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A review of the relation between Chern-Simons gauge theory and topological string theory on
noncompact Calabi-Yau spaces is given. This relation has made it possible to give an exact solution of
topological string theory on these spaces to all orders in the string coupling constant. Here the focus
is on the construction of this solution, which is encoded in the topological vertex, and the implications
of the physics of string/gauge theory duality for knot theory and for the geometry of Calabi-Yau

manifolds.
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I. INTRODUCTION

Even though string theory has not found yet a clear
place in our understanding of Nature, it has already es-
tablished itself as a source of fascinating results and re-
search directions in mathematics. In recent years, string
theory and some of its close cousins (such as conformal
field theory and topological field theory) have had an
enormous impact in representation theory, differential
geometry, low-dimensional topology, and algebraic ge-
ometry.

One mathematical area which has been deeply influ-
enced by conformal field theory and topological field
theory is knot theory. Witten (1989) found that many
topological invariants of knots and links discovered in
the 1980s (like the Jones and the HOMFLY polynomi-
als) could be reinterpreted as correlation functions of
Wilson loop operators in Chern-Simons theory, a gauge
theory in three dimensions with topological invariance.
Witten also showed that the partition function of this
theory provided a new topological invariant of three-
manifolds, and by working out the exact solution of
Chern-Simons gauge theory he made a connection be-
tween these knot and three-manifold invariants and con-
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formal field theory in two dimensions (in particular, the
Wess-Zumino-Witten model).

In a seemingly unrelated development, it was found
that the study of string theory on Calabi-Yau manifolds
(which was triggered by the phenomenological interest
of the resulting four-dimensional models) provided new
insights in the geometry of these spaces. Some correla-
tion functions of string theory on Calabi-Yau manifolds
turn out to compute numbers of holomorphic maps from
the string worldsheet to the target, therefore they con-
tain information about the enumerative geometry of the
Calabi-Yau spaces. This led to the introduction of
Gromov-Witten invariants in mathematics as a way to
capture this information. Moreover, the existence of a
powerful duality symmetry of string theory in Calabi-
Yau spaces—mirror symmetry—allowed the computa-
tion of generating functions for these invariants, and
made possible to solve with physical techniques difficult
enumerative problems [see Hori et al. (2003) for a re-
view of these developments]. The existence of a topo-
logical sector in string theory which captured the enu-
merative geometry of the target space led also to the
construction of simplified models of string theory which
kept only the topological information of the more com-
plicated, physical theory. These models are called topo-
logical string theories and turn out to provide in many
cases exactly solvable models of string dynamics.

The key idea that allowed one to build a bridge be-
tween topological string theory and Chern-Simons
theory was the gauge theory-string theory correspon-
dence. It is an old idea, going back to ’t Hooft (1974),
that gauge theories can be described in the 1/N expan-
sion by string theories. This idea has been difficult to
implement, but in recent years some spectacular
progress was made thanks to the work of Maldacena
(1998), who found a duality between type-I1IB string
theory on AdSsx S’ and N=4 super-Yang-Mills with
gauge group U(N). It is then natural to ask if gauge
theories which are simpler than N'=4 Yang-Mills—like,
for example, Chern-Simons theory—also admit a string
theory description. It was shown by Gopakumar and
Vafa (1999) that Chern-Simons gauge theory on the
three-sphere has in fact a closed string description in
terms of topological string theory propagating on a par-
ticular Calabi-Yau target, the so-called resolved coni-
fold.

The result of Gopakumar and Vafa has three impor-
tant consequences. First of all, it provides a toy model of
the gauge theory-string theory correspondence which
makes it possible to test in detail general ideas about
this duality. Second, it gives a stringy interpretation of
invariants of knots in the three-sphere. More precisely, it
establishes a relation between invariants of knots based
on quantum groups and Gromov-Witten invariants of
open strings propagating on the resolved conifold. These
are a priori two very different mathematical objects, and
in this way the physical idea of a correspondence be-
tween gauge theories and strings gives new and fascinat-
ing results in mathematics that we are only starting to
unveil. Finally, one can use the results of Gopakumar
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and Vafa to completely solve topological string theory
on certain Calabi-Yau threefolds in a closed form. As we
will see, this gives the all-genus answer for certain string
amplitudes, and it is in fact one of the few examples in
string theory where such an answer is available. The all-
genus solution to the amplitudes also encodes the infor-
mation about all the Gromov-Witten invariants for those
threefolds. Since the solution involves building blocks
from Chern-Simons theory, it suggests yet another
bridge between knot invariants and Gromov-Witten
theory.

In this review we will focus on this last aspect. The
organization of the review is the following: in Sec. Il we
give an introduction to the relevant aspects of Chern-
Simons theory that will be needed for the applications to
Calabi-Yau geometry. In particular, we give detailed re-
sults for the computation of the relevant knots and link
invariants. In Sec. III we give a short review on the 1/N
expansion of Chern-Simons theory, which is the ap-
proach that makes possible the connection to string
theory. Section IV contains a review of closed and open
topological string theory on Calabi-Yau threefolds, and
we construct in full detail the geometry of noncompact,
toric Calabi-Yau spaces, since these are the manifolds
that we will be able to study by using the gauge theory—
string theory correspondence. In Sec. V we establish the
correspondence between Chern-Simons theory on the
three-sphere and closed topological string theory on a
resolved conifold. In Sec. VI we show how the argu-
ments of Sec. V can be extended to construct gauge
theory duals of topological string theory on more com-
plicated noncompact, toric Calabi-Yau manifolds. In
Sec. VII we complete this program by defining the topo-
logical vertex, an object that allows one to solve topo-
logical string theory on all noncompact, toric Calabi-Yau
threefolds by purely combinatorial methods. We also
give a detailed derivation of the topological vertex from
Chern-Simons theory, and we give various applications
of the formalism. The last section contains some conclu-
sions and open directions for further research. A short
appendix contains some elementary facts about the
theory of symmetric polynomials that are used in the
review.

There are many issues that we have not analyzed in
detail in this review. For example, we have not discussed
the mirror-symmetric side of the story, and we do not
address in detail the relation between topological string
amplitudes and type-II superstring amplitudes. We refer
the reader to the excellent book by Hori et al. (2003) for
an introduction to these topics. Other reviews of the
topics discussed here can be found in Grassi and Rossi
(2002) and Marifo (2002b).

Il. CHERN-SIMONS THEORY AND KNOT INVARIANTS

A. Chern-Simons theory: Basic ingredients

In a groundbreaking paper, Witten (1989) showed that
Chern-Simons gauge theory, which is a quantum field
theory in three dimensions, provides a physical descrip-
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tion of a wide class of invariants of three-manifolds and
of knots and links in three-manifolds.! The Chern-
Simons action with gauge group G on a generic three-
manifold M is defined by2

k 2
S:—f TI‘(A/\dA+—A/\A/\A>. 1)
dar M 3

Here, k is the coupling constant, and A is a G-gauge
connection on the trivial bundle over M. In this review
we will mostly consider Chern-Simons theory with gauge
group G=U(N). As noticed by Witten (1989), since this
action does not involve the metric, the resulting quan-
tum theory is topological, at least formally. In particular,
the partition function

Z(M) = J [DA]e'S ()

should define a topological invariant of the manifold M.
A detailed analysis shows that this is in fact the case,
with an extra subtlety: the invariant depends not only on
the three-manifold but also on a choice of framing (i.e., a
choice of trivialization of the bundle TM & TM). As ex-
plained by Atiyah (1990), for every three-manifold there
is a canonical choice of framing, and the different
choices are labeled by an integer s € Z in such a way that
s=0 corresponds to the canonical framing. In the follow-
ing all results for the partition functions will be pre-
sented in the canonical framing.

Besides providing invariants of three-manifolds,
Chern-Simons theory also provides invariants of knots
and links inside three-manifolds [for a survey of modern
knot theory, see Lickorish (1998) and Prasolov and Sos-
sinsky (1997)]. Some examples of knots and links are
depicted in Fig. 1. Given an oriented knot K in S°, we
can consider the trace of the holonomy of the gauge
connection around X in a given irreducible representa-
tion R of U(N), which gives the Wilson loop operator:

Wi(A) = TrgUy, 3)

where

U,C:Pexp(ﬂg A) 4)
K

is the holonomy around the knot. Equation (3) is a
gauge invariant operator whose definition does not in-
volve the metric on the three-manifold. The irreducible
representations of U(N) will be labeled by highest
weights or equivalently by the lengths of rows in a
Young tableau, /;, where [; =1,=---. If we now consider a
link £ with components K, a=1,...,L, we can in prin-
ciple compute the correlation function,

!This was also conjectured by Schwarz (1987).
’The notation for integrals over differential forms may be
found in Polchinski (1998, App. B).
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FIG. 1. Some knots and links. In the notation x,, x indicates
the number of crossings, L the number of components (in case
it is a link with L>1), and »n is a number used to enumerate
knots and links in a given set characterized by x and L. The
knot 3, is also known as the trefoil knot, while 4; is known as
the figure-eight knot. The link 2% is called the Hopf link.

Wi, (£) = (Wil Wit
1 L
=200 J [DA](H1 Wgz)eﬂ. (5)

The topological character of the action and the fact that
the Wilson loop operators can be defined without using
any metric on the three-manifold indicate that Eq. (5) is
a topological invariant of the link £. Note that we are
taking the knots and links to be oriented, and this makes
a difference. If ! denotes the knot obtained from K by
inverting its orientation, we have that

TrrUs-1 = TrrUit = TriUy, (6)

where R denotes the conjugate representation. For fur-
ther use we note that, given two linked oriented knots
KC1,KC,, one can define a elementary topological invari-
ant, the linking number, by
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FIG. 2. When computing the linking number of two knots, the
crossings are assigned a sign +1 as indicated.

2 ep), ™)

p

1
1k(KCy,Ky) = =
2
where the sum is over all crossing points, and e(p)= =1 is
a sign associated to the crossings as indicated in Fig. 2.

The linking number of a link £ with components
Ky, a=1,...,L, is defined by

k(L) = 2 k(Ko Kp). (8)
a<pf
Some of the correlation functions of Wilson loops in
Chern-Simons theory turn out to be closely related to
important polynomial invariants of knots and links. For
example, one of the most important polynomial invari-
ants of a link £ is the HOMFLY polynomial P.(q,\),
which depends on two variables ¢ and A and was intro-
duced by Freyd et al. (1985). This polynomial turns out
to be related to the correlation function (5) when the
gauge group is U(N) and all the components are in the
fundamental representation R,=[]. More precisely, we
have

)\1/2 12
WDD(E) = )\lk(ﬁ)<m PL(CIJ\)» (9)

where 1k(£) is the linking number of £, and the variables
q and \ are related to the Chern-Simons variables as

-
q=eXp< = ) A=g". (10)

k+N

When N=2 the HOMFLY polynomial reduces to a one-
variable polynomial, the Jones polynomial. When
the gauge group of Chern-Simons theory is
SO(N), Wr..o(L) is closely related to the Kaufmann
polynomial. For the mathematical definition and proper-
ties of these polynomials, see, for example, Lickorish
(1998).

B. Perturbative approach

The partition function and correlation functions of
Wilson loops in Chern-Simons theory can be computed
in a variety of ways. One can, for example, use standard
perturbation theory. In the computation of the partition
function in perturbation theory, we have to find first the
classical solutions of the Chern-Simons equations of mo-
tion. If we write A=2,AT,, where T, is a basis of the
Lie algebra, we find
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therefore the classical solutions are just flat connections
on M. Flat connections are in one-to-one correspon-
dence with group homomorphisms,

m(M) — G. (11)

For example, if M:S3/Zp is the lens space L(p,1), one
has 7 (L(p,1))=Z,, and flat connections are labeled by
homomorphisms Z,— G. Let us assume that these are a
discrete set of points [this happens, for example, if M is
a rational homology sphere, since in that case (M) is a
finite group]. In that situation, one expresses Z(M) as a
sum of terms associated to stationary points:

Z(M) =2 Z9(M), (12)

where c¢ labels the different flat connections A on M.
Each of the Z¥(M) will be an asympotic series in 1/k of
the form

ZYM) = Z)oop(M)exp) 2 SEx" (. (13)
=1

In this equation, x is the effective expansion parameter:

2l

x (14)

:k+y’

and y is the dual Coxeter number of the group [for G
=U(N), y=N]. The one-loop correction VA% (M) was

1-loo
first analyzed by Witten (1989), and has been studied in
great detail since then (Freed and Gompf, 1991; Jeffrey,

1992; Rozansky, 1995). It has the form

3
© (M) o RIS
Zl-loop( ) VOl( Hc) P (15)

where 7-35) is the Reidemeister-Ray-Singer torsion of A()

and H, is the isotropy group of A9, Note that, for the
trivial flat connection A“'=0, H.=G.

The terms S(;) in Eq. (13) correspond to connected
diagrams with 2¢ vertices. In Chern-Simons theory the
vertex is trivalent, so Sif) is the contribution to the free
energy at €+1 loops. The contributions of the trivial
connection will be denoted simply by §,. Note that the
computation of S(;) involves the evaluation of group fac-
tors of Feynman diagrams, and therefore they depend
explicitly on the gauge group G. When G=U(N), they
are polynomials in N. For example, S; contains the
group factor 2N(N?-1).

The perturbative evaluation of Wilson loop correla-
tors can also be done using standard procedures. First of
all one has to expand the holonomy operator as
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Wh(A) = Trl{l + f}g dx"A ,(x)
K

b ae [ aramawe|. o
K

where A,=2,A}T, Then, after gauge fixing, one can
proceed and evaluate the correlation functions in stan-
dard perturbation theory. The perturbative study of Wil-
son loops was started by Guadagnini, Martellini, and
Mintchev (1990). A nice review of its development can
be found in Labastida (1999). Here we will rather focus
on the nonperturbative approach to Chern-Simons
theory, which we now explain.

C. Canonical quantization and surgery

As shown by Witten (1989), Chern-Simons theory is
exactly solvable using nonperturbative methods and the
relation to the Wess-Zumino-Witten (WZW) model. In
order to present this solution, it is convenient to recall
some basic facts about the canonical quantization of the
model.

Let M be a three-manifold with boundary given by a
Riemann surface 3. We can insert a general operator O
in M, which will be in general a product of Wilson loops
along different knots and in arbitrary representations of
the gauge group. We will consider the case in which the
Wilson loops do not intersect the surface 3. The path
integral over the three-manifold with boundary M gives
a wave function ¥, »(A) which is a functional of the
values of the field at X. Schematically we have

DASO. (17)
Aly=A

Wi o(A) = (AW 0) =

In fact, associated with the Riemann surface 3, we have a
Hilbert space H(Z), which can be obtained by doing ca-
nonical quantization of Chern-Simons theory on 3 X R.
Before providing in detail the structure of these Hilbert
spaces, let us make some general considerations about
the computation of physical quantities.

In the context of canonical quantization, the partition
function can be computed as follows. We first perform a
Heegaard splitting of the three-manifold, i.e., we repre-
sent it as the connected sum of two three-manifolds M,
and M, sharing a common boundary 3, where I is a
Riemann surface. If f:3— 2, is an homeomorphism, we
write M =M;UM,, so that M is obtained by gluing M, to
M, through their common boundary and using the ho-
meomorphism f. This is represented in Fig. 3. We then
compute the full path integral (2) over M by computing
first the path integral over M, to obtain a state |\PM1> in
H(Z). The boundary of M, is also X, but with opposite
orientation, so its Hilbert space is the dual space H (2).
The path integral over M, then produces a state <\I’M2|
e H'(2). The homeomorphism f:3—3 is represented
by an operator acting on H(2),
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FIG. 3. Heegaard splitting of a three-manifold M into two
three-manifolds M; and M, with a common boundary 3.

UpH(S) — H(E), (18)
and the partition function can be finally evaluated as
Z(M) = (W3, |UJW ). (19)

Therefore, if we know explicitly what the wave functions
and the operators associated to homeomorphisms are,
we can compute the partition function.

One of the most fundamental results of Witten (1989)
is in fact a precise description of H(2): it is the space of
conformal blocks of a Wess-Zumino-Witten model on %,
with gauge group G and level k [for an extensive review
of the Wess-Zumino-Witten model, see, for example, Di
Francesco et al. (1997)]. In particular, H(X) has finite
dimension. We will not review here the derivation of this
fundamental result. Instead we will use the relevant in-
formation from the Wess-Zumino-Witten model in or-
der to solve Chern-Simons theory.

The description of the space of conformal blocks on
Riemann surfaces can be made very explicit when 2, is a
sphere or a torus. For 3=82, the space of conformal
blocks is one dimensional, so H(S?) is spanned by a
single element. For 3 =T?, the space of conformal blocks
is in one-to-one correspondence with the integrable rep-
resentations of the affine Lie algebra associated with G
at level k. We will use the following notations: the fun-
damental weights of G will be denoted by \;, and the
simple roots by «;, with i=1,...,r, and r denotes the rank
of G. The weight and root lattices of G are denoted by
A" and A’, respectively, and |A,| denotes the number of
positive roots. The fundamental chamber F; is given by
A”/IA", modded out by the action of the Weyl group.
For example, in SU(N) a weight p=2]_p,\; is in F; if

> p;<l, and p,>0,i=1,...r. (20)
i=1

We recall that a representation given by a highest weight
A is integrable if p+ A is in the fundamental chamber F,,
where [=k+y (p denotes as usual the Weyl vector, given
by the sum of the fundamental weights). In the follow-
ing, the states in the Hilbert state of the torus H(T?) will
be denoted by |p)=|p+A) where p+ A, as we have stated,
is an integrable representation of the Wess-Zumino-
Witten model at level k. We will also denote these states
by |R), where R is the representation associated to A.
The state |p) will be denoted by |0). The states |R) can be
chosen to be orthonormal (Elitzur et al., 1989; Labastida
and Ramallo, 1989; Witten, 1989), so we have
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(RIR") = gz (1)

There is a special class of homeomorphisms of T? that
has a simple expression as operators in H(T?); these are
the SI(2,Z) transformations. Recall that the group
SI(2,Z) consists of 2X2 matrices with integer entries
and unit determinant. If (1,0) and (0,1) denote the two
one-cycles of T2, we can specify the action of an SI(2,Z)
transformation on the torus by giving its action on this
homology basis. The SI(2,Z) group is generated by the
transformations 7 and S, which are given by

T_(l 1) S_(o —1) -
“\o 1) 7 \1 o) 22)

Note that the S transformation exchanges the one-cycles
of the torus. These transformations can be lifted to
H(T?), and they have the following matrix elements in
the basis of integrable representations:

— 2i(h,—cl24
Ty = 8y €Tl

P (Vol AW>”2
pp' — (k+y)r/2 Vol A’

2
x 2 e(W)eXp<— —p‘W(p’))- (23)
weW k+ y

In the first equation, c is the central charge of the Wess-
Zumino-Witten model, and A, is the conformal weight
of the primary field associated to p:

_ .
P2k +y)’

(24)

where p is of the form p+A. In the second equation, the
sum over w is a sum over the elements of the Weyl
group W, e(w) is the signature of the element w, and
Vol A¥") denote, respectively, the volume of the weight
(root) lattice. We often write Sgg for S,,/, where p=p
+A, p'=p+A’, and A,A’ are the highest weights corre-
sponding to the representations R, R’.

What is the description of the states |R) in H(T?) from
the point of view of canonical quantization? Consider
the solid torus 7=D X S!, where D is a disk in R2. This is
a three-manifold whose boundary is a T?, and it has a
noncontractible cycle given by S'. Let us now consider
the Chern-Simons path integral on the solid torus, with
the insertion of the operator Oz=TrzU given by a Wil-
son loop in the representation R around the noncon-
tractible cycle, as shown in Fig. 4. In this way one ob-
tains a state in H(T?), and one has

W7o, =IR). (25)

In particular, the path integral over the solid torus with
no operator insertion gives |0), the “vacuum” state.
These results allow us to compute the partition func-
tion of any three-manifold that admits a Heegaard split-
ting along a torus. Imagine, for example, that we take
two solid tori and we glue them along their boundary
with the identity map. Since a solid torus is a disk times
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FIG. 4. Performing the path integral on a solid torus with a
Wilson line in representation R gives the state |R) in H(T?).

a circle D XS8!, by performing this operation we get a
manifold which is S! times the two disks glued together
along their boundaries. Therefore, with this operation
we obtain §? X S!, and Eq. (19) gives

Z(8* x 81y =(0j0)y=1. (26)
If we preform the gluing, however, after an § transfor-
mation on the T? the resulting manifold is instead S*. To
see this, note that the complement to a solid torus inside
S3 is indeed another solid torus whose noncontractible

cycle is homologous to the contractible cycle in the first
torus. We then find

Z(8%) =(0]S]0) = Soo- 27)

By using Weyl’s denominator formula,

S ew)e”@ = I 2 sinhg, (28)

weW a>0

where a>0 are positive roots, one finds

w\ 1/2 .
1 (VolA ) stm(w(a p))_

T k+y)\ Vol AT k+y

Z(S?)
(29)

The above result can be generalized in order to compute
path integrals in S for some knots and links. Consider a
solid torus where a Wilson line in representation R has
been inserted. The corresponding state is |R), as ex-
plained before. If we now glue this to an empty solid
torus after an S transformation, we obtain a trivial knot,
or unknot, in 8. The path integral with the insertion is
then

Z(S3,OR) = <0|S|R>- (30)

It follows that the normalized vacuum expectation value
for the unknot in 83, in representation R, is given by
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2 é(w)e—[%i/(kw)]/fW(A+p)

w ( K t) S weW
unknot) =—= .
: SOO E e(w)e‘[2”i/(k+Y)]P'W(P)
weW

(31)

Recall that the character of the representation R, evalu-
ated on an element a e A, ®R, is defined by

> et (32)

peMp

chg(a) =

where My, is the set of weights associated to the irreduc-
ible representation R. By using Weyl’s character formula
we can write

2
Wr(unknot) = chR{— p] . (33)
k+y
Moreover, using Eq. (28), we finally obtain

sin(ia‘ (A + p))
Wgr(unknot) = 11 k+y

a=0 sin( T o )
k+y P

This quantity is often called the quantum dimension of
R, and it is denoted by dim,R.

We can also consider a solid torus with Wilson loop in
representation R, glued to another solid torus with the
representation R’ through an S transformation. What
we obtain is clearly a link in S* with two components,
which is the Hopf link shown in Fig. 1. Taking the ori-
entation carefully into account, we find that this is the
Hopf link with linking number +1. The path integral
with this insertion is

(34)

Z(8%,0r0r) =(R'|S|R), (35)
so the normalized vacuum expectation value is
Stk Sk
Wik: = Wg/(Hopf™!) = == = =, (36)
Soo Soo

where the superscript +1 refers to the linking number.
Here we have used that the bras (R| are canonically as-

sociated to conjugate representations R, and that Si/ g
:S;el, r [see, for example, Di Francesco et al. (1997)].
Therefore, the Chern-Simons invariant of the Hopf link
is essentially an S-matrix element. In order to obtain the
invariant of the Hopf link with linking number -1, we
note that the two Hopf links can be related by changing
the orientation of one of the components. We then have

S
WRR/(HOpf_l) =~ (37)

where we have used the property (6).

When we take G=U(N), the above vacuum expecta-
tion values for unknots and Hopf links can be evaluated
explicitly in terms of Schur polynomials. It is well known
that the character of the unitary group in the represen-
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tation R is given by the Schur polynomial sz [see, for
example, Fulton and Harris (1991)]. There is a precise
relation between the element a where one evaluates the
character in Eq. (32) and the variables entering the
Schur polynomial. Let u;, i=1,...,N, be the weights as-
sociated to the fundamental representation of U(N).
Note that if R is given by a Young tableau whose rows
have lengths [;=--- =1, then Ap==;/;u;. We also have

N

p=2 %(N—2i+ 1. (38)
i=1

Let a e A”®R be given by

N
a= 2 a;u;. (39)
i=1
Then,
chgla] = sg(x; = ). (40)

For example, in the case of the quantum dimension, one
has diqu=diqu, and we find

dlqu — SR(xi — q(1/2)(N—2i+1)), (41)
where ¢ is given in Eq. (10). By using that sz is homo-
geneous of degree ¢(R) in the coordinates x; we finally
obtain

dim,R = )\{’(R)/ZSR(xi _ q—i+1/2)’

where A=¢" as in Eq. (10), and there are N variables x;.
The quantum dimension can be written explicitly in
terms of the g numbers:

[x] _ qx/z _ q—x/z, [x])\ — )\1/2CIX/2 _

If R corresponds to a Young tableau with ci rows of
lengths /;, i=1,..., cg, the quantum dimension is given
by

)\—l/2q—x/2‘ (42)

H [V]x
l - v=—Ii+
H [ ; +l]] l]l—[ . 1
I=si<j=scp 1—[ [V it CR]

(43)

dim R =

It is easy to check that in the limit k+ N— (i.e., in the
semiclassical limit) the quantum dimension becomes the
dimension of the representation R. Note that the quan-
tum dimension is a rational function of g*/2, \*'2, This
is a general property of all normalized vacuum expecta-
tion values of knots and links in S°.

The S-matrix elements that appear in Egs. (36) and
(37) can be evaluated through the explicit expression
(23), by using the relation between U(N) characters and
Schur functions that we explained above. Note first that
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-1
SkyR,

2 2
1
=chp | —(A he | —p|. 44
S0 CRl{k+y( R2+P)}C R2|:k+yp:| (44)

If we denote by le, i=1,..., CR, the lengths of rows for
the Young tableau corresponding to R,, it is easy to see
that

Wi, r,(@:N) = @) B2 (xi= ¢ )dim,Ry,  (45)

where we set [F2=0 for [>cg,. A convenient way to

evaluate sRl(xi:q’rR ~i) for a partition {Zf}{izl,.._,cR} associ-
ated with R is to use the Jacobi-Trudy formula (A6). It is
easy to show that the generating functional of elemen-
tary symmetric functions (A2) for this specialization is
given by

1+ qJ it
Eg(t) = E@(r)H 5 (46)
j=1
where
Ex()=1+ > a,t", (47)

and the coefficients a, are defined by
n 1=\ 1 r-1
,—?. (48)

r=1

The formula (45), together with the expressions above
for Ex(), provides an explicit expression for Eq. (36) as
a rational function of ¢g*?, N*!2_ and it was first written
down by Morton and Lukac (2003).

D. Framing dependence

In the above discussion on the correlation functions of
Wilson loops we have missed an important ingredient.
We already mentioned that, in order to define the parti-
tion function of Chern-Simons theory at the quantum
level, one has to specify a framing of the three-manifold.
It turns out that the evaluation of correlation functions
like Eq. (5) also involves a choice of framing of the
knots, as discovered by Witten (1989). Since this is im-
portant in the context of topological strings, we will ex-
plain it in some detail.

A good starting point to understand the framing is to
take Chern-Simons theory with gauge group U(1). The
Abelian Chern-Simons theory turns out to be extremely
simple, since the cubic term in Eq. (1) drops out, and we
are left with a Gaussian theory (Polyakov, 1988). U(1)
representations are labeled by integers, and the correla-
tion function (5) can be computed exactly. In order to do
that, however, one has to choose a framing for each of
the knots /C,. This arises as follows: in evaluating the
correlation function, contractions of the holonomies cor-
responding to different /C, produce the following inte-
gral:
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(x—y)’

1
k(K. Kg)=—® dx*P dy’e,, . 49
(Ka ﬁ) 477%% X 3€1CB Y€, p|x_y|3 (49)

This is a topological invariant, i.e., it is invariant under
deformations of the knots K, g, and it is in fact the
Gauss integral representation of their linking number
Ik(KC,,Kp) defined in Eq. (7). On the other hand, con-
tractions of the holonomies corresponding to the same
knot K involve the integral

(/C)——fﬁ dx* 35 dy” e,wp(f; i |)3 (50)

This integral is well defined and finite [see, for example,
Guadagnini, Martellini, and Mintchev (1990)], and it is
called the cotorsion or writhe of K. It gives the self-
linking number of K: if we project K on a plane, and we
denote n,(K) the number of positive (negative) crossings
as indicated in Fig. 2, then we have that

H(K) =n,(K) = n_(K). (51)

The problem is that the cotorsion is not invariant under
deformations of the knot. In order to preserve topologi-
cal invariance of the correlation function, one has to
choose another definition of the composite operator
($,cA)? by means of framing. A framing of the knot con-
sists of choosing another knot X/ around K, specified by
a normal vector field n. The cotorsion @¢(K) becomes
then

-y

f(IC)——jg dx“é dy” E;wp| R

=1k(K,K).

(52)

The correlation function that we obtain in this way is
topological invariant (since it only involves linking num-
bers) but the price that we have to pay is that our regu-
larization depends on a set of integers pazlk(lCa,lC];)
(one for each knot). The correlation function (5) can
now be computed, after choosing the framings, as fol-
lows:

<1;[ exp(na;ﬁKaA»

:exp{ (2 Wpot o n nﬁlk(/ca,/cﬁ)>}. (53)

a#f

This regularization is nothing but the “point-splitting”
method familiar in the context of quantum field theory.

Let us now consider Chern-Simons theory with gauge
group U(N), and suppose that we are interested in the
computation of Eq. (5), in the context of perturbation
theory. It is easy to see that self-contractions of the ho-
lonomies lead to the same kind of ambiguities that we
found in the Abelian case, i.e., a choice of framing has to
be made for each knot K. The only difference with the
Abelian case is that the self-contraction of K, gives a
group factor Trg (T,T,), where T, is a basis of the Lie
algebra [see, for example Guadagnini, Martellini, and
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Mintchev (1990)]. The precise result can be better stated
as the effect on the correlation function (5) under a
change of framing, and it states that, under a change of
framing of K, by p, units, the vacuum expectation value
of the product of Wilson loops changes as follows [Wit-
ten (1989)]:

L

WRI'”RL - eXp[ZmEl pahRai| WRI' Ry - (54)
In this equation, A is the conformal weight of the Wess-
Zumino-Witten primary field corresponding to the rep-
resentation R. One can write Eq. (24) as
Cr
hp=—"7"—, 55

R220k+ N G5)
where Cgr=Trg(T,T,) is the quadratic Casimir in the
representation R. For U(N) one has

CR:Ne(R)'FKR, (56)

where €(R) is the total number of boxes in the tableau,
and

kp={C(R) + 2 (I = 2il;). (57)

In terms of the variables (10) the change under framing
(54) can be written as

L L
WR---RL_)q(1/2)2a:1KR”pa)\(l/Z)Eazle(Ra)paWRl---RL- (58)

1

Therefore, the evaluation of vacuum expectation values
of Wilson loop operators in Chern-Simons theory de-
pends on a choice of framing for knots. It turns out that
for knots and links in S3, there is a standard or canonical
framing, defined by requiring that the self-linking num-
ber is zero. The expressions we have given before for the
Chern-Simons invariant of the unknot and the Hopf link
are all in the standard framing. Once the value of the
invariant is known in the standard framing, the value in
any other framing specified by nonzero integers p, can
be easily obtained from Eq. (54).

E. More results on Wilson loops

In this subsection we discuss some useful results for
the computation of vacuum expectation values of Wilson
loops. Most of these results can be found, for example,
in Guadagnini (1992).

The first property we want to state is the factorization
property for the vacuum expectation values of disjoint
links, which says the following. Let £ be a link with L
components Kq,...,KC; which are disjoint knots, and let
us attach the representation R, to the ath component.
Then one has

L
Wik, (L) = [T We (Ko). (59)
a=1

This property is easy to prove in Chern-Simons theory.
It only involves some elementary procedure and the fact
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that (S?) is one dimensional. A proof can be found in
Witten (1989).

The second property we will consider is parity symme-
try. Chern-Simons theory is a theory of oriented links,
and under a parity transformation a link £ will trans-
form into its mirror £”. The mirror of £ is obtained from
its planar projection simply by changing undercrossings
by overcrossings, and vice versa. On the other hand, par-
ity changes the sign of the Chern-Simons action, in other
words k+N— —(k+N). We then find that vacuum expec-
tation values transform as

We,r, (£)G@N) = We..g, (D)@' A7), (60)

This is interesting from a knot-theoretic point of view,
since it implies that Chern-Simons invariants of links can
distinguish, in principle, a link from its mirror image. As
an example of this property, note, for example, that the
unknot is identical to its mirror image; therefore, quan-
tum dimensions satisfy

(dim,R) (g, A1) = (dim,R)(g,\). (61)

Let us now discuss the simplest example of a fusion
rule in Chern-Simons theory. Consider a vacuum expec-
tation value of the form

(TrRlUTrR2U>, (62)

where U is the holonomy of the gauge field around a
knot K. The classical operator Trg, U Trg,U can always
be written as

Trg, U Trg,U=Trg o, U= % N &, TrrU, (63)

where R ® R, denotes the tensor product, and NR1 R R, are
tensor product coefficients. In Chern-Simons theory, the
quantum Wilson loop operators satisfy a very similar re-
lation, with the only difference that the coefficients be-
come the fusion coefficients for integrable representa-
tions of the Wess-Zumino-Witten model. This can be
easily understood if we take into account that the admis-
sible representations that appear in the theory are the
integrable ones, so one has to truncate the list of “clas-
sical” representations, and this implies in particular that
the product rules of classical traces have to be modified.
However, in the computation of knot invariants in U(N)
Chern-Simons theory it is natural to work in a setting in
which both k and N are much larger than any of the
representations involved. In that case, the vacuum ex-
pectation values of the theory satisfy

(Trg, U Trg,U) = 2 N g (TrgU), (64)
R

where N§ ®, are the Littlewood-Richardson coefficients
of U(N). As a simple application of the fusion rule,
imagine that we want to compute (Trg UjTrg Uy),
where U ; are holonomies around disjoint unknots with
zero framing. We can take the unknots to be very close,
in such a way that the paths along which we compute the
holonomy are the same. In that case, this vacuum expec-
tation value becomes exactly the left-hand side of Eq.
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R, R,

FIG. 5. A link with two disjoint unknots.

(64). Using also the factorization property (59), we de-
duce the following fusion rule:

dim,R,dim R, = %‘, N7, r,dimgR. (65)

The last property we will state is the behavior of cor-
relation functions under direct sum. This operation is
defined as follows. Let us consider two links £, £, with
components i, and K, K, respectively, i.e., the com-
ponent knot K is the same in £; and £,. The direct sum
L=L14$L, is a link of three components which is ob-
tained by joining £; and £, through K. It is not difficult
to prove that the Chern-Simons invariant of £ is given
by [Witten (1989)]

Wi r(LOWr,R(L,)
Wg(K)

W r,r(L) = (66)
As an application of this rule, let us consider the three-
component link in Fig. 5. This link is a direct sum of two
Hopf links whose common component is an unknot in
representation R, and the knots K;,/C, are unknots in
representations R;,R,. Equation (66) expresses the
Chern-Simons invariant of £ in terms of invariants of
Hopf links and quantum dimensions. Note that the in-
variant of the link in Fig. 5 can be also computed using
fusion rules. If we fuse the two parallel unknots with
representations R, R,, we find

Wi g,r(£) = 2 N g (Trp:U'TrgU), (67)
RI

where U is the holonomy around the unknot in repre-
sentation R, and U’ is the holonomy around the unknot
which is obtained by fusing the two parallel unknots in
Fig. 5. Equation (67) expresses the invariant (66) in
terms of the invariants of a Hopf link with representa-
tions R’, R.

F. Generating functionals for knot and link invariants

In the applications of Chern-Simons theory, we will
need the invariants of knots and links in arbitrary rep-
resentations of the gauge group. It is then natural to
consider generating functionals for Wilson loop opera-
tors in arbitrary representations.
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There are two natural bases for the set of Wilson loop
operators: the basis labeled by representations R, which
is the one that we have considered so far, and the basis
labeled by conjugacy classes of the symmetric group.
Wilson loop operators in the basis of conjugacy classes
are constructed as follows. Let U be the holonomy of the

gauge connection around the knot K. Let k=(ky,ky,...)
be a vector of infinite entries, almost all of which are

zero. This vector defines naturally a conjugacy class C(k)
of the symmetric group S, with

=D jk;. (68)
J
We will also denote

k| = E k;. (69)
]

The conjugacy class C(k) is simply the class that has k;
cycles of length j. We now define the operator

Y(U) =[] (Tr U)%, (70)

=1

which gives the Wilson loop operator in the conjugacy
class basis. It is a linear combination of the operators
TrrU labeled by representations

Yi(U) = 2 xr(C(k)TrgU, (71)
R

where yz(C(k)) are the characters of the symmetric
group S, in the representation R evaluated at the conju-

gacy class C(k). The above formula can be inverted as

Trp(v) = 3 XEB v ) (72)
Kootk
with
zi=1 k1 5. (73)
j

If U is a diagonal matrix U=diag(xy,...,xy), it is an el-
ementary result in the representation theory of the uni-
tary group that TrzpU is the Schur polynomial in x;:

TI‘RU = SR(X) . (74)
It is immediate to see that
Yi(U) = Pi(x), (75)

where the Newton polynomials are defined in Eq. (A7).
The relation (71) is nothing but the Frobenius formula,
which relates the two bases of symmetric polynomials
given by the Schur and Newton polynomials. The
vacuum expectation values of the operators (70) will be
denoted by

Wi=(Yi(U)). (76)
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If Vis a U(M) matrix (a “source” term), one can de-
fine the following operator, which was introduced by
Ooguri and Vafa (2000) and is known in this context as
the Ooguri-Vafa operator:

©

Z(U,V) = eXp|: > %Tr U"Tr V”] ) (77)

n=1

When expanded, this operator can be written in the k
basis as follows:

Z(UV)=1+> iY,;(U)Y,;(V). (78)
i <k

We see that Z(U,V) includes all possible Wilson loop
operators Y ;(U) associated with a knot K. One can also
use the Frobenius formula to show that

Z(U,V) = > Trr(U)Trg(V), (79)
R

where the sum over representations starts with the
trivial one. Note that in the above equation R is re-
garded as a Young tableau, and since we are taking both
N and M to be large, it can be regarded as a represen-
tation of both U(N) and UM). In Z(U,V) we assume
that U is the holonomy of a dynamical gauge field and
that V is a source. The vacuum expectation value
Zcs(V)=(Z(U,V)) then has information about the
vacuum expectation values of the Wilson loop operators,
and by taking its logarithm one can define the connected

vacuum expectation values Wﬁf):
1
Fes(V)=In Zs(V) = 2 — WEYHY). (80)
k <k

One has, for example,

W,y = (Tr0)?) ~(TtUy* = Wi+ W - W3,

The free energy Fcg(V), which is a generating functional

for connected vacuum expectation values Wg), is an im-
portant quantity when one considers the string/gauge
theory correspondence, as we will see.

lll. THE 1/N EXPANSION AND CHERN-SIMONS THEORY
A. The 1/N expansion

In quantum field theory, the usual perturbative expan-
sion gives a series in powers of the coupling constants of
the model. However, in theories with a U(N) or SU(N)
gauge symmetry there is an extra parameter that enters
into the game, namely, N, and it turns out that there is a
way to express the free energy and the correlation func-
tions of the theory as power series in 1/N. This is the
1/N expansion introduced by ’t Hooft (1974) in the con-
text of QCD.

A good starting point to construct the 1/N expansion
is the usual perturbative expansion. The N dependence
of the perturbative expansion comes from the group fac-
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FIG. 6. The index structure of the fields in the adjoint repre-
sentation of U(N) is represented by a double line.

tors of Feynman diagrams, but it is clear that a single
Feynman diagram gives rise to a polynomial in N involv-
ing different powers of N. Therefore, the standard Feyn-
man diagrams, which are good in order to keep track of
powers of the coupling constants, are not good in order
to keep track of powers of N. What we have to do is to
“split” each diagram into different pieces which corre-
spond to a definite power of N. To do that, one writes
the Feynman diagrams of the theory as “fat graphs” or
ribbon graphs ('t Hooft, 1974).

In the fat-graph approach to perturbation theory, the
propagator of the gluon field A; is represented by a
double line, as shown in Fig. 6. The indices i,j=1,...,N
are gauge indices for the adjoint representation. Simi-
larly, the trivalent vertex of Chern-Simons theory is rep-
resented in this notation as in Fig. 7. Once we have re-
written the Feynman rules in the double-line notation,
we can construct the corresponding graphs, which look
like ribbons and are called ribbon graphs or fat graphs.
A usual Feynman diagram can give rise to many differ-
ent fat graphs. For example, the two-loop vacuum dia-
gram © in Chern-Simons theory, which comes from con-
tracting two cubic vertices, gives rise to two fat graphs.
The first one, which is shown in Fig. 8, gives a group
factor 2N, while the second one, which is shown in Fig.
9, gives —2N. The advantage of introducing fat graphs is
precisely that each of them gives a definite power of N:
fat graphs are characterized topologically by the number
of propagators E, the number of vertices V, and finally
the number of closed loops 4. If we denote by x the
coupling constant, each propagator gives a power of x,
each interaction vertex gives a power of x!, and each
closed loop gives a power of N, so that every fat graph
will give a contribution in x and N given by

xE-VNE. (81)

The key point now is to regard the fat graph as a Rie-
mann surface with holes, in which each closed loop rep-

1 k

. J

FIG. 7. The cubic vertex in the double-line notation.
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FIG. 8. A planar diagram with #=3.

resents the boundary of a hole. The genus of such a
surface is determined by the elementary topological re-
lation

2¢-2=E-V-h, (82)
therefore we can write Eq. (81) as
x2g—2+hNh — x2g—2th , (83)

where we have introduced the ’t Hooft parameter
t=Nx. Fat graphs with g=0 are called planar, while the
ones with g>0 are called nonplanar. The diagram in Fig.
8, for example, is planar: it has E=3, V=2, and h=3,
therefore g=0. The diagram in Fig. 9 is nonplanar: it has
E=3, V=2 and h=1, therefore g=1.

We can now organize the computation of the different
quantities in the field theory in terms of fat graphs. For

FIG. 9. A nonplanar diagram with g=h=1.
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example, the computation of the free energy is given in
the usual perturbative expansion by connected vacuum
bubbles. When the vacuum bubbles are written in the
double-line notation, we find that the perturbative ex-
pansion of the free energy can be written as

PP =2 > x4, (84)
g=0 h=1

where F; ), is simply a number that can be computed by
the usual rules of perturbation theory. The superscript p
refers to the perturbative free energy. As we will see, the
total free energy may have a nonperturbative contribu-
tion which is not captured by Feynman diagrams. In Eq.
(84) we have written the diagrammatic series as an ex-
pansion in x around x=0, keeping the 't Hooft param-
eter t=xN fixed. Equivalently, we can regard it as an
expansion in 1/N, keeping ¢ fixed, and then the N de-
pendence appears as N>~2¢. Therefore, for ¢ fixed and N
large, the leading contribution comes from planar dia-
grams, which go as O(N?). The nonplanar diagrams give
subleading corrections. Note that the contribution of a
given order in N (or in x) is given by an infinite series
where we sum over all possible numbers of holes £,
weighted by #".

In Chern-Simons theory we are also interested in
computing the vacuum expectation values of Wilson
loop operators. The 1/N expansion of Wilson loops can
be easily analyzed [see, for example, Coleman (1988)],
and it turns out that correlation functions that have well-
defined behavior are the connected vacuum expectation

values W;;) introduced in Eq. (80). They admit an expan-
sion of the form

W;{C) _ 20 W}g’g(I)XZg—ZHIa’ (85)
g=

where W (#) is a function of the 't Hooft parameter and
|k| is defined in Eq. (69).

B. The 1/N expansion in Chern-Simons theory

The above considerations on the 1/N expansion are
valid for any U(N) gauge theory, and in particular one
should be able to expand the free energy of Chern-
Simons theory on the three-sphere as in Eq. (84). Of
course, the computation of F, in Chern-Simons theory
directly from perturbation theory is difficult, since it in-
volves the evaluation of integrals of products of propa-
gators over the three-sphere. However, since we know
the exact answer for the partition function, we just have
to expand it to obtain Eq. (84) and the explicit expres-

sion for F .

3For earlier work on the 1/N expansion of Chern-Simons
theory, see Camperi et al. (1990), Periwal (1993), and Correale
and Guadagnini (1994).
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The partition function of CS with gauge group U(N)
on the three-sphere can be obtained from the formula
(29) for SU(N) after multiplying it by an overall factor
NY2/(k+N)"?, which is the partition function of the U(1)
factor. The final result is

B 1 [ wa-p)
Z_—(k+N)N/2al;[02S1n<—k+N ) (86)

Using the explicit description of the positive roots of
SU(N), one gets

N N-1 .
T,
F=inZ=-"I(k+N)+3 (N-j)ln{zsin I }

i1 k+N
(87)
We can now write the sin as
sinmz=mz[[(1-75], (88)
n=1 n

and we find that the free energy is the sum of two pieces.
We will call the first one the nonperturbative piece:

N? 1
FoP = — 71n(k +N)+ EN(N— Din 27

N-1
+ 2 (N=j)nj, (89)
j=1
and the other piece will be called the perturbative piece:
< “ g
FP=2(N—;‘>Eln{1— . ] (90)
j=1 n=1 4772}'1
where we have denoted
2
= , 91
&= N (91)

which, as we will see later, coincides with the open string

coupling constant under the gauge/string theory duality.
To see that Eq. (89) has a nonperturbative origin, we

notice that [see, for example, Ooguri and Vafa (2002)]

(277)(1/2)N(N+1)

vol[U(N)] = m, (92)

where G,(z) is the Barnes function, defined by

Gy(z+1)=T(2)Gy(z), G,(1)=1. (93)
One then finds
_, (2mg)V
FP=In ol U] (94)

This indeed corresponds to the volume of the gauge
group in the one-loop contribution (15), where A is in
this case the trivial flat connection. Therefore, F"P is the
logarithim of the prefactor of the path integral, which is
not captured by Feynman diagrams.
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Let us work out now the perturbative piece (90), fol-
lowing Gopakumar and Vafa (1998a, 1999). By expand-
ing the logarithim, using that 37_n~2%={(2k), and the
formula

N 1 k+1 k+1
E;‘k=m2(—1)f%( , )Bk+1_1N’, (95)
j=1 =1

where B,, are Bernoulli numbers, we find that Eq. (90)
can be written as

=3 hE P ,ge8 N, (96)
g=0 h=2

where F} ), is given by

1B
F,=———""— h=4,
OhT (h-2)h!
1 By
P, =—— 97
LA™ 12 hi &)
(Fp,, vanishes for h<3), and for g=2 one finds
. lg-2+h)(2g-3+h\ B,
Fopn= 25 3+h " (98)
(2m)=8 h 2g8(2g-2)

This gives the contribution of connected diagrams with
two loops and beyond to the free energy of Chern-
Simons on the sphere. The nonperturbative piece also
admits an asymptotic expansion that can be easily
worked out by expanding the Barnes function (Periwal,
1993; Ooguri and Vafa, 2002). One finds

2
P = N?<1n(Ngs) - %) - llnN+ '(-1)

12
. B
+ > N2, (99)
g=2 2g(2g - 2)

C. The string interpretation of the 1/N expansion

The expansion (84) of the free energy in a U(N) gauge
theory looks very similar to the perturbative expansion
of an open string theory with U(N) Chan-Paton factors,
where x is the open string coupling constant, and F,
corresponds to some amplitude on a Riemann surface of
genus g with 4 holes. There is in fact a way to produce a
closed string theory interpretation of the free energy of
gauge theories. Let us introduce the function

P(1) = h})l 2 (100)
The perturbative free energy can be written as
P =2 X6 R), (101)

g=0

which looks like a closed string expansion where ¢ is
some modulus of the theory. Note that Eq. (100) con-
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tains the contribution of all open Riemann surfaces that
appear in the perturbative series with the same bulk to-
pology (specified by the genus g), but with a different
number of holes. Therefore, by “summing over all
holes” we are “filling up the holes” to produce a closed
Riemann surface of genus g. This leads to the 't Hooft
idea (1974) that, given a gauge theory, one should be
able to find a string theory interpretation in the way we
have described, namely, the fat-graph expansion of the
free energy is resummed to give a function of the 't
Hooft parameter F’;(t) at every genus, which is then in-
terpreted as a closed string amplitude. For example, the
planar sector of the gauge theory corresponds to a
closed string theory at tree level (i.e., at genus g=0).
Although we are only considering here the perturbative
piece of the free energy, we will see that in the Chern-
Simons case the nonperturbative piece is crucial to ob-
tain the closed string picture.

Once a closed string intepretation is available, the
1/N expansion (85) can be regarded as an open string
expansion, where W () are interpreted as amplitudes

in an open string theory at genus g and with ~=|k| holes.
According to this interpretation, the Wilson loop creates
a one-cycle in the target space where the boundaries of

Riemann surfaces can end. The vector k specifies the
winding numbers for the boundaries as follows: there
are k; boundaries wrapping j times the one-cycle associ-
ated to the Wilson loop. The generating functional for
connected vacuum expectation values (80) is interpreted
as the total free energy of an open string. The open
strings that are relevant to the string interpretation of
Wilson loop amplitudes should not be confused with the
open strings that we associated with the expansion (84).
The open strings underlying Eq. (85) should be regarded
as an open string sector in the closed string theory asso-
ciated to the resummed expansion (101).

From the point of view of perturbation theory, the
functions Fg(z) are rather formal, and the definition (100)
expresses them as a power series in ¢ whose coefficients
have to be computed order by order in perturbation
theory. In some cases the series can be exactly summed
up in 4 and the functions F{g’(t) can then be obtained in
closed form (this is the case, for example, in some matrix
models). We will see later that in the case of Chern-
Simons theory the Fi(t) can be also resummed to give a
function of the 't Hooft coupling .

Of course, the main problem of the ’t Hooft program
is to identify the closed string theory underlying a gauge
theory. This program has been sucessful in some cases,
and string theory descriptions have been found for two-
dimensional Yang-Mills theory (Gross, 1993; Gross and
Taylor, 1993) and for A'=4 Yang-Mills theory in four
dimensions (Maldacena, 1998). As we will see in this
review, Chern-Simons theory also admits a string theory
description in terms of topological strings, which we now
introduce.
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IV. TOPOLOGICAL STRINGS

String theory can be regarded, at the algebraic level,
as a two-dimensional conformal field theory coupled to
two-dimensional gravity. When conformal field theory is
in addition a topological field theory (i.e., a theory
whose correlation functions do not depend on the metric
on the Riemann surface), the resulting string theory
turns out to be very simple and in many cases can be
completely solved. A string theory which is constructed
in this way is called a topological string theory.

The starting point to obtain a topological string theory
is therefore a conformal field theory with topological
invariance. Such theories are called topological confor-
mal field theories and can be constructed out of A'=2
superconformal field theories in two dimensions by a
procedure called twisting [see Dijkgraaf et al. (1991) for
a review of these topics]. For example, one can take the
N'=2 minimal models to obtain the so-called topological
strings in d <1. These models are very beautiful and in-
teresting and are deeply related to noncritical string
theories. In this review we will consider a more compli-
cated class of topological string theories, where the to-
pological field theory is taken to be a topological sigma
model with target space a Calabi-Yau manifold. We will
first review the topological sigma model and then ex-
plain its coupling to gravity in order to obtain a topo-
logical string. We will also introduce some ingredients of
toric geometry which are needed to fully understand the
class of models that we will consider in this review.

A. Topological sigma models

The topological sigma model was introduced and
studied by Witten in a series of papers (Witten, 1988,
1990, 1991a, 1991b) and can be constructed by twisting
the A'=2 superconformal sigma model in two dimen-
sions [see also Labastida and Llatas (1992)]. A detailed
review of topological sigma models and topological
strings can be found in Hori et al. (2003).

The field content of the topological sigma model is the
following. First, we have a map x:2,— X from a Rie-
mann surface of genus g to a target space X, that will be
a Kéahler manifold of complex dimension d. Indices in
the tangent space of X will be denoted by i, with i
=1,...,2d. Since we have a complex structure, we will
also have holomorphic and antiholomorphic indices,

that we will denote, respectively, by 1,1, where 1,1
=1,...,d. We also have Grassmann fields yex"(TX),
which are scalars on Eg, and a Grassmannian one-form
W, with values in x"(7X). This last field satisfies a self-
duality condition which implies that only its nonzero

components are . ex (T10X) and ¢ ex (T"VX),

where we have picked up local coordinates z, Z on 3,.
The action for the theory is
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1 . ;
L£=2t f d2z(EGijo'?Zx’(?z—x’ +iG YD X
3

+IGWDoX = Ryl x'x’ ) , (102)
where d’z is the measure —idz AdZ, t is a parameter that
plays the role of 1/#, and the covariant derivative D, is
given by

DX = d.X + 07T X", (103)

The theory also has a BRST, or topological, charge Q
which acts on the fields according to

{Q.x}=x,
{Q.x}=0,
{09} =i — YTy,

(0,9} = id.x - Y They.

One can show that Q?=0 on-shell (i.e., modulo the equa-
tions of motion). Finally, we also have a U(1) ghost num-
ber symmetry, in which x, x, and ¢ have ghost numbers
0, 1, and -1, respectively. Note that the Grassmannian
charge Q then has ghost number 1.

The action (102) turns out to be Q exact, up to a to-
pological term and terms that vanish on-shell (Witten,
1988, 1991b):

(104)

L=-i{Q,V}- zJ x"()), (105)

g

where J=iG jdx! adx’ is the Kahler class of X,V (some-
times called the gauge fermion) given by

V= tf d2Z G[j( l,bé—azx] + o'?z—xli,UZ) , (1 06)
25’

and

f x'(J) = if dz /\dz_G,j(ﬁleﬁz—xj— az—xlazxj). (107)

ES 25
Note that this term in Eq. (105) is topological invariant
characterizing the homotopy type of the map x:2,— X.
We can also add a coupling to a B field into the action

- itL x"(B),

8

(108)

which will replace the Kihler form by the complexified
Kéhler form w=J+iB. It is easy to covariantize Egs.
(102) and (106) to introduce an arbitrary metric g,z on
2. Since the last term in Eq. (105) is topological, the
energy-momentum tensor of this theory is given by

TaB:{Q’balB}v (109)
where b ,z=06V/ 8¢ and with ghost number —1. The fact

that the energy-momentum tensor is Q exact means that
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the theory is topological, in the sense that the partition
function does not depend on the background two-
dimensional metric. This is easily proven: the partition
function is given by

Z= J Depe -, (110)

where ¢ denotes the set of fields of the theory, and we

compute it in the background of a two-dimensional met-

ric on the Riemann surface g,s. Since Tp5=06L/ 9g°P, we
find that

oz
5gaﬁ == <{Q’baﬁ}>7

(111)

where the brackets denote an unnormalized vacuum ex-
pectation value. Since Q is a symmetry of the theory, the
above vacuum expectation value vanishes, and we find
that Z is metric independent, at least formally.

The Q exactness of the action itself has also an impor-
tant consequence: the same argument that we used
above implies that the partition function of the theory is
independent of ¢. Now, since ¢ plays the role of 1/4, the
limit of ¢ large corresponds to the semiclassical approxi-
mation. Since the theory does not depend on ¢, the semi-
classical approximation is exact. Note that the classical
configurations for the above action are holomorphic
maps x:2%,— X. These are the instantons of the nonlin-
ear sigma model with a Kéihler target, and minimize the
bosonic action. The different instanton sectors are clas-
sified topologically by the homology class

B=x:[(Z,)] e Hy(X,Z). (112)

Sometimes it is also useful to introduce a basis [S;] of
H,(X,Z), where i=1, ..., by(X), in such a way that we
can expand B=21,[S;] and the instanton sectors are la-
beled by b,(X) integers n;.

What are the operators to consider in this theory?
Since the most interesting aspect of this model is the
independence with respect to the metric, we want to
look for operators whose correlation functions satisfy
this condition. It is easy to see that the operators in the
cohomology of Q do the job: topological invariance re-
quires them to be Q closed, and, on the other hand, they
cannot be @ exact, since otherwise their correlation
functions will vanish. One can also check that the O
cohomology is given by operators of the form

O¢>= ¢i1-~ipXi1 “'Xip,

where ¢=d...,dx"--dx” is a closed p-form represent-
ing a nontrivial class in HP(X). Therefore, in this case
the Q cohomology is in one-to-one correspondence with
the de Rham cohomology of the target manifold X. Also
note that the degree of the differential form corresponds
to the ghost number of the operator. Moreover, one can
derive a selection rule for correlation functions of such
operators: the vacuum expectation value (OO )
vanishes unless

(113)
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!
2 deg(O ) =2d(1-g) + 2] X' (cy(X)),
k=1 s

8

(114)

where deg(O 4)=deg(¢y) and ¢;(X) is the first Chern
class of the Kéhler manifold X. This selection rule cor-
responds to the fact that the U(1) current is anomalous,
and the anomaly is given by the right-hand side of Eq.
(114), which calculates the number of zero modes of the
Dirac operator (in other words, the right-hand side is
minus the ghost number of the vacuum). As usual in
quantum field theory, the operators with nontrivial
vacuum expectation values have to soak up the zero
modes associated to the anomaly.

In what follows we will focus on Calabi-Yau three-
folds, i.e., Kéhler manifolds of complex dimension 3, and
such that ¢;(X)=0. For these manifolds the selection
rule says that, at genus g=0 (i.e., when the Riemann
surface is a sphere), the correlation function of three
operators associated to two-forms is generically nonva-
nishing. Since, as we have seen, the semiclassical ap-
proximation is exact, the correlation function can be
evaluated by counting semiclassical configurations, or, in
other words, by summing over worldsheet instantons. In
the trivial sector (i.e., when B=0 and the image of the
sphere is a point in the target), the correlation function
is just the classical intersection number D; N D, N D5 of
the three divisors D;, i=1,2,3, associated to the two-
forms, while the nontrivial instanton sectors give an in-
finite series. The final answer looks, schematically, like

(010 4043) = (D1 N Dy N Ds)

+ 2 103 5(1. . 3) QP (115)
B

The notation is as follows: we have introduced the com-

plexified Kdhler parameters

t,»:f w, i=1, ..., by(X), (116)
Si

where w is the complexified Kéhler form of X, and §; is
a basis of H,(X). We also define Q;=e™, and if B
=3n[S;], then QF denotes II;Q%. The coefficient
Iy g(é1, 2, ¢3) “counts” in an appropriate sense the
number of holomorphic maps from the sphere to the
Calabi-Yau manifold that send the point of insertion of
Oy to the divisor D;. It can be shown that the coeffi-

cients o3 6(h1, &2, d3) can be written as

10,3,5(¢17¢2,¢3)=N0,ﬁf ¢1f ¢2f b3
B B B

in terms of invariants N z that encode all the informa-
tion about the three-point functions (115) of the topo-
logical sigma model. The invariants Nz are our first
example of Gromov-Witten invariants. It is convenient to
put all these invariants together in a generating func-
tional called the prepotential:

Fo(t) = 2 No g0°.
B

(117)

(118)
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What happens if we go beyond g=0? For g=1 and
c1(X)=0, the selection rule (114) states that the only
quantity that may lead to a nontrivial answer is the par-
tition function itself, while for g>1 all correlation func-
tions vanish. This corresponds mathematically to the
fact that, for a generic metric on the Riemann surface
3,, there are no holomorphic maps at genus g>1. In
order to circumvent this problem, we have to consider
the topological string theory made out of the topological
sigma model, i.e., we have to couple the theory to two-
dimensional gravity and to consider all possible metrics
on the Riemann surface.

B. Closed topological strings
1. Coupling to gravity

To couple the topological sigma model to gravity, we
use the fact pointed out by Dijkgraaf et al. (1991), Ber-
shadsky et al. (1994), and Witten (1995) that the structure
of the twisted theory is tantalizingly close to that of the
bosonic string. In the bosonic string, there is a nilpotent
BRST operator, Qggrst, and the energy-momentum ten-
sor turns out to be a Qprsy commutator: 7(z)
={QgrsT,P(2)}. In addition, there is a ghost number with
anomaly 3x(3,)=6-6g, which results that Qpggr and
b(z) have ghost number 1 and -1, respectively. This is
precisely the same structure that we found in Eq. (109),
and the composite field b,z plays the role of an anti-
ghost. Therefore, one can just follow the prescription of
coupling to gravity for the bosonic string and define a
genus g=1 free energy as follows:

6g—6
Fy= f AT o) ), (119)
M, \ k=1
where
(b’Mk) = f dzz[bzz(/-l’k)é + bz_,z_,(la“k)i]s (120)
Eé’

and u, are the usual Beltrami differentials. The vacuum
expectation value in Eq. (119) refers to the path integral
over the fields of the topological sigma model, and gives
a differential form on the moduli space of Riemann sur-

faces of genus g, M,, which is then integrated over. Note
that it is precisely when the target space is a Calabi-Yau
threefold that the anomaly (114) is exactly the one of the
usual bosonic string. In that sense, one can say that to-
pological strings whose target is a Calabi-Yau threefold
are critical.

It turns out that the free energies F,, g=1, can be also
evaluated as a sum over instanton sectors, as in the to-
pological sigma model. Therefore they have the struc-
ture

Fy(1) = 2 N, g0”, (121)

B
where N, z “count” in an appropriate sense the number
of curves of genus g and in the two-homology class .
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We will refer to N, 5 as the Gromov-Witten invariant of
the Calabi-Yau X at genus g and in the class 8. They
generalize the Gromov-Witten invariants at genus 0 that
were introduced in Eq. (117).

2. Mathematical description

The Gromov-Witten invariants that we introduced in
Eq. (121) can be defined in a rigorous mathematical way,
and have played an important role in algebraic geometry
and symplectic geometry. We will now give a short sum-
mary of the main mathematical ideas involved in
Gromov-Witten theory.

The coupling of the model to gravity involves the

moduli space of Riemann surfaces M,, as we have just
seen. In order to construct the Gromov-Witten invari-
ants in full generality we also need the moduli space of
possible metrics (or, equivalently, complex structures) on
a Riemann surface with punctures, which is the famous

Deligne-Mumford space M, , of n-pointed stable curves
[the definition of what stable means can be found, for
example, in Harris and Morrison (1998)]. The relevant
moduli space in the theory of topological strings

Mg,n(X ,PB) is a generalization of Mg,n, and depends on a

choice of a two-homology class 8 in X. Very roughly, a
point in ]\;lg,,,(X,,B) can be written as (f,%,.p1,....P,)
and is given by (i) a point in M
with n punctures (2,,p,...,p,), together with a choice
of complex structure on 3., and (ii) a map f:3,—X
which is holomorphic with respect to this choice of com-
plex structure and such that fi[3,]= 8. The set of all such
points forms a good moduli space provided a certain

number of conditions are satisfied [see, for example,
Cox and Katz (1999) and Hori et al. (2003) for a detailed

discussion of these issues]. M ¢.n(X, B) is the basic moduli
space we will need in the theory of topological strings.
Its complex virtual dimension is given by

o> 1.€., @ Riemann surface

(1-g)d=-3)+n+ L f (X)), (122)

which is given by the right-hand side of Eq. (114) plus

3g—3+n, which is the dimension of M ., and takes into
account the extra moduli that come from the coupling to
two-dimensional gravity. We also have two natural maps,

1 Mg,n(X»B) _)X"»

2 My, (X.B) — (123)
The first map is easy to define: given a point

(f,2g:P15---»pp) 1n Mg’n(X,ﬁ), we just compute
(fip1),....f(p,)). The second map essentially sends
(f,2g:P15--->Pn) t0 (24,p1,5....py), €., forgets the infor-
mation about the map and keeps the information about
the punctured curve. We can now formally define the
Gromov-Witten invariant /,, 5 as follows. Let us con-
sider cohomology classes ¢1, . ¢, in H(X). If we pull-
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back their tensor product to H*(Mg)n(X ,B)) via |, we
get a differential form on the moduli space of maps that
we can integrate (as long as there is a well-defined fun-
damental class for this space):

Ig,n,B(¢l’--~’¢n) = f Wl(d’l ® - ® ¢n) (124)
(X.B)

Mgrl

The Gromov-Witten invariant Iy, 5(¢1,...,¢,) vanishes
unless the degree of the form equals the dimension of
the moduli space. Therefore, we have the following con-
straint:

1w 4
EE deg(¢)=(1-g)(d-3)+n+ L f(c(X)).
i=1 <

(125)

Note that Calabi-Yau threefolds play a special role in
the theory, since for those targets the virtual dimension
only depends on the number of punctures, and therefore
the above condition is always satisfied if the forms ¢;
have degree 2. These invariants generalize the invariants
obtained from topological sigma models. In particular,
I3 g are the invariants involved in the evaluation of cor-
relation functions of the topological sigma model with a
Calabi-Yau threefold as its target in Eq. (115). When n
=0, one gets an invariant /, 5 which does not require
any insertions. This is prec1sely the Gromov-Witten in-
variant N, g that appears in Eq. (121). Note that these
invariants are in general rational, due to the orbifold
character of the moduli spaces involved.

By using the Gysin map mr,;, one can reduce any inte-
gral of the form (124) to an integral over the moduli

space of curves Mg The resulting integrals involve two
types of differential forms. The first type of forms are
the Mumford classes ;, i=1,...,n, which are con-
structed as follows. We first define the line bundle £;

over M ¢ to be the line bundle whose fiber over each
curve 2, is the cotangent space of 2, at p; (where p; is
the ith marked point). We then have

lﬁi:Cl(Li)’ i:l,...,n. (126)

The second type of differential forms are the Hodge
classes \;,j=1, ..., g which are defined as follows. On

M, there is a complex vector bundle I of rank g, called
the Hodge bundle, whose fiber at a point X,
H(Z, KE) (i.e., the space of holomorphic sect10ns of
the canomcal 11ne bundle KE of %,). The Hodge classes
are simply the Chern classes ‘of this bundle,

The integrals of the ¢ classes can be obtained by the
results of Witten (1991a) and Kontsevich (1992), while
the integrals involving ¢ and M\ classes (the so-called
Hodge integrals) can be in principle computed by reduc-
ing them to pure ¢ integrals (Faber, 1999). Explicit for-
mulas for some Hodge integrals can be found, for ex-
ample, in Getzler and Pandharipande (1998) and Faber
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and Pandharipande (2000). As we will see, one of the
outcomes of the string/gauge correspondence for Chern-
Simons theory is an explicit formula for a wide class of
Hodge integrals.

3. Integrality properties

The free energies F, of topological string theory,
which contain information about the Gromov-Witten in-
variants of the Calabi-Yau manifold X, turn out to play
an important role in type-IIA string theory: they capture
certain couplings in the four-dimensional A'=2 super-
gravity which is obtained when type-ITA theory is com-
pactified on X. For example, the prepotential F, encodes
information about the effective action for vector multi-
plets up to two derivatives. As shown by Antoniadis et
al. (1994) and Bershadsky et al. (1994), the higher genus
amplitudes F, with g=1 can be also interpreted as cou-
plings in the four-dimensional supergravity theory, in-
volving the curvature and the graviphoton field strength.

This connection between topological strings and usual
type-II superstrings has been a source of insights for
both models, and in particular has indicated a hidden
integrality structure in the Gromov-Witten invariants
N, . In order to make manifest this structure it is useful
to introduce a generating functional for the all-genus
free energy:

Flg,t) = >, F(0g:* ™. (128)
g=0

The parameter g; can be regarded as a formal variable,
but in the context of type-II strings it is nothing but the
string coupling constant. Gopakumar and Vafa (1998b)
showed that the generating functional (128) can be writ-
ten as a generalized index that counts BPS states in the
type-IIA superstring theory compactified on X, and this
leads to the following structure result for F(g,,?):

~ “ 282
Flg,0)=> > > nfgl(z sin%) ’ Q8, (129)

g=0 B d=1 d

where nf;;, known as Gopakumar-Vafa invariants, are in-
teger numbers. Therefore, Gromov-Witten invariants of
closed strings, which are in general rational, can be writ-
ten in terms of integer invariants. In fact, by knowing
the Gromov-Witten invariants we can explicitly compute
the Gopakumar-Vafa invariants from Eq. (129). The
Gopakumar-Vafa invariants can also be computed in
some circumstances directly in terms of the geometry of
embedded curves, and in many cases their computation
only involves elementary algebraic geometry (Katz,
Klemm, and Vafa, 1999). However, a rigorous math-
ematical definition of the invariants is not known yet.
There is also a contribution of constant maps to F, for
g=2 which has not been included in Eq. (129) and is
given by N, . It was shown by Bershadsky et al. (1994)
[see also Getzler and Pandharipande (1998)] that this
contribution can be written as a Hodge integral,
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X(X)
Ngo= (= 1255 f ), g=2, (130)
Mg
where x(X) is the Euler characteristic of the Calabi-Yau

manifold X. The above integral can be evaluated explic-
itly to give [Faber and Pandharipande (2000)]

_ (_ 1)gX(X)|B2gBZg—2|
07 4g(2g-2)(2g-2)!
This can be also deduced from the physical picture of
Gopakumar and Vafa (1998b) and from type-IIA/
heterotic string duality (Marifio and Moore, 1999).
It is easy to show that the Gopakumar-Vafa formula
(129) predicts the following expression for Fy(?):

- |Byonly  2(- Dény
(=2 <2g(2g -2 (2g-2)!

(131)

B
-2 _
Lo ® o n;g) Lis 5,(0P), (132)
and Li; is the polylogarithm of index j defined by
. _—
Lij(x) = > - (133)
n=1

The appearance of the polylogarithm of order 3—2g in
F, was first predicted from type-I1A/heterotic string du-
ality by Marifio and Moore (1999).

C. Open topological strings

One can extend many of the previous results to open
topological strings. The natural starting point is a topo-
logical sigma model in which the worldsheet is now a
Riemann surface 2., , of genus g with A holes. Such mod-
els were analyzed in detail by Witten (1995). The main
issue is of course to specify boundary conditions for the
maps f:3, ,— X. It turns out that the relevant boundary
conditions are Dirichlet and are specified by Lagrangian
submanifolds of the Calabi-Yau manifold X. A Lagrang-
ian submanifold £ is a cycle where the Kédhler form van-
ishes:

J|£:O.

If we denote by C;, i=1, ...,h, the boundaries of Eg’h we
have to pick a Lagrangian submanifold £, and consider
holomorphic maps such that

fic)cCL. (135)

These boundary conditions are a consequence of requir-
ing Q invariance at the boundary. One also has bound-
ary conditions on the Grassmann fields of the topologi-
cal sigma model, which require that y and ¢ at the
boundary C; take values on f*(TL).

We can also couple the theory to Chan-Paton degrees
of freedom on the boundaries, giving rise to a U(N)
gauge symmetry. The model can then be interpreted as a
topological open string theory in the presence of N fo-
pological D-branes wrapping the Lagrangian submani-

(134)
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fold £. The Chan-Paton factors give rise to a boundary
term in the presence of a gauge connection. If A is a
U(N) connection on L, then the path integral has to be
modified by inserting

(136)

ll]Tr P exp( #ﬁqf(A))

where we pullback the connection to C; through the map
f, restricted to the boundary. In contrast to physical D
branes in Calabi-Yau manifolds, which wrap special La-
grangian submanifolds (Becker et al., 1995; Ooguri et al.,
1996), in the topological framework the conditions are
relaxed to just Lagrangian.

Once boundary conditions have been specified, one
can define the free energy of the topological string
theory by summing over topological sectors, similarly to
what we did in the closed case. In order to specify the
topological sector of the map, we have to give two dif-
ferent kinds of data: the boundary part and the bulk
part. For the bulk part, the topological sector is labeled
by relative homology classes, since we require the
boundaries of f:[2, ;] to end on L. Therefore, we will set

flZgnl=B € Hy(X.L). (137)
To specify the topological sector of the boundary, we

assume that b{(£)=1, so that H{(L) is generated by a
nontrivial one-cycle y. We then have

f*[C,-]:w,-y, i:1, ey h, (138)

w; e Z,
in other words, w; is the winding number associated to
the map f restricted to C;. We will collect these integers
into a single A-uple denoted by w=(w,...,wp).

There are various generating functionals that we can
consider, depending on the topological data that we
want to keep fixed. It is very useful to fix g and the
winding numbers, and sum over all bulk classes. This
produces the following generating functional of open
Gromov-Witten invariants:

F, )= F,, 30" (139)
B

In this equation, the sum is over relative homology
classes B e H,(X,L), and the notation is as in Eq. (115).
The quantities F,, , 3 are open Gromov-Witten invari-
ants. They “count” in an appropriate sense the number
of holomorphically embedded Riemann surfaces of ge-
nus g in X with Lagrangian boundary conditions speci-
fied by £, and in the class represented by 8,w. They are
in general rational numbers.

In order to consider all topological sectors, we have to
introduce a matrix V which makes it possible to take
into account different sets of winding numbers w. The
total free energy is defined by
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(V)= EE >y ;l'gsg 20, (OTE VP Tr Vo,

(140)

where g, is the string coupling constant. The factor " is
introduced for convenience, while the factor 4! is a sym-
metry factor which takes into account that the holes are
indistinguishable.

In the case of open topological strings one can also
write the open Gromov-Witten invariants in terms of a
new set of integer invariants that we denote as n,, , 5.
The integrality structure of open Gromov-Witten invari-
ants was derived by Ooguri and Vafa (2000) and by La-
bastida, Marifio, and Vafa (2000) following arguments
similar to those of Gopakumar and Vafa (1998b). Ac-
cording to this structure, the free energy of open topo-
logical string theory in the sector labeled by w can be
written in terms of the integer invariants n,,, 5 as fol-
lows:

Z gfg 2+th g(t) = _E 2 E ( 1)h+gnw/dg/3d
[T wig=0 s ah

do. 282 h
(2 sm%) 11 (2 sin—=>* égs>QdB.

i=1
(141)

Note there is one such identity for each w. In this ex-
pression, the sum is over all integers d which satisfy that
d|w; for all i=1, ..., h. When this is the case, we define
the h-uple w/d whose ith component is w;/d. The ex-
pression (141) can be expanded to give formulas for the
different genera. For example, at g=0 one simply finds

AN
Fpygo0p=(=D"2 d" 30,140 ga,
dlw

(142)

where the integer d has to divide the vector w (in the
sense explained above) and it is understood that My 0.8ld
is zero if B/d is not a relative homology class. Formulas
for higher genera can be easily worked out from Eq.
(141), see Marifio and Vafa (2002) for examples.

When all the winding numbers w; are positive, one
can label w in terms of a vector k. Given an h-uple w
=(wy,...,w,), we define a vector k as follows: the ith
entry of k is the number of wj’s which take the value i.
For example, if w=(1,1,2), the corresponding kis k
=(2,1,0,...). In terms of k, the number of holes and the
total winding number are given by

i J

h=|k|,

(143)

Note that a given & will correspond to many w’s which
differ by a permutation of their entries. In fact there are
h!/1Lk;! h-uples w which give the same vector k (and the
same amplitude). We can then write the total free energy
for positive winding numbers as
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i

F(V)=§E

2g-2+h 1. .

g5 M (Y (V).

o0 [Tkt™ ‘
J

(144)

where Y (V) was introduced in Eq. (70).

We have considered for simplicity the case in which
the boundary conditions are specified by a single La-
grangian submanifold with a single nontrivial one-cycle.
In case there are more one-cycles in the geometry, say L,
providing possible boundary conditions for the open
strings, the above formalism has to be generalized in an
obvious way: one needs to specify L sets of winding
numbers w(®, and the generating functional (144) de-
pends on L different matrices V,, a=1, ..., L. It is use-
ful to write the free energy (144) as

F(V) = X Frlg O TrgV (145)
R

by using Frobenius formula (72). The total partition
function Z=e’ can then be written as

Z(V) =2 Zg(g,.NTrgV (146)
R

by simply expanding Eq. (145) as a formal power series
in V. One has, for example, Fu=Zp, Fy=Z—Z%/2.
and so on. When there are L one-cycles in the target
geometry providing boundary conditions, the total par-
tition function has the structure

L
ZV)= 2 Zgyr, @011 Trg Ve (147)
Rl ..... RL a=1
It turns out that the integer invariants n,, , s appearing

in Eq. (141) are not the most fundamental ones. As we
have seen, if all the winding numbers are positive we can
represent w by a vector E:(kl,kz, ...). As we explained
in Sec. ILF, such a vector can be interpreted as a label
for a conjugacy class C(k) of the symmetric group S,
where [ is the total winding number. The invariant n,, , 5
will be denoted in this case as ng g g. It turns out that this

invariant can be written as (Labastida, Marifio, and
Vafa, 2000)

Nigp= 2 Xr(C(K))Np g 5 (148)
R

where Ng, g are integer numbers labeled by representa-
tions of the symmetric group, i.e., by Young tableaux,
and xg is the character of §; in the representation R. The
above relation is invertible, since by orthonormality of
the characters one has

Nrgp= N g po (149)

D xx(C(K)
- Q

where z; is given in Eq. (73). Note that integrality of
Ng g p implies integrality of ng, 5, but not the other way
around. In that sense, the integer invariants Ng, s are
the most fundamental ones. When there are both posi-
tive and negative winding numbers, we can introduce
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two sets of vectors k!, k@ associated to the positive and
negative winding numbers, respectively, and following
the same steps we can define BPS invariants niu ;0 g g
and NRl’stgsﬁ'

In contrast to conventional Gromov-Witten invari-
ants, a rigorous theory of open Gromov-Witten invari-
ants is not yet available. However, localization tech-
niques make it possible to compute them in some
situations (Graber and Zaslow, 2002; Katz and Liu, 2002;
Li and Song, 2002; Mayr, 2002).

D. Some toric geometry

So far we have considered topological string theory on
general Calabi-Yau threefolds. We will now restrict our-
selves to a particular class of geometries, namely, non-
compact, toric Calabi-Yau threefolds. These are three-
folds that have the structure of a fibration with torus
fibers. In particular, the manifolds we will be interested
in have the structure of a fibration of R by T>XR. It
turns out that the geometry of these threefolds can be
packaged in a two-dimensional graph which encodes the
information about the degeneration locus of the fibra-
tion. We will often call these graphs the toric diagrams of
the corresponding Calabi-Yau manifolds. Instead of re-
lying on general ideas of toric geometry [which can be
found, for example, in Cox and Katz (1999) and in Hori
et al. (2003)] we will use the approach developed by
Leung and Vafa (1998), Aganagic and Vafa (2001), and
specially Aganagic, Klemm, Marifio, and Vafa (2003).

1. C8

In the approach to toric geometry developed by Aga-
nagic, Klemm, Marifio, and Vafa (2003), noncompact
toric Calabi-Yau threefolds are constructed out of an
elementary building block, namely, C3. We will now ex-
hibit its structure as a T2X R fibration over R3, and we
will encode this information in a simple trivalent, planar
graph.

Let z; be complex coordinates on C?, i=1,2,3. We in-
troduce three functions or Hamiltonians,

ra(z) = |Zl|2 - |Z3|2,
rg(z) = |Zz|2 - |Z3|2,

r(z) =Im(z12,23). (150)

These Hamiltonians generate three-flows on C? via the

standard symplectic form w=3,dz;AdZ; on C° and the
Poisson brackets

v=a,f,y. (151)

This gives the fibration structure that we were looking
for: the base of the fibration R® is parametrized by the
Hamiltonians (150), while the fiber T?XR is param-
etrized by the flows associated to the Hamiltonians. In
particular, the T? fiber is generated by the circle actions

avzi = {rvazi}w’
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FIG. 10. The degeneration locus graph of the T? X R fibration
of C? in the base R? parametrized by (TosTgaT).

—i(a+p

e'atiPre(z1,2,,23) — (€921,ePzy,e " Plzy),  (152)

while r, generates the real line R. We call the cycle gen-
erated by r, the (0,1) cycle, and the cycle generated by rg
the (1,0) cycle.

Note that the (0,1) cycle degenerates over the sub-
space of C* described by z;=0=z3, which is the subspace
of the base R? given by ro=r,=0,r=0. Similarly, over
z,=0=2z5 the (1,0) cycle degenerates over the subspace
rg=r,=0 and r,=0. Finally, the one-cycle parametrized
by a+ B degenerates over z;=0=z,, where r,—rg=0=r
and r,=<0.

We will represent the C* geometry by a graph which
encodes the degeneration loci in the R? base. In fact, it is
useful to have a planar graph by taking r,=0 and draw-
ing the lines in the r,-rg plane. The degeneration loci
will then be straight lines described by the equation
pra+qrg=const. Over this line the (-¢,p) cycle of the T2
degenerates. Therefore we correlate the degenerating
cycles unambiguously with the lines in the graph [up to
(¢,p)—(—q,—p)]. This yields the graph in Fig. 10, drawn
in the r,=0 plane.

There is a symmetry in the C? geometry that makes it
possible to represent it by different toric graphs. These
graphs are characterized by three-vectors v; that are ob-
tained from the ones in Fig. 10 by an SI(2,Z) transfor-
mation. The vectors have to satisfy

EVI':O.

Y

(153)

The SI(2,Z) symmetry is inherited from the SI(2,Z)
symmetry of T? that appeared in Sec. II.C in a very dif-
ferent context. In the above discussion the generators
H{(T?) have been chosen to be the one-cycles associated
with r, and rg, but there are other choices that differ
from this one by an SI(2,Z) transformation on T?. For
example, we can choose r, to generate a (p,q) one-cycle
and r a (t,s) one-cycle, provided that ps=gt=1. These
different choices give different trivalent graphs. As we
will see in the examples below, the construction of gen-
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eral toric geometries requires in fact these more general
graphs representing C>.

2. More general geometries

The noncompact, toric Calabi-Yau threefolds that we
study can be described as symplectic quotients. Let us
consider the complex linear space CV*3, described by
N+3 coordinates zy, ..., Zy,3, and let us introduce N
real equations of the form

N+3

pa= 2 OUlzfP=ta, A=1,.., N.
j=1

(154)

In this equation, Q/, are integer numbers satisfying

N+3

> 0, =0.

j=1

(155)

Furthermore, we consider the action of the group Gy
=U(1)N on the z’s where the Ath U(1) acts on zj by

4 — expliQhay)z,;.

The space defined by Egs. (154), quotiented by the
group action Gy,

N
X= mlﬂ;,l(tA)/GN, (156)
A=

turns out to be a Calabi-Yau manifold [it can be seen
that the condition (155) is equivalent to the Calabi-Yau
condition]. The N parameters ¢, are Kédhler moduli of
the Calabi-Yau manifold. This mathematical description
of X appears in the study of the two-dimensional linear
sigma model with N=(2,2) supersymmetry (Witten,
1993). The theory has N+3 chiral fields, whose lowest
components are the z’s and are charged under N vector
multiplets with charges QQ. Equations (154) are the
D-term equations, and after dividing by the U(1)" gauge
group we obtain the Higgs branch of the theory.

The Calabi-Yau manifold X defined in Eq. (156) can
be described by C? geometries glued together in an ap-
propriate way. Since each of these Cs is represented by
the trivalent vertex depicted in Fig. 10, we will be able to
encode the geometry of Eq. (156) into a trivalent graph.
In order to provide this description, we must first find a
decomposition of the set of all coordinates {z; ;23 into
triplets U,=(z; ,z; ,z;,) that correspond to the decom-

position of X into C3? patches. We pick one of the
patches and we associate to it two Hamiltonians r,,rg as
we did for C? before. These two coordinates will be glo-
bal coordinates in the base R3, therefore they will gen-
erate a globally defined T? fiber. The third coordinate in
the base is ryzlm(Hj]\i +%z;), which is manifestly gauge in-
variant and, moreover, patch by patch, can be identified
with the coordinate used in the C* example above.
Equation (154) can then be used to find the action of 7, g
on the other patches.
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We will now exemplify this procedure with two impor-
tant examples: the resolved conifold and the local P2
geometry.

3. The resolved conifold

The simplest Calabi-Yau manifold is probably the so-
called resolved conifold, which is the total space of the
bundle O(-1) ® O(~1) — P!. This manifold has a descrip-
tion of the form (156), with N=1. There is only one con-
straint given by

|24 + |24® = 22" = |23 =1 (157)
and the U(1) group acts as
21, 22, 23, 24 — ei“zl, e_ia22, e_iaZ3, ei”‘z4. (158)

Note that, for z,=z5=0, Eq. (157) describes a P! whose
area is proportional to . Therefore, (z;,z4) can be taken
as homogeneous coordinates of the P! which is the basis
of the fibration, while z,,z3 can be regarded as coordi-
nates for the fibers.

Let us now give a description in terms of C? patches
glued together. The first patch will be defined by z,# 0.
Using Eq. (157) we can solve for the modulus of z, in
terms of the other coordinates, and using the U(1) action
we can fix its phase. Therefore, the patch will be param-
etrized by Us=(z1,22,23). The Hamiltonians will be in
this case

ra(z) = |22|2 - |Zl|2>

ra(2) =z3|* = |21, (159)
which generate the actions
eiw“+iﬁrﬁi(11,22,13) N (e_i(a+ﬁ)21,€ia22,€i523). (160)

This patch will be represented by the same graph that
we found for C3. The other patch will be defined by z;
#0, therefore we can write it as U;=(z4,2,,23). How-
ever, in this patch z; is no longer a natural coordinate,
but we can use Eq. (157) to rewrite the Hamiltonians as

rof2) = |24 = |23 - 1,

rp(2) = |24’ = |z ~ 1, (161)
generating the action
6iwa+iﬁrﬁi(24,22,13) N (ei(a+B)Z4,6_iBZZ,e_iaz3). (162)

The degeneration loci in this patch are the following: (i)
74=0=z,, corresponding to the line rg=-r where a
(-1,0) cycle degenerates; (ii) z4,=0=2z3, corresponding to
the line r,=—t, and with a (0,1) cycle degenerates; (iii)
finally, z,=0=z3, where r,~rz=0, and a cycle (1,1) de-
generates. This patch is identical to the first one, and
they are joined together through the common edge
where z,=0=z3. The full construction is represented in
Fig. 11. Note that the common edge of the graphs rep-
resents the P! of the resolved conifold: along this edge,
one of the S's of T? has degenerated, while the other
only degenerates at the end points. An S! fibration of an
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FIG. 11. The resolved conifold O(—-1) ® O(-1)— P! and asso-
ciated graph. This manifold is made out of two C? patches
glued through a common edge.

interval which degenerates at its end points is nothing
but a two-sphere. The length of the edge is ¢, the Kdhler
parameter associated to the PL.

4. O(-3)— 12

Let us now consider a more complicated example,
namely, the noncompact Calabi-Yau manifold O(-3)
— P2, This is the total space of P> together with its anti-
canonical bundle, and it is often called local P2. We can
describe it again as in Eq. (156) with N=1. There are
four complex variables, zg, ..., z3, and the constraint
(154) now reads

|21 + |22 + |25 = 3|zo* = . (163)
The U(1) action on the z’s is
20:21,22:23 — € 197,621,257 5. (164)

Note that z;,; describe the basis P?, while z, param-
etrizes the complex direction of the fiber.

Let us now give a description in terms of glued C?
patches. There are three patches U; defined by z;# 0, for
i=1,2,3, since at least one of these three coordinates
must be nonzero in X. All of these three patches look
like C3. For example, for z3# 0, we can “solve” again for
Z5 in terms of the other three unconstrained coordinates
which then parametrize C* Us=(z(,z;,2). A similar
statement holds for the other two patches. Let us now
construct the corresponding degeneration graph. In the
Us=(z9,21,22) patch we take as our Hamiltonians

2

’”a=|21|2—|20

k]

(165)

The graph of the degenerate fibers in the r,-rgz plane is
the same as in the C* example, see Fig. 10. The third
direction in the base r, is now given by the gauge invari-
ant product r,=Im(zz2,23). The same two Hamilto-

= |22 = |zl
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FIG. 12. The O(-3)— P? graph. This manifold is built out of
three C? patches.

nians r,; generate the action in the U,=(z9,21,23)
patch, and we use the constraint (163) to rewrite them as
follows: since both z;, and z; are coordinates of this
patch r, does not change. On the other hand, rz must be
rewritten since z, is not a natural coordinate here. We
then find

2

I = |Zl|2_ |Z0

>

rg=1+2|zo|* = |21 - |23/, (166)

hence
et BB (20,21,25) — (! 2Pzg, e Pzy 07 Pz).

We see from the above that the fibers degenerate over
three lines: (i) r,+rg=t, corresponding to z,=0=z3, and
where a (-1,1) cycle degenerates; (ii) there is a line over
which a (-1,2) cycle degenerates where z;=0=z3,2r,
+rg=t; and finally, (iii) there is a line over which r,=0,
and a (0,1) cycle degenerates. The U; patch is similar,
and we end up with the graph for O(-3) — P> shown in
Fig. 12.

5. Lagrangian submanifolds

In order to consider open string amplitudes in the
above Calabi-Yau geometries, we have to construct
Lagrangian submanifolds providing boundary condi-
tions, as explained in Sec. IV.C. Let us start by consid-
ering the C* geometry discussed above. In this case, one
can easily construct Lagrangian submanifolds following
the work of Harvey and Lawson (1982). In terms of the
Hamiltonians in Eq. (150), we have three types:

Ly ry=0, rg=r, r,=0,
Lyt ro=ry 1rp=0, r,=0,
L3: ra:rﬂ:r3’ r‘y>09 (167)

where r;,i=1,2,3, are constants. It is not difficult to
check that the above submanifolds are indeed Lagrang-
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ian (they turn out to be special Lagrangian as well). In
terms of the graph description we developed above, they
correspond to points in the edges of the planar graph
spanned by (r,,rg), and they project to semi-infinite
straight lines on the basis of the fibration R® param-
etrized by r,=0. Since they are located at the edges,
where one of the circles of the fibration degenerates,
they have the topology of C XS

It is easy to generalize the construction to other toric
geometries, such as the resolved conifold or local P2
Lagrangian submanifolds with the topology of C X S! are
given by points on the edges of the planar graphs. Such
Lagrangian submanifolds were first considered in the
context of open topological string theory by Aganagic
and Vafa (2000), and further studied by Aganagic,
Klemm, and Vafa (2002).

E. Examples of closed string amplitudes

Gromov-Witten invariants of Calabi-Yau threefolds
can be computed in a variety of ways. A powerful tech-
nique which can be made mathematically rigorous is the
localization technique pioneered by Kontsevich (1995).
For compact Calabi-Yau manifolds, only N,z have
been computed rigorously. For noncompact, toric
Calabi-Yau manifolds one can compute N,z for arbi-
trary genus using these localization techniques. We will
now present some results for the topological string am-
plitudes F, of the geometries we described above.

The resolved conifold O(-1)® O(-1)—P! has one
single Kihler parameter ¢ corresponding to the P! in the
base, and its total free energy is given by

©

1
F(gsa[) = E

I — T
2 J2 sindg P2 (168)

where Q=e"". We see that the only nonzero Gopakumar-
Vafa invariant is n)=1. On the other hand, this model
already has an infinite number of nontrivial N, g invari-
ants, which can be obtained by expanding the above ex-
pression in powers of g,. The above closed expression
was obtained in Gromov-Witten theory by Faber and
Pandharipande (2000).

The space O(-3)— P? has also one single Kéhler pa-
rameter, corresponding to the hyperplane class of 2. By
using the localization techniques of Kontsevich, adapted
to the noncompact case, one finds (Chiang et al., 1999;
Klemm and Zaslow, 2001)

K 4507 2440° 123330
F)=-g+30-——+—g -4

+...,

t O 3Q% 230Q° 34370
Fl([)z—_+_— - + +...’
12 4 8 3 16
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xX) 0 30° 5140°
=+ —+—+

F(t) =
20="520 30" 20 s T

(169)

and so on. In Eq. (169), ¢ is the Kéhler class of the mani-
fold, Q=e", and y(X)=2 is the Euler characteristic of
the local P2, The first term in F, is proportional to the
intersection number H3 of the hyperplane class, while
the first term in F; is proportional to the intersection
number between H and c¢,(X). The first term in F, is the
contribution of constant maps.

As explained above, we can express the closed string
amplitudes in terms of Gopakumar-Vafa invariants. Let
us introduce a generating functional for integer invari-
ants as follows:

f(z,0) = 2 n$z8QF, (170)
8.8

where z is a formal parameter. For local P? we find

f(z,0)=30-60*+(27-102)Q° - (192-231 7
+102z2-1529)0% + 0O(Q). (171)

It should be mentioned that there is of course a very
powerful method to compute the amplitude F,, namely,
mirror symmetry. In the mirror symmetric computation,
the F, amplitudes are closely related to the variation of
complex structures on the Calabi-Yau manifold
(Kodaira-Spencer theory) and can be computed through
the holomorphic anomaly equations of Bershadsky et al.
(1993, 1994). Gromov-Witten invariants of noncompact,
toric Calabi-Yau threefolds have been computed with
mirror symmetry by Chiang et al. (1999), Katz, Klemm,
and Vafa (1999), and Klemm and Zaslow (2001).

V. CHERN-SIMONS THEORY AS A STRING THEORY

In this section we show that the 't Hooft program to
interpret the 1/N expansion of a gauge theory in terms
of a string theory can be realized in detail in the case of
Chern-Simons theory on the three-sphere.

A. Topological open strings on TM

In order to give a string theory interpretation of
Chern-Simons theory on S°, a good starting point is to
give an open string interpretation of the 1/N expansion
of the free energy (100). This was done by Witten (1995)
in a remarkable paper, and we will follow his analysis
very closely.

Let M be an arbitrary (real) three-dimensional mani-
fold, and consider the six-dimensional space given by M
together by its cotangent bundle 7°M. This space is a
symplectic manifold. If we pick local coordinates g, on
M, a=123, and local coordinates for the fiber p,, the
symplectic form can be written as
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3
J=2, dp,ndgq,.

a=1

(172)

One can find a complex structure on 7°M such that J is
a Kihler form, so 7'M can be regarded as a Kihler
manifold. Since the curvature of the cotangent bundle
cancels exactly the curvature of M, it is Ricci flat, there-
fore it is a Calabi-Yau manifold. In fact, 7°S> is a well-
known Calabi-Yau manifold, namely, the deformed coni-
fold. The deformed conifold is usually described by the
algebraic equation
4
2 n=a (173)
u=1
To see that this describes 7°S?, let us write 7,=x,+iv,,
where x,,v,, are real coordinates, and let us take a to be

po
real. We find the two equations

4
2 2

21 (x,—vi)=a,

o

4
E x,v,=0.
pn=1

The first equation indicates that the locus

v,=0, u=1,...4, describes a sphere §° of radius R*=a,

and the second equation shows that the v, are coordi-
nates for the cotangent space. Therefore, Eq. (173) is
nothing but 7°S3.

It is obvious that M is a Lagrangian submanifold in
T"M, since J vanishes along p,=const. Since we have a
Calabi-Yau manifold together with a Lagrangian sub-
manifold in it, we can consider a system of N topological
D-branes wrapping M, thus providing Dirichlet bound-
ary conditions for topological open strings on 7°M. Our
goal now is to obtain a spacetime action describing the
dynamics of these topological D-branes, and as we shall
see this action is nothing but Chern-Simons theory on
M. This will prove the sought-for realization of Chern-
Simons theory in terms of open strings.

(174)

B. Open string field theory

In order to obtain the spacetime description of open
strings on T°M we use string field theory. We briefly
summarize here some basic ingredients of the cubic
string field theory introduced by Witten (1986) to de-
scribe the spacetime dynamics of open bosonic strings,
since we use the same model to describe topological
strings.

In bosonic open string field theory, we consider the
worldsheet of the string to be an infinite strip param-
etrized by a spatial coordinate 0<o=<m and a time co-
ordinate —o<7<w, and we pick the flat metric ds’
=do’+dr. We then consider maps x:I/—X, with [
=[0,7] and X the target of the string. The string field is
a functional of open string configurations W(x(o)), with
ghost number 1 (although we will not indicate it explic-
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itly, this string functional depends as well on the ghost
fields). Witten (1986) defines two operations on the
space of string functionals. The first one is the integra-
tion, which is defined formally by folding the string
around its midpoint and gluing the two halves:

J‘I’=JDJ€(0) IT  &l(0) —x(7 - 0)]¥[x(0)].

O<o=ml2
(175)

The integration has ghost number -3, which is the ghost
number of the vacuum. This corresponds to the usual
fact that in open string theory on the disk one has to
soak up three zero modes. One also defines an associa-
tive, noncommutative star product * of string functionals
through the following equation:

N N
f\m*---*%:fﬂ@xxo)ﬂ [ dxi(o)
i=1

i=1 O<o=m/2
—Xjpi(m = )]V [x(0)], (176)

where xp, 1 =x;. The star product simply glues the string
together by folding them around their midpoints, and
gluing the first half of one with the second half of the
following [see, for example, the review of Taylor and
Zwiebach (2003) for more details], and it does not
change the ghost number. In terms of these geometric
operations, the string field action is given by

1 f (1 1 )
S=— W * OprstV + U T x V|, (177)

gs 2 3
Note that the integrand has ghost number 3, while the
integration has ghost number -3, so that the action (177)
has ghost number 0. If we add Chan-Paton factors, the
string field is promoted to a U(N) matrix of string fields,
and the integration in Eq. (177) includes a trace Tr. The
action (177) contains all the information on the space-
time dynamics of open bosonic strings, with or without
D-branes. In particular, one can derive the Born-Infeld
action describing the dynamics of D-branes from the
above action (Taylor, 2000).

We will not need all the technology of string field
theory in order to understand open topological strings.
The only piece of relevant information is the following:
the string functional is a function of the zero mode of
the string (which corresponds to the position of the
string midpoint), and of the higher oscillators. If we de-
couple all oscillators, the string functional becomes an
ordinary function of spacetime, the x product becomes
the usual product of functions, and the integral is the
usual integration of functions. The decoupling of oscilla-
tors is in fact the pointlike limit of string theory. As we
will see, this is the relevant limit for topological open
strings on T"M.

C. Chern-Simons theory as an open string theory

We can now exploit again the analogy between open
topological strings and the open bosonic string that we
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used to define the coupling of topological sigma models
to gravity (i.e., that both have a nilpotent BRST opera-
tor and an energy-momentum tensor that is Qgrgt €X-
act). Since both theories have a similar structure, the
spacetime dynamics of topological D branes in T°M is
governed as well by Eq. (177), where Qggrgr 1S given in
this case by the topological charge defined in Eq. (104),
and where the star product and the integration opera-
tion are given by the bosonic string. The construction of
the cubic string field theory also requires the existence
of a ghost number symmetry, which is also present in the
topological sigma model, as discussed in Sec. IV.A. It is
convenient to consider the ghost number charge shifted
by —d/2 with respect to the assignment presented in Sec.
IV.A (here, d is the dimension of the target). The shifted
ghost number is actually the axial charge of the original
N=2 superconformal theory in the Ramond sector.
When d=3 this corresponds to the normalization used
by Witten (1986) in which the ghost vacuum of the bc
system is assigned the ghost number —1/2.

In order to provide the string field theory description
of open topological strings on 7°M, we have to deter-
mine the precise content of the string field, the * alge-
bra, and the integration of string functionals for this par-
ticular model. As in the conventional string field theory
of the bosonic string, we have to consider the Hamil-
tonian description of topological open strings. We then
take 3 to be an infinite strip and consider maps x:/
— T"M, with I=[0, ], such that 9l is mapped to M. The
Grassmann field ¢, being a one-form on 3, can be split
as Y=y do+dr, but due to the self-duality condition
only one of them, say #,, is independent. The canonical
commutation relations can be extracted from the La-
grangian (102):

dxi / ’ _ E ij ’
{E(U)’xj(a)} =— tG’5(0—cr),

1
{¢(0), x(0")} = ;5(0— a’). (178)

The Hilbert space is made out of functionals ¥[(o),...],
where x is a map from the interval as we have just de-
scribed, and the ... refer to the Grassmann fields (which
represent here the role of ghost fields). The Hamiltonian
is obtained, as usual in string theory, by

LO = J d(TToo. (179)
0
The bosonic piece of Ty is just
(e avar) 10
Ndodo drdr)’

and using the canonical commutation relations we find
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A T - dx! dx
LO:f da(——G’f— (G, x). (181)

. (7 ad(edo) | ide do

We then see that string functionals with dx'/do # 0 can-
not contribute: since the physics is t independent, we can
take t—oo, where they get infinitely massive and de-
couple from the spectrum. Therefore, the map x:/
— T"M has to be constant and in particular it must be a
point in M. A similar analysis holds for the Grassmann
fields as well, and the conclusion is that the string func-
tionals are functions of the commuting and anticommut-
ing zero modes. Denoting them by ¢?, x“, the string func-
tional reduces to

3
T=A0g)+> fl---;/pAg’;?._ap. (182)
p=1

These functionals can be interpreted as differential
forms on M. A differential form of degree p will have
ghost number p, or, equivalently, shifted ghost number
charge p-3/2. If we have N D-branes wrapping M, the
above differential forms take values in the adjoint rep-
resentation of the gauge group [i.e., they are valued in
the U(N) Lie algebra]. On these functionals, the Q sym-
metry acts as the exterior differential, and {Q,V}=0 if
the differential forms are closed. Of course in string field
theory we do not restrict ourselves to functionals in the
Q cohomology. We compute rather the string field action
for arbitrary functionals, and then the condition of being
in the @ cohomology arises as a linearized equation of
motion.

We are now ready to write the string field action for
topological open strings on 7°M with Lagrangian
boundary conditions specified by M. We have seen that
the relevant string functionals are of the form (182).
Since in string field theory the string field has ghost
number 1 [equivalently, U(1) charge —1/2], we see that

V= x"A,(q), (183)
where A,(g) is a Hermitian matrix. In other words, the
string field is just a U(N) gauge connection on M. Since
the string field only depends on commuting and anti-
commuting zero modes, the integration of string func-
tionals becomes ordinary integration of forms on M, and
the star product becomes the usual wedge products of
forms. We then have the following dictionary:

VY —A, Qprsr—d,

een [ -]
M

The string field action (177) is then the usual Chern-
Simons action for A, and by comparing with Eq. (1) we
have the following relation between the string coupling
constant and the Chern-Simons coupling:

(184)

Rev. Mod. Phys., Vol. 77, No. 2, April 2005

_277'
T k+N’

8s (185)

after taking into account the shift k— k+N.

This result is certainly remarkable. In the usual open
bosonic string, the string field involves an infinite tower
of string excitations. For the open topological string, the
topological character of the model implies that all exci-
tations decouple, except for the lowest-lying one. In
other words, the usual reduction to a finite number of
degrees of freedom that occurs in topological theories
downsizes the string field to a single excitation. In physi-
cal terms, what is happening is that string theory reduces
in this context to its pointlike limit, since the only rel-
evant degree of freedom of the string is its zero mode,
which describes the motion of a pointlike particle. As
expected, the dynamics reduces then to a usual quantum
field theory.

However, as explained by Witten (1995), since open
topological string theory is a theory that describes open
string instantons with Lagrangian boundary conditions,
we should expect to have corrections to the above result
due to nontrivial worldsheet instantons. It is easy to see
that instantons x:3 — 7°M such that x(d%) C M are nec-
essarily constant. Note first that J=dp, where

3
p= > Pudqy,

a=1

(186)

and p, vanishes on M. Since x is a holomorphic map, the
instanton action equals the topological piece —[sx"(J).
This can be evaluated to be

fx*(f)=f x'(p) =0,
3 s

since x(J%) C M. Holomorphic maps with the above
boundary conditions are necessarily constant, and there
are no worldsheet instantons in the geometry. Therefore,
there are no instanton corrections to the Chern-Simons
action that we derived above.

One of the immediate consequences of the Chern-
Simons spacetime description of open topological strings
on T°M is that the coefficient F,; in the perturbative
expansion (84) of Chern-Simons theory on M is given by
the free energy of the topological string theory at genus
g and /4 holes. What is then the interpretation of the fat
graph associated to F,; from the point of view of the
topological string theory on 7°M? Even though there
are no “honest” worldsheet instantons in this geometry,
there are degenerate instantons of zero area in which
the Riemann surface degenerates to a graph in M. It is
well known that the moduli space of open Riemann sur-
faces contains this type of configurations. In the case at
hand, the fat graphs appearing in the 1/N expansion of
Chern-Simons theory on M are precisely the graphs that
describe the degenerate instantons of the geometry. This
model gives then a very concrete realization of the string
picture of the 1/N expansion discussed in Sec. III.

(187)
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D. More general Calabi-Yau manifolds

In the previous section we have presented an explicit
description of open topological strings on 7" M, follow-
ing Witten (1995). What happens if the target is a more
general Calabi-Yau manifold?

Let us consider a Calabi-Yau manifold X together
with some Lagrangian submanifolds M;CX, with
N; D-branes wrapped over M,. In this case the spacetime
description of topological open strings will have two
contributions. First of all, we have the contributions of
degenerate holomorphic curves. These are captured by
Chern-Simons theories on the manifolds M;, following
the same mechanism that we described for 7°M. How-
ever, as pointed out by Witten (1995), for a general
Calabi-Yau manifold X we may also have honest open
string instantons contributing to the spacetime descrip-
tion, which will be embedded holomorphic Riemann
surfaces with boundaries ending on the Lagrangian sub-
manifolds M;. An open string instanton S will intersect
the M; along one-dimensional curves C;(83), which are in
general knots inside M;. We know from Eq. (136) that
the boundary of such an instanton will give a Wilson
loop insertion in the spacetime action of the form
I;TrU K,(8) where U K,(8) is the holonomy of the Chern-
Simons connection on M; along the knot C;(8). In addi-
tion, this instanton will be weighted by its area (which
corresponds to the closed string background). We can
then take into account the contributions of all instantons
by including the corresponding Chern-Simons theories
Scs(A;), which account for the degenerate instantons,
coupled in an appropriate way with the “honest” holo-
morphic instantons. The spacetime action will then have
the form

S(A) =2 Scs(A) + 2 e 1T TrU ), (188)
i B i

where w is the complexified Kidhler form and the second
sum is over honest holomorphic instantons B. Notice
that all the Chern-Simons theories Scg(A4;) have the
same coupling constant, equal to the string coupling con-
stant. More precisely,

21
ki+Ni

=g (189)
In the action (188), the honest holomorphic instantons
are put in “by hand” and in principle one has to solve a
nontrivial enumerative problem to find them. Once they
are included in the action, the path integral over the
Chern-Simons connections will join degenerate instan-
tons to these honest worldsheet instantons: if we have a
honest worldsheet instanton ending on a knot £, it will
give rise to a Wilson loop operator in Eq. (188), and the
1/N evaluation of the vacuum expectation value will
generate all possible fat graphs I" joined to the knot K,
producing in this way partially degenerate worldsheet
instantons (the fat graphs are interpreted, as before, as
degenerate instantons). An example of this situation is
depicted in Fig. 13. This more complicated scenario was
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FIG. 13. A partially degenerate worldsheet instanton of genus
g=0 and with #=3 ending on an unknot. The instanton is made
out of an honest holomorphic disk and the degenerate piece,
which is a fat graph.

explored by Aganagic and Vafa (2001), Diaconescu, Flo-
rea, and Grassi (2003a, 2003b), and Aganagic, Marifio,
and Vafa (2004). We will give examples of Eq. (188) in
Sec. VL.

E. The conifold transition and the large N duality

We know now that Chern-Simons theory on S° is a
topological open string theory on 7°S?. The next step is
to see if there is a closed string theory leading to the
resummation (101). As shown by Gopakumar and Vafa
(1999) in an important paper the answer is yes.

One way to motivate their result is as follows: since
the holes of the Riemann surfaces are due to the pres-
ence of D-branes, “filling the holes” to get the closed
strings means getting rid of the D-branes. But this is
precisely what happens in another large N duality,
namely, the AdS-CFT correspondence (Maldacena,
1998), where type-1IB theory in flat space in the pres-
ence of D-branes is conjectured to be equivalent to type-
IIB theory in AdSsXx$> with no D-branes, and where
the radius of the S° is related to the number of
D-branes. The reason for that is that, at large N, the
presence of the D-branes can be traded by a deforma-
tion of the background geometry. In other words, we can
make the branes disappear if we change the background
geometry at the same time: as emphasized by Gopaku-
mar and Vafa, large N dualities relating open and closed
strings should be associated to transitions in the geom-
etry. This reasoning suggests to look for a transition in-
volving the background 7°S°. It turns out that such a
transition is well known in the physical and the math-
ematical literature, and it is called the conifold transition
[see, for example, Candelas and de la Ossa (1990)]. Let
us explain this in detail.

The algebraic equation describing the deformed coni-
fold is Eq. (173). It is useful to rewrite this equation as
follows. Introduce the following complex coordinates:

x=m+imp, v=in—iny,

u=i(pz+im), y=m—in. (190)

The deformed conifold can now be written as
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FIG. 14. The deformed conifold T"S3, regarded as a T2X R
fibration of R3. Two of the directions represent the axes of the
two cylinders, and the third direction represents the real axis
of the z plane. The dashed line represents the S cycle.

(191)

Notice that in this parametrization the geometry has a
T? fibration,

xXy=uv+a.

x,y,u,v — xe ' ye' ue P yelP, (192)

where the a and B actions above can be taken to gener-
ate the (0,1) and (1,0) cycles of the T?, respectively. The
T? fiber can degenerate to S' by collapsing one of its
one-cycles. In Eq. (192), for example, the U(1), action
fixes x=0=y and therefore fails to generate a circle
there. In the total space, the locus where this happens,
i.e., the x=0=y subspace of X, is a cylinder uv=-a.
Similarly, the locus where the other circle collapses, u
=0=v, gives another cylinder xy=a. Therefore, we can
regard the whole geometry as a T?> X R fibration over R*:
if we define z=uv, the R? of the base is given by Re(z)
and the axes of the two cylinders. The fiber is given by

o0 Y

X
t
t
t
t
t
t
t
t
t
t
t
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the circles of the two cylinders, and by Im(z). The U(1),
fibration degenerates at z=-a, while the U(1)4 fibration
degenerates at z=0. This is the same kind of fibration
structure that we found when discussing the geometries
of the form (156).

As presented in Sec. IV, it is very useful to represent
the above geometry by depicting the singular loci of the
torus action in the base R3. The loci where the cycles of
the torus collapse, which are cylinders, project to lines in
the base space. This is shown in Fig. 14. Note that the S*
of the deformed conifold geometry is realized in this
picture as a T? fibration over an interval /. This interval
is represented in Fig. 14 by a dashed line in the z plane
between z=-a [where the (0,1) cycle collapses] and z
=0 [where the collapsing cycle is the (1,0)]. The geomet-
ric description of 83 obtained this way is in fact equiva-
lent to the description given in Sec. II in terms of a
Heegaard splitting along solid tori. To see this, let us cut
the three-sphere in two pieces by cutting the interval I in
two smaller intervals /; , through its midpoint. Each of
the halves is a fibration of T?=S' X 8! over an interval I,
where Si denotes the collapsing cycle. Of course the
nontrivial part of the fibration refers to the collapsing
cycle, so we can see each of the halves as S' times the
fibration of the collapsing cycle over /;, which is nothing
but a disk. In other words, we are constructing the three-
sphere by gluing two manifolds of the form S'XD.
These are of course two solid tori, which are glued after
exchanging the two cycles, i.e., after performing an §
transformation. This is shown in Fig. 15.

The conifold singularity appears when a=0 in Eq.
(191) and the three-sphere collapses. This is described by

(193)

In algebraic geometry, singularities can be avoided in
two ways, in general. The first way is to deform the com-
plex geometry, and in our case this leads to the de-

Xy =uv.

O

FIG. 15. On the left-hand side, we represent S* as a T? fibration over the interval. One of the circles of the torus degenerates over
one end point, while the other circle degenerates over the opposite end point. Each of the degenerating circles fibers over half the
interval to produce a disk D, and on the right-hand side the three-sphere is equivalently realized as two S' X D glued through an

S transformation.
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3
S

FIG. 16. A pictorial representation of the conifold transition. The deformed conifold (left) with an 3, the conifold singularity

(center), and the resolved conifold (right).

formed conifold (173). The other way is to resolve the
singularity, for example, by performing a blow up, and
this leads to the resolved conifold geometry [see, for
example, Candelas and de la Ossa (1990)]. The resolu-
tion of the geometry can be explained as follows. Equa-
tion (193) can be solved by

X=\v, u=»\y, (194)
where \ is an inhomogeneous coordinate in P'. Equa-
tion (194) can be interpreted as defining the bundle
O(-1)® O(-1)—P'. To make contact with the toric de-
scription given in Eq. (157), we put x=zz3, y=2524, U
=7129, and v=z374. We then see that N\=z,/z, is the in-
homogenous coordinate for the P! described in Eq. (157)
by |z1>+|z4/*=t. We therefore have a conifold transition
in which the three-sphere of the deformed conifold
shrinks to zero size as a goes to zero, and then a two-
sphere of size t grows giving the resolved conifold. In
terms of the coordinates zi,...,24, the T? action (192)
becomes

i(a+pB)

21,22,23,24 — € 71,€"25,e"P75,24. (195)

This T? fibration is precisely Eq. (160). Note that the
singular loci of fibration of the resolved conifold which is
encoded in the trivalent graph of Fig. 11 is inherited
from the singular loci depicted in Fig. 14. The transition
from the deformed to the resolved conifold can then be
represented pictorially as in Fig. 16.

Now we are ready to state the conjecture of Gopaku-
mar and Vafa (1999). We know that Chern-Simons
theory is an open topological string on the deformed
conifold geometry with N topological D-branes wrap-
ping the three-sphere. The conjecture is that at large N
the D-branes induce a conifold transition in the back-
ground geometry, so that we end up with the resolved
conifold and no D-branes. However, in the absence of
D-branes that enforce boundary conditions, we have a
theory of closed topological strings only. Therefore,
Chern-Simons theory on S* is equivalent to closed topo-
logical string theory on the resolved conifold. As we shall
see, the relation between the parameters is the follow-
ing: the closed string coupling constant is the open string
coupling constant, or equivalently the Chern-Simons ef-
fective coupling constant as in Eq. (91). The size of the
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P! in the resolved geometry is given by the 't Hooft cou-
pling of Chern-Simons theory,

t=ig,N=xN. (196)

This conjecture has been proved by embedding the
duality in type-II superstring theory (Vafa, 2001a) and
lifting it to M theory (Acharya, 2000; Atiyah, Mal-
dacena, and Vafa, 2001). There is also a worldsheet deri-
vation of the duality due to Ooguri and Vafa (2002). In
the next subsection, we will give evidence for the con-
jecture at the level of the free energy.

F. A test of the duality: The partition function

A nontrivial test of the duality advocated by Gopaku-
mar and Vafa is to verify that the free energy of U(N)
Chern-Simons theory on the three-sphere agrees with
the free energy of closed topological strings on the re-
solved conifold. So far, what we have uncovered is the
open string expansion of Chern-Simons theory, which is
(order by order in x) determined by the perturbative
expansion. In order to find a closed string interpretation,
we have to sum over the holes, as in Eq. (100). The
‘t Hooft parameter ¢ is given by Eq. (196) and

(0 =2 P, (-0 (197)
h=1

Let us first focus on g=2. To perform the sum explicitly,

we write again the ¢ function as ((2g-2+2p)
=3 n?2672 and use the binomial series
1 - g+n-1 )
= Zn 198
(1-2)1 g) ( n (198)
to obtain
—1)8|ByB,_
Fg(t) _ ( ) | 2gP2¢g 2|
28(2g-2)(2g - 2)!
B , 1
2 (199)

+ s
28(2g-2),5, (~ it +2mn)% 2

where ' means that we omit n=0. Now we notice that, if
we write
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= FiP(1)g2 2,
g=0
then for g=2, F;p(t):Bzg/Zg(Zg—Z)(—it)zg‘z, which is
precisely the n=0 term missing in Eq. (199). We then
define

(200)

Fy(t) = Fy(t) + F3P(1). (201)
Finally, since
1 2
— —7” (202)

neZn+Z - 1_6—2711'1’
by taking derivatives with respect to z we can write

F (I) _ (_ 1)g|BZgBZg72| |BZg|
877 26(2g-2)(2g-2)!  2g(2g-2)!

Liz_5,(e7),

(203)

again for g=2. If we now compare to Eq. (132), we see
that Eq. (203) has precisely the structure of the free en-
ergy of a closed topological string, with n?zl, and the
rest of the Gopakumar-Vafa invariants being zero. Also,
from the first term, which gives the contribution of con-
stant maps, we find that x(X)=2. In fact, Eq. (203) is
precisely the F, amplitude of the resolved conifold. This
is a remarkable check of the conjecture.

G. Incorporating Wilson loops

As we have extensively discussed, most of the wealth
of Chern-Simons theory on S? is due to the Wilson loop
operators along knots. How do we incorporate Wilson
loops in the string picture that we have just developed?
In Sec. III.C we saw that, once one has a closed string
description of the 1/N expansion, Wilson loops are re-
lated to open strings in the closed string geometry. Since
the string description involves topological strings, it is
natural to assume that Wilson loops are described by
open topological strings in the resolved conifold, and
this means that we need a Lagrangian submanifold
specifying the boundary conditions for the strings.

These issues were addressed in an important paper by
Ooguri and Vafa (2000). In order to give boundary con-
ditions for the open strings in the resolved conifold,
Ooguri and Vafa constructed a natural Lagrangian sub-
manifold Cx in 7°S? for any knot K in $. This construc-
tion is rather canonical, and it is called the conormal
bundle of K. The details are as follows: suppose that a
knot K is parametrized by a curve g¢(s), where s
€ [0,27). The conormal bundle of K is the space

Cr= {(q<s>,p> e T'SYS puda=0,0=s gz”}’

(204)

where p, are coordinates for the cotangent bundle, and
4, denote the derivatives with respect to s. This space is
an R? fibration of the knot itself, where the fiber on the
point g(s) is given by the two-dimensional subspace of
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T:;S3 of planes orthogonal to ¢(s). C has in fact the
topology of 8! X R?, and intersects S$* along the knot K.
One can now consider, together with the N-branes

wrapping S, a set of M probe branes wrapping Cy. As
usual when we have two sets of D-branes, we have three
different types of strings: the strings with both ends on
the N-branes are described by U(N) Chern-Simons
theory on S3, as we argued before. In the same way, the
strings with both ends on the M-branes are described by

U(M) Chern-Simons theory on Cy. But there is a new
sector due to strings stretched between the N-branes
and the M-branes. To study these strings, we can make
an analysis similar to the one we did in Sec. V.C above.
First, we have to impose again that dx'/do=0. There-
fore, x' has to be a constant, and since the end points of
the string lie on different submanifolds, the only possi-

bility is that x' e SN C=K. A similar analysis holds for
the Grassmann fields, and we then find that the string
functionals describing the new sector of strings are a
function of a single commuting zero mode g parametriz-
ing KC, and a single anticommuting zero mode . In other
words,

A= ¢(q) + xé(q), (205)

where ¢ is a complex scalar field in the bifundamental

representation (N ,M), and living in the intersection of
the two branes, K. The fact that the scalar is complex is
due to the fact that our strings are oriented, and we have

to consider both a real scalar in representation (N M)
together with another real scalar in representation

(N, M), which we can put together as a complex scalar in
one of the representations. The Q operator is just the
exterior differential d on S'.

As explained above, the string field is the piece of the
above functional with U(1)g charge —1/2. However, the
U(1)y charge assignment is now different from the one
in §%, and it is given for a differential form of degree p
by p—1/2. This is because the target is now S' with d
=1. Therefore, the surviving field is in this case the sca-
lar ¢(q). This is consistent with the fact that, since the
spacetime dynamics takes place now on a circle, and
since Q=d, the kinetic term for the string field action
(177) is only nontrivial if the string field is a scalar. The
full action for ¢(q) is simply $,¢d . However, there are
also two background gauge fields that interact with the
Chan-Paton factors at the end points of the strings.
These are the U(N) gauge connection A on S3, and the

U(M) gauge connection A on Cy. The complex scalar
couples to the gauge fields in the standard way,

35 Tr(pAp— pA D). (206)
K

Here we regard A as a source. If we now integrate out ¢,
we obtain
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(207)

d ~.d
exp| —Indet| —+ >, (4,- A,) £ ,
ds =, ds

which can be easily evaluated as
o1
exp[-Trin(1 - U ® V)] =exp > ;TrU"TrV" ,

n=1

(208)

where U,V-! are the holonomies of A,A around the
knot I, and we have dropped an overall constant. In this
way we obtain the effective action for the A field,

©

1
Scs(A) + >, ;TrU”TrV”,

n=1

(209)

where Scg(A) is of course the Chern-Simons action for
A. Therefore, in the presence of the probe branes, the
action involves an insertion of the Ooguri-Vafa operator
that was introduced in Eq. (77). Since we are regarding
the M-branes as a probe, the holonomy V is an arbitrary
source. The extra piece in Eq. (209) can be interpreted
as coming from an annulus of zero length interpolating
between the two sets of D-branes. Later on we will con-
sider a simple generalization of the above for an annulus
of finite length.

Let us now follow this system through the geometric
transition. The N-branes disappear, and the background
geometry becomes the resolved conifold. However, the
M probe branes are still there. It is natural to conjecture
that they are now wrapping a Lagrangian submanifold

Ci of O(-=1)@® O(-1) — P! that can be obtained from @K
through the geometric transition. The final outcome is
the existence of a map between knots in S* and Lagrang-
ian submanifolds in O(-1)® O(-1) — P! which sends

Moreover, one has b;(Cx)=1. This conjecture is clearly
well motivated in the physics. Ooguri and Vafa (2000)
constructed Cy explicitly when K is the unknot, and La-
bastida, Marifio, and Vafa (2000) proposed Lagrangian
submanifolds for certain algebraic knots and links (in-
cluding torus knots). Finally, Taubes (2001) has con-
structed a map from knots to Lagrangian submanifolds
in the resolved conifold for a wide class of knots.

The Lagrangian submanifold Cy in the resolved geom-
etry gives precisely the open string sector that is needed
in order to extend the large N duality to Wilson loops.
According to Ooguri and Vafa (2000), the free energy of
open topological strings (140) with boundary conditions
specified by Cy is identical to the free energy of the de-
formed Chern-Simons theory with action (209), which is
nothing but Eq. (80):

F(V) = Fes(V). (211)

Notice that, since b{(Cx)=1, the topological sectors of
maps with positive winding numbers correspond to vec-

tors k labeling the connected vacuum expectation val-
ues, and one finds
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MY Fyp)g2s > W = - —w. (212)
g=0

I
i

It is further assumed that there is an analytic continua-
tion of F(V) from negative to positive winding numbers
in such a way that the equality (211) holds in general.
Another useful way to state the correspondence (211) is
to use the total partition function of topological open
strings (147) instead of the free energy. The duality be-
tween open string amplitudes and Wilson loop expecta-
tion values reads simply

Zr=Wrg, (213)

where Zj was introduced in Eq. (147) and Wy is the
knot invariant in representation R.

When K is the unknot in the three-sphere, the conjec-
ture of Ooguri and Vafa can be tested in full detail
[Ooguri and Vafa (2000); Marifio and Vafa (2002)]. For
more general knots and links, the open string free en-
ergy is not known, but one can test the duality indirectly
by verifying that the Chern-Simons side satisfies the
structural properties of open string amplitudes ex-
plained at the end of Sec. IV.C (Labastida, Marifio, and
Vafa, 2000; Labastida and Marifio, 2001; Ramadevi and
Sharkar, 2001; Labastida and Marino, 2002; Marino,
2002b).

VI. STRING AMPLITUDES AND CHERN-SIMONS THEORY

The duality between Chern-Simons theory on $* and
closed topological strings on the resolved conifold gives
a very nice realization of the gauge/string theory duality.
However, from the “gravity” point of view we do not
learn much about the closed string geometry, since the
resolved conifold is quite simple (remember that it only
has one nontrivial Gopakumar-Vafa invariant). It would
be very interesting to find a topological gauge theory
dual to more complicated geometries, similar to the ones
discussed in Sec. IV, in such a way that we could use our
knowledge of gauge theory to learn about enumerative
invariants of closed strings, and about closed strings in
general.

The program of extending the geometric transition of
Gopakumar and Vafa was started by Aganagic and Vafa
(2001). Their basic idea was to construct geometries that
locally contain 7°S*s, and then follow the geometric
transitions to dual geometries where the deformed coni-
folds are replaced by resolved conifolds. Remarkably, a
large class of noncompact toric manifolds can be real-
ized in this way, as it was made clear by Diaconescu,
Florea, and Grassi (2003b) and Aganagic, Marifio, and
Vafa (2004). In this section we will present some ex-
amples where closed string amplitudes can be computed
using this idea.
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FIG. 17. A Calabi-Yau manifold which is a T2X R fibration of
IR3. The dashed lines represent 3.

A. Geometric transitions for toric manifolds

The geometries discussed in Sec. IV are T?>X R fibra-
tions of R® which contain two-spheres (represented by
the compact edges of the geometry). In this section we
will construct geometries with the same fibration struc-
ture that contains three-spheres, and can be related by a
geometric transition to some of the toric geometries
analyzed in Sec. IV.

Recall from the discussion in Sec. V that the de-
formed conifold has the structure of a T X R fibration of
R3 which can be encoded in a nonplanar graph as in Fig.
14. The degeneration loci of the cycles of the torus fiber
are represented in this graph by straight lines, while the
S is represented by a dashed line in between these loci.
This graphical procedure can be generalized, and it is
easy to construct more general T?> X IR fibrations of R? by
specifying degeneration loci in a diagram that represents
the R? basis. A simple example is shown in Fig. 17. This
geometry contains two S, represented by dashed lines.
These three-spheres are also constructed as torus fibra-
tions over the interval, and the cycles that degenerate at
the end points can be read from the graph. In fact, both
are described by a T fibration where the (0,1) cycle col-
lapses at one end point, and the (1,0) cycle collapses at

the other end point. As explained in Sec. V.E, this gives
a Heegaard splitting of the three-sphere along solid tori.
These tori are glued together through the S transforma-
tion that relates one of the collapsing cycles to the other.

We can also construct geometries which contain more
general three-manifolds. If a manifold M admits a Hee-
gaard splitting along two solid tori, it will be specified by
an SI(2,Z) matrix V,,; mapping the (p;,q;) cycle of one
T? to the (pg.qg) cycle of the other T2. Equivalently, M
can be obtained as a torus fibration over an interval
where the (p;,q;) and (pg,qg) cycles degenerate at the
end points, as explained in Sec. V.E in the simple case of
the (1,0) and (0,1) cycles. The local geometry 7"M can be
described by two overlapping lines with slopes —p;/q;.
and —pr/qg. The dashed line in between them repre-
sents the three-manifold M.

Given a graph similar to the one in Fig. 17, one can try
to use the conifold transition “locally,” as first explained
by Aganagic and Vafa (2001). The above geometry, for
example, contains two deformed conifolds with their
corresponding three-spheres; therefore, there is a geo-
metric transition where the three-spheres go to zero size
and then the corresponding singularities are blown up to
give a resolved geometry. This geometric transition is
depicted in Fig. 18. The resolved geometry is clearly
toric, and it can be easily built up by gluing four trivalent
vertices, as explained in Sec. IV.D. It has two Kihler
classes corresponding to the two blown-up two-spheres,
and denoted by #;,#, in Fig. 18. It also contains a third
two-sphere associated to the intermediate, horizontal
leg, with Kihler parameter ¢.

Although we have focused on the example depicted in
Fig. 17, it is clear what the general philosophy is: one
considers a “deformed” geometry and performs geomet-
ric transitions “locally.” The resulting “resolved” geom-
etry will be a toric Calabi-Yau manifold of the type dis-
cussed in Sec. IV. The planar graph describing the
resolved geometry can be easily reconstructed from the
nonplanar graph describing the deformed geometry.

B. Closed string amplitudes and geometric
transitions

We will now use the generalized geometric transition
found in the last subsection in order to compute the

FIG. 18. The geometric transition of the Calabi-Yau manifold depicted in Fig. 17. In the leftmost geometry there are two
three-spheres, represented by dashed lines. The intermediate geometry is singular, and the right shows the planar graph associated
to the smooth toric Calabi-Yau manifold after the transition. It contains three P's with Kihler parameters f;, t,, and t.
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topological string amplitudes. Let wus first wrap
N;-branes, i=1,2, around the two S*s of the deformed
geometry depicted in Fig. 17. What is the effective topo-
logical action describing the resulting open strings?
Since this geometry is not globally of the form T°M, we
are in the situation described in Sec. V.D: for open
strings with both ends on the same S°, the dynamics is
described by Chern-Simons theory with gauge group
U(N,), therefore we will have two Chern-Simons theo-
ries with groups U(N;) and U(N,). However, there is a
new sector of open strings stretched between the two
three-spheres: these are the nondegenerate instantons
discussed in Sec. V.D following Witten (1995).

Instead of describing these open strings in geometric
terms, it is better to use the spacetime physics associated
with these strings. A similar situation was considered
when we analyzed the incorporation of Wilson loops in
the geometric transition. There we had two sets of inter-
secting D-branes, giving a massless complex scalar field
living in the intersection and in the bifundamental rep-
resentation of the gauge groups. In the situation de-
picted in Fig. 17, the same arguments indicate that there

is a complex scalar ¢ in the representation (Nl,Nz), cor-
responding to the bifundamental strings stretched be-
tween the two sets of D-branes. The difference with the
situation that we were considering before is that this
complex scalar is now massive, since the strings have a
finite length, and its mass is proportional to the “dis-
tance” between the two three-spheres. This length is
measured by a complexified Kidhler parameter that will
be denoted by r. The kinetic term for the complex scalar
will be given by

i; dd+A —Ay,—1). (214)
Sl

We can now integrate out this complex scalar field as in
Eq. (208) to obtain the correction to the Chern-Simons
actions on the three-spheres due to the presence of the
new sector of open strings:

o

O(Uy,Uy;r) = exp E

n=1

—nr

C TruTeUn g,
n

(215)

where U;, are the holonomies of the corresponding
gauge fields around the S' in Eq. (214). The operator O
can be also interpreted as the amplitude for a primitive
annulus of area r together with its multicovers, which
are labeled by n. This annulus “connects” the two $%s,
i.e., one of its boundaries is a circle in one three-sphere,
and the other boundary is a circle in the other sphere.
The sum over n in the exponent of Eq. (215) is precisely
the sum over open string instantons in the second term
of Eq. (188), for this particular geometry.

The problem now is to determine how many configu-
rations similar to this one contribute to the full ampli-
tude. It turns out that the only contributions come from
open strings stretching along the degeneracy locus, i.e.,
along the edges of the graph that represents the geom-
etry. This was found by Diaconescu, Florea, and Grassi
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FIG. 19. The only nondegenerate instantons contributing to
the geometry of Fig. 17 come from an annulus stretching along
the degeneracy locus.

(2003a, 2003b) using localization arguments, and derived
by Aganagic, Marifo, and Vafa (2004) by exploiting in-
variance under deformation of complex structures. This
result simplifies the problem enormously, and gives a
precise description of all the nondegenerate instantons
contributing in this geometry: they are annuli stretching
along the fixed lines of the T? action, together with their
multicoverings, and the S! in Eq. (214) is the circle that
fibers over the edge connecting M, and M,. This is illus-
trated in Fig. 19. The action describing the dynamics of
topological D-branes in this example is then

)

S=Scs(Ap) +Scs(Ar) + 2

n=1

—nr

C Ut U,
n

(216)

where the A; are U(N;) gauge connections on M;=S>, i
=1,2, and U, are the corresponding holonomies around
the S'. There is a very convenient way to write the free
energy of the theory with the above action. First note
that, by following the same steps that led to Eq. (79),
one can write the operator (208) as

O(U,,Uy;r) = X, TrrUe " TrpUs, (217)
R

where ¢ denotes the number of boxes of the representa-
tion R. In the situation depicted in Fig. 19, we see that
the boundaries of the annulus give a knot in M, and
another knot in M,. Therefore, the total free energy can
be written as

F=Fcs(Ny,g) + Fes(No,gs)

+1n e W (K Wi(KC,), (218)
R

where Fcg(N;,g,) denotes the free energy of Chern-
Simons theory with gauge group U(N;). These corre-
spond to the degenerate instantons that come from each
of the two-spheres. Of course, in order to compute Eq.
(218) we need some additional information: we have to
know what knots K; are topologically, and also if there is
some framing induced by the geometry. It turns out that
these questions can be easily answered if we evaluate
the path integral by cutting the geometry into pieces.
The geometry of the knots is then encoded in the geom-
etry of the degeneracy locus.
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FIG. 20. The geometry of Fig. 17 can be cut into three pieces.
The piece that contains the annulus gives by canonical quanti-
zation the state (219).

The evaluation proceeds as follows: we cut the geom-
etry into three pieces, as indicated in Fig. 20, by Hee-
gaard splitting the two three-spheres into solid tori. The
first piece comes from a solid torus embedded in the
total geometry with no insertion, obtained by splitting
M. This gives the state (0| in ,(T?), where the sub-
script 1 refers to the Hilbert space of the U(N;) Chern-
Simons theory on M;. Similarly, the third piece is an-
other solid torus from the splitting of M,, and gives the
state |0),. The path integral with the insertion of
O(U,;,U,;r) produces the following operator in the ca-
nonical formalism:

O =2 |R)e " XR| € H,(T?) @ H;(T?), (219)
R

where |R) is the Chern-Simons state constructed in Sec.
II, and we have introduced subscripts for the labels of
the different Hilbert spaces. The gluing is made, as be-
fore, through the S transformation in both sides, and the
total partition function is then given by (0[SOS|0),, so
we find

Z(gN12,r) = 22 ({O[S|R) 1€ (R S[0),. (220)
R
Comparing to Eq. (218), we see that
S
Wr(K) = 22 (gt), =12, (221)
SOO

where g, is the open string coupling constant 2/ (k;
+N;) [which is the same for the two Chern-Simons theo-
ries, see Eq. (189)] and t;=g,N; are the 't Hooft param-
eters of the U(N;) Chern-Simons theories. This means
that K; , are unknots in the three-spheres M, ,, respec-
tively. Geometrically, each of the boundaries of the an-
nulus in Fig. 19 creates a Wilson line along the noncon-
tractible cycle of the solid torus along which we split the
three-sphere.

What happens now if we go through the geometric
transition of Fig. 18? As in the case originally studied by
Gopakumar and Vafa, the 't Hooft parameters become
the Kéhler parameters #{,f, in the toric diagram of Fig.
18. There is a third Kdhler parameter ¢ in the toric ge-
ometry after the transition. It turns out that this param-
eter is related to the parameter r appearing in Eq. (220)
as follows:
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t1+12
5 .

(222)

This relation was first suggested by Diaconescu, Florea,
and Grassi (2003a). It is clearly needed in order to ob-
tain a free energy of the expected form, with a well-
defined limit as ¢ ,—. The total free energy of the
resulting toric manifold can be obtained from Egs. (218)
and (221), and it can be written in closed form as

- 1
F — - - —d[l
% A2 sin(dgy )P T e

+e (1 = e ) (1 - e 2)}. (223)

From this expression we can extract the Gopakumar-
Vafa invariants of the toric manifold. Note that Eq. (223)
gives the free energy of closed topological strings at all
genera. In other words, the nonperturbative solution of
Chern-Simons theory [which allows us to compute Eq.
(221) exactly] gives us the nonperturbative answer for
the topological string amplitude. This is one of the most
important aspects of this approach to topological string
theory.

One can consider other noncompact Calabi-Yau
manifolds and obtain different closed and open string
amplitudes by using these generalized geometric transi-
tions (Diaconescu, Florea, and Grassi, 2003b; Aganagic,
Marifio, and Vafa, 2004). However, this procedure be-
comes cumbersome, since in some cases one has to take
appropriate limits of the amplitudes in order to repro-
duce the sought-for answers. The underlying problem of
this approach is that we are taking as our basic building
block for the resolved geometries the tetravalent vertex
that corresponds to the resolved conifold. It is clear,
however, that the true building block is the trivalent ver-
tex shown in Fig. 10, which corresponds to C>. In the
next section, we will see how one can define an ampli-
tude associated to this trivalent vertex that allows one to
recover any open or closed topological string amplitude
for noncompact, toric geometries.

—d[z

VIl. THE TOPOLOGICAL VERTEX
A. Framing of topological open string amplitudes

Since the topological vertex is an open string ampli-
tude, we have to discuss one aspect not yet addressed:
the framing ambiguity of topological open string ampli-
tudes. The framing ambiguity was discovered by Aga-
nagic, Klemm, and Vafa (2002). They realized that when
the boundary conditions are specified by noncompact
Lagrangian submanifolds similar to the ones described
in Eq. (167), the corresponding topological open string
amplitudes are not univocally defined: they depend on a
choice of an integer number (more precisely, one integer
number for each boundary). For the Lagrangian sub-
manifolds studied in Sec. IV.D, the framing ambiguity
can be specified by modifying the geometry in an appro-
priate way. These Lagrangian submanifolds simply cor-
respond to points in the edges of the trivalent graphs.
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FIG. 21. Two different ways of compactifying a Lagrangian
submanifold located at the horizontal edge are shown. These
are specified by additional lines (drawn as arrows) where the
torus fibration degenerates. The dashed lines represent the
compactified submanifolds, which now have the topology of
S3.

Their geometry can be modified by introducing addi-
tional locations in the base R* where the T? fiber degen-
erates, as we did before when we considered general
deformed geometries. In this way the Lagrangian sub-
manifolds become compact S* cycles in the geometry,
exactly as in Fig. 14. The additional lines are labeled by
a vector f=(p,q) where the (-¢,p) cycle degenerates.
This procedure is illustrated in Fig. 21. It is useful to
introduce the symplectic product of two vectors v
=(vy,vy) and w=(w,w,) as

VAW = ViW,y — VoW, (224)
This product is invariant under S1(2,Z) transformations.
If the original Lagrangian submanifold is located at an
edge v, the condition for the compactified cycle to be a
nondegenerate S is

fav=1. (225)
Clearly, if f satisfies Eq. (225), so does f—nv for any in-
teger n. The choice of the integer n is precisely the fram-
ing ambiguity found by Aganagic, Klemm, and Vafa
(2002). In the case of the Lagrangian submanifolds of C>
constructed in Sec. IV.D, a particular choice of compac-
tification (therefore, of framing) that will be very impor-
tant in the following is shown in Fig. 22.

What is the effect of a change of framing on open
topological string amplitudes? A proposal for this was
made by Aganagic, Klemm, and Vafa (2002) and further
studied by Marifio and Vafa (2002), based on the duality
with Chern-Simons theory. As explained in Sec. V.G,
vacuum expectation values of Wilson loops in Chern-
Simons theory on S* compute open string amplitudes, as
stated in Eq. (213). On the other hand, we explained in
Sec. I1.D that Wilson loop correlation functions depend
on a choice of framing. This indicates that the framing
ambiguity of Chern-Simons theory corresponds to the
ambiguity of topological open string amplitudes that we
have just described. This correspondence also suggests a
very precise prescription to compute the effect of a
change of framing for open string amplitudes. Let us
consider for simplicity an open string amplitude involv-
ing a single Lagrangian submanifold, computed for a
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FIG. 22. The canonical choice of framing for the topological
vertex.

framing f. If we now consider the framing f—nv, the co-
efficients Zy of the total partition function (147) change
as follows:

Zg— (- )t ®grer2z . (226)

where ki was defined in Eq. (57), and g=es. This is
essentially the behavior of Chern-Simons invariants un-
der change of framing spelled out in Eq. (58). The extra
sign in Eq. (226) is crucial to guarantee integrality of the
resulting amplitudes, as verified in Aganagic, Klemm,
and Vafa (2002) and Marifio and Vafa (2002). If the open
string amplitudes involve L boundaries, one has to
specify L different framings, and Eq. (226) is generalized
to

ZRl' “R; — (— 1)Eizlnae(Ra)qEﬁzlnaKRo/zle. "R, - (227)

B. Definition of the topological vertex

In Sec. IV we considered C? with one Lagrangian sub-
manifold in each of the vertices of the toric diagram.
Since each of these submanifolds has the topology of
C X S!, we can consider the topological open string am-
plitude associated to this geometry. The total open string
partition function is given by

3

ZV)= 2 Crapll TV,
Ry.Ry.Ry i=1

(228)

where V; is a matrix source associated to the ith La-
grangian submanifold. The amplitude C RyRyR; is natu-
rally a function of the string coupling constant g, and, in
the genus expansion, it contains information about maps
from Riemann surfaces of arbitrary genera into C* with
boundaries on L, This open string amplitude is called
the topological vertex, and it is the basic object from
which, by gluing, one can obtain closed and open string
amplitudes on arbitrary toric geometries. Since the ver-
tex is an open string amplitude, it will depend on a
choice of three different framings. As explained in the
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previous section, this choice will be given by three dif-
ferent vectors fi, f>, and f5 that specify extra degenera-
tion loci and lead to a compactification of the L;.

As mentioned in Sec. V.D, the C* geometry can be
represented by graphs involving three vectors v; ob-
tained from the set in Fig. 10 by an SI(2,Z) transforma-
tion, and satisfying Eq. (153). We then introduce a topo-
logical vertex amplitude Cg{ﬁi R, which depends on both
a choice of three vectors v; for the edges, and a choice of
three vectors f; for the framings. As a result of Eq. (225)
we require

_fl'/\Vl‘: 1.

We orient the edges v; in a clockwise way. Since wedge
products are preserved by SI(2,Z), we also have

VoAV = V3AV) = VIAV3 = 1. (229)

However, not all of these choices give independent am-
plitudes. First of all, there is an underlying SI(2,Z) sym-
metry relating the choices: if g € SI(2,Z), then the ampli-
tudes are invariant under

(fi’vi) - (g .fl’g ' Vi)-
virfi)

Moreover, if the topological vertex amplitude C R\ RyRs is
known for a set of framings f;, then it can be obtained
for any set of the form f;—n,v;, and it is given by the
general rule (227):

Cfrad = (= 1Pt Rigmse 2O (230)

172743
for all admissible choices of the vectors v;. Since any two
choices of framing can be related through Eq. (230), it is
useful to pick a convenient set of f; for any given choice
of v; which we will define as the canonical framing of the
topological vertex. This canonical framing turns out to
be

(f1.f2.13) = (v2,v3,v1).

Due to the SI(2,Z) symmetry and the transformation
rule (230), any topological vertex amplitude can be ob-
tained from the amplitude computed for a fixed choice
of v; in the canonical framing. A useful choice of the v; is
vi=(-1,-1), v,=(0,1), v3=(1,0), as in Fig. 10. The ver-
tex amplitude for the canonical choice of v; and in the
canonical framing will be simply denoted by CR1R2R3.
Any other choice of framing will be characterized by
framing vectors of the form f;—n;v;, and the correspond-
ing vertex amplitude will be denoted by
CRiioR;:

Note that n;=fiAv;,; (Where i runs mod 3).

One of the most important properties of Cg g g, 18 its
cyclic symmetry. To see this, note that the SI(2,Z) trans-
formation g=TS""! takes

(Vivﬁ) - (Vi+17fi+1) P

where again i runs mod 3. It then follows that
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CRrR,R, = Cr.R R, = CRRR, - (231)

Finally, it will be sometimes useful to consider the vertex
in the basis of conjugacy classes Cjg@)i3), which is ob-
tained from C R,R,Ry DY

3

Crogoie = 2 [T xr (CKD)Cr g r,-
R; i=1

(232)

C. Gluing rules

We saw in Sec. IV that any noncompact toric geom-
etry can be encoded in a planar graph which can be
obtained by gluing trivalent vertices. It is then natural to
expect that the string amplitudes associated to such a
diagram can be computed by gluing the open topological
string amplitudes associated to the trivalent vertices, in
the same way that one computes amplitudes in pertur-
bative quantum field theory by gluing vertices through
propagators. This idea was suggested by Igbal (2002)
and Aganagic, Marifo, and Vafa (2004), and was devel-
oped into a complete set of rules by Aganagic, Klemm,
Marifio, and Vafa (2003). The gluing rules for the topo-
logical vertex turn out to be quite simple. Here we will
state three rules (for a change of orientation in one edge,
for the propagator, and for the matching of framings in
the gluing) which make it possible to compute any
closed string amplitude on toric, noncompact Calabi-
Yau threefolds. They also make it possible to compute
open string amplitudes for Lagrangian submanifolds on
edges that go to infinity. The case of Lagrangian sub-
manifolds in inner edges is also very easy to analyze, but
we refer the reader to the paper by Aganagic, Klemm,
Marifio, and Vafa (2003) for the details. A mathematical
point of view on the gluing rules can be found in Diaco-
nescu and Florea (2003).

1. Orientation

Trivalent vertices are glued along their edges, and this
corresponds to gluing curves with holes along their
boundaries. In order to do that, the boundaries must
have opposite orientations. This change of orientation
will be represented as an inversion of the edge vector,
therefore in gluing the vertices we will have an outgoing
edge on one side, say v, and an ingoing edge on the
other side, —v;. What is the corresponding effect on the
amplitude Cjmi@i;3? Changing the orientation of A
boundaries along the first edge gives rise to a relative
factor (1), where h=|k")|. In the language of topologi-
cal D-branes, this means that we are gluing branes to
antibranes (Vafa, 2001b). If we denote Q' as the repre-
sentation whose Young tableau is transposed to the
Young tableau of Q (i.e., is obtained by exchanging rows
and columns), then one has the following relation be-
tween characters:

Xo(C(R)) = (- IRy (C(k)),

and from here one can easily deduce

(233)
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FIG. 23. The configuration used to derive the topological vertex amplitude. The “deformed” geometry shown on the left. The
“resolved” geometry obtained by geometric transition shown on the right. It contains a resolved conifold and a P! of size ¢. Also
depicted on the left is the open strings stretched among the different branes which contribute to the amplitude.

CR1R2R3 — (= 1)€(R1)CR3R2R3

as we invert the orientation of v;. Of course, a similar
equation follows for the other v,.

2. Propagator

Since gluing the edges corresponds to gluing curves
with holes along their boundaries, we must have a
matching number of holes and winding numbers along
the edge. Therefore, the propagator must be diagonal in
the k basis. After taking into account the change of ori-
entation discussed above, and after dividing by the order
of the automorphism group associated to k (which is
nothing but zj), we find that the propagator for gluing
edges with representations R, R, is given by

(= 1) Rl R 5 o (234)
where ¢ is the Kéhler parameter that corresponds to the
P! represented by the gluing edge.

3. Framing

When gluing two vertices, the framings of the two
edges involved in the gluing have to match. This means
that, in general, we will have to change the framing of
one of the vertices. Let us consider the case in which we
glue together two vertices with outgoing vectors
(vi,v;,vi) and (v} ,v]f ,Vy), Tespectively, and let us assume
that we glue them through the vectors v;, v/=—v;. We
also assume that both vertices are canonically framed, so
that fi=vj, f{=v;. In order to match the framings we
have to change the framing of, say, v/, so that the new
framing is —f; (the opposite sign is again due to the
change of orientation). There is an integer n; such that
fi—ny;=—f; (since finv;=fav/ =1, f;+f; is parallel to v,),
and it is immediate to check that

'
n;= Vj /\Vj.

The gluing of the two vertex amplitudes is then given by
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% CRiRkRieig(Ri)ti(_ 1)(ni+1)f(Ri)q—niKRi/ZCRgRj,R;{’ (235)
where we have taken into account the change of orien-
tation in the (v;,v/,v;) to perform the gluing, and ¢ is
Kéhler parameter associated to the edge.

Given then a planar trivalent graph representing a
noncompact Calabi-Yau manifold without D-branes, we
can compute the closed string amplitude as follows: we
give a presentation of the graph in terms of vertices
glued together, as in Sec. [IV.D. We associate the appro-
priate amplitude to each trivalent vertex (labeled by rep-
resentations), and use the above gluing rules. The edges
that go to infinity carry the trivial representation, and
finally sum over all possible representations along the
inner edges. The resulting quantity is the total partition
function Zos.q=e’ for closed string amplitudes. We can
slightly modify this rule to compute open string ampli-
tudes associated to D-branes, in the simple case in which
the Lagrangian submanifolds are located at the outer
edges of the graph (i.e., the edges that go to infinity). In
this case, we compute the amplitude by associating the
representations Ry,...,R; to the outer edges with
D-branes. The result is Z,cqZr ...z, , Where Zg ..g is

. . 1 . L
the open string amplitude that appears in Eq. (146).

We will present some concrete examples of this pro-
cedure in a moment. Before doing that, we derive an
explicit expression for the topological vertex amplitude
using a geometric transition.

D. Derivation of the topological vertex

In order to derive the expression for the vertex, we
consider the configuration drawn in the first picture in
Fig. 23, which represents a geometry with an S* together
with three Lagrangian submanifolds L, L,, and L;. We
also make a choice of framing for these Lagrangian sub-
manifolds, indicated by arrows. The world-volumes of
the S and of L,,L; are parallel, and we consider topo-
logical D-branes wrapped on S* and the L;. The branes
wrapping the L, are probe (spectator) branes, and the
large N transition of the three-sphere leads to a geom-
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etry with a resolved conifold and three framed Lagrang-
ian submanifolds. As we have seen in the examples
above, the Kihler parameter of the P! of the conifold ¢ is
the 't Hooft parameter of the Chern-Simons theory on
S3. The resulting configuration is shown in the second
picture of Fig. 23, and can be related to the topological
vertex of Fig. 22 by (i) taking the Kéhler parameter ¢ of
the P! in the resolved conifold to infinity (so that the
extra trivalent vertex disappears), and by (ii) moving the
Lagrangian submanifold L; to the outgoing edge along
the direction (-1,-1). We first compute the total open
string amplitude using the geometric transition, and then
implement (i) and (ii).

The open string theory on the $* is U(N) Chern-
Simons theory with some matter fields coming from the
three noncompact Lagrangian submanifolds L;. As dis-
cussed in Sec. VI, there are strings stretching between
the $* and Ly ,3, and also strings between L; and L.
These stretched strings are annuli along the degeneracy
locus, and they are depicted in Fig. 23. The only space-
time excitation associated with these strings is a matter
field in the bifundamental representation, and integrat-
ing it out corresponds to inserting an annulus operator
similar to Eq. (215). When the two branes intersect on a
circle (like the branes considered in Sec. VI, or like the
S3 and L, in this situation) the matter field is a boson (a
scalar field). When the branes are parallel, however, it is
a fermion. This is because we can turn the two parallel
branes into a brane and an antibrane intersecting along
a circle. This leads to a Grassmann field, as explained by
Vafa (2001b), and the resulting operator turns out to be

e—nl
expy — > . Tr U'Tr V"

n

= > TrrUe ‘®1(= 1){R T, V. (236)
R

In Fig. 23 the probe branes associated with L, and the
dynamical branes on S intersect on a circle, while the
probe branes associated with L, L; are parallel to each
other and to the dynamical branes. We then have the
following operators:

2 TroiUpe @)= 1)1 @Trg ¥,
01

% TrQ2U2€7€(Q2)tTI'Q2V2,

E Tngule%(Qﬁt(_ 1)€(Q3)TrQ3V3,
03

> TroVie 1@ (- 1)1 QTr, V3, (237)
o

which correspond to the annuli labeled with representa-
tions Q4, O,, O3, and Q in Fig. 23. The matrices V, and
V3 are sources corresponding to D-branes wrapping

L,, L, while f/l,Vl are sources for branes wrapping L
with opposite orientations, and represent Chan-Paton
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factors for open strings ending on opposite sides of L.
U,,U, are holonomies of the gauge connection on S3
around the boundaries of the annuli with representa-
tions Q; and Q, (the boundary of the annulus carrying
the representation Q3 is geometrically identical to the
boundary of the annulus associated to Q;, and it gives
the holonomy U, as well). Putting all these ingredients
together, we find that the open string amplitude on the
deformed geometry is given by

Z(V1,V,, Vi) = L S (- 1)HQDHQy)+Q)

800,065,050
X (ver2 UzTerl UlTng U1>

X TrQl ‘A/lTerVlTrQZ V2TIQ®Q3V3 )
(238)

where we have factored out 1/, the partition function
of O(-1)® O(-1)—PL. The above amplitude is an open
string amplitude with three boundaries, and V; are the
corresponding sources. Note that the annuli that carry
the representations Q;,0Q; are supported on the hori-
zontal edge, while the annulus connecting L, to S° lies
on the vertical edge. The horizontal and the vertical
edge are related by an S transformation, therefore

<TI‘Q2U2TI‘Q§U1TI‘QSU1> = E Ngleg<Q2|S|Q,>

= 2 NQ, Qts* 0.0 (239)

where we have fused together the U, holonomies. From
a geometric point of view, this means that the bound-
aries of the annuli give a link in S* with the topology
depicted in Fig. 5 (where the representations R, R, R, in
Fig. 5 are now Q,, O3, and Qq, respectively), and the
above expression is nothing but Eq. (67). We can also
use the direct sum formula (66) for this invariant, and we
finally arrive at the following expression for Eq. (238):

Z(ViVaVy)= 2 (-])enriegie

01,0,,03.0
WQ[Q WQ'Q N
X —1=2 222y, V Tr iV Tr V.
o, VilrolVilrg V,
Wo, 1 2
XTI'Q®Q3V3, (240)

where Wr,R is the Hopf link invariant defined in Eq.
(37) and evaluated in Eq. (45). Equation (240) gives the
answer for the open topological string amplitude on the
geometry depicted on the left in Fig. 23. We now incor-
porate the two modifications which are needed in order
to obtain the topological vertex. First of all, we have to
take r— . As pointed out in the last section, in order to
have a well-defined limit it is crucial to renormalize the
Chern-Simons expectation values. The relation (222)
suggests the definition
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—|—

]

o,

FIG. 24. Moving the Lagrangian submanifold with representa-
tion O to the outgoing edge.

WRlRZ = }ime_[(‘(Rl)+€(R2)]t/2WR1R2. (241)
This limit exists, since Wpg g 1is of the form

)\[e(Rl)+((R2)]/2WR1R2+O(e‘t) (remember that A=¢). The
quantity W x , which is the “leading” coefficient of the
Hopf link invariant (37), is the building block of the to-
pological vertex amplitude. It is a rational function of
g*'?, therefore it only depends on the string coupling
constant. We will also denote Wx=Wpg,. The limit (241)
was first considered by Aganagic, Marifio, and Vafa
(2004).

In order to implement the second modification, we
have to understand what is the effect on the amplitude
of moving L; to the outgoing edge along (-1,-1). In
order to do that, consider the simplified situation de-
picted in Fig. 24 where we only have two stacks of
D-branes wrapping L;,. The amplitude can be easily
computed following the arguments that led to Eq. (240),
and one immediately obtains

Z(Vl,Vz) = E WQ2Qli(— 1)€(Q1)TrQ] VlTrQZVZ.
01,0,

On the other hand, this is a particular case of the topo-
logical vertex amplitude with R; trivial, f,=v; and f5
=(0,-1), so there is a noncanonical framing on v3 which
corresponds to n=-1. We deduce

Cor,r, = Wryriq “R/2, (242)
On the other hand, the amplitude on the right-hand side
of Fig. 24 is the canonically framed vertex C Ry R0> but by
cyclic symmetry this is equal to Eq. (242) with R, < R;.
We conclude that in going from the left- to the right-
hand side of Fig. 24 we must replace

(— 1)€(Q1)WQ2Qt1TrQ1 ‘A/lTerVz

— Wo10,d % Tro ViTrg, V). (243)
After moving L, to the outgoing edge, all strings end on
the same side of the corresponding branes, and this ex-
plains why we have replaced f/l by V; in the above for-
mula. Collecting the coefficient of Trg V Trp V,Try V3
. s . 1 0.-1 2 3
in the partition function we compute C(}gl Rk, W then
get the following expression for the topological vertex
amplitude in the canonical framing:
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Wgio Wk
) R, asR) 291" RyQ3
Cryryry = 4R 02 3 NEl N, — 00—
01,03,0 R,

(244)

This is the final expression for the topological vertex
amplitude.

Using Eq. (45) it is possible to give an explicit expres-
sion for W g, which is useful in computations. It is easy
to see that the leading coefficient in N in Eq. (45) is
obtained by taking the A-independent piece in Eq. (48).
The generating function of elementary symmetric poly-
nomials (46) then becomes

R .
LI P

S(t —, 245
ol =75, (245)
where
“ ) “ qfr(r+1)/2tr
SO=IT0+qg7n=1+2—— (246)
=1 r=1
’ [T 1m
m=1
In terms of Schur polynomials, we find
. R
Wi (@) =g, (xi= g P)sp (= ¢ 1), (247)

where there are now an infinite number of variables x;
with i=1,2,.... One can also write Eq. (244) in terms of
skew Schur polynomials (Okounkov, Reshetikhin, and
Vafa, 2003), and using the properties of these polynomi-
als one finds identities for the topological vertex that are
very useful in computations (Hollowood, Igbal, and
Vafa, 2003; Eguchi and Kanno, 2004).

E. Some applications

We now present some examples of computation of to-
pological string amplitudes using the topological vertex.

1. Resolved conifold

The toric diagram for the resolved conifold geometry
is depicted in Fig. 11. Our rules give immediately

Zpi =2, Copi(— 1) Pe BTy, (248)
R

Since Croo=Wgr=sg(x;=q"*"?), we can use the well-
known formula (see, for example, Fulton and Harris,
1991; Macdonald, 1995)

1
2 sR)sp(y) = ———— (249)
R H (1 -xy j)
”7}
to obtain
« et
Z“Jl = eXp — E (250)

= d(qd/Z_q—d/Z)Z ’

in agreement with the known result (168).
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2. Framed unknot

Let us now consider an open string amplitude, corre-
sponding to the resolved conifold with a Lagrangian
brane in one of the external legs, and in arbitrary fram-
ing p. The open string amplitude is given by

Z(V.p) =2 Zo(p)TryV, (251)
o

where

1
Zo(p)=——(- D1@rg P2y Coppil— ™) B Cro.
Pl R
(252)

One can use various identities involving symmetric poly-
nomials to show that

Zo(p) = (- 1)1 @rgror2e=tQ12(dim, Q). (253)

The right-hand side is essentially the Chern-Simons in-
variant of the unknot. The open string free energy is
given by F(V,p)=In Z(V,p), which can be written as in
Eq. (144). It turns out that the leading term of F,, ,(p,?)
as t— o [which we will simply denote by F,, ,(p)] can be
computed in open Gromov-Witten theory by using
Hodge integrals [Katz and Liu (2002); see also Li and
Song (2002)]. The result is

Foo(p) = (=D pp+ 1)

w;i—1

q (j+wp)
=
H —ry

» J g(EV(u))Cg(E;[( p- 1)u])cg(Ev(Pu))
Has IT - wip)
i=1

Res,_

(254)

In this formula, M&h is the Deligne-Mumford moduli

space, [ is the Hodge bundle over Mg,h, and its dual is
denoted by Y. We have also written

8
(B () = X ¢, (B, (255)
=0

where c¢/(l¥) are Chern classes, and similarly for the
other two factors. On the other hand, the t— oo limit of
ZQ iS

(- 1) @rgror?yy . (256)
By equating the open Gromov-Witten result with the
Chern-Simons result one finds a highly nontrivial iden-
tity that expresses the Hodge integrals appearing in Eq.
(254) in terms of the W,’s, as first noticed by Marifio and
Vafa (2002). The explicit expression that one finds is
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n
E F g2g —2+|k| _ ( 1)p€ \k\ €Hk ! 2 ( 1)
g=0 j n=1 N
xr (C(K,)
SN 8 | e
ok, T Reosl Lk,
x plPH12)Kg g2
y sin[([] = I7 +j - i)g,/2]
I=si<jscp Sin[(j - i)gs/Z]
cr, 17

<I111 !

i=1 v=1 251n[(V_l+CR )gs/z]

(257)

where we have relabeled w—k for positive winding
numbers, as explained in Sec. IV.C. This equality is a
very explicit mathematical prediction of the duality be-
tween Chern-Simons theory and topological string
theory. It has been rigorously proved by Liu, Liu, and
Zhou (2003a) and by Okounkov and Pandharipande
(2004), and shown to have many applications in
Gromov-Witten theory (Liu, Liu, and Zhou, 2003b;
Zhou, 2003).

3. Local 2

The toric diagram is depicted in Fig. 12. Using again
the rules explained above, we find the total partition
function

Z]PZ = E

R{,Ry,R3

SR g -Zig,

(= DRty

X CortryCort r,CorLR, » (258)
where ¢ is the Kédhler parameter corresponding to the
hyperplane class in P2, Using that Cyg 7= W R4 KRy
one recovers the expression for Zp2 first obtained by
Aganagic, Marifio, and Vafa (2004) using the method of
geometric transition explained in Sec. VI. Note that the
free energy has the structure

o

Fro=In{ 1+ X alqe™ [ =X a(q)e".
=1 =1

(259)

The coefficients a,(q), af)(q) can be easily obtained in
terms of W g,. One finds, for example,

3
-q

agc)(Q) =a,(q) =~ (ql/z 71/2)2’

6 1
) e — 2
ay'(q) = 1+ 5a(q0) (260)
2 (@2 g 22" 2"
If we compare to Eq. (129) and take into account the
effects of multicovering, we find the following values for
the Gopakumar-Vafa invariants of O(-3)— P2
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t 2
FIG. 25. The toric diagram of local "' X P1.

n=3, n§=0for g>0,

ny=-6, n§=0forg=>0, (261)

in agreement with the results listed in Eq. (171). In fact,
one can go much further with this method and compute
the Gopakumar-Vafa invariants to a high degree. We see
again that the use of nonperturbative results in Chern-
Simons theory leads to the topological string amplitudes
to all genera. A complete listing of the Gopakumar-Vafa
invariants up to degree 12 can be found in Aganagic,
Marifio, and Vafa (2004). The partition function (258)
can be also computed in Gromov-Witten theory by using
localization techniques, and one finds indeed the same
result (Zhou, 2003).

4. Local P! x P!

The local P! X P! geometry is the noncompact Calabi-
Yau manifold given by the four-manifold P!X P! to-
gether with its anticanonical bundle. It also admits a
symplectic quotient description of the form (256), this
time with N=2 and two Ké&hler parameters ¢, t,. The
charges Q]i,z» j=1, ..., 5, can be grouped in two vectors,

Ql = (_ 2’1’1’0’0)9

QZZ (_ 2’090’1,1)' (262)

The toric diagram for this geometry can be easily
worked out from this description, and it is represented
in Fig. 25. Using the gluing rules we find the closed
string partition function

S e LURD+UR LR+ RV Zine 2
R:

1

Z]pl xPpl =

X Cor,rt Cor, gt Cor,r, CorsRY- (263)

This amplitude can be written as

Zptpr = S, e TURDHR I -TURY+L(R)Yy
R

i

X Wr,r, Wr R, Wr,R,WR,R,- (264)
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This is the expression first obtained by Aganagic,
Marifio, and Vafa (2004), and it has been shown to agree
with Gromov-Witten theory by Zhou (2003). The local
P1X P! geometry is interesting since it gives a string re-
alization of the Seiberg-Witten solution (1994) of
SU(2), N=2 Yang-Mills theory, as first shown by Katz,
Klemm, and Vafa (1997). In particular, the prepotential
of local P!X P! gives, in a certain limit, the Seiberg-
Witten prepotential. This was explicitly verified by Igbal
and Kashani-Poor (2003a) by using the expression (264)
and the results of Nekrasov (2002) for the Seiberg-
Witten prepotential. Further applications of the topo-
logical vertex to the computation of supersymmetric
gauge theory amplitudes can be found in Eguchi and
Kanno (2003), Hollowood, Igbal, and Vafa (2003), and
Igbal and Kashani-Poor (2003b).

F. Further properties of the topological vertex

Since it was first introduced by Aganagic, Klemm,
Marifio, and Vafa (2003), the topological vertex has been
shown to satisfy three remarkable properties: it has an
underlying integrable structure (Aganagic, Dijkgraaf,
Klemm, Marifno, and Vafa, 2003), it has a natural com-
binatorial interpretation in terms of counting tridimen-
sional Young tableaux (Okounkov, Reshetikhin, and
Vafa, 2003), and it can be also reinterpreted in terms of
an appropriate counting of sheaves on C* (Igbal et al.,
2003; Maulik et al., 2003). We briefly review each of
these properties.

1. Integrable structure

If we put Tr V?=¢ /n in Eq. (228), the resulting func-
tion of three infinite sets of “times” Z(til) turns out to be
a tau function of the 3-KP hierarchy as constructed, for
example, by Kac and van de Leur (2003). This integra-
bility property is better understood in the context of mir-
ror symmetry, where the computation of the vertex can
be seen to reduce to a theory of free fermions in a Rie-
mann surface with three punctures (Aganagic,
Dijkgraaf, Klemm, Marifo, and Vafa, 2003).

2. Combinatorial interpretation

Consider the problem of enumerating three-
dimensional Young tableaux 7 (also called plane parti-
tions) with the following boundary condition: along the
edges x,y,z they end up in two-dimensional Young tab-
leaux with the shapes Ry, R,, and Rj, respectively. Let us
introduce the partition function

CRR,R, = 24, (265)
w

where || is the number of boxes in , and the sum is

over plane partitions satisfying the above boundary con-

ditions. It can be shown that, up to an overall factor

independent of the R;, the above partition function

equals the topological vertex CR1R2R3 (Okounkov,
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Reshetikhin, and Vafa, 2003). This combinatorial inter-
pretation of the topological vertex makes it possible to
establish a precise correspondence between quantum to-
pological strings on local, toric Calabi-Yau manifolds
and the classical statistical mechanics of melting crystals
(Igbal et al., 2003; Okounkov, Reshetikhin, and Vafa,
2003; Saulina and Vafa, 2004).

3. Relation to the counting of ideal sheaves

Let X be a Calabi-Yau threefold. An ideal sheaf 7
defines a closed subscheme Y through Oy=0y/Z. This
means, roughly speaking, that there is a subvariety Y of
X defined by the zero locus of the equations that gener-
ate the ideal Z. Given a two-homology class 3, one can
consider the moduli space of ideal sheaves /,(X, 8) such
that the holomorphic Euler characteristic of Y is n and
with Oy supported on curves in the homology class S.
This is a space of virtual dimension zero, and by count-
ing the number of points with appropriate signs one can

define the so-called Donaldson-Thomas invariant ]\A/nﬁ.
The Donaldson-Thomas partition function is given by

Zpr(X) = 2 E Nn,EQB(— q)",

B nel

(266)

where ¢ is interpreted here as a formal expansion pa-
rameter, and the notation for O is identical to the one
in Eq. (115). Maulik et al. (2003) have shown that, when
X=C? (so that Zpy only depends on g), the Donaldson-
Thomas partition function naturally depends on three
sets of representations, and agrees indeed with the topo-
logical vertex Cg g,r,(q), where g in Eq. (266) is identi-
fied with e'$s. They have also shown that the Donaldson-
Thomas partition function satisfies the same gluing rules
as the topological vertex, leading to the identification of
the Donaldson-Thomas partition function Zpp(X) with
the topological string all-genus partition function Z(X)
=el for all noncompact, toric Calabi-Yau manifolds X.
They also conjecture that the equality holds for all
Calabi-Yau threefolds. Igbal et al. rephrase the
Donaldson-Thomas partition function for C* (which
computes the topological vertex) in terms of the count-
ing of noncommutative U(1) instantons in six dimen-
sions. These developments seem to indicate that the to-
pological vertex, apart from providing a powerful
computational tool, plays a central logical role in the
theory of Gromov-Witten invariants and opens the way
to connections to other moduli problems in algebraic
geometry.

VIIl. CONCLUSIONS AND FUTURE DIRECTIONS

The correspondence between Chern-Simons theory
and topological strings provides one of the most fasci-
nating examples of the string theory—gauge theory cor-
respondence. It has deep mathematical implications that
hold a lot of promise for the theory of knot and link
invariants, as well as for the theory of Gromov-Witten
invariants. The physical point of view, which culminated
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in the idea of the topological vertex, has allowed us to
obtain a complete solution to topological string theory
on a wide class of Calabi-Yau threefolds. There are,
however, many questions and problems that remain
open and will no doubt give us further insights on these
connections. We conclude the review with some of these
problems.

(i)  From a mathematical point of view, some of the
ingredients and results in the topological string
side need further study. For example, a rigorous
construction of open Gromov-Witten invariants
has not been given yet, although the formal use of
localization techniques leads to sensible results in
agreement with the predictions of physics. One
important problem is to derive the explicit expres-
sion for the topological vertex (244) in the context
of Gromov-Witten theory. This will put the physi-
cal predictions on a firmer ground. Some steps in
this direction have been already taken by Diaco-
nescu and Florea (2003), and Li et al. (2004) have
given a mathematical treatment of the topological
vertex by using relative Gromov-Witten invari-
ants.

(i)  The correspondence between knot invariants and
open Gromov-Witten invariants on the resolved
conifold explained in Sec. V.G is still very much
uncharted. Although there are proposals for La-
grangian submanifolds in the resolved conifold as-
sociated to nontrivial knots (Labastida, Marifo,
and Vafa, 2000; Taubes, 2001), no results have
been obtained for open Gromov-Witten invari-
ants with those Lagrangian boundary conditions.
This correspondence is potentially very interest-
ing from a mathematical point of view, since it
gives a dictionary between two important and
very different sets of invariants. It is likely that
the unveiling of this correspondence will lead to
deep results in the theory of knot invariants.

(iii) It would be very interesting to see if Chern-
Simons theory on other three-manifolds has a
string theory description as well, since this would
lead in particular to a fascinating reformulation of
the theory of finite-type invariants which has been
so vigorously developed in the last years. So far
only small steps have been taken in this direction.
The geometric transition of Gopakumar and Vafa
was extended to lens spaces by Aganagic, Klemm,
Marifio, and Vafa (2004), and further studied by
Okuda and Ooguri (2004). One of the problems
faced by the extension of the correspondence to
lens spaces is a typical one also encountered in
the AdS-CFT correspondence: the Chern-Simons
side is easily computed for small t Hooft cou-
pling, while the topological string theory side is
better computed for large 't Hooft coupling. This
makes the comparison of observables a difficult
task, and in that respect more techniques are
needed in order to evaluate the field theory and
string theory results in other 't Hooft coupling re-
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gimes. The formulation of Chern-Simons theory
in terms of a matrix model given by Mariio
(2002a), which was very useful for the tests per-
formed by Aganagic, Klemm, Marifio, and Vafa
(2004), may also be useful in doing Chern-Simons
field theory computations at large 't Hooft cou-
pling.

(iv) The connection between Gromov-Witten and
Donaldson-Thomas invariants found by Igbal et
al. (2003) and Maulik ef al. (2003) may shed a new
light on many aspects of Gromov-Witten theory,
and seems to be a very promising avenue in the
mathematical understanding of the Gopakumar-
Vafa invariants.
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APPENDIX: SYMMETRIC POLYNOMIALS

In this appendix we summarize some useful ingredi-
ents of the elementary theory of symmetric functions. A
standard reference is Macdonald (1995).

Let xq,...,xy denote a set of N variables. The elemen-
tary symmetric polynomials in these variables, e,,(x), are
defined as

ep(x) = > Xipwr X -

. . m
ll<' . '<lm

(A1)
The generating function of these polynomials is given by

N
E(t)= 2 e, =111 +x). (A2)

m=0 i=1

The complete symmetric function h,, can be defined in
terms of its generating function

N
H@)= 2 hyt" =110 -x0)",

m=0 i=1

(A3)

and one has

EW)H(-1t)=1. (A4)

The products of elementary symmetric polynomials and
of complete symmetric functions provide two different
basis for the symmetric functions of N variables.
Another basis is given by the Schur polynomials sg(x)
which are labeled by representations R. We express
these representations in terms of Young tableaux, so R is
given by a partition (/,/,,... ,ICR), where [ is the number

Rev. Mod. Phys., Vol. 77, No. 2, April 2005

of boxes of the ith row of the tableau, and /;=,="--
=]. . The total number of boxes of a tableau will be
€(R§:E,-li. The Schur polynomials are defined as quo-

tients of determinants,
[+N-i
det x

— . A5
det le-v” (A35)

sg(x) =

They can be written in terms of the symmetric polyno-
mials e;(x{,...,xy), i=1, as follows:

SdeetMR, (A6)
where
M= (ep.j).

Mg is an rXr matrix, with r=cg, and R’ denotes the
transposed Young tableau with row lengths /. To evalu-
ate sz we put ep=1,¢,=0 for k<0. The expression (A6)
is known as the Jacobi-Trudy identity.

A third set of symmetric functions is given by the
Newton polynomials Pi(x). These are labeled by vectors
k=(ky,k,...), where k; are non-negative integers, and
they are defined as

p
Pix) = [T Pfitx), (A7)
j
where
N
Pi(x) = > x{ (A8)
i=1

are power sums. The Newton polynomials are homoge-
neous of degree €=2Xjk; and give a basis for the symmet-
ric functions in xy,...,xy with rational coefficients. They
are related to the Schur polynomials through the Frobe-
nius formula

Pi(x) = 2 xg(C(k))sg(x), (A9)
R

where the sum is over all tableaux such that €(R)=¢.
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