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The proximity effect at superconductor-ferromagnet interfaces produces damped oscillatory behavior
of the Cooper pair wave function within the ferromagnetic medium. This is analogous to the
inhomogeneous superconductivity, predicted long ago by Fulde and Ferrell �P. Fulde and R. A. Ferrell,
1964, “Superconductivity in a strong spin-exchange field,” Phys. Rev. 135, A550–A563�, and by Larkin
and Ovchinnikov „A. I. Larkin and Y. N. Ovchinnikov, 1964, “Inhomogeneous state of
superconductors,” Zh. Eksp. Teor. Fiz. 47, 1136–1146 �Sov. Phys. JETP 20, 762–769 �1965��…, and
sought by condensed-matter experimentalists ever since. This article offers a qualitative analysis of the
proximity effect in the presence of an exchange field and then provides a description of the properties
of superconductor-ferromagnet heterostructures. Special attention is paid to the striking
nonmonotonic dependence of the critical temperature of multilayers and bilayers on the
ferromagnetic layer thickness as well as to the conditions under which “�” Josephson junctions are
realized. Recent progress in the preparation of high-quality hybrid systems has permitted the
observation of many interesting experimental effects, which are also discussed. Finally, the author
analyzes the phenomenon of domain-wall superconductivity and the influence of superconductivity on
the magnetic structure in superconductor-ferromagnet bilayers.
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I. INTRODUCTION

Due to their incompatible nature, singlet supercon-
ductivity and ferromagnetic order do not coexist in bulk
materials. Ginzburg �1956� first formulated the problem
of the coexistence of magnetism and superconductivity
considering an orbital mechanism by which supercon-
ductivity is suppressed �the interaction of the supercon-
ducting order parameter with a vector potential A of the
magnetic field�. After the advent of the BCS theory by
Bardeen, Cooper, and Schrieffer �1957�, it became clear
that superconductivity in the singlet state could also be
destroyed by an exchange mechanism. The exchange
field, in a magnetically ordered state, tends to align spins
of Cooper pairs in the same direction, thus preventing a
pairing effect. This is the so-called paramagnetic effect
�Saint-James et al., 1969�. Anderson and Suhl �1959�
demonstrated that ferromagnetic ordering is unlikely to
appear in the superconducting phase. The main reason
for this is the suppression of the zero-wave-vector com-
ponent of the electronic paramagnetic susceptibility in
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the presence of superconductivity. In such a situation the
energy for ferromagnetic ordering decreases and, in-
stead of ferromagnetic order, nonuniform magnetic or-
dering should appear. Anderson and Suhl �1959� called
this state cryptoferromagnetic.

The 1977 discovery of ternary rare-earth �RE� com-
pounds �RE�Rh4B4 and �RE�Mo6X8 �X=S, Se; for a re-
view, see, for example, Maple and Fisher, 1982� provided
the first experimental evidence of magnetism and super-
conductivity coexisting in stoichiometrical compounds.
It turned out that in many of these systems superconduc-
tivity coexists with antiferromagnetic order, and the
Néel temperature TN�Tc, the critical temperature.

The more recent discovery of superconductivity in the
quaternary intermetallic compounds ��RE�Ni2B2C, for a
review, see, for example, Müller and Narozhnyi, 2001�
offers another example of antiferromagnetism and su-
perconductivity coexisting.

Indeed, superconductivity and antiferromagnetism
can coexist quite peacefully because, on average, the ex-
change and orbital fields are zero at distances of the
order of the Cooper pair size or superconducting coher-
ence length. Even more interesting, reentrant supercon-
ductivity was observed in ErRh4B4 and HoMo6S8
�Maple and Fisher, 1982�. For example, ErRh4B4 be-
comes a superconductor below Tc=8.7 K. When it is
cooled to the Curie temperature ��0.8 K, an inhomo-
geneous magnetic order appears in the superconducting
state. With further cooling the superconductivity is de-
stroyed by the onset of a first-order ferromagnetic tran-
sition at the second critical temperature Tc2�0.7 K. An-
other example of reentrant superconductivity is
HoMo6S8 with Tc=1.8 K, ��0.74 K, and Tc2�0.7 K.

As predicted by Anderson and Suhl �1959�, a nonuni-
form magnetic order appears at the Curie temperature
in these compounds. Its presence has been confirmed by
neutron-scattering experiments. The period of this mag-
netic structure is smaller than the superconducting co-
herence length but larger than the interatomic distance.
In some sense this structure is the realization of a com-
promise between superconductivity and ferromag-
netism: for the superconductivity it is seen as antiferro-
magnetism, but for the magnetism it looks like
ferromagnetism. Theoretical analysis, taking into ac-
count orbital and exchange mechanisms as well as mag-
netic anisotropy �for a review, see Bulaevskii et al.,
1985�, revealed that the coexistence phase is a domain-
like structure with very small period. The region in
which magnetism and superconductivity coexist in
ErRh4B4 and HoMo6S8 is narrow, but in HoMo6Se8 the
domain of coexistence survives until T=0 K.

The first truly ferromagnetic superconductors, UGe2
�Saxena et al., 2000� and URhGe �Aoki et al., 2001�,
were discovered only recently. Apparently these systems
have a triplet pairing character which permits the coex-
istence of superconducting with ferromagnetism. In-
deed, superconductivity in URhGe �Aoki et al., 2001�
appears below 0.3 K in the ferromagnetic phase, while
the Curie temperature is �=9.5 K; this makes the sin-

glet scenario of superconductivity rather improbable.
Though the coexistence of singlet superconductivity

with ferromagnetism is very unlikely in bulk com-
pounds, it may be easily achieved in artificially fabri-
cated layered ferromagnet/superconductor �F/S� sys-
tems. Due to the proximity effect described later, the
Cooper pairs can penetrate into the F layer and induce
superconductivity there. In such a case we have a unique
opportunity to study the properties of superconducting
electrons under the influence of a large exchange field.
In addition, it is possible to study the interplay between
superconductivity and magnetism in a controlled man-
ner, since by varying the layer thicknesses we change the
relative strengths of two competing orderings. The be-
havior of the superconducting condensate under these
conditions is quite peculiar.

A long time ago Larkin and Ovchinnikov �1964� and
Fulde and Ferrell �1964� demonstrated that, in a pure
ferromagnetic superconductor at low temperature, su-
perconductivity may be nonuniform. Due to the incom-
patibility of ferromagnetism and superconductivity it is
not easy to verify this prediction experimentally.
Superconducting/ferromagnet systems are in some ways
analogous to the nonuniform superconducting state. The
Cooper pair wave function extends from superconductor
to ferromagnetic with damped oscillatory behavior. This
results in many new effects, which we discuss in this re-
view: spatial oscillations of the electron density of states,
a nonmonotonic dependence of the critical temperature
of S/F multilayers and bilayers on the ferromagnet layer
thickness, and the realization of “�” Josephson junc-
tions in S/F/S systems. Spin-valve behavior in complex
S/F structures gives another example of the interesting
interplay between magnetism and superconductivity, an
effect that is promising for potential applications. We
also discuss localized domain-wall superconductivity in
S/F bilayers and the inverse influence of superconductiv-
ity on ferromagnetism, which favors nonuniform mag-
netic structures. An interesting example of atomic-
thickness S/F multilayers is provided by layered
superconductors like Sm1.85Ce0.15CuO4 and
RuSr2GdCu2O8. For such systems the exchange field in
the F layer also favors the �-phase behavior, with an
alternating order parameter in adjacent superconducting
layers.

Note that practically all interesting effects related to
the interplay between superconductivity and magnetism
in S/F structures occur at the nanoscale range of layer
thicknesses. The observation of these effects became
possible only recently due to the great progress in the
preparation of high-quality hybrid F/S systems. The ex-
perimental progress and the promise of potential appli-
cations in turn stimulated a revival of interest in the
interplay of superconductivity and ferromagnetism in
heterostructures. It seems to be timely to review the re-
search in this domain and consider the outlook for fu-
ture work.
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II. PARAMAGNETIC LIMIT AND QUALITATIVE
EXPLANATION OF THE NONUNIFORM PHASE
FORMATION

A. The �H ,T� phase diagram

For a pure paramagnetic effect, the critical field of a
superconductor Hp at T=0 may be found from a com-
parison of the energy gain �En due to the electron-spin
polarization in the normal state and the superconducting
condensation energy �Es. In the normal state, the polar-
ization of the electron gas changes its energy in the mag-
netic field by

�En = − �n
H2

2
, �1�

where �n=2�B
2 N�0� is the spin susceptibility of the nor-

mal metal, �B is the Bohr magneton, 2N�0� is the density
of electron states at Fermi level �per two spin projec-
tions�, and the electron g factor is equal to 2.

On the other hand, in a superconductor the polariza-
tion is absent, but the BCS pairing energy decreases by

�Es = − N�0�
�0

2

2
, �2�

where �0=1.76Tc is the superconducting gap at T=0.
From the condition �En=�Es, we find the Chan-
drasekhar �1962�-Clogston �1962� limit, or the paramag-
netic limit at T=0,

Hp�0� =
�0

�2�B

. �3�

Note that this field represents the first-order phase tran-
sition from a normal to a superconducting state. The
complete analysis �Saint-James et al., 1969� demon-
strates that at T=0 this critical field is higher than the
second-order phase transition Hp

II�0�=�0 /2�B, and the
transition from a normal to a uniform superconducting
state is of second order at T*�T�Tc, where T*

=0.56Tc, H*=H�T*�=0.61�0 /�B=1.05Tc /�B. However,
Fulde and Ferrell �1964� and Larkin and Ovchinnikov
�FFLO� �1964� predicted in the framework of the model
of pure paramagnetic effect the appearance of the non-
uniform superconducting state with a sinusoidal modu-
lation of the superconducting order parameter at the
scale of the superconducting coherence length �s. In this
FFLO state, the Cooper pairs have a finite momentum,
compared with zero momentum in conventional super-
conductors. Recently, Casalbuoni and Nardulli �2004� re-
viewed the theory of the inhomogeneous superconduc-
tivity applied to the condensed matter and quantum
chromodynamics at high density and low temperature.

The critical field of the second-order transition into
the FFLO state appears above the first-order transition
line into a uniform superconducting state �Saint-James et
al., 1969�. At T=0, it is HFFLO�0�=0.755�0 /�B whereas
Hp=0.7�0 /�B. This FFLO state only appears in the tem-
perature interval 0�T�T*, and is sensitive to impuri-
ties �Aslamazov, 1968�. In the dirty limit it is suppressed,

and the first-order transition into the uniform supercon-
ducting state occurs instead. The phase diagram for
three-dimensional �3D� superconductors in the pure
paramagnetic effect model is presented in Fig. 1 �Saint-
James et al., 1969�. Up to now, there were no unambigu-
ous experimental proofs of this state. Note, however,
that recently the magnetic-field-induced superconductiv-
ity has been observed in the quasi-two-dimensional or-
ganic conductor �BETS�2FeCl4 �Uji et al., 2001� which is
an excellent candidate for the FFLO state formation
�Balicas et al., 2001; Houzet et al., 2002�.

B. Exchange field in the ferromagnet

In a ferromagnet an exchange interaction between the
electrons and magnetic moments may be considered as
an effective Zeeman field. In the case of magnetic mo-
ments with spin Si, localized in the sites ri, their interac-
tion with electron spins is described by the exchange
Hamiltonian

Hint =� d3r�+�r��	
i

J�r − ri�Si	
��r� , �4�

where ��r� is the electron’s spinor operator, 	
= �	x ,	y ,	z� are the Pauli matrices, and J�r� is the ex-
change integral. Below the Curie temperature �, the av-
erage value of the localized spins Si� is nonzero, and the
exchange interaction may be considered as an effective
Zeeman field Heff= �Si

z�n /�B��J�r�d3r, where n is the
concentration of localized moments, and the spin quan-
tization z axis is chosen along the ferromagnetic mo-
ment. It is convenient to introduce the exchange field h
as

FIG. 1. The �T ,H� phase diagram for the 3D superconductor.
At temperatures below T*=0.56Tc the second-order transition
occurs from the normal to the nonuniform superconducting
FFLO phase. The bold line corresponds to the first-order tran-
sition into the uniform superconducting state, and the dotted
line represents the second-order transition into the nonuni-
form superconducting state.
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h = �BHeff = Si
z�n� J�r�d3r = s�T�h0, �5�

where s�T�= Si
z� / Si

z�T=0 is the dimensionless magnetiza-
tion and h0 is the maximum value of an exchange field at
T=0. The exchange field h describes the spin-dependent
part of the electron’s energy and the exchange Hamil-
tonian �4� is then

Hint =� d3r�+�r�h	z��r� . �6�

If we also want to take into account the proper Zeeman
field of magnetization M, then replace h in Eq. �6� by
h+4�M�B. The reader is warned that, in principle, if the
exchange integral is negative, the exchange field will be
in the direction opposite to the magnetic moments and
the Jaccarino-Peter compensation effect �Jaccarino and
Peter, 1962� is possible. However, in ferromagnetic met-
als, the contribution of the magnetic induction to the
spin splitting is several orders of magnitude smaller than
that of the exchange interaction and may be neglected.
In the case of the Ruderman-Kittel-Kasuya-Yosida
�RKKY� mechanism of the ferromagnetic ordering, the
Curie temperature ��h0

2 /EF and in all real systems the
exchange field h0
�,Tc. This explains that for singlet
superconductivity and ferromagnetism to coexist the
conditions required are very stringent. Indeed, if �
�Tc the exchange field in a ferromagnet h
Tc, which
strongly exceeds the paramagnetic limit. On the other
hand, if ��Tc then, instead of the ferromagnetic tran-
sition inhomogeneous magnetic ordering appears
�Maple and Fisher, 1982; Bulaevskii et al., 1985�. The
large value of the exchange field in a ferromagnet per-
mits us to concentrate on the paramagnetic effect and
neglect the orbital one. Note that well below the Curie
temperature the magnetic induction 4�M in ferromag-
nets is of the order of several kOe.

C. Why does the Fulde-Ferrell-Larkin-Ovchinnikov state
appear?

What is the physical origin of the superconducting
order-parameter modulation in the FFLO state? The ap-
pearance of modulation in the superconducting order
parameter is related to Zeeman’s splitting of the elec-
tron’s level under a magnetic field acting on electron
spins. To demonstrate this, we consider the simplest case
of the 1D superconductor.

In the absence of the field, a Cooper pair is formed by
two electrons with opposite momenta +kF and −kF and
opposite spins �↑� and �↓�, respectively. The resulting
momentum of the Cooper pair will be kF+ �−kF�=0. Un-
der a magnetic field, because of Zeeman’s splitting, the
Fermi momentum of the electron with spin �↑� will shift
from kF to k1=kF+�kF, where �kF=�BH /vF and vF is
the Fermi velocity. Similarly, the Fermi momentum of an
electron with spin �↓� will shift from −kF to k2=−kF
+�kF �see Fig. 2�. Then, the resulting momentum of the
Cooper pair will be k1+k2=2�kF�0, which implies that

the space modulation of the superconducting order pa-
rameter has a resulting wave vector 2�kF. Such an expla-
nation presents how a nonuniform superconducting
state forms in the presence of the field acting on electron
spins, and, at the same time, demonstrates the absence
of a paramagnetic limit �at T→0� for the 1D supercon-
ductor �Buzdin and Polonskii, 1987�. For 3D �Larkin and
Ovchinnikov, 1964; Fulde and Ferrell, 1964� or 2D �Bu-
laevskii, 1973� superconductors, it is not possible to
choose the single wave vector �kF which compensates
the Zeeman splitting for all electrons on the Fermi sur-
face, as �kF depends on the direction of vF, and the para-
magnetic limit is preserved. However, the critical field
for a nonuniform state at T=0 is always higher than a
uniform one. When T�BH, at finite temperature, the
smearing of the electron distribution function near the
Fermi energy decreases the difference of energies be-
tween nonuniform and uniform states. From microscopi-
cal calculations, at T�T*=0.56Tc the uniform supercon-
ducting phase is always favored �Saint-James et al.,
1969�.

D. Generalized Ginzburg-Landau functional

Qualitatively, the FFLO phase formation and the
proximity effect in S/F systems may be described in the
framework of the generalized Ginzburg-Landau expan-
sion. Let us first recall the standard Ginzburg-Landau
functional �see, for example, de Gennes, 1966a�,

F = a���2 + ���� ��2 +
b

2
���4, �7�

where � is the superconducting order parameter and the
coefficient a vanishes at the transition temperature Tc.

FIG. 2. Energy band of the 1D superconductor near the Fermi
energy. Due to the Zeeman splitting the energy of the elec-
trons with spin orientation along the magnetic field �↑� de-
creases, dotted line, while the energy of the electrons with the
opposite spin orientation �↓� increases, dotted line. The split-
ting of the Fermi momenta is ±�kF, where �kF=�BH /vF. The
Cooper pair comprises one electron with spin �↑� and momen-
tum kF+�kF, and another electron with spin �↓� and momen-
tum −kF+�kF. The resulting momentum of the Cooper pair is
nonzero: kF+�kF+ �−kF+�kF�=2�kF�0.
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At T�Tc, the coefficient a is negative and the minimum
of F in Eq. �7� occurs for a uniform superconducting
state with ���2=−a /b. If we also consider the paramag-
netic effect of the magnetic field, all the coefficients in
Eq. �7� will depend on the energy of the Zeeman split-
ting �BH, i.e., an exchange field h in the ferromagnet.
Note that we neglect the orbital effect, so there is no
vector potential A in Eq. �7�. To take into account the
orbital effect in the Ginzburg-Landau functional, we
may substitute the gradient by its gauge-invariant form

�� →�� − �2ie /c�A. The orbital effect is usually much more
important for the superconductivity destruction than the
paramagnetic one. This explains why in the standard
Ginzburg-Landau theory there is no need to take into
account the field and temperature dependence of the
coefficients � and b. However, when the paramagnetic
effect becomes predominant, this approximation fails.
What are the consequences? If it was simply a renormal-
ization of the coefficients in the Ginzburg-Landau func-
tional, the general superconducting properties of the
system would basically be the same. However, qualita-
tively new physics emerges due to the fact that the coef-
ficient � changes its sign at the point �H* ,T*� of the
phase diagram; see Fig. 1. A negative sign of � means
that the minimum of the functional does not correspond
to a uniform state, and a spatial variation of the order
parameter decreases the energy of the system. To de-
scribe such a situation it is necessary to add a higher-
order derivative term in the expansion �7�, and the gen-
eralized Ginzburg-Landau expansion will be

FG = a�H,T����2 + ��H,T���� ��2 +
��H,T�

2
��� 2��2

+
b�H,T�

2
���4. �8�

The critical temperature of the second-order phase tran-
sition into a superconducting state can be found from
solving the linear equation for the superconducting or-
der parameter:

a� − ��� +
�

2
�2� = 0. �9�

If we seek a nonuniform solution �=�0 exp�iq ·r�, the
corresponding critical temperature depends on the wave
vector q and is given by

a = − �q2 −
�

2
q4. �10�

Note that the coefficient a is given by a=��T−Tcu�H��,
where Tcu�H� is the critical temperature of the transition
into the uniform superconducting state. The gradient
term in the Ginzburg-Landau functional is usually posi-
tive ��0, and the highest transition temperature occurs
at Tcu�H�; this is realized for the uniform state with q
=0. However, in the case ��0, the maximum critical
temperature corresponds to the finite value of the
modulation vector q0

2=−� /� and the corresponding tran-

sition temperature into the nonuniform FFLO state
Tci�H� with the coefficient a given by

a = ��Tci − Tcu� =
�2

2�
. �11�

This temperature is higher than the critical temperature
Tcu of the uniform state. Therefore, the appearance of
an FFLO state may simply be interpreted as a sign
change of the gradient term in the Ginzburg-Landau
functional. A more detailed analysis of the FFLO state
using the generalized Ginzburg-Landau functional
shows that it is not an exponential but a one-
dimensional sinusoidal modulation of the order param-
eter which gives the minimum energy �Buzdin and
Kachkachi, 1997; Houzet et al., 1999�. In fact, the gener-
alized Ginzburg-Landau functional describes a new type
of superconductor with very different properties, and
the theory of superconductivity must be redone on the
basis of this functional. The orbital effect in the gener-
alized Ginzburg-Landau functional may be introduced

with the usual gauge-invariant procedure �� →��

− �2ie /c�A. The resulting expression for the supercon-
ducting current is different from the usual one and the
critical field corresponds to higher Landau level solu-
tions as well as new types of vortex lattices may exist
�Houzet and Buzdin, 2000, 2001�.

III. PROXIMITY EFFECT IN FERROMAGNETS

A. Some generalities about superconducting proximity
effect

The contact of materials with different long-range or-
dering modifies their properties near the interface. In
the case of a superconductor–normal-metal interface,
the Cooper pairs can penetrate the normal metal at
some distance. If the electron’s motion is diffusive, this
distance is proportional to the thermal diffusion length
scale LT��D /T, where D is the diffusion constant. In
the case of a pure normal metal the corresponding char-
acteristic distance is �T�vF /T. Therefore, superconduct-
inglike properties may be induced in the normal metal,
and this phenomenon is called the proximity effect. Si-
multaneously the leakage of the Cooper pairs weakens
the superconductivity near the interface with a normal
metal. This effect is called the inverse proximity effect,
and results in a decrease of the superconducting transi-
tion temperature in a thin superconducting layer in con-
tact with a normal metal. If the thickness of a supercon-
ducting layer is smaller than a critical one, the proximity
effect totally suppresses the superconducting transition.
All these phenomena and earlier experimental and the-
oretical works on the proximity effect were reviewed by
Deutscher and de Gennes �1969�.

Note that the proximity effect is a rather general phe-
nomenon not limited by the superconducting phase tran-
sition. For example, in the case of surface magnetism
�White and Geballe, 1979� the critical temperature at the
surface can be higher than the bulk one. As a result the
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magnetic transition at the surface induces the magneti-
zation nearby. On the other hand, the volume signifi-
cantly affects the surface transition characteristics.

However, a unique characteristic of the superconduct-
ing proximity effect is the Andreev reflection revealed at
the microscopical level. Andreev �1964� demonstrated
how single-electron states of the normal metal are con-
verted into Cooper pairs and also explained the trans-
formation at the interface of the dissipative electrical
current into the dissipationless supercurrent. An elec-
tron with an energy below the superconducting gap is
reflected at the interface as a hole. The corresponding
charge 2e is transferred to the Cooper pair which ap-
pears on the superconducting side of the interface. The
manifestation of this double charge transfer is that for
perfect contact the subgap conductance appears to be
twice the normal-state conductance. The classical work
by Blonder, Tinkham, and Klapwijk �1982� gives the de-
tailed theory of this phenomenon.

Andreev reflection plays a primary role for the under-
standing of quantum transport properties of
superconductor–normal-metal systems. The interplay
between Andreev reflection and the proximity effect
was reviewed by Pannetier and Courtois �2000�. The
reader can find a detailed description of the Andreev
reflection in normal-metal–superconductor junctions us-
ing scattering theory in the review by Beenakker �1997�.
A recent review by Deutscher �2005� is devoted to the
Andreev reflection spectroscopy of the superconductors.

B. Damped oscillatory dependence of the Cooper pair
wave function in ferromagnets

The physics of the oscillating Cooper pair wave func-
tion in a ferromagnet is similar to the physics of the
superconducting order-parameter modulation in the
FFLO state—see Sec. II.C. A qualitative picture of this
effect has been provided by Demler, Arnold, and Beas-
ley �1997�. When a superconductor is in a contact with a
normal metal, the Cooper pairs penetrate across the in-
terface at some distance inside the metal. A Cooper pair
in a superconductor consists of two electrons with oppo-
site spins and momenta. In a ferromagnet the up-spin
electron, defined the spin orientation along the ex-
change field, decreases its energy by h, while the down-
spin electron energy increases by the same value. To
compensate this energy variation, the up-spin electron
increases its kinetic energy, while the down-spin electron
decreases its kinetic energy. As a result the Cooper pair
acquires a center-of-mass momentum 2�kF=2h /vF,
which implies the modulation of the order parameter
with period �vF /h. The direction of the modulation
wave vector must be perpendicular to the interface, be-
cause only this orientation provides for a uniform order
parameter in the superconductor.

To get an idea of the proximity effect in S/F struc-
tures, we may also start from a description based on the
generalized Ginzburg-Landau functional �8�. Such an
approach is adequate for a small wave-vector modula-
tion case, i.e., in the vicinity of the �H* ,T*� point of the

�H ,T� phase diagram; otherwise, the microscopical
theory must be used. This description corresponds to a
very weak ferromagnet with an extremely small ex-
change field h��BH*=1.05Tc, which is nonrealistic
since h
Tc. However, we discuss this case to get a pre-
liminary understanding of the phenomenon. We address
the question of the proximity effect for a weak ferro-
magnet described by the generalized Ginzburg-Landau
functional �8�. More precisely, we consider the decay of
the order parameter in the normal phase, i.e., at T
�Tci assuming that our system is in contact with another
superconductor with a higher critical temperature, and
the x axis is chosen perpendicular to the interface �see
Fig. 3�.

The induced superconductivity is weak and, to deal
with it, we use the linearized equation for the order pa-
rameter �9�, which for our geometry is

a� − �
�2�

�x2 +
�

2
�4�

�x4 = 0. �12�

The solutions of this equation in the normal phase are
given by �=�0 exp�kx�, with a complex wave vector k
=k1+ ik2, and

k1
2 =

���
2�

��1 +
T − Tci

Tci − Tcu
− 1� , �13�

k2
2 =

���
2�

�1 +�1 +
T − Tci

Tci − Tcu
� . �14�

If we choose the gauge with the real order parameter in
the superconductor, then the solution for the decaying

FIG. 3. Schematic behavior of the superconducting order pa-
rameter near the �a� superconductor-normal metal and �b�
superconductor-ferromagnet interfaces. The continuity of the
order parameter at the interface implies the absence of the
potential barrier. In the general case at the interface the jump
of the superconducting order parameter occurs.

940 A. I. Buzdin: Proximity effects in superconductor-ferromagnet heterostructures

Rev. Mod. Phys., Vol. 77, No. 3, July 2005



order parameter in the ferromagnet is also real,

��x� = �i exp�− k1x�cos�k2x� , �15�

where the choice of the root for k is the condition k1
�0. The decay of the order parameter is then accompa-
nied by its oscillation �Fig. 3�b��, which is a characteristic
of the proximity effect for the system considered. Ap-
proaching the critical temperature Tci the decaying wave
vector vanishes k1→0, while the oscillating wave vector
k2 approaches the FFLO wave vector, k2→���� /�, and a
FFLO phase emerges. Let us compare this behavior with
the standard proximity effect �Deutscher and de
Gennes, 1969� described by the linearized Ginzburg-
Landau equation for the order parameter,

a� − �
�2�

�x2 = 0, �16�

with ��0. Here Tc simply coincides with Tcu, and the
decaying solution is �=�0 exp�−x /��T��, where the co-
herence length ��T�=�� /a �Fig. 3�a��. This simple analy-
sis provides evidence for the appearance of order pa-
rameter oscillations in the presence of an exchange field.
This is a fundamental difference between the proximity
effect in S/F and S/N systems, and it is at the origin of
peculiar characteristics of S/F heterostructures.

In real ferromagnets, the exchange field is large com-
pared with the superconducting temperature and energy
scales, and as such the gradients of the superconducting
order-parameter variations are also large, and cannot be
treated with the generalized Ginzburg-Landau func-
tional. To describe the relevant experimental situation
we need to use a microscopical approach. The most con-
venient scheme �see the Appendix� is the
Bogoliubov–de Gennes equations or the Green’s func-
tions using the quasiclassical Eilenberger �1968� or Us-
adel �1970� equations.

In S/F systems if the electron-scattering mean free
path l is small, the most natural approach is to use the
Usadel equations for the Green’s functions averaged
over the Fermi surface �see the Appendix�. Linearized
over the pair potential ��x�, the Usadel equation for the
anomalous function F�x ,�� depending only on one co-
ordinate x is

���� + ih sgn��� −
D

2
�2

�x2�F�x,�� = ��x� , �17�

where �= �2n+1��T are the Matsubara frequencies, and
D= 1

3vFl is the diffusion coefficient. In the F region, we
may neglect the Matsubara frequencies compared to the
large exchange field h
Tc �the pairing potential � is
absent and we assume that the BCS coupling constant �
is zero there�. This results in a very simple form of the
Usadel equation for the anomalous function Ff in the
ferromagnet

ih sgn���Ff −
Df

2
�2Ff

�x2 = 0, �18�

where Df is the diffusion coefficient in the ferromagnet.
For the geometry in Fig. 3 and ��0, the decaying solu-
tion for Ff is

Ff�x,�� 0� = A exp�−
i + 1

�f
x� , �19�

where �f=�Df /h is the characteristic length of the super-
conducting correlation decay �with oscillations� in the F
layer �see Table I�. As a result of the condition h
Tc,
this length is much smaller than the superconducting co-
herence length �s=�Ds /2�Tc, i.e., �f��s. The constant A
is determined by the boundary conditions at the S/F in-
terface. For example, in the case of a low resistivity of a
ferromagnet, at first approximation the anomalous func-
tion in a superconductor Fs is independent of the coor-
dinate and similar to the absence of the ferromagnet,
i.e., Fs=� /��2+�2. If, in addition, the interface is trans-
parent then the continuity of the function F at the F/S
boundary gives A=� /��2+�2. For ��0, we have
Ff�x ,��0�=Ff

*�x ,��0�. In a ferromagnet, the role of
the Cooper pair wave function is played by � then de-
cays as

�� 	
�

F�x,�� � � exp�−
x

�f
�cos� x

�f
� . �20�

We retrieve the damping oscillatory behavior of the or-
der parameter �15�; see Fig. 3�b�. The conclusion we ob-

TABLE I. Characteristic length scales of S/F proximity effect.

Thermal diffusion length LT � D

2�T

Superconducting coherence
length �s

vFs

2�Tc
in pure limit

� Ds

2�Tc
in dirty limit

Superconducting correlation
decay length �1f in a

ferromagnet

vFf

2�T
in pure limit

�f =�Df

h
in dirty limit

Superconducting correlation
oscillating length �2f in a

ferromagnet

vFf

2h
in pure limit

�f =�Df

h
in dirty limit
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tain from the microscopic approach is that in the dirty
limit the scale for the oscillation and decay of the Coo-
per pair wave function in a ferromagnet is the same.

In the case of a clean ferromagnet the damped oscil-
latory behavior of the Cooper pair wave function re-
mains, although at zero temperature the damping is non-
exponential and much weaker ��1/x�. Indeed, the
decaying solution of the Eilenberger equation in the
clean limit �see the Appendix, Sec. 2� is

f�x,�,�� � exp�−
2�� + ih�x
vFf cos �

� , �21�

where � is the angle between the x axis and the Fermi
velocity in a ferromagnet, and vFf is its modulus. After
averaging over the angle � and summing over the Mat-
subara frequencies � we obtain

�� 	
�
�

0

�

f�x,�,��sin � d��
1

x
exp�−

x

�1f
�sin� x

�2f
� .

�22�

Here the decay length is �1f=vFf /2�T and the oscillating
length is �2f=vFf /2h �see Table I�. At low temperature
�1f→0 and the Cooper pair wave function decays slowly
��1/x�sin�x /�2f�. An important difference with the prox-
imity effect in the normal metal is the presence of short-
ranged oscillations of the order parameter with the
temperature-independent period 2��2f. In contrast with
the dirty limit in a clean ferromagnet the characteristic
lengths of the superconducting correlations’ decay and
oscillations are not the same. Halterman and Valls
�2001� performed studies of the ferromagnet-
superconductor interfaces using the self-consistent nu-
merical solution of microscopical Bogoliubov–de
Gennes equations. They clearly observed the damped
oscillatory behavior of the Cooper pair wave function of
the type ���1/x�sin�x /�2f�.

We conclude that at low temperatures the proximity
effect in clean ferromagnet metals is long ranged. On
the other hand, in the dirty limit the use of the Usadel
equations gives an exponential decay of�. This is due to
the fact that the Usadel equations are obtained by aver-
aging over the impurities configurations. Zyuzin et al.
�2003� pointed out that at distances x
�f the anomalous
Green’s function F as well as the Cooper pair wave func-
tion has a random sample-specific sign, while the modu-
lus does not decay exponentially. This leads to the sur-
vival of the proximity effect in the dirty ferromagnet
limit at distances x
�f. The use of the Usadel equations
at such distances may be misleading. However, from a
practical point of view the range of interest is x�5�f,
because at larger distances it is difficult to observe the
oscillating phenomena in experiment. In this range the
use of the Usadel equation is adequate.

The characteristic length of the induced superconduc-
tivity variation in a ferromagnet is small compared with
the superconducting length, and this implies the use of
the microscopic theory of the superconductivity to de-
scribe the proximity effect in S/F structures. In this con-

text, the calculations of the free energy of S/F structures
in the framework of the standard Ginzburg-Landau
functional �Ryazanov, Oboznov, Rusanov, et al., 2001;
Ryazanov, Oboznov, Veretennikov, Rusanov, et al., 2001�
cannot be justified. Indeed, neglecting higher gradient
terms in the Ginzburg-Landau functional implies that
the order parameter must be larger than the correlation
length. In the ferromagnet the correlation length is �f

=�Df /h in the dirty limit and �f
0=vFf /h in the clean limit.

We see that the characteristic lengths of the order-
parameter variation in a ferromagnet are similar. There-
fore, higher gradient terms in the Ginzburg-Landau
functional will be of the same order of magnitude as
terms with the first derivative.

C. Density-of-states oscillations

Superconductivity creates a gap in the electronic den-
sity of states �DOS� near the Fermi energy EF, i.e., the
DOS is zero for energy E in the interval EF−��E
�EF+�. It is natural that the induced superconductivity
in S/N structures decreases DOS at EF near the inter-
face. Detailed experimental studies of this phenomenon
have been performed by Moussy et al. �2001�. The
damped oscillatory dependence of the Cooper pair wave
function in a ferromagnet suggests that similar behavior
may be expected for the DOS variation due to the prox-
imity effect. Indeed, the DOS N���, where �=E−EF is
the energy calculated from the Fermi energy, is directly
related to the normal Green’s function in the ferromag-
net Gf�x ,�� �Abrikosov et al., 1975�,

Nf��� = N�0�Re Gf�x,�→ i�� , �23�

where N�0� is the DOS of the ferromagnetic metal. In
the dirty limit taking the relationship between the nor-
mal and anomalous Green’s functions Gf

2+Ff
2=1

�Usadel, 1970� into account, and using Ff

= ��� /��2+�2��exp�−��i+1� /�f�x�, we obtain directly the
DOS at the Fermi energy ��=0� in a ferromagnet �Buz-
din, 2000� at the distance x
�f,

Nf�� = 0� � N�0��1 −
1
2

exp�−
2x

�f
�cos�2x

�f
�� . �24�

This simple calculation implies ��Tc. At certain dis-
tances the DOS at the Fermi energy may be higher than
in the absence of superconductor. This is in contradic-
tion with the proximity effect in S/N systems. Such be-
havior has been observed experimentally by Kontos et
al. �2001� in DOS measurements with planar-tunneling
spectroscopy in Al/Al2O3/PdNi/Nb junctions; see Fig.
4.

For a PdNi layer thickness of 50 Å the cos�2x /�f� term
in Eq. �24� is positive and the DOS decrease inside the
gap is due to the proximity effect. However, for a PdNi
layer thickness of 75 Å the cos�2x /�f� term changes sign
and the DOS becomes larger than its normal effect
value. Such inversion of the DOS permits us to estimate
�f for the PdNi alloy used by Kontos et al. �2001� as
60 Å.
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Currently, there exists only one experimental work on
the DOS in S/F systems, while several theoretical papers
treat this subject in more detail. In a series of papers
Halterman and Valls �2001, 2002, 2003� performed ex-
tensive theoretical studies of the local DOS behavior in
S/F systems in a clean limit using the self-consistent
Bogoliubov–de Gennes approach. They calculated the
DOS spectra in both S and F regions and took into ac-
count the Fermi wave-vector mismatch, interfacial bar-
rier, and sample size.

Fazio and Lucheroni �1999� performed numerical self-
consistent calculations of the local DOS in an S/F system
using the Usadel equation. Impurity scattering on DOS
oscillations has been studied by Baladié and Buzdin
�2001� and Bergeret et al. �2002�. One concludes that
oscillations disappear in the clean limit. Here the calcu-
lations of the DOS oscillations made in the ballistic re-
gime for the ferromagnetic film on the top of the super-
conductor �Zareyan et al., 2001, 2002� depend essentially
on the boundary conditions at the ferromagnet-vacuum
interface. Sun et al. �2002� used the quasiclassical version
of the Bogoliubov–de Gennes equations for numerically
calculating the DOS in the S/F system with a semi-
infinite ferromagnet. They obtained in the clean limit
oscillations of the DOS and presented a quantitative fit
of the experimental data of Kontos et al. �2001�. Aston-
ishingly, in another quasiclassical approach using Eilen-
berger equations oscillations of the DOS are absent for
an infinite electron mean free path �Baladié and Buzdin,
2001; Bergeret et al., 2002�.

DOS oscillations in ferromagnets suggest similar oscil-
latory behavior of the local magnetic moment of the
electrons. The corresponding magnetic moment induced
by the proximity effect may be written as

�M = i�BN�0��T	
�

�Gf�x,�,h� − Gf�x,�,− h�� . �25�

Assuming the low resistivity of a ferromagnet in the
dirty limit at temperatures near Tc, the magnetic mo-
ment is

�M = − �BN�0��
�2

2Tc
exp�−

2x

�f
�sin�2x

�f
� . �26�

Note that the total electron’s magnetic moment in a fer-
romagnet is

M = �M + �BN�0�h . �27�

The local magnetic moment oscillates as does the DOS,
and in some regions M may be higher than in the ab-
sence of superconductivity. The proximity effect also in-
duces the local magnetic moment in a superconductor
near the S/F interface at a distance of the order of su-
perconducting coherence length �s.

Proximity induced magnetism was studied using the
Usadel equations by Krivoruchko and Koshina �2002�
and Bergeret et al. �2004a, 2004b�. Numerical calcula-
tions of Krivoruchko and Koshina �2002� revealed the
damped oscillatory behavior of the local magnetic mo-
ment in a superconductor at the �s scale with positive
magnetization at the interface. On the other hand, Berg-
eret et al. �2004a� argued that the induced magnetic mo-
ment in a superconductor must be negative. This is re-
lated to the Cooper pairs located in space that one
electron of the pair is in the superconductor, while the
other is in the ferromagnet. The direction along the
magnetic moment is favored for the electron in the fer-
romagnet which makes the spin of the other electron in
the superconductor antiparallel.

Microscopic calculations of the local magnetic mo-
ment in the pure limit using the Bogoliubov–de Gennes
equations �Halterman and Valls, 2004a� also revealed
the damped oscillatory behavior of the local magnetic
moment but at the atomic length scale. In the quasiclas-
sical approach oscillations of the local magnetic mo-
ments disappear in the clean limit, similar to the case of
DOS oscillations. The magnitude of the proximity in-
duced magnetic moment is very small, and at the present
time there is no evidence in experiments.

D. Andreev reflection at the S/F interface

Spin effects play an important role in the Andreev
reflection at the S/F interface. An incident spin-up elec-
tron in a ferromagnet is reflected by the interface as a
spin-down hole, and as a result a Cooper pair of elec-
trons with opposite spins appears in a superconductor.
Therefore both the spin-up and spin-down bands of
electrons in a ferromagnet are involved in this process.
de Jong and Beenakker �1995� were the first to demon-
strate the major influence of spin polarization in a ferro-
magnet on the subgap conductance of the S/F interface.
In fully spin-polarized metals all carriers have the same
spin and Andreev reflection is totally suppressed. In
general, with an increase of the spin polarization the

FIG. 4. Measurements of the differential conductance by Kon-
tos et al. �2001� for two Al/Al2O3/PdNi/Nb junctions with two
different thicknesses �50 and 75 Å� of the ferromagnetic PdNi
layer. A 1500-Å-thick aluminum layer was evaporated on SiO
and then quickly oxidized to produce a Al2O3 tunnel barrier.
Tunnel junction areas were defined by evaporating 500 Å of
SiO through masks. A PdNi thin layer was deposited and then
backed by a Nb layer.
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subgap conductance drops from twice the normal-state
conductance value to a small value for highly polarized
metals. Following de Jong and Beenakker �1995�, con-
sider a simple intuitive picture of the conductance
through a ballistic S/F point contact. Using scattering
channels which are subbands which cross the Fermi
level, the conductance at T=0 of a ferromagnet–normal-
metal contact is given by the Landauer formula

GFN =
e2

h
N . �28�

The total number of scattering channels N is the sum
of the spin-up N↑ and spin-down N↓ channels N=N↑
+N↓, and spin polarization gives N↑�N↓. For the case of
the superconductor in contact with the nonpolarized
metal all electrons are reflected as holes, which doubles
the number of scattering channels and the conductance
itself. For the spin-polarized metal where N↑�N↓, all
spin-down electrons are reflected as spin-up holes. How-
ever, only N↓ /N↑�1 of spin-up electrons can be An-
dreev reflected. The subgap conductance of the S/F con-
tact is then

GFS =
e2

h
�2N↓ + 2N↑

N↓
N↑

� = 4
e2

h
N↓. �29�

Comparing this expression with Eq. �28� we see that
GFS /GFN=4N↑ / �N↓+N↑��2 and GFS=0 for the full-
polarized ferromagnet with N↓=0. If spin polarization is
defined as P= �N↑−N↓� / �N↓+N↑�, then the suppression
of the normalized zero-bias conductance gives the value
of P:

GFS

GFN
= 2�1 − P� . �30�

Subsequent experimental measurements of spin polar-
ization with Andreev reflection �Soulen et al., 1998; Up-
adhyay et al., 1998� fully confirmed the efficiency of this
method to probe ferromagnets. Andreev point-contact
spectroscopy permits one to measure the spin polariza-
tion in a much wider range of materials �Zutic, Fabian,
and Das Sarma, 2004� compared with spin-polarized
electron tunneling �Meservey and Tedrow, 1994�.

However, the interpretation of the Andreev reflection
data on the conductance of the S/F interfaces and com-
parison of the spin polarization with tunneling data may
be complicated by band-structure effects �Mazin, 1999�.
Zutic and Das Sarma �1999� and Zutic and Valls �1999,
2000� generalized the theoretical analysis of Blonder,
Tinkham, and Klapwijk �1982� to the case of the S/F
interface. An interesting result is that, in the absence of
the potential barrier at the S/F interface, the spin polar-
ization increases the subgap conductance. The condition
of perfect transparency of the interface is vF↑vF↓=vs

2,
where vF↑ and vF↓ are the Fermi velocities for two spin
polarizations in a ferromagnet, and vs is the Fermi ve-
locity in a superconductor. Vodopyanov and Tagirov
�2003a� proposed a quasiclassical theory of Andreev re-

flection in F/S nanocontacts and analyzed the spin polar-
ization calculated from conductance and tunneling mea-
surements.

Note that a high spin polarization was measured in
CrO2 films P=90% and in La0.7Sr0.3MnO3 films P
=78% �Soulen et al., 1998�. The spin-polarized tunneling
data for these systems are lacking.

Another interesting effect related to crossed Andreev
reflection was predicted by Deutsher and Feinberg
�2000� �see also Yamashita, Takahashi, and Maekawa
�2003�, Yamashita et al. �2003�, and Deutsher �2004��.
The electric current between two ferromagnetic leads
attached to the superconductor strongly depends on the
relative orientation of the magnetization in these leads.
If we assume that the leads are fully polarized, then the
electron coming from one lead cannot experience An-
dreev reflection in the same lead. However, this reflec-
tion is possible in the second lead, provided its polariza-
tion is opposite, and the distance between the leads is
smaller than the superconducting coherence length. The
magnetic resistance between leads will be high for par-
allel orientation and low for antiparallel orientation.

IV. OSCILLATORY SUPERCONDUCTING TRANSITION
TEMPERATURE IN S/F MULTILAYERS AND BILAYERS

A. First experimental evidence of the anomalous
proximity effect in S/F systems

The damped oscillatory behavior of the superconduct-
ing order parameter in ferromagnets may produce com-
mensurability effects between the period of the order-
parameter oscillation ���f� and the thickness of a F
layer. This results in a nonmonotonic superconducting
transition temperature dependence on the F layer thick-
ness in S/F multilayers. Indeed, for a F layer thickness
smaller than �f, the pair wave function in the F layer
changes little and the superconducting order parameter
in the adjacent S layers must be the same. The phase
difference between the superconducting order param-
eters in the S layers is absent and we call this state the
“0” phase. On the other hand, if the F layer thickness
becomes ��f, the pair wave function may cross zero at
the center of the F layer with an opposite sign or � shift
of the phase of the superconducting order parameter in
the adjacent S layers, which we call the “�” phase. An
increase of the F layer thickness may provoke subse-
quent transitions from 0 to � phases, which superpose
on the commensurability effect and result in a non-
monotonic dependence of the critical temperature on
the F layer thickness. For the S/F bilayers, the transi-
tions between 0 and � phases are impossible; the com-
mensurability effect between �f and F layer thickness
nevertheless leads to a nonmonotonic dependence of Tc
on the F layer thickness.

The predicted oscillatory-type dependence of the
critical temperature �Buzdin and Kuprianov, 1990; Ra-
dovic et al., 1991� was subsequently observed experimen-
tally in Nb/Gd �Jiang et al., 1995�, Nb/CuMn �Mercaldo
et al., 1996�, and Nb/Co and V/Co �Obi et al., 1999�
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multilayers, as well as in bilayers Nb/Ni �Sidorenko et
al., 2003�, trilayers Fe/V/Fe �Garifullin et al., 2002�,
Fe/Nb/Fe �Mühge et al., 1996�, Nb/ �Fe/Cu� layers
�Vélez et al., 1999�, and Fe/Pb/Fe �Lazar et al., 2000�.

The strong pair-breaking influence of the ferromagnet
and the nanoscopic range of oscillation period compli-
cate the observation of this effect. Advances in thin-film
processing techniques were crucial for the study of this
phenomenon. The first indications on the nonmonotonic
variation of Tc versus the F layer thickness was obtained
by Wong et al. �1986� for V/Fe superlattices. However,
in subsequent experiments of Koorevaar et al. �1994�, no
oscillatory behavior of Tc was found, while recent stud-
ies by Garifullin et al. �2002� of the superconducting
properties of Fe/V/Fe trilayers revealed the reentrant
Tc behavior as a function of the F layer thickness. Bour-
geois and Dynes �2002� studied amorphous Pb/Ni bi-
layer quench-condensed films and observed only a
monotonic depairing effect with an increase of the Ni
layer thickness. In the work of Sidorenko et al. �2003�, a
comparative analysis of sample preparations was made
and concluded that the molecular beam epitaxy grown
samples do not reveal Tc oscillations, whereas magne-
tron sputtered samples do. This difference is attributed
to the appearance of a magnetically “dead” interdiffused
layer at the S/F interface which plays an important role
for the molecular beam epitaxy grown samples. The
transition-metal ferromagnets, such as Fe, have a
strongly itinerant character of the magnetic moment
which is very sensitive to the local coordination. In thin
Fe layers, the magnetism may strongly decrease and
even vanish. The best choice is to use the rare-earth
ferromagnetic metal with localized magnetic moments.
This has been done by Jiang et al. �1995� who prepared
magnetron sputtered Nb/Gd multilayers, which clearly
revealed the Tc oscillations; see Fig. 5.

In Fig. 5 the curves show a pronounced nonmonotonic
dependence of Tc on the Gd layer thickness. An in-
crease of Tc implies the transition from the 0 phase to
the � phase. Note that previous experiments on the mo-
lecular beam epitaxy grown Nb/Gd samples �Strunk et
al., 1994� revealed a steplike decrease of Tc with increas-
ing Gd layer thickness. A comprehensive analysis of dif-
ferent sample’s quality was made by Chien and Reich
�1999�. Aarts et al. �1997� studied in detail the proximity
effect in a system consisting of the superconducting V
and ferromagnetic V1−xFex alloys and used interface
transparency to understand the pair-breaking mecha-
nism.

B. Theoretical description of the S/F multilayers

To provide a theoretical description of a nonmono-
tonic dependence of Tc, we consider the S/F multilay-
ered system with a thickness of the F layer 2df and the S
layer 2ds; see Fig. 6.

The x axis is chosen perpendicular to the layers with
x=0 at the center of the S layer. The 0 phase corre-
sponds to the same superconducting order-parameter

FIG. 5. Experimental data of Jiang et al. �1995� on the oscilla-
tion of the critical temperature of Nb/Gd multilayers vs thick-
ness of Gd layer dG for two different thicknesses of Nb layers:
�a� dNb=600 Å and �b� dNb=500 Å. Dashed line in �a� is a fit by
the theory of Radovic et al. �1991�.

FIG. 6. S/F multilayer. The x axis is chosen perpendicular to
the planes of the S and F layers with the thicknesses 2ds and
2df, respectively. �a� The curve ��x� represents schematically
the behavior of the Cooper pair wave function in the 0 phase.
Due to symmetry the derivative of � �and F� is zero at the
centers of the S and F layers. The case of the 0 phase is equiva-
lent to the S/F bilayer with the S and F layer thicknesses ds and
df, respectively. �b� The Cooper pair wave function in the �
phase vanishes at the center of the F layers and ��x� is anti-
symmetric toward the center of the F layer.
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sign in all S layers �Fig. 6�a�� while in the � phase the
sign of the superconducting order parameter in adjacent
S layers is opposite �Fig. 6�b��. In the case of a S/F bi-
layer, the anomalous Green’s function F�x� has zero de-
rivative at the boundary with vacuum; see Eq. �32� be-
low. Here the function F�x� is in the 0 phase at the
centers of the S and F layers. As a result, the supercon-
ducting characteristics of a S/F bilayer with thickness ds
and df of the S and F layers, respectively, are equivalent
to that of the S/F multilayer with double layer thickness
�2ds and 2df�.

The approach based on the quasiclassical Eilenberger
�1968� or Usadel �1970� equations is very convenient to
deal with S/F systems �see the Appendix, Sec. 2�. In fact,
it is much simpler than the complete microscopical
theory, it does not need detailed knowledge of all the
characteristics of the S and F metals, and is applicable
for scales larger than the atomic one. As such, it must
work for thicknesses of the layers in the range
20–200 Å, which is of primary interest for S/F systems.

In the dirty limit, if the electron elastic scattering time
�= l /vf is small, more precisely Tc��1 and h��1, the
use of the Usadel equations is justified. The second con-
dition, however, is much more restrictive due to a large
value of the exchange field �h
Tc�. The Usadel equa-
tions deal only with the Green’s functions G�x ,�� and
F�x ,�� averaged over the Fermi surface. Moreover, to
calculate the critical temperature of the second-order su-
perconducting transition in S/F systems, consider only
the limit of the small superconducting order parameter
��→0� in the Usadel equations. This linearization per-
mits us to set G=sgn��� and in the form linearized over
�, the Usadel equation for the anomalous function Fs in
the S region is written as

���� −
Ds

2
�2

�x2�Fs = ��x� , �31�

where Ds is the diffusion coefficient in the S layer. In the
F region, the exchange field is present while the pairing
potential � is absent, and the corresponding Usadel
equation for the anomalous function Ff is Eq. �18�.

The equations for Fs and Ff must be supplemented by
the boundary conditions. At the superconductor-vacuum
interface, the boundary condition is simply a zero de-
rivative of the anomalous Green’s function, which im-
plies the absence of the superconducting current
through the interface. The general boundary conditions
for the Usadel equations at the superconductor-normal
metal interface have been derived by Kupriyanov and
Lukichev �1988� and near the critical temperature they
read

� �Fs

�x �
x=0

=
	f

	s
� �Ff

�x �
x=0

,

Fs�0� = Ff�0� − �n�B� �Ff

�x �
x=0

, �32�

where 	f�	s� is the conductivity of the F layer �S layer
above Tc�. The parameter �B characterizes the interface
transparency T=1/ �1+�B� and is related to the S/F
boundary resistance per unit area Rb via �B=Rb	f /�n
�Kupriyanov and Lukichev, 1988�. In analogy with the
superconducting coherence length �s=�Ds /2�Tc, we in-
troduce the normal-metal coherence length �n

=�Df /2�Tc. The boundary conditions correspond to the
S/F interface x=0 and the positive direction of the x axis
chosen along the outer normal to the S surface, i.e., the
x axis is directed from the S to the F metal. It is worth
noting that the boundary conditions for the Usadel
equations �Kupriyanov and Lukichev, 1988� were ob-
tained for superconductor–normal-metal interfaces, and
their applicability for S/F interfaces is justified, provided
that the exchange field in the ferromagnet is much
smaller than the Fermi energy, i.e., h�EF. For a ferro-
magnet with localized moments, such as Gd, this condi-
tion is always fulfilled, while it becomes more stringent
for transition metals and violated for half metals. Re-
cently, Vodopyanov and Tagirov �2003b� obtained the
boundary conditions for the Eilenberger equations in
the case of a strong ferromagnet. They used them to
study the critical temperature of a S/F bilayer when the
ferromagnet is in the clean limit. Nevertheless, the im-
portant question about the boundary conditions for Us-
adel equations at the superconductor–strong ferromag-
net interface is still open.

Provided the solutions of Usadel equations in the F
and S layers are known, the critical temperature Tc

* may
be found from the self-consistency equation for the pair
potential ��x� in a superconducting layer,

��x� = �Tc
*�	

�

Fs�x,�� , �33�

where � is BCS coupling constant in the S layer, while in
the F layer it is supposed to be equal to zero. This equa-
tion is more conveniently written in the following form:

��x�ln
Tc

*

Tc
+ �Tc

*	
�
���x�

���
− Fs�x,��� = 0, �34�

where Tc is the bare transition temperature of the super-
conducting layer in the absence of the proximity effect.

The Usadel equations provide a good basis for the
complete numerical solution of the problem of the tran-
sition temperature of S/F superlattices. First, such a so-
lution has been obtained for a S/F system with no inter-
face barrier by Radovic et al. �1988, 1991�, using the
Fourier-transform method, and this case was treated
analytically by Buzdin and Kuprianov �1990� and Buzdin
et al. �1992�. The role of the S/F interface transparency
has been elucidated by Proshin and Khusainov �1997�
�for more references, see also the review by Tagirov
�1998� and Izyumov et al. �2002��. Recently, Fominov et
al. �2002� performed a detailed analysis of the nonmono-
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tonic critical temperature dependence of S/F bilayers for
arbitrary interface transparency and compared the re-
sults of different approximations with exact numerical
calculations.

Below we illustrate the appearance of a nonmono-
tonic superconducting transition temperature depen-
dence for the case of a thin S layer, which has a simple
analytical solution. More precisely, we consider the case
ds��s, which implies that variations of the supercon-
ducting order parameter and anomalous Green’s func-
tion in the S layer are small. We may write the following
expansion up to the x2-order term for Fs in the S layer
centered at x=0:

Fs�x,�� = F0�1 −
��
2

x2� , �35�

where F0 is the value of the anomalous Green’s func-
tions at the center of the S layer, and the linear over x
term is absent due to the symmetry of the problem in
both 0 and � phases �see Fig. 4�. Using form �35� of Fs in
the Usadel equation �31�, we readily find

F0 =
�

� + �s
−1 , �36�

where we have introduced the complex pair-breaking
parameter �s

−1= �Ds /2��� and, in the first approximation
over ds /�s�1, the pair potential � may be considered as
spatially independent. The pair-breaking parameter �s

−1

is directly related to the logarithmic derivative of Fs at
x=ds,

Fs��ds�
Fs�ds�

� − ds�� = −
2ds�s

−1

Ds
. �37�

The boundary conditions �32� permit us to calculate
the parameter �s

−1, provided the anomalous Green’s
function in the F layer is known:

�s
−1 = −

Ds

2ds

	f

	s

Ff��ds�/Ff�ds�

1 − �f�BFf��ds�/Ff�ds�
. �38�

C. 0 and � phases

The solution of the Usadel equation �18� in the F layer
is straightforward but different for the 0 and � phases.
Let us start first with a 0 phase. In such a case �see Fig.
6�a��, we take as a solution for Ff�x� at ��0 in the in-
terval ds�x�ds+2df the function symmetrical relative
to the plane x=ds+df, i.e.,

Ff�x,�� 0� = A cosh� i + 1

�f
�x − ds − df�� . �39�

Therefore the pair-breaking parameter �s0
−1 for the 0

phase at ��0 is

�s,0
−1��� 0� =

Ds

2ds

	f

	s

i + 1

�f

tanh� i + 1

�f
df�

1 +
i + 1

�f
�n�B tanh� i + 1

�f
df� ,

�40�

and does not depend on the Matsubara frequencies �.
For a negative � we have �s,0

−1���0�= ��s,0
−1���0��*.

Now, let us address the case of the � phase. The only
difference is that we must choose the asymmetrical so-
lution for Ff�x�,

Ff�x,�� 0� = B sinh� i + 1

�f
�x − ds − df�� , �41�

and the corresponding pair-breaking parameter �s,�
−1 is

given by

�s,�
−1 ��� 0� = ��s,�

−1 ��� 0��*

=
Ds

2ds

	f

	s

i + 1

�f

coth� i + 1

�f
df�

1 +
i + 1

�f
�n�B coth� i + 1

�f
df� .

�42�

We see that in all cases the pair-breaking parameter �s
−1

is complex and depends only on the sign of the Matsub-
ara frequency and not its value. As a result, using the
self-consistency equation �34�, we obtain the following
expression for the critical temperature Tc

* of the S/F
multilayer:

ln
Tc

*

Tc
=��1

2
� − Re��1

2
+

1

2�Tc
*�s

 , �43�

where � is the digamma function, and the pair-breaking
parameter �s

−1 is given by Eqs. �40� and �42� for the 0 and
� phases, respectively. Expression �43� for Tc

* reminds
one of the corresponding formula for the critical tem-
perature of a superconductor with magnetic impurities
�Abrikosov and Gor’kov, 1960�, though the magnetic
scattering time �s is complex in our system. If the critical
temperature variation is small ��Tc−Tc

*� /Tc�1�, the
critical temperature shift �43� may be simplified,

Tc − Tc
*

Tc
=
�

4Tc
Re��s

−1� . �44�

D. Oscillating critical temperature

To illustrate the oscillatory behavior of the critical
temperature, we consider the case of a transparent S/F
interface �B=0. The critical temperatures Tc

*0 and Tc
*�

for the 0 and � phases, respectively, are

Tc − Tc
*0

Tc
=

�

4Tc�0
� sinh�2y� − sin�2y�

cosh�2y� + cos�2y�� , �45�
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Tc − Tc
*�

Tc
=

�

4Tc�0
� sinh�2y� + sin�2y�

cosh�2y� − cos�2y�� , �46�

where �0
−1= �Ds /2ds�f�	f /	s and 2y=2df /�f is the dimen-

sionless F layer thickness. The critical temperature
variation versus the F layer thickness is presented in Fig.
7.

We see that for small F layer thickness, the 0 phase
has a higher transition temperature. The first crossing of
the curves Tc

*0�y� and Tc
*��y� occurs at 2yc�2.36 and in

the thickness range 2.36�f�2df�5.5�f, the � phase has a
higher critical temperature. The oscillations of the criti-
cal temperature rapidly decay with an increase of y, and
it is not realistic to observe in experiment more than two
periods of oscillations.

In general, the F-layer thickness dependence of the
critical temperature �43� may be written for the 0 phase
in the following form convenient for numerical calcula-
tions:

ln
Tc

*0

Tc
=��1

2
� − Re��1

2
+

2Tc

Tc
*0�̃0

�
1

�̃ +
1 − i

2
coth��1 + i�y�� , �47�

where the dimensionless parameter �̃0
−1=1/4�Tc�0 and

�̃=�B��n /�f�. The corresponding formula for the critical
temperature for the � phase is simply obtained from Eq.
�47� by the substitution coth→ tanh.

In Fig. 8, we present examples of the thickness depen-
dence on the critical temperature for S/F multilayers at
different interface transparencies.

The oscillations of the critical temperature are most
pronounced for the transparent interface �̃=0, and they
rapidly decrease with an increase of the boundary bar-
rier; at �̃2 the oscillations are hardly observable. Note
that, for certain values of the parameters �̃0 and �̃, the
Tc

*0�df� dependence may show the infinite derivative,
which indicates a superconducting transition from the
second-order to the first-order one. This question was
studied in detail by Tollis �2004�. The increase of the
boundary barrier not only decreases the amplitude of
the critical temperature oscillations, but it also decreases
the critical thickness of F layer yc, corresponding to the
0-� phase transition. The limit �̃=�B��n /�f�
1 is a
rather special one. In such a case the S/F interface bar-
rier becomes a tunnel barrier, and the critical thickness
yc may be much smaller than 1. Indeed, if the critical
temperature variation is small �more precisely, if �̃�0


1�, the condition Re��s,0
−1�=Re��s,�

−1 � is realized at

FIG. 7. The dependence of the critical temperature on the
thickness of the F layer for the 0 phase �solid line� and the �
phase �dotted line� for the transparent S/F interface. Note that
the highest transition temperature Tc

* corresponds to the low-
est point. The dimensionless thickness of the F layer 2y
=2df /�f and the first transition from the 0 to the � phase occurs
at 2df=2.36�f. The parameter is �0= �2ds�f /Ds�	s /	f.

FIG. 8. The critical temperature of the 0 phase �solid line� and
the � phase �dashed line� as a function of the dimensionless
thickness of the F layer 2y=2df /�f for different S/F interface
barriers �̃=�B��n /�f�. �a� The dimensionless pair-breaking pa-
rameter �̃0=4�Tc�2ds�f /Ds�	s /	f=21. �b� The dimensionless
pair-breaking parameter �̃0=20.05.
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df
c =
�f

2
� 3

�̃
�1/3

, �48�

and the 0-� phase transition is now related to tunneling
through the F layer. This result is very different from
low interface transparency, when the transition occurs
due to the spatial oscillations of the anomalous Green’s
function. It is difficult to observe the low transparency
regime of the 0-� transition with critical temperature
measurements due to the fact that at �̃
1 the Tc

*�df�
oscillations become very small. On the other hand, mea-
surements of the critical current in S/F/S junctions may
be adequate to reveal the 0-� transition in this regime
�see the next section�.

It is interesting to note that at small F layer thickness
�df��f� the critical temperature decreases with an in-
crease of the interface barrier �provided the condition
�̃�df /�f��1 is fulfilled�; see Fig. 8. Such a counterintiu-
tive behavior may be explained in the following way.
The low penetration of the barrier prevents the quick
return of the Cooper pair from the thin F layer. There-
fore, the Cooper pair stays for a relatively long time in
the F layer before going back to the S layer. As a result,
the pair-breaking role of the exchange field in the F
layer appears to be strongly enhanced.

The cases of S/F bilayers or F/S/F trilayers with paral-
lel magnetization are equivalent to the 0-phase case for
multilayers �with double F layers thickness� and the cor-
responding Tc,0

* �df� dependence reveals a rather weak
nonmonotonic behavior for finite transparency of the
S/F interface �see Fig. 8�. Comparison of the experimen-
tal data of Ryazanov et al. �2003� for the critical tem-
perature of the bilayer Nb/Cu0.43Ni0.57 vs the thickness
of the ferromagnetic layer with the theoretical fit �Fomi-
nov et al., 2002� is presented in Fig. 9.

Now let us address the following question: Is it pos-
sible to have a transition into a state with the phase
difference other than 0 and �? For example, a state with

phase difference 0��0�� is expected at F layer thick-
ness near df

c. The numerical calculations of Radovic et al.
�1991� revealed the presence of an intermediate phase.
However, the relative width of its existence near df

c was
very small—around several percent only. On the other
hand, analytical calculations show that for the thin S
layer states without current �corresponding to the high-
est Tc

*� are only possible for the phase difference 0 or �.
Also, in S/F/S junctions transitions between 0 and �
states are discontinuous—see the discussion in the next
section. The narrow region of the �0 phase obtained
with numerical calculations �Radovic et al., 1991� is sim-
ply related with its accuracy �1%, and the width of this
region may decrease with an increase of the accuracy.
Nevertheless, there is another mechanism of the realiza-
tion of the �0 phase due to the fluctuations of the thick-
ness of the F layer. In such a case near the critical F layer
thickness df

c regions of the 0 and � phases would coexist.
If the characteristic dimensions of these regions are
smaller than the Josephson length in the S/F structure,
then the average phase difference would be different
from 0 and � �Buzdin and Koshelev, 2003�.

The quasiclassical Eilenberger and Usadel equations
are not adequate for treating strong ferromagnets with
h�EF because the period of Green’s-function oscilla-
tions becomes comparable with the interatomic distance.
On the other hand, the approach based on the
Bogoliubov–de Gennes equations in the clean limit is
universal. Halterman and Valls �2003, 2004a� applied it
to study the properties of clean S/F multilayers, at low
temperature. They obtained the excitation spectrum
through numerical solution of the self-consistent
Bogoliubov–de Gennes equations and discussed the in-
fluence of the interface barrier and Fermi energy mis-
match on the local density of states. Comparing the en-
ergy of the 0 and � phases Halterman and Valls
confirmed the existence of the phase transitions with an
increase of the F layer thickness. It is of interest that the
local density of states is quite different in the 0 and �
phases, and its measurements could permit us to trace
the 0-� transition. In more recent work, Halterman and
Valls �2004b� showed that different order-parameter
configurations may correspond to the local energy
minima in S/F heterostructures.

Calculations of the energy spectrum in the S/F/S sys-
tem in the 0 and � phases using the Eilenberger equa-
tions were performed by Dobrosavljevic-Grujic, Zikic,
and Radovic �2000� for s-wave and d-wave superconduc-
tivity �Zikic et al., 1999�. The large peaks in the density
of states were attributed to the spin-split bound states
appearing due to Andreev reflection at the ferromag-
netic barrier.

In a previous analysis the spin-orbit and magnetic
scattering were ignored. Demler, Arnold, and Beasley
�1997� theoretically studied the influence of the spin-
orbit scattering on the properties of S/F systems and
demonstrated that it is quite harmful for the observation
of oscillatory effects. A similar effect is produced by
magnetic scattering which to some extent is always

FIG. 9. Variation of the critical temperature of the
Nb/Cu0.43Ni0.57 bilayer with the F layer thickness �Ryazanov et
al., 2003�. The theoretical fit �Fominov et al., 2002� gives an
exchange field value h�130 K and an interface transparency
parameter �B�0.3.
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present in S/F systems due to the nonstoichiometry of
the F layers �and it may be rather large when the mag-
netic alloy is used as the F layer�. Calculations of the
critical temperature of the S/F multilayers in the pres-
ence of magnetic scattering were first performed by Ta-
girov �1998�. In the formalism presented in this section it
is very easy to take into account the magnetic diffusion
with the spin-flip scattering time �m—substitute the ex-
change field h in the linearized Usadel equation �17� by
h− i sgn����m

−1. This renormalization leads to a decrease
of the damping length and an increase of the oscillation
period, which makes the Tc

*�df� oscillations less pro-
nounced �Tagirov, 1998�.

V. SUPERCONDUCTOR-FERROMAGNET-
SUPERCONDUCTOR � JUNCTION

A. General characteristics of the � junction

A Josephson junction at equilibrium usually has a
zero phase difference � between two superconductors.
The energy E of the Josephson junction may be written
as �see, for example, de Gennes, 1966a�

E =
�0Ic

2�c
�1 − cos �� , �49�

where Ic is the Josephson critical current, and the
current-phase relation is Is���= �2e /���E /��=Ic sin �.
For the standard situation, the constant Ic�0, and the
minimum energy of a Josephson junction is achieved at
�=0. However, as demonstrated in the previous section
in S/F multilayers transitions to the � phase may occur.
This means that for the Josephson S/F/S junction �with
the same thickness of the F layer which corresponds to
the � phase in the multilayered system� the equilibrium
phase difference would be �, and it is natural to call
such a junction the � junction. For the � junction, the
constant Ic in Eq. �49� is negative, and the transition
from the 0 to the � state results in a sign change of the
critical current, though the experimentally measured
critical current is always positive and equal to �Ic�. The
S/F/S junctions reveal the nonmonotonic behavior of the
critical current as a function of the F layer thickness.
The vanishing of critical current signals the transition
from the 0 to the � state.

Negative Josephson coupling was first noted by Kulik
�1965�, who discussed the spin-flip tunneling through an
insulator with magnetic impurities. Bulaevskii et al.
�1977� presented arguments that under certain condi-
tions such spin-flip tunneling could dominate direct tun-
neling and lead to a �-junction. Up to now there is no
experimental evidence of the � coupling in the Joseph-
son junctions with magnetic impurities. On the other
hand, Buzdin et al. �1982� showed that in the ballistic
S/F/S weak link Ic displays damped oscillations as a func-
tion of the F layer thickness and its exchange field.
Later, Buzdin and Kuprianov �1991� demonstrated that
these oscillations remain in the diffusive regime and the
� coupling is an inherent property of the S/F/S junctions.

The characteristic thickness of the F layer corresponding
to the transition from the 0 to the � phase is �f=�Df /h,
and it is rather small �10–50 Å� in typical ferromagnets
because of the large value of the exchange field �h
1000 K�. Experimental verification of the � coupling
in S/F/S junction was not easy, due to the control of the
F layer thickness. Finally, the first experimental evidence
for a � junction was obtained by Ryazanov, Obozhov,
Rusanov, et al. �2001a� for the Josephson junction with a
weakly ferromagnetic interlayer of a CuxNi1−x alloy.
Such a choice of the F layer permitted us to have a
ferromagnet with a relatively weak exchange field �h
�100–500 K� and therefore a relatively large �f length.

B. Theory of � junctions

The complete quantitative analysis of the S/F/S junc-
tions is rather complicated, because the ferromagnetic
layer can modify superconductivity near the S/F inter-
face. In addition, the boundary transparency and elec-
tron mean free path, as well as magnetic and spin-orbit
scattering, are important parameters affecting the criti-
cal current.

To introduce the physics of � coupling, we concen-
trate on the approach based on the Usadel equation and
consider the S/F/S junction with a F layer of thickness
2df �see Fig. 10� and identical S/F interfaces. In the case
of small conductivity of the F layer or small interface
transparency 	f�s /	s�f�max�1,�B� we use rigid bound-
ary conditions �Golubov et al., 2004� with Fs�−df�
=�e−i�/2 /��2+�2 and Fs�df�=�ei�/2 /��2+�2.

The solution of Eq. �18� in a ferromagnet satisfying
the corresponding boundary conditions is

F�x� =
�

��2 + �2� cos��/2�cosh�kx�
�cosh�kdf� + k�B�n sinh�kdf��

+
i sin��/2�sinh�kx�

�sinh�kdf� + k�B�n cosh�kdf��

 , �50�

where the complex wave vector k
=�2����+ i sgn���h� /Df. This solution describes the F�x�
behavior near the critical temperature. Note that, in
principle, at arbitrary temperature the boundary condi-
tions are different from Eq. �32�; see, for example, Gol-

FIG. 10. Geometry of the S/F/S junction. The thickness of the
ferromagnetic layers is 2df and both S/F interfaces have the
same transparencies, given by the coefficient �B.
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ubov et al. �2004�. However, in the limit of low S/F inter-
face transparency ��B
1�, when the amplitude of the F
function in the F layer is small, we use the linearized
Usadel equation �18� at all temperatures. The only
modification in the boundary conditions �32� is that Fs
must be substituted by Fs / �Gs� and �B by �B / �Gs�, where
the normal Green’s function in superconducting elec-
trode is Gs=� /��2+�2. Taking this renormalization into
account in the explicit form of Eq. �50�, we use the fol-
lowing formula for the supercurrent:

Is��� = ieN�0�Df�TS	
−�

� �F
d

dx
F̃ − F̃

d

dx
F� , �51�

where F̃�x ,h�=F*�x ,−h�, S is the area of the cross sec-
tion of the junction, and N�0� is the electron density of
state for a one-spin projection. Expression �51� gives the
usual sinusoidal current-phase dependence Is���
=Ic sin��� with the critical current �Buzdin, 2003�:

Ic = eSN�0�Df�T	
−�

� �2

�2

2k/cosh�2kdf�

tanh�2kdf��1 + ��
2 k2� + 2k��

,

�52�

where ��=�B�n / �Gs�. Expression �52� may be general-
ized to take into account the different interface trans-
parencies �B1 ,�B2
1, one can substitute ��

2

→�B1�B2��n / �Gs��2 and 2��→ ��B1+�B2��n / �Gs�. Near Tc
and in the case of transparent interface �B→0 �Buzdin
and Kuprianov, 1991�,

Ic = eSN�0�Df
��2

2Tc
�Re� k

sinh�2kdf�
��

=
V0

Rn
4y� cos�2y�sinh�2y� + sin�2y�cosh�2y�

cosh�4y� − cos�4y�
� , �53�

where 2y=2df /�f is the dimensionless F layer thickness,
Rn=2df /	fS is the resistance of the junction �	f
=2e2N�0�Df is the conductivity of the F layer�, and V0
=��2 /4eTc.

The dependence IcRn /V0 vs 2y is presented in Fig. 11.
The first vanishing of the critical current signals the tran-
sition from the 0 to the � state. It occurs at 2yc�2.36
which is exactly the critical value of the F layer thickness
in the S/F multilayer system corresponding to the
0-�-state transition, i.e., to the condition Tc

*0=Tc
*� in

Eqs. �45�. The theoretical description of the S/F/S junc-
tions with arbitrary interface transparencies near the
critical temperature was proposed by Buzdin and Bal-
adié �2003�.

At low temperature or low S/F barrier the amplitude
of the anomalous Green’s function Ff�x� is not small and
we need to use the complete �nonlinearized� Usadel
equation. In the large F layer thickness limit df
�f and
�B=0, an analytical solution was obtained by Buzdin
and Kuprianov �1991�, and the critical current is

IcRn = 64�2
���
e

F� ���
T
�2y exp�− 2y��sin�2y +

�

4
�� ,

�54�

with

F� ���
T
� = �T 	

��0

� ���

�� + ����2� + �� + ��2
, �55�

where �=��2+ ���2, and F���� /T���� /128���� /Tc at T
�Tc while at low temperature T�Tc, F���� /T��0.071.

Note that in the clean limit ��h
1� the thickness de-
pendence of the critical current is very different �Buzdin
et al., 1982� and near Tc it is

IcRn =
��2

4e

�sin�4hdf/vF��

4hdf/vF
, �56�

i.e., the critical current decreases �1/df and not expo-
nentially as in the dirty limit case. In general, in the
clean limit the S/F proximity effect is not exponential,
but a power-law one.

Expression �56� was obtained using the Eilenberger
equations. In the case of a strong ferromagnet h EF,
the oscillation periods of the Green’s functions are on
the order of the interatomic distance, and this approach
no longer works. Using the Bogoliubov–de Gennes
equations, Cayssol and Montambaux �2004� demon-
strated that the quasiclassical result �56�, where the only
relevant parameter for the critical current oscillations is
hdf /vF, is not applicable for the strong ferromagnets.
This is related to an increase in suppression of the An-
dreev reflection channels with an increase of the ex-
change energy.

Using the Bogoliubov–de Gennes equations Radovic
et al. �2003� studied the general case of the ballistic S/F/S
junction for a strong exchange field, arbitrary interfacial
transparency, and Fermi wave-vector mismatch. The

FIG. 11. Critical current of the S/F/S Josephson junction near
Tc as a function of the dimensionless thickness of the F layer
2y=2df /�f. There are no barriers at the S/F interfaces ��B=0�,
Rn is the resistance of the junction, and V0=��2 /2eTc.
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characteristic feature of such a ballistic junction is the
short-period geometrical oscillations of the supercurrent
as a function of df due to the quasiparticle transmission
resonances. In the case of the strong ferromagnet, the
period of 0-� oscillations becomes comparable with the
period of geometrical oscillations, and their interplay
provides very special Ic�df� dependences. Radovic et al.
�2003� also demonstrated that the current-phase rela-
tionship may strongly deviate from the simple sinusoidal
one, and studied how it depends on the junction param-
eters. While the temperature variation of Ic is usually a
monotonic decay with increasing temperature, near the
critical thickness df corresponding to the 0-� transition,
a nonmonotonic dependence Ic on temperature was ob-
tained. Radovic et al. �2001� showed that at low tempera-
ture the characteristic multimode anharmonicity of the
current-phase relation in clean S/F/S junctions implies
the coexistence of stable and metastable 0 and � states.
As a consequence, the coexistence of integer and half-
integer flixoid configuration of a superconducting quan-
tum interference device �SQUID� was predicted. Note
that for strong ferromagnets the details of the electron’s
energy bands become important for the description of
the properties of the S/F/S junction.

The weak link between d-wave superconductors may
also produce the � shift effect �for a review, see, for
example, Van Harlingen, 1995�. The situation of the Jo-
sephson coupling in a ferromagnetic weak link between
d-wave superconductors was studied in the clean limit
theoretically by Radovic et al. �1999�.

It is interesting to note that in the limit kd�1 �i.e.,
df��f� the oscillations of the anomalous function in the
F layer are absent, but as it has been noted previously,
for low transparency of the barrier �B
1 the critical
current can nevertheless change its sign. Indeed, in this
limit, the expression for the critical current �52� reads

Ic = eN�0�Df�TS	
−�

� 2���2

�2 + ���2
1

�B
2 �n

22df
� 1

k2 −
2df

2

3

−
1

�B�ndfk
4

���

��2 + ���2� . �57�

Usually from experiment, the Curie temperature � of
the ferromagnet is higher than the superconducting criti-
cal temperature Tc. For the RKKY mechanism of ferro-
magnetic transition ��h2 /EF and as a result the ex-
change field h appears to be much larger than the
superconducting critical temperature Tc. For itinerant
ferromagnetism, the exchange field is usually several
times higher than the Curie temperature and the limit
h
Tc also holds. Taking this into account and perform-
ing the summation over Matsubara frequencies of the
first two terms in the brackets of Eq. �57�, we finally
obtain �Buzdin, 2003�

Ic =
eN�0�SDf��f

2

4�B
2 df�n

2 ��h���1

2
+ i

h

2�T�
−��1

2
+ i

�

2�T� + c.c.� +
2�T��f

2

�B�ndf

�	
��0

�

��2 + �2�3/2 −
4�

3 �df
2

�f
2�tanh� �2T�
 . �58�

We start with an analysis of Ic over the df dependence in
the limit of very large �B �more precisely, when �B

h /Tc�. In such a case we neglect the term proportional
to 1/�B in the brackets of Eq. �58�, and then obtain that
at T→0 the transition into the � phase occurs �Ic
changes its sign� at

df
c � �f�2��0�

h
ln� h

��0�� . �59�

The condition df��f is satisfied. For low boundary trans-
parencies, the formula obtained by Buzdin and Baladié
�2003� near the critical temperature in the limit Tc /h
→0 also reveals the crossover between the 0 and �
phase. On the other hand, no transition into the � phase
was obtained in the analysis of the S/F/S system by Gol-
ubov et al. �2002b�, which is related to the approximation
for the anomalous function in ferromagnets when only
the first term in the gradient expansion has been re-
tained.

It is interesting to note that the critical F layer thick-
ness df

c, when the transition from the 0 to � phase oc-
curs, depends on the temperature. The corresponding
temperature dependences are presented in Fig. 12 for
different values of Tc /h ratios. We see that df

c�T� de-
creases when the temperature decreases. This is a very

FIG. 12. Temperature dependences of the critical thickness
2df

c of the F layer, corresponding to the crossover from the 0 to
the � phase in the limit of very small boundary transparency
for different values of the exchange field.

952 A. I. Buzdin: Proximity effects in superconductor-ferromagnet heterostructures

Rev. Mod. Phys., Vol. 77, No. 3, July 2005



general feature and it is true also for the subsequent
0-� transitions occurring at a higher F layer thickness.
For some range of F layer thicknesses the transition
from the 0 to � phase is possible when the temperature
is lowered.

For the case when 1��B�h /Tc, the � function terms
in Eq. �58� can be neglected, and at T=Tc the critical
thickness df

c is

df
c�T = Tc� =

�f

2 � 3�f

�B�n
�1/3

, �60�

while at T→0 the critical thickness is smaller df
c�T=0�

= ��f /2��6�f /��B�n�1/3. The critical F layer thickness,
given by Eq. �60�, naturally coincides with the corre-
sponding expression �48� obtained for S/F multilayers in
the limit h
Tc. Examples of different nonmonotonic
Ic�T� dependences for low barrier transparency limit
�B
h /Tc are presented in Fig. 13. In fact, in the limit of
low barrier transparency and thin F layer, superconduct-
ing electrons tunnel through ferromagnetically ordered
atoms. The situation is reminiscent of the tunneling
through magnetic impurities, considered by Kulik �1965�
and Bulaevskii et al. �1977�. More relevant is the analogy
with the mechanism of the �-phase realization due to
the tunneling through a ferromagnetic layer in the
atomic S/F multilayer structure, which is considered in
Sec. VII.

Fogelström �2000� considered the ferromagnetic layer
as a partially transparent barrier with transmission de-
pending on spin projections. This work may be consid-
ered as a further development of the Bulaevskii et al.
�1977� approach. The Andreev bound states appearing
near the spin-active interface within the superconduct-
ing gap are tunable with the magnetic properties of the
interface. This can result in the switch of the junction
from the 0 to � state by changing the transmission char-
acteristics of the interface. This approach was also ap-
plied by Andersson, Cuevas, and Fogelström �2002� to
study the coupling of two superconductors through a fer-

romagnetic dot. They demonstrated that the � junction
is possible in this case as well. Using the Bogoliubov–de
Gennes approach, Tanaka and Kashiwaya �1997� ana-
lyzed two superconductors separated by a �-functional
barrier with the spin-orientation dependent height.

Similar to the case of S/F multilayers we discuss the
existence of the S/F/S junction with arbitrary equilib-
rium phase difference �0. Naturally, the form of Eq. �49�
for the energy of the junction gives the minima at �=0
and �=� only. A more general expression for the
Josephson-junction energy takes into account higher-
order terms over the critical current which leads to the
appearance of higher harmonics over � in the current-
phase relationship. Up to the second harmonic, the en-
ergy is

E =
�0Ic

2�c
�1 − cos �� −

�0

2�c

I2

2
cos 2� , �61�

and the current is

j��� = Ic sin � + I2 sin 2� . �62�

If the sign of the second harmonic term is negative
I2�0, then the transition from the 0 to � phase will
be continuous, and the �0 junction becomes possible.
In general, the �0 junction may exist if j��0�=0
and ��j /����0

�0. Calculations of the current-phase
relationships for different types of S/F/S junctions
�Radovic et al., 2003; Golubov et al., 2004; Cayssol and
Montambaux, 2005� show that �j /���0, and therefore
the transition between the 0 and � states appears
discontinuous.

The presence of higher harmonics in the j��� relation-
ship prevents the vanishing of the critical current at the
transition from the 0 to � state. This is always the case
when the transition occurs at low temperature. Theoret-

FIG. 13. Nonmonotonic temperature dependences of the nor-
malized critical current for the low transparency limit. Curve 1,
h /Tc=10 and 2df /�f=0.84; curve 2, h /Tc=40 and 2df /�f=0.5;
curve 3, h /Tc=100 and 2df /�f=0.43.

FIG. 14. Critical current Ic as a function of temperature for
Cu0.48Ni0.52 junctions with different F layer thicknesses 2dF. At
the thickness of the F layer of 27 nm the temperature medi-
ated transition between the 0 and � phase occurs. Adapted
from Ryazanov, Oboznov, Rusanov, et al., 2001.
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ical studies of clean S/F/S junctions at T�Tc �Buzdin et
al., 1982; Chtchelkatchev et al., 2001; Radovic et al.,
2003� confirm this conclusion.

Zyuzin and Spivak �2000� argued that the meso-
scopic fluctuations of the critical current may produce
the � /2 superconducting Josephson junction. Such a
situation is possible when the the F layer thickness is
close to 2df

c. Spatial variations of the F layer lead to a
second harmonic term in Eq. �62� with I2�0 �Buzdin
and Koshelev, 2003�, and thus the �0 junction becomes
possible at 2df�2df

c.

C. Experiments with � junctions

The temperature dependence of the critical thickness
df

c is at the origin of the temperature dependence of the
critical current Ic�T� observed by Ryazanov, Oboznov,
Rusanov, et al. �2001� �see Fig. 14�. With decreasing tem-
perature for specific thicknesses of the F layer �around
27 nm�, a maximum of Ic is followed by a steady de-
crease down to zero, after which Ic further increases.

This was the first unambiguous experimental confir-
mation of the 0-� transition via critical current measure-
ments. Ryazanov, Oboznov, Rusanov, et al. �2001� ex-
plained their results with a small exchange field h�Tc.
The CuxNi1−x alloy used in their experiments has a Curie
temperature !�20–30 K and the exchange field must
be higher than 100 K. In consequence, the F layer thick-
ness was in the range df

c�0��df�df
c�Tc�, which provides

the strong nonmonotonic temperature dependence of Ic.
Also, the experimental estimate of �f�10 nm is too
large for the expected value of the exchange field.

Recent systematic studies of the critical current in
junctions with the CuxNi1−x alloy as a F layer �Ryazanov
et al., 2004� have revealed very strong variation of Ic

with the F layer thickness. Indeed, the five orders of
magnitude change of the critical current was observed in
the thickness interval 12–26 nm. A natural explanation
for such a strong thickness dependence is the magnetic
scattering effect which is inherent to ferromagnetic al-
loys. The presence of magnetic scattering in CuxNi1−x
alloy S/F/S junctions was also noted by Sellier et al.
�2003�. Magnetic scattering strengthens a decrease of the
critical current with an increase of the F layer thickness,
and at the same time it increases the period of Ic�2df�
oscillations. A general expression for the Ic�2df� depen-
dence, taking into account magnetic scattering, is given
in the Appendix, Sec. 2, Eq. �A9�. Attempts to describe
the experimental data of Ryazanov et al. �2004� on the
Ic�2df� dependence with this expression provided hints
on the existence of another minimum Ic�2df� at a smaller
F layer thickness—around 10 nm. Very recent experi-
ments with junctions with F layer thickness up to 7 nm
have confirmed this prediction �Ryazanov et al., 2005�;
see Fig. 15. The existence of the first 0-� transition at
2df�11 nm means that previously reported transitions
in CuxNi1−x junctions were actually the transitions from
the � to 0 phase �and not, as was assumed, from the 0 to
� phase�. This means that now it is also possible to fab-
ricate the � junctions with a 104 times higher critical
current. Note that the first measurements �Frolov et al.,
2004� of the current-phase relation in the S/F/S junction
with the Cu0.47Ni0.53 F layer provided no evidence of the
second harmonic in the j��� relationship at the 0-� tran-
sition. These measurements were performed using the
junction with a F layer thickness around 22 nm, i.e., near
the second minimum on the Ic�2df� dependence. The
much higher critical current near the first minimum �at
2df�11 nm� may occur to be very helpful for a search of
the second harmonic.

The results of Ryazanov, Oboznov, Rusanov, et al.
�2001� on the temperature induced crossover between 0

FIG. 15. Critical current Ic at T=4.2 K of Cu0.47Ni0.53 junctions
as a function of the F layer thickness �Ryazanov et al., 2005�.
Two 0-� transitions are revealed. The theoretical fit corre-
sponds to Eq. �A9� in the Appendix, Sec. 2, taking into account
the presence of magnetic scattering with �=1/�sh=1.33 and
�f=2.4 nm. The inset shows the temperature mediated 0-�
transition for an F layer thickness of 11 nm.

FIG. 16. Experimental points correspond to critical current
measurements, by Kontos et al. �2002�, vs the PdNi layer thick-
ness. The theoretical curve is the fit of Buzdin and Baladié
�2003�. The fitting parameters are �f�30 Å and ��2 /eTc
�110 �V.
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and � states were recently confirmed in the experiments
of Sellier et al. �2003�. Kontos et al. �2002� observed
damped oscillations of the critical current as a function
of the F layer thickness in Nb/Al/Al2O3/PdNi/Nb junc-
tions. The measured critical currents with the theoretical
fit �Buzdin and Baladié, 2003� are presented in Fig. 16.
Blum et al. �2002� reported the strong oscillations of the
critical current with the F layer thickness in
Nb/Cu/Ni/Cu/Nb junctions.

Bulaevskii et al. �1977� pointed out that the � junction
incorporated into a superconducting ring would gener-
ate a spontaneous current and a corresponding magnetic
flux would be half a flux quantum �0. The appearance of
the spontaneous current is related to the fact that the
ground state of the � junction corresponds to the phase
difference � and this phase difference will generate a
supercurrent in the ring which short-circuits the junc-
tion. Naturally the spontaneous current is generated if
there are any odd number of � junctions in the ring.
This has been exploited in an elegant way by Ryazanov,
Oboznov, Veretennikov, and Rusanov �2001� to provide
unambiguous proof of the �-phase transition. Ryazanov,
Oboznov, Veretennikov, and Rusanov �2001� observed
the half-period shift of the external magnetic-field de-
pendence of the transport critical current in triangular
S/F/S arrays. The F layer thickness of the S/F/S junctions
was chosen such that at high temperature the junctions
were the usual 0 junctions, and transformed into the �
junctions with a decrease in temperature �Ryazanov,
Oboznov, Rusanov, et al., 2001�.

Guichard et al. �2003� performed similar phase-
sensitive experiments using dc SQUID with a � junc-
tion. The total current I flowing through the SQUID is
the sum of the currents Ia and Ib flowing through the two
junctions, I=Ia+Ib. If the junctions have the same criti-
cal currents Ic and both are 0 junctions, then Ia

=Ic sin �a and Ib=Ic sin �b, where �a and �b are the
phase differences across the junctions. Neglecting the in-
ductance of the loop of the SQUID, the phase differ-
ences satisfy the usual relation �Barone and Paterno,
1982� �a−�b=2�� /�0, where � is the flux of the exter-
nal magnetic field through the loop of the SQUID. The
maximum critical current of the SQUID is Imax
=2Ic cos��� /�0�. When one of the junctions �let us say
b� is the � junction with the same critical current, the
current flowing through it is Ib=−Ic sin �b=Ic sin��b

+��. Therefore, the maximum critical current of the
SQUID in this case is Imax

� =2Ic cos��� /�0+� /2�, and
the diffraction pattern is shifted by half a quantum flux.
If both junctions are the � junctions, the diffraction pat-
tern is identical to the diffraction pattern of the SQUID
with two 0 junctions. Namely, this was observed in ex-
periment by Guichard et al. �2003� with SQUID contain-
ing junctions with PdNi ferromagnetic layers; see Fig. 17.

Recently, Bauer et al. �2004� measured with micro-
Hall sensor the magnetization of a mesoscopic supercon-
ducting loop containing a PdNi ferromagnetic � junc-
tion. These measurements also provided a direct

evidence of the spontaneous current induced by the �
junction.

VI. COMPLEX S/F STRUCTURES

A. F/S/F spin-valve sandwiches

The strong proximity effect in superconductor-
metallic ferromagnet structures could lead to the phe-
nomenon of spin-orientation-dependent superconductiv-
ity in F/S/F spin-valve sandwiches. Such behavior was
predicted by Buzdin et al. �1999� and Tagirov �1999� and
recently observed in experiment by Gu et al. �2002�.
Note that de Gennes �1966b� considered theoretically a

FIG. 17. Experiments of Guichard et al. �2003� on the diffrac-
tion pattern of SQUID with 0 and � junctions. There is no
shift of the pattern between 0-0 and �-� SQUIDs. The �0 /2
shift is observed between 0-� and 0-0 or �-� SQUIDs. The 0
and � junctions were obtained by varying the PdNi layer thick-
ness.
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system consisting of a thin S layer in between two ferro-
magnetic insulators. He argued that the parallel orienta-
tion of the magnetic moments is more harmful for super-
conductivity because of the presence of the nonzero
averaged exchange field acting on the surface of the su-
perconductor. This prediction has been confirmed in ex-
periment by Hauser �1969� on In film sandwiched be-
tween two Fe3O4 films, and by Deutscher and Meunier
�1969� on a In film between oxidized FeNi and Ni layers;
see Fig. 18. Curiously, the experiments of Deutscher and
Meunier �1969� correspond more closely to the case of
metallic F/S/F sandwiches as these authors report rather
low interface resistance.

To consider the spin-orientation effect in metallic
F/S/F sandwiches we use the notations analogous to that
of Sec. IV. More precisely, to have a direct connection
with the corresponding formula of Sec. IV, we assume
that the F layer thickness is df and the S layer thickness
is 2ds; see Fig. 19.

To provide a simple theoretical description we con-
sider the case ds��s with only two orientations of the
ferromagnetic moments: parallel and antiparallel. For
arbitrary orientations the ferromagnetic moment needs
the introduction of triplet components of the anomalous
Green’s functions. The first attempt of such an analysis
was made by Baladié et al. �2001�, but using an incom-
plete form of the Usadel equation. The full correct cal-
culations for this case were performed by Bergeret et al.
�2003�, Fominov, Golubov, and Kupriyanov �2003a�, and
Volkov et al. �2003�.

In fact, we only need to analyze the case of the anti-
parallel orientation of ferromagnetic moments because
the parallel orientation case is equivalent to the 0 phase
in a S/F multilayered structure �Sec. IV� with the F lay-
ers two times thinner than in a F/S/F sandwich. In other
words, our choice of notation allows the parallel orien-
tation case to correspond to the critical temperature for
the 0 phase from Sec. IV. To analyze the antiparallel
orientation case, we follow the approach used in Sec. IV,
but we need to retain the linear over x term in the ex-
pansion of the anomalous Green’s function in the S layer
in Eq. �35�,

Fs�x,�� = F0�1 + ��x −
��
2

x2� . �63�

With the help of the Usadel equation �31�, we find that
F0 has the form �36� with the pair-breaking parameter
�s

−1 determined by

4ds�s
−1

Ds
= 2ds�� �

Fs��− ds�
Fs�− ds�

−
Fs��ds�
Fs�ds�

−
ds

2
�Fs��ds�

Fs�ds�

+
Fs��− ds�
Fs�− ds�

�2

. �64�

Let us suppose that the exchange field is positive �+h� in
the right F layer and then for ds+df�x�ds we have

Ff�x,�� 0� = A cosh� i + 1

�f
�x − ds − df�� , �65�

while for the left F layer, the exchange field is negative
and for −ds−df�x�−ds we have

Ff�x,�� 0� = B cosh�1 − i

�f
�x − ds − df�� . �66�

Taking into account the explicit form of Ff�x� and the
boundary conditions �32�, we find for the antiparallel
alignment case Fs��ds� /Fs�ds�=−�Fs��−ds� /Fs�−ds��* and
the pair-breaking parameter for this case �s

−1=�s,AP
−1 may

be written as

�s,AP
−1 � −

Ds

2ds
Re�Fs��ds�

Fs�ds�
� +

Ds

2
�Im�Fs��ds�

Fs�ds�
��2

. �67�

The second term on the right-hand side of Eq. �67� is
important in the limit of small df and we will omit it
further. The boundary conditions �32� permit us to cal-
culate the parameter �s

−1, provided the anomalous
Green’s function in the F layer is known. For the parallel

FIG. 18. Earlier observation by Deutscher and Meunier �1969�
of the spin-valve effect on In film between oxidized FeNi and
Ni layers. The resistive measurements of the critical tempera-
ture are presented in zero field: dashed line, after application
of the 1-T field parallel to the ferromagnetic layers; solid line,
after application of the −1-T field and subsequently +0.03-T
field to return the magnetization of the FeNi layer.

FIG. 19. Geometry of the F/S/F sandwich. The thickness of
the S layer is 2ds and two F layers have identical thicknesses df.
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alignment of the ferromagnetic moments it is �s,P
−1 =�s,0

−1,
where �s,0

−1 is given by Eq. �40�, while for the antiparallel
alignment it is

�s,AP
−1 = Re��s,0

−1� = Re��sP
−1� . �68�

As a result, we obtain the following simple formula for
the critical temperature Tc

P with parallel orientation and
Tc

AP with antiparallel orientation:

ln
Tc

P

Tc
=��1

2
� − Re��1

2
+

1

2�Tc
P�s,0


 , �69�

ln
Tc

AP

Tc
=��1

2
� −��1

2
+ Re� 1

2�Tc
AP�s,0

�
 . �70�

The different kinds of Tc�df� curves are presented in Fig.
20.

We see that the interface transparency is an important
factor, controlling the spin-valve effect in F/S/F struc-
tures. It is interesting to note that an optimum condition
for the observation of this effect in the case of the non-
negligible interface transparency is the choice df
��0.1–0.4��f.

FIG. 20. Influence of the S/F interface transparency �parameter �̃=�B��n /�f�� on the Tc
* vs df dependence �Baladié and Buzdin,

2003�. The thickness of the F layer is normalized by �f. The dimensionless pair-breaking parameter �̃0=4�Tc�2ds�f /Ds�	s /	f is
chosen constant and equal to 4. The solid line corresponds to the antiparallel case, and the dashed line to the parallel case. One
can distinguish four characteristic types of behavior: �a� weakly nonmonotonic decay to a finite value Tc

*, �b� reentrant behavior for
the parallel orientation, and �c� and �d� monotonic decay to Tc

*=0 with �d� or without �c� switching to a first-order transition in the
parallel case. In �d�, the dotted line represents schematically the first-order transition line.
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In the case when the F layer thickness exceeds �f, the
critical temperature negligibly depends on df. The case
for the transparent S/F interface ��B=0� was considered
by Buzdin et al. �1999�, and critical temperatures for par-
allel and antiparallel alignments are presented in Fig. 21.
The finite interface transparency decreases the spin-
valve effect, and for �̃B�5 the dependence of critical
temperatures on the mutual orientation of ferromag-
netic moments is hardly observed.

The thermodynamic characteristics of F/S/F systems
were studied theoretically by Baladié and Buzdin �2003�
and Tollis �2004� using the Usadel formalism and it was
noted that the superconductivity always remains gapless.

Bagrets et al. �2003� developed a microscopic theory
with F/S/F systems based on the direct solution of the
Gor’kov equations for the normal and anomalous
Green’s functions. The main mechanism of the electron
scattering in F layers was assumed to be of the s-d type.
The results of this microscopical analysis were in accor-
dance with the quasiclassical approach and provided a
reasonable quantitative description of the experimental
data of Obi et al. �1999� on the Tc�df� dependence in
Nb/Co multilayers.

Krunavakarn et al. �2004� generalized the approach of
Fominov et al. �2002� to perform exact numerical calcu-
lations of the nonmonotonic critical temperature in
F/S/F sandwiches. They demonstrated also that the
Takahashi-Tachiki �1986� theory of the proximity effect
is equivalent to the approach using the Usadel equa-
tions.

Bozovic and Radovic �2002� studied theoretically the
coherent transport current through F/S/F double-barrier
junctions. The exchange field and the interface barrier
reduce Andreev reflection due to the enhancement of
the normal reflection. Interestingly, the conductance is
always higher for parallel alignment of the ferromag-
netic moments. A similar conclusion was obtained in

work of Yamashita, Takahashi, and Maekawa �2003�.
Such behavior is related with the larger transmission for
the normal tunneling current in this orientation. The cal-
culations also revealed the periodic vanishing of An-
dreev reflection at the energies above the superconduct-
ing gap.

The case of insulating F layers �de Gennes, 1966b�
corresponds to when the superconducting electrons feel
the exchange field on the surface of the S layer. We de-
scribe this case taking the limit df→0 with �s0

−1

= ih�ã /ds�, where ã is the interatomic distance, which de-
scribes the region near the S/F interface where the ex-
change interaction �described by the exchange field h�
with electron spins takes place. In fact it simply means
that, for the parallel orientation case, the supercon-
ductor is under the influence of an averaged exchange

field h̃=h�ã /ds�, while for the antiparallel orientation
this field is absent. Careful theoretical analysis of a sys-
tem consisting of the superconducting film sandwiched
between two ferromagnetic semiconducting insulators
with different oriented magnetization was performed by
Kulić and Endres �2000� for both singlet and triplet su-
perconductivity cases. In the case of a triplet supercon-
ductivity, the critical temperature depends not only on
the relative orientation of the magnetization but also on
its absolute orientation.

B. S-F-I-F�-S heterostructures and triplet proximity effect

Many theoretical works were devoted to the analysis
of more complex S/F systems. Proshin et al. �2001� �see
also Izyumov et al., 2002� studied the critical tempera-
ture of S/F multilayers with alternating magnetization of
adjacent F layers. Izyumov et al. �2000, 2002� also pro-
posed the 3D LOFF state in F/S contacts. However, this
conclusion was based on controversial boundary condi-
tions, corresponding to different in-plane 2D wave vec-
tors on both sides of the contact—see the Comment by
Fominov, Kupriyanov, and Feigelman �2003� and the Re-
ply of Khusainov and Proshin �2003�.

Koshina and Krivoruchko �2001� �see also Golubov et
al., 2002a� studied the Josephson current of two proxim-
ity S/F bilayers separated by an insulating �I� barrier and
demonstrated that in such S/F-I-F/S contacts the � phase
may appear even at very small F layer thickness �smaller
than �f�. The �-phase transition in this case is related to
a rotation of � /2 with the anomalous Green’s function F
on the S/F boundary in addition to a jump of its modu-
lus. To demonstrate this we consider a thin F layer of
thickness df��s in contact with a superconductor. If x
=0 corresponds to the S/F interface, and x=df is the
outer surface of the F layer, then the solution of the
linearized Usadel equation in the ferromagnet is

Ff�x,�� 0� = A cosh� i + 1

�f
�x − df�� . �71�

Using the boundary condition �32� we obtain

FIG. 21. The calculated dependence of the superconducting
transition temperature vs inverse reduced half thickness d* /ds
of the superconducting layer for parallel and antiparallel align-
ments for the transparent interface ��B=0� and thick ferro-
magnetic layer �df
�f�. The effective length is d*

= �	f /	s��Ds /4�Tc��h /Df�1/2.
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Ff�x,�� 0� � Ff�0,�� 0� =
Fs�0,�� 0�

1 + 2i�B�ndf/�f
2 . �72�

In the case of low interface transparency �B�ndf /�f
2
1,

the jump of the phase of the F function at the interface
is approximately equal to −� /2:

Ff�0,�� 0� � Fs�0,�� 0�exp�− i
�

2 � �f
2

�B�ndf
. �73�

Koshina and Krivoruchko �2001� and Golubov et al.
�2002a� argued that at each S/F interface in the S/F-I-F/S
contact a phase jump −� /2 occurs, and the total phase
jump in an equilibrium state would be �.

Kulić and Kulić �2001� calculated the Josephson cur-
rent between two superconductors with a helicoidal
magnetic structure. They found that the critical current
depends on the relative orientation � of the magnetic
moments on the banks of contact

Ic = Ic0�1 − R± cos �� , �74�

where R− �R+� corresponds to the same �opposite� helic-
ity of the magnetization in the banks. Depending on the
parameters of the helicoidal ordering, the value of R±
may be either smaller or larger than 1. If R±�1, then Ic
may be negative for some misorientation angles �, which
provides evidence of the � phase. Interestingly, by tun-
ing the magnetic phase �, it is possible to provoke a
switch between the 0 and � phase. As seen from Eq.
�74�, the critical current of the Josephson junction is
maximal for the antiparallel orientation ��=�� of the
magnetizations in the banks.

Bergeret et al. �2001a� studied the Josephson current
between two S/F bilayers and pointed out the enhance-
ment of the critical current for ferromagnetic moments
aligned antiparallel. They demonstrated that at low tem-
peratures the critical current in a S/F-I-F/S junction be-
comes larger than in the absence of the exchange field
�i.e., if the ferromagnetic layers are replaced by normal-
metal layers with h=0�. In more detail �taking into ac-
count different transparency of S/F interfaces and differ-
ent orientations of the magnetization in the banks�,
these junctions were studied theoretically by
Krivoruchko and Koshina �2001�, Chtchelkatchev et al.
�2002�, Golubov et al. �2002a�, and Li et al. �2002�.
Blanter and Hekking �2004� used the Eilenberger and
Usadel equations to calculate the current-phase relation
of the Josephson junction with the composite F layer,
consisting of two ferromagnets with opposite magnetiza-
tions.

Bergeret et al. �2001b� and Kadigrobov et al. �2001�
analyzed using the Usadel equations the proximity effect
in S/F structures with local inhomogeneity of the
magnetization. They obtained the conclusion that
varying the space magnetization generates the triplet
component of the anomalous Green’s function
���↑�↑�� which penetrates in the ferromagnet at dis-
tances much larger than �f. It is not, however, the triplet
superconductivity itself because the corresponding trip-

let order parameter would be equal to zero, unlike the
superfluidity in 3He, for example. In general, the triplet
components of the anomalous Green’s function always
appear in the description of the singlet superconductiv-
ity in the rotation of space the exchange field. For ex-
ample, they were introduced by Bulaevskii et al. �1980�
in the theory of coexistence of superconductivity with
helicoidal magnetic order. An important finding of Berg-
eret et al. �2001b� and Kadigrobov et al. �2001� was the
demonstration that the triplet component is insensitive
to the pair breaking by the exchange field. Therefore its
characteristic decay length is the same as in the normal
metal, i.e., �T,d=�Df /2�T long-range proximity effect
could explain the experiments on S/F mesoscopic struc-
tures �Giroud et al., 1998; Petrashov et al., 1999�, where a
considerable increase of the conductance below the su-
perconducting critical temperature was observed at dis-
tances much larger than �f.

In their subsequent works Bergeret et al. �2003� and
Volkov et al. �2003� studied the manifestation of this
triplet component in S/F multilayered structures. The
most striking effect is the dependence of the critical cur-
rent in multilayered S/F structures on the relative orien-
tation of the ferromagnetic moments. For the collinear
orientation, the triplet component is absent, and pro-
vided the thickness of the ferromagnetic layer df
�f, the
critical current is exponentially small. On the other
hand, if the orientation of the magnetic moments is non-
collinear then the triplet component of the supercon-
ducting condensate appears. Its decay length �T,d is
much larger than �f, and this triplet component provides
the coupling between the adjacent superconducting lay-
ers. When the F layer thicknesses are in the interval
�T,d
df
�f, this coupling then occurs to be strong. As a
result, the critical current is maximal for the perpendicu-
lar orientation of the adjacent ferromagnetic moments,
and it may significantly exceed the critical current for
parallel orientation. Due to the mesoscopic fluctuations
�Zyuzin et al., 2003�, the decay of the critical current for
the magnetic moments oriented collinearly is not expo-
nential. Nevertheless, for this orientation it would be
very small, and this does not change the main conclusion
of the long-range triplet proximity effect. A lot of inter-
esting physics emerges in the case of S/F systems with
genuine triplet superconductors. For example, the prox-
imity effect depends on the mutual orientation of the
magnetic moments of the Cooper pairs and ferromag-
nets.

The long-range triplet proximity effect was predicted
to exist in the dirty limit. An interesting problem is how
it evolves in the clean limit. In this regime there is no
characteristic decay length for the anomalous Green’s
function in a ferromagnet �see Eqs. �21� and �22��, and
the angular behavior of the critical current in S/F multi-
layers may be quite different. If, for example, we apply
the Eilenberger equations for the description of a clean
S/F/F� /S structure with antiparallel ferromagnetic lay-
ers with equal thicknesses, the exchange field is com-
pletely eliminated �Blanter and Hekking, 2004�. There-

959A. I. Buzdin: Proximity effects in superconductor-ferromagnet heterostructures

Rev. Mod. Phys., Vol. 77, No. 3, July 2005



fore, the critical current will be the same as for the
nonmagnetic interlayers. Here it is difficult to believe
that for the perpendicular orientation of the magnetic
moments the critical current could be even higher. The
microscopical calculations using the Bogoliubov–de
Gennes equations of the properties of S/F multilayers
with noncollinear orientation of the magnetic moments
would be of interest.

Barash et al. �2002� studied the Josephson current in
S-FIF-S junctions in the clean limit within the quasiclas-
sical theory of superconductivity, based on the so-called
Ricatti parametrization �Schopol and Maki, 1995�. They
obtained the nonmonotonic dependences of the critical
current on the misorientation angle of the ferromagnetic
moments. However, even for a rather high transparency
of the I barrier �D=0.8�, the maximum critical current
occurred for the magnetic moments oriented antiparal-
lel.

VII. ATOMIC THICKNESS S/F MULTILAYERS

A. Layered ferromagnetic superconductors

In this section, we consider an atomic-scale multilayer
F/S system, where the superconducting �S� and ferro-
magnetic �F� layers alternate. When the electron trans-
fer integral between the S and F layers is small, super-
conductivity can coexist with ferromagnetism in
adjacent layers. Andreev et al. �1991� demonstrated that
the exchange field in F layers favors the �-phase behav-
ior of superconductivity, when the superconducting or-
der parameter alternates its sign on the adjacent S lay-
ers.

Nowadays several types of layered compounds, where
superconducting and magnetic layers alternate, are
known. For example, in Sm1.85Ce0.15CuO4 �Sumarlin et
al., 1992�, which reveals superconductivity at Tc
=23.5 K, the superconducting layers are separated by
two ferromagnetic layers with magnetic moments ori-
ented oppositely and the Néel temperature is TN
=5.9 K. Several years ago, a new class of magnetic su-
perconductors based on the layered perovskite rutheno-
cuprate compound RuSr2GdCu2O8 comprising CuO2 bi-
layers and RuO2 monolayers were synthesized �see, for
example, McLaughlin et al., 1999, and references cited
there�. In RuSr2GdCu2O8, the magnetic transition oc-
curs at TM�130–140 K and superconductivity appears
at Tc�30–50 K. Recent measurements of the interlayer
current in small-sized RuSr2GdCu8 single crystals
showed the intrinsic Josephson effect �Nachtrab et al.,
2004�. Apparently, it is a weak ferromagnetic order
which occurs in this compound. Although magnetization
measurements provide evidence of a small ferromag-
netic component, the neutron-diffraction data on
RuSr2GdCu2O8 �Lynn et al., 2000� revealed the domi-
nant antiferromagnetic ordering in all three directions.
Later, the presence of a ferromagnetic in-plane compo-
nent of about �0.1–0.3��B has been confirmed by neu-
tron scattering on isostructural RuSr2YCu2O8

�Tokunaga et al., 2001�. In addition, in an external mag-
netic field the ferromagnetic component grows rapidly at
the expense of the antiferromagnetic one.

Due to the progress of multilayer preparation meth-
ods, the fabrication of artificial atomic-scale S/F super-
lattices has become possible. An important example is
the YBa2Cu3O7/La2/3Ca1/3MnO3 superlattice �Sefrioui
et al., 2003; Holden et al., 2004�. The manganite half me-
tallic compound La2/3Ca1/3MnO3 �LCMO� exhibits co-
lossal magnetoresistance and its Curie temperature is
�=240 K. The cuprate high-Tc superconductor
YBa2Cu3O7 �YBaCuO� with Tc=92 K has a similar lat-
tice constant as LCMO allows us to prepare the high-
quality YBaCuO/LCMO superlattices with different F
and S layer thickness ratios. The proximity effect in
these superlattices occurs to be long ranged. For a fixed
superconducting layer thickness, the critical temperature
is dependent on the LCMO layer thickness in the 100-
nm range �Sefrioui et al., 2003; Peña et al., 2004�. This is
unusual because the YBaCuO and LCMO are strongly
anisotropic layered systems with small coherence length
in a direction perpendicular to the layers �0.1–0.3 nm�.
A somewhat similar giant proximity effect has been re-
cently reported in nonmagnetic trilayer junctions
La1.85Sr0.15CuO4/La2CuO4+d /La1.85Sr0.15CuO4 �Bozovic
et al., 2004� and in superconductor-antiferromagnet
YBa2Cu3O7/La0.45Ca0.55MnO3 superlattices �Pang et al.,
2004�. The observed giant proximity effect defies the
conventional explanations. Bozovic et al. �2004� sug-
gested that it may be related to resonant tunneling, but
at the moment the question about the nature of this
effect is open.

B. Exactly solvable model of the � phase

Let us consider the exactly solvable model �Andreev
et al., 1991� of alternating superconducting and ferro-
magnetic atomic metallic layers. For simplicity, we as-
sume that the electron’s motion inside the F and S layers
is described by the same energy spectrum ��p�. Three
basic parameters characterize the system: t is the trans-
fer energy between the F and S layers, � is the Cooper
pairing constant which is assumed to be nonzero in S
layers only, and h is the constant exchange field in the F
layers. The Hamiltonian of the system can be written as

H = 	
p� ,n,i,	

��p�ani	
† �p�ani	�p� + Hint1 + Hint2

+ t�ani	
† �p�an,−i,	�p� + an+1,−i,	

† �p�ani	�p� + H.c.� ,

Hint1 =
g

2 	
p�1,p�2,n,	

an1	
† �p1�an,1,−	

† �− p1�

�an,1,−	�− p2�an1	�p2� ,

Hint2 = − h 	
p� ,n,	

	an,−1,	
† �p�an,−1,	�p� , �75�

where ani	
† is the creation operator of an electron with

spin 	 in the nth elementary cell and momentum p in
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layer i, where i=1 for the S layer and i=−1 for the F
layer, and g is the pairing constant. An important advan-
tage of this model is that the quasiparticle Green’s func-
tions can be calculated exactly and a complete analysis
of the superconducting characteristic is possible. Assum-
ing that the order parameter changes from cell to cell in
the form �n= ���eikn, the self-consistency equation for
the order parameter ��� reads

1 = − �Tc
*�	

�
�

−�

�

d��
0

2� dq

2�

�
�̃+�̃−

�̃+�̃−���2 − ��−�̃− − �Tq+k�2���+�̃+ − �Tq�2�
, �76�

where �=gN�0� and �±= i�±��p�, �̃±=�±+h. The quasi-
momentum q is perpendicular to the direction of the
layers, and Tq=2t cos�q /2�eiq/2. In the limit of a small
transfer integral t�Tc, where Tc is the bare mean-field
critical temperature of the S layer in the absence of cou-
pling �t=0�, we arrive at the following equation for the
critical temperature Tc

*:

ln
Tc

*

Tc
= − �Tc

*t2	
�

4

����4�2 + h2�

+ �Tct
4 cos k	

�

12�4 − 7�2h2 − h4

���3��2 + h2��4�2 + h2�2 . �77�

The critical temperature Tc
* is close to the bare critical

temperature Tc and from Eq. �77�, for h=0, the maximal
Tc

* corresponds to k=0, i.e., the superconducting order
parameter is the same at all layers. It is worth noting
that as the exchange field on the F layers grows, tunnel-
ing becomes energetically more costly, so the leading
second-order term in t falls as 1/h2 for large h and the
critical temperature increases. This is related to the fact
that, due to the decrease of the coupling, the effective
exchange field induced on the S layers decreases with an
increase of h. For h
Tc, the coefficient of the cos k
term has a negative sign and the maximal Tc

* corre-
sponds to k=�, and the transition occurs with the �
phase with an alternating order parameter �n= ����−1�n.
Numerical calculations �Andreev et al., 1991� give for
the critical value of the exchange field �at which k
changes from 0 to �� hc=3.77Tc, and the complete �h ,T�
phase diagram is presented in Fig. 22.

At T=0 the transition to the � phase occurs at hc0
=0.87Tc. The analysis of Prokić et al. �1999� and Houzet
et al. �2001� shows that the perpendicular critical current
vanishes at the transition from the 0 to the � phase and
the Josephson coupled superconducting planes are de-
coupled. Strictly speaking, the critical current vanishes
only in the �t4 approximation; see Eq. �77�. The term
�t8 gives the contribution �t8 cos 2k, and the critical
current at the transition to the � phase will decrease to a
small value �Ic�t /Tc�8. Note that the sign of the second
harmonic in the j��� relation generated by this �t8 term
is positive, and therefore the transition from the 0 to the
� phase is discontinuous.

As a result, if the exchange field is in the interval
hc0�h�3.77Tc, the 0-� transition may be easily ob-
served with decreasing temperature due to the non-
monotonic behavior of the Josephson plasma frequency
and the parallel London penetration �Houzet et al.,
2001�. However, a typical value of the exchange field is
rather high and more probable is h
Tc, and the system
will be in the � phase at any temperature. This is con-
sistent with the recent experiments of Nachtrab et al.
�2004� on RuSr2GdCu2O8 presenting no evidence of su-
perconducting planes decoupling with temperature. In
RuSr2GdCu2O8, the superconducting pairing is probably
of the d-wave type. This case was analyzed theoretically
by Prokić and Dobrosavljević-Grujić �1999�, and the sce-
nario of the �-phase appearance is similar to the s-wave
superconductivity. Calculations of the electronic density
of states by Prokić and Dobrosavljević-Grujić �1999� and
Prokić et al. �1999� revealed some changes inherent to
the 0-� transition, but the experimental identification of
the � phase in atomic-scale S/F superlattices is an ex-
tremely difficult task. In principle, if the superlattice
consists of an even number of superconducting layers,
then the phase of the order parameter will differ by �,
and the entire system will function as a Josephson �
junction. The spontaneous current in a superconducting
loop containing such a � junction was observed with an
experiment analogous to the one made by Bauer et al.
�2004�.

The model �75� permits us to analyze the transition
from the quasi-2D to 3D system with an increase of the
transfer intergral t. At t Tc, instead of the � phase, the
LOFF state with modulation along the superconducting
layers appears and the system becomes analogous to the
3D superconductor in a uniform exchange field �Houzet
and Buzdin, 2002�.

Buzdin and Daumens �2003� considered the spin-valve
effect in the F/S/F structure consisting of three atomic
layers and described by the model �75�. Analogous to
the F/S/F spin-valve sandwiches �see Sec. VI�, the critical
temperature is maximal for the antiparallel orientation
of the ferromagnetic moments. However, at low tem-
perature, the situation is inversed. Namely, the super-
conducting gap occurs to be larger for the parallel ori-
entation of the ferromagnetic moments. This
counterintuitive result of the inversion of the proximity

FIG. 22. The �T ,h� phase diagram of the atomic S/F multilayer
in the limit of the small transfer integral t�Tc.
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effect may be understood by the example of the ferro-
magnetic half metal. Indeed at T=0, the disappearance
of the Cooper pair in a S layer means that two electrons
with opposite spin must exit. If the neighboring F layers
of half metals are parallel, then, for one spin orientation,
they are both insulators and the electron with this spin
orientation cannot enter it. This results in the impossi-
bility of the pair destruction. On the other hand, for the
antiparallel orientation of the F layers, in the electron-
spin orientation there is an adjacent normal layer and a
Cooper pair can leave the S layer. Such behavior con-
trasts with the diffusive model prediction �Baladié and
Buzdin, 2003; Tollis, 2004� but is in accordance with the
T=0 results obtained with the multiterminal model for
S/F hybrid structures �Apinyan and Mélin, 2002�. Appar-
ently, it is a special property of the clean limit of the
atomic-layer S/F model, and it disappears in the case of
several consecutive S layers per unit cell �Mélin and
Feinberg, 2004�.

VIII. SUPERCONDUCTIVITY NEAR THE DOMAIN WALL

In the previous discussion of the properties of S/F het-
erostructures, we have implicitly assumed that the ferro-
magnet has uniform magnetization, i.e., there are no do-
mains. In practice the domains appear in ferromagnets
quite easily and special conditions are usually needed to
obtain the single domain ferromagnet. In the standard
situation, the size of the domains is much larger than the
superconducting coherence length, �f��s, and therefore
the Cooper pair will sample the uniform exchange field.
However, for the S/F proximity effect near the domain
wall a special situation occurs, where the magnetic mo-
ments and the exchange field rotate. The Cooper pairs
feel the exchange field averaged over the superconduct-
ing coherence length. Naturally, such an averaged field
will be smaller near the domain wall, which leads to a
local decrease of the pair-breaking parameter. As a re-
sult, we may expect that superconductivity would be
more robust near the domain wall. In particular, the
critical temperature Tcw for the superconductivity local-
ized near the domain wall would be higher than that of
the uniform S/F bilayer Tc

*. For bulk ferromagnetic su-
perconductors, the critical temperature of the supercon-
ductivity localized near the domain wall was calculated
by Buzdin et al. �1984�. The experimental results of the
domain-wall superconductivity in Ni0.80Fe0.20/Nb bilay-
ers �with Nb thickness around 20 nm� were observed by
Rusanov et al. �2004�. The Néel-type domain walls in
Permalloy �Ni0.80Fe0.20� are responsible for the local in-
crease of the critical temperature around 10 mK. The
width of the domain walls w in Permalloy films used by
Rusanov et al. �2004� is rather large, w�0.5 �m, i.e.,
much larger than the superconducting coherence length
of niobium. The rotation angle � of the exchange field at
the distance �s is estimated as ���s /w, and the averaged
exchange field hav is smaller than the field h distant from
the domain wall: �h−hav� /h���s /w�2. Therefore, a rela-
tive decrease of the pair-breaking parameter �s

−1 in Eq.

�40� will be also of the order ���s /w�2. From Eqs. �40�
and �43� we obtain the following estimate of the local
increase of the critical temperature:

Tcw − Tc
*

Tc
* � ��s/w�2, �78�

which is of the same order of magnitude as the effect
observed on the Ni0.80Fe0.20/Nb bilayers. Keeping in
mind the temperature dependence of the superconduct-
ing coherence length ��T���s�Tc

* / �T−Tc
*�, we see that

the condition for domain-wall superconductivity is
��Tcw��w.

In the case of a very thin domain wall, the variation of
the exchange field is steplike and the local suppression
of the pair-breaking parameter occurs at a small distance
of order �f��s near the domain wall. The situation re-
sembles the enhancement of the superconducting pair-
ing near the twin planes �Khlyustikov and Buzdin, 1987�.
The variation of the pair breaking occurring over a dis-
tance �f induces a superconducting order parameter over
a distance ��Tcw� near the domain wall and the effective
relative decrease of the pair-breaking parameter will be
of the order of �f /��Tcw�. Therefore, if the shift of the
critical temperature of the S/F bilayer is comparable
with Tc, i.e., �Tc−Tc

*� /Tc�1, the critical temperature Tcw
of the superconductivity, localized near the domain wall,
may be estimated from the condition �Tcw−Tc

*� /Tc
*

��f /��Tcw�. As a result we have

Tcw − Tc
*

Tc
* � ��f/�s�2, �79�

which is around 1–5 % for typical values of �f and �s. A
small width of the domain walls is expected in the ex-
periments of Kinsey, Burnell, and Blamire �2001� on the
critical current measurements of Nb/Co bilayers. The
domain walls occurred to be responsible for the critical
current enhancement below Tc

*=5.24±0.05 K. In the
presence of domains walls the nonzero critical current
has been observed at 5.4±0.05 K, slightly above Tc

*.
It is worth noting that the effect of increasing the criti-

cal temperature in the vicinity of a domain wall is weak
for very large and very thin domain walls. The optimum
thickness, when the effect may be relatively strong, is
w��s.

In the case of a perpendicular easy axis the branching
of the domains occurs near the surface of magnetic film.
If the scale of this branching is smaller than the super-
conducting coherence length, the effective exchange
field is averaged, and the pair-breaking parameter will
be strongly decreased. This mechanism has been pro-
posed by Buzdin �1985� to explain superconductivity at
low temperature in reentrant ferromagnetic supercon-
ductors. A similar effect takes place in S/F bilayers and
in such a case the superconductivity would be extremely
sensitive to the domain structure. A rather weak mag-
netic field would suffice to modify the branching of do-
mains and suppress superconductivity.
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Up to now we have concentrated on the interplay be-
tween superconductivity and ferromagnetism causing
the passing of electrons across the S/F interface known
as the proximity effect. However, if the magnetic field
created by the ferromagnet penetrates into a supercon-
ductor, it switches on the orbital mechanism of super-
conductivity and the magnetic interaction. The situation
when superconductivity and the magnetic interaction oc-
curs is only when the ferromagnet is an insulator, or the
buffer oxide layer separates the superconductor and the
ferromagnet. Hybrid S/F systems were studied in con-
nection with controlled flux pinning. Enhancement of
the critical current was observed experimentally for su-
perconducting films with arrays of submicron magnetic
dots and antidotes �see, for example, Van Bael, Raedts,
et al. �2002� and Van Bael, Van Look, et al. �2002� and
references cited therein�, and for S/F bilayers with a do-
main structure in ferromagnetic films �García-Santiago
et al., 2000�. A theory of vortex structures and pinning in
S/F systems at rather low magnetic field has been elabo-
rated on by Lyuksyutov and Pokrovsky �1998�, Bula-
evskii et al. �2000�, Erdin et al. �2002�, and Milosevic et
al. �2002a�. This subject is discussed in detail in the re-
cent review by Lyuksyutov and Pokrovsky �2005�.

Nucleation of superconductivity with the domain
structure was theoretically studied by Aladyshkin et al.
�2003� and Buzdin and Melnikov �2003� in the case of
magnetic film with perpendicular anisotropy. The condi-
tions for a superconductivity are more favorable near
the domain walls. Recently domain-wall superconductiv-
ity was revealed in an experiment by Yang et al. �2004�.
They deposited on the single-crystal ferromagnetic
BaFe12O19 substrate a 10-nm Si buffer layer and then a
50-nm Nb film. The strong magnetic anisotropy of
BaFe12O19 assures that its magnetization is perpendicu-
lar to the Nb film. The very characteristic R�T� depen-
dences and pronounced hysteresis effects were found in
resistance measurements in an applied field.

A different situation occurs if the magnetization of
the F layer lies in the plane �parallel magnetic anisot-
ropy�. Then any type of domain walls will be a source of
the magnetic field for the adjacent S layer, and the do-
main wall locally weakens superconductivity. This idea
was proposed by Sonin �1988� in a S layer to create a
superconducting weak link �Josephson junction� at-
tached to the domain wall.

Lange et al. �2003� used a nanoengineered lattice of
magnetic dots on superconducting films for field-induced
superconductivity. An applied external magnetic field
provided the compensation of the magnetic field of the
dots and increased the critical temperature. The idea of
such a compensation effect was proposed a long time
ago by Ginzburg �1956� for ferromagnetic superconduct-
ors.

The analysis of superconducting states appearing near
the magnetic dots �when the upper critical field depends
on the angular momentum of the superconducting
nucleus wave function� was done by Cheng and Fertig
�1999� and Milosevic et al. �2002b�.

IX. MODIFICATION OF FERROMAGNETIC ORDER BY
SUPERCONDUCTIVITY

A. Effective exchange field in thin S/F bilayers

The influence of ferromagnetism on superconductivity
is strong, and it leads to many experimentally observed
consequences. Is the inverse also true? In other words,
can superconductivity affect or even destroy ferromag-
netism? To address this equation, we start by comparing
the characteristic energy scales for superconducting and
magnetic transitions. The energy gain per atom at the
magnetic transition is of the order of the Curie tempera-
ture �. On the other hand, the condensation energy per
electron at the superconducting transition �Eq. �2�� is
much smaller than Tc, and it is only about �Tc�Tc /EF�
�Tc. Usually the Curie temperature is higher than Tc
and ferromagnetism appears to be much more robust
compared with superconductivity. Therefore supercon-
ductivity can hardly destroy the ferromagnetism, but it
may, nevertheless, modify it, if such modification does
not cost too much energy. As an example consider bulk
ferromagnetic superconductors ErRh4B4, HoMo6S8, and
HoMo6Se8, where, in the superconducting phase, ferro-
magnetism is transformed into a domain phase with the
domain size smaller than the superconducting coherence
length �s �Maple and Fisher, 1982; Bulaevskii et al.,
1985�. A similar effect was predicted by Buzdin and Bu-
laevskii �1988� for a thin ferromagnetic film on a super-
conductor. To illustrate this effect, we consider the S/F
bilayer with the S layer thickness ds smaller than the
superconducting coherence length �s and the F layer
thickness df��f�ds; see Fig. 23.

In the case of a transparent S/F interface, the pair-
breaking parameter is given by Eq. �40�, and

FIG. 23. S/F bilayer with domain structure in the ferromag-
netic layer. The period D of the domain structure �D=2� /Q�
is smaller than the superconducting coherence length �s.
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�s,0
−1��� 0� = ih

Ds

Df

df

ds

	f

	s
, �80�

which means that the effective exchange field in the su-

perconductor is h̃�h�df /ds���Ds /Df�	f /	s�. The condi-
tion of a transparent interface implies that the Fermi
momenta are equal in both materials and this permits us
to write the effective field as

h̃ = h�df/ds�vFs/vFf, �81�

where vFs and vFf are the Fermi velocities in S and F
layers, respectively. Note, however, that for strong ferro-
magnets the condition for perfect transparency of the
interface is different, vF↑vF↓=vs

2, where vF↑ and vF↓ are
the Fermi velocities for two spin polarizations in a fer-
romagnet �Zutic and Valls, 1999; Zutic et al., 2004�.

In fact, in the case considered of thin F and S layers
the situation is analogous to magnetic superconductors

with an effective exchange field h̃, which may also de-
pend on the coordinates �y ,z� in the plane of bilayer. Let
us demonstrate this important point. Keeping in mind
the domain structure �see Fig. 23�, where the exchange
field depends only on the z coordinate, we may write the
Usadel equations in the F and S layers,

−
Df

2
�G�F +

�2

�z2F� − F� �2

�x2G +
�2

�z2G��
+ �� + ih�z��F = 0, �82�

−
Ds

2
�G� �2

�x2F +
�2

�z2F� − F� �2

�x2G +
�2

�z2G�� + �F

= �G . �83�

Now let us perform the averaging procedure by integrat-
ing these equations over x. Due to the small thickness of
the F and S layers, the Green’s functions G and F vary
little with x and may be considered as constants. The
integration of the terms with the second derivatives on x
will generate �F /�x and �G /�x terms taken at the inter-
faces. At the interfaces with vacuum these derivatives
vanish and the boundary conditions �32� permit us to
rely on the derivatives of F function on both sides of the
S/F interface �the same relation is true for the G func-
tion, due to the normalization condition Eq. �A6��. Ex-
cluding the derivatives ��F /�x�ds

and ��G /�x�ds
, we ob-

tain the standard Usadel equation but for the averaged

�over the S layer thickness� Green’s functions F̄ and Ḡ,

�� + ih̃�z��F̄ −
Ds

2
�Ḡ

�2

�z2 F̄ − F̄
�2

�z2Ḡ� = �Ḡ , �84�

where the effective field is h̃�z�=h�z��df /ds��Ds /
Df�	f /	s=h�df /ds�vFs /vFf and the condition df /ds�1 is
used to neglect the small renormalization of Ds and �.

Introducing an effective field h̃�z� in the case of a thin
bilayer is quite natural and rather general. The same

effective field may be introduced in the framework of
the Eilenberger equations.

B. Domain structure

In the case of the uniform ferromagnetic ordering in

the F layer, superconductivity can exist only if h̃ does not

exceed the paramagnetic limit: h̃�1.24Tc. This means
that the thickness of the F layer must be extremely small
df� �Tc /h�ds; even for ds��s, taking Tc�10 K and h
�5000 K, the maximum thickness of the F layer is only
around 1 nm. However, ferromagnetic superconductors
�Maple and Fisher, 1982; Bulaevskii et al., 1985� provide
an example of domain coexistence phases with an ex-
change field larger than the paramagnetic limit.

We apply the theory of magnetic superconductors
�Bulaevskii et al., 1985� to the description of the domain
structure with wave vector Q
�s

−1 in the S/F bilayer; see
Fig. 23. The pair-breaking parameter associated with the

domain structure is �s
−1� h̃2 /vQ �Bulaevskii et al., 1985�,

where v=vFs is the Fermi velocity in the S layer. Let us
write the domain-wall energy per unit area as 	 /�a2,
where a is the interatomic distance. The domain-wall
energy in the F film per unit length of the wall will be
df�	 /�a2�. Note that we consider the case of relatively
small domain-wall thickness w�Q−1��s and constant 	,
where the domain-wall energy is of the order of Curie
temperature ! for an atomic thickness domain wall but
may be smaller for thicker domain walls. The change of
the superconducting condensation energy density due to
the pair-breaking effect of the domain structure is of the
order of N�0��2 /��s. Therefore, the density �per unit
area� of the energy EDS related to the domain structure
reads

EDS � N�0�ds�
h̃2

vQ
+ df

	Q

a2 . �85�

Its minimum is reached at

Q2 =
ds

df

N�0��a2h̃2

	v
�

1

a�0

ds

df

h̃2

	EF
, �86�

where �0=�v /��. The factor which favors the existence
of the domain structure is the superconducting conden-
sation energy Es�−N�0�ds�

2 per unit area. The domain
structure decreases the total energy of the system if
EDS+Es�0, and we obtain the following condition:

Tc �h̃2	df/ds�1/3 = h̃�	/h�1/3. �87�

Due to the small factor 	 /h�1 this condition is less

restrictive than the paramagnetic limit �Tc�0.66h̃�. Nev-
ertheless, the conditions for the formation of the domain
structure remain rather stringent. To minimize the df /ds
ratio �and the effective exchange field� it is better to
choose the largest possible ds thickness. However, the
maximum thickness of the region, where superconduc-
tivity will be affected by the presence of the F layer, is of
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the order of �s. Then, even in the case of the bulk super-
conductor ds

max��s, the condition of the domain-phase
formation reads

Tc h
df

�s
�	/h�1/3. �88�

We conclude that for the domain-phase observation it is
better to choose a superconductor with a large coher-
ence length �s and a ferromagnet with low Curie tem-
perature and small energy of the domain walls.

The transition into the domain state is a first-order
one, and as all transitions related to the domain walls, it
would be highly hysteretic. This circumstance may com-
plicate its experimental observation. To overcome this
difficulty, it may be helpful to fabricate the S/F bilayer
with a ferromagnet with a low Curie temperature �
�Tc. In such a case, initially we expect the appearance
of nonuniform magnetic structure below �. This system
would be analogous to ferromagnetic superconductors
ErRh4B4, HoMo6S8, and HoMo6Se8.

Bergeret et al. �2000� argued that the appearance of a
nonhomogeneous magnetic order in a F film deposited
on the bulk superconductor occurs via a second-order
transition and the period of the structure goes to infinity
at the critical point. They considered the helicoidal mag-
netic structure with a wave vector Q and the magnetic
moment lying in the plane of the film. The increase of
the magnetic energy due to the rotation of the moments
was taken to be proportional to Q2. However, the mag-
netic structure considered is known to generate a mag-
netic field at a distance �Q−1 from the film. The contri-
bution coming from this field produces a magnetic
energy proportional to Q and not to Q2 in a small wave-
vector regime. This circumstance qualitatively changes
the conclusions of Bergeret et al. �2000� and makes the
transition into a nonhomogeneous magnetic state a first-
order one.

The experiments of Mühge et al. �1998� on ferromag-
netic resonance measurements in Fe/Nb bilayers re-
vealed a decrease of the effective magnetization below
Tc for bilayers with df�1 nm. This thickness is compat-
ible with the estimate �88�, but the analysis of the experi-
mental data by Garifullin �2002� reveals the possibility
of the formation of islands at a small thickness of the Fe
layer, which may complicate the interpretation of the
experimental results.

C. Negative domain-wall energy

In the previous analysis, the energy of the domain
walls was considered to be constant independent of the
presence of the superconducting layer. It is a good ap-
proximation for a thin domain wall w��s. However, su-
perconductivity localized near the domain walls occurs
for the local enhancement of the superconducting con-
densation energy, which may give a negative contribu-
tion to the domain-wall energy. We estimate this effect
for a thick w
�s domain wall. The effect is maximum
for the S/F bilayer with the relative variation of the criti-

cal temperature �Tc−Tc
*�Tc�1 at ds��s. We will assume

these conditions to be satisfied. Following the same rea-
soning as in domain-wall superconductivity, we estimate
the relative local decrease of the pair-breaking param-
eter as ���s

−1� /�s
−1���s /w�2. Therefore, the local negative

contribution to the domain-wall energy �per unit length�
resulting from the superconductivity reads as

�Es � − N�0��2��s/w�2wds. �89�

The proper magnetic energy of the domain wall is
EDW�df�	 /�a2�, and for a large domain wall 	
���a /w�. The condition of the vanishing of the total
energy of the domain wall �Es+EDW=0 gives

Tc
2

EF

�s
3

wa
� df	��

a

w
df, �90�

where the estimate ds��s is used. Finally, we conclude
that the energy of the domain wall may be negative for
the system with

Tc�
a

l

df

�s
, �91�

where l is the electron mean free path. We have taken
into account that �s���0l and a /�0�Tc /EF. If the con-
dition �91� is fulfilled, the following scenario emerges.
The temperature decrease below Tc

* will decrease the
energy of the domain walls, which are usually present in
a ferromagnet. The concentration of the domain walls
will increase and finally, when the domain-wall energy
changes sign, a dense domain structure appears. The av-
erage distance between domains walls in such a struc-
ture would be of the order of the domain-wall thickness
itself. Note that for the case of small domain wall thick-
ness the superconducting contribution to its energy is
negligible and instead of Eq. �91� we obtain the nonre-
alistic condition Tc��df /�f� �s / l. We have taken into
account only the exchange mechanism of the interaction
between magnetism and superconductivity. The orbital
effect gives an opposite contribution to the domain-wall
energy, as a result of the out-of-plane magnetic field
near the domain wall, which generates screening cur-
rents in the superconducting layer.

At present, there are no clear experimental evidences
for the domain structure formation in S/F bilayers. The
experiments of Mühge et al. �1998� on ferromagnetic
resonance measurements in Fe/Nb bilayers presented a
decrease of the effective magnetization below Tc

* for bi-
layers with df�1 nm. This thickness is compatible with
the estimate �88�, but the magnetic moment decreases
continuously below Tc

*. In addition, the analysis of the
experimental data by Garifullin �2002� reveals the possi-
bility of the formation of islands at a small thickness of
the iron layer thus reducing its magnetic stiffness. The
condition �91� is apparently fulfilled in the experiments
of Mühge et al. �1998�. Therefore, the decrease of the
domain-wall energy may be at the origin of the observed
effect.
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D. Ferromagnetic film on a superconducting substrate

Bulaevskii and Chudnovsky �2000� and Bulaevskii et
al. �2002� demonstrated that the pure orbital effect could
decrease the equilibrium domain width in a ferromag-
netic film on the superconducting substrate. The ferro-
magnet with a perpendicular magnetic anisotropy is ei-
ther an insulator or separated from the superconductor
by a thin insulating �e.g., oxide� layer; see Fig. 24.

In such a case the ferromagnetic film and the super-
conductor are coupled only by the magnetic field. It is
well known �Landau and Lifshitz, 1982� that the positive
energy of the magnetic field favors small domains, so
that the stray field does not spread at large distances. On
the other hand, the positive domain-wall energy favors a
large domain size. The balance of these two contribu-
tions gives the equilibrium domain width lN��wdf. In
the presence of a superconductor, the screening currents
modify the distribution of the magnetic field near the
S/F interface and give an additional positive contribu-
tion to the energy of the magnetic field. This results in a
shrinkage of the domain width. The energy ED of the
domain structure on the superconducting substrate
reads �Bulaevskii and Chudnovsky, 2000; Bulaevskii et
al., 2002�

ED � 3l̄ +
2l̄N

2

l̄
−

16l̄

7"�3�

�	
k#0

1

�2k + 1�2�2k + 1 + ��2k + 1�2 + 16l̄2�
.

�92�

Here l̄= l /4�� and l̄N= lN /4�� are the reduced widths of
domains on a superconducting and normal substrate, re-
spectively, and � is the London penetration depth. The

minimization of ED over l̄ gives the equilibrium width of
domains. In the limit �→� the influence of supercon-
ductivity vanishes and l= lN. The limit �→0, when the
magnetic field does not penetrate inside the supercon-
ductor, was considered by Sonin �2002�. In this limit the
shrinkage of the domain widths is maximum and l

=�2/3lN. Then we conclude that the influence of super-
conductivity on the domain structure is not very large
and it is even less pronounced in the S/F bilayer when
the thickness of the S layer becomes smaller than the
London penetration depth �Daumens and Ezzahri,
2003�.

Helseth et al. �2002� studied the change of the Bloch
domain-wall structure in a ferromagnetic thin film on a
superconducting substrate with the in-plane magnetiza-
tion of the domains. It occurs that the wall experiences a
small shrinkage, which corresponds to an increase of the
energy of the domain wall.

Recently, Dubonos et al. �2002� demonstrated experi-
mentally the influence of the superconducting transition
on the distribution of the magnetic domains in meso-
scopic ferromagnet-superconductor structures. This
finding makes the observation of the effect predicted by
Bulaevskii and Chudnovsky �2000� and Bulaevskii et al.
�2002� plausible. Rearrangement of the domains nor-
mally results in a resistance change in metallic ferromag-
nets. In this context Dubonos et al. �2002� noted that
domain walls’ displacement due to the superconducting
transition could be long-range resistive proximity effects
previously observed in mesoscopic Ni/Al structures �Pe-
trashov et al., 1999� and Co/Al structures �Giroud et al.,
1998�. Note also that Aumentado and Chandrasekhar
�2001� studied the electron transport in a submicron fer-
romagnet �Ni� in contact with a mesoscopic supercon-
ductor �Al� and demonstrated that the interface resis-
tance is very sensitive to the magnetic state of the
ferromagnetic particle.

X. CONCLUSIONS

The most striking peculiarity of the proximity effect
between a superconductor and ferromagnet produces
damped oscillatory behavior of the Cooper pair wave
function in the ferromagnet. This results in a nonmono-
tonic dependence of the critical temperature of S/F mul-
tilayers on the F layer thickness, as well as in the forma-
tion of � junctions in S/F/S interfaces. The minimum
energy of the � junction is realized for the phase differ-
ence ±�, and a spontaneous supercurrent may appear in
a circuit containing the � junction. Two possible direc-
tions of the supercurrent reflect the doubly degenerate
ground state. In contrast to the usual junction such a
state is achieved without an external applied field. The
qubit �or quantum bit� is the analog of a bit for quantum
computation, described by a state in a two-level quan-
tum system �Nielsen and Chuang, 2000�.
Superconductor/ferromagnet systems present a way to
create an environmentally decoupled �so-called “quiet”�
qubit �Ioffe et al., 1999� using a S/F/S junction.

The � junctions permit a realization of complemen-
tary logic. In the metal-oxide semiconductor logic family
the combination of the semiconducting n-p-n junctions
with the complementary p-n-p junctions allows a signifi-
cant simplification of the circuitry. The same is possible
for Josephson-junctions’ devices and circuits when �

FIG. 24. The ferromagnetic film with perpendicular anisotropy
on a superconducting substrate.
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junctions are used �Terzioglu and Beasley, 1998�. The
logic cells with � junctions play the role of complemen-
tary devices to the usual Josephson logic cells.

Recently, Ustinov and Kaplunenko �2003� proposed
using the � junction as a phase shifter in rapid single-
flux quantum circuits. The relatively large geometrical
inductance, which is required by the single-flux quantum
storage, may be replaced by the much smaller � junc-
tion. The advantage of using � junctions is the ability to
scale the dimension of superconducting logic circuits
down to the submicron size. In addition, the use of the �
junction as a phase shifter substantially increases the pa-
rameter margins of the circuits.

As discussed in Sec. III.D, the exchange interaction
strongly affects Andreev reflection at the F/S interface
providing a powerful tool to probe ferromagnets and
measure their spin polarization.

The structures consisting of 0 and � Josephson junc-
tions exhibit quite unusual properties. Bulaevskii et al.
�1978� demonstrated that a spontaneous vortex carrying
flux �0 /2 appears at the boundary between 0 and �
junctions �see also Xu et al. �1995� and Goldobin et al.
�2002��. A periodic structure consisting of small alternat-
ing 0 and � Josephson junctions will have an equilibrium
averaged phase difference �0 value in the interval −�
��0��, depending on the ratio of the 0 and � junction
lengths �Mints, 1998; Buzdin and Koshelev, 2003�.
Superconductor/ferromagnet heterostructures provide
the possibility of the realization of such � junction with a
very special two-maxima current-phase relation and Jo-
sephson vortices carrying partial fluxes �0��0 /�� and
�0�1−�0 /��.

The possibility to combine in a controlled manner
paramagnetic and orbital interaction mechanisms be-
tween superconductivity and magnetism makes the
physics of S/F heterostructures quite rich and promising
for potential applications. Also the recent observation of
strong vortex pinning in S/F hybrid structures, the spin-
valve effect in F/S/F systems, and domain-wall supercon-
ductivity provide a good perspective to the creation of
new electronics devices. Recent progress in controlling
the fabrication of high-quality heterostructures and in-
terfaces was crucial in this domain. Further development
on microfabrication technology will permit one to ex-
pect other interesting findings in the near future.
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APPENDIX

1. Bogoliubov–de Gennes equations

Since the characteristic length of the induced super-
conductivity variation in a ferromagnet is small com-
pared with a superconducting length, this implies using
the microscopic theory of superconductivity to describe
the proximity effect in S/F structures. A microscopical
approach to study superconducting properties in the bal-
listic regime �the clean limit� in spatially varying fields is
the use of the Bogoliubov–de Gennes equations �de
Gennes, 1966a�. The equations for electron and hole
wave functions u↑�r� and v↓�r� are

�H0 − h�r��u↑�r� + ��r�v↓�r� = E↑u↑�r� ,

�*�r�u↑�r� − �H0 + h�r��v↓�r� = E↑v↓�r� , �A1�

where E↑ is the quasiparticle excitation energy, H0
=−�2��2 /2m�−EF is the single-particle Hamiltonian,
h�r� is the exchange field in the ferromagnet, and the
spin quantization axis is chosen along its direction.
Equations for the wave functions with opposite spin ori-
entation u↓�r� and v↑�r� and the excitation energy E↓ are
obtained from Eq. �A1� with the substitution h→−h.
Note that the solution �u↓ ,v↑� with energy E↓ may be
obtained from the solution of Eq. �A1�, if we choose
u↓=v↑, v↑=−u↓, and E↓=−E↑. The pair potential in the
superconductor is determined by the self-consistent
equation

��r� = � 	
E↑�0

u↑�r�v↓
*�r��1 − 2f�E↑�� , �A2�

where f�E� is the Fermi distribution function f�E�
=1/ �1+exp�E /T��, and � is the BCS coupling constant.

Assuming that the Cooper pairing is absent in the fer-
romagnet, we have ��r�=0. This occurs when analytical
solutions of the Bogoliubov–de Gennes equations are
obtained with spatially varying pair potentials which are
very rare. However, these equations provide a good ba-
sis for the numerical calculations to treat different as-
pects of S/N and S/F proximity effects.

2. Eilenberger and Usadel equations for ferromagnets

Another microscopical approach to the theory of su-
perconductivity uses the electronic Green’s functions.
The Green’s function technique for superconductors has
been proposed by Gor’kov who introduced in addition
to the normal Green’s function G�r1 ,r2� the anomalous
�Gor’kov� function F�r1 ,r2� �see, for example, Abrikosov
et al., 1975�. This technique is a very powerful tool, but
the corresponding Green’s functions in a general case

967A. I. Buzdin: Proximity effects in superconductor-ferromagnet heterostructures

Rev. Mod. Phys., Vol. 77, No. 3, July 2005



appear to be rather complicated and oscillate as a func-
tion of the relative coordinate r1−r2 on interatomic dis-
tances. On the other hand, the characteristic length
scales for superconductivity in S/F systems are of the
order of the layers thicknesses or damping decay length
for the induced superconductivity and, then, they are
much greater than the atomic length. This smooth varia-
tion is described by the center-of-mass coordinate r
= �r1+r2� /2 in the Green’s functions. The quasiclassical
equations for the Green’s functions averaged over rapid
oscillations on the relative coordinate have been pro-
posed by Eilenberger �1968� �and also by Larkin and
Ovchinnikov �1968��.

The Eilenberger equations are transportlike equations
for the energy-integrated Green’s functions f�r ,� ,n� and
g�r ,� ,n�, depending on the center-of-mass coordinate r,
Matsubara frequencies �=�T�2n+1�, and the direction
of the unit vector n normal to the Fermi surface. For the
case of S/F multilayers we restrict ourselves to situations
when all quantities only depend on one coordinate x,
chosen perpendicular to the layers. Introducing the
angle � between the x axis and the direction of the vec-
tor n �the direction of the Fermi velocity�, we write the
Eilenberger equations in the presence of an exchange
field h�x� in the form �see, for example, Bulaevskii et al.
�1985� and a recent review on the physics of Josephson
junctions by Golubov et al. �2004��

�� + ih�x� +
1

2�
G�x,���f�x,�,�� +

1
2

vF cos �
�f�x,�,��

�x

= ���x� +
1

2�
F�x,���g�x,�,�� ,

G�x,�� =� d�

4�
g�x,�,��, F�x,�� =� d�

4�
f�x,�,�� ,

f�x,�,��f+�x,�,�� + g2�x,�,�� = 1, �A3�

where the function f+�x ,n ,�� satisfies the same equation
as f�x ,−n ,�� with �→�* and the presence of impurities
is described by the elastic scattering time �= l /vf. The
functions G�x ,�� and F�x ,�� are the Green’s functions
averaged over the Fermi surface. The Eilenberger equa-
tions are completed by the self-consistency equation for
the pair potential ��x� in a superconducting layer:

��x� = �T�	
�

F�x,�� . �A4�

The BCS coupling constant � is spatially independent in
a superconducting layer, while in a ferromagnetic layer it
is equal to zero. In a superconducting layer, the self-
consistency equation may also be written in the follow-
ing convenient form:

��x�ln
T

Tc
+ �T	

�
���x�

���
− F�x,��� = 0, �A5�

where Tc0 is the bare transition temperature of the su-
perconducting layer in the absence of proximity effect.

Note that the Eilenberger equations as presented pro-
vide a natural choice for the spin quantization axis along
the direction of the exchange field, and the only differ-
ence with the standard form of these equations is the
substitution of the Matsubara frequency � by �+ ih�x�.

Usually, the electron-scattering mean free path in
S/F/S systems is rather small. As such in the dirty limit,
the angular dependence of the Green’s functions is
weak, and the Eilenberger equations can be replaced by
the much simpler Usadel �1970� equations. In fact, the
conditions required for using the Usadel equations are
Tc��1 and h��1. The second condition is much more
restrictive due to a large value of the exchange field �h

Tc�. The Usadel equations only apply to Green’s func-
tions G�x ,�� and F�x ,�� averaged over the Fermi sur-
face:

−
D

2
�G�x,�,h�

�2

�x2F�x,�,h�

− F�x,�,h�
�2

�x2G�x,�,h�� + �� + ih�x��F�x,�,h�

= ��x�G�x,�,h� ,

G2�x,�,h� + F�x,�,h�F*�x,− h,�� = 1, �A6�

D= 1
3vFl is the diffusion coefficient which is different in

the S and F regions and the equation for the function
F+�x ,h ,�� is the same as for F�x ,� ,h� with the substitu-
tion �→�*. Here the only difference with the standard
form of the Usadel equations is the substitution � by
�+ ih�x�.

The equations for the Green’s functions in the F and S
regions must be completed by the corresponding bound-
ary conditions at the interfaces. For the Eilenberger
equations they were derived by Zaitsev �1984� and for
the Usadel equations by Kupriyanov and Lukichev
�1988�. These boundary conditions take into account the
finite transparency �resistance� of the interfaces; see Eq.
�32�.

The most important pair-breaking mechanism in the
ferromagnet is the exchange field h. However, disorder
in the lattice of magnetic atoms creates the centers of
magnetic scattering. In ferromagnetic alloys, used as the
F layer in S/F/S Josephson junctions, the role of mag-
netic scattering may be quite important. Note that even
in the case of a perfect ordering of the magnetic atoms,
the spin waves will generate magnetic scattering. The
natural choice of the spin-quantization axis used implic-
itly above is along the direction of the exchange field.
The magnetic scattering and spin-orbit scattering mix up
the up and down spin states. Therefore to describe this
situation it is needed to introduce two normal Green’s
functions G1��↑�↑

+�, G2��↓�↓
+� and two anomalous

one F1��↑�↓�, F2��↑�↑�. The microscopical Green’s
function theory of superconductors with magnetic impu-
rities and spin-orbit scattering was proposed by Abriko-
sov and Gorkov �1960, 1962�. The generalization of the
Usadel equations �A6� to this case gives
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−
D

2
�G1

�2

�x2F1 − F1
�2

�x2G1� + �� + ih

+ � 1

�z
+

2

�x
�G1�F1 + G1�F2 − F1�� 1

�x
−

1

�so
�

+ F1�G2 − G1�� 1

�x
+

1

�so
� = � �x�G1,

G1
2�x, � ,h� + F1�x, � ,h�F1

+�x,h,�� = 1, �A7�

and the similar equation for F2 with the indices substi-
tution 1↔2. Here �so

−1 is the spin-orbit scattering rate,
while the magnetic scattering rates are �z

−1=�2
−1Sz

2� /S2

and �x
−1=�2

−1Sx
2� /S2. The rate �2

−1 describes the intensity
of the magnetic scattering via exchange interaction and
we follow the notation of the paper Fulde and Maki
�1966�. In the spatially uniform case the equations �A7�
are equivalent to those of the Abrikosov-Gorkov theory
�1960, 1962� �see also Fulde and Maki, 1966�. Demler et
al. �1997� analyzed the influence of the spin-orbit scat-
tering on the critical temperature of the S/F multilayers
and Krivoruchko and Petryuk �2002� on the critical cur-
rent of SFIFS tunnel structures.

The ferromagnets used as F layers in S/F heterostruc-
tures reveal strong uniaxial anisotropy. Then the mag-
netic scattering in the plane �xy� perpendicular to the
anisotropy axis is negligible. Moreover due to the rela-
tively small atomic numbers of the F layer atoms the
spin-orbit scattering is expected to be weak. In such a
case there is no spin mixing scattering anymore and the
Usadel equations retrieve the initial form �A6� with the
substitution of the Matsubara frequencies by �→�

+G /�s, where �s
−1=�z

−1��2
−1Sz

2� /S2 may be considered as
a phenomenological parameter describing the intensity
of the magnetic scattering �Buzdin, 1985�. The linearized
Usadel equation in the ferromagnet reads

���� + ih sgn��� +
1

�s
�Ff −

Df

2

�2Ff

�x2 = 0. �A8�

If �sTc�1, we may neglect ��� in Eq. �A7� and the expo-
nentially decaying solution has the form

Ff�x,�� 0� = A exp�− x�k1 + ik2�� , �A9�

with k1= �1/�f���1+�2+� and k2= �1/�f���1+�2−�,
where �=1/�sh. In the absence of magnetic scattering,
the decaying and oscillating wave vectors are the same,
k1=k2. Magnetic scattering decreases the characteristic
decay length and increases the period of oscillations. In
practice, this means that a decrease of the critical cur-
rent of the S/F/S junction with an increase of df will be
stronger. Note that the spin-orbit scattering �in contrast
to magnetic scattering� decreases the pair-breaking ef-
fect of the exchange field �Demler et al., 1997� and both
scattering mechansims decrease the amplitude of the os-
cillations of the Cooper pair wave function. In some
sense the spin-orbit scattering is more harmful for these
oscillations because they completely disappear at �so

−1

�h. The observation on experiment of the oscillatory

behavior of Tc� in S/F multilayers is an indirect proof of
the weakness of the spin-orbit scattering.

The expression for the Ic�2df� dependence �54� may be
generalized to take into account magnetic scattering,

IcRn = 64
�T

3
Re� 	

��0

�
2q�y exp�− 2q�y���

���1 − ��
2 ��� + 1 + 1�2� ,

�A10�

where

�� =
�2

�� + ��2 , q� = �2i + 2� + 2�/h , �A11�

��
2 =

�

� + i + �/h
.

Near Tc and in the limit h
Tc and 2dfk2
1 the fol-
lowing analytical expression can be obtained for the
critical current:

Ic =
�S	f�

2k1

2eTc
�cos�2dfk2� +

k2

k1
sin�2dfk2��

�exp�− 2dfk1� . �A12�

We see that due to magnetic scattering the decay length
of the critical current �f1=1/k1 may be substantially
smaller than the oscillating length �f2=1/k2.

As noted above, the ability to use the Usadel equa-
tions, h��1, is rather restrictive in ferromagnets due to
the large value of the exchange field. Therefore, it is of
interest to retain in the Usadel equations the first cor-
rection in the parameter h�. The first attempts to calcu-
late this correction were made by Proshin and Khu-
sainov �1998� and Tagirov �1998� and resulted in the
renormalization of the diffusion constant of the F layer
Df→Df�1−2ih� sgn����. Later on, a similar renormaliza-
tion has been proposed by Baladié and Buzdin �2001�
and Bergeret et al. �2001c�. A critical analysis of this
renormalization by Fominov et al. �2002� �see also Fomi-
nov, Kupriyanov, and Feigelman, 2003, and Khusainov
and Proshin, 2003� revealed the inaccuracy of this renor-
malization, but did not provide the answer. The careful
derivation of the Usadel equation for an F layer retain-
ing the linear correction over h� was made by Buzdin
and Baladié �2003� and resulted in a somewhat different
renormalization of the diffusion constant Df→Df�1
−0.4ih� sgn����. The coefficient in h� appears to be
rather small which provides more confidence in the de-
scription of F layers using the Usadel equations. Note
that this renormalization of the diffusion constant in-
creases the decay characteristic length and decreases the
period of oscillations, which is opposite to the influence
of magnetic scattering.

The Usadel equations give a description of Green’s
functions only on average. Zyuzin et al. �2003� pointed
out that, due to the mesoscopic fluctuations, the decay of
the anomalous Green’s function Ff at distances much
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larger than �f is not exponential. As a result, the Joseph-
son effect in S/F/S systems may be observed even with a
thick ferromagnetic layer.

The Eilenberger and Usadel equations adequately de-
scribe weak ferromagnets, where h�EF and the spin-up
vF↑ and spin-down vF↓ Fermi velocities are the same.
When the parameters of the electron spectra of the
spin-up and spin-down bands are very different, the qua-
siclassical approach fails. However, if the characteristics
of the spin bands are similar, the Eilenberger and Usadel
equations are still applicable. Performing the derivation
of the Eilenberger equation in such a case, it may be
demonstrated that the Fermi velocity vF in Eq. �A3�
must be substituted by �vF↑+vF↓� /2 and the scattering
rate 1/� by �1/�↑+1/�↓� /2. In consequence, the diffusion
coefficient Df in the Usadel equation becomes
�1/6��vF↑+vF↓�2 / �1/�↑+1/�↓�. Let us stress that such
renormalization is justified only for close values of vF↑
and vF↓ �as well as �↑ and �↓�. Otherwise, the
Bogoliubov–de Gennes equations must be used for the
description of the proximity effect in strong ferromag-
nets.
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