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It can’t have escaped you, after so many recent re-
minders, that this year marks the one hundredth birth-
day of the light quantum. I thought I would tell you this
morning a few things about its century long biography.
Of course we have had light quanta on Earth for eons, in
fact ever since the good Lord said “let there be quantum
electrodynamics”—which is a modern translation, of
course, from the biblical Aramaic. So in this talk I’ll try
to tell you what quantum optics is about, but there will
hardly be enough time to tell you of the many new di-
rections in which it has led us. Several of those are di-
rections that we would scarcely have anticipated as all of
this work started.

My own involvement in this subject began somewhere
around the middle of the last century, but I would like to
describe some of the background of the scene I entered
at that point as a student. Let’s begin, for a moment,
even before the quantum theory was set in motion by
Planck. It is important to recall some of the remarkable
things that were found in the 19th century, thanks prin-
cipally to the work of Thomas Young and Augustin
Fresnel. They established within the first 20 years of the
19th century that light is a wave phenomenon, and that
these waves, of whatever sort they might be, interpen-
etrate one another like waves on the surface of a pond.
The wave displacements, in other words, add up alge-
braically. That’s called superposition, and it was found
thus that if you have two waves that remain lastingly in
step with one another, they can add up constructively,
and thereby reinforce one another in some places, or
they can even oscillate oppositely to one another, and
thereby cancel one another out locally. That would be
what we call destructive interference.

Interference phenomena were very well understood
by about 1820. On the other hand, it wasn’t at all under-
stood what made up the underlying waves until the fun-
damental laws of electricity and magnetism were gath-
ered together and augmented in a remarkable way by
James Clerk Maxwell, who developed thereby the elec-
trodynamics we know today. Maxwell’s theory showed
that light waves consist of oscillating electric and mag-
netic fields. The theory has been so perfect in describing
the dynamics of electricity and magnetism over labora-
tory scale distances, that it has remained precisely intact.

It has needed no fundamental additions in the years
since the 1860s, apart from those concerning the quan-
tum theory. It serves still, in fact, as the basis for the
discussion and analysis of virtually all the optical instru-
mentation we have ever developed. That overwhelming
and continuing success may eventually have led to a cer-
tain complacency. It seemed to imply that the field of
optics, by the middle of the 20th century, scarcely
needed to take any notice of the granular nature of light.
Studying the behavior of light quanta was then left to
the atomic and elementary particle physicists—whose
interests were largely directed toward other phenomena.

The story of the quantum theory, of course, really be-
gins with Max Planck. Planck in 1900 was confronted
with many measurements of the spectral distribution of
the thermal radiation that is given off by a hot object. It
was known that under ideally defined conditions, that is,
for complete �or black� absorbers and correspondingly
perfect emitters this is a unique radiation distribution.
The intensities of its color distribution, under such ideal
conditions, should depend only on temperature and not
at all on the character of the materials that are doing the
radiating. That defines the so-called blackbody distribu-
tion. Planck, following others, tried finding a formula
that expresses the shape of that blackbody color spec-
trum. Something of its shape was known at low frequen-
cies, and there was a good guess present for its shape at
high frequencies.

The remarkable thing that Planck did first was simply
to devise an empirical formula that interpolates between
those two extremes. It was a relatively simple formula
and it involved one constant which he had to adjust in
order to fit the data at a single temperature. Then having
done that, he found his formula worked at other tem-
peratures. He presented the formula to the German
Physical Society on October 19, 1900 �Planck, 1900a�
and it turned out to be successful in describing still
newer data. Within a few weeks the formula seemed to
be established as a uniquely correct expression for the
spectral distribution of thermal radiation.

The next question obviously was: Did this formula
have a logical derivation of any sort? There Planck, who
was a sophisticated theorist, ran into a bit of trouble.
First of all he understood from his thermodynamic back-
ground that he could base his discussion on nearly any
model of matter, however oversimplified it might be, as
long as it absorbed and emitted light efficiently. So he
based his model on the mechanical system he under-
stood best, a collection of one-dimensional harmonic os-
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cillators, each of them oscillating rather like a weight at
the end of a spring. They had to be electrically charged.
He knew from Maxwell exactly how these charged oscil-
lators interact with the electromagnetic field. They both
radiate and absorb in a way he could calculate. So then
he ought to be able to find the equilibrium between
these oscillators and the radiation field, which acted as a
kind of thermal reservoir—and which he never made
any claim to discuss in detail.

He found that he could not secure a derivation for his
magic formula for the radiation distribution unless he
made an assumption which, from a philosophical stand-
point, he found all but unacceptable. The assumption
was that the harmonic oscillators he was discussing had
to possess energies that were distributed, not as the con-
tinuous variables one expected, but confined instead to
discrete and regularly spaced values. The oscillators of
frequency � would have to be restricted to energy values
that were integer multiples, i.e., n-fold multiples �with
n=0,1 ,2 ,3 , . . .� of something he called the quantum of
energy, h�.

That number h was, in effect, the single number that
he had to introduce in order to fit his magic formula to
the observed data at a single temperature. So he was
saying, in effect, that these hypothetical harmonic oscil-
lators representing a simplified image of matter could
have only a sequence amounting to a “ladder” of energy
states. That assumption permits us to see immediately
why the thermal radiation distribution must fall off rap-
idly with rising frequency. The energy steps between the
oscillator states grow larger, according to his assump-
tion, as the frequency rises, but thermal excitation ener-
gies, on the other hand, are quite restricted in magnitude
at any fixed temperature. High frequency oscillators at
thermal equilibrium would never even reach the first
step of excitation. Hence there tends to be very little
high frequency radiation present at thermal equilibrium.
Planck presented this revolutionary suggestion �Planck,
1900b� to the Physical Society on December 14, 1900,
although he could scarcely believe it himself.

The next great innovation came in 1905 from the
young Albert Einstein, employed still at the Bern Patent
Office. Einstein first observed that Planck’s formula for
the entropy of the radiation distribution, when he exam-
ined its high frequency contributions, looked like the
entropy of a perfect gas of free particles of energy h�.
That was a suggestion that light itself might be discrete
in nature, but hardly a conclusive one.

To reach a stronger conclusion he turned to an exami-
nation of the photoelectric effect, which had first been
observed in 1887 by Heinrich Hertz. Shining monochro-
matic light on metal surfaces drives electrons out of the
metals, but only if the frequency of the light exceeds a
certain threshold value characteristic of each metal. It
would have been most reasonable to expect that as one
shines more intense light on those metals the electrons
would come out faster, that is, with higher velocities in
response to the stronger oscillating electric fields—but
they don’t. They come out always with the same veloci-
ties, provided that the incident light is of a frequency

higher than the threshold frequency. If it were below
that frequency there would be no photoelectrons at all.

The only response that the metals make to increasing
the intensity of light lies in producing more photoelec-
trons. Einstein had a naively simple explanation for that
�Einstein, 1905�. The light itself, he assumed, consists of
localized energy packets and each possesses one quan-
tum of energy. When light strikes the metal, each packet
is absorbed by a single electron. That electron then flies
off with a unique energy, an energy which is just the
packet energy h� minus whatever energy the electron
needs to expend in order to escape the metal.

It took until about 1914–1916 to secure an adequate
verification of Einstein’s law for the energies of the pho-
toelectrons. When Millikan succeeded in doing that, it
seemed clear that Einstein was right, and that light does
indeed consist of quantized energy packets. It was thus
Einstein who fathered the light quantum, in one of the
several seminal papers he wrote in the year 1905.

To follow the history a bit further, Einstein began to
realize in 1909 that his energy packets would have a
momentum which, according to Maxwell, should be
their energy divided by the velocity of light. These pre-
sumably localized packets would have to be emitted in
single directions if they were to remain localized, or to
constitute “Nadelstrahlung” �needle radiation�, very dif-
ferent in behavior from the broadly continuous angular
distribution of radiation that would spread from har-
monic oscillators according to the Maxwell theory. A
random distribution of these needle radiations would
look appropriately continuous, but what was disturbing
about that was the randomness with which these needle
radiations would have to appear. That was evidently the
first of the random variables in the quantum theory that
began disturbing Einstein and kept nettling him for the
rest of his life.

In 1916 Einstein found another and very much more
congenial way of deriving Planck’s distribution by dis-
cussing the rate at which atoms radiate. Very little was
known about atoms at that stage save that they must be
capable of absorbing and giving off radiations. An atom
lodged in a radiation field would surely have its constitu-
ent charges shaken by the field oscillations, and that
shaking could lead either to the absorption of radiation
or to the emission of still more radiation. Those were the
processes of absorption or emission induced by the prior
presence of radiation. But Einstein found that thermal
equilibrium between matter and radiation could only be
reached if, in addition to these induced processes, there
exists also a spontaneous process, one in which an ex-
cited atom emits radiation even in the absence of any
prior radiation field. It would be analogous to radioac-
tive decays discovered by Rutherford. The rates at
which these processes take place were governed by Ein-
stein’s famous B and A coefficients, respectively. The
existence of spontaneous radiation turned out to be an
important guide to the construction of quantum electro-
dynamics.

Some doubts about the quantized nature of light in-
evitably persisted, but many of them were dispelled by
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Compton’s discovery in 1922 that x-ray quanta are scat-
tered by electrons according to the same rules as govern
the collisions of billiard balls. They both obey the con-
servation rules for energy and momentum in much the
same way. It became clear that the particle picture of
light quanta, whatever were the dilemmas that accompa-
nied it, was here to stay.

The next dramatic developments of the quantum
theory, of course, took place between the years 1924 and
1926. They had the effect of ascribing to material par-
ticles such as electrons much of the same wavelike be-
havior as had long since been understood to characterize
light. In those developments de Broglie, Heisenberg,
Schrödinger, and others accomplished literal miracles in
explaining the structure of atoms. But, however much
this invention of modern quantum mechanics succeeded
in laying the groundwork for a more general theory of
the structure of matter, it seemed at first to have little
new bearing on the understanding of electromagnetic
phenomena. The spontaneous emission of light persisted
as an outstanding puzzle.

Thus there remained a period of a couple of years
more in which we described radiation processes in terms
that have usually been called “semiclassical.” Now the
term “classical” is an interesting one—because, as you
know, every field of study has its classics. Many of the
classics that we are familiar with go back two or three
thousand years in history. Some are less old, but all
share an antique, if not ancient, character. In physics we
are a great deal more precise, as well as contemporary.
Anything that we understood or could have understood
prior to the date of Planck’s paper, December 14, 1900,
is to us “classical.” Those understandings are our clas-
sics. It is the introduction of Planck’s constant that
marks the transition from the classical era to our mod-
ern one.

The true “semiclassical era,” on the other hand, lasted
only about two years. It ended formally with the discov-
ery by Paul Dirac �1927, 1927� that one must treat the
vacuum, that is to say, empty space, as a dynamical sys-
tem. The energy distributed through space in an electro-
magnetic field had been shown by Maxwell to be a qua-
dratic expression in the electric and magnetic field
strengths. Those quadratic expressions are formally
identical in their structure to the mathematical expres-
sions for the energies of mechanical harmonic oscilla-
tors. Dirac observed that even though there may not
seem to be any organized fields present in the vacuum
those mathematically defined oscillators that described
the field energy would make contributions that could
not be overlooked. The quantum mechanical nature of
the oscillators would add an important but hitherto ne-
glected correction to the argument of Planck.

Planck had said the energies of harmonic oscillators
are restricted to values n times the quantum energy h�
and the fully developed quantum mechanics had shown
in fact that those energies are not nh� but �n+ 1

2
�h�. All

of the intervals between energy levels remained un-
changed, but the quantum mechanical uncertainty prin-
ciple required that additional 1

2h� to be present. We can

never have a harmonic oscillator completely empty of
energy because that would require its position coordi-
nate and its momentum simultaneously to have the pre-
cise values zero.

So, according to Dirac, the electromagnetic field is
made up of field amplitudes that can oscillate harmoni-
cally. But these amplitudes, because of the ever-present
half quantum of energy 1

2h�, can never be permanently
at rest. They must always have their fundamental exci-
tations, the so-called “zero-point fluctuations” going on.
The vacuum then is an active dynamical system. It is not
empty. It is forever buzzing with weak electromagnetic
fields. They are part of the ground state of emptiness.
We can withdraw no energy at all from those fluctuating
electromagnetic fields. We have to regard them nonethe-
less as real and present even though we are denied any
way of perceiving them directly.

An immediate consequence of this picture was the
unification of the notions of spontaneous and induced
emission. Spontaneous emission is emission induced by
those zero-point oscillations of the electromagnetic field.
Furthermore it furnishes, in a sense, an indirect way of
perceiving the zero-point fluctuations by amplifying
them. Quantum amplifiers tend to generate background
noise that consists of radiation induced by those vacuum
fluctuations.

It is worth pointing out a small shift in terminology
that took place in the late 1920s. Once material particles
were found to exhibit some of the wavelike behavior of
light quanta, it seemed appropriate to acknowledge that
the light quanta themselves might be elementary par-
ticles, and to call them “photons” as suggested by G. N.
Lewis in 1926. They seemed every bit as discrete as ma-
terial particles, even if their existence was more transi-
tory, and they were at times freely created or annihi-
lated.

The countless optical experiments that had been per-
formed by the middle of the 20th century were in one or
another way based on detecting only the intensity of
light. It may even have seemed there wasn’t anything
else worth measuring. Furthermore, those measure-
ments were generally made with steady light beams tra-
versing passive media. It proved quite easy therefore to
describe those measurements in simple and essentially
classical terms. A characteristic first mathematical step
was to split the expression for the oscillating electric
field E into two complex conjugate terms:

E = E�+� + E�−�, �1�

E�−� = �E�+��*, �2�

with the understanding that E�+� contains only positive
frequency terms, i.e., those varying as e−i�t for all ��0,
and E�−� contains only negative frequency terms ei�t.
This is a separation familiar to electrical engineers and
motivated entirely by the mathematical convenience of
dealing with exponential functions. It has no physical
motivation in the context of classical theory, since the
two complex fields E�±� are physically equivalent. They
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furnish identical descriptions of classical theory.
Each of the fields E�±��rt� depends in general on both

the space coordinate r and time t. The instantaneous
field intensity at r , t would then be

�E�+��r,t��2 = E�−��r,t�E�+��r,t� . �3�

In practice it was always an average intensity that was
measured, usually a time average.

The truly ingenious element of many optical experi-
ments, going all the way back to Young’s double-pinhole
experiment, was the means their design afforded to su-
perpose the fields arriving at different space-time points
before the intensity observations were made. Thus in
Young’s experiment, shown in Fig. 1, light penetrating a
single pinhole in the first screen passes through two pin-
holes in the second screen and then is detected as it falls
on a third screen. The field E�+��rt� at any point on the
latter screen is the superposition of two waves radiated
from the two prior pinholes with a slight difference in
their arrival times at the third screen, due to the slightly
different distances they have to travel.

If we wanted to discuss the resulting light intensities in
detail, we would find it most convenient to do that in
terms of a field correlation function which we shall de-
fine as

G�1��r1t1,r2t2� = �E�−��r1t1�E�+��r2t2�� . �4�

This is a complex-valued function that depends, in gen-
eral, on both space-time points r1t1 and r2t2. The angular
brackets �¯� indicate that an average value is somehow
taken, as we have noted. The average intensity of the
field at the single point rt is then just G�1��rt ,rt�.

If the field E�+��rt� at any point on the third screen
is given by the sum of two fields, i.e., proportional to
E�+��r1t1�+E�+��r2t2�, then it is easy to see that the aver-
age intensity at rt on the screen is given by a sum of four
correlation functions,

G�1��r1t1r1t1� + G�1��r2t2r2t2�

+ G�1��r1t1r2t2� + G�1��r2t2r1t1� . �5�

The first two of these terms are the separate contribu-
tions of the two pinholes in the second screen, that is,
the intensities they would contribute individually if each
alone were present. Those smooth intensity distributions
are supplemented, however, by the latter two terms of

the sum, which represent the characteristic interference
effect of the superposed waves. They are the terms that
lead to the intensity fringes observed by Young.

Intensity fringes of that sort assume the greatest pos-
sible contrast or visibility when the cross-correlation
terms like G�1��r1t1r2t2� are as large in magnitude as pos-
sible. But there is a simple limitation imposed on the
magnitude of such correlations by a familiar inequality.
There is a formal sense in which cross-correlation func-
tions like G�1��r1t1r2t2� are analogous to the scalar prod-
ucts of two vectors and are thus subject to a Schwarz
inequality. The squared absolute value of that correla-
tion function can then never exceed the product of the
two intensities. If we let x abbreviate a coordinate pair
r , t, we must have

�G�1��x1x2��2 � G�1��x1x1�G�1��x2x2� . �6�

The upper bound to the cross-correlation is attained if
we have

�G�1��x1x2��2 = G�1��x1x1�G�1��x2x2� , �7�

and with it we achieve maximum fringe contrast. We
shall then speak of the fields at x1 and x2 as being opti-
cally coherent with one another. That is the definition of
relative coherence that optics has traditionally used
�Born and Wolf, 1959�.

There is another way of stating the condition for op-
tical coherence that is also quite useful, particularly
when we are discussing coherence at pairs of points ex-
tending over some specified region in space-time. Let us
assume that it is possible to find a positive frequency
field E�rt� satisfying the appropriate Maxwell equations
and such that the correlation function �4� factorizes into
the form

G�1��r1t1,r2t2� = E*�r1t1�E�r2t2� . �8�

While the necessity of this factorization property re-
quires a bit of proof �Titulaer and Glauber, 1965, 1966� it
is at least clear that it does bring about the optical co-
herence that we have defined by means of the upper
bound in the inequality �6� since in that case we have

�G�1��r1t1r2t2��2 = �E�r1t1��2�E�r2t2��2. �9�

In the quantum theory, physical variables such as
E�±��rt� are associated not with simple complex numbers
but with operators on the Hilbert-space vectors � � that
represent the state of the system, which in the present
case is the electromagnetic field. Multiplication of the
operators E�+��r1t1� and E�−��r2t2� is not in general com-
mutative, and the two operators can be demonstrated to
act in altogether different ways on the vectors � � that
represent the state of the field. The operator E�+�, in
particular, can be shown to be an annihilation operator.
It lowers by 1 the number of quanta present in the
field. Applied to an n-photon state, �n�, it reduces it to
an n−1 photon state, �n−1�. Further applications of
E�+��rt� keep reducing the number of quanta present still

FIG. 1. Young’s experiment. Light passing through a pinhole
in the first screen falls on two closely spaced pinholes in a
second screen. The superposition of the waves radiated by
those pinholes at r1 and r2 leads to interference fringes seen at
points r on the third screen.
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further, but the sequence must end with the n=0 or
vacuum state, �vac�, in which there are no quanta left. In
that state we must finally have

E�+��rt��vac� = 0. �10�

The operator adjoint to E�+�, which is E�−�, must have
the property of raising an n-photon state to an
n+1-photon state, so we may be sure, for example, that
the state E�−��rt��vac� is a one-photon state. Since the
vacuum state cannot be reached by raising the number
of photons, we must also require the relation

�vac�E�−��rt� = 0, �11�

which is adjoint to Eq. �10�.
The results of quantum measurements often depend

on the way in which the measurements are carried out.
The most useful and informative ways of discussing such
experiments are usually those based on the physics of
the measurement process itself. To discuss measure-
ments of the intensity of light then we should under-
stand the functioning of the device that detects or counts
photons.

Such devices generally work by absorbing quanta and
registering each such absorption process, for example,
by the detection of an emitted photoelectron. We need
not go into any of the details of the photoabsorption
process to see the general nature of the expression for
the photon counting probability. All we need to assume
is that our idealized detector at the point r has negligibly
small size and has a photoabsorption probability that is
independent of frequency so that it can be regarded as
probing the field at a well defined time t. Then if the
field makes a transition from an initial state �i� to a final
state �f� in which there is one photon fewer, the probabil-
ity amplitude for that particular transition is given by the
scalar product—or matrix element

�f�E�+��rt��i� . �12�

To find the total transition probability we must find the
squared modulus of this amplitude and sum it over the
complete set of possible final states �f� for the field. The
expression for the completeness of the set of states �f� is

�
f

�f��f� = 1,

so that we then have a total transition probability pro-
portional to

�
f

��f�E�+��rt��i��2 = �
f

�i�E�−��rt��f��f�E�+��rt��i�

= �i�E�−��rt�E�+��rt��i� . �13�

It is worth repeating here that in the quantum theory
the fields E�±� are noncommuting operators rather than
simple numbers. Thus one could not reverse their order-
ing in the expression �13� while preserving its meaning.
In the classical theory we discussed earlier E�+� and E�−�

are simple numbers that convey equivalent information.
There is no physical distinction between photoabsorp-
tion and emission since there are no classical photons.

The fact that the quantum energy h� vanishes for
h→0 removes any distinction between positive and
negative values of the frequency variable.

The initial state of the field in our photon counting
experiment depends, of course, on the output of what-
ever light source we use, and very few sources produce
pure quantum states of any sort. We must thus regard
the state �i� as depending in general on some set of ran-
dom and uncontrollable parameters characteristic of the
source. The counting statistics we actually measure then
may vary from one repetition of the experiment to an-
other. The figure we would quote must be regarded as
the average taken over these repetitions. The neatest
way of specifying the random properties of the state �i� is
to define what von Neumann called the density operator

� = ��i��i�	av, �14�

which is the statistical average of the outer product of
the vector �i� with itself. Expression �14� permits us to
write the average of the counting probability as

��i�E�−��rt�E�+��rt��i�	av = Tr��E�−��rt�E�+��rt�	 . �15�

Interference experiments like those of Young and
Michelson, as we have noted earlier, often proceed by
measuring the intensities of linear combinations of the
fields characteristic of two different space-time points.
To find the counting probability in a field like E�+��r1t1�
+E�+��r2t2�, for example, we will need to know expres-
sions like that of Eq. �15� but with two different space-
time arguments r1t1 and r2t2. It is convenient then to
define the quantum theoretical form of the correlation
functions �4� as

G�1��r1t1r2t2� = Tr��E�−��r1t1�E�+��r2t2�	 . �16�

This function has the same scalar product structure as
the classical function �4� and can be shown likewise to
obey the inequality �6�. Once again we can take the up-
per bound of the modulus of this cross-correlation func-
tion or equivalently the factorization condition �8� to de-
fine optical coherence.

It is worth noting at this point that optical experi-
ments aimed at achieving a high degree of coherence
have almost always accomplished it by using the most
nearly monochromatic light attainable. The reason for
that is made clear by the factorization condition �8�.
These experiments were always based on steady or sta-
tistically stationary light sources. What we mean by a
steady state is that the function G�1� with two different
time arguments, t1 and t2, can in fact only depend on
their difference t1− t2. Optical coherence then requires

G�1��t1 − t2� = E*�t1�E�t2� . �17�

The only possible solution of such a functional equation
for the function E�t� is one that oscillates with a single
positive frequency. The requirement of monochromatic-
ity thus follows from the limitation to steady sources.
The factorization condition �8�, on the other hand, de-
fines optical coherence more generally for nonsteady
sources as well.
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Although the energies of visible light quanta are quite
small on the everyday scale, techniques for detecting
them individually have existed for many decades. The
simplest methods are based on the photoelectric effect
and the use of electron photomultipliers to produce well
defined current pulses. The possibility of detecting indi-
vidual quanta raises interesting questions concerning
their statistical distributions, distributions that should in
principle be quite accessible to measurement. We might
imagine, for example, putting a quantum counter in a
given light beam and asking for the distribution of time
intervals between successive counts. Statistical problems
of that sort were never, to my knowledge, addressed un-
til the importance of quantum correlations began to be-
come clear in the 1950s. Until that time virtually all op-
tical experiments measured only average intensities or
quantum counting rates, and the correlation function
G�1� was all we needed to describe them. It was in that
decade, however, that several new sorts of experiments
requiring a more general approach were begun. That
period seemed to mark the beginning of quantum optics
as a relatively new or rejuvenated field.

In the experiment I found most interesting, R. Han-
bury Brown and R. Q. Twiss developed a new form of
interferometry �Hanbury Brown, 1954�. They were inter-
ested at first in measuring the angular sizes of radio
wave sources in the sky and found they could accom-
plish that by using two antennas, as shown in Fig. 2, with
a detector attached to each of them to remove the high-
frequency oscillations of the field. The noisy low-
frequency signals that were left were then sent to a cen-
tral device that multiplied them together and recorded
their time-averaged values. Each of the two detectors
then was producing an output proportional to the square
of the incident field, and the central device was record-
ing a quantity that was quartic in the field strengths.

It is easy to show, by using classical expressions for the
field strengths, that the quartic expression contains a

measurable interference term, and by exploiting it Han-
bury Brown and Twiss did measure the angular sizes of
many radio sources. They then asked themselves
whether they couldn’t perform the same sort of “inten-
sity interferometry” with visible light, and thereby mea-
sure the angular diameters of visible stars. Although it
seemed altogether logical that they could do that, the
interference effect would have to involve the detection
of pairs of photons and they were evidently inhibited in
imagining the required interference effect by a state-
ment Dirac makes in the first chapter of his famous text-
book on quantum mechanics �Dirac, 1958�. In it he is
discussing why one sees intensity fringes in the Michel-
son interferometer, and says in ringingly clear terms,
“Each photon then interferes only with itself. Interfer-
ence between two different photons never occurs.”

It is worth recalling at this point that interference sim-
ply means that the probability amplitudes for alternative
and indistinguishable histories must be added together
algebraically. It is not the photons that interfere physi-
cally, it is their probability amplitudes that interfere—
and probability amplitudes can be defined equally well
for arbitrary numbers of photons.

Evidently Hanbury Brown and Twiss remained uncer-
tain on this point and undertook an experiment �Han-
bury Brown and Twiss, 1956, 1957a, 1957b� to determine
whether pairs of photons can indeed interfere. Their ex-
perimental arrangement is shown in Fig. 3. The light
source is an extremely monochromatic discharge tube.
The light from that source is collimated and sent to a
half-silvered mirror which sends the separated beams to
two separate photodetectors. The more or less random
output signals of those two detectors are multiplied to-
gether, as they were in the radio-frequency experiments,
and then averaged. The resulting averages showed a
slight tendency for both of the photodetectors to register
photons simultaneously �Fig. 4�. The effect could be re-
moved by displacing one of the counters and thus intro-
ducing an effective time delay between them. The coin-
cidence effect thus observed was greatly weakened by
the poor time resolution of the detectors, but it raised
considerable surprise nonetheless. The observation of

FIG. 2. The intensity interferometry scheme of Hanbury
Brown and Twiss. Radio-frequency waves are received and de-
tected at two antennas. The filtered low-frequency signals that
result are sent to a device that furnishes an output propor-
tional to their product.

FIG. 3. The Hanbury Brown–Twiss photon correlation experi-
ment. Light from an extremely monochromatic discharge tube
falls on a half-silvered mirror which sends the split beam to
two separate photodetectors. The random photocurrents from
the two detectors are multiplied together and then averaged.
The variable time delay indicated is actually achieved by vary-
ing the distance of the detector D2 from the mirror.
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temporal correlations between photons in a steady beam
was something altogether new. The experiment has been
repeated several times, with better resolution, and the
correlation effect has emerged in each case more clearly
�Rebka and Pound, 1957; Scarl, 1968�.

The correlation effect was enough of a surprise to call
for a clear explanation. The closest it came to that was a
clever argument �Purcell, 1956� by Purcell who used the
semiclassical form of the radiation theory in conjunction
with a formula for the relaxation time of radio-
frequency noise developed in wartime radar studies. It
seemed to indicate that the photon correlation time
would be increased by just using a more monochromatic
light source.

The late 1950s were, of course, the time in which the
laser was being developed, but it was not until 1960 that
the helium-neon laser �Javan et al., 1961� was on the
scene with its extremely monochromatic and stable
beams. The question then arose: What are the correla-
tions of the photons in a laser beam? Would they ex-
tend, as one might guess, over much longer time inter-
vals as the beam became more monochromatic? I
puzzled over the question for some time, I must admit,
since it seemed to me, even without any detailed theory
of the laser mechanism, that there would not be any
such extended correlation.

The oscillating electric current that radiates light in a
laser tube is not a current of free charges. It is a polar-
ization current of bound charges oscillating in a direc-
tion perpendicular to the axis of the tube �Fig. 5�. If it is
sufficiently strong it can be regarded as a predetermined
classical current, one that suffers negligible recoil when
individual photons are emitted. Such currents, I knew

�Glauber, 1951�, emitted Poisson distributions of pho-
tons, which indicated clearly that the photons were sta-
tistically independent of one another. It seemed then
that a laser beam would show no Hanbury Brown–Twiss
photon correlations at all.

How then would one describe the delayed-
coincidence counting measurement of Hanbury Brown
and Twiss? If the two photon counters are sensitive at
the space-time points r1t1 and r2t2, we will need to
make use of the annihilation operators E�+��r1t1� and
E�+��r2t2� �which do, in fact commute�. The amplitude for
the field to go from the state �i� to a state �f� with two
quanta fewer is

�f�E�+��r2t2�E�+��r1t1��i� . �18�

When this expression is squared, summed over final
states �f�, and averaged over the initial states �i� we have
a new kind of correlation function that we can write as

G�2��r1t1r2t2r2t2r1t1� = Tr��E�−��r1t1�E�−��r2t2�

�E�+��r2t2�E�+��r1t1�	 . �19�

This is a special case of a somewhat more general
second-order correlation function that we can write
�with the abbreviation xj=rjtj� as

G�2��x1x2x3x4� = Tr��E�−��x1�E�−��x2�E�+��x3�E�+��x4�	 .

�20�

Now Hanbury Brown and Twiss had seen to it that the
beams falling on their two detectors were as coherent as
possible in the usual optical sense. The function G�1�

should thus have satisfied the factorization condition �8�,
but that statement doesn’t at all imply any correspond-
ing factorization property of the functions G�2� given by
Eq. �19� or �20�.

We are free to define a kind of second-order coher-
ence by requiring a parallel factorization of G�2�,

G�2��x1x2x3x4� = E*�x1�E*�x2�E�x3�E�x4� , �21�

and the definition can be a useful one even though the
Hanbury Brown–Twiss correlation assures us that no
such factorization is present in their experiment. If it
were present, the coincidence rate according to Eq. �21�
would be proportional to

G�2��x1x2x2x1� = G�1��x1x1�G�1��x2x2� , �22�

that is, to the product of the two average intensities
measured separately—and that is what was not found.
Ordinary light beams, that is, light from ordinary
sources, even extremely monochromatic ones as in the
Hanbury Brown–Twiss experiment, do not have any
such second-order coherence.

We can go on defining still higher-order forms of co-
herence by defining nth-order correlation functions G�n�

that depend on 2n space-time coordinates. The useful-
ness of such functions may not be clear since carrying
out the n-fold delayed coincidence counting experiments
that measure them would be quite difficult in practice. It
is nonetheless useful to discuss such functions since they

FIG. 4. The photon coincidence rate measured rises slightly
above the constant background of accidental coincidences for
sufficiently small time delays. The observed rise was actually
weakened in magnitude and extended over longer time delays
by the relatively slow response of the photodetectors. With
ideal detectors it would take the more sharply peaked form
shown.

FIG. 5. Schematic picture of a gas laser. The standing light
wave in the discharge tube generates an intense transverse po-
larization current in the gas. Its oscillation sustains the stand-
ing wave and generates the radiated beam.
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do turn out to play an essential role in most calculations
of the statistical distributions of photons. If we turn on a
photon counter for any given length of time, for ex-
ample, the number of photons it records will be a ran-
dom integer. Repeating the experiment many times will
lead us to a distribution function for that number. To
predict those distributions �Glauber, 1965� we need, in
general, to know the correlation functions G�n� of arbi-
trary orders.

Once we are defining higher-order forms of coher-
ence, it is worth asking whether we can find fields that
lead to factorization of the complete set of correlation
functions G�n�. If so, we could speak of those as possess-
ing full coherence. Now, are there any such states of the
field? In fact there are lots of them, and some can de-
scribe precisely the fields generated by predetermined
classical current distributions. These fields have the re-
markable property that annihilating a single quantum in
them by means of the operator E�+� leaves the field es-
sentially unchanged. It just multiplies the state vector by
an ordinary number. That is a relation we can write as

E�+��rt�� � = E�rt�� � , �23�

where E�rt� is a positive frequency function of the space-
time point rt. It is immediately clear that such states
must have indefinite numbers of quanta present. Only in
that way can they remain unchanged when one quantum
is removed. This remarkable relation does in fact hold
for all of the quantum states radiated by a classical cur-
rent distribution, and in that case the function E�rt� hap-
pens to be the classical solution for the electric field.

Any state vector that obeys the relation �23� will also
obey the adjoint relation

� �E�−��rt� = E*�rt�� � . �24�

Hence the nth-order correlation function will indeed
factorize into the form

G�n��x1, . . . ,x2n� = E*�x1� ¯ E*�xn�E�xn+1� ¯ E�x2n�

�25�

that we require for nth-order coherence. Such states rep-
resent fully coherent fields, and delayed coincidence
counting measurements carried out in them will reveal
no photon correlations at all. To explain, for example,
the Hanbury Brown–Twiss correlations we must use not
pure coherent states but mixtures of them, for which the
factorization conditions like Eq. �25� no longer hold. To
see how these mixtures arise, it helps to discuss the
modes of oscillation of the field individually.

The electromagnetic field in free space has a con-
tinuum of possible frequencies of oscillation, and a con-
tinuum of available modes of spatial oscillation at any
given frequency. It is often simpler, instead of discussing
all these modes at once, to isolate a single mode and
discuss the behavior of that one alone. The field as a
whole is then a sum of the contributions of the indi-
vidual modes. In fact when experiments are carried out

within reflecting enclosures the field modes form a dis-
crete set, and their contributions are often physically
separable.

The oscillations of a single mode of the field, as we
have noted earlier, are essentially the same as those of a
harmonic oscillator. The nth excitation state of the oscil-
lator represents the presence of exactly n light quanta in
that mode. The operator that decreases the quantum
number of the oscillator is usually written as a, and the
adjoint operator—which raises the quantum number by
one unit as a†. These operators then obey the relation

aa† − a†a = 1, �26�

which shows that their multiplication is not commuta-
tive. We can take the field operator E�+��rt� for the mode
we are studying to be proportional to the operator a.
Then any state vector for the mode that obeys the rela-
tion �23� will have the property

a� � = �� � , �27�

where � is some complex number. It is not difficult to
solve for the state vectors that satisfy the relation �27�
for any given value of �. They can be expressed as a sum
taken over all possible quantum-number states �n�,
n=0,1 ,2 , . . . that takes the form

��� = e−�1/2����2�
n=0

�
�n


n!
�n� , �28�

in which we have chosen to label the state with the ar-
bitrary complex parameter �. The states ��� are fully
coherent states of the field mode.

The squared moduli of the coefficients of the state �n�
in Eq. �28� tell us the probability for the presence of n
quanta in the mode, and those numbers do indeed form
a Poisson distribution, one with the mean value of n
equal to ���2. The coherent states form a complete set of
states in the sense that any state of the mode can be
expressed as a suitable sum taken over them. As we
have defined them they are equivalent to certain oscilla-
tor states defined by Schrödinger �1926� in his earliest
discussions of wave functions. Known thus from the very
beginning of wave mechanics, they seemed not to have
found any important role in the earlier development of
the theory.

Coherent excitations of fields have a particularly
simple way of combining. Let us suppose that one exci-
tation mechanism brings a field mode from its empty
state �0� to the coherent state ��1�. A second mechanism
could bring it, for example, from the state �0� to the state
��2�. If the two mechanisms act simultaneously the re-
sulting state can be written as ei	��1+�2� where ei	 is a
phase factor that depends on �1 and �2, but we don’t
need to know it since it cancels out of the expression for
the density operator

� = ��1 + �2���1 + �2� . �29�

This relation embodies the superposition principle for
field excitations and tells us all about the resulting quan-
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tum statistics. It is easily generalized to treat the super-
position of many excitations. If, say, j coherent excita-
tions were present, we should have a density operator

� = ��1 + ¯ + �j���1 + ¯ + �j� . �30�

Let us suppose now that the individual excitation am-
plitudes �j are in one or another sense random complex
numbers. Then the sum �1+ ¯ +�j will describe a suit-
ably defined random walk in the complex plane. In the
limit j→� the probability distribution for the sum
�=�1+ ¯ +�j will be given by a Gaussian distribution
which we can write as

P��� =
1


�n�
e−���2/�n�, �31�

in which the mean value of ���2, which has been written
as �n�, is the mean number of quanta in the mode.

The density operator that describes this sort of ran-
dom excitation is a probabilistic mixture of coherent
states,

� =
1


�n� � e−���2/�n�������d2� , �32�

where d2� is an element of area in the complex plane.
When we express � in terms of m-quantum states by
using the expansion �28�, we find

� =
1

1 + �n� �
m=0

� � �n�
1 + �n�


m

�m��m� . �33�

This kind of random excitation mechanism is thus al-
ways associated with a geometrical or fixed-ratio distri-
bution of quantum numbers �Fig. 6�. In the best known
example of the latter, the Planck distribution, we have
�n�= �eh�/kT−1�−1, and the density operator �33� then
contains the familiar thermal weights e−mhv/kT.

There is something remarkably universal about the
geometrical sequence of n-quantum probabilities. The
image of chaotic excitation we have derived it from, on
the other hand, excitation in effect by a random collec-
tion of lasers, may well seem rather specialized. It may
be useful therefore to have a more general way of char-
acterizing the same distribution. If a quantum state is
specified by the density operator �, we may associate
with it an entropy S given by

S = − Tr�� ln �� , �34�

which is a measure, roughly speaking, of the disorder
characteristic of the state. The most disordered, or cha-
otic, state is reached by maximizing S, but in finding the
maximum we must observe two constraints. The first is

Tr � = 1, �35�

which says simply that all probabilities add up to 1. The
second is

Tr��a†a� = �n� , �36�

which fixes the average occupation number of the mode.
When S is maximized, subject to these two con-

straints, we find indeed that the density operator � takes
the form given by Eq. �33�. The geometrical distribution
is thus uniquely representative of chaotic excitation.
Most ordinary light sources consist of vast numbers of
atoms radiating as nearly independently of one another
as the field equations will permit. It should be no sur-
prise then that these are largely maximum entropy or
chaotic sources. When many modes are excited, the light
they radiate is, in effect, colored noise and indistinguish-
able from appropriately filtered blackbody radiation.

For chaotic sources, the density operator �32� permits
us to evaluate all of the higher-order correlation func-
tions G�n��x1 , . . . ,x2n�. In fact they can all be reduced
�Glauber, 1965� to sums of products of first-order corre-
lation functions G�1��xixj�. In particular, for example, the
Hanbury Brown–Twiss coincidence rate corresponding
to the two space-time points x1 and x2 can be written as

G�2��x1x2x2x1� = G�1��x1x1�G�1��x2x2�

+ G�1��x1x2�G�1��x2x1� . �37�

The first of the two terms on the right side of this equa-
tion is simply the product of the two counting rates that
would be measured at x1 and x2 independently. The sec-
ond term is the additional delayed coincidence rate de-
tected first by Hanbury Brown and Twiss, and it is in-
deed contributed by a two-photon interference effect. If
we let x1=x2, which corresponds to zero time delay in
their experiment, we see that

G�2��x1x1x1x1� = 2�G�1��x1x1�	2, �38�

or the coincidence rate for vanishing time delay should
be double the background or accidental rate.

The Gaussian representation of the density operator
in terms of coherent states is an example of a broader
class of so-called “diagonal representations” that are
quite convenient to use—when they are available. If the
density operator for a single mode, for example, can be
written in the form

� =� P���������d2� , �39�

then the expectation values of operator products like
a†nam can be evaluated as simple integrals over the func-
tion P such as

FIG. 6. Geometrical or fixed-ratio sequence of probabilities
for the presence of n quanta in a mode that is excited chaoti-
cally.
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�a†nam	av =� P����*n�md2� . �40�

The function P��� then takes on some of the role of a
probability density, but that can be a bit misleading since
the condition that the probabilities derived from � all be
positive or zero does not require P��� to be positive
definite. It can and sometimes does take on negative
values over limited areas of the �-plane in certain physi-
cal examples, and it may also be singular. It is a member,
as we shall see, of a broader class of quasiprobability
densities. The representation �39�, and the P-
representation, unfortunately is not always available
�Sudarshan, 1963; Cahill and Glauber, 1969a, 1969b�. It
cannot be defined, for example, for the familiar
“squeezed” states of the field in which one or the other
of the complimentary uncertainties is smaller than that
of the coherent states.

The difference between a monochromatic laser beam
and a chaotic beam is most easily expressed in terms of
the function P���. For a stationary laser beam the func-
tion P depends only on the magnitude of � and vanishes
unless ��� assumes some fixed value. A graph of the
function P is shown in Fig. 7, where it can be compared
with the Gaussian function for the same mean occupa-
tion number �n� given by Eq. �31�.

How do we measure the statistical properties of pho-
ton distributions? A relatively simple way is to place a
photon counter in a light beam behind either a mechani-
cal or an electrical shutter. If we open the shutter for a
given length of time t, the counter will register some
random number n of photons. By repeating that mea-
surement sufficiently many times we can establish a sta-
tistical distribution for those random integers n. The
analysis necessary to derive this distribution mathemati-

cally can be a bit complicated since it requires, in gen-
eral, a knowledge of all higher-order correlation func-
tions. Experimental measurements of the distribution,
conversely, can tell us about those correlation functions.

For the two cases in which we already know all corre-
lation functions, it is particularly easy to find the photo-
count distributions. If the average rate at which photons
are recorded is w, then the mean number recorded in
time t is

�n� = wt .

In a coherent beam the result for the probability of n
photocounts is just the Poisson distribution

pn�t� =
�wt�n

n!
e−wt. �41�

In a chaotic beam, on the other hand, the probability of
counting n quanta is given by the rather more spread-
out distribution

pn�t� =
1

1 + wt
� wt

1 + wt

n

. �42�

These results, which are fairly obvious from the occupa-
tion number probabilities implicit in Eqs. �28� and �33�,
are illustrated in Fig. 8.

Here is a closely related question that can also be
investigated experimentally without much difficulty: If
we open the shutter in front of the counter at an arbi-
trary moment, some random interval of time will pass
before the first photon is counted. What is the distribu-
tion of those random times? In a steady coherent beam,
in fact, it is just an exponential distribution

Wcoh = we−wt, �43�

while in a chaotic beam it assumes the less obvious form

Wch�t� =
w

�1 + wt�2 . �44�

There is an alternative way of finding a distribution of
time intervals. Instead of simply opening a shutter at an
arbitrary moment, we can begin the measurement with
the registration of a given photocount at time zero and
then ask what is the distribution, of time intervals until
the next photocount. This distribution, which we may

FIG. 8. The two P����� distributions of Fig. 7 lead to different
photon occupation number distributions p�n�: for chaotic exci-
tation a geometric distribution, for coherent excitation a Pois-
son distribution.

FIG. 9. Time interval distributions for counting experiments in
a chaotically excited mode: Wch�t� is the distribution of inter-
vals from an arbitrary moment until the first photocount.
Wch�0�t� is the distribution of intervals between two successive
photocounts.

FIG. 7. The quasiprobability function P����� for a chaotic ex-
citation is Gaussian in form, while for a stable laser beam it
takes on nonzero values only near a fixed value of ���.
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write as W�0�t�, takes the same form for a coherent
beam as it does for the measurement described earlier,
which starts at arbitrary moments,

Wcoh�0�t� = we−wt = Wcoh�t� . �45�

This identity is simply a restatement of the statistically
independent or uncorrelated quality of all photons in a
coherent beam.

For a chaotic beam, on the other hand, the distribu-
tion Wch�0�t� takes a form quite different from Wch�t�. It
is

Wch�0�t� =
2w

�1 + wt�3 , �46�

an expression which exceeds Wch�t� for times for which
wt�1, and is in fact twice as large as Wch�t� for t=0 �Fig.
9�. The reason for that lies in the Gaussian distribution
of amplitudes implicit in Eqs. �31� and �32�. The very
fact that we have counted a photon at t=0 makes it more
probable that the field amplitude � has fluctuated to a
large value at that moment, and hence the probability
for counting a second photon remains larger than aver-
age for some time later. The functions Wch�t� and
Wch�0�t� are compared in Fig. 8.

All of the experiments we have discussed thus far are
based on the procedure of photon counting, whether
with individual counters or with several of them ar-
ranged to be sensitive in delayed coincidence. The func-
tions they measure, the correlation functions G�n�, are all
expectation values of products of field operators written
in a particular order. If one reads from right to left, the
annihilation operator always precedes the creation op-
erators in our correlation functions, as they do, for ex-
ample, in Eq. �19� for G�2�. It is that so-called “normal
ordering” that gives the coherent states, and the qua-
siprobability density P��� the special roles they occupy
in discussing this class of experiments.

But there are other kinds of expectation values that
one sometimes needs in order to discuss other classes of
experiments. These could, for example, involve sym-

metrically ordered sums of operator products, or even
antinormally ordered products which are opposite to the
normally ordered ones. The commutation relations for
the multiplication of field operators will ultimately relate
all these expectation values to one another, but it is of-
ten possible to find much simpler ways of evaluating
them. There exists a quasiprobability density that plays
much the same role for symmetrized products as the
function P does for the normally ordered ones. It is, in
fact, the function Wigner �1932� devised in 1932 as a
kind of quantum mechanical replacement for the classi-
cal phase space density. For antinormally ordered opera-
tor products, the role of the quasiprobability density is
taken over by the expectation value which for a single
mode is �1/
��
���
�. The three quasiprobability densi-
ties associated with the three operator orderings and
whatever experiments they describe are all members of
a larger family that can be shown to have many proper-
ties in common �Cahill and Glauber, 1969a, 1969b�.

The developments I have described to you were all
relatively early ones in the development of the field we
now call quantum optics. The further developments that
have come in rapid succession in recent years are too
numerous to recount here. Let me just mention a few. A
great variety of careful measurements of photon count-
ing distributions and correlations of the type we have
discussed have been carried out �Arecchi, 1969; Jake-
man and Pike, 1969� and furnish clear agreement with
the theory. They have furthermore shown in detail how
the properties of laser beams change as they rise in
power from below threshold to above it.

The fully quantum mechanical theory of the laser was
difficult to develop �Scully and Lamb, 1967; Lax, 1968;
Haken, 1970� since the laser is an intrinsically nonlinear
device, but only through such a theory can its quantum
noise properties be understood. The theories of a con-
siderable assortment of other kinds of oscillators and
amplifiers have now been worked out.

Nonlinear optics has furnished us with new classes
of quantum phenomena such as parametric down-
conversion in which a single photon is split into a pair of
highly correlated or entangled photons. Entanglement
has been a rich source of the quantum phenomena that
are perhaps most interesting—and baffling—in everyday
terms.

It is worth emphasizing that the mathematical tools
we have developed for dealing with light quanta can be
applied equally well to the much broader class of par-
ticles obeying Bose-Einstein statistics. These include at-
oms of 4He, 23Na, 87Rb, and all of the others which have
recently been Bose condensed by optical means. When
proper account is taken of the atomic interactions and
nonvanishing atomic masses, the coherent state formal-
ism is found to furnish useful descriptions of the behav-
ior of these bosonic gases.

The formalism seems likewise to apply to subatomic
particles, to bosons that are only short-lived. Pions that
emerge by hundreds or even thousands from the high-
energy collisions of heavy ions are also bosons. Pions of
similar charge have a clearly noticeable tendency to be

FIG. 10. �Color� Professor Einstein, encountered in the spring
of 1951 in Princeton, NJ.
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emitted with closely correlated momenta, an effect
which is evidently analogous to the Hanbury Brown–
Twiss correlation of photons, and invites the same sort
of analysis �Glauber, 2006�.

Particles obeying Fermi-Dirac statistics, of course, be-
have quite differently from photons or pions. No more
than a single one of them ever occupies any given quan-
tum state. This kind of reckoning associated with fer-
mion fields is radically different therefore from the sort
we have associated with bosons, like photons. It has
proved possible, nonetheless, to develop an algebraic
scheme �Cahill and Glauber, 1999� for calculating expec-
tation values of products of fermion fields that is re-
markably parallel to the one we have described for pho-
ton fields. There is a one-to-one correspondence
between the mathematical operations and expressions
for boson fields, on the one hand, and fermion fields, on
the other hand. That correspondence has promise of
proving useful in describing the dynamics of degenerate
fermion gases.

I’d like, as a final note, to share with you an experi-
ence I had in 1951, while I was a postdoc at the Institute
for Advanced Study in Princeton. Possessed by the habit
of working late at night—in fact on photon statistics
�Glauber, 1951� at the time—I didn’t often appear at my
desk early in the day. Occasionally I walked out to the
Institute around noon, and that was closer to the end of
the work day for Professor Einstein. Our paths thus
crossed quite a few times, and on one of those occasions
I had ventured to bring my camera. He seemed more
than willing to let me take his picture as if acknowledg-
ing his role as a local landmark, and he stood for me just
as rigidly still. Here, in Fig. 10, is the hitherto unpub-
lished result. I shall always treasure that image, and har-
bor the enduring wish I had been able to ask him just a
few questions about that remarkable year, 1905.
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