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Recent advances in condensed-matter theory have revealed that new and exotic phases of matter can
exist in spin models (or more precisely, local bosonic models) via a simple physical mechanism, known
as “string-net condensation.” These new phases of matter have the unusual property that their
collective excitations are gauge bosons and fermions. In some cases, the collective excitations can
behave just like the photons, electrons, gluons, and quarks in our vacuum. This suggests that photons,
electrons, and other elementary particles may have a unified origin—string-net condensation in our
vacuum. In addition, the string-net picture indicates how to make artificial photons, artificial electrons,

and artificial quarks and gluons in condensed-matter systems.
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I. INTRODUCTION

Throughout history, people have attempted to under-
stand the universe by dividing matter into smaller and
smaller pieces. This approach has proven extremely
fruitful: successively smaller distance scales have re-
vealed successively simpler and more fundamental struc-
tures. At the turn of the century, chemists discovered
that all matter was formed out of a few dozen different
kinds of particles—atoms. Later, it was realized that at-
oms themselves were composed out of even smaller
particles—electrons, protons, and neutrons. Today, the
most fundamental particles known are photons, elec-
trons, quarks, and a few other particles. These particles
are described by a field theory known as the U(1)
X SU(2) X SU(3) Standard Model (for a review, see
Cheng and Li, 1991).

It is natural to wonder—are photons, electrons, and
quarks truly elementary? Or are they composed out of
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even smaller and more fundamental objects [perhaps su-
perstrings (Green ef al., 1988)]? A great deal of research
has been devoted to answering these questions.

However, the questions themselves may be fundamen-
tally flawed. They are based on the implicit assumption
that we can understand the nature of particles by divid-
ing them into smaller pieces. But does this line of think-
ing necessarily make sense? There are many examples
from condensed-matter physics indicating that some-
times this line of thinking does not make sense.

Consider, for example, a crystal. We know that a
sound wave can propagate inside a crystal (see Fig. 1).
According to quantum theory, these waves behave like
particles called phonons. Phonons are no less particle-
like than photons. But no one attempts to gain a deeper
understanding of phonons by dividing them into smaller
pieces. This is because phonons—as sound waves—are
collective motions of the atoms that form the crystal.
When we examine phonons at short distances, we do not
find small pieces that make up a phonon. We simply see
the atoms in the crystal.
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FIG. 1. Sound waves in a crystal are particles called phonons,
according to quantum theory.
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This example suggests an alternate line of inquiry. Are
photons, electrons, and other elementary particles col-
lective modes of some deeper structure? If so, what is
this “deeper structure”?

Ultimately, these questions will have to be answered
by experiment. However, in this paper we would like to
address the plausibility of this condensed-matter model
of the universe on theoretical grounds.

The laws of physics seem to be composed out of five
fundamental ingredients:

(1) Identical particles.
(2) Gauge interactions.
(3) Fermi statistics.

(4) Chiral fermions.
(5) Gravity.

The question is whether one can find a “deeper struc-
ture” that gives rise to all five of these phenomena. In
addition to being consistent with our current under-
standing of the universe, such a structure would be quite
appealing from a theoretical point of view: it would
unify and explain the origin of these seemingly mysteri-
ous and disconnected phenomena.

The U(1) XSU(2) X SU(3) Standard Model fails to
provide such a complete story for even the first four
phenomena. Although it describes identical particles,
gauge interactions, Fermi statistics, and chiral fermions
in a single theory, each of these components are intro-
duced independently and by hand. For example, field
theory is introduced to explain identical particles, vector
gauge fields are introduced to describe gauge interac-
tions (Yang and Mills, 1954), and anticommuting fields
are introduced to explain Fermi statistics. One
wonders—where do these mysterious gauge symmetries
and anticommuting fields come from? Why does nature
choose such peculiar things as fermions and gauge
bosons to describe itself? We hope that the deeper struc-
ture that we are looking for can resolve these mysteries.

So far we do not know any structure that gives rise to,
and unifies, all five phenomena. In this paper, we will
describe a partial solution—a structure that naturally
gives rise to, and unifies, the first three phenomena [and
possibly also the fifth (Smolin, 2002)]. In the language of
condensed-matter physics, this structure has the unusual
property that its collective modes are gauge bosons
(such as photons) and fermions (such as electrons).

Il. LOCALITY PRINCIPLE

What kinds of “structures” should we look for in or-
der to understand the origin of gauge bosons and fermi-
ons? In this paper, we will consider a very general class
of structures. In fact, we will impose only one constraint
on the structures we consider: locality. We will require
that (a) the total Hilbert space is a product of small Hil-
bert spaces that describe local degrees of freedom, and
that (b) the Hamiltonian only involves local interactions.
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FIG. 2. The empty circles correspond to sites in the |0) state.
The solid circles correspond to sites in the |1) state. The states
before and after the exchange are naturally the same, and
hence the |1) states represent bosonic particles.

For the sake of concreteness, we will also restrict our
attention to lattice models.

These two requirements naturally lead us to a large
class of structures that we call “local bosonic models” or
(generalized) “spin models.” These are lattice models
where each lattice site can be in a few states |a) labeled
by a=0,1,2,...,N.

The question is—can we find a local bosonic model
whose collective modes are fermions and gauge bosons?

Ill. FROM NEW PHASES OF MATTER TO A UNIFICATION
OF GAUGE INTERACTIONS AND FERMI STATISTICS

At first, it appears that the local bosonic models do
not work. Consider, for example, a local bosonic model
whose ground state has a=0 for every lattice site. We
think of this ground state as the vacuum. A particle in
the vacuum corresponds to a state with a # 0 for one site,
and a=0 for all other sites (see Fig. 2). One can easily
check that these particles are identical bosons. They are
a particular kind of boson—a scalar boson. They are
very different from gauge bosons and they are definitely
not fermions. Thus local bosonic models with this par-
ticularly simple ground state do not have the appropri-
ate collective modes.

But we should not give up just yet. We know that the
properties of excitations depend on the properties of the
ground state. If we change the ground state qualitatively,
we may obtain a new phase of matter with new excita-
tions. These new excitations may be gauge bosons or
fermions.

For many years, this was thought to be impossible.
This conviction was largely based on Landau’s
symmetry-breaking theory—a general framework for
describing phases of matter (Landau, 1937). According
to Landau theory, phases of matter are characterized by
the symmetries of their ground states. The ground-state
symmetry directly determines the properties of the col-
lective excitations (Landau and Lifschitz, 1958). Using
Landau theory, one can show that the collective modes
can be very different for different ground states, but that
they are always scalar bosons. There is no sign of gauge
bosons or fermions.

After the discovery of the fractional quantum Hall
effect (Tsui et al., 1982; Laughlin, 1983), it became clear
that Landau theory could not describe all possible
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FIG. 3. A typical string-net configuration in a string-net con-
densed state. The fluctuations of the strings correspond to
gauge bosons (such as photons) and the ends of strings corre-
spond to fermions (such as electrons).

phases of matter. Fractional quantum Hall (FQH) states
contain a new kind of order—topological order (Wen,
1995, 2004)—that is, beyond Landau theory. The collec-
tive excitations of the FQH states are not scalar bosons.
Instead, they have fractional statistics (Arovas et al.,
1984), statistics somewhere in between Bose and Fermi
statistics (Leinaas and Myrheim, 1977; Wilczek, 1982).

So there is still hope. Perhaps gauge bosons and fer-
minons can emerge from new phases of matter—phases
of matter that are beyond Landau theory. This is indeed
the case. Recently, it was realized that a new class of
phases of matter—three-dimensional (3D) string-net
condensed phases (Levin and Wen, 2003, 2005b; Wen,
2003b)—have the desired property. String-net con-
densed states are liquids of fluctuating networks of
strings (see Fig. 3). In some sense, they are analogous to
Bose condensed states, except that the condensate is
formed from extended objects rather than particles.1
However, the collective excitations above string-net con-
densed states are not scalar bosons, but rather gauge
bosons and fermions! Roughly speaking, the vibrations
of the strings give rise to gauge bosons, while the ends of
the strings correspond to fermions (see Sec. VI).

This result may change our conception of gauge
bosons and fermions. If we believe that the vacuum is
some kind of string-net condensed state, then gauge
bosons and fermions are just different sides of the same
coin (Levin and Wen, 2003). In other words, string-net
condensation provides a way to unify gauge bosons
(such as photons) and fermions (such as electrons). It
explains what gauge bosons and fermions are, where
they come from, and why they exist. One application of
this deeper understanding is the construction of 3D spin
systems that contain both artificial photons and artificial
electrons as low-energy collective excitations (see Sec.
VIL.B) (Wen, 2002, 2003b).

'While the terminology is similar, the reader should not con-
fuse the theory of string-net condensation with string theory.
The two theories are quite different. One important distinction
is that the strings in string theory are microscopic—with a typi-
cal length on the order of the Planck length—while the ex-
tended objects in string-net condensates are macroscopic—
with a typical length on the order of the system size.
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FIG. 4. (Color online) The empty circles are sites in the |0)
state. The filled circles are sites in some |a#0) state. (a) A
string formed by a loop of sites with state a. (b) A string-net
formed by a type-a string, a type-b string, and a type-c string.
The string-net has two branching points where the three types
of strings join.

IV. STRING-NET CONDENSATION

What is string-net condensation? Let us first describe
string-nets and string-net models. A string-net is a net-
work of strings. The strings, which form the edges or
links of the network, can come in different “types” and
can carry a sense of orientation. Thus string-nets can be
thought of as networks or graphs with oriented, labeled
edges.

String-net models are a special class of local bosonic
models whose low-energy physics is described by fluctu-
ating string-nets. To understand how this works, con-
sider a general local bosonic model with the states on
site i labeled by a;=0,1,...,N. The states of this model
can be thought of as configurations of string-nets in
space. We regard the state with all a;=0 as the no-string
state. We think of the state with a loop of sites in the
la #0) state as containing a closed “type-a” string [see
Fig. 4(a)]. More complicated states will correspond to
networks of strings as in Fig. 4(b). The orientations of
the corresponding strings are determined by some speci-
fied orientation convention, where one assigns some (ar-
bitrary) orientation to each site i.

For most local bosonic models, this string-net picture
is misleading. Each local bosonic degree of freedom
fluctuates independently and the physics is better de-
scribed by individual spins than by extended objects.
However, for one class of local bosonic models, the
string-net picture is appropriate. These are local bosonic
models with the property that when strings end or
change string type in empty space, the system incurs a
finite energetic penalty. In these models, energetic con-
straints force the local bosonic degrees of freedom on
the lattice sites to organize into effective extended ob-
jects. The low-energy physics is then described by the
fluctuations of these effective string-nets. String-net
models are local bosonic models with this additional
property.

To specify a particular string-net model, one needs to
provide several pieces of information that characterize
the structure of the effective string-nets. First, one needs
to give the number of string types N. Second, one needs
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FIG. 5. a and a” label strings with opposite orientations.

to specify the branching rules—that is, what triplets of
string types (abc) can meet at a point. (Here for simplic-
ity, we only consider the simplest type of branching—
where three strings join at a point.) The branching rules
are specified by listing the “legal” branching triplets
{(abc),(def),...}. For example, if (abc) is legal then the
string-net configuration shown in Fig. 4(b) is allowed.
Finally, one needs to describe the string orientations: for
every string type a, one needs to specify another string
type a” that corresponds to a string with the opposite
orientation (see Fig. 5). A string loses its sense of orien-
tation if its string type satisfies a=a’".

Given a string-net model with some string types,
branching rules, and string orientations, we can imagine
writing down a Hamiltonian to describe the dynamics of
the string-nets. A typical string-net Hamiltonian H is a
sum of potential and kinetic-energy pieces and a con-
straint term:

H=UHy+tH,+V H,. (1)

The constraint term H, enforces the branching rules by
making “illegal” branching points cost a huge energy V.
Because of this term, the low-energy states contain only
“legal” branchings. The kinetic energy H, gives dynam-
ics to these low-energy string-net states while the poten-
tial energy H is typically some kind of string tension.
When U>t, the string tension dominates and we expect
the ground state to be the no-string state with a few
small string-nets. On the other hand, when > U, the
kinetic energy dominates, and we expect the ground
state to consist of many fluctuating string-nets (see Fig.
6). Large string-nets with a typical length on the order of
the system size fill all of space. We expect that there is a
quantum phase transition between the two states at
some ¢/ U on the order of unity. Because of the analogy
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FIG. 6. A schematic phase diagram for the generic string-net
Hamiltonian (1). When ¢/ U is small the system is in the normal
phase. The ground state consists of a few small string-nets.
When ¢/ U is large the string-nets condense and large fluctuat-
ing string-nets fill all of space. We expect a phase transition
between the two states at some t/U of order unity. We have
omitted string labels and orientations for the sake of clarity.
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with particle condensation, we say that the large ¢, highly
fluctuating string-net phase is “string-net condensed.”

V. WAVE FUNCTIONS FOR STRING-NET
CONDENSATES

String-net condensed phases are new phases of matter
with many interesting properties (Wen, 2003a; Freedman
et al., 2004; Levin and Wen, 2005b). But how can we
describe them quantitatively? One approach is to write
down a ground-state string-net wave function ® (string-
nets). However, string-net condensed wave functions are
usually too complicated to write down explicitly. There-
fore we will use a more indirect approach: we will de-
scribe a series of local constraint equations on string-net
wave functions which have a unique solution ®. In this
way, we can construct potentially complicated string-net
wave functions without writing them down explicitly.

Before we state the constraint equations, we note that
we can project a three-dimensional string-net configura-
tion onto a two-dimensional plane, resulting in a two-
dimensional graph with branching and crossings (see
Fig. 3). Thus a wave function of three-dimensional
string-nets can also be viewed as a wave function of the
projected two-dimensional graphs.

The local constraints relate the amplitudes of string-
net configurations that only differ by small local trans-
formations. To write down a set of these local constraint
equations or local rules, one first chooses a real tensor d;
and two complex tensors ,z,n,wf-; where the indices
i,j,k,l,m,n run over the different string types
0,1,...,N. The local rules are then given by

ol

where the shaded gray areas represent other parts of
string-nets that are not changed. Here, the type-0 string
is interpreted as the no-string state. We would like to
mention that we have drawn the first local rule some-
what schematically. The more precise statement of this
rule is that any two string-net configurations that can be
continuously deformed into each other have the same
amplitude. In other words, the string-net wave function
® only depends on the topologies of the projected
graphs; it only depends on how the strings are connected
and crossed (see Fig. 7).
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FIG. 7. (a) Three strings with different connections. (b) Two
strings with different crossings. The numbers of the crossings
are 0 and 2, respectively.

By applying the local rules in Eq. (2) multiple times,
one can compute the amplitude of any string-net con-
figuration in terms of the amplitude of the no-string con-
figuration. Thus Eq. (2) determines the string-net wave
function ®.”

However, an arbitrary choice of (d;, F/* f;) does not
lead to a well-defined ®. This is because two string-net
configurations may be related by more than one se-
quence of local rules. We need to choose the
(d;,F} lmn’ f;) carefully so that different sequences of lo-
cal rules produce the same results. That is, we need to
choose (d;, F} ,mn, 5‘) so that the rules are self-consistent.
Finding these special tensors is the subject of tensor cat-
egory theory (Turaev, 1994). It has been shown that only
those that satisfy (Levin and Wen, 2005b)

F**— ik
i0 VtV] ijk>

km” yim _ pAmj “m’n
kln ij Flkn* - Flk*nl >
V]'Vl
N
lq ip ]s n ]lp iq
E F;;) nF’mns ki = q “ler® F:nls ’
n=o

mpsl'i
]?F;qm Si ksm™>

N
1V Vs /'i il'n
= E FS *(J)Yij
Vi n=0

2 WP 3)

will result in self-consistent rules and a well-defined
string-net wave function ®. Such a wave function de-
scribes a string-net condensed state. Here, we have in-

’For example, we can compute the amplitude

® () -y Fit e % =FH0 @

= Fiinydid,

by applying the fourth rule, the third rule, and the second rule
in sequence.
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troduced some new notation: v; is defined by v;=v
=+vd; while Gk 1s given by

5 if (ijk) is legal,
k=10 otherwise.

There is a one-to-one correspondence between 3D
string-net condensed phases and solutions of Eq. (3). It
is interesting to compare this with a more familiar clas-
sification scheme: the classification of crystals. In a crys-
tal, atoms organize themselves into a very regular
pattern—a lattice. Since different lattice structures are
distinguished by their symmetries, we can use group
theory to classify all of the 230 crystals in three dimen-
sions. In much the same way, string-net condensed states
are highly structured. The different possible structures
are described by solutions to Eq. (3). Tensor category
theory provides a classification of the solutions of Eq.
(3), which leads to a classification of string-net conden-
sates. Thus tensor category theory is the underlying
mathematical framework for understanding string-net
condensed phases, just as group theory is for symmetry-
breaking phases.

VI. PROPERTIES OF COLLECTIVE EXCITATIONS ABOVE
STRING-NET CONDENSED STATES

Both crystals and string-net condensed states contain
highly organized patterns. Fluctuations of these patterns
lead to collective excitations. We know that the fluctua-
tions of the lattice pattern are phonons. But what are the
fluctuations of the pattern of string-net condensation? It
turns out that the collective excitations above string-net
condensed states are gauge bosons (Kogut and Susskind,
1975; Banks et al., 1977; Foerster, 1979; Foerster et al.,
1980; Sakita, 1980) and fermions (Levin and Wen, 2003).
The gauge bosons correspond to vibrations of the string-
nets while the fermions correspond to the ends of
strings.

Physically, the vibrating-string picture of gauge bosons
makes a lot of sense. We know that atoms in a crystal
can vibrate in three directions and that this leads to
three phonon modes. In contrast, strings can only vi-
brate in two transverse directions (see Fig. 8). So string
vibrations can only produce excitations with two modes.
This explains why gauge bosons (such as photons) have
only two transverse polarizations.

There are many different gauge theories, each associ-
ated with a different gauge group and a different kind of
gauge boson. [For example, the gauge group for electro-
magnetism is U(1).] Hence it is natural to wonder—what
is the gauge group associated with each string-net con-
densate? It turns out that the gauge group is determined
by the same data (d;, F} fj) that characterizes the con-
densate.

Given a gauge group G, the corresponding string
types, branching rules, and (d,,Flmn,w ) are determined
as follows. The number of string types N+1 is given by
the number of irreducible representations of G; each
string type i corresponds to a representation. The

lmn ’
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FIG. 8. (Color online) (a) A transverse motion of a string re-
sults in a new state and leads to a collective excitation. (b) A
motion along the string does not result in any new states. Such
a motion does not lead to any collective excitations.

branching rules are the Clebsch-Gordan rules for G; that
is, (abc) is a “legal” branching if and only if the tensor
product of the corresponding representations a,b,c con-
tains the trivial representation. The d; are the dimen-
sions of the irreducible representations i and the tensor
FI* is the 6j symbol of the group G. Finally, the tensor
wf»; is given by wf»j:—vk/ vvj if i=j and the invariant ten-
sor in the tensor product i®i® k" is antisymmetric, and
wf-;:vk/ vv; otherwise. For any group G, this construc-
tion provides a solution (di,Ff{L‘n,wf-;) to Eq. (3). There-
fore string-net condensed states can generate gauge
bosons with any gauge group.

The second type of excitation of string-net condensed
states is point defects in the condensate. These can be
created by adding an open string to the condensate: new
defects are formed at the ends of the string.

These defects behave like independent particles even
though they are the end points of open strings. This is
because the string connecting the two ends blends in
with the condensed string already in the ground state
and hence is unobservable (see Fig. 9). Only the end
points of the string stand out and are observable. Thus
the ends of strings behave like pointlike objects and can
be treated as particles.

It turns out that the string end points interact with the
string vibrations just like charges interact with gauge
bosons. Thus the end points of open strings are the
charges of the gauge theory. For example, if the vibra-
tions of the strings behave like photons, then the end
points of the strings behave like electric charges.

For some string-net condensates the ends are bosons
while for others the ends are fermions. What determines
the statistics of the charges? It turns out that the statis-
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FIG. 9. (Color online) (a) An open string with two ends. (b)
The same open string is unobservable when placed in a back-
ground of a string-net condensed state. Thus the ends of open
strings behave like independent particles.

tics are also determined by the (d,-,F“l",'ﬁn,wf;) associated

with the condensate. To see this, we note that
2 ()

is the amplitude to create two particle-hole pairs, then
exchange the particles, and then annihilate the particle-
hole pairs. So the phase of the exchange is the phase of

2 (),

which turns out to be ¢/’=w,d;. Thus the end of a type-
i string is a fermion if w?*,-dF—l and a boson if wl.o*l.d,»
=1. We note that there is no way to create a single end
of a string all by itself. Thus the string-net picture of
fermions explains why we cannot create a single fer-
mion.

VIl. SIMPLE EXAMPLES OF STRING-NET CONDENSED
STATES

A. Z, gauge theory

The simplest string-net model contains only one type
of string (N=1), and has no branching. In this case, one
finds that Eq. (3) has two solutions. Each solution corre-
sponds to a set of self-consistent local rules. The two sets
of local rules, labeled by 7= =1, are given by

2(8c)-c(8), +(®&)-c(W),

¢(x):¢(x)=n@(><)‘ (4)

The local rules are so simple that we can calculate the
corresponding string-net wave function explicitly. We
find ®(X)=7*c, where X, is the number of crossings in
the string-net configuration X [see Fig. 7(b)]. The two
string-net wave functions correspond to two different
string-net condensed phases. In the z=+1 phase, the
string fluctuations above the condensate are described
by a Z, gauge theory. The ends of the strings are bosonic
Z, gauge charges. In the »=-1 phase, the string fluctua-
tions are still described by a Z, gauge theory, but the
ends of the strings are fermions.
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FIG. 10. The branching rule a+b+c=0.

B. U(1) gauge theory with fermions

To construct a string-net condensate with photonlike
and electronlike excitations, we need a string-net model
with oriented stings labeled by integers a=0,+1,+2,....
We need the following branching rules: (abc) is legal if
a+b+c=0 (see Fig. 10). These branching rules have a
simple physical interpretation if we view the strings as
electric flux lines and the labels @ as measuring the
amount of electric flux flowing through the string. The
branching rule a+b+c=0 is then simply a statement of
flux conservation (e.g., Gauss’s law).

One finds that Eq. (3) has two solutions. One of these
solutions can be represented by the following local rules:

<1>< >ﬁ’]—f< >=<I>< ijljj )
18-
- -vye (740

The local rules lead to the string-net wave function
®(X)=(-1)%, where X,, is the number of crossings be-
tween strings labeled by odd integers, in the string-net
configuration X.

The collective excitations in the above string-net con-
densed phase are U(1) gauge bosons that behave in ev-
ery way like the photons in our vacuum. We call these
excitations “artificial photons.” The ends of type-1
strings behave like fermions with unit charge. They in-
teract with artificial photons in the same way that elec-
trons interact with photons. Therefore we call the ends
of type-1 strings “artificial electrons.” More generally,
the ends of type-i strings behave like bound states of i
artificial electrons.

VIIl. ARTIFICIAL PHOTONS AND ARTIFICIAL ELECTRONS

We have seen that, for any solution (di,FfZ‘n,w;k) of
Eq. (3), we can construct a corresponding string-net con-
densed state. The properties of collective excitations of
this state are determined by the data (d,»,FZﬁn,w;k). Now
the question is, can we realize such a string-net con-
densed state in a condensed-matter system? The answer
is yes, at least theoretically. It was shown recently that
for every solution (di,ﬂﬁi‘n,wjk) of Eq. (3), we can con-
struct an exactly soluble local bosonic model such that
the ground state of the model is the corresponding
string-net condensed state (Levin and Wen, 2005b). The
collective excitations in such a model are the gauge

bosons and fermions discussed above. So in principle,
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we can construct condensed-matter systems that can
generate gauge bosons with arbitrary gauge groups and
fermions with arbitrary gauge charges.

However, these exactly soluble bosonic models are
usually complicated and hard to realize in real materials.
On the other hand, if we only want to make artificial
photons, then there is a simple spin-S model on the

(three-dimensional) pyrochlore lattice.> The Hamil-
tonian is given by
H=12 (S)*+ 1,2 SiSi+1, 2 Sisy, (5)
i (&) (§).a=x,y

where (ij) are nearest neighbors. It turns out that the
above model exhibits string-net condensation for integer
S and J;>|P, 173|>|J,-J,| (Wen, 2003a). In this limit,
the model contains gapless artificial photons as its low-
energy excitations. The ground state—a string-net con-
densed state—represents a new state of matter that can-
not be described by Landau’s symmetry-breaking theory.
A similar model with spin S=1/2 may also contain arti-
ficial photons (Hermele et al., 2004).

To understand this result and its generalizations to
other lattices, it is useful to consider the low-energy be-
havior of Eq. (5). In the limit of large J; = J,, the above
model has a low-energy sector consisting of states satis-
fying S5+ 85+ 85+55=0 for all tetrahedra 7 in the pyro-
chlore lattice. Restricting to this subspace—which can
be thought of as the string-net sector—we find that the
low-energy effective Hamiltonian is given by

Hop=g2 (B, + He) + &3 (557,
p 1]

B, = 815,555,55S;. (6)

Here the sum runs over the hexagonal plaquettes p of
the pyrochlore lattice, and 1,..., 6 label the sites of the
hexagon p. The two coupling constants are given by &/
=J,—J, and g=3J3/2J3.

According to the string picture, the &/ term corre-
sponds to a string tension term, while the g term corre-
sponds to a string kinetic energy term. When |[g|>|d/],
the string fluctuations overwhelm the string tension, and
the string-nets condense. The result is a new state of
matter with gapless artificial photons as its low-energy
excitations.

With this understanding, one can easily generalize this
result to other lattices. A particularly simple example is
a cubic lattice model with spins on the links (Levin and
Wen, 2005a). The Hamiltonian is given by

H=VY Q}+g¢> (B,+Hc)+d> (597,
1 p i

The pyrochlore lattice is a three-dimensional network of
corner-sharing tetrahedra. One way to obtain the pyrochlore
lattice is to place lattice sites at the midpoints of the bonds of
the diamond lattice.
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FIG. 11. (Color online) A picture of the cubic lattice model (7)
with artificial photons. The term Q,z(—l)IEIegs of 157 acts on
the six “legs” of I—that is, the six spins adjacent to I, drawn
above as filled dots. The term B,=S575,53S; acts on the four
spins, labeled by 1,2,3,4, along the boundary of the plaquette p.

B,=5{8,858;, Oi=(-D! X 85, 7)

legs of 1

where I=(1,,I,,1,) labels the vertices, i labels the links
and p labels the plaquettes of the cubic lattice (see Fig.
11). Also, (-1)!=(-1)L+h1z,

As in the previous case, the model (7) has a low-
energy sector consisting of string-net states (in the limit
of large V). When |g|>|8/|, the string-nets condense,
giving rise to a phase with gapless artificial photons as its
low-energy excitations.

In the above two models, the electric charges are
bosonic. However, one can obtain models with fermionic
electric charges (e.g., artificial electrons) by modifying
these Hamiltonians in a simple way: one simply multi-
plies the ring exchange term B, by a phase factor that
depends on the spins adjacent to the plaquette p (Levin
and Wen, 2005a). In the cubic lattice model (7), this fac-

tor is of the form (~1)55+5, where Ss, S, are two of the 16
spins adjacent to p. The modified Hamiltonian is thus

H=V2 0j+g> (B,+H.c)+ &2 (S,
1 P i

B,=S518;858;(- 1%, Qp=(-1D X S (8)
legs of 1

The two spins Ss,S6 associated with each plaquette p are
specified as follows: first, one projects the cubic lattice
onto the plane. Then one examines the 16 spins adjacent
to each plaquette p. Two of these spins will be located
on links that “cross” the boundary of the plaquette
p—in the sense that they cross a closed curve drawn just
inside but along the boundary of p. The spins Ss5,S¢ are
precisely the two spins located on these “crossed” links
(see Fig. 12).

The ground state of Eq. (8) exhibits a different type of
string-net condensation from the previous two models.
While string fluctuations still correspond to U(1) gauge
bosons (e.g., artificial photons), the ends of strings now
correspond to charged fermions (e.g., artificial elec-
trons).
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FIG. 12. (Color online) A picture of the modified cubic lattice
model (8) with artificial photons and artificial electrons. The
term Ep:SngSgSZ(—l)Sg*Sé acts on the four spins, labeled by
1,2,3,4, along the boundary of the plaquette p, and the two
spins, labeled by 5,6 on the crossed links adjacent to p. The
crossed links are defined by projecting the cubic lattice onto
the plane and drawing a small closed curve just inside but
along the boundary of each plaquette p. The edges adjacent to
p that cross this closed curve are known as “crossed” links.

IX. ARE WE LIVING IN A NOODLE SOUP?

We have seen that string-net condensed states natu-
rally give rise to gauge bosons (such as photons) and
fermions (such as electrons). Thus the existence of pho-
tons and electrons is no longer mysterious if we assume
that our vacuum is a string-net condensate. Photons are
vibrations of condensed strings, while electrons are the
ends of the strings.

But is our vacuum really a string-net condensed state?
Photons and electrons are just two of the elementary
particles in nature. So the real question is—can string-
net theory explain the other elementary particles? The
answer is yes and no. String-net condensation naturally
explains three of the mysteries of nature discussed in the
Introduction—identical particles, gauge interactions,
and Fermi statistics. But so far we do not know how to
explain the fourth and the fifth mysteries—chiral fermi-
ons and gravity. In terms of elementary particles, we can
construct a string-condensed local bosonic model that
produces U(1) gauge bosons (photons), SU(3) gauge
bosons (gluons), leptons (which includes electrons), and
quarks (Wen, 2003b) but we do not know how to pro-
duce the neutrinos, SU(2) gauge bosons, or gravitons.

The problem with the neutrinos and the SU(2) gauge
bosons is the famous chiral-fermion problem (Liischer,
2001). Neutrinos are chiral fermions and the SU(2)
gauge bosons couple chirally to other fermions. At the
moment, we do not know how to obtain chiral fermions
and chiral gauge theories from any local lattice model,
much less a local bosonic model.

Gravity is also a formidable problem. To obtain gen-
eral relativity from a local bosonic model, one must de-
velop a quantum theory of gravity, a notoriously difficult
task. However, there is one possible approach: loop
quantum gravity (Smolin, 2002). Remarkably, it appears
that the theory of loop quantum gravity can be reformu-
lated in terms of a particular kind of string-net, where
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the strings are labeled by positive integers.* This means
that, in addition to gauge interactions and Fermi statis-
tics, string-net condensation in a spin model may also
give rise to gravity!

X. EMERGENCE VS REDUCTIONISM

In this paper, we propose local bosonic models as a
possible origin of elementary particles. But local bosonic
models are far from unique. Should we be worried about
being overwhelmed with possibilities? If one takes a re-
ductionist point of view, this is indeed a serious concern.
The string-net picture does not tell us how to derive a
unique local bosonic model that describes our universe,
and the models it does suggest are neither simple nor
beautiful.

However, according to the point of view of emergence
(Anderson, 1972)—the point of view we take in this
paper—this is not an issue. We are not interested in the
details of the particular model that produces the ob-
served elementary particles. We expect that these details
are both complicated and irrelevant to the low-energy
emergent physics we observe around us. Instead, we are
interested in the general mechanism that leads to these
particles. In this paper we have shown that string-net
condensation may be one such mechanism. Photons and
electrons will emerge if the local bosonic models are in a
particular string-net condensed phase, irrespective of
microscopic details.

On theoretical grounds, string-net condensation ap-
pears to be a promising approach to understanding our
universe. Ultimately, however, the validity of the string-
net picture, or more generally the condensed-matter pic-
ture of the universe, will be decided by experiment. As
we probe nature at shorter and shorter distance scales,
we will either find increasing simplicity, as predicted by
the reductionist particle physics paradigm, or increasing
complexity, as suggested by the condensed-matter point
of view. We will either establish that photons and elec-

4String-nets with positive integer labeling were first intro-
duced by Penrose (Penrose, 1971), and are known as “spin
networks” in the loop quantum gravity community. More re-
cently, researchers in this field considered the generalization to
arbitrary labelings (Kauffman and Lins, 1994; Turaev, 1994).
These generalized spin networks have the same mathematical
structure as string-nets. However, we would like to point out
that the physical meaning of spin networks is fundamentally
different from that of string-nets. Spin networks are the basic
building blocks of loop quantum gravity models. In contrast,
string-nets describe the pattern of quantum entanglement in
the ground states of certain spin models. In short, spin net-
works are components of a model while string-nets describe a
type of order. The main issue in this paper is to find a kind of
ordering in spin models that leads to emergent photons and
electrons. We find that “particle” condensation does not work
but “string” condensation does work. This is why we introduce
the term “string-net”: to stress the stringy character of the or-
dering.
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trons are elementary particles, or we will discover that
they are emergent phenomena—collective excitations of
some deeper structure that we mistake for empty space.
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