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This colloquium surveys a number of theoretical problems and open questions in the field of
two-dimensional dilute Bose gases with weak repulsive interactions. In contrast to three dimensions,
in two dimensions the formation of long-range order is prohibited by the Bogoliubov-Hohenberg
theorem, and Bose-Einstein condensation is not expected to occur. Nevertheless, experimental
indications supporting the formation of a condensate in low-dimensional systems have recently been
obtained. This unexpected behavior appears to be due to the nonuniformity introduced into a system
by the external trapping potential. Theoretical predictions, made for homogeneous systems, require
therefore careful reexamination. A number of popular theoretical treatments of the dilute weakly
interacting Bose gas are presented and their regions of applicability are discussed. The possibility of
Bose-Einstein condensation in a two-dimensional gas, the validity of the perturbative t-matrix
approximation, and the diluteness condition are issues also discussed in detail.
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I. INTRODUCTION

A. Revival of interest in low-dimensional systems

Low-dimensional systems are interesting in general, as
their low-temperature physics is governed by strong
long-range fluctuations. These fluctuations inhibit the
formation of true long-range order �LRO�, which is a
key concept of phase transition theory in three dimen-
sions �3D�. Thus a two-dimensional uniform system of
interacting bosons does not undergo Bose-Einstein con-
densation at finite temperatures. However, this system
turns superfluid below a certain temperature TKT, iden-
tified by Berezinskii, Kosterlitz, and Thouless �BKT� in
1971–1973, signaling the presence of a so-called topo-
logical order. Elementary excitations of the superfluid
phase are pairs of vortices with opposite winding num-
bers.

The experimental realization of such a system was for
many years restricted to films of superfluid 4He on sur-
faces, which is also an example of a strongly interacting
system. The breakthroughs in experimental physics at
the end of the last century have changed the situation
drastically. The combination of laser cooling �S. Chu, C.
Cohen-Tannoudji, and W. D. Phillips, Nobel Prize for
Physics, 1997� with evaporative cooling and magneto-
optical traps provided experimental systems of cold at-
oms, which were primarily used to observe the long-
awaited phenomenon of Bose-Einstein condensation �E.
A. Cornell, W. Ketterle, and C. E. Wieman, Nobel Prize
for Physics, 2001�. The full tunability of magnetic and
optical traps opens an extraordinary opportunity to
study in practice not only one- and two-dimensional
Bose systems, but also dimensional crossovers influ-
enced by the number of particles, size and shape of the
system, interaction strength, and temperature. These
new developments have triggered a revival of theoretical
interest in low-dimensional systems, when old theoreti-*Electronic address: anna@tfp.physik.uni-karlsruhe.de
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cal predictions are to be tested or carefully revised in
order to address finite-size experimental systems, and a
large field of new phenomena are to be explained.

While experimental indications of the BKT transition
in weakly interacting Bose system have been recently
obtained �Stock et al., 2005�, many questions remain un-
answered. One of the most interesting is whether topo-
logical order survives under some conditions in the in-
homogeneous trapped system, or is it dominated by the
true LRO and Bose-Einstein condensation prevails?
Can we control and directly observe the formation of
vortex pairs in two-dimensional quantum gases? These
and other problems serve as the main motivation for this
Colloquium.

In the next section we present a succinct overview of
the history of work with dilute Bose systems, outlining
some of the important theoretical problems relevant to
weakly interacting Bose gases.

B. Historical overview

The condensation of conserved particles that obey the
same statistics as photons was predicted by Einstein
�1924, 1925� even before the concept of Fermi statistics
was introduced. Einstein’s prediction was preceded by
an ingenious conjecture of Bose, who realized that
black-body radiation can be treated as a gas of indistin-
guishable photons. Einstein generalized ideas of Bose to
material particles and published two famous papers, in
which he developed what we now call Bose-Einstein sta-
tistics �Einstein, 1924, 1925�.

The ideal gas of Bose particles is remarkably the only
example of a noninteracting system in condensed-matter
physics that undergoes a phase transition upon decreas-
ing the temperature. However, experimental realization
of ideal Bose-Einstein condensates is extraordinarily dif-
ficult, since realistic systems always involve interactions.
Largely for this reason Einstein’s ideas did not receive a
wide recognition in the scientific community for many
years as being devoid of any practical significance. The
condensation phenomenon did not even appear in the
textbooks, until London recognized the analogy be-
tween superfluidity of liquid 4He, discovered by Kapitza
�1938� and Allen and Misener �1938�, and an ideal Bose
gas and emphasized that Einstein’s statement was “erro-
neously discredited” �London, 1938�.

In support of London’s phenomenological ideas, the
first microscopic theory of superfluidity in a system of
weakly interacting Bose particles was introduced by Bo-
goliubov �1947�. Subsequent discussions about the con-
nection between superfluidity and Bose-Einstein con-
densation �BEC� led Penrose and Onsager �1956� to
formulate the generalized criterion for BE condensa-
tion. This line of research culminated in a paper by C. N.
Yang, who extended this criterion to superfluidity and
superconductivity and proposed the concept of off-
diagonal long-range order �ODLRO� �Yang, 1962�. The
condensed phase is characterized by a nonvanishing
asymptotic of a one-body density matrix at large dis-
tances.

During the decades which followed the work of Bogo-
liubov, successful field-theoretical approaches were de-
veloped and many important predictions about the ther-
modynamics of the interacting Bose system were made.
However, apart from the successful observation of su-
perfluidity in liquid-helium systems, the quest to create
Bose-Einstein condensates proved unrewarding for sev-
eral decades. Finally, in 1995 Bose-Einstein condensates
were realized in a fascinating series of experiments on
rubidium and sodium vapors �Ketterle et al., 1999; Ket-
terle, 2001; Cornell and Wieman, 2002�. The importance
of this experimental achievement was recognized in the
2001 Nobel Prize for Physics, shared by E. A. Cornell,
W. Ketterle, and C. E. Wieman.

The experimental realization of BEC has offered a
unique opportunity to probe and control many interest-
ing phenomena, not accessible or unstudied in the field
of superfluidity, such as dimensional transitions, the
crossover from Bose-Einstein condensation to BCS pair
condensation, interference effects, and disorder effects.
Exotic links to cosmology �Fedichev and Fischer, 2003�,
quantum optics �Recati et al., 2005� �two-state atomic
quantum dots within a condensate�, and wetting phe-
nomena �Indekeu and Van Schaeybroeck, 2004� have
been recently proposed. The growing interest in Bose
systems has resulted in more than 600 studies per year
during the last decade and the list of references related
to BEC now exceeds 200 pages.

The actual observation of condensation was hindered
by enormous technical difficulties, so that even 15 years
ago researchers dared not to believe that nature would
ever provide them with the “right” system. The main
problem to overcome is the condensation of most sys-
tems into a solid or liquid upon cooling to low tempera-
tures, which bypasses the BEC transition. In particular,
the formation of clusters or molecules is driven by three-
body collisions. The hard task for an experimentalist was
therefore the creation of a gaseous system, in which
three-body collisions occur less frequently than two-
body interactions.

The gas in which two-body interactions prevail is
called dilute. Diluteness implies a very low density of
the gas, so that the characteristic range as of the poten-
tial between Bose particles is small compared to the
mean particle distance, proportional to n−1/3 in three di-
mensions �n=N /V being the density of the gas�. The
diluteness condition is therefore equivalent to the re-
quirement that the gas parameter n1/3as be small,

n1/3as � 1. �1.1�

Ultradilute systems can condense only at extremely
low temperatures �in the nanokelvin range�, realization
of which was another technical obstacle for the experi-
mentalists. At low temperature the thermal velocity of
the particles vT, which is proportional to the inverse de
Broglie wavelength
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�T =� 2��2

mkBT
, �1.2�

becomes very small �vT= � /m�T�1 mm/sec� and at
temperatures of the order of a few nK all the particles
“jump” into a coherent ground state. Sufficient dilute-
ness of the gas is therefore one of the crucial conditions
for BEC to be observed in the experiment.

In order to reach the required temperature and den-
sity regimes, various cooling and trapping techniques
have been developed �Ketterle et al., 1999�. Before being
cooled, atoms are confined in an external potential cre-
ated by an applied magnetic field. The finite extent of
the condensate cloud and its inherent inhomogeneity in-
troduce a number of important differences between
BEC in a trap and uniform gas. For example, a trapped
gas of Bose atoms exhibits a BEC transition not only in
momentum space but in coordinate space as well �Dal-
fovo et al., 1999�. In practice however, condensates are
so small that the literal observation of their size and
shape is limited by the resolution of existing experimen-
tal equipment. Nevertheless, real-space Bose conden-
sates provide a novel resource for exploring many inter-
esting phenomena, such as quantum interference effects
and frequency-dependent collective excitations.

The effect of a magnetic trap becomes more dramatic
for lower dimensional systems. For example, in 2D a
noninteracting trapped gas undergoes a BEC phase
transition at finite temperature �Widom, 1968; Bagnato
and Kleppner, 1991; Li et al., 1999� in contrast to the
two-dimensional uniform case, where condensation is
possible only at zero temperature. This difference arises
because the gas density of states is modified in the pres-
ence of a trap.

The description of an interacting system in a two-
dimensional harmonic potential is not trivial. In the case
of a uniform gas, long-range order does not develop be-
cause of long-wavelength phase fluctuations, inherent to
low-dimensional systems. This can also be seen as an
infrared divergence of the integral �N�p�d2p / �2�� �2,
where N�p� is the number of particles out of the conden-
sate with momentum p. This divergence, on the other
hand, is a consequence of the fact that the energy of the
system depends only on the phase gradient, and not on
the phase itself, because the latter is not a well-defined
quantity �Lifshitz and Pitaevskii, 2004�. The absence of
long-range order in two-dimensional systems with a con-
tinuous symmetry is often referred to as the Bogoliubov
k−2 or Hohenberg-Mermin-Wagner �BHMW� theorem
�see works by Bogoliubov �1961, 1991�, Mermin and
Wagner �1966�, Wagner �1966�, and Hohenberg �1967��,
and we discuss this issue in Sec. IV.B. Fisher and Hohen-
berg �1988� pointed out that a consequence of long-
wavelength phase fluctuations is a drastic modification
of the diluteness condition, so that the conventional low-
density requirement for weakly interacting two-
dimensional Bose gas, n1/2as�1, is replaced by an in-
equality

ln ln
1

nas
2 � 1. �1.3�

Taken literally, condition �1.3� rules out the possibility of
experimentally realizing a two-dimensional dilute Bose
system. However, this condition does not work away
from the transition. One can show from the analysis of
quantum fluctuations �see Petrov et al. �2004� for review�
that in this case the diluteness criterion amounts to
1/ ln�1/na2��1, previously derived by Schick �1971�.

It is also intuitively clear that the trapping potential
introduces a lower bound for the momentum of excita-
tions and thus prevents establishing long-range thermal
fluctuations which destroy the condensate. Based on
these arguments, Petrov et al. �2000� showed the exis-
tence of a true condensate in a quasi-two-dimensional
system in a wide parameter range.

More generally, the BHMW approach is not suitable
for a proper analysis of an inhomogeneous system, such
as trapped atomic vapor, as pointed out by Fischer
�2002, 2005�. In his work Fischer �2002, 2005� obtained a
geometrical equivalent of the BHMW theorem, inde-
pendent of the system’s Hamiltonian, and showed that in
the marginal d=2 case true condensation is possible in
an appropriately defined thermodynamic limit.

In support of theoretical estimations, experimental
confirmations of macroscopic occupation of the har-
monic oscillator ground state �Görlitz et al., 2001; Rych-
tarik et al., 2004� was done with sodium atom vapors,
confined to optical and magnetic traps. Rapid progress
in experimental techniques made it possible to increase
the aspect ratio �anisotropy� of the trap from 79 �Görlitz
et al., 2001� to 700 �Smith et al., 2005�. This large aniso-
tropy of new traps is sufficient to confine condensates
with �105 atoms in a quasi-two-dimensional regime
�Smith et al., 2005�. Signs of local coherence were also
observed in a two-dimensional gas of hydrogen atoms,
absorbed on the liquid-4He surface �Safonov et al.,
1998�. Quasi-two-dimensional condensates have also
been recently created by Stock et al. �2005� and interest-
ing phase defects have been measured. The crossover
from three-dimensional condensates to 2D and ulti-
mately one-dimensional condensates can be observed by
changing the aspect ratio of the trap.

As indicated in the previous section, recent progress
in laser-based trapping techniques and creation of opti-
cal lattices has led to a new generation of remarkable
experiments. With controllable interparticle interaction
it is now possible to observe the transition from the su-
perfluid state to a Mott insulator �Bloch, 2004�. Optical
lattices provide a way to investigate various intriguing
aspects of low-dimensional systems as well. Interest in
two-dimensional configurations of Bose particles has
arisen in the context of high-temperature superconduc-
tivity and the fractional quantum Hall effect. All in all,
ultracold atomic gases have the potential to impact a
very broad range of physics.

In this Colloquium we discuss a selected number of
issues related to two-dimensional weakly interacting
neutral Bose gases. When necessary, three-dimensional
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problems are mentioned. We attempt to cover many ref-
erences and otherwise refer the reader to numerous re-
sources, such as several excellent theoretical reviews
�Dalfovo et al., 1999; Castin, 2001; Leggett, 2001; Fetter,
2002; Petrov et al., 2004; Yukalov, 2004� and books
�Pines, 1962; Griffin, 1993; Pethick and Smith, 2002; Pi-
taevskii and Stringari, 2003�, a resource letter for BEC
�Hall, 2003� and BEC web sites. Though a certain level
of subjectivity is unavoidable, we aim to provide the
necessary information about the field to those who feel
lost after a preliminary contact with current literature
but want to learn more about the main problems of
Bose-Einstein condensates in 2D.

II. IDEAL BOSE GAS

Consider a macroscopic system of noninteracting
Bose particles at finite temperature in the grand-
canonical ensemble. The total number of particles in
such a system is defined by

N = �
k

nB��k� =	 ����nB���d� , �2.1�

where nB��k�=1/ �exp ���k−��−1� is the Bose-Einstein
distribution function, �=1/kBT, and ���� is the density
of states.

The chemical potential � of the Bose gas, being nega-
tive, increases as the temperature drops and vanishes at
the critical temperature Tc, indicating the phase transi-
tion to a condensed state. The transition temperature is
therefore defined by Eq. �2.1� with �=0. In d dimensions
the density of states ����=dN� /d����d−2�/2, and the par-
ticle density is proportional to the integral

n 

N

V
�	 ��d−2�/2d�

exp��/Tc� − 1
. �2.2�

In 3D this integral converges and the Bose-Einstein con-
densation temperature has a finite value, Tc

3D�n2/3. This
result can be also understood as a temperature scale at
which the thermal wavelength becomes comparable with
the average interparticle spacing �T� l�n−1/3. As � is
proportional to T−1/2, Tc is proportional to n2/3.

One can also calculate the number of particles occu-
pying the ground state,

N0 = N�1 −
T

T0
�3/2

. �2.3�

It is readily seen that N0 increases as the temperature
decreases. This phenomenon of macroscopic occupation
by particles of the state with minimal energy at low tem-
peratures is referred to as Bose-Einstein condensation.
Note that the actual condensation occurs in momentum
space.

In 2D, a constant density of states leads to an infrared
divergent integral in Eq. �2.2� and condensation is not
possible at any finite temperature.

We now discuss how this picture changes in the pres-
ence of a trap. The general treatment of this problem

was considered by Bagnato and Kleppner �1991�. They
studied the possibility of the Bose-Einstein condensa-
tion of an ideal gas, confined by a one- or two-
dimensional power-law trap: Vext�x�. Bagnato and
Kleppner �1991� showed that a two-dimensional system
undergoes BEC for any finite value of �, moreover, Tc

2D

has a broad maximum in the vicinity of �=2, i.e., for a
trapping potential close to parabolic. �A one-
dimensional system displays BEC only for �	2.�

Practically the confining trap is well approximated by
a harmonic potential,

Vext�r� =
m

2
�
x

2x2 + 
y
2y2 + 
z

2z2� . �2.4�

For noninteracting particles we can write the many-
body Hamiltonian as a sum of one-particle Hamiltonians
HMB=�i=1

N HSP�i�, whose eigenvalues are

�nxnynz
= �nx + 1

2 � � 
x + �ny + 1
2 � � 
y + �nz + 1

2 � � 
z.

�2.5�

The lowest energy of the system in the trap is
�000= 3

2 �
̄, where for the sake of simplicity we intro-
duced the average frequency 
̄= �
x+
y+
z� /3.

Note that in the ground state all N particles occupy
the level �000 and the wave function of the “cloud” of
these particles is easy to find,

��r1 . . . rN� = 
i

�0�ri� ,

�0�ri� = �m
ho

��
�3/4

exp�−
m

�
�
xx2 + 
yy2 + 
zz2�� ,

�2.6�

where


h0 = �
x
y
z�1/3. �2.7�

In this case the density distribution of the particles is
position dependent,

n�r� = N��0�r��2, �2.8�

and the first important length scale appearing in the
problem is the size of the cloud,

ah0 =� �

m
h0
, �2.9�

which is just the average width of the Gaussian distribu-
tion �2.6� �Fig. 1�. Experimentally ah0 is usually of order
of 1 �m.

Since we are interested in low-dimensional effects, it
is instructive to mention the experimental realization of
a two-dimensional atomic trap. An axially symmetric
harmonic potential can be written in the form Vext�r�
= 1

2m
�
2 r�

2 + 1
2m
z

2z2= 1
2m
�

2 �r�
2 +�2z2�, where �=
z /
�

characterizes the degree of anisotropy. For kBT� �
z
and kBT �
� the motion of atoms along the z direc-
tion is frozen �particles only undergo zero-point oscilla-
tions�, and kinematically the gas can be considered as
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two dimensional. Thus by making one of the trap dimen-
sions very narrow, oscillator states become widely sepa-
rated, and an effective two-dimensional system is real-
ized.

At finite temperature only a fraction of the particles
N0 occupies the lowest energy level and the others are
thermally distributed over higher energy levels. How-
ever, we still can treat N0 as a macroscopic number.
Thermal excitations will cause the size of the atomic
cloud to grow with temperature. In the semiclassical ap-
proximation kBT� �
h0, where the relevant excitation
energies are much larger than the interlevel spacing, it
can be shown that the size of the cloud increases as a
square root of temperature RT=ah0�kBT / �
h0. The im-
portant conclusion of this short discussion is that, in har-
monic traps, Bose condensation manifests itself as a
sharp peak in the density distribution in real space. The
appearance of such a peak in both coordinate and mo-
mentum space is a peculiar feature of trapped conden-
sates, with significant impact on both theory and experi-
ment. This is different from the uniform gas discussed
above, where the condensation cannot be revealed in
real space, for the condensate and uncondensed par-
ticles occupy the same volume.

The total number of particles in the trap is defined by

N = �
nxnynz

1

exp���nxnynz
− ��/T� − 1

, �2.10�

which is derived from Eq. �2.1� with a discrete energy
spectrum �2.5�. Note that in this case the chemical po-
tential at the transition point acquires a nonzero value of
the lowest energy level: ��T→Tc�→�c= � 3

2
��
̄.

In the semiclassical approximation we can simplify
Eq. �2.10� by replacing the summation with integration
and straightforward solution for �=�c gives the Bose-
condensation temperatures for the trapped gas in three
and two dimensions,

Tc
3D =

�

���3��1/3
hoN1/3, �2.11�

Tc
2D =

��6

�

hoN1/2. �2.12�

The two-dimensional condensation temperature is
now finite �nonzero�. This is related to the density-of-
states effect of the gas in the trap. Indeed, in the semi-
classical approximation we can introduce a coordinate
system defined by �x,y,z= �nx,y,z
x,y,z, where the surface
of constant energy �2.5� is the plane �=�x+�y+�z. Then
the number of states N��� is proportional to the volume
in the first octant bounded by this plane,

N� =
1

�3
h0
3 	

0

�

d�x	
0

�−�x

d�y	
0

�−�x−�y

d�z =
�3

6�3
h0
3 .

�2.13�

The density of states �=dN� /d� is then quadratic in en-
ergy �3D��2 in three dimensions and linear in energy in
two dimensions �2D��, in contrast to the constant den-
sity of states of a uniform two-dimensional gas, and the
integral in Eq. �2.10� for �=�c is not infrared divergent
until d=1.

It is now straightforward to calculate the condensate
fraction in 3D:

N0

N
= 1 − � T

Tc
3D�3

�2.14�

and the total energy of the system and thermodynamic
quantities. In 2D the condensate fraction is �Bagnato
and Kleppner, 1991; Petrov et al., 2004�

N0

N
� 1 − � T

Tc
2D�2

. �2.15�

The sign “�” Eq. �2.15� is related to the fact that at
T=Tc

2D the condensate fraction is not exactly zero, be-
cause there is a small correction due to the finite number
of particles in the system �Petrov et al., 2004�. One
should therefore be careful with the word “phase tran-
sition” in the context of trapped gases, because they are
finite-size systems and the phase-transition notion is
strictly defined only in the thermodynamic limit. It is
better to say that at Tc there is a sharp crossover to the
BEC state in the system. Note also that at Tc

2D the de
Broglie wavelength �T becomes comparable with the
mean interparticle separation ��Tc /Nm
h0

2 .
We end the section by remarking on the proper defi-

nition of the thermodynamic limit in the trapped case. It
is well known that the transition temperature should be
well defined in the thermodynamic limit. The usual defi-
nition when the ratio N /V is kept constant while the
number of particles N and the volume V tend to infinity
is apparently not suitable for the inhomogeneous situa-
tion. The appropriately defined limit is then obtained by
letting N→� and 
h0→0, while keeping N
h0

3 �or N
h0
2

in 2D� constant. In this case the temperatures �2.11� and
�2.12� are well defined.

FIG. 1. �Color online� Column density of a cloud with trapped
noninteracting bosons along the z direction. The total density
is a superposition of condensate density n0 and a thermal dis-
tribution of noncondensed particles nT.
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A comprehensive survey of various issues related to
the behavior of the ideal Bose gas in a harmonic poten-
tial can be found in the paper by Mullin �1997�.

The ideal-gas results are summarized in Table I.

III. GROUND STATE OF A WEAKLY INTERACTING
BOSE GAS

A. Bogoliubov approximation

In his seminal paper “On the theory of superfluidity”
�Bogoliubov, 1947� Bogoliubov introduced a microscopic
description of the ground state of a uniform, weakly in-
teracting Bose gas. The assumption about the uniformity
of the unperturbed ground state is crucial to his results.
To assure a uniform Bose gas, Bogoliubov considered
the case of repulsive interactions and made use of peri-
odic boundary conditions. The gas is also assumed to be
dilute �na3�1�, which permits us to simplify the many-
body problem and account for interactions in a funda-
mental way. In contrast to the uniform case, the nonuni-
form ground state is very “sensitive” to interactions and
makes the solution of the many-body problem highly
nontrivial.

The standard Hamiltonian of an interacting Bose gas
is

H =
1
2 	 ��†�r� � ��r�dr

+
1
2 	 �†�r��†�r��U�r − r����r����r�drdr�,

�3.1�

where U�r−r�� is the interaction between particles. In
momentum space this Hamiltonian reads

H = �
p

�pap
†ap +

1

2V �
pp�q

Uqap
†ap�

† ap�−qap+q, �3.2�

Uq=�e−iqrU�r�dr is a Fourier component of the interac-
tion, the bosonic field operator ��x�=1/�V�peipxap

�here x is a four-vector�, and the boson creation and
annihilation operators satisfy the usual commutation re-
lations �ap ,ap�

† �=�pp�.
Without interactions all N particles of the system oc-

cupy the state with zero energy and zero momentum.
The number of condensed particles N0 in this case is
equal to the total number of particles N. When we
switch on the interaction, two particles can scatter out of
the condensate and occupy one of the many zero-total-
momentum states with separate momenta k and −k �in
the lowest-order perturbation theory� and N0 naturally
decreases.

For a dilute weakly interacting Bose gas one can as-
sume that the total depletion of the condensate is small
��N /N0�1� and most particles remain in the conden-
sate N0�1. The key observation of Bogoliubov is that
in this case the second-quantized condensate operators
can be simply replaced by the c-number �N0,

â0, â0
† � �N0. �3.3�

The drawback of this prescription is that it leads to a
Hamiltonian which no longer conserves the number of
particles. This problem can be partly resolved by work-
ing in the grand-canonical ensemble, in which additional
terms −�Np �Np=�p�0ap

†ap� are introduced into the
Hamiltonian �4.27�. This secures the conservation of par-
ticles on the average. It is also worth mentioning that the
Bogoliubov approximation is equivalent to neglecting
dynamics in the condensed state.

In the weak-coupling limit the Hamiltonian �4.27� can
be diagonalized by applying the Bogoliubov canonical
transformation,

ak = uk�k − vk�−k
† ,

ak
† = uk�k

† − vk�−k, �3.4�

and the resultant Hamiltonian describes the system of
noninteracting quasiparticles with spectrum

�k =�n0U0
k2

m
+

k4

4m2 , �3.5�

where n0=N0 /V is the density of condensed particles.
From this dispersion relation �3.5� it follows that in

the long-wavelength limit the Bogoliubov quasiparticles
behave as “phonons” with sound velocity s=�n0U0 /m,
and the low-temperature thermodynamics of a Bose-
condensed system is governed by this phonon spectrum.
In the opposite short-wavelength limit quasiparticles be-
have as free particles with an energy k2 /2m. By equating
the kinetic energy and the “Hartree” interaction energy
n0U0 one can straightforwardly find the “transition”
wave vector kc=�2mn0U0��2ms, which separates the
phononlike behavior of elementary excitations from the
free-particle one. kc introduces an important length
scale into the system �Fig. 2�,

�c = � /kc = � /�2mn0U0, �3.6�

over which coherence effects are important in the inter-

TABLE I. Properties of the ideal gas. DOS stands for density
of states �, TDL stands for thermodynamic limit. TBEC is the
critical temperature of Bose-Einstein condensation depending
on the dimension. N is the number of particles, V is the volume
of the system, and 
h0 is the geometric average of the oscilla-
tor frequencies: in 2D, 
h0= �
x
y�1/2 and in 3D, 
h0
= �
x
y
z�1/3.

Ideal gas property Uniform Trapped

DOS �3D��� �3D��2

�2D�const �2D��

TBEC Tc0
3D�� N

V
�2/3 Tc0

3D�
h0N1/3

Tc0
2D→0 Tc0

2D�
h0N1/2

TDL limN
V =const 3D: lim
h0N1/3=const

N→�, V→� 2D: lim
h0N1/2=const

h0→0,N→�
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action between particles. It is usually called the healing
length �in the context of trapped condensates�, or some-
times the correlation or coherence length, and refers to
correlations between excitations in the system. These
correlations are distinct from long-range correlations,
which lead to condensation in the k=0 mode.

One should also note that the Bogoliubov canonical
transformation is equivalent to a summation over the
most divergent terms in the perturbation-series expan-
sion for the ground-state energy. Summation of such se-
ries is also equivalent to making the random-phase ap-
proximation �RPA�.

It was important in the theory of superfluidity that the
low-lying Bogoliubov quasiparticles follow a linear dis-
persion. This kind of behavior is fully consistent with the
Landau criterion for superfluidity, i.e., that no excitation
can be created in a liquid moving with a velocity v less
than that of a sound �v	s�. In case of noninteracting
particles the dispersion is quadratic for all k and super-
fluidity is not possible.

B. Field-theoretical approaches: t-matrix approximation

To go beyond the Bogoliubov approximation, one
needs to take both multiple-scattering diagrams and
RPA contributions into account. That can be done, for
example, by means of a pseudopotential method �Lee et
al., 1957�, or by field-theoretical methods, first applied to
the Bose gas of small density at T=0 by Beliaev �1958a,
1958b� and by Hugenholtz and Pines �1959�.

The presence of the many-particle condensate in the
ground state of the interacting Bose gas was the main
obstacle to applying the usual technique of Feynman
diagrams to this system. Consider, for example, the one-
particle Green’s function in the interaction representa-
tion

G�x − x�� = − i
�T���x��†�x��S��

�S�
. �3.7�

Here the average is taken over the ground state of N
noninteracting Bose particles, which are in the conden-
sate �N0=N�. The S matrix is expressed as usual,

S = T�exp�−
i

2
	 d4x1d4x2

�U�x1 − x2��†�x1��†�x2���x2���x1��� , �3.8�

where x1 and x2 are four-vectors and the interaction is
U�x1−x2�=U�r1−r2���t1− t2�. In order to derive the dia-
gram series for the Green’s function, we need to expand
the S matrix in powers of Hint. Usually the terms con-
taining the odd number of annihilation operators vanish
after averaging over the ground state, which unfortu-
nately does not happen for a Bose gas due to the above-
mentioned peculiarities of the ground state. The expec-
tation value of the N product containing a0 apparently
does not vanish and the standard method of constructing
diagrams cannot be applied to an interacting Bose gas.

This difficulty was successfully resolved by Beliaev in
1958. He noticed that for a large number of particles N
the diagrammatic approach can be applied to particles
with momenta p�0, while the condensed phase �which
does not disappear when interactions are turned on� can
be described as a sort of external field. It is thus conve-
nient to separate the operators a0 and a0

† �which act only
on the ground state� from � and �†,

� = �� + a0/�V, �† = ��† + a0
†/�V . �3.9�

The Green’s function �3.7� is then divided into two parts,
and the operations T and �¯� are represented as two
successive operations, the former acting only on �� and
��†, and the latter acting only on a0 and a0

†. The opera-
tors a0 and a0

†, occurring in the S matrix, are treated as
parameters, and the expectation values over ��, ��†

ground state can now be calculated using standard tech-
niques.

With these ideas in mind, Beliaev succeeded in deriv-
ing a general expression for the one-particle Green’s
function of the interacting system in terms of some ef-
fective self-energies �ik and chemical potential �. How-
ever, the exact calculation of the Green’s functions
proved to be very complicated, and approximate meth-
ods of summing the series of Feynman graphs were de-
veloped.

For simplicity, Beliaev considered a short-range, cen-
tral interaction potential Up=U0 for p	1/a and Up=0
for p1/a. In the low-density limit n0a3�1, where n0 is
the density of the particles in the condensate, he ob-
tained a crucial result that the main contributions to the
self-energies of the Green’s function originate from lad-
der diagrams. In this case the real interaction U is re-
placed by an effective two-particle interaction �, repre-
senting the sum of contributions from all ladder-type
Feynman graphs �Fig. 3�. The integral equation for the
vertex �, called the Bethe-Salpeter equation, is

FIG. 2. �Color online� Length scale in the Bogoliubov prob-
lem: correlation length �c. kc�1/�c separates the “free” par-
ticle behavior from the linear dispersion region. Zigzag lines
denote the residual interaction between particles.

1117Anna Posazhennikova: Colloquium: Weakly interacting, dilute Bose …

Rev. Mod. Phys., Vol. 78, No. 4, October–December 2006



��x1,x2;x3,x4� = Ux1−x2
��x1 − x3���x2 − x4�

+ i	 d4x5d4x6Ux1−x2
G0�x1 − x5�

�G0�x2 − x6���x5,x6;x3,x4� , �3.10�

where x
�r , t�. In momentum representation Eq. �3.10�
reads

��p1,p2;p3,p4� = Up1−p2
+ i	 d4p5d4p6Up1−p5

�G0�p5�G0�p6���p5,p6;p3,p4� ,

�3.11�

where the momentum conservation condition p1+p2

=p3+p4=p5+p6 is implied and pi
�pi ,p0
i �.

It is convenient to introduce relative and total mo-
menta according to

p1 + p2 = P�, p3 + p4 = P

p1 − p2 = 2p�, p3 − p4 = 2p . �3.12�

This transformation leads to the following:

t�p�,p,P� = U�p� − p� + i	 d4q

2�4U�p� − q�

�G0�P/2 + q�G0�P/2 − q�t�q,p,P� , �3.13�

where we denote � in the center-of-mass representation
by t, and the free-particle Green’s function is G0�p�
= �p0−p2 /2m+ i��−1.

A conventional t-matrix equation is obtained from
Eq. �3.13� after integrating over q0. In two dimensions
this results in the following:

t�p�,p,P� = Up�−p −	 dq
�2��2Up�−q

t�q,p,P�
k0

2 − q2/m + i�
,

�3.14�

where k0
2=P0−P2 /4m. In scattering theory this equation

is also known as the Lippmann-Schwinger equation.
Physically the t matrix corresponds to the renormaliza-
tion of the interaction by multiple scattering of one par-
ticle off another.

The standard way to treat the dilute Bose gas is to
replace the real potential, which is usually singular, by
the zero momentum t matrix generated from multiple
two-particle scattering, represented by the infinite sum-
mation of the ladder diagrams described above.

The t matrix �3.14� cannot be solved explicitly, but in
general its solution can be expressed in terms of the
two-particle scattering amplitude in vacuum. The scat-
tering amplitude f�p� ,p� for a transition from the initial
relative wave vector p to a finite relative vector p� is
defined by

f�p�,p� =	 dq U�p� − q��p�q� , �3.15�

where �p is a wave function of a scattering problem with
potential U that satisfies the following Schrödinger
equation in momentum representation:

�k2 − p2��k�p� −	 dq U�p − q��k�q� = 0. �3.16�

According to elementary scattering theory �Dalfovo et
al., 1999; Castin, 2001; Leggett, 2001; Fetter, 2002�, at
low energies s-wave scattering becomes dominant, and
the scattering amplitude f0 is approximated to leading
order by

f0 �
4��2as

m
, �3.17�

where the momentum dependence of the scattering am-
plitude can be ignored in the low-energy limit. Thus at
low energies, in vacuum the only remaining parameter
characterizing the interaction is the s-wave scattering
length as.

In general, the t matrix �3.14� requires knowledge of
the scattering amplitude for k0

2�q2 /m, known as the
“off-the-energy-shell” t matrix. For two-particle scatter-
ing in vacuum, discussed above, only the on-shell t ma-
trix is physically relevant. When three-body collisions
become important, calculation of the off-shell t matrix is
necessary �Fadeev, 1960�. In the context of dilute Bose
gases the off-shell t matrix arises in connection with the
so-called many-body t-matrix approach �Stoof and
Bijlsma, 1993; Bijlsma and Stoof, 1997; Proukakis et al.,
1998�, which we discuss in the next section. The many-
body t matrix takes into account the effect of the me-
dium �mean field� in which collisions occur. At the low-
energy limit the many-body t matrix is approximated by
the off-shell two-body t matrix �Morgan et al., 2002�. The
solution of the off-shell t-matrix was first proposed by
Beliaev �1958b� and Galitskii �1958�. An alternative ap-
proach based on the inhomogeneous Schrödinger equa-
tion, which allows us to treat the hard-sphere central
potentials in one, two, and three dimensions, was con-
sidered by Morgan et al. �2002�. Morgan et al. �2002�
have shown for any dimension that, for potentials with a
finite range, the long-wavelength limit of the off-shell t
matrix depends only on energy and not on the initial and
final relative momenta of the scattered particles. This
result means that low-energy collisions can be repre-
sented by a contact potential.

Consider now the quasiparticle spectrum within the
first-order Beliaev approach. It turns out one can repro-
duce the Bogoliubov result �3.5� with the only difference

FIG. 3. Bethe-Salpeter equation for the two-particle scattering
vertex �.
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that instead of the potential U0 the momentum indepen-
dent scattering amplitude f0 appears, for in the first or-
der U0 is equal to f0. The healing length �3.6� can then be
related to a scattering length

�c =
1

�8�asn0

. �3.18�

The second-order approximation does not modify the
physical picture of the low-temperature behavior of the
interacting Bose gas, but provides corrections to the
sound velocity, and a damping proportional to p5 related
to the decay process of one phonon into two. Third-
order corrections involve the solution of a three-particle
problem, which to date has not been solved.

We now turn to the two-dimensional system. Follow-
ing the methods developed by Beliaev, Schick �1971� ex-
amined a two-dimensional system of hard-disk bosons of
diameter a at low densities and absolute zero �see also
the recent study of Ovchinnikov �1993��. The dimension-
less expansion parameters are the interaction U0 and the
gaseous parameter na2, which are small in the dilute
limit. The application of Beliaev’s method to two-
dimensional systems is not as straightforward as it is for
three-dimensional systems. In the three-dimensional
case, the ladder diagrams are the only contributions
which do not depend on na3 and therefore it is natural to
take them into account while calculating the first term in
the density expansion of all quantities. In 2D contribu-
tions from the ladder diagrams depend logarithmically
on na2, in particular, the effective interaction, or t ma-
trix, is proportional to 1/ ln�1/na2�,

f0
2D �

4�

m ln�1/na2�
. �3.19�

The key conclusion of Schick �1971� is that
1 / ln�1/na2� plays the role of the small parameter in the
two-dimensional dilute system at zero temperature and
dominant contributions are derived from the first-order
diagrams for this parameter. In this approximation he
calculated the leading-order correction to the chemical
potential,

� = −
4��2n

m ln�na2�
�1 + O„1/ln�na2�…� , �3.20�

and the quasiparticle excitation spectrum,

�k =��
k2

m
+

k4

4m
=� k4

4m
+

4�n

m ln�1/na2�
k2. �3.21�

In the long-wavelength limit quasiparticles behave
as phonons with a speed of propagation s
=�−4�n /m ln�na2�. The spectrum changes from
phononlike to free-particle-like in the vicinity of the mo-
mentum kc defined as

ka � kca 
 − 16�na2�m ln�na2��−1 � 1.

The ground-state energy per particle and the conden-
sate fraction take the form �Schick, 1971�

E/N = −
2��2n

m ln�na2�
�1 + O„1/ln�na2�…� ,

n0

n
= 1 +

1

ln�na2�
+ O„1/�ln�na2��2

… . �3.22�

C. Gross-Pitaevskii mean-field theory

The ground-state and thermodynamic properties of an
interacting Bose system confined by an external poten-
tial Vext=

1
2 �
h0�r /ah0�2 �ah0 is the trap size �2.9�� can be

directly calculated from the Hamiltonian

H =	 dr�†�r��−
�2

2m
�2 + Vext�r����r�

+
1
2 	 drdr��†�r��†�r��U�r − r����r����r� �3.23�

using numerical methods, such as quantum Monte
Carlo. Nevertheless, for most experimentally relevant
situations �when the number of atoms is large� the
mean-field description of the system proves to be suffi-
cient. In this case the macroscopic low-energy behavior
of the system can be explored under the assumption that
the order parameter varies over distances larger than
the mean interparticle spacing.

Such a mean-field approximation was first developed
by Gross and Pitaevskii. Their approach, which is valid
in the dilute limit, is a straightforward generalization of
Bogoliubov theory for the gas in the trap. One should
bear in mind that the diluteness condition nmaxas

3�1
does not automatically secure the weakness of interac-
tions. The interaction strength is specified by an extra
parameter �see, in particular, the review of Dalfovo et al.
�1999� and the paper by Fetter �1999��. The interaction
energy, which is of the order of gNn, is to be compared
with the kinetic energy, proportional to Nah0

−2. Since the
average density of atoms n�N /ah0

3 , the interaction
strength can be characterized by a dimensionless param-
eter N �as � /ah0. When Nas�ah0, it means that the coher-
ence length �c �3.6� is large in comparison with the size
of the trap ah0 and the system is assumed to be nearly
ideal and is described by a Gaussian distribution �2.6�. In
the opposite limit Nas�ah0, the coherence length is
small and the dilute gas exhibits important nonideal be-
havior �Dalfovo et al., 1999�.

The mean-field Gross-Pitaevskii approximation is ex-
tensively presented in the literature �see, for instance,
the review by Dalfovo et al. �1999�, and the paper by
Leggett �2003�, and a review with an emphasis on ex-
periment by Angilella et al. �2006��, therefore we only
mention briefly the key concepts of its derivation. Gross
and Pitaevskii’s approach is based on the Bogoliubov
prescription for the condensate �3.3�, according to which
the boson field operators � are written as a sum of a
classical field �, having the meaning of the order param-
eter, and a small perturbation ��,
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��r,t� = ��r,t� + ���r,t� , �3.24�

implying that the depletion of the condensate is small.
As a side note, we mention that in principle the problem
of the order-parameter definition in a finite inhomoge-
neous system arises in this case, but it turns out that the
wave function of the condensate has a clear meaning, if
determined through the diagonalization of the one-body
density matrix in analogy with liquid-helium drops �Le-
wart et al., 1988�. This issue is also discussed in detail in
a review by Leggett �2001�.

One can expand the theory in the parameter �� and
derive the equation for � from either the standard
Heisenberg equation or alternatively by taking the
variation of the classical action S of the type

S =	 dtdr�̄�i�t −
�2

2m
�2 − Vext −

g

2
�̄���

with respect to �̄ �saddle-point approximation�. The
derivation of the Gross-Pitaevskii �GP� equation and
next-order corrections within the Bosonic field theory
can be found in the paper by Stenholm �1998�.

The resulting Gross-Pitaevskii equation is

i �
�

�t
��r,t� = �−

�2

2m
�2 + Vext + g���r,t��2���r,t� ,

�3.25�

where we have approximated the potential by a � func-
tion V�r−r��=g��r−r�� �which we can do under the as-
sumption that the interparticle spacing is much larger
than the interaction range�, and where g=4��2as /m is
the three-dimensional coupling constant. This coupling
constant is equal to the zero-momentum limit of the
scattering amplitude �3.17� discussed above.

In the limit N→� �Thomas-Fermi approximation� the
kinetic energy contribution can be neglected and the
Gross-Pitaevskii equation can be solved analytically.
This classical Thomas-Fermi approximation breaks
down in the vicinity of the condensate boundary, where
the gradient of the condensate density is no longer
small.

We discuss now the coupling constant of the two-
dimensional Bose gas. It was first demonstrated by Lo-
zovik in 1971 �see the review of Petrov et al. �2004�� that
to zero order in perturbation theory the coupling con-
stant g2D=�2f0

2D/m, where f0
2D is the scattering ampli-

tude at the energy of the relative motion E=2�.
This coupling constant can be treated as a parameter,

as in the work by Bayindir and Tanatar �1998� �see also
references therein�, where the two-dimensional Bose
gases described by the GP equation have been studied.
For some range of interaction strength it was shown that
interacting bosons behave similarly to the noninteract-
ing case in a harmonic trap. For weak short-range inter-
particle interactions, a finite-temperature BEC phase
transition was found to occur.

On the other hand, the coupling constant in 2D is
expected to display a logarithmic dependence on density
�cf. Eq. �3.19�� in accordance with estimations by Schick

�1971� for f0 in the case of a homogeneous gas. The pre-
cise choice of g2D has in fact been a controversial issue
�see Lieb et al. �2001�, and references therein�. For ex-
ample, Kim et al. �1999� suggested g2D�1/ ln�1/ka�,
where 0	ka�1 and k is the infrared cutoff introduced
by the trap at 1/ah0, so that g2D�1/ ln�ah0 /a�. This kind
of approximation may be reasonable when the size of
the trap is much larger than other length scales in the
problem.

Note, that for quasi-two-dimensional gas in a trap the
coupling constant was derived by Petrov et al. �2000�,

gQ2D =
2�2��2

m

1

ah0/a + �1/�2��ln�1/�k2ah0
2 �

. �3.26�

The rigorous derivation of the Gross-Pitaevskii func-
tional for a two-dimensional interacting gas was pro-
vided by Lieb et al. �2001�. Their analysis leads to the
following expression for the coupling constant:

g2D =
1

�ln�n̄a2��
, �3.27�

where n̄ is the average density of the particles, propor-
tional to �N. The mean density is defined as n̄
= �1/N��nTF�r�2d2r, with the Thomas-Fermi density
given by nTF�r�= ��TF−Vext�r�� /8�, and �TF chosen so
that the constraint �nTF=N holds. The density expansion
has been applied to the case of a two-dimensional Bose
gas at zero temperature by Cherny and Shanenko �2001�
in order to derive the Gross-Pitaevskii equation.

The modification of the GP equation due to the many-
body renormalization of the scattering, mentioned in
Sec. III.B, has been provided by Lee et al. �2002�. The
effective interparticle interaction in 2D is modeled by
the off-shell two-body t matrix, that at low energies de-
pends on the energy of the collision. The energy depen-
dence of the effective interaction can be written in the
density-dependent form and applied to the two-
dimensional trapped gas. This leads to the GP equation,
describing the condensate wave function that no longer
has a cubic nonlinearity in �, but instead goes as
����2 / ln ���2�� �Lee et al., 2002�.

It is also interesting to analyze the deviations from the
mean-field behavior, since the experimental system is
well controlled nowadays and different regimes can be
realized. Corrections to the mean-field ground-state so-
lution stem from quantum fluctuations, and their effect
becomes more prominent with the growth of the gas
parameter, as has been observed in Monte Carlo simu-
lations. For calculating quantum corrections in a system-
atic way we refer the reader to the paper by Andersen
and Haugerud �2002�, and references therein. Many ref-
erences on the GP approximation and beyond can be
found elsewhere �Kolomeisky et al., 2000; Angilella et
al., 2004�. For the effects of a third spatial dimension and
the self-consistent calculation of the coupling constant,
see the paper by Cherny and Brand �2004�, and refer-
ences therein.
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IV. FINITE-TEMPERATURE PROBLEMS

Zero-temperature techniques are not really suitable
for controlling infrared �IR� thermal fluctuations, and
new methods have to be devised to describe the inter-
acting system at finite T. At the beginning of Sec. IV the
generic properties of the two-dimensional XY models
and the concept of quasi-long-range order is presented,
which is the central concept in the phase-transition
theory in 2D. The reason true long-range order cannot
form in two-dimensional uniform system is discussed in
detail in Sec. IV.B, and especially the way familiar con-
cepts from two-dimensional phase-transition theory
should be revised in the trapped case.

Section IV.C presents the theory of Popov, who pio-
neered the finite-temperature generalization of Beliaev’s
field-theoretic approach, and described the low-
temperature superfluid state of the two-dimensional
Bose gas. Section IV.D shows how the diluteness condi-
tion of Fisher and Hohenberg, discussed in the Introduc-
tion, arises as an applicability limit of the Popov’s
t-matrix approach. Section IV.E describes methods
which generalized and/or improve the results of Popov,
and also Monte Carlo simulations, which are to date the
most reliable numerical calculations of the superfluid
phase in a two-dimensional Bose system. Before con-
cluding, we mention how unique the two-dimensional
system with a contact interaction is, for it possesses an
inherent symmetry, which leads to the birth of the spe-
cial breathing modes, which in principle can be checked
experimentally.

A. Introduction: Two-dimensional XY models

For our further analysis it is important to recognize
that a uniform, interacting Bose system belongs to the
XY universality class, characterized by a vector order
parameter �for a comprehensive analysis see the book
by Chaikin and Lubensky �1995��. This means that the
finite-temperature behavior of the two-dimensional
Bose gas is determined by generic properties of the two-
dimensional XY model.

We know that two-dimensional XY models are spe-
cial, for long-range thermal fluctuations destroy the
long-range order at finite temperatures �Bose-Einstein
condensation in the case of a two-dimensional Bose gas�.
The existence of these long-wavelength modes in a two-
dimensional Bose fluid was first pointed out by Bogoliu-
bov in his k−2 theorem in 1961, and later confirmed by
Hohenberg �1967� and by Mermin and Wagner �1966�
�this issue is discussed in Sec. IV.B�.

However, a special type of order—topological order—
which gives rise to superfluidity, can develop in a two-
dimensional Bose fluid below the Kosterlitz-Thouless
temperature TKT, as predicted by Kosterlitz and Thou-
less �1973� and Berezinskii �1970, 1971� using the
renormalization-group method �RG�. Below TKT the
continuous U�1� symmetry �rotations in a two-
dimensional plane� is broken and the system acquires a
finite rigidity, or phase stiffness �s. The order-parameter

correlations decay algebraically �for any coupling of the
XY model�, and the average order parameter is zero.
However, locally the order parameter can have a well-
defined value. This unique situation is described in terms
of quasi-long-range order �QLRO� �Chaikin and Luben-
sky, 1995�. Important low-lying excitations of the QLRO
phase are vortex pairs �two vortices with opposite wind-
ing numbers� whose fugacity decreases with distance,
thus not destroying the connectivity of the state �there-
fore �s�0�.

The phase transition to a disordered state �with �s=0�
is associated with a dissociation of the coupled vortex
pairs. Above TKT the vortex fluid can be treated as a
kind of vortex plasma, where vortices play the role of
mobile “charges,” interacting via a Coulomb potential.
In this language the state below TKT can be described as
an “insulating” state of bound charges. The mapping of
the two-dimensional XY model onto the two-
dimensional Coulomb gas is considered in detail in the
review by Minnhagen �1987�.

The rigidity or superfluid density �s does not go con-
tinuously to zero at the critical temperature, but experi-
ences a universal jump,

m2kBTKT

�2�s�TKT−
�

=
�

2
, �4.1�

first predicted by Nelson and Kosterlitz �1977� and suc-
cessfully verified in experiments on superfluid 4He films,
absorbed on a substrate �Bishop and Reppy, 1978�.

An interesting interpretation of Kosterlitz-Thouless
physics in the context of bosonic systems was put for-
ward by Kagan et al. �1987� almost 20 years ago. They
propose that below TKT the system forms a “quasicon-
densate,” a condensed state achieved in a local sense.
The introduction of the quasicondensate concept was
motivated by a peculiar behavior of the one-particle
density matrix ��r� at large distances in 2D �Fig. 4�.

There are two length scales associated with the behav-
ior of ��r�: the aforementioned correlation length �c at
which ��r� relaxes from the value n at r=0 to n0, and the
characteristic radius of the phase fluctuations R�, which
is rather large, R���c. The appearance of large R� can
be understood in the following way: at large distances �

FIG. 4. �Color online� One-particle density matrix ��r�
= ��†�0���r�� in two dimensions. Two characteristic length
scales R� and �c are shown, R���c. At large distances
�c�L�R� the one-particle density matrix is equal to the con-
densate density n0.
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falls off as a power law of r �Kane and Kadanoff, 1967�
��r��n0�r /r*�−�, where r�r* and the coefficient � is
proportional to the temperature and the Schick’s param-
eter ��T /T*ln�1/na2� �T*��2m�c

2�−1� and therefore is
very small, ��1. As a result of this the density matrix �
decays over a large length scale R��r*e1/� �Kagan et al.,
1987�.

Conceptually, the system can be divided into blocks of
size L, which is smaller than R�. In each block one can
introduce the wave function of the condensate with a
well-defined phase. The whole system is then described
in terms of an ensemble of the block wave functions.
Condensate wave functions within the ensemble corre-
sponding to blocks separated by a distance greater than
R� have uncorrelated phases, and it is impossible to de-
fine the condensate wave function for the entire system
as a whole. The state of matter with a fluctuating phase
is called a quasicondensate �Kagan et al., 1987�. See also
the extention of Bogoliubov methods to quasiconden-
sates by Mora and Castin �2003�.

What happens to the XY universality class concepts in
an experimentally realizable system of cold atoms con-
fined in a trap remains a controversial issue. We will see
in the next section that many issues should be crucially
reformulated in order to address the physics of trapped
cold gases.

B. Problems of long-range order formation in 2D

The notion that the development of the long-range
order �LRO� is not possible in 2D dates back to the
work of Peierls �1935�, who argued that the thermal mo-
tion of low-energy phonons will ruin the LRO in a two-
dimensional solid. A rigorous proof of Peierls’s state-
ment was provided later by Mermin �1968�.

Subsequent work by Mermin and Wagner �1966� pro-
vided a proof that there is no spontaneous magnetiza-
tion or sublattice magnetization in an isotropic Heisen-
berg model with finite-range interactions. At the same
time Hohenberg �1967� succeeded in ruling out the exis-
tence of a conventional superfluid or superconducting
ordering in one and two dimensions. It was also shown
by Coleman �1973� that there are no Goldstone bosons
in 2D, which is equivalent to saying that there is no
LRO in 2D.

A rigorous proof of the Mermin-Wagner-Hohenberg
results exploits the Bogoliubov and Schwartz inequali-
ties �Appendix A� and leads to the following result for
the average occupation number of k states:

�ak
†ak� 
 nk � −

1
2

+
mTn0

k2n
. �4.2�

Here n0 is a condensate density and n is a total density.
It is clear now that the appearance of the condensate
�macroscopic occupation of a single state� in 2D for fi-
nite temperatures fails due to the fact that the function
k−2 is not integrable at small momenta in two-
dimensional k space. Physically, the long-range thermal

fluctuations prevent the formation of a coherent conden-
sate.

The same result can be obtained from the infrared
asymptote of the one-particle Green’s function at zero
frequency,

G�k,0� � −
n0m

nsk
2 , �4.3�

and was first derived by Bogoliubov �1961�. The deriva-
tion of the asymptotic behavior �4.3� in a functional in-
tegrals approach has been done by Popov �1983�. Since
the Green’s function defines the average number of par-
ticles with momentum k, it can be readily seen that we
arrive at the same result �4.2�. The statement that the
condensate does not appear in a two-dimensional inter-
acting Bose system at any finite temperature is also
known as the Bogoliubov k−2 theorem.

We have mentioned that in the context of modern
condensed-matter theory the absence of the LRO in 2D
is discussed in terms of general properties of the XY
models. A respective direction or a phase of the
d-dimensional XY order parameter is specified by an
angle �. The variance in the fluctuation of the order-
parameter phase is given by

��2�r�� �
T

�s
	 ddq

�2��dq−2 =
T�d−2

�s�d − 2�
, �4.4�

where � is the wave-number cutoff �Chaikin and Luben-
sky, 1995�. It can be readily seen that d=2 is the critical
dimension of the XY universality class and fluctuations
destroy long-range order in the two-dimensional XY
model in accordance with the conclusions of Bogoliubov,
Mermin, Wagner, and Hohenberg. Quasi-long-range or-
der, discussed in the previous section, is nevertheless
possible in 2D.

In the case of a trapped gas the Bogoliubov-Mermin-
Wagner-Hohenberg �BMWH� theorem rules out BEC in
2D in the interacting system �see Mullin �1997��. How-
ever, the question arises if one can actually apply
BMHW theorem to a system confined within a harmonic
potential. Is it still possible to unambiguously rule out
the condensate formation in two-dimensional atom
traps? The applicability of the BMWH theorem to the
inhomogeneous case requires careful consideration, for
the Bogoliubov-Hohenberg inequality was derived as-
suming an infinite uniform system. In this approxima-
tion, many features of practically realized condensates,
such as their formation in real space, are excluded.

An alternative version of the Hohenberg inequality,
suitable for experimentally realizable Bose systems, has
been proposed by Fischer �2002, 2005�. Taking the di-
mension of the trap to be an experimentally controlled
parameter, Fischer addressed the issue of a spatially lo-
calized Bose condensate, with the question in mind of
how far one could “stretch” the three-dimensional con-
densate cloud before coherence will be destroyed. Fis-
cher derived an inequality which controls the size of the
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smallest possible condensate for a given condensate and
density profile. In Appendix A we briefly sketch the un-
derlying concepts of his derivation.

The resulting inequality reads

n − n0

n0
�

2�Rc
2

n�dB
2 C�k� −

1

2n0
�1 − ��0�k��2/V0� , �4.5�

where �0�k� is the condensate wave function, Rc is the
effective radius of the condensate wave function �effec-
tive radius of the curvature of the condensate�,

Rc = ��V0/n� 	 ddr�0�r��− �r�0
*�r��n�r��−1/2

, �4.6�

and

C�k� = �	 ddr��0�2exp�ikr�

− �0�k� 	 ddr�0
*�r���0�r��2�2

. �4.7�

Note that the only requirement on the Hamiltonian of
the system that is needed to derive the inequality �4.5� is
that it should not contain any explicit velocity depen-
dence in the interaction and external potentials.

Since in 2D Rc
2 scales as n, this case can be considered

as marginal and the condensate still can emerge even in
an interacting system. This is because the usual log di-
vergences inherent for 2D are cut off by a trap. The
inequality �4.5� is a geometrical equivalent of the
Bogoliubov-Hohenberg inequality, since it gives the
lower bound for the ratio of the effective radius of the
condensate to the de Broglie wavelength �dB. The sec-
ond term on the right-hand side of Eq. �4.5� can be used
to obtain an upper limit on the possible condensate frac-
tion as a function of temperature. Concrete examples of
the application of Eq. �4.5� to quasi-one-dimensional
systems have been given by Fischer �2002�.

One can also approach the problem of the condensate
formation by directly analyzing phase fluctuations of the
order parameter �for a review, see Hellweg et al. �2001��.
Phase fluctuations are caused by thermal excitations and
are always present at finite temperatures. Note that at
very low temperatures density fluctuations in equilib-
rium are suppressed due to their energetic cost and can
therefore be ignored. This assumption is not valid in the
vicinity of a vortex core, but at very low temperatures
the vortex formation is negligible.

As an aside, we mention that the concept of phase in
quantum systems, introduced by Dirac as a canonical
conjugate observable to the number operator n̂, remains
a controversial issue in certain circles. Formally it is
known that if n̂ is an operator with a purely discrete
spectrum �which is always true for the number opera-

tor�, then there can exist no operator �̂ such that the

commutator �n̂ , �̂�= i1̂ holds. Different versions of
phase-related operators have been constructed in order
to overcome this difficulty �see, for example, the review
by Carruthers and Nieto �1968� and the textbook on

quantum optics by Mandel and Wolf �1995��. Alterna-
tives to conventional symmetry-breaking approaches
have even been proposed �see the paper of Stenholm
�2002�, and references therein�. An intriguing suggestion
that interference patterns of two atomic condensates can
be explained without ever evoking the notion of phase
was put forward by Javanainen and Yoo �1996�.

In the present Colloquium we adopt the conventional
and certainly more convenient approach, according to
which the bosonic field operator takes on the form

��r� = �n0�r�exp�i��r�� �4.8�

for the large number of particles. Here ��r� is the opera-
tor of the phase fluctuations and n0�r� is the condensate
density at T=0.

To proceed with calculations it is convenient to ex-
pand the phase operator in terms of the creation and
annihilation operators for Bogoliubov quasiparticles
�see Shevchenko �1992��

�̂�r� =
1

2�n0�r�
�
k

��uk + vk�âk + �uk − vk�âk
†� , �4.9�

where ak is the annihilation operator for the Bogoliubov
excitation with energy �k, and uk, vk are excitation func-
tions, determined by a bosonic equivalent of the
Bogoliubov–de Gennes equations �for a general refer-
ence, see the book by de Gennes �1966��. Equation �4.9�
can be obtained in the formalism of Bogoliubov trans-
formation generalized to an inhomogeneous case.

Phase fluctuations in a quasi-two-dimensional system
can be analyzed within the formalism of the one-particle
density matrix �see the works by Petrov and co-workers
�2000, 2001��,

��†�r���0�� = �n0�r�n0�0�exp�− �����r��2�/2� . �4.10�

One should mention that the quasi-two-dimensionality
of the system implies that the scattering of particles ac-
quires a three-dimensional character, while the kinetic
properties of the gas remain two dimensional.

It is clear from Eq. �4.9� that the estimation of the
phase fluctuations ����r�2� requires a knowledge of the
Bogoliubov quasiparticle spectrum in inhomogeneous
systems �see papers of Stringari �1996� and Önberg et al.
�1997� and references in papers by Petrov and co-
workers �2000, 2001��. This spectrum is discrete for
T�� and for T�� one can use the local-density ap-
proximation. In the Thomas-Fermi regime for T�� one
obtains the following approximation:

����r�2� � T ln�R/�dB� . �4.11�

Note that Eq. �4.11� does not depend on a precise ex-
pression for the repulsive coupling constant.

From Eq. �4.11� one can estimate the characteristic
radius R� of phase fluctuations �the characteristic length
at which phase changes by 2�� to be R�

��dBexp�T� /T� with kBT�=N��
��2 /�. We thus arrive
at the conclusion that at low temperatures T�T� the
characteristic radius of phase fluctuations is larger than
the size of the trap R��R�, so a true condensate exists.
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The emergence of a true condensate is attributed to the
weakening of phase fluctuations induced by a trap,
which introduces a low momenta cutoff into the excita-
tions in the system. At higher temperatures T�T� the
system is characterized as a quasicondensate �R��R��.

The crucial effect of a trap for two-dimensional Bose
gases was also emphasized by Ho and Ma �1999�. They
pointed out that long-wavelength quantum fluctuations
will be partially suppressed due to the gapped spectrum
of collective modes �Stringari, 1996� and off-diagonal or-
der will survive in 2D.

Since there is an experimental evidence in support of
BEC existence in 2D, the discussion is not yet closed.
Quantum Monte Carlo simulations for bosons in a two-
dimensional harmonic trap do indeed show that a sig-
nificant fraction of particles is still present in the lowest
state at low energies �Heinrichs and Mullin, 1998�.

C. Popov’s approach

In this section we consider how Popov �1983� general-
ized field-theoretical methods developed by Beliaev to
finite temperatures. It is curious that the method, sug-
gested by Popov in 1965, is conceptually similar to the
renormalization-group approach successfully applied in
the 1970s to phenomena unaccessible to perturbative
methods, such as the Kondo effect �Hewson, 1993�.

As usual one starts with the introduction of the tem-
perature Green’s function,

G�x,� ;x�,��� = − ���x,���̄�x�,����

= −
	 eS��x,����x�,���d�d�

	 eSd�d�

, �4.12�

where S is the classical action of the Bose gas,

S = 	
0

�

d�	 d3x��x,������x,�� − 	
0

�

d�H��� , �4.13�

and

H��� =	 d3x��x,���−
�2

2m
− ����x,��

+
1
2 	 d3xd3yU�x − y�

��̄�x,���̄�y,����y,����x,�� . �4.14�

The next step is construction of the perturbation
theory and corresponding diagrams arising from inte-
grals of the type �4.12�, by performing the usual trick of
separating out the condensate operators �3.9�. However,
in the case of the Bose system the perturbation series
converges poorly for small momenta and frequencies. In
other words, the infrared asymptote of the Green’s func-
tion is singular. In order to avoid these difficulties,
Popov suggested the following modifications: the
bosonic field �,

��x,�� =� 1

�V�
k,


exp�− i�kx − 
���a�k,
� , �4.15�

is divided into a short-wavelength fast component �1
and a long-wavelength slow component �0 ���x ,��
=�0�x ,��+�1�x ,��� �see Fig. 5�. The momentum k0 which
separates the slow modes from rapidly oscillating modes
depends on the particular Bose system and only its order
of magnitude can be estimated. The introduction of k0
removes the divergences at small momenta, regularizing
the perturbation theory.

A method of successive integration, first over rapid
and then over slow fields, is then applied, using different
schemes of perturbation theory at different stages of the
integration �see Chap. 4 in Popov �1983��. The fast
modes see the slow modes as an effective condensate
�“bare” condensate according to Popov� with a super-
fluid density �0= ��0�2. Appendix B gives a succinct deri-
vation of main Popov’s results.

This method of subsequent integration, developed by
Popov, allows us to estimate the low-temperature
asymptotic behavior of the one-particle Green’s func-
tion, and to derive a power-law decay of G�x ,y���x
−y�−� for �x−y � →� �in 1D and 2D� rather than the ex-
ponential decay that occurs at high temperatures. In 2D,
as mentioned in Sec. IV.A, this signals the development
of topological LRO at low temperatures.

The analysis is based on the t-matrix description of
effective interactions, and the key property of the two-
dimensional t matrix is that at low energies it vanishes,
and at the high-energy cutoff the t matrix diverges �see
Appendix B�. This results in an extremely small critical
temperature

Tc �
� ln��0/��

4 ln ln��0/��
, �4.16�

where � is a high-energy cutoff and � is a chemical po-
tential. Bear in mind that this is a mean-field derivation
and the condition for the superfluid transition was as-
sumed to be �=�n, because Popov �as well as Berezinskii
�1970, 1971�� thought that at the critical temperature Tc
the superfluid density vanishes.

The applicability of Popov’s mean-field description is
based on the assumption of a very small exponent �. For
large � the probability of creating quantum vortices be-
comes large and even this modified perturbation theory
is invalid �see also the discussion in Sec. IV.D and the
corrected many-body mean-field theory in Sec. IV.E�.

FIG. 5. Energy scales in Popov’s approach:
T / ln ��0 /� � �k0

2 /2m�T� �k0��
2 /2m��0=1/ma2.
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The applicability of Popov’s t-matrix description and the
diluteness condition, derived by Fisher and Hohenberg,
is the main subject of Sec. IV.D.

D. Diluteness condition and validity of t-matrix approximation

We have discussed that the perturbative treatment of
the dilute weakly interacting Bose gas amounts to re-
placing the real potential by an effective two-particle t
matrix, obtained by summing all ladder diagrams. From
this point of view the diluteness condition determines
the validity range of the t-matrix approximation.

An explicit form for the diluteness condition of two-
dimensional interacting Bose gas at finite temperatures
was first introduced by Fisher and Hohenberg �1988�.
They pointed out that singularities inherent to two-
dimensional systems �vanishing of scattering t matrix at
zero temperature and classical divergence of phase fluc-
tuations� might lead to drastic modifications of the usual
dilute gas expansion.

As discussed �see Sec. III.B�, at zero temperature in
2D the diluteness condition na2�1 is replaced by

1

ln�1/na2�
� 1. �4.17�

Popov’s theory can be used to demonstrate that at
finite temperature criterion �4.17� is replaced by an even
more stringent inequality �Fisher and Hohenberg, 1988�

ln ln
1

na2 � 1. �4.18�

Fisher and Hohenberg provided a heuristic derivation
of this result, based on the Bogoliubov quasiparticle pic-
ture. Their analysis is based on the simple observation
that the usual Landau quasiparticle formula for the su-
perfluid density,

�s

�
= 1 −

�

�d
	 ddk

�2��2k2 e��k

�e��k − 1�2 , �4.19�

where d is the dimension, does not have any singularities
for d=2, except in the case when the chemical potential
is small. �� is introduced in Eq. �4.19� via the Bogoliubov
quasiparticle spectrum �k

2 =n0U0k2 /m+k4 /4m2
�k2 /m
+k4 /4m2. The validity of this approximation for � is dis-
cussed in Beliaev �1958a, 1958b�.� By introducing the
infrared cutoff �k0���� via the ansatz

� �
n

�ln�a2���
, �4.20�

the regularization of the integral of Eq. �4.19� can be
achieved, and one arrives at Popov’s equations for super-
fluid and normal densities �B8� and �B9�.

Analyzing the temperature dependence of the super-
fluid density allows one to separate out three character-
istic regimes: �i� the low-temperature region, the physics
of which is defined by phononic behavior of the quasi-
particles, leading to a superfluid density which depends
on temperature as �1−�T3�; �ii� a free-particle region,

where �s behaves linearly with temperature; and �iii� a
critical region, determined by the fluctuations around
the critical temperature Tc ��s vanishes at Tc� �see Fig.
6�.

The diluteness criterion is determined by the condi-
tion that the critical region is small enough so that all
three regimes can be well separated. The width of the
first regime is in fact given by Schick’s small parameter
�4.17�, while the size of the critical region is character-
ized by the double log �4.18�. The problem, however, is
that for all relevant situations, even for very small na2,
Fisher and Hohenberg’s small parameter 1/ ln ln�1/na2�
is still orders of magnitude greater than 1/ ln�1/na2�.
This means that in practice the critical region associated
with the Kosterlitz-Thouless transition is so large that
mean-field based approaches do not give any reliable
results. Note that the double log result was also repro-
duced by Fisher and Hohenberg in a more accurate way
within a renormalization-group treatment of the same
problem. They have also estimated the superfluid tran-
sition temperature, which reads

Tc �
2�n

m ln ln�1/�nas�2�
. �4.21�

The results of Fisher and Hohenberg �1988� have been
confirmed in other approaches, see, for example, the
virial expansion of a dilute Bose gas by Ren �2004� or
RG analysis by Kolomeisky and Straley �1992a, 1992b�
and by Crisan et al. �2001�. Pieri et al. �2001a, 2001b�
demonstrated by analyzing the normal state with the
standard diagram technique that the transition tempera-
ture �4.21� appears as a lower bound for the validity of
the t matrix as a controlled approximation for the dilute
Bose gas.

The Fisher-Hohenberg diluteness condition �4.18� is
extremely stringent, and if straightforwardly applied to
experimentally relevant situations �Görlitz et al., 2001;
Rychtarik et al., 2004� would mean that systems ob-

FIG. 6. �Color online� Schematic phase diagram of a uniform
dilute Bose gas. �s is the superfluid density, normalized by the
mass density of the gas �=mn, TKT is the critical temperature
of the Kosterlitz-Thouless transition, TMF is the mean-field
temperature, calculated perturbatively. The size of the transi-
tion critical region is defined by a parameter 1/ ln ln�1/na2�,
where a is characteristic s-wave scattering length. The region,
dominated by phononic quasiparticle behavior, is of the width
1/ ln�1/na2�.
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served to undergo a BEC phase transition in 2D are not
actually dilute, and could never be so. This line of rea-
soning motivated Liu and Wen �2002� to come up with
an exotic alternative scenario involving a two-
dimensional strongly correlated spin liquid.

The extreme conclusions drawn from the diluteness
criterion are, nevertheless, related to the general draw-
backs of the Popov approximation. We show in the next
section that in a more realistic model, which takes into
account interactions in a self-consistent way, the dilute-
ness condition becomes much weaker. Moreover, in view
of the previous discussion about the inapplicability of
arguments based on homogeneous systems in the ther-
modynamic limit to trapped gases, it would seem that
the diluteness requirement is not relevant for the experi-
mental situation of the Bose gas in a magnetic trap.

E. Other approaches: RPA, many-body t matrix, Monte
Carlo

In this section we review a range of diagrammatic ap-
proaches that have built upon the early RPA and
t-matrix approximation in order to improve the descrip-
tion of the superfluid of BKT transition and also the
numerical methods, which allow us to directly probe the
critical region of the two-dimensional transition.

The first finite-temperature generalization of Bogoliu-
bov random-phase approximation �Sec. III.A� was intro-
duced by Tserkovnikov �1964�. He wanted to calculate
the finite-temperature correction to the condensate den-
sity in three-dimensional dilute Bose gases with weak
interactions. Tserkovnikov assumed that the average
single-particle kinetic energy is small compared to the
potential energy for temperatures below Tc

3D. He also
remarked that this approximation does not meet the
Landau superfluidity criterion and that more precise
equations should be sought in future work.

The RPA method was further developed by Szep-
falusy and Kondor �1974�, whose main interest was in-
vestigating the dynamics of the second-order phase tran-
sition. Around the same time a large-N approach was
applied to the Bose gas by Abe �1974� and Abe and
Hikami �1974�, who calculated the dynamical scaling for
one-particle Green’s function up to O�1/N�. Here the
idea of the large-N approach is to expand the number of
independent components of the Bose field from unity to
N /2 using 1/N as an expansion parameter. To produce a
controlled large-N limit, the interaction strength is
scaled to be of order of 1/N.

The RPA large-N method has been applied to two-
dimensional Bose gas by Nogueira and Kleinert �2006�.
The interaction in their approach is approximated by a
two-dimensional coupling constant, derived in the
t-matrix approximation, considered by Popov and Schick
�see Secs. III.B, IV.C, and IV.D�. It is, however, known
that in a large-N approach one cannot simultaneously
account for both the particle-hole channel �RPA� and
the particle-particle channel in a well-controlled fashion.
Nevertheless, the authors claim that the diluteness con-

dition leads first to the appearance of t-matrix diagrams,
while the next class of diagrams are those from the
particle-hole channel �Nogueira and Kleinert, 2006�.
This approximation results in the Bogoliubov quasipar-
ticle dispersion containing a log correction due to low
dimensionality

�k =��k
2 + 2g2Dn�k�1 −

Tm

�n
ln�ka�� ,

so that excitations in the system exhibit a rotonlike mini-
mum. Note that the excitation spectrum is calculated as-
suming that one-particle Green’s function and density
correlators share the same poles �this property was de-
rived by Hohenberg and Martin �1965� in the case of a
3D condensed Bose system�. It would be interesting to
check if these RPA results are confirmed in other ap-
proaches.

We now proceed to discuss the various generalizations
of the two-body t-matrix approach. Though simple and
elegant, the perturbative two-body t-matrix approach
does have its drawbacks. The main problem is related to
its inability to properly describe the critical region in low
dimensions. For example, the t-matrix method does not
predict the Nelson-Kosterlitz universal jump in the su-
perfluid density. In 3D the two-body t-matrix approach
leads to a first-order phase transition for the condensate
density, which is the consequence of non-self-consistency
of this first-order perturbative approximation �see also,
Lee and Yang �1958�, Reatto and Straley �1969�, and
Griffin �1988��.

Many of these problems can be solved if many-body
corrections, arising due to the surrounding gaseous me-
dium, are taken into account. This is the key idea in the
many-body t-matrix approximation �see the comprehen-
sive review by Shi and Griffin �1998�, low-dimensional
systems within the many-body t-matrix approach are
analyzed in the papers by Stoof and Bijlsma �1993�, Al
Khawaja et al. �2002�, Andersen et al. �2002�, for a
Hartree-Fock-Bogoliubov study of a two-dimensional
gas see recent works by Gies and Hutchinson �2004� and
Gies et al. �2004, 2005��.

Since many-body t-matrix methods are extensively
discussed in the literature, here we restrict ourselves to a
brief description providing all relevant references. The
Bogoliubov-Hartree-Fock �BHF� approximation �see
Griffin �1996� and the analysis of excitations in a trapped
three-dimensional gas paper by Hutchinson et al. �1997��
has a Heisenberg equation of motion for a Bose field
operator of the kind �3.24� as a starting point,

i �
�

�t
��r,t� = �−

�2

2m
�2 + Vext�r� − ����r,t�

+ g�†�r,t���r,t���r,t� . �4.22�

A short-range interaction is assumed among atoms
U�r−r��=g��r−r��. Treating the interaction term in Eq.
�4.22� in the self-consistent mean-field approximation,
one arrives at
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�−
�2

2m
�2 + Vext�r� − ����r�

+ g�n0�r� + 2n��r����r� + gm��r��*�r� = 0, �4.23�

where n0 is the condensate density, n��r�= ���†�r����r��,
and m��r�= ����r����r�� �anomalous average�. In order to
describe excitations in the system one should also write
down the equation of motion for ��,

i �
�

�t
���r� = �−

�2

2m
�2 + Vext�r� − �����r,t�

+ 2gn�r����r,t� + gm�r���†�r,t� , �4.24�

with n�r�=n0+n� and m�r�=�2+m�. Equations �4.23�
and �4.24� correspond to the Bogoliubov-Hartree-Fock
approximation: a bosonic analog of the finite-
temperature Bogoliubov–de Gennes equations. These
equations can also be reexpressed in terms of a Green’s
function formalism. Note that the appearance of anoma-
lous averages in BHF formalism �which are not present
in the Popov approach� leads to a gap in the quasiparti-
cle excitation spectrum.

Many-body effects are also effectively treated with the
variational method applied to dilute Bose gases by
Bijlsma and Stoof �1997�, and many-body t-matrix meth-
ods which have been improved in recent years �see Al
Khawaja et al. �2002� and Andersen et al. �2002��. A
time-dependent BHF approximation has been devel-
oped by Proukakis et al. �1998�. Here, Proukakis et al.
�1998� claim that the pseudopotential approximation
U�r−r��=g��r−r�� should be imposed only after the ef-
fective interaction is expressed in terms of many-body t
matrix. Both approaches, the one used by Griffin et al.
and another developed by Stoof and collaborators, are
qualitatively similar in that they treat interactions in
many-body t-matrix approach, but they differ in some
details, for instance, in selecting out the important dia-
grams.

Let us now discuss some of the results of the many-
body t-matrix method for two-dimensional systems.
More than a decade ago Stoof and Bijlsma �1993� dem-
onstrated that the infrared divergences, appearing in the
two-body t-matrix treatment, can be elegantly elimi-
nated when surrounding gas effects are taken into ac-
count. With this approach the universal jump in super-
fluid density, predicted by Nelson and Kosterlitz, can be
reproduced. A weaker diluteness condition, namely, that
of Schick, Eq. �4.17�, defines the applicability of this
many-body t-matrix approximation, one that is satisfied
experimentally in systems, such as spin polarized atomic
hydrogen, absorbed on the 4He surface �Stoof and
Bijlsma, 1993�. The application of many-body t-matrix to
the scattering problem in 2D and density profiles of a
two-dimensional Bose gas is also discussed by Rajagopal
et al. �2004�.

The conclusions of Petrov and co-workers �2000,
2001� have been confirmed in recent investigations by
Andersen et al. �2002�, Gies and Hutchinson �2004�, and
Gies et al. �2004, 2005�. The theory of Andersen et al.

�2002�, free of infrared divergences in all dimensions,
allows one to calculate the density profile of a
�quasi-�condensate cloud of a gas for any aspect ratio of
the trap �within local-density and Thomas-Fermi ap-
proximation�. At very low temperatures, depending on
the trapping geometry, the presence of a true condensate
in the equilibrium state is found. Hutchinson and co-
workers �Gies and Hutchinson, 2004; Gies et al., 2004,
2005� also see within their HFB approach a macroscopic
occupation of the ground state at low temperatures, im-
plying the presence of a condensate state.

To conclude, the presence of the trap appears to sta-
bilize the condensate against long-wavelength fluctua-
tions and the BEC state can form at finite though very
low temperatures, when the discrete nature of the en-
ergy spectrum is taken into account.

The most reliable description of the two-dimensional
Bose gas to date is provided by Monte Carlo simulations
�Kagan et al., 2000; Prokof’ev et al., 2001; Prokof’ev and
Svistunov, 2002�, because it allows one to study the criti-
cal region of the BKT transition, which is effectively
very large and therefore unaccessible to perturbative
methods. The numerical analysis is simplified by the fact
that the critical properties of all XY models are the same
�see Sec. IV.B�. It suffices therefore to study the classical
���4 model on the lattice within a Monte Carlo algo-
rithm.

Consider, for instance, the temperature dependence of
the particle density in the critical region of the BKT
transition, which follows from perturbative analysis
�Popov, 1983; Kagan et al., 1987; Fisher and Hohenberg,
1988� of a weakly interacting system,

n =
mT

2�
ln

C

mUeff
, �4.25�

where Ueff is an effective interaction, proportional to f0
2D

�3.19�, and C is a constant, which is not possible to evalu-
ate within perturbative expansion in powers of Ueff
�Prokof’ev et al., 2001�. Monte Carlo estimation gives
C=380±3; this large value of C makes it virtually impos-
sible to reach the limit of small Ueff for weakly interact-
ing systems.

At the transition we obtain an accurate microscopic
expression for the critical temperature of BKT transition
�Prokof’ev et al., 2001; Prokof’ev and Svistunov, 2002�,

TKT

n
=

2�

m ln�C/mUeff�
. �4.26�

It is interesting to compare this density n to the quasi-
condensate density nq and superfluid density ns in the
critical region. It turns out that nq /n is of order of unity,
unless mUeff is exponentially small, while the ratio nq /ns
is of order of 2, which means that superfluid density is
substantially smaller than quasicondensate density at the
transition.

The temperature behavior of various densities, ob-
tained with the Monte Carlo procedure, can be used for
checking whether RG and perturbative approaches es-
sentially overlap. Indeed, Monte Carlo simulations have
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been able to capture the crossover between the mean-
field behavior and the critical fluctuation region de-
scribed by the KT transition �Prokof’ev and Svistunov,
2002�. Prokof’ev and Svistunov �2002� show that this
crossover is characterized by a universal ratio of the su-
perfluid and quasicondensate density. One can also see
that the conventional mean-field result ns /n�1−T /TKT
is not valid anywhere, while the modified mean-field
theory introduced by Prokof’ev and Svistunov �2002�
can predict accurately the behavior of the quasiconden-
sate density up to TKT.

F. Breathing modes of two-dimensional systems

At the end of this section we consider the universal
property of a two-dimensional gas with a contact inter-
action, confined in a harmonic potential. Pitaevskii and
Rosch �1997� predicted that such a system develops os-
cillations or breathing modes, which can be probed ex-
perimentally or in simulations and thus can serve as a
practical criterion of the two-dimensional nature of a
system.

The appearance of breathing modes is related to a
hidden Lorentz symmetry inherent in any two-
dimensional Hamiltonian of the following general form:

H = H0 + Hext, �4.27�

where

H0 = �
i
�−

1

2m
�i� + �

i	j
U�ri − rj� , �4.28�

and Hext=�i
1
2m
0

2ri
2 is a harmonic potential.

It is readily seen that H0 is scale invariant in the case
of a local two-dimensional interaction,

U�ri − rj� =
g

2
�2�ri − rj� �4.29�

�in fact it is scale invariant for any potential with the
property U�lr�=U�r� / l2�. The presence of a trap breaks
the scale invariance of H0. Note that in principle the
scaling invariance of the Hamiltonian H0 is broken in
2D, because then the scattering phase shift is energy de-
pendent due to the logarithmic dependences character-
istic of two dimensions �the phase shift is proportional to
the coupling constant g2D or to 1/ ln�ka��. The energy-
dependent phase shift signals the breaking of scale in-
variance at the quantum level �Cabo et al., 1998�. But
this symmetry breaking is explicit and is not attributed
to any phase-transition physics.

In spite of scale invariance breaking, because of a spe-
cial property of the harmonic oscillator, a powerful spec-
trum generating symmetry still exists. That can be seen
from the commutator �Hext ,H�= i
0

2Q, where Q
= 1

2�i�piri+ripi� is the generator of scale transformations.
One can check that �Q ,H0�=2iH0 and �Q ,Hext�
=−2iHext. These results can be formulated within the
well-known algebra of SU�1,1� or SO�2,1� symmetry
groups, i.e., the two-dimensional Lorentz group.

Starting from the lowest energy state �0 one can pro-
duce higher-order states with energies �0+2n
0
�n=1,2 , . . . � by applying one of the SO�2,1� group gen-
erators L+= �L1+ iL2� /�2 where L1= �H0−Hpot� /2
0,
L2=Q /2 �the corresponding annihilation operator is
L−= �L1− iL2� /�2�. Excitations with energies 2n
0 are
associated with the breathing, or pulsating, modes of the
system.

As an example, Pitaevskii and Rosch �1997� consid-
ered the classical Gross-Pitaevskii equation and pre-
dicted the existence of undamped breathing modes in
the condensate. The appearance of transverse breathing
modes with a frequency equal to an integer multiple of
the trap oscillation frequency was observed experimen-
tally in an elongated condensate of 87Rb atoms �Chevy et
al., 2002�. Numerical simulations �exact diagonalization�
seem to indicate the existence of dipole or breathing
modes in a two-dimensional system even for a relatively
small number of atoms �Haugset and Haugerud, 1998�.

The Bogoliubov-Hartree-Fock study of a two-
dimensional Bose gas by Gies and co-workers �Gies and
Hutchinson, 2004; Gies et al., 2004, 2005� has shown that
at low temperatures the frequency of the lowest-lying
excitation �n=0 mode� is precisely 2
0, independent of
the interaction strength. At high temperatures the fre-
quency of this mode shifts to a lower frequency region,
modified by the addition of a potential from the static
thermal cloud.

Nevertheless, it is important to note that a � function
is not well defined in two dimensions due to logarithmic
UV divergences �Pitaevskii and Rosch, 1997� that are
cut off by the finite range of interaction; whether it is a
small or large effect should be investigated.

V. CONCLUSIONS AND OPEN QUESTIONS

We have surveyed a number of theoretical issues aris-
ing in the field of a weakly interacting uniform or con-
fined in a trap dilute Bose system at low temperatures in
2D. The underlying physics of such a system depends on
the size of the system, the degree of its inhomogeneity,
and the temperature.

If the system is very large and uniform, one might
expect realization of the BKT transition, characterized
by the presence of a topological order below the critical
temperature TKT down to zero temperature when the
true long-range order �BEC� forms. Perturbative ap-
proaches, based on a low-density approximation and
pointlike or short-range interactions, surveyed in this
Colloquium are not really suited to describing vortex
excitations in the ordered phase of a BKT transition.
However, these methods provide a good description of
many physical properties. For example, a modified ver-
sion of the mean-field theory, the many-body t-matrix
approach, is able to capture the second-order nature of
the phase transition in 3D and the Nelson-Kosterlitz
universal jump of superfluidity in 2D.

In experiments the low-temperature regime of a quan-
tum gas is achieved by confining the atomic system in an
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external potential. The proper description of a practi-
cally realized system requires therefore inclusion of the
inhomogeneities, introduced by a trap. In 3D the effect
of the trap is not very pronounced, and it is possible to
calculate the correction to the critical temperature due
to interactions perturbatively �Arnold and Tomasik,
2001�, while in the uniform case the RG study is re-
quired �Ledowski et al., 2004� �for details, see Pitaevskii
and Stringari �2003��.

In 2D, as seen in the case of a gas without interac-
tions, the presence of the trap dramatically modifies
properties of the system �density of states� so that BEC
becomes possible at finite temperature. The inclusion of
interactions into the picture is a complicated task. First
of all, the system is inhomogeneous and previously de-
veloped perturbative methods, such as the t-matrix ap-
proach, are strictly speaking not suitable for its analysis.
In principle, one should solve the many-body scattering
problem in a trap, taking into account the discrete spec-
trum and the finite range of a potential, which is ex-
tremely difficult. One can of course consider a simplified
problem of a quasihomogeneous trap and adapt well-
studied techniques for that case. As we have seen, the
main effects of the trap are captured at least qualita-
tively within such a scheme.

Intuitively, it is clear that inhomogeneities would tend
to suppress the universal jump of superfluidity, and
would rather favor the true BEC state at low tempera-
tures in a system with a finite number of particles �be-
cause long-range thermal fluctuations will be quenched
by a trap�.

Recently Holzmann et al. �2005� analyzed the behav-
ior of a weakly interacting trapped system in the ther-
modynamic limit within the local-density approximation.
They have shown that although the universal Nelson-
Kosterlitz jump is indeed not present, the system does
undergo a BKT transition at a temperature somewhat
lower than Tc

2D �2.12�.
Simula et al. �2005� predicted that both a BE con-

densed phase and a KT superfluid phase, separated by a
first-order transition, will be present in a two-
dimensional trapped gas. These authors arrived at their
conclusions by comparing the Helmholtz free energy of
the ground state, characterized by a condensate wave
function and an excited state, containing a vortex pair in
the ordering field. Based on entropy considerations, they
find a critical temperature Tc above which a thermally
activated transition to the state containing vortex-pair
excitations becomes favorable. These conclusions re-
quire, however, solid confirmations from both theory
and experiment.

A challenging problem is, however, the actual estima-
tion of the BEC transition temperature in a two-
dimensional interacting system and the relationship of
the quasicondensate state to the KT vortex-pair plasma
state, depending on the geometry of the system and
number of particles. It is also important to develop nu-
merical methods adapted for experiment. One of the
promising developments in this direction has been made
by Davis and co-workers �Davis, Ballagh, and Burnett,

2001; Davis, Morgan, and Burnett, 2001, 2002�, who
have proposed a projected Gross-Pitaevskii equation
formalism, which allows investigation of finite-
temperature properties of the equilibrium condensate
state—even in the region where the Bogoliubov theory
fails. An extension of this method to harmonically
trapped condensates has been considered by Blakie and
Davis �2005�. Simula and Blakie �2006� have analyzed
the two-dimensional Bose gas by classical field methods,
adopted from quantum optics. They have demonstrated
that two distinct superfluid phases, separated by thermal
vortex-antivortex pair creation, exist in an experimen-
tally producible quasi-two-dimensional Bose gas. Simula
and Blakie �2006� provided strong evidence that a
strange �“zipper”� interference pattern observed in a re-
cent experiment by Stock et al. �2005� can be explained
by the presence of a vortex excitation in an experimental
system.

One can thus tentatively identify the following phases
in a trapped two-dimensional Bose gas �Fig. 7�:

• phase I: low-temperature true BEC phase;

• phase II: KT vortex-antivortex pair superfluid, or
quasicondensate, or condensate with a fluctuating
phase, at the transition TKT superfluid universal jump
is almost suppressed;

• phase III: critical region of the BKT transition; vor-
tex pair dissolve, above TKT vortices are unbound
and free;

• phase IV: above the mean-field temperature it is a
normal fluid, no local order parameter or vortices
exist.

The phase diagram of a real system will depend on
many factors, as was stressed at the beginning of this
section. Many aspects of the diagram, depicted in Fig. 7,
require careful investigation, and reliable confirmation
from both theory and experiment.

To end we attempt to summarize some of the open
questions:

• The nature of superfluid phases in a two-dimensional
weakly interacting Bose gas: What is the nature of
the crossover to a superfluid phase? What is the ex-

FIG. 7. Schematic phase diagram of a two-dimensional
trapped weakly interacting dilute Bose gas. �0 stands for the
density of the condensate, �s is the superfluid density, �MF is
the mean-field density, which can be estimated perturbatively.
TBEC is the crossover temperature from the superfluid regime
to the true Bose-Einstein condensation phase. TBKT is the criti-
cal temperature of the Kosterlitz-Thouless transition. TMF
marks the critical region of BKT transition.
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plicit relation between superfluidity and the quasi-
condensate state? Is there a crossover to the BEC
state at low temperatures? If yes, under which con-
ditions?

• Can we help experimentalists to see the vortex exci-
tations in the superfluid state, to really identify the
KT state? There is a clear need in good vortex de-
tection methods. Can, for example, disorder help us
to pin the vortices?

• What are, in general, measurable physical properties,
which delineate between the coherent condensed
state and superfluidity? Initial progress in this direc-
tion has been already made; Polkovnikov et al. �2006�
have suggested how to identify the KT transition
from experimentally measured interference pattern.

• Can we solve the many-body scattering problem in
the trap? Does diluteness of the gas simplify this
problem?

• Is local density a good approximation for describing
the experimental systems? If yes, under which condi-
tions?

• Could one justify a large-N approach which improves
on existing methods by incorporating the t-matrix
approximation?

We have also discussed the diluteness condition de-
rived by Fisher and Hohenberg �1988� under certain
conditions of the transition to the superfluid state. In a
finite-sized experimental system this condition is not re-
ally applicable, and one should use the criterion of
Schick, Eq. �4.17�, which can be seen from the analysis
of quantum fluctuations of the two-dimensional BEC at
zero temperature �Petrov et al., 2004�.

We have considered only low-density approximations.
When the gas is dense, approaches such as that of Gross
and Pitaevskii are not applicable. In such high-density
regimes, new strong coupling approaches are required.
One of the possible solutions may be the slave-boson
approximation, which is valid for hard-core bosons at
any density �Ziegler and Shukla, 1997; Rajagopal,
2005�.

We have not discussed in this Colloquium the role of
disorder in the continuum Bose system, though it could
be a subject of a separate review and opens up a lot of
interesting perspectives. Recent Monte Carlo studies
predict, for example, that for strong disorder the system
enters an unusual regime, where the superfluid fraction
is smaller than the condensate fraction �Astrakharchik et
al., 2002�. Weak disorder can be treated within Bogoliu-
bov theory �Huang and Meng, 1992; Giorgini et al., 1994�
and the striking result of this is that disorder is more
active in reducing superfluidity than in depleting the
condensate. These results suggest that the relation of
superfluidity and Bose-Einstein condensation requires
further theoretical and experimental investigation.

One cannot help but mention the increasing interest
to cold gases with dipole-dipole interactions, which are
responsible for a variety of phenomena in ultracold di-

polar systems; see, for instance, Santos et al. �2000,
2003�, Pedri and Santos �2005�, Stuhler et al. �2005�, Fis-
cher �2006�, and references therein.

Finally, the problem of measurable quantities is in fact
one of the most important in the context of trapped
Bose gases. Unlike an electron system, one cannot at-
tach leads to the system and measure transport proper-
ties of a condensate cloud. One of the most pressing
practical needs for theorists and experimentalists is
therefore the development of controllable new methods
to probe the trapped condensate.

ACKNOWLEDGMENTS

I would like to acknowledge discussions with P. B.
Blakie, A. Chubukov, D. Efremov, M. Garst, M. Greiter,
A. Rosch, and P. Woelfle. I appreciate many insightful
discussions with M. Eschrig, U. Fischer, and F. Nogueira.
I am indebted to P. Coleman for reading the manuscript
and numerous critical comments. I acknowledge the
Humboldt Foundation for support and Kavli Institute
for Theoretical Physics of Santa Barbara for hospitality,
under NSF Grant No. PHW 99/07949.

APPENDIX A

1. Sketch of the derivation of Mermin-Wagner-Hohenberg
theorem

One should use the Bogoliubov inequality

1
2 ��A,A†�����C,H�,C†�� � T���C,A���2, �A1�

where the average �X�=Tr�Xe−�H� /Tr e−�H, and opera-
tors A and C are such that the ensemble averages on the
left-hand side of �A1� exist. The inequality �A1� follows
quite straightforwardly from the Schwartz inequality

�A,A��B,B� � ��A,B��2, �A2�

where a scalar product is defined by �A ,B�=T��d
 /��
��1/
��AB�k
�, where �AB is the Fourier transform of
the response function �AB�rt ,r�t��= ��1/2� ��A�rt� ,
B�r�t���� �see, for example, the textbook by Forster
�1990��.

In the case of a Bose system the derivation of Hohen-
berg �1967� is based on Bogoliubov and Schwartz in-
equalities and the f sum rule

T	 d


�

1



�AA†�− k
� =

k2n

m
. �A3�

2. Derivation by Fischer of geometrical analog of the
Hohenberg inequality

The bosonic field operator is as usual decomposed
into condensate and noncondensate parts,
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��r� = �0�r�a0 + ���r� . �A4�

The key observation of Fischer �2002� is that the Bogo-
liubov prescription should be applied after implement-
ing the commutation relation,

����r�,��†�r��� = ��r − r�� − �0�r��0
*�r�� , �A5�

otherwise, the second term on the right-hand side of Eq.
�A5�, which turns out to be crucial for calculating the
condensate fraction correctly, would vanish.

The operators A and C in the Bogoliubov inequality
�A1� are chosen to be smeared excitation and total den-
sity operators,

Â =	 ddrfA�r����r�, Ĉ =	 ddrfC�r����r� , �A6�

where fA and fC are carefully chosen smearing functions
�fC�r���0

*�r� , fA�r��eikr�. Next, the f-sum rule analogous
to Eq. �A3�, can be derived in coordinate space.

APPENDIX B

1. Popov’s approach

To derive the phase-transition curve for a two-
dimensional interacting Bose gas, one needs to explore
the finite-temperature behavior of the t matrix �3.14�.
The Bethe-Salpeter equation �Fig. 3� in the Matsubara
representation reads

��p1,p2;p3,p4� = Uk1−k3
−

1

�V �
q,i
l

UqG0�k1 − q,i
1 − i
l�

�G0�k2 + q,i
2 + i
l�

���p1 − q,p2 + q ;p3,p4� , �B1�

where 
j=2�jT is an even Matsubara frequency, and the
four-dimensional vector pj
�kj ,
j� represents the mo-
mentum kj and frequency 
j of the particle before scat-
tering �j=1,2� and after �j=3,4�. Energy and momentum
conservation requires p1+p2=p3+p4.

The main contribution to the sum over internal mo-
menta in Eq. �B1� comes from k�a−1 which is due to the
potential discussed above. Since a−1��T���, the �
dependence in the Green’s function can be safely ne-
glected �Popov, 1983�. Consequently, after integrating
over frequencies Eq. �B1� is reduced to a t-matrix equa-
tion,

t�p1,p3,z� +	 dp�

�2��2U�p1 − p��
1

p�2/m − z
t�p�,p3,z�

=U�p1 − p3� . �B2�

Schematically, the t-matrix equation can be expressed
as tz+URztz=U, with Rz=1/ �p2 /m−z�. The operator 1
+URz can be inverted and we get U= tz�1−Rztz�−1. In
this way the interaction is eliminated from the t-matrix
equation and we arrive at the Hilbert identity tz− tz0
= tz�Rz0−Rz�tz0

. This last equation is readily integrable,
since at low energies �p1 ,p2�1/a , �z � �1/ma2� we can

neglect the momentum dependence of the t matrix. The
energy z0 defines an arbitrary high-energy cutoff of the
order 1/ma2, so that t�z0�� t�z�, and we obtain the long-
wavelength asymptotic of the t matrix in 2D,

t �
4�

m ln��0/�− z��
. �B3�

We see that in 2D the t matrix vanishes in the limit
p1 ,p2 ,z→0 and in fact diverges at the high-energy cut-
off �0= �z0�.

Next we need to integrate out the high-energy modes
with momenta kk0� in our functional exp S, �4.13�. The
cutoff k0� is defined as

max����,T� �
�k0��

2

2m
� �0. �B4�

The result of this integration is the reduced action

S� = �

,k	k0�

�i
 −
k2

2m
+ ��a†�p�a�p�

−
1

2�V �
p1+p2=p3+p4

t�a†�p1�a†�p2�a�p3�a�p4� , �B5�

where all summations are cut off at k=k0� and the poten-
tial is replaced by a t matrix with

t� = t��
� =
4�

m ln��0/�k0�
2/m − i
��

. �B6�

Now the functional exp �S�� is to be integrated over the
variables a†�p� ,a�p� within the momentum shell k0	k
	k0�, where k0 is defined from the inequality
k0

2 /m�T / ln ��0 /�� and serves to distinguish between
slow and rapid particles. Variables with momenta
smaller than k0 are taken into account in the action by
the transformation

a†�p�,a�p� → ��0�k0��V�1/2�p0, �B7�

where �0�k0� is the density of slow particles and one can
introduce the density of fast particles �1�k0�.

After the transformation �B7� one can make use of
standard perturbation theory formalism and derive ex-
pressions for the densities �0 and �1. Their sum gives the
total density �=�0+�1=�n+�s, which is independent of
auxiliary momenta k0 and k0�,

� =
m�

4�
�ln �0/� − 1� −

1

�2��2 	 d2k
k2

2m��k�
nB�k� ,

�B8�

where nB�k�= �e��k −1�−1, and the formulas for the nor-
mal and the superfluid component densities read

�n =
�

�2��2 	 d2k
k2

2m
nB�k��1 + nB�k�� ,
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�s =
m�

4�
�ln �0/� − 1� −

1

�2��2 	 d2k

2m
k2nB�k�

�� 1

�k
− ��nB�k� + 1�� . �B9�

Equations �B8� and �B9� define the thermodynamics of
the system below the phase transition. Above the phase
transition one can use the standard perturbation theory
for calculating the Green’s functions and thermodynami-
cal quantities. The critical temperature is now derived
from the condition �=�n at the transition.
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