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Magnetically tunable Feshbach resonances were employed to associate cold diatomic molecules in a
series of experiments involving both atomic Bose and two-spin-component Fermi gases. This review
illustrates theoretical concepts of both the particular nature of the highly excited Feshbach molecules
produced and the techniques for their association from unbound atom pairs. Coupled-channels theory
provides a rigorous formulation of the microscopic physics of Feshbach resonances in cold gases.
Concepts of dressed versus bare energy states, universal properties of Feshbach molecules, and the
classification in terms of entrance- and closed-channel-dominated resonances are introduced on the
basis of practical two-channel approaches. Their significance is illustrated for several experimental
observations, such as binding energies and lifetimes with respect to collisional relaxation. Molecular
association and dissociation are discussed in the context of techniques involving linear magnetic-field
sweeps in cold Bose and Fermi gases and pulse sequences leading to Ramsey-type interference fringes.
Their descriptions in terms of Landau-Zener, two-level mean-field, as well as beyond mean-field
approaches are reviewed in detail, including the associated ranges of validity.
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I. INTRODUCTION

Resonances in general refer to the energy-dependent
enhancement of interparticle collision cross sections due
to the existence of a metastable state. Since the begin-
ning of quantum mechanics, such phenomena have been
the subject of numerous studies in nuclear �Blatt and
Weisskopf, 1952� as well as atomic and molecular phys-
ics �Child, 1974; Bransden and Joachain, 2003�. The
metastable state may be described in terms of tunneling
across a potential energy barrier or coupling a bound
level of a subsystem to its environment �Rice, 1933;
Fano, 1935, 1961; Feshbach, 1958, 1962�. These scenarios
are referred to as shape and Feshbach resonances, re-
spectively.

In the context of cold atomic gases, collision phenom-
ena associated with Feshbach resonances were first pre-
dicted for systems of spin-polarized hydrogen and deu-
terium �Stwalley, 1976; Uang and Stwalley, 1980� as well
as lithium �Uang et al., 1981� in the presence of magnetic
fields. The associated resonance energies depend on the
field strength via the Zeeman effect in the hyperfine lev-
els. This research has gained new experimental perspec-
tives since the achievement of Bose-Einstein condensa-
tion �Bose, 1924; Einstein, 1924, 1925� of dilute alkali
atom vapors �Anderson et al., 1995; Bradley et al. 1995,
1997; Davis et al., 1995�. Contrary to conventional gases,
such atomic clouds with densities five orders of magni-
tude less than air and sub-�K temperatures give rise to
binary collision energies close to the threshold between
scattering and molecular binding. In this extraordinary
regime, magnetically tunable Feshbach resonances can
be employed to manipulate the interatomic forces deter-
mined by the scattering length �Tiesinga et al., 1993�, as
well as for the production of diatomic molecules at rest
�Timmermans et al., 1999b�.

Both techniques were demonstrated in several experi-
ments with widespread applications throughout the
physics of cold gases. Figure 1 illustrates the manipula-
tion of the scattering length a in a 23Na Bose-Einstein
condensate exposed to a spatially homogeneous mag-
netic field of variable strength B �Inouye et al., 1998�.
The pole in Fig. 1 at about 907 G1 is due to the near
degeneracy of the energy associated with a Feshbach
resonance and the threshold. Such a singularity, usually
referred to as a zero-energy resonance �Taylor, 1972�,2

allows the scattering length, in principle, to assume all
values between −� and �. Cold gases with such widely
tunable interactions were subsequently realized for sev-

eral species of alkali atoms, such as 85Rb �Courteille et
al., 1998; Roberts et al., 1998� and 133Cs �Vuletic et al.,
1998; Chin et al., 2003�. Their applications involve the
Bose-Einstein condensation of 85Rb �Cornish et al.,
2000� and 133Cs �Weber et al., 2003� as well as studies of
condensate collapse with negative scattering lengths

1The Standard International unit for magnetic field is Tesla,
whereas most of the papers quoted in this review use Gauss as
the unit. Consequently, we use G here, where 1 G=10−4 T.

2In the context of cold gases, a singularity of the scattering
length is also often referred to simply as a Feshbach resonance.

FIG. 2. �Color online� Ramsey fringes between atomic and
molecular components produced from a Bose-Einstein con-
densate of 17 100 85Rb atoms �Donley et al., 2002� via a se-
quence of magnetic-field pulses in the vicinity of the 155 G
zero-energy resonance. Circles and squares are the number of
particles in the remnant condensate and in an atomic burst
consisting of correlated pairs with a comparatively high rela-
tive velocity, respectively. Diamonds indicate the total amount
of particles in both of these components. The difference with
respect to the total number of atoms �dotted line� indicates the
production of undetected Feshbach molecules. Fringes are
shown as a function of the delay time of the interferometer
tevolve, in which the atomic and molecular states acquire their
phase difference. The fringe frequency provides an accurate
measure of the binding energy �Claussen et al., 2003�. Adapted
by permission from Macmillan Publishers Ltd: Nature �Lon-
don� �Donley et al., 2002�, copyright, 2002.

FIG. 1. �Color online� Order-of-magnitude variation of the
scattering length a as a function of the magnetic-field strength
B in the vicinity of the 907 G �90.7 mT� zero-energy resonance
of 23Na. Circles refer to measurements using sodium Bose-
Einstein condensates �Inouye et al., 1998�, while the solid curve
indicates associated theoretical predictions �van Abeelen and
Verhaar, 1998�. The scattering length is normalized to its
asymptotic value abg away from the singularity at B0=907 G.
Adapted by permission from Macmillan Publishers Ltd: Na-
ture �London� �Inouye et al., 1998�, copyright, 1998.
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�Roberts et al., 2000a; Donley et al., 2001�.
Quite generally, the zero-energy resonance position

coincides exactly with the field strength at which the en-
ergy of a diatomic vibrational bound state becomes de-
generate with the threshold for dissociation into an atom
pair at rest. For positive scattering lengths, this Fesh-
bach molecular state describes a stable molecule in the
absence of background gas collisions that ceases to exist
at the position of the singularity. In the context of two-
body systems involving the same species of atoms, such
a bound state is usually referred to as a dimer. The re-

lation between collision resonances above threshold and
bound states below it links the manipulation of interac-
tions to the molecular conversion of separated atom
pairs.

Production of cold dimers was first demonstrated
�Fioretti et al., 1998; Nikolov et al., 1999; Takekoshi et al.,
1999; Wynar et al., 2000� via photoassociation of atoms
�Weiner et al., 1999�. This achievement was followed by
studies of condensed gases of 85Rb exposed to time-
dependent magnetic-field variations consisting of pulse
pairs in the vicinity of the 155 G zero-energy resonance
�Donley et al., 2002�. These experiments temporarily
probed the strong interaction regime where the size of
the scattering length was comparable to the average in-
teratomic distance. Such perturbations led to the three
distinct components of the gas illustrated in Fig. 2. The
oscillatory behavior of their occupations as a function of
the time delay between the pulses implied an interpre-
tation in terms of Ramsey interference fringes due to a
superposition state of separated atoms and Feshbach
molecules.

According to Fig. 2, the pulse sequence allowed a con-
version of up to about 16% of 85Rb atoms into Feshbach
molecules. Subsequent experiments improved the pro-
duction efficiency using magnetic-field sweeps from
negative to positive scattering lengths across a zero-
energy resonance. This technique was applied to cold
gases consisting of incoherent two-spin-component mix-
tures of either 40K or 6Li atoms �Cubizolles et al., 2003;
Jochim et al., 2003a; Regal et al., 2003a; Strecker et al.,
2003� as well as Bose-Einstein condensates of 133Cs,
87Rb, and 23Na �Herbig et al., 2003; Xu et al., 2003; Dürr
et al., 2004�. In these experiments, new schemes for the
detection of Feshbach molecules were developed. These
techniques involve radio-frequency �rf� photodissocia-
tion, atom loss and recovery, as well as the spatial sepa-
ration of molecules from the remnant atomic cloud fol-
lowed by their dissociation using magnetic-field sweeps.
Separation of Feshbach molecules from an atomic gas,
for instance, may be achieved via the Stern-Gerlach ap-
proach of Fig. 3 �Herbig et al., 2003; Dürr, Volz, Marte,
and Rempe, 2004; Chin et al., 2005�, probing the mag-
netic moments of dimers at magnetic fields away from
the zero-energy resonance.

Near resonance their large spatial extent associated
with a loose bond �Köhler, Gasenzer, and Burnett, 2003;
Köhler, Gasenzer, Julienne, and Burnett, 2003� can lead
to a remarkable stability of Feshbach molecules with re-
spect to inelastic collisions in the environment of a two-
spin-component Fermi gas �Petrov et al., 2004, 2005b�.
The lifetimes of such dimers, ranging from about 100 ms
in the case of 40K2 �Regal et al., 2004a� to several sec-
onds in 6Li2 gases �Cubizolles et al., 2003; Jochim et al.,
2003a�, were sufficient for the observation of their Bose-
Einstein condensation. This achievement was based on
either the magnetic-field sweep technique illustrated in
Fig. 4 �Greiner et al., 2003� or evaporative cooling of a
molecular cloud �Jochim et al., 2003b; Zwierlein et al.,
2003�. Such pioneering experiments gave rise to an on-

FIG. 3. �Color online� A molecular component of about 3000
dimers is out-coupled from a dilute cloud of 25 000 ground-
state cesium atoms using Stern-Gerlach separation in an inho-
mogeneous magnetic field �Herbig et al., 2003�. Left and
middle images are situations in which the magnetic field is cali-
brated such that it exactly compensates for the gravitational
force acting on atoms in gases without and with a molecular
component, respectively. Due to their magnetic moment differ-
ence of −0.57�Bohr ��Bohr=9.274 009 49�10−24 J /T is the Bohr
magneton� with respect to separated atoms, Feshbach mol-
ecules in the middle image drop below the atomic cloud, which
is levitated and centered at the same position as in the left
reference image. Conversely, the right image shows levitation
of molecules and upward acceleration of separated atoms us-
ing a suitably adjusted inhomogeneous magnetic field.

FIG. 4. �Color online� Density distributions of dilute thermal
�left image� and partially Bose-Einstein condensed �right im-
age� gases of 40K2 Feshbach molecules �Greiner et al., 2003�.
Both molecular vapors were produced using linear magnetic-
field sweeps across the 202 G zero-energy resonance. The ini-
tial two-spin-component clouds of 470 000 and 250 000 Fermi
atoms were prepared above �250 nK� and below �79 nK� the
associated critical temperatures for condensation, respectively.
The condensate fraction in the right image is 12%. Adapted by
permission from Macmillan Publishers Ltd: Nature �London�
�Greiner et al., 2003�, copyright, 2003.

1313Köhler, Góral, and Julienne: Production of cold molecules via …

Rev. Mod. Phys., Vol. 78, No. 4, October–December 2006



going series of studies3 probing the crossover from
Bardeen-Cooper-Schrieffer �BCS� pairing at negative
scattering lengths to molecular Bose-Einstein condensa-
tion �Eagles, 1969; Leggett, 1980; Nozières and Schmitt-
Rink, 1985; Randeria, 1995�.

This article reviews the theoretical background of the
exotic species of highly excited Feshbach molecules pro-
duced as well as their formation in the environment of a
cold gas.

Section II introduces the concept of universality of
weakly bound dimers, their relevant length and energy
scales, as well as the general form of their wave func-
tions. This discussion integrates near-resonant Feshbach
molecules into the general class of quantum halo sys-
tems whose classic examples are the deuteron of nuclear
physics and the 4He2 dimer molecule. More details
about such exotic two-particle states as well as their ex-
tensions to few-body systems have been given in a re-
cent review �Jensen et al., 2004�.

Section III discusses the concepts of diatomic scatter-
ing and molecular physics that are particular to Fesh-
bach resonances in cold gases. Section III.A introduces
the microscopic origin of resonance interactions illus-
trated in Fig. 1, scattering channels and rigorous coupled
channels theory �Stoof et al., 1988; Mies et al., 1996�, as
well as the relation between zero-energy resonances and
molecular energy spectra. Several aspects of the rigor-
ous method are well recovered in terms of two-channel
approaches whose general concepts, such as the two-
channel Hamiltonian and the metastable Feshbach reso-
nance state, are discussed in Sec. III.B. On this basis,
Sec. III.C introduces the bare and dressed bound and
continuum energy levels. The universal properties of
Feshbach molecules near resonance are derived in Sec.
III.D. Their physical significance is illustrated in Sec.
III.E for several experimentally relevant examples, such
as molecular binding energies and lifetimes of dimers in
cold Fermi and Bose gases. The size of the magnetic-
field range associated with universality implies a distinc-
tion between entrance- and closed-channel-dominated
zero-energy resonances, whose physical origin is dis-
cussed in Sec. III.F. Implementations of two-channel ap-
proaches are given in Sec. III.G, describing properties of
Feshbach molecules close to as well as away from zero-
energy resonances. Their applications involve the Stern-
Gerlach separation of dimers shown in Fig. 3. Character-
istic parameters relevant to two-channel approaches,
such as, for instance, the magnetic moments associated
with Feshbach resonances of several atomic species, are
summarized in Tables IV and V.

Section IV reviews dynamical approaches describing
the production and dissociation of cold Feshbach mol-
ecules via linear magnetic-field sweeps across zero-
energy resonances. It outlines on the basis of the dis-

crete energy spectrum of a trapped atom pair the
adiabatic transfer from quasicontinuum to dimer states.
Molecular association of an atom pair via linear
magnetic-field sweeps falls into the category of dynami-
cal two-body problems whose solutions can be repre-
sented in an analytic form �Demkov and Osherov, 1968;
Macek and Cavagnero, 1998�. A derivation of the asso-
ciated transition amplitudes in Sec. IV.A provides the
foundation for subsequent applications of the Landau-
Zener approach �Landau, 1932; Zener, 1932�. These in-
volve predicting the final populations of the quasicon-
tinuum to dimer state transfer in tight atom traps, as
well as fast sweep limits of molecule production in cold
Bose and two-spin-component Fermi gases. Such con-
version efficiencies can be sensitive to the quantum sta-
tistics associated with identical atoms whose effects are
discussed in Sec. IV.B. The opposite saturation limits of
molecule production via magnetic-field sweeps in cold
gases have been a subject of ongoing research requiring
dynamical descriptions of many-particle systems.
Among such methods, the two-level mean-field ap-
proach to Bose-Einstein condensates �Timmermans et
al., 1999b� is outlined in detail, including its relation to
the associated Landau-Zener theory �Mies et al., 2000;
Góral et al., 2004�. Intuitive as well as quantitative meth-
ods in the context of molecular Bose-Einstein condensa-
tion illustrated in Fig. 4 are reviewed in Sec. IV.C, out-
lining the concept of an adiabatic production of dimers
via magnetic-field sweeps in cold gases with a significant
momentum spread. Section IV.D discusses the theory of
Feshbach molecular dissociation, demonstrating the ac-
curacy of analytic treatments of linear magnetic-field
sweeps across zero-energy resonances.

Section V addresses the production of dimers via non-
linear magnetic-field variations, illustrated, for instance,
in Fig. 2 in the context of Ramsey interferometry with
atoms and Feshbach molecules. The description of these
experiments requires general theoretical concepts, such
as a precise treatment of molecular populations in gases,
which are obscured in many applications involving linear
magnetic-field sweeps. Section V.A gives an intuitive ex-
planation for observations of the Ramsey fringes of Fig.
2 using a two-body approach. The general observable
describing the number of molecules in the environment
of a gas �Köhler, Gasenzer, and Burnett, 2003� is intro-
duced in Sec. V.B. This includes simple applications to
the fast sweep limits of dimer production in Bose and
two-spin-component Fermi gases. Section V.C addresses
the description of the Ramsey interferometry experi-
ments in terms of dynamical beyond mean-field ap-
proaches �Holland et al., 2001; Köhler and Burnett,
2002�.

Section VI concludes this review and provides an out-
look on related research, such as p-wave and optical
Feshbach resonances, cold dipolar and ground-state
molecules, as well as extensions to few-body physics and
studies of Efimov’s effect.

3See, for example, Loftus et al., 2002; O’Hara et al., 2002;
Bartenstein et al., 2004; Bourdel et al., 2004; Chin, Bartenstein,
et al., 2004; Kinast et al., 2004; Regal et al., 2004b; Zwierlein et
al. 2004, 2005; Partridge et al., 2005.
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II. WEAKLY BOUND DIATOMIC MOLECULES

Weakly bound diatomic molecules are special cases of
low-energy halo systems �Jensen et al., 2004�. These re-
markable quantum states are characterized by a large
mean separation between the constituent particles that
greatly exceeds the outer classical turning point rclassical
determined by their binding energy and their attractive
interaction. Halos are, therefore, quite distinct from spa-
tially extended quasiclassical states, such as the Rydberg
levels associated with the long-range Coulomb potential.
Due to their nonclassical but comparatively simple na-
ture, two-body halos have played a significant role in the
present understanding of composite few-particle sys-
tems. Classic examples are the deuteron in nuclear phys-
ics �Blatt and Weisskopf, 1952� as well as the weakly
bound helium dimer 4He2 molecule �Luo et al., 1993;
Schöllkopf and Toennies, 1994�, whose typical halo wave
function is illustrated in Fig. 5. We note that the modulus
of the bound-state energy of this halo molecule with re-
spect to the dissociation threshold, i.e., the zero of en-
ergy in Fig. 5, is negligibly small compared to the well
depth of the pair interaction. The 4He atoms are sepa-
rated by distances larger than the classical turning point
rclassical with a probability of about 80%. Such distances
greatly exceed the intuitive force range associated with
the potential well.

The characteristic long range of isotropic diatomic
halo molecules, such as the helium dimer, is determined
mainly by a single parameter of the interaction poten-
tial, the s-wave scattering length a. Whenever the inter-
atomic interaction supports a weakly bound halo state,
the scattering length is positive. In accordance with ef-
fective range theory �Schwinger, 1947a, 1947b; Bethe,
1949�, the length scale a may be interpreted in terms of a
hypothetical hard sphere radius that mimics the scatter-
ing properties of the real microscopic potential in the
limit of zero collision energy. This radius is closely re-
lated to the bound-state energy of a weakly bound di-

atomic halo molecule, which is well approximated by

Eb = − �2/ma2. �1�

Here m is twice the reduced mass of the atom pair,
which in the case of identical particles coincides with the
mass of a single atom. At interatomic distances r large
compared to the classical turning point rclassical, the asso-
ciated isotropic bound-state wave function assumes the
following general form:

�b�r� =
1

�2�a

e−r/a

r
. �2�

This wave function gives the mean distance between the
atoms, i.e., the bond length of the molecule, as

�r� = 4��
0

�

r2drr��b�r��2 = a/2. �3�

For the typical example of the helium dimer in Fig. 5,
the solution of the stationary two-body Schrödinger
equation with a realistic pair interaction �Tang et al.,
1995� predicts �r�=5.1 nm, while the estimate of Eq. �3�
yields �r�=5.2 nm. For comparison, measurements based
on the diffraction of a helium molecular beam from a
microfabricated material transmission grating �Grisenti
et al., 2000� determined the bond length of 4He2 to be
�r�=5.2�4� nm.

A dependence of physical quantities, such as those of
Eqs. �1� and �2�, only on the scattering length rather than
the details of the microscopic forces is usually referred
to as universality. The relation between Eqs. �1� and �2�
follows immediately from the stationary Schrödinger
equation H2B�b�r�=Eb�b�r�, using the general two-body
Hamiltonian associated with the relative motion of an
atom pair,

H2B = −
�2

m
�2 + V�r� . �4�

A typical realistic molecular potential V�r� �Tang et al.,
1995� is depicted in Fig. 5 for the helium dimer example.
Its behavior in the limit of large interatomic distances is
dominated by the van der Waals interaction,

V�r� �
r→�

− C6/r6. �5�

The constant C6 is known as the van der Waals disper-
sion coefficient. In accordance with Eq. �5�, the outer
classical turning point of the relative motion of an atom
pair with the energy Eb of Eq. �1� is given by

rclassical = 	a�2lvdW�2
1/3. �6�

Here lvdW is a characteristic range associated with the
van der Waals interaction between atoms, usually re-
ferred to as the van der Waals length,

lvdW = 1
2 �mC6/�2�1/4. �7�

A characteristic property of diatomic halo molecules is
that their spatial extent, determined by the scattering
length a, greatly exceeds rclassical, thus implying the con-

FIG. 5. �Color online� Helium dimer interaction potential
�dashed curve� �Tang et al., 1995� and radial probability density
of the 4He2 molecule �solid curve�. Dotted and dot-dashed
lines are the bound-state energy Eb=−4.2�10−9 a.u.
�1 a.u . =4.359 744 17�10−18 J is the atomic unit of energy�
and classical turning point rclassical=27aBohr �aBohr
=0.052 917 nm is the Bohr radius�, respectively. The inter-
atomic distance r is given on a logarithmic scale.

1315Köhler, Góral, and Julienne: Production of cold molecules via …

Rev. Mod. Phys., Vol. 78, No. 4, October–December 2006



dition a� lvdW for their existence. In the range of such
typically large interatomic distances r� lvdW, the station-
ary Schrödinger equation for a halo molecule reduces to
its interaction-free counterpart, i.e.,

Eb�b�r� �
r→�

− ��2/m��2�b�r� , �8�

whose unit-normalized solution associated with the
bound-state energy of Eq. �1� is given by Eq. �2�.

The universal properties of Eqs. �1� and �2� and length
scales a and lvdW associated with diatomic halo systems
characterize, in the same manner, the helium dimer as
well as highly excited long-range Feshbach molecules.
Any other details of their binary interactions are ob-
scured by the large spatial extent of the bound states.
The size of the scattering length, however, which deter-
mines the long range of these states depends sensitively
on the microscopic potential whose detailed structure
varies among different species.

III. FESHBACH RESONANCES

Interatomic collisions in cold gases are characterized
by de Broglie wavelengths much larger than the van der
Waals length of the microscopic potential. Similarly to
the universal properties of diatomic halo molecules,
such a separation of length scales implies that the asso-
ciated low-energy interactions are determined mainly by
the s-wave scattering length a. Feshbach resonances pro-
vide an opportunity of manipulating these interatomic
forces by exposing a cold gas of alkali atoms to a spa-
tially homogeneous magnetic field of strength B. Based
on microscopic physics, this section describes the con-
cept of magnetic tuning of the scattering length and the
associated cross section �given, for instance, by 8�a2 in
the case of identical Bose atoms� as well as its relation to
molecular state properties.

A. Molecular physics of resonances

Resonance enhancement of collision cross sections
depends on the existence of metastable states. The two-
body molecular physics of such neutral-atom Feshbach
resonance states is the subject of this subsection. This
involves the microscopic origin of interatomic interac-
tions as well as the atomic and molecular symmetries
that permit classification of scattering channels and mo-
lecular bound and metastable energy levels. Such a basic
understanding of low-energy neutral-atom scattering
and bound states provides the foundation for the practi-
cal two-channel approaches found in subsequent subsec-
tions.

1. Interatomic interactions

The helium atom has a 1S0 configuration with no un-
paired electron, and the interaction of two such atoms is
represented by the single molecular Born-Oppenheimer
potential illustrated in Fig. 5. Such a system is too simple
to have a magnetically tunable resonance state. It is

therefore necessary to consider the experimentally rel-
evant case of 2S1/2 atom pairs of the same species. The
unpaired electron spins s1 and s2 from each atom can be
coupled to a total spin S=s1+s2 with the associated
quantum numbers S= 0 or 1. States with S=0 or 1 are
called singlet or triplet states, respectively. The elec-
tronic part of the interatomic interaction is represented,
as for the simplest molecule H2 �Pauling, 1939�, by sin-
glet and triplet molecular Born-Oppenheimer potentials
of 1�g

+ and 3�u
+ symmetry corresponding, to 2S+1=1 and

3, respectively. Here the notation � refers to zero pro-
jection of the electronic orbital angular momentum on
the interatomic axis. The label + indicates that the elec-
tronic wave function is left unchanged upon reflection in
a plane containing the nuclei. Finally, g and u are asso-
ciated with the gerade �even� and ungerade �odd� sym-
metry upon inversion through the geometric center of
the molecule, respectively. Consequently, the latter sym-
metry is absent when the atoms are of different species.

Figure 6 shows potential-energy curves VS�r� for S
=0 and 1 for two Rb atoms as an illustrative case. Simi-
lar potentials exist for any pair of like alkali-metal at-
oms, and if the gerade and ungerade symmetry labels g
and u are dropped, for pairs of unlike alkali-metal at-
oms. For the case of two S-state atoms, the long-range
form of the potential is the van der Waals dispersion
with the lead term −C6 /r6 of Eq. �5�, which is identical
for 1�g

+ and 3�u
+ potentials. The splitting between these

two potentials results from the difference in chemical
bonding interactions when charge clouds of the two at-

FIG. 6. �Color online� The 1�g
+ and 3�u

+ Born-Oppenheimer
potential-energy curves for the Rb2 dimer molecule correlating
with two separated 2S1/2 Rb atoms. An energy E associated
with the wave-number unit E /hc=1 cm−1 corresponds to E /h
=29.979 GHz. Inset: The long-range adiabatic potentials �Mies
et al., 1996, 2000� on a much smaller energy scale with the zero
field �B=0� hyperfine structure of the 85Rb isotope with
Ehf/h=3.035 GHz. Arrows show the van der Waals length lvdW
of Eq. �7� and the uncoupling distance ru, where the hyperfine
energy Ehf is the difference between the 3�u

+ and 1�g
+ Born-

Oppenheimer potential curves. The 87Rb isotope has the same
Born-Oppenheimer potential-energy curves, but the long-
range curves would be different with atomic levels f=1 and 2
and Ehf/h=6.835 GHz.
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oms overlap at small interatomic distances, r	1 nm.
The long-range form of this splitting is associated with
the electron exchange interaction, which decreases ex-
ponentially as r increases. This interaction is attractive
for the 1�g

+ state and repulsive for the 3�u
+ state.

More diatomic states need to be accounted for when
the atomic nuclear spin quantum number i is nonzero.
At zero magnetic field, i.e., B=0, unpaired electrons in
each atom with total electronic angular momentum j can
interact with the nuclear spin i to produce the hyperfine
levels of total angular momentum f= j+ i. For alkali-
metal atoms in their electronic ground states, the iden-
tity j=s gives the total angular momentum quantum
number to be either f= i− 1

2 or i+ 1
2 . The difference in

energy between these two hyperfine levels is the hyper-
fine splitting Ehf. If f is an integer, the atom will be a
composite boson, whereas if f is half an odd integer, the
atom will be a composite fermion. Interaction with a
magnetic field will further split the energy of each f state
into its Zeeman components. Figure 7 illustrates the
B-dependent energy levels of 85Rb, a bosonic isotope. In
the limit of high magnetic-field strengths, the Zeeman
energy of the unpaired electron becomes large com-
pared to Ehf. Consequently, f will no longer be a good
quantum number. Rotation about the magnetic-field
axis, however, is a symmetry transformation. This im-
plies that mf, the quantum number associated with the
projection of the total angular momentum onto this axis,
is conserved. Figure 7 also shows that the Zeeman levels
of a 85Rb atom do not anticross in a range of magnetic
fields up to a few hundred G. As for notation, it is there-
fore often convenient to label the Zeeman levels by fmf,
where f is the total angular momentum quantum num-
ber at B=0 with which the level adiabatically correlates.
We will use such an explicit reference to the different
Zeeman states in subsequent subsections. An alterna-
tive, brief notation �Stoof et al., 1988; Mies et al., 2000�
indicated in Fig. 7 is to label the Zeeman components in
order of increasing energy as a ,b ,c , . . . ; and it shall be
used throughout this subsection.

2. Coupled channels scattering

The hyperfine splitting Ehf and the magnetic Zeeman
energy are typically large compared to the kinetic en-
ergy for cold collisions. Consequently, the scattering
properties of two atoms depend strongly on the Zeeman
levels in which they are prepared. A scattering channel
is defined by specifying the quantum numbers that de-
scribe each of the two initially separated atoms. In the
following, it is convenient to perform a partial wave ex-
pansion of the stationary scattering wave function of the
relative motion of an atom pair. Its components thus
depend on the interatomic distance r in addition to the
quantum numbers � and m� associated with the angular
momentum of the relative motion and its orientation
with respect to the magnetic-field axis. Given this con-
vention, a scattering channel is specified by the channel
index 
= �f1mf1

f2mf2
�m��. Here the curly brackets sig-

nify that the wave function is �anti�symmetric with re-
spect to exchange of identical Bose �Fermi� particles
�Stoof et al., 1988�. Consequently, the order of atomic
indices 1 and 2 is unimportant. Only those channels with
even �odd� � exist for two identical bosons �fermions� in
the same Zeeman level. All � values are possible for
identical bosons or fermions in different Zeeman levels
or for nonidentical species. The partial waves associated
with �=0, 1, or 2 are designated s, p, or d waves. If the
channel energy E
=Ef1mf1

+Ef2mf2
is less than the total

energy of the system E, channel 
 is said to be open.
Conversely, if E
�E, channel 
 is referred to as closed.
When E is lower than the lowest channel energy, all
channels are closed and E can refer only to one of the
discrete molecular levels. If E is higher than the lowest
channel energy, then at least one channel is open, and E
is associated with a stationary energy level in the scat-
tering continuum.

In the case of the 1S0
4He atom, the two-body inter-

action Hamiltonian is specified by a single-channel po-
tential describing the helium dimer bound state as well
as cold collisions. Such a treatment is not adequate for
alkali atoms with nuclear spin because of intrinsic cou-
pling among the various channels. It is therefore conve-
nient to represent the wave functions for scattering or
bound states as a coupled channels expansion into their
components �
�r ,E� in the separated atom spin basis
labeled by 
 �Stoof et al., 1988; Gao, 1996; Mies et al.,
1996�. The associated radial wave function F
�r ,E� of
the relative motion of an atom pair with the energy E is
determined by

�
�r,E� = F
�r,E�/r . �9�

Substituting Eq. �9� into the stationary Schrödinger
equation gives the following coupled channels equa-
tions, which in combination with the boundary condi-
tions imposed on F
�r ,E� determine both the continuum
and bound states:

FIG. 7. �Color online� Zeeman levels of the 85Rb 2S1/2 atom vs
the magnetic-field strength B. Solid and dashed curves are the
f=2 and 3 multiplets, respectively. The projection quantum
numbers mf and the alphabetic labels a, b, c , . . . are shown.
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�2F
�r,E�
�r2 +

m

�2


	E�
 − V
�r�
F�r,E� = 0. �10�

We note that m should be identified in Eq. �10� with
twice the reduced mass of an atom pair. The potential
matrix V�r� takes on the following form in the separated
atom spin basis

V
�r� = �Ef1mf1
+ Ef2mf2

+
�2 � �� + 1�

mr2 ��
 + V

int�r� .

�11�

Here the atomic hyperfine and magnetic interaction
terms are given by the experimentally known separated
atom energies Ef1mf1

and Ef2mf2
, and the kinetic energy of

axis rotation is given by the centrifugal energy term pro-
portional to ���+1�. These terms are diagonal in the
asymptotic basis. The complicated part of the scattering
due to the electronic Born-Oppenheimer potentials and
electron spin-dependent interactions is contained in the
interaction matrix Vint�r� of Eq. �11�, which is comprised
of two parts:

Vint�r� = Vel�r� + Vss�r� . �12�

The contribution Vel�r� represents the strong electronic
interaction. It is diagonal in � but nondiagonal in the
atomic channel quantum numbers f1mf1

f2mf2
. Its diago-

nal elements in f1mf1
f2mf2

depend on weighted sums of
the two Born-Oppenheimer potentials VS=0�r� and
VS=1�r�, whereas off-diagonal terms depend on the dif-
ference between VS=0�r� and VS=1�r�. The strong elec-
tronic interaction Vel�r� is responsible for elastic scatter-
ing and inelastic spin-exchange collisions �Bender, 1963;
Dalgarno and Rudge, 1965�, and gives rise to the broad-
est scattering resonances.

The term Vss�r� in Eq. �12� represents the weak rela-
tivistic spin-spin potential energy �Stoof et al., 1988;
Moerdijk et al., 1995�. It is due to the anisotropic dipolar
interaction between two electron spins, and is nondiago-
nal in both f1mf1

f2mf2
and �, i.e., it couples different par-

tial waves. In the limit of large interatomic distances,
Vss�r� is proportional to 
2 /r3, where 
=1/137.0426 is
the fine-structure constant. As Vss�r� is a tensor operator
of rank 2, only blocks that differ in � by zero or two
units have nonvanishing matrix elements, according to
the Wigner-Eckart theorem �Wigner, 1927; Eckart,
1930�. In addition, there are no s-wave diagonal poten-
tials varying as 1/r3.

At short range the spin-dipole interaction can be
modified by second-order spin-orbit contributions,
which are important for a heavy atom such as Cs �Mies
et al., 1996; Kotochigova et al., 2001�. In general, the
potential-energy contribution Vss�r� is responsible for
weak inelastic spin-dipolar relaxation and gives rise to
narrow scattering resonances.

The low-energy collision physics of alkali atoms in
specific hyperfine states is sensitive to the recoupling of
electron spins between separated atoms and the short-
range zone of strong chemical interactions. At small in-

teratomic distances, the potential-energy scale is orders
of magnitude larger than Ehf. Whereas the electron spin
is coupled to the nuclear spin on the same atom when
atoms are separated, electron spins become uncoupled
from the nuclear spin and couple strongly to one an-
other at small r to make the S=0 and 1 states of the
Born-Oppenheimer potentials. The distance where this
recoupling occurs is near ru of Fig. 6, where the differ-
ence in Born-Oppenheimer potentials VS=1�ru�
−VS=0�ru� due to the exchange potential is equal to the
atomic hyperfine energy Ehf. This occurs typically in the
distance range of 20 to 25aBohr for alkali atoms.

The coupled channels method �Stoof et al., 1988; Mies
et al., 1996� of Eq. �10� properly accounts for dynamical
changes in the couplings among the five angular mo-
menta s1, s2, i1, i2, and � as atoms move through the
region near ru. Basic symmetries of the coupling terms in
Vint�r� of Eq. �12� allow us to separate the interaction
matrix into blocks, within which the coupling is strong
and between which the coupling is intrinsically weak.
Such a separation gives rise to classifications of the vari-
ous stationary energy states in terms of their predomi-
nant symmetry properties. Projected levels that are
bound just within a particular block are, in general, as-
sociated with scattering resonances when their energy is
above the scattering threshold. We note, however, that
in contrast to the complete stationary states determined
by Eq. �10�, such Feshbach resonance levels depend on
the separation of Vint�r� into blocks or, equivalently, on
the choice of basis set.

In this context, the separated atom spin basis referred
to in Eq. �11� is convenient at long range, but leads to
off-diagonal elements at short range. One alternative,
short-range basis would first couple s1 and s2 to a result-
ant S and i1 and i2 to a resultant I. Then S and I can be
coupled to a resultant F, which in turn couples to � to
give the total angular momentum Ftotal �Tiesinga et al.,
1993; Moerdijk et al., 1995�. Then we could set up
a molecular basis set with quantum numbers
�SI�F�FtotalM. Here M refers to the orientation quan-
tum number associated with the projection of Ftotal onto
the magnetic-field axis. This short-range basis takes ad-
vantage of the fact that Vel�r� is diagonal in S. An alter-
native separated atom basis set could couple f1 and f2 to
a resultant F, and give the basis �f1f2�F�FtotalM. This
basis is useful at low B fields at which the Zeeman levels
do not anticross, and where F may be viewed as a good
quantum number. The unitary transformation between
separated atom and molecular basis sets is called a
frame transformation �Bender, 1963; Dalgarno and
Rudge, 1965; Burke et al., 1998; Gao et al., 2005�. Bound
and metastable states of light elements such as Li and
Na are best classified by the molecular basis �Moerdijk et
al., 1995; Simonucci et al., 2005�, whereas the separated
atom basis is better for heavy elements such as Rb or Cs
�Marte et al., 2002; Chin et al., 2004�. Similarly, the long-
range part of a scattering wave function is best described
in the separated atom basis set, whereas the molecular
basis is more appropriate for the short-range part.

1318 Köhler, Góral, and Julienne: Production of cold molecules via …

Rev. Mod. Phys., Vol. 78, No. 4, October–December 2006



3. Threshold collisions

The quantum numbers f1mf1
and f2mf2

associated with
the Zeeman states of separated atoms in which a dilute
gas is prepared determine the entrance channel of a two-
body collision. In the context of cold collisions, it is usu-
ally sufficient to consider just the s-wave ��=0� compo-
nent of an initial plane-wave momentum state of the
relative motion of an atom pair. To avoid inelastic pro-
cesses known as spin relaxation, most experimental ap-
plications of Feshbach resonances involve atom pairs in
the lowest energetic Zeeman states for which s-wave
scattering is allowed. In the following, we assume such a
case and choose the zero of energy at the entrance-
channel energy E
. This convention implies that the to-
tal energy E of a colliding atom pair is identical to its
positive kinetic energy �2k2 /m. Here k is referred to as
the wave number and p= �k is the momentum of the
relative motion. On the other hand, bound-state ener-
gies Eb are always negative.

The amplitudes associated with transitions between
the initial and final states of a diatomic collision may be
inferred from the asymptotic form of the scattering so-
lutions to Eq. �10� in the limit of large distances r→�.
As the only open channel is assumed to be the entrance
channel, the long-range boundary condition imposed on
the associated component of the radial wave function
reads �Taylor, 1972�

F
�r,�2k2/m� � sin	kr + ���k�
 . �13�

Here the absolute magnitude of F
�r ,�2k2 /m� is deter-
mined up to an overall energy-dependent prefactor
whose value is a matter of convention. All information
about a collision is contained in the scattering phase
shift ���k�. According to effective range theory
�Schwinger, 1947a, 1947b; Bethe, 1949�, ���k� deter-
mines the scattering length a via the following low-
energy asymptotic expansion:

k cot���k� = −
1

a
+

1
2

k2reff. �14�

Here reff is known as the effective range. For most ap-
plications in this review, the scattering length alone is
sufficient for the description of cold diatomic collisions.

In general, the scattering length is only weakly depen-
dent on the magnetic-field strength B, unless B can be
tuned in such a way that a closed-channel Feshbach
resonance level crosses the entrance-channel scattering
threshold. Such a scenario may occur due to a difference
in magnetic moments �E
 /�B and �E /�B associated
with the entrance and closed channels, respectively. The
metastability of the resonance state leads to a time delay
during a collision when the energies of the scattered at-
oms and of the resonance level are nearly matched. This
results in an enhancement of the scattering cross section
whose width in energy depends on the strength of the
coupling between the entrance and closed channels via
the lifetime of the resonance state. As the zero-energy
cross section is proportional to a2, such a resonance en-

hancement of collisions may be used to widely tune the
scattering length �Tiesinga et al., 1993� as illustrated in
Fig. 1. We note, however, that because of the interchan-
nel coupling, the magnetic-field strength B0 associated
with the singularity of a differs from the crossing point
between the resonance energy and the scattering thresh-
old. The magnetic-field width and shift of such zero-
energy resonances will be the subject of Sec. III.C.

Singularities of the s-wave scattering length are always
accompanied by the degeneracy of a bound vibrational
level with the scattering threshold �Taylor, 1972�. In the
context of magnetic Feshbach resonances, the properties
of such a coupled channels stationary energy state,
termed the Feshbach molecule, may be inferred from
Eq. �10� in the zero bound-state energy limit Eb→0.
Similarly to the studies of Sec. II, the derivation just
relies upon the fact that the potential matrix Vint�r� of
Eq. �11� vanishes at large separations r→�. In such an
asymptotic distance range the atoms cease to interact,
and the solution of Eq. �10� associated with any s-wave
��=0� channel is given by

F
�r,Eb� � exp	− �− m�Eb − E
�r/ � 
 . �15�

Its prefactor depends on the overall normalization of the
bound state and is thus determined by all components.
In the limit Eb→0, however, only the entrance-channel
radial wave function acquires a long range and, there-
fore, predominates all the others. The relation between
the binding energy and scattering length in the vicinity
of a zero-energy resonance will be the subject of Sec.
III.D. This discussion will show, on the basis of general
arguments, that Eb is determined by Eq. �1�, while the
Feshbach molecular wave function reduces to its
entrance-channel component given by Eq. �2�.

If the entrance channel is not the lowest in energy, the
above scenario of zero-energy resonances and Feshbach
molecules is only approximate. This implies that the
scattering length is always finite even when a closed-
channel Feshbach resonance level is magnetically tuned
to cross the entrance-channel energy. The associated
Feshbach molecule can decay into the lower energetic
open channels via spin relaxation �Köhler et al., 2005;
Thompson et al., 2005b�. Such a rather general situation
underlies, for instance, the experiments of Fig. 2 involv-
ing gases of 85Rb, and serves as an example for the fol-
lowing explicit channel classification.

4. Example of channel classification

The most rigorous classification of scattering channels
is by the total projection quantum number M=mf1
+mf2

+m�. In the absence of external fields other than B,
the symmetry with respect to rotation about the
magnetic-field axis implies that M is strictly conserved
during the course of a collision, i.e., states with different
M cannot couple. The next useful classification is by the
partial wave quantum number �. Only weak coupling is
normally possible between states of different �, since it
can only originate from the intrinsically small and aniso-
tropic Vss�r� matrix elements.
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Table I shows an example of the quantum numbers
needed to describe the s-wave channels associated with
the interaction of a pair of f=2, mf=−2 85Rb atoms,
which is the e state in the alphabetic notation. This state
is one for which there is a broad Feshbach resonance
close to the scattering threshold near 155 G. Both the
binding energies of the associated Feshbach molecules
and scattering length may be inferred from solutions of
Eq. �10�, using just the matrix elements of the potential
Vel�r� between the channel states of Table I. Since the
nuclear spin of a 85Rb atom is i= 5

2 , the two ground-state
f values are 2 and 3. The total projection quantum num-
ber for s waves is M=−4 for any B. There are only five
possible separated atom spin channels. As the hyperfine
splitting is Ehf /h=3.035 GHz for this species, cold colli-
sions associated with temperatures T on the order of
1 �K �where kBT /h=21 kHz given the Boltzmann con-
stant kB=1.380 650 5�10−23 J /K� have only a single
open s-wave channel, the ee channel. All other �=0
channels, df, eg, fh, and gg, are closed.

The anisotropic interaction Vss�r� weakly couples the
s-wave block to the d-wave block, the d-wave block to
the g-wave block, etc. This has two consequences: extra
spin-relaxation channels are possible, and projected en-
ergy states of d-wave character �or even higher partial
wave character� can give rise to scattering resonances
for s-wave collisions. In the 85Rb case, there are a total
of 23 M=−4 d-wave channels that couple to the s-wave
block illustrated in Table I. Only the four listed in Table
II are open with respect to the ee channel energy. These
channels are all degenerate with the ee s-wave channel
at B=0. Such a degeneracy at zero magnetic field im-
plies a suppression of inelastic collisions due to the
Wigner threshold law �Wigner, 1948� outlined in Sec.
III.D. The d-wave channels of Table II become open,
however, by a relatively large amount of energy on the
cold �K temperature scale as B increases. The associ-
ated energy gap gives rise to inelastic decay by which a
pair of e-state atoms can relax in a collision when B
increases from zero �Roberts et al., 2000b�. These open
d-wave channels are also responsible for the observed
spontaneous dissociation of Feshbach molecules
with binding energies near the ee scattering threshold

�Thompson et al., 2005b�. Associated lifetimes as a func-
tion of the magnetic-field strength will be discussed in
Sec. III.E.

Table III illustrates the blocks of the matrix Vint�r�
according to �f1f2�F� quantum numbers. The example
refers to Bose atoms with a nuclear spin quantum num-
ber of i= 5

2 , such as 85Rb. Basis states in the same vertical
column of Table III, that is, with the same F� quantum
numbers, are coupled by the strong exchange interac-
tions in Vel�r�. Basis states from different vertical col-
umns can only be coupled by weak interactions in Vss�r�.
Classification using F� blocks was used for Feshbach
resonance states with ��0 observed for the compara-
tively heavy alkali-metal atoms 87Rb �Marte et al., 2002�
and 133Cs �Chin, Vuletic, et al., 2004�. In particular, the
133Cs2 Feshbach molecules associated with the Stern-
Gerlach separation experiments of Fig. 3 are mainly of
g-wave character with F=4 and �=4. Such a separated
atom classification shall be applied in the following to
Feshbach resonance and molecular states of 85Rb asso-
ciated with the observations of Fig. 2.

5. Near-threshold bound states

The illustration of the relation between resonance and
bound states, on the one hand, and singularities of the
scattering length, on the other hand, relies on coupled
channels calculations. Figure 8 shows the five separated
atom channel energies E
�B� for the s-wave block de-
scribed in Table I. In accordance with the convention

TABLE I. Separated atom quantum numbers for the s-wave
��=0� M=−4 block of the coupling matrix Vel�r� for 85Rb, for
which f assumes the values 2 and 3. The separated atom ener-
gies relative to Eee=0 are shown for B=0 and 160 G
�16.0 mT�.

�f1f2� mf1
mf2



E
 /h �GHz�

for B=0
E
 /h �GHz�
for B=160 G

�2 2� −2−2 ee 0 0
�2 3� −1−3 df 3.035 732 2.591 623
�2 3� −2−2 eg 3.035 732 2.756 754
�3 3� −3−1 fh 6.071 464 5.508 558
�3 3� −2−2 gg 6.071 464 5.513 508

TABLE II. Separated atom quantum numbers for the open
channel d-wave ��=2� M=−4 block of the coupling matrix
Vss�r� for 85Rb. The separated atom energies relative to Eee
=0 are shown for B=0 and 160 G �16.0 mT�. There are also 19
closed channels in the d-wave M=−4 block.

�f1f2� mf1
mf2

m� 

E
 /h �GHz�

for B=0
E
 /h �GHz�
for B=160 G

�2 2� −1−1−2 dd 0 −0.161 496
�2 2� 0−2−2 ce 0 −0.157 321
�2 2� −1−2−1 de 0 −0.080 748
�2 2� −2−2 0 ee 0 0

TABLE III. Separated atom quantum numbers �f1f2�F� for the
s- and d-wave part of Vint�r� for the bosonic isotope 85Rb, for
which f assumes the values 2 and 3. Odd values of F are miss-
ing when f1 equals f2 because of Bose symmetry. Spin-
exchange interactions couple states in the same column,
whereas states in different columns can only be coupled by
spin-dipolar interactions.

�f1f2� F�

�3 3� 0s 2s 4s 6s 0d 2d 4d 6d

�2 3� 1s 2s 3s 4s 5s 1d 2d 3d 4d 5d

�2 2� 0s 2s 4s 0d 2d 4d
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used throughout, the scattering threshold associated
with the ee entrance channel defines the zero of energy.
As the five channel energies just reflect the sums of their
associated atomic Zeeman energies, they cluster into
three groups. The lowest energy group consists just of
the ee entrance channel. The next group with energies
on the order of Ehf includes the df and eg channels.
Finally, the group with energies of about 2Ehf refers to
the fh and gg channels. Both channel energies associ-
ated with each one of the latter two groups are degen-
erate at B=0. At the low magnetic-field strengths shown
in Fig. 8, the choice of �f1f2�F quantum numbers well
characterizes the two-body physics. The �22� entrance
channel has F=4, the �23� group has F= 4 and 5, and the
�33� group has F= 4 and 6. Only F values of 4 or more
are possible because the projection quantum number is
M=−4; the odd value F=5 is ruled out for identical
bosons with �f1f2�= �33�.

The solid curves in Fig. 8 show the s-wave bound
states of the 85Rb2 molecular dimer with negative ener-
gies Eb	0. The curves virtually parallel to the E=0
threshold refer to the v= −1, −2, and −3 states of the ee
entrance channel, labeled by their vibrational quantum
numbers v starting with v=−1 for the highest excited
level. In addition to v, their low-field �22�4 quantum
numbers are indicated in Fig. 8. These levels all have
nearly the same magnetic moment as a pair of separated
atoms in the entrance-channel Zeeman state configura-
tion. Each one of the other four closed channels also has
a vibrational series leading to each of the four closed-
channel thresholds. The pair of �23�F, v=−3 levels with
F= 4 and 5 and the pair of �33�F, v=−4 levels with F= 4
and 6 are both bound with respect to separated atoms.
For both pairs, the lowest level has F=4. These levels
have different magnetic moments from a pair of ee sepa-
rated atoms. This implies that their bound-state energies
Eb�B� relative to E=0 vary significantly with the
magnetic-field strength B.

While the 85Rb2 molecular dimer states involve the
complete strong electronic interaction Vel�r�, the Fesh-
bach resonance levels of Fig. 8 refer to blocks of the
potential matrix associated with their symmetry labels.
At zero magnetic field the �23�, v= −1 and −2 levels and
the �33�, v= −1, −2, and −3 levels have positive energies
so that they are metastable levels embedded in the ee
scattering continuum. The two �33�F levels are espe-
cially interesting, in that they cross the ee E=0 threshold
and turn into bound states when B is sufficiently large.
Figure 9 shows an expanded view of the bound-state
energy levels in the near-threshold crossing region as
well as the s-wave scattering length a of the ee entrance
channel as a function of B. The scattering length has a

FIG. 8. �Color online� Magnetic-field-dependent M=−4
s-wave energy levels of the 85Rb2 dimer. Dotted curves labeled
by ee, df, eg, fh, and gg show the energies of the five separated
atom channels of Table I. Solid curves indicate the calculated
s-wave coupled-channel bound-state energies labeled by the
vibrational quantum number v. Their symmetry labels refer to
the set of quantum numbers �f1f2�F. The ee limit gives rise to a
single vibrational progression with F=4; the df and eg limits
give rise to two �23�F series with F=4 and 5; and the fh and gg
limits give rise to two �33�F series with F=4 and 6. In all cases,
the F=4 level has lower energy than the �f1f2� pairs. At B=0,
the v=−1 and −2, �23�F levels and the v=−1, −2, and −3, �33�F
levels represent metastable states with E�0 embedded in the
�22�4 ee scattering continuum. These metastable levels are rep-
resented by dashed curves, which give approximate positions
of scattering resonances in the ee channel. The metastable lev-
els with F=4 are coupled to the ee s-wave scattering con-
tinuum through the exchange interaction. The F=5 and 6
metastable levels are not exchange coupled to the ee entrance
channel at B=0, but become weakly coupled at higher fields
where F is no longer a good quantum number.

FIG. 9. �Color online� Scattering length �upper panel� and
bound-state energy levels �lower panel� vs B for two 85Rb at-
oms in the e state. The separated atom energy of two e-state
atoms is taken to be zero. A singularity of the scattering length
occurs where an energy level becomes degenerate with the
scattering threshold at E=0. The resolution of the figure is not
sufficient to show the variation of the bound-state energies
with B just below threshold; this variation is discussed in Fig.
12. The broad resonance is due to the threshold crossing of the
strongly coupled �f1f2�F� = �33�4s, v=−3 level, whereas the nar-
row resonance is due to the crossing of the weakly coupled
�f1f2�F� = �33�6s, v=−3 level.
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singularity at the magnetic-field value B0 where a new
bound state appears with Eb�B0�=0. The F=4 �33� level
is coupled by the exchange interaction to the F=4 ee
entrance channel, and gives rise to a broad resonance
with an associated singularity of a near 155 G. On the
other hand, the F=6 �33� level is only weakly coupled to
the F=4 ee entrance channel, and gives rise to a narrow
zero-energy resonance near 220 G. In addition, the in-
teraction between the �33�F levels and the highest ex-
cited entrance-channel bound state at E−1 /h
=−0.22 GHz is evident in Fig. 9. It results, for instance,
in the avoided crossing of the �22�4, v=−1 and �33�4,
v=−3 levels between 200 and 250 G, which is due to the
same coupling that leads to the broad singularity of the
scattering length near 155 G.

B. Two-channel approach

Coupled-channels calculations based on realistic mo-
lecular potentials and known atomic properties are ca-
pable of accounting for a variety of experimental colli-
sional and bound-state properties of alkali-metal species
�Houbiers et al., 1998; van Abeelen and Verhaar, 1998;
Leo et al., 2000; Loftus et al., 2002; Marte et al., 2002;
Chin, Vuletic, et al., 2004; Marcelis et al., 2004; Barten-
stein et al., 2005�. Their accuracy, including predictions
of new resonances, is possible once the actual potentials
have been calibrated in such a way that they recover the
correct scattering lengths for the Born-Oppenheimer
1�g

+ and 3�u
+ potentials �Abraham et al., 1997; van

Kempen et al., 2002� in addition to the van der Waals
coefficient C6. Coupled-channels approaches have the
drawback, however, that they are not readily accessible.
Consequently, it is desirable to find simpler approaches
to Feshbach resonance and molecular levels close to the
dissociation threshold energy. To this end, the physics of
binary collisions as well as the properties of the highly
excited molecular bound states can usually be well de-
scribed in terms of just two scattering channels �Child,
1974; Moerdijk et al., 1995; Timmermans et al., 1999b;
Mies et al., 2000�. In the following, we denote by the
entrance-channel the Zeeman state configuration of a
pair of asymptotically separated atoms in which a dilute
gas is initially prepared. Under the conditions of reso-
nance enhancement, this spin configuration is strongly
coupled, in general, to several energetically closed scat-
tering channels. In idealized treatments, however, this
coupling is usually due to the near degeneracy of the
energies of a single metastable vibrational state, the
Feshbach resonance state �res�r�, and the colliding at-
oms. The spin configuration associated with the Fesh-
bach resonance state is referred to, in the following, sim-
ply as the closed channel.

1. Two-channel Hamiltonian

The general Hamiltonian for the relative motion of an
atom pair, i.e., the basis of all two-channel approaches
�Child, 1974; Moerdijk et al., 1995; Timmermans et al.,
1999b; Mies et al., 2000� is given by the following matrix:

H2B = � Hbg W�r�
W�r� Hcl�B�

� . �16�

Its off-diagonal elements W�r� are the energies associ-
ated with the spin exchange �or dipole� interaction and
provide the interchannel coupling as a function of the
distance r between atoms. The diagonal elements Hbg
and Hcl�B� can be interpreted in terms of entrance- and
closed-channel Hamiltonians in the hypothetical ab-
sence of coupling, respectively. These single-channel
Hamiltonians consist of kinetic- and potential-energy
contributions given by the following formulas:

Hbg = −
�2

m
�2 + Vbg�r� , �17�

Hcl�B� = −
�2

m
�2 + Vcl�B,r� . �18�

Here and in the following, we choose the zero of energy
as the threshold for dissociation of the entrance channel.
Consequently, the background scattering potential
Vbg�r� of Eq. �17� vanishes in the limit of large inter-
atomic separations, in accordance with the general
asymptotic behavior of the van der Waals interaction
described by Eq. �5�. In this approach, the complete two-
body Hamiltonian of Eq. �16� depends on the magnetic-
field strength B simply via an overall shift of the closed-
channel potential Vcl�B ,r� with respect to the entrance-
channel dissociation threshold. The amount of this shift
is determined by the sum of the single-particle Zeeman
energies associated with the closed-channel spin con-
figuration of atom pairs. Typical diagonal potential-
energy contributions to the two-body Hamiltonian are
illustrated schematically in Fig. 10, whereas special re-
quirements for them will be discussed in Sec. III.G.

2. Bare Feshbach resonance state

The closed-channel Hamiltonian supports the bare
Feshbach resonance state in accordance with the follow-
ing Schrödinger equation:

Hcl�B��res�r� = Eres�B��res�r� . �19�

The associated resonance energy Eres�B� can be tuned
with respect to the entrance-channel dissociation thresh-
old, i.e., the zero of energy in Fig. 10, by varying the
magnetic-field strength. In the hypothetical absence of
interchannel coupling, the Feshbach resonance level
usually represents a comparatively tightly bound state of
Hcl�B� with a classical radius rclassical smaller than the van
der Waals length of Eq. �7�. Under realistic conditions,
however, �res�r� is only a metastable state with a decay
width depending on the strength of the interchannel
coupling. Its precise form cannot always be unambigu-
ously identified from full coupled-channels calculations
because the two-channel picture is an idealization. The
remarkable accuracy of such a simplifying approach is
due to the fact that near resonance the physically rel-
evant dressed stationary energy levels are largely insen-
sitive to the detailed structure of the resonance state.
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C. Dressed energy states

Dressed stationary energy states consist of two or-
thogonal components associated with the spin configu-
rations �bg� and �cl� of the entrance and closed channels,
respectively. Their wave functions are therefore of the
following general form �Drummond et al., 1998�:
�bg��bg�r�+ �cl��cl�r�. The components �bg�r� and �cl�r�
depend on the relative position r of the atoms. In accor-
dance with Eq. �16�, these components are determined
by the following set of coupled stationary Schrödinger
equations:

Hbg�bg�r� + W�r��cl�r� = E�bg�r� , �20�

W�r��bg�r� + Hcl�B��cl�r� = E�cl�r� . �21�

In this review all applications will involve either sym-
metric or antisymmetric spin configurations of identical
Bose and Fermi atom pairs, respectively. Their physical
spatial wave functions will only consist of an s-wave
component. The solutions of Eqs. �20� and �21� with a
negative energy E below the entrance-channel dissocia-
tion threshold are associated with molecular bound
states. Solutions with a positive energy belong to the
continuum spectrum of the Hamiltonian and describe
collisions of initially separated pairs of atoms.

1. Dressed continuum states

Dressed continuum states can be labeled by the rela-
tive momentum p of a pair of asymptotically separated
atoms in the entrance-channel spin configuration and
are associated with collision energies E=p2 /m. Due to
the continuous range of angles of incidence between the
atoms, any given collision energy is infinitely degener-
ate. In this context, it is convenient to postpone the in-
troduction of any symmetry properties of the spatial
wave functions associated with a possible identical na-
ture of the atoms. Continuum states are usually chosen
in such a way that their entrance-channel component
�p

bg�r� behaves at asymptotically large interatomic dis-
tances like a superposition of an incident plane wave
and an outgoing spherical wave �Taylor, 1972�. This
choice of the wave function leads to the following
boundary condition:

�p
bg�r� �

r→�

1

�2� � �3/2�eip·r/� + f��,p�
eipr/�

r
� . �22�

The quantity f�� ,p� is known as the scattering amplitude
and depends on the modulus p of the relative momen-
tum of the atoms and on the scattering angle determined
by the relation cos �=p ·r / �pr�. Due to the off-diagonal
coupling W�r�, the stationary continuum states also have
a closed-channel component. The associated wave func-
tion �p

cl�r� decays at asymptotically large interatomic dis-
tances because the cold collision energies of interest are
below the closed-channel dissociation threshold. This
property reflects physical intuition as closed-channel
atom pairs are spatially confined by the potential Vcl�r�
of Fig. 10.

Due to their long range of Eq. �22�, stationary con-
tinuum wave functions may be interpreted in terms of
amplitudes for the density of particle flux rather than
physical states �Taylor, 1972�. In the present context, the
entrance-channel component �p

bg�r� determines observ-
able low-energy scattering properties of colliding atom
pairs, such as, for instance, the differential cross section
of distinguishable atoms, �f�� ,p��2. These properties can
be represented in terms of bare energy states associated
with the Hamiltonians Hbg and Hcl�B�. To this end, it is
instructive to reformulate the coupled set of stationary
Schrödinger equations �20� and �21�, including the
boundary condition of Eq. �22�, in terms of the associ-
ated Green’s functions in addition to the entrance-
channel continuum states. The bare Green’s functions
depend on a complex variable z with the dimension of
an energy in accordance with the following formulas:

Gbg�z� = �z − Hbg�−1, �23�

Gcl�B,z� = 	z − Hcl�B�
−1. �24�

The entrance-channel continuum wave functions �p
�+��r�,

also referred to as background scattering states, satisfy
the stationary Schrödinger equation associated with the
Hamiltonian Hbg of Eq. �17�, i.e.,

FIG. 10. �Color online� Scheme of the entrance- �solid curve�
and closed-channel �dashed curve� potentials associated with a
model representation of the 155 G zero-energy resonance of
85Rb �Köhler, Gasenzer, Julienne, and Burnett, 2003�. Hori-
zontal dashed and vertical dot-dashed lines are the magnetic-
field-dependent energy Eres�B� of the Feshbach resonance
level �res�r� and the van der Waals length of lvdW=82aBohr,
respectively. In this model, the outer classical turning point of
the resonance level �res�r� associated with the energy Eres�B�
in the closed-channel potential is located at rclassical=72aBohr.
Its vibrational quantum number v=−1 with respect to the dis-
sociation threshold of Vcl�B ,r� is chosen arbitrarily. Horizontal
solid lines indicate the energies E−1 and E−2 of bare vibrational
bound states associated with the entrance-channel potential.
This bare interaction is adjusted such that it mimics the highest
excited �f1f2�F= �22�4, v=−1 and −2 levels of Fig. 8. In this
model, the off-diagonal spin exchange coupling is W�r�
= exp�−r /
�, with 
=5aBohr and  /kB=38.5 mK used to
match the measured Feshbach resonance parameters �Claus-
sen et al., 2003�.
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Hbg�p
�+��r� =

p2

m
�p

�+��r� . �25�

Their long-range behavior is determined by boundary
conditions analogous to Eq. �22� with f�� ,p� replaced by
the bare amplitude fbg�� ,p� associated with the back-
ground scattering.

Expressed in terms of the bare Green’s functions and
continuum states, the Schrödinger equations �20� and
�21� read

��p
bg� = ��p

�+�� + Gbg�E + i0�W��p
cl� , �26�

��p
cl� = Gcl�B,E�W��p

bg� . �27�

The argument z=E+ i0 of the entrance-channel Green’s
function in Eq. �26� indicates that the physical collision
energy E=p2 /m is approached from the upper half of
the complex plane. This choice of the energy argument
ensures that the scattering wave function �p

bg�r� is com-
patible with Eq. �22�, in accordance with the following
long-range asymptotic behavior of Gbg�z� in spatial co-
ordinates:

Gbg�z,r,r�� �
r→�

−
m�2� � �3/2

4��2

eipr/�

r
	�p

�−��r��
*. �28�

Here �p
�−��r��= 	�−p

�+��r��
* is the entrance-channel con-
tinuum energy state with incoming spherical wave
boundary conditions �Taylor, 1972�. Its label p
= �mE�1/2r /r may be interpreted as the asymptotic mo-
mentum associated with the relative motion of scattered
atoms. The closed-channel continuum wave function
�p

cl�r� of Eq. �27� decays at asymptotically large inter-
atomic distances because the bare Green’s function on
the right-hand side is evaluated at the collision energy
E=p2 /m below the dissociation threshold of Vcl�r�.

Direct application of the two-channel Hamiltonian
�16� to Eqs. �26� and �27� verifies their equivalence to the
coupled Schrödinger equations �20� and �21�. The asso-
ciated set of integral equations for the spatial wave func-
tions �p

bg�r� and �p
cl�r� may be used, for instance, to nu-

merically determine the exact dressed energy states in
the two-channel approach �Köhler, Gasenzer, Julienne,
and Burnett, 2003�. This formulation of the two-channel
scattering problem is also particularly useful for an ap-
proximate treatment based on the singularities of the
closed-channel Green’s function. The single resonance
approach, underlying this treatment, provides analytic
formulas for the dressed continuum wave functions as
well as their associated collision parameters in terms of
bare energy states.

2. Single resonance approach

In accordance with Eqs. �19� and �24�, the closed-
channel Green’s function has a singularity at the reso-
nance energy Eres�B�. Provided that the Feshbach reso-
nance state �res�r� is unit normalized, i.e., ��res ��res�=1,
the singular diagonal matrix element of Gcl�B ,E� is
given by

��res�Gcl�B,E���res� = 	E − Eres�B�
−1. �29�

Based on Eq. �29�, the single resonance approach takes
advantage of the near degeneracy of the resonance en-
ergy with the entrance channel dissociation threshold il-
lustrated in Fig. 10: At typical cold collision energies E
=p2 /m, the resonance detuning �E�B�=E−Eres�B� in
Eq. �29� is negligible compared to the spacings between
the discrete energy levels of Hcl�B�. Consequently, the
closed-channel Green’s function in Eq. �27� is dominated
by its virtually singular diagonal contribution associated
with the Feshbach resonance level. These estimates thus
lead to the following approximation �Child, 1974; Góral
et al., 2004�:

Gcl�B,E� � ��res�
1

�E�B�
��res� . �30�

The single resonance approach consists in replacing
the bare Green’s function in Eq. �27� with the right-hand
side of Eq. �30�. This replacement implies that the func-
tional form of the closed-channel component of the
dressed continuum wave function �p

cl�r� is given by the
Feshbach resonance state �res�r�. The associated overlap
factor ��res ��p

cl� is determined by the energy and
magnetic-field-dependent amplitude,

A�B,E� = ��res�W��p
bg�/�E�B� . �31�

The dressed-state component ��p
cl� on the right-hand side

of Eq. �26� can then be eliminated in favor of the prod-
uct of ��res� and A�B ,E�. These replacements in Eqs.
�26� and �27� give the following explicit formulas for the
dressed continuum states in terms of the bare Feshbach
resonance and background scattering states:

��p
bg� = ��p

�+�� + Gbg�E + i0�W��res�A�B,E� , �32�

��p
cl� = ��res�A�B,E� . �33�

The amplitude A�B ,E� of Eq. �31� may be expressed in
terms of the same bare states by inserting Eq. �32� into
Eq. �31�. This yields

A�B,E� =
��res�W��p

�+��
�E�B� − ��res�WGbg�E + i0�W��res�

. �34�

We note that the dressed continuum wave functions of
Eqs. �32� and �33� depend on the magnetic-field strength
only through the detuning �E�B� of the resonance en-
ergy Eres�B� in the denominator of Eq. �34�. Within the
typical range of experimental magnetic-field strengths
Eres�B� is a linear function of B to a good approxima-
tion. This linear dependence may be represented in
terms of an expansion of Eres�B� about the resonant field
Bres at which the Feshbach resonance level crosses the
dissociation threshold of the entrance channel. In accor-
dance with the choice of the zero of energy in Fig. 10,
Bres is determined by Eres�Bres�=0. This implies the
simple formula �Moerdijk et al., 1995�
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Eres�B� = �res�B − Bres� . �35�

Here the slope of the linear curve �res is the difference
between the magnetic moments of the Feshbach reso-
nance state and a pair of asymptotically separated non-
interacting atoms.

The single resonance approach of Eqs. �32�–�34� gives
an exact representation of the dressed continuum states
provided that the spatial configuration of a closed-
channel atom pair is restricted to the Feshbach reso-
nance state �res�r�. Such an assumption is associated
with the following replacement of the closed-channel
Hamiltonian:

Hcl�B� → ��res�Eres�B���res� . �36�

This simplification of the complete two-channel Hamil-
tonian of Eq. �16� yields low-energy scattering ampli-
tudes f�� ,p� sufficiently accurate to determine the
magnetic-field dependence of the s-wave scattering
length a�B�.

3. Width and shift of a zero-energy resonance

The s-wave scattering length is determined by the
long-range asymptotic behavior associated with the
dressed continuum states in terms of the scattering am-
plitude in the zero momentum limit. This limit is well
represented by the following partial wave analysis �Tay-
lor, 1972�:

f��,p� = 
�=0

�

�2 � + 1�f��p�P��cos �� �
p→0

− a . �37�

Here � labels the quantum number associated with the
orbital angular momentum and P��cos �� is a Legendre
polynomial. The s-wave scattering amplitude is related
to the phase shift of Eq. �13� through f0�p�
= � exp	i��p�
sin��p� /p. We note that the limit p→0 im-
plies rotational symmetry of the entire wave function
�p

bg�r�, i.e., independence of the scattering angle �, be-
cause the incident plane wave in Eq. �22� is isotropic at
zero momentum. The higher angular momentum com-
ponents f��p� of the scattering amplitude, besides the s
wave associated with �=0, are usually negligible in ap-
plications to binary collisions in cold gases due to their
proportionality to p2�.

The behavior of �p
bg�r� at asymptotically large inter-

atomic distances r can be inferred from Eq. �28� and
from the bare amplitude fbg�� ,p� associated with the
background scattering wave function �p

�+��r�. In accor-
dance with the explicit representation of the dressed
continuum wave function given by Eq. �32�, the scatter-
ing amplitude is thus given by

f��,p� = fbg��,p� −
m�2� � �3��p

�−��W��res�
4��2 A�B,E� .

�38�

In the zero momentum limit, this expression recovers
the resonance enhanced s-wave scattering length in

terms of the following formula �Moerdijk et al., 1995�:

a�B� = abg�1 −
�B

B − B0
� . �39�

Its parameters are the background scattering length abg,
the width �B, and the position of the zero-energy reso-
nance B0. The background scattering length is associ-
ated with the bare scattering amplitude fbg�� ,p� via a
relation analogous to Eq. �37�. The zero momentum
limit of Eq. �38� determines the width of the resonance
to be

�B =
m�2� � �3

4��2abg�res
���res�W��0

�+���2. �40�

We note that Eq. �39� predicts the scattering length
a�B� to assume all values from −� to +� due to its sin-
gularity at B0, the measurable magnetic-field strength at
which the zero-energy resonance occurs. The width �B
characterizes the distance in magnetic fields between the
position of the singularity B0 and the zero of the scatter-
ing length. The denominator of the amplitude A�B ,E
=0� given by Eq. �34� determines the physical resonance
position B0 relative to the zero-energy crossing point of
the bare Feshbach resonance level Bres to be

B0 = Bres − ��res�WGbg�0�W��res�/�res. �41�

The absolute magnitude of B0 enters the two-channel
approach as an adjustable parameter because the
magnetic-field strength Bres is not directly measurable.
The resonance shift B0−Bres, however, determines char-
acteristic properties of the highest excited dressed vibra-
tional bound state, such as, e.g., the admixture of the
closed-channel spin configuration to its wave function.

4. Dressed molecular bound states

In analogy to Eqs. �26� and �27�, the two-channel
dressed molecular bound states are determined in terms
of the bare Green’s functions by coupled matrix equa-
tions of the following form:

��b
bg� = Gbg�Eb�W��b

cl� , �42�

��b
cl� = Gcl�B,Eb�W��b

bg� . �43�

The discrete bound-state energies Eb are negative, i.e.,
below the dissociation threshold of the entrance chan-
nel. Both channels are therefore closed and, conse-
quently, atom pairs are confined by the potential wells of
Vbg�r� and Vcl�r� in Fig. 10. Their associated wave func-
tions �b

bg�r� and �b
cl�r� vanish accordingly in the limit of

large interatomic distances, similarly to the long-range
asymptotic behavior of diatomic halo molecules of Eq.
�2�. The components of the dressed two-channel bound
states can therefore be interpreted in terms of probabil-
ity amplitudes, subject to the normalization condition

��b
bg��b

bg� + ��b
cl��b

cl� = 1. �44�

Figure 11 illustrates the magnetic-field dependence of
the highest excited dressed vibrational bound state, re-
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ferred to in the following as the Feshbach molecule, for
the example of the 155 G zero-energy resonance of
85Rb. The wave functions �b

bg�r� and �b
cl�r� represent ex-

act solutions of Eqs. �42� and �43� associated with the
model potentials of Fig. 10 using �res /h=−3.46 MHz/G.
The entrance-channel components �b

bg�r� of Fig. 11 are
extended over a wide range of interatomic distances.
This range increases beyond all limits as the magnetic-
field strength B approaches the zero-energy resonance
position of B0�155 G. The bond length of the Feshbach
molecules in Fig. 11, i.e., their mean interatomic dis-
tance, is given, for instance, by �r�=521aBohr at 160 G
and 4255aBohr at 155.5 G. Figure 11 also suggests that
the functional form of the closed-channel component
�b

cl�r� is virtually independent of B. Numerical studies
�Köhler, Gasenzer, Julienne, and Burnett, 2003� reveal
that �b

cl�r� is proportional to the bare resonance wave
function �res�r� which indicates the applicability of Eq.
�36�. The probability of detecting an atom pair in the
closed-channel spin configuration, i.e., ��b

cl ��b
cl�

=�dr ��b
cl�r��2, decreases from about 4.7% at B=160 G to

only 0.1% at B=155.5 G. Given that �b
cl�r� is spatially

confined in the same manner as the resonance state, the
suppression of the closed-channel component is a conse-
quence of the increasing range of �b

bg�r� and the normal-
ization condition of Eq. �44�. These trends reflect gen-
eral properties of Feshbach molecules that can be
readily explained using the single resonance approach.

In analogy to the treatment of the dressed continuum
levels, the single resonance approach to the two-channel
bound states is equivalent to the pole approximation to
the closed-channel Green’s function of Eq. �30�. This ap-
proximation renders Eq. �43� into a practical form. Its
analytic solution may be inserted into Eq. �42�, which
yields the following unit-normalized dressed molecular
two-component state:

���b
bg�

��b
cl�
� =

1

Nb
�Gbg�Eb�W��res�

��res�
� . �45�

Here Nb is the associated normalization constant whose
explicit expression reads

Nb = �1 + ��res�WGbg
2 �Eb�W��res� . �46�

In the single resonance approach, all bound-state ener-
gies Eb are determined by a constraint on Eq. �45� which
can be derived by multiplying Eq. �42� by ��res �W from
the left. This leads to the following formula:

Eb = �res�B − Bres� + ��res�WGbg�Eb�W��res� . �47�

We note that Eq. �47� recovers Eq. �41� in the limits
Eb→0 and B→B0, provided that the magnetic-field
strength approaches B0 from the side of positive scatter-
ing lengths. This confirms that the binding energy of the
Feshbach molecule vanishes at the measurable reso-
nance position B0. Such a weak bond implies that the
properties of the near-resonant highest excited dressed
vibrational state are determined solely by the scattering
length a in analogy to the general findings with respect
to halo dimers in Sec. II. The range of magnetic-field
strengths in which the Feshbach molecular state as well
as its energy depend just on a is usually referred to as
the universal regime.

D. Universal properties of Feshbach molecules

In accordance with the results of Sec. II, the proper-
ties of halo dimers, such as, e.g., the large spatial extent
of their wave functions in Fig. 11, can all be inferred
from Eq. �1�, the universal formula for their binding en-
ergy.

1. Universal binding energy

The formal derivation of Eq. �1� for Feshbach mol-
ecules �Góral et al., 2004� relies upon an explicit deter-
mination of the matrix element involving Gbg�Eb� on the
right-hand side of Eq. �47�. This may be performed on
the basis of the following resolvent identity:

FIG. 11. �Color online� Entrance- and closed-channel compo-
nents of the highest excited vibrational bound state associated
with the 155 G zero-energy resonance of 85Rb vs the inter-
atomic distance r �Köhler, Gasenzer, Julienne, and Burnett,
2003�. The wave functions were determined using the model in
Fig. 10 for magnetic-field strengths of 160 G �upper panel� and
155.5 G �lower panel�, respectively. Nodes of the wave func-
tions at short distances are associated with the vibrational
states supported by the bare potentials. The long-range behav-
ior of the entrance-channel wave functions, beyond the van der
Waals length of 82aBohr �dot-dashed line�, is largely determined
just by the binding energy of the Feshbach molecule �Köhler,
Gasenzer, and Burnett, 2003�. Note that the interatomic dis-
tance is given on a logarithmic scale.
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Gbg�Eb� = Gbg�0� − EbGbg�0�Gbg�Eb� . �48�

Multiplication of Eq. �48� by Gbg
−1�0�=−Hbg from the left

and by Gbg
−1�Eb�=Eb−Hbg from the right readily verifies

this identity. The contribution to Eq. �47� from the first
term Gbg�0� on the right-hand side of Eq. �48� yields the
energy shift �res�Bres−B0� due to Eq. �41�. To evaluate
the contribution from the second term
−EbGbg�0�Gbg�Eb� it is instructive to employ the spectral
decomposition of the bare entrance-channel Green’s
function,

Gbg�z� =� dp
��p

�+����p
�+��

z − p2/m
+ Gbg

b �z� . �49�

Here the energy argument z is either zero or Eb. The
quantity Gbg

b �z� includes all contributions to Gbg�z� from
the bare bound states whose energies, depicted in
Fig. 10, are usually far detuned from typical energies of
Feshbach molecules in the universal regime. Thus ne-
glecting Gbg

b �z� in the product −EbGbg�0�Gbg�Eb� deter-
mines the zero bound-state energy limit of Eq. �47� to be

�res�B − B0� − m2Eb� dp
���res�W��p

�+���2

p2�p2 + m�Eb��
�

Eb→0
0. �50�

The corrections neglected on the left-hand side of Eq.
�50� are all linear in Eb, while the leading contribution
involving the momentum integral is proportional to
��Eb� in the limit Eb→0. In particular, the asymptotic
behavior of the integral can be determined explicitly via
a change of variable in spherical coordinates from the
modulus of the momentum p to the dimensionless quan-
tity p /�m �Eb�. This yields

� dp
���res�W��p

�+���2

p2�p2 + m�Eb��
�

Eb→0

2�2���res�W��0
�+���2

�m�Eb��1/2 . �51�

Equation �40� may be used to eliminate the matrix ele-
ment involving the coupling W�r� on the right-hand side
of Eq. �51� in favor of the product abg�B�res. The solu-
tion of Eq. �50� with respect to the bound-state energy
thus reads

Eb = −
�2

m	− abg�B/�B − B0�
2 . �52�

As anticipated �Donley et al., 2002� for the general rea-
sons outlined in Sec. II, this formula exactly recovers
Eq. �1� in the limit B→B0 as the singular contribution to
a�B� on the right-hand side of Eq. �39� exceeds �abg�.

2. Wigner threshold law

The preceding derivation of the low binding-energy
behavior on the right-hand side of Eq. �47� may be ex-
tended also to positive continuum energies E=�2k2 /m
which determines the width of the Feshbach resonance
level �Moerdijk et al., 1995; Mies et al., 2000�. This width
in energy is related to the decay rate of the bare reso-
nance state into a given continuum level associated with
the wave number k via Fermi’s golden rule �Mukaiyama

et al., 2003; Dürr, Volz, and Rempe, 2004; Góral et al.,
2004; Haque and Stoof, 2005�. The approach underlying
these derivations is based on the spectral decomposition
of Gbg�z� in Eq. �49�, in addition to the following for-
mula:

1

z − p2/m
= − i���E − p2/m� + P 1

E − p2/m
. �53�

Here z=E+ i0 is the complex argument of Gbg�z� intro-
duced in Eq. �26�, and P indicates the principal value of
the momentum integral in Eq. �49�. In accordance with
Fermi’s golden rule, the width of the resonance level is
given by the modulus of the imaginary part of the fol-
lowing matrix element of the bare entrance-channel
Green’s function:

��res�WGbg�z�W��res� �
k→0
�res�Bres − B0 − ikabg�B� .

�54�

We note, however, that Eq. �53� is not suitable for deter-
mining the left-hand side of Eq. �54� in the case of nega-
tive bound-state energies z=Eb as the �-function contri-
bution vanishes identically. The derivation of Eq. �52�
therefore relies upon Eq. �48�.

As the imaginary part of Eq. �54� is associated with
the decay of the bare resonance state, the product
abg�res�B is always positive and characterizes the
strength of the interchannel coupling. Equation �54� also
determines the low-energy dressed continuum wave
functions of Eqs. �32� and �33� via Eq. �34�. In particular,
the s-wave scattering amplitude of Eqs. �37� and �38� is
given by its well-known general expansion about zero
momentum �Taylor, 1972�,

f0��k� �
k→0

− a�1 − ika� , �55�

which is applicable provided that the condition ka�1 is
fulfilled. The proportionality to k=�mE /� of the imagi-
nary parts on the right-hand sides of Eqs. �54� and �55�
reflects a general prediction known as the Wigner
threshold law �Wigner, 1948�. In the context of an ana-
lytic continuation to imaginary wave numbers k
= i�m �Eb� /�, Eq. �54� also yields the universal bound-
state energy of Eq. �52� using Eq. �47� �Duine and Stoof,
2004�. The universal regime may therefore be consid-
ered as the range of magnetic-field strengths in which
the Wigner threshold law applies to the energy of the
Feshbach molecule in Eq. �47�. Its extension about B0
depends on the interplay between the spin exchange �or
dipolar� and entrance-channel interactions as well as on
the properties of the Feshbach resonance state �Mies et
al., 2000; Köhler, Gasenzer, Julienne, and Burnett, 2003;
Marcelis et al., 2004; Nygaard et al., 2006�.

Figure 12, for instance, illustrates several theoretical
approaches to the bound-state energy of the 85Rb2 Fesh-
bach molecule in the vicinity of the 155 G zero-energy
resonance. Although the universal formula of Eq. �1�
determines the asymptotic behavior of Eb in the limit
B→B0, it provides a reasonable approximation only in a
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small region between B0�155 and about 158 G. Both
the full coupled channels calculation �circles� and two-
channel predictions �solid curve� depend on specific
properties of the particular 85Rb zero-energy resonance
besides the scattering length. These approaches fully re-
cover the measured Feshbach molecular energies �see
the inset of Fig. 12� over the entire experimental range
of magnetic-field strengths from about 156 to 162 G
�Claussen et al., 2003�. The slope of the linear magnetic-
field dependence Eb in the limit of high fields in Fig. 12
is determined by the bare resonance energy Eres�B� �dot-
dashed line�. This indicates an increasing admixture of
the closed-channel spin configuration to the dressed
bound state.

3. Closed-channel admixture

In accordance with Eq. �45� and the unit normaliza-
tion of the bare Feshbach resonance state, the closed-
channel admixture to the Feshbach molecule is deter-
mined by the wave-function normalization constant Nb
of Eq. �46� to be

��b
cl��b

cl� = Nb
−24��

0

�

r2dr��res�r��2 = Nb
−2. �56�

In the context of field-theoretic approaches to the many-
body physics of cold gases, the inverse square of the
normalization constant Nb

−2 is sometimes referred to as
the wave-function renormalization constant Z�B�

�Braaten et al., 2003; Duine and Stoof, 2003a; Bruun and
Pethick, 2004; Góral et al., 2004�. The quantity Z�B� can
be expressed in terms of the difference in magnetic mo-
ments of the Feshbach molecular state and a pair of
separated atoms in the entrance-channel spin configura-
tion, i.e., �Eb /�B, via

Z�B� = Nb
−2 = �res

−1 �Eb

�B
. �57�

This exact result follows directly from Eqs. �46� and �47�
using the general relation

Gbg
2 �Eb� = −

�

�Eb
Gbg�Eb� . �58�

Within the universal regime of magnetic-field strengths,
the closed-channel admixture to the Feshbach molecule
can therefore be inferred from the derivative of Eq. �1�
with respect to B. This yields

Z�B� �
B→B0

2a�2/ma2

�res�Babg
. �59�

Here the limit B→B0 is performed on the side of posi-
tive scattering lengths of the zero-energy resonance.

In accordance with Eq. �59�, the wave-function nor-
malization constant Nb diverges as the magnetic-field
strength approaches B0, i.e., in the limit a→�, due to
the proportionality of its leading contribution to �a. This
implies that the closed-channel admixture to the Fesh-
bach molecule of Eq. �56� is negligible in the universal
regime and vanishes at the measurable zero-energy reso-
nance position. Within this limited range of magnetic-
field strengths about B0, the Feshbach molecule can
therefore be described in terms of just its entrance-
channel component, in analogy to Sec. II. In particular,
the wave function �b

bg�r� is determined by Eq. �2� at in-
teratomic distances large compared to the van der Waals
length of Fig. 11. In accordance with Eq. �3�, the mean
distance between the atomic constituents of universal
Feshbach molecules is well estimated by its asymptotic
value of one-half of the scattering length in the limit a
→� �Köhler, Gasenzer, Julienne, and Burnett, 2003�. In
the universal regime of magnetic-field strengths, Fesh-
bach molecules are therefore proper diatomic halo
states with the general properties described in Sec. II.

E. Experimental signatures of universality

The suppression of the closed-channel admixture to
the Feshbach molecular state has been directly observed
for near-resonant 6Li2 dimers �Partridge et al., 2005�.
Figure 13 shows a comparison of these measurements
with the universal estimate of Eq. �59� as well as with
Eq. �68� of Sec. III.F. The estimate of Eq. �68� is based
on Eq. �57� using the approximation for Eb of Eq. �66�,
which is illustrated in the inset of Fig. 12. The underlying
approach �Gribakin and Flambaum, 1993� accounts for
the corrections to the universal bound-state energy of
Eq. �1� due to the van der Waals interaction of the back-

FIG. 12. �Color online� Bound-state energy of the 85Rb2
Feshbach molecule as a function of the magnetic field strength
in the vicinity of the 155 G zero-energy resonance. Circles in-
dicate a full coupled-channels calculation �Kokkelmans, 2002�.
The solid curve results from a two-channel approach �Góral et
al., 2005�. For comparison, the dotted curve represents the uni-
versal estimate of Eb, while the dashed curve includes the lead-
ing correction to Eq. �1� due to the van der Waals tail of the
background scattering potential �Gribakin and Flambaum,
1993; Köhler, Gasenzer, and Burnett, 2003� given by Eq. �66�.
We note the pronounced shift of about 9 G between the mea-
surable resonance position B0 and the magnetic-field strength
Bres at which the resonance energy �dot-dashed line� crosses
the dissociation threshold of the entrance channel. Inset: The-
oretical approaches compared with measurements �Claussen et
al., 2003� indicated by squares.
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ground scattering potential in addition to the scattering
length a�B�. Its predictions agree well with exact
coupled channels calculations of the closed-channel ad-
mixture to the Feshbach molecular state �Partridge et al.,
2005�. Several experiments to date have also directly
confirmed the universal limit of the binding energy, in
analogy to the inset of Fig. 12 �Donley et al., 2002; Claus-
sen et al., 2003� for a variety of alkali atomic species
�Regal et al., 2003a; Bartenstein et al., 2005; Moritz et al.,
2005�.

1. Collisional relaxation

Besides these demonstrations of universality, the long-
range nature of highly excited Feshbach molecules is
manifest in their lifetimes with respect to deeply inelas-
tic collisions. Such molecular loss may occur due to re-
laxation into tightly bound diatomic states upon colli-
sions with surrounding atoms or dimers �Cubizolles et
al., 2003; Mukaiyama et al., 2003; Regal et al., 2004a�.
The associated loss mechanism was discussed first, in the
context of cold gases, for collisions between H2 dimers
and hydrogen atoms �Balakrishnan et al., 1997�. In these
thresholdless reactions, the energy lost through deexci-
tation is transferred to the relative motion of the prod-
ucts in accordance with momentum conservation. The

associated relative velocities are sufficiently high for
scattered particles to leave an atom trap. The density nd
of dimer molecules in a homogeneous gas is therefore
depleted in accordance with the following rate equation:

ṅd/nd = − Kadna − Kddnd. �60�

Here na is the density of atoms and Kad and Kdd denote
the inelastic loss rate constants associated with atom-
dimer and dimer-dimer collisions, respectively.

Several theoretical studies of collisional relaxation of
alkali-metal systems have been performed in the limit of
low vibrational excitation of the initial dimer states �Cvi-
tas et al., 2002, 2005a, 2005b� as well as for Feshbach
molecules �Petrov et al., 2004, 2005b�. In the case of col-
lisions between alkali-metal atoms and their dimers in
excited states, whose bond lengths are smaller than lvdW,
ab initio calculations suggest the inelastic rate constants
Kad to be on the order of 10−10 cm3/s �Cvitas et al., 2002,
2005a, 2005b�. For such species, the collisional relax-
ation rates in cold gases would be too large for the ob-
servation of any phenomena relying upon the equilibra-
tion of the molecular component. The expected short
lifetimes of alkali dimers have been confirmed, for in-
stance, via photoassociation of 87Rb atoms in a Bose-
Einstein condensate �Wynar et al., 2000�.

2. Lifetime of Feshbach molecules in Fermi gases

Therefore it came as a surprise that cold Feshbach
molecules produced from incoherent mixtures of two
spin components of fermionic atoms could be stabilized
for up to several seconds at densities of about
1013 atoms/cm3 �Cubizolles et al., 2003; Jochim et al.,
2003a; Strecker et al., 2003; Regal et al., 2004a�. Under
such conditions, the ratio of elastic to inelastic collisions
is sufficiently large to allow for an efficient evaporative
cooling of dimers. As a consequence of their stability,
even the Bose-Einstein condensation of Feshbach mol-
ecules has been observed in the vicinity of broad zero-
energy resonances of 6Li and 40K at about 830 and
202 G, respectively �Greiner et al., 2003; Jochim et al.,
2003b; Zwierlein et al., 2003�. The associated resonance
widths �B are on the order of 300 G for 6Li �Bartenstein
et al., 2005� and about 8 G for 40K �Greiner et al., 2003�.
Such a broadness provides the opportunity for perform-
ing measurements in the universal regime of magnetic-
field strengths.

Both species of dimers in these experiments consist of
pairs of unlike fermionic atoms in the lowest energetic
Zeeman states. For 40K, the associated atomic spin com-
ponents are determined by the quantum numbers �f
=9/2 ,mf=−9/2� and �f=9/2 ,mf=−7/2�. Here f labels
the angular momentum quantum number of the hyper-
fine level with which the Zeeman state correlates adia-
batically at zero magnetic field, and mf indicates its spin
orientation with respect to the field axis. Similarly, the
pair of atomic Zeeman states associated with the 830 G
zero-energy resonance of 6Li is described by the quan-
tum numbers �f=1/2 ,mf=1/2� and �f=1/2 ,mf=−1/2�.

FIG. 13. �Color online� Occupation of the closed-channel reso-
nance level relative to the number of atom pairs in a balanced
mixture of two spin components of 6Li vs magnetic-field
strength in the vicinity of the 834 G zero-energy resonance
�Partridge et al., 2005�. On the low-field side of the resonance
position B0 �dot-dashed line�, the gas was prepared as a Bose-
Einstein condensate of 6Li2 Feshbach molecules. Experimental
data �circles� indicate the suppression of the closed-channel
admixture to the dressed molecular state, i.e., Z�B�=Nb

−2, over
three orders of magnitude in agreement with Eq. �68� �solid
curve�. The dashed curve shows the universal estimate of Eq.
�59� for comparison. Note that the bond length of
the Feshbach molecules given by Eq. �3� reaches the order of
magnitude of the average interatomic spacing of the gas
104aBohr at a magnetic-field strength of about 800 G. In this
strongly interacting regime, the purely two-body theories are
bound to break down. On the high-field side of B0, the rem-
nant small resonance state population indicates pairing phe-
nomena in a cold, strongly correlated two-spin-component
Fermi gas with a negative scattering length �Partridge et al.,
2005�.
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We note that the Pauli exclusion principle allows such
atom pairs to interact via s waves given that their spin
wave functions are antisymmetric. Consequently, the re-
sults of Sec. II on isotropic halo dimers apply to these
Feshbach molecules consisting of unlike fermions. Ex-
periments on molecular Bose-Einstein condensation
have been performed at near-resonant magnetic-field
strengths for which the associated dimer bond lengths
can be as large as 100 nm �Zwierlein et al., 2003�.

The stability of such Feshbach molecules with respect
to collisional relaxation relies upon the Pauli exclusion
principle in addition to the separation of length scales
associated with the initial and final states �Petrov et al.,
2004, 2005b�. In accordance with Eq. �3�, the spatial ex-
tent of the initial halo wave function is determined by
the scattering length a. The bond length of the final,
deeply bound target level may be estimated by the van
der Waals length lvdW, which is much smaller than a.
Both dimer-dimer and atom-dimer relaxation, therefore,
require at least three fermions to come together at short
distances on the order of lvdW. One pair among these
atoms necessarily shares the same spin state and can
interact at most via p waves. As the momentum scale
associated with the initial Feshbach molecular state is
determined by the wave number k�1/a, the inelastic
loss rate constants are suppressed by powers of
klvdW�1.

Based on the halo wave function of Eq. �2�, the pre-
cise a dependences of the suppression factors for atom-
dimer and dimer-dimer relaxation have been predicted
to be a−3.33 and a−2.55, respectively �Petrov et al., 2004,
2005b�. While these predictions strictly apply just to the
universal regime of magnetic-field strengths, Fig. 14 il-
lustrates that their general trends agree with measure-
ments on cold gases of 40K with a component of
Feshbach molecules �Regal et al., 2004a�. These observa-
tions are consistent with the reduction of a predominant
dimer-dimer relaxation in the limit of large scattering
lengths, where the lifetimes reach about 100 ms. Con-
versely, as the magnetic-field strength is tuned away
from the zero-energy resonance, the molecular lifetimes
approach those small values of less than a millisecond,
typical for short-ranged alkali dimers in cold gases.

Besides their scaling properties with respect to the
scattering length, the inelastic loss rate constants of
Feshbach molecules depend sensitively on interatomic
interactions at short distances below lvdW. The experi-
mental trends regarding collisional relaxation of alkali
dimers confined to such length scales are inconclusive.
Remarkably long lifetimes on the order of seconds were
reported, for instance, even in the case of short-ranged,
closed-channel dominated Feshbach molecules pro-
duced in a fermionic 6Li gas in the vicinity of the narrow
543 G zero-energy resonance �Strecker et al., 2003�.
Such alkali dimers, however, are not described by the
halo wave function of Eq. �2�. Their observed stability,
therefore, suggests a mechanism for the suppression of
collisional relaxation beyond the scaling of the associ-

ated loss rate constants with powers of the inverse scat-
tering length.

3. Lifetime of Feshbach molecules in Bose gases

Feshbach molecules consisting of identical Bose at-
oms generally tend to be less stable than their fermionic
counterparts. Large collisional relaxation rate constants
on the order of 10−10 cm3/s have been reported for those
dimers associated in cold gases in the vicinity of com-
paratively narrow zero-energy resonances of 87Rb, 133Cs,
and 23Na �Yurovsky et al., 1999b, 2000; Herbig et al.,
2003; Mukaiyama et al., 2003; Dürr, Volz, Mate, and
Rempe, 2004�. With a width of about 11 G �Claussen et
al., 2003� the 155 G zero-energy resonance of 85Rb is by
far the broadest among the bosonic species from which
Feshbach molecules were produced. The atomic con-
stituents of these dimers are prepared in the excited
Zeeman state determined by the quantum numbers �f
=2,mf=−2�, which, in contrast to the electronic ground
state, can be magnetically trapped. Pairs of such atoms

FIG. 14. �Color online� Loss rates of diatomic Feshbach mol-
ecules �upper panel� and remnant atoms �lower panel� vs
magnetic-field detuning B−B0 in the vicinity of the 202 G
zero-energy resonance in a cold gas of 40K with a peak density
of about 1.5�1013 atoms/cm3 �Regal et al., 2004a�. Dimers
were produced by adiabatic sweeps of the magnetic-field
strength described in Sec. IV. Their number is denoted by Nd,
while Na refers to the number of remnant unbound atoms.
Circles in the upper panel indicate the measured dimer loss,
whose general trend is well fit by an a−2.3±0.4 power law as a
function of the scattering length �solid curve�. Significant de-
viations from this scattering length dependence occur in a
small region of magnetic-field strengths where the bond length
of the dimers given by Eq. �3� is comparable to the average
distance of the atoms in the gas. The lower panel shows the
loss rate of remnant unbound atoms in gases with �circles� or
without �squares� deliberate production of Feshbach mol-
ecules. The associated trends suggest that the atomic loss is
largely unaffected by the presence of a dimer component in
the gas �Regal et al., 2004a�.
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are subject to inelastic spin relaxation collisions involv-
ing the thresholdless transition of the atomic energy
level to a deeper Zeeman state �Roberts et al., 2000b�.
The associated d-wave exit channels are illustrated in
Table II. It is the spontaneous dissociation via spin re-
laxation, rather than collisional relaxation of the mo-
lecular vibrational state, that predominantly limits the
observed lifetimes of Feshbach molecules produced in
dilute gases of 85Rb. This decay mechanism has been
unequivocally identified through comparisons with
quantitative predictions �Köhler et al., 2005; Thompson
et al., 2005b�.

Figure 15 shows the monotonic increase of the mea-
sured lifetimes over three orders of magnitude as the
magnetic-field strength approaches the resonance posi-
tion B0. The lifetime of these Feshbach molecules is
density independent and reaches several tens of millisec-
onds. The molecular decay behavior can be explained in
terms of a probabilistic estimate based on the average
volume V=4��r3� /3 occupied by an atom pair in the uni-
versal halo state of Eq. �2�. In analogy with Eq. �3�, this
volume is determined in terms of the scattering length a
by V=�a3. The event rate � associated with the spin
relaxation of such a bound atom pair may be expressed
in terms of the loss rate constant K2 for spin relaxation
in a nondegenerate Bose gas �Roberts et al., 2000b�. This
yields �=K2 /4V �Stoof et al., 1989�. The lifetime �=1/�
is therefore proportional to the ratio of the magnetic-
field-dependent quantities a3�B� and K2�B�, i.e., �
=4�a3�B� /K2�B�, where near resonance K2�B� can be
evaluated at zero collision energy. The same formula for
the molecular lifetime also follows rigorously from Fer-

mi’s golden rule �Köhler et al., 2005� and exactly recov-
ers the results of the full coupled channels calculations
of Fig. 15 in the limit B→B0. The magnetic-field depen-
dence of K2�B� can be inferred from general properties
of inelastic collisions �Bohn and Julienne, 1997, 1999�.
Consequently, the stability of Feshbach molecules in
both two-spin-component Fermi gases of 40K and dilute
vapors of 85Rb directly probes the halo nature of these
dimers near resonance, despite their different decay
mechanisms.

F. Classification of zero-energy resonances

The singular behavior of the scattering length as well
as the existence of a universal regime of magnetic-field
strengths are common to all Feshbach resonance phe-
nomena in cold gases. Two-body universality implies, in
particular, that the long-range properties of the dressed
diatomic bound states are well described in terms of an
effective entrance-channel interaction. The range of va-
lidity of such single-channel approaches provides classi-
fication schemes for zero-energy resonances.

1. Size of the universal regime

The halo wave function of Eq. �2� may be interpreted
as the only bound state supported by a contact pseudo-
potential g��r� describing the low-energy spectrum of an
atom pair with a positive scattering length. Due to their
simplicity, contact interactions are widely used in theo-
retical descriptions of cold gases �Randeria, 1995; Dal-
fovo et al., 1999; Dalibard, 1999�. In these approaches
the properties of interatomic collisions enter the many-
body Hamiltonian in terms of a coupling constant g
=4��2a /m depending on the microscopic potential just
through the scattering length a. The associated binary
s-wave scattering amplitude is given by

f0��k� = − a/�1 + ika� . �61�

We note that Eq. �61� also recovers the general low
wave-number expansion of Eq. �55� in the Wigner
threshold law regime. Consequently, the contact interac-
tion approach provides a minimal implementation of the
universal low-energy two-body physics, applicable to
both positive and negative scattering lengths. In the lat-
ter case the contact pseudopotential does not support
any bound state.

Assuming universality of the Feshbach molecular
state implies the closed-channel admixture of Eq. �56� to
be negligible. For magnetic-field strengths B far inside
the width of the zero-energy resonance, i.e., �B
−B0 � ��B, Eqs. �39� and �59� therefore yield the follow-
ing condition necessary for the applicability of the con-
tact interaction approach:

�B − B0

�B
��

��res�B�
2�2/mabg

2 . �62�

The energy ratio on the right-hand side of Eq. �62� pro-
vides an upper estimate for the extent of the universal

FIG. 15. �Color online� Lifetime of 85Rb2 dimers vs magnetic-
field strength in the vicinity of the 155 G zero-energy reso-
nance. Circles indicate measurements in a cold thermal gas
with a peak density of 6.6�1011 atoms/cm3 �Thompson et al.,
2005b�, while squares refer to exact coupled-channels calcula-
tions for spontaneous dissociation of Feshbach molecules due
to spin relaxation �Köhler et al., 2005�. The solid curve repre-
sents an asymptotic estimate of the lifetime based on the uni-
versal halo wave function given by Eq. �2� and the spin relax-
ation loss rate constant K2�B� associated with a nondegenerate
Bose gas in the limit of zero collision energy. The two-body
theory only fails close to resonance when the molecular bond
length becomes comparable to the average interatomic dis-
tance of the gas.
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regime relative to the width of the zero-energy reso-
nance. A ratio small compared to unity indicates weak
coupling between the closed and entrance channels.
Conversely, broad zero-energy resonances with a large
product ��res�B� tend to favor negligible admixtures of
the bare resonance level to the dressed Feshbach mo-
lecular state over a substantial fraction of their width.
This trend may be enhanced by a small energy �2 /mabg

2 ,
which indicates the presence of bound vibrational �abg
�0� or virtual �abg	0� near-resonant energy levels of
the bare background scattering potential.

A small closed-channel admixture to the Feshbach
molecular state, however, is not necessarily identical to
the universality of the binding energy. While for the ex-
ample of the comparatively weakly coupled 1007 G
zero-energy resonance of 87Rb �Dürr, Volz, and Rempe,
2004� the right-hand side of Eq. �62� gives 0.1, it is as
large as 81 for the 155 G zero-energy resonance of 85Rb.
The estimate of Eq. �62� for 85Rb, however, is inaccurate
with respect to the extension of the universal regime in
units of the width �B given the results of Fig. 12. The
inset of Fig. 12 reveals that this inaccuracy originates
predominantly from corrections to the universal binding
energy due to the van der Waals tail of the bare 85Rb
background scattering potential �Gribakin and Flam-
baum, 1993�. In the case of such entrance-channel-
dominated zero-energy resonances, even the lowest-
order corrections to universality may be described just
by a single-channel approach �Köhler, Gasenzer, and
Burnett, 2003�. The minimal requirements on the asso-
ciated effective potential V�B ,r�, besides its long-range
asymptotic behavior of Eq. �5�, are closely related to
general properties of alkali dimer energy wave func-
tions.

2. Entrance-channel-dominated resonances

In accordance with Fig. 11, the vibrational bound-
state wave functions of 85Rb2 Feshbach molecules con-
sist of short- and long-range contributions. The charac-
teristic scale for such a spatial separation is the van der
Waals length of Eq. �7�. Due to the deep wells of realis-
tic background scattering potentials, the entrance-
channel wave functions of alkali dimers are well de-
scribed by the semiclassical Wentzel-Kramers-Brillouin
�WKB� approximation at short interatomic distances
r� lvdW. Their behavior at large separations r� lvdW is
determined mainly by the van der Waals interaction of
Eq. �5� in addition to the energy of the state. In both
spatial regions, the functional forms of the associated
asymptotic solutions to the radial Schrödinger equation
are known analytically �Gribakin and Flambaum, 1993;
Gao, 1998a, 1998b�. As interactions between alkali atom
pairs are dominated by large van der Waals coefficients
C6, on the order of thousands of atomic units �the
atomic unit of C6 is 9.5734�10−26 J nm6�, the asymptotic
wave functions can be matched. Such a matching proce-
dure provides the basis of accurate semiclassical treat-
ments of bound as well as continuum entrance-channel

wave functions �Gribakin and Flambaum, 1993; Flam-
baum et al., 1999�.

Provided that the interaction of alkali atom pairs is
well described by an effective entrance-channel poten-
tial V�B ,r�, the semiclassical approach to the zero-
energy wave function gives the following scattering
length �Gribakin and Flambaum, 1993�:

a = ā	1 − tan��WKB − �/8�
 . �63�

Here ā is the mean scattering length and �WKB is the
semiclassical phase shift. In accordance with the WKB
approach, �WKB consists of the following integral be-
tween the zero-energy classical turning point r0 associ-
ated with the effective potential V�B ,r� and infinite dis-
tances:

�WKB =
1
�
�

r0

�

dr�− mV�B,r� . �64�

While �WKB is sensitive to the entire well of the interac-
tion, from V�B ,r0�=0 to its long-range tail of Eq. �5�, the
coefficient ā of Eq. �63� only depends on the van der
Waals length lvdW. Its explicit expression in terms of lvdW
and Euler’s � function reads

ā =
lvdW

�2

��3/4�
��5/4�

� 0.955 98lvdW. �65�

In accordance with Eq. �63�, the parameter ā determines
the characteristic scale of the scattering length. This av-
erage potential range is modulated by the poles of the
tangent function provided that its argument �WKB−� /8
is close to an odd integer multiple of � /2. As �WKB in-
creases, each singularity of a indicates the emergence of
an additional vibrational bound state in the potential
well.

The functional form of Eq. �63� using a realistic inter-
action is analogous to the formula for the scattering
length of the simplified square well plus hard-core
model of an interatomic potential �Gribakin and Flam-
baum, 1993�. Using this exactly solvable model, the
mean scattering length ā recovers the finite outer radius
of the well. The analogy between these realistic and sim-
plified interactions implies that in the limit a� ā, the
energy of the highest excited vibrational state is well
approximated by the following asymptotic formula:

Eb � − �2/m�a − ā�2. �66�

An independent analysis based on effective range theory
for realistic interatomic interactions �Gao, 1998a; Flam-
baum et al., 1999� confirms the magnitude of the range
parameter ā of Eq. �66� up to a constant factor on the
order of unity �Gao, 2004�. The remnant uncertainties
associated with Eq. �66� may be related to the diver-
gence of the effective range expansion for any potential
with a long-range van der Waals tail �Taylor, 1972�. Fig-
ure 12 illustrates the accuracy of Eq. �66� within the ex-
perimentally relevant range of binding energies of near-
resonant 85Rb2 Feshbach molecules.
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According to the semiclassical approach, at magnetic-
field strengths in the vicinity of entrance-channel-
dominated zero-energy resonances diatomic bound and
continuum spectra are determined by a�B� and ā. In
such a case, any potential V�B ,r�, which at each
magnetic-field strength B accounts for the scattering
length as well as the van der Waals tail of Eq. �5�, pro-
vides a suitable description of the near-resonant binary
physics. This conclusion is rather intuitive because cold
collisions are characterized by de Broglie wavelengths
too large to resolve details of the effective entrance-
channel interaction besides its long-range behavior. The
adjustment of V�B ,r� to recover the exact magnetic-field
dependence of the scattering length of Eq. �39� may be
achieved, for instance, by varying the radius of its hard
core. In the context of quantum defect theory, such a
description of alkali dimer spectra in terms of just the
parameters a and C6 has been rigorously derived for a
range of energies much wider than the cold regime
�Gao, 1998a�.

Since ā is positive, the semiclassical estimate of the
bound-state energy of Eq. �66� is always below the uni-
versal prediction of Eq. �1� and becomes singular in the
limit a�B�→ ā, outside the range of validity of Eq. �66�.
This unphysical behavior is counterbalanced in Eq. �47�
by an increasing closed-channel admixture to the Fesh-
bach molecule, in accordance with Eq. �59�, which tends
to impose a linear slope on Eb�B�. The principal ques-
tion of applying single-channel approaches outside the
universal regime of magnetic-field strengths is deter-
mined by which one of these trends prevails near reso-
nance �Köhler et al., 2004�. Consequently, the bound-
state energy Eb�B� in the vicinity of an entrance-
channel-dominated zero-energy resonance is subject to
the following inequality:

�Eb�B� +
�2

m	a�B� − ā
2� 	 �Eb�B� +
�2

ma2�B�
� . �67�

Within the range of validity of Eq. �66�, the admixture of
the closed-channel resonance state to the Feshbach mol-
ecule is small compared to unity and can be determined
from the binding energy via Eq. �57�. This yields

Z�B� =
2a�2/ma2

�res�Babg

�1 − abg/a�2

�1 − ā/a�3 . �68�

The accuracy of Eq. �68� in applications to 6Li2 Feshbach
molecules in the vicinity of the entrance-channel-
dominated 834 G zero-energy resonance is illustrated in
Fig. 13.

Based on Eq. �67�, a more practical criterion can be
derived from a low-energy expansion of the right-hand
side in Eq. �47� using a specific implementation of the
general two-channel approach �Góral et al., 2004�. This
yields a dimensionless parameter � whose smallness in-
dicates the validity of Eq. �66� beyond the universal re-
gime of magnetic-field strengths �Stoll and Köhler,
2005�. Consequently, an entrance-channel-dominated
zero-energy resonance fulfills the condition

� =
ā

abg

�2/mā2

�res�B
� 1. �69�

Such a criterion also results from an adiabatic descrip-
tion of Feshbach resonances �Petrov, 2004�.

In the opposite limit ��1 a zero-energy resonance is
referred to as closed-channel-dominated. Closed-
channel-dominated zero-energy resonances are typically
narrow and their universal regime of magnetic-field
strengths is experimentally largely inaccessible. The de-
scription of their physical properties, therefore, crucially
depends on an explicit treatment of at least two scatter-
ing channels.

G. Characteristic parameters of zero-energy resonances

For any two-channel approach to be sensible its
implementation should describe the two-body energy
spectrum beyond the Wigner threshold law domain.
Otherwise, the same physics could be captured simply
by using the contact pseudo-interaction of Sec. III.F.
The approach should therefore recover both the scatter-
ing length of Eq. �39� and the binding energy of the
Feshbach molecule beyond the universal regime. Even
within such a comparatively wide range of energies, a
variety of interatomic potentials are capable of describ-
ing the same two-body physics. It is the objective here to
provide a minimal set of physical parameters that every
two-channel approach should account for, and to illus-
trate a practical implementation for a typical experimen-
tal situation. The adjustment of the Hamiltonian given
by Eq. �16� in the single resonance approach of Eq. �36�
will be performed on the basis of its energy spectrum
derived in Sec. III.C. According to these derivations, the
dressed two-channel energy states depend on the bare
states associated with the background scattering via
Gbg�z�, on the resonance energy Eres�B�, and on the
product W ��res� characterizing the interchannel cou-
pling. Just these quantities need to be adjusted. The spe-
cific form of the resonance wave function �res�r� does
not affect the two-body spectrum in the single resonance
approach.

1. Background scattering potential

In accordance with Sec. III.F, all implementations of
Vbg�r� which recover abg in addition to Eq. �5� yield
equivalent energy spectra beyond the cold regime �Gao,
1998a�, provided that their number of levels is large
compared to unity. A hard sphere in addition to the van
der Waals tail of Eq. �5�, for instance, provides a back-
ground scattering potential with a minimal number of
parameters. Its explicit expression reads

Vbg�r� = �+ � , r	 r0

− C6/r6, r� r0.
�70�

The associated background scattering length is given by
the following exact formula �Gribakin and Flambaum,
1993�:
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abg = ā	1 − tan��WKB − 3�/8�
 . �71�

Here ā is the mean scattering length of Eq. �65� and
�WKB=2lvdW

2 /r0
2 is the semiclassical phase shift of Eq.

�64�. The difference of � /4 between the arguments of
the tangent functions in Eqs. �63� and �71� is due to the
discontinuity of Eq. �70� at the core radius r0. Equation
�71� may be used to determine r0 such that Vbg�r� of Eq.
�70� exactly recovers the background scattering length.
Similar procedures have been performed using two-
channel approaches with continuous implementations of
Vbg�r� �Mies et al., 2000; Köhler, Gasenzer, Julienne, and
Burnett, 2003; Marcelis et al., 2004; Nygaard et al., 2006�.
An example of such an effective interaction is illustrated
in Fig. 10 in addition to its energy levels. Table IV pro-
vides the parameters abg and C6 characterizing the back-
ground scattering potential for experimentally relevant
zero-energy resonances.

Equation �70�, as well as those equivalent implemen-
tations of Vbg�r� that explicitly include the long-range
asymptotic van der Waals interaction of Eq. �5� are, in
principle, suited to describe several bare energy levels.
The number of bound states supported by Eq. �70�, for
instance, can be arbitrarily increased by decreasing the
core radius r0 under the constraint of a fixed background
scattering length. The description of such wide energy
ranges, however, is usually beyond the scope of two-
channel approaches. In addition, the explicit treatment
of the van der Waals tail of the background scattering
potential is largely impractical in applications to the
many-body physics of dilute gases. Several implementa-
tions of two-channel approaches, therefore, use effective
low-energy interactions to recover different aspects of
the cold collision physics under the conditions of reso-
nance enhancement �Kokkelmans et al., 2002; Bruun
and Pethick, 2004; Drummond and Kheruntsyan, 2004;
Duine and Stoof, 2004; Góral et al., 2004; Chin, 2005�.

Figure 16 shows a typical range of energies relevant to
the Stern-Gerlach separation of Feshbach molecules

TABLE IV. Parameters characterizing the background scattering potential associated with experimentally relevant zero-energy
resonances. Those values of abg and E−1 that are unreferenced refer to calculations performed for this review. The energy E−1
associated with the highest excited vibrational state of the background scattering potential is given only for isolated resonances.
The atomic unit of the van der Waals dispersion coefficient C6 is 9.5734�10−26 J nm6, aBohr=0.052 917 nm is the Bohr radius, and
1 G=10−4 T.

Species B0 �G� abg �aBohr� C6 �a.u.� �E−1 � /h �MHz�

6Li 543.25�5� �Strecker et al., 2003� 59 1393.39 �Yan et al., 1996�
834.149 �Bartenstein et al., 2005� −1405 �Bartenstein et al., 2005� 1393.39 �Yan et al., 1996�

23Na 853 �Stenger et al., 1999� 63.9 �Mies et al., 2000� 1561 �Kharchenko et al., 1997� 208

907 �Stenger et al., 1999� 62.8 �Mies et al., 2000� 1561 �Kharchenko et al., 1997� 218
40K 202.10�7� �Regal et al., 2004c� 174�7� �Loftus et al., 2002� 3897 �Derevianko et al., 1999� 8.6

224.21�5� �Regal and Jin, 2003� 174�7� �Loftus et al., 2002� 3897 �Derevianko et al., 1999� 8.6
85Rb 155.0 �Thompson et al., 2005a� −443�3� �Claussen et al., 2003� 4703 �van Kempen et al., 2002� 218
87Rb 1007.40�4� �Volz et al., 2003� 100.5 �Volz et al., 2003� 4703 �van Kempen et al., 2002� 24.0
133Cs 19.90�3� �Chin, Vuletic, et al., 2004� 163 �Julienne et al., 2004� 6890�35� �Leo et al., 2000�

47.97�3� �Chin, Vuletic, et al., 2004� 905 �Julienne et al., 2004� 6890�35� �Leo et al., 2000� 0.045

FIG. 16. �Color online� Avoided crossing of the highest excited
vibrational levels of 87Rb2 �upper panel� and the magnetic mo-
ment of the Feshbach molecule �lower panel� vs the magnetic-
field strength in the vicinity of the 1007 G zero-energy reso-
nance. The solid curve in the upper panel indicates the bound-
state energy Eb�B� of the Feshbach molecule, while the dashed
curve refers to the next more tightly bound dressed vibrational
level. Dotted and dot-dashed lines are associated with the en-
ergies E−1 /h=−24 MHz of the bare highest excited vibrational
level of Vbg�r� and Eres�B� of the closed-channel resonance
state, respectively. The crossing between the bare levels at
1001.7 G leads to the measured variation in the magnetic mo-
ment of the Feshbach molecule indicated by circles in the
lower panel �Dürr, Volz, Marte, and Rempe, 2004�. For com-
parison, the solid and dashed curves refer to exact coupled-
channels calculations �van Kempen and Verhaar, 2004� and a
two-channel approach �Góral et al., 2004�, respectively.
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from a 87Rb Bose-Einstein condensate �Dürr, Volz,
Marte, and Rempe, 2004�. This experimental technique
based on exposing a mixture of atoms and dimers to an
inhomogeneous magnetic field �Herbig et al., 2003; Dürr,
Volz, Marte, and Rempe, 2004; Chin et al., 2005� is illus-
trated in Fig. 3 for the example of 133Cs2. The relative
force between the two components of the gas is propor-
tional to the field gradient as well as to the difference in
magnetic moments of a Feshbach molecule and a pair of
separated atoms, i.e., �Eb /�B. In the rubidium case, the
magnetic-field dependence of Eb�B� in Fig. 16 is sensi-
tive to the avoided crossing of 87Rb2 dressed energy lev-
els due to the highest excited bare vibrational level of
Vbg�r�. In accordance with the size of the positive back-
ground scattering length of about 100aBohr �Volz et al.,
2003�, this level is sufficiently close to the dissociation
threshold that its energy E−1 is directly probed by ex-
periment �Dürr, Volz, Marte, and Rempe, 2004�.

An effective entrance-channel interaction suitable for
a description of this experiment needs to recover both
the precise value of abg and the bare vibrational level
with the energy E−1, beyond the Wigner threshold law
regime. The associated minimal bare Green’s function
Gbg�z� is therefore required to reproduce the bound-
state pole at the energy argument z=E−1. Similarly to
Eq. �30�, this requirement leads to the following sepa-
rable representation �Góral et al., 2004�:

Gbg�z� = G0�z� + G0�z���bg��bg�z���bg�G0�z� . �72�

Here the form factor ��bg� needs to recover, via the re-
lation G0�E−1� ��bg�� ��−1�, the bare vibrational state sat-
isfying the Schrödinger equation Hbg ��−1�=E−1 ��−1�.
The resonance term �bg�z� may be represented by the
following ratio:

�bg�z� =
�bg

1 − �bg��bg�G0�z���bg�
. �73�

Since �bg�z� is required to reproduce the singularity of
the bare Green’s function in the limit z→E−1, the am-
plitude �bg is given by 1/ ��bg �G0�E−1� ��bg�.

The separable representation of Gbg�z� given by Eq.
�72� provides the exact Green’s function associated with
an effective potential,

Vbg
eff = ��bg��bg��bg� , �74�

determined by the amplitude �bg and the form factor
��bg�. This follows directly from the resolvent identity
�Taylor, 1972�, i.e.,

Gbg�z� = G0�z� + G0�z�Vbg
effGbg�z� , �75�

which is verified upon multiplication by Gbg
−1�z�=z−Hbg

from the right and by G0
−1�z�=z+�2�2 /m from the left.

Iterating Eq. �75� yields the Born series, which reduces
to a geometric series for the separable potential of Eq.
�74�. Its exact sum is given by Eq. �72� with the reso-
nance term of Eq. �73�.

Such effective interactions are commonly employed
for few-particle systems �Yamaguchi, 1954; Mitra, 1962;

Lovelace, 1964� as well as in condensed-matter physics
�Schrieffer, 1964�. For cold gases, the form factor is un-
resolved because it is sensitive only to the physics on
distances on the order of the van der Waals length. Its
associated functional form is therefore arbitrary and
may be chosen, for instance, to be Gaussian �Góral et al.,
2004�. In the momentum space representation, this
yields

�p��bg� = �bg�p� =
exp�− p2�bg

2 /2�2�
�2� � �3/2 . �76�

Here �bg accounts for the range of the interaction, and
�r �p�=exp�ip ·r / � � / �2�� �3/2 denotes the plane wave
with relative momentum p. Given this choice of form
factor, the parameters �bg and �bg are determined by the
requirement that the bare Green’s function of Eq. �72�
exactly recovers abg and E−1. The zero-energy limit of
the scattering amplitude associated with Eq. �72�, i.e.,
fbg�0�=−m�bg�0� /4��2, yields the condition

abg = �bg
x

1 + x/��
, �77�

where x=m�bg/4��2�bg is a dimensionless variable. In
addition, the bare energy level determined by the pole
of the resonance term of Eq. �73� gives

1 −
x

��
	��yey2

erfc�y� − 1
 = 0. �78�

Here erfc�y�= 2
��

�y
�e−u2

du is the complementary error
function with the argument y=�m �E−1��bg/�.

For the 1007 G zero-energy resonance of 87Rb, the
energy E−1 can be determined using the potential of Eq.
�70�. To this end, its parameter r0 should be chosen such
that the number of vibrational levels is large compared
to unity and that the known quantities abg and C6 of
Table IV are recovered. This yields E−1 /h=−24 MHz in
agreement with coupled channels calculations �van
Kempen and Verhaar, 2004�. Based on the precise values
of E−1 and abg, Eqs. �77� and �78� in turn determine the
range parameter and amplitude of the separable poten-
tial to be �bg=44aBohr and m�bg/ �4��2�=−339aBohr, re-
spectively.

We note that the above adjustment of the effective
entrance-channel interaction is restricted to zero-energy
resonances with a positive background scattering length,
i.e., abg�0. In the opposite case abg	0 separable inter-
actions do not support any bound state, similarly to the
universal contact pseudopotential of Sec. III.F. Among
the experimentally relevant examples of Table IV, only
the broad, entrance-channel-dominated zero-energy
resonances of 6Li and 85Rb have a negative background
scattering length. Associated two-channel approaches
describing the dressed energy levels beyond the Wigner
threshold law regime exist, at least, in applications to the
broad resonance of 85Rb �Kokkelmans and Holland,
2002; Köhler et al., 2004; Góral et al., 2005�. For 6Li a
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double resonance approach suitable for describing
many-body systems has been suggested �Kokkelmans et
al., 2002�.

Figures 12 and 13 reveal, however, that in both cases
85Rb and 6Li, the Feshbach molecule is well described
by an effective single channel interaction, over a wide
range of magnetic-field strengths, in accordance with
Sec. III.F. An appropriate magnetic-field-dependent
single-channel separable potential, suitable for applica-
tions to few-body bound states �Stoll and Köhler, 2005�
as well as the dynamics of cold gases �Köhler, Gasenzer,
and Burnett, 2003�, may be constructed on the basis of
Eqs. �74� and �76�. The associated constant range param-
eter of the form factor is given by �bg���ā /2. The ad-
justment of �bg via Eq. �77� to the magnetic-field-
dependent scattering length a�B� of Eq. �39� instead of
just abg ensures that the near-resonant energy Eb�B� of
the Feshbach molecule recovers Eq. �66�.

2. Resonance energy

In accordance with the single resonance approach of
Eq. �36�, the difference in energies of the resonance
level and the entrance-channel dissociation threshold
Eres�B� characterizes the closed-channel part of the
Hamiltonian. The associated relative magnetic moment
�res=�Eres /�B may be inferred from a Stern-Gerlach
separation experiment, relying upon the force experi-
enced by an atom due to the inhomogeneous magnetic
field B. Given any definite Zeeman state, this force is of
the general form Fa=−�Ea, where Ea is the Zeeman
energy. The magnitude of Fa=−��Ea /�B�� �B� depends
on the orientation quantum number mf of the total an-
gular momentum with respect to the field direction. This
dependence is well described by the Breit-Rabi formula
�Breit and Rabi, 1931�,

Fa = ±
2mf/�2i + 1� + x

2	1 + x4mf/�2i + 1� + x2
1/2gj�Bohr��B� . �79�

Here i is the quantum number associated with the
nuclear spin, �Bohr=9.274 009 49�10−24 J /T denotes the
Bohr magneton, and the Landé factor gj�2 refers to the
electronic magnetic moment. The dimensionless vari-
able x=gj�Bohr �B � /Ehf depends on the field strength �B�
in addition to the hyperfine energy splitting in the ab-
sence of magnetic fields Ehf �Arimondo et al., 1977�. For
any given orientation quantum number mf and atomic
species, the sign of the force given by Eq. �79� is deter-
mined by the Zeeman multiplet.

For the example illustrated in Fig. 17, the nuclear spin
quantum number i=3/2 of 87Rb �Arimondo et al., 1977�
in addition to the electronic spin give rise to two Zee-
man multiplets. These states adiabatically correlate with
the hyperfine levels of total angular momentum quan-
tum numbers f=1 and 2 in the limit of zero magnetic
field. The s-wave entrance-channel spin configuration of
any pair of identical Bose atoms in Fig. 16 is character-
ized by the quantum numbers �f1=1,mf1

= +1; f2=1,mf2
= +1�, referring to their electronic ground states. In ac-

cordance with Eq. �79� and the zero-field hyperfine
structure splitting of Ehf /h=6834 MHz �Arimondo et al.,
1977�, the total magnetic moment associated with these
ground-state atoms at B0=1007.4 G is determined by
2�Ea /�B=−h�2 MHz/G. This derivative varies by less
than 1% over the range of magnetic-field strengths dis-
played in Fig. 16.

The predominant spin exchange interaction couples
pairs of 87Rb ground-state atoms to four s-wave scatter-
ing channels characterized by pairs of Zeeman levels,
�f1 ,mf1

; f2 ,mf2
�, whose total angular momentum orienta-

tion quantum number is conserved, i.e., mf1
+mf2

= +2.
These closed channels are therefore described by
�1,1 ;2 ,1�, �1,0 ;2 ,2�, �2,0 ;2 ,2�, and �2,1 ;2 ,1�. In accor-
dance with the inset of Fig. 17, their associated total
magnetic moments at resonance amount to 0, h
�0.9 MHz/G, h�1.9 MHz/G, and h�2 MHz/G, re-
spectively. The magnetic moment of the 87Rb2 Feshbach
molecule in the lower panel of Fig. 16 consists, in prin-
ciple, of contributions from all five channels weighted by
their admixtures. Both the experimental data �Dürr et
al., 2004� and coupled channels predictions �van
Kempen and Verhaar, 2004�, however, are consistent
with a Feshbach resonance state predominantly consist-
ing of Zeeman states from the f=2 multiplet. The Breit-
Rabi formula, therefore, yields an estimated difference
in the magnetic moments of the resonance state and
entrance-channel spin configuration of about �res=h
�4 MHz/G near the zero-energy resonance position. In
a similar manner, the size of the parameter �res may be

FIG. 17. �Color online� The Zeeman multiplets of 87Rb asso-
ciated with the total angular momentum quantum numbers
f=1 �solid curves� and f=2 �dashed curves�. Inset: The mag-
netic moments �Ea /�B determined by Eq. �79� and the orien-
tation quantum numbers mf of those Zeeman states that are
relevant to Fig. 16.
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inferred from Eq. �79� for a variety of species. This pro-
cedure is particularly useful for genuinely two-channel
problems, such as, for instance, the spin configurations
relevant to the 202 G zero-energy resonance of 40K
�Bruun and Pethick, 2004�. The recommended values of
�res of Table V are based on coupled channels predic-
tions.

3. Interchannel coupling

Interchannel coupling leads to the decay width and
energy shift of the bare resonance level due to its inter-
action with the background scattering continuum and
entrance-channel bare vibrational states. In accordance
with Eq. �54�, both quantities are determined by the pa-
rameters �B of Eq. �40� and B0−Bres of Eq. �41� in the
Wigner threshold law domain. While the width in the
magnetic-field strength �B is measured routinely, the as-
sociated shift is not directly observable. Its magnitude,
however, may be inferred using multichannel quantum
defect theory �Julienne and Mies, 1989; Mies and
Raoult, 2000, 2004�. This yields the following approxi-
mate formula:

B0 − Bres = �B
abg

ā
� 1 − abg/ā

1 + �1 − abg/ā�2� . �80�

Here ā is the mean scattering length of Eq. �65�. Conse-
quently, the size of the resonance shift depends just on
the quantities abg, �B, and C6, which are all accessible to
experimental studies. Entrance-channel-dominated
zero-energy resonances, such as 85Rb illustrated in Fig.
12, tend to have large shifts comparable to the size of
�B. The predicted magnitude of B0−Bres=9 G in Fig. 12
is consistent with the coupled channels binding energies
�Kokkelmans, 2002�. For the closed-channel-dominated
1007 G zero-energy resonance of 87Rb in the upper
panel of Fig. 16, the value of B0−Bres=0.07 G of Eq.
�65� is significantly smaller than the width. For the ex-
amples given in Tables IV and V, the corrections to Eq.
�80� are negligible.

The quantity W ��res�, characterizing the interchannel
coupling in the single resonance approach, should be ad-
justed such that the matrix element of the bare Green’s
function in Eq. �54� recovers both �B and B0−Bres. Such
an adjustment ensures, in particular, that the bound-
state energy of Eq. �47� properly interpolates between
the universal and asymptotic regimes of magnetic-field
strengths. An explicit minimal implementation of the
two-channel Hamiltonian given by Eq. �16� may there-
fore be based on the separable background scattering
potential of Eq. �74� in addition to the following general
expression:

W��res� = ���� . �81�

Here the amplitude � determines the interchannel cou-
pling and ��� its functional form. Since the off-diagonal
potential W�r� is unresolved by the large de Broglie
wavelengths associated with cold collisions, the form
factor ��� may be chosen as a Gaussian function in mo-
mentum space, similarly to Eq. �76�. This yields �Góral et
al., 2004�

�p��� = ��p� =
exp�− p2�2/2�2�

�2� � �3/2 . �82�

The associated range parameter � and amplitude � are
determined by requiring the imaginary and real parts of
Eq. �54� to recover the physical quantities �B and B0
−Bres, respectively. For the purpose of this adjustment, it
is convenient to introduce the average range parameter
�̄= ��2+�bg

2 �1/2 /�2. The imaginary part of the bare
Green’s function on the left-hand side of Eq. �54� yields
the first condition

�B =
m���2

4��2abg�res
�1 −

abg

���̄�
2

. �83�

The associated widths of experimentally relevant zero-
energy resonances are summarized in Table V. Given
the bare Green’s function of Eq. �72� and Gaussian form
factors, the real part of Eq. �54� can be evaluated ana-
lytically. This leads to the second condition,

TABLE V. Parameters characterizing the interchannel coupling associated with experimentally relevant zero-energy resonances.
Those values of �B and �res that are unreferenced refer to calculations performed for this review. In accordance with Eq. �69�, the
size of the parameter � indicates whether a zero-energy resonance is closed- or entrance-channel-dominated.

Species B0 �G� �B �G� �res /h �MHz/G� �

6Li 543.25�5� �Strecker et al., 2003� 0.1 2.8 1215

834.149 �Bartenstein et al., 2005� −300 �Bartenstein et al., 2005� 2.8 0.02
23Na 853 �Stenger et al., 1999� 0.01 �Mies et al., 2000� 5.24 �Mies et al., 2000� 1090

907 �Stenger et al., 1999� 1.0 �Mies et al., 2000� 5.24 �Mies et al., 2000� 11
40K 202.10�7� �Regal et al., 2004c� 7.8�6� �Greiner et al., 2003� 2.35 �Nygaard et al., 2006� 0.46

224.21�5� �Regal and Jin, 2003� 9.7�6� �Regal and Jin, 2003� 2.35 �Nygaard et al., 2006� 0.37
85Rb 155.0 �Thompson et al., 2005a� 10.71�2� �Claussen et al., 2003� −3.26 �Kokkelmans, 2002� 0.04
87Rb 1007.40�4� �Volz et al., 2003� 0.21 �Dürr, Volz, and Rempe, 2004� 4.2 �Dürr, Volz, Marte, and Rempe, 2004� 5.9
133Cs 19.90�3� �Chin, Vuletic, et al., 2004� 0.005 �Julienne et al., 2004� 0.798 �Julienne et al., 2004� 437

47.97�3� �Chin, Vuletic, et al., 2004� 0.15 �Julienne et al., 2004� 2.09 �Julienne et al., 2004� 0.99
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B0 − Bres = �B
abg

���
1 − �abg/������/�̄�2

	1 − �abg/�����/�̄
2
, �84�

whose value for the resonance shift on the left-hand side
is given by Eq. �80�. Equations �83� and �84�, in turn,
simultaneously determine the parameters � and � char-
acterizing the interchannel coupling. We note that the
overall phase of the amplitude � is irrelevant to the
physics described by the associated Hamiltonian.

For the 1007 G zero-energy resonance of 87Rb, such
an adjustment yields �=22aBohr and m ���2 /4��2�=h
�10 MHz. Given the effective background scattering
potential of Eq. �74� and �res of Table V, this procedure
provides a complete implementation of the two-channel
single-resonance approach. Its predictions with respect
to dressed binding energies are illustrated in the upper
panel of Fig. 16 as well as in Fig. 12. The lower panel of
Fig. 16 shows the magnetic moment of 87Rb Feshbach
molecules determined from the product �resZ�B� via
Eqs. �46� and �57� using the two-channel single reso-
nance approach. The overall data offset of about
−2 MHz refers to the magnetic moment associated with
the entrance-channel spin configuration. Comparisons
with measurements �Dürr, Volz, Marte, and Rempe,
2004� and results of coupled channels calculations �van
Kempen and Verhaar, 2004� indicate that the effective
two-channel approach can fully recover the microscopic
physics within the experimental energy range.

IV. ASSOCIATION OF FESHBACH MOLECULES

The different experimental techniques for molecular
association in cold gases all depend in one way or an-
other on the properties of the diatomic energy spectra.
Several approaches to the production of cold Feshbach
molecules are based on the relaxation of an atomic gas
into dimers near resonance �Jochim et al., 2003a; Zwier-
lein et al., 2003� or on dynamical sweeps of the magnetic-
field strength across B0 �Cubizolles et al., 2003; Herbig et
al., 2003; Regal et al., 2003a; Strecker et al., 2003; Xu et
al., 2003; Dürr, Volz, Marte, and Rempe, 2004�. Both
techniques take advantage of the degeneracy of the
Feshbach molecular energy Eb and the threshold for dis-
sociation into free atoms in the limit B→B0. Relaxation
of an atomic gas into dimer molecules requires collisions
of at least three atoms to balance the energies and is
commonly employed, to date, just in two-spin-
component mixtures of 6Li Fermi gases. The conceptu-
ally simpler molecular association via magnetic-field
sweeps seems more generally applicable to both Bose
and Fermi gases and will therefore be the main subject
of this section. Figure 16 illustrates its principle which
relies, for the 1007 G zero-energy resonance of 87Rb,
upon the adiabatic transition from the diatomic zero-
energy continuum level to the bound-state energy Eb�B�
with decreasing B. Conversely, Fig. 12 suggests that for
the 155 G zero-energy resonance of 85Rb, free atom
pairs may be associated to Feshbach molecules by in-
creasing B across B0. The difference in energy of collid-

ing atoms and diatomic molecules is absorbed by the
time-dependent magnetic field. As the field is, in gen-
eral, spatially homogeneous the association process does
not affect the center-of-mass momentum of atom pairs.
From this viewpoint, Feshbach molecules produced by
magnetic-field sweeps or other related dynamical tech-
niques �Donley et al., 2002; Thompson et al., 2005a� are
as cold as the atomic gas they originate from.

A. Linear sweeps of the magnetic-field strength

In an idealized treatment of molecular association, the
magnetic-field strength may be assumed to vary linearly
in time. This implies that

B�t� = Bres + Ḃ�t − tres� , �85�

where Ḃ is usually referred to as the ramp speed and tres
is the time at which the bare resonance energy Eres
crosses the dissociation threshold of the entrance chan-
nel. The field strength Bres associated with tres is indi-
cated in Fig. 12. In accordance with Eq. �35�, the reso-
nance energy is also a linear function of time,

Eres�t� = Ėres�t − tres� , �86�

with a constant derivative Ėres=�resḂ. Equation �86�
presupposes that the magnetic-field sweep is sufficiently
slow for the electronic degrees of freedom to adiabati-
cally adjust to magnetic-field strength changes. To

achieve molecular association of an atom pair, Ėres
needs to be negative �Mies et al., 2000�. Consequently,
the Feshbach resonance level is swept downward in

time. This requirement determines Ḃ through the sign of
�res. Conversely, upward sweeps of the Feshbach reso-
nance level across B0 lead to heating of the atomic
cloud. This general principle may be readily verified on
the basis of the magnetic-field dependence of the dis-
crete spectrum of dressed energy levels of a trapped
atom pair.

1. Adiabatic association of Feshbach molecules

Tight traps containing just a single pair of atoms may
be realized, for instance, by individual sites of an optical
lattice �Tiesinga et al., 2000; Jaksch et al., 2002� or by
microfabricated materials �Weinstein and Libbrecht,
1995; Müller et al., 1999; Thywissen et al., 1999; Hinds et
al., 2001; Folman et al., 2002; Long et al., 2003�. The
two-body energy spectra associated with periodic poten-
tials of optical lattices have been studied theoretically in
the Wigner threshold law domain �Orso et al., 2005;
Wouters and Orso, 2006� as well as observed experimen-
tally �Moritz et al., 2005�. While in the limit of high ex-
citations the tunneling of atoms is significant, the deep-
est localized diatomic levels of tight lattice sites are well
described by the harmonic oscillator approximation. As
a consequence, the center of mass and relative motions
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of an atom pair confined to a single site can be treated
separately, similarly to the two-body problem in free
space.

A spherically symmetric harmonic confinement modi-
fies the bare entrance-channel Hamiltonian associated
with the resonance enhanced interaction as follows:

Hbg = −
�2

m
�2 + Vbg�r� + Vtrap�r� . �87�

Here Vtrap�r� denotes the potential energy of the isotro-
pic harmonic oscillator in the barycentric frame, which is
given in terms of the reduced mass m /2 and the angular
frequency �ho to be

Vtrap�r� =
1
2

m

2
�ho

2 r2. �88�

Similarly to Eq. �25�, the associated bare vibrational en-
ergy levels are determined by the stationary Schrödinger
equation,

Hbg�v�r� = Ev�v�r� . �89�

Here the index v= . . . ,−2 ,−1,0 ,1 ,2 , . . . labels the vibra-
tional excitation in such a way that v=0 correlates adia-
batically, in the limit �ho→0, with the dissociation
threshold of the entrance channel. According to this
counting scheme, negative indices v	0 are associated
with the bare vibrational levels E−1, E−2, etc., indicated
in Fig. 10. In the limit of low vibrational excitation v
�0, the spatial extents of the bare states, including
�0�r�, are characterized by the trap length aho

=�� /m�ho. This length scale usually greatly exceeds the
modulus of the background scattering length �abg�. To
first order in abg/aho, the energies of the excited levels
are well approximated by the following formula �Busch
et al., 1998�:

Ev � �3
2

+ 2v +� 2

�
�v + 1/2

v
� abg

aho
� � �ho. �90�

Here � v+1/2
v

� is a combinatorial. Dressed energy levels
may be determined via the two-channel Hamiltonian of
Eq. �16� using the single resonance approach of Eq. �36�
�Mies et al., 2000�, or via a single-channel energy-
dependent contact interaction �Blume and Greene,
2002; Bolda et al., 2002�. Both methods yield spectra
consistent with full coupled channels calculations �Ties-
inga et al., 2000�.

Figure 18 shows the magnetic-field dependence of
dressed two-body energy levels of ground-state 87Rb
atoms predicted by the two-channel approach for a
tight trap with a frequency of �ho=�ho/2�=39 kHz
�Thalhammer et al., 2006�. An atom pair from a ru-
bidium Bose-Einstein condensate prepared on the high-
field side of the 1007 G zero-energy resonance and
loaded adiabatically into an optical lattice site is well
described by the v=0 state. According to Fig. 18, this
level adiabatically correlates with the Feshbach mol-
ecule on the low-field side of B0. Consequently, a mag-
netic downward sweep across B0 associates the sepa-

rated rubidium atoms to molecules with certainty in the

limit of zero ramp speed, i.e., Ḃ→0. An excited trap
level with vibrational quantum number v is transferred
to v−1. Conversely, an adiabatic upward magnetic-field
sweep across B0 dissociates 87Rb2 Feshbach molecules
and leads to heating transitions from v to v+1 in excited
trap levels. In general, the ramp direction for such cool-
ing or heating transitions is determined by the sign of
�res or, equivalently, by the time variation of the reso-

nance energy Ėres.

2. Exact time evolution of a single atom pair

While the dressed energy levels of Fig. 18 reveal the
mechanism of Feshbach molecular association in the
limit of zero ramp speed, the dynamics of the diatomic
wave function is described by the Schrödinger equation

i �
�

�t
���t�� = H2B�t����t�� . �91�

Here H2B is the two-channel Hamiltonian of Eq. �16� in
the single resonance approach of Eq. �36�. Its time de-
pendence is determined by the linear variation of the
resonance energy given by Eq. �86�. The diatomic state
���t�� has components in the entrance and closed chan-
nels, whose wave functions may be expanded into bare
states, in accordance with

�bg�r,t� = 
v
�v�r�Cv�t� , �92�

�cl�r,t� = �res�r�Cres�t� . �93�

Such a basis-set expansion of Eq. �91� leads to the fol-
lowing dynamical equations for the associated time-
dependent coefficients:

FIG. 18. �Color online� Schematic illustration of molecular as-
sociation of ground-state 87Rb atoms via a downward
magnetic-field sweep in a spherical harmonic atom trap with
an oscillator frequency �ho=39 kHz �Thalhammer et al., 2006�.
The bare vibrational levels �v=0, . . . ,6� associated with the
background scattering quasicontinuum and the Feshbach reso-
nance energy Eres�B� are indicated by dotted and dashed lines,
respectively. Solid curves refer to the magnetic-field depen-
dence of dressed energy levels in the vicinity of the zero-
energy resonance position B0=1007.4 G.
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i � Ċv�t� = EvCv�t� + ��v�W��res�Cres�t� , �94�

i � Ċres�t� = Eres�t�Cres�t� + 
v

��res�W��v�Cv�t� . �95�

This configuration interaction approach is particularly
useful for numerical treatments of Feshbach molecular
association using any form of time-dependent magnetic-
field variation �Mies et al., 2000�. The special case of
linear sweeps belongs to those quantum-mechanical
problems whose exact dynamics can be treated analyti-
cally �Demkov and Osherov, 1968; Macek and Cavag-
nero, 1998�.

To this end, it is useful to split H2B�t� into stationary
and time-dependent contributions,

H2B�t� = Hstat + Hcl�t� . �96�

Here the stationary Hamiltonian Hstat=H2B�tres� is asso-
ciated with the magnetic-field strength Bres. In the single
resonance approach, the dynamical contribution Hcl�t� is
given by

Hcl�t� = ��res,cl�Eres�t���res,cl� . �97�

Similarly to the effective potential of Eq. �74�, the time-
dependent interaction Hcl�t� involves only a single state
associated with the closed channel, the product
��res , cl�= ��res� �cl�. The following derivations will show
that it is the separable form of Eq. �97� in addition to the
linear dependence of the resonance energy Eres on t that
allow for the analytic treatment of the time evolution.

The complete dynamics of an atom pair exposed to a
linear magnetic-field sweep may be inferred from the
time evolution operator determined by the Schrödinger
equation,

i �
�

�t
U2B�t,t�� = H2B�t�U2B�t,t�� , �98�

in addition to the boundary condition U2B�t , t�=1. The
diatomic state at time t is thus given in terms of U2B�t , t��
and the state at time t� by

���t�� = U2B�t,t�����t��� . �99�

Similarly, the dynamics in the absence of the interaction
of Eq. �97� is described by exp	−iHstat�t− t�� / � 
. Associ-
ated with these free and complete time evolution opera-
tors are the retarded Green’s functions,

Gstat
�+� �t − t�� =

1

i�
��t − t��exp	− iHstat�t − t��/ � 
 , �100�

G2B
�+��t,t�� =

1

i�
��t − t��U2B�t,t�� , �101�

where ��t− t�� is the step function that yields unity if t
� t� and zero elsewhere. The Schrödinger equation �98�
may be represented in terms of Eqs. �100� and �101� via

G2B
�+��t,t�� = Gstat

�+� �t − t��

+� d�Gstat
�+� �t − ��Hcl���G2B

�+���,t�� . �102�

Differentiation with respect to the variable t readily
verifies this relation by recovering the time derivative of
the complete retarded Green’s function of Eq. �101�,
which is directly determined by Eq. �98�. The integral
representation of Eq. �98� chosen in Eq. �102� is usually
referred to as the postform of the dynamical equation.
The associated preform reads

G2B
�+��t,t�� = Gstat

�+� �t − t��

+� d�G2B
�+��t,��Hcl���Gstat

�+� �� − t�� , �103�

and can be verified similarly to the derivation of Eq.
�102�.

While, in general, the operator equation �102� re-
quires a complete basis-set expansion for its numerical
solution, the separable form of Eq. �97� reduces this
problem to the calculation of just the pair of matrix el-
ements,

gstat
�+� �t − t�� = ��res,cl�Gstat

�+� �t − t����res,cl� , �104�

g2B
�+��t,t�� = ��res,cl�G2B

�+��t,t����res,cl� . �105�

This follows from Eq. �97� via multiplying Eq. �102� by
��res , cl� from the left and by ��res , cl� from the right
which, in turn, determines Eq. �105� through the follow-
ing integral equation:

g2B
�+��t,t�� = gstat

�+� �t − t�� +� d� gstat
�+� �t − ��Eres���

�g2B
�+���,t�� . �106�

Given the free retarded Green’s function of Eq. �100�,
the complete time evolution operator can be inferred
from the solution of Eq. �106� by inserting Eq. �103� into
Eq. �102� and performing the time integrations.

Using the convolution theorem, a Fourier transform
turns the integral on the right-hand side of Eq. �106� into
a product of functions. In the case of a linear magnetic
field sweep, such a procedure allows Eq. �106� to be
solved analytically. To this end, it is instructive to intro-
duce the energy-dependent matrix elements,

gstat�z� =� dt eiz�t−t��/�gstat
�+� �t − t�� , �107�

g2B�z,t�� =� dt eiz�t−t��/�g2B
�+��t,t�� , �108�

associated with the free and complete retarded Green’s
functions. Here the regularized argument z=E+ i0 en-
sures the convergence of the time integrals in the limit
t→ +� by approaching the real energy E from the upper
half of the complex plane. Given the resonance energy
of Eq. �86�, a Fourier transform renders Eq. �106� into
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the following inhomogeneous first-order linear differen-
tial equation:

i �
�g2B�z,t��

�E
= � ���z,t��g2B�z,t�� + 1/Ėres. �109�

Its dependence on the interatomic interaction is incor-
porated in the energy derivative ���z , t��=���z , t�� /�E of
the complex phase

��z,t�� = −
1

�Ėres

�
0

E dE�

gstat�z��
+ E�t� − tres�/ � , �110�

where z�=E�+ i0 denotes a regularized integration vari-
able with the same imaginary part as z.

The imaginary part of ��z , t�� can be inferred from the
Hamiltonian Hstat using a spectral decomposition of
gstat�z� analogous to Eq. �49�. In particular, Eq. �53� de-
termines the sign of Im ��z , t�� to be

sgn	Im ��z,t��
 = − sgn�Ėres�sgn�Im z� . �111�

Consequently, in the case of a downward ramp of the

Feshbach resonance level, i.e., Ėres	0, the damped re-
tarded solution to Eq. �109� is given by

g2B�z,t�� = − �
E

�

dE�
e−i	��z,t��−��z�,t��


i � Ėres

. �112�

Equation �112� may be verified from Eq. �109� by differ-
entiation with respect to E. The matrix element of the
complete retarded Green’s function of Eq. �105� is the
inverse Fourier transform of Eq. �112�, which yields

g2B
�+��t,t�� = −� dE

2��
�

E

�

dE�
e−i	��z,t�−��z�,t��


i � Ėres

. �113�

The exact time evolution operator determined by Eq.
�113� is applicable to the association of Feshbach mol-
ecules in free space as well as to the case of a trapped
atom pair illustrated in Fig. 18.

3. Landau-Zener approach

In 1932, Landau and Zener had independently de-
rived a simple estimate of the probability for molecule
production in linear magnetic-field sweeps �Landau,
1932; Zener, 1932�. Their generic approaches may be in-
terpreted in terms of a coupled system of two channels,
each of which containing just a single state. In applica-
tions to Feshbach molecular association, such a treat-
ment is equivalent to the single resonance approach of
Eq. �36� in addition to the following replacement of the
entrance-channel Hamiltonian:

Hbg → ��0�E0��0� . �114�

Here ��0� may be interpreted, for instance, in terms of
the zeroth vibrational state of the relative motion of a
trapped atom pair with the energy E0. This reduction of
the two-channel continuum to a two-level system gives
rise to analytic solutions of the coupled set of stationary
Schrödinger equations �20� and �21�. Given the simple

form of the entrance-channel Green’s function in the
Landau-Zener approach, i.e.,

Gbg�z� = ��0�
1

z − E0
��0� , �115�

Eq. �47� determines the two-level dressed energies to be

E± =
E0 + Eres

2
±

�E0 − Eres�
2

�1 + 4
���res�W��0��2

�E0 − Eres�2 .

�116�

The magnetic-field-dependent slopes of the levels E+
and E− indicate, quite generally, a crossing of the dis-
crete bare entrance- and closed-channel energies E0 and
Eres, respectively. Analytic representations of the associ-
ated dressed two-component stationary states ��+� and
��−� can be inferred from Eq. �45�.

In accordance with Eq. �116�, a downward sweep of
Eres across E0 transfers a pair of atoms in the initial state
��0 ,bg� into the final state ��res , cl� in the limit of zero
ramp speed. Their energies adiabatically follow the E−
curve. Given the linear variation of Eres of Eq. �86�, such
a simplified scenario presupposes the sweep to start and
end asymptotically far from the crossing point of the
bare levels. This, in turn, implies the formal limits
ti→−� and tf→� of the initial and final times, respec-
tively. The adiabatic energy variation of the Landau-
Zener two-level approach is similar to the harmonic trap
case illustrated in Fig. 18, except that the quasicon-
tinuum of excited levels with indices v�0 is neglected.

Finite ramp speeds allow an atom pair to end up in a
superposition of the entrance- and closed-channel bare
states ��0 ,bg� and ��res , cl�, respectively. In accordance
with Eq. �105� and the assumption of a two-level system,
the probability for an asymptotic transition between the
bare levels is given by

p0,res = ���res,cl�U2B�tf,ti���0,bg��2 = 1 − �i � g2B�tf,ti��2,

�117�

in the limits ti→−� and tf→�. These time limits can be
determined analytically using the stationary phase con-
dition for the energy integrals over the oscillatory func-
tions on the right-hand side of Eq. �113�. This exact ap-
proach relies upon the observation that asymptotically
only those regions close to zeros of the derivatives of the
phases ���z , ti� and ���z , tf� contribute to the integrals.
All the remaining energy ranges in which the complex
exponentials are rapidly oscillating yield negligible aver-
ages.

The positions of the stationary phases can be readily
found for a two-level system. An explicit determination
of the stationary Green’s function Gstat�z�= �z−Hstat�−1

associated with the Hamiltonian Hstat of Eq. �96� yields

1/gstat�z� = z − ��res�WGbg�z�W��res� . �118�

Equations �110� and �118� give the derivative of the
phase to be
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���z,t� = −
E − Eres�t� − ��res�WGbg�z�W��res�

�Ėres

. �119�

Consequently, ���z , t� vanishes at the dressed energies
E± associated with the magnetic-field strength at time t,
in accordance with Eq. �47�.

As only those regions of parameters E and E� in the
close proximity of E± significantly contribute to Eq.
�113�, the phases may be expanded to second order
about their stationary points. This yields

��z,t� � ��z±,t� + 1
2���E±,t��E − E±�2. �120�

Here z±=E±+ i0 denotes the regularized energy param-
eter associated with E± at time t. The second derivative,

���E±,t� = −
1

�Ėres

	1 + ��res�WGbg
2 �E±�W��res�
 ,

�121�

is always positive in the case of a downward ramp of
Eres�t� and its inverse plays the role of a variance in the
complex Gaussian integrals over E and E�. Performing
the Gaussian integration associated with ti on the right-
hand side of Eq. �113� gives

�
E

�

dE�ei��z�,ti� � �2�
n=±

ei	��zn
i ,ti�+�/4


����En
i ,ti�

��En
i − E� .

�122�

Here z±
i and E±

i refer to the dressed energies at the ini-
tial magnetic-field strength. Their asymptotic values in
the case of a downward sweep of Eres are given by
E+

i →� and E−
i →E0 in the limit ti→−�. This implies

���E+
i , ti�→−1/ � Ėres and ���E−

i , ti�→�. Consequently,
only the term associated with E+

i significantly contrib-
utes to the sum of Eq. �122�. The integral over the pa-
rameter E on the right-hand side of Eq. �113� can be
evaluated similarly to Eq. �122�. This yields

i � g2B
�+��tf,ti� = e−i	��E−

f ,tf�−��E+
i ,ti�
 �123�

in the limits ti→−� and tf→�. Here E−
f refers to the

dressed energy with asymptotic behavior E−→−� at the
final time of the magnetic-field sweep. The imaginary
parts of the phases ��E−

f , tf� and ��E+
i , ti� relevant to the

transition probability of Eq. �117� may be obtained from
Eqs. �110� and �53�. This leads to the Landau-Zener for-
mulas

p0,res = 1 − e−2��LZ, �124�

p0,0 = e−2��LZ. �125�

Here p0,0 denotes the probability for detecting the atom
pair in the bare state ��0 ,bg� at the end of the magnetic-
field sweep, and

�LZ =
���res�W��0��2

� �Ėres�
�126�

is the Landau-Zener parameter.
For a pair of atoms in an isotropic harmonic trap, the

matrix element involving the interchannel coupling W
can be inferred from Eq. �40� via the general approxi-
mate relation

���res�W��v��2 � 2�m�mEv���res�W��0
�+���2

�Ev

�v
. �127�

Here Ev is the energy of the bare oscillator level of Eq.
�90� in the limit of low excitations in the Wigner thresh-
old law regime. Assuming that the single-particle trap
length greatly exceeds the background scattering length,
i.e., �abg � /aho�1, the density of states is given by
�Ev /�v=2��ho. Consequently, Eqs. �40� and �127� deter-
mine the Landau-Zener parameter associated with a
trapped atom pair to be �Julienne et al., 2004�

�LZ
ho =

�6�

�maho
3 � abg�B

Ḃ
� . �128�

Figure 19 illustrates the validity of the Landau-Zener
approach to Feshbach molecular association and disso-

FIG. 19. �Color online� Efficiency of Feshbach molecular as-
sociation �upper panel� and dissociation into the lowest energy
band of an optical lattice �lower panel� via linear magnetic-
field sweeps across the 1007 G zero-energy resonance of 87Rb
vs the ramp speed �Thalhammer et al., 2006�. Solid curves refer
to the Landau-Zener formula given by Eq. �124� and the coef-
ficient for a harmonic oscillator given by Eq. �128� using the
measured frequency �ho=39 kHz. The dashed curve indicates
the same Landau-Zener prediction scaled by a factor of 0.95,
which accounts for possible deficits in the ideal diatomic filling,
for instance, due to tunneling between lattice sites �Thalham-
mer et al., 2006�.
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ciation in an optical lattice where the sites are filled with
two atoms �Thalhammer et al., 2006�.

On the basis of Eq. �113�, the preceding determination
of the asymptotic behavior of transition amplitudes may
be extended to an arbitrary number of energy states of
the entrance-channel interaction �Demkov and Osherov,
1968; Macek and Cavagnero, 1998; Yurovsky and Ben-
Reuven, 1998; Yurovsky et al., 1999a�. This shows that
despite the fact that the Landau-Zener approach ne-
glects the bare excited and molecular levels, it gives the
exact probability for the loss of atom pairs from the v
=0 mode of a harmonic trap. At the end of an
asymptotic linear downward sweep of Eres, the entire
population either remains in the initial v=0 state or is
transferred into energetically lower levels v	0 or into
the resonance state. A similar statement applies to
asymptotic upward sweeps, which are also exactly de-
scribed by Eqs. �124�, �125�, and �128�. Consequently, in
the limits ti→−� and tf→� transitions between states
occur only in the intuitive direction of the sweep. The
intermediate dynamics, however, involves all levels, i.e.,
the amplitudes associated with unintuitive transitions in-
terfere away only at asymptotically large times.

B. Magnetic-field sweeps in Bose-Einstein condensates

Several pioneering studies on the properties of zero-
energy resonances of alkali atom pairs �Inouye et al.,
1998; Stenger et al., 1999; Cornish et al., 2000� have been
performed in dilute Bose-Einstein condensates �Ander-
son et al., 1995; Davis et al., 1995; Bradley et al., 1995,
1997�. Condensation of Bose atoms �Bose, 1924; Ein-
stein, 1924, 1925� occurs when the occupation number
Nc of a particular single-particle state becomes compa-
rable to the total number of atoms N such that Nc /N
remains finite in the thermodynamic limit. Signatures of
this phenomenon in dilute alkali gases have been iden-
tified, for instance, through a specific, narrow momen-
tum distribution of the atoms or a characteristic spec-
trum of collective excitations �Dalfovo et al., 1999�.
While low collision momenta facilitate the theoretical
description of the two-body physics of molecular asso-
ciation, the complex many-particle nature of Bose-
Einstein condensates subject to dynamically resonance
enhanced interactions becomes particularly significant
on long time scales. In addition, Feshbach molecules of
some alkali species associated with closed-channel-
dominated resonances proved to be unstable in the gas
environment �Herbig et al., 2003; Xu et al., 2003; Dürr,
Volz, Marte, and Rempe, 2004�. For this reason, such
experiments were performed in part under conditions of
free expansion �Dürr, Volz, Marte, and Rempe, 2004;
Yurovsky and Ben-Reuven, 2004; 2005; Mark et al.,
2005�. Comparisons between predicted and measured
molecule production via magnetic-field sweeps in Bose-
Einstein condensates are, therefore, less conclusive than
in the case of a single atom pair confined to an optical
lattice site.

1. Limit of high ramp speeds

In the limit of high ramp speeds the transfer of con-
densed atoms into Feshbach molecules may be esti-
mated using the two-body Landau-Zener approach
�Mies et al., 2000; Góral et al., 2004�. To this end, it is
instructive to divide the dilute gas into regions of virtu-
ally constant density. Their volumes V can be chosen
sufficiently large for the thermodynamic limit to be ap-
plicable. The state of an arbitrary atom pair of a uniform
Bose-Einstein condensate in each of these periodic
boxes is well described by the lowest quasicontinuum
energy level. Accordingly, the associated Landau-Zener
parameter can be inferred from Eq. �126� using the fol-
lowing replacement of the initial wave function:

��0� → ��0
�+����2� � �3/V . �129�

Given that the size of a dilute gas is on the order of
several �m, the volume V is sufficiently large for the
transition probability of Eq. �124� to reduce to its first-
order approximation p0,res�2��LZ. A typical order of
magnitude of p0,res is 10−6 �Mies et al., 2000�.

While the association of a particular pair of con-
densed atoms is a rare event, the fact that each atom has
all the others to interact with grossly enhances the effi-
ciency of molecule formation. Just in the limit of high
ramp speeds the Bose-Einstein condensate may be
treated as a reservoir whose total atom number is barely
affected by an asymptotic magnetic-field sweep across
B0. This assumption implies that the small fraction of
lost atoms is well described in terms of the pairwise av-
erage of microscopic transition probabilities. The num-
ber of pairs in a box with N atoms is N�N−1� /2, which

in the limit �Ḃ � →� yields the following estimate for the
condensate depletion �Góral et al., 2004�:

Nloss = 2��N − 1��N/V�
4��

m � abg�B

Ḃ
� . �130�

Here N /V is the uniform density of the gas in the vol-
ume V. In accordance with the local-density approxima-
tion, the total number of atoms lost from a Bose-
Einstein condensate is given by the spatial average of
Eq. �130� over the densities of all boxes.

We note that the Landau-Zener estimate of Eq. �130�
is applicable to both sweep directions of the Feshbach
resonance level. In the case of downward sweeps, the
condensed atoms are partly transferred into diatomic
Feshbach molecules whose final number Nd

f , equals one-
half of the atom loss of Eq. �130�, i.e.,

Nd
f = Nloss/2. �131�

Upward sweeps lead to the production of correlated
pairs with a comparatively high relative velocity depend-
ing on the ramp speed. In some experiments using non-
linear field variations �Donley et al., 2001, 2002�, such
atom pairs were detected as a trapped dilute cloud with
an average spatial extent much larger than the size of
the remnant Bose-Einstein condensate.
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2. Two-level mean-field approach

A description of atom loss from a Bose-Einstein con-
densate consistent with both Eq. �130� and the dynami-
cal depletion of pairs during a magnetic-field sweep
across B0 may be based on Eqs. �94� and �95�. Such an
extended two-level configuration interaction approach
to the probability amplitudes C0�t� and Cres�t� associated
with the zero-energy mode of an atom pair and its
depletion, respectively, is given by �Góral et al., 2004;
Julienne et al., 2004�

i � Ċ0�t� = E0C0�t� + �N/V�1/2gres
* C0

*�t�Cres�t� , �132�

i � Ċres�t� = Eres�t�Cres�t� + �N/V�1/2gresC0
2�t� . �133�

Here N is the total number of atoms of the homoge-
neous gas in the volume V. The interchannel coupling is
determined by the matrix element

gres = �2� � �3/2��res�W��0
�+�� , �134�

in accordance with Eqs. �94�, �95�, and �129�. Similarly to
the two-body configuration interaction approach, Eqs.
�132� and �133� lead to a constant of motion �C0�t��2
+ �Cres�t��2=1. This implies an interpretation of the quan-
tities N �C0�t��2 and N �Cres�t��2 in terms of the number of
atoms associated with the remnant Bose-Einstein con-
densate and correlated pairs, respectively. The nonlinear
nature of Eqs. �132� and �133� in terms of the Bose en-
hancement factor �N /V�1/2C0�t� ensures consistency with
Eq. �130� and, therefore, accounts for the surrounding
gas.

The long-time asymptotic populations may be esti-
mated analytically based on a linearized version of Eqs.
�132� and �133� using a static Bose enhancement factor
�N /V�1/2 �Mies et al., 2000�. This treatment of the inter-
channel coupling neglects the time dependence of the
depletion of condensed atoms and leads to dynamical
equations formally equivalent to those of the two-body
Landau-Zener approach. In accordance with Eq. �130�,
the associated Landau-Zener coefficient is given by

�LZ
BEC = �N/V�

4��

m � abg�B

Ḃ
� = N�LZ. �135�

The asymptotic condensate depletion and its remnant
uniform density can be inferred from Eqs. �124� and
�125�, respectively, using �LZ

BEC instead of �LZ.
An approach similar to Eqs. �132� and �133� but appli-

cable to trapped gases beyond a local-density treatment
was derived on the basis of a mean-field approximation
�Drummond et al., 1998; Tommasini et al., 1998; Timmer-
mans et al., 1998, 1999a�. The associated many-body
model Hamiltonian was originally introduced in the con-
text of superconductivity �Ranninger and Robaszk-
iewicz, 1985; Friedberg and Lee, 1989�. This procedure
leads to the following dynamical equations:

i � �̇�x,t� = HGP��x,t� + gres
* �*�x,t��res�x,t� , �136�

i � �̇res�R,t� = Hres�t��res�R,t� + gres�
2�R,t� . �137�

Here the background scattering is included in terms of
the usual Gross-Pitaevskii mean-field Hamiltonian HGP
in the contact pseudo-interaction approximation �Gross,
1961; Pitaevskii, 1961�. Given a spherically symmetric
harmonic atom trap, HGP therefore consists of the fol-
lowing contributions:

HGP = −
�2�2

2m
+

m

2
�ho

2 �x�2 +
4��2

m
abg���x,t��2. �138�

Typical frequencies �ho=�ho/2� associated with such
comparatively weakly confining traps are on the order of
100 Hz. The generalized resonance energy Hres�t� con-
tains the center-of-mass kinetic energy of correlated
pairs as well as a magnetic-field shift from Bres to the
measurable position of the singularity of the scattering
length. Its explicit expression reads

Hres�t� = −
�2�2

4m
+ m�ho

2 �R�2 + �res	B�t� − B0
 . �139�

The mean fields ��x , t� and �res�R , t� refer to the ampli-
tudes of the densities of atoms in the condensate at the
position x and of correlated pairs with the center of mass
R, respectively. Similarly to the configuration interaction
approach, Eqs. �136� and �137� give rise to a constant of
motion consistent with the conservation of the total
number of atoms,

� dx���x,t��2 +� dR��res�R,t��2 = N . �140�

Since its first applications in the context of Feshbach
resonances in the physics of cold gases, this two-level
mean-field approach has been continually extended to a
variety of physical situations �van Abeelen and Verhaar,
1999; Góral et al., 2001; Holland et al., 2001; Duine and
Stoof, 2003b; Yurovsky and Ben-Reuven, 2003b�.

Figure 20 shows that Eqs. �136� and �137� give reason-
able agreement with the loss of condensed atoms ob-
served in experiments involving zero-energy resonances
of 23Na �Stenger et al., 1999�. These measurements refer
to asymptotic upward sweeps of the Feshbach resonance
level across B0 leading to the production of unbound
correlated pairs of atoms �van Abeelen and Verhaar,
1999�. We note that Eqs. �136� and �137� account well for
the onset of atom loss over ranges of ramp speeds, which
differ by three orders of magnitude between the upper
and lower panels of Fig. 20. A similarly fair agreement
has been reported for predictions of several different
approaches �Mackie et al., 2002; Yurovsky and Ben-
Reuven, 2003a; Köhler et al., 2004� on the observed
atom loss of a Bose-Einstein condensate exposed to
magnetic-field sweeps across the 155 G zero-energy
resonance of 85Rb �Cornish et al., 2000�. The dashed
curves in Fig. 20 indicate the asymptotic Landau-Zener
predictions based on the coefficient of Eq. �135� and the
local-density approximation. Both theoretical ap-
proaches recover the asymptotic behavior of the loss of
condensed atoms in the case of fast sweeps given by Eq.
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�130�. Their functional forms differ in the opposite, adia-
batic limit of low ramp speeds �Góral et al., 2004; Ishkh-

anyan et al., 2004�, i.e., when the parameter 1/ �Ḃ� in Fig.
20 increases. We note that both the two-level mean-field
approach and its associated Landau-Zener estimate of
asymptotic populations do not distinguish between
sweep directions. Consequently, the molecule produc-
tion in a downward sweep of the Feshbach resonance
level is treated symmetrically to the heating of the gas in
an upward sweep.

While Eqs. �132� and �133� refer to a genuinely two-
level system, the two-level mean-field approach accounts
for the background scattering continuum, in principle,
through the parameter abg of the mean-field Hamil-
tonian of Eq. �138�. Such a contact pseudo-interaction
treatment presupposes a separation between the typical
time scales associated with the evolution of the Bose-
Einstein condensate and the diatomic collisional dura-
tion �Proukakis et al., 1998; Köhler and Burnett, 2002�.
Accordingly, the two-level mean-field approach can be
derived in terms of the Markov limit of microscopic
many-body theories of dilute gases �Góral et al., 2004�
outlined in Sec. V.C. The assumption of a separation of
time scales between two- and many-body evolutions is
violated during a magnetic-field sweep across a singular-

ity of the scattering length. This implies that Eqs. �136�
and �137� can describe the dynamics, at most, in the
asymptotic regime where the dilute gas parameter
	N �a�B��3 /V
1/2 is small compared to unity. Similarly to
the limitations of the two-body Landau-Zener model,
the intermediate evolution of a Bose-Einstein conden-
sate is influenced by phenomena beyond the range of
validity of the mean-field approximation �Holland et al.,
2001; Góral et al., 2004; Köhler et al., 2004�. While most
theoretical approaches agree in their predictions on the
condensate loss in the fast sweep limit of Eq. �130�, the
saturation of molecule production is a matter of ongoing
research �Naidon and Masnou-Seeuws, 2003, 2006�.

C. Molecule production in cold Bose and Fermi gases

Cold Bose and two-spin-component Fermi gases are
subject to a considerable momentum spread, which gen-
erally tends to reduce the efficiency of molecule produc-
tion via linear magnetic-field sweeps across a zero-
energy resonance. Its significance is particularly obvious
in the case of slow asymptotic sweeps, given the spec-
trum of dressed energies of an atom pair illustrated in
Fig. 18. Only the v=0 mode adiabatically correlates with
the Feshbach molecular level when the resonance en-
ergy is decreased, while all excited states undergo cool-
ing transitions. From this too simplistic viewpoint, for
instance, two spin components of a dilute vapor of
Fermi atoms distributed according to the Pauli exclusion
principle would produce just a single molecule in the
adiabatic limit of the ramp speed. Contrary to the case
of Bose-Einstein condensates, binary physics alone is
therefore not even sufficient to qualitatively explain the
observed substantial molecule production in such gases
�Regal et al., 2003a; Strecker et al., 2003�.

1. Transitions from continuum to bound states

A quantitative analysis of the problems associated
with the theoretical description of molecule production
in the presence of momentum spread may be based on
the exact treatment of linear magnetic-field sweeps of
Sec. IV.A. Accordingly, the probability for transitions
from an initial dressed continuum level of a pair of dis-
tinguishable atoms in a periodic box of volume V to the
Feshbach molecular state at the final magnetic-field
strength is given by

pass�k� =
�2� � �3

V
���b

f �U2B�tf,ti����k
i ��2. �141�

Here the arguments of the two-body time evolution op-
erator ti and tf refer to the initial and final times of the
sweep, respectively, and �k denotes the initial relative
momentum of the atoms. Similarly to the derivation of
Eq. �123�, the asymptotic transition probability including
the background scattering continuum can be determined
analytically using the stationary phase approach in Eq.
�141� in the limits ti→−� and tf→�. This yields

FIG. 20. �Color online� Loss of condensate atoms in upward
sweeps of the Feshbach resonance level across the 853 and
907 G zero-energy resonances of 23Na vs the inverse ramp
speed 1/ �Ḃ� �Stenger et al., 1999�. Experimental data are com-
pared to theoretical predictions using the Landau-Zener �Mies
et al., 2000; Góral et al., 2004� and two-level mean-field �van
Abeelen and Verhaar, 1999� approaches. The theoretical
Feshbach resonance parameters employed refer to the values
of abg and �B given in Tables IV and V. Note the differences
in ramp speeds of three orders of magnitude between the up-
per and lower panels, which reflect the different widths of the
853 and 907 G zero-energy resonances.
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pass�k� =
�2� � �3

V
2�

� �Ėres�
���res�W���k

�+���2e−2 Im ��zi,ti�.

�142�

Here zi=�2k2 /m+ i0 denotes the regularized energy ar-
gument of the initial phase. In accordance with Eqs.
�110�, �118�, and �53�, the exponent of Eq. �142� is deter-
mined by the formula

Im ��zi,ti� =
��2

�Ėres�
� dk���k − k�����res�W���k�

�+� ��2.

�143�

Here the step function of wave numbers ��k−k�� indi-
cates that transitions occur just in the intuitive, down-
ward direction of an asymptotic sweep across B0
�Demkov and Osherov, 1968�. According to Eq. �143�,
the exponential damping of Eq. �142� increases in the

limit �Ėres � →0. This confirms the intuitive picture sug-
gested by Fig. 18 that adiabatic sweeps in a diatomic
system with a continuum of modes eventually lead to
negligible molecule production. While the momentum
dependence of the exponent in Eq. �143� recovers ex-
perimental dissociation spectra �Mukaiyama et al., 2003�,
in the context of molecular association in cold gases Eq.
�142� gives rise to exact predictions just in the fast sweep
limit.

2. Fast sweep limit of molecule production

The onset of molecule production in asymptotic
magnetic-field sweeps across zero-energy resonances is
sensitive to the statistics associated with identical atoms.
Section V.B provides a strict approach to the determina-
tion of dimer populations on the basis of the two-
particle correlation function of the gas. Similarly to the
prediction of the loss of condensed atoms of Eq. �130�,
however, low depletions can be inferred intuitively from
the fast sweep limit of Eq. �142�, treating the gas as a

reservoir of atom pairs. In the limit �Ḃ � →�, the damp-
ing term of Eq. �143� describing cooling transitions into
continuum levels below the initial energy �2k2 /m van-
ishes. In the context of cold collisions within the Wigner
threshold law regime, the matrix element involving the
interchannel coupling in Eq. �142� may be evaluated at
k=0. Consequently, the transition probability of Eq.
�142� becomes momentum independent and recovers the
result of the Landau-Zener approach pass=2��LZ.

For the purpose of studies involving s-wave collisions,
Fermi gases are usually prepared as incoherent mixtures
of two different Zeeman states with occupation numbers
N1 and N2. Accordingly, N=N1+N2 is the total number
of atoms. Each of the N1 atoms of the first component
has N2 atoms of the second component to interact with
via s-wave collisions. Classical probability theory and
the incoherent nature of the initial state, therefore, lead
to the following estimate for the number of diatomic
Feshbach molecules produced in the fast sweep limit
�Chwedeńczuk et al., 2004�:

Nd
f = 2�N1N2�LZ. �144�

We note that the two-body Landau-Zener coefficient,
given explicitly by the right-hand side of Eq. �135�, is
inversely proportional to the volume V of the periodic
box. The fraction of molecules Nd

f /N is therefore pro-
portional to the density N /V which allows for an exten-
sion of Eq. �144� to inhomogeneous gases via the local-
density approximation.

Given a balanced mixture of Zeeman states, i.e.,
N1=N2=N /2, Eqs. �144� and �131� show that the onset
of molecule production in a Fermi gas is half as large as
in a Bose-Einstein condensate of identical density and
resonance parameters. In the limit of zero temperature,
such a dilute, initially weakly interacting vapor of atoms
may be approximately described by a pair of filled Fermi
seas. As fast magnetic-field sweeps imply small atomic
depletions, it may be argued intuitively that two-body
cooling transitions leading into occupied modes below
the Fermi energy are suppressed by the Pauli exclusion
principle. This suggests a description of the two-spin-
component Fermi sea in terms of a single level over a
significant range of ramp speeds. The associated
Landau-Zener approach �Chwedeńczuk et al., 2004�,
consistent with the linear limit of Eq. �144�, is illustrated
in Fig. 21 in comparison with experiments on asymptotic
magnetic-field sweeps across the 543 G zero-energy
resonance of 6Li �Strecker et al., 2003�. Accordingly, sup-

FIG. 21. �Color online� Fraction of remnant atoms 1−2Nd
f /N

at the end of asymptotic magnetic-field sweeps across the
closed-channel-dominated 543 G zero-energy resonance of 6Li
vs the inverse ramp speed �Strecker et al., 2003�. The solid
curve refers to a Landau-Zener estimate for the onset of mol-
ecule production in the fast sweep limit �Chwedeńczuk et al.,
2004� using the local-density approximation. Inset: The mo-
lecular conversion 2Nd

f /N observed in a thermal Bose gas with
a mean density of 1.3�1011 atoms/cm3 and a temperature of
40.6 nK using magnetic-field sweeps across the 155 G zero-
energy resonance of 85Rb �Hodby et al., 2005�. For comparison,
the dashed curve indicates the pairwise ensemble average over
the transition probabilities 2pass�k� with respect to the Maxwell
distribution of relative velocities. This semiclassical estimate
for the onset of molecule production in Bose gases is based on
Eq. �142� and is therefore consistent with the limit of Eq. �145�.
Both solid and dashed curves are associated with the param-
eters abg and �B of Tables IV and V, respectively.
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pression of cooling transitions gives an intuitive explana-
tion for the onset of a substantial molecule production in
two-spin-component Fermi gases.

In thermal Bose gases, each one of the N constituents
can interact with all the other N−1 atoms to form a
dimer Feshbach molecule. As opposed to the zero-
energy mode of condensed pairs, diatomic wave func-
tions in the presence of momentum spread need to be
explicitly symmetrized, which enhances the association
probability of Eq. �141� in the thermal average by a fac-
tor of 2 �Stoof et al., 1989�. As the number of interacting
pairs is N�N−1� /2�N2 /2, the fast sweep limit of the
number of Feshbach molecules produced in a thermal
Bose gas is given by

Nd
f = 2�N2�LZ. �145�

This estimate is illustrated in the inset of Fig. 21 in com-
parison with experiments associated with thermal clouds
of 85Rb �Hodby et al., 2005�. We note that a similar en-
hancement of dimer formation in thermal Bose gases as
compared to condensates was observed in the context of
inelastic three-body recombination and reflects correla-
tion properties �Kagan et al., 1985; Burt et al., 1997�.

According to Eqs. �144�, �131�, and �145�, the onsets of
molecule production increase by factors of 2 between
balanced two-spin-component Fermi gases, Bose-
Einstein condensates, and thermal Bose gases of identi-
cal densities and resonance parameters. The validity of
these statistical estimates based on two-body physics de-
pends on the significance of multiple collisions of each
atom during a magnetic-field sweep. This implies that
the range of ramp speeds described by fast sweep limits
depends on the density of the gas in addition to the
specific nature of the Feshbach molecules associated
with entrance- and closed-channel-dominated zero-
energy resonances. Predictions accessing wider ranges of
ramp speeds require many-body approaches �Jav-
anainen et al., 2004; Pazy et al., 2004, 2005; Williams,
Nikuni, et al., 2004, Williams, Nygaard, and Clark, 2004�.

3. Saturation of molecule production

Magnetic-field sweeps sufficiently slow to convert up
to 88% of atoms into Feshbach molecules were em-
ployed to produce Bose-Einstein condensates of dimers
from balanced two-spin-component mixtures of 40K
Fermi atoms �Greiner et al., 2003�. Figure 4 shows a typi-
cal density profile of such a final molecular cloud �right
image� compared with a thermal distribution �left im-
age�. Motivated by the theory of ideal Bose gases, the
conditions for condensation in these experiments are
likely to depend on the phase space density na

i �th
3 asso-

ciated with the initial dilute atomic gas of density na
i and

temperature T. Here �th= �2��2 /mkBT�1/2 is the thermal
de Broglie wavelength. Given the experimental densities
on the order of 1013 atoms/cm3 and the 202 G zero-
energy resonance parameters, magnetic-field sweeps
with low ramp speeds of typically 160 G/s �Greiner et
al., 2003� may be considered to be adiabatic. Such pro-
cesses smoothly alter diatomic wave functions but are

not necessarily expected to change the occupation of
states in phase space. It is therefore plausible that not
only the condition for molecular condensation but also
the saturated production efficiency 2Nd

f /N is determined
just by the phase-space density rather than the number
of atoms or their temperature individually.

Subsequent systematic studies of adiabatic magnetic-
field sweeps in both two-spin-component Fermi gases of
40K and thermal Bose gases of 85Rb have supported this
view �Hodby et al., 2005�. The measured molecule pro-
duction efficiencies of Fig. 22 were analyzed in terms of
a stochastic model assuming that the probability for two
atoms to form a dimer depends solely on their proximity
in phase space. Based on experimental data, the associ-
ated proximity conditions turned out to be virtually
identical for both atomic species 40K and 85Rb. These
observations can be understood from first principles us-
ing coupled Boltzmann equations for the Wigner func-
tions associated with density matrices of separated at-
oms and pairs in the resonance state configuration
�Williams et al., 2006�. Figure 22 illustrates the accuracy
of this approach including quantum statistical effects
�Bloch, 1928; Uehling and Uhlenbeck, 1933� as well as
its classical gas limit.

Similar experiments using adiabatic magnetic-field
sweeps across the 834 G zero-energy resonance in cold
two-spin-component Fermi gases of 6Li yielded up to
80% Feshbach molecular conversion �Cubizolles et al.,
2003�. Such observations were analyzed in terms of the-
oretical approaches based on the assumption of thermal
equilibrium throughout the sweep �Chin and Grimm,
2004; Kokkelmans et al., 2004�. In the magnetic-field

FIG. 22. �Color online� Molecular production efficiency
2Nd

f /N vs peak phase-space density of cold Bose as well as
two-spin-component Fermi gases. Circles are dimer popula-
tions measured at the end of adiabatic magnetic-field sweeps
across the zero-energy resonances of 85Rb at 155 G �inset� and
of 40K at 202 G �Hodby et al., 2005�. Curves indicate predic-
tions �Williams et al., 2006� based on coupled Boltzmann equa-
tions including quantum statistical effects �solid curve� as well
as their associated classical gas limit �dashed curves�. For com-
parison, the square and diamond refer to molecular production
efficiencies observed for the lowest ramp speeds in earlier
sweep experiments using zero-energy resonances of 40K at
224 G �Regal et al., 2003a� and of 6Li at 543 G �Strecker et al.,
2003�, respectively.
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range of positive scattering lengths about B0, the Fesh-
bach molecular level gives rise to a local minimum of the
many-particle action �Szymańska et al., 2005� which is
associated with a metastable state. As this state is ener-
getically favorable to a gas of separated atoms, it may be
argued intuitively that production of dimer molecules
should also occur at a stationary magnetic-field strength
when the system equilibrates. This principle has been
employed to convert balanced incoherent two-spin-
component mixtures of 6Li atoms into dilute vapors of
Feshbach molecules �Jochim et al., 2003a�. While energy
conservation inevitably leads to components of com-
paratively hot atoms and dimers, the stability of univer-
sal Feshbach molecules discussed in Sec. III.E allows
such gases to be cooled by evaporation. The associated
increase in phase space density provides an alternative
route to the Bose-Einstein condensation of 6Li2 �Jochim
et al., 2003b; Zwierlein et al., 2003� besides the approach
of adiabatic magnetic-field sweeps.

D. Dissociation of Feshbach molecules

Asymptotic upward sweeps of the resonance energy
lead to the dissociation of Feshbach molecules, which
often serves as a precursor to their detection. To this
end, a molecular component is usually spatially sepa-
rated from the environment of a remnant atomic gas
using, for instance, the Stern-Gerlach technique illus-
trated in Sec. III.G. After this separation, dissociation
allows fragments to be detected conventionally using
probe lasers tuned to resonance with an atomic spectral
line. The energy provided by the time-varying homoge-
neous magnetic field during the sweep is transferred
to the relative motion of the atomic constituents of a
Feshbach molecule. Such correlated atom pairs with a
relative velocity depending on the ramp speed were de-
tected in several experiments �Mukaiyama et al., 2003;
Dürr, Volz, and Rempe, 2004; Volz et al., 2005�. Their
spectrum of kinetic energies of the relative motion is
given by

ndiss��2k2/m� =
m � k

2
� d ����k

f �U2B�tf,ti���b
i ��2.

�146�

Here d denotes the angular component of dk describ-
ing the direction of the momentum �k, while ��b

i � and
���k

f � are bound and dressed continuum states associated
with the initial and final magnetic-field strengths, respec-
tively.

Similarly to the derivation of Eqs. �142� and �143�, the
energy spectrum of Eq. �146� can be determined analyti-
cally in the asymptotic limits ti→−� and tf→�. As dis-
sociation and association are related to each other by
time reversal, their transition probability densities are
identical. Typical energies �2k2 /m of atomic fragments
are on the order of �K in units of the Boltzmann con-
stant which is usually inside the Wigner threshold law
regime, i.e., k �abg � �1. This implies that the matrix ele-
ments involving the interchannel coupling in Eqs. �142�

and �143� can be evaluated at k=0 and k�=0, respec-
tively. Consequently, the asymptotic dissociation spec-
trum of Eq. �146� is well approximated by �Mukaiyama
et al., 2003; Góral et al., 2004�

ndiss�E� = −
�

�E
exp�−

4
3
�mE

�2

�abg�B�E

� �Ḃ�
� . �147�

We note that the integral of Eq. �147� over all kinetic
energies E of the relative motion gives unity. This im-
plies that Feshbach molecules are dissociated with cer-
tainty in an asymptotic upward sweep of the resonance
energy, provided that transitions to the highest excited
entrance-channel vibrational level are negligible.

According to Eq. �147�, the width of the dissociation
spectrum increases with increasing ramp speeds. The as-
sociated single-particle kinetic energies are usually in-
ferred from the velocities of the fragments, which con-
stitute a radially expanding cloud of atoms. Their
average Ediss amounts to one-half of the mean energy of
the relative motion of all correlated pairs given in terms
of Eq. �146� by

Ediss =
1
2�0

�

dEEndiss�E� . �148�

Accordingly, the Wigner threshold law approximation of
Eq. �147� determines Ediss to be

Ediss =
1
3
�3

4
� �2

mabg
2

� �Ḃ�
��B�

�2/3

��2/3� . �149�

Figure 23 illustrates the accuracy of the predictions of
Eq. �149� on average dissociation energies detected at
the end of asymptotic magnetic-field sweeps across the
907 G zero-energy resonance of sodium �Mukaiyama et
al., 2003�. While the solid curve refers to independently
determined parameters abg and �B �Mies et al., 2000�,
the good agreement with the measurements has moti-
vated experiments using molecular dissociation to char-

FIG. 23. �Color online� Mean energies of the atomic fragments
of 23Na2 Feshbach molecules dissociated by a linear upward
sweep of the 907 G resonance level vs the ramp speed. Circles
indicate experimental data �Mukaiyama et al., 2003� while the
solid curve refers to the predictions of Eq. �149� using the pa-
rameters abg and �B of Tables IV and V, respectively.
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acterize resonances �Dürr, Volz, and Rempe, 2004; Br-
ouard and Plata, 2005�.

We note that the asymptotic energy spectrum of Eq.
�147� depends just on the product abg�B, which, accord-
ing to Eq. �39�, determines near-resonant scattering
lengths in the universal regime of magnetic-field
strengths. A similar statement applies to Landau-Zener
coefficients as well as the long-time asymptotic occupa-
tions predicted by the two-level mean-field approach
�Góral et al., 2004�. In the limits ti→−� and tf→� the
number of correlated atom pairs produced by linear
magnetic-field sweeps is, therefore, insensitive to the pa-
rameters �res and B0−Bres which directly refer to prop-
erties of the resonance level. This suggests that such
populations can be inferred from any one of the single-
channel approaches outlined in Secs. III.F and III.G,
which give the correct magnetic-field dependence of the
scattering length �Góral et al., 2004; Köhler et al., 2004�.
All derivations of the exact diatomic dynamics associ-
ated with linear magnetic-field sweeps of Sec. IV.A may
be performed, for instance, using a single-channel
Hamiltonian with a time-dependent separable potential.
Despite the fact that such a two-body interaction is not
suited to describe closed-channel-dominated Feshbach
molecular states, it exactly recovers the asymptotic dis-
sociation spectrum of Eq. �147�.

In accordance with Eq. �122�, the range of validity of
the limits ti→−� and tf→� in applications to linear
sweeps is determined by the accuracy of the stationary
phase approach. Given a fixed ramp speed, this approxi-
mation is violated when the sweep starts or terminates
too close to B0 for the variation of the phases in Eq.
�113� to produce sufficiently many oscillations of the
complex exponential functions. We note that according
to Eq. �119� the phase gradient with respect to the en-

ergy parameter is proportional to 1/ Ḃ. This implies that
slow sweeps tend to require smaller ranges of magnetic-
field strengths about B0 for the asymptotic limits to be
applicable. Conversely, the faster a sweep, the more it
resolves details of both the intermediate dynamics and
the initial and final states.

In the idealized limit of a jump of the magnetic-field
strength across B0, the Feshbach molecular dissociation
spectrum of Eq. �146� just probes the overlap of the
dressed initial bound and final continuum states. Such a
scenario has been realized using a narrow closed-
channel-dominated zero-energy resonance of 87Rb
�Dürr, Volz, and Rempe, 2004�. In these experiments,
the initial magnetic-field strength was chosen such that
the Feshbach molecule was virtually identical to the
resonance state ��res , cl�. According to Eq. �33�, this im-
plies that the dissociation spectrum is determined by the
modulus squared of the amplitude of Eq. �34�, i.e.,
ndiss�p2 /m�2/mp=4� �A�Bf ,p2 /m��2. Its resonance de-
nominator gives rise to a sharp maximum at Eres�Bf�
�Dürr, Volz, and Rempe, 2004; Haque and Stoof, 2005�
slightly shifted by the real part of Eq. �54�, while the
associated imaginary part yields the spectral width. Such
dissociation jumps across B0 using a resonance state of

d-wave symmetry can populate several outgoing partial
waves of the atomic fragments. This approach was em-
ployed, for instance, for the spectroscopy of a d-wave
shape resonance �Dürr et al., 2005; Volz et al., 2005�.

V. ATOM-MOLECULE COHERENCE

Besides the production of Feshbach molecules via
asymptotic linear sweeps across B0, several approaches
to date rely upon ramp sequences �Mark et al., 2005;
Yurovsky and Ben-Reuven, 2005� or resonant oscillating
magnetic fields �Thompson et al., 2005a�. Such experi-
mental techniques are designed to improve the effi-
ciency of dimer formation in Bose gases mainly by
avoiding the region of large scattering lengths and ac-
cordingly strong interatomic interactions. The associated
nonlinear magnetic-field variations lead to dependences
of the molecular population on properties of zero-
energy resonances beyond those included in the
Landau-Zener parameter.

A. Ramsey interferometry with atoms and molecules

Pulses starting and ending on the positive scattering
length side of a zero-energy resonance �Claussen et al.,
2002� are of particular interest in this context. Their re-
peated application to a 85Rb Bose-Einstein condensate
gives rise to coherent oscillations between the final com-
ponents of separated atoms and Feshbach molecules of
Fig. 2 �Donley et al., 2002; Claussen et al., 2003�.

1. Magnetic-field pulse sequence

A typical experimental pulse sequence �Donley et al.,
2002� is illustrated in Fig. 24. The associated magnetic-
field strengths B are on the high-field side of the 155 G
zero-energy resonance of 85Rb where the scattering
length is positive. Consequently, the interatomic poten-
tial supports a loosely bound dimer state whose energy
as a function of B is shown in Fig. 12. Converting pairs
of Bose-Einstein condensed atoms to Feshbach mol-

FIG. 24. �Color online� Typical magnetic-field pulse sequence
�solid lines� used in experiments producing coherent oscilla-
tions between final atomic and molecular components in a
85Rb Bose-Einstein condensate �Donley et al., 2002�. A pair of
pulses with a minimum field strength Bmin=155.5 G is sepa-
rated by an evolution period of variable duration tevolve and
field strength Bevolve. The zero-energy resonance position
B0�155 G is indicated by the dashed line.
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ecules in these experiments crucially depends on the in-
termediate order-of-magnitude variations of the scatter-
ing length a�B� and, accordingly, of the dimer bond
length �r��a�B� /2. The pulse sequence of Fig. 24 starts
at the 162 G evaporation field strength at which a dilute
85Rb Bose-Einstein condensate is usually produced
�Cornish et al., 2000� with a scattering length of about
200aBohr. Given the experimental mean interatomic dis-
tance of about 12 000aBohr, the gas is initially therefore
weakly interacting. Each pulse tunes the scattering
length to a�Bmin��9000aBohr on time scales too short for
the Bose-Einstein condensate to adjust its density. Con-
sequently, at the magnetic-field strength Bmin closest to
the zero-energy resonance, the gas is driven into the re-
gime of strong interatomic interactions. During the
course of the experiments �Donley et al., 2002; Claussen
et al., 2003�, the stationary field Bevolve associated with
the evolution period separating the pulses as well as the
duration tevolve were varied. The variation of Bevolve be-
tween 156 and 162 G corresponds to the range of Fesh-
bach molecular binding energies displayed in the inset of
Fig. 12 with associated scattering lengths between about
4000aBohr and 200aBohr.

All measurements probing the densities of atoms were
performed after each pulse sequence had terminated
and therefore reflect the state of the weakly interacting
gas with a final magnetic-field strength of about 162 G in
Fig. 24. According to these observations, the fast
magnetic-field variation gives rise to the three compo-
nents of the atomic cloud illustrated in Fig. 2. The occu-
pation numbers associated with the remnant Bose-
Einstein condensate, burst component, and undetected
atoms all oscillate with respect to each other as a func-
tion of the evolution time tevolve. It turned out that their
common angular frequency �e is accurately determined
by the Feshbach molecular energy in the evolution pe-
riod Eb

evolve via �e= �Eb
evolve � /�. Donley et al. �2002�

concluded that undetected atoms were transferred into
Feshbach molecules whose fast phase evolution as com-
pared to the atomic components leads to interference
fringes in the final occupations.

In accordance with such an intuitive explanation, the
first pulse provides overlap between the dimer size and
the average distance between condensed atoms, which is
crucial to molecular association. As this fast magnetic-
field variation is not resonant with the binding energy, it
inevitably leads to additional production of excited atom
pairs which constitute a burst of atoms. During the evo-
lution period, all components of the weakly interacting
gas evolve independently and coherently and therefore
accumulate a phase difference ��=�etevolve. Finally, the
second pulse forces the Feshbach molecules and sepa-
rated atoms to overlap once again and thereby probes
�� via an interference in their occupations. This intui-
tive scenario is analogous to a Ramsey interferometer
using pairs of separated atoms and Feshbach molecules
�Donley et al., 2002; Zoller, 2002�, as illustrated in Fig.
25.

2. Dynamics of a single atom pair

In analogy to Sec. IV.C, the observations of Fig. 2 can
be qualitatively understood in terms of a single pair of
atoms �Borca et al., 2003; Góral et al., 2005� in a periodic
box of volume V. To this end, the two-body time evolu-
tion operator of Eq. �98� associated with the magnetic-
field variation of Fig. 24 may be split into its contribu-
tions of the first and second pulse as well as the
evolution period. This yields

U2B�tf,ti� = U2�tf,t2�Uevolve�tevolve�U1�t1,ti� . �150�

Here the first pulse starts at the initial time ti and termi-
nates at t1, while t2= t1+ tevolve indicates the beginning of
the second pulse which ends at the final time of the se-
quence tf. Accordingly, U1�t1 , ti� and U2�tf , t2� describe
the two-body dynamics during the first and second pulse,
respectively. In between the pulses the magnetic-field
strength is stationary, in accordance with Fig. 24. This
implies that the associated time evolution operator
Uevolve�tevolve� depends just on the duration tevolve. Its
spectral decomposition in terms of dressed states of the
relative motion of an atom pair exposed to the magnetic
field of strength Bevolve is given by

Uevolve�tevolve� = 
v=−1

�

��v
evolve�e−iEv

evolvetevolve/�

���v
evolve� . �151�

Here the index v labels the vibrational quantum num-
bers of the box states such that ��−1

evolve� correlates
adiabatically, in the limit of infinite volume V, with the
Feshbach molecular dressed state ��b

evolve�. Accordingly,

FIG. 25. �Color online� Schematic illustration of the Ramsey
interferometry with 85Rb atoms and Feshbach molecules asso-
ciated with the magnetic-field pulse sequence of Fig. 24 �Don-
ley et al., 2002; Zoller, 2002�. The first pulse drives the initial
Bose-Einstein condensate into a coherent superposition of
bound and unbound atom pairs. Between the pulses, the indi-
vidual orthogonal components evolve independently. The sec-
ond pulse forces the atomic and molecular states to overlap
and thereby probes their phase difference. Inset: A typical in-
terference fringe pattern at the end of the pulse sequence as a
function of the evolution time tevolve. Circles refer to measure-
ments of the remnant Bose-Einstein condensate �Claussen et
al., 2003�, while squares indicate theoretical predictions �Góral
et al., 2005�.
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the associated vibrational energy levels are denoted by
Ev

evolve, which implies the asymptotic behavior E−1
evolve

�Eb
evolve with increasing V. The more tightly bound

states associated with vibrational quantum numbers v
	−1 contribute negligibly to the fringe pattern of Fig. 25
and are therefore omitted in Eq. �151�.

Similarly to the treatment of Sec. IV.C, the interfer-
ence fringes in the population of the remnant conden-
sate component shown in the inset of Fig. 25 can be
described in terms of the following transition probabil-
ity:

p0,0 = ���0
f �U2B�tf,ti���0

i ��2. �152�

To this end, it is instructive to split the associated ampli-
tude, in accordance with Eq. �151�, into its contributions
of the vibrational states with quantum numbers v!0
and of the Feshbach molecule. This yields

��0
f �U2B�tf,ti���0

i � = D2B + A2B. �153�

Due to the quasicontinuum of levels, the first term D2B
on the right-hand side of Eq. �153� tends to decay via
phase diffusion as a function of tevolve. Its explicit expres-
sion reads

D2B = 
v=0

�

��0
f �U2�tf,t2���v

evolve�e−iEv
evolvetevolve/�

� ��v
evolve�U1�t1,ti���0

i � . �154�

The magnitude of the second term A2B on the right-
hand side of Eq. �153� depends on the product of the
amplitudes for Feshbach molecular association during
the first pulse and dissociation into the zero mode due to
the second pulse. Its evolution as a function of tevolve
stems from the phase shift associated with the energy
E−1

evolve, in accordance with

A2B = ��0
f �U2�tf,t2���−1

evolve�e−iE−1
evolvetevolve/�

� ��−1
evolve�U1�t1,ti���0

i � . �155�

The modulus squared of the sum of interfering ampli-
tudes D2B and A2B therefore leads to the anticipated
fringe pattern in its usual form,

p0,0 = �D2B�2 + �A2B�2 + 2�D2B��A2B�sin��etevolve + �� ,

�156�

in agreement with Fig. 25. Here the angular frequency
�e= �E−1

evolve � /� is determined by the Feshbach molecular
binding energy. The absolute phase � is associated with
both amplitudes A2B and D2B and depends sensitively
on the exact shape of each pulse. A similar statement
applies to the efficiency of dimer production and disso-
ciation which are both crucial to the fringe visibility, ac-
cording to Eqs. �155� and �156�.

Populations of Feshbach molecules as well as the
burst spectrum composed of excited dressed levels at the
final magnetic-field strength may be inferred from the
associated transition probabilities, similarly to Eq. �156�.
Their pairwise averages in a volume V in addition to a
subsequent local-density approximation give a good ac-

count of the magnitudes of all gas components shown in
Fig. 2 �Góral et al., 2005�. The range of validity of such a
two-body estimate is set by the requirement that Bevolve
is sufficiently far from B0 that the mean distance be-
tween atoms is much larger than the scattering length
during the evolution period. As the 155 G zero-energy
resonance of 85Rb is entrance-channel-dominated, the
two-body dynamics is well described in terms of both the
effective two- and single-channel approaches of Sec.
III.G �Köhler, Gasenzer, and Burnett, 2003; Góral et al.,
2005�. We note, however, that the contact pseudo-
interaction is insufficient. This is immediately apparent,
for instance, from the inaccuracy of the universal esti-
mate of the binding energy in the inset of Fig. 12, whose
experimental data were determined using measured
fringe frequencies �Claussen et al., 2003�. The interfer-
ence experiments are therefore sensitive to the van der
Waals tail of the interatomic potential, which is not ac-
counted for in the Landau-Zener parameter associated
with asymptotic linear magnetic-field sweeps.

B. Number of dimers produced in Bose and Fermi gases

Another significant difference in the descriptions of
linear sweep and magnetic-field pulse techniques is asso-
ciated with the Feshbach molecular state. The results of
Sec. IV.A suggest that the number of dimers produced
via asymptotic magnetic-field sweeps may be inferred
from two-level approaches effectively identifying
dressed Feshbach molecules with bare resonance states.
For the Ramsey interference experiments �Donley et al.,
2002; Claussen et al., 2003� operating just in the vicinity
of the zero-energy resonance, a maximum final molecu-
lar conversion of about 16% was reported under the
conditions referred to in Fig. 2. The closed-channel ad-
mixture to the dressed bound state, however, is approxi-
mately 25% at the final magnetic-field strength of 162 G
�Köhler et al., 2004� and even smaller throughout the
pulse sequence �Braaten et al., 2003; Köhler, Gasenzer,
Julienne, and Burnett, 2003�. In order to predict the ob-
served number of dimers, it is therefore necessary to
include the long-range nature of Feshbach molecules
produced in the description of their detection.

An associated generic approach suitable for both
magnetic-field sweeps and pulse sequences may be
based on the following observable for the population of
any diatomic state ��d� in a gas consisting of N atoms
�Köhler, Gasenzer, and Burnett, 2003�:

Nd =
1
2 

i,j=1
i�j

N

��ij
d���ij

d� . �157�

Here the indices i and j label the atoms, ��ij
d� refers to

the two-body state ��d� associated with the atoms i and j,
and the factor of 1/2 on the right-hand side of Eq. �157�
prevents double counting of pairs. Given any state of the
gas generally described by a density matrix "NB, the
number of atomic pairs in the state ��d� is consequently
determined by the following expectation value:
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Nd = �Nd� = Tr�Nd"NB� . �158�

Here the symbol Tr refers to the trace over the degrees
of freedom of all atoms constituting the gas.

Many-body systems consisting of identical atoms are
usually described using the approach of second quanti-
zation �Fetter and Walecka, 1971�. Accordingly, any
N-particle state is constructed by repeated application of
creation operators to the vacuum � �, which refers to
the absence of atoms. The associated field operators
#
�x� and #

†�y� annihilating and creating single atoms at
the positions x and y, respectively, fulfill the following
�anti�commutation relations:

#
�x�#
†�y�$ #

†�y�#
�x� = �
��x − y� . �159�

Here the minus sign is associated with bosons while the
plus sign refers to fermions, and the greek labels 
 and 
indicate their Zeeman states. Given the diatomic wave
function of the relative motion �


d �r�= �r ;
 , ��d�, the
second quantized representation of the number operator
of Eq. �157� reads

Nd =
1
2 

,,
�,�

� dR� dr� dr��

d �r�	�
��

d �r��
*

� #

†�x�#

†�y�#��y��#
��x�� . �160�

Here the single-particle coordinates are given in terms
of the center of mass and relative positions by x=R
+r /2, y=R−r /2, x�=R+r� /2, and y�=R−r� /2.

The approach of Eq. �160� was introduced in the con-
text of simulations of the Ramsey fringes given in Fig. 2
�Köhler, Gasenzer, and Burnett, 2003; Köhler, Gasenzer,
Julienne, and Burnett, 2003� and subsequently applied
to the molecule production via magnetic-field sweeps in
Bose �Góral et al., 2004� and Fermi gases �Perali et al.,
2005�. In accordance with Eq. �160�, the expectation
value of Eq. �158� depends on the two-body correlation
function,

G
��,

�2� �x�,y�;x,y� = �#


†�x�#
†�y�#��y��#
��x��� .

�161�

Here the average refers to the final state of the gas
"NB�tf�. In the context of the dimer production via fast
magnetic-field sweeps of Sec. IV.C, for instance, the dy-
namics of G�2� is determined simply by the two-body
evolution operator U2B�tf , ti� in the limit of short inter-
action times. Given an ideal gas initial state "NB�ti� asso-
ciated with either Bose or Fermi atoms, the exact form
of the initial two-body correlation function can be in-
ferred from Wick’s theorem of statistical mechanics
�Wick, 1950; Matsubara, 1955; Fetter and Walecka,
1971�. In the single resonance approach, the diatomic
channel wave functions of the Feshbach molecular state
occurring in Eq. �160� are determined in terms of the
entrance- and closed-channel components by



,

�
,��

b �r� = �bg��b

bg�r� + �cl��b
cl�r� . �162�

Based on these assumptions, the number of Feshbach
molecules predicted by Eq. �160� strictly confirms the
fast sweep limits of Eqs. �144�, �131�, and �145�, in par-
ticular, their coefficients associated with the identical na-
ture of the atoms. Besides these statistical estimates, the
general observable of Eq. �160� may be applied to a va-
riety of dynamical magnetic-field variations as well as
physical quantities. Given the associated two-body cor-
relation function, it recovers, for instance, not only the
measured maximum conversion into bound dimers of
about 16% in Fig. 2 but also the populations of corre-
lated pairs in continuum levels which constitute the
burst of atoms �Köhler, Gasenzer, and Burnett, 2003�. It
turns out that due to the nonlinear magnetic-field varia-
tion of Fig. 24, the determination of the time depen-
dence of G�2� requires a description via techniques be-
yond the two-level mean-field approach of Sec. IV.B.

C. Dynamics of partially condensed Bose gases

The precise many-body dynamics underlying all ob-
servations of Fig. 2 can be derived from the time-
dependent Schrödinger equation determined by the gen-
eral Hamiltonian �Fetter and Walecka, 1971�,

H = 


� dx#


†�x��−
�2

2m
�2 + E


a + V

ho�x��#
�x�

+ Hint. �163�

Here E

a refers to an atomic Zeeman energy whose typi-

cal magnetic-field dependence is illustrated in Fig. 17 for
the example of 87Rb, and V


ho�x� describes the harmonic
confinement due to an atom trap. For dilute gases, inter-
atomic interactions are predominantly pairwise which
implies the following potential energy contribution:

Hint =
1
2 

,,
�,�

� dx� dyV
,
���x − y�

� #

†�x�#

†�y�#��y�#
��x� . �164�

Here V
,
���x−y� denotes the two-body potential asso-
ciated with the incoming and outgoing spin channels
�
� ,�� and �
 ,�, respectively. We note that Eqs. �163�
and �164� are formulated sufficiently generally to treat
interatomic interactions on a microscopic level, similarly
to the coupled-channels theory of Sec. III.A. As a con-
sequence, the atomic Zeeman levels E


a appear sepa-
rately in Eq. �163�, while in the two-body Hamiltonian of
Eq. �16� the dissociation threshold energy associated
with the closed channel is included in the potential
Vcl�B ,r�. Accordingly, all interactions V
,
���x−y� van-
ish in the limit of infinite distances r= �x−y � →�, simi-
larly to the interaction matrix Vint�r� of Eq. �11�.
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1. Beyond mean-field approaches

Several techniques were employed in treatments of
the many-body dynamics of dilute gases beyond the
Gross-Pitaevskii and two-level mean-field approaches of
Sec. IV.B. These methods involve the Schwinger-
Keldysh formalism �Schwinger, 1961; Keldysh, 1965�
suitable for descriptions of phenomena associated with
the evolution toward thermal equilibrium, such as the
dimer production via adiabatic magnetic-field sweeps of
Fig. 22 �Williams, Nikuni, et al., 2004; Williams, Nygaard,
and Clark, 2004, 2005�. Practical approaches describing
equilibration on even longer time scales, i.e., beyond the
range of validity of the generalized Boltzmann equations
derived from the Schwinger-Keldysh theory, may be
based on the two-particle irreducible action �Luttinger
and Ward, 1960; Baym, 1962; Cornwall et al., 1974�. For
the dynamics of cold gases, such techniques have been
implemented, to date, using the contact pseudo-
interaction in a single spatial dimension �Gasenzer et al.,
2005; Rey et al., 2005�. While the Ramsey fringes of Fig.
2 are sensitive to parameters of the interatomic potential
besides the scattering length, the associated typical pulse
sequence of Fig. 24 involves time scales sufficiently short
for equilibration phenomena to be negligible. This im-
plies that the gas dynamics is captured by extensions of
mean-field theory, which account for the two-body time
evolution beyond the Markov approximation �Proukakis
et al., 1998; Holland et al., 2001; Köhler and Burnett,
2002; Naidon and Masnou-Seeuws, 2006�.

The usual quantities of interest in these short-time
quantum kinetic approaches may be expressed in terms
of correlation functions, i.e., expectation values of
normal ordered products of field operators, such as G�2�

of Eq. �161�. Their general expression reads
�#

†�y�¯#
�x��t, where all creation operators appear to
the left of all annihilation operators, and the average
refers to the many-body state at time t. The number of
field operators constituting the product shall be referred
to as the order of the correlation function. Based on the
Schrödinger equation, the associated dynamics is deter-
mined by

i �
�

�t
�#

†�y� ¯ #
�x��t = �	#
†�y� ¯ #
�x�,H
�t. �165�

Here H is the Hamiltonian of Eq. �163�, and the symbol
	A ,B
=AB−BA indicates the commutator of the opera-
tors A and B. Due to the potential-energy contribution
of Eq. �164�, the commutator on the right-hand side of
Eq. �165� gives rise to products containing two more
field operators than the expectation value to the left.
This implies that the dynamics of any one correlation
function is determined by a coupled set of equations
involving all the others. Approximate solutions to Eq.
�165�, therefore, often rely on schemes for the truncation
of the associated infinite hierarchy of dynamical equa-
tions. The range of validity of such approaches is sensi-
tive to the initial state of the many-body system.

For weakly interacting gases close to thermal equilib-
rium, an approximate form of all correlation functions

may be determined using Wick’s theorem of statistical
mechanics �Wick, 1950; Matsubara, 1955; Fetter and Wa-
lecka, 1971�. To this end, it is instructive to introduce the
connected correlation functions �Weinberg, 1996�, some-
times referred to as cumulants. These quantities may be
inferred recursively from a decomposition of each corre-
lation function into a sum of all possible products of
cumulants which preserve the order of appearance of
the operators. Given a set of Bose field operators A, B,
and C, for instance, the first three cumulants, denoted by
�A�c, �BA�c, and �CBA�c, are determined implicitly by

�A� = �A�c, �166�

�BA� = �BA�c + �A�c�B�c, �167�

�CBA� = �CBA�c + �BA�c�C�c + �CA�c�B�c

+ �CB�c�A�c + �A�c�B�c�C�c. �168�

The cumulants associated with Fermi field operators
may be inferred from expressions similar to Eqs.
�166�–�168�. In accordance with the anticommutation re-
lation of Eq. �159�, however, the number of commuta-
tions of field operators in the decompositions needs to
be accounted for by an appropriate sign of each contri-
bution. In both cases, Bose and Fermi atoms, Wick’s
theorem reduces to the statement that all cumulants
containing more than two field operators vanish pro-
vided that the gas is ideal and in thermal equilibrium.
The magnitude of higher-order cumulants, therefore,
provides a measure of the deviations of the state from
the grand-canonical density matrix in the absence of in-
teratomic interactions.

This suggests that for dilute, weakly interacting gases,
a reasonable quantum kinetic approach may be based
on the transformation of Eq. �165� into the associated
set of dynamical equations for cumulants. In accordance
with Wick’s theorem, this coupled system allows for an
approximate truncation at any order of correlation usu-
ally determined by external driving fields as well as the
initial state �Fricke, 1996�. The dilute gas of 85Rb atoms
in the Ramsey interferometry experiments illustrated in
Fig. 25 was prepared as a Bose-Einstein condensate in
the �f=2, mf=−2� Zeeman level. Such a coherent initial
state gives rise to a mean field �
�x , t�= �#
�x��t describ-
ing the density associated with the macroscopically oc-
cupied mode via its modulus squared �Dalfovo et al.,
1999�. In accordance with Fig. 2, the condensate is de-
pleted due to the near-resonant magnetic-field variation
of Fig. 24. This implies that, in addition to the mean
field, a minimum set of cumulants describing this experi-
ment is given, respectively, by the pair function and the
one-body density matrix of the noncondensed compo-
nent,

%
�x,y,t� = �#�y�#
�x��t −�
�x,t���y,t� , �169�

�
�x,y,t� = �#
†�y�#
�x��t −�
�x,t��

*�y,t� . �170�

Accordingly, at any time t the density of atoms in the
Zeeman state with index 
 is given by ��
�x , t��2
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+�

�x ,x , t�. Due to the weak interactions in the gas at
the beginning of the magnetic-field pulse sequence, the
second-order cumulants of Eqs. �169� and �170� are ini-
tially negligible i.e., %
�x ,y , ti�=0=�
�x ,y , ti�.

To a first approximation, the dynamical equations
�165� may be transformed and truncated such that they
just include products of normal-ordered cumulants con-
taining at most three field operators �Köhler and Bur-
nett, 2002�. This yields the following relation for the
time derivative of the condensate mean field:

i � �̇
�x,t� = H

1B�
�x,t� + 


,
�,�
� dyV
,
���r�

��
*�y,t��#��y�#
��x��t. �171�

Here r=x−y refers to the relative coordinates of a pair
of atoms at the positions x and y, and the one-body
Hamiltonian H


1B consists of the kinetic and Zeeman en-
ergies as well as the trap potential of Eq. �163�. The
correlation function �#��y�#
��x��t on the right-hand
side of Eq. �171� is determined in terms of cumulants by
Eq. �169�. In addition to Eq. �171�, the dynamical equa-
tion associated with the pair function reads

i � %̇
�x,y,t� = 

�,�

	H
,
��
2B

%
���x,y,t�
	

+ V
,
���r��
��x,t����y,t�
 . �172�

Here H
,
��
2B denotes the two-body Hamiltonian matrix

associated with the incoming and outgoing spin channels
�
� ,�� and �
 ,�, respectively, describing both the cen-
ter of mass and relative motions of an atom pair.

Given this first-order truncation scheme, Eqs. �171�
and �172� determine the condensate mean field as well as
the pair function. It turns out that the dynamical equa-
tion associated with the one-body density matrix of the
noncondensed component may be solved implicitly in
terms of the pair function. This yields

�
�x,y,t� = 
�
� dz%
��x,z,t�	%��y,z,t�
*. �173�

In accordance with the general expression for the asso-
ciated observable N=
�dx#


†�x�#
�x�, the expectation
value of the number of atoms N is strictly conserved by
Eqs. �171�–�173� at all times, i.e.,




� dx	��
�x,t��2 + �

�x,x,t�
 = N . �174�

In addition, Eqs. �170� and �173� preserve the positivity
of the one-body density matrix �#

†�y�#
�x��t, a conse-
quence of the unitary time evolution, which is not nec-
essarily recovered by higher-order approximation
schemes.

In the context of dimer formation in partially con-
densed Bose gases, similar extensions of mean-field
theory are based on the Hartree-Fock-Bogoliubov ap-
proach �Holland et al., 2001� as well as the reduced pair
wave-function approximation �Cherny and Shanenko,

2000; Naidon and Masnou-Seeuws, 2003,2006�. Since
these methods originate from Eq. �165�, their short-time
asymptotic limits agree with the exact result given by the
perturbation expansion of the dynamical many-body
Schrödinger equation. In addition, the correlation func-
tions predicted with any of these approaches �Holland et
al., 2001; Köhler and Burnett, 2002; Naidon and
Masnou-Seeuws, 2003, 2006� are free of secular long-
time asymptotic behavior, a common artifact of pertur-
bation theory associated with a spurious polynomial
time dependence. Both the cumulant �Köhler and Bur-
nett, 2002� and reduced pair wave-function approach
�Naidon and Masnou-Seeuws, 2003, 2006� were formu-
lated in such a way that they are compatible with the use
of microscopic potentials beyond contact pseudo-
interactions.

Most current implementations of quantum kinetic ap-
proaches to dimer production via Feshbach resonances
are based on single-channel or two-channel single-
resonance binary interactions illustrated in Sec. III.B.
This implies that the Bose-Einstein condensate mode is
described by a single mean field ��x , t� associated with
the Zeeman level in which the gas is prepared. In addi-
tion, the entrance- and closed-channel components of
the pair function may be inferred, similarly to Eq. �162�,
from



,

�
,�%
�x,y,t� = �bg�%bg�x,y,t� + �cl�%cl�x,y,t� .

�175�

The resonance mean field of Sec. IV.B is determined by
%cl�x ,y , t�=�res�R , t��res�r�. Here R= �x+y� /2 refers to
the center-of-mass coordinates of atom pairs and r= �x
−y� denotes their relative distance. Based on a two-
channel implementation of Eqs. �171� and �172�, the
two-level mean-field approach �Drummond et al., 1998;
Tommasini et al., 1998; Timmermans et al., 1998, 1999a�
may be recovered by formally solving the dynamical
equation associated with the entrance-channel compo-
nent of the pair function. A subsequent elimination of
%bg�x ,y , t� from the coupled equations �171� and �172�
yields the functional form of the right-hand sides of Eqs.
�136� and �137�. The coupling constants of Eq. �134� and
entrance-channel contact pseudo-interaction are deter-
mined by the Markov approximation �Góral et al., 2004�.

We note that truncation schemes of higher order than
Eqs. �171� and �172� can involve cross-coupling terms
that give rise to pair functions beyond the two-channel
decomposition of Eq. �175�. Such a scenario occurs in
quantum kinetic approaches associated with both Bose
and Fermi gases provided that one and the same atomic
Zeeman state is shared between the two-body entrance
and closed channels �Bruun et al., 2005; Parish et al.,
2005�. This, in turn, restricts the applicability of the cur-
rent model Hamiltonians �Ranninger and Robaszk-
iewicz, 1985; Friedberg and Lee, 1989� which separate
out the resonance state in descriptions of Feshbach mol-
ecule production.
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2. Remnant Bose-Einstein condensate

The dynamics of the condensate mean field associated
with Ramsey interferometry experiments �Donley et al.,
2002� was described using the Hartree-Fock-Bogoliubov
method �Kokkelmans and Holland, 2002� and related
techniques �Mackie, Suominen, and Javanainen, 2002�,
as well as the first-order cumulant approach of Eqs.
�171� and �172� �Köhler, Gasenzer, and Burnett, 2003�.
Such studies involving beyond mean-field theories can
often be simplified by eliminating the pair function from
the set of dynamical or associated eigenvalue equations,
respectively �Burnett, 1999�. In the context of Eqs. �171�
and �172�, this procedure yields �Köhler and Burnett,
2002�

i � �̇�x,t� = H1B��x,t�

−�*�x,t��
ti

�

dt��2�x,t��
�

�t�
h�t,t�� . �176�

Here H1B is the one-body Hamiltonian associated with
the initial Zeeman state of condensed atoms. The cou-
pling function on the right-hand side of Eq. �176�,

h�t,t�� = ��t − t���2� � �3�0,bg�VU2B�t,t���0,bg� , �177�

is determined by the two-body time evolution operator
given by Eq. �150�. Here �r �0�=1/ �2�� �3/2 denotes the
zero momentum plane wave of the relative motion of an
atom pair and V is the microscopic potential matrix of
Eq. �164�.

The representation of Eqs. �176� and �177� shows that
all findings of Sec. V.A about the two-body time evolu-
tion and physical origin of the Ramsey fringes are in-
cluded in the quantum kinetic approach. Its degree of
accuracy in comparison with experimental data of the
condensate component remaining at the end of a
magnetic-field pulse sequence �Claussen et al., 2003� is
illustrated in the inset of Fig. 25. The associated theory
curve is based on an implementation of the two-channel
single-resonance approach of Sec. III.G using a sepa-
rable background scattering potential �Góral et al.,
2005�.

3. Feshbach molecule and burst components

In accordance with Eq. �174�, the total number of at-
oms can be decomposed into a mean-field contribution
as well as a noncondensed component Nnc�t� described
by the density matrix of Eq. �170�. The physical signifi-
cance of Nnc�t� in the Ramsey interferometry experi-
ments �Donley et al., 2002� may be inferred from Eq.
�173�. To this end, it is instructive to replace the spatial
average of Eq. �173� using the completeness of the set of
dressed bound and continuum energy states associated
with the magnetic-field strength at time t. This leads to

Nnc�t� =� dR�� dp��R,�p�%�t���2�	

+ ��R,�b�%�t���2
 . �178�

Here R may be interpreted in terms of the center-of-

mass position of an atom pair and �%�t�� refers to the
pair function whose channel components in the spatial
representation are given by Eq. �169�. For simplicity, the
spectral decomposition of Eq. �178� includes just the
dressed continuum states ��p� and the Feshbach molecu-
lar state ��b�. More deeply bound levels are neglected.

Equation �178� suggests that the continuum contribu-
tion may be interpreted in terms of correlated atom
pairs associated with relative momenta p, while the
bound-state part yields the number of atoms converted
into dimers. An analysis based on the observable given
by Eq. �160� confirms this view �Köhler, Gasenzer, and
Burnett, 2003�. Its practical implementation based on
Eqs. �171� and �172� involves a cumulant expansion of
the two-body correlation function in accordance with
the first-order truncation scheme. This yields

G
��,

�2� �x�,y�;x,y ;t� = �#


†�x�#
†�y��t

� �#��y��#
��x���t. �179�

Here the correlation functions on the right-hand side
can be expressed in terms of pair functions and conden-
sate mean fields via Eq. �169�. Using Eqs. �162� and
�179�, it turns out that the diatomic number operator
given by Eq. �160� gives rise to a dimer mean field,

�b�R,t� =
1
�2
��R,�b�%�t��

+� dr	�b
bg�r�
*��x,t���y,t�� , �180�

which determines the number of Feshbach molecules
produced via Nd�t�=�dR ��b�R , t��2.

The first term on the right-hand side of Eq. �180� re-
covers the bound-state contribution given by Eq. �178�.
In accordance with the long-range 85Rb2 entrance-
channel wave functions of Fig. 11, the second term may
be interpreted in terms of the overlap between dimers
produced and the surrounding gas. Its magnitude is de-
termined by the dilute gas parameter squared nc�t�a3,
where nc�t� is the average condensate density and a is
the scattering length associated with the magnetic-field
strength at time t �Köhler, Gasenzer, Julienne, and Bur-
nett, 2003�. Consequently, the existence of this overlap
term reflects the breakdown of the concept of diatomic
molecules in the environment of a strongly interacting
gas. This breakdown occurs when the bond length �r�
=a /2 of the universal dimer wave function given by Eq.
�2� is comparable to the mean interatomic distance nc

−1/3

of the condensate. Similar phenomena are visible in
Figs. 13–15.

At the end of the magnetic-field pulse sequence of
Fig. 24, the gas is weakly interacting and the second,
overlap term on the right-hand side of Eq. �180� is neg-
ligible. Based on Eqs. �176� and �180�, the predicted
number of atoms converted into dimers recovers the
16% maximum fraction of missing atoms in Fig. 2 as well
as its modulation as a function of tevolve �Köhler, Gasen-
zer, and Burnett, 2003�. In accordance with Fig. 15, the
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fact that these Feshbach molecules were not detected
reflects their lifetime with respect to spin relaxation on
the order of only 100 �s at the final 162 G magnetic-
field strength �Köhler et al., 2005; Thompson et al.,
2005b�. An analysis based on Eqs. �160� and �179� also
shows that the continuum contribution on the right-hand
side of Eq. �178� is associated with correlated atom pairs
that constitute the measured burst component in Fig. 2
�Köhler, Gasenzer, and Burnett, 2003�.

4. Three-component Ramsey fringes

The physical origin of the Ramsey fringes �Donley et
al., 2002� was the subject of several theoretical works
�Kokkelmans and Holland, 2002; Mackie, Suominen,
and Javanainen, 2002; Köhler, Gasenzer, and Burnett,
2003; Góral et al., 2005� using different beyond mean-
field approaches. Figure 26 shows such a prediction
�Góral et al., 2005� referring to the magnetic-field pulse
sequence and number of atoms reported for the mea-
surements of Fig. 2. The overall picture indicates that
the quantum kinetic approaches support the interpreta-
tion of Sec. V.A, provided that the gas is weakly inter-
acting during the evolution period.

Some measurements were also performed in the re-
gime of near-resonant evolution fields, Bevolve	157 G.
Under these conditions, the scattering length as well as
the spatial extent of the Feshbach molecule are compa-
rable to the mean interatomic distance of the gas. As the
atomic and dimer components are no longer orthogonal
during the evolution period, the classic concept of a
Ramsey interferometer is expected to break down when
Bevolve approaches B0 �Góral et al., 2005�. Such a phe-
nomenon was observed in terms of a pronounced damp-

ing of the fringe pattern accompanied by an upward shift
of its frequency with respect to the two-body prediction
of �Eb

evolve � /h �Claussen et al., 2003�. This shift was sub-
sequently attributed to genuinely many-particle correc-
tions to the intuitive viewpoint illustrated in Fig. 25 �Du-
ine and Stoof, 2003b; Góral et al., 2005�.

VI. CONCLUSIONS AND OUTLOOK

This article has given an overview of a variety of con-
cepts associated with the description of the properties of
Feshbach molecules as well as techniques for their pro-
duction in the environment of a cold atomic gas. The
conclusions can be summarized as follows: Coupled-
channels theory provides the foundation for an accurate
understanding of the diatomic molecular and collision
physics. Its predictions can be recovered, in an experi-
mentally relevant energy range near the dissociation
threshold, with two-channel approaches characterized in
terms of just a few measurable quantities. These involve
the resonance position and width, the background scat-
tering length, and the van der Waals dispersion coeffi-
cient, as well as the difference in magnetic moments as-
sociated with the resonance state and a pair of
asymptotically separated atoms. Universal properties of
Feshbach molecules and the low-energy collision physics
are directly related to Wigner’s threshold law. Such con-
cepts associated with two-body physics treat identical
bosons and fermions in different Zeeman states as well
as distinguishable atoms in essentially the same manner.
The fundamental transition amplitudes for Feshbach
molecular association of an atom pair via linear
magnetic-field sweeps can be represented analytically in
the context of two-channel single-resonance approaches.
Such an exact treatment provides the foundation of the
Landau-Zener approach to dimer production in tight
traps, such as optical lattice sites, as well as in cold gases
in the fast sweep limit. While these limits including their
quantum statistical phenomena can be understood
largely in terms of classical probability theory, the satu-
ration of molecule production involves the many-body
dynamics of thermalization. Given sufficiently short time
scales, beyond mean-field approaches can provide quan-
titative descriptions of Feshbach molecule production in
Bose-Einstein condensates also in the context of nonlin-
ear magnetic-field variations.

Closely related to the enhancement of the s-wave
scattering cross sections discussed in this review are
similar magnetically tunable Feshbach resonance phe-
nomena involving finite angular momentum quantum
numbers, ��0. Associated scattering amplitudes f��p�
are usually negligible compared to the s-wave contribu-
tion in cold collision physics due to their p2� scaling with
the relative momentum of an atom pair. In gases of iden-
tical Fermi atoms involving a single Zeeman state, how-
ever, only odd partial waves contribute to diatomic scat-
tering in accordance with the Pauli exclusion principle.
In such cases, p-wave ��=1� resonances have been ob-
served in both 40K �Regal et al., 2003b� and 6Li gases

FIG. 26. �Color online� Predicted Ramsey fringes between
three components of a dilute gas of 85Rb �Góral et al., 2005� at
the end of the magnetic-field pulse sequence of Fig. 24 vs the
evolution time tevolve. Circles are the remnant Bose-Einstein
condensate, while squares indicate the final population of cor-
related atom pairs constituting the burst component. The rem-
nant condensate and burst add up to the number of detectable
atoms �diamonds�. Its difference to the total number of N
=17 100 atoms �dotted line� in the experiments �Donley et al.,
2002� determines the population of Feshbach molecules. The
magnetic-field strength in the evolution period of Bevolve
=159.84 G associated with these predictions refers to the con-
ditions of the measured fringes of Fig. 2.
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�Zhang et al., 2004; Schunck et al., 2005�, providing pos-
sibilities of magnetically tuning interactions as well as
associating dimers.

Optical Feshbach resonances �Fedichev et al., 1996;
Bohn and Julienne, 1997, 1999� provide an alternative
approach to tune s-wave scattering cross sections in cold
gases. This technique relies on coupling the internal
states of separated atom pairs to a closed channel using
laser light instead of a homogeneous magnetic field. Ac-
cording to experimental studies in cold gases of 23Na
�Fatemi et al., 2000� and 87Rb Bose-Einstein condensates
�Theis et al., 2004�, significant changes to the scattering
length tend to cause substantial atom loss due to spon-
taneous photon emission. Recent predictions indicate,
however, that such loss may be suppressed in applica-
tions to cold gases of alkaline earth metal atoms, such as
bosonic calcium, as well as ytterbium �Ciurylo et al.,
2005�. As these atoms lack hyperfine structure due to
the absence of nuclear spin, magnetic Feshbach reso-
nances are ruled out. Their optical counterpart may
therefore provide the only possibility of tuning interac-
tions in such gases.

Interspecies magnetic Feshbach resonances were ob-
served in boson-fermion mixtures consisting of cold 6Li
and 23Na �Stan et al., 2004� as well as 40K and 87Rb gases
�Inouye et al., 2004�. Their binary physics can be de-
scribed using the approaches outlined in this review,
whereas the collisional stability of interspecies Feshbach
molecules requires special attention �Petrov et al.,
2005a�. Producing such diatomic molecules is of particu-
lar interest because of a possible polar character of their
bonds �Doyle et al., 2004�. Cold polar molecules com-
posed of Bose atoms have been produced via photoas-
sociation �Kerman et al., 2004; Wang et al., 2004�. Ac-
cording to predictions �Baranov et al., 2002�, the long
range, anisotropy, and magnitude of dipole-dipole inter-
actions give rise to a host of new features in the associ-
ated fermionic and bosonic superfluids. Arrays of polar
molecules in optical lattices may provide an opportunity
to study supersolid phases �Góral et al., 2002�. It is
hoped that heavy polar molecules will enable us to im-
prove tests of fundamental physical symmetries, includ-
ing measurements of the electron dipole moment �San-
dars, 1975; Hudson et al., 2002�. Stabilization with
respect to collisional relaxation of excited molecular
states may be achieved via transfer to their vibrational
ground states, an approach also demonstrated in the
context of photoassociation �Sage et al., 2005�. Such de-
excitation, in turn, tends to enhance the polar character
of their bonds.

Few-body scattering phenomena, such as dimer-dimer
resonances recently observed in cold gases of 133Cs2
�Chin et al., 2005�, may provide possibilities of extending
existing techniques of Feshbach molecule production to
more complex species. One of the long-standing goals is
an experimental confirmation of predictions associated
with Efimov’s effect in the three-body energy spectrum
of identical Bose particles �Efimov, 1970, 1971�. The Efi-
mov spectrum consists of an infinite sequence of isotro-

pic three-body bound states accumulating at the disso-
ciation threshold, which occurs in the limit of infinite
s-wave scattering length of each two-body subsystem.
This scenario is therefore directly related to the long-
range nature of weakly bound two-particle halo states
�Jensen et al., 2004� and may be realized via magnetic
Feshbach resonances in cold gases. Signatures of the
emergence of such Efimov states are predicted to occur
in terms of a modulation of three-body recombination
loss rates as a function of the near-resonant magnetic-
field strength �Esry et al., 1999; Nielsen and Macek,
1999; Braaten and Hammer, 2001�. Recently, the first
experimental evidence for this phenomenon was re-
ported �Kraemer et al., 2006�. Such inelastic-scattering
resonances may be exploited to associate metastable
three-body Efimov molecules from cold Bose gases
loaded into optical lattices, using the magnetic-field
sweep technique discussed in this review �Stoll and
Köhler, 2005�.
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