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Feedback for physicists: A tutorial essay on control
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Feedback and control theory are important ideas that should form part of the education of a physicist
but rarely do. This tutorial essay aims to give enough of the formal elements of control theory to
satisfy the experimentalist designing or running a typical physics experiment and enough to satisfy the
theorist wishing to understand its broader intellectual context. The level is generally simple, although
more advanced methods are also introduced. Several types of applications are discussed, as the
practical uses of feedback extend far beyond the simple regulation problems where it is most often
employed. Sketches are then provided of some of the broader implications and applications of control
theory, especially in biology, which are topics of active research.
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I. INTRODUCTION

Feedback and its big brother, control theory, are such
important concepts that it is odd that they usually find
no formal place in the education of physicists. On the
practical side, experimentalists often need to use feed-
back. Almost any experiment is subject to the vagaries
of environmental perturbations. Usually, one wants to
vary a parameter of interest while holding all others con-
stant. How to do this properly is the subject of control
theory. More fundamentally, feedback is one of the great
ideas developed (mostly) in the last century,1 with par-

"Feedback mechanisms regulating liquid level were described
over 2000 years ago, while steam-engine “governors” date
back to the 18th century. [An influential theoretical study of
governors was given by Maxwell (1868).] However, realization
of the broader implications of feedback concepts, as well as
their deeper analysis and widespread application, date to the
20th century. Chapter 1 of Franklin et al. (2002) gives a brief
historical review of the development of control theory.
In a more detailed account, Mayr (1970) describes a number
of early feedback devices, from classical examples (Ktesibios
and Hero, both of Alexandria) to a scattering of medieval
Arab accounts. Curiously, the modern rediscovery of feedback
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ticularly deep consequences for biological systems, and
all physicists should have some understanding of such a
basic concept. Indeed, further progress in areas of cur-
rent interest such as systems biology is likely to rely on
concepts from control theory.

This article is a tutorial essay on feedback and control
theory. It is a tutorial in that I give enough detail about
basic methods to meet most of the needs of experimen-
talists wishing to use feedback in their experiments. It is
an essay in that, at the same time, I hope to convince the
reader that control theory is useful not only for the en-
gineering aspects of experiments but also for the con-
ceptual development of physics. Indeed, we shall see
that feedback and control theory have recently found
applications in areas as diverse as chaos and nonlinear
dynamics, statistical mechanics, optics, quantum com-
puting, and biological physics. This essay supplies the
background in control theory necessary to appreciate
many of these developments.

The article is written for physics graduate students
and interested professional physicists, although most of
it should also be understandable to undergraduate stu-
dents. Beyond the overall importance of the topic, this
article is motivated by a lack of adequate alternatives.
The obvious places to learn about control theory—
introductory engineering textbooks (Dutton et al., 1997,
Franklin et al., 1998, 2002; Goodwin et al., 2001)—are
not very satisfactory places for a physicist to start. They
are long—S800 pages is typical—with the relevant infor-
mation often scattered in different sections. Their ex-
amples are understandably geared more to the engineer
than to the physicist. They often cloak concepts familiar
to the physicist in unfamiliar language and notation.
And they do not make connections to similar concepts
that physicists will have likely encountered in standard
courses. The main alternative, more mathematical texts
[e.g., in order of increasing sophistication, the books by
Ozbay (2000), Morris (2001), Doyle et al. (1992), and
Sontag (1998)], are terse but assume the reader already
has an intuitive understanding of the subject.

At the other end of the intellectual spectrum, the first
real exposure of many experimentalists to control theory

control took place entirely in England, at the beginning of the
industrial revolution of the 18th century. Mayr speculates that
the concept of feedback arose there and not elsewhere because
it fit in more naturally with the prevailing empiricist philoso-
phy of England and Scotland (e.g., Hume and Locke). On the
Continent, the rationalist philosophy of Descartes and Leibniz
postulated preconceived goals that were to be determined and
achieved via a priori planning and not by comparison with
experience. While Mayr’s thesis might at first glance seem far-
fetched, the philosophical split between empiricism and ratio-
nalism was in fact reflected in various social institutions, such
as government (absolute vs limited monarchy), law (Napole-
onic code vs case law), and economics (mercantilism vs liber-
alism). Engineering (feedback control vs top-down design) is
perhaps another such case. Mayr devoted much of his subse-
quent career to developing this thesis (Bennett, 2002). Else-
where, Bennett (1996) gives a more detailed history of control
theory and practice in the 20th century.
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comes when they are faced with having to use or modify
a PID (proportional-integral-derivative) control loop
that regulates some experimental quantity, such as tem-
perature or pressure. Lacking the time to delve more
deeply into the subject, they turn to the semiqualitative
discussions found in the appendixes of manuals for com-
mercial regulators and the like. While these can be
enough to get by, they rarely give optimal performance
and certainly do not give a full idea of the range of
possible approaches to a particular experimental prob-
lem. Naturally, they also do not give an appreciation for
the broader uses of control theory.

Thirty years ago, E. M. Forgan wrote an excellent in-
troduction to control theory for experimental physicists,
“On the use of temperature controllers in cryogenics”
(Forgan, 1974), which, despite its seemingly narrow title,
addresses many of the needs of the experimentalist dis-
cussed above. However, it predates the widespread use
of digital control and time-domain methods, as well as
important advances in control theory that have taken
place over the past three decades. In one sense, this es-
say is an updated, slightly more accessible version of
Forgan’s article, but the strategies for control and the
range of applications that are relevant to the physicist
are much broader than what is implied in that earlier
work. I have tried to give some feeling for this breadth,
presenting simple ideas and simple cases in some detail
while sketching generalizations and advanced topics
more briefly.

The plan of this essay, then, is as follows: In Sec. 11, we
review some elementary features of dynamical systems
at the level of an intermediate undergraduate mechanics
course. In Sec. I, we introduce the simplest tools of
control theory, feedback and feedforward. As case stud-
ies, we discuss how adding a control loop can increase
the usefulness of a Michelson interferometer as a dis-
placement sensor and how feedback plays an essential
role in modern analog electronic circuits. In Sec. IV, we
discuss the relationship between feedback and stability,
focusing on how time delays generically arise and can
limit the amount of feedback gain that may be applied.
In Sec. V, we discuss various practical issues of imple-
mentation: the identification of system dynamics, the
choice of control algorithm and the tuning of any param-
eters, the translation of continuous-time designs to dis-
crete difference equations suitable for programming on
a computer, the use of commercial software packages to
simulate the effects of control on given systems, and the
problems posed by noisy sensors and other types of un-
certainty. We include a case study of an active vibration-
isolation system. This section includes introductions to a
number of advanced topics, including model reduction,
optimal control, Kalman filtering, and robust methods.
We deliberately intersperse these discussions in a section
on practical implementation, for the need to tune many
parameters, to deal with noise and uncertainties in the
form of the system model itself—all require more ad-
vanced methods. Indeed, historically it has been the fail-
ure of simpler ideas that has motivated more complex
methods. Theorists should not skip this section!
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In Sec. VI, we note the limitations of standard control
theory to (nearly) linear systems and discuss its exten-
sion to nonlinear systems. Here, the engineering and
physics literature have trod their separate ways, with no
intellectual synthesis comparable to that for linear sys-
tems. We point out some basic issues. In Sec. VII, we
discuss biological applications of feedback, which lead to
a much broader view of the subject and make clear that
an understanding of “modular” biology presupposes a
knowledge of the control concepts discussed here. In
Sec. VIII, we mention very briefly a few other major
applications of feedback and control, mainly as a pointer
to other literature. We also briefly discuss adaptive
control—a vast topic that ranges from simple parameter
estimation to various kinds of artificial-intelligence ap-
proaches that try to mimic human judgment. In Sec. IX,
we discuss some of the relations between feedback and
information theory, highlighting a recent attempt to ex-
plore the connections.

Finally, we note that while the level of this tutorial is
relatively elementary, the material is quite concentrated
and takes careful reading to absorb fully. We encourage
the reader to “browse” ahead to lighter sections. The
case studies in Secs. III.D, V.C.1, and VIIL.A are good
places for this.

Il. BRIEF REVIEW OF DYNAMICAL SYSTEMS

In one way or another, feedback implies the modifica-
tion of a dynamical system. The modification may be
done for a number of reasons: to regulate a physical
variable, such as temperature or pressure; to linearize
the response of a sensor; to speed up a sluggish system
or slow down a jumpy one; to stabilize an otherwise un-
stable dynamics. Whatever the reason, one always starts
from a given dynamical system and creates a “better”
one.

We begin by reviewing a few ideas concerning dy-
namical systems. A good reference here and for other
issues discussed below (bifurcations, stability, chaos, etc.)
is the book by Strogatz (1994). The general dynamical
system can be written

X = f(x,1), (2.1a)

y=8(x,u), (2.1b)
where the vector x represents n independent “states” of
a system, u represents m independent inputs (driving
terms), and y represents p independent outputs. The

vector-valued function f represents the (nonlinear) dy-
namics and g translates the state x and “feeds through”
the input « directly to the output y. The role of Eq.
(2.1b) is to translate the perhaps-unobservable state
variables x into output variables y. The number of inter-
nal state variables () is usually greater than the number
of accessible output variables (p). Equations (2.1) differ
from the dynamical systems that physicists often study in
that the inputs & and outputs y are explicitly identified.

Rev. Mod. Phys., Vol. 77, No. 3, July 2005

R

Vin o—AN\/ \/TO Vout
C
1

FIG. 1. Low-pass electrical filter.

Mostly, we will deal with simpler systems that do not
need the heavy notation of Egs. (2.1). For example, a
linear system can be written

(2.2a)

y=Cx+Di, (2.2b)

where the dynamics A are represented as an 7 X n ma-
trix, the input coupling B as an n X m matrix, the output
coupling C as a pXn matrix, and D is a p X m matrix.

Often, the “direct feed” matrix D will not be present.

As a concrete example, many sensors act as a low-pass
filter” and are equivalent to the electrical circuit shown
in Fig. 1, where one finds

Vould) = = = Vould) + —= V(0.

2.3
RC RC @3)

Here, n=m=p=1, x=y=V,,, u=Vy,, A=-1/RC, B
=1/RC, C=1, and D=0.

A slightly more complicated example is a driven,
damped harmonic oscillator, which models the typical
behavior of many systems when slightly perturbed from
equilibrium and is depicted in Fig. 2, where

md +2yq + kq = kq,(1). (2.4)
We can simplify Eq. (2.4) by scaling time by w}=k/m,
the undamped resonant frequency, and by defining ¢
:(y/m)\e’m: v/ Vmk as a dimensionless damping pa-
rameter, with 0<{<1 for an underdamped oscillator
and {>1 for an overdamped system. [In the physics lit-
erature, one usually defines the quality factor Q=1/¢.]
Then, we have

’One finds second-order behavior in other types of sensors,
too, including thermal and hydraulic systems. For thermal sys-
tems (Forgan, 1974), mass plays the role of electrical capaci-
tance and thermal resistivity (inverse of thermal conductivity)
the role of electrical resistance. For hydraulic systems, the cor-
responding quantities are mass and flow resistance (propor-
tional to fluid viscosity). At a deeper level, such analogies arise
if two conditions are met: (1) the system is near enough ther-
modynamic equilibrium that the standard “flux«gradient”
rule of irreversible thermodynamics applies; (2) any time de-
pendence must be at frequencies low enough that each physi-
cal element behaves as a single object (“lumped-parameter”
approximation). In Sec. IV.C, we consider a situation where
the second condition is violated.
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FIG. 2. Driven simple harmonic oscillator.
G+244+q=q,(1). (25)

To put this in the form of Egs. (2.2), we let x;=q, x,=4.
Then n=2 (second-order system) and m=p=1 (one in-
put, u=q,, and one output, ¢g), and we have

d X1 0 1 X1 0
E(x):(—l —2§)<x2>+<1>'”“)’

with

(2.6)

y=(1 0)(x1) +0-u(), (2.7)
X2

where the matrices A, B, C, and D are all written explic-
itly. In such a simple example, there is little reason to
distinguish between x; and y, except to emphasize that
one observes only the position, not the Velocity.3 Often,
one observes linear combinations of the state variables.
(For example, in a higher-order system, a position vari-
able may reflect the influence of several modes. Imagine
a cantilever anchored at one end and free to vibrate at
the other end. Assume that one measures only the dis-
placement of the free end. If several modes are excited,
this single output variable y will be a linear combination
of the individual modes with displacements x;.) Note
that we have written a second-order system as two
coupled first-order equations. In general, an nth-order
linear system can be converted to n first-order equa-
tions.

The above discussion has been carried out in the time
domain. Often, it is convenient to analyze linear
equations—the focus of much of practical control
theory—in the frequency domain. Physicists usually do
this via the Fourier transform; however, control-theory
books almost invariably use the Laplace transform. The
latter has some minor advantages. Physical systems, for
example, usually start at a given time. Laplace-transform
methods can handle such initial-value problems, while
Fourier transforms are better suited for steady-state
situations where any information from initial conditions
has decayed away. In practice, one usually sets the initial
conditions to zero (and assumes, implicitly, that they

30f course, it is possible to measure both position and veloc-
ity, using, for example, an inductive pickup coil for the latter;
however, it is rare in practice to measure all the state variables
Xx.
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have decayed away), which effectively eliminates any
distinction. Inverse Laplace transforms, on the other
hand, lack the symmetry that inverse Fourier transforms
have with respect to the forward transform. But in prac-
tice, one almost never needs to carry out an explicit in-
version. Finally, one often needs to transform functions
that do not decay to 0 at infinity, such as the step func-
tion #(x) (=0,x<0 and =1,x>0). The Laplace transform
is straightforward, but the Fourier transform must be
defined by multiplying by a decaying function and taking
the limit of infinitely slow decay after transforming. Be-
cause of the decaying exponential in its integral, one can
define the Laplace transform of a system output, even
when the system is unstable. Whichever transform one
chooses, one needs to consider complex values of the
transform variable. This also gives a slight edge to the
Laplace transform, since one does not have to remem-
ber which sign of complex frequency corresponds to a
decay and which to growth. In the end, we follow the
engineers (except that we use i=\-1!), defining the
Laplace transform of y(¢) to be

o]

L] = y(s) = f e,

0

(2.8)

Then, for zero initial conditions, £[d"y/dt"]=s"y(s) and
L[[y(t)dt]=(1/s)y(s). Note that we use the same symbol
y for the time and transform domains, which are quite
different functions of the arguments ¢ and s. The abuse
of notation makes it easier to keep track of variables.

An nth-order linear differential equation then trans-
forms to an nth-order algebraic equation in s. For ex-
ample, the first-order system

Y(1) = = woy (1) + wou(?) (2.9)
becomes

sy(s) = wo[— y(s) + u(s)], (2.10)
leading to

G(s) = & _ (2.11)

u(s) 1+slwy

where the transfer function G(s) is the ratio of output to
input, in the transform space. Here, wy=2f, is the char-
acteristic angular frequency of the low-pass filter. The
frequency dependence implicit in Eq. (2.11) is made ex-
plicit by simply evaluating G(s) at s=iw:

1
Gliw)=——, (2.12)
1+iw/wg

with

|Glio)| ﬁl (2.13)

w)|=—— .
V1 + wz/w%
and
w
arg G(iw) = —tan™! —. (2.14)

wo
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FIG. 3. (Color in online edition) Transfer function for a first-
order, low-pass filter. (a) Bode magnitude plot [|G(iw)|]; (b)
Bode phase plot [arg G(iw)].

Note that many physics texts use the notation 7
=1/wy, so that the Fourier transform of Eq. (2.12) takes
the form 1/(1+iw7).

In control-theory books, log-log graphs of |G(iw)| and
linear-log graphs of arg(G(iw)) are known as Bode plots,
and we shall see that they are very useful for under-
standing qualitative system dynamics. [In the physics lit-
erature, y(w)=G(iw) is known as the dynamical linear
response function (Chaikin and Lubensky, 1995).] In Fig.
3, we show the Bode plots corresponding to Egs. (2.13)
and (2.14). Note that the asymptotes in Fig. 3(a) inter-
cept at the cutoff frequency w, and that in Fig. 3(b), the
phase lag is —90° asymptotically, crossing —45° at w,.
Note, too, that we break partly from engineering nota-
tion by using amplitude ratios in Fig. 3(a) rather than
decibels (1 dB=20 log;o|G]|).

The transfer function G(s) goes to infinity when s
=-w,. Such a point in the complex s plane is called a
pole. Here, we see that poles on the negative real s axis
correspond to exponential decay of impulses, with the
decay rate fixed by the pole position. The closer the pole
is to the imaginary s axis, the slower the decay. Poles in
the right-hand side correspond to exponentially increas-
ing amplitudes.

Similarly, using the Laplace (Fourier) transform, the
transfer function for the second-order system is

1
1+2ilw— o’
(2.15)

G(s) = or Gliw) =

1+2%s+s

and Bode plots for various damping ratios ¢ are shown
in Fig. 4. (Recall that we have scaled wy=1.) Here, there
are two poles. In the underdamped case ({<1), they
form a complex-conjugate pair s=—{+iy1-¢% In the
overdamped case ({>1), the two poles are both on the
real s axis.
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FIG. 4. (Color in online edition) Transfer function for a
second-order system. {=0.1 gives underdamped and {=1 criti-
cally damped dynamics. (a) Bode magnitude plot; (b) Bode
phase plot.

Both the low-pass filter and the second-order system
have transfer functions G(s) that are rational functions;
i.e., they can be written as M(s)/N(s), where M(s) and
N(s) are polynomials. Not every system can be written in
this form. For example, consider a sensor that faithfully
records a signal, but with a time delay At, i.e., v(f)=y(t
—At). From the shift theorem for Laplace transforms,
the transfer function for such a sensor is G(s)=e™%,
which is equivalent to an infinite-order system. Note that
the magnitude of G is always 1 and that the phase in-
creases linearly with frequency. In contrast, in the earlier
two examples, the phase tended to an asymptotic value.

The convolution theorem allows important manipula-
tions of transfer functions. If we define G*H
= [(G(n)H(t-7)d7, then L[G*H]=G(s)H(s). Convolu-
tion is just the tool one needs to describe compound
systems where the output of one element is fed into the
input of the next element. Consider, for example, a first-
order sensor element that reports the position of a
second-order mechanical system. We would have

V42l +y=ult), (2.16)

and

v+v=y(t), (2.17)

where u(t) drives the oscillator position y(¢), which then
drives the measured output v(¢). Laplace transforming,

y(s) = G(s)u(s) = u(s),

1+2§s+sz'

Vs = HOY(O) = —— - ¥(6). (2.18)
+s

and thus v(s)=H(s)G(s)u(s), implying an overall loop

transfer function F(s)=H(s)G(s). Having two elements

in series leads to a transfer function that is the product

of the transfer functions of the individual elements. In
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(s)
u(s)o——{ G(s) }L—\ H(s) }—»ov(s)

FIG. 5. Block diagram illustrating signal flow from the input u
through the system dynamics G to the output y through the
sensor H.

the time domain, the series output would be the convo-
lution of the two elements.

The above example motivates the introduction of
block diagrams to represent the flow of signals for linear
systems. We depict the above as shown in Fig. 5.

lll. FEEDBACK: AN ELEMENTARY INTRODUCTION

Having reviewed some basic ideas from dynamical
systems and having established some notation, we can
understand simple feedback ideas. Here, and elsewhere
below, it is understood that the reader desiring more
details should consult one of the standard control-theory
references cited above (Dutton et al., 1997; Franklin et
al., 1998, 2002; Goodwin et al., 2001) or any of the many
other similar works that exist. A good book on “control
lore” is Leigh (2004), which gives a detailed, qualitative
overview of the field, with a nice annotated bibliography.

A. Basic ideas: Frequency domain

Consider a system whose dynamics are described by
G(s). The goal is to have the system’s output y(¢) follow
a control signal r(¢) as faithfully as possible. The general
strategy consists of two parts: First, we measure the ac-
tual output y(¢) and determine the difference between it
and the desired control signal r(¢), i.e., we define e(r)
=r(t)—y(t), which is known as the error signal. Then we
apply some “control law” K to the error signal to try to
minimize its magnitude (or square magnitude).

In terms of block diagrams, we make the connections
shown in Fig. 6, where a control law K(s) has been
added. Manipulating the block diagrams, we have

y(s) = K(s)G(s)e(s), (3.1)
K(s)G(s) L(s)
YO = k060 T Tr L) ™ (32)

where the loop gain L(s)=K(s)G(s). Starting from the
system dynamics G(s), we have modified the “open-
loop” dynamics to be L(s)=K(s)G(s), and then we have
transformed the dynamics a second time by “closing the
loop,” which leads to closed-loop dynamics given by T
=KG/(1+KG)=L/(1+L). One hopes, of course, that

r(s) O—? = = oY)

FIG. 6. Block diagram illustrating closed-loop control of a sys-
tem G(s). Controller dynamics are given by K(s).

Rev. Mod. Phys., Vol. 77, No. 3, July 2005

one can choose K(s) so that 7(s) has “better” dynamics
than G(s). (For reasons to be discussed below, T is
known as the complementary sensitivity function.)

Note the negative sign in the feedback node in Fig. 6,
which implies that the signal e(f) =r(¢)-y(¢) is fed back
into the controller. Such “negative feedback” gives a sig-
nal that is positive when the output y is below the set-
point r and negative when above. A direct proportional
control law, u=K,e with K,>0, then tends to counteract
a disturbance. Absent any delays, this is a stabilizing
effect that can also reduce a system’s sensitivity to per-
turbations. “Positive feedback” reverses the sign in the
feedback node, so that r+y is fed into the controller.* It
can be used to make a switch between two states, and
hence a digital memory (see Sec. VII.B.2). It can also be
used to make an oscillator.’ More generally, though,
there is no reason that a controller cannot be an arbi-
trary function u(t)=f[r(t),y(t)]. Such a controller has two
degrees of freedom and, obviously, can have more com-
plicated behavior than is possible with only negative or
positive feedback. (As an example, one could have nega-
tive feedback in some frequency range and positive
feedback at other frequencies.)

As a simple example, consider the first-order, low-pass
filter described above, with

G
G(s) = ——.
1+ s/wy

(3.3)

Here, we have added a dc gain G,. We apply the sim-
plest of control laws, K(s)=K,, a constant. This is known
as proportional feedback, since the feedback signal u(f)
is proportional to the error signal, u(¢)=Ke(t). Then
oo —KiGo
K,Go+1+ sl

__K,G, 1
K, Go+11+slwy(1+K,Gp)’

(3.4)

This is again just a low-pass filter, with modified dc gain
and cutoff frequency. The new dc gain is deduced by
taking the s—0 (w—0) limit in 7(s) and gives
K,Gy/(K,Gy+1). The new cutoff frequency is o= w(1
+K,Gy). This can also be seen in the time domain,
where

y == wyy + woKpGo(r —y), (35)

or

4Physicists often informally use “positive feedback” to denote
the situation where —e=y—r is fed back into the controller. If
the control law is u=K,(~e), then the feedback will tend to
drive the system away from an equilibrium fixed point. Using
the terminology defined above, however, one would better de-
scribe this as a situation with negative feedback and negative
gain.

5Negative feedback can also lead to oscillation, although typi-
cally more gain—and hence more control energy—is required
than if positive feedback is used.
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(ke 2 e ve)
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1(s)

) o——@ T e(s)

FIG. 7. Block diagram illustrating closed-loop control of a sys-
tem G(s) subject to disturbances d(s) and measurement noise
&(s). The control signal r(s) is assumed to be noise free. If
present, the block F(s) adds feedforward dynamics.

V==l + K,y + K,Gyr(t). (3.6)

In effect, the driving signal is u(f) = wyK,Gy(r~y). If the
control signal r(f)=r,=const, then the output settles to
Vo =[K,Go/ (K,Go+1)]r..

If we had instead the open-loop dynamics,

y(0) = = woy(1) + 0K, Gor(1), (3.7)

we would have the “bare” cutoff frequency w, and a
final value y,,=y(t—©)=K,Grs.

It is interesting to compare the open- and closed-loop
systems. The closed-loop system is faster for K,>1.
Thus, if the system is a sensor, sluggish dynamics can be
speeded up, which might be an advantage for a measur-
ing instrument. Furthermore, the steady-state solution,
—K&rm, (3.8)

YT K,Go+1

tracks r,, closely if K,>1/G,. One might counter that in
the open-loop system, one could set K,=1/G and have
Y= exactly. However, if G, varies over time—for ex-
ample, amplifier gains often drift greatly with
temperature—this tracking will not be good. By con-
trast, for K,>1/G, the closed-loop system tracks r.
without much sensitivity to the dc gain G,,.

We can sharpen our appreciation of this second ad-
vantage by introducing the notion of the parametric sen-
sitivity S of a quantity Q with respect to variations of a
parameter P. One defines S=(P/Q)(dQ/dP). We can
then compare the open- and closed-loop sensitivities of
the transfer function with respect to the dc gain, G:

G, d
Sopen =
K,GodG,

(K,Go) =1, (3.9)

1
S =—<1. 3.10
closed 1 +KPG0 ( )

Thus, if K,Gy>1, the closed-loop dynamics are much
less sensitive to variations in the static gain G than are
the open-loop dynamics.

We next consider the effects of an output disturbance
d(t) and sensor noise &(f). From the block diagram in
Fig. 7 [ignoring the F(s) block for the moment],

y=KGe+d, (3.11)
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e:r—g—y, (312)
which implies
KG
y(s)= ] +KG[r(S) — &)1+ 1 +KGd(S). (3.13)

In the previous example, disturbances d(f) would have
been rejected up to the cutoff frequency o’ =wy(1+K,).
This is usually desirable. On the other hand, the control
signal effectively becomes r—§: the system has no way to
distinguish the control signal r(f) from measurement
noise &(t). Thus the higher the gain is, the noisier the
output. (Putting a “prefilter” between the reference and
the feedback node a is a partial solution. The controller
then has two degrees of freedom, as described above.)

The frequency o’ is known as the feedback band-
width. We can thus state that a high feedback bandwidth
is good, in that it allows a system to track rapidly varying
control, and bad, in that it also allows noise to feed
through and contaminate the output. This tradeoff may
also be expressed by rewriting Eq. (3.13) as

eg(s) = r(s) — y(s) = S(s)[r(s) — d(s)] + T(s)&(s), (3.14)

where e, is the tracking error, i.e., the difference be-
tween the desired tracking signal r and the actual output
y. This is distinguished from e=r—y—£, the difference
between the tracking signal and the measured output. In
Eq. (3.14), S(s) is the sensitivity function discussed above
and T(s)=KG/(1+ KG)=1-S is the complementary sen-
sitivity function. The general performance goal is to
have ¢, be small given various “inputs” to the system.
Here, we regard the tracking signal r, the disturbance d,
and the sensor noise ¢ as inputs of differing kinds. A
fundamental obstacle is that S+7'=1 at all frequencies;
thus if S is small and disturbances are rejected, then 7 is
large and sensor noise feeds through, and vice versa. We
discuss possible ways around this tradeoff, below.

B. Basic ideas: Feedforward

Another basic idea of control theory is the notion of
feedforward, which is a useful complement to feedback.
Say that one wants a step change in the reference func-
tion. For example, in a loop controlling the temperature
of a room, one can suddenly change the desired setpoint
from 20 to 25°C. The feedback loop may work satisfac-
torily in response to room perturbations, but if one
knows ahead of time that one is making a sudden
change, one can do better than to just let the feedback
loop respond. The usual way is to try to apply a prefilter
F(s) to the control signal r(s). In the absence of any
feedback, the system response is just y(s)=G(s)F(s)r(s).
If we can choose F=G™!, then y will just follow r exactly.
Because the actuator has finite power and bandwidth,
one usually cannot simply invert G. Still, if one can ap-
ply an approximate inverse to r, the dynamical response
will often be significantly improved. Often, this amounts
to inverting the system G(s) at low frequencies and leav-
ing it unchanged above a cutoff frequency set by actua-
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tor limits or by uncertainty in the system’s high-
frequency dynamics. See Devasia (2002) and Sec. V.E.
Similarly, if one has an independent way of measuring
disturbances one can apply a compensator element that
feeds forward the filtered disturbance to the actuator.
(For example, a thermometer outside a building allows
one to anticipate disturbances to an interior room.)
Again, the idea is to try to create a signal that will coun-
teract the effect of the disturbance.

Another general motivation for using feedforward is
to control the movement of flexible structures. For ex-
ample, translation stages have mechanical resonances.
Imagine that one wants a response that approximates a
step displacement as closely as possible. If one uses as
the control signal a step displacement, the high frequen-
cies of the step function will excite the system’s mechani-
cal resonances. Adding a feedforward element allows
one to “shape” the input so that resonances are not ex-
cited; the actual response can then be closer to the de-
sired step than it would be were the “naive” input used
instead (Singhose, 1997; Croft and Devasia, 1999; Schit-
ter and Stemmer, 2004; Zou et al., 2005).

Because it is usually impossible to implement perfect
feedforward and because disturbances are usually un-
known, one generally combines feedforward with feed-
back. In Fig. 7, one includes the prefilter F(s) after the
time varying setpoint r(s) before the loop node. The out-
put y(s) [Eq. (3.13)] then becomes

KG
1+KG

y(s) = [F(s)r(s) — &)1+ d(s). (3.15)

1+KG

Choosing F as close as possible to 1+(KG)~! reduces the
“load” on the feedback while simultaneously rejecting
disturbances via the feedback loop.

A more subtle application of these ideas to scanning
probe microscopy illustrates the strengths and weak-
nesses of using feedforward. Scanning probe micro-
scopes (SPMs)—including, most notably, the scanning
tunneling microscope (STM) and atomic force micro-
scope (AFM)—have revolutionized surface science by
achieving atomic- or near-atomic-resolution images of
surfaces in a variety of circumstances. Practical micro-
scopes usually contain a feedback loop that keeps con-
stant the distance between the sample and the SPM
probe, as that probe is rastered over the sample surface
(or vice versa). In a recent paper, Schitter et al. (2004)
use the fact that in many SPM images one scan line
resembles its neighbor. They record the topography es-
timate of the previous line and calculate the actuator
signal needed to reproduce that topography. This is then
added to the actuator signal of the next scan line. The
feedback loop then has to deal with only the differences
between the expected topography and the actual topog-
raphy. The limitations of this are (i) that the actuator
may not be able to produce a strong or rapid enough
signal to deal with a sharp topography change (e.g., a
step) and (ii) the new scan line may in fact be rather
different from the previous line, in which case the feed-
forward will actually worsen the performance. In prac-
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tice, one puts a “gain” on the feedforward term that
reflects the correlation one expects between correspond-
ing vertical pixels. Unity gain—unity correlation—
implies that one expects the new line to be exactly the
same as the old line, justifying the full use of feedfor-
ward. If there is no correlation—i.e., if statistically,
knowing the height of the pixel in a given column of the
previous scan tells you nothing about the expected
height in the next scan—then one should not use feed-
forward at all. The actual gain that should be applied
then should reflect the expected correlation from line to
line. Note the relationship here between information
and feedback/feedforward, in that the appropriate
amount of feedback and feedforward is determined by
the amount of information one scan line gives regarding
the next; see Sec. IX, below.

Finally, we can now better appreciate the distinction
between “control” and “feedback.” The former refers to
the general problem of how to make a system behave as
desired. The latter is one technique for doing so. What
we have seen so far is that feedback, or closed-loop con-
trol, is useful for dealing with uncertainty, in particular
by reducing the effects of unknown disturbances. On the
other hand, feedforward, or open-loop control, is useful
for making desired (i.e., known) changes. As Eq. (3.15)
shows, one usually will want to combine both control
techniques.

C. Basic ideas: Time domain

Until now, we have focused our discussion of feed-
back on the frequency domain, but it is sometimes pref-
erable to use the time domain, working directly with Eq.
(2.2). State-space approaches are particularly useful for
cases where one has multiple inputs and multiple out-
puts (MIMO), although much of our discussion will be
for the single-input-single-output (SISO) case. To fur-
ther simplify issues, we will consider only the special
problem of controlling about a state x=0. It is easy to
generalize this (Franklin et al., 2002).

In the SISO case, we have only one output y(f) and
one input u(f). We then have

X=AxX+bu, u=-k'x,

y=¢Tx. (3.16)

In Eq. (3.16), row vectors are represented, for example,
as ¢'=(cy ¢,). The problem is then one of choosing the
feedback vector k'=(k; k,) so that the eigenvalues of
the new dynamical system, ¥=A'% with A’ :;1—5127,
have the desired properties.

One can easily go from the state-space representation
of a dynamical system to its transfer function. Laplace
transforming Egs. (3.16), one finds

G(s)é(sI - A)'b, (3.17)
where I is the identity matrix. One can also show that if
one changes coordinates for the state vector (i.e., if one
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defines ¥’ =T%), the transfer function deduced in Eq.
(3.17) will not change. The state vector X is an internal
representation of the dynamics, while G(s) represents
the physical input-output relation.

Because the internal state x usually has more ele-
ments than either the number of inputs or outputs (here,
just one each), a few subtleties arise. To understand
these, let us rewrite Egs. (3.16) for the special case

where A is a 2 X2 diagonal matrix, with diagonal entries
N\ and \,. Then

x'l = )\1x1 + blu,
xZ = )\2)(32 + bzl/l,

Y =C1Xy + Xy, (3.18)

If b, =0, then clearly, there is no way that u(f) can influ-

ence the state x,(f). More generally, if any element of b
is zero, the system will not be “controllable.” Likewise,
if any element of ¢ is zero, then y(¢) will not be influ-
enced at all by the corresponding element of x(¢), and
we say that that state is not “observable.” More for-
mally, a system is controllable if it is always possible to
choose a control sequence u(f) that takes the system
from an arbitrary initial state to an arbitrary final state
in finite time. One can show that a formal test of con-
trollability is given by examining a matrix made out of

the vectors Ail;, for i=0,...,n—1. If the controllability
matrix U, is invertible, the system is controllable. The
n X n matrix U, is explicitly

U,=0b Ab A% Ar-1p). (3.19)

In the more general MIMO case, b will be a matrix B,

and the controllability condition is that Up have full
rank. One can also show that a similar test exists for
observability and, indeed, that controllability and ob-
servability are dual properties (corresponding to how
one gets information into and out of the dynamical sys-
tem) and that any property pertaining to one has a coun-
terpart (Lewis, 1992). Note that we use “observable”
here in its classical sense. Section VIII contains a brief
discussion of quantum control.

One can show that if the technical conditions of con-
trollability and observability are met, then one can
choose a k that will place the eigenvalues anywhere.’
The catch is that the farther one moves an eigenvalue,
the larger the elements of K must be, which will quickly
lead to unattainable values for the input u. Thus one
should move only the eigenvalues that are “bad” for

system response and move them as little as possible
(Franklin et al., 2002).

®This is true even if the system is unobservable, but then the
internal state x cannot be deduced from the observed output y.
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As a quick example (Franklin ef al., 2002), consider an
undamped pendulum of unit frequency [Eq. (2.6), with
{=0]. We desire to move the eigenvalues from +i to -2
and -2. In other words, we want to double the natural
frequency and change the damping ¢ from 0 to 1 (critical
damping). Let u=—(k,x; +k,x,) in Eq. (2.6), which leads
to a new dynamical matrix,

. ( 0 1 )
A= )
“1-k; -k

Computing the characteristic equation for A’ and
matching coefficients with the desired equation [(\ +2)?

=0], one easily finds kT=(3 4). More systematically,

(3.20)

there are general algorithms for choosing k so that A’
has desired eigenvalues, such as “Ackermann’s method”
for pole (eigenvalue) placement (Dutton et al., 1997; Sec.
5.4.7).

In the above discussion of a SISO system, the control
law used the full state vector x(¢) but there was only a
single observable y(f). This is a typical situation. One
thus needs some way to go from the single dynamical
variable y to the full state x. But since y is a linear func-
tion of all the x’s and since one knows the system dy-
namics, one can, in fact, do such an inversion. In the
control-theory literature, the basic strategy is to make an
observer that takes the partial information as an input
and tends to the true state.” Since the observed system is
being modeled by computer, one has access to its inter-
nal state, which one can use to estimate the true dynami-
cal state. In the absence of measurement noise, observ-
ers are straightforward to implement (Dutton et al.,
1997, Ozbay, 2000). The basic idea is to update an exist-
ing estimate x(¢) of the state using the dynamical equa-
tions [Eqgs. (2.2)] with the observed output y(¢). The aug-
mented dynamics are

£(t) = AZ(t) + Bu(1) + Fly(t) — Cx(1)]. (3.21)

For simplicity, we have dropped tildes (A, B, etc.) and
vector symbols (x, y, etc.). The new matrix F is chosen so
that the error in the estimate of x(f) converges to zero:

é(f) = %(1) — £(t) = (A — FC)e(t). (3.22)

To converge quickly, the real parts of the eigenvalues of
A —FC should be large and negative; on the other hand,
large eigenvalues will lead to noisy estimates. A reason-
able compromise is to choose F so that the estimator
converges several times faster than the fastest pole in
the system dynamics. The estimator described here is a

"There are actually two distinct control strategies. In the
“state-vector-feedback” (SVF) approach, one uses a feedback

law of the form ii=—Kx along with an observer to estimate X
from the measurements y. In the “output-feedback™ approach,

one uses directly i =—K’ y. The SVF approach is conceptually
cleaner and more systematic, and it allows one to prove gen-
eral results on feedback performance. The output-feedback
approach is more direct—when it works (Lewis, 1992).
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FIG. 8. (Color in online edition) Phase-space plot of harmonic
oscillator and its observer. The harmonic oscillator trajectory
starts from the dot and traces a circle. The observer starts from
the square with incorrect initial velocity but converges to track
the oscillator. For simplicity, the control signal u=0.

“full-order” estimator, in that it estimates all the states x
whether they are observed or not. Intuitively, it is clear
that if one defines each observable y to be one of the
elements of x, then it should be possible to define a
“partial-order” estimator, which uses the observations
where they exist and estimates only the remaining un-
known elements of x. This is more efficient to calculate
but more complicated to set up (Dutton et al, 1997).
Finally, if there is significant measurement noise, one
generally uses a rather different strategy, the Kalman
filter, to make the observer; see Sec. V.D.

To continue the example of the harmonic oscillator,

above, choosing F7=(4 3) gives A’ repeated eigenvalues
at —2. The phase-space plot (x; vs x;) in Fig. 8 shows
how the observer tracks the physical system. The oscil-
lator, starting from x,=0, x;=-1 traces a circle of unit
radius in phase space. The observer dynamical system
starts from different initial conditions but eventually
converges to track the physical system. Here, the ob-
server time scale is only half the natural period; in a real
application, it should be faster. After the observer has

converged, one simply uses its values (x), fed by the ob-
servations y, in the feedback law. Obviously, in a real
application, the computer simulation of the observer
must run faster than the dynamics of the physical sys-
tem.

The above methods are satisfactory for linear equa-
tions. In the physics literature, one often uses the
“method of time delays” (Strogatz, 1994). Here, an
n-element state vector is made by taking the vector y_
={y@®,y@t-7,...,y[t—(n—-1)7]}), where the delay 7 is
chosen to be the “dominant” time constant (the choice
often requires a bit of playing around to optimize). Mea-
suring y, is roughly equivalent to measuring the first n
—1 time derivatives of y(f). For example, from y(#) and
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y(t—17), one has information about y(f). One can show
that y, obeys dynamics like that of the true system (more
precisely, its phase space is topologically similar). Note
that one usually must choose the embedding dimension
n. If n is too small, trajectories will cross in the
n-dimensional phase space, while if n is too large, one
will merely be embedding the system in a space that has
a larger dimension than that of the actual state vectors.
Measurement noise effects are magnified when 7 is cho-
sen too large. The method of time delays works even if
one does not know the correct system. If the system is
linear, then there is little excuse for not figuring it out
(see Sec. V.A), but if the system is nonlinear, then it may
not be easy to derive a good model and the method of
time delays may be the best one can do.

The direct, “state-space” formulation of feedback
with its “pole-placement” methods is easier for simulat-
ing on a computer and has other mathematical advan-
tages, while the frequency domain is often more intui-
tive. One should know both approaches.

To summarize (and anticipate, slightly), the possible
advantages of adding a feedback loop include the fol-
lowing:

(i) altered dynamics (e.g., faster or slower time con-
stants);

(ii) the ability to linearize a nonlinear sensor by hold-
ing the sensor value constant (discussed below);

(iii) reduced sensitivity to environmental disturbances.

Possible disadvantages include the following:

(i) sensor noise may contaminate the output;

(ii) a stable system may be driven unstable.

We shall deal with the potential disadvantages below.
We now give an example that highlights the use of feed-
back to linearize a nonlinear sensor signal.

D. Two case studies

1. Michelson interferometer

In Sec. 111, we looked at controlling a device that was
merely a low-pass filter. Such an example might seem
academic in that one rarely encounters such a simple
system in the real world. Yet, as the following case study
shows, simplicity can often be forced on a system, pur-
chased at the price of possible performance.

We consider the Michelson interferometer designed
by Gray et al. for use in the next-generation Laser Inter-
ferometer Gravitational Wave Observatory (LIGO)
gravity-wave project (Gray et al., 1999). The gravity-
wave detector (itself an interferometer) must have all its
elements (which are several kilometers long!) isolated
from Earth-induced vibrations, so that any gravity-wave-
induced distortions may be detected. In order to isolate
the large masses, one can measure their position relative
to the earth—hence the need for accurate displacement
measurement. Of course, the interferometer may be
used in many other applications, too. We refer the
reader to the article of Gray et al. for details about the
project and interferometer. Here, we consider a simpli-
fied version that highlights their use of feedback.
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FIG. 9. Michelson interferometer with feedback element K(s)
added to linearize output for large displacements.

Figure 9 shows a schematic diagram of the interferom-
eter. Without the control element K(s) and the piezoac-
tuator shown at bottom, it would depict just an ordinary
Michelson interferometer. As such, its output is a sinu-
soidal function of the displacement of the target mirror.
In open-loop operation, the interferometer could be
used as a linear sensor only over a small fraction of a
wavelength. By adding the actuator, Gray et al. force the
servo-mirror to track the moving target mirror. The ac-
tuator signal to the servo-mirror effectively becomes the
sensor signal.

One immediate advantage of tracking a desired “set-
point” on the fringe is that if the actuator is linear, one
will have effectively linearized the original, highly non-
linear sensor signal. (In fact, the actuator used piezoelec-
tric ceramic stacks for displacement, which have their
own nonlinearities. But these nonlinearities are much
smaller than those of the original output.) Another
widely used application of feedback to linearize a signal,
mentioned briefly above in our discussion of feedfor-
ward techniques is the scanning tunneling microscope
(STM), where the exponential dependence of tunneling
current on the distance between conductors is linearized
by feedback (Oliva et al., 1995).

In their published design, Gray et al. chose the feed-
back law to be a band-limited proportional gain:

K
K(s) = —>—.
1+ s/wy

(3.23)

Their controller K(s) looks just like our simple system
K(s)G(s) in Eq. (3.2) above. They assume that their sys-
tem has no dynamics [G(s)=1], up to the feedback band-
width o’ =wy(1+K,). Of course, their system does have
dynamics. For example, the photodiode signal rolls off
at about 30 kHz, and the piezoactuator has a mechanical
resonance at roughly the same frequency. But they chose
wy=2mX25Hz and K;=120, so that the feedback
bandwidth of 3 kHz was much less than the natural fre-
quencies of their dynamical system.
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FIG. 10. Op-amp based noninverting amplifier.

The design has much to recommend it. The large dc
gain means that static displacements are measured accu-
rately. One can also track displacements up to ', which,
if slower than the system dynamics, is much faster than
their application requires. More sophisticated feedback
design could achieve similar bandwidth even if the sys-
tem dynamics were slower, but the added design costs
would almost certainly outweigh any component-cost
savings. And the performance is impressive: Gray et al.
report a position noise of 2x 1074 m/\Hz, only about
ten times more than the shot-noise limit imposed by the
laser intensity used (=10 mW at A=880 nm). The lesson
is that it often pays to spend a bit more on high-
performance components in order to simplify the feed-
back design. Here, one is “killing the problem with
bandwidth”; i.e., one starts with far more bandwidth
than is ultimately needed, in order to simplify the de-
sign. Of course, one does not always have that luxury,
which motivates the study of more sophisticated feed-
back algorithms.

2. Operational amplifier

We briefly discuss another application of proportional
feedback for first-order systems that most experimental-
ists will not be able to avoid, the operational amplifier
(“op amp”) (Mancini, 2002). The op amp is perhaps the
most widely used analog device and is the basis of most
modern analog electronic circuits. For example, it is
used to make amplifiers, filters, differentiators, integra-
tors, multipliers, to interface with sensors, and so forth.
Almost any analog circuit will contain several of them.

An op amp is essentially a very high gain differential
amplifier that uses negative feedback to trade off high
gain for reduced sensitivity to drift. A typical circuit
(“noninverting amplifier”) is shown in Fig. 10. The op
amp is the triangular element, which is a differential am-
plifier of gain A:

Vou=AVip= V). (3.24)
The + and — inputs serve as an error signal for the
feedback loop. The two resistors in the return loop form
a voltage divider, with
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V_ =V, R— =V, uPB (3.25)
- outR1 +R2 - outM» .
which leads to
V. A 1
Gep=-=r——"=—, (3.26)

where G is the closed-loop gain and the approxima-
tion holds when A > 1. Thus the circuit is an amplifier of
gain G¢; =1+ R,/R;. The sensitivity to drift in A is
A dGg, 1 <
G dA 1+ AB

S 1, (3.27)

which again shows how a high open-loop gain A>1 re-
duces the sensitivity of the closed-loop gain G; to drifts
in the op amp. This, in fact, was the original technical
motivation for introducing negative feedback, which oc-
curred in the telephone industry in the 1920s and 1930s.®
Open-loop amplifiers were prone to drift over time,
leading to telephone connections that were too soft or
too loud. By increasing the gain of the amplifiers and
using negative feedback, one achieves much more stable
performance. In effect, one is replacing the large tem-
perature dependence of the semiconductors in transis-
tors with the feebler temperature dependence of resis-
tors (Mancini, 2002). Note that the A — o limit is one of
the approximations made when introducing the “ideal”
op amp that is usually first taught in electronics courses.

It is interesting to look at the frequency dependence
of the op-amp circuit (Fig. 10). The amplifier is usually
designed to act like a simple low-pass filter, with gain
A(w)=Ay/(1+iw/wy). Following the same logic as in
Sec. III.A, we find that the closed-loop equations corre-
spond to a modified low-pass filter with cutoff frequency
wcr=B Ay wy. One concludes that for we; > w,

(3.28)

Thus the closed-loop gain times the closed-loop band-
width is a constant determined by the parameters of the
amplifier. The product A, wq is usually known as the
unity-gain bandwidth, because it is the frequency at
which the open-loop gain A of an op amp is 1. Modern
op amps have unity-gain bandwidths that are typically
between 10° and 10° Hz. Equation (3.28) states that in
an op-amp-based voltage amplifier there is a tradeoff
between the gain of the circuit and its bandwidth. Man-
cini (2002) contains many examples of such “rough-and-

Gep ocp = Ap 0.

8See Mancini (2002). Historically, the introduction of negative
feedback into electronic circuits was due to H. S. Black in 1927
(Black, 1934). While not the first use of negative feedback
(steam-engine governors using negative feedback had been in
use for over a century), Black’s ideas spurred colleagues at the
Bell Telephone Laboratories (Bell Labs) to analyze more
deeply why feedback was effective. This led to influential stud-
ies by Nyquist (1932) and Bode (1945) that resulted in the
“classical control,” frequency-domain analysis discussed here.
Around 1960, Pontryagin, Kalman, and others developed
“modern” state-space methods based on time-domain analysis.
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ready” engineering calculations concerning feedback
loops.

E. Integral control

All of the examples of feedback discussed above suf-
fer from “proportional droop”: i.e., the long-term re-
sponse to a steady-state input differs from the desired
setpoint. Thus if the (static) control input to a low-pass
filter is r, the system settles to a solution y.=[K,/(1
+K,)]r... Only for an infinite gain will y,=r., but in
practice, the gain cannot be infinite. The difference be-
tween the desired signal r,, and the actual signal equals
[1/(1+K,)]r.

With integral control, one applies a control
K;[" .e(t")dt' rather than (or in addition to) the propor-
tional control term Ke(t). The integral will build up as
long as e(f) #0. In other words, the integral term elimi-
nates the steady-state error. We can see this easily in the
time domain, where

1 (!
y(0)=-—y@)+ ﬁf [re—y()]dr", (3.29)
T J_»

where K; is rescaled to be dimensionless. Differentiat-
ing,

1 A
50 =~ 30+ .~ 0], (3.30)

which clearly has a steady-state solution y.,=r,—no pro-
portional droop!

It is equally interesting to examine the situation in
frequency space, where the control law is K(s)=K;/ 7s.
One can interpret this K as a frequency-dependent gain,
which is infinite at zero frequency and falls off as 1/w at
finite frequencies. Because the dc gain is infinite, there is
no steady-state error.

If the system transfer function is G(s)=1/(1+ 7s), then
the closed-loop transfer function becomes

KG 1
1+KG 1+TS/KZ‘+'TZS2KI“

Note that both Egs. (3.30) and (3.31) imply that the in-
tegral control has turned a first-order system into effec-
tively a second-order system, with w}=K;/7 and ¢
=1/ 2\57,». This observation implies a tradeoff: a large K;
gives good feedback bandwidth (large w,) but reduced ¢.
Eventually (when {=1), even an overdamped system will
become underdamped. In the latter case, perturbations
relax with oscillations that overshoot the setpoint, which
may be undesirable.

Integral control can be improved by combining with
proportional control, K(s) = K;/ 75+ K,, which gives faster
response while still eliminating steady-state errors. To
see this, note that the closed-loop transfer function
(3.31) becomes
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_ KG 1+ (K,/K)7s
1+KG 14+ (1+K,)ms/K;+ P52 K;

T(s) (3.32)

which is 1 for w— 0 and is asymptotically first order, with
time constant 7/K,,, for w— .

We have seen that a system with integral control al-
ways tends to the setpoint, whatever the value of K.
This sounds like a trivial statement, but it is our first
example of how a feedback loop can lead to robust be-
havior that does not depend on details of the original
system itself. In other words, it is only the loop itself and
the fact that integration is employed that leads to the
tracking properties of feedback. We return to this point
in Sec. VII, which discusses biological applications of
feedback.

IV. FEEDBACK AND STABILITY

Feedback can also be used to change the stability of a
dynamical system. Usually, this is undesired. For ex-
ample, as we shall see below, many systems will go into
spontaneous oscillation when the proportional gain K, is
too high. Occasionally, feedback is used to stabilize an
initially unstable system. A topical example is the
Stealth Fighter.” The aircraft’s body is made of flat sur-
faces assembled into an overall polygonal hull. The flat
surfaces deflect radar beams away from their source but
make the aircraft unstable. Using active control, one can
stabilize the flight motion. A more prosaic example is
the problem of balancing a broom upside down in the
palm of your hand.

Before discussing stability in feedback systems, we
briefly review some notions of stability in general in dy-
namical systems in Sec. IV.A. In Sec. IV.B, we apply
those ideas to feedback systems.

A. Stability in dynamical systems

Here, we review a few key ideas from stability theory
(Strogatz, 1994). We return to the time domain and write
a simple nth-order equation in matrix form as

y=Ajy. (4.1)

Assuming A to be diagonalizable, one can write the so-
lution as

§(1) = eA5(0) = ReP'R15(0), (4.2)

where A=ReP'R™! and

The instability of planes such as the F-117 fighter (“Night-
hawk”) is fairly obvious just looking at pictures of them. I have
seen anecdotal mention of this but no serious discussion of
how active control stabilizes its flight. See, for example, http:/
www.danshistory.com/f117.shtml
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A

D= M . . (4.3)

Ay

The solution y=0 is stable against infinitesimally small
perturbations if Re N\;<0, Vi. Generally, the eigenvalues

of the stability matrix A change when a control
parameter—such as a feedback gain—is changed. If one
of the eigenvalues has positive real part, the associated
eigenmode will grow exponentially in time. (This is /in-
ear stability; a solution may be stable to infinitesimal
perturbations but unstable to finite perturbations of
large enough amplitude. Such issues of nonlinear stabil-
ity are relevant to the hysteretic systems discussed be-
low.) The qualitative change in behavior that occurs as
the eigenvalue crosses zero is known as a bifurcation.
Once the system is unstable, the growth of the unstable
mode means that nonlinear terms will quickly become
important. The generic behavior of the bifurcation is
then determined by the lowest-order nonlinear terms.
(The general nonlinear term is assumed to have a Taylor
expansion about the solution, y=0.) For example, the
unstable mode (indexed by i) may behave either as

Yi=Nyi—ay; or y;=\y;—by;. (4.4)
In Eq. (44), \; is a “control parameter,” i.e., one that
may be controlled by the experimenter. The parameters
a and b are assumed to remain constant. The first rela-
tion in Eq. (4.4) describes a “transcritical bifurcation”
and the second a “pitchfork bifurcation” (Strogatz,
1994). (If there is a symmetry y — —y, one has a pitchfork
bifurcation; otherwise, the transcritical bifurcation is the
generic description of two solutions that exchange sta-
bilities.) In both cases, the linearly unstable mode satu-
rates with a finite amplitude, in a way determined by the
lowest-order nonlinear term.

If the eigenvalue \; is complex and A real, then there
will be a second eigenvalue )\j:)\f. The eigenvalues be-
come unstable in pairs when Re \;=0. The system then
begins to oscillate with angular frequency Im \;. The in-
stability is known as a Hopf bifurcation.

One situation that is seldom discussed in introductory
feedback texts but is familiar to physicists studying non-
linear dynamics is the distinction between subcritical
and supercritical bifurcations (analogous to first- and
second-order phase transitions). Supercritical bifurca-
tions refer to the case described above, where the sys-
tem is stable until A=0, where the mode spontaneously
begins to grow. But if the lowest nonlinear term is posi-
tive, it will reinforce the instability rather than saturating
it. Then the lowest-order negative nonlinear term will
saturate the instability. For example, a subcritical pitch-
fork bifurcation would be described by

Vi= Ny +by; — ¢y}, (4.5)

and a subcritical Hopf bifurcation by
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— e
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Superecritical Subcritical

FIG. 11. (Color in online edition) Two scenarios for a pitch-
fork bifurcation, showing steady-state solution y as a function
of the control parameter \: (a) supercritical; (b) subcritical,
where the arrows show the maximum observable hysteresis.

Yi=N\yi+blyLyi—clyl'y:. (4.6)
In both these cases, the y;=0 solution will be metastable
when Re )\; is slightly positive. At some finite value of
Re \;, the system will jump to a finite-amplitude solu-
tion. On reducing Re \;, the eigenvalue will be slightly
negative before the system spontaneously drops down to
the y,=0 solution. For a Hopf bifurcation, the discussion
is the same, except that y is now the amplitude of the
spontaneous oscillation. Thus subcritical instabilities are
associated with hysteresis with respect to control-
parameter variations. In the context of control theory, a
system with a subcritical bifurcation might suddenly go
unstable when the gain was increased beyond a critical
value. One would then have to lower the gain a finite
amount below this value to restabilize the system. Super-
critical and subcritical pitchfork bifurcations are illus-
trated in Fig. 11.

B. Stability ideas in feedback systems

As mentioned before, in a closed-loop system, varying
parameters such as K, or K; in the feedback law will
continuously vary the system’s eigenvalues, raising the
possibility that the system will become unstable. As
usual, one can also look at the situation in frequency
space. If one has a closed-loop transfer function T
=KG/(1+KG), one can see that if KG ever equals —1,
the response will be infinite. This situation occurs at the
bifurcation points discussed above. (Exponential growth
implies an infinite steady-state amplitude for the linear
system.) In other words, in a feedback system, instability
will occur when |KG|=1 with a simultaneous phase lag
of 180°.

The need for a phase lag of 180° implies that the
open-loop dynamical system (combination of the origi-
nal system and feedback compensation) must be at least
third order to have an instability. Since the transfer func-
tion of an nth-order system has terms in the denomina-
tor of order §”, the frequency response will asymptoti-
cally be (iw)™, which implies a phase lag of nw/2. (This
is just from the i term.) In other words, as Figs. 3 and
4 show, a first-order system lags 90° at high frequencies,
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a second-order system lags 180°, etc. Thus a second-
order system will lag less than 180° at finite frequencies,
implying that at least a third-order system is needed for
instability."”

As an example, we consider the integral control
of a (degenerate) second-order system, with G(s)=1/
(1+75)? and K(s)=K,/s. Instability occurs when K(iw)
X G(iw)=-1. This leads to

. 2
00 g 2T
K.

i i

+1=0. (4.7)

Both real and imaginary parts of this complex equation
must vanish. The imaginary part implies w“=1/7, while
the real part implies K; =2/7; i.e., when K; is increased
to the critical value 2/7, the system goes unstable and
begins oscillating at w=1/7.

Bode plots are useful tools in seeing whether a system
will go unstable. Figure 12 shows the Bode magnitude
and phase plots for the second-order system described in
the paragraph above, with 7=1. The magnitude response
is plotted for two different values of the integral gain K;.
Note how changing a multiplicative gain simply shifts
the response curve up on the log-log plot. In this simple
case, the phase response is independent of K;, which
would not in general be true. For K;=1, we also show
explicitly the gain margin, defined as the factor by which
the gain must be increased to have instability, at the fre-
quency where the phase lag is 180°. (We assume an
open-loop-stable system.) Similarly, the phase margin is
defined as the phase lag at the frequency where the mag-
nitude response is unity. In Fig. 12, the gain margin is
about a factor of 2, and the phase margin is about 20°. A
good rule of thumb is that one usually wants to limit the
gain so that the gain margin is at least a factor of 2 and
the phase margin at least 45°. For small gain margins,
perturbations decay slowly. Similarly, a 90° phase margin
would correspond to critically damped response to per-
turbations, and smaller phase margins give under-
damped dynamics. The curve drawn for K;=2 shows that
the system is at the threshold of instability (transfer-
function response=1, phase lag=180°).

10Here, we are implicitly assuming the (common) scenario
where instability arises dues to time delay (two poles with con-
jugate imaginary parts cross the imaginary s axis together).
Another case arises when a real pole crosses the imaginary s
axis from the left. Still other cases arise if the system is intrin-
sically unstable: then, increasing a feedback gain can actually
stabilize the system. For example, the unstable inverted pen-
dulum discussed below in Sec. IV.D can be stabilized by in-
creasing the gains of proportional and derivative feedback
terms (Sontag, 1998). These cases can all be diagnosed and
classified using the Nyquist criterion, which involves examining
a polar plot of [K(s)G(s)sie] for 0<w<co in the complex
plane (Dutton et al., 1997); see Sec. V.E for examples of such a
polar plot. In any case, it is usually clear which case is relevant
in a given problem.
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FIG. 12. (Color in online edition) Transfer function for a de-
generate second-order system with integral control, showing
gain and phase margins for K;=1. (a) Bode magnitude plot; (b)
Bode phase plot.

C. Delays: Their generic origins and effect on stability

We see then that integral control, by raising the order
of the effective dynamical system by one, will always
tend to be destabilizing. In practice, the situation is even
worse, in that one almost always finds that increasing the
proportional gain also leads to instability. It is worth
dwelling on this to understand why.

As we have seen, instability occurs when K(s)G(s)
=-1. Because we evaluate KG at s=iw, we consider
separately the conditions |[KG|=1 and phase lag=180°.
Since a proportional-gain law has K=K, increasing the
gain will almost certainly eventually lead to the first con-
dition’s being satisfied.

The question is whether G(s) ever develops a phase
lag>180°. Unfortunately, the answer in practice is that
most physical systems do show lags that become impor-
tant at higher frequencies.

To see one example, consider the effect of reading an
experimental signal into a computer using an analog-to-
digital (A/D) converter. Most converters use a “zero-
order hold” (ZOH). This means that they freeze the
voltage at the beginning of a sampling time period, mea-
sure it over the sample period 7, and then proceed to
freeze the next value at the start of the next sampling
interval. Figure 13 illustrates that this leads to a delay in
the digitized signal of Ar=T,/2.

Even in a first-order system, the lag will make propor-
tional control unstable if the gain is too large. The block
diagram now has the form shown in Fig. 14, where we
have added a sensor with dynamics H(s)=e™*, corre-
sponding to the digitization lag. From the block dia-
gram, one finds
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Ts

FIG. 13. Zero-order-hold digitization of an analog signal.
Points are the measured values. Note that their average im-
plies a sampling delay of half the sampling interval, 7.

KG

=—r(s). 4.8
y(s) s KGHr(S) (4.8)
An instability occurs when KGH=-1, i.e., when
1
A= 4.9
P14 sre 49)

Since |H|=1, |KGH]| has the same form as the undelayed
system, Kp/v’1+w27—2. To find the frequency where the
phase lag hits 180°, we first assume that Az<< 7, so that on
increasing w we first have the 90° phase shift from the
low-pass filter. Then when e *=¢ Y =_j(wAt=1/2),
the system is unstable. This occurs for o"=m/2Ar and
K=Al1l+ (7_7>2i ~
P 2) AP

TT T
2At_7TTS’ (4.10)
i.e., the maximum allowed gain will be of order 7/Tj,
implying the need to sample much more frequently than
the time scale 7in order for proportional feedback to be
effective. In other words, the analog-to-digital-induced
lag—and any other lags present—will limit the maxi-
mum amount of gain one can apply.

Although one might argue that delays due to analog-
to-digital conversion can be avoided in an analog feed-
back loop, there are other generic sources of delay. The
most obvious one is that one often wants to control
higher-order systems, where the delay is already built
into the dynamics one cares about. For example, almost
any mechanical system is at least second order, and if

r(s) ) ke S 6 oo yie)

H(s) |=

FIG. 14. Block diagram of feedback system with nontrivial
sensor dynamics, given by H(s).
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one wants integral control, the effective system is third
order. A more subtle point is that the ODE models of
dynamical systems that we have been discussing are al-
most always reductions from continuum equations. Such
a system will be described by partial differential equa-
tions that have an infinity of normal modes. The larger
the system, the more closely spaced in frequency are the
modes. Thus if one measures G(iw) at higher frequen-
cies, we expect to see a series of first- and second-order
frequency responses, each one of which adds its 90° or
180° phase lag to G.

In the limit of large systems and/or high frequencies,
the modes will be approximately continuous, and we will
be guaranteed that the system will lag by 180° for high
enough frequencies. We can consider an example [sim-
plified from a discussion in Forgan (1974)] of controlling
the temperature of a thermometer embedded in a long
(semi-infinite) bar of metal, with a heater at one end; see
Fig. 15. The temperature field in the bar obeys, in a
one-dimensional approximation,

D 7T _oT (4.11)
> o’ '
where D=N/pC, is the thermal diffusivity of the bar,
with \ the thermal conductivity, p the density, and C,, the
heat capacity at constant pressure. The boundary condi-
tions are

T(x — ) =T, (4.12)
aT .

N —|  =Jge i, (4.13)
ox (0,0

with J, the magnitude of the power input.11 In order to
construct the transfer function, we assume a sinusoidal
power input at frequency w. The solution to Egs.
(4.11)—(4.13) is given by

T(x,t)-T. 1

ei(kx+7r/4)e—kx
—i - I ]
J()e 1ot \1’2)\](

(4.14)

where k=Vw/2D and where we have written the solu-
tion in the form of a transfer function, evaluated at s
=iw. If, as shown in Fig. 15, the thermometer is placed at
a distance L from the heater, there will be a phase lag
given by kL + /4. This will equal 180° at a critical fre-
quency

« 9 ,D
wzgﬂ'zp.

In other words, there will always be a mode whose
frequency " gives the critical phase lag. Here, D/L?
may be thought of as the characteristic lag, or time it

(4.15)

"0ne usually imposes an ac voltage or current across a resis-
tive heating element. Because power is the square of either of
these, the heater will inject a dc plus 2w signal in the experi-
ment. One can compensate for this nonlinearity by taking, in
software, the square root of the control signal before sending it
to the heater.
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takes heat to propagate a distance L in the bar. In con-
trolling the temperature of such a system, the controller
gain will thus have to be low enough that at o, the
overall transfer function of system [Eq. (4.14) multiplied
by the controller gain] is less than 1. The calculation is
similar to the one describing digitization lag.

The overall lesson is that response lags are generic to
almost any physical system. They end up limiting the
feedback gain that can be applied before spontaneous
oscillation sets in. In many cases, a bit of care in the
experimental design can minimize the pernicious effects
of such lags. For example, in the temperature-control
example discussed above, an immediate lesson is that
putting the thermometer close to the heater will allow
larger gains and tighter control (Forgan, 1974). Of
course, the thermometer should also be near the part of
the sample that matters, leading to a possible design
tradeoff.

D. Nonminimum-phase systems

Delays, then, are one generic source of instability. An-
other arises when the system transfer function G(s) has a
zero in the right-hand plane. To understand what hap-
pens, consider the transfer functions Gi(s)=1 and
G,(s)=(1-s)/(1+s). Both have unit amplitude response
for all frequencies [they are “all-pass” transfer functions
(Doyle et al., 1992)], but G; has no phase lag while G,
has a phase lag that tends to 180° at high frequencies.
Thus all of our statements about leads and lags and
about gain and phase margins must be revised when
there are zeros in the right-hand side of the s plane.
Such a transfer function describes a nonminimum-phase
system in control-theory jargon.'? In addition to arising
from delays, they can arise, for example, in controlling
the position of floppy structures—e.g., the tip of a fishing
rod or, to use a time-honored control example, the bob
of a pendulum that is attached to a movable support.
(Think of balancing a vertical stick in your hand.)

The term “nonminimum-phase” refers to Bode’s gain-phase
relationship, which states that for any transfer function L(s)
with no zeros or poles in the right-hand plane, if L(0) >0, the
phase lag ¢ is given by

d(wp) = }fo % ln|L(iw)ln[coth(%>:|dv,

with v=In(w/ w,) the normalized frequency. [See Ozbay (2000),
but note the misprint.] The phase at w, thus depends on |L|,
over all frequencies. However, if |L|~ o™ over at least a de-
cade centered on wy, then Eq. (4.16) is well approximated by
¢(wy) =-nr/2. Transfer functions that have more than this
minimum lag are nonminimum phase systems. See Franklin et
al. (1998), pp. 254-256. One can show that a general transfer
function G(s) can always be written as the product G(s)G»(s),
where Gy(s) is minimum phase and G,(s) is an all-pass filter
with unit amplitude response; see Doyle et al. (1992), Sec.
VLB.

(4.16)
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J gl T(x,t) .

x=0 x=L

FIG. 15. Control of the temperature of a probe located a dis-
tance L inside a metal bar, with heater at the bar’s end.

If a nonminimum phase system has an odd number of
zeros in the right-hand plane, the time response to a step
will initially be in the direction opposite the control sig-
nal, so that is one indication that such behavior is
present (Vidyasagar, 1986). The controller must be
“smart enough” to handle the opposite response of the
system. Another way to see that nonminimum phase sys-
tems can be difficult to control is to note the effects of
increasing the overall controller gain. We write the sys-
tem transfer function G(s)=Ng(s)/Dg(s) and the con-
troller as K(s)=K,Ng(s)/Dg(s), where K, is an overall
gain. The loop gain L(s)=K(s)G(s)=K,N(s)/D(s), and
the sensitivity function S(s) (Sec. III.A) is given by

1 D(s)
“1+L D(s)+K,N(s)’

Instabilities arise when the denominator of S, x(s)
=D(s)+K,N(s)=0. Clearly, as K, increases, the zeros of
x(s) move from the roots of D(s) to the roots of N(s). In
other words, the poles of the closed-loop system move
towards the zeros of the open-loop system.

As an example, consider

S—Z
(s=p)s-p°)

and K(s)=K,. Then x(s)=s*+[-(p+p")+K,ls+pp’
—K,z. Figure 16 graphs the closed-loop poles in the
complex s plane as a function of K,,. Such “root-locus”
plots can be useful in getting an intuition about a sys-
tem’s dynamics.13 Note that while one often plots the
pole movement as a function of overall gain, one can do
the same for any parameter.

To get a feel for how and when nonminimum phase
systems arise, we consider the example of balancing a
rod in one’s hand (Doyle et al., 1992). See Fig. 17 for an
illustration, where the hand is idealized as a mass M
constrained to move horizontally, and the rod is taken to
be a simple pendulum with massless support of length L

G(s) = (4.18)

BSince the point of root-locus plot is to build intuition, one
might wonder whether the traditional way of presenting such
plots, as exemplified by Fig. 16, is the best one can do. Indeed,
the more modern way to make a root-locus plot is to do so
interactively, using a mouse to drag a slider controlling some
parameter while updating the pole positions in real time. Such
features are implemented, for example, in the MATLAB Control
Toolbox (see Sec. V.C.2 on commercial tools) or are easy to
create in more general graphics applications such as IGOR PRO
(Wavemetrics, Inc.) or SYSQUAKE (Calerga Sarl).
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and a bob of mass m. The deflection of the rod about the
unstable vertical equilibrium is given by 6. The position
of the hand (and bottom of rod) is [x;(¢),0] and that of
the rod end (bob) is [x,(¢),y,(¢)]. The Lagrangian £=T
-Vis
1

= EMx% + Em(xg + y%) —mgL cos 0, (4.19)

with x,=x;+L sin # and y,=L cos 6. If we neglect fric-

tion, this leads to nonlinear equations of motion for x;
and ¢

(M + m)i; + mL(8cos 6— 6 sin 6) = u,
(4.20)
m(¥; cos O+ LO—gsin 6) =d,

where u(f) is the force exerted by the hand and d(¢) is
any disturbing torque on the rod itself. Linearizing
about the unstable vertical equilibrium, we have

(M + m)x; + mLO=u,
(4.21)

. 1
X+ LO-go=—d.
m

The system transfer function from u to x; (rod bottom)
is then easily found to be G(s)=(Ls>-g)/D(s), with
D(s)=s’[MLs*>~(M+m)g]. One can see that G, is un-
stable, with right-hand plane (RHP) poles at 0, 0, and
VM +m)g/ML, and nonminimum phase, with a right-
hand plane zero at V’g/—L. On the other hand, the trans-
fer function between u and x, (rod top) is G,(s)
=—g/D(s). This has the same poles as G; but lacks the
right-hand plane zero. Thus G, is nonminimum phase,
while G, is not. The conclusion is that it is much easier
to balance a rod looking at the top (i.e., measuring x,)
than it is looking at the bottom (i.e., measuring x;). The
reader can easily check this; a meter stick works well as
a rod.

An example of a nonminimum phase system that
arises in physics instrumentation is found in a recent
study of the dynamics of a piezoelectric stage (Salapaka
et al., 2002). The article has a good discussion of how the
odd impulse response of such nonminimum phase sys-
tems make them more difficult to control and what to do
about them.

E. MIMO vs SISO systems

In Sec. III.C, we distinguished between multiple-
input-multiple-output (MIMO) and single-input-single-
output (SISO) systems. Here, we discuss briefly why
MIMO systems are usually harder to control. Although
MIMO systems are usually defined in the state-space
formulation [e.g., Eq. (2.2)], they can also be defined in
the frequency domain. One uses a matrix of transfer

functions G(s), where the ij element, g;(s), is the ratio
x(s)/us), that is, the ratio of the ith output to the jth
input. Let us consider a simple example that illustrates
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FIG. 16. (Color in online edition) Root-locus plot of the poles
of Eq. (4.18) as a function of the gain, with z=1 and p=-1+i.
The crosses denote the poles when K, =0, while the circle de-
notes the zero. The two poles approach each other, meeting
and becoming real when Kp:—4+2\s’5%0.47‘ One root then
approaches 1 as K, — o, crossing zero at K,=2, while the other
root goes to —o. The system becomes unstable at K,=2.

the extra difficulties that multiple inputs and outputs can
bring. Recall that for the SISO case, a first-order system
[1/(1+7s)] is stable under proportional feedback for any
positive gain k [Egs. (3.3) and (3.4)]. Consider now a 2
X 2 generalization

1 1
~ 1+ G 1+ S
Gis) = (4.22)
1 1
1+ ™S 1+ G

If one prefers a physical picture, think about a shower
where pipes carrying hot and cold water are mixed to
form a single stream. The shower output is characterized
by an overall flow and temperature. Assuming there are
separate hot and cold shower knobs, one has two control
inputs and two outputs. If the 7's in Eq. (4.22) were all
different, they would reflect the individual time con-
stants to change flow and temperature. The rather unre-
alistic choice of 7s in Eq. (4.22) simplifies the algebra.
Let us now try to regulate the shower’s temperature
and flow by adjusting the hot and cold flows with pro-
portional gains k that are assumed identical for each.

The controller matrix K(s) is then k1, with 1 the 2X2
identity matrix. The loop stability is determined by the

matrix analog of Eq. (3.2), S=(1+GK)™!, where the
closed-loop system is unstable when one of the eigenval-

ues of S has positive real part for any value of s=iw,
generalizing the ideas of Sec. IV.B. (Recall that the or-
der of matrix multiplication matters.) After some ma-

nipulation, one can easily show that the eigenvalues of S
are given by

1
1+ k[1/(1 +7s) £ /(1 + ms)]

N.(s) = (4.23)
The negative root A_ has poles at
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Tsz—<1+@)i (4.24)

27

kAT (kAT)Z
RAT  (XaT)

T 27

where 7= 7, =7and A7=m,— 7. This implies an instabil-
ity for gains larger than k"~27/(7— 7). Thus, for 7
> 1,, the system will be unstable using only proportional
gain, in contrast to its SISO analog. Comfortable show-
ers are not easy to achieve, as anyone who has been in
the shower when someone else flushes the toilet can at-
test!

The reason that MIMO systems are so “touchy” is

roughly that the sensitivity matrix S has different gains
in different directions.'* If the largest and smallest ei-

genvalues of S are Nmax and N, respectively, then the
maximum gain one can apply before the system is un-
stable is determined by A, While the closed-loop band-
width is set by A;,. Thus systems with widely ranging
eigenvalues will have compromised performance. A
measure of the severity of this compromise is given by
the ratio N,/ Apin, Known as the condition number of

the matrix S. (More generally, this discussion should be
phrased in terms of singular values, rather than
eigenvalues.”” Also, since singular values—like

4 Another reason that the specific G(s) in Eq. (4.22) is diffi-
cult to control is that it has rank 1 at zero frequency. (The
determinant vanishes at dc.) The system is thus nearly
uncontrollable—in the technical and intuitive senses of the
word—at low frequencies.

BThe eigenvalue is not the right quantity to characterize the
gain, in general, for two reasons: First, whenever the number
of inputs differs from the number of outputs, the matrix S is
not square. Second, eigenvalues give only the gain along cer-
tain directions and can miss subtle types of “cross gains.” For
example, consider the matrix

A
“\100 1/’

which implies that the unit input (1 0)7 gives rise to an output
(1 100)7, which has a gain of roughly 100, even though the two
eigenvalues of S are unity. The appropriate generalization of
the notion of eigenvalue is that of a singular value. The

(4.25)

singular-value decomposition of an m X n matrix S is given by
S= UEVT, where U is an m X m unitary matrix, VT is the trans-
pose of an n X n unitary matrix, and where S is an m X n matrix
that contains k=min({m,n}) non-negative singular values o;
(Skogestad and Postlethwaite, 1996). For example, one can
show that

T
Umax(S) =w u

— (4.26)
11,

where ||-|l, denotes the Euclidean norm. Equation (4.26) states
that o, is the largest gain for all inputs w. This quantity is
then the largest singular value of S. One can also show that the

o’s are the square roots of the eigenvalues of S7S. In the ex-
ample of Eq. (4.25), one finds the singular values o are =1 and
~100, showing that the singular values capture better the

“size” of S than do the eigenvalues.
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FIG. 17. Model of a hand balancing a vertical rod.

eigenvalues—depend on frequency, the statements
above should be interpreted as having to apply at each
frequency.)

We do not have space here to explore the various

strategies for dealing with a system G that is ill condi-
tioned (i.e., has a large condition number), except to
point out the obvious strategy that if one can implement

a controller K(s)=G(s)™!, then one will have effectively
skirted the problem. Indeed, any controller leading to a

diagonal “loop matrix” L(s)=GK will reduce the prob-
lem to one of independent control loops that may be
dealt with separately, thus avoiding the limitations dis-
cussed above. Note that it may be sufficient to diagonal-

ize L in a limited frequency range of interest. Unfortu-
nately, this “ideal” strategy usually cannot be
implemented, for reasons of finite actuator range and
other issues we have discussed in connection with the
SISO case. One can can try various compromises, such

as transforming L to a block-diagonal matrix and reduc-
ing the condition number (Skogestad and Postle-
thwaite, 1996).

V. IMPLEMENTATION AND SOME ADVANCED TOPICS

The ideas in the above sections are enough to make a
good start in applying feedback to improve the dynamics
of an experimental system. There are, however, some
subtle points about implementing feedback in practice,
which lead to more advanced methods. First, we have
previously assumed that one knows the system dynamics
G(s), but this often needs to be determined experimen-
tally. We accordingly give a brief introduction to the sub-
ject of experimental measurement of the transfer func-
tion and “model building.” If the resulting model is too
complicated, one should find a simpler, approximate
model, using “model reduction.” Second, one must
choose a controller, which implies choosing both a func-
tional form and values for any free parameters. These
choices all involve tradeoffs, and there is often an opti-
mum way to choose. Third, modern control systems are
usually implemented digitally, which introduces issues
associated with the finite sampling time interval 7.
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Fourth, measurements are almost always contaminated
by a significant amount of noise, which as we have al-
ready seen in Eq. (3.13), can feed through to the actua-
tor output of a controller. Fifth, control is always done in
the face of uncertainty—in the model’s form, in the pa-
rameters, in the nature of disturbances, etc., and it is
important that feedback systems work robustly under
such conditions. We consider each of these in turn.

A. Experimental determination of the transfer function

Although often overlooked by hurried experimental-
ists, the proper place to begin the design of a control
loop is with the measurement of the system transfer
function G(s) the frequency-dependent ratio of system
output to input. [Even if you think you know what G(s)
should be, it is a good idea to check out what it is.] This
topic is deceptively simple, because it actually implies
four separate steps: First, one must measure experimen-
tally the transfer function; second, one must fit a model
transfer function to it; third, because a full description of
the experimental transfer function usually leads to very
high-order systems, one needs a way to approximate a
high-order system accurately by a lower-order system;
and fourth, one should always ask whether the system
can be “improved” to make control easier and more ef-
fective.

1. Measurement of the transfer function

The transfer function G(s) can be inferred from Bode
amplitude and phase plots. The simplest way to make
such measurements requires only a function generator
and an oscilloscope (preferably a digital one that mea-
sures the amplitudes and phases between signals). One
inputs a sine wave from the function generator into the
experimental input u(f) and records the output y(z). (We
assume a SISO system, but the MIMO generalization is
straightforward.) By plotting the input and output di-
rectly on two channels of an oscilloscope, one can read
off the relative amplitude and phase shifts as a function
of the driving frequency. A better technique is to use a
lock-in amplifier, which gives the amplitude and phase
shifts directly, with much higher precision than an oscil-
loscope. They often can be programmed to sweep
through frequencies automatically. (“Dynamic signal
analyzers” and “network analyzers” automate this task.)
Bear in mind, though, that the transfer function mea-
sured may not be fixed for all time. For example, the
frequency of a mechanical resonator varies with its ex-
ternal load. For this reason, a good control design
should not depend crucially on an extraordinarily accu-
rate determination of the transfer function. We will pur-
sue this point in Sec. V.E, on robust control.

The above discussion shows how to measure the
transfer function directly in the frequency domain.
Whenever such a measurement is possible, the results
are very intuitive, and I would recommend this ap-
proach. However, for slow systems, a very long time may
be required to measure the transfer function, and one
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may prefer time-domain methods—indeed, they are
standard in the control field. The basic idea is to excite
the system with a known input u(f) and measure the
response y(f). One then computes the correlation func-
tion R, (7) between the input and output R, (7)
=(u(t)y(t+ 7)) and also R,,(7)=(u(t)u(t+ 7)), the autocor-
relation function of the input. The transfer function G(s)
is then found by taking the Fourier transforms of R,
and R,, and computing G=R,,/ RW.16 Time-domain
methods are more efficient than frequency methods be-
cause u(f) can contain all frequencies—using the sys-
tem’s linearity, one measures all frequencies in a Bode
plot simultaneously.'’

In theory, one could choose u(f) to be an impulse,
which means that R,,(7) would be the impulse response
function [the Fourier transform of G(s=iw)]. In practice,
it is often hard to inject enough energy to make an ac-
curate measurement. A step-function input, which has a
power spectrum 1/w?, is very easy to implement and
injects enough energy at low frequencies. At higher fre-
quencies, the injected energy is low and noise domi-
nates. Another good choice for u(¢) is a pseudorandom
binary sequence (PRBS), which is a kind of randomly
switching square wave that alternates stochastically be-
tween two values. This shares with the delta-function
input the property of having equal energies at all rel-
evant frequencies. For an introduction, see Dutton et al.
(1997); for full details, see Ljung (1999).

At this stage, it is also good to check the linearity of
the system. At any frequency, one can vary the input
amplitude and record the output amplitude. Note that
nonlinear effects can be hysteretic—the response upon
increasing the input may be different from that obtained
upon decreasing the input. Almost all of the techniques
described here are designed to work with linear systems.
They may be adequate for small nonlinearities but will
fail otherwise (cf. Sec. VI). Remember, though, that one
can use linear techniques to stabilize a system about a
setpoint, even if there are strong nonlinearities as the
setpoint is varied. This was the case in the interferom-
eter example discussed in Sec. IIL.D.1. If the system is
locally linear, the structure of the measured transfer
function is usually constant as one varies the set point,
but the positions of poles and zeros vary smoothly. One
can then design a controller whose parameters vary
smoothly with set point, as well.

%Here is a quick proof, following Doyle ef al. (1992). In the
time domain y(r)=[7_ G(¢")u(t—t")dt’. Multiplying both sides
by u(f) and shifting by 7 gives u(t)y(t+7) =" .Gt )u(t)u(t+r
—t')dt'. Averaging gives R, (7)=G#*R,, (7). Then Fourier
transform and use the convolution theorem.

"Time-domain methods may also be generalized to nonlinear
systems. One looks at higher-order correlations between input
and output, e.g., Ry, (71,7)=y(Ox(t-7)x(t-7)) (Wiener,
1958). These techniques are widely used to study neuron-firing
dynamics (Rieke et al., 1997).
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2. Model building

Given measurements of the transfer function at a set
of frequencies s;, G(s;), one should work out a reason-
able analytic approximation. Of course, any physics of
the system should be included in the model, but often
systems are too complicated to model easily. In such
cases, one tries to make a model from standard
elements—poles and zeros, which individually corre-
spond to low- and high-pass filters (first order), reso-
nances and antiresonances (second order), as well as de-
lays, which technically are “infinite order,” since they
cannot be written as a ratio of finite polynomials. It usu-
ally is possible to do this, as most often the system can
be decomposed into modes with reasonably well-
separated frequencies. If there are many nearly degen-
erate modes, or if the system is best described as a spa-
tially extended system, then these techniques can break
down, and one should refer to the various control-theory
texts for more sophisticated approaches. Usually, one
can do quite well looking for 90° and 180° phase shifts
and identifying them with first- and second-order terms.
Remember that lags correspond to terms in the denomi-
nator and leads (forward phase shifts) correspond to
terms in the numerator. Any linear phase shift with fre-
quency on the Bode plot corresponds to a lag in the time
domain. (If the signal is digitized and fed to a computer,
there will be such a lag, as discussed in Sec. IV.C; cf. Sec.
V.C, below.) Once there is a reasonable functional form,
one can determine various coefficients (time constants,
damping rates, etc.) by a least-squares fit to the mea-
sured transfer function. Alternatively, there are a num-
ber of methods that avoid the transfer function com-
pletely: from a given input u(¢f) and measured response
y(1), they directly fit to the coefficients of a time-domain
model or directly give pole and zero positions (Ljung,
1999).

3. Model reduction

If the result of the model-building exercise is a high-
order system, then it is often useful to seek a lower-
order approximation. First, such an approximation will
be simpler and faster to compute. This may be impor-
tant in implementing a controller, as we have already
seen that state-space controllers require observers,
which require one to model the system dynamics on a
computer much more rapidly than time scales of the real
dynamics. (The same remark applies to the choice of a
controller—lower-order ones are easier to implement.)
The second reason for preferring low-order approxima-
tions is that the smaller, higher-order parts of the dy-
namics are not very robust, in the sense that any param-
eters tend to vary more than the “core” parts of the
dynamical system. We will return to this in our discus-
sion of robust systems, below (Sec. V.E).

Given Bode magnitude and phase plots of experimen-
tal data for a given transfer function, how should one
simplify the functional form? The obvious strategy is
truncation: one simply keeps enough terms to fit the
transfer function accurately up to some maximum fre-
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quency g, At a minimum, one should have
>wy, the desired feedback bandwidth. Ideally, one
should keep enough terms that the gain (relative to the
zero-frequency, or dc, gain) at w,,, is <1. Note that the
usual structure of transfer functions means that higher-
order terms are multiplied, not added, onto lower-order
terms, i.e., that we truncate a system

[

§—Z;

G(s)=11 (5.1)
ij=15~Pj
to
s—2z/
G(s) =11 —=, (5.2)
ij=15~D;j

where the last (Nth) pole or zero occurs at a frequency
~wpn. Note that the zeros and poles of the reduced
system—found by refitting the data to the truncated
form for G(s)—will in general differ from the “exact
values” of lower-order zeros/poles of the full system.18
While the above method seems straightforward, it is
not always the best thing to do. For example, if there
happens to be a high-frequency mode (or modes) with a
large amplitude, neglecting it may not wise. A more
subtle situation is that there may be so many high-
frequency modes that even though the amplitude of any
one is small, they may have a collective effect. To deal
with such cases, one strategy is to try to order the sys-
tem’s modes not by frequency but by some measure of
their “importance.” One definition of importance is in
terms of the Hankel singular values of the system trans-
fer function G(s). The detailed discussion is beyond the
scope of this tutorial, but the rough idea is to appeal to
the notions of controllability and observability of the

¥Note that my definition of truncation differs from that used
in standard control texts, such as Skogestad and Postle-
thwaite (1996), Chap. 11. There, the authors first define a trun-
cation where the poles and zeros are held to be the same. If
one then looks at the difference between the exact transfer
function and its truncated approximation, one sees that they
differ most at low frequencies and the difference goes to zero
only at infinite frequencies. But the whole point of doing a
truncation is almost always to capture the low-frequency dy-
namics while disregarding high frequencies! Thus this kind of
truncation seems unlikely to be useful in practice. Skogestad
and Postlethwaite (1996) then go on to introduce “residualiza-
tion” (physicists would use the terms “slaving” or adiabatic
elimination of fast variables), where, in the time domain, the
fast mode derivatives are set to zero and the steady states of
the fast modes are solved. These instantaneous or adiabatic
steady states are then substituted wherever fast variables ap-
pear in the equations for the remaining slow modes. The equa-
tions for the slow modes then form a smaller, closed set. If the
modes are well behaved—i.e., well separated in frequency
from each other—then the procedure described in the text,
fitting to a form up to some maximum frequency, will give
essentially equivalent results. Both methods share the property
of agreeing well at low frequencies up to some limit, above
which the approximation begins to fail.
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system modes discussed above. The singular values of
the matrix describing controllability rank the effect of an
input on a particular system mode, while the singular
values of the matrix describing observability rank the
effect of the dynamics on a particular output mode. The
product of the relevant two matrices (“gramians”) then
gives the strength of “input-output” relationships of
each mode of the system. One can show that it is pos-
sible to use the freedom in defining a state-space repre-
sentation of a system to make these gramian matrices
equal—the “balanced representation.” Ordering these
balanced modes by their singular values and retaining
only the largest ones gives a systematic approach to
model reduction (Skogestad and Postlethwaite, 1996).

The kind of systematic model reduction discussed
above has recently attracted the attention of statistical
physicists, who are faced with a similar task when
“coarse-graining” dynamics in a thermodynamic system.
For example, if one considers a small number of objects
in contact with many other elements of a “heat bath,”
then a common strategy is to integrate out the degrees
of freedom corresponding to the bath. One derives thus
a reduced dynamics for the remaining degrees of free-
dom. A similar task arises when one uses the renormal-
ization group (Goldenfeld, 1992). Coarse graining is thus
a kind of model reduction. The interest in control strat-
egies is that they give a systematic way of handling a
general system, while the usual coarse-graining strategy
is more ad hoc and fails, for example, when naively ap-
plied to spatially inhomogeneous systems. A recent pa-
per by Reynolds (2003) explores these issues.

4. Revisiting the system

We close by noting that determination of the transfer
function has two meanings: Whatever the system dy-
namics are, the experimentalist should measure them;
but the experimentalist also has, in most cases, the
power to influence greatly, or determine, the system it-
self. If a system is hard to control, think about ways of
changing it to make control easier. (This is a basic differ-
ence in philosophy from most engineering texts, where
the system—*“plant” in their jargon—is usually a given.)
Often, the experimentalist simultaneously designs both
the physical (mechanical, electrical) aspects and the con-
trol aspects of an experiment. We have already seen two
examples: in temperature control, where minimizing the
physical separation between heater and thermometer
makes a system much easier to control and allows higher
performance; and in balancing the rod, where one
should look at the top of the rod, not the bottom. More
generally, one should minimize the delay and/or separa-
tion between the actuator and its sensor. Another area
in which good design plays a role is in the separation of
modes. As we have discussed above, closely spaced
modes are difficult to control, and it usually pays to
make different modes as widely spaced in frequency as
possible. For example, if one is trying to isolate vibra-
tions, the apparatus should be as small and cube shaped,
to maximize the frequency separation between the soft
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isolating spring and the lumped experimental mass and
the internal modes of the experimental apparatus. In the
next section, we shall see that systems that are up to
second order over the frequency range of interest may
be perfectly controlled by the elementary “PID” law
commonly found in commercial controllers but higher-
order systems in general cannot be adequately con-
trolled by such laws.

Another example of how the design of an experimen-
tal system determines the quality of control comes from
my own laboratory, where we routinely regulate tem-
perature to 50 uK rms near room temperature, i.e., to
fractional variations of 2 X 107 (Metzger, 2002; Yethiraj
et al., 2002). In order to obtain such performance, the
simple proportional-integral (PI) law described above
sufficed. [A more sophisticated control algorithm would
have further improved the control, but we did not need
a better performance. As an example, Barune et al
(1995) use loop-shaping techniques—see Sec. V.B.2
below—to achieve 20-uK control of the temperature of
a laser diode.] The crucial steps all involved the physical
and electrical design of the system itself. One important
idea is to use a bridge circuit so that the error signal is
centered on zero rather than about a finite level and
may thereafter be amplified. We minimized sensor noise
by using a watch battery to power the bridge."” The
overall performance turned out to be set by the tem-
perature variations in the nonsensor resistors in the
bridge. The best place to have put these would have
been next to the sensor resistor itself, as that is where
the temperature is most stable. In our case, that was
inconvenient, and we put them inside a thick styrofoam
box. Slow variations in the bridge temperature then
show up as setpoint drifts that cannot be corrected by
the simple feedback loop; however, the temperature was
very stable on the 1-min time scale of our particular
experiment. To stabilize over longer times, we could
have added a second feedback loop to regulate the tem-
perature of the external components of the bridge. The
time scales of the two controllers should be well sepa-
rated to decouple their dynamics. The idea of using
nested stages of dynamically decoupled feedback loops
can lead to outstanding performance. Perhaps the ulti-
mate example is a four-stage controller developed by the
group of Lipa, which achieved stabilities on the order of
1071 K at low temperatures (2 K) (Day et al. 1997).

B. Choosing the controller

Having identified the system (and, perhaps, having al-
ready made the system easier to control), we need to
choose the control algorithm. In the frequency-domain

One would be tempted to use a lock-in amplifier to supply
an ac voltage to the bridge. The lock-in technique, by centering
the bandwidth about a finite carrier frequency, can lower sen-
sor noise by moving the passband to a high enough frequency
that 1/f noise is unimportant. In our own case, this was not the
limiting factor for performance.
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approach, this means choosing the dynamics K(s). This
task is commonly broken down into two parts: choosing
a general form for K(s) and choosing, or “tuning,” the
free parameters.

1. PID controllers

Probably the most common form for K(s) is the PID
controller, which is a combination of proportional, inte-
gral, and differential control:

K.
K(s)=K,+— +Kygs, (5.3)
s

where K,, K;, and K, are parameters that would be
tuned for a particular application. We have already dis-
cussed the general motivations for proportional and in-
tegral control. The intuitive justification for derivative
control is that if one sees the system moving at high
“velocity,” one knows that the system state will be
changing rapidly. One can thus speed the feedback re-
sponse greatly by anticipating this state excursion and
taking counteraction immediately. For example, in con-
trolling a temperature, if the temperature starts falling,
one can increase the heat even before the objects has
cooled, in order to counteract the presumably large per-
turbation that has occurred. The word “presumably”
highlights a difficulty of derivative control. One infers a
rapid temperature change by measuring the derivative
of the system state. If the sensor is noisy, random fluc-
tuations can lead to large spurious rates of change and
to inappropriate controller response. Thus many experi-
mentalists try derivative control, find out that it makes
the system noisier, and then give up. Since there are
many benefits to derivative control and since spurious
response to noise can be avoided, this is a shame, and
hopefully this article will motivate experimentalists to
work around the potential problems.

In order to better understand derivative control, we
can look at it in frequency space (K s). The linear s
dependence means that the response increases with fre-
quency, explaining why high-frequency sensor noise can
have such a great effect. One obvious response is to limit
the action of the derivative term by adding one or more
low-pass elements the control law, which becomes

K, +K/s+K
K(S)ZM

(1 + s/wp)" 5.4)
where we have added n low-pass filters with cutoff fre-
quencies all at w,. Indeed, since no actuator can respond
with large amplitude at arbitrarily large frequencies,
some kind of low-pass filter will be present at high fre-
quencies, whether added deliberately or not. As long as
wq is higher than the feedback bandwidth, it will have
little effect on the system’s dynamics, while limiting the
effects of sensor noise. A more sophisticated way to
minimize sensor-noise feedthrough, the Kalman filter,
will be discussed in Sec. V.D below.
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2. Loop shaping

Many experimentalists limit their attention to PID
controllers (and often just PI controllers if they have no
luck with the derivative term). While PID controllers
can give good results and have the advantage that each
term has an intuitive justification, they are by no means
the only possibility. Indeed, the frequency-domain ap-
proach we have developed suggests that one can think of
choosing K(s) to “sculpt” or “shape” the closed-loop re-
sponse 7(s). For example, given a system G(s), one can
invert Eq. (3.2) and write

_ TG
K(s)= = T(s)G (s).

(5.5)
If one wanted T(s)=1/(1+s/w,), for example, one could
choose  K(s)=(wy/s)G7(s). If G(s)=1/(1+2%s/w;
+s2/w?), then the resulting K(s) has the form 2¢/w,
+1/s+s/w}, which is the PID form. We thus have an-
other justification for using the PID form—second-order
systems are common—and an understanding of why the
PID form is not always satisfactory: many systems are
higher than second order over the required frequency
bandwidth.

The above technique of “inverse-based controller de-
sign” sounds too good to be true, and often it is. One
catch is that it often is not possible for the actuator u to
give the desired response [u(s)=K(s)e(s), or the equiva-
lent time-domain requirement for u(f)]. All actuators
have finite ranges, but nothing in the inversion design
limits requirements on u. One systematic failure is that
the higher the order of the characteristic polynomial in
the denominator of G (nth order for an nth-order sys-
tem) the higher the derivative required in K and hence
the larger u required at higher frequencies. Even one
derivative cannot be implemented at arbitrarily high fre-
quencies and must be cut off by some kind of low-pass
filter, as described above. The problem is more severe
with higher-order terms in the numerator of K. Thus, in
general, one has to augment G~! at least with low-pass
elements. One then has to worry whether the additional
elements degrade the controller and whether alternative
structures might in fact be better.

More broadly, one can think of choosing a fairly arbi-
trary form for K(s) in order that G(s) have desirable
properties. The general principle is to make the gain
high (|L|=|KG|>1) over the frequency range of interest,
to track the reference and reject disturbances, while
making sure that the phase lag of the loop is not too
close to 180° near |L|=1, to give an adequate phase mar-
gin. Recall that nearly all physical systems and physical
controllers have limited response at high frequency, im-
plying that |L|—0 as w—o. In addition, recall the
tradeoff between accurate tracking of a control signal r
and rejection of sensor noise n: one wants |L|<1 at fre-
quencies where noise dominates over disturbances and
control signals [see Eq. (3.13)]. Fortunately, control sig-
nals and disturbances are often mostly low frequency,
while sensor noise is broad band and goes to high fre-
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FIG. 18. (Color in online edition) (a) Schematic of a desired
loop shape L(s). (b) Corresponding phase plot.

quencies. Thus one easy approach is to use large gains
over the frequency range one wishes to track the control
signal and small gains at higher frequencies.

One subtlety concerns frequencies near the crossover
where |L|=1. Because transfer functions are meromor-
phic (analytic everywhere but at their poles), the real
and imaginary parts of transfer functions are interre-
lated, giving rise to a number of analytical results [along
the lines of the various Cauchy theorems of complex
analysis and the Kramers-Kronig relations; Doyle et al.
(1992), Chap. 6]. One of these is Bode’s gain-phase rela-
tionship (Sec. IV.D, footnote 12), which shows that for a
minimum-phase system the phase lag is determined by a
frequency integral over the transfer-function magnitude.
The practical upshot, which we saw first in Sec. IV.B,
is that if L~ (iw)™ over a frequency range near a refer-
ence frequency o, [here, taken to be the crossover
frequency where |L(iw)|=1], then the phase lag is
~-nm/2. Because a phase of —180° implies instability,
the transfer function L(s) should show approximately
single-pole, low-pass behavior near wy. In particular, the
gain-phase theorem implies that an “ideal” low-pass fil-
ter that cuts off like a step function would not be a good
way to limit the controller bandwidth.

Putting these various constraints—high gain at low
frequencies, low gain at high frequencies, and single-
pole behavior near the crossover frequency—one arrives
at a “loop shape” for L that looks qualitatively like the
sketch in Fig. 18(a) (Ozbay, 2000). The left black arrow
depicts schematically the desired tracking properties at
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FIG. 19. (Color in online edition) Bode plots of a lag compen-
sator [Eq. (5.6)] with a=10.

low frequencies, where L should be larger than some
bound, while the right black arrow depicts the desired
noise suppression at high frequencies, where L should
be smaller than some bound. The parallel black lines
illustrate the ™! scaling desired near |L|=1. Figure
18(b) is the corresponding Bode phase plot, which shows
that the loop has a gain margin =10 and a phase margin
~70°. One also sees that the way to satisfy these con-
straints is to use an L with left-hand plane (LHP) zeros
(generalizations of derivative control), which can add to
the phase. These various tricks constitute the engineer-
ing “art” of control design, which, though surely not op-
timal or systematic, often works well. Remember, finally,
that the above discussion pertains to the open-loop
transfer function L(s). The actual controller is given by
K(s)=L(s)/G(s). In practice, one simply plots |L| while
“tweaking” the form and parameters of K.

Two common elements that can be used to shape the
frequency response in a limited frequency range are lag
and lead compensators. A lag compensator has the form

a(l +iow/wgy)

Kiuglioo) = (5.6)

1+aiolw, ’
where a is a constant (typically of order 10) and w, is the
scale frequency. Figure 19 shows the Bode response of
Eq. (5.6). The gain goes from a at low frequencies (w
<awp) to 1 at high frequencies (w> wy). The phase re-
sponse has a transient lag in the crossover frequency
region but goes to zero at both low and high frequencies.
One can think of a lag compensator as either an ap-
proximation to integral control (a boost of a at zero fre-
quency rather than infinite gain) but without the often
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troublesome phase lag at higher frequencies. Lag com-
pensators can also act as an approximation to low-pass
filters at high frequencies, (one would typically remove
the overall factor of a so that the gain goes from 1 to
1/a). Again, the advantage is that the phase lag does not
accumulate asymptotically.

Conversely, a lead compensator is of the form

1+ aiw/w

Klead(iw) = (57)

1+iw/wy’
which gives a phase lead in the crossover frequency
range. The amplitude goes from 1 to a and thus does not
indefinitely increase the way a pure derivative term
would.

As a general conclusion, one should be open to add-
ing enough elements—whether low-pass filters, lead or
lag compensators, or other forms—to shape the re-
sponse L(s) as desired. For an effectively second-order
system, a three-term controller can work well, but a
higher-order system will require compensating dynamics
K(s) that is higher order and will depend on more free
parameters, which must be chosen, or “tuned.” How to
do this is the subject of optimal control.

3. Optimal control

The algorithm that many experimentalists use in tun-
ing a PID control loop is (1) start by turning up the
proportional gain until the system oscillates, and then
turn down the gain somewhat; (2) add integral gain to
eliminate setpoint droop, and turn down the propor-
tional gain a bit more to offset the destabilizing lag of
the integral term; (3) add a derivative term, become frus-
trated as sensor noise feeds into the system, give up and
settle for the PI parameters of step (2). We have already
commented on the usefulness of the derivative term and
how other elements such as lead and lag compensators
can shape the loop gain as a function of frequency to
minimize the problem of noise feedthrough. But now
with three or more terms to tune, one might wonder
whether there is a systematic way of choosing parameter
values.

One approach is to formalize the tuning process by
defining a scalar “performance index,” which is a quan-
tity that is minimized for the “best” choice of param-
eters. This is “optimal control.”

The standard performance indices are of the form

= f VEx00 i~ f [P0+ PR, (58)
0 0

where the general function V(x,u) commonly has a qua-
dratic form and where Q and R are positive constants
that balance the relative “costs” of errors e(t) and con-
trol efforts u(¢). Large Q and small R penalize control
errors with little regard to the control effort, while small
QO and large R penalize control effort with little regard
for control error. Equation (5.8) has an obvious vector-
matrix generalization to higher-order systems. Implicit
in Eq. (5.8) is the choice of a control signal r(¢) and a
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disturbance d(f). For example, one often assumes a step
function input r(f)=6(t), with d=0. One can, alterna-
tively, keep r constant and add a step disturbance for
d(t).

As a simple example, we consider the one-
dimensional system x=-ax(f)+u(f) with proportional
control u(t)=-K,e(t) and reference signal r(1)=0
(Skogestad and Postlethwaite, 1996). The proportional
control gives a motion x(f)=x,e~(**%p), which, when in-
serted into the cost function, Eq. (5.8), gives (with Q
-1)

2

J(K,) = (1+RK2)=—"

Z(TKP)' (5.9)

Minimizing J with respect to K, gives an “optimal”

K,=-a+\a’+1/R. (5.10)

The decay rate of the optimal system is a'=\a’+1/R.
From this simple example, one can see the good and bad
points of optimal control. First of all, optimal control
does not eliminate the problem of tuning a parameter.
Rather, in this case, it has replaced the problem of
choosing the proportional gain K, with that of choosing
the weight R. What one gains, however, is a way of mak-
ing any tradeoffs in the design process more transparent.
Here, for example, one is balancing the desire to have
small tracking error e(f) with that of wanting minimal
control effort u(f). The coefficient R expresses that
tradeoff explicitly. For example, in the expression for the
optimal K, in Eq. (5.10), a small R (“cheap control”)
leads to a large K, while a large R (“expensive control”)
leads to a small K),. In such a trivial example, the result
could have been easily foreseen and there would be little
point in going through this exercise. When the system is
more complex, one often has more intuition into how to

set the matrices Q and R of the generalization of Eq.
(5.8) than to tune the parameters. At any rate, do not
confuse “optimal” with “good,” for a poor choice of
weights will lead to a poor controller.

The above discussion gives short shrift to a rich and
beautiful branch of applied mathematics. One can be
more ambitious and ask for more than the optimal set of
parameters, given a previously chosen control law. In-
deed, why not look for the best of all possible control
laws? Formulated this way, there is a close connection
between optimal control and variational methods. In the
simplest cases, these variational methods are just those
familiar from classical mechanics. [For an overview of
the history of optimal control and its relations with clas-
sical problems, see Sussmann and Willems (1997).] For
example, we can view the minimization of the perfor-
mance index J in Eq. (5.8) as a problem belonging to the
calculus of variations, where one needs to find the opti-
mal control u(f) that minimizes the functional J subject
to the constraint that the equations of motion x=f(x,u)
are obeyed. [In the example above, there is only one
equation of motion, and f(x,u)=-ax+u.] One can solve
this problem by the method of Lagrange multipliers,
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minimizing the functional £=[jLdt, where L(x,x,u,\)
=NoV(x,u) +\(f-x) by free variation of x, u, and the
Lagrange multiplier \.”” For nth-order systems, there
are n Lagrange multiplier functions \(¢). Setting the
variation of J with respect to x, u, and A equal to zero
leads to three sets of Euler-Lagrange equations:

dJL JL

—— - —=0, 5.11
dt ox  ox ( 2)
oL

— =0, (5.11b)
u

oL

—=0. 5.11
PN (5.11¢)

Equations (5.11a) and (5.11b) give the equations obeyed
by the performance index V; Eq. (5.11c) gives the equa-
tions of motion.

For reasons to be discussed below, the Hamiltonian
formulation is usually preferred. There, one defines a
Hamiltonian H=L+Nx=V+\f. The Euler-Lagrange
equations can then be transformed into the control-
theory version of Hamilton’s equations:

oH

X=—, (5.12a)
N

. oH

AN=——, (5.12b)

ox

oH

—=0. (5.12¢)

u

Equations (5.12a) and (5.12b) describe the evolution of
the “co-states” A(f), which are the equivalent of the con-
jugate momenta in the classical-mechanics formulation.
Note that, in the general case, the state and co-state
vectors have n components while the control vector u
has r components. In the simple example discussed
above, one has H=0x%+Ru*+\(—ax+u).
Optimal-control problems often lead to two types of
generalizations that are less likely to be familiar to
physicists: In classical mechanics, one typically assumes
that the starting and ending states and times of the dy-
namical system are fixed. Only variations satisfying
these boundary conditions are considered. Variational
problems in control theory are less restrictive. For ex-
ample, imagine that one wants to move a dynamical sys-
tem from an initial state x, to a final state x; as fast as
possible [given the dynamical equations x=f(x,u)]. One
can formulate this as a problem whose goal is to mini-
mize the unit performance index V=1 over times from ¢,
(which can be set to be 0 in an autonomous system) to £y,
where ¢, is to be determined. A recent book by Naidu

20Usually, No=1; however, an “abnormal” case with \j=0 can
arise when both the constraint and its derivative vanish simul-
taneously (Sontag, 1998).
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(2003) catalogs the different types of variational prob-
lems commonly encountered in control theory. Note,
too, that optimal control problems include both open-
loop, feedforward designs, where one asks what input
u(t) will best move the system from state 1 to state 2, as
well as closed-loop, feedback designs, where one asks
what feedback law u=-Ke will best respond to a given
type of disturbance.

A second important type of generalization that is
commonly encountered concerns constraints placed ei-
ther on the control variables u or the allowable region of
phase space that the state vector x is permitted to enter.
These types of problems led Pontryagin and collabora-
tors to generalize the treatment of optimizations, as ex-
pressed in the famous “minimum principle” (Pontryagin
etal, 1964).21 The main result is that if the control vari-
ables u(f) are required to lie within some closed and
bounded set in the function space of all possible control
laws U(t), then the optimal choice is that control ele-
ment u that minimizes H(x,\,u). In other words, the
condition for a local stationary point of H, Eq. (5.12¢), is
replaced by the requirement for a global minimum. The
minimum principle allows one to solve problems that
would have no solution within the traditional analytical
framework of calculus or the calculus of variations. For
example, the derivative of the function f(x)=x is never
zero; however, if x is constrained to lie between 0 and 1,
f has a well-defined minimum (0). The minimum prin-
ciple allows one to consider such situations and provides
a necessary condition for how the control variable u
must be selected on the (in general nontrivial) boundary
set of its allowed domain. Note that the minimum prin-
ciple is a necessary, but not sufficient requirement for
optimal control.

To appreciate the significance of the minimum prin-
ciple, let us consider the simple example of a free par-
ticle, obeying Newton’s laws and acted on by a control-
lable force, in one dimension. The equations of motion
are X1 =x,, X,=u, where x; is the particle’s position, x, its
velocity, and u=F/m is the external force divided by the
particle’s mass. We neglect friction. The problem is to

21Pontryagin et al. actually formulated their results in terms of
—H and thus wrote about the “maximum principle.” Modern
usage has changed the sign. As an aside, Pontryagin was
blinded by an accident when he was 14 and was thereafter
tutored by his mother, who had no education in mathematics
and read and described the mathematical symbols as they ap-
peared to her (Naidu, 2003). Nonetheless, Pontryagin became
one of the leading mathematicians of the 20th century, making
major contributions to the theory of topological groups. Later
in life, he turned his attention to engineering problems and
was asked to solve a problem that arose in the context of the
trajectory control of a military aircraft. The basic insights re-
quired to solve such problems with constraints on the control
variables came after three consecutive, sleepless nights
(Gamkrelidze, 1999). The use of the symbol u for the control
variable(s) seems also to date from Pontryagin’s work, as the
word “control” is “upravlenie” in Russian (Gamkrelidze,
1999).
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A

FIG. 20. (Color in online edition) Phase-space plot of dynami-
cal trajectories for a free, frictionless particle acted on by a
force u=+1. The thrust switches as trajectories reach the curve
AOB. The heavy curve shows an example trajectory (Pontrya-
gin et al., 1964).

bring the particle from an arbitrary initial state (xgm ,xg)))

to the state (0, 0) as fast as possible. Assume that the
applied force has limits that imply that |u(f)]<1. The
Hamiltonian is then given by H=DN\x,+\,u. Hamilton’s
equations give, in addition to the equations of motion,

N=0 and Ny=—\;. If naively we were to try to use
JH/ou=0 to determine u, we would conclude that all
problem variables were identically equal to zero for all
time, i.e., that there was no nontrivial solution to our
problem. Replacing the local condition by the global re-
quirement that u minimize H, we find that u=-sgn(\,).
Integrating the equations for A; and \,, we find \,(¢)
=—cit+c, and conclude that the applied force will al-
ways be pegged to its maximum value and that there can
be at most one “reversal of thrust” during the problem.
[This last conclusion follows because A, makes at most
one sign change. Pontryagin et al. showed that if an
nth-order, linear system is controllable and if all eigen-
values of its system matrix A are real, then the optimum
control will have at most n—1 jump discontinuities
(Pontryagin et al., 1964).] By analyzing separately the
cases where u==1, one finds that for u=1, the system’s
dynamics lie on one of a family of parabolas described
by x1:%x5+c ., with ¢, determined by initial conditions.
Similarly, for u=-1, one finds that xlz—%x§+c,.

The full solution is illustrated in the phase-space plot
shown in Fig. 20. The curve AOB passing through the
end target point (the origin) has special significance. The
left-hand segment AO is defined by motion, with u=-1
that will end up at the target point (the origin). The
right-hand segment OB is defined by a similar segment
with u=1. One thus clearly sees that the optimal motion
is determined by evaluating the location of the system in
phase space. If the state is below the curve AOB, choose
u=1, wait until the system state hits the curve AO, and
then impose u=-1. If the state is above AOB, follow the
reverse recipe. The curve AOB is thus known as the
“switching curve” (Pontryagin et al, 1964). In Fig. 20,
the heavy curve denotes the optimal solution for a par-
ticle initially at rest. Not surprisingly, the best strategy is
to accelerate as fast as possible until halfway to the goal
and then to decelerate as fast as possible the rest of the
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way. Note that formulating the problem in phase space
leads to a local rule for the control—essential for imple-
menting a practical optimal feedback controller—based
on the geometry of motion in phase space, as deter-
mined by the switching curve. This law is nonlinear even
though the original problem is linear. This induced non-
linearity is typical of constrained optimization problems
and is one reason that they are much harder to solve
than unconstrained ones. We return to this and other
examples of nonlinearity below in Sec. VL.

The above discussion merely gives some of the flavor
of the types of analysis used. Another important method
is dynamic programming, introduced by R. Bellman in
the 1950s (Naidu, 2003). It is especially well adapted to
discrete problems. Its continuous form is analogous to
the Hamilton-Jacobi method of classical mechanics.

Finally, in the above discussions of optimal control, we
used quadratic functions V(x,u) in the performance in-
dex [e.g., that given in Eq. (5.8)]. Such functions are sen-
sitive to the average deviations of the state and control
variables from the desired values. The choice of a qua-
dratic form is motivated largely by the fact that one can
then solve for the optimal controller for linear systems
analytically. The more recent control literature tends to
advocate an alternative that keeps track of the worst-
case deviations. This more conservative measure of de-
viations leads to a more robust design, as discussed in
Sec. V.E, below.

C. Digital control loops

The original control loops were implemented by ana-
log mechanical, electronic, or hydraulic circuits. At
present, they are almost always implemented digitally,
for reasons of flexibility: very complicated control algo-
rithms are easily programmed (and reprogrammed!),
and performance is easy to assess. It is worth noting,
however, that proportional or integral control can be
implemented with operational amplifiers costing just a
few cents each, with bandwidths easily in the 100-kHz
range. Sometimes, such circuits may be the simplest so-
lution.

One subtlety of using a digital control loops is that the
input signal must be low-pass filtered to avoid aliasing.
To understand aliasing, consider a continuous signal f(¢)
sampled periodically at times n7;. We can write the
sampled signal as

fsamp(t) = 2 f(t) 5(t - nTs)a (513)

n=-0w

where 6 is the Dirac § function. Being periodic, the &
function has a Fourier-series representation,

oo 1 oo
> St-nTy)= - > ek (5.14)
§ k=—o

n=-ow

with w,=27/T. Inserting this into Eq. (5.13) and Fourier
transforming, one finds
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.
filw)== > flo-nw,). (5.15)

S n=—%

In other words, the power spectrum of the continuous
signal |f(w)| is replicated at frequencies nw, in the power
spectrum of the sampled signal |f;(w)|. If the highest fre-
qUeNcy wp,y in fis less than w,/2 = wy (the Nyquist fre-
quency), we have the situation in Fig. 21(a). If not, we
have the situation in Fig. 21(b). In the former case, the
power spectrum of the sampled signal will be a faithful
replication of that of the continuous signal. In the latter
case, high-frequency components of f will mix down into
the spectrum of f; (Lewis, 1992).

One can picture this alternatively in the time domain,
where the situation leading to aliasing is shown in Fig.
22. The Nyquist sampling theorem derived above states
that frequencies higher than 1/27 will be erroneously
read as lower frequencies by the digitizer (“aliasing”)
and that, in general, one must sample at least twice per
period in order to reconstruct the signal present at that
period (Franklin er al., 1998). Thus if one samples with
sampling time 7§, one must add an analog low-pass filter
with cutoff frequency no higher than 1/27,.% Since the
noise requirements are stringent, one must use either a
higher-order filter (having nth-order dynamics and made
from active components) or a simpler, passive RC filter
with a somewhat lower cutoff frequency than is required
by the sampling theorem. Either way, the dynamics
added by the filter becomes part of the feedback loop.
Because filters add a phase lag, their effect is destabiliz-
ing, as seen in the previous section. Finally, another
subtlety is that sometimes it pays to add deliberately a
small amount of noise to combat the quantization effects
introduced by the analog-to-digital converter. See the
note in Sec. VI.A for details.

A second issue in digital control is that one must
transform an analysis developed for continuous-time dy-
namical systems into discrete-time dynamical systems.
This corresponds to a passage from ordinary differential
equations to discrete maps that transform the system

22 An alternative is “one-bit delta-sigma analog-digital conver-
sion” (Gershenfeld, 2000), where the signal is converted to a
rapidly alternating sequence of 1’s and 0’ (representing the
maximum and minimum voltage limits). If the voltage input is,
say, 0.5, then the output will have an equal number of 1’s and
0’s. If the voltage input is 0.75, there will be 3 times as many 1’s
as 07, etc. The cycle time for the alternation is faster (by a
factor of 64, or even more) than the desired ultimate sampling
time. One then digitally low-pass filters this one-bit signal to
create the slower, higher resolution final output value. Because
of the oversampling, a simple low-pass filter suffices to prevent
aliasing. The disadvantage of delta-sigma conversion is a rela-
tively long “latency” time—the lag between the signal and the
digital output can be 10-100 times the sampling interval. Still,
if the lag is small compared to the system time scales, this kind
of conversion may be the simplest option. Note that delta-
sigma and other analog-to-digital conversion schemes are ac-
tually helped by adding a small amount of noise; see footnote
28, below.
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FIG. 21. (Color in online edition) Illustration of the Nyquist
sampling theorem in frequency space. (a) The maximum fre-
quency of the power spectrum of the continuous signal is less
than the Nyquist frequency (positive and negative frequencies
indicated by arrows). The spectrum of the sampled signal ac-
curately represents the continuous signal. (b) The maximum
frequency exceeds the Nyquist frequency wy, and the aliased
spectra overlap, distorting the estimate of the continuous spec-
trum from sampled data. The individual copies of the spectrum
of the continuous signal are shown in the dashed lines. The
overlap is apparent, particularly near multiples of wy.

state vector x(¢,) into x(z,,;). The whole topic can get
rather technical (see the various control theory texts),
but the basic ideas are simple. Here, we assume that we
know a reasonable analytic approximation to the trans-
fer function G(s) of the system (see Sec. V.A, above).

The next step is to write the model in the time do-
main. Formally, one would take the inverse Laplace
transform. Usually, if the analytic model uses standard
components (first- and second-order elements, lags), one
can do this by inspection. For example, if we had

(1 +s/wg)e™™ B &

G)=—"""""——= , 5.16
(s) 1+ ys/wy + 5% o] u(s) (5-16)
then we would infer
1 1
i+ Lyt y=ult- 1)+ —ilt - ), (5.17)
1)

wl w1 0

which can be written in standard form,

) 2
(’fl):( 02 ! ><x1)+(“’1/;"°>u(z—r), (5.18)
Xy — (,L)l - Ywq Xy w1

with y=x;.

The final step is then to discretize the continuous-time
system. The obvious algorithm is just to replace deriva-
tives by first-order approximations, with

. Xn+l —Xn

5.19
T (5.19)

for each component of x (or use higher-order approxi-
mations for the higher derivatives of y). Usually, such a
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FIG. 22. (Color in online edition) Aliasing of a high-frequency
signal (solid curve, with period 7) produced by sampling with a
period T that is greater than the Nyquist criterion. The appar-
ent measured points (large dots) are interpreted as coming
from a much lower frequency signal (dashed curve).

simple algorithm is sufficient, as long as the sampling
time is much shorter (by a factor of at least 10, but pref-
erably 20-30) than the fastest dynamics that need to be
modeled in the system. For example, the PID law, when
discretized using Eq. (5.19) becomes

(5.20)

with A;=1, By=K,+KT,/2+K,/T,, By=—K,+K;T,/2
-2K,/ T, and B,=K,/T,. Here K,, K;, and K, are the
proportional, integral, and derivative terms, 7 is the
sampling time, and u,, and e,, are the actuator and error
signals at time nT,. Equation (5.20) has the advantage
that no integral explicitly appears. It is derived by taking
the discrete differential of the straightforward expres-
sion for u, in terms of an integral over the previous
error signals. Equation (5.20) also has the advantage that
it expresses the next value of the actuator signal (u,,) in
terms of its previous value (u,_;). This is useful if one
wants to go back and forth from a “manual mode” to
closed-loop control without large transients in the actua-
tor signal. Note that ¢, does appear in Eq. (5.20). We
assume that we use the current error signal in calculating
the current actuator response, implying that the calcula-
tion time is much less than the sampling time. If not, the
delay should be taken into account.

In deriving expressions such as Eq. (5.20), it is often
convenient to go directly from the transfer function to
the discrete dynamics, without writing down the
continuous-time equations explicitly. One can do this by
looking at the Laplace transform of sampled signals. As-
sume that a continuous signal f(f) is sampled at times

u, = A, 1+ Boe, + Bie,_ + Bye,_,

nT, for n=0,1,.... As above, the sampled signal is then
S = éf(t) ot —nTy). (5.21)
The Laplace transform of f,(¢) is
LIf(0]= i finTye"s). (5.22)

n=0

If we introduce z=e'’s and define f,=f(nT,), then Eq.
(5.22) leads to the “z transform,” defined by
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Z[f1= > fuz " (5.23)
n=0

For example, by direct substitution into Eq. (5.23),
one can see that the z transform of the step function 6(¢)
(0 for t<0,1 for t=0) is z/(z—1). Similarly, Z[f(t+T,)]
=z Z[f(t)]-zfy. Thus with a zero initial condition for f,
the z transform shows that shifting by 7, means multi-
plying the transform by z. This is analogous to the
Laplace transform of a derivative (multiply by s) and
implies that taking the z transform of a difference equa-
tion allows it to be solved by algebraic manipulation, in
exact analogy to the way a Laplace transform can be
used to solve a differential equation.

The transformation z =e*’s relates the complex s plane
to the complex z plane. Note that left-hand plane poles
[i.e., ones with Re(s) <0] are mapped to the interior of
the unit circle. The frequency response in the z plane is
obtained by substituting z=e’s. Frequencies higher
than the Nyquist frequency of w,/2=/T, are then
mapped on top of lower frequencies, in accordance with
the aliasing phenomenon depicted in Figs. 21 and 22.

We seek a way of discretizing the transfer function
K(s) of a continuous controller. In principle, this could
be done using the relation z=¢'7s, but this would lead to
infinite-order difference equations. One is then led to try
low-order approximate relations between s and z. The
first-order expansion of z '=eTs=~1-sT| leads to

-1

1-
s =% (5.24)

T
Since z7! means “delay by T\,” we see that this is a trans-

formation of Eq. (5.19).

If the sampling time cannot be fast enough that simple
discretization is accurate, then one has to begin to worry
about more sophisticated algorithms. One could imagine
expanding the exponential to second order, but it turns
out that using a first-order Padé approximation is better.
Thus one sets z7' =~ (1-sT,/2)/(1+sT,/2), which is accu-
rate to second order. This gives “Tustin’s transforma-
tion” (Dutton ef al., 1997),

2 ( 1- z1>
§— — = |-
T\1+z
Equation (5.25) is equivalent to using the trapezoidal
rule for integrating forward the system dynamics, while
Eq. (5.24) corresponds to using the rectangular rule
(Lewis, 1992, Chap. 5). One advantage of Tustin’s trans-
formation is that it, too, maps Re(s) <0 to the interior of
the unit circle, implying that if the Laplace transform of
a continuous function is stable [Re(s<0)], then its z
transform will also be stable. (Iterating a linear function
with magnitude greater than one leads to instability.)
The direct, first-order substitution, Eq. (5.24), does not
have this property. Analogously, in the numerical inte-
gration of differential equations, too coarse a time step

can lead to numerical instability if one uses an explicit
representation of time derivatives [Eq. (5.24)]. If, on the

(5.25)
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other hand, one uses an implicit representation of the
derivative [Eq. (5.25)], then stability is guaranteed, al-
though accuracy will suffer if 7 is too big.

Finally, one can account for the effect of using a zero-
order hold (ZOH) to produce digitization (as in Fig. 13)
by considering its Laplace transform. Let

fzou(®) =£f(0), 0<t<T,,
fZOH(t):f(Ts)’ Ts<t<2Tsa
(5.26)
Then
T, 27,
Llfz0n] = f(0) J elde+ f(T) f et
0 T,
_ 5T
- (1 : )zm. (5.27)

The effect of the zero-order hold (ZOH) is to introduce
an extra factor in front of the ordinary z transform. Thus
a common “recipe” for translating a continuous control-
ler K(s) to a discrete equivalent D(z) is

K[s(z)]
s(z)

with Eq. (5.25) used to transform s to z. Because the
discretization leads to a large amount of algebra,
“canned” routines in programs such as MATLAB are use-
ful (see Sec. V.C.2, below).

Once the approximate digital controller D(z) has
been worked out, one can generate the appropriate dif-
ference equation by writing (Dutton et al., 1997)

D(z)=(1-z7" (5.28)

B u(z) _By+ Bz '+ Byz 24
- €(Z) a 1—A1Z_1—AQZ_2_ e

In Eq. (5.29), the transfer function is between the error
signal e(z) input and the control variable (actuator) u(z)
output. [Of course, the transfer function G(z) of the sys-
tem itself would be between the control variable input u
and the system output y.] Recalling that z~! has the in-
terpretation of delay by T, we may rewrite Eq. (5.29) as
a discrete difference relation (known as an “infinite im-
pulse response,” or IIR filter in the signal-processing lit-
erature) (Oppenheim et al., 1992),

D(z) (5.29)

u,= Alun71 + A2Mn72 + o+ Boen + Blen71 + Bz€n72
. (5.30)

which generalizes the result of Eq. (5.20).

One minor pitfall to avoid is that discrete systems can
introduce “ringing poles.” For example, consider the
simple difference equation

Yue1 =1 =Ny, (5.31)

This, obviously, is the discrete analog of a first-order sys-
tem y(f)=—Ay(f) and gives similar stable behavior for 0
<A<1. Now consider the range 1 <\ <2, where the sys-
tem continues to be stable but oscillates violently with
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FIG. 23. (Color in online edition) Time series for a discrete
dynamical system showing a “ringing pole.” Generated from
Vus1=(1=N)y,, with A=1.9.

each time step, albeit with a decaying envelope (Fig. 23).
Such a ringing pole occurs because of an effective
aliasing—beating—of the decay rate against the sam-
pling rate. In any case, one usually wants to avoid such a
response in a discrete controller. Although nominally
stable, the stability is achieved by wild cycling of the
actuator between large positive and negative values.

We note that the unpleasant situation illustrated in
Fig. 23 can also appear in the dynamics. Even if all the
measured outputs y, and all the control inputs u, seem
reasonable, the system may be ill-behaved between the
sampling time points. One can guard against this possi-
bility by sampling the system dynamics more rapidly in
tests. If that is not possible, at the very least one should
model the closed-loop system dynamics on a computer,
using a shorter time interval for the internal simulation.

We can summarize the steps needed to create a digital
control loop as follows:

(1) Determine (empirically) the system transfer func-
tion G(s).

(2) Construct a feedback law K(s) that gives the de-
sired closed-loop dynamics for 7(s)=KG/(1+KG), pos-
sibly taking into account sensor dynamics H(s), as well.

(3) Use Eq. (5.28) and either the direct method, Tus-
tin’s transformation, or any of the alternate methods dis-
cussed in control-theory books, to transform s—z,
thereby converting the continuous controller K(s) to a
discrete controller D(z).

(4) Deduce the difference equation corresponding to
D(z) and program this on an appropriate digital device,
for example a computer, microcontroller, digital signal
processor (DSP), or programmable logic device (PLD).

The reader is cautioned, however, to consult a more
detailed reference such as Lewis (1992) before actually
implementing a digital control loop in an experiment.
There are a number of practical issues that we have had
to skip over. To cite just one of these, with a finite word
size (integer arithmetic), a high-order difference relation
such as Eq. (5.30) is prone to numerical inaccuracies. Its
accuracy can be improved by rewriting the relation using
a partial-fraction expansion.

At present, digital loops may be implemented on any
of the platforms mentioned in step (4). Probably the
most popular way is to use a computer and commercial
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data acquisition board. Although such boards often run
at 100 kHz or even faster, they cannot be used for con-
trol loops of anywhere near that bandwidth. Modern op-
erating systems are multitasking, which means that they
cannot be counted on to provide reliable real-time re-
sponse. In practice, timing variability limits control loops
based on such computers to kHz rates at best. Microcon-
trollers are a cheap alternative. One downloads a pro-
gram (usually in C or Assembler, occasionally in a sim-
pler, more user-friendly language) that runs in a stand-
alone mode on the microcontroller. Because the
microcontroller does nothing else, its timing is reliable.
More important, it will work even if (when!) the host
computer crashes. Digital signal processors offer similar
advantages, with much higher performance (and price).
Microcontrollers can execute control loops at rates up to
10 kHz, while digital signal processors can work up to
1 MHz. (These rates are increasing steadily as more so-
phisticated technologies are introduced.) Digital signal
processors also offer more sophisticated possibilities for
asynchronous transfer of data to and from the host com-
puter. In general, one would consider microcontrollers
for simpler, slower loops and digital signal processors for
more high-performance needs.

There are many options for microcontrollers and digi-
tal signal processors. Often, there is a tradeoff between
inexpensive high-performance hardware that is difficult
(and thus expensive) to program (and maintain) and ex-
pensive digital signal processor boxes that are somewhat
lower performance but have an easy-to-use program-
ming environment. In my laboratory, we have had some
success with the latter approach.””> We can implement
simple control problems such as PID loops up to
500 kHz and complicated control problems such as a
scanning-probe microscope controller at 20 kHz. The
use of a high-level language is important in that it allows
a wide range of students, from undergraduates on up, to
easily modify source code as needed without making a
large investment in understanding complicated software.

Finally, programmable logic devices (PLDs) are an-
other option, albeit little known in the physics commu-
nity. They grow out of specific “hard-wired” solutions
for particular problems. Think, for example, of the cir-
cuitry in a dishwasher, dryer, or other common appli-
ance. Programmable logic devices are a kind of pro-
grammable version of these. Essentially, they are arrays
of logic gates, flip flops, etc., whose interconnections
may be programmed. They replace custom hardware so-
lutions to implement an essentially arbitrary digital cir-
cuit. They excel in situations where many operations can
be performed in parallel, resulting in a tremendous
speed advantage (of order 1000 in many cases). Pro-
grammable logic devices come in a bewildering variety

We have used the digital signal processor boxes of Jager
Computergesteurt Messtechnik, GmbH., Rheinstrale 2-4
64653 Lorsch, Germany (www.adwin.de). We made no attempt
to survey the market systematically, and there may well be
better alternatives.
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of families, with varying logic-gate densities and varying
ease of programmability. One popular family is the field-
programmable gate array (FPGA). In physics, these
have been used to make trigger units in high-energy ex-
periments that must deal with a tremendous amount of
data in very short times. For example, in the DO detector
at Fermilab, a set of boards containing 100 field-
programmable gate array chips evaluates
~107 events/sec, identifying about 1000 events/sec as
potentially “interesting.” Subsequent trigger circuits
then reduce the event rate to about 50 Hz (Borcherding
et al., 1999). Until recently, the “learning curve” in pro-
gramming such devices was steep enough that they
made sense only in projects large enough to justify the
services of a specialist programmer. (The language and
logic of field-programmable gate array devices was dif-
ferent enough from ordinary programs to require exten-
sive training for such devices.) Recently, field-
programmable gate arrays that are programmable in
ordinary, high-level languages (e.g., LABVIEW) have be-
come available.”* Field-programmable gate arrays are so
powerful that they can implement almost any conven-
tional digital or (low-power) analog electronic circuit,
and many commercial devices are now based on such
circuits. Despite the DO example above, the full impact
of having “hardware you can program” has not yet been
appreciated by the physics community, even as commer-
cial applications seem to multiply exponentially.

In looking over the above “recipes” for making a digi-
tal controller, one might be tempted to think that it is
simpler to bypass the first two steps and work in the
discrete domain from the beginning. For example, any
discrete, linear control law will have the form of Eq.
(5.20), with different values for the A, B, and C coeffi-
cients (and with the coefficient in front of u, not neces-
sarily 1 and with perhaps other terms u,_;,... and
€,_2,... as well). Indeed, our approach to digital feed-
back is known as “design by emulation,” and it works
well as long as the sampling rate is high enough relative
to system dynamics. Emulation has the virtue that it uses
the intuitive loop-shaping ideas discussed above. Still,
direct digital design has fewer steps and potentially
higher performance. We do not have space to discuss
direct methods, except to say that virtually every
continuous-time technique has a discrete-time analog.
For example, the discrete analog of the linear system
given by Eq. (2.2) is

X,.1=A'x,+ B'u,,

(5.32)

Yns1= an+1 >

with A’ =eATs and B'=A"Y(A'-I)B. In the continuous-

time case, the eigenvalues of A needed to have negative
real part for stability. Here, the analogous condition is

24LABVIEW, FPGA National  Instruments

(Www.ni.com).

module,
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that the eigenvalues of A’ have magnitude less than one.
Other aspects carry over as well (e.g., Laplace transform
to z transform). But when faced with a choice between
reading up on fancy direct-digital-design techniques and
buying a better digitizer, buy the board. The time you
save will almost certainly be worth more than the price
of the more expensive hardware.

1. Case study: Vibration isolation of an atom
interferometer

We mention briefly a nice example of an implementa-
tion of a feedback loop that illustrates most of the topics
discussed in this section. The application is the control
system of a vibration isolation stage for an atom inter-
ferometer (Hensley er al., 1999). The goal is to decouple
the instrument from random low-frequency vibrations
due to machinery, micro-seismic disturbances, etc. The
conventional passive strategy is to mount the instrument
on a mechanical spring system (often an air spring, but
here a conventional wire spring). The idea is that if the
driving vibrations have frequencies much higher than
the resonant frequency of the mass-spring system, their
amplitude will be damped. The lower the frequency of
the external vibrations, the lower the required resonant
frequency of the mass-spring system. But practical mass-
spring systems have resonant frequencies of roughly
1 Hz for vertical vibrations. Lowering the resonant fre-
quency requires softer springs, which stretch large dis-
tances under the influence of gravity. In order to lower
the resonant frequency still further, one can use feed-
back to alter the dynamics. (Note that in the first case
study, we decreased characteristic times; here we will
increase them.)

The system has an equation of motion

(5.33)

where wS:k/ m is the natural resonance frequency of the
undamped system, y,(f) and y,(¢) are the position and
velocity of the ground, u(¢) is the actuator signal, and
is the dimensionless damping, as in Eq. (2.5). Indeed
Egs. (5.33) and (2.5) differ only in that the damping is
now proportional to the difference between the mass
and ground velocity, and similarly for the restoring
force.

The control-loop design uses an accelerometer to
sense unwanted vibrations and applies a PI control
[u(t)=-K,j()-2w)K;y(t)] to lower the effective reso-
nant frequency of the mass-spring design. Notice that
measuring the acceleration is better than measuring the
position for noise rejection. (You integrate once, as op-
posed to differentiating twice.) The closed-loop transfer
function is

J+ 28000y = Yo) + gy — vo) = u(t),

2
25101 + 0]

T(s) = , 5.34
(s) 2+ 25(4y + K)oy + o] (5.34
where  w=wy/\VK,+1, (= /VK,+1, and K]

=K;/\VK,+1. The closed-loop resonance frequency w; is
set nearly 50 times lower than wj,, and the damping,
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~K/, is set near 1, the critical-damping value.”

What makes this example particularly interesting
from our point of view is that the actual feedback law
used was more complicated than the simple PI law dis-
cussed above. Because the accelerometer had upper and
lower limits to its bandwidth, the feedback gain needs to
roll off near these limits in order to reduce noise and
maintain stability. The limits are implemented by a se-
ries of lag compensators [see Eq. (5.6)] and low- and
high-pass filters, which collectively shape the frequency
response to counteract problems induced by the finite
sensor bandwidth. The entire law is implemented digi-
tally using Tustin’s method [Eq. (5.25)]; see Hensley et al.
(1999) for details. (If you have understood the discussion
up to this point, the paper will be straightforward.) Fi-
nally, while vibration isolation is enhanced by decreasing
the “Q” of an oscillator, other applications use feedback
to increase Q. An example is “active Q control,” where
reduced oscillator damping increases the sensitivity for
detecting small forces (Tamayo et al., 2000).

2. Commercial tools

The design and analysis of feedback systems is made
much easier by computer simulation. The engineering
community leans heavily on commercial software prod-
ucts, especially MATLAB.”® All of the steps and laws dis-
cussed here, and many more are available on the
MATLAB platform, although unfortunately, one must buy
several modules (“toolboxes”) to fully implement them.
There are also some freely available packages of control
routines (e.g., SCILAB, OCTAVE, and SLICOT?’) which,
however, do not seem to be as widely adopted. My own
feeling is that physicists can usually get by without such
specialized tools—the basic approaches we describe
here are simple and easy to implement without investing
in learning complicated software packages. On the other
hand, for more complex problems or for obtaining the
absolute highest performance from a given hardware,
these software tools can be essential. Physicists should
also note that most engineering departments will already
have such software. One useful feature of commercial
products is that they often can generate low-level code
that can be downloaded to one’s hardware device to run
the control loop. Usually, a special add-on module is
required for each type and model of platform (digital
signal processor, field-programmable gate array, etc.).

25Equation (3) of Hensley et al. (1999) has a misprint.
MATLAB is a registered trademark of The Mathworks, Inc.,
3 Apple Hill Dr., Natick, MA 01760-2098 (USA). See http://
www.mathworks.com
ISCILAB is an open-source program that is a fairly close imi-
tation of MATLAB (http://scilabsoft.inria.fr/). Octave is a high-
level programming language that implements many of the
MATLAB commands, with graphics implemented in GNU Plot
(http://www.octave.org/). SLICOT is a set of FORTRAN 77 rou-
tines, callable from a wide variety of programming environ-
ments (http://www.win.tue.nl/niconet/NIC2/slicot.html).
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FIG. 24. (Color in online edition) Control of a first-order sys-
tem in the presence of noise. (a) Open-loop fluctuations of the
controlled variable in response to environmental noise; no sen-
sor noise is present; (b) closed-loop proportional control; (c)
sensor noise added; (d) Kalman filter added; actual system
state and the Kalman estimate, which has smaller fluctuations,
are both shown. In (a)—(d), o is the standard deviation of the
measured signal.

D. Measurement noise and the Kalman filter

At the end of Sec. III, we briefly discussed the effect
of environmental disturbances and sensor noise on con-
trol loops. In Fig. 7 and Eq. (3.13), we see the effects of
noise on the variable y(s) that is being controlled. To
understand better the effects of such noise, we again
consider the simple case of proportional feedback con-
trol of a first-order system, with no significant sensor
dynamics. In other words, we set K(s)=K,, G(s)=1/(1
+5/wy), and H(s)=1. We also consider the case of a regu-
lator, where r(s)=0. [We are trying to keep y(s)=0.]
Then, for K,>1,

/ !
Y ds),
slw

,§(s)+1+

1
y(s) 1+s/w (5:35)
with @’ =wy(1+K,)> wy. Thus, low-frequency (0<w’)
sensor noise and high-frequency environmental distur-
bances cause undesired fluctuations in y.

These effects are illustrated in Figs. 24(a)-24(c), which
shows the variable x(¢) in a discrete-time simulation of a
low-pass filter. The explicit discrete equations are

Xn+1 = d’xn +u, + dna
(5.36)
Y+l =Xns1 + &nit-
with ¢=1-wT; and u,,=K,w,T,(r,~y,) and r, the con-
trol signal. Here, we have reintroduced the distinction
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between the environmental variable being controlled
(for example, a temperature) x and the sensor reading of
that variable (for example, a thermistor impedance) y.
For simplicity, we have taken y=x, but in general the
units are different (°C vs ohms), and the sensor may
have its own dynamics. The discrete dynamics are evalu-
ated at times nT,. The proportional feedback gain is K,
(dimensionless). The environmental noise is given by the
stochastic variable d,, and the sensor noise by &,. Both of
these are Gaussian random variables, with zero mean
and variances (d%=d? and (&)= &, respectively.”®

In Fig. 24(a), we plot a time series x,, for the open-
loop system without feedback (K, =r,=0). The time con-
stant of the system low-pass filters the white noise due to
the environment (d>=0.01). In Fig. 24(b), we add feed-
back (K,=10). The plot of x, shows how the propor-
tional feedback increases the cutoff frequency of the
low-pass filtering (o’ > wy). The reduced standard devia-
tion illustrates how feedback controls the excursions of x
from the setpoint.

In Fig. 24(c), we add sensor noise (£=0.1). Because
the control loop cannot distinguish between the desired
control signal r,, and the undesired sensor noise §,, the
regulation is noticeably worse. This degradation in per-
formance would be aggravated were one to use deriva-
tive control, which amplifies high-frequency noise.

Sensor noise can thus strongly degrade the perfor-
mance of a control loop. One might try to limit the sen-
sor noise by reducing the sensor’s bandwidth—for ex-
ample, by adding a low-pass filter to the sensor circuit.
This works as long as the sensor bandwidth remains
much greater than that of the feedback. If not, the extra
low-pass filter adds a phase lag that degrades the stabil-
ity margins, forcing one to lower the feedback gain. If
the sensor has significant noise within the feedback
bandwidth, straightforward frequency filtering will not
be sufficient.

About 40 years ago, Kalman (1960) suggested a clever
strategy that is a variant of the observer discussed in Sec.

I11.C.* There, one used the dynamics to evolve an esti-
mate of the internal state forward in time, corrected by a
term proportional to the difference between the actual
observed variable and the prediction. Here, the strategy
is similar, but because both the dynamics and the obser-
vations are subject to noise (disturbances and sensor
noise), one wants to blend the two in a way that mini-
mizes the overall uncertainty. Like the observer, though,
the key idea is to use the system dynamics to supple-
ment what one observes about the system, in order to
estimate the complete internal state of the dynamics.

ZCaution: the variance of the noise terms d, and &, increases
linearly in time. In other words, the associated standard devia-
tion, which would be used by a random-number generator in a
numerical simulation of Eq. (5.36), is proportional to V7.

PNorbert Wiener introduced the idea that control systems
should be analyzed stochastically (Wiener, 1961).
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We begin by noting that there are three related quan-
tities that describe the internal state of a dynamical sys-
tem at time n+1:

true state, X, =¢x,+u,+d,,

predicted state, X1 = ¢X,), + u,,

best estimate, £, 1,41 = (1 = K)X, 1 + Ky,piq,
and two quantities that describe the measurements:

actual measurement, y,. 1 =X,.1 + &i1s

predicted measurement, y,.; =X,
Keeping these straight is half the battle. In the last state-
vector item, the “Kalman gain” K is chosen to minimize
the overall uncertainty in X,,; by blending, with proper
weight, the two pieces of information we have available:
the best estimate based on a knowledge of previous
measurements and of the system dynamics, and the ac-
tual measurement. The notation %,,,,.; means that the
estimate of x,,; uses observations up to the time n+1.
By contrast, the prediction X,,; uses observations only
up to time n. Note that the true state x is forever un-
known and that usually there would be fewer measure-
ments y than state-vector components for x.

Our goal is to derive the optimal value for the Kalman
gain K. To proceed, we write X,,,1|,.1 as

)en+1|n+1 = ¢xAn|n +u, + K()’n+1 - ﬁnﬂ)a (5.37)

in the standard, observer form [Eq. (3.21)] using Eq.
(5.36). Defining the estimation error e,=x,~X,,, we can
easily show using Egs. (5.36) and (5.37) that

€ni1 = (1 - K)[¢en + dn] - K§n+1' (5-38)

Note how Eq. (5.38), in the absence of the noise terms d,,
and &, 1, essentially reduces to our previous equation for
estimator error, Eq. (3.22).

The crucial step is then to choose the Kalman gain K
in the “best” way. We do this by minimizing the ex-
pected value of the error variance at time n+1. This
error variance is just

(€2, =(1- K)[¢Xe2) + d°] + K*&. (5.39)

In Eq. (5.39), the cross terms are zero because the dif-
ferent noise and error signals are uncorrelated with each
other: (d&)=(ed)=(e&)=0. Differentiating Eq. (5.39) with
respect to K, we minimize the error at time n+1 by tak-
ing

dHe) + d?
P+ d>+ &

We put the index n+1 on K because, in general, the
minimization must be done at each time step, and the
dynamics, as well as the noise statistics, may have ex-
plicit time dependence. Equation (5.40) implies that if d?
is big and & small, K,,,;~1: one should trust the mea-
surement. Alternatively, if sensor noise dominates, one

Ky = (5.40)
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should weight the dynamical predictions more heavily
by taking K, ;=~0. Equation (5.40) gives the optimal
balance between the two terms. If the coefficients of the
dynamical equations do not depend on time (n), there
will be a time-independent optimum mix K. (Even with
stationary dynamics, poorly known initial conditions will
tend to make the Kalman filter initially put more weight
on the observations. Subsequently, the optimal K’s will
decrease to K*.)

In Fig. 24(d), the optimal K" is found to be =~0.2 after
a transient lasting 10-20 time steps, implying that after-
wards relatively little weight is placed on new measure-
ments. This is not surprising, given that the standard
deviation of the sensor noise is more than three times
that of the disturbances. Still, no matter how noisy the
sensor, it always pays to have K* >0 in that one needs at
least some contact with the measured system state. Note
in Fig. 24(d) the marked improvement in regulation
compared to Fig. 24(c), showing that many of the prob-
lems created by sensor noise have been mitigated. The
actual measurement signal in Fig. 24(d) is similar to the
trace in Fig. 24(c), showing that we have “filtered” out
the measurement noise in constructing the estimate X.
Note, too, how the estimate X has fewer fluctuations
than the actual state x. In sensor applications, such as
the Michelson interferometer discussed above, where
the output is the feedback actuator signal, this is a sig-
nificant advantage.

One important point is how to estimate d? and &. If
the sensor can be separated from the system being mea-
sured, one can easily establish its noise properties, which
are usually close to Gaussian. (A typical procedure is to
short the sensor input and measure the power spectrum
of the sensor output.) Disturbances can be more prob-
lematic. In the most straightforward case, they are due
to noise from the output stages of the amplifier that
powers the system’s actuator. But more commonly, the
most important disturbances are due to environmental
perturbations. For example, in a scanning tunneling mi-
croscope (STM), they would be due to the roughness of
the surface, and one would need some knowledge about
the typical surface to fix the roughness scale. It matters
less that the height profile of the surface show Gaussian
fluctuations than that there is a typical scale. If so, then
the Kalman algorithm, which basically assumes that the
only relevant information is the second moment, will
usually be reasonable. If the fluctuations deviate in a
serious way—e.g., if they show a power-law
distribution—then the algorithm may be inaccurate. But
note that true power-law behavior is probably fairly
rare. In the case of an STM scanning a surface, for ex-
ample, scans are over a finite area, and for fixed scan-
ning area, there would be a typical length scale for sur-
face fluctuations. (This length could diverge with the
overall scan size, but so weakly in practice that one
could ignore the effect.)

The discussion so far has been for a scalar case with
only one degree of freedom. The general case is handled
similarly, with exact vector-matrix analogs for each
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equation discussed above. The algebra becomes more
complicated, but all the basic reasoning remains the
same (Dutton et al, 1997). [The generalization of Eq.
(5.39) leads to a “matrix Riccati equation,” which re-
quires some care in its solution.]

The Kalman filter is similar to the Wiener filter [com-
pare Eq. (5.40) with Eq. (13.3.6) of Press et al. (1993)],
which solves the problem of extracting a signal that is
convoluted with an instrumental response and by sensor
noise. One difference, which is one of the most attrac-
tive features of the Kalman filter, is its recursive struc-
ture: data at time n+1 are calculated in terms of data at
time n. This means that one only has to keep track of the
most recent data, rather than an entire measurement set.
To understand this advantage better, consider the com-
putation of the average of n+1 measurements,

n+1

1
(ns1 = m; X;. (5.41)
In computing the average in Eq. (5.41), one normally
sums the n+1 terms all at once. Alternatively, Eq. (5.41)
can be rewritten recursively as

Wt =~y — (5.42)
n+1 n+1
which is the strategy used in formulating the Kalman
filter. The Kalman filter takes advantage of the fact that
data are collected periodically and that the driving noise
has no correlation from one step to another. Its main
limitations are that the calculation assumes one knows
the underlying system and that system is linear. If the
model is slightly off, the feedback nature of the filter
usually does an adequate job in compensating, but too
much inaccuracy in the underlying dynamical model will
cause the filter to produce unreliable estimates of the
state x. Perhaps the most important idea, though, is that
the Kalman filter shows explicitly the advantage of
tracking the system’s dynamics using an internal model.

Since the Kalman filter generalizes the observer dis-
cussed earlier in Sec. III.C, one recovers a simple ob-
server if the sensor noise is zero. Whether generated by
an observer or a Kalman filter, the estimate of the state
vector is used to generate an error signal in the feedback
loop. This loop can then be designed using the optimal
control theory described in Sec. V.B.3, which in this con-
text is called LQG control: linear model, integral qua-
dratic performance index, Gaussian noise process
(Skogestad and Postlethwaite, 1996). The “separation
theorem” proves that the dynamical performance of the
feedback loop based on the optimal estimates provided
by the Kalman filter have the same properties (poles,
etc.) as they would if the internal states x(¢) of the model
were directly observable. Thus one can separate the ob-
server problem from the control problem.

Like most of the techniques discussed here, the Kal-
man filter is designed to deal with linear systems. Lin-
earity actually enters in two places: in the dynamical
equation for the internal state x(f) and in the output
relation between x and y. If one or either of these rela-
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tions is nonlinear, a simple strategy (the “extended Kal-
man filter”) is to linearize about the current operating
point. Thus if the state x,,;=f(x,) for some nonlinear
function f(x), one would update x using ¢, =df/dx, with
the derivative evaluated at the current state x,. The ex-
tended Kalman filter works well in slightly nonlinear
situations, but it implicitly assumes that Gaussian statis-
tics are preserved under the nonlinear dynamics. For
strong nonlinearities, the analysis is much more difficult,
and the search for approximate solution methods is an
active area of research (Evensen, 2003; Eyink et al.,
2004).

Although our discussion here has been rather elemen-
tary, we hope to have motivated the reader to explore a
strategy that, despite occasional attempts at populariza-
tion over the years (Cooper, 1986; Gershenfeld, 1999),
remains little used by physicists. A natural area to apply
such ideas is in instrumentation for biophysics studies
involving the tracking of micron-sized beads (e.g., Gosse
and Croquette, 2002; Cohen, 2005), where disturbances
are mostly due to Brownian motion.

E. Robust control

Control theory underwent something of an identity
crisis during the 1970s. Although the sophisticated meth-
ods described in the above sections can give feedback
schemes that work very well on paper, the results, in
practice, were often disappointing. This led many prac-
tical engineers (and physicists) to conclude that it was
not worth learning fancy techniques and that the tried-
and-true PID controller was just about all one needed to
know. Indeed, the consensus is that the academic re-
search on control theory from 1960 to about 1980 had
“negligible effect” on industrial control practice [see the
introduction to Morari and Zafirioiu (1989), as well as
Leigh (2004)].

The root of the problem was that the schemes pre-
sented so far implicitly assume that the system itself and
the types of inputs and disturbances it is subject to are
well known. But in practice, models of a system have
uncertainties—parameters differ from setup to setup,
high-frequency modes may be neglected, components
age, and so on. Controllers that are optimized (e.g., in
the sense of Sec. V.B.3) for one system may fail miser-
ably on the slightly different systems encountered in
practice.

The challenge of finding effective control laws in the
face of such uncertainties led to two approaches, begin-
ning in earnest the late 1970s and early 1980s. One of
these, adaptive control, tries to reduce uncertainty by
learning more about the system while it is under control.
We discuss this briefly in Sec. VIII, below. The other
approach is that of “robust control,” where one tries to
come up with control laws that take into account this
uncertainty. Here we give some of the basic ideas and
flavor of this approach, following mainly Doyle et al
(1992), Skogestad and Postlethwaite (1996), and Ozbay
(2000). In Sec. V.E.1, we show that in any control system
one implicitly assumes a model of the system being con-
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FIG. 25. Block diagram of an IMC controller. Shaded area is
implemented either in a computer program or in control elec-
tronics.

trolled. In Sec. V.E.2, we give a useful way of quantifying
one’s uncertainty about a system. In Sec. V.E.3, we show
how to test whether, given a nominal system, with uncer-
tainty, the system is stable. This leads to the notion of
“robust stability.” In Sec. V.E.4, we give an analogous
method for insuring “robust performance” in the face of
uncertainty about control inputs and disturbances. Fi-
nally, in Sec. V.E.5, we discuss how to find control laws
that balance the competing objectives of robust stability
and performance.

1. The internal model control parametrization

As a useful starting point, we introduce an alternative
way of parametrizing control systems, known as “inter-
nal model control” (IMC) (Morari and Zafirioiu, 1989;
Goodwin et al., 2001). The basic idea is to explicitly in-

clude a model G(s) of the system’s actual dynamics,
G(s). This leads to the block diagram of Fig. 25. (For
simplicity, we omit external disturbances, sensor noise,
sensor dynamics, etc.) Solving the block dynamics in Fig.
25, one finds

GO

=——. (5.43)
1+(G-G)0

y(s)

Notice that the feedback signal is v=(G —G)u. This
shows explicitly that if we were to have a perfect model
(and no disturbances), there would be no need for feed-
back. Feedback is required only because of our always
imperfect knowledge of the model system and its distur-
bances. As we discuss in Sec. IX below, there is a deep
connection between feedback and information.

There are a number of other advantages to the inter-
nal model control formulation. It is easy to relate the
internal model control controller Q(s) to the “classic”
controller K(s) discussed previously:

K(s) =

—. (5.44)
1-GO
Because the denominator in Eq. (5.43) is 1+(G-G)0,
the feedback system will become unstable only if Q

=-1/(G-G), which will be large when G = G. In other

words, as long as the model G is a reasonable approxi-
mation to the real system G(s), a stable controller Q(s)
will lead to a stable closed-loop system. [Here we as-
sume that G(s) itself is stable.] This is in contrast to the
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classic controller K(s), where stable controllers can
nonetheless destabilize the system. A more positive way
of saying this is to note that for the system G(s), the set
of all stable Q(s)’s generates all stable controllers K(s).

Another advantage of the IMC structure is that the
above remarks about stability carry forward to cases

where the system G and model G are nonlinear. If G
~ G, then their difference may be well approximated by

a linear function, even when G and G are themselves
strongly nonlinear.

Finally, in Eq. (5.43), we see that if G=G, and we set

0=1/G, then we will have perfect control [y(s)=r(s),
exactly]. This means that even when the system is
known exactly, it is necessary to invert the model trans-

fer function G(s) in order to have perfect control. If Gl(s)
is nonminimum phase and has a zero in the right-hand
plane, say at s, then the controller Q(s) will have a pole
at sy as well and will be impossible to implement at the
corresponding frequency. (Intuitively, one needs infinite
energy to move a system that has zero response.) This
means that the bandwidth of the closed-loop system—
whatever the feedback law chosen—will always be lim-
ited by the lowest-frequency right-hand plane zero of
the system G(s). Thus we see another reason to watch
out for nonminimum phase dynamics and to eliminate
them by redesigning the system whenever possible.

2. Quantifying model uncertainty

The internal model control structure highlights the
role that an internal model of the system plays. Since
models are never perfect, one must learn to deal with
the consequences of uncertainty. The first step is to
quantify the uncertainty of the system model. The most
obvious way is to allow for uncertainties in any model
parameters. For example, in a second-order system such
as Eq. (2.5), one could estimate uncertainties in the
damping ¢ and natural frequency w,. There are two limi-
tations to this approach: First, it assumes that the form
of the model is correct. But one may not know the phys-
ics of the model well, and, even if one does, one may
choose to neglect certain parts of the dynamics (such as
higher-order modes), which translate into errors in the
model. Second, one would, in principle, have to come up
with a special way of dealing with the effects of different
kinds of parameters. For example, an uncertainty in
natural frequency just amounts to a rescaling of the time
axis, whereas an uncertainty in damping could mean that
sometimes a system is underdamped and sometimes
overdamped, which could have very different conse-
quences for the control law.

In the control literature, the uncertainty that enters
via imperfectly known parameters is called “structured
uncertainty,” since a certain model (“structure”) is as-
sumed. To get around the problems discussed above,
one can consider instead “unstructured uncertainty.” In
this approach, we start with a nominal system G(s). The
actual system, which is unknown, is a member of a set of
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systems G(s), defined by an arbitrary multiplicative un-
certainty:

G(s) = [1+ A(s)W(s)]Go(s), (5.45)

where A(s) is an arbitrary transfer function that satisfies
[|All.<1 and where W(s) is a transfer function that gives
the uncertainty limits. The o subscript on the norm re-
fers to the “H..” norm, which is defined to be

sup
Al = o]AGiw). (5.46)

In words, the H.. norm is computed by taking that maxi-
mum of the magnitude of the function, in contrast to the
more common Euclidean, or H, norm, defined in fre-
quency space by

1 o 12
Ish=| 5| Istorao|
T _

The reasons for using the H.. norm will become clear
shortly. The best way to picture multiplicative uncer-
tainty is in the complex s plane, Fig. 27 where we plot
Gy(iw), the nominal system, and the band formed by
superposition of the frequency-dependent multiplicative
perturbations. At each frequency, the system is located
within a circle of radius of radius W(iw), as illustrated.
Superposing all the circles gives the two bands shown.
The multiplicative bound means that the uncertainties
are expressed relative to Gy(iw).

There is no deep reason for using multiplicative un-
certainty. For example, one could use additive uncer-
tainty, defined by G(s) = G(s) + A(s) W(s). But an additive
uncertainty is easily redefined in terms of a multiplica-
tive one; in addition, multiplicative uncertainties tend to
arise naturally in control problems. For example, if the
actuator (considered as part of the system) has a
temperature-dependent gain and the equipment is to be
used in rooms of differing temperatures, then the set of
systems ranges from Ky)—AKGy(s) to Ky+AKGys),
meaning that the fractional uncertainty W=AK/K,. In
general, both K; and AK could be functions of fre-
quency.

A more interesting example is a system that includes
an unknown time delay 7, ranging from O to 7, If the
nominal system is G(s), then, at each frequency w, the
uncertainty bound |W(iw)| must be greater than

(5.47)

—inG )
€20 gl clei1| (O=r=Tny).  (5.48)
€0
In Fig. 26, we show that a suitable bound is
2.1
W(s) = (5.49)
1+ TaxS

which can be derived by noting the asymptotic behavior
for w—0 and w— of Eq. (5.48) and increasing the am-
plitude slightly to avoid “cutting the corner” in Fig. 26.

In practice, one way to construct a bounding function
W(s) is to measure a system transfer function several
times, under a variety of conditions. Let the kth transfer-
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FIG. 26. (Color in online edition) Multiplicative bound for a
variable delay. Bottom curves: magnitude of Eq. (5.48); top
curve: magnitude of Eq. (5.49).

function measurement be done over a set of frequencies
w;, giving a series of magnitude-phase pairs (%ka¢jk)'

For each point j, estimate a “typical value” M:e'%;. Then
find an analytic function W(s) that satisfies, for every j
and k,

M e Pik — M%e"‘f’;
i L S———" R

M}ke"‘f’i
It is important to realize that M" and ¢" need not be
the averages of the measurements. The main usefulness
of the robust approach is in dealing with the effects of
systematic variations. If used for random variations fol-
lowing known statistics, it will likely be over-
conservative. Typically, systematic variations arise be-
cause only part of a complex system is being modeled.
As discussed above, the effects of higher-order modes
may be neglected or projected away, and there may not
be enough separation from the lower-order term to
model the effect of those neglected modes by a white-
noise term in a Langevin equation, which is the usual
physics approach (Chaikin and Lubensky, 1995). An-
other example is nonlinear dynamics, which will be dis-
cussed below in Sec. VI. Because the methods we have
been discussing are based heavily on linear techniques,
one must assume that the system dynamics are linear
about a given operating point. Although this is often
true, the parameters and even the form of the linear
system can vary with the operating point chosen. A final
example is that one’s system is almost always embedded
within a larger system, whose dynamics are not mod-
eled. Thus an experiment in a room may show different
behavior as a function of temperature. A biochemical
network (see Sec. VII.C below) may function in a cell
whose environment changes significantly in different
conditions, and so on. In all of these situations, the right
thing to do is to choose typical conditions, which may or
may not involve an average and then to identify the ex-
pected maximum deviation at each frequency w;. |W(s)|
is then an analytic function bounding all of these devia-
tions.

< |W(iwy)|. (5.50)

3. Robust stability

In the previous section, we saw one way to quantify
the uncertainty in a model of system dynamics. Given
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that one’s system belongs to a family of systems G(s),
one would like to choose a controller K(s) so that, at a
minimum, the feedback loop is stable for all possible
realizations G(s) of systems taken from the family G(s).
This property of being stable over all possible realiza-
tions is known as robust stability.

Unlike the system, we can assume that we know the
controller K(s) exactly.*” Then, the loop gain L=KG will
be a member of a set £L=KG. Since we have seen that a
system goes unstable when the denominator of the
transfer functions 7 and S equal zero, we must have that
1+ L(iw) #0 for all w, for all values of any parameters
used in K, and for all systems G. The last requirement
can be restated succinctly as 1+£#0.*'

To analyze things further, define G as the set of sys-
tems G(s)=Gy(s)[1+A(s)W(s)], with W the uncertainty
bound and A an arbitrary transfer function with magni-
tude =<1. Similarly, write the set of loop transfer func-
tions £ as L(s)=Lys)[1+A()W(s)], with Ly(s)
=K(5)Gg(s). Then the condition for robust stability can
be written

|1+ L(iw)| = |1 + Ly(iw) + Alio)W(iow)Ly(io)| >0 V o.
(5.51)

This can be illustrated by a diagram analogous to Fig.
27, where instead of plotting the family of systems G one
plots the family of loop transfer functions £. Equation
(5.51) then states that the light shaded area cannot touch
the point —1. Because, at each w, A is any complex num-
ber with magnitude <1, we can always choose the worst
case, i.e., the A that minimizes the left-hand side of Eq.
(5.51). This implies

11+ Ly(iw)| — [W(iw)Ly(iw)]| >0 V o, (5.52)
or
BRSNS Lo(io) <1l VYo (5.53)

Since the complementary sensitivity function of the
nominal system is 7=Ly/(1+ L), we can write this as

[WTl..<1, (5.54)

where we have used the H, norm as shorthand for
|W(iw) T(iw)| <1V w. The use of the H,, norm arises from
the desire to be conservative, to be stable for the worst

3%If the controller is implemented digitally, this will be strictly
true. Almost all practical robust controllers are implemented
digitally, since the algorithms generate fairly complex control-
lers, which would be complicated to implement with analog
circuitry.

31 As discussed in Sec. IV.B above, we are simplifying some-
what. For a given controller K(s), one would invoke the Ny-
quist criterion to see whether any system in the Nyquist plot of
L(iw) circles -1 an appropriate number of times to be un-
stable. In practice, one is almost always worried about comput-
ing the limit where a system (or set of systems) crosses over
from being stable to unstable, in which case the relevant crite-
rion is 1+£=0.
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Im G(iw)
n

Re G(iw)

FIG. 27. (Color in online edition) Illustration of a multiplica-
tive uncertainty bound and of robust stability. The thick, cen-
tral line is the nominal system G, with Im[G(iw)] plotted vs
Re[Gy(iw)] over 0<w < (“Nyquist plot”). The thin lines that
shadow it are the uncertainty limits, meaning that the actual
system follows a path somewhere within the shaded area. The
shaded circle gives the multiplicative uncertainty bound at one
frequency. If we now interpret the thick central line as a loop
transfer function and if the system is closed in a feedback loop,
then robust stability implies that the set of loop transfer func-
tions defined by the light shaded region cannot touch the point
—1, which is indicated by the large dot.

possible realization of one’s system. Equation (5.54) also
implies that the uncertainty bound W must be less than
T-! at all frequencies for robust stability to hold.

To see how robust stability works, let us consider
again a first-order system with variable time lag. The
nominal system is G(s)=1/(1+ 7ys). If the maximum ex-
pected lag is 7,4, We saw above [Eq. (5.49)] that we can
take W(s) =217,/ (14 Taxs)- Now, for a given control-
ler, what is the maximum gain we can apply while still
maintaining robust stability? Taking, for simplicity,
K(s)=K, we see that Eq. (5.54) implies

21K Tax
V14 20 (1 + K)? + o?

We then seek K=K, such that f(K,,.,o)=1 and
(9f/dw)|k__o*=0. Numerically, for =1 and 7,,=0.1,
one finds K,,,,=~ 10. By contrast, the stability limit found
in Sec. IV.C for a first-order system with time delay was
Kfnaxz 15 [Eq. (4.10), with a factor of 2 for gain margin].
The robust-stability criterion leads to a smaller maxi-
mum gain than does a calculation based on a precise
model of the system (with delay). Uncertainty thus leads
to conservatism in the controller design.

fK,0) = <1. (5.55)

4. Robust performance

The previous section was mostly concerned with sta-
bility, but the point of feedback is usually to improve the
performance of an open-loop system. In Sec. V.B.3, we
defined a scalar “performance index” that measures how
well a system rejects errors and at what control costs
[Eq. (5.8)]. One difficulty is that such optimal control
assumes a particular disturbance d(f) and a particular
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reference signal r(f), whereas in practice these signals
vary. In other words, we would like to assure good per-
formance for a set of disturbances and reference signals.

We begin by recalling that, in the absence of sensor
noise, the tracking error ey(s)=S(s)[r(s)—d(s)], where
the sensitivity function S=1/(1+ L). Thus, to have good
performance, we would like to have |[S(iw)|<1. How-
ever, the loop gain L=KG will go to zero at high fre-
quencies, so that S$—1 as w—oce, meaning that it is im-
possible to track a reference or compensate for
disturbances to arbitrarily high frequencies. Actually,
the situation is even more difficult, since the analytic
structure of L constrains the form of S. Depending on
the pole-zero structure of L (especially, the number of
poles and zeros in the right-hand plane), one has a num-
ber of different analytical constraints on S. To give the
simplest one, originally derived by Bode, assume that L
has neither poles nor zeros in the right-hand plane (i.e.,
assume it is stable and nonminimum phase), and assume
also that the relative degree of L is at least 2 (i.e., L
~w™ as w— o, with n=2). Then one can show (Doyle
et al., 1992) that

J ’ In|S(iw)|dw = 0. (5.56)

0

This means that on a log-linear plot of S(iw) the area
below 0 (|S|<1) must be balanced by an equal area
above 0 (|S|>1). This is illustrated in Fig. 28. When |S|
<1, the control loop is decreasing the sensitivity to dis-
turbances and the system is made more “robust.” When
|S|>1, the control loop actually amplifies disturbances,
and the system becomes more “fragile.” Equation (5.56)
implies a kind of “conservation of fragility,” with fre-
quency ranges where the system is robust to distur-
bances being “paid for” with frequency ranges where
the system is fragile (Csete and Doyle, 2002). This is also
known as the “waterbed effect”: push |S| down at some
frequency, and it will pop up at another! As a conse-
quence, increasing the gain will increase the frequency
range over which disturbances will be rejected but will
increase the fragility of the system at higher frequencies.

Given these constraints on S and given that r and d
are usually unknown, one can proceed by defining a set
of expected or desired control inputs or disturbances
and asking that the control error be small for any mem-
ber of these sets. For simplicity, we consider only distur-
bances. Let the set of disturbances be characterized by
d(s)=A(s)W,(s), where, as before, W;(s) is a bounding
function (the “performance weight”) and A(s) is an arbi-
trary transfer function with |A|<1. Typically, Wy(s) is
large at low frequencies and cuts off at high frequencies.
The functional form is often taken to be a lag compen-
sator [Eq. (5.6)]. Again, W, represents the largest distur-
bances one expects or, at least, that one desires to sup-
press. The largest error that one expects is
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FIG. 28. (Color in online edition) Constraints on the sensitivity
function S=1/(1+L). (a) Logarithm of the sensitivity function
In|S(iw)| for a second-order system with proportional gain. The
negative area where control is “robust” is just balanced by the
positive area, where control is “fragile.” Note that the slow
decay (here, In|S|~ w2 at large frequencies) implies that a sig-
nificant part of the positive area is off the plot. (b) Nyquist plot
of the same system. Note that when the plot enters the shaded
circle of radius 1, centered on -1, we have |§]|>1.

sup
leoio)| =1dS| < © | W, (i©)S()| = [W,Sl..  (5.57)
Then we can reasonably ask that the worst possible er-
ror resulting from the most dangerous expected distur-
bance be bounded, i.e., that |W;S|..<1, where W, is im-
plicitly rescaled to make the bound 1.

Equation (5.57) represents the desired nominal perfor-
mance, given an accurate model of the system (Morari
and Zafirioiu, 1989). One should also ask for robust per-
formance, so that Eq. (5.57) holds for all systems G al-
lowed by the uncertainty. We replace S by S,, the sensi-
tivity function of a particular realization of one of the
possible systems Gp=Gy(1+AW,), where we now use
W, for the multiplicative bound on the system uncer-
tainty. Then

B (W4 WS
(WS4l = = <1. (5.58)
|1 +L0+AW2L0| |1 +AW2T|
Multiplying through, we have
[WiS| <1+ AW,T|<1-|W,T| V o, (5.59)

or
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WS+ W]l < 1. (5.60)

This is the robust-performance problem. Again, the H..
norm means that the relation holds for all frequencies.
In Eq. (5.60), all quantities are evaluated at s=iw, and S
and T refer to the nominal system G,

5. Robust control methods

From our point of view, the formulation of the robust-
performance problem is more important than its solu-
tion. Equation (5.60) may be thought of as another type
of optimal-control problem. Instead of asking that the
left-hand side be less than 1 (which may not be possible,
given that the performance criterion reflects one’s de-
sires, not what is possible), we can ask that it be less than
some bound 7. Then the problem is to find a controller
K that minimizes ||W;S|+|W,T||l... given performance
and stability weights W; and W, and given a nominal
system G. Finding even an approximate solution to this
problem requires a sophisticated treatment (Doyle ef al.,
1992; Skogestad and Postlethwaite, 1996; Ozbay, 2000)
that is beyond the scope of this tutorial. Alternatively,
one can seek a numerical solution by postulating some
form for K(s) and running a numerical optimization
code to find the best values of any free parameters. On
the one hand, such optimization is in principle straight-
forward since one usually does not want a controller
with more than a dozen or so free parameters. On the
other hand, the landscape of the optimized function is
usually rugged, and a robust optimization code is
needed. Recent work has shown that genetic algorithms
can be quite effective (Jamshidi et al., 2003). For the
problems that most readers are likely to encounter in
practice, there is probably little difference between the
two approaches, in that both lead to a numerical solu-
tion for which software is available (e.g., MATLAB or
SCILAB).

Here we limit our discussion to a reconsideration of
loop shaping. If we write out Eq. (5.60) in terms of L,
and recall that L, is large at low frequencies and tends
to zero at high frequencies, then we easily derive that

(Wi (i)

|Ly(iw)| > T Witio)]

—0,
(5.61)
[1-WGw)

= i

Thus Eq. (5.61) provides explicit criteria to use in shap-
ing the low- and high-frequency forms of the controller
K(s)=Ly(s)/ Gy(s).

Finally, the above discussion of robust control meth-
ods neglects sensor noise. In Sec. V.D on Kalman filter-
ing, we saw how to estimate the system state in the pres-
ence of noise. The optimal state estimated by the
Kalman filter, however, assumed that one had accurate
knowledge of the system’s dynamics. Combining robust
methods with optimal state estimation remains a topic of
current research (Petersen and Savkin, 1999).
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In the physics literature, robust controller design has
seldom been used, but two recent examples both con-
cern the control of a positioner for an atomic force mi-
croscope head (Schitter er al., 2001; Salapaka et al.,
2002). In Salapaka et al., the system used a piezoelectric
stack as an actuator, with a control loop to counteract
nonlinearities and hysteresis in the actuator, as well as
mechanical resonances in the stage. A first attempt at
using a PI controller gave a bandwidth of 3 Hz. Use of
the H.. techniques led to a bandwidth of over 100 Hz. It
should be noted, however, that the increase in perfor-
mance came from replacing a two-term controller (P and
I) with a more complicated form for K that had 12 terms
to tune, thus giving much more freedom to shape K(s).
It did not per se come from the choice of the H,, (robust)
metric. What robust and optimal control methods offer
is a rational way of using performance objectives (e.g.,
high bandwidth of the closed-loop system) to choose the
many free parameters in K(s). Without some systematic
guide, tuning a 12-parameter controller would be diffi-
cult, if not impossible. The use of robust measures helps
to insure that a solution that works “on paper” will per-
form satisfactorily in the real world, taking account of
errors in the modeling, drift in parameter values, and so
forth.

VI. NOTES ON NONLINEARITY

Most of our discussion so far has focused on the con-
trol of linear systems. Many types of dynamical systems
indeed are linear, or are close enough to an equilibrium
that they behave approximately linearly about some
equilibrium point. A straightforward approach is “gain
scheduling,” where one measures the transfer function
locally over a range of setpoints, with the positions (and
even types) of poles and zeros evolving with set point.
One then varies the control algorithm parameters (or
even structure) as a function of the local transfer func-
tion.

While gain scheduling works well for weak nonlineari-
ties, it does not for stronger ones. The past few decades
have brought an increasing awareness of the
importance—and ubiquity—of strongly nonlinear sys-
tems, and there have been increasing efforts to find ways
of controlling such dynamical systems. The difficulty is
that most of the methods we have discussed above, in-
cluding frequency response and the manipulation of
pole positions, make sense in general only for linear or
nearly linear systems and often cannot even be adapted
to study nonlinear systems. Indeed, nonlinear systems
show phenomena such as chaos, hysteresis, and har-
monic generation that do not exist in linear systems, im-
plying that the failure of the linear methods in general is
a fundamental rather than a superficial one. Until re-
cently, the physics literature and the control-theory lit-
erature on nonlinear dynamics were fairly separate.
There is little point in trying to review the vast variety of
different approaches that exist, a variety that no doubt
reflects our more limited and less systematic understand-
ing of nonlinear systems. Instead, we briefly revisit the
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FIG. 29. (Color in online edition) Metastability: the ball is
stable to small perturbations but unstable to larger ones.

notion of stability and then give a couple of illustrations.

Over a century ago, Lyapunov generalized the notions
of stability discussed in Sec. IV.A. Such a generalization
is necessary because the linear stability analysis dis-
cussed there is not always reliable. For example, a sys-
tem that is stable to infinitesimal perturbations may be
unstable to finite perturbations (“metastability”), as il-
lustrated in Fig. 29. See Strogatz (1994) for a physicist’s
discussion and Dutton et al. (1997) for a control engi-
neer’s discussion of stability in nonlinear systems and
how Lyapunov functions can be used to prove the sta-
bility of a solution to perturbations lying within a given
region of phase space. Most of the methods from the
control literature—describing  functions, Popov’s
method, Zames’s circle criterion, etc. (Dutton et al.,
1997)—deal only with rather specific types of nonlinear-
ity and have correspondingly limited ranges of applica-
bility. Instead of cataloging all these cases, we give one
example of a (basically unavoidable) nonlinearity that is
a common topic in control-theory texts and a second,
more recent example from the physics literature, chosen
to illustrate how different the approaches can be.

A. Saturation effects

In our discussion of control laws, such as proportional
control, we always assumed that however large the error
might be, it is always possible to generate the appropri-
ate control signal. But every actuator has its limits. For
example, if temperature is being controlled, then the ac-
tuator will often be a Peltier element, which pumps heat
into a sample (i.e., heats it) when positive current is used
and pumps heat out of a sample (i.e., cools it) when
negative current is used. The Peltier element uses a bi-
polar current source with a maximum possible current.
The actual control signal will then resemble the thick
trace in Fig. 30 rather than the thin dashed one. The
control law is therefore nonlinear for large-enough error
signals. Such a saturation always occurs, although one
may or may not encounter in a given situation the large
errors needed to enter the nonlinear regime.

Saturation need not have a dramatic effect on propor-
tional control. When the error signal is too large, the
system applies its largest correction signal, which is
smaller than it should be. Intuitively, the quality of con-
trol will smoothly degrade as the errors become larger
and larger, relative to the saturation value (often called
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the “proportional band” in the control literature).

The same kind of saturation effect, however, also oc-
curs with integral control, and there its effects are more
subtle. Consider a pure integral control law. If the sys-
tem receives a large, long-lasting perturbation, the error
integral will begin to build up, and hence the control
signal. At some point, the control signal saturates, leav-
ing the error to continue to build up (assuming that the
error signal still has the same sign). The control signal
will have reached its maximum value, where it will stay
until the integral term has been reduced. For this to hap-
pen, it is not sufficient that the system return to a state
of zero error, for a large constant part of the integral will
have built up. The effect will be to create a large error of
the opposite sign (and perhaps to be unstable). The easy
fix—universally used in practical integral control laws,
including PID ones—is to freeze the value of the inte-
gral error whenever the control signal saturates. When
the signal reenters the proportional band, one updates
the integral term as usual, and the performance will then
be as calculated for the linear system. This runaway of
the integral term due to the saturation of the activator is
known as “integral windup” (Dutton et al., 1997).

A more general approach to handling such actuator
constraints is known as “Model Predictive Control”
(Goodwin et al., 2001). Briefly, the basic idea is to inte-
grate (or step) a dynamical model of the system forward
in time by N units. One then optimizes a performance
index over this future time period, assuming that no un-
known disturbances enter and taking into account all
actuator constraints. The first step in this optimal solu-
tion is actually taken, and then a new optimization prob-
lem is solved, again going forward by N units. One can
then treat almost any kind of constraint, including sen-
sor saturation, slew-rate limitations, etc.

Saturation effects are unavoidable in control situa-
tions because they are part of the control mechanism
itself. Similar nonlinearities may also be dealt with in
various ad hoc ways. For example, if a digital controller
is used, there will be quantization nonlinearity due to
the finite word size of the analog-to-digital and digital-
to-analog converters.”

(These effects can usually be cured most easily by
making good use of the full dynamic range and, when

n analog-to-digital conversion, the effects of quantization
error can often be reduced by deliberately adding noise to the
signal. If the noise amplitude is roughly one least-significant bit
(LSB), then successive digitizations will reflect the true ampli-
tude of the signal. For example, imagine measuring a signal
level of 0.4 with a digitizer that reports O or 1. With no noise,
one measures always 0. If the noise level (i.e., its standard
deviation) is on the order of 0.5, one will measure a “0” 60% of
the time and a “1” 40% of the time. Measuring the signal
several times will suffice to get a reasonable estimate of the
average. The method, similar in spirit to the technique of
delta-sigma conversion discussed above in Sec. V.C, is known
as dithering (Etchenique and Aliaga, 2004). It gives an example
of how, in a nonlinear system, noise can sometimes improve a
measurement.
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FIG. 30. (Color in online edition) Saturation of proportional
gain. Thin dashed line is the proportional gain with no satura-
tion. Thick lines show saturation. There is, in general, no rea-
son for saturation to be symmetric about zero, as depicted
here.

more desperate, by investing in more expensive analog-
to-digital and digital-to-analog chips that have more
bits.) But the more interesting and important nonlineari-
ties are to be found in the system dynamics themselves.

As the above examples show, nonlinearities associated
with discontinuities in a function or one of its derivatives
are typical in engineering problems, while the systems
that physicists encounter more often have analytic non-
linearities. The following example shows how an ana-
lytic nonlinearity leads to complex, chaotic behavior that
is nonetheless controllable.

B. Chaos: The ally of control?

A chaotic dynamical system is one that shows sensi-
tive dependence to initial conditions (Strogatz, 1994).
Two nearby initial conditions will diverge exponentially.
Most often, one deals with dissipative chaotic systems,
where the dissipation implies that the system will be
confined to a finite volume of phase space (state space,
in our language here). Although the system is always
locally unstable, the state vector stays in some general
region. One can ask whether it is possible, through small
variations of one or more of the system’s control param-
eters, to stabilize the dynamics. (Stabilization through
large variations is less interesting, because one can usu-
ally find a stable region for some range of control pa-
rameters.)

The first algorithm to stabilize a system with chaotic
dynamics was given by Ott, Grebogi, and Yorke in 1990
(Ott et al., 1990). Their algorithm drew on several key
features of chaotic motion: First, once initial transients
have passed, the system’s motion is on an attractor, a set
of points in phase space. Second, the motion is ergodic
on that attractor. This means that the system revisits ar-
bitrarily close to a given point arbitrarily many times.
Third, embedded in each attractor is a dense set of un-
stable periodic orbits. Without getting into the types of
orbits, we will think about the simplest kind, a fixed
point. In that case, each attractor will contain an un-
stable fixed point.

The idea of the Ott-Grebogi-Yorke algorithm is to sta-
bilize motion about an unstable orbit (or fixed point) x”
by waiting until the system brings the state vector x near
to x* (Grebogi and Lai, 1999). By the ergodicity proper-
ties of chaotic motion, this will always happen if one
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FIG. 31. (Color in online edition) Illustration of the OGY
chaos-control algorithm. (a) Time series of x,,.. Control is initi-
ated at =0 about unstable fixed point x* (horizontal solid line).
Dashed lines show the tolerance range +e within which OGY
algorithm is active. Here, the algorithm actives at r=24. (b)
Control parameter \,, as adjusted by OGY algorithm to stabi-
lize fixed point.

waits long enough. (The closer one wants x to approach
x", the longer one has to wait.) Once this happens, the
control algorithm is activated. If the dynamics are given
by x,.1=f(\,x,) (assume discrete dynamics for simplic-
ity), then one may use the proximity of x, to x" to lin-
earize about the fixed point. The linearized dynamics are
of af

—(x,—x") +—A\,.
ox O\

e 6.1)

Xn+1

One then changes \ in Eq. (6.1) so that x,,,;=x", i.e., one
sets

f(x, — x")ox

AN, =—
" Ifl N

(6.2)
Of course, choosing A\, in accordance with Eq. (6.2)
will not make x,,,; precisely equal to x”, since that choice
is based upon the approximation in Eq. (6.1). But if the
original distance x,—x" is small enough, the system will
quickly converge to x".

We can illustrate the Ott-Grebogi-Yorke algorithm on
a simple chaotic dynamical system, the logistic map

Xpe1 = Ax,(1—x,,), (6.3)

which is a standard example of a simple dynamical map
that shows complex behavior as the control parameter A
is adjusted (Strogatz, 1994). Here, at A=3.8, the system is
normally chaotic. The goal will be to stabilize the sys-
tem’s motion about the normally unstable fixed point,
given by x"=1-1/A=0.74. The Ott-Grebogi-Yorke con-
trol algorithm is turned on at r=0; see Fig. 31(a), which
shows a logistic map with control initiated at t=0. One
waits until the natural motion of the system brings it to
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within a predefined tolerance x +& (here, £=0.02). In
the particular run shown in Fig. 31(a), this happens at
time step 24. The Ott-Grebogi-Yorke algorithm is then
activated, as shown in Fig. 31(b). Note that the system
state x,4 is just slightly above the set point. The idea, as
discussed above, is to change N to A,=N+A\, so as to
position the fixed point of the modified dynamical sys-
tem (logistic map with control parameter \') above the
point x,4 so that the repulsive dynamics of the modified
system pushes the point towards x". Equation (6.2)
shows that we set

AN, =— {M} (x,—x)=93(x,-x"). (6.4)
x(1-x)

The values of \,, are shown in Fig. 31(b). Note how A,y
shoots up in response to x,4, Which represents the first
time the system has entered the tolerance zone x" +e.
The system quickly settles down and stabilizes about the
desired set point x". In most applications, there would be
noise present in addition to the deterministic dynamics,
in which case the algorithm would lead to small fluctua-
tions about the fixed point for small noise. The occa-
sional large kick may cause the system to lose control.
One would then have to wait for the system to re-enter
the tolerance zone to reactivate control.

Can one do better than merely waiting for the system
to wander near the set point? In fact, small “targeted”
corrections to the motion can drastically reduce the
waiting time. The idea is to extrapolate backwards from
the setpoint to find a point near the current state of the
system. Then one works out the perturbation needed to
approach the target. Small control-parameter perturba-
tions at the right time can have a large effect. In a real-
life application, NASA scientists have used such ideas to
send spacecraft on remote missions throughout the solar
system using small thrusts to perturb the motion in the
planets’ and sun’s gravitational fields. These and other
aspects of targeting are discussed in Shinbrot (1999).

The Ott-Grebogi-Yorke algorithm uses the system’s
dynamics, notably the ergodic property of chaos, where
the dynamical system generically passes arbitrarily close
to every point in phase space (“state space”). In contrast,
most control algorithms “fight the system,” in that they
change the dynamical system by overpowering it. In the
Ott-Grebogi-Yorke algorithm, only small perturbations
to a control parameter are required. One nudges the
system in just the right way at just the right point at just
the right moment, to persuade it to behave as desired.
One limitation of the Ott-Grebogi-Yorke algorithm is
that one cannot choose the set point arbitrarily. One can
stabilize the system about an unstable fixed point, but
that unstable fixed point must first exist in the ordinary
dynamical system. This limitation is often not too impor-
tant practically, because there are lots of unstable fixed
points and periodic orbits to use. Also, with targeting,
the time to find the required region of phase space is
often short. But conceptually, these limitations do not
exist in classical algorithms.
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Closely related to chaos control is the notion of syn-
chronization, by weak coupling, of two nonlinear sys-
tems (generally oscillators, perhaps chaotic) (Pikovsky et
al., 2001). The classic example, discovered by Huygens
in the 17th century, is the tendency for two pendulum
clocks hanging on the same wall to synchronize (in an-
tiphase). One can think of this situation as the nonlinear
generalization of the observers discussed above in Sec.
III.C. There, the goal was to construct a model of an
observed (linear) dynamical system where the observa-
tions were used to couple (synchronize) the model to the
natural system. One then used the deduced internal
state vector as the basis for feedback. This is clearly the
same situation discussed by Pikovsky et al. (2001), where
one dynamical system exists in nature, the other as a
computer model, and the observation provides the weak
coupling. Again, we have a case where there are exten-
sive, nonoverlapping discussions of essentially the same
phenomena in the physics and engineering literatures.

The seeming dichotomy between chaotic control and
classical control algorithms is not as sharp as I have
made it seem in the last paragraph. The Ott-Grebogi-
Yorke algorithm was the first in a long series of algo-
rithms for chaotic control, and many of them blend ele-
ments of classical algorithms (Schuster, 1999). On the
other side, some of the classical control algorithms have
at least some of the flavor of the Ott-Grebogi-Yorke al-
gorithm. For example, in the example of the unstable
Stealth Fighter plane referred to above, instability is ac-
tually desirable feature as it allows the plane to respond
much faster to control signals than a stable system
would. Again, relatively small control signals (wing flap
movements, etc.) can produce large effects in the planes
motion, by working about unstable equilibria.

VII. APPLICATIONS TO BIOLOGICAL SYSTEMS

From the beginnings of control theory, there have
been attempts to make connections to biological systems
(Wiener, 1961). Indeed, one does not have to look far to
find numerous examples of regulation, or “homeosta-
sis.” Body temperature is regulated to the point where
variations of one degree imply sickness and of ten de-
grees, death. When we are hot, we sweat and cool by
evaporation. When we are cold, we shiver and increase
the circulation of warm blood to cool areas. Similarly,
osmotic pressure, pH, the size of the eye’s pupils, the
vibration of hair cells in the inner ear—all are tightly
controlled. Over the years, there have been numerous
attempts to model such processes at the “system” or
physiological level (Keener and Sneyd, 1998). In many
cases, it has been possible to come up with models that
mimic, at least partly, the observed behavior. Because
the models describe high-level phenomena, they are
largely phenomenological. That is, they involve some-
what arbitrarily chosen elements that have the right be-
havior but may be only loosely tied to the underlying
physiological elements. In addition, one commonly finds
that the more closely one studies a phenomenon, the
more baroquely complex become the models needed.
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With these limitations in mind, we can trace two ad-
ditional approaches to understanding the role of feed-
back in biology. The first course is to find simple enough
settings where standard feedback ideas may safely be
employed. These are largely found in the biochemistry
of enzyme-catalyzed reactions and, more recently, in
gene-expression models. The second course is to begin
to tackle more complex situations. Here, the main inno-
vation is that instead of a simple feedback loop, one has
a complex network of interactions, and one has to con-
sider both the geometry and topology of that network.
In the following sections, we will first discuss a phenom-
enological example, then some simple biochemical feed-
back loops, and finally give a brief overview of current
efforts to understand networks of interacting genes and
proteins.

The reader will notice that the biological examples to
be discussed lack any man-made element. Our previous
discussions all started from a natural physical system
and added a deliberate coupling between variables, cre-
ating a feedback loop. In the natural system, a variable
Y depends on X; then one creates an additional depen-
dence of X on Y. (For example, in the vibration-
isolation device described in Sec. V.C.1, the accelerom-
eter signal depends on the forces exerted on it by the
Earth. The feedback apparatus then creates a way for
the accelerator signal to influence those forces, via the
piezoelement actuator.) In the biological systems below,
the couplings between Y and X and then X and Y are
usually both “natural.” But insofar as the two couplings
may be separately identified, feedback will be a useful
way of looking at the dynamics, whether the couplings
are created by man or by nature.

A. Physiological example: The pupil light reflex

The eye is an amazing organism. It can respond with
reasonable sensitivity over a wide range of light levels,
from single photons to bright sunlight. The eye uses a
mix of feedback methods, the most important of which
is adaptation, as summarized by the empirical response
law of Weber: the eye’s sensitivity is inversely propor-
tional to the background light level (Keener and Sneyd,
1998).

Another mechanism that is particularly important at
the highest light levels is the pupil light reflex. When
light levels are high, the pupil contracts, reducing the
light flux onto the retina. The size of the pupil is con-
trolled by circularly arranged constricting muscles,
which are activated and inhibited (left to relax) by con-
trol signals from the brain. More light causes activation
of the constricting muscles, which shrinks the pupil area
and limits the light flux at the retina.

The pupil light reflex is a particularly attractive ex-
ample of physiological feedback. First, the state vari-
able, the retinal light flux, is an intuitive quantity, and
the actuator mechanism, pupil size, is easy to under-
stand. Second, using a trick, one can “break open” the
feedback loop. Ordinarily, the incident light flux covers a
larger area than the pupil, so that adjustments to the
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FIG. 32. Light beams and pupil sizes. Light beam is shaded
light; pupil is shaded dark. (a) The ordinary case: the beam is
larger than the pupil. (b) Breaking the feedback loop: the
beam is smaller than the pupil. (c) Inducing pupil oscillations: a
small beam falls on the edge of the pupil.

pupil size adjust the retinal light flux [Fig. 32(a)]. If, how-
ever, one uses a beam of light that is narrower than the
minimum pupil size, adjusting the area will not change
the retinal light flux [Fig. 32(b)]. The feedback loop is
broken, and one can then study how variations in the
light intensity change the pupil size. For example, one
could impose sinusoidal intensity variations in order to
measure the transfer function of the pupil response.
While we do not have space to describe that transfer
function fully, its most important feature is that the pupil
response to a changing light stimulus is delayed by about
300 ms. This leads to an amusing consequence. If a nar-
row beam of light shines on the edge of the pupil [Fig.
32(c)], the pupil will begin to contract. Because of the
delay, it will continue to contract after it is small enough
that the beam no longer enters the pupil. After the de-
lay, the eye realizes there is no light and starts to enlarge
the pupil. This continues, because of the delay, some-
what past the moment when the pupil is large enough to
admit light to the retina. The system then begins to con-
tract, and thus continues on, in steady oscillation. This
really happens!

The ability to open the feedback loop by using a nar-
row stimulus light beam also allows one to substitute an
electronic feedback for the natural one. One measures
the pupil-size variations and adjusts the light intensity
electronically, according to an algorithm chosen by the
experimentalist. In effect, one creates a primitive “cy-
borg,” melding man and machine. If one implements or-
dinary proportional feedback, one regulates artificially
the light intensity to a constant value. The system goes
unstable and the pupil oscillates when the gain is too
high.

Here, we shall account qualitatively for these observa-
tions using a model describing the pupil light reflex that
is due originally to Longtin and Milton (1989a, 1989b).
Our discussion is a simplified version of that of Keener
and Sneyd (1998).

We start by relating the retinal light flux ¢ to the light
intensity / and pupil area A:

p=IA. (7.1)

We next relate the muscular activity x to the rate of
arriving action potentials (the signals that stimulate the
muscles):
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Txd_x +x=E(@). (7.2)

dt
Here, we have taken simple first-order dynamics with a
time constant 7,. The driving E(¢) is the rate of arriving
action potentials:

E(1) = )’F(IH{MD,
¢

where 7y is a phenomenological rate constant and the
response delay is modeled by evaluating the retinal light
flux a time At in the past [i.e., by ¢(t—Af)]. The function
F(x)=x for x=0 and 0 for x<0, so that & acts as a
threshold retinal light level. In other words, muscles are
activated only when there is sufficient light. The loga-
rithm incorporates Weber’s law, mentioned above.
Equation (7.2) illustrates the “phenomenological” char-
acter of such large-scale models, where the form of the
equation, in particular of E(¢), is chosen to be in quali-
tative agreement with empirical observations.

In order to close the model, we need to relate the
pupil area A to the muscular activity x. High activity
should give a small pupil area. Again, one uses an em-
pirical, phenomenological form:

(7.3)

0"
A(x) = Amin + (Amax - Amiﬂ)xn—

o (7.4)

which smoothly interpolates between A ,,, at zero activ-
ity (x=0) to A, at infinite activity. The parameters 6
and n must be fit to experiment. Putting Eqgs. (7.1)-(7.4)
together, we have

Txd—x +x= )’F(ln{ fe- At)A_[X(I —40] ] ) (7.5)
dt ¢
=g(x(t - A0),I(t - Ar)). (7.6)

Because A(x) is a decreasing function of x, one can
always find a steady-state solution to Eq. (7.6) when the
light intensity / is constant. Let us call this solution x",
which satisfies x"=g(x",1). We linearize the equations
about x*, defining x(f)=x"+ X(¢). This gives

X

T+ X=-K,X(t- At),

o (7.7)

where KP:—gx(x*,I) can be viewed as a proportional
feedback gain. Equation (7.7) is nothing more than the
first-order system with sensor lag and proportional feed-
back that we considered previously in Sec. IV.C [see
Egs. (4.8) and (4.9)]. The stability may be analyzed
analogously; one again finds that for high-enough gain
K,, the system begins to oscillate spontaneously. This is
in accordance with the cyborg experiments using artifi-
cial gain and with the use of light that falls on the pupil
edge to excite oscillations, too. In the latter case, the
feedback becomes nonlinear, since the coupling changes
discontinuously when the area reaches a critical value
A", which divides the region where changes in A do or
do not affect the retinal light flux. Crudely, this functions
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as a locally infinite gain, which is unstable.

Notice that our modeling was in two steps. In the first,
we formulated nonlinear equations. We related the
muscle activity to the light flux, the light flux to the pupil
area, and the pupil area to the muscle activity. This
“loop” of relationships is the nonlinear generalization to
our previous discussions of feedback loops, which ap-
plied to linear equations. Because the system is entirely
a “natural” one, it may not be immediately obvious how
to identify the “system,” “sensor,” and “controller.”
Here, the system sets the pupil size, the sensor is the
retina, and the controller is presumably circuitry in the
brain (or an explicit computer algorithm in the cyborg
setup described above). In general, one is confronted
with a system of coupled variables. Whether they neatly
decouple into traditional feedback elements or not will
depend on the particular situation.

In the second step, we linearized about a fixed point,
coming up with equations that could be analyzed using
block-flow diagrams. This strategy is not infallible. For
example, there may not be a steady state to linearize
about. Still, it is one of the handier approaches for deal-
ing with nonlinear systems. And in biology, strong non-
linearities are the rule.

In the example of pupil-light-flux control, the time de-
lay in reacting to light changes plays a key role. Time
delays are present in most physiological responses, and
people compensate for such time delays by using feed-
forward algorithms. In a very interesting recent experi-
ment on reaction responses, Ishida and Sawada (2004)
show that people in fact slightly over compensate; they
suggest that being “proactive” minimizes transient er-
rors while tracking erratic motion.

B. Fundamental mechanisms

While feedback is present in many macroscopic,
physiological processes, it also plays a role in more fun-
damental, microscopic settings. The traditional view-
point focuses on enzyme-catalyzed biochemical reac-
tions, where the rate of production of some desired
molecule is greatly accelerated by a catalyst (often a pro-
tein, or enzyme). By inhibiting or enhancing the produc-
tion of the enzyme, one gains great control over the
quantity of product. As we shall discuss below, in a cell,
there are thousands of such reactions, all coupled to-
gether in a “genetic network.” The theoretical analysis
of simple networks has a long history (Wolf and Eeck-
man, 1998). What is exciting is that recently it has be-
come possible to create, by genetic engineering tech-
niques, simple artificial genetic networks that illustrate
basic feedback mechanisms. We shall give two examples.
The first, due to Becksei and Serrano (2000) [cf. Gardner
and Collins (2000)], illustrates how negative feedback
can limit variability in gene expression, providing ro-
bustness against changing external conditions. The sec-
ond shows how positive feedback can be used to switch
a gene on and off (Gardner et al, 2000; Kaern et al.,
2003).
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1. Negative feedback example

We begin with an example of negative feedback.
Becksei and Serrano constructed a simple genetic circuit
in which a gene expresses a protein that actively re-
presses its own production. In their experiment, the pro-
tein “tetracycline repressor” (TetR) was fused to a fluo-
rescent protein, so that its expression could be
monitored optically. (A cell’s fluorescence is propor-
tional to the number of TetR molecules present.) In or-
der for the gene to be expressed, RNA polymerase
(RNAP) must bind just “upstream” of the DNA coding
for the gene. However, the TetR protein also binds to
the DNA in competition with the RNAP. If the TetR is
bound, then RNAP cannot bind, and TetR is not pro-
duced. The concentration of TetR, R, is governed by an
equation of the form

d_R_ a
dt  1+KR

AR, (7.8)

where « is the rate of production of TetR in the absence
of the feedback mechanism. (The rate « depends on the
concentration of RNAP, which produces mRNA, which
leads to the production of the actual protein TetR. All of
these dynamics are assumed to be fast compared to the
production rates of TetR.) In Eq. (7.8), A is the rate of
degradation of TetR in the cell, and K is related to the
binding affinity of TetR to the upstream DNA site. If
K >0, the feedback is negative, since increasing concen-
trations of TetR suppress the production rate of the en-
zyme. (K=0 implies no feedback.) See Becksei and Ser-
rano (2000) for the full equations, and Wolf and
Eeckman (1998) for the thermodynamic background.
[Essentially, the KR term comes from considering the
relative Gibbs free energies of the DNA when TetR is
bound or not. Such kinetic laws are variants of the
Michaelis-Menten law for enzyme kinetics (Keener and
Sneyd, 1998)].

The main result of Becksei and Serrano is experimen-
tal evidence that negative feedback reduces the variabil-
ity of gene expression. (They disable the feedback both
by modifying the TetR protein so that it does not bind to
the DNA site and by introducing additional molecules
that bind to the site but do not interfere with the
RNAP) From our point of view, it is easy to see where
such a behavior comes from. Intuitively, adding negative
feedback speeds the system’s response to perturbations.
The system will spend more time in the unperturbed
state than without feedback, reducing variation.

To see this in more detail, we solve first for the steady-
state production level of TetR: Setting the left-hand side
of Eq. (7.8) =0, we find

1 4a/)\>

R = 1(—l+ + (7.9)

2TkTNKRT K

which decreases from «/\—0 when K goes from 0— ce.
Small perturbations to the cell then lead to small varia-
tions in R(t)=R"+r(f), which obeys the linear equation
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*—7\+L
T 1+ KRHY

*

F=—=Nr, A\ (7.10)
The decay rate \" goes from X —2\ for K going from
0— . To model fluctuation effects, one adds a stochas-
tic term &(r) to Eq. (7.10), with (£=0 and (&()E&(1'))
=A?8(t—t") (white noise). Then the fluctuations of r obey
what is essentially the equipartition theorem:

o, ={r") = L (7.11)

VA

In Eq. (7.11), we see explicitly that the negative feed-
back loop, which increases the value of \*, reduces the
fluctuation of the system in response to a fixed level of
noise. This is what Becksei and Serrano observed in
their experiments. In the same system, Rosenfeld et al.
(2002) later showed directly that the negative feedback
indeed leads to faster response times.

2. Positive feedback example

In biology, and elsewhere, one use of positive feed-
back is in constructing a switch that can go between two
separate states, either one of which is locally stable to
small perturbations. A large-enough perturbation, how-
ever, will make the system switch from one state to the
other. In electronics, such ideas are the basis of the flip-
flop circuit, which toggles between two states (conven-
tionally known as 0 and 1) and forms the basis of digital
memories. For essentially topological reasons, in phase
space, between any two stable states must lie an un-
stable intermediate state [see Fig. 33(b)]. Near the inter-
mediate state, the system shows a positive feedback that
drives the system into either of the adjoining stable
states. The statement that “positive feedback leads to a
switch or to oscillations” comes from the common situ-
ation where, in the absence of feedback, there is only
one stable state. Adding positive feedback then converts
the stable to an unstable state either via a pitchfork (or
transcritical) bifurcation (with two stable states as the
outcome) or via a Hopf bifurcation (limit-cycle oscilla-
tor).

In biology, positive feedback can lead to a situation
where the expression of one gene inhibits the expression
of a second gene, and vice versa, an idea that goes back
at least to Monod and Jacob (1961). A simple model for
the concentration dynamics of two proteins # and v
gives

ag

1+v*
a
V=
1+u”

v, (7.12)

where «; and «, are the rates of production of # and v in
the absence of a repressor and where the “cooperativity
exponent” n=2. Equation (7.12) resembles Eq. (7.8),
with some important differences. First, as mentioned
above, increased production of u inhibits the production
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FIG. 33. (Color in online edition) Dynamics of a genetic toggle
switch. (a) Dynamics in the u-v concentration plane (arrows),
with gray scale representing the magnitude of the vector field.
(b) Equivalent dynamics on center manifold. The three equi-
librium positions are represented by the two minima and the
unstable intermediate state.

of v, and vice versa. Second, the inhibitor binding, in
both cases, is assumed to show cooperativity. The expo-
nents n=2 mean that two molecules of u or v bind in
rapid succession to the DNA. [The specific value n=2 is
not important, but at least one of the exponents needs to
be larger than one to have a switch of the kind discussed
below (Cherry and Adler, 2000). Greater cooperativity
(larger n) enlarges the region of ay-«, parameter space
where bistability exists.]

By setting uu=v =0, one can easily see that, depending
on the values of a; and «,, there can be either one or
three stationary solutions. For example, if aj=ay=a
>1, then the three solutions are (1) u=~a, v=1/a; (2)
v=a, u~1/a; and (3) u=v=a'3. Solutions (1) and (2)
are stable, while solution (3) is a saddle, with one stable
and one unstable eigenvector. These three solutions are
illustrated in Fig. 33(a), where the two stable solutions
are denoted by circles and the unstable solution by a
cross. The vectors illustrate the local u-v dynamics. An
arbitrary initial condition will relax quickly onto a “cen-
ter manifold”—here, the one-dimensional dashed line
connecting the three solutions. The dynamics will then
occur along this curved line in parameter space. One can
derive equations of motion for the dynamics along this
center manifold: the system behaves like a particle in a
double-well potential; cf. Fig. 33(b).

In the work by Gardner et al. (2000), the authors con-
structed a simple artificial genetic circuit (within the bac-
terium E. coli) that had the mutual-repression mecha-
nism described above and were able to observe
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bistability. Examples from real biological systems are
more complicated. For example, the lac operon is the
prototype of a genetic switch, having been studied for
some 50 years. (The details are not relevant here: briefly,
E. coli can use glucose or lactose as a food source. Nor-
mally, it does not produce the enzyme to digest lactose,
but the presence of a small amount of lactose switches
on a gene that produces the necessary enzyme.) Even
this prototypical example can be complicated. For ex-
ample, Keener and Sneyd (1998) cite studies that begin
with simplified dynamics of six coupled equations and
then argue that these equations can be approximated by
three others. Vilar et al. (2003) have argued that such
simplified models need to incorporate stochastic fluctua-
tions (because of the small number of molecules of the
relevant species in each cell) to agree with observations.
Very recently, Ozbudak et al. (2004) have explored the
phase diagram of the lac operon in E. coli (modified by
fusing fluorescent “reporter” proteins to the genome).
They make quantitative contact to the kinds of genetic-
switch models discussed here.

Rather than entering into the details of how best to
model a particular feedback mechanism, we want to em-
phasize merely that many, if not all, basic cell functions
depend on interconnected positive and negative feed-
back loops. Indeed, it seems likely that such feedbacks
are necessary in living organisms. For catalogs of such
mechanisms, see, e.g., Freeman (2000) and Keener and
Sneyd (1998); for an analysis of elementary biochemical
mechanisms (amplifications, etc.) that adopts an explicit
engineering perspective, see Detwiler et al. (2000).

C. Network example

In the previous section, we saw that both positive and
negative feedback loops are present in basic biochemical
systems. In the cell, however, vast numbers of chemical
species are present, constantly being synthesized, de-
graded, and otherwise interacting with each other. Thus
instead of a simple, isolated system modified by a single
feedback loop, one has many interacting systems, con-
nected to each other in a network. In such a network,
the notion of a loop can be generalized to be the set of
interconnections between nodes (the individual pro-
teins), with positive and negative values assigned to each
interconnection, depending on whether the presence of
protein 1 increases or decreases the concentration of
protein 2. (Here, “1” and “2” represent arbitrary pro-
teins in the network.) The structure of such networks is a
topic of intense current interest (Albert and Barabasi,
2002; Newman, 2003). Much attention has been focused
on the statistical properties of large networks, for ex-
ample, on the distribution of the number of connections
k a node has with its neighbors. Random networks have
a distribution P(k) peaked about an average number of
interconnections (k) (Poisson distribution), while for
scale-free networks, there is a power-law distribution
P(k)~ k™7, with vy typically have a value of 2-3. Scale-
free networks have interesting properties and are found
in many places, including communications settings (e.g.,
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webpages and their links to each other), social interac-
tions (e.g., collaborations among individuals, whether as
actors in films, sexual partners, or scientific co-authors of
papers), and in biological networks, as we will discuss
more below (Albert and Barabasi, 2002). Because of the
power-law distribution of connections, a few important
nodes (“hubs”) will have many more than the average
number of interconnections and play a central role in
the network. They serve, first of all, to create the “small-
world” phenomenon, where the number of steps needed
to go between any two nodes increases only logarithmi-
cally with the number of nodes. They also give robust-
ness to the structure of the networks: removing nodes
other than one of the rare hubs will not affect substan-
tially the connectivity of the network. But if scale-free
networks are robust to the destruction of random nodes,
they are fragile and sensitive to the destruction of hubs.

Much work in biology has been devoted to the iden-
tification of different types of networks, most notably
metabolic and protein interaction networks (Jeong et al.,
2000). (Both have proteins as nodes. In the former, the
interactions are chemical; in the latter, physical.) An
equally important type of network is that of gene regu-
latory networks, which govern the production of the
proteins involved in the metabolic and interaction net-
works (Maslov and Sneppen, 2002). This is in addition to
more physical networks such as the networks of neurons
in the brain and nervous system and the network of
blood vessels. [For a review of all of these, see Newman
(2003).]

The statistical point of view is not the only way to
understand network structure. A number of authors
have focused on the “modular” aspects of complex bio-
logical structures, with the goal of identifying the struc-
tures and interactions between relatively independent
elements (Hartwell et al, 1999). This has led to the
search for “network motifs” (Shen-Orr et al., 2002; Man-
gan and Alon, 2003), which are relatively simple clusters
of nodes that behave as individual elements in a larger
network.

If complex networks are generically present in bio-
logical systems, one might suspect that they confer some
overall benefit to the host organisms, and one such hy-
pothesized benefit that has lately received much atten-
tion is the notion of robustness. In influential work,
Leibler and collaborators have looked at the relatively
simple network involved in chemotaxis in the bacterium
E. coli and shown, both in a model (Barkai and Leibler,
1997) and in experiment (Alon et al., 1999), that certain
properties show a remarkable robustness in the face of
large concentration variations of elements within the
cell. Chemotaxis in E. coli arises by controlling the time
the bacterium spends in two states, “smooth runs” and
“tumbling.” During smooth runs, the cell swims in a
relatively straight line. It then stops and begins tum-
bling, a motion that leads to a random reorientation.
Then the cell swims for another period of time. The cell
carries receptors for various chemical attractants. If the
level of an attractant is rising, the cell will tend to swim
longer before tumbling. In other words, by reducing the
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tumbling frequency (rate of tumbling events), the cell
will tend to swim up the spatial gradient of attractor.
Thus, chemotaxis occurs via a modulation of tumbling
frequency. The kind of robustness explored by Leibler
and collaborators looks at the adaptation of tumbling
frequency to various changes. For example, the cell re-
sponds to gradients of chemical attractants in a way that
is nearly independent of their absolute concentration.
More precisely, the tumbling frequency should, after a
transient, return to its original value after a sudden in-
crease in the overall concentration of an attractant.

As Barkai and Leibler (1997) have emphasized, one
can imagine two ways in which perfect adaptation can be
obtained. One way involves a model that has fine-tuned
parameter values that happen to lead to a canceling out
of the effects of a concentration increase. The problem
with such a model is that it implies that adaptation
would be a fragile phenomenon, easily disrupted by
changes in any of the parameters of the system, which
does not seem to be the case experimentally (Alon ef al.,
1999). Alternatively, the robustness could be a property
of the network itself. We have already seen examples
where the level of an output in the face of a step-change
disturbance. These all trace back to the use of integral
feedback, and, indeed, Yi et al. (2000) have shown not
only that integral feedback is present implicitly in the
model of Barkai and Leibler but also that such feedback
must be present in the dynamics. Rather than enter into
the details of the chemotaxis model (even the “simpli-
fied” version of Yi et al. has 14 coupled equations), we
sketch the proof that integral feedback must be present
in order to have robust adaptation. We follow the ap-
pendix of Yi et al. (2000).

Consider first a linear SISO model

Xx=Ax+bu,

y=¢l% +du, (7.13)

where x is an n-element internal state vector, y is the
single output, and u is the single input. At steady state,

£=0, so that y=(d—cA~'b)u. (We drop tildes and vector
symbols for simplicity.) Then for constant input u, the
output y=0 if and only if either c=d=0 (trivial case) or

N
¢ c d| 7

where the matrix in Eq. (7.14) has n+1 by n+1 elements.
If the determinant is zero, then there is vector k such
that k[A b]=[c d]. Defining z=k'X, we have z=kx
=k(Ax+bu)=cx+du=y. Thus, if y=0 for all parameter
variations (here, these would be variations in the ele-
ments of A, b, ¢, or d), then Z=y, a condition that is
equivalent to having integral feedback be part of the
structure of the system itself.

As Yi et al. (2000) comment and we have implicitly
seen in this paper, the requirement of having integral
feedback in order to reject step disturbances of param-
eters is a special case of the “internal model principle”

(7.14)
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(IMP), which states that the controller must contain a
model of the external signal in order to track robustly.33
This is another motivation for the internal model control
discussed in Sec. V.E. Finally, we note that the restric-
tion to linear systems is not necessary (the biochemical
models are all nonlinear). For example, consider the
nonlinear dynamical system x=f(x,u), with x again an
n-dimensional state vector and f a nonlinear function of
x and the input u. If we want the output y=x (for sim-
plicity) to track a constant state r, we can set u=[(r
—x)dt’ (integral feedback). Then differentiating x=f
shows that x=r is a steady-state solution to the modified
dynamics. One caveat about integral feedback is that the
modified dynamical system must be stable. This must be
verified case by case.

The chemotaxis example discussed above is just one
of many instances where a complicated network of feed-
back interactions plays an important biological role. An-
other case considers neural networks, where the firings
of one neuron stimulate or inhibit other connected neu-
rons. Doiron et al. (2003) have recently shown that nega-
tive feedback plays an essential role in the neural re-
sponse of electric fish to communication and prey
signals. While the organism communicates with others,
neurons in the sensory system studied switch to a glo-
bally synchronized oscillatory state that is maintained by
negative feedback. At other times, the firings are not
synchronized.

VIll. OTHER APPLICATIONS, OTHER APPROACHES

At this point, it is perhaps proper to note some of the
many areas that, for reasons of space but not for lack of
interest, we have decided not to explore. As our discus-
sion of biological networks suggests, complex systems
can often be modeled as an interacting network, and
complex networks often have a modular structure whose
function can be understood by appeal to elementary
feedback motifs. Thus, one finds feedback to be a rel-
evant concept in understanding the weather, climate
change, in economics, etc. For example, many of the
arguments in the field of global warming amount to de-
bates about the magnitudes and sizes of feedback ef-
fects. While the link between industrial and other hu-
man activity and the increased amount of CO, and other
greenhouse gasses is clear, the climatic effects are much

3 A more precise statement is that if all disturbances d(¢) sat-
isfy a known differential equation of the form =7 p;d?=0,
then one can design a control system that perfectly tracks the
disturbances. Here, d® is the ith time derivative of d(¢), and
the p; are known, constant coefficients. For example, all step
disturbances satisfy d!)=0, while oscillatory disturbances sat-
isfy d@ + wfid(o) =0. The internal model principle states that dis-
turbances or reference signals are canceled in steady state if
their transfer function is contained in the denominator of the
controller K(s); see Lewis (1992), Chap. 4. The nonlinear gen-
eralization of the IMP is discussed by Isidori and Byrnes
(1990).
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harder to predict, because of the complexity of feedback
effects. There is a tremendous flux of carbon between
the atmosphere and various “sinks,” such as the oceans
and forests, and the dependence of these fluxes on
greenhouse gasses must be evaluated accurately to know
the cumulative effect on climate (Sarmiento and Gruber,
2002). Even more disturbing, it has become clear that
small changes have in the past led to rapid climate
shifts—on the time scale of decades, or even less. Mod-
els of thermohaline circulation in the oceans show
bistable behavior analogous to the genetic switch dis-
cussed above, where positive feedback effects can toggle
the climate between warm and icy states (Weart, 2003).

One rather distinct area left out is the application of
control principles to quantum phenomena (Rice and
Zhao, 2000; Shapiro and Brumer, 2003; Walmsley and
Rabitz, 2003). The basic insight is that adding a coherent
perturbation to a system can enhance or suppress the
amplitude of desired “product” states. The famous two-
slit experiment of Young, where two beams of light in-
terfere to produce light and dark fringes, is an elemen-
tary example. Much of the practical work has used
coherent light beams interacting with matter to enhance
or suppress phenomena such as dissociation and chemi-
cal reaction. Feedback often enters here in only a weak
way, where one conducts repeated trials, using the re-
sults to adaptively tune experimental control parameters
such as the amplitude and phase of different frequency
components in a shaped pulse; however, some recent
work has emphasized real-time corrections, where the
ideas discussed here, including state estimation (Kalman
filtering) and robustness, are beginning to be explored
(Wiseman et al., 2002). Many of these approaches are
based on adaptive optics, a technique that has many
other applications—for example, compensating for tur-
bulence in astronomy, where one changes rapidly the
shape of a mirror to remove phase disturbances added
by atmospheric fluctuations (Roggemann et al., 1999).
Finally, most of the work to date on quantum systems
has been “semiclassical,” in that sensors perform mea-
surements on a system, classical computers process the
results, and semiclassical fields are used to influence the
future evolution of the system. Lloyd has emphasized
that one can imagine a fully quantum feedback scheme
wherein one adds an element to the quantum system
that interacts (without making a measurement) with it in
such a way that the dynamics are altered in a desired
way (Lloyd, 2000). Because information is not destroyed
(as it is in the measurement stage of the semiclassical
scheme), higher performance is in principle possible. But
this field is still young.

There are also many valuable topics in control theory
that we do not have space to discuss. Foremost among
these is adaptive control, which can be considered as a
complement to the approach of robust control, discussed
in Sec. V.E. In both cases, the system to be controlled is
at least partially unknown. In robust control, one first
tries to describe the set of possible transfer functions of
close linear systems and then tries to find a controller
that is stable in all situations and still performs ad-
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equately, even under a worst-case scenario. In essence,
this is a conservative approach, which works best for
smaller sets of transfer functions. (If the variations are
too large, trying to satisfy all the constraints all the time
will lead to very weak control.) Alternatively, one can
try to “learn” which of the possible set of transfer func-
tions best describes the system at the present time and
to design a control law for the current best estimate of
the dynamical system. This is the overall approach of
adaptive control, which in its simplest forms treats topics
such as autotuning of parameters for simple control
loops (e.g., PID loops) (Dutton ef al., 1997; Franklin et
al., 1998). The basic algorithms are akin to the Kalman
filter, in that model parameters are estimated using a
recursive version of least-squares fitting that updates the
parameter estimates at each time step. In more sophis-
ticated analyses, the controller’s structure can be varied
as well (Isermann et al., 1992). Adaptation and “learn-
ing” are used also in approaches from computer science
that include the genetic algorithms mentioned above
(Jamshidi et al., 2003), neural networks (Norgaard et al.,
2000), fuzzy logic (Verbruggen et al., 1999), and “intelli-
gent” control systems (Hangos et al, 2001). Broadly
speaking, all of these are attempts to mimic the judg-
ment of an experienced human operator manually con-
trolling a system. Of course, they have applications far
beyond problems of control. For most physicists, the
more straightforward control techniques described in
this review will be more than adequate.

IX. FEEDBACK AND INFORMATION THEORY

In various places in the discussion above, we have
noted the informal connection between information and
control. For example, in Sec. III.A, we saw how the
strategy of feedforward relied on prior information
about the nature of a disturbance. In Sec. V.E.1, we saw
that feedback is required only when our knowledge of
the system and its disturbances is incomplete. Also, in
Sec. V.D, we saw that the Kalman filter gives the optimal
way to blend the two pieces of information one has
about the current state of a linear dynamical system sub-
ject to white noise perturbations and to white noise in
the measurements. That way best blends the actual mea-
surement and the prediction based on the system dy-
namics.

In all these discussions, the use of the term “informa-
tion” has been informal, but it is natural to wonder
whether there are links to the technical subject of “in-
formation theory.” Indeed, the influential book Cyber-
netics by Wiener (first published in 1948, the year of
Shannon’s fundamental papers on information theory)
explored some connections (Wiener, 1961). Still, there
has been very little development of these ideas. Recent
papers by Touchette and Lloyd (2000, 2004) begin to
explore more formally these links and derive a funda-
mental relationship between the amount of control
achievable (“decrease of entropy” in their formulation)
and the “mutual information” (Cover and Thomas,
1991) between the dynamical system and the controller
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created by an initial interaction. They show that if one
measures the accuracy of control by the statistical reduc-
tion of uncertainty about the state of the controlled ob-
ject, then that reduction is limited by the information
that measurements can extract about the system, in con-
junction with any improvements that open-loop control
can offer. In their formulation, information becomes the
common language for both measurement and control.
The full implications of their results and how they con-
nect to the “optimal estimation theory” of Kalman dis-
cussed here (and to similar “minimum-variance” con-
cepts related to Wiener filters (Harris ef al., 1999) have
yet to be worked out.*

As an example of the kinds of issues to consider, in
the temperature-control example of Day et al. (1997) al-
ready discussed, the temperature control is actually bet-
ter than the sensor-noise limit, because the sample is
surrounded by a regulated shield and is not directly
regulated. The last stage then acts like a passive filter.
Since all external disturbances pass through the shield,
the interior has a lower level of fluctuations. This setup
allowed the authors to measure the internal thermal
fluctuations between a thermometer and a reservoir and
between two thermometers.

It is interesting that while the link between feedback
and information theory has been developing almost
since the beginning of the subject itself, the connection
has been slow to sink in and difficult to grasp. As Ben-
nett (1993) has noted, pre-20th-century controllers were
almost invariably “direct” acting, with the force required
to effect a change on the system developed by the mea-
suring device itself. For example, the buoyant force on a
ball directly controls the water valve in a toilet. It took a
long time for engineers to recognize that the sensor and
the actuator were logically distinct devices and that the
function of the controller was just to process the infor-
mation gained through the sensor, converting it to a re-
sponse by the actuator.

X. CONCLUSIONS

One of the main goals of this review has been to give
a pragmatic introduction to control theory and the basic
techniques of feedback and feedforward. We have dis-
cussed a broad range of applications, including details of
practical implementation of feedback loops. We have
emphasized basic understanding and outlined the start-
ing points for more advanced methods. We have tried in
many places to show how a bit of thought about the
design of the physical system can reduce the demands on
the controller. (Remember to limit time lags by putting

**One link between the Kalman filter and information theory
is via the use of Bayes’ theorem in constructing the optimal
estimate (Maybeck, 1979); however, the work of Touchette and
Lloyd (2000) implies deeper connections. Links to areas such
as the robust methods of Sec. V.E are even less clear; see
Kahre (2002), Chap. 12, for other ideas on how information
theory can be related to control issues.
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sensors close to actuators!) We have also emphasized
that it often pays to spend a bit more on equipment and
less on fancy control-loop design. We have argued that a
mix of feedforward and feedback can work much better
than either technique alone. (To anticipate is better than
to react, but cautious anticipation is better still.) Taken
together, the techniques outlined here are probably
more sophisticated, and more systematic, than what is
commonly practiced among physicists. I certainly hope
that this article “raises the consciousness” and perhaps
even the level of practice of physicists as regards feed-
back loops. And if higher performance is needed in an
application, one can, and should, consult the profes-
sional control-theory books, which I hope will now be
more accessible.

At the same time, we have explored some of the
deeper implications of control theory. We have seen how
feedback loops and other complicated networks play a
fundamental role in complex systems encountered in na-
ture, particular in biology. We have seen how informa-
tion is the “common coin” of measurements and that
feedback can be thought of in terms of information
flows, from system to controller and back again in the
simplest case, or from node to node for more compli-
cated networks. What is interesting is how the reality of
the physical system itself begins to fade from the picture
once control loops are implemented. In simple cases,
this occurs when we use feedback to speed up (Sec.
III.A) or slow down dynamics (Sec. V.C.1), implying that
one can use feedback to compensate for the physical
limitations of the particular elements one may have at
hand. Certainly, some of the simpler applications of
feedback depend on such abilities.

Other, deeper applications of control depend on the
robustness that feedback can lead to. We saw this in
integral control, where tracking is achieved over a wide
range of control parameters, and it is the loop structure
that ensures the desired result. Such feedback is, of
course, at the heart of the PID loops beloved in indus-
trial applications. But we saw that it also exists in math-
ematical and physical models of biological networks
where feedback leads to a robustness that begins to ap-
proximate the behavior of real biological systems.

What is perhaps most interesting to a physicist is the
way new kinds of behavior arise from the structure of
control loops. The tracking property of integral feed-
back comes from the structure of the feedback loop, not
the nature of the individual elements. In this sense, it is
a kind of “emergent phenomenon,” but one that differs
from the examples familiar in physics, such as the soft
modes and phase rigidity that accompany symmetry-
breaking phase transitions. Thus, engineering provides
an alternate set of archetypes for emergent phenomena,
which—as Carlson and Doyle (2002), Csete and Doyle
(2002), and Kitano (2002) have argued—will perhaps be
more fruitful for understanding biological mechanisms
than physics-inspired archetypes. My own view is that
one should not be too dogmatic about which discipline
provides the better model, for in the past physicists have
often been successful precisely because they were willing
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to try to solve the problem at hand “by any means nec-
essary.”

Still, the easy integration of certain engineering con-
cepts into common knowledge is striking. We physicists
are justly proud of having developed concepts such as
“work,” “energy,” “momentum,” “resonance,” and even
“entropy” that have entered the popular language as
metaphors and are used by most people with confidence
even when the technical meaning is obscure. More re-
cently, engineering terms as “bits,” “information,” and
“feedback,” which also treat topics that physicists deal
with, have become equally familiar. If we take up the
last of these terms, the word “feedback” is less than a
century old and was coined to describe an advance in
radio technology (Simpson and Weiner, 1989). In popu-
lar language, it quickly went from a novelty to a fad to a
word so often used that one can scarcely imagine its
recent origin. Feedback is a useful technical tool that
underlies much of modern technology, but it is also an
essential ingredient of biological systems and even of life
itself. Is it then merely by chance that “feedback,” de-
spite its narrow technical origins, has found such ready
acceptance and wide use in popular culture?
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LIST OF ABBREVIATIONS

A/D analog to digital

AFM atomic force microscope

D/A digital to analog

DNA deoxyribonucleic acid

DSP digital signal processor

EKF extended Kalman filter
FPGA field-programmable gate array

IR infinite impulse response

IMC internal model control

IMP internal model principle

LHP left-hand plane

LIGO Laser Interferometer Gravitational Wave
Observatory

LQG linear quadratic Gaussian

LSB least-significant bit

MIMO  multiple input, multiple output

mRNA  messenger RNA

NMP nonminimum phase

ODE ordinary differential equation

PI proportional-integral

PID proportional-integral-derivative control law

PLD programmable logic device

PRBS pseudorandom binary sequence
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RHP right-hand plane
rms root-mean square

RNA ribonucleic acid

RNAP  RNA polymerase

SISO single input, single output
SPM scanning probe microscope
STM scanning tunneling microscope
SVD singular-value decomposition
SVF state-vector feedback

TetR tetracycline repressor

Z0OH zero-order hold
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