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Dynamical modeling of neural systems and brain functions has a history of success over the last half
century. This includes, for example, the explanation and prediction of some features of neural
rhythmic behaviors. Many interesting dynamical models of learning and memory based on
physiological experiments have been suggested over the last two decades. Dynamical models even of
consciousness now exist. Usually these models and results are based on traditional approaches and
paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual
subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a
few neurons and synaptic connections, has an enormous number of variables and control parameters.
These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In
contrast to traditional physical systems described by well-known basic principles, first principles
governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit
similar dynamics despite having different architectures and different levels of complexity. (iv) The
network architecture and connection strengths are usually not known in detail and therefore the
dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to
organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the
transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice
versa, for memory and recognition. In this review these problems are discussed in the context of
addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what
can nonlinear dynamics learn from neuroscience?
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“Will it ever happen that mathematicians will know
enough about the physiology of the brain, and neuro-
physiologists enough of mathematical discovery, for effi-
cient cooperation to be possible?”

—Jacques Hadamard

I. WHAT ARE THE PRINCIPLES?
A. Introduction

Building dynamical models to study the neural basis
of behavior has a long tradition (Ashby, 1960; Block,
1962; Rosenblatt, 1962; Freeman, 1972, 2000). The un-
derlying idea governing neural control of behavior is the
three-step structure of nervous systems that have
evolved over billions of years, which can be stated in its
simplest form as follows: Specialized neurons transform
environmental stimuli into a neural code. This encoded
information travels along specific pathways to the brain
or central nervous system composed of billions of nerve
cells, where it is combined with other information. A
decision to act on the incoming information then re-
quires the generation of a different motor instruction set
to produce the properly timed muscle activity we recog-
nize as behavior. Success in these steps is the essence of
survival.

Given the present state of knowledge about the brain,
it is impossible to apply a rigorous mathematical analysis
to its functions such as one can apply to other physical
systems like electronic circuits, for example. We can,
however, construct mathematical models of the phenom-
ena in which we are interested, taking account of what is
known about the nervous system and using this informa-
tion to inform and constrain the model. Current knowl-
edge allows us to make many assumptions and put them
into a mathematical form. A large part of this review
will discuss nonlinear dynamical modeling as a particu-
larly appropriate and useful mathematical framework
that can be applied to these assumptions in order to

Rev. Mod. Phys., Vol. 78, No. 4, October—December 2006

post-synaptic

(@) presynaptic
neuron

\1 axon

cell body

Spike generation axonal tree

dendritic tree - zone

(0) ()

Spike
non-linear active ¢ passive (width ~ 1ms)
conductances T conductance

@

g

v
53 2 8 g b
28 — after
o
L v Y v e Srf’ ikir;]g id |h¥p§{%°_
o B Na (3 thresho arization
- ' % /

@

!

—_—
t

FIG. 1. (Color online) Illustration of the functional parts and
electrical properties of neurons. (a) The neuron receives inputs
through synapses on its dendritic tree. These inputs may or
may not lead to the generation of a spike at the spike genera-
tion zone of the cell body that travels down the axon and trig-
gers chemical transmitter release in the synapses of the axonal
tree. If there is a spike, it leads to transmitter release and
activates the synapses of a postsynaptic neuron and the process
is repeated. (b) Simplified electrical circuit for a membrane
patch of a neuron. The nonlinear ionic conductances are volt-
age dependent and correspond to different ion channels. This
type of electrical circuit can be used to model isopotential
single neurons. Detailed models that describe the morphology
of the cells use several isopotential compartments imple-
mented by these circuits coupled by a longitudinal resistance;
these are called compartmental models. (c) A typical spike
event is of the order of 100 mV in amplitude and 1-2 ms in
duration, and is followed by a longer after-hyperpolarization
period during which the neuron is less likely to generate an-
other spike; this is called a refractory period.

simulate the functioning of the different components of
the nervous system, to compare simulations with experi-
mental results, and to show how they can be used for
predictive purposes.

Generally there are two main modeling approaches
taken in neuroscience: bottom-up and top-down models.

e Bottom-up dynamical models start from a descrip-
tion of individual neurons and their synaptic connec-
tions, that is, from acknowledged facts about the de-
tails resulting from experimental data that are
essentially reductionistic (Fig. 1). Using these ana-
tomical and physiological data, the particular pattern
of connectivity in a circuit is reconstructed, taking
into account the strength and polarity (excitatory or
inhibitory) of the synaptic action. Using the wiring
diagram thus obtained along with the dynamical fea-
tures of the neurons and synapses, bottom-up models
have been able to predict functional properties of



Rabinovich et al.: Dynamical principles in neuroscience 1215

neural circuits and their role in animal behavior.

e Top-down dynamical models start with the analysis
of those aspects of an animal’s behavior that are ro-
bust, reproducible, and important for survival. The
top-down approach is a more speculative big-picture
view that has historically led to different levels of
analysis in brain research. While this hierarchical di-
vision has put the different levels on an equal foot-
ing, the uncertainty implicit in the top-down ap-
proach should not be minimized. The first step in
building such large-scale models is to determine the
type of stimuli that elicit specific behaviors; this
knowledge is then used to construct hypotheses
about the dynamical principles that might be respon-
sible for their organization. The model should pre-
dict how the behavior evolves with a changing envi-
ronment represented by changing stimuli.

It is possible to build a sufficiently realistic neural cir-
cuit model that expresses dynamical principles even
without knowledge of the details of the neuroanatomy
and neurophysiology of the corresponding neural sys-
tem. The success of such models depends on the univer-
sality of the underlying dynamical principles. Fortu-
nately, there is a surprisingly large amount of similarity
in the basic dynamical mechanisms used by neural sys-
tems, from sensory to central and motor processing.

Neural systems utilize phenomena such as synchroni-
zation, competition, intermittency, and resonance in
quite nontraditional ways with regard to classical nonlin-
ear dynamics theory. One reason is that the nonlinear
dynamics of neural modules or microcircuits is usually
not autonomous. These circuits are continuously or spo-
radically forced by different kinds of signals, such as sen-
sory inputs from the changing environment or signals
from other parts of the brain. This means that when we
deal with neural systems we have to consider stimulus-
dependent synchronization, stimulus-dependent compe-
tition, etc. This is a departure from the considerations of
classical nonlinear dynamics. Another very important
feature of neuronal dynamics is the coordination of neu-
ral activities with very different time scales, for example,
theta rhythms (4-8 Hz) and gamma rhythms
(40-80 Hz) in the brain.

One of our goals in this review is to understand why
neural systems are very specific from the nonlinear dy-
namics point of view and to discuss the importance of
such specificities for the functionality of neural circuits.
We will talk about the relationship between neuro-
science and nonlinear dynamics using specific subjects as
examples. We do not intend to review here the methods
or the nonlinear dynamical tools that are important for
the analysis of neural systems as they have been dis-
cussed extensively in many reviews and books (e.g.,
Guckenheimer and Holmes, 1986; Crawford, 1991;
Abarbanel et al, 1993; Ott, 1993; Kaplan and Glass,
1995; Abarbanel, 1997; Kuznetsov, 1998; Arnold et al.,
1999; Strogatz, 2001; Izhikevich, 2006).
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B. Classical nonlinear dynamics approach for neural systems

Let us say a few words about the role of classical dy-
namical theory. It might seem at first sight that the ap-
parently infinite diversity of neural activity makes its dy-
namical description a hopeless, even meaningless, task.
However, here one can exploit the knowledge accumu-
lated in classical dynamical theory, in particular, the
ideas put forth by Andronov in 1931 concerning the
structural stability of dynamical models and the investi-
gation of their bifurcations (Andronov, 1933; Andronov
and Pontryagin, 1937; Andronov et al., 1949). The essen-
tial points of these ideas can be traced back to Poincaré
(Poincaré, 1892; Goroff, 1992). In his book La Valeur de
la Science, Poincaré (1905) wrote that “the main thing
for us to do with the equations of mathematical physics
is to investigate what may and should be changed in
them.” Andronov’s remarkable approach toward under-
standing dynamical systems contained three key points:

* Only models exhibiting activity that does not vary
with small changes of parameters can be regarded as
really suitable to describe experiments. He referred
to them as models or dynamical systems that are
structurally stable.

¢ To obtain insight into the dynamics of a system it is
necessary to characterize all its principal types of be-
havior under all possible initial conditions. This led
to Andronov’s fondness for the methods of phase-
space (state-space) analysis.

e Considering the behavior of the system as a whole
allows one to introduce the concept of topological
equivalence of dynamical systems and requires an
understanding of local and global changes of the dy-
namics, for example, bifurcations, as control param-
eters are varied.

Conserving the topology of a phase portrait for a dy-
namical system corresponds to a stable motion of the
system with small variation of the governing parameters.
Partitioning parameter space for the dynamical system
into regions with different phase-space behavior, i.e.,
finding the bifurcation boundaries, then furnishes a com-
plete picture of the potential behaviors of a dynamical
model. Is it possible to apply such a beautiful approach
to biological neural network analysis? The answer is yes,
at least for small, autonomous neural systems. However,
even in these simple cases we face some important re-
strictions.

Neural dynamics is strongly dissipative. Energy de-
rived from biochemical sources is used to drive neural
activity with substantial energy loss in action-potential
generation and propagation. Nearly all trajectories in
the phase space of a dissipative system are attracted by
some trajectories or sets of trajectories called attractors.
These can be fixed points (corresponding to steady-state
activity), limit cycles (periodic activity), or strange at-
tractors (chaotic dynamics). The behavior of dynamical
systems with attractors is usually structurally stable.
Strictly speaking a strange attractor is itself structurally
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FIG. 2. Six examples of limit

cycle bifurcations observed in
living and model neural systems
[see Chay (1985); Canavier et al.
(1990); Guckenheimer et al
(1993); Huerta et al. (1997); Cre-
vier and Meister (1998); Maeda

et al. (1998); Coombes and Os-
baldestin (2000); Feudel et al.
(2000); Gavrilov and Shilnikov
(2000); Maeda and Makino
(2000); Mandelblat et al. (2001);
Bondarenko et al. (2003); Gu et
al. (2003); Shilnikov and Cym-

balyuk (2005); Soto-Trevino et
al. (2005)].
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unstable, but its existence in the system state space is a
structurally stable phenomenon. This is a very important
point for the implementation of Andronov’s ideas.

The study of bifurcations in neural models and in in
vitro experiments is a keystone for understanding the
dynamical origin of many single-neuron and circuit phe-
nomena involved in neural information processing and
the organization of behavior. Figure 2 illustrates some
typical local bifurcations [their support consists of an
equilibrium point or a periodic trajectory—see the de-
tailed definition by Arnold et al. (1999)] and some global
bifurcations (their support contains an infinite set of or-
bits) of periodic regimes observed in neural systems.
Many of these bifurcations are observed both in experi-
ments and in models, in particular in the conductance-
based Hodgkin-Huxley-type equations (Hodgkin and
Huxley, 1952), considered the traditional framework for
modeling neurons, and in the analysis of network stabil-
ity and plasticity.

The most striking results in neuroscience based on
classical dynamical system theory have come from
bottom-up models. These results include the description
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of the diversity of dynamics in single neurons and
synapses (Koch, 1999; Vogels et al., 2005), the spatiotem-
poral cooperative dynamics of small groups of neurons
with different types of connections (Selverston et al.,
2000; Selverston, 2005), and the principles of synchroni-
zation in networks with dynamical synapses (Loebel and
Tsodyks, 2002; Elhilali et al., 2004; Persi et al., 2004).
Some top-down models also have attempted a classi-
cal nonlinear dynamics approach. Many of these models
are related to the understanding and description of cog-
nitive functions. Nearly half a century ago, Ashby hy-
pothesized that cognition could be modeled as a dy-
namical process (Ashby, 1960). Neuroscientists have
spent considerable effort implementing the dynamical
approach in a practical way. The most widely studied
examples of cognitive-type dynamical models are multi-
attractor networks: models of associative memory that
are based on the concept of an energy function or
Lyapunov function for a dynamical system with many
attractors (Hopfield, 1982) [see also Cohen and Gross-
berg (1983); Waugh et al. (1990); Doboli et al. (2000)].
The dynamical process in such networks is often called
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“computation with attractors.” The idea is to design dur-
ing the learning stage, in a memory network phase
space, a set of attractors, each of which corresponds to a
specific output. Neural computation with attractors in-
volves the transformation of a given input stimulus,
which defines an initial state inside the basin of attrac-
tion of one attractor, leading to a fixed desired output.
The idea that computation or information processing
in neural systems is a dynamical process is broadly
accepted today. Many dynamical models of both
bottom-up and top-down type that address the encoding
and decoding of neural information as the input-
dependent dynamics of a nonautonomous network have
been published in the last few years. However, there are
still huge gaps in our knowledge of the actual biological
processes underlying learning and memory, making ac-
curate modeling of these mechanisms a distant goal. For
reviews see Arbib ef al. (1997) and Wilson (1999).
Classical nonlinear dynamics has provided some basis
for the analysis of neural ensembles even with large
numbers of neurons in networks organized as layers of
nearly identical neurons. One of the elements of this
formulation is the discovery of stable low-dimensional
manifolds in a very high-dimensional phase space. These
manifolds are mathematical images of cooperative
modes of activity, for example, propagating waves in
nonequilibrium media (Rinzel ef al, 1998). Models of
this sort are also interesting for the analysis of spiral
waves in cortical activity as experimentally observed in
vivo and in vitro (Huang et al., 2004). Many interesting
questions have been approached by using the phase por-
trait and bifurcation analysis of models and by consider-
ing attractors and other asymptotic solutions. Neverthe-
less, new directions may be required to address the
important complexity of nervous system functions.

C. New paradigms for contradictory issues

The human brain contains approximately 10! neurons
and a typical neuron connects with ~10* other neurons.
Neurons show a wide diversity in terms of their mor-
phology and physiology (see Fig. 3). A wide variety of
intracellular and network mechanisms influence the ac-
tivity of living neural circuits. If we take into account
that even a single neuron often behaves chaotically, we
might argue that such a complex system most likely be-
haves as if it were a turbulent hydrodynamic flow. How-
ever, this is not what is observed. Brain dynamics are
more or less regular and stable despite the presence of
intrinsic and external noise. What principles does nature
use to organize such behavior, and what mathematical
approaches can be utilized for their description? These
are the very difficult questions we need to address.

Several important features differentiate the nervous
system from traditional dynamical systems:

e The architecture of the system, the individual neural
units, the details of the dynamics of specific neurons,
as well as the connections among neurons are not
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FIG. 3. Examples of (a) the anatomical diversity of neurons,
and (b) the single-neuron membrane voltage activity associ-
ated with them. (1) Lobster pyloric neuron; (2) neuron in rat
midbrain; (3) cat thalamocortical relay neuron; (4) guinea pig
inferior olivary neuron; (5) aplysia R15 neuron; (6) cat tha-
lamic reticular neuron; (7) sepia giant axon; (8) rat thalamic
reticular neuron; (9) mouse neocortical pyramidal neuron; (10)
rat pituitary gonadotropin-releasing cell. In many cases, the
behavior depends on the level of current injected into the cell
as shown in (b). Modified from Wang and Rinzel, 1995.

usually known in detail, so we can describe them
only in a probabilistic manner.

e Despite the fact that many units within a complex
neural system work in parallel, many of them have
different time scales and react differently to the same
nonstationary events from outside. However, for the
whole system, time is unified and coherent. This
means that the neural system is organized hierarchi-
cally, not only in space (architecture) but also in time:
each behavioral event is the initial condition for the
next window of time. The most interesting phenom-
enon for a neural system is the presence not of at-
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tractor dynamics but of nonstationary behavior. At-
tractor dynamics assumes long-time evolution from
initial conditions; we must consider transient re-
sponses instead.

e The structure of neural circuits is—in principle—
genetically determined; however, it is nevertheless
not fixed and can change with experience (learning)
and through neuromodulation.

We could expand this list, but the facts mentioned al-
ready make the point that the nervous system is a very
special field for the application of classical nonlinear dy-
namics, and it is clear now why neurodynamics needs
new approaches and a fresh view.

We use the following arguments to support an opti-
mistic view about finding dynamical principles in neuro-
science:

e Complex neural systems are the result of evolution,
and thus their complexity is not arbitrary but follows
some universal rules. One such rule is that the orga-
nization of the central nervous system (CNS) is hier-
archical and based on neural modules.

e It is important to note that many modules are orga-
nized in a very similar way across different species.
Such units can be small, like central pattern genera-
tors (CPGs), or much more complex, like sensory
systems. In particular, the structure of one of the old-
est sensory systems, the olfactory system, is more or
less the same in invertebrates and vertebrates and
can be described by similar dynamical models.

e The possibility of considering the nervous system as
an ensemble of interconnected units is a result of the
high level of autonomy of its subsystems. The level
of autonomy depends on the degree of self-
regulation. Self-regulation of neural units on each
level of the nervous system, including individual neu-
rons, is a key principle determining hierarchical neu-
ral network dynamics.

e The following conjecture seems reasonable: Each
specific dynamical behavior of the network (e.g.,
traveling waves) is controlled by only a few of the
many parameters of a system (like neuromodulators,
for example), and these relevant parameters influ-
ence the specific cell or network dynamics
independently—at least in a first approximation. This
idea can be useful for the mathematical analysis of
network dynamics and can help to build an approxi-
mate bifurcation theory. The goal of this theory is to
predict the transformation of specific dynamics based
on bifurcation analysis in a low-dimensional control
subspace of parameters.

e For the understanding of the main principles of neu-
rodynamics, phenomenological top-down models are
very useful because even different neural systems
with different architectures and different levels of
complexity demonstrate similar dynamics if they ex-
ecute similar functions.
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In the main part of this review we discuss two critical
functional properties of neural systems that at first
glance appear incompatible: robustness and sensitivity.
Finding solutions to such apparent contradictions will
help us formulate some general dynamical principles of
biological neural network organization. We note two ex-
amples.

Many neural systems, especially sensory systems, must
be robust against noise and at the same time must be
very sensitive to incoming inputs. A new paradigm that
can deal with the existence of this fundamental contra-
diction is the winnerless competition (WLC) principle
(Rabinovich et al., 2001). According to this principle, a
neural network with nonsymmetric inhibitory connec-
tions is able to exhibit structurally stable dynamics if the
stimulus is fixed, and qualitatively change its dynamics if
the stimulus is changed. This ability is based on different
features of the signal and the noise, and the different
ways they influence the dynamics of the system.

Another example is the remarkable reproducibility of
transient behavior. Because transient behavior, in con-
trast to the long-term stable stationary activity of attrac-
tors, depends on initial conditions, it is difficult to imag-
ine how such behavior can be reproducible from
experiment to experiment. The solution to this paradox
is related to the special role of global and local inhibi-
tion, which sets up the initial conditions.

The logic of this review is related to the specificity of
neural systems from the dynamical point of view. In Sec.
IT we consider the possible dynamical origin of robust-
ness and sensitivity in neural microcircuits. The dynam-
ics of information processing in neural systems is consid-
ered in Sec. III. In Sec. IV, together with other
dynamical concepts, we focus on a new paradigm of neu-
rodynamics: the winnerless competition principle in the
context of sequence generation, sensory coding, and
learning.

II. DYNAMICAL FEATURES OF MICROCIRCUITS:
ADAPTABILITY AND ROBUSTNESS

A. Dynamical properties of individual neurons and synapses

1. Neuron models

Neurons receive patterned synaptic input and com-
pute and communicate by transforming these synaptic
input patterns into an output sequence of spikes. Why
spikes? As spike wave forms are similar, information en-
coded in spike trains mainly relies on the interspike in-
tervals. Relying on timing rather than on the details of
action-potential wave forms increases the reliability and
reproducibility in interneural communication. Disper-
sion and attenuation in transmission of neural signals
from one neuron to others changes the wave form of the
action potentials but preserves their timing information,
again allowing for reliability when depending on inter-
spike intervals.

The nature of spike train generation and transforma-
tion depends crucially on the properties of many
voltage-gated ionic channels in neuron cell membranes.
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The cell body (or soma) of the neuron gives rise to two
kinds of processes: short dendrites and one or more
long, tubular axons. Dendrites branch out like trees and
receive incoming signals from other neurons. In some
cases the synaptic input sites are on dendritic spines,
thousands of which can cover the dendritic arbor. The
output process, the axon, transmits the signals generated
by the neuron to other neurons in the network or to an
effector organ. The spikes are rapid, transient, all-or-
none (binary) impulses, with a duration of about 1 ms
(see Fig. 1). In most cases, they are initiated at a special-
ized region at the origin of the axon and propagate
along the axon without distortion. Near its end, the tu-
bular axon divides into branches that connect to other
neurons through synapses.

When the spike emitted by a presynaptic neuron
reaches the terminal of its axon, it triggers the emission
of chemical transmitters in the synaptic cleft (the small
gap, of order a few tens of nanometers, separating the
two neurons at a synapse). These transmitters bind to
receptors in the postsynaptic neuron, causing a depolar-
ization or hyperpolarization in its membrane, exciting or
inhibiting the postsynaptic neuron, respectively. These
changes in the polarization of the membrane relative to
the extracellular space spread passively from the syn-
apses on the dendrites across the cell body. Their effects
are integrated, and, when there is a large enough depo-
larization, a new action potential is generated (Kandel er
al., 2000). Other types of synapses called gap junctions
function as Ohmic electrical connections between the
membranes of two cells. A spike is typically followed by
a brief refractory period, during which no further spikes
can be fired by the same neuron.

Neurons are quite complex biophysical and biochemi-
cal entities. In order to understand the dynamics of neu-
rons and neural networks, phenomenological models
have to be developed. The Hodgkin-Huxley model is
foremost among such phenomenological descriptions of
neural activity. There are several classes of neural mod-
els possessing various degrees of sophistication. We sum-
marize the neural models most often considered in bio-
logical network development in Table I. For a more
detailed description of these models see, for example,
Koch (1999), Gerstner and Kistler (2002), and Izhikevich
(2004).

Detailed conductance-based neuron models take into
account ionic currents flowing across the membrane
(Koch, 1994). The neural membrane may contain several
types of voltage-dependent sodium, potassium, and cal-
cium channels. The dynamics of these channels can also
depend on the concentration of specific ions. In addi-
tion, there is a leakage current of chloride ions. The flow
of these currents results in changes in the voltage across
the membrane. The probability that a type of ionic chan-
nel is open depends nonlinearly on the membrane volt-
age and the current state of the channel. These depen-
dencies result in a set of several coupled nonlinear
differential equations describing the electrical activity of
the cell. The intrinsic membrane conductances can en-
able neurons to generate different spike patterns, in-

Rev. Mod. Phys., Vol. 78, No. 4, October—December 2006

cluding high-frequency bursts of different durations
which are commonly observed in a variety of motor neu-
ral circuits and brain regions [see Fig. 3(b2)]. The bio-
physical mechanisms of spike generation enable indi-
vidual neurons to encode different stimulus features into
distinct spike patterns. Spikes, and bursts of spikes of
different durations, code for different stimulus features,
which can be quantified without a priori assumptions
about those features (Kepecs and Lisman, 2003).

How detailed does the description of neurons or syn-
apses have to be to make a model of neural dynamics
biologically realistic while still remaining computation-
ally tractable? It is reasonable to separate neuron mod-
els into two classes depending on the general goal of the
modeling. If we wish to understand, for example, how
the ratio of inhibitory to excitatory synapses in a neural
ensemble with random connections influences the activ-
ity of the whole network, it is reasonable to use a simple
model that keeps only the main features of neuron be-
havior. The existence of a spike threshold and the in-
crease of the output spike rate with an increase in the
input may be sufficient. On the other hand, if our goal is
to explain the flexibility and adaptability of a small net-
work like a CPG to a changing environment, the details
of the ionic channel dynamics can be of critical impor-
tance (Prinz et al., 2004b). In many cases neural models
built on simplified paradigms lead to more detailed
conductance-based models based on the same dynamical
principles but implemented with more biophysically re-
alistic mechanisms. A good indication that the level of
the description was chosen wisely comes if the model
can reproduce with the same parameters the main bifur-
cations observed in the experiments.

2. Neuron adaptability and multistability

Multistability in a dynamical system means the coex-
istence of multiple attractors separated in phase space at
the same value of the system’s parameters. In such a
system qualitative changes in dynamics can result from
changes in the initial conditions. A well-studied case is
the bistability associated with a subcritical Andronov-
Hopf bifurcation (Kuznetsov, 1998). Multistable modes
of oscillation can arise in delayed-feedback systems
when the delay is larger than the response time of the
system. In neural systems multistability could be a
mechanism for memory storage and temporal pattern
recognition in both artificial (Sompolinsky and Kanter,
1986) and living (Canavier ef al., 1993) neural circuits. In
a biological nervous system recurrent loops involving
two or more neurons are found quite often and are par-
ticularly prevalent in cortical regions important for
memory (Traub and Miles, 1991). Multistability emerges
easily in these loops. For example, the conditions under
which time-delayed recurrent loops of spiking neurons
exhibit multistability were derived by Foss et al. (1996).
The study used both a simple integrate-and-fire neuron
and a Hodgkin-Huxley (HH) neuron whose recurrent
inputs are delayed versions of their output spike trains.
The authors showed that two kinds of multistability with
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TABLE I. Summary of many frequently used neuronal models.

Model Example Variables Remarks References
Integrate-and- dv(t) v(t) is the neuron A spike occurs when Lapicque,
fire neurons dt membrane potential; § the neuron reaches 1907
is the threshold for the threshold 6 in v(¢)
V() spike generation. / after which the cell is
-— <)< . et .
- T +Ie’“+15y“(t)’ O<v()<6 is an external stimulus  reset to the resting
W1 =0, W(t;) = 0 current; Iy, is the' state.
sum of the synaptic
Lyn(t)=g E JU = topie) currents; and 7; and
spikes 7, are time constants
and characterizing the syn-
fiy=Alexp(~t/ ) —exp(~t/7,)] aptic currents.
Rate models ai(t)=Fi(a;(1)[Gi(a;(t)) a;(1)>0 is the spiking  This is a general- Fukai and
—Ejpiij(aj(t))] rate of the ith neuron  ization of the Lotka- Tanaka, 1997;
or cluster; p;; is the Volterra model [see Lotka, 1925;

McCulloch and
Pitts

xi(n+1)=0(2;g;xi(n)—0)

1, x>0

BO(x) =

0, x=<0

Hodgkin-Huxley ¢y =g [v.—v(n)]

m(f) =
he(v(2)) = h(?)

+gN,m(t)*h(t)[vN, - v(1)]

+gKn()*(vg) —v(0) +1,
m.(v(1)) —mf(t)
T, (v(1))

7(v(1))

’ _nm(V(t))—n(t)

FitzHugh-Nagumo

7, (v(1))

ipx—cx*—y+I, y=x+by-a

connection matrix;
and F,G,Q are
polynomial functions.

6 is the firing
threshold; x;(n) are
synaptic inputs at the
discrete “time” n; x;(n
+1) is the output.
Inputs and outputs
are binary (one or
zero); the synaptic
connections g;; are 1,
-1, or O.

v(t) is the membrane
potential, m(t), and
h(t), and n(t)
represent empirical
variables describing
the activation and
inactivation of the
ionic conductances; /
is an external current.
The steady-state
values of the
conductance variables
Mo, h..,n, have a
nonlinear voltage
dependence, typically
through sigmoidal or
exponential functions.

x(t) is the membrane
potential, and y(z)
describes the
dynamics of fast
currents; / is an
external current. The
parameter values a, b,
and c¢ are constants
chosen to allow
spiking.

Eq. (9)].

The first
computational model
for an artificial
neuron; it is also
known as a linear
threshold device
model. This model
neglects the relative
timing of neural
spikes.

These ODEs
represent point
neurons. There is a
large list of models
derived from this one,
and it has become the
principal tool in
computational
neuroscience. Other
ionic currents can be
added to the
right-hand side of the
voltage equation to
better reproduce the
dynamics and
bifurcations observed
in the experiments.

A reduced model
describing oscillatory
spiking neural
dynamics including
bistability.

Volterra, 1931

McCulloch
and Pitts,
1943

Hodgkin and
Huxley, 1952

FitzHugh,
1961;
Nagumo et
al., 1962
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TABLE 1. (Continued.)
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Model Example Variables Remarks References
Wilson-Cowan IE(x 1) {E(x,t),I(x,t)} are the  The first “mean-field”  Wilson and
Y =—E(x,0)+[1-rE(x,1)] number density of model. It is an Cowan, 1973
X LJE(x,0) @ w,,(x) active excitatory and attempt to describe a
—I(x,0) @w(x)+1,(x,1)] inhibitory neurons at cluster of neurons, to
al(x,1) location x of the avoid the inherent
“ P =—I(x,t)+[1-rI(x,1)] continuous neural noisy ijnamica! .
X LLE(x,0)®wi(x) media. (W,.(x),w;(x),  behavior of 1nd1v1d}1a1
—I(x,)@w;(x)+1(x,1)] Wej(x)’”fiigx)) are neurons, .by averaging
connectivity distribu-  to a distribution noise
tions among the popu- is reduced.
lations of cells. {£Z,,
L;} are nonlinear re-
sponses reflecting dif-
ferent populations of
thresholds. The oper-
ator ® is a convolu-
tion involving the con-
nectivity distributions.
Morris-Lecar v( =g, v, -v()]+n()g, v(t) is the membrane Simplified model that ~ Morris and
X [v,—v(©)] potential; n(r) ileduces tllle nurr;)ll)er of Lecar, 1981
. _ describes the recovery ynamical variables of
, + 8OV —v (O] + 1, activity of a calcium the HH model. It
n(O = EO)[n=(v(1)) =n(0)] current; / is an displays action
moc(v):l 1 +tanhv_ovm external current. potential generation
2 Vi when changing 7 leads
n(v)== 1+tanhv_V") to a saddle-node
) W bifurcation to a limit
V—v, cycle.
A(v)=¢, cosh—
2 n
Hindmarsh-Rose x()=y(O)+ax(t)*-bx(1)3—z() +1 x() is the membrane Simplified model that Hindmarsh
potential; y(7) uses a polynomial and Rose,

y()=C—xx(t)*~y(1)
2(t) = r{s[x(1) = xo] - (0}

Phase oscillator  d6,r)
models — =0 2 Hy(6(0 - 6(0)
j
Map models . o .
P xp41(0) = T2 +yi)
E 5
+ Nz x(j)

j

yt+1(i) = yt(i) - o'xt(i) -B

describes fast
currents; z(¢) describes
slow currents; and / is
an external current.

0(z) is the phase of
the ith neuron with
approximately
periodic behavior; and
Hj; is the connectivity
function determining
how neuron i and j
interact.

X, represents the
spiking activity and y,
represents a slow
variable. A discrete
time map.

approximation to the 1984
right-hand side of a
Hodgkin-Huxley

model. This model

fails to describe the
hyperpolarized

periods after spiking

of biological neurons.

First introduced for Cohen et al.,
chemical oscillators; 1982;

good for describing Ermentrout
strongly dissipative and Kopell,
oscillating systems in 1984;
which the neurons are ~ Kuramoto,
intrinsic periodic 1984
oscillators.

One of a class of Cazelles et al.,
simplephenomenologi-  2001; Rulkov,
cal models for spiking, 2002

bursting neurons. This

kind of model can be

computationally very

fast, but has little bio-

physical foundation.
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respect to initial spiking functions exist, depending on
whether the neuron is excitable or repetitively firing in
the absence of feedback.

Following Hebb’s (1949) ideas most studies of the
mechanisms underlying learning and memory focus on
changing synaptic efficacy. Learning is associated with
changing connectivity in a network. However, the net-
work dynamics also depends on complex interactions
among intrinsic membrane properties, synaptic
strengths, and membrane-voltage time variation. Fur-
thermore, neuronal activity itself modifies not only syn-
aptic efficacy but also the intrinsic membrane properties
of neurons. Papers by Marder et al. (1996) and Turri-
giano ef al. (1996) present examples showing that
bistable neurons can provide short-term memory
mechanisms that rely solely on intrinsic neuronal prop-
erties. While not replacing synaptic plasticity as a pow-
erful learning mechanism, these examples suggest that
memory in networks could result from an ongoing inter-
play between changes in synaptic efficacy and intrinsic
neuron properties.

To understand the biological basis for such computa-
tional properties we must examine both the dynamics of
the ionic currents and the geometry of neuronal mor-

phology.

3. Synaptic plasticity

Synapses as well as neurons are dynamical nonlinear
devices. Although synapses throughout the CNS share
many features, they also have distinct properties. They
operate with the following sequences of events: A spike
is initiated in the axon near the cell body, it propagates
down the axon, and arrives at the presynaptic terminal,
where voltage-gated calcium channels admit calcium,
which triggers vesicle fusion and neurotransmitter re-
lease. The released neurotransmitter then binds to re-
ceptors on the postsynaptic neuron and changes their
conductance (Nicholls et al., 1992; Kandel et al., 2000).
This series of events is regulated in many ways, making
synapses adaptive and plastic.

In particular, the strength of synaptic conductivity
changes in real time depending on their activity, as Katz
observed many years ago (Fatt and Katz, 1952; Katz,
1969). A description of such plasticity was made in 1949
by Hebb (1949). He proposed that “When an axon of
cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such
that A’ efficiency, as one of the cells firing B, is in-
creased.” This neurophysiological postulate has since
become a central concept in neuroscience through a se-
ries of classic experiments demonstrating Hebbian-like
synaptic plasticity. These experiments show that the ef-
ficacy of synaptic transmission in the nervous system is
activity dependent and continuously modified. Examples
of such modification are long-term potentiation and de-
pression (LTP and LTD), which involve increased or de-
creased conductivity, respectively, of synaptic connec-
tions between two neurons, leading to increased or
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decreased activity over time. Long-term potentiation
and depression are presumed to produce learning by dif-
ferentially facilitating the association between stimulus
and response. The role of LTP and LTD, if any, in pro-
ducing more complex behaviors is less closely tied to
specific stimuli and more indicative of cognition, and is
not well understood.

Long-term potentiation was first reported in the hip-
pocampal formation (Bliss and Lomo, 1973). Changes
induced by LTP can last for many days. Long-term po-
tentiation has long been regarded, along with its coun-
terpart LTD, as a potential mechanism for short-term-
memory formation and learning. In fact, the hypothesis
is widely accepted in learning and memory research that
activity-dependent synaptic plasticity is induced at ap-
propriate synapses during memory formation and is
both necessary and sufficient for the information storage
underlying the type of memory mediated by the brain
area in which that plasticity is observed [see for a review
Martin et al. (2000)]. Hebb did not anticipate LTD in
1949, but along with LTP it is thought to play a critical
role in “rewiring” biological networks.

The notion of a coincidence requirement for Hebbian
plasticity has been supported by classic studies of LTP
and LTD using presynaptic stimulation coupled with
prolonged postsynaptic depolarization [see, for example,
Malenka and Nicoll (1999)]. However, coincidence there
was loosely defined with a temporal resolution of hun-
dreds of milliseconds to tens of seconds, much larger
than the time scale of typical neuronal activity charac-
terized by spikes that last for a couple of milliseconds. In
a natural setting, presynaptic and postsynaptic neurons
fire spikes as their functional outputs. How precisely
must such spiking activities coincide in order to induce
synaptic modifications? Experiments addressing this
critical issue led to the discovery of spike-timing-
dependent synaptic plasticity (STDP). Spikes initiate a
sequence of complex biochemical processes in the
postsynaptic neuron during the short time window fol-
lowing synaptic activation. Identifying detailed molecu-
lar processes underlying LTP and LTD remains a com-
plex and challenging problem. There is good evidence
that it consists of a competition between processes re-
moving (LTD) and processes placing (LTP) phosphate
groups from on postsynaptic receptors, or increasing
(LTP) or decreasing (LTD) the number of such receptors
in a dendritic spine. It is also widely accepted that
N-methyl-D-aspartate (NMDA) receptors are crucial for
the development of LTP or LTD and that it is calcium
influx onto the postsynaptic cell that is critical for both
LTP and LTD.

Experiments on synaptic modifications of excitatory
synapses between hippocampal glutamatergic neurons in
culture (Bi and Poo, 1998, 2001) (see Fig. 4) indicate that
if a presynaptic spike arrives at time 7, and a postsyn-
aptic spike is observed or induced at 7, then when
T=lpost—Ipre 18 pOSitive the incremental percentage in-
crease in synaptic strength behaves as
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FIG. 4. Spike-timing-dependent synaptic plasticity observed in
hippocampal neurons. Each data point represents the relative
change in the amplitude of evoked postsynaptic current after
repetitive application of presynaptic and postsynaptic spiking
pairs (1 Hz for 60 s) with fixed spike timing Af, which is de-
fined as the time interval between postsynaptic and presynap-
tic spiking within each pair. Long-term potentiation (LTP) and
depression (LTD) windows are each fitted with an exponential
function. Modified from Bi, 2002.

A
=8~ apetr, (1)

with Bp=1/16.8 ms. When 7<0, the percentage de-
crease in synaptic strength behaves as

= ~ —apePoT, (2)
8

with Bp=1/33.7 ms. ap and ap are constants. This is

illustrated in Fig. 4.

Many biochemical factors contribute differently to
LTP and LTD in different synapses. Here we discuss a
phenomenological dynamical model of synaptic plastic-
ity (Abarbanel et al., 2002) which is very useful for mod-
eling neural plasticity; its predictions agree with several
experimental results. The model introduces two dynami-
cal variables P(¢) and D(¢) that do not have a direct re-
lationship with the concentration of any biochemical
components. Nonlinear competition between these vari-
ables imitates the known competition in the postsynaptic
cell. These variables satisfy the following simple first-
order kinetic equations:

d

O V01 - P01~ BP0,

d

B Vo)1~ DO - ByDW). ®

where the functions f{(V) and g(V) are typical logistic or
sigmoidal functions which rise from zero to the order of
unity when their argument exceeds some threshold.
These driving or input functions are a simplification of
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the detailed way in which each dynamical process is
forced. The P(f) process is associated with a particular
time constant 1/8p while the D(f) process is associated
with a different time constant 1/8p. Experiments show
that Bp# Bp, and this is the primary embodiment of the
two different time scales seen in many observations. The
two time constants are a coarse-grained representation
of the diffusion and leakage processes which dampen
and terminate activities. Presynaptic voltage activity
serves to release neurotransmitters in the usual manner
and this in turn induces the postsynaptic action of P(z),
which has a time course determined by the time constant
Bp'. Similarly, the postsynaptic voltage, constant or time
varying, can be associated with the induction of the D(¢)
process.

P(1) and D(t) compete to produce a change in synaptic
strength Ag(?) as

80 _stpwp70 - DIPTO], @

where 7>1 and y>0. This dynamical model reproduces
some of the key STDP experimental results like, for ex-
ample, those shown in Fig. 4. It also accounts for the
case where the postsynaptic cell is depolarized while a
presynaptic spike train is presented to it.

4. Examples of the cooperative dynamics of individual neurons
and synapses

To illustrate the dynamical significance of plastic syn-
apses we consider the synchronization of two neurons: a
living neuron and an electronic model neuron coupled
through a STDP or inverse STDP electronic synapse.
Using hybrid circuits of model electronic neurons and
biological neurons is a powerful method for analyzing
neural dynamics (Pinto et al., 2000; Sziics et al., 2000;
LeMasson et al., 2002; Prinz et al., 2004a). The represen-
tation of synaptic input to a cell using a computer to
calculate the response of the synapse to specified
presynaptic input goes under the name “dynamic clamp”
(Robinson and Kawai, 1993; Sharp et al., 1993). It has
been shown in modeling and in experiments (Nowotny,
Zhigulin, et al., 2003; Zhigulin et al., 2003) that coupling
through plastic electronic synapses leads to neural syn-
chronization or, more correctly, entrainment that is more
rapid, more flexible, and much more robust against
noise than synchronization mediated by connections of
constant strength. In these experiments the neural cir-
cuit consists of a specified presynaptic signal, a simulated
synapse (via the dynamic clamp), and a postsynaptic bio-
logical neuron from the Aplysia abdominal ganglion.
The presynaptic neuron is a spike generator producing
spikes of predetermined form at predetermined times.
The synapse and its plasticity are simulated by dynamic
clamp software (Nowotny, 2003). In each update cycle of
~100 us the presynaptic voltage is acquired, the spike
generator voltage is updated, the synaptic strength is de-
termined according to the learning rule, and the result-
ing synaptic current is calculated and injected into the
living neuron through a current injection electrode. As
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one presents the presynaptic signal many times, the syn-
aptic conductance changes from one fixed value to an-
other depending on the properties of the presynaptic
signal.

The calculated synaptic current is a function of the
presynaptic and postsynaptic potentials of the spike gen-
erator V,.(¢) and the biological neuron V (), respec-
tively. It is calculated according to the following model.
The synaptic current depends linearly on the difference
between the postsynaptic potential Vi, and its reversal
potential V.., on an activation variable S(¢), and on its
maximal conductance g(z):

Isyn(l) = g(I)S(I)[Vpost(l) - Vrev] . (5)

The activation variable S(¢) is a nonlinear function of the
presynaptic membrane potential V. and represents the
percentage of neurotransmitter docked on the postsyn-
aptic cell relative to the maximum that can dock. It has
two time scales: a docking time and an undocking time.
We take it to satisfy the dynamical equation

dS(t) _ Soo(Vpre(t)) B S(t)

= . (6)
dt 7-synl:Sl - SOC(Vl (t))]
S.(V) is a sigmoid function which we take to be
tanh[(V - Vy)/Vonel for V>V,
Sw(V) _ [( th) lop ] . th (7)
0 otherwise.

The time scale is 7y,(S;—1) for neurotransmitter dock-
ing and 7,5, for undocking. For AMPA excitatory re-
ceptors, the docking time is about 0.5 ms, and the un-
docking time is about 1.5 ms. The maximal conductance
g(1) is determined by the learning rule discussed below.
In the experiments, the synaptic current is updated at
~10 kHz.

To determine the maximal synaptic conductance g(t)
of the simulated STDP synapse, an additive STDP learn-
ing rule was used. This is accurate if the time between
presented spike pairs is long compared to the time be-
tween spikes in the pair. To avoid runaway behavior, the
additive rule was applied to an intermediate g, that
was then filtered through a sigmoid function. In particu-
lar, the change Ag.,,, in synaptic strength is given by

Ar— To e—(A[—TO)/‘rJr

A, for At > 7,

r

Agraw(At) = Ati . (8)
A LA for Ar < 1,

T

where Af=1,q— Iy is the difference between postsynap-
tic and presynaptic spike times. The parameters 7, and
7_ determine the widths of the learning windows for po-
tentiation and depression, respectively, and the ampli-
tudes A, and A_ determine the magnitude of synaptic
change per spike pair. The shift 7, reflects the finite time
of information transport through the synapse.

As one can see in Fig. 5, the postsynaptic neuron
quickly synchronizes to the presynaptic spike generator
which presents spikes with an interspike interval (ISI) of
255 ms (top panel). The synaptic strength continuously
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FIG. 5. Example of a synchronization experiment. Top: The
interspike intervals (ISIs) of the postsynaptic biological neu-
ron. Bottom: The synaptic strength g(z). Presynaptic spikes
with ISI of 255 ms were presented to a postsynaptic neuron
with periodic oscillations at an ISI of 330 ms. Before coupling
with the presynaptic spike generator, the biological neuron
spikes tonically at its intrinsic ISI of 330 ms. Coupling was
switched on with g(r=0)=15 nS at time 6100 s. As one can see
the postsynaptic neuron quickly synchronizes to the presynap-
tic spike generator (top panel, dashed line). The synaptic
strength continuously adapts to the state of the postsynaptic
neuron, effectively counteracting adaptation and other modu-
lations of the system. This leads to a very precise and robust
synchronization at a nonzero phase lag. The precision of the
synchronization manifests itself in small fluctuations of the
postsynaptic ISIs in the synchronized state. Robustness and
phase lag cannot be seen directly. Modified from Nowotny,
Zhigulin, et al., 2003.

adapts to the state of the postsynaptic neuron, effec-
tively counteracting adaptation and other modulations
of the system (bottom panel). This leads to a very pre-
cise and robust synchronization at a nonzero phase lag.
The precision of the synchronization manifests itself in
small fluctuations of the postsynaptic ISIs in the syn-
chronized state. Robustness and phase lag cannot be
seen directly in Fig. 5. Spike-timing-dependent plasticity
is a mechanism that enables synchronization of neurons
with significantly different intrinsic frequencies as one
can see in Fig. 6. The significant increase in the regime
of synchronization associated with synaptic plasticity is a
welcome, perhaps surprising, result and addresses the
issue raised above about robustness of synchronization
in neural circuits.

B. Robustness and adaptability in small microcircuits

The precise relationship between the dynamics of in-
dividual neurons and the mammalian brain as a whole
remains extremely complex and obscure. An important
reason for this is a lack of knowledge on the detailed
cell-to-cell connectivity patterns as well as a lack of
knowledge on the properties of the individual cells. Al-
though large-scale modeling of this situation is at-
tempted frequently, parameters such as the number and
kind of synaptic connections can only be estimated. By
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FIG. 6. (Color online) The presynaptic signal generator pre-
sents a periodic spike train with ISI of 7 to a postsynaptic
neuron with ISI of 73, before coupling. When neurons are
coupled, Tga T,. We plot the ratio of these periods after cou-
pling as a function of the ratio before coupling (a), for a syn-
apse with constant g and (b) for a synaptic connection g(z)
following the rule in the text. The enlarged domain of one-to-
one synchronization in the latter case is quite clear and, as
shown by the change in the error bar sizes, the synchronization
is much better. This result persists when noise is added to the
presynaptic signal and to the synaptic action (not shown).
Modified from Nowotny, Zhigulin, et al., 2003.

using the less complex microcircuits (MCs) of inverte-
brates, a more detailed understanding of neural circuit
dynamics is possible.

Central pattern generators are small MCs that can
produce stereotyped cyclic outputs without rhythmic
sensory or central input (Marder and Calabrese, 1996;

Leech Heart

Lobster Pyloric

Tritonia Swim
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Stein et al., 1997). Thus CPGs are oscillators, and the
image of their activity in the corresponding system state
space is a limit cycle when oscillations are periodic and a
strange attractor in more complex cases. Central pattern
generators underlie the production of most motor com-
mands for muscles that execute rhythmic animal activity
such as locomotion, breathing, heartbeat, etc. The CPG
output is a spatiotemporal pattern with specific phase
lags between the temporal sequences corresponding to
the different motor units (see below).

The network architecture and the main features of
CPG neurons and synapses are known much better than
any other brain circuits. Examples of typical inverte-
brate CPG networks are shown in Fig. 7. Common to
many CPG circuits are electrical and inhibitory connec-
tions and the spiking-bursting activity of their neurons.
The characteristics of the spatiotemporal patterns gener-
ated by the CPG, such as burst frequency, phase, length,
etc., are determined by the intrinsic properties of each
individual neuron, the properties of the synapses, and
the architecture of the circuit.

The motor patterns produced by CPGs fall into two
categories: those that operate continuously such as res-
piration (Ramirez et al., 2004) or heartbeat (Cymbalyuk
et al., 2002), and those that are produced intermittently
such as locomotion (Getting, 1989) or chewing (Selver-
ston, 2005). Although CPGs autonomously establish cor-
rect rthythmic firing patterns, they are under constant
supervision by descending fibers from higher centers and
by local reflex pathways. These inputs allow the animal
to constantly adapt its behavior to the immediate envi-
ronment, which suggests that there is considerable flex-
ibility in the dynamics of motor systems. In addition
there is now a considerable body of information showing
that anatomically defined small neural circuits can be
reconfigured in a more general way by neuromodulatory
substances in the blood, or released synaptically so that
they are functionally altered to produce different stable
spatiotemporal patterns, which must also be flexible in
response to sensory inputs on a cycle-by-cycle basis; see

Clione Swim

FIG. 7. Examples of invertebrate CPG micro-
circuits from arthropod, mollusk, and annelid
preparations. All produce rhythmic spa-
tiotemporal motor patterns when activated by
nonpatterned input. The black dots represent
chemical inhibitory synapses. Resistors repre-
sent electrical connections. Triangles are
chemical excitatory synapses, and diodes are
rectifying synapses (electrical synapses in
which the current flows only in one direction).
Individual neurons are identifiable from one
preparation to another.

Lobster Cardiac
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Simmers and Moulins (1988), for example.

Central pattern generators have similarity with neural
MCs in the brain (Silberberg et al., 2005; Solis and Per-
kel, 2005; Yuste et al., 2005) and are often studied as
models of neural network function. In particular, there
are important similarities between vertebrate spinal
cord CPGs and neocortical microcircuits which have
been emphasized by Yuste et al. (2005): (i) CPG interac-
tions, which are fundamentally inhibitory, dynamically
regulate the oscillations. Furthermore, subthreshold-
activated voltage-dependent cellular conductances that
promote bistability and oscillations also promote syn-
chronization with specific phase lags. The same cellular
properties are also present in neocortical neurons, and
underlie the observed oscillatory synchronization in the
cortex. (ii) Neurons in spinal cord CPGs show bistable
membrane dynamics, which are commonly referred to as
plateau potentials. A correlate of bistable membrane be-
havior, in this case termed “up” and “down” states, has
also been described in the striatum and neocortex both
in vivo and in vitro (Sanchez-Vives and McCormick,
2000; Cossart et al., 2003). It is still unclear whether this
bistability arises from intrinsic or circuit mechanisms or
a combination of the two (Egorov et al., 2002; Shu et al.,
2003). (iii) Both CPGs and cortical microcircuits demon-
strate attractor dynamics and transient dynamics [see,
for example, Abeles et al. (1993); Ikegaya et al. (2004)].
(iv) Modulations by sensory inputs and neuromodulators
are also a common characteristic that is shared between
CPGs and cortical circuits. Examples in CPGs include
the modulation of oscillatory frequency, of temporal co-
ordination among different populations of neurons, of
the amplitude of network activity, and of the gating of
CPG input and output (Grillner, 2003). (v) Switching be-
tween different states of CPG operation (for example,
switching coordinated motor patterns for different
modes of locomotion) is under sensory afferent and neu-
rochemical modulatory control. This makes CPGs mul-
tifunctional and dynamically plastic. Switching between
cortical activity states is also under modulatory control,
as shown, for example, by the role of the neurotransmit-
ter dopamine in working memory in monkeys
(Goldman-Rakic, 1995). Thus modulation reconfigures
microcircuit dynamics and transforms activity states to
modify behavior.

The CPG concept was built around the idea that be-
haviorally relevant spatiotemporal cyclic patterns are
generated by groups of nerve cells without the need for
rhythmic inputs from higher centers or feedback from
structures that are moving. If activated, isolated inverte-
brate preparations can generate such rhythms for many
hours and as a result have been extremely important in
trying to understand how simultaneous cooperative in-
teractions between many cellular and synaptic param-
eters can produce robust and stable spatiotemporal pat-
terns [see Fig. 8(d)]. An example of a three-neuron CPG
phase portrait is shown in Figs. 8(a)-8(c). The effect of a
hyperpolarizing current leads to changes in the pattern
as reflected by the phase portrait in Figs. 8(b) and 8(c).
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FIG. 8. (Color) Phase portrait of typical CPG output. The data
were recorded in the pyloric CPG of the lobster stomatogastric
ganglion. Each axis represents the firing rate of one of three
pyloric neurons: LP, VD, and PD (see Fig. 7). (a) The orbit of
the oscillating pyloric system is shown in blue and the average
orbit is shown in red; (b) the same but with a hyperpolarizing
dc current injected into the PD; (c) the difference between the
averaged orbits; (d) time series of the membrane potentials of
the three neurons. Figure provided by T. Nowotny, R. Levi,
and A. Sziics.

Neural oscillations arise either through interactions
among neurons (network-based mechanism) or through
interactions among currents in individual neurons (pace-
maker mechanism). Some CPGs use both mechanisms.
In the simplest case, one or more neurons with intrinsic
bursting activity acts as the pacemaker for the entire
CPG circuit. The intrinsic currents may be constitutively
active or they may require activation by neuromodula-
tors, so-called conditional bursters. Synaptic connections
act to determine the pattern by exciting or inhibiting
other neurons at the appropriate time. Such networks
are extremely robust and have generally been thought to
be present in systems in which the rhythmic activity is
active all or most of the time. In the second case, it is the
synaptic interactions between nonbursty neurons that
generate the rhythmic activity and many schemes for the
types of connections necessary to do this have been pro-
posed. Usually reciprocal inhibition serves as the basis
for generating bursts in antagonistic neurons and there
are many examples of cells in pattern-generating micro-
circuits connected in this way (see Fig. 7). Circuits of this
type are usually found for behaviors that are intermit-
tent in nature and require a greater degree of flexibility
than those based on pacemaker cells.

Physiologists know that reciprocal inhibitory connec-
tions between oscillatory neurons can produce, as a re-
sult of the competition, sequential activity of neurons
and rhythmic spatiotemporal patterns (Szekely, 1965;
Stent and Friesen, 1977; Rubin and Terman, 2004). How-
ever, even for a rather simple MC, consisting of just
three neurons, there is no quantitative description. If the
connections are symmetric, the MC can reach an attrac-
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tor. It is reasonable to hypothesize that asymmetric in-
hibitory connections are necessary to preserve the order
of patterns with more than two phases per cycle. The
contradiction, noted earlier, between robustness and
flexibility can then be resolved because external signals
can modify the effective topology of connections so one
can have functionally different networks for different
stimuli.

Theoretical analysis and computer experiments with
MCs based on the winnerless competition principle (dis-
cussed in Sec. IV.C) show that sufficient conditions for
the generation of sequential activity do exist and the
range of allowed nonsymmetric inhibitory connections is
quite wide (Rabinovich et al., 2001; Varona, Rabinovich,
et al., 2002; Afraimovich, Rabinovich, et al., 2004) We
illustrate this using a Lotka-Volterra rate description of
neuron activity:

N
dat) ai(t)(l -2 Pij(Si)af(t)> *Sp i=L...N,

dt j=1
9)

where the rate of each N neuron is g,(t), the connection
matrix is p;, and the stimuli §; are constants here. This
model can be justified as a rate neural model as follows
(Fukai and Tanaka, 1997). The firing rate a,(f) and mem-
brane potential v;(r) of the ith neuron can be described
by

a(t)=G(v;-6), (10)
dv(t) B
it =—\vi(t) + I,(1), (11)

where G(v;—6) is a gain function, 6 and A are constants,
and the input current /;(f) to neuron i is generated by the
rates a;(t) of the other neurons:

N
I(t) = Si = 25 pyay(0). (12)
]

Here §; is the input and pj; is the strength of the inhibi-
tory synapse from neuron j to neuron i. We suppose that
G(x) is a sigmoidal function:

G(x) = Gy/[1 + exp(— Bx)]. (13)

Let us then make two assumptions: (i) the firing rate is
always much smaller than its maximum value G; and (ii)
the system is strongly dissipative (this is reasonable be-
cause we are considering inhibitory networks). Based on
these assumptions, after combining and rescaling Egs.
(10)—(13), we obtain the Lotka-Volterra rate description
(9) with an additional positive term on the right side that
can be replaced by a constant [see Fukai and Tanaka
(1997) for details].

The tests of whether WLC is operating in a reduced
pyloric CPG circuit are shown in Fig. 9. This study used
estimates of the synaptic strengths shown in Fig. 9(a).
Some of the key questions here are these. (i) What is the
minimal strength for the inhibitory synapse from the py-
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FIG. 9. (Color online) Competition without winner in a model
of the pyloric CPG. (a) Schematic diagram of the three-neuron
network used for rate modeling. Black dots represent chemical
inhibitory synapses with strengths given in nanoseconds (X
>160). (b) Phase portrait of the model: The limit cycle corre-
sponding to the rhythmic activity is in the 2D simplex (Zeeman
and Zeeman, 2002). (c) Robustness in the presence of noise:
Noise introduced into the model shows no effect on the order
of activation for each type of neuron. Figure provided by R.
Huerta.

loric dilator (PD) neuron or AB group to the VD neu-
ron such that WLC exists? (ii) Does the connectivity
obtained from the competition without winner condition
produce the order of activation observed in the pyloric
CPG? (iii) Is this dynamics robust against noise, in the
sense that strong perturbations of the system do not al-
ter the sequence? If the strengths of p;; are taken as

1 125 0
pi=[0875 1 125],
X/80 0.625 1

the WLC formulas imply that the sufficient conditions
for a reliable and robust cyclic sequence are satisfied if
X>160. The activation sequence of the rate model with
noise shown in Fig. 9(c) is similar to that observed ex-
perimentally in the pyloric CPG. When additive Gauss-
ian noise is introduced into the rate equations, the acti-
vation order of neurons is not broken, but the period of
the limit cycle depends on the level of perturbation.
Therefore the cyclic competitive sequence is robust and
can be related to the synaptic connectivity seen in real
MCs. If individual neurons in a MC are not oscillating,
one can consider small subgroups of neurons that may
form oscillatory units and apply the WLC principle to
these units.

An important question about modeling the rhythmic
activity of small inhibitory circuits is how the specific
dynamics of individual neurons influences the network
rhythm generation. Figure 10 represents the three-
dimensional (3D) projection of the many-dimensional
phase portrait of a circuit with the same architecture as
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FIG. 10. (Color online) Three-dimensional projection of the
many-dimensional phase portrait of a circuit with the same
architecture as the one shown in Fig. 9, using Hodgkin-Huxley
spiking-bursting neuron models.

shown in Fig. 9(a) but using Hodgkin-Huxley spiking-
bursting neuron models. The switching dynamics seen in
the rate model is shown in Fig. 9(c), and this circuit is
robust when noise is added to it.

Pairs of neurons can interact via inhibitory, excitatory,
or electrical (gap junction) synapses to produce basic
forms of neural activity which can serve as the founda-
tion for MC dynamics. Perhaps the most common (and
well-studied) CPG interaction consists of reciprocal in-
hibition, an arrangement that generates a rhythmic
bursting pattern in which neurons fire approximately out
of phase with each other (Wang and Rinzel, 1995). This
is called a half-center oscillator. It occurs when there is
some form of excitation to the two neurons sufficient to
cause their firing and some form of decay mechanism to
slow high firing frequencies. The dynamical range of the
bursting activity varies with the synapse strength and in
some instances can actually produce in-phase bursting.
Usually reciprocal excitatory connections (unstable if
too large) or reciprocal excitatory-inhibitory connections
are able to reduce the intrinsic irregularity of neurons
(Varona, Torres, Abarbanel, et al., 2001).

Modeling studies with electrically coupled neurons
have also produced nonintuitive results (Abarbanel et
al., 1996). While electrical coupling is generally thought
to provide synchrony between neurons, under certain
conditions the two neurons can burst out of phase with
each other (Sherman and Rinzel, 1992; Elson et al., 1998,
2002); see Fig. 11 and also Chow and Kopell (2000) and
Lewis and Rinzel (2003). An interesting modeling study
of three neurons (Soto-Trevino et al., 2001) with syn-
apses that are activity dependent found that the synaptic
strengths self-adjusted in different combinations to pro-
duce the same three-phase rhythm. There are many ex-
amples of vertebrate MCs in which a collection of neu-
rons can be conceptually isolated to perform a particular
function or to represent the canonical or modular circuit
for a particular brain region [see Shepherd (1998)].
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FIG. 11. Artificial electrical coupling between two living cha-
otic PD cells of the stomatogastric ganglion of a crustacean can
demonstrate both synchronous and asynchronous regimes of
activity. In this case the artificial electrical synapse was built on
top of the existing natural coupling between two PD cells. This
shows different synchronization levels (a)-(d) as a function of
the artificial coupling g, and a dc current / injected in one of
the cells. (a) With their natural coupling g,=0 the two cells are
synchronized and display irregular spiking-bursting activity. (b)
With an artificial electrical coupling that changes the sign of
the current g,=-200 nS, and thus compensates the natural
coupling, the two neurons behave independently. (c) Increasing
the negative conductance leads to a regularized antiphase spik-
ing activity (by mimicking mutual inhibitory synapses). (d)
With no artificial coupling but adding a dc current two neurons
are synchronized, displaying tonic spiking activity. Modified
from Elson et al., 1988.

C. Intercircuit coordination

It is often the case that more or less independent MCs
must synchronize in order to perform some coordinated
function. There is a growing literature suggesting that
large groups of neurons in the brain synchronize oscilla-
tory activity in order to achieve coherence. This may be
a mechanism for binding disparate aspects of cognitive
function into a whole (Singer, 2001), as we will discuss in
Sec. III.D. However, it is more persuasive to examine
intercircuit coordination in motor circuits where the
phases of different segments or limbs actually control
movements. For example, the pyloric and gastric circuits
can be coordinated in the crustacean stomatogastric sys-
tem by a higher-level modulatory neuron that channels
the faster pyloric rhythm to a key cell in the gastric mill
rhythm (Bartos and Nushbaum, 1997; Bartos et al., 1999)
(Fig. 12). In crab stomatogastric MCs, the gastric mill
cycle has a period of approximately 10 s while the py-
loric period is approximately 1s. When an identified
modulatory projection neuron (MCN1) [Fig. 12(a)] is ac-
tivated, the gastric mill pattern is largely controlled by
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FIG. 12. (a) Schematic circuit diagram underlying MCN1 acti-
vation of the gastric mill rhythm of a crustacean. The circuit
represents two phases of the rhythm, retraction (left) and pro-
traction (right). Lighter lines represent inactive connections.
LG, Intl, and DG are members of the gastric CPG and AB
and PD are members of the pyloric CPG. Arrows represent
functional transmission pathways from the MCNI1 neuron.
Bars are excitatory and dots are inhibitory. (b) The gastric mill
cycle period; the timing of each cycle is a function of the py-
loric rhythm frequency. With the pyloric rhythm turned off, the
gastric rhythm cycles slowly (LG). Replacing the AB inhibition
of Intl with current into LG using a dynamic clamp reduces
the gastric mill cycle period. Modified from Barots et al., 1999.

interactions between MCN1 and gastric neurons LG and
Int 1 (Bartos ef al., 1999). When Int 1 is stimulated, the
AB to LG synapse [see Fig. 12(b)] plays a major role in
determining the gastric cycle period and coordination
between the two rhythms. The two rhythms become co-
ordinated because LG burst onset occurs with a constant
latency after the onset of the triggering pyloric input.
These results suggest that intercircuit synapses can en-
able an oscillatory circuit to control the speed of a
slower oscillatory circuit as well as provide a mechanism
for intercircuit coordination (Bartos et al., 1999).
Another type of intercircuit coupling occurs among
segmental CPGs. In the crayfish, abdominal appendages
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called swimmerets beat in a metachronal rhythm from
posterior to anterior with a frequency-independent
phase lag of about 90°. Like most rhythms of this kind,
the phase lag must remain constant over different fre-
quencies. In theoretical and experimental studies by
Jones et al. (2003), it was shown that such phase con-
stancy could be achieved by ascending and descending
excitatory and inhibitory synapses, if the right connec-
tions were made. It appears realistic to look at rhythmic
MC:s as recurrent networks with many intrinsic feedback
connections so that the information on a complete spa-
tiotemporal pattern is contained in the long-term activ-
ity of just a few neurons in the circuit. The number of
intercircuit connections necessary for coordination of
the rhythms is therefore much smaller than the total
number of neurons in the MC.

To investigate coordinating two elements of a popula-
tion of neurons, one may investigate how various cou-
plings, implemented in a dynamical clamp, might oper-
ate in the cooperative behavior of two pyloric CPGs.
This is a hybrid and simplified model of the more com-
plex interplay between brain areas whose coordinated
activity might be used to achieve various functions. We
now describe such a set of experiments.

Artificially connecting neurons from the pyloric CPG
of two different animals using a dynamic clamp could
lead to different kinds of coordination depending on
which neurons are connected and what kind of synapses
are used (Sziics et al., 2004). Connecting the pacemaker
group with electrical synapses could achieve same-phase
synchrony; connecting them with inhibitory synapses
provided much better coordination but out of phase.
The two pyloric circuits (Fig. 13) are representative of
circuits driven by coupled pacemaker neurons that com-
municate with each other via both graded and conven-
tional chemical interactions. But while the unit CPG
pattern is formed in this way, coordinating fibers must
use spike-mediated postsynaptic potentials only. It
therefore becomes important to know where in the cir-
cuit to input these connections in order to achieve maxi-
mum effectiveness in terms of coordinating the entire
circuit and ensuring phase constancy at different fre-
quencies. Simply coupling the PDs together electrically
is rather ineffective although the bursts (not spikes) do
synchronize completely even at high coupling strengths.
The fact that the two PDs are usually running at slightly
different frequencies leads to bouts of chaos in the two
neurons, i.e., a reduction in regularity. More effective
synchronization occurs when the pacemaker groups are
linked together with moderately strong reciprocal in-
hibitory synapses in the classic half-center configuration.
Bursts in two CPGs are of course 180° out of phase, but
the frequencies are virtually identical. The best in-phase
synchronization is obtained when the LPs are coupled to
the contralateral PDs with inhibitory synapses (Fig. 13).

D. Chaos and adaptability

Over the past decades there have been many reports
of the observation of chaos in the analysis of various
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Anti-phase synchronization

FIG. 13. Coupling of two biological pyloric CPGs Pyl 1 and
Pyl 2 by means of dynamic clamp artificial inhibitory synapses.
The dynamic clamp is indicated by DCL. Reciprocal inhibitory
coupling between the pacemaker groups AB and PD leads to
antiphase synchronization while nonreciprocal coupling from
the LPs produces in-phase synchronization. Figure provided by
A. Sziics.

time courses of data from a variety of neural systems
ranging from the simple to the complex (Glass, 1995;
Korn and Faure, 2003). Perhaps the outstanding feature
of these observations is not the presence of chaos but
the appearance of low-dimensional dynamical systems
as the origin of spectrally broadband, nonperiodic sig-
nals observed in many instances (Rabinovich and Abar-
banel, 1998). All chaotic oscillations occur in a bounded
state-space region of the system. This state space is cap-
tured by the multivariate time course of the vector of
dynamical degrees of freedom associated with neural
spike generation. These degrees of freedom are com-
prised of the membrane voltage and the characteristics
of the various ion currents in the cell. Using nonlinear
dynamical tools one can reconstruct a mathematically
faithful proxy state space for the neuron by using the
membrane voltage and its time-delayed values as coor-
dinates for the state space (see Fig. 14).

Chaos seems to be almost unavoidable in natural sys-
tems comprised of numerous simple or slightly complex
subsystems. As long as there are three or more dimen-
sions, chaotic motions are generic in the broad math-
ematical sense. So neurons are dealt a chaotic hand by
nature and may have little choice but to work with it.
Accepting that chaos is more or less the only choice, we
can ask what benefits accrue to the robustness and
adaptability of neural activity.

Chaos itself may not be essential for living systems.
However, the multitude of regular regimes of operation
that can be accomplished in dynamical systems com-
posed of elements which themselves can be chaotic gives
rise to a basic principle that nature may use for the or-
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FIG. 14. Chaotic spiking-bursting activity of isolated CPG
neutrons. Top panel: Chaotic membrane potential time series
of a synaptically isolated LP neuron from the pyloric CPG.
Bottom panel: State-space attractor reconstructed from the
voltage measurements of the LP neuron shown in the top
panel using delayed coordinates [x(¢),y(¢),z(0)]=[V(1),V(t
—T),V(t=2T)]. This attractor is characterized by two positive
Lyapunov exponents. Modified from Rabinovich and Abar-
banel, 1998.

ganization of neural assemblies. In other words, chaos is
not responsible for the work of various neural struc-
tures, but rather for the fact that those structures func-
tion at the edge of instability, and often beyond it. By
recognizing chaotic motions in a system state space as
unstable, but bounded, this geometric notion gives cre-
dence to the otherwise unappealing idea of system insta-
bility. The instability inherent in chaotic motions, or
more precisely in nonlinear dynamics of systems with
chaos, facilitates the extraordinary ability of neural sys-
tems to adapt, make transitions from one pattern of be-
havior to another when the environment is altered, and
consequently create a rich variety of patterns. Thus
chaos gives a means to explore the opportunities avail-
able to the system when the environment changes, and
acts as a precursor to adaptive, reliable, and robust be-
havior for living systems.

Throughout evolution neural systems have developed
different methods of self-control or self-organization.
On the one hand, such methods preserve all advantages
of the complex behavior of individual neurons, such as
allowing regulation of the time period of transitions be-
tween operating regimes, as well as regulation of the
operation frequency in any given regime. They also pre-
serve the possibility of a rich variety of periodic and
nonperiodic regimes of behavior; see Fig. 11 and Elson
et al. (1988) and Varona, Torres, Huerta, et al. (2001). On
the other hand, these control or organizational tech-
niques provide the needed predictability of behavioral
patterns in neural assemblies.

Organizing chaotic neurons through appropriate wir-
ing associated with electrical, inhibitory, and excitatory
connections appears to allow for essentially regular op-
eration of such an assembly (Huerta et al., 2001). As an
example we mention the dynamics of an artificial micro-
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FIG. 15. Average bursting period of the model heartbeat CPG
activity as a function of the inhibitory coupling e. Modified
from Malkov et al., 1996.

circuit that mimics the leech heartbeat CPG (Calabrese
et al., 1995). This CPG model consists of six chaotic neu-
rons implemented with Hindmarsh-Rose equations re-
ciprocally coupled to their neighbors through inhibitory
synapses. The modeling showed that in spite of chaotic
oscillations of individual neurons the cooperative dy-
namics is regular and, most importantly, the period of
bursting of the cooperative dynamics sensitively de-
pends on the values of the inhibitory connections
(Malkov et al., 1996) (see Fig. 15). This example shows
the high level of adaptability of a network consisting of
chaotic elements.

Chaotic signals have many of the traditional charac-
teristics attributed to noise. In the present context we
recognize that both chaos and noise are able to organize
the irregular behavior of individual neurons or neural
assemblies, but the principal difference is that dynamical
chaos is a controllable irregularity, possessing structure
in state space, while noise is an uncontrollable action of
dynamical systems. This distinction is extremely impor-
tant for information processing as discussed below (see
Sec. III.B.2 and its final remarks).

There are several possible functions for noise (Lind-
ner et al., 2004), even seen as high-dimensional essen-
tially unpredictable chaotic motion, in neural network
studies. In high-dimensional systems composed here of
many coupled nonlinear oscillators, there may be small
basins of attraction where, in principle, the system could
become trapped. Noise will blur the basin boundaries
and remove the possibility that the main attractors could
accidentally be missed and highly functional synchro-
nized states lost to neuronal activity. Some noise may
persist in the dynamics of neurons to smooth out the
actions of the chaotic dynamics active in creating robust,
adaptable networks.

Chaos should not be mistaken for noise, as the former
has phase-space structure which can be utilized for syn-
chronization, transmission of information, and regular-
ization of the network for performance of critical func-
tions. In the next section we discuss the role of chaos in
information processing and information creation.
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III. INFORMATIONAL NEURODYNAMICS

The flow of information in the brain goes from sen-
sory systems, where it is captured and encoded, to cen-
tral nervous systems, where it is further processed to
generate response signals. In the central nervous system
command signals are generated and transported to the
muscles to produce motor behavior. At all these stages
learning and memory processes that need specific repre-
sentations take place. Thus it is not surprising that the
nervous system has to use different coding strategies at
different levels of the transport, storage, and use of in-
formation. Different transformations of codes have been
proposed for the analysis of spiking activity in the brain.
The details depend on the particular system under study
but some generalization is possible in the framework of
analyzing the spatial, temporal, and spatiotemporal
codes. There are many unknown factors related to the
cooperation between these different forms of informa-
tion coding. Some key questions are as follows: (i) How
can neural signals be transformed from one coding space
to another without loss of information? (ii) What dy-
namical mechanisms are responsible for storing time in
memory? (iii) Can neural systems generate new informa-
tion based on their sensory inputs? In this section, we
discuss some important experimental results and new
paradigms that can help to address these questions.

A. Time and neural codes

Information from sensory systems arrives at sensory
neurons as analog changes in light intensity or tempera-
ture, or chemical concentration of an odorant, or skin
pressure, etc. These analog data are represented in in-
ternal neural circuit dynamics and computations by
action-potential sequences passed from sensory receiv-
ers to higher-order brain processes. Neural codes guar-
antee the efficiency, reliability, and robustness of the re-
quired neural computations (Machens, Gollisch, et al.,
2005).

1. Temporal codes

Two of the central questions in understanding the dy-
namics of information processing in the nervous system
are how information is encoded and how the coding
space depends on time-dependent stimuli.

A code in the biophysical context of the nervous sys-
tem is a specific representation of the information oper-
ated on or created by neurons. A code requires a unit of
information. However, this is already a controversial is-
sue since, as we have previously discussed, information
is conveyed through chemical and electrical synapses,
neuromodulators, hormones, etc., which makes it diffi-
cult to point out a single universal unit of information. A
classical assumption at the cellular level, valid for many
neural systems, is that a spike is an all-or-nothing event
and thus a good candidate for a unit of information, at
least in a computational sense. This is not the only sim-



1232 Rabinovich et al.: Dynamical principles in neuroscience

Stimulus Output
A— L
B—

C— 1 | 1 |
D—

Stimulus Output
A— Liuuninn
B—

C— i
D—

Rate coding Timing coding

FIG. 16. (Color online) Two possible codes for the activity of a
single neuron. In a rate code, different inputs (A-D) are trans-
formed into different output spiking rates. In a timing code,
different inputs are transformed into different spiking se-
quences with precise timing.

plification needed to analyze neural codes for a first ap-
proach. A coding scheme needs to determine a coding
space and take into account time.

A common hypothesis is to consider a universal time
for all neural elements. Although this is the approach we
discuss here, we remind the reader that this is also an
arguable issue, since neurons can sense time in many
different ways: by their intrinsic activity (subcellular dy-
namics) or by external input (synaptic and network dy-
namics). Internal and external (network) clocks are not
necessarily synchronized and can have different degrees
of precision, time scales, and absolute references. Some
dynamical mechanisms can contribute to make neural
time unified and coherent.

On the one hand, when we consider just a single neu-
ron, a spike as the unit of information, and a universal
time, we can talk about two different types of encoding:
the frequency of firing can encode information about the
stimulus in a rate code; on the other hand, the exact
temporal occurrence of spikes can encode the stimulus
and its response in a precise timing code. The two cod-
ing alternatives are schematically represented in Fig. 16.
In this context, a precise timing or temporal code is a
code in which relative spike timings (rather than spike
counts) are essential for information processing. Several
experimental recordings have shown the presence of
both types of single-cell coding in the nervous system
(Adrian and Zotterman, 1926; Barlow, 1972; Abeles,
1991; McClurkin et al., 1991; Softky, 1995; Shadlen and
Newsome, 1998). In particular, fine temporal precision
and reliability of spike dynamics are reported in many
cell types (Segundo and Perkel, 1969; Mainen and
Sejnowski, 1995; deCharms and Merzenich, 1996; de
Ryter van Steveninck et al., 1997; Segundo et al., 1998;
Mehta et al., 2002; Reinagel and Reid, 2002). Single neu-
rons can display these two codes in different situations.

2. Spatiotemporal codes

A population of coupled neurons can have a coding
scheme different from the sum of the individual coding
mechanisms. Interactions among neurons through their
synaptic connections, i.e., their cooperative dynamics, al-
low for more complex coding paradigms. There is much
experimental evidence which shows the existence of so-
called population codes that collectively express a com-
plex stimulus better than the individual neurons [see,
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e.g., Georgopoulus et al. (1986); Wilson and McNaugh-
ton (1993); Fitzpatrick et al. (1997); Pouget et al. (2000)].
The efficacy of population coding has been assessed
mainly using measures of mutual information in model-
ing efforts (Seung and Sompolinsky, 1993; Panzeri et al.,
1999; Sompolinsky et al., 2001).

Two elements can be used to build population codes:
neuronal identity (i.e., neuronal space) and the time oc-
currence of neural events (i.e., the spikes). Accordingly,
information about the physical world can be encoded in
temporal or spatial (combinatorial) codes, or combina-
tions of these two: spike time can represent physical
time (a pure temporal code), spike time can represent
physical space, neuronal space can represent physical
time (a pure spatial code), and neuronal space can rep-
resent physical space (Nadasdy, 2000). When we con-
sider a population of neurons, information codes can be
spatial, temporal, or spatiotemporal.

Population coding can also be characterized as inde-
pendent or correlated (deCharms and Christopher,
1998). In an independent code, each neuron represents a
separate signal: all information that is obtainable from a
single neuron can be obtained from that neuron alone,
without reference to the activities of other neurons. For
a correlated or coordinated coding messages are carried
at least in part by the relative timing of the signals from
a population of neurons.

The presence of network coding, i.e., a spatiotemporal
dynamical representation of incoming messages, has
been confirmed in several experiments. As an example,
we discuss here the spatiotemporal representation of
episodic experiences in the hippocampus (Lin et al,
2005). Individual hippocampal neurons respond to a
wide variety of external stimuli (Wilson and McNaugh-
ton, 1994; Dragoi et al., 2003). The response variability
at the level of individual neurons poses an obstacle to
the understanding of how the brain achieves its robust
real-time neural coding of the stimulus (Lestienne,
2001). Reliable encoding of sensory or other network
inputs by spatiotemporal patterns resulting from the dy-
namical interaction of many neurons under the action of
the stimulus can solve this problem (Hamilton and
Kauer, 1985; Laurent, 1996; Vaadia et al., 1999).

Lin et al. (2005) showed that mnemonic short-time
episodes (a form of one-trial learning) can trigger firing
changes in a set of CA1 hippocampal neurons with spe-
cific spatiotemporal relationships. To find such represen-
tations in the central nervous system of an animal is an
extremely difficult experimental and computational
problem. Because the individual neurons that partici-
pate in the representation of a specific stimulus and form
a temporal neural cluster in different trials can be differ-
ent, it is necessary to measure simultaneously the activ-
ity of a large number of neurons. In addition, because of
the variability in the individual neuron responses, the
spatiotemporal patterns of different trials may also look
different. Thus, to show the functional importance of the
spatiotemporal representation of the stimulus, the
reader has to use sophisticated methods of data analysis.
Lin et al. (2005) developed a 96-channel array to record



Rabinovich et al.: Dynamical principles in neuroscience 1233

(a) Transient (b) Prolonged (c) Transient (d) Prolonged
increase increase decrease decrease FIG. 17. (Color online) Tempo-
R } I LR T HHHH—H——— Lo R
. 4 A T TR R AR T ral dynamics of individual CAl
Q 5 +—f———++  5H—jHEEEHIEH Q5 [HHHEHHHHEHRH 5 . neurons of the hippocampus in
= R TR £ (W HEEREH R “startlineg” .
3 H—m—— (B R T R o response o “starthng * events
= HE——— R T Spike raster plots [(a)~(d) up-
Z 1 HHH—H 1 HiH - e 0 I | R | per, seven repetitions each] and
Foa 0 1 2 5 0 5 10 '_ 5 0 ¢ 10 -5 0 5 10 corresponding perievent histo-
t[s] t[s] t[s] t[s] gram [(a)-(d) lower, bin width
c c 500 ms] for units exhibiting the
8 o four major types of firing
Eg_ 10 ?g_ changes observed: (a) transient
= = increase, (b) prolonged in-
3 = crease, (c) transient decrease,
é 5 A § . (d) anq prolonged decrease.
-% -5 0 5 10 -5 0 5 10 c/a)' s o 5 10 From Lin et al., 2005.
t[s] t[s] tisl tIsl

simultaneously the activity patterns of as many as 260
individual neurons in the mouse hippocampus during
various startling episodes (air blow, elevator drop, and
earthquake shake). They used multiple-discriminant
analysis (Duda er al., 2001) and showed that, even
though individual neurons express different temporal
patterns in different trials (see Fig. 17), it is possible to
identify functional encoding units in the CA1 neuron
assembly (see Fig. 18).

The representation of nonstationary sensory informa-
tion, say, a visual stimulus, can use the transformation of
a temporal to a spatial code. The recognition of a spe-
cific neural feature can be implemented through the
transformation of a spatial code into a temporal one
through coincidence detection of spikes. A spatial rep-
resentation can be transformed into a spatiotemporal
one to provide the system with higher capacity and ro-
bustness and sensitivity at the same time. Finally, a spa-
tiotemporal code can be transformed into a spatial code
in processes related to learning and memory. These pos-
sibilities are summarized in Fig. 19.

Morphological constraints of neural connections in
some cases impose a particular spatial or temporal code.
For example, projection neurons transfer information
between areas of the brain along parallel pathways by
preserving the input topography as neuronal specificity
at the output. In many cases the input topography is
transformed to a different topography that is preserved;
for example, the retinotopic map of the primary visual
areas and somatotopic maps of the somatosensory and
motor areas. Other transformations do not preserve to-
pology. These include transformations in place cells in
the hippocampus, and the tonotopic representation in
the auditory cortex. There is a high degree of conver-
gence and divergence of projections in some of these
transformations that can be a computationally optimal
design (Garcia-Sanchez and Huerta, 2003). In most of
these transformations, the temporal dimension of the
stimulus is encoded by spike timing or by the onset of
firing-rate transients.

An example of transforming a spatiotemporal code to
a pure spatial code was found in the olfactory system of
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locusts, and has been modeled by Nowotny, Rabinovich,
et al. (2003) and Nowotny et al. (2005). Figure 20 gives a
graphical explanation of the connections involved. The
complex spatiotemporal code of sequences of transiently
synchronized groups of projection neurons in the anten-
nal lobe (Laurent et al, 2001) is sliced into temporal
snapshots of activity by feedforward inhibition and coin-
cidence detection in the next processing layer, the mush-
room body (Perez-Orive ef al., 2002). This snapshot code
is presumably integrated over time in the next stages of
the mushroom lobes, completing the transformation of
the spatiotemporal code in the antennal lobe to a purely
spatial code. It was shown in simulations that the tem-
poral information on the sequence of activity in the an-
tennal lobe that could be lost in downstream temporal
integration can be restored through slow lateral excita-
tion in the mushroom body (Nowotny, Rabinovich, et al.,
2003). This has been reported experimentally (Leitch
and Laurent, 1996). With this extra feature the transfor-
mation from a spatiotemporal code to a pure spatial
code becomes free of information loss.

3. Coexistence of codes

Different stages of neural information processing are
difficult to study in isolation. In many cases it is hard to
distinguish between what is an encoding of an input and
what is a static or dynamic, perhaps nonlinear, response
to that input. This is a crucial observation that is often
missed. Encoding and decoding may or may not be part
of a dynamical process. However, the creation of infor-
mation (discussed in the next section) and the transfor-
mation of spatial codes to temporal or spatiotemporal
codes are always dynamical processes.

Another, but less frequently addressed, issue about
coding is the presence of multiple encodings in single-
cell signals (Latorre et al., 2006). This may occur since
multifunctional networks may need multiple coexisting
codes. The neural signatures in interspike intervals of
CPG neurons provide an example (Sziics et al., 2003).
Individual fingerprints characteristic of the activity of
each neuron coexist with the encoding of information in
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FIG. 18. (Color online) Classification, visualization, and dy-
namical decoding of CA1 ensemble representations of startle
episodes by multiple-discriminant analysis (MDA) methods.
(a) Firing patterns during rest, air blow, drop, and shake ep-
ochs are shown after being projected to a three-dimensional
space obtained by using MDA for mouse A; MDA1-MDA3
denote the discriminant axes. Both training (dark symbols) and
test data are shown. After the identification of startle types, a
subsequent MDA is further used to resolve contexts (full vs
empty symbols) in which the startle occurred for air-blow con-
text (b) and for elevator drop (c). (d) Dynamical monitoring of
ensemble activity and the spontaneous reactivation of startle
representations. Three-dimensional subspace trajectories of
the population activity in the two minutes after an air-blow
startle in mouse A are shown. The initial response to an air
blow (black line) is followed by two large spontaneous excur-
sions (blue/dark and red/light lines), characterized by coplanar,
geometrically similar lower-amplitude trajectories (directional-
ity indicated by arrows). (e) The same trajectories as in (a)
from a different 3D angle. (f) The timing (1,=31.6 s and £,
=54.8 s) of the two reactivations (marked in blue/dark and red/
light, respectively) after the actual startle (in black) (z=0 s).
The vertical axis indicates the air-blow classification probabil-
ity. From Lin et al., 2005.
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the frequency and phase of the spiking-bursting
rhythms. This is an example that shows that codes can
be nonexclusive. In bursting activity, coding can exist in
slow waves, but also, and simultaneously, in the spiking
activity.

In the brain, specific neural populations often send
messages through projections to several information
“users.” It is difficult to imagine that all of them decode
the incoming signals in the same way. In neuroscience
the relationship between the encoder and decoder is not
a one-to-one map but can be many simultaneous maps
from the senders to different receivers, based on differ-
ent dynamics. This departs from Shannon’s classical
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formulation of information theory (Fano, 1961; Gallager,
1968). For example, cochlear afferents in birds bifurcate
to two different areas of the brain with different decod-
ing properties. One area extracts information about
relative timing from a spike train, whereas the other ex-
tracts the average firing rate (Konishi, 1990).

4. Temporal-to-temporal information transformation: Working
memory

There is another important code transformation of in-
terest here: the transformation of a finite amount of
temporal information to a slow temporal code lasting for
seconds, minutes, or hours. We are able to remember a
phone number from someone who just called us. Persis-
tent dynamics is one of the mechanisms for this phenom-
enon, which is usually named short-term memory (STM)
or working memory; it is a basic function of the brain.
Working memory, in contrast to long-term memory
which most likely requires molecular (membrane) or
structural (connection) changes in neural circuits, is a
dynamical process. The dynamical origins of working
memory can vary.

One plausible idea is that STMs are the result of ac-
tive reverberation in interconnected neural clusters that
fire persistently. Since its conceptualization (de N6, 1938;
Hebb, 1949), reverberating activity in microcircuits has
been explored in many modeling papers (Grossberg,
1973; Amit and Brunel, 1997a; Durstewitz et al., 2000;
Seung et al., 2000; Wang, 2001). Experiments with cul-
tured neuronal networks show that reverberatory activ-
ity can be evoked in circuits that have no preexisting
anatomical specialization (Lau and Bi, 2005). The rever-
beration is primarily driven by recurrent synaptic excita-
tion rather than complex individual neuron dynamics
such as bistability. The circuitry necessary for reverber-
ating activity can be a result of network self-
organization. Persistent reverberatory activity can exist
even in the simplest circuit, i.e., an excitatory neuron
with inhibitory self-feedback (Connors, 2002; Egorov
et al., 2002). In this case, reverberation depends on asyn-
chronous transmitter release and intracellular calcium
stores as shown in Fig. 21.

Nature seems to use different dynamical mechanisms
for persistent microcircuit activity: cooperation of many
interconnected neurons, persistent dynamics of indi-
vidual neurons, or both. These mechanisms each have
distinct advantages. For example, network mechanisms
can be turned on and off quickly (McCormick et al.,
2003) [see also Brunel and Wang (2001)]. Most dynami-
cal models with persistent activity are related to the
analysis of microcircuits with local feedback excitation
between principal neurons controlled by disynaptic
feedback inhibition. Such basic circuits spontaneously
generate two different modes: relative quiescence and
persistent activity. The triggering between modes is con-
trolled by incoming signals. The review by Brunel (2003)
considers several basic models of persistent dynamics,
including bistable networks with excitation only and
multistable models for working memory of a discrete set
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of pictures with structured excitation and global inhibi-
tion.

Working memory is used for tasks such as planning,
organizing, rehearsing, and movement preparation. Ex-
periments with functional magnetic resonance imaging
reveal some aspects of the dynamics of working memory
[see, for example, Diwadkar et al. (2000) and Nystrom et
al. (2000)]. It is important to note that working memory
has a limited capacity of around four to seven items
(Cowan, 2001; Vogel and Michizawa, 2004). An essential
feature attributed to working memory is the labile and
transient nature of its representations. Because such
representations involve many coupled neurons from cor-
tical areas (Curts and D’Esposito, 2003), it is natural to
model working memory as the spatiotemporal dynamics
of large neural networks.

A popular idea is to model working memory with at-
tractors. Representation of items in working memory by
attractors may guarantee its robustness. Although ro-
bustness is an important requisite for a working-memory
system, its transient properties are also important. Con-
sider a foraging task in which an animal uses visual input
to catch prey (Nakahara and Doya, 1998). It is helpful to
store the location of the prey in the animal’s working
memory if the prey goes behind a bush and the sensory
cue becomes temporarily unavailable. However, the
memory should not be retained forever because the prey
may have actually gone away or may have been eaten by
another animal. Furthermore, if more prey appears near
the animal, the animal should quickly load the location
of the new prey into its working memory without being
disturbed by the old memory.

This example illustrates that there are more require-
ments for a working-memory system than solely robust
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maintenance. First, the activity should be maintained
but not for too long. Second, the activity should be reset
quickly when there is a novel sensory cue that needs to
be stored. In other words, the neural dynamics involved
in working memory for goal-directed behaviors should
have the properties of long-term maintenance and quick
switching. A corresponding model based on ‘“near-
saddle-node” bifurcation dynamics has been suggested
by Nakahara and Doya (1998). The authors have ana-
lyzed the dynamics of a network of model neural units
that are described by the following map (see Fig. 22):

Viltye1) = F(“Yi(fn) +b+ 2 pyyilt,) + %‘Ii(fn)), (14)
j#i

where y;(t,) is the firing rate of the ith unit at time f,,
F(z)=1/[1+exp(-z)] is a sigmoid function, a is the self-
connection weight, p;; are the lateral connection weights,
I,(t) are external inputs, b is the bias, and v; are con-
stants used to scale the inputs I;(¢). As the bias b is in-
creased, the number of fixed points changes sequentially
from one to two, three, two, and then back to one. A
saddle-node bifurcation occurs when the stable transi-
tion curve y(t,,;)=F(z) is tangent to the fixed point
y(t,.1)=y(t,) (see Fig. 22). Just near the saddle-node bi-
furcation the system shows persistent activity. This
means that it spends a long time in the narrow channel
between the bisectrix and the sigmoid activation curve
and then goes to the fixed point quickly. Such dynamical
behavior reminds one of the well-known intermittency
phenomenon in physics (Landau and Lifshitz, 1987). Be-
cause the effect of the sum of the lateral and external
inputs in Eq. (14) is equivalent to a change in the bias,
the mechanism may satisfy the requirements of the dy-
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FIG. 20. (Color) Illustration of the transformation of temporal
into spatial information. If a coincidence detection occurs, the
local excitatory connections activate the neighbors of the ac-
tive neuron (yellow neurons). Coincidence detection of input is
now more probable in these activated neighborhoods than in
other Kenyon cells (KCs). Which of the neighbors might fire a
spike, however, depends on the activity of the projection neu-
rons (PNs) in the next cycle. It might be a different neuron for
active group B of PNs (upper branch) than for active group C
(lower branch). In this way local sequences of active KCs form.
These depend on the identity of active PNs (coincidence de-
tection) as well as on the temporal order of their activity (ac-
tivated neighborhoods). Modified from Nowotny, Rabinovich,
et al., 2003.

namics of working memory for goal-directed behavior:
long-term maintenance and quick switching.

Another reasonable model for working memory con-
sists of competitive networks with stimulus-dependent
inhibitory connections [as in Eq. (9)]. One of the advan-
tages of such a model is the ability to have both working
memory and stimulus discrimination. This idea was pro-
posed by Machens, Romo, et al. (2005) in relation to the
frontal-lobe neural architecture. The network first per-
ceives the stimulus, then holds it in the working memory,
and finally makes a decision by comparing that stimulus
with another one. The model integrates both working
memory and decision making since the number of stable
fixed points and the size of the basins of attractors are
controlled by the connection matrix p;(S) which de-
pends on the stimuli S. The working-memory phase cor-
responds to the bifurcation boundary, i.e., p;;=p;;=p;- In
the state space of the dynamical model, this phase is
represented by a stable manifold called a “continuous
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FIG. 21. (Color online) Reverberation can be the dynamical
origin for working memory in minimal circuits. (a) Most neu-
rons respond to excitatory stimuli [upward steps in the line
below (c)] by spiking only as long as each stimulus lasts. (b)
Very rare neurons are bistable: brief excitation leads to persis-
tent spiking, always at the same rate; brief inhibition [down-
ward steps in the line below (c)] can turn it off. (c) Multistable
neurons persistently increase or decrease their spiking across a
range of rates in response to repeated brief stimuli. (d) In the
reverberatory network model of short-term memory discussed
in the text, an excitatory stimulus (left arrow) leads to recur-
sive activity in interconnected neurons. Inhibitory stimuli (bar
on the right) can halt the activity. (e) Egorov et al. (2002) sug-
gest that graded persistent activity in single neurons [as in (c)]
might be triggered by a pulse of internal Ca?* ions that enter
through voltage-gated channels; Ca®* then activates calcium-
dependent nonspecific cation (CAN) channels, through which
an inward current (largely comprising Na* ions) enters, persis-
tently exciting the neuron. The positive feedback loop (broken
arrows) may include the activity of many ionic channels. Modi-
fied from Connors, 2002.

attractor.” This is an attractor that consists of continuous
sets of fixed points [see Amari (1977) and Seung (1998)].
Thus the stimulus creates a specific fixed point and, at
the next stage, the working memory (a continuous at-
tractor) maintains it. During the comparison and deci-
sion phase, the second stimulus is mapped onto the same
state space as another attractor. The criterion of the de-
cision maker is reflected in the positions of the separa-
trices that separate the basins of attraction of different
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FIG. 22. Temporal responses of self-recurrent units: Near-
saddle-node bifurcation with a=11.11, b=-7.9 (center panels).
Increased bias, b=-3.0 (left panels). Decreased bias
b=-9.0 (right panels). Modified from Nakahara and Doya,
1998.
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FIG. 23. Hallucinations generated by LSD are an example of a
dynamical representation of the internal activity of the visual
cortex without an input stimulus. Figure shows examples of (a)
funnel and (b) spiral hallucinations. Modified from Bressloff, ez
al. 2001.

stimuli, i.e., fixed points (see an alternative approach in
Rabinovich and Huerta, 2006).

We think that the intersection of the mechanisms re-
sponsible for persistent activity of single neurons with
the activity of a network with local or nonlocal recur-
rence provides robustness against noise and perturba-
tions, and at the same time makes working memory
more flexible.

B. Information production and chaos

Information processing in the nervous system involves
more than the encoding, transduction, and transforma-
tion of incoming information to generate a correspond-
ing response. In many cases, neural information is cre-
ated by the joint action of the stimulus and the
individual neuron and network dynamics. A creative ac-
tivity like improvisation on the piano or writing a new
poem results in part from the production of new infor-
mation. This information is generated by neural circuits
in the brain and does not directly depend on the envi-
ronment.

Time-dependent visual hallucinations are one ex-
ample of information produced by neural systems, in
this case the visual cortex, themselves. Such hallucina-
tions consist in seeing something that is not in the visual
field. There are interesting models, beginning from the
pioneering paper of Ermentrout and Cowan (1979), that
explain how the intrinsic circuitry of the brain’s visual
cortex can generate the patterns of activity that underlie
hallucinations. These hallucination patterns usually take
the form of checkerboards, honeycombs, tunnels, spi-
rals, and cobwebs (see two examples in Fig. 23). Because
the visual cortex is an excitable medium it is possible to
use spatiotemporal amplitude equations to describe the
dynamics of these patterns (see the next section). These
models are based on advances in brain anatomy and
physiology that have revealed strong short-range con-
nections and weaker long-range connections between
neurons in the visual cortex. Hallucination patterns can
be quasistatic, periodically repeatable, or chaotically re-
peatable as in low-dimensional convective turbulence;
see for a review Rabinovich et al. (2000). Unpredictabil-
ity of the specific pattern in the hallucination sequences
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FIG. 24. (Color online) Dual sensory network dynamics. Top
panels: Schematic representation of the dual role of a single
statocyst, the gravity sensory organ of the mollusk Clione. Dur-
ing normal swimming, a stonelike structure, the statolith, hits
the mechanoreceptor neurons that react to this excitation. In
Clione’s hunting behavior, the statocyst receptors receive addi-
tional excitation from the cerebral hunting neuron (H) which
generates a winnerless competition among them. Bottom pan-
els: Chaotic sequential switching displayed by the activity of
the statocyst during hunting mode in a model of a six-receptor
network. This panel displays the time intervals in which each
neuron is active (¢;>0.03). Each neuron is represented by a
different color. The dotted rectangles indicate the activation-
sequence locks among units that are active at a given time
interval within each network for time windows in which all six
neurons are active.

(movie) means the generation of information that in
principle can be characterized by the value of the
Kolmogorov-Sinai entropy (Scott, 2004).

The creation or production of new information is a
theme that has been neglected in theoretical neuro-
science, but it is a provocative and challenging point that
we discuss in this section. As mentioned before, infor-
mation production or creation must be a dynamical pro-
cess. Below we discuss an example that emphasizes the
ability of neural systems to produce information-rich
output from information-poor input.

1. Stimulus-dependent motor dynamics

A simple network with which we can discuss the cre-
ation of new information is the gravity-sensing neural
network of the marine mollusk Clione limacina. Clione
is a blind planktonic animal, negatively buoyant, that
has to maintain continuous motor activity in order to
keep its preferred head-up orientation. Its motor activity
is controlled by wing CPGs and tail motor neurons that
use signals from its gravity-sensing organs, the statocysts
(Panchin ef al., 1995). A six-receptor neural network
model with synaptic inhibition has been built to describe
a single statocyst (Varona, Rabinovich, ef al., 2002) (see
Fig. 24). This is a small sphere in which a statolith, a
stonelike structure, moves according to the gravitational
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FIG. 25. (Color online) Clione swimming trajectories in differ-
ent situations. (a) Three-dimensional trajectory of routine
swimming. Here and in the following figures, different colors
(gray tones) are used to emphasize the three-dimensional per-
ception of the trajectories and change according to the x axis.
The indicated time ¢ is the duration of the trajectory. (b) Swim-
ming trajectory of Clione with the statocysts surgically re-
moved. (c) Trajectory of swimming during hunting behavior
evoked by the contact with the prey. (d) Trajectory of swim-
ming after immersion of Clione in a solution that pharmaco-
logically evokes hunting. Modified from Levi et al., 2004.

field. The statolith excites the neuroreceptors by press-
ing down on them. When excited, the receptors send
signals to the neural systems responsible for wing beat-
ing and tail orientation.

The statocysts have a dual role (Levi et al., 2004,
2005). During normal swimming only neurons that are
excited by the statolith are active, and this leads to a
winner-take-all dynamical mode as a result of inhibitory
connections in the network. (Winner-take-all dynamics is
essentially the same as the attractor-based computa-
tional ideas discussed earlier.) However, when Clione is
searching for its food, a cerebral hunting neuron excites
each neuron of the statocyst (see Fig. 24). This triggers a
competition between all statocyst neurons whose signals
participate in the generation of a complex motion that
the animal uses to scan the immediate space until it finds
its prey (Levi et al., 2004, 2005) (see Fig. 25). The follow-
ing Lotka-Volterra-type dynamics can be used to de-
scribe the activity of this network:

dai(t) N
% = ai(z)(«r(H,S) - > paj(t) + Hi(t)) +8(1),

t ]':1
(15)

where a;(f) =0 represents the instantaneous spiking rate
of the statocyst neurons, H,(f) represents the excitatory
stimulus from the cerebral hunting interneuron to neu-
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FIG. 26. (Color online) Irregular switching in a network of six
statocyst receptors. Traces represent the instantaneous spiking
rate of each neuron g; [neurons 1,2,3 are shown in (a), neurons
45,6 in (b)]. Note that after a neuron is silent for a while, its
activity reappears with the same sequence relative to the oth-
ers (see arrows, and Fig. 24). (c) A projection of the phase
portrait of the strange attractor in 3D space; see model (15).

ron i, S;(f) represents the action of the statolith on the
receptor that it is pressing, and p; is the nonsymmetric
statocyst connection matrix. When there is no stimulus
from the hunting neuron, H;=0, or the statolith, S;,=0,
then o(H,S)=-1 and all neurons are silent. When the
hunting neuron is active H;#0 and/or the statolith is
pressing one of the receptors, S;#0, o(H,S)=+1.

During hunting H;# 0, and we assume that the action
of the hunting neuron overrides the effect of the sta-
tolith and thus §;~0. As a result of the competition, the
receptors display a highly irregular, in fact chaotic,
switching activity. The phase-space image of the chaotic
dynamics of the statocyst model in this behavioral mode
is a strange attractor [the heteroclinic loops in the phase
space of Eq. (15) become unstable; see Sec. IV.C]. For
six receptors we have shown (Varona, Rabinovich, et al.,
2002) that the observed dynamical chaos is characterized
by two positive Lyapunov exponents.

The bottom panel in Fig. 24 is an illustration of the
nonsteady switching activity of the receptors. An inter-
esting phenomenon can be seen in this figure and is also
pointed out in Fig. 26. Although the timing of each ac-
tivity is irregular, the sequence of switching among the
statocyst receptors is the same for those neurons that are
active at a given time window. Dotted rectangles in Fig.
24 point out this fact. The activation-sequence lock
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among the statocyst receptor neurons emerges in spite
of the highly irregular timing of the switching dynamics
and is a feature that can be used for motor coordination
(Venaille et al., 2005).

In this example the winnerless competition is trig-
gered by a constant excitation to all statocyst receptors
[H;=c;; see details by Varona, Rabinovich, et al. (2002)].
Thus the stimulus has low information content. None-
theless, the network of statocyst receptors can use this
activity to generate an information-rich signal with posi-
tive Kolmogorov-Sinai entropy. This entropy is equal to
the value of the new information encoded in the dy-
namical motion. The statocyst sensory network is thus
multifunctional and can generate a complex spatiotem-
poral pattern useful for motor coordination even when
its dynamics are not evoked by gravity, as during hunt-
ing.

2. Chaos and information transmission

To illustrate the role of chaos in information transmis-
sion, we use as an example the inferior olive (I0), which
is an input system to the cerebellum. Neurons of the 10
may chaotically recode the high-frequency information
carried by its inputs into chaotic, low-rate output
(Schweighofer et al., 2004). The 10O has been proposed as
a system that controls and coordinates different rhythms
through the intrinsic oscillatory properties of its neurons
and the nature of their electrical interconnections
(Llinds and Welsh, 1993; de Zeeuw et al., 1998). It has
also been implicated in motor learning (Ito, 1982) and in
comparing tasks of intended and achieved movements as
a generator of error signals (Oscarsson, 1980).

Experimental recordings show that 1O cells are elec-
trically coupled and display subthreshold oscillations
and spiking activity. Subthreshold oscillations have a rel-
evant role for information processing in the context of a
system with extensive electrical coupling. In such sys-
tems the spiking activity can be propagated through the
network, and, in addition, small differences in hyperpo-
larized membrane potentials propagate among neigh-
boring cells.

A modeling study suggests that electrical coupling in
IO neurons may induce chaos, which would allow
information-rich, but low-firing-rate, error signals to
reach individual Purkinje cells in the cerebellar cortex.
This would provide the cerebellar cortex with essential
information for efficient learning without disturbing on-
going motor control. The chaotic firing leads to the gen-
eration of IO spikes with different timing. Because the
IO has a low firing rate, an accurate error signal will be
available for individual Purkinje cells only after re-
peated trials. Electrical coupling can provide the source
of disorder that induces a chaotic resonance in the 10
network (Schweighofer et al, 2004). This resonance
leads to an increase in information transmission by dis-
tributing the high-frequency components of the error in-
puts over the sporadic, irregular, and non-phase-locked
spikes.
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The 10 single-neuron model consists of two compart-
ments that include a low-threshold calcium current
(ICal), an anomalous inward rectifier current ([;,), a
Hodgkin-Huxley-type sodium current (/y,), and a de-
layed rectifier potassium current (I/g,;) in the somatic
compartment (see Table I). The dendritic compartment
contains a calcium-activated potassium current (Ixc,)
and a high-threshold calcium current (I, ). This com-
partment also receives electrical connections from
neighboring neurons. Fast ionic channels are located in
the soma, and slow channels are located in the dendritic
compartment. Some of the channel conductances de-
pend on the calcium concentration. The equations for
each compartment of a single neuron can be summa-
rized as

dav(t)
CMTZ_ (Iion+ll+linj+1comp)v (16)

where C,, is the membrane capacitance, [, is a leak cur-
rent, [, is the injected stimulus current, /.oy, connects
the compartments, and I;,, is the sum of the currents
above for each compartment. In addition, the dendritic
compartment has the electrical coupling current /..
=g 2 [V()-V,(0)], where the index i runs over the neigh-
bors of each neuron, and g, is the electrical coupling
conductance.

Each IO neuron is represented by a system of ordi-
nary differential equations (ODEs), and the network is a
set of these systems coupled through the electrical cou-
pling currents /... The networks examined consisted of
2X2,3X3, and 9 X3 neurons, where cells are connected
to their two, three, or four neighbors depending on their
positions in the grid.

This is a complex network, even when it is only 2 X2,
and one must select an important feature of the dynam-
ics to characterize its behavior. The largest Lyapunov
exponent of the network is a good choice as it is inde-
pendent of initial conditions and tells us about informa-
tion flow in the network. Figure 27 displays the largest
Lyapunov exponent for each network as a function of
the electric coupling conductance g.. We also see in Fig.
27 that the g, producing the largest Lyapunov exponent
yields the largest information transfer through the net-
work, evaluated as the average mutual information per
spike.

In a more general framework than the IO, it is re-
markable that the chaotic activity of individual neurons
unexpectedly underlies higher flexibility and, at the
same time, greater accuracy and precision in their neural
dynamics. The origin of this phenomenon is the poten-
tial ability of coupled neurons with chaotic behavior to
synchronize their activities and generate rhythms whose
period depends on the strength of the coupling or other
network parameters [for a review see Rabinovich and
Abarbanel (1998) and Aihara (2002)]. Networks with
many chaotic neurons can generate interesting transient
dynamics, i.e., chaotic itinerancy (CI) (Tsuda, 1991;
Rowe, 2002). Chaotic itinerancy results from weak insta-
bilities in the attractors, i.e., attractor sets in whose



1240 Rabinovich et al.: Dynamical principles in neuroscience

123abc — 2x2

123ab —1x9
80 —3x3

A1 (bit/sec)

0 01 02 03 04 05
gc (mSlend)

Mutual information per spike

0 01 02 03 04 05
gc (mSlem)

FIG. 27. (Color online) Chaotic dynamics increases informa-
tion transmission in IO models. Top panel: Largest Lyapunov
exponent as a function of the electrical coupling strength g. for
different IO networks of nonidentical cells. Bottom panel: Net-
work average mutual information per spike as a function of g..
Modified from Schweighofer et al., 2004.

neighborhood there are trajectories that do not go to the
attractors (Milnor-type attractors). A developed CI mo-
tion needs both many neurons and a very high level of
interconnections. This is in contrast to the traditional
concept of computation with attractors (Hopfield, 1982).
Chaotic itinerancy yields computations with transient
trajectories; in particular, there can be motion along
separatrices as in winnerless competition dynamics (Sec.
IV.C). Although CI is an interesting phenomenon, ap-
plying it to explain and predict the activity of sensory
systems (Kay, 2003), and to any nonautonomous neural
circuit dynamics, poses a question that has not been an-
swered yet: How can CI be reproducible and robust
against noise and at the same time sensitive to a stimu-
lus?

To conclude this section it is necessary to emphasize
that the answer to the question of the functional role of
chaos in real neural systems is still unclear. In spite of
the attractiveness of such ideas as (i) chaos makes neural
circuits more flexible and adaptive, (ii) chaotic dynamics
create information and can help to store it (see above),
and (iii) the nonlinear dynamical analyses of physiologi-
cal data (e.g., electroencephalogram time series) can be
important for the prediction or control of pathological
neural states, it is extremely difficult to confirm these
ideas directly in in vivo or even in vitro experiments. In
particular, there are three obstacles that can fundamen-
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tally hinder the power of data analyses: (i) finite statisti-
cal fluctuations, (ii) external noise, and (iii) nonstation-
arity of the neural circuit activity [see, for example, Lai
et al. (2003)].

C. Synaptic dynamics and information processing

Synaptic transmission in many networks of the ner-
vous system is dynamical, meaning that the magnitude
of postsynaptic responses depends on the history of
presynaptic activity (Thompson and Deuchars, 1994;
Fuhrmann et al, 2002). This phenomenon is indepen-
dent of (or in addition to) the plasticity mechanisms of
the synapses (discussed in Sec. I1.A.3). The role of syn-
apses is often considered to be the simple notification to
the postsynaptic neuron of presynaptic cell activity.
However, electrophysiological recordings show that syn-
aptic transmission can imply activity-dependent changes
in response to presynaptic spike trains. The magnitude
of postsynaptic potentials can change rapidly from one
spike to another, depending on the particular temporal
distribution of the presynaptic signals. Thus each single
postsynaptic response can encode information about the
temporal properties of the presynaptic signals.

The magnitude of the postsynaptic response is deter-
mined by the interspike intervals of the presynaptic ac-
tivity and by the probabilistic nature of neurotransmitter
release. In depressing synapses a short interval between
presynaptic spikes is followed by small postsynaptic re-
sponses, while long presynaptic interspike intervals are
followed by a large postsynaptic response. Facilitating
synapses tend to generate responses that grow with suc-
cessive presynaptic spikes. In this context, several theo-
retical efforts have tried to explore the capacity of single
responses of dynamical synapses to encode temporal in-
formation about the timing of presynaptic events.

Theoretical models for dynamical synapses are based
on the time variation of the fraction of neurotransmitter
released from the presynaptic terminal R(f), 0<R(¢)
<1. When a presynaptic spike occurs at time f,, the
fraction U of available neurotransmitters and the recov-
ery time constant 7. determine the rate of return of
resources R(f) to the available presynaptic pool. In a
depressing synapse, U and 7. are constant. A simple
model describes the fraction of synaptic resources avail-
able for transmission as (Fuhrmann et al., 2002)

dR(t)

_1-R(@)
R — UR(1)d(t - 1), (17)

and the amplitude of the postsynaptic response at time
lyp is proportional to R(fgy).

For a facilitating synapse, U becomes a function of
time U(f) increasing at each presynaptic spike and de-
caying to the baseline level when there is no presynaptic
activity:



Rabinovich et al.: Dynamical principles in neuroscience 1241

experiment
Post
vV,
g
model
Post
Va

Pre

Vi

0.4mV
90mV
350ms

FIG. 28. Dynamical synapses imply that synaptic transmission
depends on previous presynaptic activity. This shows the aver-
age postsynaptic activity generated in response to a presynap-
tic spike train (bottom trace) in a pyramidal neuron (top trace)
and in a model of a depressing synapse (middle trace). Postsyn-
aptic potential in the model is computed using a passive mem-
brane mechanism 7,,(dV/dt) ==V + R;l (1), where R; is the in-
put resistance. Modified from Tsodyks and Markram, 1997.

au() - v@ +Ui[1-U@®]at - 1), (18)
dt Tfacil

where U, is a constant determining the step increase in
U(t) and T, is the relaxation time constant of the fa-
cilitation.

Other approaches to modeling dynamical synapses in-
clude probabilistic models to account for fluctuations in
presynaptic release of neurotransmitters. At a synaptic
connection with N release sites we can assume that at
each site there can be, at most, one vesicle available for
release, and that the release at each site is an indepen-
dent event. When a presynaptic spike is produced at
time £y, each site containing a vesicle will release it with
the same probability U(f). Once a release occurs, the site
can be refilled during a time interval dr with probability
dt/ ... The probabilistic release and recovery can be
described by the probability P,(f) for a vesicle to be
available for release at any time #:

de(t) _ 1- Pv(t)
At T

—UP, (1)t~ tg). (19)

Figure 28 shows how this formulation permits an accu-
rate description of a depressing synapse in response to a
specified presynaptic spike train.

The transmission of sensory information from the en-
vironment to decision centers through neural communi-
cation channels requires a high degree of reliability and
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sensitivity from networks of heterogeneous, inaccurate,
and sometimes unreliable components. The properties
of the channel itself, assuming the sensor is accurate,
must be richer than conventional channels studied in en-
gineering applications. Those channels are passive and,
when of high quality, can relay inputs accurately to a
receiver. Neural communication channels are composed
of dynamically active elements capable of complex au-
tonomous oscillations. Individually, chaotic neurons can
create information in a way similar to the study of non-
linear systems with unstable trajectories: Two states of
the system, indistinguishable because only finite-
resolution observations can occur, may through the ac-
tion of the instabilities of the nonlinear dynamics find
themselves in the future widely separated in state space,
and thus distinguishable. Information about different
states that was unavailable at one time may become
available at a later time.

Biological neural communication pathways are able to
recover information from a hidden coding space and to
transfer information from one time scale to another be-
cause of the intrinsic nonlinear dynamics of synapses. As
an example, we discuss a very simple neural information
channel composed of sensory input in the form of a
spike train that arrives at a model neuron and then
moves through a realistic dynamical synapse to a second
neuron where the information in the initial sensory sig-
nal is read (Eguia et al., 2000). The model neurons are
four-dimensional generalizations of the Hindmarsh-
Rose neuron, and a model of chemical synapse derived
from first-order kinetics is used. The four-dimensional
model neuron has a rich variety of dynamical behaviors,
including periodic bursting, chaotic bursting, continuous
spiking, and multistability. For many of these regimes,
the parameters of the chemical synapse can be tuned so
that the information about the stimulus, which is un-
readable to the first neuron in the path, can be recov-
ered by the dynamical activity of the synapse, and the
second neuron can read it (see Fig. 29).

The quantitative description of this unexpected phe-
nomenon was done by calculating the average mutual
information /(S,N;) between the stimulus S and the re-
sponse of the first neuron Ny, and I(S,N,) between the
stimulus and the response of the second neuron N,. The
result in the example shown in Fig. 29 is I(S,N,)
>I(S,N;). This result indicates how nonlinear synapses
and neurons acting as input and output systems along a
communication channel can recover information appar-
ently hidden in earlier synaptic connections in the path-
way. Here the measure of information transmission used
is the average mutual information between elements,
and because the channel is active and nonlinear, the av-
erage mutual information between the sensory source
and the final neuron may be greater than the average
mutual information found in an intermediate neuron in
the channel (but not greater than the original informa-
tion).

Another form of synaptic dynamics involved in infor-
mation processing and especially in learning is STDP
(already discussed in Sec. II.A.3). Information transduc-
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FIG. 29. Example of recovery of hidden information in neural
channels. A presynaptic cell receives specified input and con-
nects to a postsynaptic cell through a dynamical synapse. Top
panel: the time series of synaptic input to the presynaptic cell
J1(f); middle panel: the membrane potential of the first burst-
ing neuron X/(7); bottom panel: the membrane potential of the
second bursting neuron X,(¢). Note that features of the input
hidden in the response X (f) are recovered in the response
following a dynamical synapse X,(f) (note hyperpolarization
regions for X,). Modified from Eguia et al., 2000.

tion is influenced by STDP (Chechik, 2003; Hopfield and
Brody, 2004), which also plays an important role in bind-
ing and synchronization.

D. Binding and synchronization

We have discussed the diversity of neuron types and
the variability of neural activity. Neural processing re-
quires the fast interaction of many neurons in different
neural subsystems. There are several dynamical mecha-
nisms contributing to the complex integration of infor-
mation that neural systems perform. Among them, the
synchronization of neural activity is the one that has
captured the most attention. Synchronization of neural
activity is also one of the proposed solutions to a widely
discussed question in neuroscience: the binding prob-
lem, which we describe briefly in this section.

The binding problem was originally formulated as a
theoretical problem by von der Malsburg in 1981 [see a
review by von der Malsburg (1999), and Roskies (1999);
Singer (1999)]. However, examples of binding had al-
ready been proposed by Rosenblatt (1962) for the visual
system [for a review of the binding problem in vision see
Singer (1999), and Wolfe and Cave (1999)]. The binding
problem is formulated as the need for a coherent repre-
sentation of an object provided by the association of all
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its features (shape, color, location, speed, etc.). The as-
sociation of all features or binding allows a unified per-
ception of the object. The binding problem is a general-
ized task of the nervous system as it seeks to reconstruct
any total perception from its components. There are also
cognitive binding problems related to cognitive identifi-
cation and memory. No doubt the binding problem, like
many other problems in biology, has multiple solutions.
These solutions are most likely implemented through
the use of dynamical mechanisms for the control of neu-
ral activity.

The most widely studied mechanism proposed to
solve the binding problem is temporal synchrony (or
temporal correlation) (Singer and Gray, 1995). It has
been suggested by von der Malsburg and Schneider
(1986) that synchronization is the basis for perceptual
binding. However, there is still criticism of the temporal
binding hypothesis (Ghose and Maunsell, 1999; Riesen-
huber and Poggio, 1999). Obviously, neural oscillations
and synchronous signals are ubiquitous in the brain, and
neural systems can make use of these phenomena to
encode, learn, and create effective outputs. There are
several lines of experimental evidence that reveal the
use of synchronization and activity correlation for bind-
ing tasks. Figure 30 shows an example of how neural
synchronization correlates with the perceptual segmen-
tation of a complex visual pattern into distinct, spatially
overlapping surfaces (Castelo-Branco et al., 2000) (see
the figure caption for details). Indeed, modeling studies
show that involving time in these processes can lead to
the binding of different features. The idea is to use the
coincidence of certain events in the dynamics of differ-
ent neural units for binding. Usually such dynamical
binding is represented by synchronous neurons or neu-
rons that are in phase with an external field. However,
dynamical events such as phase or frequency variations
usually are not very reproducible and robust. As dis-
cussed in the next section, it is reasonable to hypothesize
that brain circuits displaying sequential switching of neu-
ral activity use the coincidence of this switching to
implement dynamical binding of different WLC net-
works.

Any spatiotemporal coding needs the temporal coor-
dination of neural activity among different populations
of neurons to provide (i) better recognition of specific
features, (ii) faster processing, (iii) higher information
capacity, and (iv) feature binding. Neural synchroniza-
tion has been observed throughout the nervous system,
particularly in sensory systems, for example, in the olfac-
tory system (Laurent and Davidowitz, 1994) and the vi-
sual system (Gray ef al., 1989). From the point of view of
dynamical system theory, transient synchronization is an
ideal mechanism for binding neurons into assemblies for
several reasons: (i) the synchronized neurons do not nec-
essarily have to be neighbors; (i) a synchronization
event depends on the state of the neuron and the stimu-
lus and can be very selective, that is, neurons from the
same network can be temporal members of different cell
assemblies at different instants of time; (iii) basic brain
rhythms are able to synchronize neurons responsible for
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FIG. 30. An example of binding showing dependence of syn-
chrony on transparency conditions and receptive field (RF)
configuration in the cat visual cortex. (a) Stimulus configura-
tion. (b) Synchronization between neurons with nonoverlap-
ping RFs and similar directional preferences recorded from
areas A18 and PMLS of the cat visual cortex. Left, RF constel-
lation and tuning curves; right, cross correlograms for re-
sponses to a nontransparent (left) and transparent plaid (right)
moving in the cells’ preferred direction. Grating luminance
was asymmetric to enhance perceptual transparency. Small
dark correlograms are shift predictors. (c) Synchronization be-
tween neurons with different direction preferences recorded
from A18 (polar and RF plots, left). Top, correlograms of re-
sponses evoked by a nontransparent (left) and a transparent
(right) plaid moving in a direction intermediate to the cells’
preferences. Bottom, correlograms of responses evoked by a
nontransparent plaid with reversed contrast conditions (left),
and by a surface defined by coherent motion of intersections
(right). Scale on polar plots: discharge rate in spikes per sec-
ond. Scale on correlograms: abscissa, shift interval in ms, bin
width 1 ms; ordinate, number of coincidences per trial, nor-
malized. Modified from Castelo-Branco et al., 2000.

the processing of information from different sensory in-
puts; and (iv) the synchronization is possible even be-
tween neural oscillators with strongly different frequen-
cies (Rabinovich et al., 2006).

In early visual processing neurons that encode fea-
tures of a complex visual percept are associated in func-
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tional assemblies through gamma-frequency synchroni-
zation (Engel et al., 2001). When sensory stimuli are
perceptually or attentionally selected, and the respective
neurons are bound together to raise their saliency, then
gamma-frequency synchronization among these neurons
is also enhanced. Gamma-mediated coupling and its
modulation by attention are not limited to the visual
system: they are also found in the auditory (Tiitinen et
al., 1993) and somatosensory domains (Desmedt and
Tomberg, 1994). Gamma oscillations allow visiomotor
binding between posterior and central brain regions
(Rodriguez et al., 1999) and are involved in short-term
memory. As a means for dynamically binding neurons
into assemblies, gamma-frequency synchronization ap-
pears to be the prime mechanism for stabilizing cortical
connections among members of a neural assembly over
time. On the other hand, neurons can increase or de-
crease the strength of their synaptic connections de-
pending on the precise coincidence of their activation
(STDP), and gamma-frequency synchronization pro-
vides the required temporal precision.

Hatsopoulos et al. (2003) and Jackson et al. (2003) re-
vealed the functional significance of neural synchroniza-
tion and correlations within the motor system. Preemi-
nent among brain actions must be the aggregation of
disparate spiking patterns to form spatially and tempo-
rally coherent neural codes that then drive alpha motor
neurons and their associated muscles. Essentially, motor
binding seems to describe exactly what motor structures
of the mammalian brain do: provide high-level coordi-
nation of simple and complex voluntary movements.
Neurons with similar functional output have an in-
creased likelihood of exhibiting neural synchronization.

In contrast to classical synchronization (Pikovsky
et al., 2001), synchronization in the CNS is always tran-
sient. The phase-space image of transient synchroniza-
tion can be a saddle limit cycle in the vicinity of which
the system spends finite time. Alternatively, it can be a
limit cycle whose basin of attraction decreases in time.
In both cases the system is able to leave the synchroni-
zation region after a specific stage of processing is com-
pleted and proceed with the next task. This is a broad
area where the issues and approaches are not settled,
and thus it provides an opportunity for innovative ideas
to explain the phenomenon.

To conclude this section, we note that the functional
role of synchronization in the CNS and the importance
of spike-timing coding in general are still a subject of
debate. On the one hand, it is possible to build models
that use dynamical patterns of spikes for neural compu-
tations, e.g., representation, recognition, and decision
making. Examples of such spike-timing-based computa-
tional models have been discussed by Hopfield and
Brody (Hopfield and Brody, 2001; Brody and Hopfield,
2003). In this work the authors showed, in particular,
that spike synchronization across many neurons can be
achieved in the absence of direct synaptic interactions
between neurons through phase locking to a common
underlying oscillatory potential (like gamma oscillation;
see above). On the other hand, the real connections of
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represents 2.6 mm of space in cortical tissue. Note also that the
first spike had a high amplitude but propagated more slowly in
the tissue. Modified from Bao and Wu, 2003.
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such theoretical models with experiments in vivo are not
established [see also Fell et al. (2003) and O’Reilly et al.
(2003)].

IV. TRANSIENT DYNAMICS: GENERATION
AND PROCESSING OF SEQUENCES

A. Why sequences?

The generation and control of sequences is of crucial
importance in many aspects of animal life. Working
memory, bird songs, finding food in a labyrinth, jumping
from one stone to another on the shore—all these are
the results of sequential activity generated by the ner-
vous system. Lashley called the problem of coordination
of constituent actions into organized sequential spa-
tiotemporal patterns the action syntax problem (Lashley,
1960). The generation of sequences is also important for
intermediate information processing as we discuss be-
low.

The sequences can be cyclic, like many brain rhythms
and spatiotemporal patterns generated by CPGs. They
can also be irregular, like neocortical theta oscillations
(4-10 Hz) generated spontaneously in cortical networks
(Bao and Wu, 2003) (see Fig. 31). The sequences can be
finite in time like those generated by a neural circuit
under the action of external input as in sensory systems.
From a physicist’s point of view, any reproducible finite
sequence that is functionally meaningful results from the
cooperative transient dynamics of the corresponding
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neural ensemble or individual neurons. Even brain
rhythms demonstrate transient dynamics because the
circuit’s periodic activity is modulated by nonstationary
sensory inputs or signals from the periphery. It is impor-
tant to emphasize the fundamental role of inhibition in
the generation and control of sequences in the nervous
system.

In this section we concentrate on the origin of se-
quence generation and the mechanisms of reproducibil-
ity, sensitivity, and functional reorganization of MCs. In
the standard study of nonlinear dynamical systems, at-
tention is focused on the long-time behavior of a system.
This is typically not the relevant question in neuro-
science. Here we must address the transient responses to
a stimulus external to the neural system and must con-
sider the short-term binding of a collection of responses,
perhaps from different sensory inputs, to facilitate ac-
tion commands directed to the motor system. If you at-
tempt to swat a fly, it cannot ask you to perform this
action many times so that it can average over your ac-
tions, allowing it to perform some standard optimal re-
sponse. Few flies wanting this repetition would survive.

B. Spatially ordered networks

1. Stimulus-dependent modes

Many neural ensembles are anatomically organized as
slightly inhomogeneous excitable media. Examples of
such media are retina (Tohya ef al., 2003), IO network
(Leznik and Llinas, 2002), cortex (Ichinohe et al., 2003),
and thalamocortical layers (Contreras et al., 1996). All
these are neuronal lattices with chemical or electrical
connections occurring primarily between neighbors.
There are some general dynamical mechanisms of se-
quence generation in such spatially ordered networks.
These mechanisms are usually related to the existence of
wave modes such as those shown in Fig. 31 that are
modulated by external inputs or stimuli.

Many significant observational and modeling results
for this subject are found in the visual system. Visual
systems are organized differently for different classes of
animals. For example, the mammalian visual cortex has
several topographically organized representations of the
visual field and neurons at adjacent points in the cortex
are excited by stimuli presented at adjacent regions of
the visual field. This indicates there is a continuous map-
ping of the coordinates of the visual field to the coordi-
nates of the cortex (van Essen, 1979). In contrast to such
a mapping connections from the visual field to the visual
cortex in the turtle, for example, are more complex: A
local spot in the visual field activates many neurons in
the cortex but in an ordered way. As a result the excita-
tion of the turtle visual cortex is distributed and not lo-
calized, and this suggests the temporal dynamics of sev-
eral interacting membrane modes (see Fig. 32). In the
mammalian cortex a moving stimulus evokes a localized
wave or wave front, while in the turtle visual cortex a
differentially moving stimulus modulates temporal inter-
actions of the cortical modes differently and is repre-
sented by different sequential switchings between them.
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FIG. 32. (Color online) Sequential changing of cortical modes
in the turtle visual cortex. Comparison between the spatial or-
ganization of the cortical activity in the turtle visual system and
the normal modes of a rectangular membrane (drum). From
Senseman and Robbins, 1999.

To understand the dynamics of the wave modes, i.e.,
stability, sensitivity to stimuli, dependence on neuro-
modulators, etc., one has to build a model that is based
on the experimental information about the possibility of
these modes maintaining the topological space structure
observed in experiments. In many similar situations one
can introduce cooperative or population variables that
can be interpreted as the amplitude of such modes de-
pending on time. The corresponding amplitude equa-
tions are essentially the widely studied evolution equa-
tions of the dynamical theory of pattern formation
(Cross and Hohenberg, 1993; Rabinovich et al., 2000).

For an analysis of the wave mode dynamics of the
turtle visual cortex Senseman and Robbins (1999) used
the Karhunen-Loeve decomposition and a snapshot of a
spatiotemporal pattern at time t=t" could be repre-
sented as a weighted sum of basic modes M;(x,y) with
coordinates (x,y) on the image:

N
M(x,}’»fo) = E ai(tO)Mi(x’y)v (20)

where u(x,y,f) represents the cooperative dynamics of
these modes. The presentation of different visual
stimuli, such as spots of light at different points in the
visual field, produced spatiotemporal patterns repre-
sented by different trajectories in the phase space
a(t),a,(1),...,a,(t). Du et al. (2005) showed that it is
possible to make a reduction in the dimensionality of the
wave modes by a second Karhunen-Loeve decomposi-
tion, which maps in some time window the trajectory in
(a;) space into a point in a low-dimensional space (see
Fig. 33). The observed transient dynamics is similar to
the experimental results on the representation of differ-
ent odors in the invertebrate olfactory system [see Fig.
46 and Galan et al. (2004)]. Nenadic et al. (2002) used a
large-scale computer model of turtle visual cortex to re-
produce qualitatively the features of the cortical mode
dynamics seen in these experiments.

It is remarkable that not only do spatiotemporal pat-
terns evoked by a direct stimulus look like wave modes,
but even spontaneous activity in the sensory cortex is
well organized and very different from turbulent flow
(Arieli et al., 1996). This means that the common as-
sumption about the stochastic and uncorrelated sponta-
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FIG. 33. (Color) Space representation of cortical responses in
the turtle visual cortex to left, center, and right stimuli. From
Du et al., 2005.

neous activity of neighboring neurons in neural
networks [see, for example, van Vreeswijk and Sompo-
linsky (1996); Amit and Brunel (1997b)] is not always
correct. Local field potentials and recordings from single
neurons indicate the presence of highly synchronous on-
going activity patterns or wave modes (see Fig. 34). The
spontaneous activity of a single neuron connected with
others, in principle, can be reconstructed using the
evoked patterns of network activity (Tsodyks et al.,
1999).

There are some illustrative models of wave modes
that we note here. In 1977 Amari (1977) found spatially
localized regions of high neural activity (“bumps”) in
network models consisting of a single layer of coupled
excitatory and inhibitory rate neurons. Laing et al
(2002) extended Amari’s results to a nonmonotonic con-
nection function (“Mexican hat” with oscillating tails)
(shown in Fig. 35) and a neural layer in two spatial di-
mensions:

au(x,y,t)

ot = u(x’yvt)
+f Jw@—qw—Mﬂan0MQ@h
Q
(21)
fu) =2e" "= M’Q (4 — 1hy), (22)
w(x,y) = e‘b“““xzﬂz[b sin(Vx? + y?) + cos(Vx? + y?)].
(23)

An example of a typical localized mode in such neural
media with local excitation and long-range inhibition is
represented in Fig. 36. Different modes (with different
numbers of bumps) can be switched from one to another
by transient external stimuli. Multiple items can be
stored in this model because of the oscillating tails of the
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FIG. 34. (Color online) Relation between the spiking activity of a single neuron and the population state of cortical networks. (a)
From bottom to top: stimulus time course; correlation coefficient of the instantaneous snapshot of population activity with the
spatial pattern obtained by averaging over all patterns observed at the times corresponding to spikes evoked by the optimal
orientation of the stimulus called the neuron’s preferred cortical state (PCS) pattern; observed spike train of evoked activity with
the optimal orientation for that neuron; reconstructed spike train. The similarity between the reconstructed and observed spike
trains is evident. Also, strong upswings in the values of correlation coefficients are evident each time the neuron emits bursts of
action potentials. Every strong burst is followed by a marked downswing in the values of the correlation coefficients. (b) The same
as (a), but for a spontaneous activity recording session from the same neuron (eyes closed). (c) The neuron’s PCS, calculated during
evoked activity and used to obtain both (a) and (b). (d) The cortical state corresponding to spontaneous action potentials. The two
patterns are nearly identical (correlation coefficient 0.81). (¢) and (f) Another example of the similarity between the neuron’s PCS
(e) and the cortical state corresponding to spontaneous activity (f) from a different cat obtained with the high-resolution imaging
system (correlation coefficient 0.74). Modified from Tsodyks et al., 1999.

effective connection strength. This is the result of the
common activity of the excitatory and inhibitory connec-
tions between neurons. Inhibition plays a crucial role for
the stability of localized modes (Laing et al., 2002).
Localized modes with different numbers of bumps re-
mind one of complex localized patterns in a dissipative
nonequilibrium media (Rabinovich et al., 2000). Based
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FIG. 35. Connection function w(x,y), centered at the center of
the domain. Modified from Laing et al., 2002.
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on this analogy, it is reasonable to hypothesize that dif-
ferent modes may coexist in a neural layer and their
interaction and annihilation can explain the sequential
effectiveness of the different events. This suggests they
could be a model of sequential working memory (see
below).

Many rhythms of the brain can take the form of
waves: spindle waves (7-14 Hz) seen at the onset of
sleep (Kim er al., 1995), slower delta rhythms of deeper
sleep, the synchronous discharge during an epileptic sei-

y 0o X

FIG. 36. Six-bump stable solution of the model (21)—(23): b
=0.45, 7=0.1, th=1.5. Modified from Laing et al., 2002.
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zure (Connors and Amitai, 1997), waves of excitation
associated with sensory processing, 40-Hz oscillations,
and others. In thalamocortical networks the same clus-
ters of neurons are responsible for different modes of
rhythmic activity. What is the dynamical origin of such
multifunctionality? There is no unique answer to this
question, and there are several different mechanisms
that can be responsible for it (we have already discussed
this for small invertebrate networks; see Sec. I11.B). Ter-
man et al. (1996) studied the transition between spin-
dling and delta sleep rhythms. The authors showed that
these two rhythms make different uses of the fast inhi-
bition and slow inhibition generated by thalamic reticu-
laris cells. These two types of inhibition are mediated in
the cortex by GABA(A) and GABA(B) receptors, re-
spectively (Schutter, 2002; Tams et al., 2003).

The wave mode equation discussed above is familiar
to physicists and can be written both when interactions
between neuron populations are homogeneous and iso-
tropic (Ermentrout, 1998) and when the neural layer is
partitioned into domains or hypercolumns like the pri-
mary visual cortex (V1) of cats and primates, which has a
crystallinelike structure at the millimeter length scale
(Bressloff, 2002; Bressloff and Cowan, 2002).

In the next section we discuss the propagation of pat-
terns of synchronous activity along spatially ordered
neural networks.

2. Localized synfire waves

Auditory and visual sensory systems have a very high
temporal resolution. For example, the retina is able to
resolve sequential temporal patterns with a precision in
the millisecond range. Does the transmission of sensory
information from the periphery to the cortex maintain
such high resolution? If the answer is yes, what are the
dynamical mechanisms responsible for this? These ques-
tions are still open.

There are several neurophysiological experiments that
show the ability of neural systems to transmit tempo-
rarily modulated responses of sensory networks with
high precision over several processing levels. For ex-
ample, cross correlations between simultaneously re-
corded responses of retinal cells relay neurons within
the thalamus, and cortical neurons show that the oscilla-
tory patterning is reliably transmitted to the cortex with
a resolution in the millisecond range [see for reviews
Singer (1999) and Nase et al. (2003)]. A similar phenom-
enon was observed by Kimpo et al. (2003) who showed
evidence for the preserved timing of spiking activity
through multiple steps of a neural control loop in the
bird brain. The dynamical origin of such precise message
propagation, independent of the rate fluctuation, is often
attributed to synchronization of the many neurons in the
overall circuit (Abeles, 1991; Diemann et al., 1999).

We now discuss briefly the dynamics of waves of syn-
chronous neural firing, i.e., synfire waves. One modeling
study (Diesmann et al., 1999) has shown that the stable
propagation of localized synfire waves, short-lasting syn-
chronous spiking activity, is possible along a sequence of
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FIG. 37. Sequence of pools of excitatory neurons, connected in
a feedforward way by so-called divergent and convergent con-
nections. The network is called a synfire chain if it supports the
propagation of synchronous spike patterns. Modified from Ge-
waltig et al., 2001.

layers or pools of neurons in a feedforward cortical net-
work such as the one shown in Fig. 37, a synfire chain
(Abeles, 1991). The degree of temporal accuracy of
spike times among the pools’ members determines
whether subsequent pools can reproduce (or even im-
prove) this accuracy [Fig. 38(a)], or whether synchronous
excitation disperses and eventually dies out as in Fig.
38(b) for a smaller number of spikes in the volley. Thus
in the context of synfire network function the quality of
timing is judged on whether synchronous spiking is sus-
tained or whether it dies out.

Diesmann et al. (1999), Cateau and Fukai (2001), Kis-
tler and de Zeeuw (2002), and Nowotny and Huerta
(2003) have shown that if the pool size is more than a
critical value determined by the connectivity between
layers, the wave activity initiated at the first pool propa-
gates from one pool to the next, forming a synfire wave.
Nowotny and Huerta (2003) have theoretically proven
that no other states exist beyond synchronized or unsyn-
chronized volleys as shown in the experiments by Reyes
(2003).

The synfire feedforward chain (Fig. 37) is an oversim-
plified model for analyzing synfire waves because in re-
ality any network with synfire chains is embedded in a
larger cortical network that also has inhibitory neurons

G

—_

Group

O ©m~NOoO oA wWN =
Group

O © N A wWwN =

—
-

Time (ms) Time (ms)

FIG. 38. Propagation of firing activity in synfire chains. (a)
Stable and (b) unstable propagation of synchronous spiking in
a model of cortical networks. Raster displays of propagating
spike volley along fully connected synfire chain. Panels show
the spikes in ten successive groups of 100 neurons each (syn-
aptic delays arbitrarily set to 5 ms). Initial spike volley (not
shown) was fully synchronized, containing (a) 50 or (b) 48
spikes. Modified from Diesmann et al., 1999.
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and many recurrent connections. This problem is dis-
cussed in detail by Aviel et al. (2003).

C. Winnerless competition principle

1. Stimulus-dependent competition

Here we consider a paradigm of sequence generation
that does not depend on the geometrical structure of the
neural ensemble in physical space. It can, for example,
be a two-dimensional layer with connections between
neighbors or a three-dimensional network with sparse
random connections. This paradigm can be helpful for
the explanation and prediction of many dynamical phe-
nomena in neural networks with excitatory and inhibi-
tory synaptic connections. The paradigm is called the
winnerless competition principle. We have touched on
aspects of WLC networks earlier, and here we expand
on their properties and their possible use in neuro-
science.

“Survival of the fittest” is a cliché that is often associ-
ated with the term competition. However, competition is
not merely a means of determining the winner, as in a
winner-take-all network. It is also a multifunctional in-
strument that nature uses at all levels of the neuronal
hierarchy. Competition is also a mechanism that main-
tains the highest level of variability and stability of neu-
ral dynamics, even if it is a transient behavior.

Over two hundred years ago the mathematicians
Borda and de Condorcet were interested in the process
of plurality elections at the French Royal Academy of
Sciences. They considered voting dynamics in a case of
three candidates A, B, and C. If A beats B and B beats
C in a head-to-head competition, we might reasonably
expect A to beat C. Thus predicting the results of the
election is easy. However, this is not always the case. It
may happen that C beats A, resulting in a so-called Con-
dorcet triangle, and there is no real winner in such a
competitive process (Borda, 1781; Saari, 1995). This ex-
ample is also called a “voting paradox.” The dynamical
image of this phenomenon is a robust heteroclinic cycle
(see Fig. 39). In some specific cases the heteroclinic cycle
is even structurally stable (Guckenheimer and Holmes,
1988; Krupa, 1997; Stone and Armbruster, 1999; Ashwin
et al., 2003; Postlethwaite and Dawes, 2005).

The competition without a winner is also known in
hydrodynamics: Busse and Heikes discovered that con-
vective roll patterns in a rotating plane layer exhibit se-
quential changes of the roll’s direction as a result of the
competition between patterns with different roll orien-
tations. No pattern becomes a winner and the system
exhibits periodic or chaotic switching dynamics (Busse
and Heikes, 1980). For review see Rabinovich et al.
(2000). The same phenomenon has been discovered in a
genetic system, i.e., in experiments with a synthetic net-
work of three transcriptional regulators (Elowitz and
Leibler, 2000). Specifically, these authors described three
repressor genes A, B, and C organized in a closed chain
with unidirectional inhibitory connections such that A,
B, and C beat each other. This network behaves like a

Rev. Mod. Phys., Vol. 78, No. 4, October—December 2006

FIG. 39. (Color online) Illustration of WLC dynamics. Top
panel: Phase portrait corresponding to the autonomous WLC
dynamics of a three-dimensional case. Bottom panel: Projec-
tion of a nine-dimensional heteroclinic orbit of three inhibitory
coupled FitzHugh-Nagumo spiking neurons in a three-
dimensional space (the variables &, &, & are linear combina-
tions of the actual phase variables of the system). From
Rabinovich et al., 2001.

clock: it periodically induces synthesis of green fluores-
cent proteins as an indicator of the state of individual
cells on a time scale of hours.

In neural systems such clock competitive dynamics
can result from the inhibitory connections among neu-
rons. For example, Jefferys et al. (1996) showed that hip-
pocampal and neocortical networks of mutually inhibi-
tory interneurons generate collective 40-Hz rhythms
(gamma oscillations) when excited tonically. Another ex-
ample of neural competition without a winner was dis-
cussed by Ermentrout (1992). The author studied the
dynamics of a single inhibitory neuron connected to a
small cluster of loosely coupled excitatory cells and ob-
served the emergence of a limit cycle through a hetero-
clinic cycle. For autonomous dynamical systems compe-
tition without a winner is a well-known phenomenon.

We use the term WLC principle for the nonautono-
mous transient dynamics of neural systems receiving ex-
ternal stimuli and exhibiting sequential switching among
temporal winners. The main point of the WLC principle
is the transformation of incoming inputs into spatiotem-
poral outputs based on the intrinsic switching dynamics
of the neuronal ensemble (see Fig. 40). In the phase
space of the network, such switching dynamics are rep-
resented by a heteroclinic sequence whose architecture
depends on the stimulus. Such a sequence consists of
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FIG. 40. Transformation of the identity spatial input into spa-
tiotemporal output based on the intrinsic sequential dynamics
of a neural ensemble with WLC.

many saddle equilibria or saddle cycles and many het-
eroclinic orbits connecting them, i.e., many separatrices.
The sequence can serve as an attracting set if every
semistable set has only one unstable direction [see also
Ashwin and Timme (2005)].

The key points on which WLC networks are based are
the following: (i) the stimulus-dependent heteroclinic se-
quence corresponding to a specific order of switching
has a large basin of attraction, i.e., the sequence is ro-
bust; and (ii) the topology of the heteroclinic sequence
sensitively depends on the incoming signals, i.e., WLC
dynamics have a high resolution.

In this manner stimulus-dependent sequential switch-
ing of neurons or groups of neurons (clusters) is able to
resolve the fundamental contradiction between sensitiv-
ity and robustness in sensory recognition. Any kind of
sequential activity can be programmed, in principle, by a
network with stimulus-dependent nonsymmetric inhibi-
tory connections. It can be the creation of spatiotempo-
ral patterns of motor activity, the transformation of the
spatial information into spatiotemporal information for
successful recognition (see Fig. 40), and many other
computations.

The generation of sequences in inhibitory networks
has already been discussed when we analyzed the dy-
namics of CPGs (see Sec. I1.B) focusing on rhythmic
activity. The mathematical image in phase space of the
rhythmic sequential switching shown in Figs. 8 and 9 is a
limit cycle in the vicinity of the heteroclinic contour [cf.
Fig. 39(a)].

WLC dynamics can be described in the framework of
neural models at different levels. These could be rate
models, Hodgkin-Huxley-type models, or even simple
map models (see Table I). For spiking neurons or groups
of synchronized spiking neurons in a network with non-
symmetrical lateral inhibition WLC may lead to switch-
ing between active and inactive states. The mathemati-
cal image of such switching activity is also a heteroclinic
loop, but in this case the separatrices do not connect
saddle equilibrium points [Fig. 39(a)] but saddle limit
cycles as shown in Fig. 39(b). The WLC dynamics in a
model network of nine spiking neurons with inhibitory
connections is shown in Fig. 41. Similar results based on
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FIG. 41. Spatiotemporal patterns generated by a network of
nine FitzHugh-Nagumo neurons with inhibitory connections.
The left and right panels correspond to two different stimuli.
From Rabinovich et al., 2001.

a map model of neurons have been reported by Casado
(2003).

An important advantage of WLC networks is that
they can produce different spatiotemporal patterns in
response to different stimuli, and, remarkably, neurons
spontaneously form synchronized clusters despite the
absence of excitatory synaptic connections. For a discus-
sion of synchronization with inhibition see also van
Vreeswijk et al. (1994) and Elson et al. (2002).

Finally WLC networks also possess a strikingly differ-
ent capacity or ability to represent in a distinguishable
manner a number of different patterns. In an attractor
computation network of the Hopfield variety, a network
with N attractors has been shown to have a capacity of
approximately N/7. In a simple WLC network with N
nodes, this capacity has been shown (Rabinovich et al.,
2001) to be of order e(N—-1)!, which is a remarkable gain
in capacity.

2. Self-organized WLC networks

It is generally accepted that there is insufficient ge-
netic information available to account for all the synap-
tic connectivity in the brain. How then can the func-
tional architecture of WLC circuits be generated in the
process of development?

One possible answer has been found by Huerta and
Rabinovich. Starting with a model circuit consisting of
100 rate model neurons connected randomly with weak
inhibitory synapses, new synaptic strengths are com-
puted for the connections using Hebb learning rules in
the presence of weak noise. The neuron rates a;(¢) satisfy
a Lotka-Volterra model familiar from our earlier discus-

sion. In this case the matrix p;(¢) is a dynamical variable:
da(1)
T~ a0(o8) = Z pyf0a0) + &), 24)
i

a(S) is a function dependent on the stimulus S, p(t) are
the strengths of the inhibitory connections determined
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FIG. 42. (Color) Result of simulating a network of 100 neurons
subject to the learning rule g(a;,a;)=a;a10 tanh(a;—a;)+1].
The activity of representative neurons in this network is shown
in different colors. The system starts from random initial con-
ditions for the connections. The noise level is 7=0.01. For sim-
plicity, the switching activity of only four of the 100 neurons is
shown.

by some learning rules, and &(¢) is Gaussian noise with
(&()¢(t))=nd;6(t—1t"). The learning is described by the
equations

dp;(t
_P;;Q = pij(t)g(ai(1),a;1),S) — [p;() — ¥l (25)
where g(a;,a;,S) represents the strengthening of interac-
tions from neuron i to neuron j as a function of the
external stimulus S. The parameter 7y represents the
lower bound of the coupling strengths among neurons.
Figure 42 shows the activity of representative neurons in
a network built with this model. After the self-
organization phase, this network displays WLC switch-
ing dynamics.

Winnerless competition dynamics can also be the re-
sult of local self-organization in networks of HH model
neurons that display STDP with inhibitory synaptic con-
nections as shown in Fig. 43. Such mechanisms of self-
organization, as shown by Nowotny and Rabinovich, can
be appropriate for networks that generate not only
rhythmic activity but also transient heteroclinic se-
quences.

3. Stable heteroclinic sequence

The phase-space image of nonrhythmic WLC dynam-
ics is a trajectory in the vicinity of a stable heteroclinic
sequence (SHS) in the state space of the system. Such a
sequence (see Fig. 44) is an open chain of saddle fixed
points connected by one-dimensional separatrices which
retain nearby trajectories in its vicinity. The flexibility of
WLC dynamics is provided by their dependence on the
identity of participating neural clusters of stimuli. Se-
quence generation in chainlike or layerlike networks of
neurons may result from a feedforward wavelike propa-
gation of spikes like waves in synfire chains (see above).
In contrast, WLC dynamics does not need a specific spa-
tial organization of the network. However, the image of
a wave is a useful one, because in the case of WLC a
wave of neural activity propagates in state space along
the SHS. Such a wave is initiated by a stimulus. The
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FIG. 43. (Color online) Example of WLC dynamics entrained
in a network by a local learning rule. In isolation, the four HH
neurons in the network are rebound bursters, i.e., they fire a
brief burst of spikes after being strongly inhibited. The all-to-
all inhibitory synapses in the small network are governed by a
STDP learning rule which strengthens the synapse for positive
time delays between postsynaptic and presynaptic activity and
weakens it otherwise. Such STDP of inhibitory synapses has
been observed in the entorhinal cortex of rats (Haas et al.,
2006). (a) Before entrainment the neurons just follow the input
signal of periodic current pulses. (b) The resulting bursts
strengthen the forward synapses corresponding to the input
sequence making them eventually strong enough to cause re-
bound bursts. (c) After entrainment activating any one of the
neurons leads to an infinite repetition of the trained sequence
carried by the successive rebound bursts of the neurons.

speed of the sequential switching depends on the noise
level 7. Noise controls the distance between trajectories
realized by the system and the SHS. For trajectories that
get closer to the SHS the time that the system spends
near semistable states (saddles), i.e., the interval be-
tween switching, becomes longer (see Fig. 44).

The mechanism of reproducing transient sequential
neural activity has been analyzed by Aframovich, Zhigu-
lin, et al. (2004) (see Fig. 44). It is quite general and does
not depend on the details of the neuronal model. Saddle
points in the phase space of the neural network can be
replaced by saddle limit cycles or even chaotic sets that
describe neural activity in more detail, as in typical spik-
ing or spiking-bursting models. This feature is important
for neural modeling because it may help to build a
bridge between the concepts of neural competition and
synchronization of spikes.

We can formulate the necessary conditions for the
connectivity of a WLC network that must be satisfied in
order for the network to exhibit reproducible sequential
dynamics along the heteroclinic chain. As before, we
base our discussion on the rate model
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FIG. 44. A stable open heteroclinic sequence in a neural cir-
cuit with WLC. W, is a stable manifold of the ith saddle fixed
point (heavy dots). The trajectories in the vicinity of the SHS
represent sequences with different timings. The time intervals
between switches is proportional to T~ [In 7|/\,, where \,, is a
positive Lyapunov exponent that characterizes the one-
dimensional unstable separatrices of the saddle points (Stone
and Holmes, 1990). Modified from Afraimovich, Zhigulin,
et al., 2004.

N
“;_(t’) = a,»u)(a,-(ﬁf) -2 pi,-<§’>a,-<r>) +ED.  (20)
]

where &(7) is an external Gaussian noise. In this model it

is assumed that the stimulus §' influences the matrix Pij
and increments o; only in the subnetwork N’. Each in-
crement o; controls the time constant of an initial expo-
nential growth from the resting state a,(t)=0. As shown
by Aframovich, Zhigulin, et al. (2004) to assure that the
SHS is in the phase space of the system (26) the follow-
ing inequalities must be satisfied:

Tk < Jher g 27
Pi, i, +1, (27)
O'l'k O'ik

Tiy .y 1 < Tig 28
- Piy iy ) (28)

o-ik O-ik

i %%,

Pii, = Piy_yi, + — (29)

k

o is the increment of the mth saddle whose unstable
manifold is one dimensional; Pi iy is the strength of the
inhibitory connection between neighboring saddles in
the heteroclinic chain. The computer modeling result of
a network with parameters that satisfy (27)—(29) is
shown in Fig. 45.

In the next section we discuss some experiments that
support the SHS paradigm.

4. Relation to experiments

The olfactory system may serve as one example of a
neural system that generates transient, but trial-to-trial
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FIG. 45. (Color online) Time series of the activity of a WLC
network during ten trials (only 20 neurons are shown): simula-
tions of each trial were started from a different random initial
condition. In this plot each neuron is represented by a differ-
ent color and its level of activity by the saturation of the color.
From Afraimovich, Zhigulin, et al., 2004.

reproducible, sequences of neuronal activity which can
be explained with the WLC principle. The complex in-
trinsic dynamics in the antennal lobe (AL) of insects
transform static sensory stimuli into spatiotemporal pat-
terns of neural activity (Laurent et al, 2001). Several
experimental results about the reproducibility of the
transient spatiotemporal AL dynamics have been pub-
lished (Stopfer et al., 2003; Galan et al., 2004; Mazor and
Laurent, 2005) (see Fig. 46). In experiments described by
Galan et al. (2004) bees were presented with different
odors, and neural activity in the AL was recorded using
calcium imaging. The authors analyzed the transient tra-
jectories in the projection neuron activity space and
found that trajectories representing different trials of
stimulation with the same odor were very similar. It was
shown that after a time interval of about 800 ms differ-
ent odors are represented in phase space by different
static attractors, i.e., the transient spatiotemporal pat-
terns converge to different spatial patterns of activity.
However, the authors emphasize that due to the repro-
ducibility of the transient dynamics some odors were
recognized in the early transient stage as soon as 300 ms
after the onset of the odor presentation. It is highly
likely that the transient trajectories observed in these
experiments represent realizations of a SHS.

The generation of reproducible sequences plays also a
key role in the high vocal center (HVC) of the songbird
system (Hahnloser ef al., 2002). Like a CPG, this neural
system is able to generate sparse spatiotemporal pat-
terns without any rhythmic stimuli in vitro (Solis and
Perkel, 2005). In its projections to the premotor nucleus
RA, HVC in an awake singing bird sends sparse bursts
of high-frequency signals once for each syllable of the
song. These bursts have an interspike interval about
2 ms and last about 8 ms within a syllable time scale of
100-200 ms. The bursts are shown for several HVC
— RA projection neurons in Fig. 47. The HVC also con-
tains many inhibitory interneurons (Mooney and
Prather, 2005). The interneurons burst densely through-
out the vocalizations, in contrast to the bursting of the
RA-projecting HVC neurons at single precise timings. A
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FIG. 46. (Color) Transient AL dynamics. Top panel: Trajecto-
ries of the antennal lobe activity during poststimulus relaxation
in one bee. Modified from Galan et al., 2004. Bottom panel:
Visualization of trajectories representing the response of a PN
population in a locust AL over time. Time-slice points were
calculated from 110 PN responses to four concentrations (0.01,
0.05, 0.1, 1) of three odors, projected onto three dimensions
using locally linear embedding, an algorithm that computes
low-dimensional, neighborhood-preserving embeddings of
high-dimensional inputs (Roweis and Saul, 2000). Modified
from Stopfer et al., 2003.

plausible hypothesis is that HVC’s synaptic connections
are nonsymmetric and WLC can be a mechanism of the
neural spatiotemporal pattern generation of the song.
This would provide a basis for the reproducible pat-
terned output from the HVC when it receives a song
command stimulus.

D. Sequence learning

Sequence learning and memory as sequence genera-
tion require temporal asymmetry in the system. Such
asymmetry can result from specific properties of the net-
work connections, in particular, asymmetry of the con-
nections, or can result from temporal asymmetry in the
dynamical features of individual neurons and synapses,
or both. The specific dynamical mechanisms of sequence
learning depend on the time scale of the sequence that
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FIG. 47. (Color online) HVC songbird patterns. Spike raster
plot of ten HVC(RA) neurons recorded in one bird during
singing. Each row of tick marks shows spikes generated during
one rendition of the song or call; roughly ten renditions are
shown for each neuron. Modified from Hahnloser et al., 2002.

this neural system needs to learn. Learning of fast se-
quences, 20-30 ms and faster, needs precise synchroni-
zation of the spikes or phases of neural waves. One pos-
sible mechanism for this can be the learning of synfire
waves. For slow sequences, like autonomous repetitive
behavior, it would be preferable to learn relevant behav-
ioral events that typically occur on the time scale of hun-
dreds of milliseconds or slower and the switching (tran-
sitions) between them. Networks whose dynamics are
based on WLC are able to do such a job. We consider
here slow sequence learning and spatial sequential
memory (SSM).

The idea is that sequential memory is encoded in a
multidimensional dynamical system with a SHS. Each of
the saddle points represents an event in a sequence to be
remembered. Once the state of the system approaches
one fixed point representing a certain event, it is drawn
along an unstable separatrix toward the next fixed point,
and the mechanism repeats itself. The necessary connec-
tions are formed in the learning phases by different sen-
sory inputs originated by sequential events.

Seliger et al. (2003) have discussed a model of the SSM
in the hippocampus. It is well accepted that the hippo-
campus plays the central role in acquisition and process-
ing information related to representing motion in physi-
cal space. The most spectacular manifestation of this
role is the existence of so-called place cells which repeat-
edly fire when an animal is in a certain spatial location
(O’Keefe and Dostrovsky, 1971). Experimental research
also favors an alternative concept of spatial memory
based on a linked collection of stored episodes (Wilson
and McNaughton, 1993). Each episode comprises a se-
quence of events, which, besides spatial locations, may
include other features of the environment (orientation,
odor, sound, etc.). It is plausible to describe the corre-
sponding learning with a population model that repre-
sents neural activity by rate coding. Seliger et al. (2003)
have proposed a two-layer dynamical model of SSM that
can answer the following key questions: (i) How is a
certain event, e.g., an image of the environment, re-
corded in the structure of the synaptic connections be-
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tween multiple sensory neurons (SNs) and a single prin-
cipal neuron (PN) during learning? (ii) What kind of
cooperative dynamics forces individual PNs to fire se-
quentially, in a way that would correspond to a specific
sequence of snapshots of the environment? (iii) How
complex should this network be in order to store a cer-
tain number of different episodes without mixing differ-
ent events or storing spurious episodes?

The two-layer structure of the SSM model is reminis-
cent of the projection network implementation of the
normal form projection algorithm (NFPA); see Baird
and Eeckman (1993). In the NFPA model, the dynamics
of the network is cast in terms of normal form equations
which are written for amplitudes of certain normal
forms corresponding to different patterns stored in the
system. The normal form dynamics can be chosen to
follow certain dynamical rules. Baird and Eeckman
(1993) have shown that a Hopfield-type network with
improved capacity can be built using this approach. Fur-
thermore, it has been suggested (Baird and Eeckman,
1993) that specific choices of the coupling matrix for the
normal form dynamics can lead to multistability among
more complex attracting sets than simple fixed points,
such as limit cycles or even chaotic attractors. For ex-
ample, quasiperiodic oscillations can be described by a
normal form that corresponds to a multiple Hopf bifur-
cation (Guckenheimer and Holmes, 1986). As shown be-
low, a model of SSM after learning is completed can be
viewed as a variant of the NFPA with a specific choice of
normal form dynamics corresponding to winnerless
competition among different patterns.

To illustrate these ideas consider a two-level network
of N, SNs [x,(1)] and N, principal neurons [a,(t)]. One
can reasonably assume that sensory neurons do not have
their own complex dynamics and are slaved either to
external stimuli in the learning or storing regime or to
the PNs in the retrieval regime. In the learning regime,
x;(t) is a binary input pattern consisting of 0s and 1’
During the retrieval phase, x;(¢) = DA PlP a;(t), where P;;
the N, X N, projection matrix of connectlons among SNs
and PNs.

The PNs are driven by SNs during the learning phase,
but they also have their own dynamics controlled by in-
hibitory interconnections. When learning is complete,
the direct driving from SNs is disconnected. The equa-
tions for the PN rates a;(f) read

da; (t)

=l - (r)E Viai(t) + aa; 2 Plx(0) + &),

(30)

where a#0 in the learning phase and @=0 in the re-
trieval phase, and P; is the projection matrix. The cou-
pling between SNs and PNs is bidirectional. The last
term on the right-hand side of Eq. (30) represents small
positive external perturbations which can input signals
from other parts of the brain that control learning and
retrieval dynamics.
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After a certain pattern is presented to the model, the
sensory stimuli reset the state of the PN layer according
to the projection rule a,(t)= E xi(t), but a,(t) change
according to Eq. (30).

The dynamics of SNs and PNs during the learning and
retrieval phases have two learning processes: (i) forming
the projection matrix P; which is responsible for con-
necting a group of sensory neurons of the first layer cor-
responding to a certain stored pattern to a single PN
which represents this pattern at the PN level; and (ii)
learning of the competition matrix V;; which is respon-
sible for the temporal (logical) orderlng of the sequential
memory.

The slow learning dynamics of the projection matrix is
controlled by the following equation:

l]]

P-j = ea,(Bx; - P) (31)

with e<1. We assume that initially all P; connections
are nearly identical P;=1+ 7;, where 7, are small ran-
dom perturbations, Ej 7;=0, <771]> 7 <1. Additionally,
we assume that initially the matrix V;; is purely competi-
tive: V=1 and V;=V(>1 for i #].

Suppose we want to memorize a certain pattern A in
our projection matrix. We apply a set of inputs A; corre-
sponding to the pattern A of the SNs. As before, we
assume that external stimuli render the SNs in one of
two states: excited, A;=1, and quiescent, A;=0. The ini-
tial state of the PN layer is fully excited: a,(0)=2,;P;A;.
According to the competitive nature of interactions be-
tween PNs after a short transient, only one of them, the
neuron A which corresponds to the maximum a;(0), re-
mains excited and the others become quiescent. Which
neuron becomes responsible for the pattern A is actually
random, as it depends on the initial projection matrix
P;. 1t follows from Eq. (31) that for small € synapses of
suppressed PNs do not change, whereas synapses of the
single excited neuron evolve such that connections be-
tween excited SNs and PNs neurons amplify toward B
>1, and connections between excited PNs and quiescent
SNs decay to zero. As a result, the first input pattern will
be recorded in one of the matrix Pj; rows, while other
rows will remain almost unchanged. Now suppose that
we want to record a second pattern different from the
first one. We can repeat the procedure described above,
namely, apply external stimuli associated with pattern B
to the SNs, project them to the initial state of the PN
layer, a,(0)==;P;;B;, and let the system evolve. Since syn-
aptic connections from SNs suppressed by the first pat-
tern to neuron A have been eliminated, a new set of
stimuli corresponding to pattern B will excite neuron A
more weakly than most of the others, and competition
will lead to selection of one PN B different from neuron
A. In this way we can record as many patterns as there
are PNs.

The sequential order of the patterns recorded in the
projection network is determined by the competition
matrix V;;, Eq. (30). Initially it is set to V;=V,>1 for i
#j and V;=1 which corresponds to winner-take-all com-
petition. The goal of sequential spatial learning is to
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FIG. 48. Amplitudes of principal neurons during the memory
retrieval phase in a two-layer dynamical model of sequential
spatial memory. (a) Periodic retrieval, two different test pat-
terns presented; (b) aperiodic retrieval with modulated inhibi-
tion (see text). Modified from Seliger et al., 2003.

record the transition of pattern A to pattern B in the
form of suppressing the competition matrix element
V4. We suppose that the slow dynamics of the nondi-
agonal elements of the competition matrix are con-
trolled by the delay-differential equation

Vif = ea(Daft— (V1= Vy), (32)

where 7 is constant. Equation (32) shows that only the
matrix elements corresponding to a,(t) #0 and a;(t—7)
# 0 are changing toward the asymptotic value V| <1 cor-
responding to the desired transition. Since most of the
time, except for short transients, only one PN is excited,
only one of the connections Vj; is changing at any time.
As a result, an arbitrary, nonrepeating, sequence of pat-
terns can be recorded.

When a test pattern T is presented to the sensory
layer, x;(0)=T(i) ai(O)zE,-PL-jTTj, and T resembles one of
the recorded patterns, this will initiate a periodic se-
quence of patterns corresponding to the previously re-
corded sequence in the network. Figure 48 shows the
behavior of principal neurons after different initial pat-
terns resembling different digits have been presented. In
both cases, the system quickly settles onto a cyclic gen-
eration of patterns associated with a given test pattern.
At any given time, except for a short transient time be-
tween patterns, only a single PN is on, corresponding to
a particular pattern.
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E. Sequences in complex systems with random connections

The level of cellular and network complexity in the
nervous system leads one to ask: How do evolution and
genetics build a complex brain? Comparative studies of
the neocortex indicate that early mammalian neocorti-
ces were composed of only a few cortical fields and in
primates the neocortex expanded dramatically; the num-
ber of cortical fields increased and the connectivity be-
tween them became very complex. The architecture of
the microcircuitry of the mammalian neocortex remains
largely unknown in terms of cell-to-cell connections;
however, the connections of groups of neurons with
other groups are becoming better understood thanks to
new anatomical techniques and the use of slice tech-
niques. Many parts of the neocortex developed under
strict genetic control as precise networks with connec-
tions that appear similar from animal to animal. Ko-
zloski et al. (2001) discussed visual networks in this con-
text. However, the local connectivity can be probabilistic
or random as a consequence of experience-dependent
plasticity and self-organization (Chklovskii et al., 2004).
In particular, the imaging of individual pyramidal neu-
rons in the mouse barrel cortex over a period of weeks
(Maravall et al., 2004) showed that sensory experience
drives the formation and elimination of synapses and
that these changes might underlie adaptive remodeling
of neural circuits.

Thus the brain appears as a compromise between ex-
isting genetic constraints and the need to adapt, i.e., net-
works are formed by both genetics and activity-
dependent or self-organizing mechanisms. This makes it
very difficult to determine the principles of network ar-
chitecture and to build reasonable dynamical models
that are able to predict the reactions of a complex neural
system to changes in the environment; we have to take
into account that even self-organized networks are un-
der genetic control but in a different sense. For example,
genetics can control the average balance between exci-
tatory and inhibitory synaptic connections, sparseness of
the connections, etc. The point of view that the infant
cortex is not a completely organized machine is based on
the supposition that there is insufficient storage capacity
in the DNA to control every neuron and every synapse.
This idea was formulated first by Alan Turing in 1948
(Ince, 1992).

A simple calculation reveals that the total size of the
human genome can specify the connectivity of about 10°
neurons. The human brain actually contains around 10"
neurons. Let us say that we have N neurons. Each neu-
ron requires Np log, N bits to completely specify its con-
nections, where p is the average number of connections.
Therefore we need at least N%p log, N bits to specify the
entire on-off connectivity matrix of N neurons. If the
connectivity degree p is not very sparse then we just
need N? bits. So, if we solve min(N?,N?p log,N)=3.3
% 10° base pairs in the human genome using a connec-
tivity degree of 1%, we obtain a maximum of 103 neu-
rons that can be completely specified. Since we do not
know how much of the genome is used for brain connec-
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tivity, it is not possible to narrow down the estimation.
Nevertheless, it does not make sense to expect the
whole genome to specify all connections in the brain.
This simple estimate makes clear that learning and syn-
aptic plasticity have a very important role in determin-
ing the connectivity of brain circuits.

The dynamics of complex network models are difficult
to dissect. The mapping of the corresponding local and
global bifurcations in a low-dimensional system has been
extensively studied. To perform such analysis in high-
dimensional systems is very demanding if not impos-
sible. Average measures, such as mean firing rates, aver-
age membrane potential, correlations, etc., can help us
to understand the dynamics of the network as a function
of a few variables. One of the first models to use a mean-
field approach was the Wilson-Cowan model (Wilson
and Cowan, 1973). Individual neurons in the model re-
semble integrate-and-fire neurons with a membrane in-
tegration time w and a refractory period r. Wilson and
Cowan’s main hypothesis is that the unreliable indi-
vidual responses, when grouped together, can lead to
more reliable operations. The Wilson-Cowan formalism
can be reduced to the following equations:

u% =— E(x,0) +[1 - rE(x,1)]
X llg{ f E(y, 0w, (y,x)dy
- f 1(y,we(y,x)dy + Se(x,t)], (33)
M‘”(;’t) It + [1— rI(eD)]
X £i|: J E(y,0)wi,(y,x)dy
—fH%mwmﬂ@W&@ﬁ] (34)

where E(x,f) and I(x,f) are the proportions of firing
neurons in the excitatory and inhibitory population, the
coordinate x is a continuous variable that represents the
position in the cortical surface, w,,, w,;, w,,, and w;; are
the connectivity weights, and S, and S; are external in-
puts to the excitatory and inhibitory populations, respec-
tively. The gain functions £, and £; basically reflect the
expected proportions of excitatory and inhibitory neu-
rons receiving at least threshold excitation per unit of
time. One subtle trick used in the derivation of this
model is that the membrane integration time is intro-
duced through synaptic connections. The model ex-
pressed in this form attempts to eliminate the uncer-
tainty of single neurons by grouping them according to
those with reliable common responses. We are still left
with the problem of what to expect in a network of clus-
ters connected randomly to each other. Here we will
discuss it in more detail.
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In a random network of excitatory and inhibitory neu-
rons, it is not uncommon to find oscillatory activity (Jin,
2002; Huerta and Rabinovich, 2004). However, it is more
interesting to study the transient behavior of neural re-
current networks. These are fast behaviors and impor-
tant for sensory processing and for the control of motor
commands. In studying this one needs to address two
main issues: (i) whether it is possible to consistently find
networks with random connections, described by equa-
tions similar to Egs. (33) and (34), behaving regularly,
and (ii) whether transient behavior in these networks is
reproducible.

Huerta and Rabinovich (2004) showed, using the
Wilson-Cowan formalism, periodic sequential activity
(limit cycles) is more likely to be found in regions of the
control parameter space where inhibitory and excitatory
synapses are slightly out of balance. However, reproduc-
ible transient dynamics is more likely found in the re-
gion of parameter space far from balanced excitation
and inhibition. In particular, the authors investigated the
model

N N
dx(1) 3 ]
- @( ngxj(t) -> wglyj(t) +8E) —x,(1),
t j=1 j=1

(35)

dt

=1

dy() (< Y
pEE ®<E wirx (1) = 2 wily;(0) + Sf) - yi(0),
j=1
(36)

where x(f) and y;(¢) represent the fractions of active neu-
rons in cluster i of the excitatory and inhibitory popula-
tions, respectively. The numbers of excitatory and inhibi-
tory clusters are Ny and N;. The labels E and I are used
to denote quantities associated with the excitatory or
inhibitory populations, respectively. The external inputs
Sg s are instantaneous kicks applied to a fraction of the
total population at time zero. The gain function is O(z)
={tanh[(z-b)/c]+1}/2, with a threshold b=0.1 below
the excitatory and inhibitory synaptic strength of a
single connection. Clusters are taken to have very sharp
thresholds of excitability by choosing 0=0.01. There is a
wide range of values that generates similar results. The
time scale is set as done by Wilson and Cowan (1973),
=10 ms. The connectivity matrices w{}“’ have entries
drawn from a Bernoulli process (Huerta and Rabino-
vich, 2004). The main control parameters in this problem
are the probabilities of connections from population to
population.

Now we can answer the following question: What kind
of activity can a network with many neurons and ran-
dom connections produce? Intuition suggests that the
answer has to be a complex multidimensional dynamics.
However, this is not the case (Fig. 49): most observable
stimulus-dependent dynamics are more simple and re-
producible; periodic, transient, or chaotic (also low di-
mensional).
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FIG. 49. (Color online) Three-dimensional projections of
simulations of random networks of 200 neurons. For illustra-
tive purposes we show three types of dynamics that can be
generated by a random network: (top) chaos, (middle) limit
cycle (both in the areas of parameter space that are close to
balanced), and (bottom) transient dynamics (far from bal-
anced).

This is a very important point for understanding cor-
tex dynamics that involves the cooperative activity of
many complex networks (units or microcircuits). From
the functional point of view, the stimulus-dependent dy-
namics of the cortex can be considered as a coordinated
behavior of many units with low-dimensional transient
dynamics. This is the basis of a new approach to cortex
modeling named the “liquid-state machine” (Maass et
al., 2002).

F. Coordination of sequential activity

Coordination of different sequential behaviors is cru-
cially important for survival. From the modeling point of
view it is a very complex problem. The IO (a network
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FIG. 50. (Color) Spatiotemporal patterns of coordinated
rhythms induced by stimuli in a model of the inferior olive.
Several structures with different frequencies can coexist simul-
taneously in a commensurate representation of the spiking fre-
quencies when several stimuli are present. Incommensurate
stimuli are introduced in the form of current injections in dif-
ferent clusters of the network. (Panels on the right show the
positions of the input clusters.) These current injections induce
different spiking frequencies in the neurons. Colors in these
panels represent different current injections, and thus different
spiking frequencies in the input clusters. Top row shows the
activity of a network with two different input clusters. Bottom
row shows the activity of a network with 25 different input
clusters. Sequences develop in time from left to right. Regions
with the same color have synchronous behavior. Color bar
maps the membrane potential. Red corresponds to spiking
neurons (—45 mV is above the firing threshold in the model).
Dark blue means hyperpolarized activity. Bottom panel shows
the activity of a single neuron with subthreshold oscillations
and spiking activity. Modified from Varona, Aguirre, et al.,
2002.

already discussed in Sec. II1.B.2) has been suggested as a
system that coordinates motor voluntary movements in-
volving several simultaneous rhythms (Llinds and Welsh,
1993). Here an example of how subthreshold oscillations
coordinate different incommensurate rhythms in a com-
mensurate fashion is shown. In the IO, neurons are elec-
trically coupled to their close neighbors. Their activity is
characterized by subthreshold oscillations and spiking
activity (see Fig. 50). The cooperative dynamics of the
IO under the action of several incommensurate inputs
has been modeled by Varona, Aguirre, et al. (2002). The
results of these large-network simulations show that the
electrical coupling of IO neurons produces quasisyn-
chronized subthreshold oscillations. Because spiking ac-
tivity can happen only on top of these oscillations, in-
commensurate inputs can produce regions with different
commensurate spiking frequencies. Several spiking fre-
quencies are able to coexist in these networks. The co-
existence of different rhythms is related to the different
clusterization of the spatiotemporal patterns.

Another important question related to coordination
of several sequential behaviors concerns the dynamical
principles that can be a basis for fast neuronal planning
and reaction to a changing environment. One might
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think that the WLC principle can be generalized in or-
der to organize the sequential switching according to (i)
the learned skill and (ii) the dynamical sensory inputs.
The corresponding mathematical model might be similar
to Egs. (26)—(29) together with a learning rule similar to
Eq. (25). Stimuli S’ change sequentially and the timing of
each step (the time that the system spends moving from
the vicinity of one saddle to the vicinity of the next one;
see Fig. 51) should be coordinated with the time of
change in the environment. In recurrent networks, as a
result of learning, the stimulus can go sequentially to the
specific goal of an optimal heteroclinic sequence among
many such sequences that exist in the phase space of the
model. What is important is that at the same time, i.e., in
parallel with the choosing of the rest of the motor plan,
the already existing part of the motor activity plan is
executed.

The two ideas just discussed can be applied to the
cerebellar circuit, which is an example of a complex re-
current network (see Fig. 52). To give an impression of
the complexity of the cerebellar cortex we note that it is
organized into three layers: the molecular layer, the
Purkinje cell layer, and the granule cell layer. Only two
significant inputs reach the cerebellar cortex: mossy fi-
bers and climbing fibers. Mossy fibers are in the majority
(4:1) and carry a wealth of sensory and contextual infor-
mation of multiple modalities. They make specialized
excitatory synapses in structures called “glomeruli” with
the dendrites of numerous granule cells. Granule cell
axons form parallel fibers that run transversely in the
molecular layer, making excitatory synapses with
Purkinje cells. Each Purkinje cell receives =150 000 syn-
apses. These synapses are thought to be major storage
sites for the information acquired during motor learning.
The Purkinje cell axon provides the only output from
the cerebellar cortex. This is via the deep cerebellar nu-
clei. Each Purkinje cell receives just one climbing fiber
input from the inferior olive, but this input is very pow-
erful because it involves several hundreds of synaptic
contacts. The climbing fiber is thought to have a role in
teaching in the cerebellum. The Golgi cell is excited by
mossy fibers and granule cells and exercises an inhibi-
tory feedback control upon granule cell activity. Stellate
and basket cells are excited by parallel fibers in order to
provide feedforward inhibition to Purkinje cells.

The huge number of inhibitory neurons and the archi-
tecture of the cerebellar networks (de Zeeuw et al.,
1998) support the generalized WLC mechanism for co-
ordination. A widely discussed hypothesis is that the
specific circuitry of the IO, cerebellar cortex, and deep
cerebellar nuclei called the slow loop (see Fig. 52) can
serve as a dynamical working memory or as a neuronal
clock with =100-ms cycle time which would make it easy
to connect it to behavioral time scales (Kistler and de
Zeeuw, 2002; Melamed et al., 2004).

Temporal coordination and, in particular, synchroniza-
tion of neural activity is a robust phenomenon, fre-
quently observed across populations of neurons with di-
verse membrane properties and intrinsic frequencies. In
the light of such diversity the question of how precise
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FIG. 51. Illustration of the learned sequential switching in a
recurrent network with WLC dynamics: Thin lines, possible
learned sequences; thick line, sequential switching chosen on-
line by the dynamical stimulus.

synchronization can be achieved in heterogeneous net-
works is critical. Several mechanisms have been sug-
gested and many of them require an unreasonably high
degree of network homogeneity or very strong connec-
tivity to achieve coherent neural activity. As discussed
above (Sec. I1.A.4), in a network of two synaptically
coupled neurons STDP at the synapse leads to the dy-
namical self-adaptation of the synaptic conductance to a
value that is optimal for the entrainment of the postsyn-
aptic neuron. It is interesting to note that just a few
STDP synapses are able to make the entrainment of a

Q-
no ( nc
+ —=>(PN
~

FIG. 52. A schematic representation of the mammalian cer-
ebellar circuit. Arrows indicate the direction of transmission
across each synapse. Sources of mossy fibers: Ba, basket cell;
BR, brush cell; cf, climbing fiber; CN, cerebellar nuclei; Go,
Golgi cell; 10, inferior olive; mf, mossy fiber; pf, parallel fiber;
PN, pontine nuclei; sb and smb, spiny and smooth branches of
P cell dendrites, respectively; PC, Purkinje cell; bat, basket cell
terminal; pcc, P cell collateral; no, nucleo-olivary pathway; nc,
collateral of nuclear relay cell. Modified from Voogd and
Glickstein, 1998.
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heterogeneous network of electrically coupled neurons
more effective (Zhigulin and Rabinovich, 2004). It has
been shown that such a network oscillates with a much
higher degree of coherence than when it is subject to
stimulation that is mediated by STDP synapses as com-
pared with stimulation through static synapses. The ob-
served phenomenon depends on the number of stimu-
lated neurons, the strength of electrical coupling, and
the degree of heterogeneity. In reality, long-term plastic-
ity depends not only on spike timing (STDP) but also on
the firing rate and the cooperativity among different
neuronal inputs (Sjostrom et al., 2001). This makes mod-
eling self-organization and learning more challenging.

Real behavior in nonstationary or complex environ-
ments, as already discussed, requires switching between
different sequential activities. Jancke et al. (2000) have
identified distributed regions in different parts of the
cortex that are involved in the switching among sequen-
tial movements. It is important for dynamical modeling
that this differential pattern of activation is not seen for
simple repetitive movements. Thus such movements are
too simple to evoke additional activation. This means
that a dynamical model that aims to describe the se-
quential behavior in general has to correctly describe
the switching from a low-dimensional subspace to a
high-dimensional state space, and vice versa. There are
no general methods for describing multidimensional dis-
sipative nonlinear systems with such transient but repro-
ducible dynamics. We think that the WLC principle
might be the first step in this direction.

V. CONCLUSION

Physicists, mathematicians, and physiologists all agree
that an important attribute of any dynamical model of
CNS activity is that not only should it be able to fit the
available anatomical and physiological data, but it
should also be capable of explaining function and pre-
dicting behavior. However, the ways in which physicists
and mathematicians, on one hand, and physiologists, on
the other hand, use modeling are based on their own
experience and views and thus are different. In this re-
view we tried to bring these different viewpoints closer
together and, using many examples from the sensory,
motor, and central nervous systems, discussed just a few
principles like reproducibility, adaptability, robustness,
and sensitivity.

Let us return to the questions formulated at the be-
ginning of the review:

e What can nonlinear dynamics learn from neuro-
science?

e What can neuroscience
dynamics?

learn from nonlinear

After reading this review, we hope the reader can join
us in integrating the key messages in our presentation.
Perhaps we may offer our compact formulation.

Addressing the first question of what nonlinear dy-
namics can learn from neuroscience:
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e The most important activities of neuronal systems
are transient and cannot be understood by analyzing
attractor dynamics alone. These need to be aug-
mented by reliable descriptions of stimulus-
dependent transient motions in state space as this
comprises the heart of most neurobiological activity.
Nonetheless, because the dynamics of realistic neu-
ronal models are strongly dissipative, their stimulus-
dependent transient behavior is strongly attracted to
some low-dimensional manifolds embedded in the
high-dimensional state space of the neural network.
It is a strong stimulus to nonlinear dynamics to de-
velop a theory of reasonably low-dimensional tran-
sient activity and, in particular, to consider the local
and global bifurcations of such objects as homoclinic
and heteroclinic trajectories.

e For many dynamical problems of neuroscience, in
contrast to traditional dynamical approaches, the ini-
tial conditions do matter crucially. Persistent neu-
ronal activity (i.e., dynamical memory), stimulus-
dependent  transient  competition,  stimulus-
dependent transient synchronization, and stimulus-
dependent synaptic plasticity are all aspects of this.
Clearly, addressing these important phenomena will
require an expansion in our approaches to dynamical
systems.

Addressing the second question of what neuroscience
can learn from nonlinear dynamics:

¢ Dynamical models confirm the key role of inhibition
in neuronal systems. The function of inhibition is not
just to organize a balance with excitation in order to
stabilize a network but much more: (a) inhibitory
networks can generate rhythms, such as reproducible
and adaptive motor rhythms in CPGs, or gamma
rhythms in the brain; (b) they are responsible for the
transformation of an identity sensory code to a spa-
tiotemporal code important for better recognition in
an acoustically cluttered environment; and (c) thanks
to inhibition, neural systems can be at the same time
very sensitive to their input and robust against noise.

e Dynamical chaos is not just a fundamental phenom-
enon but also important for the survival of living or-
ganisms. Neuronal systems may use chaos for the or-
ganization of nontrivial behavior such as the
irregular hunting-swimming of Clione and for the or-
ganization of higher brain functions.

e The improvement in yield, stability, and longevity of
multielectrode recordings, new imaging techniques,
combined with new data processing methods, have
allowed neurophysiologists to describe brain activi-
ties as the dynamics of spatiotemporal patterns in
some virtual space. We think this is a basis for build-
ing a bridge between transient large-scale brain ac-
tivity and animal behavior.

And finally as we pursue the investigation of dynami-
cal principles in neuroscience, we hope that eventually
not to see these two questions apart from one another
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but as an integrated approach to deep and complex sci-

entific problems.
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GLOSSARY
AL

AMPA receptors

bumps

CA1l

carbachol

Clione

CNS
CPG

depolarization

dynamic clamp

GABA

heteroclinic loop

heteroclinic trajectory

antennal lobe, the first site of
sensory integration from the ol-
factory receptors of insects.
transmembrane receptor for
the neurotransmitter glutamate
that mediates fast synaptic
transmission.

spatially localized regions of
high neural activity.

subsystem of the hippocampus
with a very active role in gen-
eral memory.

chemical that induces oscilla-
tions in in vitro preparations.
marine mollusk whose nervous
system is frequently used in
neurophysiology studies.
central nervous system.

central pattern generator, a
small neural circuit that can
produce stereotyped rhythmic
outputs without rhythmic sen-
sory or central input.

any change in the neuron mem-
brane potential that makes it
more positive than when the
cell is in its resting state.

a computer setup to insert vir-
tual conductances into a neural
membrane typically used to
add synaptic input to a cell by
calculating the response cur-
rent to a specific presynaptic in-
put.

neurotransmitter of typically
inhibitory synapses; they can be
mediated by fast GABA(A) or
slow GABA(B) receptors.

a closed chain of heteroclinic
trajectories.

trajectory that lies simulta-
neously on the stable manifold
of one saddle point (or limit
cycle) and the unstable mani-
fold of another saddle (or limit
cycle) connecting them.
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HH
HVC

hyperpolarization

interneurons

10

KCs

Kolmogorov-Sinai
entropy

LP

LTD

LT™M
LTP

Lyapunov exponents \;

MCs

mushroom body

mutual information
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Hodgkin-Huxley neuron
model.

high vocal center in the brain of
songbirds.

any change in the neuron mem-
brane potential that makes it
more negative than when the
cell is in its resting state.
neurons whose axons remain
within a particular brain region
as contrasted with projection
neurons, which have axons pro-
jecting to other brain regions,
or with motoneurons, which in-
nervate muscles.

inferior olive, a neural system
that is an input to the cerebel-
lar cortex presumably involved
in motor coordination.

Kenyon cells, interneurons of
the mushroom body of insects.
a measure of the degree of pre-
dictability of further states vis-
ited by a chaotic trajectory
started within a small region in
a state space.

lateral pyloric neuron of the
crustacean stomatogastric
CPG.

long-term depression, activity-
dependent decrease of synaptic
efficacy transmission.
long-term memory.

long-term potentiation,
activity-dependent  reinforce-
ment of synaptic efficacy trans-
mission.

the rate of exponential diver-
gence from perturbed initial
conditions in the jth direction
of the state space. For trajecto-
ries belonging to a strange at-
tractor the spectrum \; is inde-
pendent of initial conditions
and characterizes the stable
chaotic behavior.

microcircuits;  circuits com-
posed of a small number of
neurons that perform specific
operational tasks.

lobed subsystem of the insect
brain involved in classification,
learning, and memory of odors.
a measure of the independence
of two signals X and Y, i.e., the
information of X that is shared
by Y. In the discrete case, if the
joint probability density func-
tion of X and Y is p(x,y)
=P(X=x,Y=y), the probability



1260

neuromodulators

neurotransmitters

pacemaker
PD
phase synchronization

(locking)

place cell

plasticity

PN

Purkinje cell
RA

receptor

receptor neuron
SHS

SN

SSM

statocyst

STDP

STM
structural stability

synapse
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density function of X alone is
flx)=P(X=x), and the prob-
ability density function of Y
alone is g(y)=P(Y=y), then
the mutual information of X
and Y is given by I(X,Y)

=3, (x,y)logpx,y)/ f(x)g(y)].

a substance other than a neu-
rotransmitter, released by neu-
rons that can affect the intrinsic
and synaptic dynamics of other
neurons.

chemicals that are used to relay
at the synapses the signals be-
tween neurons.

neuron or circuit that has en-
dogenous rhythmic activity.
pyloric dilator neuron of the
crustacean CPG.

the onset of a certain relation-
ship between the phases of
coupled self-sustained oscilla-
tors.

a type of neuron found in the
hippocampus that fires strongly
when an animal is in a specific
location in an environment.
changes that occur in the orga-
nization of synaptic connec-
tions or intracellular dynamics.
projection or principal neurons.
main cell type of the cerebellar
cortex.

premotor nucleus of the song-
bird brain.

a protein on the cell membrane
that binds to a neurotransmit-
ter, neuromodulator, or other
substance, and initiates the cel-
lular response to the ligand.
Sensory neuron.

stable heteroclinic sequence.
Sensory neuron.

sequential spatial memory.
balance organ in some inverte-
brates that consists of a sphere-
like structure containing a min-
eralized mass (statolith) and
several sensory neurons also
called statocyst receptors.
spike-timing-dependent plastic-
ity.

short-term memory.

condition in which small
changes in the parameters do
not change the topology of the
phase portrait in the state
space.

specialized junction through
which neurons signal to one an-
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other. There are at least three
different types of synapses: ex-
citatory and inhibitory chemi-
cal synapses and electrical syn-
apses or gap junctions.
propagation of synchronous
spiking activity in a sequence of
layers of neurons belonging to
a feedforward network.
winnerless-competition  prin-
ciple for the nonautonomous
transient dynamics of neural
systems  receiving external
stimuli and exhibiting sequen-
tial switching among temporal
“winners.”

synfire chain

WLC
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