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The experimental results relevant for the understanding of the microscopic dynamics in liquid metals
are reviewed, with special regard to the ones achieved in the last two decades. Inelastic neutron
scattering played a major role since the development of neutron facilities in the 1960s. The last ten
years, however, saw the development of third generation radiation sources, which opened the
possibility of performing inelastic scattering with x rays, thus disclosing previously unaccessible
energy-momentum regions. The purely coherent response of x rays, moreover, combined with the
mixed coherent or incoherent response typical of neutron scattering, provides enormous potentialities
to disentangle aspects related to the collectivity of motion from the single-particle dynamics. If the last
20 years saw major experimental developments, on the theoretical side fresh ideas came up to the side
of the most traditional and established theories. Beside the raw experimental results therefore models
and theoretical approaches are reviewed for the description of microscopic dynamics over different
length scales, from the hydrodynamic region down to the single-particle regime, walking the perilous
and sometimes uncharted path of the generalized hydrodynamics extension. Approaches peculiar of
conductive systems, based on the ionic plasma theory, are also considered, as well as kinetic and mode
coupling theory applied to hard-sphere systems, which turn out to mimic with remarkable detail the
atomic dynamics of liquid metals. Finally, cutting edge issues and open problems, such as the ultimate
origin of the anomalous acoustic dispersion or the relevance of transport properties of a conductive
system in ruling the ionic dynamic structure factor, are discussed.
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I. INTRODUCTION

Liquid metals are an outstanding example of systems
combining great relevance in both industrial applica-
tions and basic science. On the one hand, they find
broad technological application ranging from the pro-
duction of industrial coatings �walls of refinery coker,
drill pipe for oil search� to medical equipments �recon-
structive devices, surgical blades� or high performance
sporting goods. Most metallic materials, indeed, need to
be refined in the molten state before being manufac-
tured.

On the other hand, liquid metals, in particular the
monatomic ones, have been recognized since long ago to
be the prototype of simple liquids, in the sense that they
encompass most of the physical properties of real fluids
without the complications which may be present in a
particular system �Balucani and Zoppi, 1983�.

In addition to that, metallic fluids such as molten so-
dium, having similar density and viscosity to water, find
application as coolant in nuclear reactors.

The thermodynamic description of liquid metals can
be simplified by assuming a few parameters. Usually, if
compound formation is weak physical theory alone can
be used while, if there is strong compound formation,
chemical theory alone is used. The lowest-melting liquid
metals are those that contain heavier elements, and this
may be due to an increase in ease of creating a free-
electron solution. Alkali metals are characterized by low
melting points, and they tend to follow trends. Binary
associating liquids show a sharp melting point, with the
most noticeable example being mercury �Tm=234 K�.
Melting points can be lowered by introducing impurities
into the metal. Often, to this purpose, another metal
with a low melting point is used. Mixing different metals
may often result in a solution that is eutectic. In other
words, from Henry’s law it is understood that a melting
point depression occurs, and the system becomes more
disordered as a result of the perturbation to the lattice.
This is the case, for instance, of the well-known eutectic
Pb-Tin alloy, widely used in soldering applications �Tm
=453 K�.

Until the 1960s the understanding of the physical

properties of metals proceeded rather slowly. It was Zi-
man, indeed, who made the theory of liquid metals re-
spectable for the first time �Ziman, 1960�, and the Faber-
Ziman theory, developed in 1961–1963 and dealing with
electronic and transport properties, is attractively intro-
duced in Faber’s book, which is an excellent treatise of
the physical properties of liquid metals �Faber, 1972�.

The other text which can be considered a classic is
March’s book �March, 1968�, along with the more recent
one �March, 1990�, which provides a comprehensive
overview over liquid metals. It is from these texts that a
first clear definition of liquid metal can be outlined. At
first glance, indeed, the words “liquid metal” are self-
explanatory: by definition any metal heated to its melt-
ing point can be cast in this category. Liquid metals,
however, are implicitly understood to be less general
than the above definition, and no literature clearly states
an exact definition. Although no precise agreement has
been made, there are certain characteristics shared by
liquid metals, descending from a close interplay between
ionic structure, electronic states, and transport proper-
ties.

The book of Shimoji �1977� deals with the fundamen-
tals of liquid metals in an elementary way, covering the
developments achieved after the first book by March. It
does not address, however, the dynamical properties in
great detail.

Addison’s book �1986� is much like March’s general
book, but is more focused on applications of alkali met-
als, especially on their use in organic chemistry. In addi-
tion, Addison discusses many methods for purifying and
working with liquid alkali metals. March is more theo-
retical whereas Addison is practical, but both authors
focus on a thermodynamic explanation of liquid metals.

For an appealing general introduction to the physics
and chemistry of the liquid-vapor phase transition �be-
yond the scope of this review� the reader should cer-
tainly make reference to Hensel and Warren’s work
�1999�, which also provides a bird’s-eye view of the prac-
tical applications of fluid metals, such as high-
temperature working fluid or key ingredients for semi-
conductor manufacturing.

There are, then, a number of books which are more
general and more specific at the same time, in the sense
that they deal with with the wider class of simple liquids
�including noble fluids, hard-sphere fluids, etc.�, but they
are mainly concerned with structural and dynamical
properties only �Egelstaff, 1967; Boon and Yip, 1980;
Balucani and Zoppi, 1983; Hansen and McDonald, 1986;
March and Tosi, 1991�. They are practically ineludible
for those aiming at a rigorous approach to the statistical
mechanics description of the liquid state.

It can be difficult to find an exhaustive updated data-
base of the physical properties of liquid metals, espe-
cially as far as dynamics is concerned. But the hand-
books of Iida and Guthrie �1993� and Ohse �1985� are
remarkable exceptions, with the second one specifically
addressing liquid alkali metals.
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A. Historical background

Early phenomenological approaches to the study of
relaxation dynamic in fluids can be dated back to the
end of the 19th century �Maxwell, 1867; Kelvin, 1875�.

Only in the mid-20th century, however, was it realized
that a deeper understanding of the physical properties of
liquids could have been reached only through a micro-
scopic description of the atomic dynamics. This became
possible through the achievements of statistical mechan-
ics which provided the necessary tools, such as correla-
tion functions, integral equations, etc. The mathematical
difficulties related to the treatment of real liquids
brought to the general attention the importance of
simple liquids, as systems endowed with the rich basic
phenomenology of liquids but without the complications
arising, for instance, by orientational and vibrational de-
grees of freedom.

As a consequence, the end of the 1950s saw major
experimental efforts related to the development of in-
elastic neutron scattering �INS� facilities which, as we
shall see, constitutes a privileged probe to access the
microscopic dynamics in condensed matter and, in par-
ticular, in the liquid state �Egelstaff, 1959�. A sizable li-
brary of experimental data on liquid metals has been
constituted since then, realizing the prototypical struc-
tural and dynamical properties of these systems, repre-
sentative of the whole class of liquids.

In the 1960s, the advent and the broad diffusion of
computational facilities brought a new era for two main
reasons: on the one side, realistic computer simulation
experiments become possible �Schiff, 1969�, on the other
side the new computation capabilities greatly facilitated
the interpretation of INS experiments. For instance, new
protocols for accurate estimates of the multiple-
scattering contribution affecting neutron scattering were
proposed �Copley, 1975�. The theoretical framework of
inelastic neutron scattering and the guidelines to inter-
pret the results have been reviewed in the classical text-
books �Marshall, 1971; Lovesey, 1987�.

The dynamics of liquid metals has been extensively
investigated by INS and computer simulations with the
main purpose of ascertaining the role of the mechanisms
underlying both collective and single-particle motions at
the microscopic level. In the special case of collective
density fluctuations, after the seminal inelastic neutron-
scattering study by Copley and Rowe �1974� and the fa-
mous molecular-dynamics simulation of Rahman �1974�
in liquid rubidium, the interest in performing more and
more accurate experiments is continuously renewed: it
was soon realized, indeed, that well-defined oscillatory
modes could be supported even outside the strict hydro-
dynamic region. In molten alkali metals, moreover, this
feature is found to persist down to wavelengths of one
or two interparticle distances, making these systems ex-
cellent candidates to test the various theoretical ap-
proaches developed so far for the microdynamics of the
liquid state.

Up to ten years ago the only experimental probe ap-
propriate to access the atomic dynamics over the inter-

particle distance region were thermal neutrons, and us-
ing this probe fundamental results have been gained.
There are, however, certain limitations of this technique
which can restrict its applicability: first, the presence of
an incoherent contribution to the total neutron-
scattering cross section. If, on one hand, this allows one
to gather richer information, being simultaneously sen-
sitive to collective and single-particle dynamics, on the
other hand, poses the problem of decoupling the two
contributions, when aiming at the determination of col-
lective properties only �i.e., of the coherent dynamic
structure factor S�Q ,���. In liquid sodium, for instance,
the incoherent cross section dominates; even in more
favorable cases �Li, K� at small Q the intensity of the
collective contribution is low, and its extraction requires
a detailed knowledge of the single-particle dynamics.

The second reason is dictated by the need of satisfying
both the energy and momentum conservation laws
which define the �Q-E� region accessible to the probe
�Balucani and Zoppi, 1983�. Roughly speaking, when the
sound speed of the system exceeds the velocity of the
probing neutrons ��1500 m/s for thermal neutrons� col-
lective excitations can hardly be detected for Q values
below, say, Qm, the position of the main diffraction peak
of the sample, which is the region where collective prop-
erties show the richer phenomenology. As we shall see
in Sec. III.A.5, given a certain kinematic region acces-
sible to neutrons �basically ruled by their thermal en-
ergy�, by virtue of the m−1/2 dependence of the sound
velocity of an atomic system, the higher its atomic num-
ber, the wider is the accessible energy-momentum region
of the excitations which can be studied. Taking as an
example alkali metals, indeed, accurate INS data are
available for heavier elements such as rubidium �v
�1260 m/s; Copley and Rowe, 1974; Chieux et al., 1996;
Pasqualini et al., 1999� and cesium �v�970 m/s; Boden-
steiner et al., 1992�, while more difficulties are met in the
case of lighter atoms. In particular, lithium represents
the most critical case due to its high sound speed �v
�4500 m/s� and to the weak scattering cross section
which, moreover, results from comparable values of the
coherent and incoherent contributions: for this reason
INS aiming to the study of collective properties of Li
represented a very hard challenge �De Jong, 1993; De
Jong et al., 1993�. From a general point of view the main
outcome of most of these early INS experiments, as far
as collective properties are concerned, is the evidence of
inelastic excitations in S�Q ,�� which have been neces-
sarily analyzed within simple models such as the damped
harmonic oscillator �DHO� �Fåk and Dorner, 1997�, suit-
able to extract reliable and resolution-corrected infor-
mation on the peak positions but not about the detail of
the whole line shape. Some additional information has
been achieved, for instance, in the case of cesium
�Bodensteiner et al., 1992�, where information about an
average relaxation time has been extracted utilizing
Lovesey’s viscoelastic model �Lovesey, 1971� or, more
recently, in molten potassium, where a generalized hy-
drodynamic treatment as the one described in Sec. II.F
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is undertaken �Cabrillo et al., 2002� and electronic
screening effects have been explicitly taken into account
�Bove et al., 2003�.

Paralleling the development of INS facilities, new
ideas arose on both theoretical and numerical fields
from 1975 and in intervening decades, driven by kinetic
theory applied to Enskog’s fluid �de Schepper and Co-
hen, 1980; Alley and Alder, 1983; Alley et al., 1983; de
Schepper et al., 1983; Kamgar-Parsi et al., 1987�, allowing
one to describe the hydrodynamic region in terms of the
three-pole approximation, or to reproduce the dynamic
structure factor at wavelengths comparable to the in-
verse mean particle distance in terms of extended heat
mode �Cohen et al., 1987�. Kinetic approaches were
eventually complemented by memory function formal-
ism and by mode coupling theory �Götze and Zippelius,
1976; Sjögren and Sjölander, 1978, 1979; de Schepper
and Ernst, 1979; Sjögren, 1979, 1980; Wahnström and
Sjögren, 1982; Bengtzelius et al., 1984�.

Turning attention to numerical advances in the liquid
metals field, the major achievements are probably re-
lated to the introduction of the pseudopotential concept
�Austin et al., 1962; Harrison, 1966; Heine, 1970; Ash-
croft and Stroud, 1978� which, besides offering a deeper
comprehension of physical properties such as electrical
resistivity, provided a clue for realistic numerical simu-
lations. In molecular dynamics, indeed, the choice of a
realistic interatomic potential—i.e., a potential model
able to reproduce structural properties—is crucial to al-
low the determination of the dynamics of the system via
the integration of the classical Newton equations. Ex-
ploiting the pseudopotential theory, it has been possible
to express the atomic interaction as a sum of pairwise
interactions, ruled by an effective density-dependent in-
teraction. In this respect, one of the most successful ex-
pressions is the effective potential proposed for alkali
metals �Price et al., 1970�.

The numerical simulation framework is particularly
useful since the single-particle and the collective dynam-
ics can easily be investigated within technical restrictions
due to the finite box size �defining the minimum acces-
sible wave vector� and computation time �related to the
statistical quality and to the energy resolution of the cal-
culated spectra�. Broadly speaking, the features of the
atomic collective motion, i.e., the details of the S�Q ,��
line shape, as an outcome of the molecular-dynamics
run, turns out to be less noisy and more straightforward
than the corresponding INS results: no absolute normal-
ization is required, no mixing between coherent and in-
coherent dynamics occurs, and, above all, basically no
resolution corrections are needed.

The major experimental breakthrough, however, hap-
pened in the last ten years when x rays came up by the
side of neutrons to study the collective dynamics in a
similar frequency and wavelength region. The intriguing
theoretical possibility of performing inelastic x-ray scat-
tering �Burkel, 1991� became real due to the advent of
the third generation sources �Masciovecchio et al., 1996�,
disclosing previously unaccessible tasks in the physics of
disordered systems �Ruocco et al., 1996; Sette et al.,

1998; Scopigno et al., 2003; Sinn et al., 2003�. In this case,
the cross section is mainly coherent, and the combina-
tion of the two techniques can in principle serve to dis-
entangle the two contributions. Unfortunately, such
complementarity has not yet been exploited in full.

B. Dynamical aspects

There are mainly two routes to approach the dynam-
ics of a viscous melt. The first one stems from a quasi-
crystalline picture, and relies on the observation that,
often, the diffusion coefficient D linearly depends on
1/T. The same dependence, in fact, is induced in crys-
talline solids by vacancies and defects. This analogy sug-
gests that diffusion in liquids is an activated process, and
many attempts have been made to relate the activation
energy in the liquid to the thermodynamics of its solid.

The other point of view is the kinetic theory, a gaslike
picture where the correlation functions are different in
view of the density which is typically much higher than
in the gas state. Within this framework an expression for
the behavior of diffusion coefficient and viscosity can be
gained in terms of the friction coefficient �. When a par-
ticle of the melt is moving with constant velocity v a net
retarding force results from the different rate between
front and back collisions of the form F=−�v. For a hard-
sphere gas it turns out from Fick’s law of diffusion that
�= �8ng����2 /3���mkBT, where � is the atomic density,
m the atom mass, and 4��2g��� the density probability
of finding two units at distance �. The diffusion coeffi-
cient is therefore D=kBT /�, while the viscosity �
=� /3�� �Longuet-Higgins and Pople, 1956�. These
simple expressions turn out to describe remarkably well
the dynamics of liquid metals as long as the one of other
simple fluids. However, better quantitative agreement
can be obtained introducing the velocity autocorrelation
function ���t�= �v�t+�t� ·v�t�� / �v2�, whose time integral
determines the diffusion coefficient. ��t� plays a central
role in liquid dynamics, not only for providing a rigorous
way to calculate D, but also because through its Fourier
transform one can grasp an insight into the detail of the
interatomic interactions. It can be accessed either by
molecular simulations �the calculation trivially follows
from its definition� or experimentally, mainly by inelastic
neutron scattering �INS� with the methods detailed in
Sec. III.

Broadly speaking, ���t� is related to the knowledge of
Gs�r , t�, i.e., the probability that a given particle travels a
distance r in the time interval t. INS is always sensitive
to a combination of Gs�r , t� and Gd�r , t�, this latter quan-
tity being the probability of finding two distinct particles
at a space distance r and time distance t. The way to
separate these two contributions mixed in the instru-
mental response is one of the major conundrums of the
neutron-scattering technique. The direct knowledge of
the coherent response, gained by means of inelastic
x-ray scattering, opens the possibility to the understand-
ing of the high-frequency modes that have been seen to
survive since the famous INS experiments on the highly
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coherent scatterer liquid rubidium �Copley and Rowe,
1974�. In particular, from a solid point of view, the main
issue is to ascertain the relation between these modes
and the phonon excitations in the corresponding poly-
crystal just below the melting. In a perfect crystal �i.e., a
periodic assembly of atoms or ions�, indeed, atomic dy-
namics is mainly vibrational, characterized by normal
modes which are plane waves, due to the harmonic na-
ture of the interatomic forces. Consequently, a well de-
fined ratio �the sound velocity� exists between the fre-
quency and the wave vector of the density fluctuations,
named in this case phonon. In real crystals therefore the
energy spectrum of a scattered probe results in sharp
peaks, whose linewidth is related to the presence of an-
harmonicities or lattice defects. In a liquid things are
more involved: other effects arise besides anharmonicity,
both structural �the average atomic positions are ran-
domly distributed� and dynamical �mass diffusion and
activated processes join the purely vibrational motion�.
But even in this complex scenario distinct peaks survive
and one can extract dispersion relations.

Interestingly, the relation between crystals and liquids
involves more than the mere similarity between the
sound velocity of the crystalline acoustic branches and
of the mode observed in the liquid �i.e., the low Q limit
of the dispersion relation�. Despite the lack of periodic-
ity intrinsic to the inherent liquid structure, indeed, the
presence of some residual correlation �testified by the
oscillation in static structure factor� seems to warrant a
support for the existence of umklapp modes similar to
the one existing in crystals. Such processes, i.e., the pres-
ence of inelastic modes characterized by wave vectors
which differ by multiples of the reciprocal-lattice spac-
ing, have been early reported by means of INS in liquid
lead �Cocking and Egelstaff, 1965a; Dorner et al., 1965;
Randolph and Singwi, 1966� and more recently in liquid
lithium by means of inelastic x-ray scattering �Scopigno,
D’Astuto, et al., 2001�. As correctly pointed out by
Faber, the presence of these excitations does not imply
the existence of genuine high Q modes, it rather indi-
cates that umklapp processes may occur in liquid as
much as in solid �Faber, 1972�.

From the liquid point of view the interest in this phe-
nomenology lies in the challenging extension of the
simple hydrodynamics, describing the density fluctua-
tions in the long-wavelength limit, down to the length
scale of the mean interparticle distances. As it will be
shown in the following, such an extension relies on seri-
ous and sometimes not fully justified assumptions neces-
sary to walk in the uncharted and perilous territory be-
tween hydrodynamics and single-particle regimes.

C. Peculiarities of liquid metals

Apparently at odds with the previously mentioned
classification of liquid metals as a prototype of simple
liquids, even in the simplest monatomic case, metallic
fluids are actually two-component systems. The inter-
play between electron and ions, indeed, is an intrinsic
aspect of liquid metals, and a rigorous approach should

therefore mimic the formalism utilized for binary mix-
tures. For many aspects, however, one might be inter-
ested in ionic properties only, and as far as atomic dy-
namics is concerned, this seems to be the case. In such
circumstance, one can look at a liquid metal as an ionic
assembly whose interaction is mediated by the conduc-
tion electron gas. The treatment is in such way reduced
to a one-component system, as for noble fluids one can
introduce a pairwise interaction, but this latter will be
ruled by a density-dependent pseudopotential.

Although within the pseudopotential approach many
results for liquid metals are qualitatively similar to those
for ordinary nonconductive fluids, some remarkable dif-
ferences exist. One of the most relevant of these differ-
ences concerns peculiar structural properties involving
short-range order: in several liquid metals the static
structure factor exhibits an asymmetry or even a shoul-
der just above the main peak. The origin of this anomaly
has been highly debated, and ascribed to the peculiar
shape of the interaction potential in those metals in
which the hard-sphere description fails �Tsay and Wang,
1994�. More specifically, it can be interpreted in terms of
a repulsive interaction composed by a hard-sphere part
plus an adjacent ledge induced by electronic effects, by a
curvature change occurring at the nearest-neighbor dis-
tance, or by the interplay with Friedl oscillations.

The reported peculiarities extend also to the dynam-
ics: while in the long-wavelength limit they are expected
to behave similarly to nonconductive fluids, at finite
wave vectors their departure from ordinary hydrody-
namics can in principle be influenced by the high values
of the thermal conductivity �Faber, 1972; Singh and
Tankeshwar, 2003, 2004; Scopigno and Ruocco, 2004�.
One of the most striking quantitative differences with
ordinary fluids concerns the “visibility” of the inelastic
features, i.e., the inelastic to elastic ratio, which seems to
be related to the softness of the interaction potential
�Balucani et al., 1992; Canales and Padró, 1999�. This
latter is responsible, for example, for the very favorable
inelastic to elastic ratio which makes alkali metals ideal
systems to study collective properties.

Though the whole dynamics of liquid metals seems to
be conveniently rationalized treating them as ordinary
fluids interacting via an effective, density-dependent,
pairwise interaction potential, there is an alternative
route which explicitly takes into account electronic
screening effect on the ionic dynamics, relying on the
introduction of a suitable model for the wavelength-
dependent dielectric function. In this way one is able to
test different approximations comparing the predictions
for the mechanical compressibility �or, equivalently, for
the sound velocity� with the experimental values �Bove
et al., 2003; Said et al., 2003�.

D. Why this review

As previously pointed out, some books offer a broad
coverage of the physics and chemistry of liquid metals,
but none of them is focused on the dynamical aspects.
On the other side, books dealing with liquid dynamics
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do not focus on liquid metals in great detail. Egelstaff’s
review �1966� offers an exhaustive coverage of transport
phenomena in liquids but dynamical properties of liquid
metals are marginally addressed. The Copley and Love-
sey review �1975� provides an invaluable sight on the
dynamics of simple liquids, and it presents many results
obtained for liquid metals, but again does not emphasize
the peculiarity of these systems. Moreover, it also ad-
dresses in detail numerical results and last, but not least,
it is necessarily not up to date given the large amount of
experiments recently performed. The last decade, in-
deed, has seen important advances in the dynamics of
liquid metals, especially on the experimental side, driven
by the advent of new x-ray facilities and by the upgrades
of the neutron ones. On the theoretical side, in the
1980s, impressive results have been achieved working on
hard-sphere models and/or mode coupling approaches
which, again, remain uncovered in the Copley and Love-
sey review. To conclude, it is certainly worth mentioning
the more recent review article by Verkerk �2001�, which
offers a clear overview of the theoretical models devel-
oped so far for liquid dynamics, presenting a selection of
experimental results for liquified rare gases, molten met-
als, and binary mixtures.

Given this background, it seemed to us helpful to fo-
cus on the experiments on liquid metals, and to discuss
and summarize the results and their interpretations in
terms of the existing theories, trying to emphasizes ad-
vantages and weakness of each approach. This turned
out to be a difficult task, given the broadness of the
matter, and we necessarily had to make some choices.
We left out, for instance, mixtures and alloys, and we
tried to focus on the most recent experimental achieve-
ments, say of the last ten years: in most cases we quickly
reference older results, unless they are particularly rel-
evant in view of the most recent ones.

The review is organized as follows. In Sec. II we
present different theoretical approaches to the dynamics
of liquid metals. We develop in parallel subsections the
treatment of the self- and collective properties which
are, in turn, organized according to the different wave-
length domains: hydrodynamic, nonhydrodynamic, and
single particle. We also include a subsection dealing with
hard-sphere treatment and one presenting the ionic
plasma approach, which is peculiar of conductive sys-
tems. In Sec. III we describe the experimental approach
to the investigation of microscopic dynamics in liquids,
outlining the basics of the inelastic scattering problem.
Since the case of x rays is relatively newer, we decided to
treat it in detail, but continuous reference is made to
neutron scattering in an effort to emphasize merit, draw-
backs, and complementarities of the two methods. Sec-
tion IV is the bulk part of this paper, in which the ex-
perimental results are reviewed and ordered element by
element. Here we make constant reference to Sec. II to
recall the different approaches utilized by different au-
thors to describe the experimental result. In Sec. V, fi-
nally, we try to summarize the arising scenario, pointing
out the issues which, in our opinion, deserve further in-

vestigations and trying to draw, when possible, some
conclusive pictures.

II. THEORETICAL BACKGROUND

A. General overview

1. Some basic definitions

The investigation of microscopic dynamics of an en-
semble of N identical atomic or molecular units usually
proceeds through the study of correlation functions of
dynamical variables, i.e., of functions of the phase-space
variables, defined as the 6N positions ri�t� and momenta
pi�t�=mvi�t� of the particles. Relevant dynamical vari-
ables are those stemming from the microscopic density
��r , t� �whose average is related to the number density
�= ���r , t���, momentum density J�r , t�, and kinetic en-
ergy density E�r , t�:

��r,t� �
1

�N
	

i
	�r − ri�t�� ,

J�r,t� �
1

�N
	

i
vi�t�	�r − ri�t�� ,

E�r,t� �
1

�N
	

i

1
2

mvi
2�t�	�r − ri�t�� . �1�

In many cases, the study of the dynamics of a tagged
particle i can be of interest, and it relies on similar defi-
nitions for the single-particle dynamical variables:

�s�r,t� � 	�r − ri�t�� ,

Js�r,t� � vi�t�	�r − ri�t�� ,

Es�r,t� �
1
2

mvi
2�t�	�r − ri�t�� .

The well-known van Hove distribution functions
Gd�r , t� and Gs�r , t� are related in the classic �not quan-
tum� case to the microscopic self- and collective densi-
ties through

G�r,t� = Gs�r,t� + Gd�r,t� ,

with

Gs�r,t� =
1

N
	
i

	�r + ri�0� − ri�t��� ,

Gd�r,t� =
1

N
	
i

	
j�i

	�r + rj�0� − ri�t��� .

As we shall see, experiments usually give information
on the correlation functions in the reciprocal Q space.
Therefore it can be useful to define the space Fourier
transform of the microscopic quantities previously intro-
duced:
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��Q,t� =
1

�N
	

i
e−iQ·ri�t�,

J�Q,t� =
1

�N
	

i
vi�t�e−iQ·ri�t�,

E�Q,t� =
1

�N
	

i

1
2

mvi
2�t�e−iQ·ri�t�,

and similarly for the single-particle variables.
The time evolution of these microscopic variables is

cross linked and can be studied by replacing them with
their average over small but statistically significant vol-
umes. A closed set of equations, basically conservation
laws and constitutive relations, can easily be written for
these averages.1 Once the expression for a�Q , t� is
known �a=� ,J ,E� one can calculate


���Q,t� = �a�
*�Q�eLt���Q��N, �2�

in which a��Q� are the appropriate dynamical variables,
and L is the Liouville operator ruling the time evolution
in the configurational space. The �¯�N indicates thermal
averages evaluated over the N-particle ensemble �from
now on we will omit the subscript N�.

In particular, the autocorrelation functions of the mi-
croscopic density �both self and collective� play a privi-
leged role, and we define, therefore,

F�Q,t� = ���Q,t���− Q,0�� ,

S�Q� = ����Q,t��2� ,


�Q,t� = 
11�Q,t� =
F�Q,t�
S�Q�

,

Fs�Q,t� = ���Q,t��s�− Q,0�� ,


s�Q,t� = Fs�Q,t� . �3�

Consequently,


�Q,t� =
1

NS�Q�	i,j �e−iQ·ri�0�e−iQ·rj�t��

=
1

NS�Q�	i,j �e−iQ·ri�0�eLte−iQ·rj�0�� , �4�


s�Q,t� =
1

N	
i

�e−iQ·ri�0�e−iQ·ri�t�� . �5�

The above autocorrelation functions F�Q , t� and Fs�Q , t�
are, in fact, connected through their time Fourier trans-
form to the self- and collective dynamic structure factor
Ss�Q ,�� and S�Q ,��, respectively. These latter, in turn,
are the experimentally accessible quantities in neutrons

and x-ray inelastic scattering experiments and therefore,
in the following, we will mainly refer to the density-
density correlation functions.

2. Spectral moments

Before illustrating some models for the evolution of
the density autocorrelation function, it is worthwhile to
recall here some basic relations involving the frequency
moments of the dynamic structure factor. These can be
very useful to the experimentalist, as a way to normalize
the data �an example is given in Sec. III.B, as well as to
any theoretical approach, as a direct test of sum rules—
for example, we shall see how the hydrodynamic expres-
sion for the density-density time correlation function is
valid up to the second frequency moment, because in
hydrodynamics the liquid is treated as continuum with-
out atomic structure, and such an information on struc-
ture and interatomic potentials appears only within the
fourth and higher frequency moments of S�Q ,���. By
expanding the density autocorrelation function in a Tay-
lor series, one can easily find a connection with the fre-
quency moments of the dynamic structure factor as


dnF�Q,t�
dtn 


t=0
= �− 1�n�

−


+


�nS�Q,��d� = �− i�n��n� .

�6�

Equation �6� holds for the frequency moments of both
the collective ���n�S� and the self- ���n�Ss

� dynamic struc-
ture factor. From the previous definitions, it easily fol-
lows that ��0�S=S�Q� and ��0�Ss

=1. The first frequency
momentum are, on the other side, ��1�S= ��1�Ss

=�Q2 /2m
and therefore are zero for any classical theory, charac-
terized by symmetric spectral functions. The second fre-
quency moments are ��2�S= ��2�Ss

=kBTQ2 /m+O��2�.
Higher-order spectral moments depend on the details of
the microscopic interactions, and can be analytically de-
rived for additive pairwise interatomic potential �de
Gennes, 1959�. Some examples will be given in Secs.
II.E.5 and II.F.2, while practical usage of sum rules for
normalization purposes will be outlined in Sec. III.B.

3. Quantum aspects

The models that we will illustrate in the next sections
have been developed for a classical system. The main
effect of quantum-mechanical corrections stems from
the well-known inequality of the positive- and negative-
frequency parts of the spectra, connected by the detailed
balance factor e��/kBT. Additional sources of nonclassical
behavior, such as those associated with a finite value of
the de Broglie wavelength �= �2��2 /mkBT�1/2, are small
�for lithium at melting � is only 0.11 times the average
interparticle distance, and this ratio decreases for
heavier metals� and can safely be neglected. Since the
effects of the detailed balance are clearly visible in the
experimentally measured dynamic structure factors, we
briefly discuss a possible procedure to account for this
quantum feature in a consistent way, while preserving
the inherent advantages of the classical description. In

1From here on we will implicitly assume that we are not deal-
ing with microscopic quantities but rather with the hydrody-
namic quantities resulting from their averages
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doing this, for the sake of clarity we shall denote all the
previous classical quantities with the subscript cl, while
the notation q will refer to the quantum case.

The natural theoretical counterpart of the classical
density correlation function is the so-called Kubo ca-
nonical relaxation function �Kubo and Tomita, 1954�,

Kq�Q,t� =
1

�N	
i,j
�

0

�

d��e−iQ·r̂i�0�e−�Ĥe−iQ·r̂j�t�e�Ĥ� , �7�

where �=1/kBT and the angular brackets denote now a
quantum statistical average. In the classical limit ��
→0,�→0� the quantum operators become classical
commuting dynamical variables and Kq�Q , t�→Fcl�Q , t�.
It has been shown �Lovesey, 1971� that Kq�Q , t� is a real
even function of time, so that its spectrum Kq�Q ,�� is an
even function of frequency. On the other hand, the ex-
perimental scattering cross section involves the Fourier
transform Sq�Q ,�� of the quantum density correlator
Fq�Q , t�= �1/N�	i,j�e−iQ·r̂i�0�eiQ·r̂j�t��. The relation between
Sq�Q ,�� and Kq�Q ,�� reads �Lovesey, 1987�

Sq�Q,�� =
���

1 − e−���Kq�Q,�� ,

and, as can be easily checked, satisfies the detailed bal-
ance condition. Moreover, it can be seen that the rela-
tion

��2n�K =
2

��
��2n−1�S �8�

connects the even frequency moments of Kq with the
odd ones of Sq. In addition, the same memory function
framework which will be outlined in Secs. II.E.5 and
II.F.1 can be phrased for the Kubo relaxation function

and for its Laplace transform K̃q�Q ,s�.
By virtue of all these properties, in a situation where

the quantum aspects not associated with detailed bal-
ance are marginal, it is reasonable �although not strictly
rigorous� to identify the spectrum Kq�Q ,�� with the
classical quantity Scl�Q ,�� so that

Sq�Q,�� �
���

1 − e−���Scl�Q,�� . �9�

Having assumed such a correspondence, from now on
we will drop the subscript cl and refer to the classical
quantities as in fact done at the beginning of this section.

The transformation �9� allows one to test classical
models against experimental data. It is worthwhile to
point out, however, that it alters the frequency moments:
as shown in the previous section, for instance, it intro-
duces a �2 correction to the second frequency moment,
though this effect has been shown to be hardly notice-
able in liquid metals �Scopigno et al., 2000a�.

B. Single-particle dynamics in the hydrodynamic regime

The time evolution of the single-particle density can
be easily obtained through the continuity equation and

the constitutive relation �Fick’s law� relating density and
current variables:

�̇s�r,t� + � · Js�r,t� = 0,

Js�r,t� = − D��s�r,t� .

It is worthwhile to stress that while the first equation is
exact, the second is a phenomenological “closure.”
Combining the two equations, one gets the diffusion
equation straightforward:

�̇s�r,t� = D�2�s�r,t� , �10�

which, in the reciprocal space, has the solution

�s�Q,t� = �s�Q�e−DQ2t. �11�

The normalized autocorrelation function of the single-
particle density is


s�Q,t� = ��s�Q,t��s�− Q�� = e−DQ2t, �12�

while its Fourier transform, the self-dynamic structure
factor, reads

Ss�Q,�� =
1

�

DQ2

�2 + �DQ2�2 , �13�

i.e., a Lorentzian function centered at �=0 with full
width at half maximum �FWHM� equal to 2DQ2. It is
worthwhile to point out how, in the hydrodynamic limit,
the diffusion coefficient is related to the dynamic struc-
ture factor as D=limQ→0��2 /Q2��Ss�Q ,��.

Finally, for completeness, the corresponding van Hove
self-correlation function is

Gs�r,t� =
1

�4�Dt�3/2e−r2/4Dt. �14�

C. Collective dynamics in the hydrodynamic regime

In a similar manner as in the previous section, one can
build again a set of closed equations but, in this case,
Fick’s law does not apply, and the situation is more in-
volved. The constitutive relations, indeed, couple to-
gether the three conservation laws for the microscopic
variables density, momentum, and energy, which in
terms of the correspondent fluxes reads

�̇�r,t� + � · J�r,t� = 0,

J̇�r,t� + � · ��r,t� = 0,

Ė�r,t� + � · H�r,t� = 0, �15�

where we have defined the momentum flux ��r , t� and
the energy flux H�r , t�:

��,��r,t� = 	�,�P�r,t� − �� �u��r,t�
���

+
�u��r,t�

���
�

+ 	�,��2
3

� − �� � · u�r,t� ,
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H�r,t� = hu�r,t� − � � T�r,t� ,

where � and � are the shear and bulk viscosities, P and
T are the local pressure and temperature fields, h is the
enthalpy density, and � is the thermal conductivity.

Two additional constitutive relations �the Navier-
Stokes equation and the Fourier law� call into play the
two additional thermodynamic variables pressure P and
temperature T. Invoking the thermal equilibrium and
the equations of state one obtains a closed set of equa-
tions which can be solved to get the density-density cor-
relation function. The detailed derivation of ��Q , t� is
beyond the purpose of the present review, and can be
easily retrieved in classical textbooks �Berne and
Pecora, 1976; Hansen and McDonald, 1986�. Here we
will only recall the final approximate results2 which are

��Q,t�
��Q�

= ��� − 1

�
�e−DTQ2t +

1

�
e−�Q2t cos csQt�

S�Q,��
S�Q�

=
1

2�
��� − 1

�
� 2DTQ2

�2 + �DTQ2�2� ,

+
1

�
� �Q2

�� + csQ�2 + ��Q2�2

+
�Q2

�� − csQ�2 + ��Q2�2� , �16�

having defined

� =
cP

cV
,

DT =
�

�mCP
,

� =
1

2�m
�4

3
�s + �B +

�� − 1��
cP

� . �17�

In the above expressions cP and cV are the specific
heat ratios at constant pressure and volume, �s and �B
are the shear and bulk viscosities, � is the thermal con-
ductivity, and cs=��� /m���P /���T is the adiabatic sound
velocity.

Classical hydrodynamics therefore predicts in the
long-wavelength limit �Q→0� a frequency spectrum for
the density fluctuations constituted by two main fea-
tures. The central part of the spectrum is dominated by a
quasielastic, nonpropagating mode related to entropy

fluctuations �Rayleigh component� of linewidth �qe
=2DTQ2, which reflects the fact that thermal fluctua-
tions decay over a finite lifetime �=2/�qe. Beside, two
symmetrically shifted inelastic components peaked at
frequency �s= ±csQ are the signature of propagating
pressure waves �Brillouin doublet�, which are damped
by a combination of viscous and thermal effects. The
ratio between the Rayleigh and the Brillouin component
is given by the Landau-Placzeck ratio

IR

2IB
= � − 1. �18�

Usually, the hydrodynamic regime is investigated by
visible light-scattering spectroscopy �Brillouin light scat-
tering�. In the case of liquid metals, the light-scattering
study of density fluctuations is prevented by the non-
transparent nature of these systems.3

Inelastic scattering experiment can, in fact, only be
performed by means of higher energy photons �x rays�
or by neutrons, but in both cases the probed wave vec-
tors are fairly outside the strict hydrodynamic region.

The way the Brillouin triplet evolves at finite Q is far
from being fully understood, though some simplified
phenomenological models have been proposed in the
past �McGreevy and Mitchell, 1985�. Primarily, one
should account for the frequency dependence of the
transport coefficients which, as we shall see, corresponds
to abandon the hypothesis of Markovian dynamics. Sec-
ond, once the wave vector approaches the inverse inter-
particle distances, structural effects are expected in the
form of a Q dependence of all the thermodynamic quan-
tities. Last, but not least, it is highly questionable
whether the role of the thermal and viscous processes
remains well separated at high Q. In particular, specifi-
cally in the case of liquid metals, due to the high thermal
conductivity one expects DTQ2 to become soon of the
order of the Brillouin frequency, so that entropy and
density fluctuations become closely interwoven.
Strangely enough, this aspect, with a few exceptions
�Faber, 1972� did not receive much attention in the past,
although lately it has been the matter of some debate
�Singh and Tankeshwar, 2003, 2004; Scopigno and
Ruocco, 2004�.

Before coming in the discussion of the evolution of
S�Q ,�� at increasing Q values, above the hydrodynamic
limit, it is worthwhile to discuss another analytically
solvable case: the high-Q limit.

2The exact hydrodynamics expression contains a small addi-
tional contribution which makes the Brillouin components
asymmetric, as emphasized by Nichols and Carome �1968� and
by Verkerk �2001�. The resulting line shape can be easily rec-
ognized as the already mentioned damped harmonic oscillator,
originally proposed within a solidlike picture �Fåk and Dorner,
1997�, which can be actually retrieved by a liquidlike point of
view within the memory function formalism, shown in Sec.
II.F.2.

3In the case of copper, for instance, the distance to the Fermi
surface is 2.3 eV. Thus electrons are promoted by energies as-
sociated with the blue-green end of the spectrum. As a result,
red and orange light at the opposite end of the spectrum is
reflected back and gives copper its characteristic color. With
the alkali metals, the s electron is involved in promotion to the
Fermi level. There is little overlap to the empty 3p and 3d
orbitals that contribute to the conduction band. Therefore only
radiation close to the ultraviolet region is absorbed and visible
light is reflected, hence the silverlike appearance of the alkali
liquid metals.
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D. The short-wavelength limit

In the previous sections we examined the self- and
collective motion at very small wave vectors and fre-
quencies. In the opposite regime, i.e., at short distances
and time scales, the particles of a fluid are expected to
move as if they were free, as it happens in an ideal gas.
Since in this case the behaviors of different particles are
uncorrelated �Gd�r , t�=0�, the self- and collective dy-
namic structure factors coincide in this limit.

The correlation function of Eq. �3� can be easily cal-
culated for a free particle, i.e., for ri�t�=ri�0�+vit. The
classical free particle correlation function is

F�Q,t� =
1

N	
i

�e−iQ·�pi/mi�t� = �e−iQ·�p/m�t� , �19�

evaluating the thermal average one easily gets

F�Q,t� =� e−p2/2mkBTe−iQpmtdp = e−kBTQ2t2/2m, �20�

and the corresponding dynamic structure factor is

S�Q,�� =� m

2�kBTQ2e−m�2/2kBTQ2
. �21�

By virtue of the previously mentioned considerations,
the van Hove self-correlation function reads

Gs�r,t� = � m

2�kBTt2�3/2

e−mr2/2kBTt2. �22�

In the quantum case the correlation function �19� can
be evaluated treating ri and pi as operators, and paying
attention to the fact that, in this case, the product of the
exponential in Eq. �3� cannot be reduced to a single ex-
ponential, as in the classical treatment. Invoking the

identity eÂeB̂=eÂ+B̂+�1/2��Â,B̂�, holding when, as in the

present case, �Â , B̂� is a number, one can write

�e−iQ·ri�0�eiQ·ri�t�� = �eiQ·�ri�t�−ri�0��+�Q2/2��ri�0�·ri�t���

= �eiQ·�pi/m�t−�Q2/2���pi/m�t,ri�t���

= ei��Q2t/2m��e−iQ·�p/m�t� ,

and, using the result of Eq. �19�, one obtains

F�Q,t� = e−�Q2/2m��kBTt2−i�t�, �23�

the correspondent dynamic structure factor:

S�Q,�� =� m

2�kBTQ2e−�m/2kBTQ2��� − �Q2/2m�2
. �24�

Summing up, the quantum dynamic structure factor
for a free moving particle is a Gaussian with recoil en-
ergy �R�Q�=�Q2 /2m and linewidth �=�kBT /MQ. It is
worthwhile to point out that Eq. �24� satisfies the de-
tailed balance condition S�Q ,��=e��/kBTS�Q ,−�� and
coincides with the classical case for �→0 or, equiva-
lently, for T→
. As far as the sound velocity is con-
cerned, one can still define the apparent frequencies
�l�Q�= 1

2 ��R±�8�2+�R
2 � as the positive and negative

maxima of the longitudinal current CL�Q ,��
=�2S�Q ,�� /Q2. In the classical case, the two values co-
incide and are �l�Q�=�2�.

E. The nonhydrodynamic region: Single particle

1. The Gaussian approximation

As can be easily noticed looking at the expressions
�14� and �22�, both the hydrodynamic and the ideal gas
limit end up with the van Hove correlation functions
that are Gaussian in r. On the basis of this observation it
seems natural to assume the Gaussian dependence as
valid in the whole dynamical range. In terms of the sec-
ond moment of Gs�r , t� one can write the following ex-
pression:

Gs�r,t� =� 3

2�r2�t��
e−3r2/2�r2�t��, �25�

where �r2�t�� is the mean-square displacement which in
the hydrodynamic and single-particle approximations
reads �r2�t��=6Dt and �r2�t��= �3KT /m�t2, respectively.

In the Gaussian approximation therefore the self-
scattering function is related to the mean-square dis-
placement which can be, for instance, inferred by
molecular-dynamics simulations.

2. The jump diffusion model

The jump diffusion model was first introduced by
Chudley and Elliot �1961�. The particle is thought to live
for a residence time �0 in the cage of its neighbors, and
at some point to change cage. In some sense therefore it
is the opposite of collisional models, where the free dif-
fusion of a particle is sometimes interrupted by colli-
sional events. The jump diffusion model sets a rate
equation for the van Hove self-scattering function of the
kind

�Gs�r,t�
�t

=
1

N�0
	

l
Gs�r + l,t� − Gs�r,t� ,

with N the number of available residence sites.
By Fourier transform in space and time one immedi-

ately gets
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Ss�Q,�� =
1

�

f�Q�
�2 + f�Q�2 , �26�

which is a Lorentzian function with Q-dependent damp-
ing

f�Q� = −
1

n�0
	

l
�eiQ·l − 1� . �27�

This latter can be conveniently estimated supposing that
the vectors l have random and continuous orientations
and distributions. In this case one can average Eq. �27�:

f�Q� = −
1

�0
�1 −

1

1 + Q2l0
2� .

It can be easily shown that Eq. �26� tends to the Fick’s
free diffusion expression �13� �Egelstaff, 1967�.

3. The mode coupling theory

The Laplace transform of the intermediate scattering
function can be generally written as

S̃�Q,s� =
1

s + Q2Ũ�Q,s�
,

Ũ�Q ,s� being a generalized frequency and wave-vector-
dependent diffusion coefficient. The mode coupling

theory provides a self-consistent expression for Ũs�Q ,s�
�de Schepper and Ernst, 1979�, and the resulting self-
dynamic structure factor reads

Ss�Q,�� �
1

�

DQ2

�2 + �DQ2�2

+
1

�DQQ* Re G� i� + DQ2

	DQ2 � , �28�

with

G�s� = arctan� 1
�s − 1

� −
�s − 2��s − 1

s2 , �29�

where Q*=16�m�D2 /kBT and 	=D / �D+��, D being
the diffusion coefficient and � the kinematic viscosity.

An estimate of the FWHM can be numerically evalu-
ated �De Jong, 1993�, yielding

�� � �1 −
Q

Q*H�	� + O�Q3/2��DQ2, �30�

with

H�	� � 1.45	3/2�1 − 0.73	 − 0.15	2 − O�	3�� . �31�

4. The Nelkin-Ghatak model

Nelkin and Ghatak have considered a dilute gas in
which the atomic motion is dominated by binary colli-
sions, with a distribution function obeying a linearized
Boltzmann’s equation, valid in a small disturbance limit,
i.e., for arbitrary large fluctuations compared to the
mean collision time. In terms of the reduced variables

x=−� /Qv0 and y=� /Qv0, with v0=�2KT /m and � an
adjustable parameter, and by introducing the real
�u�x ,y�� and imaginary �v�x ,y�� parts of the probability
integral for complex argument z�x+ iy�=�−


+
e−t2�z
− t�−1dt:

U�x,y� = ��yu�x,y� , �32�

V�x,y� = ��yv�x,y� , �33�

one gets the following expression for the incoherent
scattering function �Nelkin and Ghatak, 1964�:

Ss
NG�Q,�� =

1

��

U�1 − U� − V2

�1 − U2� + V2 . �34�

It can be easily noticed that Eq. �34� has the correct low-
Q �Lorentzian� and high-Q �Gaussian� limits: in the first
case it is sufficient to pose �=v0

2 /2D, while at high Q’s
one has that y→0 and the familiar Gaussian shape is
recovered.

5. The memory function formalism

The easiest way to abandon the hydrodynamic region
is to assume the frequency dependence of the transport
coefficients, entering the so-called generalized hydrody-
namics. The natural playground for performing such
step is the memory function framework �Mori, 1965�: we
will recall here the basic formalism while a detailed
treatment can be found in specialized books �Balucani
and Zoppi, 1983; Hansen and McDonald, 1986�. Let M�0�

be the correlation matrix of a given set of dynamical
variables A �M��

�0�= �A�
*A��t���. The equation of motion

of M�0��t� can be conveniently expressed in terms of a
chain of arbitrary order n of integrodifferential equation
involving appropriate memory functions M�i��t� for i
=1, . . . ,n:

dM�i−1�

dt
− i��i−1�M�i−1� + �

0

t

M�i��t − t��M�i−1��t��dt�

= 0, �35�

with

i��i−1� = Ṁ�i−1��0� · �M�i−1��0��−1. �36�

Here ��i−1� is a set of generalized frequency matrixes,
while the memory kernels Mi�t� rule the dynamical evo-
lution of the observables correlation matrix M�0�.

In the specific case of self-dynamics, as we have seen
in Sec. II.B the relevant set of variables is given by the
self-density only, therefore M�0��t�=�s�t�. The equations
of motion for the density correlation function are

d�s�Q,t�
dt

+ �
0

t

M�1��Q,t − t���s�Q,t��dt� = 0, �37�

��0�=0 being due to the orthogonality of �s and �̇s.
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A good description of the evolution of �s�Q , t� is nor-
mally gained utilizing the first two equations of the chain
�35�. In terms of Laplace transform it holds that

�̃s�Q,t� = �s + M̃�1��Q,s��−1 = �s +
M�1��Q,t = 0�

s + M̃�2��Q,s�
�−1

.

�38�

The initial values M�i��t=0�, can be easily obtained
from the general relation

M�i��0� = − M̈�i−1��0� · �M�i−1��0��−1 − ���i−1��2, �39�

which, in turn, is obtained deriving Eq. �35� and exploit-
ing Eq. �36�. For the first two memory functions it holds
therefore that

M�1��Q,0� =
kBTQ2

m
= ��2�Q��Ss

,

M�2��Q,0� = 2��2�Q��Ss
+ �0

2 =
��4�Q��Ss

��2�Q��Ss

− ��2�Q��Ss
.

�40�

Here ��n�Q��Ss
are the frequency moments of Ss�Q ,��

and the quantity �0
2 is related to the mean-squared force

��F�2� acting on the diffusing particle and, for a system of
identical particle interacting via pairwise interactions
potential V�r�, it holds that

�0
2 =

��F�2�
3mkBT

=
�

3m
� �2V�r�g�r�dr , �41�

where g�r� is the pair distribution function.
It is worthwhile to stress that Eq. �38� is the exact

solution of motion in which all the dynamics is detailed
by the shape of the second-order memory function
M�2��Q , t�. The most common way of solving the equa-
tion is making a guess on the shape of the memory func-
tion. A useful approximation is provided by the expo-
nential shape, which has the advantage of being easily
Laplace transformed:

M�2��Q,t� = �s
2�Q�e−t/�s�Q� = �2��2�Q��Ss

+ �0
2�e−t/�s�Q�.

�42�

With such a choice it follows straightforward that

Ss�Q,�� =
1

�

��2�Ss
�2��2�Ss

+ �0
2��s

�2�s��2 − 3��2�Ss
− �0

2�2 + ��2 − ��2�Ss
�2 .

�43�

It is interesting now to look at the FWHM �s�Q� of
Eq. �43�. In the small-Q limit it is easy to show that

�s�Q�
DQ2 =

1

�1 +
2kBT

m�0
2 Q2

. �44�

The memory function approach with exponential ker-
nel therefore predicts a quasielastic line shape narrower
than the hydrodynamic one, a result which is in agree-
ment with several experimental data. Contrarily, in the
Gaussian approximation the linewidth is always larger
than the hydrodynamic value.

Theoretical expressions have been proposed in the
past for the memory function in terms of kinetic theory,
splitting the memory function in a contribution due to
uncorrelated binary collision, obtained by a Fokker-
Plank equation, and a long time contribution represent-
ing the coupling of a tagged particle to the collective
motion of the surrounding particles. This approach has
been tested in hard spheres, Lennard-Jones, and alkali
metals �Sjögren, 1979; Sjögren and Sjölander, 1979;
Bengtzelius et al., 1984�.

F. The nonhydrodynamic region: Collective motion

1. The Langevin equation

The most reliable approach to the study of collective
dynamics at finite wave vectors parallels the one
adopted for the single particle in Sec. II.E, i.e., an exten-
sion of the classical hydrodynamics assisted by the for-
malism of the memory function ruling the Langevin
equation of motion of the density fluctuations.

We will deal therefore with a 3�3 correlation matrix
M�0�, and a set of n �with n arbitrary large� memory
matrixes M�i� with the same dimensionality and coupled
by the chain of n equations �35�. Actually, in order to
work with an orthogonal set of variables �and energy
and density are not�, one normally prefers to replace
the microscopic energy with the microscopic
temperature T�Q�= �1/m�cV�Q�� �E�Q�− ��E*�Q���Q�� /
��*�Q���Q�����Q��. With this choice, solving for ��Q , t�
=M��

�0��Q , t� /M��
�0��Q ,0�=F�Q , t� /S�Q� in terms of

Laplace transform one has

�̃�Q,s� =
1

s +
�0

2�Q�

s + M̃JJ
�1��Q,s� −

�M̃JT
�1��Q,s� − i�JT

�0���M̃TJ
�1��Q,s� − i�TJ

�0��

s + M̃TT
�1� �Q,s�

, �45�
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where

�0
2�Q� = kBTQ2/mS�Q� . �46�

Recalling the definition of the isothermal sound veloc-
ity ct=�1/�m�T, and the expression for the low Q→0
limit of the static structure factor S�0�=��TkBT it seems
natural to introduce a finite Q generalization of the iso-
thermal sound velocity as ct�Q�=�0�Q� /Q.

It is easy to recognize in Eq. �45� the same structure of
Eq. �38�, once the following identification is made:

M̃��
�eff��Q,s�

= M̃JJ
�1��Q,s�

−
�M̃JT

�1��Q,s� − i�JT
�0��Q���M̃TJ

�1��Q,s� − i�TJ
�0��Q��

s + M̃TT
�1� �Q,s�

.

The effective memory function M̃��
�eff��Q , t� therefore

can be formally considered as the second-order memory
function of a chain of two equations for the single vari-
able ��Q , t�:

dF�Q,t�
dt

+ �
0

t

M�1��Q,t − t��F�Q,t��dt� = 0,

dM�1��Q,t�
dt

+ �
0

t

M�2��Q,t − t��M�1��Q,t��dt� = 0, �47�

which, as can be easily verified, corresponds to the single
second-order integrodifferential equation:

�̈�Q,t� + �0
2�Q���Q,t� + �

0

t

M�Q,t − t���̇�Q,t��dt� = 0.

�48�

From here on, to save writing, we define M�Q , t�
=M�2��Q , t�=M̃��

�eff��Q , t�.
From knowledge of �̃�Q ,s� one straightforwardly ob-

tains S�Q ,��= �S�Q� /��Re��̃�Q ,s= i��� in terms of the
real �M�� and imaginary �−M�� parts of the Fourier-
Laplace transform of the memory function:

S�Q,�� =
S�Q�

�

�0
2�Q�M��Q,��

��2 − �0
2 − �M��Q,���2 + ��M��Q,���2 .

�49�

The spectral features of the dynamic structure factor
can be characterized by its frequency moments
��n�Q��S���nS�Q ,��d�, where, for a classical system,
only the even frequency moments �such as ��0�Q��s
=S�Q� and ��2�Q��s= �kBT /m�Q2� are different from
zero.

It can be easily proven that the dynamic structure fac-
tor is related to the longitudinal current spectrum
through the relation CL�Q ,��= ��2 /Q2�S�Q ,��. The
presence of the factor �2 wipes out the low-frequency
portion of the dynamic structure factor, and conse-
quently emphasizes the genuine inelastic features of

S�Q ,��. After its definition and Eq. �38�, it is readily

seen that the Laplace transform C̃L�Q ,s� satisfies

C̃L�Q,s� = − s�sF̃�Q,s� − S�Q��

=
kBT

m
�s + ��0

2�Q�/s� + M̃�Q,s��−1. �50�

Again, the spectrum CL�Q ,�� can be expressed as

�1/��Re�C̃L�Q ,s= i���. Then the position and the width
of the inelastic peaks in CL�Q ,�� are determined by the

poles of C̃L�Q ,s�.

2. Collective memory function and hydrodynamics

The effective, second-order memory function M�Q , t�
accounts for all the relaxation mechanisms affecting col-
lective dynamics and, consequently, is the central quan-
tity in most theoretical approaches. In analogy with the
single-particle case �Eq. �40��, the initial value of M�Q , t�
is related to the spectral moments of S�Q ,�� by

M�Q,0� =
��4�Q��S

��2�Q��S
− ��2�Q��S � �2�Q� . �51�

Along the same line, relations similar to Eqs. �40� and
�41� hold, and an explicit expression for ��4�Q��S can be
given, involving both the derivatives of the interparticle
potential and the pair distribution function:

��4�Q��S

��2�Q��S
=

3KBTQ2

m
+

�

m
� �2V�r�

�z2 �1 − e−iQz�g�r�d3r .

�52�

The second and fourth frequency moments are par-
ticularly significant, as they rule the sound velocity in the
whole Q-� domain. For sufficiently large s, indeed,

M̃�Q ,s��M�Q , t=0� /s and Eq. �50� is seen to have poles
at s= ± i��0

2�Q�+�2�Q�� ± i�
�Q�. This latter relation
defines the frequency �
�Q� which characterizes the in-
stantaneous collective response of the liquid at the wave
vector Q and, in turn, defines the unrelaxed sound ve-
locity as c
�Q���
�Q� /Q. In the opposite limit, i.e., for

small s, one easily verifies that M̃�Q ,s���M�Q , t�dt. In
this �relaxed� regime therefore the poles of the longitu-
dinal current are located at s= ± i�0

2�Q�, i.e., the longitu-
dinal modes propagate with the isothermal sound veloc-
ity ct�Q�=�0�Q� /Q. Summing up, whatever the details
of the memory function are, in the presence of a relax-
ation process one observes a transition of the longitudi-
nal sound velocity between two different regimes, asso-
ciated with the evolution of the longitudinal current
correlation maxima. It is interesting to study in a parallel
way the evolution of S�Q ,��. In the low-frequency limit,
Eq. �49� reduces to the spectrum of a damped harmonic
oscillator �DHO� of characteristic frequency �0 �which,
in general, does not coincide with the position of the
inelastic maximum�, with damping �=�M�Q , t�dt:
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S�Q,��
S�Q�

=
1

�

�0
2�Q���Q�

��2 − �0
2� + �2�2 . �53�

In the opposite, high-frequency, limit, again Eq. �49�
tends to a harmonic oscillator with no damping and with
an higher characteristic frequency ±�
�Q�. Additionally,
an elastic peak appears of area �2�Q� / ��0

2�Q�+�2�Q��.
The same results can be directly retrieved in the time
domain from Eq. �49�, substituting the high-frequency
limit �constant� and low-frequency limit �delta shaped�
of the memory function, in turn, and taking the Fourier
transform.

The memory function formalism leads, in the small-
wave-vector limit, to the hydrodynamic prediction of
Eq. �16�. It can be easily proven, indeed, that the diago-
nal terms of the memory matrix appearing in Eq. �45�
have a Q2 dependence, while the cross terms follow a Q4

dependence. For Q→0 therefore these latter can be ne-
glected. Moreover, from the continuity equations �15� it
follows that in the same limit the time dependence of
the conserved quantities and their associated currents
becomes increasingly slow. Consequently, one can model
the decay of the terms MJJ

1 �Q→0, t� and MTT
1 �Q→0, t�

as instantaneous, or, equivalently, constant in the

Laplace domain. By making the identifications M̃JJ
1 �Q

→0,s�=DVQ2 and M̃TT
1 �Q→0,s�=�DTQ2, and comput-

ing �JT
�0��Q��TJ

�0��Q�= ��−1��0
2�Q�, from Eq. �45� one gets

for the memory function

M̃�Q → 0,s� = DVQ2 +
�� − 1��0

2�Q�
s + �DTQ2 ,

M�Q → 0,t� = 2DVQ2	�t� + �0
2�Q��� − 1�e−�DTQ2t.

�54�

The dynamic structure factor can be obtained by sub-
stituting Eq. �54� in the general expression �49�. In the
Q→0 limit, moreover, one has �0=ctQ��DTQ2. In this
limit, S�Q ,�� is �i� a DHO function around the Brillouin
peaks, which are located at �s=��ctQ �adiabatic sound
propagation� and have a linewidth DVQ2+ ��−1�DTQ2,
�ii� a Lorentzian function around �=0, whose linewidth
is 2DTQ2. In the small damping limit, the DHO is well
approximated by two symmetrically shifted Lorentzians,
and the hydrodynamic limit of Eq. �16� is finally recov-
ered.

The advantage of the memory function approach is,
however, in providing a way to generalize the hydrody-
namic result for wave-vector and frequency-dependent
transport coefficients. To this purpose, from the very
start it is convenient to separate in M�Q , t� the decay
channels which explicitly involve couplings to thermal
fluctuations �Mth�Q , t�� from those directly associated
with longitudinal density modes �ML�Q , t��.

3. Finite wavelengths generalization: Beyond
hydrodynamics

A straightforward generalization of ordinary hydrody-
namics at finite wave vectors suggests for the thermal
contribution the following form:

Mth�Q,t� � ���Q� − 1��0
2�Q�exp�− �DT�Q�Q2t� , �55�

where DT�Q� and ��Q� can be regarded as a finite Q
generalization of the quantities DT=� /nCP, being � the
thermal conductivity, and �=cP /cV.

It must be stressed, however, how the extension to
finite wave vectors, in the special case of highly conduc-
tive systems, requires attention to the physics behind
this model. As pointed out by Faber �1972�, in a liquid
metal, due to the high thermal conductivity, the quantity
�DT�Q�Q2 may easily become larger than the Brillouin
frequency as soon as Q�ct�Q� /DT�Q�.4 Actually, both
ct�Q� and DT�Q� are expected to decrease on approach-
ing values comparable to the inverse mean interparticle
distance, i.e., in coincidence with the first sharp rising
edge of S�Q�. But assuming that the transition occurs
below this edge, one finds the crossover condition Q
=ct /DT which, considering typical values of sound speed
and thermal diffusivity of metals �a few thousand m/s
and �50 nm−2/ps, respectively�, lies at wave vectors
around 0.1–0.5 nm−1, which is indeed consistent with the
initial assumption. In other words, on increasing the mo-
mentum transfer, the thermal peak broadens ultimately
overlapping with the Brillouin lines, the sound propaga-
tion turns from adiabatic to isothermal, and independent
thermal fluctuations become impossible. Using the
memory function point of view, at wave vectors Q
�c /DT �i.e., when the condition ��th�1 holds�, Mth de-
cays instantaneously in a similar fashion to ML. With
this condition, the dynamic structure factor is a DHO
with isothermal characteristic frequency, while the Bril-
louin damping is given by the area under the memory
function which is DVQ2+ ��−1�ct

2 /�DT. The existence of
this adiabatic to isothermal crossover is expected just
below the lowest accessible values of momentum trans-
fer of an inelastic scattering experiment ��1 nm−1 at
present� and therefore has never been observed directly.
Moreover, the magnitude of this effect is ruled by �−1,
which is normally very small. A remarkable exception to
this latter condition is constituted by nickel �Bermejo et
al., 2000� ��=1.88�, which has been studied by INS, as it
will be discussed in the next section.

Beside the thermal contribution, the viscous term DV
is also expected to exhibit a Q dependence. For simpli-
fied Lennard-Jones pairwise interaction a decay has
been shown of �l�Q� of a factor of ten up to the main

4More specifically, the discrepancy observed in liquid lead be-
tween the sound velocity measured with ultrasound �adiabatic�
and with inelastic neutron scattering has been tentatively as-
signed to the isothermal nature of the sound propagation at
the wave vectors probed with neutrons.
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peak of S�Q�, with �B becoming negative over the same
region �Tankeshwar, 1994�.

4. Finite frequencies generalization: Viscoelasticity

A second important generalization of transport coef-
ficients concerns their possible frequency dependence.

This latter case stems when the frequencies of the ob-
served density fluctuations are high enough that their
time scale competes with the one ruling the decay of
ML. In this condition, one has to drop the hypothesis on
the instantaneous �Markovian� nature of the viscous
term, and one has to introduce a finite time scale ��� for
the decay of ML. As discussed at the beginning of this
section, the time scale of ML sets a new crossover be-
tween two different regimes, characterized by different
sound velocities and attenuations.

The simplest practical way to go beyond the hydrody-
namic result �54� is to allow for an exponential decay of
ML�Q , t�:

ML�Q,t� = �L
2 �Q�e−t/��Q�, �56�

with �L
2 �Q�=�L�Q�2−��0�Q�2, in order to have the cor-

rect normalization of the whole M�Q , t=0�.
Although this has the advantage of analytical simplic-

ity when dealing with Fourier transform, a drawback of
this ansatz lies in the violation of some basic short-time
features of the memory function �such as a zero deriva-
tive at t=0�, causing the divergency of ��n�S for n�6.

Neglecting thermal effects, Eq. �56� yields the so-
called viscoelastic model5 for S�Q ,�� �Lovesey, 1971�.
Since as Q→0, M̃L�Q ,s=0� /Q2 can be written as �c


2

−c0
2���Q→0�, the requirement that this coincides with

�L /nm shows that the time ��Q� must be finite as Q
→0. Such a connection with viscous effects justifies the
physical interpretation of the rate 1/��Q� as a parameter
giving an overall account of all relaxation processes by
which the longitudinal response of the liquid is affected
by time-dependent disturbances. In particular, for slow
perturbations developing over a time scale t���Q� the
system can adjust itself to attain local equilibrium and
the usual viscous behavior holds. In contrast, for density
fluctuations fast enough that t���Q� the liquid responds
instantaneously with a solidlike �elastic� behavior. The
crossover between these limiting situations marked by
frequencies � such that ���Q��1 is ultimately respon-
sible for the gradual changes often detected in the sound
dispersion of several liquids at increasing wave vectors.

Although appealing, the simplicity of the viscoelastic
model can be deceptive. First of all, the model itself
provides no clue for the physical origin of the decay
mechanisms leading to the rate 1/��Q�.

Actually, the situation is even more involved. In ear-
lier molecular-dynamics studies of Lennard-Jones fluids,
it was soon realized that the viscous dynamics in the
microscopic regime �i.e., at wavelengths comparable
with the inverse mean interparticle separation� proceeds
through two distinct processes, characterized by two
well separated time scales �Levesque et al., 1973�. More
recently, the advent of inelastic x-ray scattering �IXS�
provided the experimental evidence substantiating these
speculations �Scopigno et al., 2000b, 2001a; Scopigno,
Balucani, et al., 2002; Scopigno, Filipponi, et al., 2002;
Monaco et al., 2004�.

In view of these results, the obvious remedy is to
modify the simple ansatz �56� by allowing a two-step
decay of ML�Q , t�:

ML�Q,t� = �L
2 �Q���1 − ��Q��e−�1�Q�t + ��Q�e−�2�Q�t� ,

�57�

where the rate �1�Q� is chosen to be larger than �2�Q�,
so that the dimensionless factor ��Q� measures the rela-
tive weight of the “slow” decay channel. Besides being
more flexible than the viscoelastic model, we shall see
that the ansatz �57� has the much more important merit
that the presence of two different time scales does in
fact have a definite physical interpretation.

A simplified version of the previous ansatz has been
implicitly introduced in the viscoelastic analysis of Bril-
louin light-scattering �BLS� spectra of glass-forming ma-
terials �see, for example, Li et al. �1992��. In fact, in these
works, the general expression of ML�Q , t� for a two
times decay is always expressed as

ML�Q,t� = 2��
2 �Q����Q�	�t� + ��

2�Q�e−t/���Q�,

with explicit reference to the so-called �- �structural� re-
laxation process as responsible for the long lasting tail,
and to the �-microscopic process as additional, faster,
relaxation dominant over a very short time scale �in the
BLS window the condition ����1 holds�.

On the contrary, in the above-mentioned IXS works it
has been shown how this approximation is no longer
tenable in the case of liquid metals at the IXS frequen-
cies. In particular, it has been pointed out that the slower
��� relaxation time satisfies the condition �B�Q����Q�
�1, i.e., some part of the viscous flow is frozen. As a
consequence, at the wave vectors typical of the IXS ex-
periments �Q=1–20 nm−1� the quasielastic spectrum ac-
quires a component arising from this frozen structural
relaxation.

The origin, at the atomic level, of this fast decay chan-
nel is still an open issue: the rapidly decaying portion of
ML�Q , t� is customarily attributed to largely uncorre-
lated collisional events, similar to those occurring in a
dilute fluid. In addition, at the high densities typical of
the liquid state, non-negligible correlations among the
collisions can be expected, making no longer valid an
interpretation only in terms of “binary” collisions. Al-
though the magnitude of the correlation effects is rela-
tively small and their buildup slow, once established
their decay is even slower, and for t�1/�1�Q�����Q�

5Actually, the viscoelastic model stems from the approxima-
tion �56�, with the additional condition �=1 �Mth�Q , t�=0�.
Within the viscoelastic framework, indeed thermal effects are
neglected, in the sense that the hydrodynamic limit is isother-
mal �i.e., �L

2 �Q�=�L�Q�2−�0�Q�2�.
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this relaxation channel dominates the decay of ML�Q , t�,
which consequently may exhibit a small but long lasting
“tail.” The ansatz �57� can incorporate most of this phys-
ics: on the basis of the latter, one may reasonably antici-
pate that ��Q��1, and that the time 1/�2�Q�����Q� is
distinctly longer than 1/�1�Q�����Q�. In this picture,
the best fitted values of the viscoelastic rate 1/��Q�
clearly represent some sort of “weighted average” be-
tween �1�Q� and �2�Q�. Finally, we may argue that at
increasing Q �namely, over a shrinking length scale� the
magnitude ��Q� of correlation effects should decrease,

and that at higher temperatures the value of ��Q� at a
given wave vector should equally decrease. On a general

basis, the requirement that limQ→0 M̃L�Q ,s=0� /Q2

→�L /nm now takes the form

�c

2 − c0

2��1 − ��Q → 0�
�1�Q → 0�

+
��Q → 0�
�2�Q → 0�� → �L/nm .

�58�

The refined model �57� yields a dynamic structure fac-
tor given by

S�Q,�� =
S�Q�

�
Re� �0

2�Q�

i� +
��

2 �Q�
i� + �1�Q�

+
��

2�Q�
i� + �2�Q�

+
�th

2 �Q�
i� + ��Q�DT�Q�Q2 �

−1

. �59�

One of the major drawbacks of the expression �59� is
that one normally overestimates the relaxation strength
of the faster viscous process. Such a problem is some-
how expected as one is trying to force an exponential
dependence to reproduce the memory function at short
times, which, instead, has a zero derivative in the t→0
limit. As a consequence, adjusting the characteristic time
of the exponential memory on experimental data one
can reproduce the decay of the true memory function
but will overestimate the short time limit, due to the
cusp behavior of the exponential at t=0.

One obvious remedy is a better choice of the memory
function model. An alternative possibility could be a
Gaussian shape. Also the sech function has been pro-
posed as solution of the Mori equation �Tankeshwar and
Pathak, 1994�, but this latter case is of limited practical
interest, as the Fourier transform is related to the di-
gamma function and therefore the expression �59� must
be numerically evaluated.

G. Kinetic theories: The hard-sphere approximation

Special attention has been devoted in the past to the
theoretical and numerical study of the hard-sphere
model, as it conveniently mimics the behavior of more
realistic simple liquids �Lebowitz et al., 1969; Furtado et
al., 1975�. In the 1980s, transport coefficients �Alley and
Alder, 1983� and neutron-scattering response �Alley et
al., 1983� have been evaluated by means of molecular
dynamics. On the theoretical side, the dynamical prop-
erties have been investigated by a revisiting the so-called
“Enskog fluid,” i.e., by means of the spectral decompo-
sition of the Enskog operator �de Schepper and Cohen,
1980; Cohen et al., 1984; de Schepper et al., 1984;
Kamgar-Parsi et al., 1987; Mryglod et al., 1995�. This lat-
ter approach turned out to be particularly useful to de-
scribe INS experimental data �Cohen et al., 1987�, and
we will briefly recall the basics in this section.

The main idea beyond Enskog’s theory is to evaluate
the correlation functions �2� replacing the Liouville op-
erator L and the dynamical variables a��Q�, defined at
the N-particle ensemble level, with the one-particle En-
skog’s operator L, and appropriate one-particle vari-
ables ���Q�. It can be easily recognized, indeed, that

a��Q� =
1

�N
	

j
���vj�e−iQ·rj,

where, for the first three dynamical variables �1�, it holds
that

�1�v� =
1

S�Q�
,

�2�v� =� m

kBT

Q · v
Q

,

�3�v� =
3 − mv2/kBT

�6
.

For a hard-sphere system, a possible asymmetric rep-
resentation of L reads �de Schepper et al., 1984�

L�Q,v1� = − iQ · v1 + �g�����Q� + �A�Q� , �60�

where g��� is the pair distribution function evaluated at
the contact point between two spheres. The first term
appearing in Eq. �60� is a free streaming contribution.
The second term accounts for binary collisions through
the operator ��Q�, defined through its action over a ge-
neric function of the velocity f�v1�:
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��Q�f�v1� = − �2� d�̂� dv2��v2�	��	�

� �f�v1� − f�v1�� + e−iQ·�̂��f�v2� − f�v2���� ,

�61�

with ��v� the normalized Maxwell distribution function,
��x� the Heaviside step function, �̂ the unit vector, 	
= �v1−v2� · �̂, and v1,2� =v1,2 	�̂ the postcollision veloc-
ity. The third term, finally, is a mean-field operator de-
fined through

�A�Q�f�v1� = �C�Q� − g���C0�Q��

�� dv2��v2�iQ · v2f�v2� , �62�

where C�Q�=1−1/S�Q� and C0�Q�=lim�→0 C�Q�.
An explicit expression for the dynamic structure fac-

tor can be easily retrieved through the spectral decom-
position of L:

L�Q,v1� = − 	
j

�!j�Q,v1��zj�Q��
j�Q,v1�� ,

in which zj, !j, and 
j are eigenvalues, left, and right
eigenfunctions of −L, respectively. S�Q ,�� then reads

�S�Q,��
S�Q�

= Re
 1

i� − L�Q,v1��1
= Re	

j

Bj�Q�
i� + zj�Q�

,

�63�

with

Bj�Q� = �!j�Q,v1��1�
j
*�Q,v1��1. �64�

The subscript �¯�1 explicitly indicates that we are now
dealing with single-particle averages over the Maxwell-
Boltzmann velocity distribution function.

There are several approaches to determine the spec-
trum of L, but the main point is that different approxi-
mations can be performed according to the density and
kinematic region of interest. These regions are marked
by the values of the reduced density V0 /V=��3 /�2, V0
being the closed-packed volume for spheres or radius �,
and the Enskog mean free path lE= l0 /� with l0 the
Boltzmann mean free path l0=1/�2���2 and �=g��� the
pair distribution function evaluated at the contact point
between two spheres.

The lower three eigenvalues of L always goes to zero
with Q→0. In the same limit it can be shown that these
latter eigenvalues are

z1�Q� = zh�Q� = DTEQ2,

z2,3�Q� = z±�Q� = ± ic0Q + �EQ2, �65�

and only the first three coefficients �64� are relevant, so
that the eigenfunctions are linear combinations of the
density, current, and energy variables. In other words,
the hydrodynamic result of Eq. �16� is recovered, with
the dynamic structure factor composed of three Lorent-
zian functions: a diffusive heat mode and two propagat-

ing modes with the adiabatic sound velocity, with damp-
ings DTE and �E as given within Enskog’s transport
theory. The relative intensities of the thermal and acous-
tic contributions are ruled by the Landau-Placzek ratio.

This limit is practically attained at low densities
�V0 /V"0.1 and therefore lE� l0� and sufficiently small
Q’s �Q��1�, when the contribution �62� can be safely
neglected and the term �61� can be replaced with
��Q�=0�. This normally occurs for the case of light
scattering of dilute gases �Ql0�1�, and one speaks in
terms of three extended hydrodynamic modes. Still in
the same low density-momentum range, but at wave vec-
tors 1#Ql0#3 a description in terms of a few hydrody-
namic modes is no longer allowed, while for Ql0�3 one
can evaluate the first-order corrections to the free-
particle result of Eq. �21� which reads

S�Q,�� =� m

2�kBTQ2�e−m�2/2kBTQ2
+

SB��/Q�
Ql0

+ O�1/Ql0�2� , �66�

with SB�� /Q� the leading correction to the free stream-
ing term −iQ ·v1 of Eq. �60� due to a single binary colli-
sion event, which can be numerically estimated
�Kamgar-Parsi et al., 1987�.

Conversely, for dense fluids �V0 /V�0.35�, the hydro-
dynamic scheme breaks down at QlE�0.05. Above this
value, only the extended heat mode is well separated
from all the other modes. Still a description in terms of
three effective hydrodynamic modes apply, and the low-
Q limit of these modes is again coincident with the hy-
drodynamic result. For 0"QlE"1 the free streaming
and the mean-field contributions of the Enskog operator
can be treated as perturbation to the binary collision
term �61�, and the following approximate expression for
the extended heat mode can be given:

zh�Q� =
DEQ2

S�Q�
d�Q� , �67�

in which

DE = − 
v1x
1

����Q → 
�
v1x�

is the Enskog diffusion coefficient and

d�Q� = −

v1x

1

����Q�
v1x�

DE

�
�v1x��Q → 
�v1x�

�v1x��Q�v1x�
=

1

1 − j0�Q�� + 2j2�Q��
�68�

can be approximated in terms of the first two even
spherical Bessel functions. Enskog’s diffusion coefficient
is related to the Boltzmann diffusion coefficient:
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D0 =
3

8��2�kBT

�m
�

0.216

��2 �kBT

m

by the collision enhancing term g��� as DE=D0 /g���.
Using the analytic expression of g��� for nonattractive
hard spheres one finally gets an expression for DE in
terms of the packing fraction $=���3 /6:

DE =
1
16
��kBT

m
�3 6

��$2

�1 − $�3

1 − $/2
.

As in the low-density case, for QlE�3 the free
streaming limit is recovered along with binary collisions
corrections. In this case, however, a different approxima-
tion holds, since the binary collision term �61� is now
replaced with the Lorentz-Boltzmann operator ��Q
→
�. One ultimately gets an expression similar to Eq.
�66� in which SB�� /Q� is replaced with a different
Lorentz-Boltzmann expression.

At intermediate densities, finally, again the hydrody-
namic result does not hold for QlE%0.05. Moreover, in
this regime three effective modes do not suffice and one
has to extend the description with two additional kinetic
modes, i.e., including the kinetic part of the z-z compo-
nent of the stress tensor and the z component of the
heat flux �Kamgar-Parsi et al., 1987�. As in the high-
density case, for 1"QlE"3 all modes are closely inter-
woven, while at larger Q’s the free streaming limit with
the Lorentz-Boltzmann correction is retrieved.

According to kinetic theory therefore S�Q ,�� in
simple liquids not too far from the melting temperature
�such as argon� should be described in terms of three
Lorentzians up to relatively large wave vectors �Q
�30 nm−1�. Consequently, sound modes should exist
even in a Q region where side peaks are not distinctly
observable. In this respect, Lovesey argued that the ex-
tended hydrodynamic picture should break up above
Q�3 nm−1, while above, a viscoelastic theory should be
utilized �Lovesey, 1984�.

Exploiting the previous results obtained for the coher-
ent case, one can describe the incoherent dynamics via
the Lorentz-Enskog operator:

Ls�Q,v1� = − iQ · v1 + �g�����Q → 
� . �69�

As already mentioned, at large Q’s the self- and col-
lective dynamics coincide, and therefore the spectrum of
L will tend to the one of Ls �A�Q→
�=0�. In this limit
the extended heat mode zh will tend to the self-diffusion
mode zD. In the opposite, Q→0, limit, they both ap-
proach their hydrodynamic values: zh�Q→0�=DTEQ2

and zD�Q→0�=DEQ2, with DTE and DE the thermal
diffusivity and the self-diffusion coefficient of Enskog’s
theory. At intermediates Q values, zh oscillates around
zD, with a periodicity dictated by S�Q� and d�Q� accord-
ing to Eq. �67�.

Sears has calculated the moments of the self-part of
the van Hove scattering function at large wave vectors
�Sears, 1972�. Starting from the general case of a
velocity-independent central force field, he specialized

the result to the hard-sphere case, evaluating the leading
correction to the impulse approximation due to final-
state interactions, which turns out to be Q−1:

�H�Q� ��2kBT ln 2

m
Q�1 −

0.27

QlE
+ O�Q−2�� . �70�

The transition from the Fickian to the Gaussian regime
occurs in this case at QlE�1.

Finally, it is worthwhile to recall here one of the most
significant achievements of the mode coupling theory
applied to hard-sphere fluids, but which has been shown
to apply to a wider class of simple fluids. Ernst and
Dorfman �1975� have shown how Eq. �65�, which re-
trieves the hydrodynamic expression of the sound veloc-
ity and attenuation, is actually the leading term of an
expansion of the kind

zh�Q� = �hQ2 − �hQ5/2 + O�Q11/4� ,

z±�Q� = ± ic0Q + �±Q2 + �±i − 1��±Q5/2 + O�Q11/4� .

�71�

H. The ionic plasma

The dynamical descriptions given up to this point are
extensions of models holding for ordinary fluids which,
in some cases, are modified \ to account for the high
thermal conductivity of liquid metals.

A totally different approach is to look at liquid met-
als, from the very start, as a one-component plasma, i.e.,
as an assembly of identical, pointlike charged particles
�ions� embedded in a uniform background �the elec-
trons� which neutralizes the total charge �Baus and
Hansen, 1980�. The long-ranged Coulomb interaction
active in this case gives rise to peculiar phenomena such
as screening effects and plasma oscillations.

The ionic number density ��r , t� and the current den-
sity j�r , t� are related through the continuity equation

���r,t�
�t

= − � · j�r,t� .

The Poisson equation, for a fluid with Ze charge,
reads

� · E�r,t� = 4�Ze	��r,t� ,

in which 	��r , t� is the deviation of the ionic density from
its average value � �neutralized by the opposite uniform
electronic density�. Neglecting thermal conductivity ef-
fect �collisionless regime�, from Newton’s law for the
equation of motion one can find a third equation and
close the system. In the limit of large wavelength fluc-
tuations �compared to the ionic size� one can write

m
�j�r,t�

�t
= �ZeE�r,t� ,

m being the ionic mass. Combining the previous equa-
tions one easily gets
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�2��r,t�
dt2 = − �p

2	��r,t� ,

which describes ionic plasma oscillation of characteristic
Q independent frequency

�p
2 =

4��Z2e2

m
. �72�

This simplified picture therefore contrasts with the ex-
perimental evidence of long-wavelength excitations
whose frequency vanishes in the Q→0 limit. The com-
monly used remedy is to “dress” the plasma frequency
accounting for the electron screening effect, i.e., to take
into account that the background electrons have their
own dynamics that can be described introducing the di-
electric response &�Q�. In such a way the Coulomb inter-
actions and, in turn, the plasma frequency are renormal-
ized leading to the expression

�p
2 =

�p
2

&�Q�
. �73�

In the small wave-vector limit the Thomas-Fermi ex-
pression within the random-phase approximation �RPA,
in which the system is assumed to have a free electron
gas compressibility� yields the useful expression �March
and Tosi, 1991�

&�Q� = 1 +
QTF

2

Q2 , �74�

in which QTF=6�e2�e /EF, with EF=�2�3�2�e�2/3 /2me, �e,
and me the Fermi energy, the electronic density, and the
electronic mass, respectively. At small Q values, Eq.
�74�, together with Eqs. �72� and �73�, leads to the so-
called Bohm-Staver expression, i.e., a dispersive excita-
tion with sound velocity

cBS =
�p

2
=�meZ

3m
vF, �75�

in which vF is the electron velocity at the Fermi level.
As we will show in the following, the experimental

values for sound velocities in conductive liquids often
contrast with the prediction of Eq. �75�, especially at
small electron density or, equivalently, at large values of
the reduced ionic radius rs= �3/4��ea0

3�1/3, where the
Thomas-Fermi approximation is no longer valid.

The interplay between plasma oscillations and sound
waves can be better accounted for within a two-
component plasma �TCP� description in which nuclei
and electrons are treated separately �Chihara, 1985�,
eventually exploiting the framework of Mori and Zwan-
zig �Hansen and Sjögren, 1982�. The details of the two-
component plasma are, however, beyond the scope of
this review; the interested reader might want to consult
more specialized literature.

III. EXPERIMENTAL STUDY OF THE MICROSCOPIC
DYNAMICS

The main experimental ways to study microscopic dy-
namics in liquid metals are acoustic spectroscopy and
inelastic-scattering experiments. These latter have to be
necessarily performed with probes which can penetrate
enough into the sample to give boundary-free informa-
tion, a requirement which restricts the choice to neu-
trons and x-rays only. Actually, a few attempts have
been performed by means of visible light scattering �Dil,
1982�, for instance, on liquid mercury and gallium �Dil
and Brody, 1976�, but Brillouin scattering from opaque,
liquid matter presents several difficulties, mainly associ-
ated with the ill definition of the exchanged momentum
in absorbing media.

The basics of the neutron interaction with matter have
been surveyed in many papers �Copley and Lovesey,
1975� and books �Egelstaff, 1967; Marshall, 1971; Love-
sey, 1987� which provide exhaustive surveys of this issue.
Inelastic x-ray scattering is a relatively newer technique,
and therefore we will detail the basics of an IXS experi-
ment recalling from time to time INS features for com-
parison.

A. The scattering problem

The measured signal in an inelastic-scattering experi-
ment is determined by the double differential scattering
cross section. Within the linear-response theory, where it
is assumed that the coupling between the probe and the
system is weak, this scattering differential cross section
can be written quite generally as the product of three
terms: �i� One term describes the intensity of the probe-
sample coupling, and it is independent from the energy
of the incident particle. �ii� A second one is a kinematic
term related to the phase-space volumes of the incident
and scattered particles. �iii� The third term is the space
and time Fourier transform of the correlation function
of the observable in the system that couples to the probe
particle. This last quantity is the one related to the el-
ementary excitations characteristic of the system.

1. The photon-electron interaction Hamiltonian

The actual expression for the scattering cross section
can be derived by a perturbation expansion from the
probe-system interaction Hamiltonian. In the case of the
interaction of charges with the electromagnetic field, in
the weak relativistic limit �i.e., to first order in v2 /c2�,
neglecting the direct coupling of the field with the nuclei
�i.e., to zero order in the electron-to-nuclei mass ratio
me /m�, and neglecting the magnetic terms �i.e., to the
zero order in the electron spin� one gets

HINT =
e2

2mec
2	

j
A�rj� · A*�rj� +

e

2mec
	

j
�A�rj�,pj�

� HINT
�1� + HINT

�2� ,

where the symbol � � denotes the anticommutator opera-
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tor. The two “electric” terms HINT
�1� and HINT

�2� contain,
respectively, two and one field operators A�r�. It is clear
therefore that—in a perturbation expansion treatment
of the interaction Hamiltonian—the term HINT

�1� will give
rise to two-photon processes at first order while the term
HINT

�2� will give rise to one-photon processes at first order.
To have the two-photon processes from the latter �the
so-called p ·A contribution�, necessary to describe the
scattering events, one must consider the second order in
the perturbation expansion, which is consequently com-
pletely negligible in the off-resonance case. In the fol-
lowing therefore we will consider only the first charge
scattering term.

2. The x-ray scattering cross section

The double differential cross section �2� /�E�� is pro-
portional to the probability that an incident particle is
scattered with a given energy and momentum variation
within an energy range �E and a solid angle ��. In the
process, a photon of energy Ei, wave vector ki, and po-
larization &i is scattered into a final state of energy Ef,
wave vector kf, and polarization &f, and the electron sys-
tem goes from the initial state �I� to the final state �F�
�states with energies EI and EF, respectively�. According
to this definition, the double differential cross section
can be related to the quantity dPi→f /dt which is the
probability rate per sample and probe unit that a probe
particle makes the transition from the initial state to the
final state:

�2�

�E��
=

dPi→f

dt

1

j

�2n

�E��
.

In this equation j is the incident particle current density
�j=�v, with � the particle density and v its velocity� and
�2n /�E�� the density of states of the scattered particle.
For zero-mass particles, the latter two quantities can be
written as

j =
c

V0
, �76�

�2n

�E��
=

V0

8�3

kf
2

�c
. �77�

Therefore the double differential cross section be-
comes

�2�

�E��
=

V0
2

8�3

kf
2

�c2

dPi→f

dt
. �78�

The transition of the incident particles between states
i and f involves, in general, different possible elementary
excitations in the sample. This implies that, indicating
with dPi,I→f,F /dt the scattering probability involving the
transition in the sample from the state �I� to the final
state �F�, the total probability dPi→f /dt can be expressed
as

dPi→f

dt
= 	

F,I

dPi,I→f,F

dt
.

Equation �78� is particularly useful, as the transition
probability per unit time dPi,I→f,F /dt can be calculated
from the perturbation theory. To first order this quantity
is written as �Fermi’s golden rule�

dPi,I→f,F

dt
=

2�

�
��i,I�HINT�f,F��2	�Ei + EI − Ef − EF� .

�79�

Inserting the term HINT
�1� into Eq. �79�, using Eq. �78�,

and considering the initial and final photon states as
plane waves one gets

�2��1�

�E��
= � e2

mec
2�2kf

ki
�&i&f�2	

F,I
PI	�E − �EF − EI��

�
�F�	
j

eiQ·rj�I�
2
, �80�

where Q=ki−kf �E=Ef−Ei� is the momentum �energy�
transferred from the photons to the system. The sum
over the initial and final states is the thermodynamic
average, and PI corresponds to the equilibrium popula-
tion of the initial state.

Apart from the sum over the phase factors of the pho-
tons scattered from the different particles, whose inter-
ference gives rise to a truly Q dependent scattering sig-
nal, the energy- and angle-integrated cross section is of
the order of the square of the classical electron radius
r0=e2 /mec

2.

3. The adiabatic approximation and the dynamic
structure factor

From Eq. �80�, which implicitly contains the correla-
tion function of the electron density, one arrives at the
correlation function of the atomic density on the basis of
the following considerations: �i� One assumes the valid-
ity of the adiabatic approximation, and this allows one
to separate the system quantum state �S� into the prod-
uct of an electronic part �Se�, which depends only para-
metrically from the nuclear coordinates, and a nuclear
part, �Sn�: �S�= �Se��Sn�. This approximation is particularly
good for exchanged energies that are small with respect
to the excitations energies of electrons in bound core
states: this is indeed the case in basically any atomic
species when considering values in the range of phonon
energies. In metals we neglect the small portion of the
total electron density in proximity of the Fermi level. �ii�
One limits to consider the case in which the electronic
part of the total wave function is not changed by the
scattering process, and therefore the difference between
the initial state �I�= �Ie��In� and the final state �F�
= �Ie��Fn� is due only to excitations associated with
atomic density fluctuations. Using these two hypotheses
we then obtain
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�2�

�E��
= � e2

mec
2�2kf

ki
�&i&f�2 	

Fn,In

PIn
	�E − �EF − EI��

� 
�Fn�	
j

fj�Q�eiQ·Rj�In�
2
, �81�

where fj�Q� is the atomic form factor of the jth atom at
Rj and the sum is now extended to all the atoms �mol-
ecules� of the systems. Assuming that all the scattering
units in the system are equal, this expression can be fur-
ther simplified by the factorization of the form factor of
these scattering units, and by the introduction of the dy-
namic structure factor S�Q ,E� defined as

S�Q,E� = 	
Fn,In

PIn
	�E − EF + EI�
�Fn�	

j
eiQ·Rj�In�
2

.

By representing the 	 function above as a time inte-
gral, indicating by �¯� the thermal average �o�
=	IPI�I�ô�I� and using the completeness operator
	Fn

�Fn��Fn�=1 the dynamic structure factor can be also
written in the following more familiar form:

S�Q,E� =
1

2�E
� dteiEt/h	

j,k
�eiQ·Rj�t�e−iQ·Rj�0�� ,

where N is the number of particles in the system and the
sum over �j ,k� extend over these N particles. The double
differential cross section can then finally be rewritten as

�2�

�E��
= � e2

mec
2�2kf

ki
�&i&f�2�f�Q��2S�Q,E� . �82�

In the limit Q→0, the form factor f�Q� is equal to the
number of electrons in the scattering atom, i.e., f�Q�
=Z. For increasing values of Q, the form factor decays
almost exponentially with the decay constants deter-
mined by the size of the radial distributions of the elec-
trons in the atomic shells of the considered atom. At Q
values large with respect to the inverse of these dimen-
sions therefore the inelastic x-ray scattering from density
fluctuations is strongly reduced.

The cross section derived so far is valid for a system
composed of a single atomic species. This derivation,
however, can be easily generalized to molecular or crys-
talline systems by substituting the atomic form factor
with either the molecular form factor or the elementary
cell form factor, respectively. The situation becomes
more involved if the system is multicomponent and dis-
ordered. In this case the factorization of the form factor
is still possible only assuming some specific distribution
among the different atoms. In the limiting case that such
a distribution is completely random, an incoherent con-
tribution appears in the scattering cross section.

4. From cross section to count rate

The Z dependence of the Thomson scattering cross
section seems to imply a facilitation in studying systems
with high Z. In reality, this is no longer true when the
effect of photoelectric absorption is taken into consider-
ation. Indeed, neglecting multiple-scattering events, the

signal detected in an IXS experiment from an infinitesi-
mal slab of thickness 	x orthogonal to ki can be written
as

dN = N0� �2�

�E��
��E���dx , �83�

where N0 is the flux of the incident photons, N is the flux
of scattered photons in an energy interval �E and in a
solid angle ��, � is the number of scattering units per
unit volume, and � is the total absorption coefficient.
Dealing with a macroscopic sample of length L, in the
relevant case of a nearly forward scattering geometry,
Eq. �83� becomes

dN�x� = N0e−�x� �2�

�E��
��E���dxe−��L−x�, �84�

which, integrated over the whole sample length, yields

N = N0� �2�

�E��
��E���Le−�L. �85�

Let us discuss the L dependence of this function. It is
obvious that N attains a maximum �the optimal sample
length� when L=�−1, and that the value of N at this
maximum point is proportional to �−1. Considering an
x-ray energy of approximately 20 keV and Z�3, � is
almost completely determined by the photoelectric ab-
sorption process. This process gives approximately �
�Z4 with modifications at energies close to electron ab-
sorption thresholds. Consequently, the effective scatter-
ing volume is very much reduced in materials with a
high Z �as Z4�, while the cross section increases as Z2,
making the study of these materials by all means more
difficult than for those with low Z. The behavior of the
optimal signal intensity as a function of atomic number
in monatomic systems with sample length L=1/� can be
deduced from the data reported in Fig. 1. There we
show the quantity �c� /�, with �c= �r0Z�2, which gives
directly a measure of the efficiency of the method at the
considered photon energy: in this example we took an

FIG. 1. Ratio between the total number of photons scattered
by the Thomson process and those lost through all the other
processes, among which is photoelectric absorption, in a
sample of length �−1 calculated as a function of the atomic
number Z for photons of incident energy of �22 keV.
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incident photon energy of 22 keV. The quantity �c� /� is
by definition the ratio between �c and �t, where �t is the
�measured� total x-ray cross section of the considered
atom. This analysis is useful, however, only when it is
possible to study samples of optimal length. In cases
where the sample size is limited either by its availability
or by the sample environment �extreme pressure, high
or low temperature, high magnetic field, etc.� it is obvi-
ous that one has great advantages in studying high-Z
materials.

Equation �85� accounts for single scattering events
only. An estimate for the two-scattering process inten-
sity can be obtained by invoking the forward scattering
approximation again, indeed, the ratio of the two over
the one-scattering rates N�2� /N�1� reads

N�2�

N�1� =

��hr0
2�

0

�

�f���s����2d�

Z2S�0�
,

where h is the sample transverse dimension traversed by
the incident beam. The integral accounts for all possible
two-scattering processes leading to final forward scatter-
ing. This expression shows that to suppress multiple
scattering one has to reduce the transverse beam dimen-
sion. A similar estimate for neutron scattering is pre-
vented by much more complicated scattering paths,
since, within a similar Q range, the scattering angle in
INS is normally much larger. However, it can be noted
that in the case of neutrons the typical transverse beam
size is much larger ��10–100 mm� than the IXS ones
��100 �m�, thus resulting in a more important contribu-
tion requiring accurate corrections.

5. Kinematics of the scattering processes

Another important difference between x-ray and neu-
trons scattering lies in the kinematics of the scattering
processes. The momentum and energy conservation laws
impose that

Q = ki − kf,

E = Ef − Ei,

Q2 = ki
2 + kf

2 − 2kikf cos � ,

where � is the scattering angle between the incident and
scattered particles. The relation between momentum
and energy in the case of photons is given by

E�k� = hck

and therefore one obtains

�Q

ki
�2

= 1 + �1 −
E

Ei
�2

− 2�1 −
E

Ei
�cos � . �86�

Considering that the energy losses or gains associated
with phononlike excitations are always much smaller
than the energy of the incident photon �E�Ei�, this re-
lation reduces to

�Q

ki
� = 2 sin

�

2
�E � Ei� .

This last relation shows that, in the limit of small energy
transfers, the ratio between the exchanged momentum
and the incident photon momentum is completely deter-
mined by the scattering angle, as shown in Fig. 2. There-
fore in inelastic x-ray scattering there are basically no
limitations in the energy transfer at a given momentum
transfer for phononlike excitations.

6. X rays vs neutrons

At variance with the previous equation, if the probe
particles have mass mp

E�k� =
h2k2

2mp

and therefore

�Q

ki
�2

= 1 + �1 −
E

Ei
� − 2�1 −

E

Ei
cos � . �87�

In the case of thermal neutron scattering, the approxi-
mation E�Ei no longer holds, and the kinematics of the
scattering experiments is determined by Eq. �87�. As an
example, in Fig. 3 we report the accessible kinematics
regions in the E /Ei vs Q /ki plane for two different inci-
dent energies, indicating paths at constant scattering
angles. In the same figure, similarly to Fig. 2, we also
report the approximate dispersion curves for liquid
lithium and sodium. In the best situation, i.e., in forward
scattering where the accessible region is as wide as pos-
sible, the limiting curve is linear around Q=0�E=0�, and
its tangent is E /Ei=2Q /ki. Recalling that Ei=�2ki

2 /2mp,
one gets E=vN�Q, with vN the velocity of the incoming
neutron. As the dispersion relation for acoustic phonon
is linear, E=vs�Q, with vs the velocity of sound, it is
clear that whenever vs is larger than vN the excitation
peaks lie outside the accessible region and therefore
when vs�vN the neutron technique cannot be applied to

FIG. 2. Kinematic region accessible to IXS in reduced E /Ei
and Q /ki units �left panel�. The right panel shows the realistic
cases of molten lithium �open circles� and sodium �full circles�
for an incident energy of 25 keV.
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study the acoustic branch. This limitation does not apply
to the case of x rays, as, according to Eq. �86�, there are
basically no limits to the energy region accessible at a
given scattering angle.

As discussed before, the presence of relevant absorp-
tion phenomena is the main effect that determines the
scattering volume in an IXS experiment. This implies
therefore that the probability that a photon is scattered
from the sample is small, and this strongly suppresses
multiple-scattering processes. In IXS experiments, in-
deed, multiple scattering can be disregarded, thus avoid-
ing the use of correction procedures. This is therefore an
important advantage with respect to the neutron case,
where, on the contrary, the sample length is determined
by the scattering �rather than absorption� length. In Fig.
4 are reported for comparison the �coherent� scattering
lengths of the elements for the x-ray and neutron cases.

Finally, it is worthwhile to compare the double differ-
ential scattering cross section for x rays obtained before
�Eq. �82�� with a similar quantity derived for neutron
scattering �in the hypothesis of fully coherent scatter-

ing�. The latter quantity is not derived here for brevity
and can be found in many textbooks �Egelstaff, 1967;
Marshall, 1971; Lovesey, 1987�. The two cross sections
read as

�2

�E��
= �r0

2kf

ki
�&f&i�2�f�Q��2S�Q,E� x ray,

b2kf

ki
S�Q,E� neutron.� �88�

Besides the proportionality of both the cross section
to the dynamic structure factor, it is worth to underline
the following:

�1� The two cross sections are proportional to a charac-
teristic scattering length squared �r0 in the case of x
ray and b in the case of neutrons� that are compa-
rable in magnitude �see Fig. 4�. The form factor
�f�Q��2 �'Z2 for small Q’s� in the case of x rays does
not increase the actual signal in the experiment be-
cause, as discussed before, increasing Z also limits
the optimal scattering volume due to the increase of
the photoelectric absorption.

�2� In both cases the phase space of the incident and
final plane waves gives rise to the factor kf /ki, how-
ever, while in the x-ray case kf�ki, and this factor is
very close to 1, in the neutron case this term gives
rise to a Q dependence of the scattered intensity.

�3� No polarization terms are present in the cross sec-
tion for neutrons, while in the case of x rays the
term tells us that the Thomson scattering arises from
a scalar interaction and therefore the polarizations
of the incident and scattered photons must be par-
allel.

�4� Finally, the x-ray scattering cross section contains
the form factor f�Q�, i.e., the Fourier transform of
the charge-density spatial distribution. As the
charge density is localized around nuclei in a space
region of typical dimension of a few tenths to a few
hundredths of nm, the function f�Q� decreases ap-
preciably on a Q range of several inverse nm−1, thus
it does not depress too much the scattering cross
section in the mesoscopic region of interest. In the
case of neutrons this form factor is not present �ac-
tually it is equal to 1� as neutrons interact with the
nuclear matter, localized in a typical dimension of
10−6 nm. The neutron form factor is therefore con-
stant in the whole accessible Q region.

From the discussion so far, it should be now quite easy
to understand how important is the development of the
x-ray method, which can access, in principle, an ex-
tremely large region of the E-Q plane. Particularly im-
portant is the small Q region, where the acoustic excita-
tions have energies which are not of easy access to
neutron spectroscopies.

FIG. 3. Kinematic region accessible to neutron-scattering ex-
periments for incident energies Ei=50 meV �left panel� and
Ei=500 meV �right panel�, reported for different scattering
angles. Open and full circles are the �approximated� sound dis-
persion of molten lithium and sodium, respectively.

FIG. 4. The coherent scattering cross section of the elements
for x ray �open circles� and for neutrons �full circles� reported
as a function of the atomic number Z.
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B. From the experimental data to the dynamical quantities

In order to extract quantitative information from the
experimental intensity, i.e., to perform measurements of
Sq�Q ,�� on an absolute scale, the most direct way is to
use a reference scatterer and this is customarily done in
neutron experiments. In IXS, for instance, such a proce-
dure can be quite difficult because of the Q dependence
of the form factor and of the analyzer’s efficiencies. For
these reasons an indirect method is always preferred.
One possibility is to exploit the lowest-order sum rules
of Sq�Q ,�� �Scopigno et al., 2000a�: in particular, for the
first two frequency moments one has

��0�Sq
=� Sq�Q,��d� = S�Q� ,

��1�Sq
=� �Sq�Q,��d� = �Q2/2m ,

where the second equality follows from Eq. �8� applied
for n=1. The measured raw intensity is related to the
dynamic structure factor through

I�Q,�� = A�Q� � d��Sq�Q,���R�� − ��� , �89�

where R��� is the experimental resolution function and
A�Q� is a factor taking into account the scattering geom-
etries, the experimental setup, and the atomic form fac-
tor. The first moments of the experimental data, ��0�I
and ��1�I, and those of the resolution function, ��0�R and
��1�R, are related to ��0�S and ��1�S by

��0�I = A�Q���0�Sq
��0�R,

��1�I = A�Q����0�Sq
��1�R + ��1�Sq

��0�R� .

From the previous equation one derives that

Sq�Q� =
�Q2

2M
���1�I/��0�I − ��1�R/��0�R�−1. �90�

This procedure therefore can been adopted to estab-
lish an absolute scale for Sq�Q ,�� using the experimen-
tally determined I�Q ,�� and R���.

C. Handling liquid metals

Working with liquid metals poses several practical
problems. In particular, alkali metals are highly reactive
and need to be kept under a protective atmosphere. A
relatively small impurity �less than 100 ppm� in Ar or
nitrogen will cause a film to form on the surface of the
liquid metal.

In addition, glass is often limited in its use as a con-
tainer for most liquid metals. Liquid metals are often
strongly reducing. Glass, composed chiefly of silicon di-
oxide, is penetrated by the metal atoms, which can re-
duce the silicon by forming a metal oxide. As a result,

the glass becomes discolored and brittle. For these rea-
sons Pyrex cannot be used above 600 K and pure quartz
above 900 K.

Preferred materials for working with liquid metals are
refractory metals. This refers to the titanium group �Ti,
Zr� as well as the vanadium and chromium groups.
These transition metals are much less likely to undergo
reduction and be solvated by liquid metals. The disad-
vantage in addition to cost is that the refractory metals
have certain properties that make fabrication difficult. A
tradeoff is to use iron plated with chromium. Other less
reactive transition metals, such as the noble metals, are
soluble in many liquid metal solutions. Austenitic stain-
less steel can be suitable up to 1000 K.

Liquid metals also share a common chemistry. The
increasing electropositivity of the metals composing the
liquid metal solution will determine the liquid’s reactiv-
ity. Mercury, which is not very electropositive, is stable
in air. Alkali metals, which are the most electropositive
group of elements, are air sensitive. Li reacts slowly with
air, yet dissolves and reacts quite readily with nitrogen.
The other alkali metals are insensitive to nitrogen but
react with other gases. All alkali metals violently react
with water on the basis Cs�Rb�K�Na�Li �Ohse,
1985�. The hydrogen generated in the water-alkali reac-
tion can, in turn, react explosively with oxygen.

Reactivities reflect those of the solid material. The
more reactive liquid metals, usually alkali ones, often
develop a film if exposed to air. The high surface ten-
sions of many liquid metals enable this film to remain in
place. However, rates are greatly increased if turbulence
is introduced because the protective coating is often dis-
solved into the liquid metal. Products of reaction, such
as hydrides and oxides, are often redissolved into the
liquid metal solution.

By virtue of the previously mentioned difficulties, ex-
periments with alkali metals are often very hard to per-
form. In the case of inelastic x-ray scattering, in particu-
lar, such difficulties are enhanced by sample dimension
requirement. As we have seen in Sec. III.A.4, indeed, in
an optimal IXS experiment the sample length has to be
comparable with the absorption length. With a few ex-
ceptions �Li and Na� this typically means submillimeter
sample thickness. Common choices are therefore sample
cells made of compatible metals provided with sealed
sapphire or diamond windows.

Large efforts have been made recently to overcome
the difficulty of performing x-ray experiments on liquid
metals, the most remarkable example being the so-
called Tamura-type cells made with a single-crystal sap-
phire with Be windows pressurized under He �Tamura et
al., 1999�, performing up to 1900 K and 2 Kbars. More
recently, a new sample environment especially tailored
for alkali metals has been proposed �Matsuda et al.,
2004�. In this case the cell is entirely made of molybde-
num, with the windows made by single-crystal disks of
controlled orientation electrolytically thinned at
�40 �m.

A totally different approach is the one of contactless
techniques. In this case the sample is levitated either
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electrostatically or by means of a controlled gas jet. The
main difficulty in this technique is related to the sample
stability in the x-ray beam, but recent impressive ad-
vancement has been done in this field. A new beamline
for electrostatic levitation �BESL� has been developed
at the Argonne Advanced Photon Source �APS�, and
the relevance of icosahedral ordering in the supercool-
ing capabilities of liquid metals has been investigated
�Kelton et al., 2003�. Another example is a recent x-ray
scattering experiment performed on liquid Al2O3 in
which alumina droplet of 3–4 mm diameter have been
levitated by gas jet flow on the inelastic scattering beam-
line 3ID-C �Sinn et al., 2003� �see Fig. 5�.

IV. EXPERIMENTAL RESULTS

In this section we review, to the best of our knowl-
edge, the experimental results reported so far, ordered
according to the sample group in the periodic table. No
results are available so far for elements belonging to
group II.

A. Alkali metals

Alkali metals do not occur freely in nature, they are
very reactive and can explode if exposed to water. These

metals have only one electron in their outer shell and, as
with all metals, they are malleable, ductile, and good
conductors of heat and electricity. Alkali metals are
softer than most other metals. Among the metallic ele-
ments they share the simplest pairwise interaction po-
tential, which is also the closest to the Lennard-Jones
one. As a consequence, their structural properties are
also particularly simple, with a structure factor resem-
bling the one of hard spheres. Also the dynamics there-
fore is expected to mimic the theoretical and numerical
results achieved for Lennard-Jones and hard-sphere sys-
tems.

1. Lithium

Liquid lithium is probably the system which better re-
veals the complementarity of neutrons and x rays as far
as inelastic scattering is concerned. Due to the high ab-
sorption cross section of the 6Li isotope ��a=940 b�
neutron-scattering experiments must necessarily be per-
formed on 7Li enriched samples, which is the dominant
specie in the natural abundance. The high sound velocity
�ct�4500 m/s�, and the almost equivalent neutron scat-
tering cross sections ��i=0.68 b,�c=0.62 b for 7Li�, pose
severe limitations to the use of INS aiming at the deter-

FIG. 5. Coupling IXS with levitation techniques: constant Q
spectra of liquid alumina. From Sinn et al., 2003.

FIG. 6. Pioneering �1991� low-resolution IXS determination of
the dynamic structure factor in liquid lithium with INELAX.
From Burkel and Sinn, 1994.
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mination of collective properties, while this technique
turns out to be extremely useful for the investigation of
single-particle motion. The first INS studies on this sys-
tem can be traced back to the work of De Jong and
Verkerk �Verkerk et al., 1992; De Jong, 1993; De Jong et
al., 1993�, who showed the presence of collective modes
with a series of accurate experiments. Though they had
to face the above-mentioned drawbacks, indeed, they
were able to point out some significant issues: by mod-
eling the coherent contribution with the extended hy-
drodynamic model �see Eq. �63� of Sec. II.G� they mea-
sured the dispersion curve above Qm /2 �see Fig. 7� and
they reported deviations from the Landau-Plazek ratio,
which is expected to hold in the hydrodynamic regime

�see Eq. �18� of Sec. II.C�. On the other side they shed
light on the single-particle motion, accurately determin-
ing the incoherent contribution to the dynamic structure
factor within the framework of Sec. II.G �Eqs.
�28�–�31��. They corroborated the mode coupling predic-
tions �de Schepper and Ernst, 1979�, extracting values of
the diffusion coefficient and determining its temperature
dependence.

An exhaustive characterization of the coherent dy-
namics was provided by the advent of inelastic x-ray
scattering developed in the early 1990s, and liquid
lithium has been the benchmark of such development.
Being the lightest of the liquid metals, indeed, lithium
played a privileged role in IXS, for the favorable signal-
to-noise ratio and for the high sound velocity which al-
lowed one to resolve the inelastic spectral component
minimizing the initial difficulty of achieving energy reso-
lutions comparable to neutrons.

Since the pioneering work of Burkel �1991� with the
INELAX instrument �see Figs. 6 and 7�, a decisive step
forward achieved with the advent of the third generation
sources which, combined with a brilliant technique for
manufacturing silicon crystal analyzers, allowed one to

FIG. 7. Dispersion curve of liquid lithium achieved with IXS at
INELAX. Theoretical predictions and INS results at higher
Q’s are also reported. From Burkel and Sinn, 1994.

FIG. 8. First IXS measurements on liquid lithium performed
on a third generation source �ESRF�. Energy resolution is
	E=11 meV. The continuous line is the best fit according to
the extended hydrodynamic model of Eq. �63�. From Sinn et
al., 1997.

FIG. 9. IXS measurement of liquid lithium in a wide energy-
momentum region. The transition from hydrodynamic to
Gaussian-like response �continuous line in the right panel� can
be clearly noticed. Energy resolutions are 1.5, 3.0, and
7.0 meV, increasing with the exchanged momentum. From
Scopigno, Balucani, Cunsolo, et al., 2000.
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exploit IXS to gather insight into the microscopic dy-
namics of disordered systems.

The first remarkable result on a third generation facil-
ity �ESRF� was provided by Sinn et al. �1997� �see Fig. 8�
who, measuring energy spectra at fixed wave vectors,
reported clear evidence of collective modes, being able
to give significant hints for the choice of the most appro-

priate pseudopotential to describe liquid metals in nu-
merical simulations �Canales et al., 1994�. In the same
work, following the extended hydrodynamic model out-
lined in Sec. II.G �de Schepper and Cohen, 1980; de
Schepper et al., 1983�, evidence was also reported for
positive dispersion, i.e., for a sound velocity value ex-
ceeding the hydrodynamic one. This phenomenon was
ascribed to a transition from a liquid to a solidlike re-
sponse.

Following the development of the IXS technique, new
experiments have been more recently performed on liq-
uid Li in the extended region 1.4–110 nm−1, correspond-
ing to Q /Qm�5�10−2–5, which are reported in Fig. 9.

In Fig. 10 the dispersion relation is reported, deter-
mined in the same energy–wave-vector region, and the
transition between the two distinct dynamical regimes is
evidenced here by the sound velocity behavior. Beyond
the first quasihydrodynamic region �an initial nearly lin-
ear dispersion�, structural effects take place suppressing
the sound propagation around Qm /2 due to strong nega-
tive interference. With increasing Q values, the points in
Fig. 10 show a second pseudo-Brillouin zone, followed
by a series of oscillations that damp out with increasing
Q—here, �l�Q� is approaching the single-particle behav-
ior. These oscillations are in antiphase with those of
S�Q� and are therefore associated with the local order in
the liquid.

While at low Q’s the dynamic structure factor is quali-
tatively described by an extended hydrodynamic treat-
ment �Eq. �63� of Sec. II.G�, at wave vectors distinctly
larger than Qm the single-particle response is attained

FIG. 10. Sound velocity as deduced by the maxima of the cur-
rent correlation spectra, from the best fit with quantum cor-
rected and resolution convoluted models.

FIG. 11. Memory function at work: refined line-shape analysis
of high-resolution IXS spectra. Both thermal and viscous chan-
nel are taken into account, mimicking this latter with single
�Eq. �56�, dotted line� or two �Eq. �59�, continuous line� expo-
nential processes.

FIG. 12. Constant energy slices of the dynamic structure factor
determined by IXS. Umklapp modes are visible on the sides of
the main structure factor peak.
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through the mechanism described in Sec. II.D, ulti-
mately leading to expressions well accounted by a com-
bination of Eq. �24� accounting for each of the two iso-
topes 6Li and 7Li.

Due to an improvement in the energy resolution,
which is nowadays comparable to the one of INS spec-
trometers in the same energy–wave-vector domain
�1.5 meV at present�, an approach based on the general-
ized hydrodynamics has been developed, which allowed
one to point out the presence and the role of relaxation
processes driving the collective dynamic at the micro-
scopic probed wavelengths �Scopigno et al., 2000a,
2000b�. Within a memory function framework �Mori,
1965�, the presence of two distinct viscous relaxation
channels have been ascertained �see Fig. 11� beyond
thermal relaxation, clarifying the origin and the nature
of sound dispersion and attenuation properties in simple
fluids. Of the two processes, active over well separated
time scales, one is related to the well-known transition
between a low-frequency, liquidlike response to a high-
frequency, solidlike response. The second mechanism is
instead a general relaxation process peculiar of the vi-
brational dynamics which is present regardless of the
thermodynamic state of the system. In this context, posi-
tive dispersion has been shown to be strongly related to

this latter process, the solidlike response being already
attained over the wave-vector range probed in IXS �or
INS� experiments.

An alternative route to the investigation of collective
dynamics, which is dual to the one followed in the
above-mentioned experiments and which is easily
achievable through IXS, is the determination of the dy-
namic structure factor performing Q scan for fixed val-
ues of the energy transfer, reported in Fig. 12 for the
case of lithium �Scopigno, D’astuto, et al., 2001�. In this
way, one is able to have a direct sight over the so-called
umklapp modes, i.e., excitations characterized by wave
vectors which differ by a multiple of the reciprocal-
lattice spacing, which have been early reported by
means of INS in liquid lead �Cocking and Egelstaff,
1965a; Dorner et al., 1965; Randolph and Singwi, 1966�.

2. Sodium

Pioneering experimental determinations of the scat-
tering law in liquid sodium can be traced back to the
time of the IAEA symposium held in Chalk River
�Cocking, 1963; Randolph, 1964�. In this system the ratio
between the incoherent to coherent cross section is very
close to 1 �see Table I�, therefore the separation between

FIG. 13. Randolph’s measure-
ment �Randolph, 1964� of the
dynamic structure factor of liq-
uid sodium in reduced units, �
=�2Q2 /2mT and �=�� /T, for
four different values of momen-
tum transfer. Line-shape analy-
sis according to different mod-
els �Desai and Yip, 1969�
Continuous line: EMA
+calculated MSD. Short dashed
line: EMA+computer simula-
tion computation of the MSD.
Long dashed line: hydrody-
namic prediction. Dot-dashed
line: free streaming limit.
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TABLE I. Summary of some physical properties of liquid metals relevant for the dynamics.

Sample T �K� � cs �m/s� ct �m/s� max�cl� �m/s� �inc /�coh DT �nm2/ps�

Li 453 1.08a,b 1.065c 4554c 4466d 5762d 19.1e

488 5423f,g

500 20.3e,h

600 1.092c 4356d 5560d

0.99h 1.1g

Na 371 1.12i 1.091c 2531c 68.8e

388 1.11a,b 2514j 3160j

390 2930k

500 68.4e

773 2310j 2881j

1073 2150j 2577j

1173 2093j 2492j

0.84l 1.006m 0.976j

Mg 923 1.29a 4070a 37e

973 4038n 4380n

1000 39.8e

0.06h

Al 933 1.4a 4750a 35.2e

1000 4670o 7075o 36.4e

Si 1683 1.57a 3977a 9.4e,p

1753 3952q 4597q

0.05h

K 336.7 1.11i 1.102c 1880c 81.4e

343 1.105c 1877c 1605r 1710s 2352s 2260r

350 2360t

0.20h 0.16r

Fe 1808 1.8a 4000–4400a 7.3e

Co 1700 7.8e,p

1765 1.8a 4033–4090a

Ni 1500 16e,p

1728 1.98a 4036–4045a 9.6a

1763 1.88u 4280u 3121u 3855u

0.35h 0.30u

Cu 1356 1.33a 3440–3485a 4230v 42.1e

0.06h

Zn 693 1.25i 1.26a 2835–2850a 15.7e

Ga 303 1.08i 11.6e

315 2930w 2600x 3050y

326 1.08x 3240x

350 13.6e

0.07x 0.02h

Ge 1253 1.18a,z 2682z 2682z

1063 8–9e

0.006h

Rb 312 1.15i 1.097c 1260c 61.5e

320 1370aa 1420aa,f
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TABLE I. �Continued.�

Sample T �K� � cs �m/s� ct �m/s� max�cl� �m/s� �inc /�coh DT �nm2/ps�

0.00055h

Ag 1233 1.32a 2710–2770a 66.5e

0.125h

Cd 594 1.25a 1.25i 2235–2255a 39.8e,p

2.3h

Sn 505 1.11i 17.3e

593 1.09a,bb,b 2443bb 2736bb

1273 2228bb 2362bb

0.01bb 0.007h

Sb 904 1.21a 1893–1900a 15.5e

0.046h

Te 723 1.033a 889a 0.8–1.3e

0.05h

Cs 302 967c 44.6e

308 1.102cc

1.099c
965cc 1140cc

0.0596cc

Au 1336 1.28a 2560a 40.4
0.06h

Hg 234 3.62e

293 1.14dd 1451ee 2100c 1800ff 4.41e

300 4.41e

0.324dd 0.31h

Tl 576 1.143a 1665a 25.2e

0.025h

Pb 600 9.89e

623 1.19a,b 1770gg 9.89e

700 11.4e

0.000088f

Bi 544 1.15i 8.09e

aIida and Guthrie, 1993.
bHultgren et al., 1973.
cOhse, 1985.
dScopigno et al., 2000.
eTouioukiam and Ho, 1973.
fFrom the max of S.
gSinn et al., 1997.
hMughabghab, 1984.
iKleppa, 1950.
jPilgrim et al., 1999.
kScopigno, Balucani, et al., 2002.
lDesai and Yip, 1969.
mMorkel and Gläser, 1986.
nKawakita et al., 2003.
oScopigno et al., 2001a.
pSolid.
qHosokawa, Pilgrim, et al., 2003; Hosokawa et

al., 2003a.

rCabrillo et al., 2002.
sMonaco et al., 2004.
tBove et al., 2003.
uBermejo et al., 2000.
vCazzato, 2005.
wInui et al., 1992.
xBermejo et al., 1997.
yScopigno, Filipponi, et al., 2002.
zHosokawa et al., 2001.
aaCopley and Rowe, 1974.
bbHosokawa et al., 2003b.
ccBodensteiner et al., 1992.
ddBadyal et al., 2003.
eeBove et al., 2002a.
ffHosokawa et al., 2002.
ggSöderström et al., 1980.
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the two contributions is of crucial importance. Soon af-
ter Randolph’s experiment, his data were analyzed in
terms of mean-square displacement of an atom �Desai
and Yip, 1969�. This framework �described in Sec. II.E.1�
poses on the Gaussian assumption for the incoherent
cross section, while the coherent contribution was evalu-
ated according to the effective-mass approximation �de
Gennes, 1959�:

Ss�Q,�� =
1

�
�

0




dt cos��t�exp�−
Q2�r2�t��

6
� ,

S�Q,�� =
1

�
�

0




dt cos��t�exp�−
Q2�r2�t��

6S�Q� � .

The mean-square displacement was then determined
describing the atomic motion in terms of independent
harmonic oscillators of frequency �0 and lifetime �0,
which, in turn, are related to the spectral density of the
velocity autocorrelation function f���:

�0
2 = �

0




d��2f��� =
���� U�2�

3m
,

�0 =
T

mD�0
2 ,

f��� =
2

�

�0
2/�0

��2 − �0
2�2 + ��2/�0�2 .

The basic ingredients of this approach are therefore
the knowledge of the static structure factor, of the mac-
roscopic diffusion coefficient, and of the mean-squared

force ���� U�2�. The results of this description are tested
against the experimental data in Fig. 13. From the same
figure, it emerges how the single-particle regime is al-
ready attained at the lowest reported Q value, i.e., Q
=12 nm−1, while the low-frequency discrepancy has been
tentatively ascribed to finite instrumental resolution and
to multiple-scattering effect.

Twenty years later, new INS data were reported
�Söderström and Dahlborg, 1984; Morkel and Gläser,
1986�, addressing in more detail the incoherent scatter-
ing contribution and showing how the diffusion process
is actually more complex. Morkel and Gläser, following
for the coherent contribution the Lovesey’s prescription
�Lovesey, 1971�, and adopting for the incoherent part
the Nelkin-Gatak model �Nelkin and Ghatak, 1964� de-
scribed in Sec. II.E.4, extracted the reduced half width
�1/2 of the incoherent contribution finding a crossover
between the hydrodynamic �Lorentzian� and single-
particle �Gaussian� regimes. In Fig. 14 the linewidth
�1/2 /DQ2 is reported, and it clearly emerges how the
single-particle limit ��1/2 /DQ2'1/Q� is not yet attained
even at Q�40 nm−1, which contrasts with the earlier as-
sumptions of Desai and Yip. After a low-Q diffusion
retardation the mobility increases in the transition re-
gion and finally tends to the free gas limit. The whole Q
dependency is well described within the Enskog’s hard-

sphere gas �Sears, 1972�, in terms of the expression �70�.
An alternative description of single-particle dynamics
can be recovered within the memory function approach,
though it fails in the high-Q region �Götze and Zippe-
lius, 1976�.

The first IXS determination of the collective dynamics
in liquid sodium is due to Pilgrim and collaborators
�1999�, see Fig. 15. In this work, the coherent dynamic
structure factor was measured at several temperatures,
and analyzed according to the extended hydrodynamic
model previously applied in liquid lithium �Sinn et al.,
1997�. The take-home message is the presence of a posi-
tive dispersion effect which does not show significant
temperature dependence. This result seems to rule out
an interpretation of positive dispersion in terms of an
activated process, as is the case in hydrogen bonding
systems �Monaco et al., 1999�.

IXS experiments on liquid lithium were then repeated
with increased energy resolution �Scopigno, Balucani,
Cunsolo, et al., 2002�, and analyzed within the same two
viscous relaxation processes proposed for liquid lithium
�Scopigno et al., 2000b�. The same data have also been
interpreted within the framework of the scale invariance
of relaxation processes �Yulmetyev et al., 2003�, a theory

FIG. 14. Reduced quasielastic linewidth �1/2 /DQ2 in liquid
sodium at three different temperatures �Morkel and Gläser,
1986�. The dotted line is the Fickian limit while the dash-
dotted line is the perfect gas behavior �'1/Q�. The dashed line
is the hard-sphere prediction �Cohen et al., 1987�, while the
continuous line is the result obtained with mode coupling
theory �Götze and Zippelius, 1976�.
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originally developed for liquid cesium �Yulmetyev et al.,
2001�, which has been recently shown to be equivalent
to the memory function approach in the sense that one
solves the chain of Eqs. �35� with some ad hoc closure
relation.

3. Potassium

The first experimental data on liquid potassium ap-
peared surprisingly late relative to the other liquid met-
als �Novikov, Ivanovskii, et al., 1996; Novikov, Savostin,
et al., 1996; Novikov et al., 1997�. Moreover, the kine-
matic region Q-E spanned in this experiment was quite
narrow �10"Q"13 nm−1� and only partial information
on the microscopic dynamics could be obtained.

Very recently, two sets of INS experiments have been
reported in molten K just above the melting tempera-
ture, one at the ISIS source �Cabrillo et al., 2002�, and
the other at the ILL �Bove et al., 2003�. In the first case,
two time-of-flight spectrometers were utilized �IRIS and
MARI� aiming at a combined study of the dynamic
structure factor with different energy resolutions for the
narrow quasielastic and the broader inelastic compo-
nent. The experiment of Bove et al. has been instead
performed on the triple axis spectrometer IN1 optimized
to access a broader kinematic region, as shown in Fig. 16
where a detail of the energy-momentum region accessed
in the two experiments is shown.

The data taken on IRIS allowed for an accurate, high-
resolution, determination of the diffusive processes un-
derlying the incoherent dynamics. The results support
the hydrodynamics predictions corrected by the mode
coupling terms �see Eqs. �28�–�31� of Sec. II.E.3�, as re-
ported in Fig. 17. Beyond the diffusive mode, Cabrillo et
al. identify a second contribution, coherent in nature ac-
cording to the authors, which is weaker, broader, and
almost Q independent up to Q�Qm, while it becomes
narrower above Qm. The Q dependence of this coherent
mode is rationalized in terms of extended heat mode
�Eq. �67� of Sec. II.G� but its ultimate origin is rather

ambiguous, especially in view of the INS measurements
taken at IN1 and MARI.

The results of these two experiments are reported in
Fig. 18 for similar fixed Q values �Cabrillo et al., 2002;
Bove et al., 2003�. As can be easily noticed the possibility
�offered by IN1� of extending the INS measurements at
low Q is paid in terms of resolution. In both cases, how-
ever, evidence for inelastic coherent scattering is re-
ported, though incoherent scattering largely dominates
in the region where collective modes are more visible.
The two sets of data have been analyzed according to
different approaches by the respective authors. Cabrillo
et al. utilized a memory function approach truncating the
continued fraction at n=2, motivating this assumption as
necessary to account for the nearly Q independence of
the coherent quasielastic contribution reported in Fig.
17. Oddly enough, as evinced from Fig. 18 �left panel�,
neither the inverse relaxation time nor the raw quasi-
elastic width that they extract with this model favorably
compare with the coherent linewidth reported in Fig. 17.

FIG. 15. Left panel: IXS determination of the S�Q ,�� in liquid
sodium for selected temperatures. Right panel: dispersion
curves at different temperature.

FIG. 16. Sketch of the kinematic regions accessed in the ex-
periments of Bove et al. �dashed line� and Cabrillo et al. �con-
tinuous lines�. Linear sound dispersion is also reported.

FIG. 17. Quasielastic linewidth according to recent INS mea-
surements. Full and open circles are the coherent and incoher-
ent contributions, respectively, determined with time of flight
�Cabrillo et al., 2002�. Open triangles are the incoherent line-
width as measured with triple axis spectrometer �Bove et al.,
2003�, the observed 2-meV coherent contribution is also indi-
cated. The lower dotted line indicates the Fickian approxima-
tion.
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Bove et al., on the other side, utilize a damped harmonic
oscillator for the purely inelastic term and two Lorentz-
ian for the quasielastic coherent and incoherent contri-
butions, respectively. The results for the incoherent part,
achieved within the jump diffusion model described in
Sec. II.E.2, are consistent with the high-resolution mea-
surements �IRIS� of Cabrillo et al. �see Fig. 17�. On the
other side, the coherent contribution turns out to be
much broader �FWHM�4 meV, i.e., a relaxation time
��0.32 ps�, in contrast with the data of Cabrillo et al.
reported in Fig. 17 �full circles�, but in qualitative agree-
ment with the quasielastic linewidth and the relaxation
time of the same authors’ measurements reported in
Fig. 18.

Both experiments extract the dispersion curves, in one
case following the exact hydrodynamic prescription as
the maxima of the current correlation function �Cabrillo
et al., 2002� and in the other �Bove et al., 2003� as the
damped harmonic oscillator �DHO� frequency, which
coincides with the current correlation maximum if the
presence of the quasielastic coherent term is neglected.
The two independent determinations are indeed in good
agreement, except at large wave vectors where the data
of Bove et al. are systematically higher though with
some scattering. The sound velocity values exhibit the
usual excess with respect to the hydrodynamic value.
This high-frequency sound is ascribed by both studies as
a reminiscence of solidlike behavior, i.e., as the upper
edge of a transition occurring from the low-Q, hydrody-
namic domain to the high-frequency regime. This claim
stems on the basis of the similarity of the sound velocity
value of molten potassium with the value for crystalline
acoustic phonons along the �1 0 0� direction.

A recent IXS experiment on molten K �Monaco et al.,
2004� contributed to shed some light on some aspects of

the collective dynamics, giving a coherent picture in
terms of relaxation processes which is common to sev-
eral other simple fluids and, more generally, to glass
forming materials and molecular liquids �see Fig. 19�.

First, it has been shown how the coherent dynamics is
driven by thermal and viscous processes. These latter,
which are dominant, proceed over two different time
scales. Consequently, the FWHM of the quasielastic �co-
herent� contribution is not per se directly associated to
any relevant time scale. The thermal process, indeed, is
characterized by a time scale largely exceeding the Bril-
louin frequency, while both the viscous processes control

FIG. 18. Left panel: time-of-flight determination of the DSF in
liquid potassium �circles� �Cabrillo et al., 2002�. The dash-
dotted line depicts the coherent contribution. Right panel:
triple axis spectrometer measurements in a similar momentum
transfer region �circles� �Bove et al., 2003�. The continuous line
is the inelastic contribution to the collective dynamics.

FIG. 19. High-resolution IXS measurements in liquid potas-
sium �open circles� �Monaco et al., 2004�. The continuous line
is the line-shape description according to a multiple relaxation
memory function model �see text�.

FIG. 20. Viscous relaxation times as measured by means of
IXS �Monaco et al., 2004�. Circles: structural relaxation time.
Triangles: microscopic relaxation time. The relaxation time ob-
tained by means of INS is also reported �Cabrillo et al., 2002�,
showing how it averages between the two mechanisms re-
ported by IXS.
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the quasielastic width. The corresponding relaxation
times can instead be determined within the memory
function formalism of Eq. �59�, obtaining the results re-
ported in Fig. 20. In the same plot, the relaxation time
obtained by Cabrillo et al. �consistent with the determi-
nation of Bove et al.� is also reported �see Fig. 21�. As
one might expect, this value is somehow averaging be-
tween the two distinct viscous processes. More specifi-
cally, at low Q the single time approximation of Cabrillo
et al. seems to mimic the slower process, while at higher
Q the faster process is described. This hypothesis is con-
sistent with the observation, reported in other alkali
metals, of a decreasing weight of the slow relaxation
process on increasing the wave vector �Scopigno et al.,
2000a�. As far as the sound propagation properties are
concerned, the IXS experiment analyzed in terms of
generalized hydrodynamics suggests a minor role of the
structural process, which accounts for approximatively
10% of the whole positive dispersion effect, which is
dominated by the faster process �see Fig. 22�. This ob-

servation, already reported for many other simple liq-
uids, poses against the commonly invoked explanation
of the positive dispersion in terms of transition from a
liquidlike to solidlike regime �structural relaxation�.

4. Rubidium

Liquid rubidium has been the first of the alkali metals
to be addressed by a very famous neutron-scattering ex-
periment �Copley and Rowe, 1974�, immediately sub-
stantiated by molecular-dynamic simulations �Rahman,
1974� �see Fig. 23�. The reason for such interest lies in
the possibility of extracting information on the collective
dynamics, given the almost negligible incoherent cross
section ��i /�c�10−4� and the relatively low sound veloc-
ity value. The result of this experiment contributed to
open the route to the understanding of the collective
dynamics in simple liquids, showing that the presence of
a high-frequency inelastic mode is an intrinsic property
of alkali metals not related to quantum properties or
critical thermal population effect as suggested by earlier
works on liquid hydrogen �Carneiro et al., 1973�. Though
the experiment was affected by an elaborated multiple-
scattering subtraction �due to the lack of an absolute
normalization�, which leads to a possibly unreliable
quasielastic spectral component, some other chords of

FIG. 21. Dispersion curves �maxima of the current correlation
function� measured by INS �open circles �Bove et al., 2003�,
stars �Cabrillo et al., 2002�� and IXS �full circles �Monaco et al.,
2004��.

FIG. 22. Sound velocities as determined by IXS: apparent
�circles, from the maxima of CL�Q ,���, isothermal �dotted
line�, and infinite frequency limit �continuous line� determined
from Eqs. �46� and �52�. The unrelaxed sound velocity values,
due to the structural relaxation only �down triangle� and to the
whole relaxation process �uptriangle�, are also reported as es-
timated by the fitting.

FIG. 23. The experimental determination of constant Q slices
of the DSF by means of INS scattering in liquid rubidium. A
new era for the study of collective properties in simple liquids.
From Copley and Rowe �1974�.
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interest were hit. At variance with earlier results on liq-
uid lead �Dorner et al., 1967�, no evidence of secondary
modes of transverse nature was reported in this system.
Finally, a mild positive dispersion effect was observed
�though Copley and Rowe looked at the maximum of
S�Q ,�� rather than to the maximum of J�Q ,��� which
was tentatively ascribed to the distinction of zero sound
and first sound as discussed by Egelstaff �1967�.

More recently, an inelastic-scattering experiment was
performed with cold neutrons �Chieux et al., 1996� aim-
ing at the determination of the dynamic scattering law in
an extended temperature region beyond the one ex-
plored by Copley and Rowe. The kinematic accessed
region is above Q=9 nm−1, and therefore the observed
excitations lies beyond the linear dispersion region. This
work has the merit to stress the importance of the choice
of the appropriate dynamical variable and of the fitting
model to determine the dispersion curve.

The old data of Copley and Rowe have been more
recently reanalyzed in terms of generalized hydrody-
namics �Morkel and Bodensteiner, 1990�, comparing the
results to the ones obtained in molten cesium, which are
discussed in Sec. IV.A.5.

To our knowledge no IXS measurements have been
reported on liquid rubidium. The main difficulties for
such an experiment would be the very small absorption
length �about 200 �m� and the quite low sound velocity
value ��1400 m/s� which would confine the elastic
modes on the tail of the resolution function.

5. Cesium

The experimental determination of the dynamic scat-
tering law in liquid cesium is dated to the early 1990s
�Gläser, 1991; Bodensteiner et al., 1992� �see Fig. 24�.
Due to the relatively small incoherent cross section and
to the low sound velocity value, after rubidium liquid Cs
is the most favorable alkali metal aiming at the study of
collective dynamics by means of INS. Despite its late
outlet, the work of Gläser and Bodensteiner reports an
impressive state-of-the-art triple axis experiment, and a
robust data reduction performed with innovative algo-
rithms �Bodensteiner, 1990�.

The experiment is focused on the determination of
the collective properties and, though a careful subtrac-
tion of the incoherent contribution is performed, once
more the intrinsic difficulty of determining the quasielas-
tic part of the coherent spectrum emerges. This notwith-
standing, the data clearly show the departure of the col-
lective dynamics from the strict hydrodynamic region
and the evolution toward the free streaming limit. This
effect is quantified by the behavior of the FWHM of the
quasielastic line reported in Fig. 25: while the hydrody-
namic prediction, based on purely adiabatic thermal
fluctuations, predicts �1/2=DTQ2, the actual linewidth is
always below this limit in the whole explored region,
indicating the dominant presence of viscous processes in
the quasielastic spectrum, as recently pointed out in
other alkali metals and liquid aluminum �Scopigno and
Ruocco, 2004� against an opposite interpretation in

terms of linearized hydrodynamic models �Singh and
Tankeshwar, 2003, 2004�. The de Gennes �1959� narrow-
ing was also observed, and the Q dependence of the
linewidth was described within the hard-sphere ex-
tended mode approximation �Eq. �67�, Sec. II.G�. The
free streaming limit is not yet attained at wave vectors as
large as twice the position of the main peak of the static
structure factor �Bodensteiner et al., 1992�. The line-
shape analysis was performed with several approaches,

FIG. 24. Dynamic structure factor of cesium at the melting
point �circles�. The continuous line is the viscoelastic approxi-
mation. From Bodensteiner et al., 1992.

FIG. 25. Linewidth of the coherent quasielastic spectral com-
ponent in molten cesium �circles�. The continuous line is the
thermal value DTQ2, while the dashed line is the hard-sphere
prediction from Eq. �67�. From Bodensteiner et al., 1992.
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within the extended hydrodynamic model �de Schepper
and Cohen, 1980�, with the viscoelastic model �Lovesey,
1971�, and with two relaxation times accounting for both
viscous and thermal processes. In this latter case was
found a negligible role of the thermal process on ap-
proaching the first maximum of the structure factor,
though the fitted values of the thermal relaxation time
were in significant disagreement with the expected val-
ues 1/DTQ2 �Fig. 9 of Gläser �1991��. It was then pointed
out the impossibility of discriminating the different mod-
els, given the signal-to-noise ratio of the available data.
The Q dependence of the longitudinal viscosity, ex-
tracted from the S�Q ,�=0� value �according to the pre-
scription of generalized hydrodynamics�, showed a de-
creasing behavior previously observed in Lennard-Jones
systems �Ailawadi et al., 1971; Tankeshwar, 1994� and
more recently in several other liquid metals �Scopigno,
Filipponi, et al., 2002; Monaco et al., 2004�. Finally, the
maxima of current correlation spectra showed the usual
positive dispersion effect, which was interpreted as pre-
cursor of the solidification according to the usual idea of
a transition between a liquidlike and solidlike regime.

Neutron-scattering data on liquid cesium have also
been used as a benchmark to develop an approach based
on the idea of time-scale invariance of the relaxation
processes �Yulmetyev et al., 2001�. Within the Zwanzig-
Mori projector formalism, one can construct an infinite,
non-Markovian, set of interconnected kinetic equations
relating each memory function with the one of higher
order �Mori, 1965�:

dF�Q,t�
dt

= − �1
2�

0

t

d�M1�Q,��F�Q,t − �� ,

dM1�Q,t�
dt

= − �2
2�

0

t

d�M2�Q,��M1�Q,t − �� ,

�

dMi�Q,t�
dt

= − �i+1
2 �

0

t

d�Mi+1�Q,��Mi�Q,t − �� , �91�

where F�Q , t� is the normalized density correlation func-
tion and �i are characteristic frequencies of the process.
Following the Bogoliubov approach of the reduced de-
scription, one hypothesizes the time-scale invariance of
the relaxation processes beyond a certain level, defining
a closure level Mi+1�t��Mi�t� and thus getting an explicit
expression for the DSF in terms of the spectral mo-
ments.

To our knowledge no IXS experiments on liquid Cs
have been reported, for the same kind of difficulties as
in liquid Rb.

B. Alkaline-earth elements

1. Magnesium

Magnesium is one of the simplest divalent elements.
The coherent dynamic structure factor has been recently

determined at the SPring8 IXS beamline �Kawakita
et al., 2003�. The dispersion curve shows a 8% deviation
from the adiabatic sound velocity, with a maximum
value lying halfway in the hydrodynamic and the
c
 value. An average relaxation time was determined
��=0.094 ps�, which is about one-third of the one of the
neighboring alkali element liquid Na �Pilgrim et al.,
1999�. The analysis of the quasielastic line revealed a Q2

broadening in the quasihydrodynamic regime, while
around the de Gennes narrowing region the linewidth
was successfully reproduced by the de Schepper and Co-
hen model �de Schepper et al., 1984�, i.e., through Eq.
�67�. Molecular-dynamics simulations have been recently
performed in this system by both classical molecular dy-
namics and orbital free ab initio simulations �Alemany et
al., 1997; Gonzalez et al., 2001�. The two approaches give
very similar results as far as the phonon dispersion is
concerned, while the quasielastic contribution is less
pronounced in the ab initio calculation. In this respect, a
comparison with the experimental data �Kawakita et al.,
2003� would be extremely interesting, though one should
first convolute the calculated S�Q ,�� with the instru-
mental IXS resolution and take into account the quan-
tum correction arising from the detailed balance condi-
tion.

C. Group-III elements

1. Aluminum

One of the most puzzling results of early neutron
spectroscopy is the striking similarity between the spec-
tra of polycrystalline and liquid aluminum observed in
Stockholm in 1959 and published in the final form a few
years later �Larsson et al., 1965�. In this experiment
time-of-flight data were collected on a cold neutron
spectrometer, but at those times multiple-scattering cor-
rections were almost impossible and therefore the spec-
tra did not obtain a detailed explanation. A second time-
of-flight experiment was performed in the same period,
but again the results were lacking a detailed interpreta-
tion �Cocking, 1967b�. Fifteen years later the original
experiment of Larsson was revisited, in an effort to re-
analyze the results in the light of up to date theoretical
developments. More specifically, the experimental re-
sults were used to test the old convolution approxima-
tion �Vineyard, 1958�, mean-field approaches �Singwi et
al., 1970�, and kinetic theory �Sjögren, 1978; Sjögren and
Sjölander, 1978�. Nevertheless, these data have been col-
lected at very large energy and wave-vector value and
always presented as a time-of-flight scan, and therefore
they are not very helpful to establish the existence of
collective modes in this system. Aluminum, indeed, is an
almost purely coherent scatterer, but the high sound ve-
locity value prevents the study of acoustic modes by
means of INS �see Table I�. This is testified by a more
recent INS experiment performed at IN4 �ILL� �Eder et
al., 1980�. Although multiple-scattering correction and
constant-Q cut reductions have been performed in this
case, no evidence of collective modes could be reported
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due to the restricted kinematic region corresponding to
the slow neutrons utilized ��55 meV�.

Much of the knowledge about the microscopic dynam-
ics in liquid Al relies, in fact, on the numerical work of
Ebbsjö et al. �1980�, who calculated the dynamic struc-
ture factor utilizing two different local pseudopotentials
and the local pseudopotential originally developed by
Ashcroft �1966�. The dynamic structure factor has been
shown to be somehow reminiscent of the viscoelastic
model with the addition of a Gaussian term, accounting
for the approach to the high-Q, free streaming limit. He
was then able to predict the existence of collective

modes for Q"10 nm−1, though he reported sound ve-
locity values distinctly larger then the adiabatic value
over the whole explored range �Q�3 nm−1�. Triggered
by this observation, a modified version of the viscoelas-
tic approach was developed �Gaskell, 1986� and tested
against the data of Ebbsjö. At the same time, a single
relaxation process scenario has been proposed based on
a sech memory function shape within the Mori-Zwanzig
scheme �Tankeshwar et al., 1988�.

The first experimental observation of collective modes
in liquid Al has been reported much more recently by
means of IXS �Scopigno et al., 2001a�. A high-frequency
regime has been observed for Q�5 nm−1, while below
this value the dynamics approaches the hydrodynamic
limit, though the transition is not fully accomplished at
the lowest investigated wave vector, Q=1 nm−1. The sce-
nario arising from the IXS study is quite similar to the
one characterizing alkali metals, though with significant
quantitative differences such as a more intense quasi-
elastic component testifying a more important role of
the structural relaxation in this system.

The IXS data have been recently used to test orbital
free ab initio calculations �OF-AIMD� �Gonzalez et al.,
2001, 2002� �see Fig. 26�. The overall agreement is quite
satisfactory though the numerical calculations show
somehow lower sound velocity value and tend to over-
emphasize the inelastic components. From Fig. 27 one
can argue the importance of the dynamical variable rep-
resenting the sound velocity. The presence of positive
dispersion, in particular, is strongly affected by the
choice of the maxima of CL�Q ,�� rather than the
maxima of S�Q ,��.

In Fig. 28, finally, we report a comparison of the line
shape obtained from the resolution-deconvoluted, clas-
sical line shape utilized to fit the IXS spectra of liquid
lithium, sodium, and aluminum at the same reduced val-
ues of momentum �Q /QM� and energy ��t0=� /�0, with
t0=�m /kBTm /QM� transfer. As can be clearly evinced,
the attitude of alkali metals to sustain density fluctua-

FIG. 26. Dynamic structure factor of molten aluminum. Com-
parison between the OF-AIMD calculation �continuous line�
�Gonzalez et al., 2002� and the experimental IXS values with
their fitting based on generalized hydrodynamics �Scopigno et
al., 2001a�. From Gonzalez et al., 2001.

FIG. 27. Sound dispersion of liquid aluminum from the
maxima of the current correlation function: open circles, OF-
AIMD calculation �Gonzalez et al., 2002�; full circles, IXS ex-
perimental values �Scopigno et al., 2001a�. Dispersion from the
maxima of the dynamic structure factor numerically evaluated
is also reported �open triangles�, as well as the hydrodynamic
value �continuous line�. From Gonzalez et al., 2002.

FIG. 28. Resolution deconvoluted, classical line shape utilized
to described the IXS spectra of molten Li �Scopigno et al.,
2000b, 2001a; Scopigno, Balucani, et al., 2002�, Na, and Al,
reported on relative momentum and energy scale �see text�.
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tions is much more pronounced than in other simple
liquid metals.

2. Gallium

Among simple liquid metals, Ga is endowed with pe-
culiar structural and electronic properties. In addition to
the low melting point �Tm=303 K�, it shows an extended
polymorphism in the solid phase with complex crystal
structures where a competition between metallic and co-
valent bindings takes place. Despite the nearly free elec-
tron electronic DOS anomalies associated with some co-
valency residue are present. Moreover, the first peak of
S�q� presents a hump characteristic of non-close-packed
liquid structures �Bellissent-Funel et al., 1989�.

Early inelastic scattering experiments on liquid Ga
were performed at the beginning of the 1970s with neu-
trons �Gläser et al., 1973; Löffler, 1973; Page et al., 1973;
Bosio et al., 1976�. Due to the quite large sound velocity
value, compared to the available kinematic range, these
studies were mainly addressed to the investigation of the
quasielastic part of the dynamic structure factor.

Twenty years later, another series of INS experiments
were performed on a triple axis instrument �Bermejo et
al., 1994� with the aim of ascertaining the presence of
low-Q collective modes just above the melting tempera-
ture. Indeed, although by virtue of the above-mentioned
anomalies liquid Ga seems to elude the picture of the
high-frequency dynamics emerging in all monatomic liq-
uids, on the basis of the shape of the interaction poten-
tial evidence for collective modes should be expected
below Qm /2. Quite surprisingly, no evidence of an in-
elastic signal was reported in the region were longitudi-
nal modes were expected on the basis of the hydrody-
namic sound velocity. This result was interpreted as an
overdamping effect traced back to the high value of lon-
gitudinal viscosity ��10 cP�. Additionally, by comparing
a constant energy scan �see Fig. 29� to the expression of
Buchenau for acousticlike plane-wave excitations in
amorphous solids �Buchenau, 1985�, an excess of scatter-
ing was reported for frequency distinctly larger then the
maximum frequency of the acoustic branch. This result
was interpreted as the fingerprint of the presence of
high-energy opticlike modes.

A few years later, then, a new set of experiments were
performed at higher temperatures by the same authors
�Bermejo et al., 1997�, and a contrasting behavior with
the previous findings was reported. More specifically, the
appearance of nonoverdamped sound modes was re-
ported, accompanied by a second, higher frequency
mode of presumably optical origin. The discrepancy be-
tween the low- and high-temperature experiments was
ascribed to a viscosity drop of a factor �7 and therefore
to a narrowing of the acoustic mode according to the
hydrodynamic expression �17�.

The presence of a higher frequency mode appearing
in the constant Q scan for wave vectors larger then Qm
seems to corroborate the presence of an opticlike exci-
tation suggested by the previously mentioned constant
energy scans �Bermejo et al., 1994�.

A recent IXS experiment performed on liquid gallium
just above the melting point �Scopigno, Filipponi, et al.,
2002� portraits the collective dynamics in a quite similar
fashion to the one of alkali metals and of liquid Al, thus
removing the anomaly suggested by the neutron experi-
ments. Collective modes, in fact, have been unambigu-
ously observed in the low-temperature region where
neutrons suggested an overdamped regime. This result
suggests the inadequacy of Eq. �17� to estimate Brillouin
linewidths, which can be easily understood in terms of
generalized hydrodynamics results reported for alkali
metals �Scopigno et al., 2000a�: outside the truly hydro-
dynamic region, the viscous relaxation dynamics pro-
ceeds over two distinct physical mechanisms, the struc-
tural relaxation and the short-lived rattling dynamics. In
the high-frequency region of interest, structural relax-
ation is frozen �the system is responding as a solid� and
therefore the viscosity associated to this process does
not contribute to the sound damping. Moreover, the
thermal contribution in Eq. �17� might not be correct at
wave vectors as large as a few nm−1, since the adiabatic
regime could be replaced by as isothermal one, as al-
ready pointed out �Scopigno and Ruocco, 2004�. Conse-
quently, Eq. �17� is an overestimate of the actual line-
width �which in the case of liquid lithium has been
quantified as a factor of 2 �Scopigno, Filipponi, et al.,
2000a��. In Fig. 30 we report the two experiments for
similar values of the momentum transfer. The viscoelas-
tic prediction �Lovesey, 1971; Bermejo et al., 1994� is also
reported, showing how it clearly underestimates the
quasielastic contribution, though it provides a reason-
able estimate of the genuine inelastic mode. The IXS
findings have been recently corroborated by a new accu-
rate INS experiment, used to test the reliability of a
model interaction potential by comparing the dynamic
structure factors �Bove et al., 2005�.

Summing up, the lack of low-temperature collective
excitations reported in this system with neutrons is prob-
ably due to the difficulty of a reliable extraction of the
coherent part of the scattering function. On the other
side, the interesting observation of possibly opticlike
high-frequency modes certainly calls for further investi-
gation although, in our opinion, does not justify per se a
description of the acoustic dynamics in terms of crystal-
line reminiscent dynamics. The analogy with several IXS
results on different systems suggests a prominent role of
the topological disorder in characterizing the acoustic
branch.

Very recently, an IXS experiment explored the high-Q
region �20"Q"70 nm−1, i.e., length scales smaller than
the size of the first coordination shell �Scopigno et al.,
2005��. While generalized hydrodynamics provides a co-
herent picture of the dynamics in the lower Q region,
not much is known about collective dynamics at such
short length scales. For hard spheres, Enskog’s kinetic
theory predicts in this region the dominant effect of a
generalized heat mode �see Fig. 31�. Liquid gallium,
however, by no means can be modeled as a hard-sphere
fluid, for the above-mentioned structural and electronic
properties. Surprisingly, it turned out that a description
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in terms of heat mode �Eq. �67�� still applies, at the price
of introducing an effective hard-sphere diameter �larger
than the one associated to the first S�Q� maximum�,
which probably accounts for the associative tendency of
this liquid �dimerlike structures�.

D. Group-IV elements

1. Silicon

Due to its several unusual properties, liquid Si is al-
ways classified as a nonsimple liquid. While in the crys-
talline phase Si is a diamond structure semiconductor, it
undergoes a semiconductor-metal transition upon melt-
ing, which is accompanied by a density increases of

about 10%, and by significant structural changes �the
coordination number grows from 4 in the solid state to
about 7 in the liquid�. Similarly to gallium, the static
structure factor S�Q� exhibits a shoulder on the high Q
side of the first peak �Waseda and Suzuki, 1975�, a fea-
ture that cannot be reproduced using a simple hard
sphere model, appropriate for alkali metals.

No neutron-scattering data exist to the best of our
knowledge, while very recently two inelastic x-ray scat-
tering experiments have been performed at both the
ESRF �Hosokawa et al., 2003a� and SPring8 �Hosokawa,
Pilgrim, et al., 2003� �see Fig. 32�.

In the first of the two above-referenced experiments, a
positive dispersion of 15% has been found. In the sec-

FIG. 29. INS constant energy
scans �circles� compared to the
model of Buchenau for plane-
wave excitations in solids
�Buchenau, 1985�. From Ber-
mejo et al., 1994.
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ond experiment, a higher resolution and more accurate
study has been carried out, allowing one to follow the
transition from the high-frequency to low-frequency re-
gimes. The data were analyzed in terms of the damped
harmonic oscillator model for the inelastic component
and Lorentzian for the quasielastic, and no significant
quantitative differences were detected utilizing the same
memory function scheme proposed for other IXS studies
on liquid metals �Scopigno et al., 2000a�.

In the vicinity of the main peak of the static structure
factor, the Lorentzian shape for the quasielastic compo-
nent turned out to be inadequate, and has been replaced
by a combination of Lorentzian and Gaussian contribu-
tions �pseudo-Voigt�.

2. Germanium

Liquid Ge shares the same peculiarities as liquid sili-
con, though with some slight quantitative differences.

IXS data on liquid Ge have been recently obtained
�Hosokawa et al., 2001�, and they show evidence for col-
lective propagating modes. An analysis based on a
Lorentzian shape for the quasielastic and a damped har-
monic oscillator for the inelastic modes, revealed the ab-
sence of positive dispersion effects in the investigated Q
range �2–28 nm−1�. In our opinion, this result calls for
further investigations, as this is an almost unique feature
in respect to the other monoatomic liquid metals inves-
tigated so far �especially silicon, which has very similar
structural properties�. The de Gennes narrowing has
been analyzed in terms of an extended hydrodynamic
heat mode, utilizing the analytical expression obtained
within the hard-sphere approximation �Cohen et al.,
1987�, but the quite large error bars and the limited
spanned Q range prevents one to draw a final conclu-
sion.

3. Tin

Tin is the heaviest of 4B elements. Its structural prop-
erties are quite similar to those of alkali metals, with a
coordination number close to 12 but with the typical
shoulder on the high-Q side of the main S�Q� peak
�Waseda and Suzuki, 1975� which is typical of Si, Ge,
and Ga.

The first INS experiments in liquid tin have to be
traced back to the early 1960s. Similarly to other early
neutron-scattering experiments no clear picture of the
microscopic dynamics could be outlined. In one case
�Palevsky, 1961� the Vineyard approximation �Vineyard,
1958� was used to analyze the data, while in another

FIG. 30. �Color online� Comparison between the INS �stars
�Bermejo et al., 1994� and triangles �Bove et al., 2005�� and IXS
�open circles with error bars �Scopigno, Filipponi, et al., 2002��
determinations of S�Q ,�� in gallium at the melting tempera-
ture, for two different values of the �constant� momentum
transfer. The dotted line is the viscoelastic prediction �Bermejo
et al., 1994� �convoluted with the INS instrumental resolution
and accounting for the detailed balance condition�, while the
continuous line is the best fit to the IXS data utilizing a
memory function accounting for the thermal relaxation and
two viscous processes �see text�. Molecular-dynamics simula-
tions for the coherent �dotted line� and total �dash-dotted line�
S�Q ,��, convoluted to the INS resolution, are also reported
�Bove et al., 2005�.

FIG. 31. �Color online� Half width at half maximum of the
dynamic structure factor as determined by IXS in the kinetic
regime �open circles�. The prediction according to Enskog’s
theory is also shown �continuous line� �Scopigno et al., 2005�.

FIG. 32. Sound velocity and attenuation in molten silicon
�Hosokawa, Pilgrim, et al., 2003�.
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study an experimental strategy for suppressing multiple
scattering was tested �Brockhouse et al., 1963�. Although
a wave-vector–energy plot was obtained from raw time-
of-flight data �Cocking and Egelstaff, 1965b�, according
to Copley and Lovesey no side peaks should be ob-
served transforming time-of-flight data to S�Q ,�� on
constant Q slices �Copley and Lovesey, 1975�.

Constant Q IXS spectra of liquid tin have been very
recently reported for low �T=593 K� and high �T
=1273 K� temperatures at the ESRF �Hosokawa et al.,
2003b�. The sound velocity seems to exceed the hydro-
dynamic value at both temperatures of 6% and 12%,
respectively. This notwithstanding, these quantitative es-
timates must be taken with care, due to the quite large
error bars. Moreover, the dispersion curves have been
determined from the damped harmonic oscillator fre-
quency, neglecting the effect of the quasielastic compo-
nent. For Q values close to the main peak of the struc-
ture factor, as in the case of liquid Si �Hosokawa,
Pilgrim, et al., 2003�, the line shape of S�Q ,�� turned out
to be empirically described by a combination of Lorent-
zian and Gaussian contributions or, equivalently, by a
memory function analysis similar to the one reported for
alkali metals �Scopigno et al., 2000b�. As a matter of fact,
at such large-Q values, as previously observed for liquid
lithium �Scopigno, Balucani, Cunsolo, et al., 2000; Sco-
pigno et al., 2000a�, the microscopic dynamics undergoes
a transition from the �generalized� hydrodynamic behav-
ior to the free streaming limit and a detailed description
of such transition is still missing.

4. Lead

Molten lead has been one of the first metals to be
investigated by inelastic neutron scattering, as the first
experiment can be traced back to the 1950s �Egelstaff,
1954; Brockhouse, 1955�. Details of the experiments per-
formed up to 1975 �Dorner et al., 1965, 1967; Randolph
and Singwi, 1966; Cocking and Egelstaff, 1968� have
been exhaustively reviewed by Copley and Rowe �Cop-
ley and Lovesey, 1975�. One of the most interesting re-
sults has been the evidence of both a longitudinal and a
transverse branch in the dynamic structure factor,
though this result was presented with some caution as
the transverse mode could be an artifact arising from
multiple-scattering effects.

In the early 1980s new INS studies performed with
both triple axis spectrometer and time-of-flight spec-
trometers appeared �Söderström et al., 1980; Söder-
ström, 1981�, aiming to validate the presence of a disper-
sion relation and of a transverse branch. A longitudinal
mode compatible with the higher frequency excitation
previously reported by Dorner et al. �1967� was re-
ported, whose sound velocity is consistent with hydrody-
namic value. The accessible kinematic range is too lim-
ited to assess any evidence of positive dispersion effect.
No evidence for a lower frequency excitation was in-
stead reported, corroborating the hypothesis that such a
feature is an artifact stemming from multiple scattering.

Liquid lead has recently been the focus of molecular-
dynamic simulations aiming to describe collective dy-
namics in terms of generalized kinetic modes �Bryk and
Mryglod, 2001a, 2001b�. Beyond the hydrodynamic re-
gion, different branches corresponding to sound and
heat waves have been identified, and their nature has
been extensively discussed.

E. Group-V elements

1. Bismuth

The first inelastic scattering investigation of molten
bismuth was originally reported by Cocking �1967a�,
who reported a dispersion curve extracted by time-of-
flight neutron spectra. At the IAEA symposium of 1968
two experiments Bi were presented: in one case two dis-
persion branches were obtained from time-of-flight data
�Tunkelo et al., 1968�, though the low-frequency excita-
tion was probably due to an artifact of a missing
multiple-scattering correction. In the second study data
were converted to constant Q spectra �Mateescu et al.,
1968�.

Liquid Bi has been recently the subject of new INS
investigations �Dahlborg and Olsson, 1982� �see Fig. 33�.
Measurements were performed just above melting at T

FIG. 33. FWHM of molten Bi compared to other simple liq-
uids. It can be noted the presence of an intermediate minimum
between the first two maxima which is not present in the other
simple fluids. From Dahlborg and Olsson, 1982.
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=578 K, in a wave-vector region spanning from just be-
low the first maximum in S�Q� up to wave vectors as
high as 70 nm−1. This kinematic region lies above the
region were collective modes could be expected, so the
study mainly deals with the quasielastic spectral compo-
nent. Generalized hydrodynamics models based upon a
single relaxation time were tested against the experi-
mental data utilizing different approximation for the
memory function shape �Ailawadi et al., 1971; Lovesey,
1971�. Experimental data were then unfolded by instru-
mental resolution modeling the quasielastic shape as
Lorentzian and the resolution as Gaussian. The main
point of the paper is the determination of the Q depen-
dence of the spectral FWHM, which is also compared to
other systems. In particular, it is pointed out how, beside
the expected de Gennes narrowing occurring at Qm, the
FWHM shows a minimum rather then the expected
maximum at Q�1.5Qm �which characterize the dynam-
ics in several simple liquids such as Pb, Rb, and Ar�.
This anomaly is related by the authors to the shoulder
observed in the static structure factor just above Qm,
and therefore identified as a nonsimple nature of liquid
Bi.

The kinetic region has been investigated in liquid Bi
within the generalized collective mode approach �Bryk
and Mrygold, 2000�. The presence of high-frequency ki-
netic branches has been ascertained, and it has been
pointed out that their weight is too small to make them
visible in the dynamic structure factor. This result seems
to be in agreement with recent IXS findings on a very
similar system, namely, liquid Ga, in which only acoustic
modes were reported �Scopigno, Filipponi, et al., 2002�.

F. Transition metals

1. Mercury

Experimental studies of microscopic dynamics in liq-
uid mercury are very recent compared to the systems
reviewed so far, and they were presented at the LAM XI
Conference �Yokohama, Japan�. The first investigation
was obtained by means of INS at the IN1 facility of the
ILL �Bove et al., 2002a, 2002b� �see Fig. 34�. In this
work, a detailed investigation of the dynamic structure
factor is undertaken at room temperature, and pre-
sented as constant Q cuts in the range 2.5–12 nm−1 with
a high-energy resolution of 	E�1 meV. The data are
analyzed with an empirical model consisting of a
damped harmonic oscillator for the purely inelastic part
and the sum of two Lorentzian functions accounting for
the quasielastic contribution. While the inelastic compo-
nent is no doubt of coherent nature, the narrower of the
two Lorentzians is ascribed to incoherent scattering, and
modeled as a simple diffusive term of linewidth DQ2.
Given the values of D, this results in a quasielastic con-
tribution which could not be resolved by the much
broader resolution function. The linewidth of the
broader Lorentzian is almost Q independent, and its ori-
gin is ascribed by the authors to an incoherent process,
on the basis of the coincidence of the damped harmonic

oscillator area with independent �static� structure factor
determinations. Turning our attention to the collective
dynamics, the extrapolated high-frequency value of the
sound velocity �c
�Q→0�=2100±80 m/s�, obtained by
the damped harmonic oscillator frequency parameter
�therefore approximately equal to the maximum of the
current correlation function, the difference being due to
potential quasielastic coherent contribution�, turns out
to largely exceed the hydrodynamic value �cs
=1451 m/s�, suggesting a huge positive dispersion effect
close to 50% largely exceeding similar effects reported
in other metals. This result is rationalized in terms of the
Bohm-Staver model, which provides an expression, Eq.
�75�, for the sound velocity yielding, for molten Hg,
cl�Q→0��2090.

Nearly in coincidence with the neutron experiment of
Bove et al., an IXS study of the coherent dynamics in
liquid Hg appeared �Hosokawa et al., 2002�, in which the
dynamic structure factor is examined in a wave-vector
region extended up to Qm�25 nm−1, with a factor of 2
worse resolution, but in a significantly larger energy re-
gion �see Fig. 35�. As in the work of Bove et al., the
genuine inelastic features of the data are modeled with a
damped harmonic oscillator function, but it appears
clearly from the raw data that a coherent quasielastic
term dominates the ��0 region. This latter contribution
is modeled with a Lorentzian shape. Although the au-
thors neglect the presence of this quasielastic term in the
calculation of the sound velocity value, taking the
damped harmonic oscillator frequency as the relevant
parameter they obtain a value of c
�Q→0�=1840 m/s,
an estimate which is directly comparable with the corre-
sponding INS determination. This discrepancy, which
may be due to the limited energy range at the low Q’s of
the INS experiment, as well as to the non-negligible
resolution effect on the lowest Q’s of the IXS experi-

FIG. 34. DSF of molten Hg measured by means of INS at the
indicated Q values. The inelastic and quasielastic components,
modeled with two Lorentzians and a DHO, respectively, are
also shown. From Bove et al., 2002a.
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ment, calls in our opinion for further investigations and
suggests to take with some care any interpretations in
terms of the Bohm-Staver model of positive dispersion
at least with a quantitative point of view. Hosokawa et
al., on the other hand, cast the anomalous dispersion in
the usual framework of the shear relaxation. The IXS
work also confirms the non-negligible presence of a
quasielastic signal in the coherent dynamic structure fac-
tor, suggesting that it should also be taken into account
in INS data treatment. We expect that the broader
Lorentzian contribution reported by Bove et al. for ex-
ample, could be at least partially coherent in nature.

A more recent INS study contributed to shed some
light on the possible origin of the quasielastic spectral
components �Badyal et al., 2003�. The experiment has
been performed on the time-of-flight spectrometer
MARI, optimized to access a restricted kinematic region
�−6"�"6 meV at the lowest accessed momentum
transfer Q�4 nm−1� with an energy resolution sufficient
to study the diffusive dynamics �	E=0.4 and 	
=0.8 meV at the two incident energy utilized�. The nar-
rower incoherent contribution �self-diffusion�, resolution
limited in the experiment of Bove et al. was now de-
tected with a procedure similar to the one applied in
liquid potassium �Cabrillo et al., 2002�, i.e., fitting the
data with two Lorentzian in a restricted wave-vector re-
gion where the two quasielastic features are well sepa-
rated, determining the analytical Q dependence of the
FWHM of the diffusive term, and finally focusing on the
broader component over the whole momentum transfer
region keeping all the parameters of the diffusive term
fixed. With this procedure, the narrower Lorentzian is
confirmed to be incoherent in nature, and well described

by Fick’s law properly modified according to the revised
Enskog’s theory �Kamgar-Parsi et al., 1987�. As far as the
broader component is concerned, the authors point out
that more than one Lorentzian is needed to describe it
at increasing wave vector, then they discuss its possible
origin. First, they point out that the thermal origin of
this broad component is ruled out by its low-Q intensity,
which is by far larger than the one expected by the
Landau-Plazeck ratio. Moreover, the linewidth reaches a
constant value on decreasing wave vector, instead of fol-
lowing the Q2 dependency of the heat mode. Second,
they examine the possibility of a cage diffusion mecha-
nism, as proposed in molecular-dynamics simulations
�Bove et al., 2002c�. In this respect, they point out how
the experimentally observed mode intensity is larger
than expected, but they propose an enhancement
mechanism based on valence fluctuations which could be
active at low wave vectors amplifying the expected in-
tensity.

Very recently, new state-of-the-art IXS experiments
have been reported in expanded mercury near the
critical point �Tc=1751 K, Pc=1673 bars, and �c
=5.8 g cm−3�, aiming at the investigation of collective dy-
namics at the metal-nonmetal transition �Ishikawa et al.,
2004�. Despite extremely difficult experimental condi-
tions, the speed of sound has been accurately measured
and no significant changes have been observed in the
transition from the metallic �m�c=13.6 g cm−3� to the in-
sulating �m�c=9.0 g cm−3� phase, while the ultrasonic
sound velocity exhibits a significant drop across the
same thermodynamic point �Yao et al., 1996�. Only upon
further expansion in the insulating phase the high-
frequency sound velocity ultimately drops reaching the
adiabatic value. This result seems to indicate the pres-
ence of very large positive dispersion as peculiar of the
metal-nonmetal transition, opening a new experimental
route to the investigation of the interplay between
acoustic and transport properties.

Summing up, though the microscopic dynamics in
molten Hg has been the subject of deep investigations in
the last few years, some aspects still remain controver-
sial. The sound velocity as determined by INS and IXS
are not fully consistent with each other, though both
techniques show a positive dispersion effect the INS re-
sult show a very large effect never observed so far. On
the one side has been emphasized the role of electronic
properties �Bove et al., 2002a�, while, on the other side,
the collective dynamics as determined by IXS closely
resemble one of several other simple fluids �Hosokawa
et al., 2002�. The most intriguing aspect concerns, how-
ever, the interpretation of the quasielastic component of
S�Q ,��. Neutron-scattering data suggest a negligible ef-
fect of thermal fluctuations �Badyal et al., 2003�, adding
a piece of information to a recently debated issue �Singh
and Tankeshwar, 2003, 2004; Scopigno and Ruocco,
2004�. On the other side, the IXS data unambiguously
show the presence of a coherent quasielastic dynamics,
which no doubt has to show up in the neutron experi-
ment as well. The broad quasielastic component as ob-
served with two different experiments show, however,

FIG. 35. Left panel: IXS determination of the DSF in Hg near
the melting temperature. Right upper panel: dispersion rela-
tion and sound attenuation properties as deduced by a DHO
+one Lorentzian fit. The low- and high-frequency limits are
also reported. Right lower panel: Corresponding sound veloci-
ties. From Hosokawa et al., 2002.
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opposite Q trends, monotonically increasing �Bove et al.,
2002a� and decreasing �Badyal et al., 2003�, respectively.
Badyal et al. suggest a cage diffusion process, enabled by
the valence fluctuations mechanism. We believe that the
broad mode observed in INS could be closely related to
the coherent quasielastic scattering reported in the IXS
data. In this case, the similarity with several other inves-
tigated systems would suggest an interpretation in terms
of a high-frequency structural relaxation process �Sco-
pigno et al., 2000b, 2001a; Scopigno, Balucani, et al.,
2002; Scopigno, Filipponi, et al., 2002; Monaco et al.,
2004�. Very recent IXS investigations, however, suggest
an enhancement of positive dispersion at the metal-
nonmetal transition, pointing out how changes in elec-
tronic transport properties dramatically affect acoustic
properties �Ishikawa et al., 2004�.

2. Nickel

Early investigations in liquid nickel have been re-
ported in 1977 with the time-of-flight technique
�Johnson et al., 1977�. Two different isotopic concentra-
tions, one with the natural abundance ratio and the
other a wholly incoherent mixture, were chosen in order
to study separately the coherent and incoherent scatter-
ing contributions. These latter, in turn, have been re-
lated to each other through the Vineyard approximation
�Vineyard, 1958�. The spectral density g��� was then ex-
tracted from the low-Q limit of the self-dynamic law.
Coherent functions S�Q ,�=0� were reported for wave
vectors above Q=22 nm−1, therefore beyond the first
Brillouin pseudozone. Consequently, this study was not
able to ascertain the existence of low-Q collective
modes.

A neutron-scattering experiment has been recently
performed at the IN1 facility of the ILL �Bermejo et al.,
2000�. Constant Q spectra have been collected from Q
=8 nm−1 all the way up to wave vectors as high as twice
the main peak in the static structure factor. The data
have been analyzed utilizing two Lorentzian terms for
the quasielastic �coherent and incoherent� contribution
and one damped harmonic oscillator function for purely
inelastic spectral features. Evidence of collective modes
has been reported in the investigated Q domain, despite
the relatively high viscosity value ��s�5.7 mPa s, i.e.,
one order of magnitude larger than the typical values for
alkali metals�. The reason for this apparent oddness can
be traced back to arguments similar to the case of gal-
lium, i.e., to the freezing of the diffusional motion over
the probed high-frequency regime, which reduces the ef-
fective Brillouin damping in respect to the hydrody-
namic prediction of Eq. �17�.

More interestingly, the low-Q limit of the sound ve-
locity seems to approach the isothermal and not the
adiabatic value, as shown in Fig. 36. It is worthwhile to
stress how, given the large value of � �and therefore the
large differences between ct and cs�, this observation
strikingly holds beyond the reported experimental error.
If confirmed, this result would substantiate the hypoth-
esis of an intermediate isothermal domain bridging the

hydrodynamic limit and the high-frequency regime,
which has been recently a matter of debate �Singh and
Tankeshwar, 2003, 2004; Scopigno and Ruocco, 2004�.
On the other side, previous molecular-dynamics simula-
tions indicate higher values of the sound velocity which
agree quite well with the adiabatic response �Alemany et
al., 1998�. Summing up, liquid Ni seems to be an ideal
system to test the evolution of the thermal relaxation
once the hydrodynamic limit is abandoned. An IXS in-
vestigation would be helpful to clarify this issue, though
the small absorption length, the high melting tempera-
ture, and the reactivity of Ni pose severe experimental
challenges.

3. Copper

Time-of-flight neutron-scattering data have been re-
ported for this system a long time ago in the solid and
liquid phases. The accessed kinematic range was quite
broad �Q�10 nm−1 and E"30 meV� and the data have
been analyzed with pioneering models �Egelstaff and
Schofield, 1962�. More recently, an IXS experiment has
been performed at the ESRF, though this work is still in
progress and a very preliminary estimate of the sound
velocity gives a value of 4230±70 m/s, well above the
hydrodynamic value.

G. Solutions of metals

Alkali metals easily dissolve in water, molten alkali
halides, and ammonia, resulting in a free electron and a
positively charged ion. Given the relatively low elec-
tronic concentration of the saturated solutions, these are
ideal systems to challenge the validity extents of plasma-
based theories introduced in Sec. II.H, and the relative
approximations for the dielectric function. Models such
as the RPA, indeed, are expected to hold in systems with
low rs �or, equivalently, high electronic density� such as
bulk metals, while they reach their limits on increasing
the rs value.

A second interesting aspect concerns the presence in
liquid metals of the so-called Kohn anomaly, i.e., a kink
in the dispersion curve occurring at Q=2kF and reflect-

FIG. 36. Sound velocity in liquid nickel determined by INS
�full circles� and MD �open circles�. The isothermal �ct� and
adiabatic �cs� values are also indicated.
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ing a singularity of the dielectric function which is ob-
served in metallic crystals, but which is not yet estab-
lished in the disordered phase. The high-frequency
dynamics of metal-ammonia systems, in particular, have
been recently investigated by means of x rays and neu-
trons. High-resolution IXS performed in lithium-
ammonia solutions allowed one to detect high-frequency
excitations, softening at twice the Fermi wave vector kF
�Burns et al., 2001�. Unfortunately, at the investigated
concentrations 2kF is close to Q=Qm, i.e., the main peak
of the static structure factor. This coincidence generates
an ambiguity in the interpretation of the observed dip in
the sound dispersion, as it is not clear whether this fea-
ture is related to the structural periodicity as in nonor-
dinary fluids or has to do with a purely electronic effect.
The reported sound velocity values are intermediate be-
tween the bare ion values and the value appropriate for
the Li�NH3�4 vibrating network, though close to the lat-
ter. In a later study �Said et al., 2003�, collective excita-
tions are rationalized in terms of ionic plasma oscilla-
tions, and the sound velocity values measured at several
metal concentrations are compared with the prediction
of the Bohm-Staver expression �75�, taking as the rel-
evant mass either the bare ionic value or the metal-
ammonia unit. In both cases the predictions do not

agree with the measured values, and this seems to be a
signature of the well-known failure of the RPA approxi-
mation in the low-density regime, where electron-
electron interactions are relevant. A contemporary INS
study on deuterated ammonia �Sacchetti et al., 2003� also
addresses the deviations from the Bohm-Staver model.
In this case an improvement is achieved accounting for
both the finite ionic size and electron-electron interac-
tions. As far as the first aspect is concerned, an alterna-
tive renormalization of the free ionic plasma frequency
is undertaken, while an expression for the dielectric
screening function, going beyond the RPA approxima-
tion of Eq. �74� and accounting for local fields effects, is
proposed. As far as the Kohn anomaly is concerned, this
study suggests that the value of 2kF ��10 nm−1 in satu-
rated lithium-ammonia solutions� has to be compared
with Q�20 nm−1, which is actually the second peak of
S�Q�, related to the N-N periodicity, rather than with
the first peak �Qm�20 nm−1� related to the Li�NH3�4
periodicity. This might arise from the different x-ray and
neutrons cross sections: while in the first case the two
peaks have similar intensities, the neutron diffraction
strongly enhance the N-N peak. A later study has shown
how an unambiguous separation between 2kF and Qm
occurs in low-density solutions, although in this case the

FIG. 37. �Color online� Random-phase approximation at work: data taken from Table I and Bove et al. �2005� for pure elements
and from Giura et al. �2003� and Said et al. �2003� for alkali-ammonia solutions, with the BS values estimated through Eq. �75�. Full
circles: the measured sound velocity c is the maximum high-frequency value determined over the Q range probed by inelastic-
scattering techniques, i.e., includes the positive dispersion effect. Open circles: c is the adiabatic value. The subscript of Li and Na
indicates the concentrations in ammonia solutions. The Na group is relative to several different temperatures.
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kink observed in the dispersion curve is almost within
the error bars �Giura et al., 2003�. Further studies there-
fore seem to be necessary to draw a conclusive picture
about the presence of the Kohn anomaly in metallic flu-
ids.

The validity extent of the RPA approximation for the
determination of the sound velocity via the Bohm-
Staver expression �75� is depicted in Fig. 37, in which we
report the relative deviations of the Bohm-Staver calcu-
lated values �cRPA� from the experimental ones, for sys-
tems of different rs, ranging from pure metals to alkali-
ammonia solutions. In the latter case �rs�6� the Bohm-
Staver predictions underestimate more than 50% the
calculated values. The deviations, however, show a trend
which monotonically decreases towards low-rs elements
and finally get negative for rs values close to 2.

A final remark concerns the choice of the dynamical
variable to calculate the sound velocity when one is
looking at subtle effects as in the present case. First,
according to the hydrodynamic definition of sound ve-
locity in liquids, one should look at the maxima of the
current correlation spectra. While the difference with
the maxima of S�Q ,�� is usually negligible in crystals,
indeed, there can be a significant discrepancy in strongly
overdamped cases such as the one metallic solutions. In
this respect, the choice of the damped harmonic oscilla-

tor to describe S�Q ,�� implicitly overcame this problem,
as the characteristic frequency of this model coincides
indeed with the maxima of CL�Q ,��. Second, in all the
reported studies, the “phonon” velocity is extracted
through ad hoc models �damped harmonic oscillator, ex-
tended hydrodynamic model, etc.� looking only at the
genuine inelastic component. Again, in liquids, the full
CL�Q ,�� spectrum should be considered, as when
S�Q ,�� has a significant quasielastic contribution this
latter can affect the peak positions of CL�Q ,�� �see, for
instance, Fig. 27 for the aluminum case�.

Inelastic x-ray scattering, with lower energy resolution
�a few hundreds of meV� and in a broader energy range
�up to a few eV�, allows one to study electronic excita-
tions �plasmons�. In this case the plasma oscillation is
brought about by free electrons, while the background is
constituted by the ionic network. Some recent studies
�Burns et al., 1999; Burns, Giura, et al., 2001� point out a
decrease of the plasmon dispersion at low metal concen-
trations, which, in turn, is ascribed to the failure of the
RPA approximation �see Fig. 38�.

V. SUMMARY AND PERSPECTIVES

In this section we will try to summarize the scenario
arising from the measurements reported so far. In re-

FIG. 38. Sketch of the different dynamical regimes on decreasing the wavelength.
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spect to the collective properties, it seems useful to dis-
cuss the different dynamical regimes probed at different
wave vectors and frequencies. Although the two do-
mains are in principle independent �as testified, for in-
stance, by the two separate generalization of the classi-
cal hydrodynamics introduced in Sec. II.F�, the existence
of a dispersion relation ultimately allows one to think in
terms of wavelengths only. From our point of view,
though precise boundaries cannot be traced, one can
identify in liquid metals the following dynamical re-
gimes:

• The hydrodynamic, Q→0 limit, that, in liquid met-

als, basically means Q(0.1 nm−1. In this region
simple hydrodynamic treatment based on three mi-
croscopic dynamical variables �density, current, en-
ergy� provides an exhaustive description of the main
features. Although not accessible by neutron and
x-ray spectroscopic techniques, the hydrodynamic
predictions are in very good agreement with acoustic
measurements of sound velocity and attenuation
properties. Moreover, the strict analogy of long-
wave-length fluctuations in conductive and ordinary
liquids �accessible via light scattering� corroborates
the validity of the simple hydrodynamic theory. This
region is characterized by adiabatic sound propaga-
tion, and the whole dynamical features are ruled by
macroscopic transport parameters �viscosity, thermal
diffusivity, specific heats�. In this regime, other ap-
proaches tailored for conductive fluids such as
plasma oscillation theories provides alternative de-
scriptions, which turns out to be increasingly accu-
rate for low-rs systems.

• An �hypothetic� isothermal region, which should be
observable in the 0.2(Q(3-nm−1 momentum
range. Upon increasing the wave vector outside the
strict hydrodynamic limit, indeed, the lifetime of en-
tropy fluctuations becomes increasingly shorter ��
= ��DTQ2�−1�. Since the frequency of the correspond-
ing density fluctuation increases almost linearly ��
�cQ�, one should expect a transition at Q*�c /DT.
Given the typical thermal diffusivity values of liquid
metals this crossover should be located at a few frac-
tions of nm−1. Since with both INS and IXS one nor-

FIG. 39. �Color online� Generalized longitudinal viscosities for
a collection of liquid metals, extracted by the experimental
data throughout a memory function approach. The long-
wavelength limit, determined by ultrasonic measurements, is
also reported for K, Na, and Ga �bottom to top�.

FIG. 40. Sound dispersion in several kind of liquids. Alkali metals �Li �Scopigno, Balucani, Cunsolo, et al., 2000� and K �Monaco
et al., 2004�, dashed line is the isothermal sound velocity�; hydrogen bonding systems �water �Monaco et al., 1999� and hydrogen
fluoride �Angelini et al., 2002��; low- and high-frequency sound velocities are also indicated by the dotted lines; liquid neon
�Cunsolo et al., 2001�; adiabatic �circles and line� apparent �open triangles� and high-frequency �open diamonds� sound velocities;
liquid silica, molecular-dynamics simulations �Horbach et al., 2001�, in this case also the transverse branch is reported.
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mally accesses momentum transfers above 1 nm−1,
this region can be hardly explored, and no direct and
convincing indications for its existence are available
at present. Some old INS data on liquid lead �Faber,
1972� as well as a more recent experiment on liquid
nickel �Bermejo et al., 2000�, however, seem to sug-
gest an indication for such existence. The case of
nickel, in particular, is an interesting one and would
deserve new investigations since in this system the
specific-heat ratio is particularly high and therefore
the difference in sound velocities between an ordi-
nary adiabatic regime and an isothermal one would
be of the order of 40%. It is worthwhile to stress that
the prediction for the existence of an isothermal re-
gime poses on �i� a negligible Q dependence of the
thermodynamic quantities and �ii� the validity of a
one-component effective description in which the ef-
fective thermal diffusivity is well described by the
sum of the electronic and ionic contributions. Both
these points have been recently discussed in the
analysis of alkali metals and liquid aluminum IXS
spectra �Singh and Tankeshwar, 2003, 2004; Scopigno
and Ruocco, 2004�.

• A generalized hydrodynamic region, probed above
Q�3 nm−1, in which the frequency–wave-vector de-
pendence of the transport properties heavily affects
the sound mode. The upper limit of the validity of
this region is rather system dependent, normally
higher for alkali metals �say up to 0.7Qm�. The natu-
ral framework here is the memory function formal-
ism, which can be developed at different levels of
accuracy, ranging from the celebrated Lovesey’s
model �Lovesey, 1971� �accounting for a single aver-
age relaxation time for the second-order memory
function� up to more refined memory function mod-
els based on multiple relaxation phenomena which,
first introduced for Lennard-Jones systems
�Levesque et al., 1973�, have been more recently
adapted and tested against IXS investigations of liq-
uid metals �Scopigno et al., 2000a, 2000c; Scopigno,
Filipponi, et al., 2002; Monaco et al., 2004� and nu-
merical simulations of model undercooled and glassy
alkali metals �Scopigno, Ruocco, et al., 2002�.

In this respect, it is worthwhile to point out how the
high points of a memory function approach are not
solely in a better agreement with experimental data,
which, in general, heavily depends on the quality of the
experimental data and, of course, on the number of the
model parameters �Scopigno et al., 2000b�. In most
cases, indeed, simplified phenomenological models such
as the damped harmonic oscillator and a Lorentzian
function for the inelastic and quasielastic features, re-
spectively, provide satisfactory agreements.

On the contrary, the memory function framework al-
lows one to grasp an insight behind the mechanisms rul-
ing the relaxation dynamics, extracting relevant informa-
tion about quantities which are not directly related to
any spectral features, such as the Q dependencies of the
relaxation time�s� and of the longitudinal viscosity.

Following the prescriptions illustrated in Sec. II.F.2,
indeed, the longitudinal viscosity is related to the total
area under the viscous contribution to the memory func-
tion. In Fig. 39, for instance, we report the �generalized�
longitudinal viscosities extracted in this way for several
investigated systems. As can be seen, the low-Q extrapo-
lation of the experimental values compares well with in-
dependent acoustic determinations �when available�, but
also allows one to determine the Q generalization of this
important transport property, which can be directly esti-
mated only with numerical simulations approaches.

In this Q region, hard-sphere–based theories provide
alternative descriptions in terms of extended hydrody-
namic models �Kamgar-Parsi et al., 1987� but they still
miss a convincing explanation of one of the most impor-
tant points: the physical interpretation beyond the relax-
ation of the sound mode, which is now a firmly estab-
lished evidence supported by uncountable experimental
investigations.

This latter aspect, which usually emerges in terms of a
speed up of the sound velocity taking place in the
1–10-nm−1 region, is one of the most interesting aspects
which is still lacking an explanation. Broadly speaking, it
is always referred to as a shear relaxation, but the ulti-
mate nature of the involved physical processes still have
to be clarified.

Actually, mode coupling theory �Ernst and Dorfman,
1975� provides a description of the acoustic dispersion
curve in terms of even powers of Q �Ernst and Dorfman,
1975�, but its interpretation is restricted to monatomic
systems in the liquid phase, while the observed phenom-
enology seems to be a more general feature of the dis-
ordered systems.

Interestingly, indeed, a qualitatively similar phenom-
enon �see Fig. 40� has also been reported numerically in
fused silica �Horbach et al., 2001� and experimentally in
Lennard-Jones fluids �Cunsolo et al., 2001� and hydrogen
bonding systems �Monaco et al., 1999; Angelini et al.,
2002�. While in this latter case positive dispersion has
been shown to be an activated process, related to struc-
tural relaxation, a different scenario seems to character-
ize the other systems. Interestingly, indeed �see Fig. 41�,
the same behavior of the sound velocity also appears in
glasses in experimental IXS measurements in g-Se and
vitreous silica �Ruzicka et al., 2004; Scopigno et al.,
2004�, in numerical works on model glasses of Lennard-
Jones systems �Ruocco et al., 2000�, vitreous silica �Hor-
bach et al., 2001�, and alkali metals �Scopigno, Ruocco,
et al., 2002� and, finally, in theoretical calculations for a
hard-sphere glass �Götze and Mayr, 2000�. In the case of
alkali metals, in particular, it has been shown how an
increase of the sound velocity persists upon cooling well
below the glass transition, thus ruling out the possible
role of structural relaxation in this effect. The presence
of positive dispersion at THz frequencies in glasses,
quantitatively comparable to the one observed in liq-
uids, therefore challenges the interpretation of positive
dispersion in terms of a transition from a liquidlike to a
solidlike behavior, an effect which seems to be quantita-
tively negligible �with the remarkable exception of hy-
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drogen bonding systems�. Accepting a description of the
collective dynamics proceedings over two distinct vis-
cous relaxations therefore the ultimate mechanism re-
sponsible for the bending up of the dispersion curve
seems to be associated with the faster of the two ob-
served processes, which turns out to have a mild tem-
perature dependence. In this respect, the physical nature
of this faster process calls for a deeper understanding. It
is worthwhile to point out, however, that in Lennard-
Jones systems positive dispersion is recovered within a
harmonic description of the dynamic structure factor in
terms of eigenvalues and eigenvectors, a result which
relates the positive dispersion to the properties of the
dynamical matrix and, ultimately, to the topological dis-
order of the inherent equilibrium position, with the in-
teraction potentials comparable in glasses and crystals.

• A kinetic regime valid from around Qm up to a few
oscillations of the structure factor. Here the hard-
sphere description provides remarkably accurate
predictions, in terms of a quasielastic “extended heat
mode” whose linewidth is described in terms of the
Enskog’s diffusion coefficient and of an equivalent
hard-sphere diameter. The extent of the validity of
kinetic theory in this momentum range has been
widely tested �Cohen et al., 1984, 1987; de Schepper
et al., 1984; Kamgar-Parsi et al., 1987� in several hard-
sphere-like systems �like alkali metals and Lennard-
Jones fluids�, and it also has been applied in colloidal
systems. It would be interesting to challenge such a
theory in less simple liquid metals. Despite the suc-
cess of the hard-sphere model, there is still an ob-

scure point concerning the real origin of such an ex-
tended heat mode: while in the low-Q limit it tends
to the entropy fluctuation mode, indeed, at finite Q’s
it certainly involves mass diffusion processes. Look-
ing at things from the constant energy point of view,
umklapp modes resembling crystalline phonons in
Brillouin zones higher than the first seems to be still
poorly understood �Cocking and Egelstaff, 1965a;
Dorner et al., 1965; Randolph and Singwi, 1966;
Scopigno, D’Astuto, et al., 2001�.

• A high-Q region, probed as soon as the van Hove
distinct function vanishes. In this limit, both IXS and
INS experiments provide the same information
about the atomic motion over time scales shorter
than the interparticle collision time. An almost exact
description for this regime is available, which can
also account for quantum aspects such as recoil en-
ergy and quantum corrections to the spectral
moments.

The single-particle dynamics seems to be better un-
derstood if compared to the collective motion, at least
by a coarse grained point of view of a hydrodynamic
diffusive mode with finite Q corrections, evolving to-
wards a ballistic regime. This is probably due to the in-
trinsic difficulty of isolating a �wide enough� constant Q
coherent energy spectrum from an INS experiment.
Since the study of the strictly coherent spectrum became
possible only in the last decade, indeed, a lot of efforts
have been devoted in the past to the single-particle case.
Though all the approaches described in this review de-

FIG. 41. Sound velocities in several glassy systems. Hard-sphere glass, exact solution within MCT �Götze and Mayr, 2000�; metallic
glass obtained quenching a model system interacting via Price-Tosi pseudopotential �Scopigno, Ruoco, et al., 2002�, the crystalline
counterpart is also reported; Lennard-Jones glass obtained in a similar way �Ruocco et al., 2000�, reported with the low- and
high-frequency sound velocities; SiO2, MD as in Fig. 40 but in the glassy state �Horbach et al., 2001� and experimentally deter-
mined by means of IXS scattering �Ruzicka et al., 2004�. In both cases the transverse branch is also reported; glassy selenium
�Scopigno et al., 2004�, again the sound velocity exceeds the adiabatic value.
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scribe, on average, equally well the available experimen-
tal data, a memory function formalism paralleling the
one for the collective case could provide the route to
relate the single-particle motion and the collective dy-
namics in the microscopic regime.

Raising the level of detail of the description of the
single-particle dynamics, however, a major experimental
challenge seems to be the identification of the different
processes giving rise to the quasielastic incoherent scat-
tering. Recent INS results, indeed, suggest the presence
of two distinct physical mechanisms, active over differ-
ent time scales, underlying the diffusive motion �Bove et
al., 2002a, 2003; Badyal et al., 2003�. The combined pres-
ence of coherent and incoherent scattering, however,
makes such identification still unclear although, in prin-
ciple, the IXS signal might be used to subtract the co-
herent contribution from the INS spectra, thus extract-
ing the purely incoherent dynamics. In this respect, the
synergy of combined IXS and INS studies on the same
sample seems imperative to us and could help to shed
light on this point. The IXS signal indeed might be used
to subtract the coherent contribution from the INS spec-
tra, thus extracting the purely incoherent dynamics.
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