
Colloquium: Scaled particle theory and the length scales
of hydrophobicity

Henry S. Ashbaugh

Department of Chemical and Biomolecular Engineering, Tulane University,
New Orleans, Louisiana 70118, USA

Lawrence R. Pratt

Theoretical Division, Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, USA

�Published 30 January 2006�

Hydrophobic hydration plays a crucial role in self-assembly processes over multiple length scales,
from the microscopic origins of inert gas solubility in water, to the mesoscopic organization of proteins
and surfactant structures, to macroscopic phase separation. Many theoretical studies focus on the
molecularly detailed interactions between oil and water, but the extrapolation of molecular-scale
models to larger-length-scale hydration phenomena is sometimes not warranted. Scaled particle
theories are based upon an interpolative view of that microscopic↔macroscopic issue. This
Colloquium revisits the scaled particle theory proposed 30 years ago by Stillinger �J. Solution Chem.
2, 141 �1973��, adopts a practical generalization, and considers the implications for hydrophobic
hydration in light of our current understanding. The generalization is based upon identifying a
molecular length, implicit in previous applications of scaled particle models, which provides an
effective radius for joining microscopic and macroscopic descriptions. It will be demonstrated that the
generalized theory correctly reproduces many of the anomalous thermodynamic properties of
hydrophobic hydration for molecularly sized solutes, including solubility minima and entropy
convergence, successfully interpolates between the microscopic and macroscopic extremes, and
provides new insights into the underlying molecular mechanisms. The model considered here serves
as a reference for theories that bridge microscopic and macroscopic hydrophobic effects. The results
are discussed in terms of length scales associated with component phenomena. In particular, first there
is a discussion of the microscopic-macroscopic joining radius identified by the theory; then follows a
discussion of the Tolman length that describes curvature corrections to a surface area model of
hydrophobic hydration free energies and the length scales on which entropy convergence of hydration
free energies are expected.
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I. INTRODUCTION: THE CENTRAL PUZZLE OF
HYDROPHOBIC HYDRATION

The adage “oil and water don’t mix” is a truism that
underlies many phenomena of the aqueous environ-
ment, including surfactant assembly, folding of globular
proteins, biological membrane formation, and the fate of
pollutants in nature. But if one examines the interaction
of hydrophobic substances with water more closely, one
sees that the actual situation is more subtle. For ex-
ample, many soluble proteins are globular at one tem-
perature but unfold upon both heating and cooling. Sim-
pler examples are the solubilities of inert gases in water,
shown in Fig. 1, and contrasted with solubility of these
gases in a typical organic solvent �cyclohexane�. The
temperature variations shown there are opposite for
those two solvents, and the nonmonotonic behavior of
the aqueous solubilities as a function of temperature is
not expected on the basis of solubilities in cyclohexane.
These distinctions between water and organic solvents
are generic and are a central puzzle of hydrophobic hy-
dration.

The ability to reproduce these temperature signatures
from basic principles is essential for understanding the
functional temperature ranges of biophysical structures
and of aqueous phase nanotechnology designed by anal-
ogy with the molecular machinery of biophysics. An im-
portant aspect of these puzzles is that the hydrophobic
temperature signatures are strongly affected by the spa-
tial length scales of the hydrophobic solution structures.

The identification of a particular length scale has been
a primary feature of recent discussions of hydrophobic
effects �Lee, 1985; Lum et al., 1999�, though the length
scales noted in those two cases were different from each
other. It is interesting, therefore, to consider length scale
issues more broadly. We can start by noting the classic
suggestion of Egelstaff and Widom �1970� for a length
scale characteristic of a liquid in coexistence with a di-
lute vapor phase, namely, the product of the liquid-
vapor interfacial tension � and the isothermal compress-
ibility of the liquid �T�−�1/V���V /�p�T, where V is the
volume of the system and p is the pressure. Since p has
the dimensions of �energy/volume� and � the dimensions
of �energy/area�, the combination ��T has the dimension
�length�. The original argument supporting this sugges-
tion was physical, heuristic, and our discussion below of
the scaled particle theories will shed some additional
light on this length scale. It was immediately observed,
however, that away from a critical region the product
��T exhibited limited variation, though � and �T could
differ by two orders of magnitude from liquid to liquid.

Figure 2 shows that the temperature dependence of

��T is qualitatively different for liquid water than it is
for typical organic solvents. This qualitatively different
behavior is mostly ascribable to the fact that the com-
pressibility of liquid water displays a minimum at 46 °C.
�T decreases with increasing temperature for tempera-
tures lower than this, and has a smaller net variation
over this temperature domain compared to the other
solvents.

FIG. 1. Solubility of several inert gases in water and cyclohex-
ane relative to the dilute gas phase expressed as the Ostwald
partition coefficient following from Eq. �1�, as a function of
temperature at one atmosphere total pressure. The circles and
interpolating solid lines are the data for liquid water as a sol-
vent; the stars and the fitted dotted lines are for cyclohexane.
Note that in the low-temperature region, these results for the
two solvents have slopes of opposite sign. These solubility ra-
tios are expected to increase in higher-temperature regions
where the density of either solvent is decreasing and the dis-
tinctions between gas and liquid phase diminish.

FIG. 2. �Color online� Product of the liquid-vapor
surface tension � and the isothermal compressibility
�T�−�1/V���V /�p�T for several liquid solvents at low tem-
peratures so that the density of the coexisting vapor is low.
Even though the individual factors differ substantially in mag-
nitude, this product is a length characteristic of the liquid, ac-
cessible on the basis of macroscopic measurements, and can be
taken as proportional to a molecular correlation length. The
interesting observation here is that the temperature depen-
dence of this correlation length is qualitatively different for
liquid water than for the organic solvents.
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Though liquid water is less compressible than most
other liquids, the liquid-vapor surface tension is higher
for water than for the other cases. This exemplifies the
point that the product ��T has smaller variations than do
the individual factors. Still, liquid water is distinguished
from liquids generically by peculiar temperature depen-
dences.

Analyzed on the basis of classical thermodynamics,
these peculiar temperature dependences imply entropic
stabilization of conformations and assemblies of hydro-
phobic solutes in aqueous solutions. These entropic ef-
fects can be appreciated qualitatively by asking why
cold-unfolded proteins organize and order themselves
upon heating. A qualitative start toward answering this
question is to recognize that such an entropy question
should also consider the water matrix. Thus ordering of
a protein structure with increasing temperature can be
balanced with disordering of the solution so that the en-
tropy of the system increases with increasing tempera-
ture, as it must according to thermodynamic principles.

The theoretical description of hydrophobic effects has
recently progressed markedly, and understanding of the
entropic interactions that stabilize micelles, membranes,
soluble proteins, and hierarchical biomolecular aggrega-
tions in aqueous solutions has similarly advanced. It is
now recognized that scaled particle theories, which are
discussed in detail in Sec. II, can properly describe
primitive hydrophobic effects associated with the hydra-
tion of simple monatomic species. Scaled particle theo-
ries identify—tentatively at first, but firmly as informa-
tion accumulates—a length separating microscopic from
macroscopic descriptions of hydration structure. This es-
tablishes a radius at which microscopic and macroscopic
descriptions of hydration structure can be effectively
joined. Together with primitive constitutive information
specific to liquid water, recognition of this joining radius
provides an effective description of hydrophobic effects
for mesoscale aqueous structures.

This Colloquium traces those advances, specifically by
laying out the basic view generalizing applications of
scaled particle approaches. We establish the
microscopic-macroscopic joining length, discuss the
length—analogous to the Tolman length �cf. Eq. �8�
below�—associated with curvature corrections of a sur-
face area model of hydrophobic hydration free energies,
and finally examine the length scales on which entropy
convergence of hydration free energies are expected.1

A. Hydrophobicity and amphiphilic solutes

Hydrophobic phenomena usually do not occur in iso-
lation from other interaction effects. The solutes that

motivate the study of hydrophobic effects are typically
molecularly complicated, water-soluble, amphiphilic
chain molecules—molecules that are part hydrophobic
and part hydrophilic. Soluble protein molecules are ex-
amples.

Researchers studying these systems have been com-
fortable, however, with a hydrophilic-hydrophobic di-
chotomy. It is common to identify contributions to the
hydration free energy above and beyond obvious hydro-
philic interactions as hydrophobic effects �Pratt, 1998�.
This is particularly true if the temperature dependences
of the complementary hydrophobic interactions are also
distinctive �Spolar et al., 1989; Spolar and Record, 1994�.
A helpful review of hydrophilic electrostatic interactions
involved in protein molecular structure with an empha-
sis on the multiple length scales involved appeared re-
cently �Simonson, 2003�. The present discussion empha-
sizes model solutes, inert excluded volume models that
permit the study of hydrophobic effects exclusively.
Gases that are sparingly soluble in water, and small hy-
drocarbon molecules, can be brought into correspon-
dence with hard-core molecular models. These models
permit precision in isolating the temperature signatures
that are the target of studies of hydrophobic effects.

B. Entropic and enthalpic driving forces

Phase changes are controlled by differences in free
energies, which in turn can be separated into an entropy
difference and an enthalpy difference. For many systems
the solubilities can be understood principally in terms of
the enthalpies; in fact, such systems are called regular
solutions. Hydrophobic hydration, however, defies such
a simple explanation. High-precision calorimetric stud-
ies show that unfavorable entropy changes dominate the
room-temperature hydration free energies and are only
partly compensated by favorable enthalpy changes. Not
only that, but the entropies and enthalpies of hydropho-
bic hydration are strongly temperature dependent. The
negative entropy difference rises rapidly with tempera-
ture leading to the reversed situation with an unfavor-
able enthalpy dominating the free energy and partly
compensated by a favorable entropy change. The result-
ing solubilities of nonpolar gases are nonmonotonic, ex-
hibiting solubility minima in the range 310–350 K; for
examples, see Fig. 1. Analogously, proteins undergo hot
and cold denaturation �Brandts, 1964; Franks and Hat-
ley, 1991� as noted above, while ionic and nonionic sur-
factants display a minimum in their critical micelle con-
centrations with respect to temperature �Chen et al.,
1998a, 1998b�, pointing to a common underlying mecha-
nism with the solubility behavior of nonpolar species.

C. Temperature convergence of hydration entropies

The experimental entropy changes for a range of hy-
drophobic solutes intersect at small values of entropy
differences in the region T�400 K. Critical examples
are presented in Fig. 3. The coincidence of these
entropy-convergence temperatures for hydrocarbons

1Entropy convergence will be defined and exemplified in Sec.
I.C and Fig. 3, and extensively discussed in this Colloquium,
but particularly in Sec. III.E. Briefly, it is the experimental
observation for many hydrophobic solutes that the entropy
changes upon hydration approach a common value near zero
in a narrow temperature regime, T�400 K.
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with comparable behavior in protein unfolding has been
used as empirical justification for the hydrophobic core
model for protein folding and has influenced the inter-
pretation of biomolecular assembly �Privalov, 1979;
Baldwin, 1986; Privalov and Gill, 1988; Murphy et al.,
1990; Lee, 1991; Muller, 1993; Makhatadze and Privalov,
1995�. But in the complex context of soluble protein
molecules, the clear relevance of entropy convergence
can be questioned �Robertson and Murphy, 1997�.

D. Contrast of theories: From icebergs to scaled particle
theories

It has been traditionally argued that these hydropho-
bic entropy effects stem from orientational constraints
on water molecules in the hydration shell of nonpolar
solutes, constraints that maintain the integrity of a
hydrogen-bonding network forming cagelike structures
or microscopic icebergs �Frank and Evans, 1945�. Ex-
perimental probes of the local structure of water proxi-
mal to purely nonpolar solutes are scarce and hampered
by the low solute concentrations attainable. The struc-
tures that have been studied by neutron- and x-ray scat-
tering techniques suggest that while water adopts orien-
tational preferences in the hydration shell of nonpolar
moieties, the solute-induced structure is more disor-
dered than in ice or clathrate hydrates �Broadbent and

Neilson, 1994; DeJong et al., 1997; Filipponi et al., 1997;
Bowron et al., 1998a, 1998b�. Theoretical studies of the
impact of local clathrate formation about krypton in wa-
ter concur with the experimental evidence that literal
clathrate structures would be significantly more ordered
than the water molecules in the immediate environment
of Kr�aq� in liquid solution. For that reason, clathrate
structures are improbable contributors to hydration
thermodynamics �Ashbaugh et al., 2003�.

1. Empirically parametrized models

In contrast to historical views, a theme of modern
theories of hydrophobic hydration is to exploit experi-
mentally secured information on liquid water to describe
the solutions of interest. The scaled particle theories
�Stillinger, 1973; Pierotti, 1976� are examples of such an
approach. Because temperature dependences are of pri-
mary interest, it is natural to insist that temperature de-
pendences of any parameters be understood clearly, per-
haps obtained from a separate experiment �Graziano
and Lee, 2003�. When experimental information ran out,
modelers turned to simulation “data.” For example,
Pratt and Pohorille �1992, 1993� utilized simulations to
fill in the outlines of scaled particle theories and demon-
strated that the low solubility of atomic solutes in water
arises from the narrow distribution of cavity-opening
fluctuations in water. Utilizing an information theoretic
approach, Hummer et al. �1998, 2000� then took the fur-
ther step of providing a quantitative link between the
microscopic density fluctuations determined from water
oxygen pair correlations and the hydration free energies
of hard solutes. Those results established a connection
to the Pratt-Chandler theory �Pratt and Chandler, 1977�
and its Gaussian field interpretation �Chandler, 1993;
Lum et al., 1999�.

More importantly, the information theoretic model
implicated the unusual equation-of-state properties of
water as a dominant factor in hydrophobic hydration,
differentiating water from other common solvents. As
one example, the information theoretic model provided
a facile description of the enhanced solubility of nonpo-
lar species in D2O compared to H2O as a result of dif-
ferences in the isothermal compressibilities of these iso-
topic alternative forms of water �Hummer et al., 2000�.
Another example is the analysis of hydrophobic solubil-
ity in deeply supercooled water �Paschek, 2005�.

2. Larger length scales and surface free energies

The empirical involvement of the equation of state
brings us back to the length ��T of Fig. 2 because of the
involvement of the measured isothermal compressibility
with its specific temperature dependence. But the prod-
uct ��T also involves the surface tension �, and the sur-
face tension has been invoked in empirical correlations
connecting measurable properties of liquid water and
hydrophobic effects. Years ago, however, Tanford �1979�
pointed out the large discrepancy between the measured
water-hydrocarbon interfacial tension and the effective
microscopic surface tensions obtained from hydrocarbon

FIG. 3. Examples of the entropy-convergence phenomenon
for noble gases dissolved in water. Results obtained from Os-
twald coefficient results as a function of temperature, following
Eq. �1�, at one atmosphere total pressure. The bold solid
curves are the data plotted up to 70 °C �Clever 1979a, 1979b,
1980�; the dashed lines are fitted linear models. Results are
available over a broader range for many cases, but this display
adopts a common temperature range and gives an indication of
the accuracy of the linear behavior. Radon �Rn� is clearly a
special case, perhaps because of the strength of water-Rn dis-
persion interactions and the greater solubility of Rn. It is clear
here that there is some variation of intersection �“conver-
gence”� temperatures. This variation is probably less evident in
solubilities of small hydrocarbons that are more common as
biophysical model systems, perhaps because of the better com-
monality of fundamental sizes and interaction strengths among
those solutes.

162 H. S. Ashbaugh and L. R. Pratt: Colloquium: Scaled particle theory and the¼

Rev. Mod. Phys., Vol. 78, No. 1, January 2006



solubility data. A correspondence between macroscopic
and microscopic surface tensions has been contentious
because of their fundamentally different temperature
dependence.

More recent examples of the distinction between mo-
lecular and macroscopic hydrophobic interactions are
found in measurements of the long-range attractive
force between macroscopic hydrophobic surfaces �Is-
raelachvili and Pashley, 1982; Pashley et al., 1985; Chris-
tenson and Claesson, 1988� that have not been explained
on the basis of molecular hydrophobic effects. Vibra-
tional sum-frequency spectroscopy suggests that the hy-
drogen bonding of water molecules is weaker at macro-
scopic water-carbon tetrachloride and water-hexane
interfaces than near individual hydrophobic species dis-
solved in water �Scatena et al., 2001�. The lack of a de-
finitive interpretation of these surface force measure-
ments, and of the changes in water energetics at
macroscopic interfaces, underscores the need for a
quantitative theory beyond molecular hydrophobic ef-
fects. In general, the need for a unified, quantitative de-
scription of both molecular and macroscopic hydropho-
bic phenomena arises because hydrophobic driving
forces play an important role in self-assembly on mul-
tiple length scales and from the fact that quantitative
descriptions of these driving forces are derived from mo-
lecular solubility data, macroscopic interfacial tension
measurements, or interpolations of these quantities
�Hermann, 1977; Tanford, 1979; Sharp et al., 1991; Ash-
baugh et al., 1999; Gallicchio et al., 2000; Ashbaugh and
Paulaitis, 2001�.

Lum et al. �1999� suggested bridging these disparate
length scales by incorporating a Gaussian field theory
for molecular-level fluctuations with mean-field theory
for larger-scale structures ultimately responsible for
macroscopic phase transitions. Their approach success-
fully predicts many of the thermodynamic anomalies
characteristic of small-molecule hydration, and goes fur-
ther, predicting the onset of long-range hydrophobic
forces between surfaces as a result of an aqueous liquid-
vapor phase transition in confined geometries. Indeed,
surface force apparatus studies of the long-range hydro-
phobic interaction �Christenson and Claesson, 1988� and
simulations of water confined between repulsive oblate
ellipsoids observed cavitation between nonpolar sur-
faces �Huang et al., 2003�, consistent with theoretical
predictions. Mean-field modeling and simulations of
methane clusters, however, suggest that when ubiquitous
attractive interactions between water and hydrophobic
surfaces are taken into account, surface and
confinement-induced local structural changes are sup-
pressed �Ashbaugh and Paulaitis, 2001; Truskett et al.,
2001; Chau, 2003; Dzubiella and Hansen, 2003; Zhou
et al., 2004; Ashbaugh et al., 2005; Choudhury and Pet-
titt, 2005; Li et al., 2005�. Moreover, experiments on the
effects of electrolyte addition and degassing on the
range of surface forces, and the stability of surfactant-
free aqueous emulsions, challenge the theoretical pre-
dictions �Kokkoli and Zukoski, 1998; Considine et al.,
1999; Pashley, 2003; Pashley et al., 2005�.

3. Scaled particle theories for microscopic-macroscopic
interpolation

A conceptual basis for unifying molecular and macro-
scopic hydrophobic hydration can be found in scaled
particle theory �SPT�. Over 30 years ago, Stillinger
�1973� presented an influential paper on the application
of the classic SPT of Reiss �Reiss et al., 1959; Reiss, 1965,
1977; Pierotti, 1976� to the hydration thermodynamics of
purely excluded volume solutes. The purpose of that pa-
per was, in part, to illuminate the pitfalls and difficulties
in applying classic SPT, originally developed for hard-
sphere fluids, to aqueous solvents �Ben-Naim and Fried-
man, 1967�. In doing so, Stillinger opened new avenues
of inquiry into hydrophobic hydration within the context
of SPT. Nevertheless, direct exploration of the validity
and consequences of Stillinger’s revised theory have
been rare �Pratt and Pohorille, 1992, 1993�. We now re-
visit SPT and critically discuss its implications in light of
our current understanding of hydrophobic hydration.
We demonstrate that the revised SPT reproduces many
of the characteristic thermodynamic signatures of mo-
lecular hydrophobic effects and can be used to extend
the results of molecular simulations of small hard hydro-
phobic solutes in water to mesoscopic and macroscopic
surface hydration. The present analysis provides insights
into the differences and similarities for hydrating mo-
lecular and macroscopic surfaces. In addition, we exam-
ine the validity of surface area correlations commonly
used in biophysical models for hydration thermodynam-
ics over a range of length scales, as well as the origins of
entropy-convergence behavior at molecular length
scales and how solute size moderates the convergence
temperature.

II. A PRIMER ON SCALED PARTICLE THEORY

The particle density �A�aq� of a dilute hydrated solute
A in solution is conveniently expressed as

�A�aq� = �A�ideal�exp�− �A
ex�aq�/kT� , �1�

where �A�ideal� is the molecular number density of the
coexisting gas phase treated as ideal. Thus the excess
chemical potential, �A

ex, is central to resolving the aque-
ous solubility of the solute. The ratio of dissolved to
ideal gas densities is also called the Ostwald partition
coefficient Keq=�A�aq� /�A�ideal�. Considering Fig. 1
again, A=Ne is an example, and the density of Ne dis-
solved in water is about 1% of the gas density at T
=25 °C and one atmosphere total pressure.

Let us now confine our discussion to impenetrable
hard-sphere solutes, which we give a radius R. To make
this more concrete, let us characterize the position of a
water molecule by the oxygen center, and let the
solvent-accessible radius R be the distance of closest ap-
proach between the solute center and a water oxygen.
The solvent-accessible radius is usually taken as the sum
of a van der Waals radius of a water molecule and the
radius of the hard-sphere solute, i.e., R= ��WW+�AA� /2.
The ratio of densities is then just the ratio of volumes
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into which a solute might be placed. This in turn is equal
to the insertion probability p0�R�, the probability that a
sphere of that radius randomly placed in water is devoid
of water molecules. This follows directly from Widom’s
potential distribution theorem for species interacting
with a hard potential �Widom, 1982; Pratt et al., 1999�.

The insertion probability is the fractional free volume
offered by the solution—or the fractional available vol-
ume in a more specialized language attributed to Boltz-
mann �Stell, 1985�,

p0�R� = Vfree/Vtotal = exp�− �A
ex/kT� . �2�

For the hard-sphere case considered here, Keq=p0�R�.
Figure 4 provides a visualization of the available volume
Vfree. Given a snapshot of a molecular configuration of
liquid water—the left box in Fig. 4—Vfree is the measure
of the points at which a hard sphere could be success-
fully implanted. A successful placement of a hard-sphere
solute particle identifies a molecular cavity in the solvent
of a size at least as large as the hard sphere that was
implanted. We flexibly use “cavity” to denote also that
successfully placed hard-core solute because they are
typically interchangable concepts. A graphic display of
those successful placements thus yields a negative
image—the right box in Fig. 4—of the molecular con-
figuration from which the analysis started. Vfree de-
creases with increasing cavity radius. This is true be-
cause some placements that are satisfactory for the
solute radius of R will become unsatisfactory when the
radius is increased to R+�R, but clearly no new suc-
cesses are obtained in that way. Nevertheless, p0�R� is
subsequently determined as an ensemble average over a
large number of molecular configurations.

A direct computation of p0�R� may be performed by
Monte Carlo simulations—as is suggested by Fig. 4—but
that approach offers little insight. The scaled particle
theory, in contrast, permits the construction of approxi-
mations with parameters determined by physical proper-
ties of water. It is based on the observation that the
excess chemical potential of a hard-core solute is equal

to the mechanical work needed to inflate a cavity of
radius R in water, working against the thermal pressure
exerted by the molecules at the cavity boundary. Let us
define a quantity G�R�, the density of molecules at the
boundary normalized to the bulk density �W. G�R� is the
contact value of the radial distribution function shown in
Fig. 5. Then the thermal pressure on the boundary is
given by kT�WG�R�, and the pdV work to expand the
cavity, decreasing the volume of the fluid, is

�A
ex�aq� =� pdV = kT�

0

R

�WG�r�4	r2dr . �3�

The name scaled particle theory derives from this expres-
sion �Reiss, 1965, 1977� since the solute is introduced by
scaling up from a particle with a radius of zero to a final
size of R.

A. Classic scaled particle theory

The substance of scaled particle theories, as a practi-
cal matter, is in the expressions and parametrizations for
the function G�R�. How to parametrize G�R� for the
limiting cases of small or large distances is well known.
For distances so small that only one solvent molecule
could occur within the cavity boundary, the insertion
probability is

FIG. 4. �Color� The box on the left shows a configuration of
water molecules taken from a simulation of liquid water at the
density of the liquid in coexistence with vapor at 300 K. Oxy-
gen atoms are red and hydrogen atoms are silver. The box on
the right shows hard spheres of diameter 2.8 Å that can be
successfully placed into the configuration on the right without
overlap of the van der Waals volume of the water molecules.
The insertion probability p0 is determined as the volume ac-
cessible to a center of a purple sphere divided by the geometric
volume of the box. See also Pratt, 1998.

FIG. 5. Cavity-water oxygen radial distribution function for a
R=3 Å cavity at T=300 K. The contact value, defined as
G�R�=limr→R+

g�r�, is about 2.3. The thin solid curve indicates
the radial distribution function, while the dotted curve indi-
cates the radial integral N�r�=�0

r�Wg�
�4	
2d
. The occupa-
tion of the first hydration shell, corresponding to the first mini-
mum in g�r� at 5.1 Å, is 17.8 water molecules, as indicated by
the thick horizontal line. Note that the first minimum, which
physically discriminates between first and succeeding hydra-
tion shells, is mild and structuring of outer hydration shells is
weak �Pratt and Pohorille, 1993�. These features are in quali-
tative agreement with the predictions of the Pratt-Chandler
theory �Pratt and Chandler, 1977�, though that theory has been
substantially amended �Pratt, 2002�.
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p0�R → 0� = 1 −
4	

3
�WR3. �4�

To relate this to G�R�, take the derivative of Eq. �3� and
use Eq. �2� to obtain

G�R� = −
1

4	R2�W
	 � ln p0�R�

�R

 . �5�

Carrying this out yields

G�R → 0� =
1

1 − �4	/3��WR3 . �6�

The other simple limit is that of large R. Here the
contact value can be represented as an asymptotic ex-
pansion in 1/R,

G�R� � �
j�0

Gj

Rj . �7�

Retaining contributions up to j=2 yields an expression
familiar from classical thermodynamics as the force act-
ing on the cavity surface �Reiss, 1965, 1977; Stillinger,
1973; Pierotti, 1976; Henderson, 2002�,

kT�WG�R� � p +
2��

R
−

4���

R2 , �8�

where p is the liquid saturation pressure psat , �� is
henceforth the surface tension of a flat interface that was
denoted by � above, and � �Tolman, 1949� describes the
initial curvature correction to the surface tension.2 The
coefficient G3 is zero, so that the chemical potential is
free of logarithmic contributions �Tully-Smith and Reiss,
1970; Stillinger and Cotter, 1971�, though analyses of the
possibility of logarithmic corrections are still of interest
�Evans et al., 2003, 2004�. Higher-order terms in the
asymptotic expansion are not generally available. Such
considerations motivated Reiss et al. �1959� to truncate
Eq. �7� after the initial curvature correction in order to
develop a tractable, physically reasonable model for the
contact values.

Evaluating the j=0 term in Eq. �7� with the measured
equation of state, and the j=1,2 terms in the expansion
by requiring that the microscopic and macroscopic limits
meet smoothly at �WW/2, yields

G�R� = 

1

1 − �4	/3��WR3 , R 
 �WW/2

psat

kT�W
+ � 2 + �

�1 − ��2 −
2psat

kT�W
�	�WW

2R

 + �−

�1 + 2��
�1 − ��2 +

psat

kT�W
�	�WW

2R

2

, R � �WW/2, � �9�

where �= �	 /6��W�WW
3 is the solvent packing fraction. Integration of this formula using Eq. �3� yields the excess

chemical potential

�A
ex

kT
=


− ln	1 −
4	

3
�WR3
 , R 
 �WW/2

�− ln�1 − �� +
9�2

2�1 − ��2 −
�psat

kT�W
� + �−

3��1 + 2��
�1 − ��2 +

3�psat

kT�W
�	 2R

�WW



+ �3��2 + ��
2�1 − ��2 −

3�psat

kT�W
�	 2R

�WW

2

+
�psat

kT�W
	 2R

�WW

3

, R � �WW/2.
� �10�

Equations �9� and �10� constitute the classic SPT origi-
nally developed for the hard-sphere fluid �Reiss, 1965,
1977� but which was subsequently applied to water by
Pierotti �1976� and Lee �1985�. Fundamental difficulties
arise in the application of classic SPT to water, however,
including the erroneous prediction that the surface ten-
sion of water increases with temperature and passes
through a maximum near T=425 K �Stillinger, 1973�.

B. Revised scaled particle theory

The scaled particle model described above incorpo-
rates little molecular detail beyond the assigned van der
Waals diameter �WW that might differentiate water from

other solvents, and thereby limits the interpretation of
complex hydration phenomena. To consider this prob-
lem more generally, we note that the insertion probabil-
ity is formally expressed in terms of solvent structure by
an inclusion-exclusion development �Reiss, 1965, 1977;
Stillinger, 1973�,

2The notation of Eq. �8� follows a typographic confusion
widespread across the present problem. � here is one-half the
conventional Tolman length. Expressed more basically, the
rightmost term in Eq. �8� is �2�� /R2� times the Tolman length
�. See Henderson �2002� and Moody and Attard �2001�. This
factor of 2 pops up again in Eq. �19�. We thank J. R. Hender-
son for a discussion of this point.
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p0�R� = 1 − �n�R��0 +
1
2

�n�R��n�R� − 1��0

+ �
k�3

�− 1�k

k!
�n�R��n�R� − 1� ¯ �n�R� − k + 1��0,

�11�

where n�R� is the number of oxygen atoms observed
in a sphere of radius R. The inclusion-exclusion inter-
pretation is that the term �n�R��0=4	�WR3 /3
=V−1�molecules4	R3 /3 comes from the sum of the indi-
vidual volumes excluded to the solute by each of the
solvent molecules. Then �n�R��n�R�−1��0 /2 corrects for
otherwise overcounted pair overlaps of those individual
molecular excluded volumes. This term vanishes if pair
overlaps cannot occur, and operationally it vanishes
because n�R� is observed then to take values 0 or 1 only.
Generally, however, that pair correction is nonzero but
needs a further triple overlap correction, and so on. The
kth term in this series vanishes for k exceeding the maxi-

mum number of solvent molecular centers that can be
packed into a sphere of volume 4	R3 /3 because then
the probability of observing a k-tuple in the observation
sphere is zero. Operationally, this is because n�R� then
only takes values 0, 1, 2, ¼, k−1, so the indicated aver-
age vanishes, and this is sufficient that all higher mo-
ments vanish too. It is on this basis that the limiting
result Eq. �4� is established.

Evaluation of the general kth term requires knowl-
edge of the k-body solvent oxygen distribution
functions. These distribution functions are complicated,
not available beyond the pair-distribution function,
and in fact there has been only one investigation of
terms beyond second order �Gomez et al., 1999; Pratt
et al., 1999�. Considering the small-cavity pair-
correlation �k=2� contribution and the asymptotic mac-
roscopic thermodynamic limits, Stillinger proposed a re-
vised expression for the cavity contact value �Stillinger,
1973�,

G�R� =

1 + �	�W/R��

0

2R

g�2��r�r2�r − 2R�dr

1 − �4	/3��WR3 + �	�W/R�2�
0

2R

g�2��r��r3/6 − 2R2r + 8R3/3�dr

, R 
 R*

psat

kT�W
+

2��

kT�WR
−

4���

kT�WR2 +



R4 , R � R*,
� �12�

where R* is the radius at which n=3 correlations begin
to contribute to the cavity insertion probability of Eq.
�11�. Here g�2��r� is the oxygen-oxygen radial distribution
function of liquid water. While the experimental pres-
sure, surface tension, density, and solvent radial distribu-
tion function are employed directly, � and 
 are treated
as adjustable parameters chosen so that the small cavity
and macroscopic limits of the contact values join
smoothly at R*. This expression incorporates molecular
information on the pair structure of water as well as the
known macroscopic properties of bulk water and its in-
terfacial behavior and therefore is expected to discrimi-
nate more sensitively between water �Ashbaugh and
Paulaitis, 2001� and other solvents �Huang and Chan-
dler, 2000a�. Indeed, molecular simulations have demon-
strated that Eq. �12� provides a description superior to
the classic SPT expression in Eq. �9� of the solvent con-
tact density for solutes several times larger than the sol-
vent.

C. Scaled particle model revised on simulation results

Stillinger’s revised SPT prediction for G�R� relies on
the assumption that multibody water correlations at in-

termediate, but molecule-sized, solute radii are ad-
equately represented by the parameters � and 
 fitted at
a radius R*. Numerical experimentation �Pratt and Po-
horille, 1992� with this parametrization shows that the
revised SPT is sensitive to the parameter R*. This pa-
rametrization might be improved by involving results
over a range of radii, including solute sizes for which
multibody correlations are significant. If Eq. �7� is taken
mathematically as an asymptotic series, then using it for
the smallest possible values of 1/R would be the best
way to improve its accuracy. While the necessary multi-
body correlations are not readily available experimen-
tally, hard-sphere solute chemical potentials can be in-
vestigated by direct evaluation of the insertion
probabilities from molecular simulations of water. In the
spirit of Stillinger’s revised SPT, we interpolate between
the chemical potential evaluated for molecular length
scales from simulation and the asymptotic macroscopic
thermodynamic formula

�A
ex�R� = − kT ln p0�R��simf�R�

+ �A
ex�R��macro�1 − f�R�� , �13�

where f�R� is a switching function equal to one below
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Rsim and zero above Rmacro, smoothly interpolating be-
tween these two limits. Presently we use a cubic spline
interpolating function, though other reasonable func-
tions yield essentially indistinguishable predictions. The
macroscopic chemical potential, determined by integra-
tion of the macroscopic cavity expression Eq. �12�, is

�A
ex�R��macro = −

4	kT�W


R
+ � − 16	R��� + 4	R2��

+
4	

3
R3psat. �14�

Rather than fitting the microscopic and macroscopic lim-
its at a single point as in Eq. �12�, the parameters � ,
,
and the integration constant � are fitted to the simula-
tion results between Rsim and Rmacro. The contact corre-
lation function is then determined by differentiation of
the chemical potential �Eq. �5��. An additional benefit of
fitting Eq. �14� to the simulation insertion probabilities is
that we do not have to evaluate numerically first and
second derivatives of the simulated insertion probabili-
ties, which become more statistically uncertain with in-
creasing cavity size.

D. Computational implementation

The computational implementation follows standard
procedures for sampling molecular configurations of liq-
uid water and builds upon the original work of Pohorille
and Pratt �1990� and Pratt and Pohorille �1992, 1993� in
evaluating cavity statistics therefrom. Water configura-
tions were generated using Monte Carlo simulations in
the canonical ensemble �Frenkel and Smit, 2002�. Bulk
water was modeled using 268 SPC/E water molecules
with periodic boundary conditions �Berendsen et al.,
1987�. The empirical SPC/E, or “simple-point-charge/
extended model,” is composed of Lennard-Jones inter-
actions between oxygen centers of water molecules and
electrostatic interactions describing water molecule ori-
entations, and thus hydrogen positions. The SPC/E
model was chosen here because it provides accurate rep-
resentations of the structure, equation of state, and in-
terfacial tension of liquid water over a broad range of
temperatures �Alejandre et al., 1995; Hura et al., 2003�.
Lennard-Jones potential interactions were evaluated by
smoothly truncating the potential based on the separa-
tion of water oxygen atoms between 9.5 and 10 Å, while
longer-ranged electrostatic interactions were calculated
using Ewald summation with conducting boundary con-
ditions �Frenkel and Smit, 2002�. Simulations were car-
ried out from T=260 to 470 K in 10 K increments at the
experimental liquid density along the saturation curve
and into the supercooled regime �Hare and Sorensen,
1986�. After an equilibration phase of at least 105 Monte
Carlo passes �in which one pass corresponds to one at-
tempted move per water molecule with 30% move ac-
ceptance�, 5�106 Monte Carlo production passes were
carried out for analysis of thermodynamic averages. Af-
ter each 50 Monte Carlo passes, 105 particle insertions

were attempted to estimate p0�R�, so that a total of 1010

insertions were attempted at each temperature. Statisti-
cal uncertainties were determined by grouping results
into block averages over 106 Monte Carlo passes each.

III. APPLICATION TO HYDROPHOBIC HYDRATION

A. Cavity contact values and the micro-macro joining
boundary

The cavity contact values at T=300 K are shown in
Fig. 6. Beginning at a value of 1 at zero radius, the cavity
contact density increases with increasing R. Simulation
values of G�R� display a plateau near 3 Å. Just beyond
this radius, the simulation results for G�R� become pro-
gressively noisy owing to poor sampling of infrequent
large cavity fluctuations. Detailed calculations for spe-
cific values of R greater than 3 Å �Ashbaugh and Paul-
aitis, 2001� have established that this is indeed the region
of a maximum in G�R�, and that G�R� is qualitatively
described by Stillinger’s revised scaled particle model. A
dominating observation is that this curve imposes a non-
arbitrary definition of a length scale for the present
problem: the radius Rmax at which G�R� is maximal. Sol-
utes with smaller radii are identified as intrinsically mi-
croscopic in scale. The description of larger solutes can
be built from a macroscopic perspective. An interpola-
tive strategy covering intermediate-sized, such as that
adopted here, is likely to be effective if the region at
which the molecular and macroscopic expressions are
joined encompasses Rmax. The revised SPT fit, deter-
mined by differentiation of Eq. �13� fitted to the simula-
tion insertion results between Rsim=2.5 Å and Rmacro
=3.5 Å, extends G�R� to R larger than observed directly.

FIG. 6. Cavity contact values for water at T=300 K at liquid
saturation conditions. The points are obtained by differentia-
tion of the simulated cavity insertion probabilities. The dashed
lines are obtained from Reiss’s original SPT predictions for a
hard-sphere solvent, Eq. �9�, using effective hard-sphere diam-
eters for water over the range from �WW=2.6 to 3.0 Å in 0.1 Å
increments. The solid curve is obtained by differentiation of
the revised SPT predictions, Eq. �14�, fitted to the simulation
results between Rsim=2.5 Å and Rmacro=3.5 Å.
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The revised SPT result places the maximum contact
density at R=3.0 Å, where G�R��2.3. Solutes of this
size are candidates for “most hydrophobic” because the
pressure exerted by the solvent is largest in this case.
Figure 5 shows the distribution of oxygen atoms radially
from such a solute.

1. Comparison with classic scaled particle theory

The classic SPT predictions for the contact values �Eq.
�9�� are in qualitative agreement with the simulation and
revised SPT results �Fig. 6�. Classic SPT predicts a maxi-
mum in the contact density, followed by a decrease to
values below the bulk density of water with increasing
cavity radius. The quantitative agreement is poor, how-
ever, even if the effective diameter �WW of water is
treated as an adjustable parameter. Classic SPT predicts
that the maximum in G�R� is shifted to smaller radii,
R�2 Å. Water has an open structure favoring larger
cavities at these packing fractions �Pohorille and Pratt,
1990; Pratt and Pohorille, 1992�. The resulting maximum
in the pressure acting on the solute surface, kT�WG�R�,
is then shifted out to larger cavity radii in the case of
water.

If the objective of classic SPT is to reproduce the
chemical potentials of solutes using Eq. �10� up to radii
of R�3.3 Å, encompassing the sizes of a number of
nonpolar gases, a typical diameter �WW of water fitted to
experimental data is 2.7 Å �Lee, 1985�, though a more
appropriate value based on the simulation results re-
ported in Fig. 6 is 2.8 Å. In this case, the fitted radius of
water splits the difference between the overprediction of
G�R� at intermediate radii by the classic SPT and the
underprediction of G�R� at radii close to the maximum
solute size to balance out inaccuracies in the calculation

of the chemical potential. The �WW assigned to water
molecules is then a consequence of the fitting and does
not contribute to the interpretation of the molecular sig-
natures of hydrophobicity. Indeed, if we extend the pre-
dictions of classic SPT outside the range fitted for small
solutes, we find the theory underpredicts the hydration
free energies of mesoscopic cavities, and that a larger
water diameter—�WW�2.9 Å—is required to match the
drying observed in G�R� �Fig. 6�.

While the variation of this size parameter may seem
small, the chemical potential depends on the integral of
Eq. �3�, and small differences in �WW significantly alter
the predictions. Broadly viewed, this is the natural ob-
servation that a slight adjustment of boundary informa-
tion in boundary-value problems can make large
changes away from the boundary.

2. Temperature dependence of the micro-macro joining
radius

Revised SPT predictions for G�R� as a function of
temperature are shown in Fig. 7. While the curves are
qualitatively similar, the magnitudes of the contact val-
ues decrease with increasing temperature. Classic SPT
fails to describe this temperature dependence of G�R�.
Figure 7 also indicates that the length defined by the
maximum of this curve decreases with increasing tem-
perature, which is qualitatively consistent with the data
in Fig. 2. In the following sections we use these revised
SPT results to draw conclusions regarding the size and
temperature dependence of the hydration of hydropho-
bic hard spheres.

The results of Fig. 7 shed some light on the length
scale ���T discussed in Sec. I. Specifically, we can put
together the crudest of models of the hydration free en-
ergies for the small-scale and large-scale problems, and
in that way get a crude characterization of the length at
which these different descriptions for G�R� match. For
the small scale—but not the smallest scale as in Eq. �4�—
the information theory of Garde et al. �1996� and Pratt
�2002� suggested ��A

ex��n�0
2 /2��n2�0. If we evaluate ev-

erything on a macroscopic basis, then we obtain the
crude estimate G�R��� /2�W�T from Eq. �5�. For the
large-scale problem, we use ��A

ex�4	R2���, expecting
that the pressure will be negligibly low in this case. Then
G�R����� /R�W. These two estimates match at the ra-
dius 2���T. This dimensionally natural point should not
be taken quantitatively in the present context because a
slightly more general consideration immediately leads to
another length, �kT /��, that should be included. Other
lengths will also arise, but the scaled particle approach
does not require that we anticipate all those possibilities.

3. Dewetting for large cavities

Beyond the maximum, water pulls away from the cav-
ity surface with increasing size. At R�10 Å, the contact
density equals the bulk density of water, decreasing fur-
ther for larger cavities. In the limit R→�, the contact
value approaches psat /�WkT�2�10−5 for water at T

FIG. 7. Cavity contact function for water along the liquid satu-
ration curve for several temperatures, as determined by the
revised SPT, Eq. �13�, with Rsim=2.5 Å and Rmacro=3.5 Å. Re-
sults are shown over the range from T=260 to 460 K in 20 K
increments. Notice that the length defined by the maximum of
this curve decreases with decreasing density �following increas-
ing temperature� along the saturation curve. This is qualita-
tively consistent with the data of Fig. 2.
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=300 K, and the pressures here are sufficiently low that
they do not influence the contact value for molecular
and mesoscopic cavities at any of the temperatures con-
sidered.

This drying behavior was anticipated by Stillinger
�1973� and has only recently been confirmed by molecu-
lar simulations in Lennard-Jones and aqueous solvents
�Huang and Chandler, 2000a; Ashbaugh and Paulaitis,
2001�. Surface drying has been previously interpreted in
terms of an effective expulsion potential between water
and the solute cavity �Hummer and Garde, 1998; Weeks
et al., 1998�. In bulk water, the individual water mol-
ecules feel attractive interactions with other water mol-
ecules, and the average force on a water molecule in the
bulk is zero. To approach a large solute, however, a wa-
ter molecule must shed hydration partners and/or limit
their configurations. This unbalances the interactions
with the aqueous medium and gives rise to an additional
repulsive force between a water molecule and the sur-
face. If the solute is unable to compensate for these lost
interactions to counter the cavity expulsion potential,
water is repelled by the surface.

B. Physical relevance of hard-core model solutes to
structural theories of hydrophobic effects

A successful generic description of liquids is obtained
from van der Waals’s separation of the intermolecular
interactions into two parts, a repulsive part treated as
volume exclusion and an attractive part treated pertur-
batively �Widom, 1967; Barker and Henderson, 1976;
Lebowitz and Waisman, 1980; Chandler et al., 1983�.
Physically expressed, van der Waals approaches are ap-
propriate for the description of dense liquids because
the disorder and high density can limit structural fluc-
tuations to length scales associated with the variation of
intermolecular repulsive interactions, which are small
compared to the range of intermolecular attractive inter-
actions. When attractive intermolecular interactions are
weak on a thermal scale, that helps too since a van der
Waals approach treats those interactions perturbatively.
Repulsive interactions then present the first challenge to
theories, and hard-core interactions are natural simple
models for the excluded volume interactions. This is the
argument for the physical relevance of hard-core model
solutes to theories of hydrophobic effects �Pratt, 2002�.

With this background, the most important physical
observation on the large-R behavior of the G�R� results
of Fig. 7 is that those results would be expected to be
sensitive to attractive solute-water interactions, if they
were to be included. When R is large, the local density in
the vicinity of the hard-sphere solute can be low, and the
argument above �that fluctuations do not access the
length scales comparable to the range of natural attrac-
tive interactions� does not apply. Simulation evidence
does support the view that results can be sensitive to the
inclusion of natural attractive interactions when the so-
lution structures have length scales substantially greater
than Rmax �van Swol and Henderson, 1986; Henderson
and van Swol, 1988; Ashbaugh and Paulaitis, 2001;

Hummer et al., 2001; Truskett et al., 2001; Wallqvist et
al., 2001; Chau, 2003; Dzubiella and Hansen, 2003; Zhou
et al., 2004; Li et al., 2005�.

Nevertheless, hard-core models of solute-water inter-
actions serve as a valuable reference point for at least
two reasons. A first reason is conceptual and reduction-
ist. This simplified case has historically been considered
as expressing the basic puzzle of hydrophobic effects.
�The extent to which that is true is one of the issues
addressed here.� Solving this basic puzzle enables spe-
cific cases to be described by combining what is under-
stood for simpler cases. A second reason that hard-core
models of solute-water interactions are valuable is that
for R not too large the results should be less sensitive
specifically to the case of physical interest. �Support for
this view is noted at the appropriate places in the suc-
ceeding discussions.� From this point of view then the
careful study of the large-R behavior of hard-sphere
G�R� assists in refining the description of intermediate-
R behavior, including the region of the maximum corre-
sponding to the most hydrophobic solutes.

C. Hydration thermodynamics of hydrophobic species:
Temperature signatures and solubility minima

The hydration free energy of a methane-sized �R
=3.3 Å� hard-sphere solute in water as a function of
temperature along the saturation curve is shown in Fig.
8. The simulation results for the chemical potential pass
through a maximum at T�400 K, at which point the
hydration entropy defined by sA

ex=−��A
ex/�T�sat vanishes.

To extract the enthalpy and entropy of hydrophobic hy-
dration from the chemical potential, we assume that the

FIG. 8. Excess chemical potential, enthalpy, and temperature
�entropy of a methane-sized hard-sphere solute �R=3.3 Å� in
water as a function of temperature along the saturation curve.
The subscript A indicates the solute component, which in this
case is CH4 �methane�. The points are the explicit simulation
results for the chemical potential. Error bars are comparable in
size to the points. The curves for the excess chemical potential,
enthalpy, and entropy are labeled. The curves were deter-
mined under the assumption that the heat capacity is indepen-
dent of temperature �Eqs. �15��.

169H. S. Ashbaugh and L. R. Pratt: Colloquium: Scaled particle theory and the¼

Rev. Mod. Phys., Vol. 78, No. 1, January 2006



heat capacity �hA
ex/�T�sat=T�sA

ex/�T�sat=cA
ex�T� is inde-

pendent of temperature. In this case, the hydration en-
thalpy, entropy, and free energy are

hA
ex = hA

ex�T0� + �T − T0�cA
ex�T0� , �15a�

sA
ex = sA

ex�T0� + ln	 T

T0

cA

ex�T0� , �15b�

�A
ex = �A

ex�T0� + �T − T0��cA
ex�T0� − sA

ex�T0��

− T ln	 T

T0

cA

ex�T0� , �15c�

respectively, and �A
ex�T0�=hA

ex�T0�−T0sA
ex�T0�.

The enthalpy and entropy of hydration of the
methane-sized hard-sphere solute are plotted together
with the fitted free energy in Fig. 8. The hydration en-
tropy is negative and unfavorable at room temperature
�Kauzmann, 1959; Tanford, 1980; Blokzijl and Engberts,
1993�. With increasing temperature the negative entropy
changes sign, indicative of a positive heat-capacity incre-
ment. The entropy and heat capacity at T=298 K for the
hard-sphere solute are −69.5 and 214 J/ �mol K�, respec-
tively, which are in excellent agreement with the experi-
mental values for the entropy and heat capacity of −66.7
and 209–237 J/ �mol K� for methane at T=298 K �Ret-
tich et al., 1981; Ben-Naim and Marcus, 1984; Naghibi et
al., 1986; Lazaridis and Paulaitis, 1992�. Over most of the
temperature range considered, the hydration enthalpy is
positive and unfavorable for hydration, in disagreement
with the experimental enthalpy for methane of
−11.5 kJ/mol at T=298 K, largely a result of the neglect
of attractive interactions with water. The iceberg hy-
pothesis of Frank and Evans �1945� suggested that local

freezing of water in the vicinity of hydrophobic species
contributes to the experimental negative hydration en-
thalpy. In the case of the methane-sized hard sphere
though, the hydration enthalpy at T=298 K is
5.0 kJ/mol and is positive, contrary to the most common
view that water molecules neighboring simple hydro-
phobic solutes make more effective, lower-energy hy-
drogen bonds than in the bulk!

1. Primitive effects of solute-solvent attractive
interactions

The ratio of the chemical potential and kT dictates
the Ostwald solubility as �A

ex/kT=−ln Keq from Eq. �1�
and the following. This information for the methane-
sized solute in water as a function of temperature is
shown in Fig. 9. This quantity passes through a maxi-
mum near T=280 K, corresponding to a minimum in the
solubility. This observation is in agreement with infor-
mation theory �Garde et al., 1999� and equation-of-state
�Ashbaugh et al., 2002� models of hard-sphere solubili-
ties that link the solubility minimum to the density maxi-
mum at T=277 K for pure water. The solubility mini-
mum corresponds to the point at which the enthalpy
hA

ex=−T2� ��A
ex/T� /�T�sat equals zero. Real nonpolar sol-

utes display solubility minima at temperatures well
above the density maximum, largely as a result of attrac-
tive interactions between the solute and water. These
interactions, not included in the present simulations, can
be included approximately by assuming they are propor-
tional to the density of liquid water, as in the van der
Waals equation of state. The resulting chemical potential
is �A

ex= ��A
ex�HS−2aAW�W �Garde et al., 1999�. The effect

of including solute-water interactions on the solubility is
shown in Fig. 9. Increasing these interactions systemati-
cally shifts the minimum in ln Keq out to greater tem-
peratures, in agreement with the experimental observa-
tion of solubility minima at higher temperatures.

2. Temperature dependence of the heat-capacity
difference

For the hard-sphere solutes, the simulation results
shown in Fig. 9 have slightly more curvature at tempera-
tures near the solubility minimum than predicted by Eq.
�15�. While the fit is accurate, the enhanced curvature
suggests the heat capacity is not constant as assumed
above, but is slightly larger at low temperatures. Indeed,
this has been observed experimentally �Gill et al., 1985�
and is borne out by theoretical models of hydrophobic
hydration as well �Hummer et al., 2000; Silverstein et al.,
2001; Ashbaugh et al., 2002�. Nevertheless, the tempera-
ture dependence of the heat capacity is minor, and in-
cluding it is a complication of secondary importance to
the interpretations here. We therefore neglect it in our
thermodynamic analysis.

3. Size dependence of hydration free energies

Figure 10 shows the chemical potential of hard
spheres in water as a function of temperature with in-

FIG. 9. Ostwald solubility, −ln Keq=�A
ex/kT �cf. Eq. �1� and

following�, modeled as in the van der Waals equation of state,
�A

ex= ��A
ex�HS−2aAW�W for a 3.3 Å solute, as a function of tem-

perature with increasing strength of attractive interactions.
The points are simulation results from particle insertion prob-
abilities. The solid curves are the solubilities for increasingly
attractive interactions, aSW�0, proceeding from the top curve
to the bottom curve. The dashed curve indicates the maxima in
�A

ex/kT.

170 H. S. Ashbaugh and L. R. Pratt: Colloquium: Scaled particle theory and the¼

Rev. Mod. Phys., Vol. 78, No. 1, January 2006



creasing solute size. In the range of sizes shown, the
maximum in the chemical potential shifts from tempera-
tures greater than T=470 K, above the window of tem-
peratures simulated for the 2 Å radius solute, to lower
temperatures with increasing solute sizes. For cavities
not much larger than 12 Å �not shown in the figure�, the
maximum falls below T=260 K, beneath the simulation
window and the normal freezing point of water. Thus,
for molecularly sized cavities, hydrophobic hydration is
opposed by a negative entropy over most of the range of
temperatures simulated. For mesoscopic and macro-
scopic cavities, however, this trend is reversed and hy-
dration is favored by a positive dissolution entropy but is
unfavorable as a result of a dominating positive enthalpy
�discussed in the next section� dictated by the tempera-
ture dependence of the surface tension of water.

D. Surface contributions

To compare and correlate hydration free energies of a
variety of species, it is common to calculate the free en-
ergy cost per unit area for hydrating nonpolar solute
surfaces, also referred to as a molecular surface tension
�Hermann, 1977; Tanford, 1979�. This molecular surface
tension, however, is generally not equal to the free en-
ergy of creating a macroscopic flat interface, in part due
to curvature and structural differences between water at
molecular and macroscopic interfaces. Nevertheless,
SPT systematically interpolates the surface tension be-
tween these two length scale extremes and provides in-
sight into their relationship �Huang and Chandler,
2000a; Ashbaugh and Paulaitis, 2001; Huang et al., 2001�.

Under the assumption that the pressure contribution
to the hydration free energy is negligible, an excellent
assumption for liquid water, the surface tension for hy-
dration of a hard-sphere solute is obtained from the sur-

face area derivative of the chemical potential �Ashbaugh
and Paulaitis, 2001�. This derivative depends, however,
on the definition of the surface area. A natural choice
for the solute area is defined by R, and is referred to as
the solvent-accessible surface area ASAS=4	R2. Differ-
entiating the chemical potential with respect to this sur-
face area yields

�SAS�R� =
��A

ex

�4	R2 =
1
2

kT�WG�R�R . �16�

1. Entropic and enthalpic contributions to surface free
energies as a function of radius

The solvent-accessible surface tension as a function of
R at T=300 K is shown in Fig. 11. The surface enthalpy
�hA

ex�T0� /�ASAS, entropy �sA
ex�T0� /�ASAS, and heat capac-

ity �cA
ex�T0� /�ASAS are included in this figure. For small

cavities, all the surface thermodynamic properties go to
zero as R→0. With increasing size, the surface tension
��A

ex�T0� /�ASAS increases monotonically and approaches
its asymptotic limit for a flat interface of ��

=0.432 kJ/ �mol Å2�=71.7 dyn/cm. The other surface
properties, most notably the heat capacity, approach
their asymptotic plateaus more slowly with increasing R.
As with surface tension, the surface enthalpy monotoni-
cally increases with increasing solute size. The surface
entropy and heat capacity, on the other hand, vary in
distinctly different ways for molecular and macroscopic
surfaces, indicating changes in the mechanism of hydra-
tion �Southall and Dill, 2000�. In particular, the surface
entropy is initially negative beginning from R=0, consis-
tent with the experimental thermodynamics of hydro-
phobic hydration for molecular solutes, reaches a mini-
mum at R�3.3 Å, and then increases, eventually
becoming positive as expected from the temperature de-

FIG. 10. Excess solute chemical potential as a function of tem-
perature for solutes of varying size. The solid lines correspond
to the revised SPT model. The solid circles correspond to mo-
lecular simulation results for the 2, 3, and 4 Å radius solutes.
Estimated statistical errors are smaller than the plotting sym-
bols. The dashed curve indicates the locus of chemical-
potential maxima, where sA

ex=0, with changing cavity size.

FIG. 11. Solvent-accessible surface �SAS� area derivatives of
the hard-sphere solute hydration thermodynamics as a func-
tion of solute radius at T=300 K. The thin solid, long-short
dashed, short dashed, and long dashed curves correspond to
��A

ex/�ASAS, �hA
ex/�ASAS, T�sA

ex/�ASAS, and T�cA
ex/�ASAS, re-

spectively. The horizontal curve indicates the macroscopic sur-
face tension for a flat surface.
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pendence of the liquid-vapor interfacial tension. It is cu-
rious that the radius locating at this minimum is close to
that of the maximum of G�R�, which corresponds to the
most hydrophobic hard-sphere solute. While the surface
heat capacity is positive over the entire size range, it
reaches a maximum at solute radii comparable to the
position of the minimum in the entropy, suggesting the
two are related. Moreover, we may infer that the ex-
trema in the surface entropy and heat capacity are
linked to the breakdown of the aqueous network in the
vicinity of the hard-sphere solute, as observed in simu-
lation studies linking solute-water correlations to the
thermodynamics of hydrophobic hydration �Lazaridis
and Paulaitis, 1994�.

2. Displacing the surface to describe curvature effects:
the Tolman length

More generally, the interface can be located at a ra-
dius R−�R. The surface tension referred to that surface
is

��R ;�R� =
��A

ex

��4	�R − �R�2�

=
kT�WG�R�R2

2�R − �R�
=

�SAS�R�
1 − �R/R

. �17�

Sharp and co-workers �Sharp et al., 1991� suggested that
rather than relying solely on the solvent-accessible sur-
face to determine the molecular surface tension, this
tension needs to be corrected for the curvature of the
molecular interface to reconcile the difference between
molecular and macroscopic surface tension. Based on
geometric arguments, they proposed that the radius of a
water molecule is the length scale over which this cor-
rection must be applied. In effect, their work suggests

that the van der Waals surface, i.e., �R=�WW/2=1.4 Å,
provides a superior description of molecular solute
hydration �Sharp et al., 1991; Jackson and Sternberg,
1994�. A schematic illustration of the van der Waals,
solvent-accessible, and curvature-corrected radii of
a hard-sphere solute in water is given in Fig. 12.
For a methane-sized solute, ��R=3.3 Å;�R=0.0 Å�
=0.300 kJ/ �mol Å2�, which is 30% lower than
the macroscopic value, while ��R=3.3 Å;�R=1.4 Å�
=0.521 kJ/ �mol Å2�, which is 20% greater than the mac-
roscopic value. While neither of these two surfaces gives
the macroscopic result, they do bracket ��, suggesting
the existence of an optimal intermediate value of �R for
which the surface tension is size independent.

Figure 13 shows how the surface tension varies with
�R. For solutes larger than 3 Å, using �R=1 Å yields a
surface tension that is only weakly size dependent. In-
deed, ��R=3.3 Å;�R=1.0 Å�=0.430 kJ/ �mol Å2� is in
excellent agreement with the macroscopic value, sug-
gesting that the geometric estimate of Sharp et al. �1991�
for the curvature-correction length scale is correct. This
argument degenerates, however, when we account for
the temperature dependence of the Tolman length.

The Tolman length �, described in Sec. II.A, can be
accessed by the revised SPT through Eqs. �8� and �16�,

�SAS�R� � ��	1 −
2�

R

 . �18�

Substituting this expression into Eq. �17� yields �Ash-
baugh and Paulaitis, 2001�

FIG. 12. �Color online� Alternative definitions of the surface
for evaluation of the surface tension. The solvent-accessible
surface �SAS� is defined by the distance of closest approach
between the center of the cavity and the water-oxygen center
R. R−�R locates a neighboring surface that might provide a
curvature-corrected surface tension. The radius R−�WW/2
gives the van der Waals boundary at �AA/2.

FIG. 13. Surface tensions referred to defined surfaces, dis-
placed with respect to the solvent-accessible surface located at
the radius R, for hydration of hard-sphere solutes as a function
of solute size at T=300 K. The thick solid curve corresponds to
the surface tension determined by the derivative with respect
to the solvent-accessible surface �SAS� area �Eq. �16��. The
curves above the baseline SAS tension indicate the effect of
increasing �R in 0.25 Å increments from 0.25 to 1.25 Å �Eq.
�17��. �R�0 moves the surface inward. The thick dashed curve
corresponds to �R=1 Å, for which the surface tension is rela-
tively insensitive to curvature.
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��R ;�R� � ��	 1 − 2�/R

1 − �R/R

 �19�

for the surface tension referenced to a surface displaced
by �R. Thus for large R the optimal surface for obtain-
ing a size-independent surface free energy is �R=2�.

3. Temperature dependence of the Tolman length

The Tolman length can be calculated from classic SPT,
see Eq. �10� in Stillinger �1973�, and yields a nearly
temperature-independent ��0.5 Å, in good agreement
with the empirical �R at T=300 K obtained above. The
revised SPT, however, finds that � is strongly tempera-
ture dependent, decreasing with temperature and chang-
ing sign near T=350 K �see Fig. 14�. Moody and Attard
�2001� suggested that the Tolman length might also
change sign for a Lennard-Jones solvent. Thus assuming
�R is simply dictated by the size of a water molecule
leads to flawed interpretations of the relationship be-
tween molecular and macroscopic surface tensions
�Sharp et al., 1991; Jackson and Sternberg, 1994�. In ret-
rospect, the temperature dependence of the curvature
correction might have been anticipated by the entropic
differences between hydrating a molecular and meso-
scopic interface and the significantly different tempera-
ture dependencies of the associated surface thermody-
namic properties �see Fig. 11�. The curves in Fig. 11 are
simply too rich to be described by a temperature-
independent length scale.

E. Entropy convergence and solute size

When the hydrophobic component of the hydration
entropies of small hydrocarbon molecules is extrapo-
lated to high temperatures, the entropy variations from
one solute to another are small in a limited range,

T�400 K �Privalov, 1979; Baldwin, 1986; Privalov and
Gill, 1988; Murphy et al., 1990�. This phenomenon of
entropy convergence is a feature of hydrophobic hydra-
tion believed to be common to both small-molecule hy-
dration and protein-unfolding thermodynamics. Baldwin
�1986� and Privalov �1979� noted that this can result
from the proportionality of the entropy and heat capac-
ity of hydration to one another. The most successful ex-
planations for the convergence temperature for small
molecules have related the convergence temperature to
the equation of state of pure water �Garde et al., 1996;
Hummer et al., 1998; Garde and Ashbaugh, 2001; Ash-
baugh et al., 2002�. Huang and Chandler �2000b� argued
that for species larger than R�10 Å entropy conver-
gence does not occur, and therefore proteins do not ex-
hibit this phenomenon.

1. Hard-sphere hydration entropies over a wide range of
sizes

Experimental identifications of entropy convergence,
however, have largely concerned themselves with solutes
similar in size. In Fig. 15 we have plotted the hydration
entropies for hard-sphere solutes as a function of tem-
perature for solutes in the size range 2
R
10 Å. It is
clear that naive entropy convergence is not to be ex-
pected with such a wide range of sizes. Specifically, an
entropy-convergence temperature extracted by consid-
eration of results for solutes in one limited size range
will differ from an entropy-convergence temperature
obtained in a different size range. For example, the 2 Å
solute entropy intersects the 3 Å solute entropy at T
=410 K, while the 2 Å solute entropy intersects the 10 Å
solute curve at T=300 K, indicating that there is no
unique convergence temperature.

FIG. 14. The curvature correction � as a function of tempera-
ture along the saturation curve of water. The points corre-
spond to the values determined by the fit of Eq. �13� to the
simulation free energies. The solid curve is a guide to the eye.
The dashed curve corresponds to the classic SPT prediction for
the Tolman length, Eq. �10� in Stillinger �1973�.

FIG. 15. Entropy of hydrophobic hydration as a function of
temperature for solutes in the size range 2�R�10 Å in 1 Å
increments. The dashed lines are excess entropies of hydration.
The open circles are convergence temperatures for consecutive
solutes, i.e., sA

ex�R�=sA
* �R+1 Å�. The thick solid line indicates

the entropy-convergence temperature in the limit of infinitesi-
mal perturbations in R.

173H. S. Ashbaugh and L. R. Pratt: Colloquium: Scaled particle theory and the¼

Rev. Mod. Phys., Vol. 78, No. 1, January 2006



2. Differential definition of entropy-convergence
temperature

We therefore consider how the convergence tempera-
ture changes with differential perturbations in the solute
size so that convergence occurs at the temperature for
which

sA
ex�R + �R� = sA

ex�R� . �20�

Assuming the hydration heat capacity is independent of
temperature, Tc is determined by

Tc = T0exp	−
�sA

ex�T0�
�ASAS

� �cA
ex�T0�

�ASAS

 , �21�

with the size dependence dictated by the relationship
between �sA

ex�T0� /�ASAS and �cA
ex�T0� /�ASAS on the sol-

ute radius in Fig. 11. The curve of this convergence en-
tropy as a function of solute radius is shown in Fig. 15.
Several points of interest are immediately apparent.
First, the convergence entropy is negative and becomes
more negative with increasing solute size. Second, the
convergence-entropy curve more or less forms a lower
bound on the hydration entropy as a function of tem-
perature, although this is approximate. Finally note that
much of the complicated, nonmonotonic variation of en-
tropy and heat capacity contributions of Fig. 11 is elimi-
nated by the ratio of Eq. �21�.

One of the implications of Eq. �21� is that if the en-
tropy is a linear function of the heat capacity, i.e.,
sA

ex�T0�=mcA
ex�T0�+b, as suggested by Baldwin �1986�

and by Murphy et al. �1990�, then the convergence tem-

perature would be independent of solute size. In Fig. 16
we see that Tc has a significant solute-size dependence,
indicating that this assumption has limited validity. For
solutes approaching zero radius, Tc has a plateau at a
maximum. With increasing solute size, Tc decreases so
that above R�8 Å it is less than the normal freezing
point of water. At the intermediate methane radius of
3.3 Å, however, the convergence temperature is 382 K,
in excellent agreement with the experimental conver-
gence temperature of T=385 K for simple nonpolar
gases and linear alkanes.

The convergence temperature exhibits a plateau at
T=655 K as R→0, above the critical temperature of wa-
ter at 647 K. This unphysical result is due in part to our
extrapolation of the entropies beyond the range 260–470
K, to which we fitted Eq. �15�. For cavities small enough
that only one water molecule can fit inside, the free en-
ergy is given by Eq. �4�, and entropy convergence occurs
for the temperature at which

�satTc = 1 −
4	

3
�WR3, �22�

where �sat=−�� ln �W/�T�sat is the thermal-expansion co-
efficient of liquid water along the saturation curve.
When this criterion is applied, it displays a plateau at a
physically more realistic temperature of Tc�525 K �see
Fig. 16�. With increasing solute size, Eq. �22� indicates a
sudden decrease in Tc above R�1 Å, comparable to
that obtained on the assumption that the heat capacity is
temperature independent. Above radii of 1.25 Å, Eq.
�22� breaks down as multiparticle correlations began to
play a role in the solute entropy. At this radius, however,
the convergence temperatures are now within the range
of temperatures simulated and the application of Eq.
�21� becomes more accurate. It is reasonable then to in-
terpolate between the convergence temperatures deter-
mined by Eqs. �21� and �22�, as indicated in Fig. 16.

The information theory �Garde et al., 1996; Hummer
et al., 1998�, with natural simplifying assumptions, indi-
cates entropy convergence when Tc��2�sat�−1=420 K.
This corresponds in Fig. 16 to a solute radius of R
�2.1 Å, placing this estimate among small-solute theo-
ries. Relaxing the assumptions used to arrive at this in-
formation theory criterion lowers the convergence-
temperature prediction for methane-sized solutes to T
�390 K, improving agreement with the present result of
382 K.

3. Relevance to folding^unfolding transitions of
soluble protein molecules

Equation �22� is an example of the explanation of the
entropy-convergence phenomenon that tied it to the
particular equation of state of liquid water �Garde et al.,
1996; Hummer et al., 1998; Garde and Ashbaugh, 2001;
Ashbaugh et al., 2002�. That explanation resolved an im-
portant conundrum for our molecular understanding of
hydrophobic effects. Whether and how this entropy-
convergence phenomenon is involved with protein fold-
ing is yet an outstanding question. Proteins are compli-

FIG. 16. Variation of the entropy-convergence temperature
with increasing hard-sphere radius. The thin solid curve is the
convergence temperature determined under the assumption
that the heat capacity is independent of temperature. The thick
solid curve is the exact entropy-convergence temperature for
R��WW/2 from Eq. �22�. The dashed curve smoothly interpo-
lates between the exact and constant heat-capacity curves at
1.25 and 3.3 Å, respectively. The filled circle indicates the
entropy-convergence temperature of a methane-sized solute
�Tc=382 K�. The open circle indicates the entropy-
convergence temperature based on the information theoretic
�IT� model criterion �Tc=420 K�.
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cated molecules participating in both hydrophobic and
hydrophilic interactions with the solution. The widely
appreciated point that protein-folding thermodynamics
may be primarily sensitive to hydration of unfolded con-
figurations is just as important �Paulaitis and Pratt, 2002;
Pratt and Pohorille, 2002�. Considering unfolded possi-
bilities, the sizes of the obvious hydrophobic units are in
the range of small-molecule hydrocarbon solutes. Phe-
nylalanine is the largest hydrophobic side chain and pro-
vides an example. Pratt �2002� emphasized that solution
thermodynamic data are available for hydrophobic sol-
utes of just this size, e.g., for benzene, toluene, and ethyl
benzene �Privalov and Gill, 1989�, and those data sug-
gest that these solutes exhibit conventional entropy-
convergence behavior. Thus it is a plausible hypothesis
that entropy convergence will be expressed in protein-
folding thermodynamics primarily through contributions
associated with unfolded configurations.

Considering folded configurations, Huang and Chan-
dler �2000b� suggested that the hydration of surface non-
polar groups is better described by the hydration en-
tropy of a solute surface on the scale of the protein
radius, R�O�nm�, rather than treating the surface
groups individually as having sizes comparable to simple
hydrophobic units. In this hypothesis it is presumed that
entropic contributions for hydrating extended hydro-
phobic surfaces with attractive dispersion interactions
and vicinal polar/charged groups are the same as those
for a hard repulsive surface. Recent simulations of con-
vex methane clusters have found that when realistic at-
tractive interactions between water and methane are in-
cluded, water packs around the cluster methane sites
just as it does around a solitary methane in solution
�Ashbaugh and Paulaitis, 2001; Chau, 2003�; similar re-
sults are available for a realistically modeled planar
aqueous interface �Ashbaugh et al., 2005�. Moreover,
Cheng and Rossky �1998� found that orientational cor-
relations between water and proximal hydrophobic resi-
dues on the convex surfaces of the bee venom protein,
melittin, are similar to those near individual solitary hy-
drophobic groups in solution. These observations sug-
gest that the available configurational space, and thus a
contribution to the entropy, for water molecules near
realistic surface hydrophobic units is the same in the
folded and unfolded states, supporting the assumptions
of phenomenological folding models. We note, however,
that Cheng and Rossky �1998� also found that water
molecules proximal to hydrophobic residues in flat por-
tions of meletin were more orientationally disordered as
a result of the difficulties associated with maintaining
the aqueous hydrogen-bonding network near restrictive
solute topographies. Thus the applicability of the phe-
nomenological unfolding model may be complicated by
the protein surface topography and the impact of hydro-
phobic pockets on the overall unfolding entropy. This
can introduce further scatter into measured folding en-
tropies �Robertson and Murphy, 1997�.

Examination in Fig. 3 of the aqueous solubilities of
the whole family of noble gases suggests that a signifi-
cant variation of the strength of attractive interactions

might contribute to this scatter also. The size variation
for which the present work gives numerically exact re-
sults is probably not sufficient to explain the lack of
simple entropy-convergence behavior observed there.
Note, however, that the case of Xe has been recently
considered in some detail �Graziano, 2003b; Ben-Amotz
et al., 2005�.

IV. SUMMARY AND CONCLUSIONS

The revised scaled particle theory bridges the known
molecular and macroscopic limits by utilizing simulation
information on multibody correlations in liquid water
together with experimental thermodynamic properties
of pure water to construct a functional form for the hy-
dration free energy of hydrophobic hard-sphere solutes
in water. The classic scaled particle theory �Mayer, 1963;
Ben-Naim and Friedman, 1967; Stillinger, 1973� incor-
rectly predicted an increase in the surface tension of
water with increasing temperature as well as a
temperature-independent Tolman length, neither of
which agrees with revised scaled particle theory obser-
vations. As a result, application of classic scaled particle
theory to hydration free energies is largely a fitting ex-
ercise to obtain an effective van der Waals diameter
�WW of water. Conclusions drawn on this basis have
weak significance regarding the molecular origins of the
hydrophobic effect, and are limited to comparisons of
the size parameter for water relative to other solvents,
neglecting further molecular detail or specific tempera-
ture signatures of hydrophobic hydration.

The revised scaled particle theory is more successful,
but the success of the scaled particle approach derives
generally from the remarkable fact that the results iden-
tify a molecular length, near 3.0 Å, that provides a good
joining point for microscopic and macroscopic descrip-
tions. The corresponding results for comparative organic
solvents are less simple �Pratt and Pohorille, 1992; Gra-
ziano, 2003a�. That micro-macro joining radius exhibits
interesting temperature variation; an accurate descrip-
tion of those temperature variations is an important part
of the higher fidelity of the revised scaled particle re-
sults. The revised scaled particle theory reproduces the
solubility minimum behavior for small hydrophobic sol-
utes and demonstrates significant changes in the hydra-
tion mechanism of hard-sphere solutes with increasing
solute size. Specifically, hydration thermodynamics of
small solutes is predominantly entropic at room tem-
perature. The hydration of mesoscopic cavities is en-
tropically favorable but opposed by a dominating hydra-
tion enthalpy. While it is tempting to describe these
changes in hydration thermodynamics in terms of aque-
ous hydrogen bonding near the hydrophobic entity—
and that can be plausible in the appropriate theoretical
setting—the scaled particle theory provides little in the
way of information on the integrity of hydrogen-bonded
networks.

Nevertheless, the revised scaled particle theory does
provide thermodynamic information that challenges
phenomenological views of hydrophobic effects, particu-
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larly the iceberg hypothesis. Whereas the iceberg hy-
pothesis suggests that local freezing of water molecules
in the vicinity of hydrophobic solutes is a source for
negative hydration enthalpies, we find that at room tem-
perature the hydration of solutes comparable in size to
simple nonpolar gases is actually unfavorable from an
enthalpic as well as an entropic standpoint. Experimen-
tally determined favorable enthalpies of solution of hy-
drophobic species then are a consequence of attractive
solute-water interactions and not enhanced water-water
structuring.

On a molecular level there is a surface that maps mac-
roscopic surface tensions to molecular values. This re-
duces the reconciliation of molecular and macroscopic
values of the surface tension to a program of finding the
appropriate dividing surface. The utility of that program
rests on the optimistic expectation that the Tolman
length locating that surface is largely temperature inde-
pendent. But that Tolman length was found to have a
significant temperature dependence in water, changing
from positive to negative at T�350 K, a possibility an-
ticipated by Stillinger �1973�. As a result, though the op-
timal surface for the description of hydration may be
approximated by the solute molecular surface at low
temperatures �Ashbaugh et al., 1999; Ashbaugh and
Paulaitis, 2001�, with increasing temperature this opti-
mal surface moves out to the solvent-accessible surface
at T�350 K, and ultimately extends beyond this surface
at even higher temperatures as a result of the nontrivial
temperature dependence of the hydration thermody-
namics for molecular-sized solutes.

Finally, the revised scaled particle theory provides de-
tailed information on the entropy-convergence behavior
observed for small-molecule solutes and on the size de-
pendence of the convergence temperature. A suitably
defined differential entropy-convergence temperature
retreats below the freezing temperature of water for
hard spheres the size of globular soluble proteins. But
heterogeneity of protein-water interactions and of sizes
of hydrophobic units also contribute importantly to ex-
perimental blurring of entropy-convergence behavior in
protein-unfolding thermodynamic data. Equally impor-
tant, entropy convergence behavior for protein-folding
thermodynamics may be primarily expressed through
contributions associated with the unfolded configura-
tions and is due to hydration of hydrophobic side chains
of size corresponding to studied small-molecule solutes.
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