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This article reviews the physics of high-temperature superconductors from the point of view of the
doping of a Mott insulator. The basic electronic structure of cuprates is reviewed, emphasizing the
physics of strong correlation and establishing the model of a doped Mott insulator as a starting point.
A variety of experiments are discussed, focusing on the region of the phase diagram close to the Mott
insulator (the underdoped region) where the behavior is most anomalous. The normal state in this
region exhibits pseudogap phenomenon. In contrast, the quasiparticles in the superconducting state
are well defined and behave according to theory. This review introduces Anderson’s idea of the
resonating valence bond and argues that it gives a qualitative account of the data. The importance of
phase fluctuations is discussed, leading to a theory of the transition temperature, which is driven by
phase fluctuations and the thermal excitation of quasiparticles. However, an argument is made that
phase fluctuations can only explain pseudogap phenomenology over a limited temperature range, and
some additional physics is needed to explain the onset of singlet formation at very high temperatures.
A description of the numerical method of the projected wave function is presented, which turns out
to be a very useful technique for implementing the strong correlation constraint and leads to a number
of predictions which are in agreement with experiments. The remainder of the paper deals with an
analytic treatment of the ¢-J model, with the goal of putting the resonating valence bond idea on a
more formal footing. The slave boson is introduced to enforce the constraint againt double occupation
and it is shown that the implementation of this local constraint leads naturally to gauge theories. This
review follows the historical order by first examining the U(1) formulation of the gauge theory. Some
inadequacies of this formulation for underdoping are discussed, leading to the SU(2) formulation.
Here follows a rather thorough discussion of the role of gauge theory in describing the spin-liquid
phase of the undoped Mott insulator. The difference between the high-energy gauge group in the
formulation of the problem versus the low-energy gauge group, which is an emergent phenomenon, is
emphasized. Several possible routes to deconfinement based on different emergent gauge groups are
discussed, which leads to the physics of fractionalization and spin-charge separation. Next the
extension of the SU(2) formulation to nonzero doping is described with a focus on a part of the
mean-field phase diagram called the staggered flux liquid phase. It will be shown that inclusion of the
gauge fluctuation provides a reasonable description of the pseudogap phase. It is emphasized that
d-wave superconductivity can be considered as evolving from a stable U(1) spin liquid. These ideas are
applied to the high-7 cuprates, and their implications for the vortex structure and the phase diagram
are discussed. A possible test of the topological structure of the pseudogap phase is described.
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I. INTRODUCTION

The discovery of high-temperature superconductivity
in cuprates (Bednorz and Miiller, 1986) and the rapid
raising of the transition temperature to well above the
melting point of nitrogen (Wu et al., 1987) ushered in an
era of great excitement for the condensed-matter-
physics community. For decades prior to this discovery,
the highest T, had been stuck at 23 K. Not only was the
old record T, shattered, but the fact that high-7. super-
conductivity was discovered in a rather unexpected ma-
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terial, a transition-metal oxide, made it clear that some
novel mechanism must be at work. The intervening
years have seen great strides in high-7, research. First
and foremost, the growth and characterization of cu-
prate single crystals and thin films have advanced to the
point where sample quality and reproducibility prob-
lems which plagued the field in the early days are no
longer issues. At the same time, basically all conceivable
experimental tools have been applied to cuprates. In-
deed, the need for more refined data has spurred the
development of experimental techniques such as angle-
resolved photoemission spectroscopy (ARPES) and low-
temperature scanning tunneling microscopy (STM). To-
day the cuprate is arguably the best studied material
outside of the semiconductor family and a great many
facts are known. It is also clear that many of the physical
properties are unusual, particularly in the metallic state
above the superconductor. Superconductivity is only one
aspect of a rich phase diagram which must be under-
stood in its totality.

While there are hundreds of high-7, compounds, they
all share a layered structure made up of one or more
copper-oxygen planes. They all fit into a universal phase
diagram shown in Fig. 1. We start with the so-called par-
ent compound, in this case La,CuQO,. There is now gen-
eral agreement that the parent compound is an insulator,
and should be classified as a Mott insulator. The concept
of Mott insulation was introduced many years ago
(Mott, 1949) to describe a situation where a material
should be metallic according to band theory, but is insu-
lating due to strong electron-electron repulsion. In our
case, in the copper-oxygen layer there is an odd number
of electrons per unit cell. More specifically, the copper
ion is doubly ionized and is in a d” configuration so that
there is a single hole in the d shell per unit cell. Accord-
ing to band theory, the band is half-filled and must be
metallic. Nevertheless, there is a strong repulsive energy
cost when putting two electrons (or holes) on the same
ion, and when this energy (commonly called U) domi-
nates over the hopping energy ¢, the ground state is an
insulator due to strong correlation effects. It also follows
that the Mott insulator should be an antiferromagnet
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FIG. 1. Schematic phase diagram of high-7. superconductors
showing hole doping (right side) and electron doping (left
side). From Damascelli et al., 2003.
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because when neighboring spins are oppositely aligned
one can gain an energy 4¢2/ U by virtual hopping. This is
called the exchange energy J. The parent compound is
indeed an antiferromagnetic insulator. The ordering
temperature Ty=300 K shown in Fig. 1 is in fact mis-
leadingly low because it is governed by a small interlayer
coupling, which is, furthermore, frustrated in La,CuQO,
(see Kastner et al., 1998). The exchange energy J is in
fact extraordinarily high, of order 1500 K, and the par-
ent compound shows strong antiferromagnetic correla-
tion much above Ty.

The parent compound can be doped by substituting
some of the trivalent La by divalent Sr. The result is that
x holes are added to the Cu-O plane in La,_ Sr,CuQOy,
which is called hole doping. In the compound
Nd,_,Ce,CuO, (Tokura et al., 1989), the reverse happens
in that x electrons are added to the Cu-O plane, which is
called electron doping. As we can see from Fig. 1, on the
hole-doping side the antiferromagnetic order is rapidly
suppressed and is gone by a 3-5 % hole concentration.
Almost immediately after the suppression of the antifer-
romagnet, superconductivity appears, ranging from x
=6-25 %. The dome-shaped T, is characteristic of all
hole-doped cuprates, even though the maximum 7', var-
ies from about 40 K in the La,_,Sr,CuO, (LSCO) family
to 93K and higher in other families such as
YBa,Cu30¢,, (YBCO) and Ba,Sr,CaCu,0s,, (Bi-2212).
On the electron-doped side, the antiferromagnet is more
robust and survives up to x=0.14, beyond which a region
of superconductivity arises. One view is that the carriers
are more prone to be localized on the electron-doped
side so that electron doping is closer to dilution by non-
magnetic ions, which is less effective in suppressing an-
tiferromagnetic order than itinerant carriers. Another
possibility is that the next-neighbor hopping term favors
the antiferromagnet on the electron-doped side (Singh
and Ghosh, 2002). It is as though a more robust antifer-
romagnetic region is covering up the more interesting
phase diagram revealed on the hole-doped side. In this
review we shall focus on the hole-doped materials, even
though we shall address the issue of the particle-hole
asymmetry of the phase diagram from time to time.

The region in the phase diagram with doping x less
than that of the maximum 7, is the underdoped region.
The metallic state above 7, has been under intense
study and exhibits many unusual properties not encoun-
tered before in any other metal. This region of the phase
diagram has been called the pseudogap phase. It is not a
well-defined phase in that a definite finite-temperature
phase boundary has never been found. The line drawn
in Fig. 1 should be regarded as a crossover. Since we
view the high-7,. problem as synonymous with that of
the doping of a Mott insulator, the underdoped region is
where the battleground between Mott insulator and su-
perconductivity is drawn and this is what we shall con-
centrate on in this review.

The region of the normal state above the optimal 7,
also exhibits unusual properties. The resistivity is linear
in T and the Hall coefficient is temperature dependent
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(see Chien et al., 1991). These were cited as examples of
non-Fermi-liquid behavior since the early days of high
T.. Beyond optimal doping (the overdoped region), san-
ity gradually returns. The normal state behaves more
normally in that the temperature dependence of the re-
sistivity resembles 7% over a temperature range which
increases with further overdoping. The anomalous re-
gion above optimal doping is sometimes referred to as
the “strange-metal” region. We offer a qualitative de-
scription of this region in Sec. IX, but the understanding
of the strange metal is even more rudimentary than that
of the pseudogap. A popular notion is that the strange
metal is characterized by a quantum critical point lying
under the superconducting dome (Castellani et al., 1997,
Varma, 1997; Tallon and Loram, 2000). In our view, un-
less the nature of the ordered side of a quantum critical
point is classified, the simple statement of quantum criti-
cality does not teach us too much about the behavior in
the critical region. For this reason, we prefer to concen-
trate on the underdoped region and leave the strange-
metal phase for future studies.

Contrary to the experimental situation, the develop-
ment of high-7, theory follows a rather tortuous path
and people often have the impression that the field is
highly contentious and without a clear direction or con-
sensus. We do not agree with this assessment and would
like to clearly state our point of view from the outset.
Our starting point is that the physics of high-7. super-
conductivity is the physics of the doping of a Mott insu-
lator. Strong correlation is the driving force behind the
phase diagram. We believe that there is a general con-
sensus on this starting point. The simplest model which
captures the strong-correlation physics is the Hubbard
model and its strong-coupling limit, the ¢-/ model. Our
view is that one should focus on understanding these
simple models before adding various elaborations. For
example, further neighbor hopping certainly is signifi-
cant and, as we shall discuss, plays an important role in
understanding the particle-hole asymmetry of the phase
diagram. Electron-phonon coupling can generally be ex-
pected to be strong in transition-metal oxides, and we
shall discuss their role in affecting spectral line shape.
However, these discussions must be presented in the
context of strong correlation. The logical step is to first
understand whether simple models such as the ¢~/ model
contain enough physics to explain the appearance of su-
perconductivity and pseudogaps in the phase diagram.

The strong-correlation viewpoint was put forward by
Anderson (1987), who revived his earlier work on a pos-
sible spin-liquid state in a frustrated antiferromagnet.
This state, called the resonating valence bond (RVB),
has no long-range antiferromagnetic order and is a
unique spin-singlet ground state. It has spin-1/2 fermi-
onic excitations which are called spinons. The idea is
that when doped with holes, the RVB is a singlet state
with coherent mobile carriers and is indistinguishable in
terms of symmetry from a singlet BCS superconductor.
The process of hole doping was further developed by
Kivelson et al. (1987), who argued that the combination
of the doped hole with the spinon forms a bosonic exci-
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tation. This excitation, called the holon, carries charge
but no spin whereas the spinon carries spin 1/2 but no
charge, and the notion of spin-charge separation was
born. Meanwhile, a slave-boson theory was formulated
by Baskaran et al. (1987). Many authors contributed to
the development of the mean-field theory, culminating
in the paper by Kotliar and Liu (1988), who found that
the superconducting state should have d symmetry and
that a state with spin-gap properties should exist above
the superconducting temperature in the underdoped re-
gion. The possibility of d-wave superconductivity was
discussed in terms of the exchange of spin fluctuations
(Emery, 1983, 1986; Miyake et al., 1986; Scalapino et al.,
1986, 1987; Monthonx and Pines, 1993). These discus-
sions were either based on phenomenological coupling
between spins and fermions or via the random-phase-
approximation treatment for the Hubbard model, which
is basically a weak-coupling expansion. In contrast, the
slave-boson theory was developed in the limit of strong
repulsion. Details of the mean-field theory will be dis-
cussed in Sec. VIIL

At about the same time, the proposal by Anderson
(1987) of using projected mean-field states as trial wave
functions was implemented on the computer by Gros
(1988, 1989). The idea was to remove by hand on a com-
puter all components of the mean-field wave function
with doubly occupied sites and to use this as a varia-
tional wave function for the -/ model. Gros (1988, 1989)
concluded that the projected d-wave superconductor
was the variational ground state for the ¢-J model over a
range of doping. The projected wave-function method
remains one of the best numerical tools for tackling the
t-J or Hubbard model and is reviewed in Sec. VI.

It was soon realized that inclusion of fluctuations
about the mean field invariably leads to gauge theory
(Baskaran and Anderson, 1988; loffe and Larkin, 1989;
Nagaosa and Lee, 1990). The gauge-field fluctuations
can be treated at a Gaussian level and these early devel-
opments together with some of the difficulties are re-
viewed in Sec. IX.

In hindsight, the slave-boson mean-field theory and
the projected wave-function studies contain many of the
qualitative aspects of the hole-doped phase diagram. It
is indeed quite remarkable that the main tools for treat-
ing the -/ model, i.e., projected trial wave function,
slave-boson mean-field, and gauge theory, were in place
a couple of years after the discovery of high 7. In some
ways the theory was ahead of its time because the ma-
jority view in the early days was that the pairing symme-
try was s wave, and the pseudogap phenomenology re-
mained to be discovered. [The first hint came from
Knight-shift measurements in 1989 shown in Fig. 4(a).]
Some of the early history and recent extensions are re-
viewed by Anderson et al. (2004).

The gauge-theory approach is a difficult one to pursue
systematically because it is a strong-coupling problem.
One important development is the realization that the
original U(1) gauge theory should be extended to SU(2)
in order to make a smooth connection to the under-
doped limit (Wen and Lee, 1996). This is discussed in
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Secs. XI and XII. More generally, it was gradually real-
ized that the concepts of confinement and deconfine-
ment, which are central to QCD, also play a key role
here except that the presence of fermions and bosons in
addition to gauge fields makes this problem even more
complex. Since gauge theories are not so familiar to
condensed-matter physicists, these concepts are dis-
cussed in some detail in Sec. X. One of the notable re-
cent advances is that the notion of the spin liquid and its
relation to deconfinement in gauge theory has been
greatly clarified and several soluble models and candi-
dates based on numerical exact diagonalization have
been proposed (Misguich et al., 1999; LiMing et al., 2000;
Misguich and Lhuillier, 2004). It remains true, however,
that so far no two-dimensional spin liquid has been con-
vincingly realized experimentally. We would like to men-
tion two promising examples. The first is the organic
compound «,-(BEDT-TTF),Cu,(CN);. This material is
as =% system on an approximate triangular lattice just
on the insulating side of the Mott transition and shows
no spin order down to mK, while the spin susceptibility
reaches a finite constant (Shimizu et al., 2003; Kawamoto
et al., 2004; Kurosaki et al., 2005). Motrunich (2005) has
interpreted this as an example of a spin liquid with a
spinon Fermi surface which is stabilized by ring ex-
change, while Morita et al. (2002) and Lee and Lee
(2005a) have proposed that the Hubbard model on a
triangular lattice may support this spin liquid near the
Mott transition. A second example is the nuclear spin of
a 3He solid layer adsorbed on graphite surfaces (Masu-
tomo et al., 2004).

Our overall philosophy is that the RVB idea of a spin
liquid and its relation to superconductivity contains the
essence of the physics and gives a qualitative description
of the underdoped phase diagram. The goal of our re-
search is to put these ideas on a more quantitative foot-
ing. Given the strong-coupling nature of the problem,
the only way progress can be made is for theory to work
in consort with experiment. Our aim is to make as many
predictions as possible, beyond saying that the
pseudogap is a RVB spin liquid, and challenge the ex-
perimentalists to perform tests. Ideas along these lines
are reviewed in Sec. XII.

High-T. research is an enormous field and we cannot
hope to be complete in our references. Here we refer to
a number of excellent review articles on various aspects
of the subject. Imada et al. (1998) reviewed the general
topic of the metal-insulator transition. Orenstein and
Millis (2000) and Norman and Pepin (2003) have pro-
vided highly readable accounts of experiments and gen-
eral theoretical approaches. Early numerical work was
reviewed by Dagotto (1994). Kastner ef al. (1998) sum-
marized the earlier optical and magnetic neutron-
scattering data mainly on La,_ Sr,CuO,. Major reviews
of angle-resolved photoemission data (ARPES) have
been provided by Campuzano et al. (2003) and Damas-
celli et al. (2003). Optics measurements on underdoped
materials were reviewed by Timusk and Statt (1999) and
Basov and Timusk (2005). The volume edited by Ginz-
berg (1989) contains excellent reviews of early NMR
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FIG. 2. (Color online) Electronic structure of the cuprates. (a)
Two-dimensional copper-oxygen layer (left) simplified to the
one-band model (right). (b) The copper d and oxygen p orbit-
als in the hole picture. A single hole with §=1/2 occupies the
copper d orbital in the insulator.

work by C. P. Slichter and early transport measurements
by N. P. Ong among others. Discussions of stripe physics
were recently given by Carlson ef al. (2003) and Kivelson
et al. (2003). A discussion of spin-liquid states is given by
Sachdev (2003), with an emphasis on dimer order and by
Wen (2004), with an emphasis on quantum order. For an
account of experiments and early RVB theory, see the
book by Anderson (1997).

Il. BASIC ELECTRONIC STRUCTURE OF THE CUPRATES

It is generally agreed that the physics of high-7, su-
perconductivity is that of the copper-oxygen layer, as
shown in Fig. 2. In the parent compound such as
La,CuQy, the formal valence of Cu is 2+, which means
that its electronic state is in the d° configuration. The
copper is surrounded by six oxygens in an octahedral
environment (the apical oxygen lying above and below
Cu are not shown in Fig. 2). The distortion from a per-
fect octahedron due to the shift of the apical oxygens
splits the e, orbitals so that the highest partially occu-
pied d orbital is x>—y?. The lobes of this orbital point
directly to the p orbital of the neighboring oxygen, form-
ing a strong covalent bond with a large hopping integral
Ipq- As we shall see, the strength of this covalent bonding
is responsible for the unusually high energy scale for the
exchange interaction. Thus the electronic state of the
cuprates can be described by the so-called three-band
model, where in each unit cell we have the Cu d,2_p
orbital and two oxygen p orbitals (Emery, 1987; Varma
et al., 1987). The Cu orbital is singly occupied while the p
orbitals are doubly occupied, but these are admixed by
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tpq- In addition, admixtures between the oxygen orbitals
may be included. These tight-binding parameters may
be obtained by fits to band-structure calculations (Mat-
theiss, 1987; Yu et al., 1987). However, the largest energy
in the problem is the correlation energy for doubly oc-
cupying the copper orbital. To describe these correlation
energies, it is more convenient to refer to the hole pic-
ture. The Cu @’ configuration is represented by energy
level E; occupied by a single hole with S= % The oxygen
p orbital is empty of holes and lies at energy E,,, which is
higher than E;. The energy to doubly occupy E, (lead-
ing to a d® configuration) is U, which is very large and
can be considered infinity. The lowest-energy excitation
is the charge-transfer excitation in which the hole hops
from d to p with amplitude —7,,. If E, - E, is sufficiently
large compared with t,,, the hole will form a local mo-
ment on Cu. This is referred to as a charge-transfer in-
sulator in the scheme of Zaanen et al. (1985). Essentially,
E,— E, plays the role of the Hubbard U in the one-band
model of the Mott insulator. Experimentally an energy
gap of 2.0 eV is observed and interpreted as the charge-
transfer excitation (see Kastner et al., 1998).

Just as in the one-band Mott-Hubbard insulator in
which virtual hopping to doubly occupied states leads to
an exchange interaction JS;-S,, where J =4£2/U, in the
charge-transfer insulator the local moments on nearest-
neighbor Cu prefer antiferromagnetic alignment be-
cause both spins can virtually hop to the E, orbital. Ig-
noring the U, for doubly occupying the p orbital with
holes, the exchange integral is given by

4
Jo bl (1)
(Ep - Ed)3

The relatively small size of the charge-transfer gap
means that we are not deep in the insulating phase and
the exchange term is expected to be large. Indeed ex-
perimentally the insulator is found to be in an antiferro-
magnetic ground state. By fitting Raman scattering to
two magnon excitations (Sulewsky ef al., 1990), the ex-
change energy is found to be /=0.13 eV. This is one of
the largest exchange energies known. (It is even larger in
the ladder compounds which involve the same Cu-O
bonding.) This value of J is confirmed by fitting the spin-
wave energy to theory, in which an additional ring ex-
change term is found (Coldea et al., 2001).

By substituting divalent Sr for trivalent La, the elec-
tron count on the Cu-O layer can be changed in a pro-
cess called doping. For example, in La,_ Sr,CuOy, x
holes per Cu are added to the layer. As seen in Fig. 2,
due to the large U, the hole will reside on the oxygen p
orbital. The hole can hop via 7,4, and due to transla-
tional symmetry the holes are mobile and form a metal,
unless localization due to disorder or some other phase
transition intervenes. The full description of hole hop-
ping in the three-band model is complicated, and a num-
ber of theories consider this essential to the understand-
ing of high-T, superconductivity (Emery, 1987; Varma et
al., 1987). On the other hand, there is strong evidence
that the low-energy physics (on a scale small compared
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with ¢,; and E,—E,) can be understood in terms of an
effective one-band model, and we shall follow this route.
The essential insight is that the doped hole resonates on
the four oxygen sites surrounding a Cu and the spin of
the doped hole combines with the spin on the Cu to
form a spin singlet. This is known as the Zhang-Rice
singlet (Zhang and Rice, 1988). This state is split off by
an energy of order tf, 4/ (E,— E;) because the singlet gains
energy by virtual hopping. On the other hand, the
Zhang-Rice singlet can hop from site to site. Since the
hopping is a two-step process, the effective hopping in-
tegral ¢ is also of order tlz,d/ (E,-E,). Since t is the same
parametrically as the binding energy of the singlet, the
justification of this point of view relies on a large nu-
merical factor for the binding energy, which is obtained
by studying small clusters.

By focusing on the low-lying singlet, the hole-doped
three-band model simplifies to a one-band tight-binding
model on the square lattice, with an effective nearest-
neighbor hopping integral ¢ given earlier and with E,
—E, playing a role analogous to U. In the large E,-E,
limit this maps onto the ¢-J model,

H=P| - E tijC}LU.CiO.+JE (S,Sj—in,ﬂj) P. (2)
(ij),o ()

Here the ¢} is the usual fermion creation operator on
site i, n,-:EUclTUcU is the number operator, and P is a
projection operator restricting the Hilbert space to ex-
clude double occupancy of any site. J is given by 4t/ U
and we can see that it is the same functional form as that
of the three-band model described earlier. It is also pos-
sible to dope with electrons rather than holes. The typi-
cal electron-doped system is Nd,_,Ce,CuQy, s (NCCO).
The added electron corresponds to the removal of a hole
from the copper site in the hole picture (Fig. 2), i.e., the
Cu ion is in the d'° configuration. This vacancy can hop
with a t.; and the mapping to the one-band model is
more direct than the hole-doped case. Note that in the
full three-band model, the object which is hopping is the
Zhang-Rice singlet for hole doping and the Cu d'° con-
figuration for electron doping. These have rather differ-
ent spatial structure and are physically quite distinct. For
example, the strength of their coupling to lattice distor-
tions may be quite different. When mapped to the one-
band model, the nearest-neighbor hopping ¢ has the
same parametric dependence but could have a different
numerical constant. As we shall see, the value of ¢ de-
rived from cluster calculations turns out to be surpris-
ingly similar for electron and hole doping. For a bipar-
tite lattice, the f-/ model with nearest-neighbor ¢ has
particle-hole symmetry because the sign of ¢ can be ab-
sorbed by changing the sign of the orbital on one sub-
lattice. Experimentally the phase diagram exhibits
strong particle-hole asymmetry. On the electron-doped
side, the antiferromagnetic insulator survives up to a
much higher doping concentration (up to x=0.2) and
the superconducting transition temperature is quite low
(about 30 K). Many of the properties of the supercon-
ductor resemble that of the overdoped region of the
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hole-doped side and pseudogap phenomenon, which is
prominent in the underdoped region, is not observed
with electron doping. It is as though the greater stability
of the antiferromagnet has covered up any anomalous
regime that might exist otherwise. Precisely why is not
clear at the moment. One possibility is that polaron ef-
fects may be stronger on the electron-doped side, lead-
ing to carrier localization over a broader range of dop-
ing. There has been some success in modeling the
contrast in the single-hole spectrum by introducing
further-neighbor coupling into the one-band model,
which breaks the particle-hole symmetry (Shih et al.,
2004). This will be discussed further below.

We conclude that the electron correlation is strong
enough to produce a Mott insulator at half-filling. Fur-
thermore, the one-band ¢-J model captures the essence
of the low-energy electronic excitations of the cuprates.
Particle-hole asymmetry may be accounted for by in-
cluding further-neighbor hopping ¢'. This point of view
has been tested extensively by Hybertson et al. (1990)
who used ab initio local-density-functional theory to
generate input parameters for the three-band Hubbard
model and then solved the spectra exactly on finite clus-
ters. The results were compared with the low-energy
spectra of the one-band Hubbard model and the #-¢'-J
model. They found an excellent overlap of the low-lying
wave functions for both the one-band Hubbard and the
t-t'-J model and were able to extract effective param-
eters. They found J to be 128+5 meV, in excellent
agreement with experimental values. Furthermore, they
found 1=0.41 and 0.44 eV for electron and hole doping,
respectively. The near particle-hole symmetry in ¢ is sur-
prising because the underlying electronic states are very
different in the two cases, as already discussed. Based on
their results, the commonly used parameter J/t for the
t-J model is 1/3. They also found a significant next-
nearest-neighbor ¢’ term, again almost the same for elec-
tron and hole doping.

More recently, Andersen et al. (1996) pointed out that
in addition to the three-band model an additional Cu 4s
orbital has a strong influence on further-neighbor hop-
ping ¢' and ", where ¢’ is the hopping across the diagonal
and " is hopping to the next-nearest neighbor along a
straight line. Recently Pavarini et al. (2001) emphasized
the importance of the apical oxygen in modulating the
energy of the Cu 4s orbital and found a sensitive depen-
dence of '/t on the apical oxygen distance. They also
pointed out an empirical correlation between optimal 7',
and t'/t. As we shall discuss in Secs. VI.D and VII, ¢’
may play an important role in determining 7, and in
explaining the difference between electron and hole
doping. However, in view of the fact that on-site repul-
sion is the largest energy scale in the problem, it would
make sense to begin our modeling of the cuprates with
the -/ model and ask to what extent the phase diagram
can be accounted for. As we shall see, even this is not a
simple task and will constitute the major thrust of this
review.
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lll. PHENOMENOLOGY OF THE UNDERDOPED
CUPRATES

The essence of the problem of doping into a Mott
insulator is readily seen from Fig. 2. When a vacancy is
introduced into an antiferromagnetic spin background, it
would like to hop with amplitude ¢ to lower its kinetic
energy. However, after one hop its neighboring spin
finds itself in a ferromagnetic environment, at an energy
cost of 3/ if the spins are treated as classical S=3. It is
clear that the holes are very effective in destroying the
antiferromagnetic background. This is particularly so at
t>J when the hole is strongly delocalized. The basic
physics is the competition between the exchange energy
J and the kinetic energy, which is of order ¢ per hole or
xt per unit area. When xt>J, we expect the kinetic en-
ergy to win and the system would be a Fermi-liquid
metal with a weak residual antiferromagnetic correla-
tion. When xt<J, however, the outcome is much less
clear because the system would like to maintain the an-
tiferromagnetic correlation while allowing the hole to
move as freely as possible. Experimentally we know that
the Néel order is destroyed with 3% hole doping, after
which the d-wave superconducting state emerges as the
ground state up to 30% doping. Exactly how and why
superconductivity emerges as the best compromise is the
centerpiece of the high-7, puzzle, but we already see
that the simple competition between J and xt sets the
correct scale x=J/ t:% for the appearance of nontrivial
ground states. We shall focus our attention on the under-
doped region where this competition rages most fiercely.
Indeed it is known experimentally that the normal state
above the superconducting 7. behaves differently from
any other metallic state that we have known about up to
now. Essentially an energy gap appears in some proper-
ties and not others. This region of the phase diagram is
referred to as the pseudogap region and is well docu-
mented experimentally. Below we review some of the
key properties.

A. Pseudogap phenomenon in the normal state

As seen in Fig. 3, the Knight-shift measurement in the
YBCO 124 compound shows that while the spin suscep-
tibility y, is almost temperature independent between
700 and 300 K, as in an ordinary metal, it decreases be-
low 300 K and by the time the 7, of 80 K is reached, the
system has lost 80% of the spin susceptibility (Curro
et al., 1997). To emphasize the universality of this phe-
nomenon, we reproduce in Fig. 4 some old data on
YBCO and LSCO. Figure 4(a) shows the Knight-shift
data from Alloul ef al. (1989). We have subtracted the
orbital contribution which is generally agreed to be
150 ppm (Takigawa et al., 1993) and drawn in the zero
line to highlight the spin contribution to the Knight shift,
which is proportional to y,. The proportionality constant
is known, which allows us to draw in the Knight shift,
which corresponds to the two-dimensional square § :%
Heisenberg antiferromagnet with /=0.13 eV (Ding and
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Makivic, 1991; Sandvik et al, 1997). The point of this
exercise is to show that in the underdoped region the
spin susceptibility drops below that of the Heisenberg
model at low temperatures before the onset of super-
conductivity. This trend continues even in the severely
underdoped limit (Og53—0y4;), showing that the y, re-
duction cannot simply be understood as a fluctuation
towards the antiferromagnet. Note that the discrepancy
is worse if J were replaced by a smaller J.; due to dop-
ing since XS~Je’flf. The data seen in this light strongly
point to singlet formation as the origin of the pseudogap
seen in the uniform spin susceptibility.

It is worth noting that the trend shown in Fig. 4(a) is
not so apparent if one looks at the measured spin sus-
ceptibility directly (Tranquada et al, 1988). This is be-
cause the van Vleck part of the spin susceptibility is dop-
ing dependent due to the changing chain contribution.
This problem does not arise for LSCO, and in Fig. 4(b)
we show the uniform susceptibility data (Nakano et al.,
1994). The zero of the spin part is determined by com-
paring susceptibility measurements to O Knight-shift
data (Ishida et al., 1991). Nakano et al. (1994) found an
excellent fit for the x=0.15 sample (see Fig. 9 of this
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reference) and determined the orbital contribution for
this sample to be x,~0.4x 1077 emu/g. This again al-
lows us to plot the theoretical prediction for the Heisen-
berg model. Just as for YBCO, y, for the underdoped
samples (x=0.1 and 0.08) drops below that of the
Heisenberg model. In fact, the behavior of y, for the two
systems is remarkably similar, especially in the under-
doped region.!

A second indication of the pseudogap comes from the
linear T coefficient of the specific heat, which shows a
marked decrease below room temperature (see Fig. 5).
Furthermore, the specific-heat jump at 7, is greatly re-
duced with decreasing doping. It is apparent that the
spins are forming into singlets and the spin entropy is
gradually lost. On the other hand, as shown in Fig. 6, the
frequency-dependent conductivity behaves very differ-
ently depending on whether the electric field is in the ab
plane (o) or perpendicular to it (o).

At low frequencies (below 500 cm™) o, shows a typi-
cal Drude-like behavior for a metal with a width which
decreases with temperature, but with an area (spectral
weight) which is independent of temperature
(Santander-Syro et al., 2002). Thus there is no sign of the
pseudogap in the spectral weight. This is surprising be-
cause in other examples in which an energy gap appears
in a metal, such as the onset of charge- or spin-density
waves, there is a redistribution of the spectral weight
from the Drude part to higher frequencies. An impor-
tant observation concerning the spectral weight is that
the integrated area under the Drude peak is found to be

'We note that a comparison of x, for YBCO and LSCO was
made by Millis and Monien (1993). Their YBCO analysis was
similar to ours. However, for LSCO they found a rather differ-
ent yo by matching the measurement above 600 K to that of
the Heisenberg model. Consequently, their y, looked different
for YBCO and LSCO.
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linear in x (Orenstein et al., 1990; Uchida et al., 1991;
Cooper et al., 1993; Padilla et al., 2005). In the supercon-
ducting state this weight collapses to form the delta-
function peak, with the result that the superfluid density
ng/m is also linear in x. It is as though only the doped
holes contribute to the charge transport in the plane. In
contrast, angle-resolved photoemission spectroscopy
shows a Fermi surface at optimal doping very similar to
that predicted by band theory, with an area correspond-
ing to 1—x electrons [see Fig. 7(d)]. With underdoping,
this Fermi surface is partially gapped in an unusual man-
ner, which we shall discuss next.

In contrast to the metallic behavior of o,;,, Homes et
al. (1993) discovered that below 300 K o.(w) is gradually
reduced for frequencies below 500 cm™' and a deep hole
is carved out of o.(w) by the time 7. is reached. This is
clearly seen in the lower panel of Fig. 6.

Finally, angle-resolved photoemission spectroscopy
shows that an energy gap (in the form of a pulling back
of the leading edge of the electronic spectrum from the
Fermi energy) is observed near momentum (0, 7). Note
that the line shape is extremely broad and completely
incoherent. The onset of superconductivity is marked by
the appearance of a small coherent peak at this gap edge
(Fig. 7). The size of the pullback of the leading edge is
the same as the energy gap of the superconducting state
as measured by the location of the coherence peak. As
shown in Fig. 7, this gap energy increases with decreas-
ing doping while the superconducting 7. decreases. This
trend is also seen in tunneling data.

It is possible to map out the Fermi surface by tracking
the momentum of the minimum excitation energy in the
superconducting state for each momentum direction.
Along the Fermi surface the energy gap does exactly
what is expected for a d-wave superconductor. It is
maximal near (0, ) and vanishes along the line connec-
tion (0,0) and (7r,7), where the excitation is often re-
ferred to as nodal quasiparticles. Above T, the gapless
region expands to cover a finite region near the nodal
point, beyond which the pseudogap gradually opens as
one moves towards (0,7). This unusual behavior is
sometimes referred to as the Fermi arc (Ding et al., 1996;
Loeser et al., 1996; Marshall et al., 1996). It is worth
noting that unlike the antinodal direction [near (0, )],
the line shape is relatively sharp along the nodal direc-
tion even above 7. From the width in momentum space,
a lifetime which is linear in temperature has been ex-
tracted for a sample near optimal doping (Valla et al.,
1999). A narrow line shape in the nodal direction has
also been observed in LSCO (Yoshida et al., 2003) and in
Na-doped Ca,CuO,Cl, (Ronning et al., 2003). So the no-
tion of relatively well-defined nodal excitations in the
normal state is most likely a universal feature.

As mentioned earlier, the onset of superconductivity
is marked by the appearance of a sharp coherence peak
near (0, ). The spectral weight of this peak is small and
gets even smaller with decreasing doping, as shown in
Fig. 8(b). Note that this behavior is totally different from
conventional superconductors. There the quasiparticles
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FIG. 7. (Color online) Angle-resolved photoemission data for
underdoped cuprates. (a)—(c) Spectra from underdoped Bi-
2212 (T.=85 K) taken at different k points along the Fermi
surface shown in (d). Note the pullback of the spectrum from
the Fermi surface as determined by the Pt reference shown by
grey lines (red online) for 7> T,. (e) Temperature dependence
of the leading-edge midpoints (from Norman et al., 1998). The
temperature 7° where the pseudogap determined from the
leading edge first appears plotted as a function of doping for
Bi-2212 samples (bottom). Triangles are determined from data
such as shown in (a) and squares are lower-bound estimates.
Circles show the energy gap A measured at (0,7) at low tem-
peratures. From Campuzano et al., 2003.

are well defined in the normal state and according to
BCS theory the sharp peak pulls back from the Fermi
energy and opens an energy gap in the superconducting
state.
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et al., 2000.
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Yet another indication that the superconducting tran-
sition is different from BCS theory comes from the mea-
surement of the change in kinetic energy through the
transition. In conventional BCS theory, pairing between
quasiparticles leads to a gain in the attractive potential
energy at the expense of increasing the kinetic energy
since the Fermi distribution is smeared by the creation
of the energy gap. By carefully monitoring the optical
spectral weight above and below T, it was found that
while optimally doped samples behave as expected for
BCS superconductors, underdoped samples exhibit the
opposite behavior in that the kinetic energy is lowered
by the onset of superconductivity (Molegraaf et al., 2002;
Santander-Syro et al., 2002; Boris et al., 2004; Kuzmenko
et al., 2005; Santander-Syro and Bontemps, 2005).

In the past few years, low-temperature STM data have
become available, mainly on Bi-2212 samples. STM pro-
vides a measurement of the local density of states p(E,r)
with atomic resolution. It is complementary to ARPES
in that it provides real-space information but no direct
momentum-space information. One important outcome
is that STM reveals the spatial inhomogeneity of Bi-2212
on roughly a 50-100-A length scale, which becomes
more significant with underdoping. As shown in Fig. 9(f),
spectra with different energy gaps are associated with
different patches and with progressively more under-
doping; patches with large gaps become more predomi-
nant. Since ARPES is measuring the same surface, it
becomes necessary to reinterpret the ARPES data with
inhomogeneity in mind. In particular, the decrease of the
weight of the coherent peak shown in Fig. 8(b) may sim-
ply be due to a reduction of the fraction of the sample
which has sharp coherent peaks. However, we should
note that there are concerns as to whether the surface
inhomogeneity may behave differently depending on the
temperature at which the crystals are cleaved since the
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STM experiments shown here are cleaved at low tem-
peratures, whereas ARPES and other STM experiments
(Maggio-Aprile et al, 1995) are typically cleaved at
higher temperatures.

A second remarkable observation by STM is that the
low-lying density of states [p(E,r) for E<10-15 meV]is
remarkably homogeneous. This is clearly seen in Fig.
9(f). It is reasonable to associate this low-energy excita-
tion with quasiparticles near the nodes. Indeed, low-
lying quasiparticles exhibit interference effects due to
scattering by impurities, which is direct evidence for
their spatial coherence over long distances. Then the
combined STM and ARPES data suggest a kind of
phase separation in momentum space, i.e., the spectra in
the antinodal region (near 0, 7r) is highly inhomogeneous
in space, whereas the quasiparticles near the nodal re-
gion are homogeneous and coherent. The nodal quasi-
particles must be extended and capable of averaging
over the spatial homogeneity, while the antinodal quasi-
particles appear more localized. In this picture the
pseudogap phenomenon mainly has to do with the anti-
nodal region.

McElroy et al. (2005) have argued that there is a lim-
iting spectrum [the broadest curve in Fig. 9(f)] which
characterizes the extreme underdoped region at zero
temperature. It has no coherent peak at all, but shows a
reduction of spectral weight up to a very high energy of
100-200 meV. Very recently, Hanaguri et al. (2004) have
provided support for this point of view in their study of
Na-doped Ca,CuO,Cl,. In this material the apical oxy-
gen in the CuO, cage is replaced by Cl and the crystal
cleaves easily. For Na doping ranging from x=0.08 to
0.12, a tunneling spectrum very similar to the limiting
spectrum for Bi-2212 is observed. This material appears
free of the inhomogeneity which plagues the Bi-2212
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surface. ARPES experiments on these crystals are be-
coming available (Ronning et al., 2003) and the combi-
nation of STM and ARPES should yield much informa-
tion on the real- and momentum-space dependence of
the electron spectrum. There is much excitement con-
cerning the discovery of a static 4 X 4 pattern in this ma-
terial and its relation to the incommensurate pattern

seen in the vortex core of Bi-2212 (Hoffman
et al., 2002) and also reported in the absence of a mag-
netic field, albeit in a much weaker form (Howland et al.,
2003; Vershinin et al., 2004). How this spatial modulation
is related to the pseudogap spectrum is a topic of current
debate.

In the literature, pseudogap behavior is often associ-
ated with the anomalous behavior of the nuclear-spin
relaxation rate 1/7,. In normal metals the nuclear spin
relaxes by producing low-energy particle-hole excita-
tions, leading to Koringa behavior, i.e., 1/7,T is tem-
perature independent. In high-7,. materials, it is instead
1/T; which is temperature independent, and the en-
hanced relaxation (relative to Koringa) as the tempera-
ture is reduced as ascribed to antiferromagnetic spin
fluctuations. It was found that in underdoped YBCO,
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the nuclear-spin relaxation rate at the copper site
reaches a peak at a temperature of T, and decreases
rapidly below this temperature (Warren et al., 1989; Ya-
suoka et al., 1989; Takigawa et al., 1991). The resistivity
also shows a decrease below 7). In some work in the
literature 77 is referred to as the pseudogap scale. How-
ever, we note that TT is lower than the energy scale we
have been discussing so far, especially compared with
that for the uniform spin susceptibility and the c-axis
conductivity. Furthermore, the gap in 1/77 is not univer-
sally observed in cuprates, e.g., it is not seen in LSCO.
In YBa,Cu,Og, which is naturally underdoped, the gap
in 1/T,T is wiped out by 1% Zn doping, while the
Knight shift remains unaffected (Zheng et al., 2003). It is
known from neutron scattering that low-lying spin exci-
tations near (7, ) are sensitive to disorder. Since 1/7T}
at the copper site is dominated by these fluctuations, it is
reasonable that 1/7 is sensitive as well. In contrast, the
gaplike behavior we have described thus far in a variety
of physical properties is universally observed across dif-
ferent families of cuprates (wherever data exist) and are
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FIG. 10. (Color online) Plot of the incommensurability & vs
hole concentration x. From Matsuda et al., 2000. In the super-
conducting state, the open circles denote the position of the
fluctuating spin-density wave observed by neutron scattering.
Data from Yamada et al., 1998. In the insulator the spin-
density wave becomes static at low temperatures and its orien-
tation is rotated by 45°. The dashed line (8=x) is the prediction
of the stripe model, which assumes a fixed density of holes
along the stripe.

robust. Thus we prefer not to consider T, as the
pseudogap temperature scale.

B. Neutron scattering, resonance, and stripes

Neutron scattering provides a direct measure of the
spin-excitation spectrum. Early work (see Kastner et al.,
1998) showed that with doping, the long-range Néel or-
der gives way to short-range order with a progressively
shorter correlation length so that at optimal doping the
static spin-correlation length is no more than two or
three lattice spacings. Much of the early work was fo-
cused on the La,_,Sr,CuO, family because of the avail-
ability of large single crystals. It was found that there is
enhanced spin scattering at low energies, centered
around the incommensurate positions gy=(x7/2,+6)
(Cheong et al., 1991). Yamada et al. (1998) found that &
increases systematically with doping, as shown in Fig. 10.
Meanwhile it was noted that in the La,CuQO, family
there is a marked suppression of 7, near x= %. This sup-
pression is particularly strong with Ba doping, and T, is
completely destroyed if some Nd is substituted for La, as
in La; ¢_ Nd;4Sr,CuO, for xzé. Tranquada et al. (1995)
discovered static spin-density-wave and charge-density-
wave order in this system, which appears below about
50 K. The period of the spin- and charge-density waves
are eight and four lattice constants, respectively. The
static order is modeled by a stripe picture in which holes
are concentrated in period-4 charge stripes separated by
spin-ordered regions with antiphase domain walls. Re-
cently, the same kind of stripe order was observed in
La; g7sBag 1o5CuOy (Fujita et al., 2004). Note that in this
model there is one hole per two sites along the charge
stripe. It is tempting to interpret the low-energy spin-
density wave observed in LSCO as a slowly fluctuating
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form of stripe order, even though the associated charge
order (presumably dynamical also) has not yet been
seen. The most convincing argument for this interpreta-
tion comes from the observation that over a range of
doping x=0.06 to x=0.125 the observed incommensura-
bility ¢ is given precisely by the stripe picture, i.e., d=x,
while & saturates at approximately é for x=0.125 (see
Fig. 10). However, it must be noted that with this inter-
pretation the charge stripe must be incompressible, i.e.,
it behaves as a charge insulator. Upon changing x, it is
energetically more favorable to add or remove stripes
and change the average stripe spacing, rather than to
change the hole density on each stripe, which is pinned
at le filling. It is difficult to reconcile this picture with the
fact that LSCO is metallic and superconducting in the
same doping range. An alternative interpretation of the
incommensurate spin scattering is that it is due to Fermi-
surface nesting (Littlewood et al., 1993; Si et al., 1993;
Tanamoto et al., 1993). However, in this case the x de-
pendence of & requires some fine-tuning. Regardless of
interpretation, it is clear that in the LSCO family there
are low-lying spin-density-wave fluctuations which are
almost ready to condense. At low temperatures, static
spin-density-wave order is stabilized by Zn doping

(Kimura et al., 1999) near x=51; (Wakimoto et al., 1999)
and in oxygen-doped systems (Lee et al., 1999). How-
ever, in the latter case there is evidence from muon spin
rotation (Savici et al, 2002) that there may be micro-
scopic phase separations in this material (not too sur-
prising in view of the STM data on Bi-2202). It was also
found that spin-density-wave order is stabilized in the
vicinity of vortex cores (Kitano et al., 2000; Lake et al.,
2001; Khaykovich et al., 2002).

The key question then is whether the fluctuating
stripe picture is special to the LSCO family or plays a
significant role in all the cuprates. Outside of the LSCO
family, the spin response is dominated by a narrow reso-
nance at (7,7). The resonance was first discovered at
41 meV for optimally doped YBCO (Rossat-Mignod et
al., 1991; Mook et al., 1993). Careful subtraction of an
accidentally degenerate phonon line reveals that the
resonance appears only below 7. at optimal doping
(Fong et al., 1995). Now it is known that with underdop-
ing the resonance moves down in energy and survives
into the pseudogap regime above 7. The resonance
moves smoothly to almost zero energy at the edge of the
transition to Néel order in YBa,Cu;Og35 (Stock et al.,
2005a) and clearly plays the role of a soft mode at that
transition.

The resonance was interpreted as a spin-triplet exci-
ton bound below 2A (Fong et al., 1995). This idea was
elaborated upon by a number of random-phase-
approximation calculations (Liu et al., 1995; Bulut and
Scalapino, 1996; Brinckmann and Lee, 1999, 2002; Kao
et al., 2000; Norman, 2000, 2001; Abanov et al., 2002;
Onufrieva and Pfeuty, 2002). An alternative picture was
proposed which made use of the particle-particle chan-
nel (Demler and Zhang, 1995). However, as explained
by Tchernyshyov et al. (2001) and by Norman and Pepin
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FIG. 11. Neutron scattering from YBCOgs. This sample has
T.=59 K and the experiment was performed at 6 K (from
Stock et al., 2005). Top panel refers to in-phase fluctuations
between the bilayer which shows a resonance located at (7, )
(¢=0) and at energy 33 meV. Incommensurate peaks disperse
down from the resonance. Broad peaks also disperse upward
from the resonance forming the hourglass pattern. The solid
line is the spin-wave spectrum of the insulating parent com-
pound. Bottom panel denotes out-of-phase fluctuations be-
tween the bilayers.

(2003), this theory predicts an antibound resonance
above the two-particle continuum, which is not in accord
with experiments.

Further support of the triplet exciton idea comes from
the observation that incommensurate branches extend
below the resonance energy (Bourges et al., 2000). This
behavior is predicted by random-phase-approximation-
type theories (Kao et al, 2000; Norman, 2000; Brinck-
mann and Lee, 2002; Li and Gong, 2002; Onufrieva and
Pfeuty, 2002) in that the gap in the particle-hole con-
tinuum extends over a region near (m,w), where the
resonance can be formed. With further underdoping this
incommensurate branch extends to lower energies (see
Fig. 11). Now it becomes clear that the low-energy in-
commensurate scattering previously reported for under-
doped YBCO (Mook et al., 2000) is part of this down-
ward dispersing branch (Pailhes et al., 2004; Stock et al.,
2004).

It should be noted that while the resonance is promi-
nent due to its sharpness, its spectral weight is actually
quite small, of order 2% of the total spin moment sum
rule for optimal doping and increasing somewhat with
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underdoping. There is thus considerable controversy
over its significance in terms of its contribution to the
electron self-energy and towards pairing (see Norman
and Pepin, 2003). The transfer of this spectral weight
from above to below 7. has been studied in detail by
Stock et al. (2004). These authors have emphasized that
in the pseudogap state above 7. in YBa,Cu3;Og¢;s the
scattering below the resonance is gapless and in fact in-
creases in strength with decreasing temperature. This is
in contrast to the sharp drop seen in 1/7;7 below 150 K.
Either a gap opens up at very low energy (below 4 meV)
or the (7, ) spins fluctuating seen by neutrons are not
the dominant contribution to the nuclear-spin relax-
ation, i.e., the latter may be due to excitations which are
smeared out in momentum space and undetected by
neutrons. We note that a similar discrepancy between
the neutron-scattering spectral weight and 1/7|T was
noted for LSCO (Aeppli ef al., 1995). This reinforces our
view that the decrease in 1/7;7 should not be consid-
ered a signature of the pseudogap. We also note that an
enhanced (7, 7) scattering together with singlet forma-
tion is just what is predicted by the SU(2) theory in Sec.
XI.D.

Recently, neutron scattering has been extended to en-
ergies much above the resonance. It is found that very
broad features disperse upward from the resonance, re-
sulting in the “hourglass” structure shown in Fig. 11,
which was first proposed by Bourges et al. (2000) (Hay-
den et al., 2004; Stock et al., 2004). Interestingly, there
has also been a significant evolution of the understand-
ing of neutron scattering in the LSCO family. For a long
time it was thought that the LSCO family does not ex-
hibit the resonance which shows up prominently below
T, in YBCO and other compounds. However, neutron
scattering does show a broad peak around 50 meV,
which is temperature independent. Tranquada et al
(2004) have studied La;g;5Baj,5CuO,, which exhibits
static charge and spin stripes below 50 K and a greatly
suppressed 7,. Their data also exhibit an hourglass-type
dispersion, remarkably similar to that of underdoped
YBCO. In particular, the incommensurate scattering
which was previously believed to be dispersionless now
exhibits downward dispersion (Fujita et al., 2004). The
same phenomenon is also seen in optimally doped
La,_,Sr,CuQO, (Christensen et al., 2004). It is remarkable
that in these materials known to have static or dynamic
stripes the incommensurate low-energy excitations are
not spin waves emanating from (7/2+45) as one might
have expected, but instead are connected to the peak at
(7r,7) in the hourglass fashion. Tranquada et al. (2004) fit
the k-integrated intensity to a model of a two-leg ladder.
It is not clear how unique this fit is because one may
expect high-energy excitations to be relatively insensi-
tive to details of the model. What is emerging though is
a picture of a universal hourglass-shaped spectrum,
which is common to LSCO and YBCO families. The
high-energy excitations appear common while the major
difference seems to be in the rearrangement of spectral
weight at low energy. In La;g;5Bag1,5CuQO, significant
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FIG. 12. (Color online) Neutron scattering
from La1.g75Ba0_125CuO4 at 12 K (> TL) (fI'OI'l’l
Tranquada et al., 2004). (b) The hourglass pat-
tern of the excitation spectrum (cf. Fig. 11).
The solid line is a fit to a two-leg-ladder spin
model. (a) The momentum-integrated scatter-
ing intensity. The dashed line is a Lorenztian
fit to the rising intensity at the incommensu-
rate positions. The sharp peak at 40 meV
could be a phonon.
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weight has been transferred to the low-energy incom-
mensurate scattering, as shown in Fig. 12, and is associ-
ated with stripes. In our view the universality supports
the picture that all the cuprates share the same short-
distance and high-energy physics, which includes the
pseudogap behavior. Stripe formation is a competing
state which becomes prominent in the LSCO family, es-
pecially near x:é, and may dominate the low-energy
and low-temperature (below 50 K) physics. There is a
school of thought which holds the opposite view (see
Carlson et al., 2003), that fluctuating stripes are respon-
sible for the pseudogap behavior and the appearance of
superconductivity. From this point of view the same data
have been interpreted as an indication that stripe fluc-
tuations are also important in the YBCO family (Tran-
quada et al., 2004). Clearly, this is a topic of much cur-
rent debate.

C. Quasiparticles in the superconducting state

In contrast with the anomalous properties of the nor-
mal state, the low-temperature properties of the super-
conductor seem relatively normal. There are two major
differences with conventional BCS superconductors,
however. First, due to the proximity to the Mott insula-
tor, the superfluid density of the superconductor is small
and vanishes with decreasing hole concentration. Sec-
ond, because the pairing is d wave, the gap vanishes on
four points on the Fermi surface (called gap nodes) so
that the quasiparticle excitations are gapless and affect
the physical properties even at the lowest temperatures.
We shall focus on these nodal quasiparticles in this sub-
section.

The nodal quasiparticles clearly contribute to the ther-
mal dynamical quantities such as the specific heat. Be-
cause their density of states vanish linearly in energy,
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they give rise to a 7> term, which dominates the low-
temperature specific heat. In practice, disorder rounds
off the linear density of states, giving instead an a7
+ BT behavior. An interesting effect in the presence of a
magnetic field was proposed by Volovik (1993). He ar-
gued that in the presence of a vector potential A or
superfluid flow, the quasiparticle dispersion FE(k)

=(€x—w)*+ A7 is shifted by

EA(k) = E(R) + (216 v 0—A) e 3)

where j is the current carried by normal-state quasipar-
ticles with momentum k and is usually taken to be
—eﬁfk/ﬁk. Note that since the BCS quasiparticle is a su-
perposition of a particle and a hole, the charge is not a
good quantum number. However, the particle compo-
nent with momentum k and the hole component with
momentum —k each carry the same electrical current
Jir=—e(d.,/0k) and it makes sense to consider this to be
the current carried by the quasiparticle. Note that j;/e is
very different from the group velocity dE(k)/ k.

In a magnetic field which exceeds H,, vortices enter
the sample. The superfluid flow VO~ 2/r, where r is the
distance to the vortex core. On average, 5|V6|=~/R,
where R=(¢,/H)"? is the average spacing between vor-
tices and ¢y=hc/2e is the flux quantum. Volovik then
predicted a shift of the quasiparticle spectra by
~evp(H/ ¢p)"?, which in turn gives a contribution to the
specific heat proportional to VH. This contribution was
observed experimentally (Moler et al., 1994). Very re-
cently Wen et al. (2005) have used this effect to extract
Vs, the velocity of the nodal quasiparticle in the direc-
tion of the maximum gap A, The result is consistent
with that shown in Fig. 13, which will be discussed later.
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FIG. 13. Doping dependence of the superconducting gap A,
obtained from the quasiparticle velocity v, using Eq. (4) (filled
symbols). Here we assume A=A cos2¢ so that Ag=rAkgvs/2,
and plot data for YBCO alongside Bi-2212 (Chiao et al., 2000)
and TI1-2201 (Proust et al., 2002). For comparison, a BCS gap of
the form Agcg=2.14kgT, is also plotted. The value of the en-
ergy gap in Bi-2212, as determined by ARPES, is shown as
measured in the superconducting state (Campuzano et al.,
1999) and the normal state (Norman et al., 1998) (open sym-
bols). The thick dashed line is a guide to the eye. From Suth-
erland et al., 2003.

The quasiparticles contribute to the low-temperature
transport properties as well. Lee (1993) considered the
frequency-dependent conductivity o(w) due to quasipar-
ticle excitations. In the low-temperature limit, he found
that the low-frequency limit of the conductivity is uni-
versal in the sense that it does not depend on impurity
strength, but only on the ratio vg/v,, ie., o(w—0)
=e?mvp/hv, if vp>v,. This result was derived within the
self-consistent #-matrix approximation and can easily be
understood as follows. In the presence of impurity scat-
tering, the density of states at zero energy becomes fi-
nite. At the same time, the scattering rate is propor-
tional to the self-consistent density of states. Since the
conductivity is proportional to the density of states and
inversely to the scattering rate, the impurity dependence
cancels.

The frequency-dependent o(w) is difficult to measure
and it was realized that the thermal conductivity x may
provide a better test of the theory because according to
the Wiedemann-Franz law, «/T is proportional to the
conductivity and should be universal. Unlike o(w), ther-
mal conductivity does not have a superfluid contribution
and can be measured at dc. More detailed consider-
ations by Durst and Lee (2000) showed that o(w) has
two nonuniversal corrections: one due to backscattering
effects, which distinguishes the transport rate from the
impurity rate which enters the density of state, and a
second one due to Fermi-liquid corrections. On the
other hand, these corrections do not exist for thermal
conductivity. Consequently, the Wiedemann-Franz law is
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violated but the thermal conductivity per layer is truly
universal and is given by

2
k(v ) @
T 3hc\vy vp

We note that this result is obtained within the self-
consistent f-matrix approximation, which is expected to
break down if the impurity scattering is strong, leading
to localization effects. The localization of nodal quasi-
particles is a complex subject. Due to particle-hole mix-
ing in the superconductor, zero energy is a special point
and quasiparticle localization belongs to a different uni-
versality class (Senthil and Fisher, 1999) than the stan-
dard ones. Senthil and Fisher also pointed out that since
quasiparticles carry well-defined spin, the Wiedemann-
Franz law for spin conductivity should hold and spin
conductivity should be universal. We note that Durst
and Lee (2000) argued that Fermi-liquid corrections en-
ter the spin conductivity, but we now believe their argu-
ment on this point is faulty.

Thermal conductivity has been measured to mK tem-
peratures in a variety of YBCO and Bi-2212 samples.
The universal nature of /T has been demonstrated by
studying samples with different Zn doping and showing
that «/T extrapolates to the same constant at low tem-
peratures (Taillefer ez al., 1997). A magnetic-field depen-
dence analogous to the Volovik effect for the specific
heat has also been observed (Chiao et al., 2000). Using
Eq. (4), the experimental data can be used to extract the
ratio vp/v,. In the case of Bi-2212 for which photoemis-
sion data for vp and the energy gap are available, the
extracted ratio vp/v, is in excellent agreement with
ARPES results assuming a simple d-wave extrapolation
of the energy gap from the node to the maximum gap
Aq. In particular, the trend that A, increases with de-
creasing doping x is directly observed as a decrease of
vilvy extracted from «/7T. A summary of the data is
shown in Fig. 13 (Sutherland et al., 2003). The results of
such systematic studies strongly support the notion that
in clean samples nodal quasiparticles behave exactly as
one expects for well-defined quasiparticles in a d-wave
superconductor. We should add that in LSCO the ratio
vil v, extracted from «/ T seems anomalously small, sug-
gesting that strong disorder may be playing a role here
to invalidate Eq. (4).

Lee and Wen (1997) pointed out that nodal quasipar-
ticles also manifest themselves in the linear 7 depen-
dence of the superfluid density. They showed that by
treating them as well-defined quasiparticles in the sense
of Landau, a general expression of the linear T coeffi-
cient can be written down, independent of the micro-
scopic origin of the superconductivity. We have

ny(T) _ n,(0) ~ 21n 2a2<v—F)T. 5)

m m T Va

The only assumption made is that the quasiparticles
carry an electric current,
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FIG. 14. The London penetration depth measured in a series
of YBCO films with different oxygen concentrations and 7’s.
The plot shows A2 plotted vs temperature. Data provided by
T. R. Lemberger and published in Boyce et al., 2000.
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where « is a phenomenological Landau parameter,
which was left out in the original Lee-Wen paper but
added in by Millis et al. (1998). While the linear 7 de-
pendence is well known in the conventional BCS theory
of a d-wave superconductor, the same theory gives n,/m
of order unity. It is therefore useful to write n, in this
phenomenological way, and choose n,(7T=0) to be of or-
der x as discussed in Sec. III.A. The key question raised
by Eq. (6) is whether « depends on x or not. There is
experimental evidence that the linear 7 coefficient of
ny(T)/m, which is directly related to London penetration
depth measurements, is almost independent of x for x
less than optimal doping. Figure 14 shows data obtained
for a series of thin films of YBCO (Boyce et al., 2000;
Stajis et al., 2003). The thin-film data are in full agree-
ment with earlier but less extensive data on bulk crystals
(Bonn et al., 1996). However, we note that very recent
data on a severely underdoped YBCO crystal (7.
<22 K and x estimated to be less than 0.064) show that
d(ng/m)/dT decreases with decreasing T, and extrapo-
lates to zero as T goes to zero (Broun et al., 2005; Liang
et al., 2005).

Since vg/v, is known to go to a constant for small x
(and, indeed, decreases with decreasing x), the indepen-
dence of the linear 7 term in ny/m on x means that « is
almost independent on x. By combining with vz/v, ex-
trapolated from the thermal conductivity, & has been
estimated to be 0.5 [see loffe and Millis (2002a) for an
excellent summary]. This is an important result because
it states that despite the proximity to the Mott insulator
nodal quasiparticles carry a current which is similar to
that of the tight-binding Fermi-liquid band. We note that
the simplest microscopic theory, which correctly gives
n(T=0) to be proportional to x, is the slave-boson
mean-field theory discussed in Sec. IX.B. That theory
predicts a to be proportional to x and the resulting x*T
term is in strong disagreement with experiment. Re-
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cently « has been calculated numerically based on a pro-
jected trial wave function of the quasiparticle state
(Nave et al., 2005). It has a value of =(0.7 near optimal
doping and more or less saturates for higher doping. For
low doping it decreases to zero rather sharply as x—0.
This improves the agreement with experiment, particu-
larly with the recent data on highly underdoped samples,
but still does not explain why « appears to be indepen-
dent of x over a wide range of intermediate doping in
the thin film data shown in Fig. 14. More extensive
simple crystal data will be highly desirable. We mention
that a recent study which improves on the slave-boson
mean-field theory by including binding between bosons
and fermions yields an enhanced a proportional to x?,
with y<1/2 (Ng, 2005).

The unusual combination of a small n, (7=0) and a
large linear T reduction due to quasiparticles has a num-
ber of immediate consequences. Simply by extrapolating
the linear 7" dependence, we can conclude that n, van-
ishes at the temperature scale proportional to x and T
must be bound by it. Furthermore, at 7, the number of
quasiparticles which are thermally excited is still small
and not sufficient to close the gap as in standard BCS
theory. Thus the transition must not be thought of as a
gap-closing transition, and the effect of an energy gap
must persist considerably above 7. This can potentially
explain at least part of the pseudogap phenomenon. As
we shall see in the next section, when combined with
phase fluctuations, the quasiparticle excitations explain
the magnitude of 7, in the underdoped cuprates and
account for a wide phase-fluctuation region above T,
but not the full pseudogap phenomenon.

The disconnect between the gap energy A, and kT,
introduces two length scales, &=Avp/A, and R,
=hvp/ kT, where kT, is proportional to x. Around a vor-
tex, the supercurrent induces a population of quasiparti-
cles with the Volovik effect, and in analogy to Eq. (5)
causes a reduction in n,. Lee and Wen (1997) showed
that at a radius of R, the circulating supercurrent ex-
ceeds the critical current and inside that radius the su-
perconductor loses its phase stiffness. They suggested
that the system becomes normal once the large core ra-
dius R, overlaps and chzd)o/ZwR%, in contrast with
H,~ ¢y/2m& as in conventional BCS theory. Note that
H, decreases while H., increases with underdoping. Ex-
perimentally the resistive transition to the normal state
indeed takes place at an H_, which decreases with de-
creasing T,. However, there are signs that vortices sur-
vive above this magnetic field up to H,,, as will be dis-
cussed in Sec. V.B.

Finally, we comment on suggestions in the literature
that classical fluctuations of the superconducting phase
can lead to a linear reduction of ng at low temperatures
(Carlson et al., 1999). Just as in the case of lattice dis-
placements, such fluctuations must be treated quantum
mechanically at low temperatures (as phonons in that
case) to avoid the 3k low-temperature limit for the spe-
cific heat. In the case of phonons, the characteristic tem-
perature scale is the phonon frequency. In the case of
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the superconductor, the phase mode is pushed up to the
plasma frequency by a long-range Coulomb interaction.
Nevertheless, due to the coupling to low-lying particle-
hole excitations, the crossover from classical to quantum
fluctuations must be treated with some care. Parame-
kanti et al. (2000), Benfatto et al. (2001), and Parame-
kanti (2002) calculated that the crossover happens at
quite a high-temperature scale and we believe the low-
temperature linear reduction of n is entirely due to
thermal excitations of quasiparticles.

IV. INTRODUCTION TO THE RESONATING VALENCE
BOND AND A SIMPLE EXPLANATION OF THE
PSEUDOGAP

We have explained in the last section that the Néel
spin order is incompatible with hole hopping. The ques-
tion is whether there is another arrangement of the spin
which achieves a better compromise between the ex-
change energy and the kinetic energy of the hole. For
S :% spins it appears possible to take advantage of the
special stability of the singlet state. The ground state of
two spins § coupled with an antiferromagnetic Heisen-
berg exchange is a spin singlet with energy —S(S+1)J.
Compared with the classical large spin limit, we see that
quantum mechanics provides additional stability in the
term unity in S+1 and this contribution is strongest for

:%. Let us consider a one-dimensional spin chain. A

Néel ground state with S, = _% gives an energy of —i]
per site. On the other hand, a simple trial wave function
of singlet dimers already gives a lower energy of —%J per
site. This trial wave function breaks translational sym-
metry and the exact ground state can be considered to
be a linear superposition of singlet pairs, which are not
limited to nearest neighbors, resulting in a ground-state
energy of 0.443 J. In a square and cubic lattice the Néel
energy is —%J and —%J per site, respectively, while the
dimer variational energy stays at —%] . Itis clear thatin a
3D cubic lattice the Néel state is a far superior starting
point, and in two dimensions the singlet state may
present serious competition. Historically, the notion of a
linear superposition of spin-singlet pairs spanning differ-
ent ranges, called the resonating valence bond (RVB),
was introduced by Anderson (1973) and Fazekas and
Anderson (1974) as a possible ground state for the §
=1 antiferromagnetic Heisenberg model on a triangular
lattice. The triangular lattice is of special interest be-
cause an Ising-like ordering of the spins is frustrated.
Subsequently it was decided that the ground state forms
a \3x13 superlattice in which the moments lie on the
same plane and form 120° angles between neighboring
sites (Huse and Elser, 1988). Up to now there is no
known spin Hamiltonian with full SU(2) spin-rotational
symmetry outside of one dimension which is known to
have a RVB ground state. However, there have been
suggestions that ring exchange or proximity to the Mott
insulator may stabilize such a state (Morita et al., 2002;
Misguich and Lhuillier, 2004; Lee and Lee, 2005a;
Motrunich, 2005). We also refer the reader to Sec. X.H
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for examples either which violate spin rotation or which
permit charge fluctuations.

The Néel state has long-range order of the staggered
magnetization and an infinite degeneracy of ground
states leading to Goldstone modes, which are magnons.
In contrast, the RVB state is a unique singlet ground
state with either a short-range or power-law decay of
antiferromagnetic order. This state of affairs is some-
times referred to as a spin liquid. However, the term spin
liquid is often used more generally to denote any kind of
short-range or power-law decay, i.e., the absence of long-
range order even when the unit cell is doubled, either
spontaneously or explicitly. For example, the ladder sys-
tem has two states per unit cell and in the limit of strong
coupling across the rung the ground state is naturally a
spin singlet with short-range antiferromagnetic order.
Another example is the spontaneously dimerized
ground state for the frustrated spin chains when the
next-nearest-neighbors exchange energy J' is sufficiently
large. This kind of ground state is more properly called a
valence-band solid and is smoothly connected to spin-
singlet ground states often observed for systems with an
even number of electrons per unit cell, the extreme ex-
ample being Si. Thus we think it is better to reserve the
term spin liquid to cases in which there is an odd num-
ber of electrons per unit cell.

Soon after the discovery of high-T, superconductors,
Anderson (1987) revived the RVB idea and proposed
that with the introduction of holes the Néel state is de-
stroyed and the spins form a superposition of singlets.
The vacancy can hop in the background of what he en-
visioned as a liquid of singlets and a better compromise
between the hole kinetic energy and the spin exchange
energy may be achieved. Many elaborations of this idea
followed, but here we argue that the basic physical pic-
ture described above gives a simple account of the
pseudogap phenomenon. Singlet formation explains the
decrease of the uniform spin susceptibility and the re-
duction of the specific heat y. The vacancies are respon-
sible for transport in the plane. The conductivity spectral
weight in the ab plane is given by the hole concentration
x and is unaffected by singlet formation. On the other
hand, for c-axis conductivity an electron is transported
between planes. Since an electron carries spin %, it is
necessary to break a singlet. This explains the gap for-
mation in o.(w) and the energy scale of this gap should
be correlated with that of uniform susceptibility. In pho-
toemission, an electron leaves the solid and reaches the
detector. The pullback of the leading edge simply re-
flects the energy cost to break a singlet. The lowering of
the kinetic energy below the onset of superconductivity
may also be explained qualitatively in this picture be-
cause superconductivity is driven by the phase coher-
ence of holes, which lowers the kinetic energy, while the
cost of smearing out the Fermi surface by the creation of
the gap has already been paid for by the creation of the
spin gap at higher temperatures.

A second concept associated with the RVB idea is the
notion of spinons and holons and spin-charge separa-
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FIG. 15. (a) A cartoon representation of the
resonating valence bond (RVB) liquid or sin-
glets. The solid bond represents a spin-singlet
configuration and the circles represents a va-
cancy. (b) An electron is removed from the
plane in photoemission or a c-axis conductiv-
ity experiment. This necessitates the breaking
of a singlet.
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tions. Anderson postulated that spin excitations in a
RVB state are S :% fermions, which he called spinons.
This is in contrast with excitations in a Néel state which
are S=1 magnons or S=0 gapped singlet excitations.

It was initially suggested that the spinons form a
Fermi surface, with the Fermi volume equal to that of
1—x fermions. Later it was proposed that the Fermi sur-
face is gapped to form a d-wave-type structure, with the
maximum gap near (0, ). This k dependence of the en-
ergy gap is needed to explain the momentum depen-
dence observed in photoemission.

The concept of spinons is a familiar one in one-
dimensional spin chains where they are well understood
to be domain walls. In two dimensions the concept is a
novel one which does not involve domain walls. Instead,
a rough physical picture is as follows. If we assume a
background of short-range singlet bonds forming the so-
called short-range RVB state, a cartoon of the spinon is
shown in Fig. 15. If the singlet bonds are “liquid,” two

:% spins formed by breaking a single bond can drift
apart, with the liquid of singlet bonds filling in the space
between them. They behave as free particles and are
called spinons. The concept of holons follows naturally
(Kivelson et al., 1987) as the vacancy left over by remov-
ing a spinon. A holon carries charge e but no spin.

V. PHASE FLUCTUATION VERSUS COMPETING ORDER

One of the hallmarks of doping a Mott insulator is
that the spectral weight of the frequency-dependent con-
ductivity o(w) should go to zero in the limit of small
doping. Indeed, o(w) shows a Drude-like peak at low
frequencies and its area was shown to be proportional to
the hole concentration (Orenstein et al., 1990; Uchida et
al., 1991; Cooper et al., 1993; Padilla et al., 2005). Results
from an exact diagonalization of small samples are con-
sistent with a Drude weight of order xt (Dagotto et al.,
1992). When the metal becomes superconducting, all the
spectral weight collapses into a & function if the sample
is in the clean limit. The London penetration depth for
field penetration perpendicular to the ab plane is given
by
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- 4o

)\L - m*cz ’ (7)
where n2//m" is the spectral weight and n)¢ is the 3d
superfluid charge density. As an example, if we take
A, =1600 A for YBa,Cu;O¢, and take nfd to be the hole
density, we find from Eq. (7) m"~2m,, which corre-
sponds to an effective hopping t*z%t. The notion that
\7? is proportional to xt is also predicted by slave-boson
theory, as discussed in Sec. IX.B.

Uemura et al. (1989) discovered empirically a linear
relation between )\12 measured by muon spin rotation
and the superconducting 7. They interpreted this rela-
tion as indicative of the Bose condensation of holes
since in two dimensions the Bose-Einstein condensation
temperature is proportional to the areal density. Since
)\12 is proportional to the 3d density, in principle, some
adjustment for the layer spacing should be made. Fur-
thermore, A}* is highly sensitive to disorder, and it is
now known that in many systems not all the spectral
weight collapses to the ¢ function, i.e., some residual
normal conductivity is left, presumably due to inhomo-
geneity (Basov et al., 1994; Corson et al., 2000). Thus the
Uemura et al. plot should be viewed as providing a
qualitative trend, rather than a quantitative relation.
Nevertheless, it is important in that it draws a relation-
ship between T, and carrier density.

A. A theory of T,

The next important step was taken by Emery and Kiv-
elson (1995), who noted that it is the superfluid density
which controls the phase stiffness of the superconduct-
ing order parameter A=|AleY i.e., the energy density
cost of a phase twist is

H= %K?(V 6)>. (8)

Here the superscript on K? denotes the bare stiffness on
a short distance scale. For two-dimensional layers the
stiffness K,=#%(n,/2)/2m", i.e., the kinetic energy of
Cooper pairs. The spectral weight n,/m” and the stiff-
ness are given by
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where ¢, is the spacing between the layers and using
Egs. (7) and (9) can be directly measured in terms of \ | .
If K? is small due to the proximity to the Mott insulator,
then phase fluctuation is strong and the 7, in the under-
doped cuprates may be governed by phase fluctuations.
The theory of phase fluctuations in two dimensions is
well understood due to the work of Berezinskii (1971)
and Kosterlitz and Thouless (1973). The Berezinskii-
Kosterlitz-Thouless transition is described by the ther-
mal unbinding of vortex-antivortex pairs. The energy of
a single vortex is given by

Evyoriex = Ec +27K2 In(L/&)), (10)

where L is the sample size, & is the BCS coherence
length which serves as a short-distance cutoff, and E, is
the core energy. For vortex-antivortex pairs, the sample
size L is replaced by the separation of the pairs. The
vortex unbinding transition is driven by the balance be-
tween this energy and the entropy, which also scales
logarithmically with the vortex separation. At 7,, K| is
predicted to jump between zero and a finite value K(7,)
given by a universal relation

whin,
8 m

kT.=(w2)K(T,) = (11)
(Nelson and Kosterlitz, 1977). The precise value of T,
depends on K (7T=0) and weakly on the core energy. In
the limit of very large core energy, kT,=1.5K’, whereas
for an XY model on a square lattice E, is basically zero
if & in Eq. (10) is replaced by the lattice constant and
TC:O.95K§,). Thus K? should give a reasonable guide to
T, in the phase-fluctuation scenario. Emery and Kivel-
son estimated K from \ | data for a variety of materials
and concluded that K’ is indeed on the scale of 7. How-
ever, they assumed that each layer is fluctuating inde-
pendently, even for systems with strongly Josephson-
coupled bilayers. Subsequent work using microwave
conductivity confirmed the Berezinskii-Kosterlitz-
Thouless nature of the phase transition but concluded
that in Bi-2212 it is the bilayer which should be consid-
ered as a unit, i.e., the superconducting phase is strongly
correlated between the two layers of a bilayer (Corson et
al., 1999). This increases the Kg estimate by a factor of 2.
For example, for A =1600 A, Emery and Kivelson
noted K" to be 145 K for YBCO. This should really be
replaced by 290 K, a factor of 3 higher than 7.

We can get around this difficulty by realizing that K is
reduced by thermal excitation of quasiparticles and the
bare K’ in the Berezinskii-Kosterlitz-Thouless theory
should include this effect. In Sec. III.B we have shown
empirical evidence that the linear T coefficient of ny(T)
is relatively independent of x. The bare K? was mea-
sured as the high-frequency limit in a microwave experi-
ment (Corson et al., 1999). As seen in Fig. 16, the bare
phase stiffness 79=7#%1"/m" continues to decrease lin-
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FIG. 16. The phase stiffness 7y measured at different frequen-
cies (Tp=h’n,/m"). The solid dots give the bare stiffness ob-
tained by extrapolation to infinite frequency. 7, of this sample
is 74 K. This is where the phase stiffness measured at low fre-
quency would vanish according to Berezinskii-Kosterlitz-
Thouless (BKT) theory. Note the linear decrease of the bare
stiffness with 7 which extends considerably above 7. This de-
crease is due to thermal excitations of nodal quasiparticles.
Inset: The time scale of the phase fluctuation. The hatched
region denotes %/ 7=kT,. From Corson et al., 1999.

early with 7 above T,.=74 K. Given the universal rela-
tion (11), an estimate of 7. can be obtained by the inter-
ception of the straight line 7,=(8/m)kT with the bare
stiffness. This yields an estimate of the Berezinskii-
Kosterlitz-Thouless transition temperature of =60 K.
The somewhat higher actual T, of 74 K is due to three-
dimensional ordering effects between bilayers. Now we
can extend this procedure to a multilayer supercon-
ductor. In Fig. 17 we show schematically a T9=#2n"/m"
plot of single-layer, bilayer, and trilayer systems (N
=1,2,3) assuming that the layers are identical. We ex-
pect n?(T: 0), which is the areal density per N layers, to
scale linearly with N. On the other hand, the linear T
slope also scales with N because the number of ther-
mally excited quasiparticles per area scale with N. The
extrapolated T,’s are therefore the same. Now we may

FIG. 17. Schematic plot of the phase stiffness Tp=%%n,/m" for
superconductors with N-coupled layers. The linear decrease
with temperature is due to the thermal excitation of quasipar-
ticles. The transition temperatures 7.y, N=1,2,3, are esti-
mated by the interception with the BKT line 7(,=87/.
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estimate T,(N) from the interception of the line T
=(8/m)kT. We see that T. increases monotonically with
N, but much slower than linearly. This trend is in agree-
ment with what is seen experimentally, notably in the TI
and Hg compounds. As N increases further, the assump-
tion that the layers are identical breaks down as the
charge density of each layer begins to differ. We there-
fore conclude that the combination of phase fluctuations
and the thermal excitation of d-wave quasiparticles can
account for 7, in underdoped cuprates, including the
qualitative trend as a function of the number of layers
within a unit cell.

This theory of 7, receives confirmation from the mea-
surement of the oxygen isotope effect of 7, and on the
penetration depth. It is found that there is a substantial
isotope effect on the ny/m" for both underdoped and
optimally doped YBCO films. On the other hand, there
is a significant isotope effect on 7, in underdoped
YBCO (Khasanov et al., 2003) but no effect on optimally
doped samples (Khasanov et al., 2004). Setting aside the
origin of the isotope effect on n/m", the remarkable
doping dependence of the isotope effect on T, is readily
explained in our theory since T, is controlled by n,/m"
in the underdoped but not in the overdoped region. In
fact, a more detailed examination of the data for two
underdoped samples shows that n,(7T)/m" appears to be
shifted down by a constant when °O is replaced by *O.
This suggests that there is no isotope effect on the
temperature-dependent term in Eq. (5), which depends
on vg. This is consistent with direct ARPES measure-
ments (Gweon et al., 2004). Thus the data are consistent
with an isotope effect only on the zero-temperature
spectral weight n,(0)/m". The latter is a complicated
many-body property of the ground state, which is not
simply related to the effective mass of the quasiparticles
in the naive manner.

B. Cheap vortices and the Nernst effect

Emery and Kivelson (1995) also suggested that the
notion of strong phase fluctuations may provide an ex-
planation of the pseudogap phenomenon. They pro-
posed that the pairing amplitude is formed at a tempera-
ture Ty, which is much higher than 7, and that the
region between Ty and 7, is characterized by a robust
pairing amplitude and energy gap.

This leaves open the microscopic origin of the robust
pairing amplitude and high T\ but we shall argue that
even as phenomenology, phase fluctuations alone cannot
be the full explanation of the pseudogap. Since T is
driven by the unbinding of vortices, let us examine the
vortex energy more carefully. As an extreme example,
let us suppose Ty is described by standard BCS theory.
The vortex core energy in BCS theory is estimated as
E.~(A}/ Epa®)&, where A is the energy gap, A%/ E za? is
the condensation energy per area, & is the core size, and
a is the lattice constant. Using & =vp/A,, we conclude
that E.~ Er in BCS theory, an enormous energy com-
pared with T,. Even if we assume E, to be of order of
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the exchange energy J or the mean-field energy Ty, it is
still much larger than 7. We already note that in
Berezinskii-Kosterlitz-Thouless theory, T, is relatively
insensitive to the core energy. Now we emphasize that
despite the insensitivity of 7, to E,, the physical proper-
ties above T, are very sensitive to the core energy. This
is because the Berezinskii-Kosterlitz-Thouless theory is
an asymptotic long-distance theory which becomes
simple in the limit of dilute vortex or large E.. The typi-
cal vortex spacing is n;m when the vortex density n,
goes as e E/kT, Vortex unbinding happens on a renor-
malized length scale, i.e., the typical spacing between
free vortices, which is much larger than n,'%. As a result,
the physics of the system above T, is very sensitive to E..
If E.>kT,, vortices are dilute, the system will behave as
a superconductor for all measurements performed on a
reasonable spatial or temporal scale. However, except
for the close vicinity of 7., the pseudogap region is not
characterized by strong superconducting fluctuations,
but rather behaves as a metal. Thus a large vortex core
energy can be ruled out. The core energy must be small,
of the order T, i.e., it is comparable to the second term
in Eq. (10). The notion of “cheap” vortices has two im-
portant consequences. First, it is clear that the amplitude
fluctuation and the phase fluctuation are controlled by
the same energy scale, k7. This is because the vortex
core is a region where the pairing amplitude vanishes
and in addition the phase 6 winds by 2. If we do away
with the phase winding and retain the amplitude fluctua-
tion, this should cost even less energy. Thus the tempera-
ture scale where vortices proliferate is also the scale
where amplitude fluctuation proliferates. Then the no-
tion of strong phase fluctuations is applicable only on a
temperature scale of say 27 and this scale must become
small as x becomes small. Thus phase fluctuations can-
not explain a pseudogap phenomenon which extends to
finite 7 in the small x limit.

Second, the notion of a cheap vortex means that there
is a nonsuperconducting state which is very close in en-
ergy. In an ordinary superconductor, the core can be
thought of as a patch of normal metals with a finite den-
sity of states at the Fermi level. The reason the core
energy is large is because the energy gained by opening
up an energy gap is lost. In underdoped and in slightly
overdoped cuprates there is experimental evidence from
STM tunneling into the core that the energy gap is re-
tained inside the core (Maggio-Aprile et al., 1995; Pan et
al., 2000). The large peak in the density state predicted
for d-wave BCS theory (Wang and MacDonald, 1995) is
simply not there. The nature of the state in the core,
which one can think of as a competing state to the su-
perconductor, is highly nontrivial and is a topic of cur-
rent debate.

The above discussion is summarized with a schematic
phase diagram shown in Fig. 18. A temperature scale of
about 27, in the underdoped region marks the range of
phase fluctuations. This is the region where the picture
envisioned by Emery and Kivelson (1995) may be valid.
Here the phase is locally well defined and vortices are
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FIG. 18. Schematic phase diagram showing the phase-
fluctuation regime where the Nernst effect is large. Note that
this regime is a small part of the pseudogap region for small
doping.

identifiable objects. Indeed, this is the region where a
large Nernst effect has been measured (Wang et al,
2001, 2002, 2003). The Nernst effect is the voltage trans-
verse to a thermal gradient in the presence of a magnetic
field perpendicular to the plane. It is exquisitely sensi-
tive to the presence of vortices because vortices drift
along the thermal gradient and produce the phase wind-
ing, which supports a transverse voltage by the Joseph-
son effect. A large Nernst signal has been taken to pro-
vide evidence for the presence of well-defined vortices
above T. (Wang et al., 2001, 2002, 2003). At higher tem-
peratures, vortices overlap and the Nernst signal
smoothly crosses over to that describable by Gaussian
fluctuations of the superconducting amplitude and phase
(Ussishkin et al., 2002). Very recently, the identification
of the Nernst region with fluctuating superconductivity
was confirmed by the observation of diamagnetic fluc-
tuations, which persist up to the same temperature as
the onset of the Nernst signal (Wang et al., 2005).

It remains necessary to explain why the resistivity
looks metalliclike in this temperature range and does
not show the strong magnetic-field dependence one or-
dinarily expects for flux-flow resistivity in the presence
of thermally excited vortices. The explanation may lie in
the breakdown of the standard Bardeen-Stephen model
of flux-flow resistivity. Here the vortices have anoma-
lously low dissipation because in contrast to BCS super-
conductors, there are no states inside the core to dissi-
pate. Ioffe and Millis (2002b) have proposed that the
vortices are fast and yield a large flux-flow resistivity. In
the two-fluid model, the conductivity is the sum of the
flux-flow conductivity (the superfluid part) and the qua-
siparticle conductivity (the normal part). The small flux-
flow conductivity is quickly shorted out by nodal quasi-
particle contributions, and the system behaves as a metal
but with carriers only in the nodal region. This is also
reminiscent of the Fermi arc picture. Unfortunately, a
more detailed modeling requires an understanding of
the state inside the large core radius R, introduced in
Sec. III.C, which is not available yet.
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Instead of generating vortices thermally, one can also
generate them by applying a magnetic field. Wang et al.
(2003) have applied fields up to 45 T and found evidence
that the Nernst signal remains large beyond the under-
doped samples. They estimate that the field needed to
suppress the Nernst signal to be of order H,,~ ¢,/27&,
where & =#hvg/Ay. This is the core size consistent with
what is reported by STM tunneling experiments. At the
same time, the field needed for a resistive transition is
much lower. Recently Sutherland ef al. (2005) have
shown that in YBCOg 35 superconductivity is destroyed
by annealing or by applying a modest magnetic field.
Beyond this point the material is a thermal metal with a
thermal conductivity which is unchanged from the super-
conducting side, where it is presumably due to nodal
quasiparticles and described by Eq. (4). As a result the
field-induced metal may coexist with a pairing amplitude
and may be a very interesting new metallic state.

What is the nature of the gapped state inside the vor-
tex core as revealed by STM tunneling and how is it
related to the pseudogap region? A popular notion is
that the vortex core state is characterized by a compet-
ing order. A variety of competing orders has been pro-
posed in the literature. An early suggestion was that the
core has antiferromagnetic order and an explicit model
was constructed based on the SU(5) model of Zhang
(1997) (Arovas et al., 1997). However, this particular ver-
sion has been criticized for its failure to take into ac-
count the strong Coulomb repulsion and the proximity
to the Mott insulator (Greiter, 1997; Baskaran and
Anderson, 1998). Recently, more phenomenological ver-
sions based on Landau theory have been proposed
(Demler et al., 2001; Chen et al., 2004) in which antifer-
romagnetism may be incommensurate.

As the temperature is raised in the pseudogap regime,
vortices proliferate and their cores overlap and accord-
ing to this view the pseudogap is characterized by fluc-
tuating competing order. The dynamic stripe picture
(Carlson et al., 2003) is an example of this point of view.
Another proposal for competing order is orbital currents
(Varma, 1997; Chakravarty, Laughlin, ef al., 2002). In this
case the competing order is proposed as persisting in the
pseudogap region but is “hidden” from detection be-
cause of the difficulties of coupling to the order. Finally,
as discussed earlier, the recent observation of checker-
board patterns in the vortex core and in some under-
doped cuprates has inspired various proposals of charge-
density ordering.

Most of the proposals for competing order are phe-
nomenological in nature. For example, the proximity of
d-wave superconductivity to antiferromagnetism is sim-
ply assumed as an experimental fact. However, from a
microscopic point of view the surprise is that d-wave
superconductivity turns out to be the winner of this com-
petition. Our goal is a microscopic explanation of both
the superconducting and pseudogap states. We give a
detailed proposal for the vortex core in Sec. XII.C. Here
we mention that while our proposal also calls for slowly
varying orbital currents in the core, this fluctuating order
is simply one manifestation of a quantum state. For ex-
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ample, an enhanced antiferromagnetic fluctuation is an-
other manifestation. As discussed in Sec. VI.C, this pic-
ture is fundamentally different from competing states
described by Landau theory. In the pseudogap phase,
vortices proliferate and overlap and all orders become
very short range. Apart from characterizing this state as
a spin liquid (or RVB), the only possibility of order is a
subtle one, called topological or quantum order. These
concepts are described in Sec. X and a possible experi-
mental consequence is described in Sec. XILLE.

C. Two kinds of pseudogaps

Since the pseudogap is fundamentally a crossover
phenomenon, there is a lot of confusion about the size of
the pseudogap and the temperature scale where it is ob-
served. Upon surveying the experimental literature, it
seems to us that we should distinguish between two
kinds of pseudogaps. The first is clearly due to supercon-
ducting fluctuations. The energy scale of the pseudogap
is the same as the low-temperature superconducting gap
and it extends over a surprisingly large range of tem-
peratures above T,.. This is what we called the Nernst
region in the last section. This kind of pseudogap has
been observed in STM tunneling in which it has been
found that a reduction of the density of states persists
above T, even in overdoped samples (Kugler et al.,
2001). We believe the pullback of the leading edge ob-
served in ARPES shown in Fig. 7(a) should be under-
stood along these lines. There is another kind of
pseudogap which is associated with singlet formation. A
clear signature of this phenomenon is the downturn in
uniform spin susceptibility shown in Figs. 3 and 4. The
temperature scale of the onset is high and increases up
to 300—400 K with underdoping. The energy scale asso-
ciated with this pseudogap is also very large and can
extend up to 100 meV or beyond. For example, the on-
set of the reduction of the c-axis conductivity (which one
may interpret as twice the gap) has been reported to
exceed 1000 cm™'. This is also the energy scale one as-
sociates with the limiting STM tunneling spectrum ob-
served in highly underdoped Bi-2212 [Fig. 9(f)] and in
Na-doped Ca,CuO,Cl, (Hanaguri et al., 2004). The gap
in these spectra is very broad and ill defined. In the
ARPES literature it is described as the “high-energy
pseudogap” (see Damascelli et al., 2003) or the “hump”
energy. These spectra evolve smoothly into that of the
insulating parent, as emphasized by Laughlin (1997).
This is most clearly demonstrated in Na-doped
Ca,CuO,Cl, and the ARPES spectrum near the anti-
nodal point looks remarkably similar to that seen by
STM (Ronning et al., 2003). Examples of this kind of a
spectrum can be seen in the samples UD46 and UD30
shown in Fig. 8(a). In contrast to the low-energy
pseudogap, a coherent quasiparticle peak is never seen
at these very high energies when the system enters the
superconducting state. Instead, weak peaks may appear
at lower energies, but judging from the STM data these
may be associated with inhomogeneity. In this connec-
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tion, we point out that the often quoted 7" line shown in
Fig. 7 is actually a combination of the two kinds of
pseudogaps. The solid triangles marking the onset of the
leading edge refer to the fluctuating superconductor gap,
while the solid squares are lower bounds based on the
observation of the hump. Another example of this dif-
ference is that in LSCO the superconducting gap is be-
lieved to be much smaller and the pullback of the lead-
ing edge is not seen by ARPES. On the other hand, the
singlet formation is clearly seen in Fig. 3 and the broad
humplike spectra is also seen by ARPES (Zhou et al,
2004).

We note that in contrast to superconducting fluctua-
tions, which extend across the entire doping range but
are substantially reduced for overdoped samples, the on-
set of singlet formation seems to end rather abruptly
near optimal doping. The Knight shift is basically tem-
perature independent just above T, in optimally doped
and certainly in slightly overdoped samples (Horvatic et
al., 1993; Takigawa et al., 1993). For this reason, we pro-
pose that the pseudogap line and the Nernst line may
cross in the vicinity of optimal doping, as sketched in
Fig. 18. In this connection it is interesting to note that
the pseudogap has also been seen inside the vortex core
(Maggio-Aprile et al., 1995; Pan et al., 2000). By defini-
tion, this is where the superconducting amplitude is sup-
pressed to zero and the gap is surely not associated with
the pairing amplitude. We have argued that the gap of-
fers a glimpse of the state which lies behind the
pseudogap associated with singlet formation. It is inter-
esting to note that the gap in the vortex core has been
reported in a somewhat overdoped sample (Hoogen-
boom et al., 2001). It is as though at zero temperature
the state with a gap in the core is energetically favorable
compared with the normal metallic state up to quite high
doping. It will be interesting to extend these measure-
ments to even more highly overdoped samples to see
when the gap in the vortex core finally fills in. At the
same time, it will be interesting to extend the tunneling
into the vortex core in overdoped samples to higher
temperatures to see if the gap will fill in at some tem-
perature below 7.

VI. PROJECTED TRIAL WAVE FUNCTIONS AND OTHER
NUMERICAL RESULTS

In the original RVB article, Anderson (1987) pro-
posed a projected trial wave function as a description of
the RVB state,

W = Pglyo), (12)

where Pg=I1;(1-n;n;), the Gutzwiller projection op-
erator, has the effect of suppressing all amplitudes in |i))
with double occupation and thereby enforcing the con-
straint of the ¢-J model exactly. The unprojected wave
function contains variational parameters and its choice is
guided by mean-field theory (see Sec. XIII). The full
motivation for the choice of i) becomes clear only af-
ter the discussion of mean-field theory, but we discuss
the projected wave function first because the results are
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concrete and the concepts are simple. The projection
operator is too complicated to be treated analytically,
but properties of the trial wave function can be evalu-
ated using Monte Carlo sampling.

A. The half-filled case

We first discuss the half-filled case in which the prob-
lem reduces to the Heisenberg model. While the original
proposal was for |¢) to be the s-wave BCS wave func-
tion, it was soon found that the d-wave BCS state is a
better trial wave function, i.e., consider

Hd == 2 (thfj(r jo T C-C-) - E /u‘ﬁ(r io

(if),o io
+ 2 [AG UL = i) + e, (13)
(i)

where x;;= xo for nearest neighbors, and A=A, for j=i
+x and —A, for j=i+y. The eigenvalues are the well-
known BCS spectrum

Ep= (e — p)+ Az, (14)
where

€=~ 2xo(cos k, +cos k,), (15)

Ay =2A¢(cos k, —cos k). (16)

At half-filling, =0 and |¢) is the usual BCS wave func-
tion [1h) =g+ vifif 4 )10).

A variety of mean-field wave functions were soon dis-
covered which give identical energy and dispersion. No-
table among these is the staggered flux state (Affleck
and Marston, 1988). In this state the hopping y;; is com-
plex, x;;=xo expl[i(-1)"*»®], and the phase is arranged
in such a way that it describes free fermion hopping on a
lattice with a fictitious flux +4®, threading alternative
plaquettes. Remarkably, the eigenvalues of this problem
are identical to those of the d-wave superconductor
given by Eq. (14), with

tan &, = %. 17)
Xo

The case ®y=1/4, called the m-flux phase, is special in
that it does not break the lattice translational symmetry.
As we can see from Eq. (17), the corresponding d-wave
problem has a very large energy gap and its dispersion is
shown in Fig. 19. The key feature is that the energy gap
vanishes at the nodal points located at (x#/2,+7/2).
Around the nodal points the dispersion rises linearly
forming a cone which resembles the massless Dirac
spectrum. For the 7r-flux state the dispersion around the
node is isotropic. For @ less than /4, the gap is smaller
and the Dirac cone becomes progressively anisotropic.
The anisotropy can be characterized by two velocities,
v in the direction towards (4, 7) and v, in the direction

towards the maximum gap at (0, ).
The reason various mean-field theories have the same
energy was explained by Affleck er al. (1988) and Dag-
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FIG. 19. The energy dispersion of the m-flux phase. Note the
massless Dirac spectrum at the nodal points at (+7/2, +7/2).

otto et al. (1988) due to a certain SU(2) symmetry. We
defer a full discussion of the SU(2) symmetry to Sec. X
but mention here that it corresponds to the following
particle-hole transformation:

o

fir— a JT + Bifi
fii— = Bifii + aifiy. (18)

Note that the spin quantum number is conserved. It de-
scribes the physical idea that adding a spin-up fermion
or removing a spin-down fermion are the same state af-
ter projection to the subspace of singly occupied fermi-
ons. It is then not a surprise to learn that the Gutzwiller
projection of the d-wave superconductor and that of the
staggered flux state give the same trial wave function, up
to a trivial overall phase factor, provided w=0 and Eq.
(17) is satisfied. A simple proof of this is given by Zhang
et al. (1988). The energy of this state is quite good. The
best estimate for the ground-state energy of the square-
lattice Heisenberg antiferromagnet, which is a Néel or-
dered state, is (S;-S;)=-0.3346 J (Trivedi and Ceperley,
1989; Runge, 1992). The projected w-flux state (Gros,
1988; Yokoyama and Ogata, 1996) gives —0.319 J, which
is in excellent agreement considering that there is no
variational parameter.

We note that the projected d-wave state has a power-
law decay for the spin-spin correlation function. The
equal-time spin-spin correlator decays as r~“, where «
has been estimated to be 1.5 (Ivanov, 2000; Paramekanti
et al., 2005). This projection has considerably enhanced
the spin correlation compared with the exponent of 4 for
the unprojected state. One might expect a better trial
wave function by introducing a sublattice magnetization
in the mean-field Hamiltonian. A projection of this state
gives an energy which is marginally better than the pro-
jected flux state, —0.3206 J. It also has a sublattice mag-
netization of 84%, which is too classical. The best trial
wave function is one which combines staggered flux and
sublattice magnetization before projection (Gros, 1988,
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FIG. 20. Energy of projected wave functions. (a) Comparison
of the energy of various projected trial wave functions. From
Ivanov, 2004. (b) The condensation energy estimated from the
difference of the projected d-wave superconductor and the
projected staggered flux state. From Ivanov and Lee, 2003.

1989; Lee and Feng, 1988). It gives an energy of —0.332 J
and a sublattice magnetization of about 70%, both in
excellent agreement with the best estimates.

B. The doped case

In the presence of a hole, the projected wave function
(12) has been studied for a variety of mean-field states
- Here P stands for a double projection: the ampli-
tudes with double occupied sites are projected out and
only amplitudes with the desired number of holes are
kept. The ratios Ay/ xo, #/ xo, and hy/ xy, where hy is the
field conjugate to the sublattice magnetization, are
variational parameters. It was found that the best state is
a projected d-wave superconductor and the sublattice
magnetization is nonzero for x <x. where x.=0.11 for
t/J=3 (Yokoyama and Ogata, 1996). The energetics of
various states are shown in Fig. 20(a). It is interesting to
note that the projected staggered flux state always lies
above the projected d-wave superconductor, but the en-
ergy difference is small and vanishes as x goes to zero, as
expected. The staggered flux state also prefers antiferro-
magnetic order for small x, and the critical x>F is now
0.08, considerably less than that for the projected
d-wave superconductor. The energy difference between
the projected flux state and projected d superconductor
(with antiferromagnetic order) is shown in Fig. 20(b). As
we can see from Fig. 20(a), the inclusion of an antiferro-
magnet will only give a small enhancement of the energy
difference for small x=<0.05. The projected staggered
flux state is the lowest-energy nonsuperconducting state
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that has been constructed so far. For x >0.18, the flux @,
vanishes and this state connects smoothly to the pro-
jected Fermi sea, which one ordinarily thinks of as the
normal state. It is then tempting to think of the pro-
jected staggered flux state as the “normal” state in the
underdoped region (x<<0.18) and interpret the energy
difference shown in Fig. 20(b) as the condensation en-
ergy. Such a state may serve as the competing state that
we have argued must live inside the vortex core. The
fact that the energy difference vanishes at x=0 guaran-
tees that it is small for small x.

Ivanov (2004) has pointed out that the concave nature
of the energy curves shown in Fig. 20(a) for small x in-
dicates that the system is prone to phase separation.
Such a phase separation may be suppressed by the long-
range Coulomb interaction and the energy curves are
indeed sensitive to nearest-neighbor repulsion. Thus we
believe that Fig. 20(a) still provides a useful comparison
of different trial wave functions.

C. Properties of projected wave functions

It is interesting to put aside the question of energetics
and study the nature of the projected d-wave supercon-
ductor. A thorough study by Paramekanti et al. (2001,
2004) shows that it correctly captures many of the cu-
prate superconductors properties. For example, the su-
perfluid density vanishes linearly in x for small x. This is
to be expected since the projection operator is designed
to yield an insulator at half-filling. The momentum dis-
tribution exhibits a jump near the noninteracting Fermi
surface. The size of the jump is interpreted as the qua-
siparticle weight z according to Fermi-liquid theory and
again goes to zero smoothly as x — 0. Using the sum rule
and assuming Ferm-liquid behavior for nodal quasipar-
ticles, the Fermi velocity is estimated and found to be
insensitive to doping, in agreement with photoemission
experiments.

A distinctive feature of the projected staggered flux
state is that it breaks translational symmetry and orbital
currents circulate the plaquettes in a staggered fashion
as soon as x#0. Motivated by the SU(2) symmetry,
which predicts a close relationship between the pro-
jected d-wave superconductor and the projected stag-
gered flux states, Ivanov et al. (2000) examined whether
there were signs of the orbital current in the projected
d-wave superconductor. Since this state does not break
translational or time-reversal symmetry, there is no
static current. However, the current-current correlation

Gj=(()j(B)), (19)

where j(«) is the current on the « bond, shows a power-
law-type decay and its magnitude is much larger than
the naive expectation that it should scale as x2. Note that
before projection the d-wave superconductor shows no
hint of the staggered current correlation. The correla-
tion that emerges is entirely a consequence of the pro-
jection. We believe the emergence of orbital current
fluctuations provides strong support for the importance
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of SU(2) symmetry near half-filling. Orbital current fluc-
tuations of similar magnitude were found in the exact
ground-state wave function of the #-J/ model on a small
lattice; two holes on 32 sites. Leung (2000) and Lee and
Sha (2003) showed that the orbital current correlation
has the same power-law decay as the hole-chirality cor-
relation,

Gy, = Xn@Dxn())s

where y;, is defined on a plaquette i as n,(4)S;-(S,
X 83), where 1-4 labels the sites around the plaquette
and nh(i):l—c'}'(,c,-(, is the hole density operator. This is
in agreement with the notion that a hole moving around
the plaque experiences a Berry’s phase due to the non-

collinearity of the spin quantization axis of the instanta-
neous spin configurations. For § =% spins the Berry’s
phase is given by %q&, where ¢ is the solid angle sub-
tended by the instantaneous spin orientations S, S,, and
S5 (Wen et al., 1989; Fradkin, 1991). This solid angle is
related to the spin chirality S;-(S,XS;). This phase
drives the hole in a clockwise or anticlockwise direction
depending on its sign, just as a magnetic flux through the
center of the plaquette would. Thus the flux @, of the
staggered flux state has its physical origin in the coupling
between the hole kinetic energy and the spin chirality.

It is important to emphasize that the projected d-wave
state possesses long-range superconducting pairing or-
der, while at the same time exhibiting a power-law cor-
relation in antiferromagnetic order and staggered orbital
current. On the other hand, the projection of a staggered
flux phase at finite doping will possess long-range orbital
current order, but short-range pairing and antiferromag-
netic order. Different versions of projected states shown
in Fig. 20(a) all have the same kinds of fluctuations; it is
just that one kind of order may dominate over the oth-
ers. Then it is easy to imagine that the system may shift
from one state to another. For instance, in Sec. XII.C we
argue that the pairing state will switch to a projected
staggered flux state inside the vortex core. Note that this
is a different picture from the traditional Landau picture
of competing states as advocated by Chakravarty,
Laughlin, et al. (2002), for instance. These authors have
suggested on phenomenological grounds that the
pseudogap region is characterized by staggered orbital
current order, which they call d-density waves. The sym-
metry of this order is indistinguishable from the doped
staggered flux phase (Hsu et al., 1991; Lee, 2002). Ac-
cording to Landau theory, the competition between
d-density waves and superconducting order will result in
either a first-order transition or a region of coexisting
phases at low temperatures. This view of competing or-
der is very different from the one proposed here, where
a single quantum state possesses a variety of fluctuating
orders.
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D. Improvement of projected wave functions, effect of t’,
and the Gutzwiller approximation

The projected wave function is the starting point for
various schemes to further improve the trial wave func-
tion. Indeed, the variational energy can be lowered and
Sorella et al. (2002) have provided strong evidence that a
d-wave superconducting state may be the ground state
of the t-J model. On the other hand, others (Heeb and
Rice, 1993; Shih et al., 1998) have found that the super-
conducting tendency decreases with improvement of the
trial wave functions. Studies based on other methods
such as density-matrix renormalization group (White
and Scalapino, 1999) found that next-nearest-neighbor
hopping ¢' with ¢'/t>0 is needed to stabilize the d-wave
superconductor; otherwise the holes are segregated into
striplike structures. All these computational schemes
suffer from some form of approximation and cannot
give definitive answers. What is clear is that the d-wave
superconductor is a highly competitive candidate for the
ground state of the -/ model.

Recently Shih et al. (2004) have examined the pairing
correlation in projected wave functions, including the ef-
fect of ¢'. They find that for moderate doping (x=0.1),
t'/t with a negative sign greatly enhances the pairing
correlation. The effect increases with increasing ¢’ and is
maximal around ¢'/t=-0.4. Their result contradicts
expectations based on earlier density-matrix
renormalization-group work (White and Scalapino,
1999), which found a suppression of superconductivity
with negative t'/t. However, Shih et al. pointed out that
the earlier work was limited to very low doping and is
not in disagreement with their finding for x=0.1. This
result should be confirmed by improving the wave func-
tion but the pair correlation with ¢ is so robust that the
controversy surrounding the t'=0 case may well be
avoided. It should be noted that a negative ¢’ is what
band theory predicts. Furthermore, Pavarini et al. (2001)
have noted a correlation of T, with |¢'| and have shown
that the Hg and Tl compounds which have the highest
T, have t'/t in the range —0.3 to —0.4. Thus the role of ¢’
may well explain the variation of 7, among different
families of cuprates.

The Gutzwiller projection is rather cumbersome to
implement and a simple approximate scheme was pro-
posed, called the Gutzwiller approximation (Zhang et
al., 1988; Hsu, 1990). The essential step is to construct an
effective Hamiltonian

Hep=- ngz C:'racia + gJJE S;-S; (20)
(ifo (i)

and treat this in the Hartree-Fock-BCS approximation.
The projection operator in the original ¢-/ model is
eliminated in favor of the reduction factors g,=2x/(1
+x) and g;=4/(1+x)?, which are estimated by assuming
statistical independence of the population of the sites
(Vollhardt, 1984). The important point is that g,=2x/(1
+x) reduces the kinetic energy to zero in the x — 0 limit
in an attempt to capture the physics of the approach to
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the Mott insulator. The Gutzwiller approximation bears
a strong resemblance to the slave-boson mean-field
theory and is just as easy to handle analytically. It has
the advantage that the energetics compare well with the
Monte Carlo projection results. The Gutzwiller approxi-
mation has been applied to more complicated problems
such as impurity and vortex structure (Tsuchiura et al.,
2000, 2003) with good results.

VIl. THE SINGLE-HOLE PROBLEM

The motion of a single hole doped into the antiferro-
magnet is a fundamental issue to start with. The z-J-type
model is again the canonical Hamiltonian for studying
this problem. The key physics of the problem is the com-
petition between the antiferromagnetic correlation—
long-range ordering and the kinetic energy of the hole.
The motion of the single hole distorts the antiferromag-
netic ordering when it hops between different sublat-
tices. Shraiman and Siggia (1988) have studied this dis-
tortion in a semiclassical way and found the new
coupling between the spin current of the hole and the
magnetization current of the background. This coupling
leads to the long-range dipolar distortion of the stag-
gered magnetization and the minimum of the hole dis-
persion at k=(w/2,m/2). This position of the energy
minimum is interpreted as follows. Even if we start with
the pure #-J model, the direct hopping between nearest-
neighbor sites is suppressed, while the second-order pro-
cesses in ¢ lead to the effective hopping between the sites
belonging to the same sublattice. This effective ¢’ and ¢’
have a negative sign and hence lower the energy of k
=(w/2,7/2) compared with k=(,0),(0, ).

The dynamics of the single hole, i.e., the spectral func-
tion of the Green’s function, was also studied with an
analytic method. Kane ef al. (1989) have studied the mo-
tion of the hole in an antiferromagnetic background as
well as a RVB background. They concluded that in both
cases the spectrum consists of a coherent part with a
bandwidth proportional to J and a broad incoherent part
spread out over an energy proportional to ¢. The weight
of the coherent part is ~J/¢. In the case of the antifer-
romagnetic background, when the spin excitation is ap-
proximated by the magnon (spin wave), the Hamiltonian
for the single hole is given by

t
H= NE My glhihygog+ Hel+ 2 Qaba,,  (21)
k.q q

where

0, =20\1- 4, (22)
with y,=(cos g,+cos q,)/2 and

M(k,q) = 4(ugVi—g+ vgVi), (23)

up=NA+ )/ 2mye), vi=-sgn(y )\ - m)/ (27), and 7
=\1-9;. This Hamiltonian dictates that the magnon is
emitted or absorbed every time the hole hops. The most
widely accepted method for studying this model is the
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self-consistent Born approximation in which the Feyn-
man diagrams with the crossing magnon propagators are
neglected (Schmitt-Rink ef al., 1988; Kane et al., 1989).
This leads to the self-consistent equation for the hole
propagator:

Glk,w) = (a) =S olk,9)’Glk - q,0— Qq))_l. (24)
q

The result is that there are two components of the spec-
tral function A(k,w)=—-(1/m7)Im GR(k,w); one is the co-
herent sharp peak corresponding to the quasiparticle
and the other is the incoherent background. The former
has the lowest energy at k=(w/2,7/2) at energy ~-—t
and disperses of the order of J, while the latter does not
depend on the momentum k so much and extends over
the energy of the order of ¢. Intuitively the hole has to
wait for the spins to flip in order to hop, which takes a
time of the order of J~!. Therefore the bandwidth is re-
duced from ~¢ to ~J. This mass enhancement leads to
the reduced weight z~J/t for the quasiparticle peak.
Later, more detailed studies were done with the self-
consistent Born approximation (Marsiglio ef al., 1991;
Martinez and Horsch, 1991; Liu and Manousakis, 1992).
The conclusions obtained are as follows: (i) At k
=(m/2,m/2), two peaks appear at E, ; in addition to the
ground-state delta-function peak at E;.
These energies are given for J/t<0.4 by

E,Jt=—b+a,(JtH?", (25)

where a;=2.16, a,=5.46, a;=7.81, and b=3.28. (ii) The
spectral weight z at k=(w/2,w/2) scales as z
=0.65(J/t)*3. These can be understood as the “string”
excitation of the hole moving in the linear confining po-
tential due to the antiferromagnetic background. It has
also been interpretted in terms of the confining interac-
tion between spinon and holon (Laughlin, 1997). Exact
diagonalization studies have reached consistent results
with the self-consistent Born approximation.

Experimentally, angle-resolved photoemission spec-
troscopy (ARPES) (Wells et al, 1995; Ronning et al.,
1998) in undoped cuprates has revealed the spectral
function of the single doped hole. The band minimum is
indeed at (7/2,7/2) but there is considerable dispersion
towards (0,7). The cone-shaped dispersion around
(7/2,7/2) looks like that of the m-flux state shifted by
the Mott gap to low energy (Laughlin, 1997). However,
in real materials the second (¢') and third (') nearest-
neighbor hoppings are important. The calculated energy
dispersion is found to be sensitive to ¢ and ¢". For ¢’
=¢"=0, the dispersion is flat between (7/2,7/2) and
(0,7) and does not agree with the data. It turns out that
the data are well fitted by J/t=0.3, t'/t=-0.3, and ¢"/¢
=0.2. On the other hand, ARPES in slightly electron-
doped Nd,_,Ce,CuO, showed that the electron is doped
at the point k=(,0) and (0,7) (Armitage et al., 2001).
This difference will be discussed below.

The variational wave-function approach to the antifer-
romagnet and single-hole problem has been pursued by
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several authors (Lee, Ho, et al., 2003; Lee, Lee, et al.,
2003). A good ground-state variational wave function at
half-filling is

o . . IR
[Woy=Pg| 2 (Aka}q“iki + Bkb}nblki) 0
k

), (26)

with N the number of atoms. The operators aj,,,b;,, are
those for the upper and lower bands split by the spin-
density wave with the energy +§&, respectively, and Ay
:(Ek+§k)/Ak’ Bk:(_Ek+§k)/Ak with Ekz \J’fi-i-Ai and
Ay=(3/8)JA(cos k,—cos k). The picture here is that in
addition to the spin-density wave, the RVB singlet for-
mation represented by A is taken into account. As men-
tioned in the last section, this variational wave function
gives much better energy compared to that of A=0.
Hence the ground state is far from the classical Néel
state and includes strong quantum fluctuations. Next the
variational wave function in the case of a single doped
hole with momentum g and $?=1/2 is

|\I’q) = PGCZ]T k(z) (Aka,T(Taikl + BkbleTbikl) NI2 1|

#q

0).

(27)

This variational wave function does not contain the
information of ¢, except the very small dependence of
Ay and By. The robustness of this variational wave func-
tion is the consequence of the large quantum fluctua-
tions already present in the half-filled case, so that the
hole motion is possible even without disturbing the spin-
liquid-like state. Although the variational wave function
does not depend on the parameters ¢’ ,¢”, the energy dis-
persion E(k) is given by the expectation value as

E(k) = (Vi [H,_;+ Hyr_p| Vi) (28)

and depends on these parameters. This expression gives
a reasonable agreement with the experiments in both
undoped- (Ronning et al., 1998) and electron-doped ma-
terials (Armitage et al., 2001). Here an important ques-
tion is the relation between the hole- and electron-
doped cases. There is a particle-hole-symmetry
operation which relates the ¢-¢'-¢’-J model for a hole to
that for an electron. The conclusion is that the sign
change of ¢ and ¢” together with the shift in the momen-
tum by (77, ) gives the mapping between the two cases.
Using this transformation, one can explain the differ-
ence between hole- and electron-doped cases in terms of
the common variational wave function (27). The former
has a minimum at k=(7z/2,7/2) while the latter at k
=(7,0),(0,m).

An exact diagonalization study (Tohyama et al., 2000)
showed that the electronic state is very different be-
tween k=(m/2,m/2) and k=(m,0) for the appropriate
values of ¢ and ¢” for the hole-doped case. The spectral
weight becomes very small at (7,0) and the hole is sur-
rounded by antiparallel spins sitting on the same sublat-
tice. Both these features are captured by a trial wave
function which differs from Eq. (27) in that the momen-
tum g of the broken pair is different from the momen-
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tum of the inserted electron. This can also be inter-
preted as the decay of the quasiparticle state via the
emission of a spin wave (Lee, Lee, et al., 2003). There
are thus two types of wave functions with qualitatively
different natures, i.e., one which describes the quasipar-
ticle state and another which is highly incoherent and
may be realized as a spin-charge separated state.

One important discrepancy between experiment and
theory is the line shape of the spectral function. Namely,
the experiments show a broad peak with the width of
the order of ~0.3 eV in contrast to the delta-function
peak expected for the ground state at k=(w/2,7/2).
One may attribute this large width to the disorder effect
in the sample. However, ARPES in the overdoped re-
gion shows an even sharper peak at the Fermi energy
even though the doping introduces further disorder.
Therefore the disorder effect is unlikely to explain this
discrepancy. Recently electron-phonon coupling to the
single hole in the #-J model has been studied using a
quantum Monte Carlo simulation (Mishchenko and Na-
gaosa, 2004). It was found that the small polaron forma-
tion in the presence of strong correlation reduced the
dispersion and the weight of the zero-phonon line, while
the center of mass of the spectral weight for the origi-
nally “quasiparticle” peak remained the same as the
pure -/ model, even though the shape was broadened.
Therefore the polaron effect is a promising scenario for
explaining the spectral shape.

Recently, Shen et al. (2004) have pointed out that the
polaron picture also explains a long-standing puzzle re-
garding the location of the chemical potential with dop-
ing. The naive expectation based on doping a Hubbard
model predicts that the chemical potential should lie at
the top of the valence band, whereas experimentally in
Na-doped Ca,CuO,(Cl, it was found that the chemical
potential appears to lie somewhere in the midgap. For
example, with a small but finite density of holes, the
chemical potential is several tenths of eV higher than
the energy of the peak position of the one-hole spec-
trum. This is naturally explained if the one-hole spec-
trum has been shifted down by polaron effects so that
the top of the valence band should be at the zero-
phonon line, rather than the center of mass of the one-
hole spectrum.

VIIl. SLAVE-BOSON FORMULATION OF THE t-J MODEL
AND MEAN-FIELD THEORY

As discussed in Sec. I, it is widely believed that the
low-energy physics of high-T, cuprates is described in
terms of the r-/—type model, which is given by (Lee and
Nagaosa, 1992)

1

H-= E J(S,. -8; - Zn,-nj) - E t,-j(c,Tch(, +H.c), (29)
&) ijo

where 1;;=1, t', {" for the nearest-, second-nearest-, and

third-nearest-neighbor pairs, respectively. The effect of

the strong Coulomb repulsion is represented by the fact

that the electron operators cjg and c;, are the projected
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ones in which double occupation is forbidden. This is
written as the inequality

E C:‘L(rcia = 1 ) (30)

which is very difficult to handle. A powerful method
for treating this constraint is the slave-boson method
(Barnes, 1976; Coleman, 1984). In the most general form
the electron operator is represented as

C::O' = ﬁo—bi + EO'O"fiU’dj: » (31)

where €, =—¢;=1 is the antisymmetric tensor. fi . fiy are
the fermion operators, while b,-,d,T are the slave-boson
operators. This representation together with the con-
straint

fifi+fifi+bibi+did;i=1 (32)

reproduces all the algebra of the electron (fermion) op-
erators. From Egs. (31) and (32), the physical meaning of
these operators is clear. Namely, there are four states per
site and b',b corresponds to the vacant state, d',d to
double occupancy, and ff,, f to the single electron with
spin o. With this formalism it is easy to exclude double
occupancy just by deleting d',d from Egs. (31) and (32).
Then the projected electron operator is written as

Clo=Fiobis (33)
with the condition

fifi+fifi +bibi=1. (34)

This constraint can be enforced with a Lagrange multi-
plier \;. Note that unlike Eq. (31), Eq. (33) is not an
operator identity and the right-hand side does not satisfy
the fermion commutation relation. Rather, the require-
ment is that both sides have the correct matrix elements
in the reduced Hilbert space with no doubly occupied
states. For example, the Heisenberg exchange term is
written in terms of ﬁ ,fi- only (Baskaran et al., 1987),

1. . 1 .
Si+8j=— JLiatiafigfis— 3 ifiy = fufi) Gfin = fifi)
1
+ 3l 39
We write

niny=(1-bjb)(1-bb)). (36)

Then §;-S;- %n,-nj can be written in terms of the first two
terms of Eq. (35) plus quadratic terms, provided we ig-
nore the nearest-neighbor hole-hole interaction
}Tbjbib;bj. We then decouple the exchange term in both
the particle-hole and particle-particle channels via the
Hubbard-Stratonovich transformation.

Then the partition function is written in the form
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B
Z:foDﬁDbDb*D)\DXDA exp(—f dTL1>,
0

(37)

where

Ll = jE (|th|2 + |Atj|2) + Efj’—a'(ar_ l)\l)ft(r

(ij) ic

It e

&) o

g[z Agffly — Fifi) + c.c.]

(ij)

+ 2 b (0, iNg+ pp)bi— 2 tyibibifiofier  (38)
i ij

with x;; representing fermion hopping and A;; represent-
ing fermion pairing corresponding to the two ways of
representing the exchange interaction in terms of the
fermion operators. From Egs. (35) and (38) one can con-

clude that J=J/4, but in practice the choice of fij is not
so trivial. Namely, one would like to study the saddle-
point approximation and the Gaussian fluctuation
around it, and it requires the saddle-point approxima-
tion to reproduce the mean-field theory. The latter re-
quirement is satisfied when only one Hubbard-
Stratonovich variable is relevant, but not for the
multicomponent ~ Hubbard-Stratonovich ~ variables
(Negele and Orland, 1987; Ubbens and Lee, 1992). In
the latter case, it is better to choose the parameters in
the Lagrangian to reproduce the mean-field theory. In

the present case, J=3J/8 reproduces the mean-field self-
consistent equation, which is obtained with the Feynman
variational principle (Brinckmann and Lee, 2001).

We note that L; in Eq. (38) is invariant under a local
U(1) transformation,

i0; i0;
fio_)e 'fia» bi_>e tbi’

lei)(ijelej, AI] — elﬂ’.Aijemj, )\i g )\i + 67701',

39)

Xij— €

which is called a U(1) gauge transformation. Due to this
U(1) gauge invariance, the fluctuations of A; and the
phase of x;; have the dynamics of a U(1) gauge field (see
Sec. IX).

Now we describe the various mean-field theories cor-
responding to the saddle-point solution to the functional
integral. The mean-field conditions are

th = 2 <ﬁ(r j0'>’ (40)

Ayi= i = fufin)- (41)
Let us first consider the ¢-/ model in the undoped

case, i.e., the half-filled case. There are no bosons in this
case, and the theory is purely that of fermions. The
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original mean-field solution, i.e., the uniform RVB state
proposed by Baskaran, Zou, and Anderson (Baskaran et
al., 1987), is given by

Xij = x =real (42)

for all bonds and A;;=0. The fermion spectrum is that of
the tight-binding model

Hyryg = — 2 2Jx(c0s ky + o8 k) fyof ke (43)
ko

with the saddle-point value of the Lagrange multiplier
N\;=0. The “spinon Fermi surface” is large, i.e., it is given
by the condition k,+k,=+ with a diverging density of
states (van Hove singularity) at the Fermi energy. Soon
after, many authors found lower-energy states than the
uniform RVB state. One can easily understand that
lower-energy states exist because the Fermi surface is

perfectly nested with the nesting wave vector Qz(ﬂ',ﬂ')

and the various instabilities with Q are expected. Of par-
ticular importance are the d-wave state [see Eq. (13)]
and the staggered flux state [see Eq. (17)], which give
identical energy dispersion. This was explained as being
due to a local SU(2) symmetry when the spin problem is
formulated in terms of fermions (Affleck et al., 1988;
Dagotto et al., 1988). We write

@, (;{) cb,-l:(_f;i%)- (44)

Then Eq. (38) can be written in the more compact form,

J
L= —2‘, T ULU;1+ 5 2 (®],U;®;, +c.c.)
24 2 (ipo

+ iEﬁg(ﬁT— IN)fio + Et b?(ﬁT— IN;+ up)b;
= 2 tiibib fiofio (45)
i.o
where
Uy= (‘A’ijf Af) (46)
i X

At half-filling b=uz=0 and the mean-field solution cor-
responds to \;=0. The Lagrangian is invariant under

D — WD, (47)
Uy — W,UW/, (48)

where W; is a SU(2) matrix [see Eq. (18)]. We reserve a
fuller discussion of the SU(2) gauge symmetry to Sec. X,
and here we give a simple example. In terms of the link

variable Uy, the m-flux and d-RVB states are repre-
sented as

U™ == M7 —i(= 1] (49)
and
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Ul == X7+ 5,7, (50)

respectively, where 7 are the Pauli matrices and 7,
=-mn,=1. These two are related by

Uyl = wiugw;, (51)
where
. it T 1
W;=exp| i(- 1)~ YZT . (52)

Therefore the SU(2) transformation of the fermion vari-
able

q)l, = Wiq)i (53)

relates the 7-flux and d-RVB states. Some remarks are
in order. First, it should be noted that at half-filling we
are discussing the Mott insulating state and its spin dy-
namics. The charge transport is completely suppressed
by the constraint (34). Implementation of the constraint
is discussed in Secs. IX and X where the mean-field
theory is elaborated into gauge theory. Second, it is now
established that the ground state of the two-dimensional
antiferromagnetic Heisenberg model shows antiferro-
magnetic long-range ordering. This corresponds to the
third (and most naive) way of decoupling the exchange
interaction, i.e.,

S;-S;= —f iy ohdo (54)
However, even with the antiferromagnetic long-range
ordering, the singlet formation represented by x;; and
A;; dominates and antiferromagnetic long-range order-
ing occurs on top of it. This view was stressed by Hsu
and co-workers (Hsu, 1990; Hsu et al., 1991) generalizing
the m-flux state to include antiferromagnetic long-range
ordering and is in accord with the energetics of the pro-
jected wave functions, as discussed in Sec. VL.A. An al-
ternative route to reaching the antiferromagnetic
ground state is to start with the m-flux mean-field state
and include gauge fluctuations. The phenomenon of
confinement in lattice gauge theory will also lead to an-
tiferromagnetic order, as discussed in Secs. IX.D and X.

Now we turn to the doped case, i.e., x #0. Then the
behavior of the bosons is crucial for charge dynamics.
Within mean-field theory, bosons are free and con-
densed at Tgg. In a three-dimensional system, Tgg is
finite while Tsg=0 for a purely two-dimensional system.
These theories assume weak three-dimensional hopping
between layers and obtain the finite Tgg roughly propor-
tional to the boson density x (Kotliar and Liu, 1988; Su-
zumura et al., 1988). This makes concrete the original
idea by Anderson (1987) that spin-singlet formation
(RVB) turns into real superconductivity via the Bose
condensation of holons. Kotliar and Liu (1988) and Su-
zumura et al. (1988) found d-wave superconductivity in
the slave-boson mean-field theory presented above, and
the schematic phase diagram is given in Fig. 21. There
are five phases classified by the order parameters yx, A,
and b=(b;) for Bose condensation. In the incoherent
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FIG. 21. Schematic phase diagram of the U(1) mean-field
theory. The solid line denotes the onset of the uniform RVB
state (y#0). The dashed line denotes the onset of fermion
pairing (A#0) and the dotted line denotes mean-field Bose
condensation (b #0). The four regions are (I) Fermi liquid y
#0, b#0; (II) spin gap x#0, A#0; (III) d-wave supercon-
ductor xy#0, A#0, b+#0; and (IV) strange metal y+# 0. From
Lee and Nagaosa, 1992.

state at high temperature, the order parameters are
zero. In the uniform RVB state (IV in Fig. 21), only y is
finite. In the spin-gap state (II), A and y are nonzero
while b=0. This corresponds to spin-singlet supercon-
ductivity with incoherent charge motion and can be
viewed as the precursor phase of superconductivity. This
state has been interpretted as the pseudogap phase
(Fukuyama, 1992). We note that at the mean-field level,
the SU(2) symmetry is broken by the nonzero up in Eq.
(45) and the d-wave pairing state is chosen because it has
lower energy than the staggered flux state. We shall re-
turn to this point in Sec. X. In the Fermi-liquid state (I),
both y and b are nonzero while A=0. This state is similar
to the slave-boson description of the heavy fermion
state. Last, when all the order parameters are nonzero,
we obtain the d-wave superconducting state (IIT). This
mean-field theory, in spite of its simplicity, captures
rather well the experimental features as described in
Secs. III and IV.

Before closing this section, we mention the slave-
fermion method and its mean-field theory (Arovas and
Auerbach, 1988; Yoshioka, 1989; Chakraborty et al.,
1990). One can exchange the statistics of fermions and
bosons in Egs. (31) and (32). Then the boson has the spin
index, i.e., b;,, while the fermion becomes spinless, i.e.,
f;- This boson is called the Schwinger boson and is suit-
able for describing the antiferromagnetically long-range
ordered state. The large-N limit of Schwinger boson
theory gives the antiferromagnetically long-range or-
dered state for S=1/2 spins. The holes are represented
by the spinless fermion forming a small hole pocket
around k=(w/2,7/2). The size of the hole pocket is
twice as large as the usual doped spin-density wave state
due to the absence of the spin index. Therefore the
slave-fermion method violates the Luttinger theorem.
Finally, we mention that by introducing a phase string in
the slave-fermion approach one obtains a phase-string
formulation of high-T,. superconductivity (Weng et al.,
2000; Weng, 2003). In such an approach both spin-1/2
neutral particles and spin-0 charged particles are bosons
with nontrivial mutual statistics between them.
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IX. U(1) GAUGE THEORY OF THE UNIFORM RVB STATE

The mean-field theory only enforces the constraint of
no double occupancy on average. Furthermore, fermi-
ons and bosons introduce redundancy in representing
the original electron, which results in an extra gauge de-
gree of freedom. To include these effects we need to
consider fluctuations around the mean-field saddle
points, which immediately become gauge theories, as
first pointed out by Baskaran and Anderson (1988).
Here we review the early work on the U(l) gauge
theory, which treats gauge fluctuations on the Gaussian
level (Ioffe and Larkin, 1989; Ioffe and Kotliar, 1990;
Nagaosa and Lee, 1990; Lee and Nagaosa, 1992). The
theory can be worked out in some detail, leading to a
nontrivial method for obtaining physical response func-
tions in terms of the fermion and boson ones, called the
Ioffe-Larkin composition rule. It highlights the impor-
tance of calculating gauge-invariant quantities and the
fact that the fermion and bosons only enter as useful
intermediate steps. The Gaussian U(1) gauge theory was
mainly designed for the high-temperature region of the
optimally doped cuprate, i.e., the so-called strange-metal
phase (IV) in Fig. 21. We shall describe its failure in the
underdoped region, which leads to the SU(2) formula-
tion of the next two sections. The Gaussian theory also
misses the confinement physics, which is important for
the ground state.

A. Effective gauge action and non-Fermi-liquid behavior

As discussed in Sec. III, the phenomenology of the
optimally doped Mott insulator is required in order to
describe the two seemingly contradictory features, i.e.,
the doped insulator with small hole carrier concentra-
tion and electrons forming the large Fermi surface. The
former is supported by various transport and optical
properties, such as the Drude weight proportional to x,
while the latter is supported by the angle-resolved pho-
toemission spectroscopy spectra in the normal state of
optimally doped samples. In the conventional single-
particle picture, the reduction of the first Brillouin zone
due to the antiferromagnetically long-range ordered dis-
tinguishes these two. Namely, small hole pockets with
area x are formed in the reduced first Brillouin zone in
the antiferromagnetically long-range ordered state,
while the large metallic Fermi surface of area 1-x ap-
pears otherwise. The challenge for the theory of the op-
timally doped case is that aspects of the doped insulator
appear in some experiments even with the large Fermi
surface. Also it is noted that ARPES shows that there is
no sharp peak corresponding to the quasiparticle in the
normal state, especially at the antinodal region near k
=(m,0). The Fermi surface is defined by a rather broad
peak dispersing near the Fermi energy. These strongly
suggest that the normal state of high-temperature super-
conductors is not described in terms of the usual
Landau-Fermi-liquid picture.

A promising theoretical framework for resolving this
dilemma is the slave-boson formalism introduced above.
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It has the two species of particles, i.e., fermions and
bosons. Due to strong correlation, the electron is “frac-
tionalized” into these two particles. However, one must
be mindful that fermions and bosons are not gauge in-
variant and they are strongly coupled to the gauge field.
This arises from the fact that the conservation of the
gauge charge Q,-:E(Tf;fwﬁg+bjbi can be derived by the
Noether theorem starting from the local U(1) gauge
transformation,

fio‘ - ei(p’fia" bi - ei¢ibi' (55)

Therefore the constraint (34) is equivalent to a local
gauge symmetry. The Green’s functions for fermions
and bosons GF(i,j;T):—<TTf,-U(T]§fU> and Gplij;7)
:—(T,b,-(r)b;) transform as

Grlij;7) — 9D Glij;7),

Gplij:n — 9 Gyij;7. 50

Therefore these fermions and bosons are not gauge in-
variant and should be regarded only as the particles
which are useful in the intermediate step of the theory
to calculate the physical (gauge-invariant) quantities, as
will be done in the next section.

The question is often asked whether the fermions and
bosons are real particles. Strictly speaking, the physical
electron operator is also not gauge invariant under the
electromagnetic-field gauge transformation. Yet, due to
the small size of the coupling constant e, we can men-
tally turn off the coupling for the electromagnetic field
and have no trouble thinking of the electron as real. In
our case, for the fermion and boson to emerge as useful
concepts, we require that on some short-distance scale
(or finite temperature) the confinement effects due to
the compactness of the gauge fields are not important
and the problem can be treated as noncompact, as done
below. We find that fermions and bosons are not close to
being free particles, but are coupled to the gauge field
with a coupling constant of order unity. (This coupling
has been reduced from infinity to unity by screening.)
Thus in the following we regard fermions and bosons as
intermediate steps in the theory and focus on the calcu-
lation of physical (gauge-invariant) quantities. The no-
tion of spinons as emergent low-energy excitations will
be discussed further in Sec. X.

At the mean-field level, the constraint was replaced by
the averaged one (Q;)=1. This average is controlled by
the saddle-point value of the Lagrange multiplier field
(Np)=N\. Originally \; is the functional integral variable
and is a function of (imaginary) time. When this integra-
tion is done exactly, the constraint is imposed. Therefore
we have to go beyond the mean-field theory and take
into account the fluctuation around it. In other words,
the local gauge symmetry is restored by the gauge fields
which transform as
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ajj — Ajj + @i — @j,

i) — aglh + 247 57)

corresponding to Eq. (55). The fields satisfying this con-
dition are already in the Lagrangian (38). Namely, the
phase of the Hubbard-Stratonovich variable y;; and the
fluctuation part of the Lagrange multiplier \; are a;; and
ay(i), respectively.

Let us study this U(1) gauge theory for the uniform
RVB (uRVB) state in the phase diagram of Fig. 21. This
state is expected to describe the normal state of the op-
timally doped cuprates in which the SU(2) particle-hole
symmetry described by Egs. (47) and (48) is not impor-
tant. Here we neglect the A field and consider the y and
\ fields. There are amplitude and phase fluctuations of
the y field, but the amplitude fluctuations are massive
and do not play an important role in the low-energy
limit. Therefore the relevant Lagrangian to start with is

L= 2 ffg(ﬁ_i_ —MFt iao(ﬁ))fw

«f 0
+ 2 bi(_ —Mpt iao("i))bi
; aT

~Jx 2 (e“ify fi,+He) — 192 (e“b;b; + H.c.),
Gij)o (i)
(58)

where # is the saddle-point value of a Hubbard-
Stratonovich variable needed to decouple the hopping
term. We take n=y using Eq. (40). Equation (58) takes
the form of a lattice gauge theory. The spatial compo-
nent of the gauge fields are a;; defined on the (ij) link
while the time component a(r;) is defined on the lattice
site r;. Note that the a;; appears as a phase variable, i.e.,
the Lagrangian is invariant under the transformation
aj;— ay+2m, which identifies this theory as a compact
U(1) gauge theory. The gauge fields are coupled to fer-
mions and bosons hopping on the lattice. The fermions
and bosons are referred to as matter fields in the field-
theory literature. We also note that the usual Maxwell
term (1/ g)ffw, where f,,=d,a,~d,a, familiar in electro-
dynamics, which controls the gauge fluctuations and de-
scribes their dynamics, is absent in Eq. (58). In other
words, the coupling constant g is infinite. This is because
the gauge field represents the constraint; by integrating
over the gauge field we obtain the original problem with
the constraint.

In the mean-field theory the gauge fluctuations are
completely ignored. One consequence is that the en-
tropy is grossly overestimated since extra degrees of
freedom have been introduced. This was shown explic-
itly by Hlubina et al. (1992), who compared the entropy
of the mean-field theory with the high-temperature ex-
pansion and found that it is too large by a factor of 2.
They also found that by including gauge fluctuations in
the random-phase approximation, the agreement is im-
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proved considerably. In the random-phase approxima-
tion, we exchange the order of the integration between
the gauge field (a;,ay) and matter fields (fermions and
bosons). Namely, the matter fields are integrated over
first, and we obtain the effective action for the gauge
field,

e Sert(@) = J Df' DfDb*Dbe 611, (59)

However, this integration cannot be done exactly, and an
approximation is introduced here. The most standard
one is the Gaussian approximation or random-phase ap-
proximation in which the effective action is obtained us-
ing perturbation theory up to the quadratic order in a.
For this purpose we introduce here the continuum ap-
proximation to the Lagrangian L in Eq. (58),

P e DX Ee
2 folm)

2 Fa]—xy

+b (")( —,U«B+lao(”)>b(")

— > b (r)(— +m) b(r)]

2m Mpj=x.y

X(ﬁix, +m> fo(r) =

(60)

where the vector field a is introduced by a;=(r;
—r;)-a[(r;+r;)/2]. Note that 1/mp=~J and 1/mpz=t. The
coupling between the matter fields and gauge field is
given by

Lin = f drijy, + ), (61)

where jﬁ is the fermion current density and jfi is the
boson current density.

Note that integration over a, recovers the constraint
(34) and integration over the vector potential a yields
the constraint

jF+jB:0’ (62)

i.e., the fermion and boson can move only by exchanging
places. Thus the Gaussian approximation apparently en-
forces the local constraint exactly (Lee, 2000). We must
caution that this is true only in the continuum limit, and
an important lattice effect related to the 27 periodicity
of the phase variable, i.e., the compactness of the gauge
field, has been ignored. These latter effects lead to in-
stantons and confinement, as discussed in Sec. IX.D.
Thus it is not surprising that the “exact” treatment of
Lee (2000) yields the same Ioffe-Larkin composition
rule which is derived based on the Gaussian theory (see
Sec. IX.B).

We now proceed to reverse the order of integration.
We integrate out the fermion and boson fields to obtain
an effective action for a,. We then consider the coupling
of the fermions and bosons to the gauge fluctuations,
which are controlled by the effective action. To avoid
double counting, it may be useful to consider this proce-
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dure in the renormalization-group sense, i.e., we inte-
grate out the high-energy fermion and boson fields to
produce an effective action of the gauge field, which in
turn modifies the low-energy matter field. This way we
convert the initial problem of infinite coupling to one of
finite coupling. The coupling is of order unity but may
be formally organized as a 1/N expansion by artificially
introducing N species of fermions. Alternatively, we can
think of this as a random-phase approximation, i.e., a
sum of fermion and boson bubbles. The effective action
for a, is given by

SEFMa) =115 () + 11 ()]a,(@)a,(~ q), (63)

where g=(q,w,) is a three-dimensional vector. The
current-current correlation function Hiy(q) [Hfiv(q)] of
the fermions (bosons) is given by

I1,.(q) = GL(@)iy (= a), (64)

with @=F,B. Taking the transverse gauge by imposing
the gauge-fixing condition

V-a=0, (65)

the scalar (u=0) and vector parts of the gauge-field dy-
namics are decoupled. The scalar part Ilf,(g) corre-
sponds to the density-density response function and
does not show any singular behavior in the low-energy—
momentum limit. On the other hand, the transverse
current-current response function shows singular behav-
ior for small ¢ and w. Explicitly the fermion correlation
function is given by

[17(q) = iwoky(q.0) - xrq’, (66)
where xp=1/24mmyp is the fermion Landau diamagnetic
susceptibililty. The first term describes the dissipation,
and the static limit of o, (real part of the fermion con-
ductivity) for w<vy, is oh(q,0)= prl Mgy, Where pp is
the fermion density and

Yy = {Ttr for |q| < (VF'7-tr)71

T \vlgl2 for gl > (vem) ™"
where 7, is the transport lifetime due to the scatterings
by the disorder and/or the gauge field and vy is the

Fermi velocity. A similar expression is obtained for the
bosonic contribution as

(67)

M7(g) = i0op(q,®) - xsq, (68)
where yz=n(0)/48mmp and n(e) is the Bose occupation
factor. xp diverges at the Bose condensation tempera-

ture ﬂ];)]é:wa/ mp when we assume a weak 3D transfer
of the bosons. Assuming that the temperature is higher

than Yg)})i, the boson conductivity is estimated as
o =x"?q] (69)

for |g|>4¢', where € is the mean free path of the
bosons. It can be seen from Egs. (67) and (69) that 0151
< 0';1.

Summarizing, the propagator of the transverse gauge
field is given by
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(aa(@)ag(~ @) = (8up—qaqp/lg) D1(q), (70)

D(q) = [1T5(q) + 15()] " = [iwa(q) - xaq*1". (71)
Here

ko/|q| for|ql¢ >1
olq) =

72
kot  for|qlt <1, (72)

where ¢ is the fermion mean free path and k is of the
order kp of the fermions.

This gauge field is coupled to fermions and bosons
and leads to their inelastic scatterings. By estimating the
lowest-order self-energies of the fermion and boson
propagators, it is found that these are diverging at any
finite temperature. This is because of the singular behav-
ior of D4(q) for small |g| and w. This kind of singularity
was first noted by Reizer (1989) for the problem of elec-
trons coupled to a transverse electromagnetic field, even
though related effects such as non-Fermi-liquid correc-
tions for the specific heat were noted earlier (Holstein et
al., 1973). However, this does not cause any trouble since
the propagators of fermions and bosons are not the
gauge-invariant quantity and hence are not physical, as
discussed above. As the representative of gauge-
invariant quantities, we consider the conductivity of fer-
mions and bosons. (Note that these are still not “physi-
cal” because one must combine these to obtain the
physical conductivity, as discussed in the next section.)
For example, the integral for the (inverse of) transport
lifetime 7, contains the factor 1-cos 6, where 6 is the
angle between the initial and final momentum for the
scattering. This factor scales with |g|*> for small ¢ and
removes the divergence. The explicit estimate gives

1 B for & > kT
F | s 5 (73)
Tfr T for & < kT,

for fermions while
1 kT
= = (74)
Tfi mMpXa

for bosons. These results are interpreted as the scatter-
ing with fluctuating gauge flux whose propagator is given
by the loop representing the particle-hole propagator for
the two-particle current-current correlation function.

Now some words on the physical meaning of the
gauge field are in order. For simplicity let us consider
three sites and assume that the electron is moving
around these. The quantum mechanical amplitude for
this process is

Pioy=x1x23X31) = A oouls g3l 5 1) - (75)
One can prove that
(Pras = P13)/4i =8 - (8, X 83) (76)

and the right-hand side of the above equation corre-
sponds to the solid angle subtended by the three vectors
$1,8,,8; and is called spin chirality (Wen et al., 1989).
The left-hand side of Eq. (76) is proportional to sin ¢
where ¢ is the flux of the gauge field seen by the fer-
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mion. Therefore the gauge-field fluctuation is regarded
as that of the spin chirality. It has been recently dis-
cussed that spin chirality will produce the anomalous
Hall effect in some ferromagnets such as manganites
and pyrochlore oxides in which noncoplanar spin con-
figurations result from the thermal excitation of the
Skyrmion or the strong spin anisotropy in the ground
state (Ye et al., 1999; Taguchi et al., 2001). This phenom-
enon can be interpreted as the static limit of the gauge
field, while the gauge field discussed here has both quan-
tum and thermal fluctuations.

B. loffe-Larkin composition rule

In order to discuss the physical properties of the total
system, we have to combine the information obtained
for fermions and bosons. This was first discussed by
Ioffe and Larkin (1989). Let us start with the physical
conductivity o, which is given by

o= 0}1 + 0'2;1 (77)
in terms of the conductivities of fermions (o) and
bosons (o). This formula corresponds to the sequential
circuit (not parallel) of the two resistances, and is intu-
itively understood from the fact that both fermions and
bosons have to move the subject to the constraint. This
formula can be derived in terms of the shift of the gauge
field a and the resultant backflow effect. In the presence
of the external electric field E, the gauge field a, and
hence the internal electric field e, is induced. Let us as-
sume that the external electric field E is coupled to fer-
mions. Then the effective electric field seen by fermions
is

er=E+e (78)
while that for bosons is

The fermion current jr and the boson current jp are
induced, respectively, as

Jr=0rep, jp=opeg. (80)
The constraint jr+jz=0 given by Eq. (62) leads to

e=-—"—F. (81)
Or+ 0p
The physical current j is given by

OF0pB

J=jr=-Jjp= E, (82)
Or+0p
leading to the expression for the physical conductivity o
in Eq. (77). It is also noted here that the same result is
obtained if instead we couple the electromagnetic field
to bosons. In this case the internal electric field e is dif-
ferent, but er and ey remain unchanged. Note that op
> oy in the uRVB state, and we conclude that o=o07p
:xrg/mB, which is inversely proportional to the tem-
perature 7. Furthermore, the Drude weight of the opti-
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cal conductivity is determined by x/mp as observed ex-
perimentally. It remains true that the superfluidity
density pg in the superconducting state is given by the
missing oscillator strength below the gap, which also
means that pgox.

A more formal way of deriving the physical electro-
magnetic response follows. We can generalize the discus-
sion of the effective action S.(a) for the gauge field to
include the external electromagnetic field A,. Let us
again couple A, to the fermions. The effective action

yn
becomes, instead of Eq. (63),

SEEMa,A) =11 (la,(@) + A (@) la (- q)
+ A~ ]+ 11 (@a(@a,(-q). (83)

After integrating over the gauge field a,, we end up with
the effective action for A, only as

Seir (A) =T, A @A), (84)
with the physical electromagnetic response function
() =[] + [TT5()] (85)

where a=0 or T stands for the longitudinal and trans-
verse parts. Then the physical diamagnetic susceptibility
X is given by y!= X}l“‘ Xgl. Again in the superconduct-
ing state, I15o pf" and 15« p®, where p’ and p? are the
superfluidity density of the fermion pairing and boson
condensation This leads to the composition rule for p,
as p;'=(p) "+ (pf) = (pf) M eex”!, with pf>pP, repro-
ducing the same result as suggested from the Drude

eight On the other hand, the temperature dependence
of pS is of the form p; ()= pSF (0)(1-aT), where a is given
by the nodal fermion dispersion, while the temperature
dependence of p? is expected to follow higher powers in
T and be negligible. The Ioffe-Larkin composition rule
then predicts that

B 0 2
pmzpf(l—"—;)zpf<0>—[”f(” aT. (86)

P ' (0)

Since pZ(0)~xt, this predicts that the temperature de-
pendence of the superfluid density is proportional to x2.
Comparison with Eq. (5) implies that a~ (t/J)x in the
slave-boson theory. As shown in Fig. 14, this prediction
does not agree with experiment and is probably an indi-
cation of the breakdown of Gaussian fluctuations, which
underlines the loffe-Larkin rule.

We conclude this section by remarking that the Ioffe-
Larkin rule can be extended to various other physical
quantities. For example, the Hall constant R; is given by

_ RZXB + RZXF
XBt+ XF

(87)

while the thermopower S=Sp+Sr and the electronic
thermal conductivity k= g+ kr are sums of the bosonic
and fermionic contributions (Lee and Nagaosa, 1992).
Compared with two-particle correlation functions dis-
cussed above, the single-particle Green’s function is
more complicated. At the mean-field level, the electron
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Green’s function is given by the product of the fermion
and boson Green’s functions in the (r,7) space. There-
fore in the momentum-frequency space, it is given by
the convolution. The spectral function is composed of
two contributions, one is the quasiparticle peak with
weight ~x while the other is the incoherent background.
Even the former one is broadened due to the momen-
tum distribution of the noncondensed bosons, i.e., there
is no quasiparticle peak in the strict sense. This absence
of the delta-function peak also occurs in the SU(2)
theory in Sec. XI indicating that fermions are not free
and hence cannot be regarded as the quasiparticle. On
the other hand, the dispersion of this quasiparticle peak
is determined by that of fermions, and hence its locus of
zero energy constitutes the large Fermi surface enclosing
the area 1-x. However, this simple calculation does not
reproduce some of the novel features in the ARPES
experiments such as the Fermi arc in underdoped
samples, and a more detailed treatment will be discussed
in Sec. XI.

Combined with the discussion of the transport prop-
erties and the electron Green’s function, the present uni-
form RVB state in the U(1) formulation offers an expla-
nation of the dichotomy between the doped Mott
insulator and the metal with large Fermi surface. In par-
ticular, the conclusion that the conductivity is dominated
by the boson conductivity azagzxa'ff/ mp=xtT ex-
plains the linear T resistivity, which has been taken as a
sign of non-Fermi-liquid behavior from the beginning of
high-T, research. However, we must caution the reader

that this conclusion was reached for 7> ﬁlgE, while in
experiments the linear 7T behavior persists to much
lower temperature near optimal doping. It is possible
that gauge fluctuations suppress the effective Bose con-
densation. Lee et al. (1996) have attempted to include
the effect of strong gauge fluctuations on boson conduc-
tivity by assuming a quasistatic gauge fluctuation and
treating the problem with quantum Monte Carlo calcu-
lations. The picture is that the boson tends to make self-
retracing paths to cancel out the effect of the gauge field
(Nagaosa and Lee, 1991). They indeed find that boson

conductivity remains linear in 7 down to much lower
temperature than Tg)])i.

C. Ginzburg-Landau theory and vortex structure

Up to now we have focused on the uRVB state where
the pairing amplitude A of the fermions is zero. In this
subsection we review the phenomenological Ginzburg-
Landau theory to treat this pairing field (Nagaosa and
Lee, 1992; Sachdev, 1992). The free energy for a single
CuO, layer is given by

F=F4,a,A]+Fgl¢,a] + Fgauge[a]a (88)

with
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H? 2
Fii,a,A]= 8:[%{2@% (V— Zia—i?eA>zp

+2sgn(T— Ty + |¢,|4}, (89)
Hig [ oo o
Rl =52 [ P8I ia)p
+2sgn(T - T§H| P + [¢]*], (90)
and

Foaugelal = J dr{xAV X [a + (e/c)ATY
+xp(V X @)?], (91)

where A is the electromagnetic vector potential, c¢ is the
velocity of light, and 7 is set to unity. In the above equa-
tions, the optimal value of the order parameter is scaled
to be unity, and hence the correlation lengths &z, & and
the thermodynamic critical fields H g, H.p are tempera-
ture dependent for both fermion pairing and Bose con-
densation. It is noted that the penetration length of the
fermion pairing (boson Conclensation) Nr (\p) 1§ related
to Hep (Hep) as Hep=¢o/2\2mEphp (Hop= Po/\2TERNp).
We take the lattice constant as the unit of length. Then
E(0)~J/A, ég~x12, and the condensation energy per
unit area is given by H.(0)?/(87)~A?/J and
H._5(0)?/(87) ~ tx?.

Now we consider the consequences derived from this
Ginzburg-Landau free energy. One is the interplay be-
tween the Berezinskii-Kosterlitz-Thouless transitions for
the fermion pairing and boson condensation. We con-
sider the type-II limit, and neglect A for the moment. As
is well known, the binding or unbinding of the topologi-
cal vortex excitations leads to the novel phase transition
(Berezinskii-Kosterlitz-Thouless transition) in two di-
mensions. This is due to the logarithmic divergence of
the vortex energy with respect to the sample size. This
energy is competing with the entropy term which is also
logarithmically diverging. Above some critical tempera-
ture the entropy dominates, and free vortex excitations
are liberated resulting in the exponential decay of the
order parameter. However, this logarithmic divergence
is cut off when the order parameter is coupled to the
massless gauge field a. Namely, the gauge field screens
the vortex current, and |(V-ia)¢| and |(V-2ia)y| decay
exponentially beyond some penetration lengths. This
means that the Berezinskii-Kosterlitz-Thouless transi-
tion for the fermion pairing and boson condensation dis-
appear when the gauge field a is massless. In other
words, these two order parameters are coupled through
the gauge field, and the Berezinskii-Kosterlitz-Thouless
transition occurs only simultaneously when the gauge
field becomes massive due to the Higgs mechanism.
Therefore the phase-transition lines for fermion pairing
and boson condensation in the phase diagram of Fig. 21

Rev. Mod. Phys., Vol. 78, No. 1, January 2006

become crossover lines and only the superconducting
transition remains as the real Berezinskii-Kosterlitz-
Thouless transition.

Now we turn to vortex structures in the superconduct-
ing state. The most intriguing issue here is the quantiza-
tion of the magnetic flux. Because the boson has charge
e while the fermion pairing —2e, the question is whether
the hc/e vortex may be more stable than the conven-
tional Ac/2e vortex. To study this issue, we compare the
energy cost of the two types of vortex structure: (i) Type
A: the fermion-pairing order parameter ¢ vanishes at
the core with its phase winding around it. The boson
condensation does not vanish and the vortex core state
is the Fermi liquid. The flux quantization is hc/2e. (ii)
Type B: the Bose condensation is destroyed at the core
and fermion pairing remains finite. Then the vortex core
state is the spin-gap state. The flux quantization is hc/e
in this case. The energy of each vortex is estimated as
follows. First the loffe-Larkin composition rule results
in the penetration length N of the magnetic field as

N =N+ NG, (92)

which is equivalent to p;'=(pf)"1+(p?)~" derived in the
previous subsection. The contribution from the region
where the distance from the core is larger than &z, &5 is
estimated similarly to the usual case,

| ¢ P A
E"‘[m} ln{max(fp,&;)}’ %)

for the type-A vortex, and 4E for the type-B vortex
because the quantized flux is doubled in the latter case.
The core energy E. is given by the condensation energy
per area times the area of the core. For a type-A vortex

EXN ~ Hepth~ 1, (94)
while for a type-B vortex
EB) ~ K& ~ 1x. (95)

Then the vortex energies are estimated to be E4~E,
+EW and EP=4E+ E®, respectively. Note that E is
proportional to A2, which is dominated by \;*~x and
hence E, EiB) are proportional to x while EEA) is a con-
stant of order J. The latter energy is in agreement with
the estimate of the vortex in the BCS theory discussed in
Sec. V.B and is the dominant energy for sufficiently
small x. We come to the conclusion that the type-B vor-
tex (with Ahc/e flux quantization) will be more stable in
the underdoped region. This conclusion was reached by
Sachdev (1992) and by Nagaosa and Lee (1992) and ap-
pears to be a general feature of the U(1) gauge theory.
Unfortunately, the experimental search for stable hc/e
vortices has so far come up negative (Wynn et al., 2001).
In Sec. XII.C we describe how this problem is fixed by
the SU(2) gauge theory, which is designed to be more
accurate for small doping.
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D. Confinement-deconfinement problem

Despite the qualitative success of the mean-field and
U(1) gauge-field theories, there are several difficulties
with this picture. One is that the gauge fluctuations are
strong and one cannot have a well-controlled small ex-
pansion parameter, except rather formal ones such as
the large-N expansion. This issue is closely related to the
confinement problem in lattice gauge theory and will be
discussed below and also in Secs. X.H and XLF.

The coupling constant of the gauge field is defined as
the inverse of the coefficient of ffw in the Lagrangian. It
is well known that the strong-coupling gauge field leads
to confinement. In the confining phase, only the gauge
singlet particles appear in the physical spectrum, which
corresponds, for example, to the physical electron and
the antiferromagnetic magnon in the present context.
Below we give a brief introduction to this issue. For
more details, see Nagaosa (1995).

Up to now the discussion is at the Gaussian fluctua-
tion level where the effective action for the gauge field
has been truncated at quadratic order in the continuum
approximation. However, we are starting from the
infinite-coupling limit, and even if finite coupling is pro-
duced by integrating over the matter field, the strong-
coupling effect must be seriously considered. In the
original problem the gauge field is defined on the lattice
and the periodicity with respect to a;;— a;;+2m must be
taken into account. Namely, the relevant model is that of
the compact lattice gauge theory. Let us first consider
the most fundamental model without the matter field,

1

Sgauge =-- E (1-cos f,uv) > (96)
gplaquette
where
f,uv = ai,i+u + ai+u,i+u+v - ai+V,i+;L+V —ljj+p (97)

is the flux penetrating through the plaquette in the (d
+1)-dimensional space and u,v=x,y,... . NOW S5, is a
periodic function of f,, with period 27 and one can con-
sider tunneling between different potential minima. This
leads to the “Bloch state” of f,,, when the potential bar-
rier height 1/g is low enough, while it is “localized” near
one minimum when 1/g is high. The former corresponds
to the quantum disordered f,, and leads to the linear
confining force as shown below (confining state). On the
other hand, in the latter case, one can neglect the com-
pact nature of the gauge field and the analysis in previ-
ous sections is justified (deconfining state). For this
confinement-deconfinement transition, one can define
the following order parameter, i.e., the Wilson loop:

W(C) = <exp<iq3€ dxMaﬂ(x))>, (98)
C

where the loop C consists of the paths of length T along
the time direction and those of length R along the spa-
tial direction. It is related to the gauge potential V(R)
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between the two static gauge charges +g with opposite
sign at distance R as

W(C) =exp[- V(R)T]. (99)

There are two types of behavior of W(C): (i) area law,
W(C)~e RT; and (ii) perimeter law, W(C)~ e AR+,
where a,B are constants. In the case (i), the potential
V(R) is increasing linearly in R, and hence the two gauge
charges can never be free. Therefore it corresponds to
confinement, while case (i) corresponds to deconfine-
ment.

It is known that the compact QED (pure gauge)
model in (2+1)D is always confining however small the
coupling constant is (Polyakov, 1987). The argument is
based on the instanton configuration, which is enabled
by the compactness of the gauge field. This instanton is
the source of the flux with the field distribution

X
2"

b(x) = (100)
where x=(r,7) are the (2+1)D coordinates in the
imaginary-time formalism, and b(x)=(e,(x),~e,(x),
b(x)) is the combination of the “electric field” e,(x) and
the “magnetic field” b(x). This corresponds to the tun-
neling phenomenon of the flux because the total flux
slightly above (future) or below (past) the instanton dif-
fers by 2. The anti-instanton corresponds to the sink of
the flux. This instanton or anti-instanton corresponds to
the singular configuration in the continuous approxima-
tion but is allowed in the compact model on a lattice.
Therefore (anti-)instantons take into account the com-
pact nature of the original model in the continuum ap-
proximation. It is also clear from Eq. (100) that the in-
stanton behaves as the positive magnetic charge and the
anti-instanton behaves as the negative. Then it is evident
that when we substitute the (anti-)instanton configura-
tion into the action

1
S= J dx—[b(x)]? (101)
2g
(g is the coupling constant), we obtain the Coulomb 1/|x|
interaction between the (anti-)instantons as

9.4,

Sinst = s
i<j i — xj|

(102)

where g; is the magnetic charge, which is \@/ 2 for the
instanton and —\g/2 for the anti-instanton.

It is well known that the Coulomb gas in three dimen-
sions is always in the screening phase, namely, the long-
range Coulomb interaction is screened to be the short-
range one due to the cloud of the opposite charges
surrounding the charge. Therefore the creation energy
of the (anti-)instanton is finite and the free magnetic
charges are liberated. These free magnetic charges dis-
order the gauge field and make the Wilson loop exhibit
the area law, i.e., confinement.

The discussion up to now is for the pure gauge model
without the matter field. With the matter field the con-
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finement issue becomes very subtle since the Wilson
loop does not work as the order parameter any more.
This is because a particle-antiparticle pair can be excited
out of the vacuum to screen the static charges and the
area law cannot be sustained. Furthermore, confinement
disappears above some transition temperature even in
the pure gauge model. In the presence of the matter
field, the confinement-deconfinement transition at finite
temperature is replaced by the gradual crossover to the
plasma phase in the high-temperature limit (Polyakov,
1978; Susskind, 1979; Svetitsky, 1986). Therefore we can
expect that the slave-boson theory without confinement
describes the physics of the intermediate energy scale
even though the ground state is the confining state. In-
deed, within the U(1) gauge theory, the ground states are
either antiferromagnetic, superconducting, or Fermi lig-
uid and are all confining. Nevertheless, the pseudogap
region which exists only at finite temperatures may be
considered “deconfined” and describable by fermions
and bosons coupled to noncompact gauge fields. We em-
phasize once again that in this scenario fermions and
bosons are not to be considered free physical objects.
Their interactions with gauge fields are important and
physical gauge-invariant quantities are governed by the
Ioffe-Larkin rule within the Gaussian approximation.

It is of great interest to ask the question of whether a
deconfined ground state is possible in a U(l) gauge
theory in the presence of a matter field. This issue was
first addressed in a seminal paper by Fradkin and Shen-
ker (1979), who considered a boson field coupled to a
compact U(1) gauge field. The following bosonic action
is added to Sgquge!

Sp=12 cos[A,0(r) - qa,(r)]. (103)

Here the Bose field is represented by phase fluctuations
only, A, is the lattice derivative, a,(r;)=a;;., is the
gauge field on the link #,i+pu, and ¢ is an integer. It is
interesting to consider the phase diagram in the f-g
plane. Along the =0 line, we have pure gauge theory,
which is always confining in 2+1 dimensions. For g<1,
gauge fluctuations are weak and Sy reduces to the XY
model weakly coupled to a U(1) gauge field, which ex-
hibits an ordered Higgs phase at zero temperature. Note
that in the Higgs phase, the gauge field is gapped by the
Anderson-Higgs mechanism. On the other hand, it is
also gapped in the confinement phase due to the screen-
ing of magnetic charges described earlier. There is no
easy way to distinguish between these two phases and
the central result of Fradkin and Shenker is that for ¢
=1 the Higgs phase and the confinement phases are
smoothly connected to each other. Indeed, it was argued
by Nagaosa and Lee (2000) that for the (1+2)D case the
entire f-g plane is covered by the Higgs-confinement
phase, with the exception of the line g=0 which contains
the XY transition.

The situation is dramatically different for g=2, i.e., if
the boson field corresponds to a pairing field such as in a
superconductor. It is possible to distinguish between the
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Higgs phase and the confinement phase by asking
whether g=+1 have a linear confinement potential be-
tween them or not. In this case there is a phase bound-
ary between the confined and the Higgs phase, and the
Higgs phase (the pairing phase) is deconfined. One way
of understanding this deconfinement is that the paired
phase has a residual Z, gauge symmetry, i.e., the pairing
order parameter is invariant under a sign change of the
underlying g=1 fields which make up the pair. Further-
more, it is known that the Z, gauge theory has a
confinement-deconfinement transition in 2+1 dimen-
sions. Thus the conclusion is that a compact U(1) gauge
theory coupled to a pair field can have a deconfined
phase. This is indeed the route to a deconfined ground
state proposed by Read and Sachdev (1991) and Wen
(1991). In the context of the U(1) gauge theory, the fer-
mion pair field A plays the role of the g=2 boson field in
Eq. (103). In such a phase, the spinon and holons are
deconfined, leading to the phenomenon of spin and
charge fractionalization. A third elementary excitation
in this theory is the Z, vortex, which is gapped.

Senthil and Fisher (2000) pointed out that the square
root of A carried unit gauge charge and one can combine
this with the fermion to form a gauge-invariant spinon
and with the boson to form a gauge-invariant “chargon.”
The spinon and chargon only carry Z, gauge charges
and can be considered almost free. They proposed an
experiment to look for the gapped Z, vortex but the
results have so far been negative. The connection be-
tween the U(1) slave-boson theory and their Z, gauge
theory was clarified by Senthil and Fisher (2001a).

There is yet another route to a deconfined ground
state and that is a coupling of a compact U(1) gauge field
to gapless fermions. Nagaosa (1993) has suggested that
dissipation due to gapless excitations lead to deconfine-
ment. The special case of coupling to gapless Dirac fer-
mions is of special interest. This route [called the U(1)
spin liquid] appears naturally in the SU(2) formulation
and will be discussed in detail in Sec. XLI.F. In Sec. XII
we use the proximity on this deconfined state to under-
stand the pseudogap state. This is a more attractive sce-
nario compared with the reliance purely on finite tem-
perature to see deconfinement effects as described
earlier in this section.

In the literature there have been some confusing dis-
cussions of the role of confinement in the gauge-theory
approach to strong correlations. In particular, Nayak
(2000, 2001) claimed that slave particles are always con-
fined in U(1) gauge theories. His argument is based on
the fact that since these gauge fields are introduced to
enforce constraint, they do not have restoring force and
the coupling constant is infinite. What he overlooked is
the possibility that partially integrating out the matter
fields will generate restoring forces, which brings the
problem to one of strong but finite coupling, and then
sweeping conclusions can no longer be made. Comments
by Ichinose and Matsui (2001), Ichinose et al. (2001), and
Oshikawa (2003) have clarified the issues and answered
Nayak’s objections. For example, Ichinose and Matsui
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(2001) pointed out that (3+1)-dimensional SU(3) gauge
theory coupled to N fermions is in the deconfined phase
even at infinite coupling for N>7. Recently, an example
of N bosonic fields coupled to a U(1) gauge field with
infinite coupling, which shows deconfinement for suffi-
ciently large N, has been worked out in some detail (Lee
and Lee, 2005b). Another counterexample has been
found by Rantner and Wen (2002), Wen (2002b), and
Hermele, Senthil, Fisher, et al. (2004), who have shown
that the U(1) gauge theory coupled to massless Dirac
fermions is in a gapless phase (or the deconfined phase)
for sufficiently large N (see Sec. XI.F). There is also nu-
merical evidence from Monte Carlo studies that the
SU(N) Hubbard-Heisenberg model at N=4 exhibits a
gapless spin-liquid phase, i.e., a Mott insulator with
power-law spin correlation, without breaking lattice
translational symmetry (Assaad, 2005). This spin-liquid
state is strongly suggestive of the stability of a decon-
fined phase with a U(1) gauge field coupled to Dirac
fermions.

E. Limitations of the U(1) gauge theory

The U(1) gauge theory, which only includes Gaussian
fluctuations about mean-field theory, suffers from sev-
eral limitations which are important in the underdoped
regime. Apart from the confinement issue discussed in
the last section, we first mention a difficulty with the
linear T coefficient of the superfluid density. As long as
the gauge fluctuation is treated as Gaussian, the Ioffe-
Larkin law holds and one predicts that the superfluid
density p,(T) behaves as py(T)=~ax—bx’>T. The ax term
agrees with experiment while the —bx?>T term does not
(Lee and Wen, 1997; loffe and Millis, 2002a), as ex-
plained in Sec. V.A. This failure is traced to the fact that
in the Gaussian approximation the current carried by
quasiparticles in the superconducting state is propor-
tional to xvy. We believe this failure is a sign that non-
perturbative effects again become important and con-
finement takes place, so that the low-energy
quasiparticles near the nodes behave like BCS quasipar-
ticles which carry the full current vy This is certainly
beyond the Gaussian fluctuation treatment described
here.

A second difficulty is that experimentally it is known
from neutron scattering that spin correlations at (7, )
are enhanced in the underdoped regime. This happens
at the same time that a spin gap is forming in the
pseudogap regime. The U(1) mean-field theory explains
the existence of the spin gap as due to fermion pairing.
However, this reduces the fermion density of states and
it is not clear how one can get an enhancement of the
spin correlation unless one introduces phenomenologi-
cally random-phase-approximation interactions (Brinck-
mann and Lee, 2001). This problem is more serious be-
cause the gauge field is gapped in the fermion-paired
state and one cannot use gauge fluctuations to enhance
the spin correlation. The gapping of the gauge field also
tends to suppress fermion pairing self-consistently
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(Ubbens and Lee, 1994). We shall see that both these
difficulties are resolved by the SU(2) formulation.

A third difficulty has to do with the structure of the
vortex core in the underdoped limit (Wen and Lee,
1996). As mentioned in Sec. IX.C, U(1) gauge theory
predicts the stability of iic/e vortices, which has not been
observed. This is a serious issue because STM experi-
ments have shown that the pseudogap remains in the
vortex core. Therefore the vortex core should be type B
in U(1) theory, which carries /hc/e flux. On the other
hand, the hc/2e vortex is not “cheap” because the pair-
ing amplitude vanishes and one has to pay with the pair-
ing energy at the core. These difficulties arise because in
U(1) theory fermions become “strong” superconductors
at low temperature in the underdoped region. However,
this contradicts the fact that at half-filling the d-wave
RVB state is equivalent to the zr-flux state, which is not
“superconducting.” In short, U(1) theory misses the im-
portant low-lying fluctuations related to SU(2) particle-
hole symmetry at half-filling. By incorporating this sym-
metry into the gauge field even at finite doping, we are
led to the SU(2) gauge theory of high-7. superconduct-
ors, which we discuss next.

X. SU(2) SLAVE-BOSON REPRESENTATION FOR SPIN
LIQUIDS

In this section we develop the SU(2) slave-boson
theory for spin liquids and underdoped high-T, super-
conductors. This theory is equivalent to the U(1) slave-
boson theory discussed in the last section. However, the
SU(2) formalism makes explicit more of the symmetries
of the slave-boson theory. This makes it easier to see the
low-energy collective modes in the SU(2) formalism,
which in turn allows us to resolve some difficulties of the
U(1) slave-boson theory.2 To develop the SU(2) slave-
boson theory, let us first describe another way to under-
stand U(1) gauge fluctuations in the slave-boson theory.
In this section we concentrate on the undoped case in
which the model is just a pure spin system. Even though
the theory involves only the fermionic representation of
the spin in the underdoped case, we continue to refer to
the theory as the slave-boson theory in anticipation of
the doped case. We generalize the SU(2) slave-boson
theory to the doped model in the next section.

A. Where does the gauge structure come from?

According to the U(1) slave-boson mean-field theory,
fluctuations around the mean-field ground state are de-
scribed by gauge fields and fermion fields. Remember
that the original model is just an interacting spin model
which is a purely bosonic model. How can a purely

2We point out that those difficulties are not because the U(1)
slave-boson theory is incorrect. The difficulties are the results
of the incorrect treatment of the U(1) slave-boson theory, for
example, overlooking some low-energy soft modes.
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bosonic model contain excitations described by gauge
and fermion fields? Should we believe the result?

Let us examine how the results are obtained. We first
split the bosonic spin operator into a product of two
fermionic operators S,o:%fit of;. We then introduce a
gauge field to glue the fermions back into a bosonic spin.
From this point of view it appears that gauge bosons and
fermions are fake and their appearance is just a math-
ematical artifact. The appearance of the fermion field
and the gauge field in a purely bosonic model seems to
indicate that the slave-boson theory is incorrect.

However, we should not discard this theory too
quickly. It is actually capable of producing pictures that
agree with common sense: the excitations in a bosonic
spin system are bosonic excitations corresponding to
spin flips, provided that the gauge field is in a confining
phase. In the confining phase of the U(1) gauge theory,
fermions interact with each other through a linear po-
tential and can never appear as quasiparticles at low en-
ergies. Gauge bosons have a large energy gap in the
confining phase and are absent from the low-energy
spectrum. Only low-energy excitations are the bound
states of two fermions which carry spin 1 and are bosons.
These are the familiar magnons in the antiferromagnet.
The mean-field theory plus the gauge fluctuations may
not be very useful, but is not wrong.

On the other hand, the slave-boson mean-field theory
(plus gauge fluctuations) is also capable of producing
pictures that defy common sense if the gauge field is in a
deconfined phase. In this case fermions and gauge
bosons may appear as well-defined quasiparticles. The
question is do we believe the deconfined phase picture?
Do we believe in the possibility of emergent gauge
bosons and fermions from a purely bosonic model?
Clearly, the slave-boson construction outlined above is
far too formal to believe such results. However, it was
recently realized that some models (Kitaev, 2003; Levin
and Wen, 2003; Wen, 2003b) can be solved exactly with
the slave-boson theory (Wen, 2003c). Those models are
in deconfined phases and confirm the striking results of
the emergence of gauge bosons and fermions from the
slave-boson theory.

To gain an intuitive picture of the correlated ground
state which leads to emergent gauge bosons and fermi-
ons, let us try to understand how a mean-field Ansatz x;;
is connected to a physical spin wave function. We know
that the ground state |‘I’Er’fga)n> of the mean-field Hamil-
tonian

Hmean = jE (inf:'rg ja+ H-C') + E ao(ﬁg ic ™ 1) (104)

ij,o i,o

is not a valid wave function for the spin system since it
may not have one fermion per site. To connect to a
physical spin wave function, we need to include fluctua-
tions of a, to enforce the one fermion per site constraint.
With this understanding, we obtain a valid wave function
of the spin system Wg,,({a;}) by projecting the mean-
field state to the subspace of one fermion per site:
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VD () = OAIT fio W58, (105)
l

where [0y is the state with no f fermions, f;,|0)=0.

Equation (105) connects the mean-field Ansatz to the

physical spin wave function. It allows us to understand

the physical meaning of the mean-field Ansatz and

mean-field fluctuations.

For example, the projection (105) gives the gauge
transformation (39) a physical meaning. Usually, for dif-
ferent choices of x;; the ground states of Hycay, Eq.
(104), correspond to different mean-field wave functions

|‘If(X"J') ). After projection they lead to different physical

mean
spin wave functions \ITEX{JX({ai}). Thus we can regard y;;
as labels for different pﬁysical spin states. However, two
mean-field Ansdtze x;; and yj; related by a gauge trans-
formation

Xij = emi)(ije_wi (106)

give rise to the same physical spin state after the projec-
tion

W () = iU {ay)).

spin spin

(107)

Thus y;; is not a one-to-one label, but a many-to-one
label. This property is important for us in order to un-
derstand the unusual dynamical properties of y;; fluctua-
tions. Using many labels to label the same physical state
also makes our theory a gauge theory.

Let us consider how the many-to-one property or the
gauge structure of y;; affects its dynamical properties. If
Xij Was a one-to-one label of physical states, then y;;
would be like the condensed boson amplitude ($(x,7)) in
a boson superfluid or the condensed spin moment (S;(¢))
in the spin-density-wave state. The fluctuations of y;;
would correspond to a bosonic mode similar to a sound
mode or a spin-wave mode.> However, Xij does not be-
have like local order parameters, such as (¢(x,r)) and
(S;(z)), which label physical states without redundancy.
Xij is a many-to-one label as discussed above. The many-
to-one label creates an interesting situation when we
consider the fluctuations of y;—some fluctuations of y;;
do not change the physical state and are unphysical.
These fluctuations are called pure gauge fluctuations.
The effective theory for y;; must be gauge invariant; for
example, the energy for the Ansaiz x;; satisfies

E(x;) = E(e'%ix;ie™%).

If we consider phase fluctuations y;;= )}ijei“ij, then the
energy for fluctuations ay; satisfies

E((lu) = E(a,-j+ 0,'— 0])

This gauge-invariant property of the energy (or, more
precisely, the action) drastically changes the dynamical
properties of the fluctuations. It is this property that

*More precisely, the sound mode and spin-wave mode are
so-called scalar bosons. The fluctuations of local order param-
eters always give rise to scalar bosons.



56 Lee, Nagaosa, and Wen: Doping a Mott insulator: Physics of high-...

makes the fluctuations of a; behave as gauge bosons,
which are very different from the sound mode and the
spin-wave mode.

If we believe that gauge bosons and fermions do ap-
pear as low-energy excitations in the deconfined phase,
then a natural question will be what do those excitations
look like? The slave-boson construction (105) allows us
to construct an explicit physical spin wave function that
corresponds to a gauge fluctuation ay;,
Wit = OALT fio W18,

1
We would like to mention that the gauge fluctuations
affect the average

i(ayp+ayz+azy)

P13 = (x12x23X31) = (X12X23X31)€

Thus the U(1) gauge fluctuations a;;, or more precisely
the flux of U(1) gauge fluctuations a,+ay;+as;, corre-
spond to the fluctuations of the spin chirality S;-(S,
X 83)=(P123— Py3)/4i, as pointed out in the last section.

Similarly, the slave-boson construction also allows us
to construct a physical spin wave function that corre-
sponds to a pair of fermion excitations. We start with the
mean-field ground state with a pair of particle-hole ex-
citations. After the projection (105), we obtain the physi-
cal spin wave functions that contain a pair of fermions:

RGN0 = O TLfu i fon V20
l
We see that the gauge fluctuation a;; and fermion exci-
tation do have a physical “shape” given by the spin wave
functions \I’g’{g and ‘Ifg‘;,rmm, although the shape is too com-
plicated to picture.

Certainly, two types of excitations, gauge fluctuations
and fermion excitations, interact with each other. The
form of the interaction is determined by the fact that
fermions carry the unit charge of the U(1) gauge field.
The low-energy effective theory is given by Eq. (38) with
A’J:O and biZO.

B. What determines the gauge group?

We have mentioned that collective fluctuations
around a slave-boson mean-field ground state are de-
scribed by a U(1) gauge field. Here we would like to ask
why the gauge group is U(1)? The reason is that the
fermion Hamiltonian and the mean-field Hamiltonian
are invariant under the local U(1) transformation,

fi N eiei]ci, X;J e
The reason that the fermion Hamiltonian is invariant is
that the fermion Hamiltonian is a function of the spin
operator §; and the spin operator S,-:%fj of; is invariant

under the local U(1) transformation. So the gauge group
is simply the group formed of all the transformations

e

“In the continuum limit, the gauge bosons are vector
bosons—bosons described by vector fields.
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between f;; and f;| that leave the physical spin operator
invariant.

C. From U(1) to SU(2)

This deeper understanding of gauge transformation
allows us to realize that U(1) is only part of the gauge
group. The full gauge group is actually SU(2). To under-
stand this let us introduce

i=fi lﬂzi:f;y
We find

1 .
Si=fiof;= E(IM.“/I;' — Yhipl),

1 1
Si= Efjolfi = E(‘/’Ii'r/’”—i_ Uit = 1).

Now it is clear that §; and any Hamiltonian expressed in
terms of §; are invariant under the local SU(2) gauge
transformation:

(“’”) - W,-(Z“), W; e SU(2).

W3; 2i

The local SU(2) invariance of the spin Hamiltonian im-
plies that the mean-field Hamiltonian not only should
have U(1) gauge invariance, it should also have SU(2)
gauge invariance.

To write down the mean-field theory with explicit
SU(2) gauge invariance, we start with the mean-field An-
satz that includes the pairing correlation:

Xij5aﬁ = 2<ﬁafjﬁ>, Xij = Xji>

After replacing fermion bilinears with y;; and A;; in Eq.
(35), we obtain the following mean-field Hamiltonian
with pairing:

3
Hean = % - gjt][(lefjaf)a - Aijﬁaf}hﬁeaﬁ)
ij

+H.c. - |)(,~j|2 - |A,-j|2].

However, the above mean-field Hamiltonian is incom-
plete. We know that the physical Hilbert space is formed
by states with one f fermion per site. Such states corre-
spond to states with even numbers of ¢ fermion per site.
The states with even numbers of ¢ fermions per site are
SU(2) singlet, one every site. The operators i 7; that
generate local SU(2) transformations vanish within the
physical Hilbert space, where 7=(7!,7%,7°) are the Pauli
matrices. In the mean-field theory, we replace the con-
straint lﬂjT!ﬂi:O by its average

(i) =0.
The averaged constraint can be enforced by including

the Lagrange multiplier ,a)(i)y]7; in the mean-field
Hamiltonian. This way we obtain the mean-field Hamil-
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tonian of SU(2) slave-boson theory (Affleck et al., 1988,
Dagotto et al., 1988):
3
Hpean = 2 - gjy[(XJlﬁaf]a - Aijﬂaﬁﬁeaﬁ) +H.c.
(i)

- Xl = 18571+ 2@ (fffia = 1)

+[(ag + ia)fiofip€ap+ Hee.Th. (109)

So the mean-field Ansatz that describes a SU(2) slave-
boson mean-field state is really given by x;;, Ay, and a,.
We note that y;;, Ay, and @, are invariant under spin
rotation. Thus the mean-field ground state of H ., is a
spin singlet. Such a state describes a spin-liquid state.

The SU(2) mean-field Hamiltonian (109) is invariant
under a local SU(2) gauge transformation. To see such
an invariance explicitly, we need to rewrite Eq. (109) in
terms of ¢

3 (1. . _
Hinean = 2 _JU{ETI(U}jUij) + (Y Uy + Hee)

8
+ 2 gl 7, (110)
where
— x5 Ai .
U,-~=< Xij J)ZUJ:i_ (111)
Ay Xy

Note that det(U) <0, so that Uy is not a member of
SU(2), but iUy, is a member up to a normalization con-
stant. From Eq. (110) we now can see that the mean-
field Hamiltonian is invariant under a local SU(2) trans-
formation W;:

i — Wi,

We note that in contrast to ®;; and ®;| introduced in
Eq. (44), the doublet ¢; does not carry a spin index. Thus
the redundancy in the ®;, representation is avoided,
which accounts for a factor of 2 difference in front of the
bilinear ¢; term in Eq. (110) versus Eq. (45). However,
the spin-rotation symmetry is not explicit in our formal-
ism and it is hard to tell if Eq. (110) describes a spin-
rotation-invariant state or not. In fact, for a general Uy
satisfying U,-sz;i, Eq. (110) may not describe a spin-
rotation-invariant state. But if Uj; has a form
Uij=xypm™, w=0,1,2,3,

(113)

then Eq. (110) will describe a spin-rotation-invariant
state. This is because the above Uj; has the form of Eq.
(111). In this case Eq. (110) can be rewritten as Eq. (109),
where the spin-rotation invariance is explicit. In Eq.
(113), 7 is the identity matrix.

Now the mean-field Ansatz can be more compactly

represented by (Uj;,a(i)). Again the mean-field Ansaiz

Xg' = imaginary, Xﬁ-j: real, [=1, 2, 3,
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(U;j,ap(i)) can be viewed as a many-to-one label of

ij

physical spin states. The physical spin state labeled by

(Uj;,a(i)) is given b

y g y
|‘I’ggig,a0(i))> — PN’EnUerO(i))),

where |\ansz0(:‘))> is the ground state of the mean-field
Hamiltonian (110) and P is the projection that projects
into the subspace with even numbers of ¢ fermions per
site. From the relation between the f fermion and the ¢
fermion, we note that the state with zero ¢ fermions
corresponds to the spin-down state and the state with
two ¢ fermions corresponds to the spin-up state. Since
the states with even numbers of  fermions per site are
SU(2) singlet on every site, we find that two mean-field

Ansiitze (Uy,ay(i)) and (U

SU(2) gauge transformation,

ij-a(i)) related by a local

U= W,U;W}

Wi aoi) - 7= Wiag(i) - W],

label the same physical spin state

’P|\I/(Uij’”0(i))> — 7)|\I/(i/,']',t~lo(i))> ,

mean mean

This relation represents the physical meaning of the
SU(2) gauge structure.

Just as with U(1) slave-boson theory, the fluctuations
of the mean-field Ansatz correspond to collective excita-
tions. In particular, the “phase” fluctuations of Uj; rep-
resent the potential gapless excitations. However, unlike
the U(1) slave-boson theory, the phase of Uy is de-
scribed by a two-by-two Hermitian matrix ai-j#,

[=1,2,3, on each link. If (U;;,a(i)) is the Ansatz that
describes the mean-field ground state, then the potential
gapless fluctuations are described by

Uy= Uyes”,  ay(i) = ay(i) + day ().

Since (Uj;,ao(i)) is a many-to-one labeling, the fluctua-
tions (a;;, da,(i)) correspond to SU(2) gauge fluctuations
rather than usual bosonic collective modes such as pho-
non modes and spin waves.

D. A few mean-field Ansétze for symmetric spin liquids

After a general discussion of the SU(2) slave-boson
theory, let us discuss a few mean-field Ansdtze that have
spin rotation, translation 7 ,, and parity P, ,, symme-
tries. We call such a spin state a symmetric spin liquid.
Here T and T, are translations in the x and y directions,
and P,, P,, and P,, are parity transformations (x,y)
—(=x,y), (x,y)—(x,-y), and (x,y) — (y,x), respectively.
We note that P, ,, parity symmetries imply 90° rota-
tional symmetry.

We concentrate on three simple mean-field Ansdtze
that describe symmetric spin li(sluids:

(i) m-flux liquid (7fL) state’ (Affleck and Marston,
1988),

This state was called the -flux (wF) state in the literature.
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Uijse=—i(=)%, Ujry=—1ix; (114)

(ii) staggered flux liquid (sfL) state® (Affleck and Mar-
ston, 1988),

l Jd+x = 73)( - l( )tA

Uijoy=—Tx+i(=)A; (115)
(iii) Z,-gapped state (Wen, 1991),

Uiisx= Ui,i+y == XTB, Uii Jxty = 7/7' + )\72

Uiiviy=17 —\P, ay>=0, ay#0, (116)

where (-)'=(-)x*y. Note that the Z, mean-field state
has pairing along the diagonal bond.

At first sight, those mean-field Ansdtze appear not to
have all the symmetries. For example, the Z,-gapped
Ansitze are not invariant under the P, and P, parity
transformations and the wfL and sfL Ansdtze are not
invariant under translation in the y direction. However,
those Ansdtze do describe spin states that have all the
symmetries. This is because the mean-field Ansdtze are
many-to-one labels of the physical spin state; the nonin-
variance of the Ansatz does not imply the noninvariance
of the corresponding physical spin state after the projec-
tion. We only require the mean-field Ansatz to be invari-
ant up to a SU(2) gauge transformation in order for the
projected physical spin state to have a symmetry. For
example, a P, parity transformation changes the sfL
Ansatz to

Uiie=—Tx+i(=)A,

l t+y 73)( - l( )tA

The reflected Ansatz can be transformed into the origi-
nal Ansatz via a SU(2) gauge transformation
W;=(-)%ir'. Therefore, after the projection the sfL. An-
satz describes a P, parity symmetric spin state. Using a
similar approach one can show that the above three An-
sdtze are invariant under translation 7y, and parity
P, ., symmetry transformations followed by corre-
sponding SU(2) gauge transformations Gy, 7, and
Gp p p,, respectlvely Thus the three Ansdtze all de-
scribé’ S};mmetrlc spin liquids. In the following, we list
the corresponding gauge transformations GT 7, and

Gp PPy for the above three Ansdtze:
(1) 7TfL state,

Gr (i) =(=)"Gr (D=7, Gp (i)=(=-)"7",

(- )Gp (i) = (- VGp (D=7, Gy =¢;  (117)

®Wen and Lee (1996) and Lee et al. (1998) called this phase
the staggered flux (sF) state. In this paper we reserve sF to
denote the U(1) mean-field state which explicitly breaks trans-
lational symmetry and which exhibits staggered orbital cur-
rents, as originally described by Hsu et al. (1991). This latter
state is also called d-density wave, following Chakravarty,
Laughlin, et al. (2002).
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(ii) sfL state,

Gr ()= Gy (D) =i(-)7', G, () =i(- )i

Gp(D)=Gp (i) =7, Gyli)= e (118)
(iii) Z,-gapped state,

Gr(i)=Gr()=i?, Gp ()=,

Gp (i)=Gp (i) =(=)'T, Gy()=-7. (119)

In the above we also list the pure gauge transformation
Gy (i) that leave the Ansdtze invariant.

E. Physical properties of the symmetric spin liquids at
mean-field level

To understand the physical properties of the above
three symmetric spin liquids, let us first ignore the mean-
field fluctuations of Uj and consider the excitations at
mean-field level.

At mean-field level, the excitations are spin-1/2 fermi-
ons ¢ (or f). Their spectrum is determined by the mean-
field Hamiltonian (110) [or Eq. (109)]. In the #fL state,
the fermions have a dispersion

s.2 i.2

3
Ey= iZJ|X|\'Sln k, +sin® k.

In the sfL state, the dispersion is given by

3
E,=+ ZJ\J’XZ(COS k, + cos ky)2 + A?(cos k, — cos ky)z.
(120)
In the Z,-gapped state, we have
v 3
Ep= e+ A% +A%, e=- ZJX(COS ky+cosk,),

3 3
Ay = " nJ' cos(k, + k) + ab Aoy = Z)\J’ cos(—k, +k,),

where J is the nearest-neighbor spin coupling and J' is
the next-nearest-neighbor spin coupling. We find that
the #fL and sfL states, at mean-field level, have gapless
spin-1/2 fermion excitations, while the Z,-gapped state
has gapped spin-1/2 fermion excitations.

Should we trust the mean-field results from slave-
boson theory? The answer is that it depends on the im-
portance of the gauge fluctuations. Unlike usual mean-
field theory, the fluctuations in slave-boson theory
include gauge fluctuations which can generate confining
interactions between the fermions. In this case the gauge
interactions represent relevant perturbations and the
mean-field state is said to be unstable. The mean-field
results from an unstable mean-field Ansatz cannot be
trusted and cannot be applied to a real physical spin
state. In particular, spin-1/2 fermionic excitations in
mean-field theory in this case will not appear in the
physical spectrum of a real spin state.
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If the dynamics of the gauge fluctuations is such that
the gauge interaction is short ranged, then the gauge
interactions represent irrelevant perturbations and can
be ignored. In this case the mean-field state is said to be
stable and the mean-field results can be applied to real
physical spin liquids. In particular, the corresponding
physical spin state contains fractionalized spin-1/2 fer-
mionic excitations.

F. Classical dynamics of the SU(2) gauge fluctuations

We have seen that the key to understanding the physi-
cal properties of a spin liquid described by a mean-field
Ansatz (Uj; ,ao) is to understand the dynamics of the
SU(2) gauge fluctuations. To gain some intuitive under-
standing, let us treat the mean-field Ansditze (Uy,ao(i))
as classical fields and study the classical dynamics of
their fluctuations. The dynamics of the fluctuations is
determined by the effective Lagrangian Ley(Uy(t),
ay(i,1). To obtain the effective Lagrangian, we start
with the Lagrangian representation of the mean-field
Hamiltonian

mean»

L(3 Uy.a0) = 2 i — H,

where H ., is given in Eq. (110). The effective La-
grangian L is then obtained by integrating out i

eifdtLef[( Ujpag) — f D(/fD {/,Teifdt]_(x//, Ujjaq) )

We note that L describes a system of fermions ¢; and
SU@2) gauge fluctuations Uj;. Thus the effective La-
grangian is invariant under the SU(2) gauge transforma-
tion:

Lo(Uya0) = Le(Uyoag), U= WiUyp) W,

a7 = Wiah(i)7W}, W; e SU(2). (121)
The classical equation of motion obtained from
L(Ujj,a0) determines the classical dynamics of the
fluctuations.

To see if the collective fluctuations are gapless, we
would like to determine if the frequencies of the collec-
tive fluctuations are bound from below. We know that

the time-independent saddle point of LUy, a),
(U, ,a,), corresponds to a mean-field ground-state An-
satz, and — LUy, a,) is the mean-field ground-state en-

ergy. If we expand Leff(l_]qe‘ ! ,a,) to second order in
the fluctuation a,], then the presence or the absence of
the mass term a’; i will determine if the collective SU(2)
gauge fluctuations have an energy gap or not.

To understand how the mean-field Ansdtze Uij affect
the dynamics of the gauge fluctuations, it is convenient
to introduce the loop variable of the mean-field solution,
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P(C) = (iU iUy -+ (iUp). (122)

Following the comment after Eq. (111), P(C;) belongs to
the SU(2) group and we can write P(C;) as P(C))

e € where ® is the SU(2) flux through the loop
C,~: 1—>J—>k—> - —1—1i, with base point i. The SU(2)
flux corresponds to the gauge-field strength in the con-
tinuum limit. Compared with the U(1) flux, the SU(2)
flux has two new features. First, the flux ® is a two-by-
two traceless Hermitian matrix. If we expand ® as ®
=®'7, 1=1,2,3, we can say that the flux is represented
by a vector @' in the 7 space. Second, the flux is not
gauge invariant. Under the gauge transformations, ®(C;)
transforms as

D(C;) — W, D(C)W;. (123)

Such a transformation rotates the direction of the vector
®'. Since the direction of the SU(2) flux for loops with
different base points can be rotated independently by
the local SU(2) gauge transformations, it is meaningless
to directly compare the directions of SU(2) flux for dif-
ferent base points. However, it is quite meaningful to
compare the directions of SU(2) flux for loops with the
same base point. We can divide different SU(2) flux con-
figurations into three classes based on the SU(2) flux
through loops with the same base point: (a) trivial SU(2)
flux where all P(C)« 7, (b) collinear SU(2) flux where all
the SU(2) fluxes point in the same direction, and (c) non-
collinear SU(2) flux where the SU(2) flux for loops with
the same base point are in different directions. We show
below that different SU(2) fluxes can lead to different
dynamics for the gauge field (Wen, 1991; Mudry and
Fradkin, 1994).

1. Trivial SU(2) flux

First let us consider an Ansatz Uy with trivial SU(2)
flux ®(C)=0 for all the loops [such as the #fL. Ansatz in
Eq. (114)]. We shall call the state described by such an
Ansatz the SU(2) state. We perform a SU(2) gauge trans-
formation to transform the Ansatz into a form where all

Uijoc 7. In this case, the gauge invariance of the effective
Lagrangian implies that

Leff(
1

Under gauge transformation €%, al. i transforms as a;;
—>aU+, - 91 The mass term (a; )2 is not invariant under
such a transformatlon and is thus not allowed. Slmﬂarly,
we can show that none of the mass terms (au)2 (a? )2
and (a; )2 are allowed in the expansion of L. Thus the
SuQ®) gauge fluctuations are gapless and appear at low
energies.

We note that all the pure gauge transformations G(#)
that leave the Ansarz invariant form a group. We call

) = Lo Uye! e 1%7). (124)

107'

this an invariant gauge group. For the Ansatz l_Jijoc 7,
the invariant gauge group is a SU(2) group formed by a
uniform SU(2) gauge transformation G(i)=e¢ 7 We re-
call from the last paragraph that the (classical) gapless
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gauge fluctuations are also SU(2). Such a relation be-
tween the invariant gauge group and the gauge group of
the gapless classical gauge fluctuations is general and
applies to all the Ansdtze (Wen, 2000b).

To understand the dynamics of the gapless gauge fluc-
tuations beyond the classical level, we need to treat two
cases separately. In the first case, fermions have a finite
energy gap. Those fermions will generate the following
low-energy effective Lagrangian for the gauge fluctua-
tions,

g v
L= Teful™.

where f,, is a 2 X2 matrix representing the field strength
of the SU(2) gauge field a;; in the continuum limit. At
the classical level, such an effective Lagrangian leads to
an ~g In(r) interaction between SU(2) charges in two
spatial dimensions. So the gauge interaction at the clas-
sical level is not confining (i.e., not described by a linear
potential). However, if we go beyond the classical level
(i.e., beyond the quadratic approximation) and include
the interactions between gauge fluctuations, the picture
is completely changed. In (1+2)D, the interactions be-
tween gauge fluctuations change the gIn(r) interaction
to a linear confining interaction, regardless of the value
of the coupling constant g. So the SU(2) mean-field
states with gapped fermions are not stable. The mean-
field results from such Ansdtze cannot be trusted.

In the second case, the fermions are gapless and have
a linear dispersion. In the continuum limit, those fermi-
ons correspond to massless Dirac fermions. Those fermi-
ons will generate a nonlocal low-energy effective La-
grangian for the gauge fluctuations, which is roughly £
=(g/8m)Tr fw,(l/\e’?) “¥ Due to the screening of mass-
less fermions, the interaction potential between SU(2)
charges becomes ~g/r at the classical level. Such an in-
teraction represents a marginal perturbation. It is a quite
complicated matter to determine if the SU(2) states with
gapless Dirac fermions are stable or not beyond the qua-
dratic approximation.

2. Collinear SU(2) flux

Second, let us assume the SU(2) flux is collinear. This
means the SU(2) fluxes for different loops with the same
base point all point in the same direction. However, the
SU(2) fluxes for loops with different base points may still
point in different directions [even for the collinear SU(2)
flux]. Using the local SU(2) gauge transformation we can
rotate the SU(2) flux for different base points in the
same direction, and pick this direction to be the 7 direc-
tion. In this case the SU(2) fluxes have the form P(C)
«x(C)+ix*(C)7. We can choose a gauge such that the

mean-field Ansitze have the form l:/ij:iei‘/’i1'73. The gauge
invariance of the energy implies that
Le(Uyes™) = Leg(Ugel 7 e e i%7) (125)

When a}j'z:O, the above reduces to
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Leg(Uyeii™) = Log(Uye @it 07, (126)

We find that the mass term (a )2 is 1ncompat1ble with
Eq. (126). Therefore at least the gauge field a is gapless.
How about the a; i and a ; gauge fields? Let PA(I) be the
SU(2) flux through a loop with base point i. If we as-
sume the gauge-invariant terms that can appear in the
effective Lagrangian do appear, then L.4(Uy) will con-
tain the following term:

Leff = aTr[PA(i)iUi,HxPA(i +x)iUi+x,i] + o

If we write iU;;,, as Xei¢ﬁ73ei“i7j, using the fact U,
—U,TH, [see Eq. (111)] and expand to (afc)2 order, Eq.

(127) becomes

(127)

Leg=- aXZTr([PA,a 7 + - (128)
We see from Eq. (128) that the mass terms for a and a
are generated if Py .

To summarize, we find that if the SU(2) flux is collin-
ear, then the Ansatz is invariant only under a U(1) rota-
tion ™7 where n is the direction of the SU(2) flux.
Thus the invariant gauge group is U(1). The collinear
SU(2) flux also breaks the SU(2) gauge structure down
to a U(1) gauge structure, i.e., the low-lying gauge fluc-
tuations are described by a U(1) gauge field. Again we
see that the invariant gauge group of the Ansatz is the
gauge group of the (classical) gapless gauge fluctuations.
We call the states with collinear SU(2) flux the U(1)
states. The sfL Ansatz in Eq. (115) is an example of
collinear SU(2) flux.

For the U(1) states with gapped fermions, fermions
will generate the following effective Lagrangian for the
gauge fluctuations:

8 2 12
=2 (2-p?),
87T(e )

where e is the “electric” field and b is the “magnetic”
field of the U(1) gauge field. Again at the classical level
the effective Lagrangian leads to an ~g In(r) interaction
between U(1) charges and the gauge interaction at the
classical level is not confining. If we go beyond the clas-
sical level and include interactions between gauge fluc-
tuations induced by the space-time monopoles, the
g In(r) interaction will be changed to a linear confining
interaction, regardless of the value of the coupling con-
stant g (Polyakov, 1977). So the U(1) mean-field states
with gapped fermions are not stable.

If the fermions in the U(1) state are gapless and are
described by massless Dirac fermions (such as those in
the sfL state), those fermions will generate a nonlocal
low-energy effective Lagrangian, which at the quadratic
level has the form

g 1
L==-f ——fM. 129
8’7Tf'uy\e”—0’?2 (129)

Again the screening of massless fermions changes the
gIn(r) interaction to g/r interactions between U(1)
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charges, at least at the classical level. Such an interaction
represents a marginal perturbation. Beyond the classical
level, we show in Secs. XI.D and XI.F that when there
are many Dirac fermions the U(l) gauge interactions
with Dirac fermions are exact marginal perturbations.
So the U(1) states with enough gapless Dirac fermions
are not unstable. Mean-field theory can give us a good
starting point for studying the properties of the corre-
sponding physical spin state (see Sec. XI.D).

3. Noncollinear SU(2) flux

Third, we consider the situation where the SU(2) flux
is noncollinear. In the above, we have shown that a
SU@) flux P, can induce a mass term of the form
Tr([P,,a. 7). For a noncollinear SU(2) flux configura-
tion, we can have in Eq. (127) another SU(2) flux, Pj,
pointing in a different direction from P,. The mass term
will contain, in addition to Eq. (128), a term
Tr([Pg,a.7T?). In this case, the mass terms for the SU(2)
gauge fields (a}j)z, (afj)z, and (a;?’j)2 will be generated. All
SU(2) gauge bosons will gain an energy gap.

We note that Ansarz Uy; is always invariant under the
global Z, gauge transformation —7°. So the invariant
gauge group always contains a Z, subgroup and the Z,
gauge structure is unbroken at low energies. The global
Z, gauge transformation is the only invariance for the
noncollinear Ansatz. Thus the invariant gauge group is
Z, and the low-energy effective theory is a Z, gauge
theory. We can show that the low-energy properties of
noncollinear states, such as the existence of a Z, vortex
and ground-state degeneracy, are indeed identical to
those of a Z, gauge theory. So we call the state with
noncollinear SU(2) flux a Z, state.

In a Z, state, all the gauge fluctuations are gapped.
Those fluctuations can only mediate short-range interac-
tions between fermions. Low-energy fermions interact
weakly and behave like free fermions. Therefore includ-
ing mean-field fluctuations does not qualitatively change
the properties of the mean-field state. The gauge inter-
actions are irrelevant and the Z, mean-field state is
stable at low energies.

A stable mean-field spin-liquid state implies the exis-
tence of a real physical spin liquid. The physical proper-
ties of the stable mean-field state apply to the physical
spin liquid. If we believe these two statements, then we
can study the properties of a physical spin liquid by
studying its corresponding stable mean-field state. Since
fermions are not confined in mean-field Z, states, the
physical spin liquid derived from this state contains neu-
tral spin-1/2 fermions as its excitation.

The Z,-gapped Ansatz in Eq. (116) is an example in
which the SU(2) flux is noncollinear. To see this, let us
consider the SU(2) flux through two triangular loops
(i,i+y,i—x) and (i,i+x,i+y) with the same base point i:

UiiyUiryixUixi=— X (' +\7P),
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UiineUisxiiyUinyi=— X(p7 =\ 7).

We see that when 7 and \ are nonzero, the SU(2) flux is
not collinear. Therefore, after projection, the Z,-gapped
Ansatz gives rise to a real physical spin liquid, which
contains fractionalized spin-1/2 neutral fermionic exci-
tations (Wen, 1991). The spin liquid also contains a Z,
vortex excitation. The bound state of a spin-1/2 fermi-
onic excitation and a Z, vortex gives us a spin-1/2
bosonic excitation (Read and Chakraborty, 1989; Wen,
1991).

G. The relation between different versions of slave-boson
theory

We have discussed two versions of slave-boson theory,
the U(1) slave-boson theory and the SU(2) slave-boson
theory. Senthil and Fisher (2000) proposed a third slave-
boson theory—the Z, slave-boson theory. Here we point
out that all three versions are equivalent descriptions of
the same spin-1/2 Heisenberg model on a square lattice,
if we treat the SU(2), U(1), or Z, gauge fluctuations ex-
actly.

To understand the relation between the three ver-
sions, we point out that the SU(2), U(1), or Z, gauge
structures were introduced in order to project the fer-
mion Hilbert space (which has four states per site) to the
smaller spin-1/2 Hilbert space (which has two states per
site). In SU(2) slave-boson theory, we regard two fermi-
ons ; and i,; as a SU(2) doublet. Among the four
fermion states on each site, |0), {,0), #1,]0), and
¥} 44,]0), only the SU(2)-invariant state corresponds to
the physical spin state. There are only two SU(2)-
invariant states on each site: |0) and {;44;|0), which cor-
respond to the spin-up and spin-down states. So the
spin-1/2 Hilbert space is obtained from the fermion Hil-
bert space by projecting onto the local SU(2) singlet sub-
space.

In U(1) slave-boson theory, we regard ; as a charge
+1 fermion and ¢,; as a charge —1 fermion. The spin-1/2
Hilbert space is obtained from the fermion Hilbert space
by projecting onto the local charge-neutral subspace.
Among the four fermion states on each site, only two
states |0) and {,4/4,|0) are charge neutral.

In Z, slave-boson theory, we regard ¢,; as a fermion
that carries a unit Z, charge. The spin-1/2 Hilbert space
is obtained from the fermion Hilbert space by projecting
onto the local Z,-charge-neutral subspace. Again
the two states [0) and ¢f,4}|0) are the only
Z,-charge-neutral states.

In the last subsection we discussed Z,, U(1), and
SU(2) spin-liquid states. These must not be confused
with Z,, U(1), and SU(2) slave-boson theories. We stress
that Z,, U(1), and SU(2) in the Z,, U(1), and SU(2) spin-
liquid states are gauge groups that appear in low-energy
effective theories of those spin liquids. We call those
gauge groups low-energy gauge groups. They should not
be confused with the Z,, U(1), and SU(2) gauge groups
in the Z,, U(1), and SU(2) slave-boson theories. We call
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the latter high-energy gauge groups. The high-energy
gauge groups have nothing to do with the low-energy
gauge groups. A high-energy Z, gauge theory (or a Z,
slave-boson approach) can have a low-energy effective
theory that contains SU(2), U(1), or Z, gauge fluctua-
tions. Even the Heisenberg model, which has no gauge
structure at lattice scale, can have a low-energy effective
theory that contains SU(2), U(1), or Z, gauge fluctua-
tions. The spin liquids studied in this paper all contain
some kind of low-energy gauge fluctuations. Despite
their different low-energy gauge groups, all those spin
liquids can be constructed from any one of the SU(2),
U(1), or Z, slave-boson approaches. After all, all those
approaches describe the same Heisenberg model and
are equivalent.

The high-energy gauge group is related to the way in
which we write down the Hamiltonian. We can write the
Hamiltonian of the Heisenberg model in many different
ways which can contain an arbitrary high-energy gauge
group of our choice. We just need to split the spin into
two, four, six, or some other even number of fermions.
While the low-energy gauge group is a property of the
ground state of the spin model, it has nothing to do with
how we are going to write down the Hamiltonian. Thus
we should not regard Z, spin liquids as the spin liquids
constructed using the Z, slave-boson approach. A Z,
spin liquid can be constructed and was first constructed
within the U(1) or SU(2) slave-boson and slave-fermion
approaches. However, when we study a particular spin-
liquid state, a certain version of the slave-boson theory
may be more convenient than other versions. Although
a spin liquid can be described by slave-boson theory,
sometimes a particular version of the theory may have
the weakest fluctuations.

H. The emergence of gauge bosons and fermions in
condensed-matter systems

In the early days, it was believed that a pure boson
system can never generate gauge bosons and fermions.
Rather, gauge bosons and fermions were regarded as
fundamental. The spin liquids discussed in this paper
suggest that gauge bosons (or gauge structures) and fer-
mions are not fundamental and can emerge from a local
bosonic model. Here we discuss how those ideas were
developed historically.

Let us first consider gauge bosons. In the standard
picture of gauge theory, the gauge potential a,, is viewed
as a geometrical object—a connection of a fiber bundle.
However, there is another point of view on gauge theory.
Many thinkers in theoretical physics were not happy
with the redundancy of the gauge potential a,. It was
realized in the early 1970s that one can use gauge-
invariant loop operators to characterize different phases
of gauge theory (Wegner, 1971; Wilson, 1974; Kogut and
Susskind, 1975). It was later found that one can formu-
late the entire gauge theory using closed strings (Banks
et al., 1977; Foerster, 1979; Gliozzi et al., 1979; Mandel-
stam, 1979; Polyakov, 1979; Savit, 1980). Those studies
revealed the intimate relation between gauge theories
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and closed-string theories—a point of view very differ-
ent from the geometrical notion of vector potential.

In a related development, it was found that gauge
fields can emerge from a local bosonic model if the
model is in certain quantum phases. This phenomenon is
also called the dynamical generation of gauge fields. The
emergence of gauge fields from local bosonic models has
a long and complicated history. The emergent U(1)
gauge field was introduced in the quantum disordered
phase of the (1+1)D CPN model (D’Adda et al., 1978;
Witten, 1979). In condensed-matter physics, the U(1)
gauge field has been found in the slave-boson approach
to spin-liquid states (Affleck and Marston, 1988; Baska-
ran and Anderson, 1988). The slave-boson approach not
only has a U(1) gauge field, it also has gapless fermion
fields.

It is well known that the compact U(1) gauge theory is
confining in (1+1)D and (1+2)D (Polyakov, 1975). The
concern about confinement led to an opinion that the
U(1) gauge field and gapless fermion fields are just un-
physical artifacts of the “unreliable” slave-boson ap-
proach. Thus the key to finding emergent gauge bosons
and emergent fermions is not to write down a Lagrang-
ian that contains gauge fields and Fermi fields, but to
show that gauge bosons and fermions actually appear in
the physical low-energy spectrum. However, only when
the dynamics is such that the gauge field is in the decon-
fined phase can the gauge boson appear as a low-energy
quasiparticle. Thus after the initial finding of D’Adda et
al. (1978), Witten (1979), Affleck and Marston (1988),
and Baskaran and Anderson (1988), many researchers
have been trying to find the deconfined phase of the
gauge field.

One way to obtain a deconfined phase is to give the
gauge boson a mass. In 1988 it was shown that if we
break the time-reversal symmetry in a 2D spin-1/2
model, then the U(1) gauge field from the slave-boson
approach can be in a deconfined phase due to the ap-
pearance of a Chern-Simons term (Khveshchenko and
Wiegmann, 1989; Wen ef al., 1989). The deconfined
phase corresponds to a spin-liquid state of the spin-1/2
model (Kalmeyer and Laughlin, 1987), which is called a
chiral spin liquid. The chiral spin state contains neutral
spin-1/2 excitations that carry fractional statistics. A sec-
ond deconfined phase was found by breaking the U(1) or
SU(2) gauge structure down to a Z, gauge structure.
Such a phase contains a deconfined Z, gauge theory
(Read and Sachdev, 1991; Wen, 1991; Mudry and Frad-
kin, 1994) and is called a Z, spin liquid (or a short-
ranged RVB state).” The Z, spin state also contains neu-
tral spin-1/2 excitations. But now the spin-1/2
excitations are fermions and bosons.

The above Z, spin liquids have a finite energy gap for
their neutral spin-1/2 excitations. Balents et al. (1998)
constructed a spin liquid with gapless spin-1/2 excita-

"The Z, state obtained in Read and Sachdev (1991) breaks
the 90° lattice rotational symmetry while the Z, state in Wen
(1991) has all the lattice symmetries.
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tions by studying a quantum disordered d-wave super-
conductor. Such a spin liquid was identified as a Z, spin
liquid using Z, slave-boson theory (Senthil and Fisher,
2000). The mean-field Ansatz is given by

Ui,i+x=X73+ 7]7'], Ui,i+y=X73— 777']7

a?) #0, a(l)’2 =0, Uiirxry=Uijsxy= yr. (130)

The diagonal hopping breaks particle-hole symmetry
and breaks the U(1) symmetry of the aj=0 d-wave pair-
ing Ansatz down to Z,. We call such an Ansatz a
Z,-gapless Ansatz. The Ansatz describes a symmetric
spin liquid since it is invariant under the combined trans-

fqrmations (G T, T.,,G 7, T,,G pxPx, G pyPy, G nyny ,Gy)
with

GTx: TO’ GTy: TO? GOZ_ TO,

Gp, =7, Gp, = 7, Gp = ir. (131)

The fermion excitations are gapless only at four k points
with a linear dispersion.

The Z,-gapped state and the Z,-gapless state are just
two Z, states among over 100 Z, states that can be con-
structed within the SU(2) slave-boson theory (Wen,
2002b). The chiral spin liquid and the Z, spin liquids
provide examples of emergent gauge structure and
emergent fermions (or anyons). However, those results
were obtained using slave-boson theory, which is not
very convincing to many people.

In 1997, an exact soluble spin-1/2 model (Kitaev,
2003),

H ot = 16g2 S¥S§+&S¥+£+&S}v+ﬁ’
1

was found. The SU(2) slave-boson theory turns out to be
exact for such a model (Wen, 2003c). That is, by choos-
ing a proper SU(2) mean-field Ansatz the corresponding
mean-field state gives rise to an exact eigenstate of H,,,
after the projection. In fact all the eigenstates of H .y,
can be obtained this way by choosing a different mean-
field Ansatz. The exact solution allows us to show the
excitations of H,, to be fermions and Z, vortices. This
confirms the results obtained from the slave-boson
theory.

More exactly soluble or quasiexactly soluble models
were found for the dimer model (Moessner and Sondhi,
2001), the spin-1/2 model on a Kagomé lattice (Balents
et al., 2002), the boson model on a square lattice (Senthil
and Motrunich, 2002), and the Josephson-junction array
(Ioffe et al., 2002). A model of electrons coupled to pair-
ing fluctuations, with a local constraint which results in a
Mott insulator that obeys the spin SU(2) symmetry, was
also constructed (Motrunich and Senthil, 2002). Those
models realize the Z, states. A boson model that real-
izes Z; gauge structure (Motrunich, 2003) and U(1)
gauge structure (Senthil and Motrunich 2002; Wen,
2003a) were also found. Fifteen years after the slave-
boson approach to spin liquids, it is now easy to con-
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struct (quasi)exactly soluble spin or boson models that
have emergent gauge bosons and fermions.

We point out that spin liquids are not the first ex-
amples of emergent fermions from local bosonic models.
The first example of emergent fermions, or more gener-
ally emergent anyons, is given by the fractional quantum
Hall states. Although Arovas et al. (1984) only discussed
how anyons can emerge from a fermion system in a
magnetic field, the same argument can be easily gener-
alized to show how fermions and anyons can emerge
from a boson system in a magnetic field. Also in 1987, in
a study of resonating-valence-bond (RVB) states, emer-
gent fermions (the spinons) were proposed in a nearest-
neighbor dimer model on a square lattice (Kivelson et
al., 1987; Rokhsar and Kivelson, 1988; Read and
Chakraborty, 1989). But according to the deconfinement
picture, the results in Kivelson ef al. (1987) and Rokhsar
and Kivelson (1988) are valid only when the ground
state of the dimer model is in the Z, deconfined phase. It
appears that the dimer liquid on a square lattice with
only nearest-neighbor dimers is not a deconfined state
(Rokhsar and Kivelson, 1988; Read and Chakraborty,
1989), and thus it is not clear if the nearest-neighbor
dimer model on a square lattice (Rokhsar and Kivelson,
1988) has the deconfined quasiparticles or not (Read and
Chakraborty, 1989). However, on a triangular lattice the
dimer liquid is indeed a Z, deconfined state (Moessner
and Sondhi, 2001). Therefore the results of Kivelson et
al. (1987) and Rokhsar and Kivelson (1988) are valid for
the triangular-lattice dimer model and deconfined quasi-
particles do emerge in a dimer liquid on a triangular
lattice.

The above models with emergent fermions are 2D
models in which emergent fermions can be understood
from binding flux to a charged particle (Arovas et al.,
1984). Recently, it was pointed out by Levin and Wen
(2003) that the key to emergent fermions is a string
structure. Fermions can generally appear as ends of
open strings in any dimension if the ground state has a
condensation of closed strings. The string picture allows
a construction of a 3D local bosonic model that has
emergent fermions (Levin and Wen, 2003). According to
this picture, models with emergent fermions contain
closed-string condensation in their ground states. Since
fluctuations of condensed closed strings are gauge fluc-
tuations (Banks et al., 1977; Savit, 1980; Wen, 2003a), this
explains why the model with emergent fermions also has
emergent gauge structures. Since gauge charges are ends
of open strings, this also explains why emergent fermi-
ons always carry gauge charges.

The second way to obtain a deconfined phase is to
simply go to higher dimensions. In 3+1 dimensions, the
gapless U(1) fluctuations do not generate confining inter-
actions. In 4+1 dimensions and above, even non-
Abelian gauge theory can be in a deconfined phase. So it
is not surprising that one can construct bosonic models
on a cubic lattice that have emergent gapless photons
[U(1) gauge bosons] (Motrunich and Senthil, 2002; Wen,
2002a, 2003a).
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The third way to obtain a deconfined phase is to in-
clude gapless excitations which carry gauge charges. The
charged gapless excitations can screen the gauge inter-
action to make it less confining. We remark that decon-
finement in this case has different behavior than the pre-
vious two cases. In the previous two cases the charged
particles in the deconfined phases become noninteract-
ing quasiparticles at low energies. In the present case
deconfinement only means that those gapless charged
particles remain gapless. Those particles may not be-
come noninteracting quasiparticles at low energies. The
spin liquids obtained from the sfL. Ansatz and the uRVB
Ansatz [given by Eq. (115) with A=0] belong to this
case. Those spin liquids are gapless. But the gapless ex-
citations are not described by free fermionic quasiparti-
cles or free bosonic quasiparticles at low energies. The
uRVB state (upon doping) leads to strange-metal states
(Lee and Nagaosa, 1992) with a large Fermi surface. We
discuss the spin liquid obtained from the sfL. Ansatz in
Secs. XI.D and XL.F.

Finally, we remark that what is common among these
three ways to achieve deconfinement is that instantons
are irrelevant and a certain gauge flux is a conserved
quantity. We shall exploit this property in Sec. XILE.

|. The projective symmetry group and quantum
order

The Z,-gapped Ansatz (116) and the Z,-gapless
Ansatz (130), after the projection, give rise to two spin-
liquid states, which have exactly the same symmetry.
The question here is whether there is a way to classify
these as distinct phases. According to Landau’s
symmetry-breaking theory, two states with the same
symmetry belong to the same phase. However, after the
discovery of fractional quantum Hall states, we now
know that Landau’s symmetry-breaking theory does not
describe all the phases. Different quantum Hall states
have the same symmetry, yet they can belong to differ-
ent phases since they contain different topological or-
ders (Wen, 1995). So it is possible that the two Z, spin
liquids contain different orders that cannot be character-
ized by symmetry breaking and local order parameters.
The issue here is to find a new set of universal quantum
numbers that characterize the new orders.

To find a new set of universal quantum numbers, we
note that although the projected wave functions of
the two Z, spin liquids have the same symmetry, their
Ansitze are invariant under the same set of symmetry
transformations but they are followed by different gauge
transformations [see Egs. (119) and (131)]. So the invari-
ant group of the mean-field Ansatz for the two spin lig-
uids are different. The invariant group is called the
projective symmetry group. This group is generated by
the combined transformations (GTXT W Gr Ty,GPva,
prPy,Gpway) and G,. We note that the' projective
syrr)lmetry'group is the symmetry group of the mean-
field Hamiltonian. Since the mean-field fluctuations in
the Z, states are weak and perturbative in nature, those
fluctuations cannot change the symmetry group of the
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mean-field theory. Therefore the projective symmetry
group of an Anmsatz is a universal property, at least
against perturbative fluctuations. This group can be used
to characterize the new order in the two Z, spin liquids
(Wen, 2002b). Such an order is called the quantum order.
The two Z, spin liquids belong to two different phases
since they have different projective symmetry groups
and hence different quantum orders.

We know that the symmetry characterization of
phases (or orders) has some important applications. It
allows us to classify 230 crystal orders in three dimen-
sions. The symmetry also produces and protects gapless
collective excitations—the Nambu-Goldstone bosons.
The projective symmetry group characterization of
quantum orders has similar applications. Using the pro-
jective symmetry group we can classify over 100 differ-
ent 2D Z, spin liquids that all have the same symmetry
(Wen, 2002b). Just like the symmetry group, the projec-
tive symmetry group can also produce and protect gap-
less excitations. However, unlike the symmetry group,
the projective symmetry group can produce and protect
gapless gauge bosons and fermions (Wen, 2002a, 2002b;
Wen and Zee, 2002).

XI. SU(2) SLAVE-BOSON THEORY OF DOPED MOTT
INSULATORS

In order to apply the SU(2) slave-boson theory to
high-T, superconductors, we need to first generalize the
theory to the case with finite doping. Then we discuss
how to use the theory to explain some of those proper-
ties in detail.

A. SU(2) slave-boson theory at finite doping

The SU(2) slave-boson theory can be generalized to
describe doped spin liquids (Wen and Lee, 1996; Lee et
al., 1998). The generalized SU(2) slave-boson theory in-

volves two SU(2) doublets ; and hiz(lb,;). Here by; and
b,; are two spin-0 boson fields. The additional boson
fields allow us to form a SU(2) singlet to represent the
electron operator c;:

1 1
Cpi= ?hj‘ﬂi: T(biifn + b;iﬁl)?
V2 V2

1 .- 1
cli=—=hivi=—=0blfi - b;iﬁT)’ (132)
\2 V2

where ¢=i7y", which is also a SU(2) doublet. The -7
Hamiltonian

H,;=>, [J(Si -8 - %ninj> - t(c:facaj + H.c.)]
(ij)

can now be written in terms of our fermion-boson fields.

The Hilbert space of the fermion-boson system is larger

than that of the ¢-/ model. However, the local SU(2)

singlets satisfying (] 7;+h]7h;)|phys)=0 form a sub-

space that is identical to the Hilbert space of the ¢-J
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model. On a given site, there are only three states that
satisfy the above constraint. They are f{|0), f]0), and
(1/ @)(b%b;flﬂﬂo% corresponding to a spin-up and
spin-down electron, and a vacancy, respectively. Further-
more, the fermion-boson Hamiltonian H,;, as a SU(2)
singlet operator, acts within the subspace and has the
same matrix elements as the ¢-/ Hamiltonian.

We note that as in Eq. (36) our treatment of the in,-nj
term introduces a nearest-neighbor boson attraction
term which we shall ignore from now on.® Now the par-

tition function Z is given by

B
Z= J DthpTDhDaéDa%DaSDUexp(— J er2>,
0

with the Lagrangian taking the form

() &)

+ 2 zﬁj(r?,— iag,-re)t/f,- + E hj(ﬁf— iag,-re + wh;
i i

1
5(2}) ti(Wihih ]+ c.c.). (133)

Following the standard approach with the choice J
=27, we obtain the following mean-field Hamiltonian for

the fermion-boson system, which is an extension of Eq.
(110) to the doped case:

311
Hyean = E g-’ ETI'(U}L]'U,'J') + (lﬂjUUlﬂ] +H.c.)
(ij)
1
- 52 [(h;rU,J]’lJ + HC) — Iu,E hjht
(j) i

+ 2 ay( i+ hi7hy). (134)

The value of the chemical potential u is chosen such that
the total boson density (which is also the density of the
holes in the #-J model) is

(h,Th,) = <b1ib1i + b;ib2i> =X.
The values of af)(i) are chosen such that
Wi+ hi7hy) = 0.

For /=3 we have

8Lee and Salk (2001) have introduced a different formulation
in which the combination (S,--S -—in,-nj) is written as —%|(ﬂ,fL
—fo%)P(l—h:hi)(l—h;hj). The last two factors are the boson
projections, which are needed when both sites i and j are oc-
cupied by holes. While the formulations are equivalent, the
mean-field phase diagram is a bit different in that a nearest-
neighbor attraction term may lead to boson pairing. The com-
petition between boson condensation and boson pairing needs
further studies but we shall proceed without the boson inter-
action term.
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FIG. 22. (Color online) SU(2) mean-field phase diagram for
t/J=1. The phase diagram for ¢/J=2 is quantitatively similar to
the t/J=1 phase diagram when plotted in terms of the scaled
variable xt/J, except the wfL phase disappears at a lower-
scaled doping concentration. Also plotted are the Fermi sur-
face, the Fermi arcs, or the Fermi points in phases. From Wen
and Lee, 1996.

(fiafia+blibri—bliby) =1. (135)

We see that unlike the U(1) slave-boson theory, the den-
sity of the fermion (f] f;,) is not necessarily equal to 1
—x. This is because a vacancy in the #-/ model may be
represented by an empty site with a b; boson, or a dou-
bly occupied site with a b, boson.

B. The mean-field phase diagram

To obtain the mean-field phase diagram, we have
searched the minima of the mean-field free energy for
the mean-field Ansatz with translational, lattice, and
spin-rotational symmetries. We find a phase diagram
with six different phases (see Fig. 22; Wen and Lee,
1996).

(i) The d-wave superconducting phase is described by
the following mean-field Ansatz:

Ui,i+)2=—X73+A7'1, Ui,i+§:_X73_AT1’

ay#0, ah*=0, (b))#0, (by)=0. (136)

Notice that the boson condenses in the superconducting
phase despite the fact that in our mean-field theory the
interactions between bosons are ignored. In the super-
conducting phase, the fermion and boson dispersion are
given by +E; and £E,—u, where

3J
Ej= \/(€f+ 2%+ 77%’ €=— Z(COS ky +cos ky)x,

R
np=— Z(COS ky—cosk)A, E,=\(e+ a?))2 + 7]%),

€, = — 2t(cos k, + cos ky)X,

7, = —2t(cos k, — cos k)A. (137)
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(ii) The Fermi-liquid phase is similar to the supercon-
ducting phase except that there is no fermion pairing
(A=0).

(iii) The staggered flux liquid (sfL) phase is described
by the following:

Uiini=—Tx—i(=)A, Ujy=—rx+i(-)A,

ay=0, (b12)=0. (138)
The U matrix is the same as that of the staggered flux
phase in the U(1) slave-boson theory, which breaks tran-
sitional symmetry. Here the breaking of translational in-
variance is a gauge artifact. In fact, a site-dependent
SU(2) gauge transformation W;=e i7" /4e-imlictiy)(r/2+1)
maps the sfL. Ansatz to the d-wave pairing Ansatz

Ui,i+)?:—X73+A7'la Ui,i+ﬁ:_X73_A7'l»

ah=0, (by5)=0, (139)

which is explicitly translation invariant. However, the
staggered flux representation of Eq. (138) is more con-
venient because the gauge symmetry is immediately ap-
parent. Since this U matrix commutes with 7, it is
clearly invariant under 7 rotation, but not 7' and 7%, and
the gauge symmetry has been broken from SU(2) down
to U(1) following the discussion in Sec. X.F. For this
reason we shall refer to this state as the staggered flux
liquid (sfL).

In the sfL phase, the fermion and boson dispersion
are given by +E; and +E,—u with Ef and E, in Eq.
(137), but now aj=0. Since a}=0 we have (f] f;,)=1 and
(biby)=(biby)=x/2.

(iv) The m-flux liquid (#fL) phase is the same as the
sfL. phase except here y=A.

(v) The uniform RVB (uRVB) phase is described by
Eq. (138) with A=0.

(vi) A localized spin phase has U;=0 and ab;=0,
where the fermions cannot hop.

C. Simple properties of the mean-field phases

Note that the topology of the phase diagram is similar
to that of U(1) mean-field theory shown in Fig. 21. The
uRVB, sfL, #fL, and localized spin phases contain no
boson condensation and correspond to unusual metallic
states. As the temperature is lowered, the uRVB phase
changes into the sfL. or #fLL phase. A gap is opened at
the Fermi surface near (,0), which reduces the low-
energy spin excitations. Thus the sfLL and wfL phases
correspond to the pseudogap phase.

The Fermi-liquid phase contains boson condensation.
In this case the electron Green’s function {(c'c)o((y'h)
X (h'4)) is proportional to the fermion Green’s function
(4"). Thus the electron spectral functions contain a
o-function peak in the Fermi-liquid phase. Therefore the
low-energy excitations in the Fermi-liquid phase are de-

Rev. Mod. Phys., Vol. 78, No. 1, January 2006

scribed by electronlike quasiparticles and the Fermi-
liquid phase corresponds to a Fermi-liquid phase of elec-
trons.

The superconducting phase contains both the boson
and fermion-pair condensations and corresponds to a
d-wave superconducting state of the electrons. Just as in
the U(1) slave-boson theory, the superfluid density is
given by p,=p’pl/(p?+pl), where p’ and p[ are the super-
fluid density of bosons and condensed fermion pairs, re-
spectively. We see that in the low-doping limit, p;~x and
one needs the condensation of both bosons and fermion
pairs to achieve a superconducting state.

We point out that the different mean-field phases con-
tain different gapless gauge fluctuations at the classical
level, i.e., the gauge groups for gapless gauge fluctua-
tions are different in different mean-field phases. The
uRVB and #fL phases have trivial SU(2) flux and the
gapless gauge fluctuations are SU(2) gauge fluctuations.
In the sfL phase, the collinear SU(2) flux breaks the
SU(2) gauge structure to a U(1) gauge structure. In this
case the gapless gauge fluctuations are U(1) gauge fluc-
tuations. In the superconducting and Fermi-liquid
phases, (b,) # 0. Since b, transform as a SU(2) doublet,
there is no pure SU(2) gauge transformation that leaves
mean-field Ansatz (U, ,-j,af],ba) invariant. Thus the invari-
ant gauge group is trivial. As a result, the SU(2) gauge
structure is completely broken and there are no low-
energy gauge fluctuations.

D. Effect of gauge fluctuations: Enhanced (7, 7) spin
fluctuations in the pseudogap phase

The pseudogap phase has a very puzzling property
which seems hard to explain. As the doping is lowered,
it was found experimentally that both the pseudogap
and the antiferromagnetic spin correlation in the normal
state increase. Naively one expects the pseudogap and
the antiferromagnetic correlations to work against each
other. That is, the larger the pseudogap, the lower the
single-particle density of states, the fewer the low-
energy spin excitations, and the weaker the antiferro-
magnetic correlations.

It turns out that the gapless U(1) gauge fluctuations
present in the sfL phase play a key role in resolving the
above puzzle (Kim and Lee, 1999; Rantner and Wen,
2002). Due to the U(1) gauge fluctuations, the antiferro-
magnetic spin fluctuations in the sfLL phase are as strong
as those of a nested Fermi surface, despite the presence
of the pseudogap.

To see how the U(1l) gauge fluctuations in the sfL
phase enhance the antiferromagnetic spin fluctuations,
we map the lattice effective theory for the sfL state onto
a continuum theory. In the low-doping limit, the bosons
do not affect the spin fluctuations much. So we ignore
the bosons and effectively consider the undoped case. In
the sfL phase, the low-energy fermions only appear near
k=(+m/2,+m/2). Since the fermion dispersion is linear
near k=(xm/2,+m/2), those fermions are described by
massless Dirac fermions in the continuum limit:
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N
S = f EEDIDIR A A

©noa=1

(140)

where v, (=1 and N=2, but in the following we treat N
as an arbitrary integer, which gives a large-N limit of the
sfL state. In general, v, ; #v,,. However, for simplicity
we shall here assume v,;=1. The Fermi field ¥, is a 4
X 1 spinor which describes lattice fermions f; with mo-
menta near (+/2,+m/2). The 4X4 v, matrices form a
representation of the {y,,y,}=24,, («,»=0,1,2) and are
taken to be

(0'3 0 ) (O’z 0 )
Yo = 0 _0_3, Y = 0 _0_2,

(%)
’)/2 - 0 _ O'] ’
with o, the Pauli matrices. Finally, note that v, =Ty

The fermion field W couples to the U(1) gauge field in
the sfL phase. To determine the form of the coupling, we
note that the U(1) gauge transformation takes the fol-
lowing form: f;— e'%f; if we choose Eq. (138) to describe
the sfL phase. By requiring U(1) gauge invariance of the

continuum model, we find the continuum Euclidean ac-
tion to be

(141)

(142)

N
S = f 2 2V, (9, - ia,) Y, (143)

pnoo=1

The dynamics for the U(1) gauge field arises solely
due to the screening by bosons and fermions, both of
which carry gauge charges. In the low-doping limit, how-
ever, we include only the screening by fermion fields.
After integrating out ¥ in Eq. (143), we obtain the fol-
lowing effective action for the U(1) gauge field (Kim and
Lee, 1999):

1 (&
Z:fDaMeXp(—Ej(2—73)3&#(61)1_[##1/(— 61)>,

: (144)

N — qu4v
szqu (6’”__2_ .

By simple power counting we can see that the above
polarizability makes the gauge coupling a,/* a marginal
perturbation at the free fermion fixed point. Since the
conserved current j# cannot have any anomalous dimen-
sion, this interaction is an exact marginal perturbation
protected by current conservation.

For N=2, the spin operator with momenta near ¢q
=(0,0), (m,), and (7,0) has a different form when ex-
pressed in terms of ¥ ,. Near ¢=(0,0),

1.
S, (x) = Ewayoaaﬂqfﬁ.
Near g=(m,m),
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FIG. 23. Nonzero leading 1/N corrections to the staggered
spin-correlation function. x denotes the vertex, which is the 4
X 4 unit matrix in the case of interest.

1 -
Ss(x) = E\Paaaﬁqfﬁ'
Near g=(,0),

1- (0 o
S(mo)(x) = 5‘1’01( o 0 )O'aB\I’B.

At the mean-field level, the above spin operators have
algebraic correlations 1/r* with decay exponent 4. The
effect of gauge fluctuations can be included at 1/N order
by calculating the diagrams in Fig. 23. We find that
(Rantner and Wen, 2002; Franz et al., 2003) these spin
correlators still have algebraic decays, indicating that the
gauge interaction is indeed marginal. The decay expo-
nents of the spin correlation near ¢=(0,0) and g¢q
=(m,0) are not changed and remain 4. This result is ex-
pected for the spin correlation near g=(0,0) since S,(x)
is proportional to the conserved density operator that
couples to the U(1) gauge field. Therefore S,(x) cannot
have an anomalous dimension. $(,)(x) does not have
any anomalous dimensions either (at 1/N order). In fact,
this result holds to all orders in 1/N for the case of iso-
tropic velocities due to a SU(4) symmetry (Hermele,
Senthil, and Fisher, 2005). Thus the spin fluctuations
near (7,0) are also not enhanced by the gauge interac-
tions. This may explain why it is so hard to observe any
spin fluctuations near (7r,0) in experiments.

S,(x) is found to have a nonzero anomalous dimen-
sion. The spin correlation near ¢=(m,w) is found to be
1/r%72¢ with

3
" 3mN’

In the w-k space, the imaginary part of the spin suscep-
tibility near (7, ) is given by

Im x(w,q) = Im(S"(w,q + Q)S (- w,— g + Q))

(145)

a

C
= 73 sinQamI'2a -2)0(w® - g%

X(wz _ q2)1/2—uz’ (146)

where C; is a constant depending on the physics at the
lattice scale.

From Eq. (146) it is clear that the gauge fluctuations
have reduced the mean-field exponent. If we set N=2,
which is the physically relevant case, we find a=0.54
>1/2, which signals the divergence of y (w=0, g=0).
Thus after including the gauge fluctuations, the ()
spin fluctuations are enhanced in the sfL. phase despite
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FIG. 24. Imaginary part of the spin susceptibility at (7, ).
Note the divergence at small w. From Rantner and Wen, 2002.

the pseudogap. In Fig. 24 we plot the imaginary part of
the spin susceptibility at (7, 7). The w dependence of the
spin susceptibility at (7, 7) is similar to the one of a
nested Fermi surface.

The enhancement of the staggered spin correlation
follows the trend found in the Gutzwiller projection of
the staggered flux (or equivalently the d-wave pairing)
state. Ivanov (2000) and Paramekanti et al. (2004) re-
ported a power-law decay of the equal-time staggered
spin-correlation function as r~*, where v=1.5 for the un-
doped case and 2.5 for 5% doping, which are consider-
ably slower than the r~* behavior before projection.

We remark that with doping Lorentz invariance is
broken by the presence of bosons. In this case the Fermi
velocity receives a logarithmic correction which en-
hances the specific heat coefficient and the uniform sus-
ceptibility (Kim et al., 1997).

E. Electron spectral function

One of the striking properties of the high-7,. super-
conductor is the appearance of the pseudogap in the
electron spectral function for underdoped samples, even
in the nonsuperconducting state. To understand this
property within the SU(2) slave-boson theory, we calcu-
late the physical electron Green’s function. Since the
nonsuperconducting state for small x is described by the
sfL. phase in SU(2) slave-boson theory, we need to cal-
culate the electron Green’s function in the sfLL phase.

1. Single-hole spectrum

The electron Green’s function is given by

G (%) = (h' (x) () (0) ¢/ (0)).

If we ignore the gauge interactions between bosons and
fermions, the electron Green’s function can be written as
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FIG. 25. (Color online) The electron Green’s function in the
slave-boson theory. The thick line represents the boson world
line, the thin line represents the fermion world line, and the
dashed line represents the gauge interaction. The dash-dotted
line is the straight return path. The U(1) gauge interaction is
caused by the extra phase term e due to the U(1) flux
through the loop formed by the boson and the fermion world
lines. Such flux can be approximated through the loop formed
by the fermion world line and the straight return path.

G oo = (W hyo(ypyo,

where the subscript 0 indicates to ignore gauge fluctua-
tions when calculating (- - -).

The effect of the U(1) gauge fluctuations is an extra
phase term e¥%¢ determined by the U(1) flux through
the loop formed by the boson and fermion world lines
(see Fig. 25). Since the fermion has a linear dispersion
relation, the area between the boson and fermion world
lines is of order |x|?, where |x| is the separation between
the two points of the Green’s function. Such an area is
about the same as the area between the fermion world
line and the straight return path (see Fig. 25). We may
approximate the effect of U(1) gauge fluctuations as the
effect caused by the U(1) flux through the fermion world
line and the straight return path (Rantner and Wen,
2001b). This corresponds to an approximation of the
electron Green'’s function as

G, (x) o (hT(x)h(0))o{ () ! (0)ei ot ey,

where [(dx is the integration along the straight return
path and (- --) includes integrating out the gauge fluctua-
tions.

First, let us consider the fermion Green’s function. At
the leading order of a large-N approximation, it was
found that (Rantner and Wen, 2001a, 2001b)’

() g (0) i) o (x2) =", (147)
where «a is given in Eq. (145). We note that Eq. (147)
becomes the Green’s function for a free massless Dirac

Note that the usual fermion Green’s function (g(x)¢(0)) is
not gauge invariant. As a result, the Green’s function is not
well defined and depends on the choices of gauge-fixing con-
ditions (Franz and Tesanovic, 2001; Franz et al., 2002; Khvesh-
chenko, 2002; Ye, 2003). If one incorrectly identifies
(y(x) ' (0)) as the electron Green’s function, then the function
will have different decay exponents for different gauge-fixing
conditions. In contrast, the combination (y(x)y'(0)efodxa) i
gauge invariant and well defined. The resulting electron
Green’s function does not depend on gauge-fixing conditions.
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FIG. 26. The single-hole spectral function at (7/2,7/2). In-
creasing « corresponds to increasing attraction between fermi-
ons and bosons due to gauge-field fluctuations. From Rantner
and Wen, 2001b.

fermion when a=0. The finite « is the effect of gauge
fluctuations.

For a single hole, the boson Green’s function is simply
that of a classical particle. The electron Green’s function
G, (r,7) is readily calculated using Eq. (147) and its Fou-
rier transform yields the electron spectral function. The
result at the nodal position (7/2,7/2) is shown in Fig.
26. The a=0 curve is the result without gauge fluctua-
tions. It is the convolution of the fermion and Bose spec-
tra and is extremely broad. The gauge field leads to an
effective attraction between the fermion and boson in
order to minimize the gauge flux enclosed by the fer-
mion on boson vortex lines as shown in Fig. 25. The
result is a piling up of spectral weight at low energy with
increasing a. Still, the one-hole spectrum remains inco-
herent, as is appropriate for a deconfined U(1) spin-
liquid state. This calculation can be extended to finite-
hole density, which requires making certain assumptions
about the boson Green’s function (Franz and Tesanovic,
2001; Rantner and Wen, 2001b). Under certain condi-
tions one obtains power-law-type spectral functions
similar to those of the Luttinger liquid.

2. Finite-hole density: pseudogap and Fermi arcs

Here we consider the mean-field electron Green’s
function G, at finite doping. Using the expression of ¢,
in Eq. (132), the mean-field electron Green’s function is
given by the product of the fermion and boson Green’s
functions. So the electron spectral function is a convolu-
tion of the boson and the fermion spectral functions.

Let us consider the pseudogap phase above T, but at a
temperature which is not too high that the boson can be
considered as nearly condensed. The boson spectral
function contains a peak at w=0 and k=0 and k
=(m,m). The weight of the peak is of order x and the
width is of order T. At high energies, the boson Green’s
function is given by the single-boson Green’s function
G), as if no other bosons are present. The boson spectral
function contains a broad background which extends the
whole bandwidth of the boson band. Such a boson spec-
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FIG. 27. Diagram for a renormalized electron Green’s func-
tion. The solid line is the fermion propagator and the dashed
line the boson propagator.

tral function leads to a mean-field electron Green’s func-
tion which has the form (Wen and Lee, 1996; Lee et al.,
1998)

2 2
x( %, Tk (148)

GOZ_
(,U—Ef w+Ef

) + Gin»
2

where u and v are the coherent factors:

E:+ € E;—€
N o S \ N et A |
ug= 1/ 2F, sgn(7y), Vg 2,

The second term Gy, gives rise to a broad background in
the electron. It comes from the convolution of the back-
ground part of the boson and fermion spectral functions.
The first term is the coherent part since its imaginary
part is a peak of width 7, which is approximated by a §
function here. The quasiparticle dispersion is given by
+Ey. The peak in the electron spectral function crosses
zero energy at four points at k=(xw/2,+m/2). Thus the
mean-field sfL phase has four Fermi points. Also, in the
sfL. phase, ImGj, is nonzero only for w<0 and contrib-
utes 1/2 to a total spectral weight which is (1+x)/2.

From the dispersion relation of the peak w=FE{(k) and
the fact that Im G, =0 when o <-E/k), we find that the
electron spectral function contains a gap of order A at
(0,7) and (7,0) even in the nonsuperconducting state.
So the mean-field electron spectral function of SU(2)
slave-boson theory can explain the pseudogap in the un-
derdoped samples. However, if we examine the mean-
field electron spectral function more closely, we see that
the Fermi surface of the quasiparticles is just four iso-
lated points (+7/2, +7/2). This property does not agree
with experiments.

In reality there is a strong attraction between bosons
and fermions due to the fluctuation around the mean-
field state. The dominant effect comes from gauge fluc-
tuations, which attempt to bind bosons and fermions
into electrons. This corresponds to an effective attrac-
tion between bosons and fermions. In the case of a
single hole, the interaction with gauge fields can be
treated as discussed in the last section. Here we proceed
more phenomenologically. One way to include this ef-
fect is to use the diagram in Fig. 27 to approximate the
electron Green'’s function which leads to

1

Glok) = Gl (w,k) + V(k)

(149)

with
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V(k) = U + 2t(cos k, + cos k). (150)

The first term U comes from the fluctuations of af, which
is approximated by an on-site attraction 6H=-(U/2)
X (y'h)(h"p)=—Uc’c. The second term [whose impor-
tance was pointed out by Laughlin (1995)] is due to the
fluctuations of [y;|, which induces

8H = - t(y'h)(h"y); = - 2ic]c;. (151)

This is nothing but the original hopping term. In Figs. 28
and 30 we plot the electron spectral function calculated
from Eq. (149) (Wen and Lee, 1996; Lee et al., 1998).

We have chosen =2/, x=1, A/x=0.4, x=0.1, and T
=0.1J. The value of U is determined by requiring that
the renormalized electron Greens function satisfy the
sum rule

“d d’k
f oo —— ImG=x.
0 27T

oy (152)

We find that the gap near (0, +7) and (+7,0) survives
the binding potential V(k). However, the spectral func-
tions near (+7/2,+/2) are modified (see Fig. 28). By
marking the position where the spectral peak crosses
zero energy, we find that the Fermi point at the nodal
point (7/2,7/2) for the mean-field electron Green’s
function G is stretched into a Fermi segment as shown
in Fig. 29. As we approach the uRBV phase, A decreases
and the Fermi arcs are elongated. Eventually the arcs
join together to form a large closed Fermi surface. Such
an evolution of Fermi arcs agrees with what is observed
in experiments.

While the phenomenological binding picture success-
fully produces the observed quasiparticle spectral peak
and Fermi arcs near the nodal points, the results are not
as satisfactory for antinodal points. STM experiments in
underdoped samples reveal a rather broad structure for
both particle and hole excitations suggesting that there
is no sharp quasiparticle spectral peak near the gap
maximum (Hanaguri et al, 2004). ARPES measure-
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ments, which can measure only the occupied states,
show a reduction of the density of states over a broad
energy range near antinodal points (Ronning et al.,
2003). These line shapes are more reminiscent of those
shown in Fig. 26 for intermediate «. This again indicates
that there is no well-defined quasiparticle spectral peak
near antinodal points for underdoped samples. The ob-
served electron spectral function shows a nodal-
antinodal dichotomy: the presence of a quasiparticle
peak near the nodal points and the absence of a quasi-
particle peak near the antinodal points.

While an energy gap is produced by SU(2) theory near
the antinodal point (0, 7), the theory gives a rather sharp
quasiparticle peak at the gap and the asymmetric gaps
above and below the Fermi energy (see Fig. 30); both
disagree with experiments. The simple spin-charge bind-
ing picture in SU(2) theory fails to explain the nodal-
antinodal dichotomy of quasiparticles. The sharp hole
spectra in SU(2) theory at both the nodal and antinodal
points are due to the assumption of “almost Bose con-
densation” in our phenomenological approach outlined
above.

Recently, Ribeiro and Wen (2005) have developed a
fully fermionic mean-field theory which can reproduce
the nodal-antinodal dichotomy as well as the symmetric
gap at antinodal points. The new mean-field theory is

FIG. 29. The solid lines a, b, c, and d are paths of the four
momentum scans in Fig. 28. The solid curves are schematic
representations of the Fermi segments where the quasiparticle
peak crosses the zero energy.
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FIG. 30. The points describe the dispersion of the quasiparti-
cle peaks for the s-flux liquid phase in Fig. 30. The vertical bars
are proportional to the peak values of ImGy, which are pro-
portional to the quasiparticle weight.

motivated by the fact that at low energies electrons ap-
pear as well-defined quasiparticles. To capture this low-
energy property, the new mean-field theory uses fermi-
onic spinons and fermionic electrons to describe the
doped Mott insulator. The bosonic holons are bound
states of spinons and electrons. In contrast, the SU(2)
slave-boson approach starts with the spinons and the ho-
lons, and electrons appear as the bound states of the
spinons and the holons. In the new mean-field theory,
electron spectral weight comes from two bands, a low-
energy spinon band [see Eq. (120)] and a high-energy
electron band. The spectral weight from the spinon band
is a sharp peak which corresponds to the coherent peak
in the SU(2) approach. The spectral weight from the
electron band is broad due to many decay channels at
high energy. Such a broad spectrum corresponds to the
incoherent background discussed above. The nodal-
antinodal dichotomy is due to the strong mixing be-
tween the spinons and electrons near the nodal point
and the lack of mixing near the antinodal point. Without
the spinon-electron mixing, the spinon band cannot con-
tribute to the electron spectral function.

We also mention that the assumption of Bose conden-
sation leads to a decoupling of the electron to the elec-
tromagnetic field, and as a result the current carried by
the quasiparticles j=edE (A)/dA is strongly reduced
from evp to xevy which disagrees with experiments (see
Sec. IX.B). Wen and Lee (1998) took a first step towards
addressing this problem by assuming that the binding
between bosons and fermions and/or between the b, and
b, bosons prevents single-boson condensation. The su-
perconducting state characterized by (cc)# 0 contains
only boson-pair condensation, i.e., (b;b,)# 0 while (b)
=(0. They showed that with this assumption the quasipar-
ticle current can be a finite fraction of evp, i.e., the pa-
rameter in Eq. (6) does not have to go as x. The compe-
tition between fermion-boson binding, boson-boson
binding, and Bose condensation is a complicated prob-
lem which is still poorly understood at present.

We point out that Honerkamp et al. (2001) have pro-
posed another machanism for the pseudogap and the
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nodal-antinodal dichotomy. They emphasized the role
of umklapp scattering, which in their N patch
renormalization-group approach leads to a gapping of
the saddle-point area near (0,77) and Fermi segments
near the nodes.

F. Stability of algebraic spin liquids

The sfL. mean-field Ansatz leads to a gapless spin lig-
uid. We call this a U(1) spin liquid, and it is an example
of a class which we call an algebraic spin liquid since the
spin correlations have algebraic decay. We stress that the
algebraic spin liquid is a phase of matter, not a critical
point at a phase transition between two phases.

The algebraic spin liquid has a striking property: its
low-energy excitations interact with each other even
down to zero energy. This can be seen from the correla-
tion functions at low energies. Those correlation func-
tions have noninteger exponents and always contain a
branch cut without any poles. This implies that we can-
not use free bosonic or free fermionic quasiparticles to
describe the low-energy excitations. For other com-
monly known gapless states, such as solids, superfluids,
Fermi liquids, etc., the gapless excitations are always de-
scribed by free bosons or free fermions. The only excep-
tion is the 1D Luttinger liquid. Thus the algebraic spin
liquid can be viewed as an example of Luttinger liquids
beyond one dimension.'”

We know that interactions tend to open up energy
gaps. From this point of view, one might have thought
that the only self-consistent gapless excitations are the
ones described by free quasiparticles. Knowing that the
gapless excitations in the algebraic spin liquid interact
down to zero energy, we may wonder does it really ex-
ist? Have we overlooked some effects which open up
energy gaps and make algebraic spin liquids unstable?

Indeed, in the above calculation we have overlooked
two effects and both of them can potentially destabilize
the algebraic spin liquids. First, the self-energy in Figs.
23(a) and 23(b) contains a cutoff-dependent term which

gives the fermion ¥ a cutoff-dependent mass m(A)WPW.
In the above calculation, we have dropped such a term.
If such a cutoff-dependent term was kept, fermions
would gain a mass which would destabilize the algebraic
spin liquids.

Second, we have overlooked the effects of instantons
described by the space-time monopoles of the U(1)

OWe point out that in their gauge-theory description alge-
braic spin liquids and Luttinger liquids are neither confined
phases nor deconfined phases. They are not confined phases
since the gauge fluctuations are gapless. They are not decon-
fined phases since there are no well-defined quasiparticles.
Also note that the concept of “spin-charge separation” in a 1D
Luttinger liquid has nothing to do with deconfinement. It sim-
ply means that the collective modes, which are the only low-
lying excitations in one-dimension and correspond to spin- and
charge-density fluctuations, are decoupled and have different
velocities.
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gauge field. After integrating out massless fermions, the
effective action of the U(1) gauge field has a form simi-
lar to Eq. (129). Unlike the Maxwell term discussed in
Sec. IX.D, which produced a 1/r potential, in this case
the interaction of the space-time monopoles is described
by a In(r) potential. That is, the action of the pair of
space-time monopoles separated by a distance r is given
by C In(r). Just as in the Coulomb gas in two dimensions,
if the coefficient C is larger than 6, then the instanton
effect is an irrelevant perturbation and the inclusion of
the instantons will not destabilize the algebraic spin lig-
uid (Ioffe and Larkin, 1989). If the coefficient C is less
than 6, then the instanton effect is a relevant perturba-
tion and the inclusion of the instantons will destabilize
the algebraic spin liquid.

Recently, it has been argued by Herbut and Seradjah
(2003) and Herbut er al. (2003) that the instanton effect
always represents a relevant perturbation due to a
screening effect of the 3D Coulomb gas, regardless of
the value of C. This led to a conclusion by Herbut and
Seradjah (2003) that the algebraic spin liquid described
by the sfL state does not exist. The easiest way to un-
derstand the screening effect of the 3D Coulomb gas is
to note that the partition function of the Coulomb gas
can be written as a path integral

J H d3xie*CEq,‘qj In|x;—x;|

= (153)

f Dee [dx(2aIC)od\-Pod—g cos().

If we integrate out short-distance fluctuations of ¢, a
counterterm K(d¢)? can be generated. The counterterm
changes the long-distance interaction of the space-time
monopoles from In(r) to 1/r. The space-time monopoles
with 1/r interaction always represent a relevant pertur-
bation, which will destabilize the algebraic spin liquid.
Physically, the change of the interaction from In(r) to 1/r
is due to the screening effect of monopole-antimonopole
pairs. Thus the counterterm K(d¢)?> represents the
screening effect.

The issue of the stability of the algebraic spin liquid
has been examined by Rantner and Wen (2002), Wen
(2002b), and more carefully by Hermele, Senthil, Fisher,
et al. (2004) using an argument based on the projective
symmetry group. They came to the conclusion that the
U(1) spin liquid is stable for large enough N if the SU(2)
spin symmetry is generalized to SU(N). They have
shown that there is no relevant operator which can de-
stabilize the deconfined fixed point which consists of 2N
two-component Dirac fermions coupled to noncompact
U(1) gauge fields, for N sufficiently large. Hermele,
Senthil, Fisher, et al. (2004) have also pointed out the
fallacy of the monopole screening argument. We sum-
marize some of the salient points below.

The operators which perturb the noncompact fixed
point can be classified into two types, those which pre-
serve the flux and those which change the flux by 2.
The latter are instanton creation operators which restore
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the compactness of the gauge field. Among the first type
there are four fermion terms which are readily seen to
be irrelevant, but as mentioned earlier the dangerous
term is the quadratic fermion mass term. The important
point is that the mass terms are forbidden by the special
symmetry described by the projective symmetry group.
The discrete symmetry (such as translational and rota-
tional) of the sfL state defined on the lattice imposes a
certain symmetry on the continuum Dirac field which
forbids the mass term. Another way of seeing this is that
after integrating out the short-distance fluctuations, if a
mass term is generated it can be described in the lattice
model as a deformation of the mean-field Ansatz SUj;.
Since the short-distance fluctuations are perturbative in
nature, the deformation 6U;; cannot change the symme-

try of the Ansatz Uij that describes the ground state, i.e.,

if Uy is invariant under a projective symmetry group,
oU;; must be invariant under the same projective sym-
metry group. One can show that for the possible defor-
mations invariant under the sfL projective symmetry
group described by Eq. (117), none of them can generate
the mass term for fermions. Thus the masslessness of
fermions are protected by the sfL. projective symmetry
group.

As for the second type of operators which change the
flux, Hermele, Senthil, Fisher, et al. (2004) have appealed
to a result in conformal field theory which relates the
scaling dimension of such operators to the eigenvalues
of states on a sphere with a magnetic flux through the
surface (Borokhov et al., 2002). This is easily bound by
the ground-state energy of 2N component Dirac fermi-
ons on the sphere which clearly scale as N. Thus the
creation of instantons is also irrelevant for sufficiently
large N.

As far as the monopole screening argument goes, the
fallacy is that in that argument fermions are first inte-
grated out completely in order to derive an effective
action for the field ¢ shown in Eq. (153). Then
renormalization-group arguments generate a K(d¢)?
term. However, implicit in this procedure is the assump-
tion that fermions are rapidly changing variables com-
pared with the monopoles. The fact that fermions are
gapless makes this procedure unreliable. (One could say
that the screening argument implicitly assumes mass
generation for fermions.) A better approach is to renor-
malize the monopoles and fermions on the same footing,
i.e., let the infrared cutoff length scale for the fermion
(Ly) and the monopoles (L,,) approach infinity with a
fixed ratio, e.g., Ly/L,,=1. In this case integrating out
fermions down to scale L, will produce an effective ac-
tion for the U(1) gauge field of the form

8Lp o
167Tf'quﬂ i

where the running coupling constant g(Lg) ~ L. This in
turn generates an interaction between two monopoles
separated by a distance r, which is of order g(Ly)/r. To
calculate such an interaction, we should integrate out all
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fermions with wavelength less than r. We find the inter-
action to be g(r)/r~7°, indicating a logarithmic interac-
tion between monopoles. Thus the logarithmic interac-
tion is constantly being rejuvenated and cannot be
screened. This can be cast into a renormalization group
language and we can see that the flow equation for the
coupling constant g is modified from the form used by
Herbut and Seradjah (2003). The extra term leads to the
conclusion that the instanton fugacity scales to zero and
the instanton becomes irrelevant for N larger than a cer-
tain critical value.

To summarize, the algebraic spin liquid derived from
the sfL Ansatz contains a quantum order characterized
by the sfLL projective symmetry group (117). The sfL
projective symmetry group forbids the mass term of fer-
mions. The continuum limit misses such an effect. To
capture such an effect by hand, we must drop the mass
term in the self-energy in our calculation in the con-
tinuum model (Rantner and Wen, 2002). Ignoring the
mass term is a way to include the effects of the projec-
tive symmetry group in the continuum model. Just like
the fermion mass term, we believe that the K(d¢)> term
is also forbidden by the sfL projective symmetry group
Eq. (117). Thus we must ignore the screening effect de-
scribed by the K(d¢)? term when we consider instantons.
We are then assured that instanton effects are irrelevant
in the large-N limits. So the algebraic spin liquid exists
and is stable at least in the large-N limit. The interacting
gapless excitations in the algebraic spin liquid are pro-
tected by the sfL. projective symmetry group. It is well
known that the symmetry can protect gapless Nambu-
Goldstone modes. The above example shows that the
projective symmetry group and the associated quantum
order can also protect gapless excitations (Rantner and
Wen, 2002; Wen, 2002b; Wen and Zee, 2002).

Xil. APPLICATION OF GAUGE THEORY TO THE HIGH-T,
SUPERCONDUCTIVITY PROBLEM

Now we summarize how gauge-theory concepts de-
scribed above may be applied to the high-7,. problem.
The central observation is that high-7,. superconductiv-
ity emerges upon doping a Mott insulator. The antifer-
romagnetic order of the Mott insulator disappears rather
rapidly and is replaced by the superconducting ground
state. The “normal” state above the superconducting
transition temperature exhibits many unusual proper-
ties, which we refer to as pseudogap behavior. How does
one describe the simultaneous suppression of the Néel
order and the emergence of the pseudogap and the su-
perconductor from the Mott insulator? The approach we
take is to first understand the nature of a possible non-
magnetic Mott state at zero doping, the spin-liquid state,
which naturally becomes a singlet superconductor when
doped. This is the central idea behind the RVB proposal
(Anderson, 1987) and is summarized in Fig. 31. The idea
is that doping effectively frustrates the Néel order so
that the system is pushed across the transition where the
Néel order is lost. In the real system, the loss of Néel
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FIG. 31. Schematic zero-temperature phase diagram showing
the route between the antiferromagnetic Mott insulator and
the d-wave superconductor. The vertical axis is labeled by a
parameter g, which represents a measure of the frustration in
the interaction between the spins in the Mott insulator. AF
represents the antiferromagnetically ordered state. SL is a
spin-liquid insulator reached by increasing the frustration. The
path taken by the cuprate materials as a function of doping x is
shown as a dash-dotted line. The question marks represent
regions where the physics is not clear at present. Doping the
spin liquid naturally leads to the dSC state. The idea behind
the spin-liquid approach is to regard the superconducting sys-
tem at nonzero x as resulting from doping the spin liquid as
shown with the solid line, though this is not the path actually
taken by the material. (b) Same as in (a) but as a function of
chemical potential rather than hole doping. Here the AF in-
cludes an insulating and a lightly doped (light shaded) regions.

order may proceed through complicated states, such as
incommensurate charge and spin order, stripes, or inho-
mogeneous charge segregation (Carlson et al., 2003).
However, in this direct approach the connection with
superconductivity is not at all clear. Instead it is concep-
tually useful to arrive at the superconducting state via a
different path, starting from a spin-liquid state. Recently,
Senthil and Lee (2005) have elaborated upon this point
of view which we summarize below.

A. Spin liquid, quantum critical point, and the pseudogap

It is instructive to consider the phase diagram as a
function of the chemical potential rather than hole dop-
ing as shown in Fig. 31(b).

Consider any spin-liquid Mott state that when doped
leads to a d-wave superconductor. As a function of
chemical potential, there will then be a zero-
temperature phase transition where the holes first enter
the system. For concreteness we refer to this as the Mott
transition. The associated quantum critical fixed point
will control the physics in a finite nonzero range of pa-
rameters. The various crossovers expected near such
transitions are well known and are shown in Fig. 32.

Sufficiently close to this zero-temperature critical
point many aspects of the physics will be universal. The
regime in which such universal behavior is observed will
be limited by “cutoffs” determined by microscopic pa-
rameters. In particular, we may expect that the cutoff
scale is provided by an energy of a fraction of J (the
exchange energy for the spins in the Mott insulator). We
note that this corresponds to a reasonably high tempera-
ture scale.
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Mott spin
liquid

FIG. 32. Schematic phase diagram for a doping-induced Mott
transition between a spin-liquid insulator and a d-wave super-
conductor. The bold dot-dashed line is the path taken by a
system at hole density x that has a superconducting ground
state. The region marked FS represents the fluctuation regime
of the superconducting transition. The region marked QC is
the quantum critical region associated with the Mott critical
point. It is separated from the Mott spin-liquid state by a cross-
over line (dashed line). The QC region may be identified with
the high-temperature pseudogap phase in the experiments.

Now consider an underdoped cuprate material at
fixed doping x. Upon increasing the temperature this
will follow a path in Fig. 32 that is shown schematically.
The properties of the system along this path may be
usefully discussed in terms of the various crossover re-
gimes. In particular it is clear that the normal state
above the superconducting transition is to be under-
stood directly as the finite-temperature quantum critical
region associated with the Mott transition. Empirically
this region corresponds to the pseudogap regime. Thus
our assertion is that the pseudogap regime is controlled
by the unstable zero-temperature fixed point associated
with the (Mott) transition to a Mott insulator.

What are the candidates for the spin-liquid phase?
There have been several proposals in the literature. One
proposal is the dimer phase (Sachdev, 2003). Strictly
speaking, this is a valence-bond solid and not a spin liq-
uid: it is a singlet state which breaks translational sym-
metry. It was shown by Read and Sachdev (1990) that
within the large-N Schwinger boson approach the dimer
phase emerges upon disordering the Néel state. Sachdev
and collaborators showed that doping the dimer state
produces a d-wave superconductor (Vojta and Sachdev,
1999). However, such a superconductor also inherits the
dimer order and has a full gap to spin excitations, at
least for low doping. As we have seen in this review,
there is strong empirical evidence for gapless nodal qua-
siparticles in the superconducting state. In our view, it is
more natural to start with translationally invariant spin-
liquid states which produce d-wave superconductors
with nodal quasiparticles when doped.

We see from Sec. X that the spin-liquid states are
rather exotic in that their excitations are conveniently
described in terms of fractionalized spin-1/2 spinon de-
grees of freedom. We have discussed in Sec. X.G that
spin liquids are characterized by their low-energy gauge
group. Among spin liquids with nodal fermionic spinons,
two versions, the Z, and the U(1) spin liquids, have been
proposed. The Z, gauge theory was advocated by Sent-
hil and Fisher (2000). It can be considered as growing
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out of the fermion pairing phase of the U(1) mean-field
phase diagram shown in Fig. 21. The pairing of fermions
Ayi=(fifi|~fifiy) breaks the U(1) gauge symmetry down
to Z,, i.e., only f— —f remains unbroken. One feature of
this theory is that in the superconducting state sc/e vor-
tices tend to have lower energy than /hc/2e vortices, par-
ticularly at low doping. We have seen in Sec. IX.C that
hc/2e vortices involve suppression of the pairing ampli-
tude [A;] at the center and cost a large energy of order J.
On the other hand, one can form an hc/e vortice by
winding the boson phase by 2, leaving the fermion
pairing intact inside the core. Another way of describing
this from the point of view of Z, gauge theory is that the
hc/2e vortex necessarily involves the presence of a Z,
gauge flux (called a vison by Senthil and Fisher) in its
core. The finite-energy cost of the Z, flux dominates in
the low-doping limit and raises the energy of the hc/2e
vortices. Experimental proposals were made (Senthil
and Fisher, 2001b) to provide for a critical test of such a
theory by detecting the vison excitation or by indirectly
looking for signatures of stable Ac/e vortices. To date, all
such experiments have yielded negative results and have
provided fairly tight bounds on the vison energy (Bonn
et al., 2001).

We are then left with the U(1) spin liquid as the final
candidate. The mean-field basis of this state is the stag-
gered flux liquid state of the SU(2) mean-field phase dia-
gram (Fig. 22). The low-energy theory of this state con-
sists of fermions with massless Dirac spectra (nodal
quasiparticles) interacting with a U(1) gauge field. Note
that this U(1) gauge field refers to the low-energy gauge
group and is not to be confused with the U(1) gauge
theory in Sec. IX, which refers to the high-energy gauge
group in the nomenclature of Sec. X.G. This theory was
treated in some detail in Sec. XI. This state has en-
hanced (,) spin fluctuations but no long-range Néel
order, and the ground state becomes a d-wave supercon-
ductor when doped with holes. As we shall see, a low-
energy hc/2e vortex can be constructed, thus overcom-
ing a key difficulty of the Z, gauge theory. Furthermore,
an objection in the literature about the stability of the
U(1) spin liquid has been overcome, at least for suffi-
ciently large N (see Sec. IX.F). It has also been argued
by Senthil and Lee (2005) that even if the physical spin-
1/2 case does not possess a stable U(1) liquid phase, it
can exist as a critical state separating the Néel phase
from a Z, spin liquid and may still have the desired
property of dominating the physics of the pseudogap
and the superconducting states. An example of decon-
finement appearing at the critical point between two or-
dered phases was recently pointed out by Senthil et al.
(2004).

In the next section we shall further explore the prop-
erties of the U(1) spin liquid upon doping. We approach
the problem from the low-temperature limit and work
our way up in temperature. This regime is conveniently
described by a nonlinear o-model effective theory.
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B. o-model effective theory and new collective modes in
the superconducting state

Here we attempt to reduce the large number of de-
grees of freedom in the partition function in Eq. (133) to
the few which dominate the low-energy physics. We
shall ignore the amplitude fluctuations in the fermionic
degrees of freedom, which are gapped on the scale of J.
The bosons tend to Bose condense. We shall ignore the
amplitude fluctuations and assume that its phase is
slowly varying on the fermionic scale, given by é=¢€p/A
in space. In this case we can have an effective-field
theory (o-model) description in which the local boson
phases are slow variables and the fermionic degrees of
freedom are assumed to follow them. We begin by pick-
ing a mean-field representation Uﬁ.(.)). The choice of the
staggered flux state U?I-F given by Eq. (138) is most con-
venient because U3’ commutes with 7%, making explicit
the residual U(1) gauge symmetry, which corresponds to
a 7 rotation. Thus we choose UE.(.)): U?jF ¢4” and replace
the integral over U by an integral over the gauge field
a?j. It should be noted that any UE.(.)) which are related by
SU(2) gauge transformations will give the same result.
At the mean-field level, bosons form a band with
minima at Q,. Writing h=he'0", we expect h to be
slowly varying in space and time. We transform to the
radial gauge, i.e., we write

il
i=8i 0)

where b; can be taken as real and positive and g; is a
SU(2) matrix parametrized by

(154)

0 -z
g,~=( i 2) (155)
<2 2
where
iaj —idhyl2 O
zjy =€ cos (156)
and
iy ity i Oi
Zp =€'%e'% sin —. (157)

We ignore the boson amplitude fluctuations and replace
b; by a constant by,

An important feature of Eq. (133) is that L, is invari-
ant under the SU(2) gauge transformation,

hi=glh;, (158)

U= gl (159)

Uy=2giUyg;. (160)
and
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gt = gay'g ~ g(a,8"). (161)
Starting from Eq. (133) and making the above gauge
transformation, the partition function is integrated over
g; instead of h; and the Lagrangian takes the form

J e N
Ly==2 Te(UGUy) + T Uyl + c.c.
2% )

+ 2 Y9, — iabm ) i+ 2 (— iag; + )b}
i i

= > Tybioffufio (162)

ijo

We have removed the tilde from c]/i(,, fia, and [ig because
these are integration variables and 7;;=1;;/2. Note that g;

appears only in U,J For every configuration {g;(7) ,a;?’j(r)}
we can, in principle, integrate out fermions and a to
obtain an energy functional. This will constitute the
o-model description. In practice, we can make the
slowly varying g; approximation and solve the local
mean-field equation for af,. This was the approach taken
by Lee et al. (1998).

The o model depends on {g,-(r),a?j(r)}, i.e., it is char-
acterized by «;, 6;, and ¢;, and the gauge field afj. a; 1s
the familiar overall phase of the electron operator,
which becomes half of the pairing phase in the supercon-
ducting state. To help visualize the remaining depen-
dence of freedom, it is useful to introduce the local
quantization axis,

I;= 7} 72; = (sin 6; cos ¢;,sin 6;sin ¢;,cos 6;).  (163)

Note that I; is independent of the overall phase «;,
which is the phase of the physical electron operator.
Then different orientations of I represent different
mean-field states in U(1) mean-field theory. This is
shown in Fig. 33. For example, I pointing to the north
pole corresponds to g;=I and the staggered flux state.
This state has a3#0, aj=a3=0, and has small Fermi
pockets. It also has orbital staggered currents around the
plaquettes. I pointing to the south pole corresponds to
the degenerate staggered flux state whose staggered pat-
tern is shifted by one unit cell. On the other hand, when
I is in the equator, it corresponds to a d-wave supercon-
ductor. Note that the angle ¢ is a gauge degree of free-
dom and states with different ¢ anywhere along the
equator are gauge equivalent. A general orientation of 1
corresponds to some combination of d-wave supercon-
ductor and staggered flux.

At zero doping, all orientations of I are energetically
the same. This symmetry is broken by doping and the I
vector has a small preference to lie on the equator. At
low temperature, there is a phase transition to a state
where I lies on the equator, i.e., the d-superconductor
ground state. It is possible to carry out a small expansion
about this state and explicitly work out the collective
modes (Lee and Nagaosa, 2003). In an ordinary super-
conductor, there is a single complex order parameter A
and we expect an amplitude mode and a phase mode.



76 Lee, Nagaosa, and Wen: Doping a Mott insulator: Physics of high-...

staggered flux ||

staggered flux O O

FIG. 33. The quantization axis I in the SU(2) gauge theory.
The north and south poles correspond to the staggered-flux
phases with shifted orbital current patterns. All points on the
equators are equivalent and correspond to the d-wave super-
conductor. In the superconducting state one particular direc-
tion is chosen on the equator. There are two important collec-
tive modes. The # modes correspond to fluctuations in the
polar angle 50 and the ¢ gauge mode to a spatially varying
fluctuation in S¢.

For a charged superconductor, the phase mode is pushed
up to the plasma frequency and one is left with the am-
plitude mode only. In gauge theory we have, in addition
to Ay;, the order parameter ;. Thus it is natural to ex-
pect additional collective modes. From Fig. 33 we see
that two modes of special interest are those correspond-
ing to small # and ¢ fluctuations. Physically the § mode
corresponds to local fluctuations of the staggered-flux
states which generate local orbital current fluctuations.
These currents generate a small magnetic field (esti-
mated to be ~10 G) which couples to neutrons. Lee and
Nagaosa (2003) have predicted a peak in the neutron-
scattering cross section at (,7r), at energy just below
2A, where A is the maximum d-wave gap. This is in
addition to the resonance mode discussed in Sec. II1.B,
which is purely spin fluctuation in origin. The orbital
origin of this mode can be distinguished from the spin
fluctuation by its distinct form factor (Hsu er al, 1991;
Chakravarty, Kee, and Nayak, 2002).

The ¢ mode is more subtle because ¢ is the phase of
a Higgs field, i.e., it is part of the gauge degrees of free-
dom. It turns out to correspond to a relative oscillation
of the amplitudes of x;; and A; and is again most promi-
nent at (). Since |x;| couples to the bond density
fluctuation, inelastic Raman scattering is the tool of
choice for studying this mode once the technology
reaches the requisite 10-meV energy resolution. Lee and
Nagaosa (2003) have pointed out that due to the special
nature of the buckled layers in LSCO this mode couples
to photons and may show up as a transfer of spectral
weight from a buckling phonon to a higher frequency
peak. Such a peak was reported experimentally (Kuz-
menko et al., 2003), but it is apparently not unique to
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FIG. 34. Structure of the superconducting vortex. Top: by is
constant while b, vanishes at the center and its phase winds by
2. Bottom: The isospin quantization axis points to the north
pole at the center and rotates towards the equatorial plane as
one moves out radially. The pattern is rotationally symmetric
around the Z axis.

LSCO as the theory would predict, and hence its inter-
pretation remains unclear at this point.

From Fig. 33 it is clear that the o-model representa-
tion of SU(2) gauge theory is a useful way of parametriz-
ing the myriad U(1) mean-field states which become al-
most degenerate for small doping. The low-temperature
d-superconducting phase is the ordered phase of the o
model, while in the high-temperature limit we expect the
I vector to be disordered in space and time, to the point
at which the o-mode approach fails and one crosses over
to the SU(2) mean-field description. The disordered
phase of the o model then corresponds to the pseudogap
phase. How does this phase transition take place? It
turns out that the destruction of superconducting order
proceeds via the usual route of the Berezinskii-
Kosterlitz-Thouless proliferation of vortices. To see how
this comes about in the o-model description, we have to
first understand the structure of vortices.

C. Vortex structure

The o-model picture leads to a natural model for a
low-energy hc/2e vortex (Lee and Wen, 2001). It takes
advantage of the existence of two kinds of bosons, b,
and b,, with opposite gauge charges but with the same
coupling to electromagnetic fields. Far away from the
vortex core, |by|=|b,| and b, has constant phase while b,
winds its phase by 27 around the vortex. As the core is
approached |b,| must vanish in order to avoid a diver-
gent kinetic energy, as shown in Fig. 34 (top). The quan-
tization axis I provides a nice way to visualize this struc-
ture [Fig. 34 (bottom)]. It smoothly rotates to the north
pole at the vortex core, indicating that at this level of
approximation the core consists of the staggered flux
state. The azimuthal angle winds by 27 as we go around
the vortex. It is important to remember that I param-
etrizes only the internal gauge degrees of freedom 6 and
¢ and the winding of ¢ by 27 is different from the usual
winding of the overall phase « by 7 in an hc/2e vortex.
To better understand the phase winding we use the fol-
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lowing continuum model for the phase 6,6, of b; and
b,, valid far away from the core:

K
D:Jdzxg[(V01—a—A)+(V¢92+a—A)2]+ e

(164)

where a stands for the continuum version of a?’j in the
last section, and A is the electromagnetic field (e/c has
been set to be unity). We now see that the sc/2e vortex
must contain a half-integer vortex of the a gauge flux
with an opposite sign. Then 6, sees zero flux while 6,
sees 27 flux, consistent with the windings chosen in Fig.
34. This vortex structure has low energy for small x be-
cause the fermion degrees of freedom remain gapped in
the core and one does not pay the fermionic energy of
order J as in U(1) gauge theory. Physically, the above
description takes advantage of the states with almost de-
generate energies (in this case the staggered flux state),
which is guaranteed by the SU(2) symmetry near half-
filling. There is direct evidence from STM tunneling that
the energy gap is preserved in the core (Maggio-Aprile
et al., 1995; Pan et al., 2000). This is in contrast to theo-
retical expectations for conventional d-wave vortex
cores in which a large resonance is expected to fill in the
gap in the tunneling spectra (Wang and MacDonald,
1995).

We can clearly reverse the roles of by and b, to pro-
duce another vortex configuration which is degenerate
in energy. In this case I in Fig. 34 points to the south
pole. These configurations are sometimes referred to as
merons (half of a hedgehog) and the two halves can tun-
nel to each other via the appearance of instantons in
space-time. The time scale of the tunneling event is dif-
ficult to estimate, but should be considerably less than J.
Depending on the time scale, the orbital current of the
staggered flux state in the core generates a physical stag-
gered magnetic field which may be experimentally ob-
servable by NMR (almost static), muon spin rotation (in-
termediate time scale), and neutron scattering (short
time scale). The experiment must be performed in a
large magnetic field so that a significant fraction of the
area consists of vortices and the signal of the staggered
field should be proportional to H. A muon spin rotation
experiment on underdoped YBCO has detected such a
field-dependent signal with a local field of +18 G (Miller
et al., 2002). However, muon spin rotation is not able to
determine whether the field has an orbital or spin origin
and this experiment is only suggestive, but by no means
definitive proof of orbital currents in the vortex core. In
principle, neutron scattering is a more definitive probe
because one can use the form factor to distinguish be-
tween orbital and spin effects. However, due to the small
expected intensity, neutron scattering has so far not
yielded any definite results.

As discussed in Sec. XI.E, we expect enhanced (7, )
fluctuations to be associated with the staggered flux lig-
uid phase. Indeed, the staggered-flux liquid state is our
route to Néel order and if gauge fluctuations are large,
we may expect to have quasistatic Néel order inside the
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vortex core. Experimentally, there are reports of en-
hanced spin fluctuations in the vortex core by NMR ex-
periments (Curro et al, 2000; Mitrovic et al., 2001;
Kakuyanagi et al., 2002; Mitrovic et al., 2003). There are
also reports of the static incommensurate spin order
forming a halo around the vortex in the LSCO family
(Kitano et al., 2000; Lake et al., 2001, 2002; Khaykovich
et al., 2002). One possibility is that these halos are the
condensation of preexisting soft incommensurate modes
known to exist in LSCO, driven by quasistatic Néel or-
der inside the core. We emphasize that the staggered-
flux liquid state is our way of producing antiferromag-
netic order starting from microscopies and hence is fully
consistent with the appearance of static or dynamical
antiferromagnetism in the vortex core. Our hope is that
gauge fluctuations (including instanton effects) are suffi-
ciently reduced in doped systems to permit a glimpse of
the staggered orbital current. The detection of such cur-
rent fluctuations will be a strong confirmation of our
approach.

Finally, we note that the orbital current does not show
up directly in STM experiments, which are sensitive to
the local density of states. Kishine et al. (2002) have con-
sidered the possibility of interference between Wannier
orbitals on neighboring lattice sites, which could lead to
modulations of STM signal between lattice positions.
STM experiments have detected 4 X4 modulated pat-
terns in the vortex core region and also in certain under-
doped regions. Such patterns appear to require density
modulations which are in addition to our vortex model.

D. Phase diagram

We can now construct a phase diagram of underdoped
cuprates starting from the d-wave superconductor
ground state at low temperatures. The vortex structure
allows us to unify the o-model picture with the conven-
tional picture of the destruction of superconducting or-
der in two dimensions, i.e., the Berezinskii-Kosterlitz-
Thouless transition via the unbinding of vortices. The o
model contains, in addition to the pairing phase 2«, the
phases 6 and ¢. However, we have seen in Sec. XII.C
that a particular configuration of 6 and ¢ is favored in-
side the vortex core. SU(2) gauge theory provides a
mechanism for cheap vortices, which are necessary for a
Berezinskii-Kosterlitz-Thouless description, as discussed
in Sec. V.B. If the core energy is too large, the system
will behave like a superconductor on any reasonable
length scale above Tgkr, which is not in accord with
experiment. On the other hand, if the core energy is
small compared with 7, vortices will proliferate rapidly.
They overlap and lose their identity. As discussed in Sec.
V.B, there is strong experimental evidence that vortices
survive over a considerable temperature range above 7.
These experiments require the vortex core energy to be
cheap, but not too cheap, i.e., of the order of T..
Honerkamp and Lee (2004) have attempted a micro-
scopic modeling of the proliferation of vortices. They
assume a staggered-flux core and estimate the energy
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FIG. 35. Schematic picture of the quantization axis I in differ-
ent parts of the phase diagram shown in Fig. 18. (a) In the
superconducting phase I is ordered in the x-y plane. (b) In the
Nernst phase, I points to the north or south pole inside the
vortex core. (¢c) The pseudogap corresponds to a completely
disordered arrangement of I. (I is a three-dimensional vector
and only a two-dimensional projection is shown.)

from projected wave-function calculations. They found
that there is a large range of temperatures above the
Berezinskii-Kosterlitz-Thouless transition where vorti-
ces grow in number but still maintain their identity. This
forms a region in the phase diagram which may be called
the Nernst region as shown in Fig. 18. The correspond-
ing picture of the I-vector fluctuation is shown in Fig. 35.
Above the Nernst region the I vector is strongly fluctu-
ating and is almost isotopic. This is the strongly disor-
dered phase of the o model. The vortices have lost their
identity and indeed the o-model description, which as-
sumes well-defined phases of b; and b,, begins to break
down. Nevertheless, the energy gap associated with fer-
mions remains. This is the pseudogap part of the phase
diagram in Fig. 18. In SU(2) gauge theory this is under-
stood as the U(1) spin liquid. There is no order param-
eter associated with this phase, as fluctuations including
staggered orbital currents and d-wave pairing become
short range. Is there a way to characterize this state of
affairs other than the term spin liquid? This question is
addressed in the next section.

E. Signature of the spin liquid

Senthil and Lee (2005) have pointed out that if the
pseudogap region is controlled by the U(1) spin-liquid
fixed point, it is possible to characterize this region in a
certain precise way. The spin liquid is a deconfined state,
meaning that instantons are irrelevant. Then the U(1)
gauge flux is a conserved quantity. Unfortunately, it is
not clear how to couple to this gauge flux using conven-
tional probes. We note that the flux associated with the
a’ gauge field is different from the U(1) gauge flux con-
sidered in Sec. IX, which had the meaning of spin chiral-
ity. In the case in which bosons are locally condensed
and their local phase is well defined, it is possible to
identify the gauge flux in terms of the local phase vari-
ables. The gauge magnetic field B is given by
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1
B=(Vxad),= Eﬁ S X 00, (165)

where
A = (sin 6 cos a,sin #sin a,cos 6),

with @ and « defined in Eq. (156). Note that the azi-
muthal angle associated with 7 is now the pairing phase
«, in contrast with the vector I we considered earlier.
The gauge flux is thus related to the local pairing and
staggered-flux order as

B= %(Vﬁz X Va),, (166)
and it is easily checked that the vortex structure de-
scribed in Sec. XII.C contains a half-integer gauge flux.

In the superconducting state the gauge flux is local-
ized in the vortex core and fluctuations between
+half-integer vortices are possible via instantons be-
cause the instanton action is finite. The superconductor
is in a confined phase as far as the U(1) gauge field is
concerned. As the temperature is raised towards the
pseudogap phase this gauge field leaks out of the vortex
cores and begins to fluctuate homogeneously.

The asymptotic conservation of the gauge flux at the
Mott transition fixed point potentially provides some
possibilities for its detection. At nonzero temperatures
in nonsuperconducting regions, flux conservation is only
approximate (as the instanton fugacity is small but non-
zero). Nevertheless, at low enough temperatures the
conserved flux will propagate diffusively over a long
range of length and time scales. Thus there should be an
extra diffusive mode that is present at low temperatures
in the nonsuperconducting state. It is, however, not clear
at present how to design a probe that will couple to this
diffusive mode.

Alternately the vortex structure described above pro-
vides a useful way to create and then detect the gauge
flux in the nonsuperconducting normal state. We first
describe this by ignoring the instantons completely in
the normal state. The effects of instantons will then be
discussed.

Consider first a large disk of cuprate material where
the doping level changes as a function of the radial dis-
tance from the center, as shown in Fig. 36. The outer-
most annulus has the largest doping x;. The inner annu-
lus has a lower doping level x,. The rest of the sample is
at a doping level x;<x,<x;. The corresponding transi-
tion temperatures 7T,.,3 will be such that T53<T,
<T.. We also imagine that the thickness AR,,AR; of
the outer and inner annuli are both much smaller than
the penetration depth for the physical vector potential
A. The penetration depth of the internal gauge field a is
expected to be small and we expect it will be smaller
than AR,,AR;. We also imagine that the radius of this
inner annulus R; is a substantial fraction of the radius R,
of the outer annulus.

Now consider the following set of operations on such
a sample.
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FIG. 36. (Color online) Structure of the sample needed for the
proposed experiment. The outer annulus (in dark blue) has the
highest T,. The inner annulus (in light blue) has a smaller 7.

The rest of the sample (in brown) has even smaller 7.

(i) First cool in a magnetic field to a temperature T;,
such that 7, <T;,<T,. The outer ring will then go su-
perconducting while the rest of the sample stays normal.
In the presence of the field the outer ring will condense
into a state in which there is a net vorticity ongoing
around the ring. We are interested in the case where this
net vorticity is an odd multiple of the basic sc/2e vortex.
If, as assumed, the physical penetration depth is much
bigger than the thickness AR,, then the physical mag-
netic flux enclosed by the ring will not be quantized.

(i) Now consider turning off the external magnetic
field. The vortex present in the outer superconducting
ring will stay (manifested as a small circulating persistent
current) and will give rise to a small magnetic field. As
explained above if the vorticity is odd, then it must be
associated with a flux of the internal gauge field that is
+r. This internal gauge flux must be in the inner “nor-
mal” region of the sample with very small penetration
into the outer superconducting ring. It will spread out
evenly over the full inner region. We have thus managed
to create a configuration with a nonzero internal gauge
flux in the nonsuperconducting state.

(iii) How do we detect the presence of this internal
gauge flux? For that imagine now cooling the sample
further to a temperature Ty, such that T 3<Tp,<T.,.
Then the inner ring will also go superconducting. This is
due to the condensation of the two boson species b ,.
But this condensation occurs in the presence of some
internal gauge flux. When bosons b;, condense in the
inner ring, they will do so in a manner that quantizes the
internal gauge flux enclosed by this inner ring into an
integer multiple of 7. If, as assumed, the inner radius is
a substantial fraction of the outer radius, then the net
internal gauge flux will prefer the quantized values +
rather than be zero (see below). However, configurations
of the inner ring that enclose the quantized internal
gauge flux of + also necessarily contain a physical vor-
tex that is an odd multiple of /ic/2e. With the thickness
of the inner ring being smaller than the physical penetra-
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tion depth, most of the physical magnetic flux will es-
cape. There will still be a small residual physical flux due
to the current in the inner ring associated with the in-
duced vortex. This residual physical magnetic flux can
then be detected.

Note that the sign of the induced physical flux is inde-
pendent of the sign of the initial magnetic field. Further-
more, the effect is obtained only if the initial vorticity in
the outer ring is odd. If, on the other hand, the initial
vorticity is even, the associated internal gauge flux is
zero and there will be no induced physical flux when the
inner ring goes superconducting.

The preceding discussion ignores any effects of instan-
tons. In contrast to a bulk vortex in the superconducting
state, the vortices in the setup above have macroscopic
cores. The internal gauge flux is therefore distributed
over a region of macroscopic size. Consequently, if in-
stantons are irrelevant at long scales in the normal state,
their rate may be expected to be small. At any nonzero
temperature (as in the proposed experiment) there will
be a nonzero instanton rate which will be small for small
temperature.

When such instantons are allowed the internal gauge
flux created in the sample after step (ii) will fluctuate
between the values +7 and —m. However, so long as the
time required to form the physical vortex in step (iii),
which we expect to be a short electronic time scale, is
much shorter than the inverse of the instanton rate, we
expect that the effect will be seen. Since the cooling is
assumed to be slow enough that the system always stays
in equilibrium, the outcome of the experiment is deter-
mined by thermodynamic considerations. Senthil and
Lee (2005) have estimated the various energies of the
operation and have concluded that for sample diameters
under a micron and sufficiently low temperatures
(=10 K) such an experiment may be feasible.

Xlll. SUMMARY AND OUTLOOK

In this review we have summarized a large body of
work which views high-temperature superconductivity
as the problem of the doping of a Mott insulator. We
have argued that the -/ model, supplemented by ¢’
terms, contains the essence of the physics. We offer as
evidence numerical work based on the projected trial
wave functions, which correctly predicts the
d-wave-pairing ground state and a host of properties
such as the superfluid density and the quasiparticle spec-
tral weight and dispersion. Analytic theory hinges on the
treatment of the double occupation constraint. The re-
dundancy in the representations used to enforce the
constraint naturally leads to various gauge theories. We
argue that with doping the gauge theory may be in a
deconfined phase, in which case the slave boson and fer-
mion degrees of freedom, which were introduced as
mathematical devices, take on a physical meaning in that
they are sensible starting points for describing physical
phenomena. In the deconfined phase the coupling to
gauge fluctuations is still of order unity and approxima-
tion schemes (such as large-N expansion) are needed to
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calculate physical properties such as spin correlation and
the electron spectral function. These results qualitatively
capture the physics of the pseudogap phase, but cer-
tainly not at a quantitative level. Nevertheless, our pic-
ture of the vortex structure and how it proliferates gives
us a reasonable account of the phase diagram and the
onset of T..

One direction of future research is to refine the treat-
ment of the low-energy effective model, i.e., fermions
and bosons coupled to gauge fields, and attempt a more
detailed comparison with experiments such as photo-
emission line shapes, etc. On the other hand, it is worth-
while to step back and take a broader perspective. What
is really new and striking about the high-temperature
superconductors is the strange “normal” metallic state
for underdoped samples. The carrier density is small and
the Fermi surface is broken up by the appearance of a
pseudogap near (0,7) and (7,0), leaving a Fermi arc
near the nodal points. All this happens without the dou-
bling of the unit cell via breaking translational or spin-
rotational symmetry. How this state comes into being in
a lightly doped Mott insulator is the crux of the problem.
We can distinguish between two classes of answers. The
first, perhaps more conventional one, postulates the ex-
istence of a symmetry-breaking state which gaps the
Fermi surface and further assumes that thermal fluctua-
tions prevent this state from ordering. A natural candi-
date for the state is the superconducting state itself.
However, it now appears that phase fluctuations of a
superconductor can explain the pseudogap phenomenon
only over a relatively narrow temperature range, which
we have called the Nernst regime. Alternatively, a vari-
ety of competing states which have nothing to do with
superconductivity have been proposed, often on a phe-
nomenological level, as producing the pseudogap. We
refer to this as the thermal explanation of the
pseudogap.

A second class of answer, which we refer to as the
quantum explanation, proposes that the pseudogap is
connected with a fundamentally new quantum state.
Thus despite its appearance at high temperatures it is
argued that it is a high-frequency phenomenon which is
best understood quantum mechanically. The gauge
theory reviewed here belongs to this class and views the
pseudogap state as derived from a new state of matter,
the quantum spin-liquid state. The spin-liquid state is
connected to the Néel state at half-filling by confine-
ment. At the same time, with doping a d-wave supercon-
ducting ground state is naturally produced. We argue
that rather than considering the cuprate as evolving di-
rectly from the antiferromagnet to the superconductor, it
is better conceptually to start from the spin-liquid state
and consider how the antiferromagnet and superconduc-
tivity develop from it. In this view the pseudogap is the
closest we can get to obtaining a glimpse of the spin
liquid, which up to now is unstable in the square-lattice
t-J model.

Is there a “smoking gun” signature to prove or dis-
prove the validity of this line of theory? Our approach is
to make specific predictions as much as possible in the
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hope of stimulating experimental work. This is the rea-
son we place emphasis on the staggered flux liquid with
its orbital current fluctuations. It is a unique signature
which may be experimentally detectable. Our predic-
tions range from new collective modes in the supercon-
ducting state to quasistatic order in the vortex core. Un-
fortunately, the physical manifestation of the orbital
current is a very weak magnetic field, which is difficult to
detect, and to date we have not found experimental veri-
fication. Besides orbital current, we also propose an ex-
periment involving flux generation in a special geometry.
This experiment addresses the fundamental issue of the
quantum spin liquid as the origin of the pseudogap
phase.

The pseudogap metallic state is so strange that at the
beginning it is not clear if a microscopic description is
even possible. So the microscopic description provided
by the SU(2) slave-boson theory, although still relatively
qualitative, represents important progress and leads to
some deep insights. A key finding is that the parent spin
liquid is a new state of matter that cannot be described
by Landau’s symmetry-breaking theory. The description
of the parent spin liquid, such as the SU(2) slave-boson
theory, must involve gauge theory. Even if one starts
with an ordered phase and later uses quantum fluctua-
tions to restore the symmetry, the resulting description
of the symmetry-restored state, if found, appears to al-
ways contain gauge fields (Wu et al, 1998). Thus the
appearance of the gauge field in the quantum descrip-
tion of the pseudogap metal is not a mathematical arti-
fact of the slave-boson theory. It is a consequence of a
new type of correlation in those states. The new type of
correlation represents a new type of order (Wen, 2002b),
which makes those states different from the familiar
states described by Landau’s symmetry-breaking theory.

From this perspective, the study of high-temperature
superconductivity may have a much broader and deeper
impact than merely understanding high-temperature su-
perconductivity. Such a study is actually a study of new
states of matter. It represents our entry into a new ex-
citing world that lies beyond Landau’s world of symme-
try breaking. Hopefully the new states of matter will be
discovered in some materials other than high-
temperature superconductors. The slave-boson theory
and the resulting gauge theory developed for high-
temperature superconductivity may be useful for these
new states of matter once they are discovered in experi-
ments. [Examples of these new states of matter have
already been discovered in many theoretical toy models
(Moessner and Sondhi, 2001; Balents et al., 2002; Kitaev,
2003; Wen, 2003c).] At the moment, gauge theory is the
only known language for describing this new state of
affairs. We believe the introduction of this subject to
condensed-matter physics has enriched the field and will
lead to many interesting further developments.
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