly displaced, leading to an overall
sloshing motion of the envelope and, locally, to coherent
tunneling between the lattice wells and an associated
“Josephson current.” The dependence of the sloshing
frequency on the lattice depth (see Fig. 24), which was
varied between s=1 and s=9, indirectly reflected the
critical Josephson current /.. Alternatively, it is possible
to go back to a continuum description and explain the
variation in sloshing frequency in terms of the effective
mass (see Sec. IV.B.1). Using this approach, Kramer et
al. (2002) accurately reproduced (see Fig. 24) the experi-
mental data of Cataliotti et al. (2001) and thereby estab-
lished a link between the effective-mass regime and the
Josephson interpretation of Cataliotti et al. (2001).

As expected, when this current exceeded a critical
value, the coherent oscillations broke down and the en-
velope was smeared out.

3. Number squeezing and the Mott-insulator transition

Increasing the lattice depth and thus reducing the tun-
neling rate between adjacent wells can also be viewed as
a reduction of the number fluctuations at each lattice
site. As it becomes less likely for the atoms to hop be-
tween wells, the number variance o, goes down. Quan-
tum mechanically, this implies that the phase variance
o4, describing the spread in relative phases between the
lattice wells, has to increase. This follows from an uncer-
tainty principle involving the product 0,0, and its ef-
fects can be seen directly by looking at the interference
pattern of a BEC released from an optical lattice. In the
first experiment performed by Orzel et al. (2001), the
authors adiabatically loaded condensates of Rb atoms
into deep 1D optical lattices and characterized the qual-
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FIG. 25. (Color) Interference pictures and integrated profiles
for small (a,d), intermediate (b,e), and large (c.f) lattice depths
in the experiment of Orzel et al. (2001). As the lattice depths
increase, the interference patterns become more and more
“smeared out.”

ity of the interference pattern through the width of the
interference peaks (see Sec. VI.A) after a time of flight
(see Fig. 25). As the ratio of the mean-field energy per
particle to the tunneling energy decreased when the lat-
tice depth was increased, the interference pattern was
increasingly washed out. This alone proves only that
phase coherence between adjacent wells was lost, but
not how it was lost (see, for comparison, Sec. VI.C). In
order to show that the loss of coherence was actually
due to suppressed number fluctuations and hence the
creation of number-squeezed states, the authors adia-
batically lowered the lattice depth again and found that,
indeed, phase coherence was restored.”

In a similar experiment, but using a 3D optical lattice,
Greiner et al. (2002a) took this approach one step fur-
ther and reached the Mott-insulator transition (see Sec.
V.G). In this quantum phase transition, the number fluc-
tuations actually vanish and the system reaches a state in
which all the lattice wells are occupied by a well-defined
number of atoms. As in the experiment by Orzel et al.

We note here that the experiment by Orzel ef al. (2001) has
been the subject of considerable debate within the community,
the consensus being that its findings are somewhat difficult to
interpret [see, e.g., Pitaevskii and Stringari (2001)]. Also, one
has to keep in mind that in some cases interference patterns
can appear when intuitively one would not expect to see them,
e.g., in the experiment of Hadzibabic et al. (2004).
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(2001), the telltale sign for the increasing phase fluctua-
tions that go hand in hand with the decreasing number
fluctuations as the lattice depth is increased was the de-
terioration of the interference pattern. Again, this obser-
vation on its own does not unambiguously demonstrate
the transition from the initial superfluid to a Mott-
insulator state (Roth and Burnett, 2003). A further piece
of evidence in the experiment by Greiner et al. (2002a)
was the occurrence of a gap in the excitation spectrum
of the Mott insulator (see Fig. 26). By applying a mag-
netic field gradient to the lattice (which amounts to “tilt-
ing” it), an energy difference between adjacent sites was
created that allowed atoms to hop between the sites.
Whereas in the superfluid regime (for small lattice
depths) this hopping increases continuously with the en-
ergy difference between the sites, in the Mott-insulator
regime only well-defined energy differences are allowed,
corresponding to the energy “penalty” for adding an
atom to a lattice site already occupied by an atom (or
several atoms). In their experiment, the authors also
demonstrated that the Mott insulator transition is re-
versible by lowering the optical lattice depth. Similar re-
sults were obtained by Stoferle er al. (2004) and Kohl er
al. (2005) using lattices in one, two, and three dimen-
sions (see Sec. VII).

F. Optical lattices as a tool

In the experiments described thus far, the main inter-
est lay in the properties of the system BEC plus optical
lattices that are intimately linked to the periodicity of
the lattice and hence to the band structure or, in the
deep lattice limit, to the periodic array of local wave
functions. An optical lattice can, however, also be used
as a tool to create, for instance, multiple condensates
with different momenta from a single one by Bragg dif-
fraction, or to probe coherence properties of a BEC in
particular regimes where interesting physics happens
that is not associated with the presence of the lattice. In
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this section, we shall briefly describe some of the experi-
ments falling into this category.

1. Creating momentum components with an optical
lattice

When an optical lattice moving at a velocity v=vp is
switched on suddenly, the condensate wave function is
projected onto the lowest two energy bands (see Sec.
VI.B). When the lattice is switched off abruptly, the
plane waves corresponding to the bands at the edge of
the Brillouin zone interfere with the phases they accu-
mulated while the lattice was on, splitting the conden-
sate into two momentum components with weights de-
pending on the length of the interaction and the lattice
depth (Kozuma et al., 1999). Alternatively, this process
can be viewed as first-order Bragg diffraction.

Using this technique, Deng et al. (1999b) split up a
condensate into three momentum components by apply-
ing two sequences of Bragg pulses with the lattice.
Whereas in a linear approximation these momentum
components would fly apart independently, the nonlin-
ear interaction between them led to the creation of a
fourth wave packet having a momentum that fulfilled
the condition for four-wave mixing, a process well
known from nonlinear optics.

Splitting the condensate into several momentum com-
ponents can also be used for the realization of matter-
wave interferometry with BECs. By splitting the con-
densate in two and recombining the fragments after a
variable time, Simsarian ef al. (2000) observed the phase
evolution of a condensate after it had been released
from a magnetic trap. Various other experiments involv-
ing several momentum components of condensates have
been carried out, ranging from coherence measurements
to a matter-wave realization of the Talbot effect (Deng
et al., 1999a; Hagley et al., 1999; Ovchinnikov et al.,
1999).
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2. Measuring the excitation spectrum of a condensate

The Bragg pulses described above can generally be
used to excite phonons and to transfer momentum to the
condensate (Stamper-Kurn ef al., 1999). In an early ex-
periment, Stenger et al. (1999) determined the momen-
tum width of a sodium BEC by measuring, effectively,
the dynamic structure factor S(q,v) of the condensate
through the momentum transfer of the Bragg-scattered
lattice photons as a function of the detuning between the
two beams. Using a similar technique, Vogels et al
(2002) directly observed the Bogoliubov quasiparticle
transformation of a condensate. Further experiments us-
ing tomographic techniques to determine the momen-
tum transfer to the condensate were carried out by Oz-
eri et al. (2002, 2003) and Steinhauer et al. (2002, 2003).

3. Probing the coherence properties of a condensate

The sensitivity of Bragg diffraction to the momentum
distribution can also be exploited to detect phase fluc-
tuations in a condensate. Gerbier et al. (2003) and Rich-
ard et al. (2003) measured the Bragg diffraction effi-
ciency as a function of detuning in the case of an
extremely elongated cigar-shaped condensate (aspect ra-
tio =150) whose 1D character led to increased phase
fluctuations. These phase fluctuations were reflected in a
Lorentzian-like (as opposed to Gaussian) profile of the
Bragg spectrum from the width of which Richard et al.
(2003) were able to extract the decay length Lg of the
spatial correlation function.

4. Studying the time evolution of coherent states

Under suitable conditions, a deep optical lattice can
be used to create a large number of identical copies of
quantum states. For instance, below the critical depth
for the Mott-insulator transition (see Sec. V.G) the
matter-wave field inside a potential well of the lattice
can be described to a good approximation by a coherent
state, i.e., a superposition of different number states |n).
Interactions cause these number states to evolve with
different phases, leading to a loss of contrast of the in-
terference pattern in a time-of-flight experiment after
switching off the lattice. Greiner et al. (2002b) exploited
this fact in order to map out the time evolution of the
coherent states of atoms in a 3D optical lattice.

VII. CURRENT TRENDS AND FUTURE DIRECTIONS

A review paper on an active and fast-growing field
such as the one discussed in the present article can, at
best, provide an introduction to the general area of re-
search and a snapshot image of the current state of the
art. At the time of writing this review, many new av-
enues for future research on BECs in optical lattices—
both theoretically and experimentally—are opening up,
ranging from highly correlated systems to applications in
quantum computing, where neutral atoms inside optical
lattices are seen as promising candidates for quantum
bits (or “qubits”). Furthermore, the general field of ul-
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tracold atoms is moving toward new goals, involving de-
generate Fermi gases and molecular condensates. It is
very likely that these new systems, too, will soon be
combined with optical lattices (and, to some extent, they
already have been, as we shall see in the following). We
have no doubt that many interesting phenomena will be
discovered and studied in such systems, and at this point
we can only give the reader a vague idea of what we
believe are promising directions to pursue.

A. 2D and 1D systems

One of the salient features of optical lattices is the
large harmonic trapping frequency in the direction of
the lattice. Owing to the small length scale of the inter-
ference pattern created by the lattice lasers, trapping
frequencies of several tens of kHz in the potential wells
of the lattice can be achieved with modest laser intensi-
ties. Comparing these to typical magnetic trapping fre-
quencies of hundreds of Hz and to the chemical poten-
tials of roughly the same order of magnitude usually
encountered in BEC experiments, one finds that it
should be possible to realize 2D (Burger et al., 2002;
Stock et al., 2005) or 1D quantum systems by “freezing
out” one or two degrees of freedom by adding a 1D or
2D optical lattice to the magnetic trap. The condition for
a condensate to exhibit 2D or 1D characteristics is that
the healing length é=\4mna be smaller than one or two
of the harmonic-oscillator lengths /;=(%/mw;)"? associ-
ated with the trapping frequencies w;, respectively. Here,
n is the density and a the s-wave scattering length, as
usual. The crossover to the 2D and 1D regimes was
achieved by Gorlitz et al. (2001) using dipole traps and
lowering the number of atoms in order to satisfy the
above conditions. Exploiting the large trapping frequen-
cies of optical lattices, Moritz et al. (2003) and Stoferle et
al. (2004) created 2D and 1D condensates by loading an
“ordinary” BEC from a magnetic trap into a configura-
tion of three perpendicular lattice beams. One or two of
the lattices were then made very deep (tens of Ey), re-
sulting in a stack of pancake-shaped 2D condensates or
a grid of cigar-shaped 1D condensates (“tubes”) (see Fig.
27). With this method, the authors were able to enter the
strongly interacting regime for a 1D gas which, counter-
intuitively, is reached for small atomic densities inside
the 1D tubes. In their experiments, each of the tubes
contained only a few dozen atoms. Whereas in a single
dipole trap such a small atom number would hardly be
observable, in an array of 1D tubes created by a 2D
lattice the experiment is effectively carried out in paral-
lel in hundreds of tubes, leading to an easily detectable
signal. For the 1D case, Stoferle er al. (2004) observed a
lowering of the critical parameter (U/J), (see Sec. V.G)
due to increased quantum fluctuations, as expected from
theory. The role of these fluctuations and the resulting
reduction of the three-body correlation function were
also investigated by Laburthe Tolra et al. (2004) through
the measurement of a reduced three-body recombina-
tion rate.
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FIG. 27. (a) An array of “tubes” created by a two-dimensional
optical lattice, as used in the experiment of Stoferle et al.
(2004) to realize the Mott-insulator transition in one dimen-
sion, and (b) the excitation spectrum of the 1D Mott insulator.
The spacing between adjacent tubes in (a) is 413 nm. Taken
from Moritz et al., 2003 and Stoferle et al., 2004.

In a similar experiment, Paredes et al. (2004) realized
the Tonks regime in which the repulsive interactions be-
tween the atoms completely dominate the physics. The
system then behaves like a fermionic gas, i.e., two par-
ticles are never found in the same position, although the
atoms are actually bosons. In this experiment, the effec-
tive mass of the atoms is increased through the optical
lattice along the direction of the tubes so that the Tonks
regime can be more easily reached. Kinoshita et al.
(2004) also reached the Tonks-Girardeau regime using a
two-dimensional optical lattice in order to create a one-
dimensional quantum gas.

B. Fermions in lattices

In the early 1990s, experimental studies on ultracold
bosonic atoms were largely driven by the quest for ob-
taining Bose-Einstein condensation. Research on BECs
is still a thriving field, but more recently fermions have
also caused a lot of excitement in atomic physics. Obvi-
ously, in the case of fermions the principal interest lies in
the fact that electrons in solid-state crystals are fermi-
ons. Ultracold, dilute clouds of fermionic atoms hence
offer the enticing prospect of studying phenomena like
the BCS transition to superconductivity in a model sys-
tem whose parameters can easily be controlled. Adding
a periodic potential is, therefore, a natural further step
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in that direction. So far, fermions in an optical lattice
have been studied experimentally by Modugno et al.
(2003) using “’K atoms in a one-dimensional lattice. Af-
ter cooling the atoms down to a third of the Fermi tem-
perature T=430 nK, they switched on an optical lattice
with s=8. The fermionic character of *“’K was clearly
seen by comparing sloshing oscillations between bosons
and fermions in the superimposed magnetic trap while
the lattice was present. Since the initial quasimomentum
distribution of the fermions was much larger than that of
the bosons due to the exclusion principle, the sloshing
motion of the fermions was heavily damped in contrast
to the undamped oscillations of the bosons. In a proof-
of-principle experiment, Roati et al. (2004) have also
shown that fermions should be ideally suited to preci-
sion measurements in optical lattices, e.g., for a determi-
nation of the Earth’s acceleration through the frequency
of Bloch oscillations, because in contrast to bosons they
do not interact with each other, eliminating dephasing
effects due to the mean-field interaction in a BEC.

On the theoretical side, Ruostekoski and Javanainen
(Ruostekoski et al., 2002; Javanainen and Ruostekoski,
2003) have investigated the possibility of observing a
fractional fermion particle number inside an optical lat-
tice. Such an effect is predicted to occur in the presence
of a topologically nontrivial bosonic background field
and is related, e.g., to the fractional quantum Hall effect.

C. Mixtures

Up to now, experiments with BECs in optical lattices
have been almost exclusively done with a single atomic
species in a single spin state. Recently, a number of the-
oretical studies have been published in which a host of
new phenomena are predicted if more than one spin
state or atomic species is used, especially if one of the
species is bosonic and the other fermionic.

A mixture of bosonic and fermionic atoms in an opti-
cal lattice produces extremely rich physics. Studying
these mixtures in different regimes, Lewenstein et al.
(2004) found several new quantum phases containing
composite fermions (made up from a fermion and one or
several bosons) which could be either delocalized super-
fluid or metallic phases or localized density wave or do-
main insulator phases. Similar studies have been done
by several other authors (Albus et al., 2003; Biichler and
Blatter, 2003; Roth and Burnett, 2004).

Another interesting aspect of a boson-fermion mix-
ture is the possibility to create an array of dipolar mol-
ecules. Moore and Sadeghpour (2003) show that this can
be achieved by first creating a combined Mott insulator
state with one atom of both species per lattice site and
then creating molecules by photoassociation. The dipo-
lar molecules thus created could either be used as a re-
source for quantum computing (see Sec. VILE) or be
transformed into a dipolar condensate by melting the
Mott-insulator phase.

In a first experiment combining bosons and fermions
in a lattice, Ott et al. (2004) have investigated the effect
of a bosonic bath on fermions moving through an optical
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FIG. 28. (Color) Density (left) and phase profile (right) of a
gap vortex in a two-dimensional optical lattice. The x and y
axes are labeled in units of d/, where d is the lattice spacing.
Taken from Ostrovskaya and Kivshar, 2004a.

lattice. The results of these experiments show that, just
as in condensed matter physics, interactions lead to a
fermionic current that would be absent if the fermions
moved on their own inside the periodic potential.

D. Vortices in lattices

Vortices in Bose-Einstein condensates are an intrigu-
ing quantum phenomenon directly linked to the super-
fluidity of this system and have been studied extensively
both experimentally and theoretically (Madison et al.,
2000; McGee and Holland, 2001). Recently, a number of
theoretical papers have dealt with systems combining
vortices and optical lattices. Intuitively, a single vortex
and a one-dimensional lattice can be combined by ap-
plying the lattice either along the direction of the vortex
or perpendicular to it. The former case was studied by
Martikainen and Stoof (2003b, 2004) and is particularly
interesting because of its analogies with high-7. super-
conductivity and the possibility of realizing the quantum
Hall regime for BECs in a lattice. The case of a vortex
perpendicular to the lattice direction was discussed by
Kevrekidis ef al. (2003) and Bhattacherjee et al. (2004).

Exploiting an analogy with the gap solitons discussed
in Sec. V.B.1, Ostrovskaya and Kivshar (2004a) have re-
cently investigated the possibility of creating “gap vorti-
ces” in optical lattices (see Fig. 28). They also address
the general problem of the localization of topological
defects in deep lattices.

E. Quantum computing

The idea of building a quantum computer has moti-
vated both theoretical and experimental efforts for more
than a decade. Originally conceived by Richard Feyn-
man as a “quantum simulator” capable of calculating the
dynamics of complex quantum systems, it has since be-
come the paradigm for a new generation of computers
that could solve problems out of the reach of classical
computers, such as the factorization of large numbers.”’

207 good overview of the state of the art of the field and
prospects for the future can be found in the QIST Quantum
Computing Roadmap (http://qgist.lanl.gov/).
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A first step in this direction was made by Greiner et al.
(2002a) in their demonstration of the Mott-insulator
transition (see Sec. VI.E.3), in which a state with exactly
one atom per lattice site is created starting from a BEC.
In a subsequent experiment, the authors also showed
that in such a system controlled collisions between at-
oms in two overlapping optical lattices can be used to
create entanglement (Bloch et al, 2003; Mandel et al.,
2003a, 2003b), which besides the superposition principle
is the second essential resource of quantum computing.

Neutral atoms in optical lattices have a number
of attractive features that make them interesting
candidates for the realization of a quantum computer
(Deutsch et al., 2000; Porto et al., 2003; Jaksch, 2004).
One of them is their intrinsic scalability, i.e., the fact that
it is, in principle, not difficult to realize 1D, 2D, or 3D
arrays of individually trapped atoms with large numbers
of sites. Among other things, this should make possible
the creation of so-called “cluster states” which represent
a one-way quantum computer capable of carrying out a
quantum computation with a single read-out (Raussen-
dorf and Briegel, 2001; Raussendorf et al., 2003).

VIll. CONCLUSIONS

Bose-Einstein condensates in optical lattices consti-
tute an active field of research that has already spawned
several different subfields. Roughly speaking, the cur-
rent experimental and theoretical efforts can be divided
into three categories: nonlinear matter waves, strongly
correlated many-particle systems, and quantum compu-
tation. In the latter, optical lattices are used mainly as a
tool for preparing and “engineering” quantum states in
a controlled way so that they can then be used for the
implementation of quantum algorithms. In the first two
categories, the full control over the system’s parameters
is exploited in several ways. By changing the geometry
of the lattice and combining, e.g., different atomic spe-
cies, one can realize many-body Hamiltonians that are
not easily accessible in condensed matter systems and
hence use BECs in lattices as a model system in order to
test theoretical predictions. Likewise, in the physics of
nonlinear matter waves, the control over the lattice ge-
ometry gives BECs in periodic structures an edge over
similar realizations in nonlinear optics. Whereas the lat-
ter are limited to two dimensions, BECs in lattices can
be wused to study nonlinear dynamics of three-
dimensional systems.

Although it is difficult to predict which of these three
directions will play the most important role in the future
development of the field, it is likely that all of them will
lead to interesting new results. This will also depend to a
large extent on the fruitful interactions between differ-
ent communities. Just as the possibility of studying the
Bose-Hubbard model in optical lattices has sparked the
interest of the condensed matter community, the links
between nonlinear optics and nonlinear matter waves in
periodic potentials have started to attract a number of
researchers from the former community to interact with
the Bose-Einstein condensation community. And who
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knows, many more as yet unexplored avenues might
open up that, right now, no one is even thinking about.
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