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This review discusses a paradigm that has become of increasing importance in the theory of quantum
phase transitions, namely, the coupling of the order-parameter fluctuations to other soft modes and the
resulting impossibility of constructing a simple Landau-Ginzburg-Wilson theory in terms of the order
parameter only. The soft modes in question are manifestations of generic scale invariance, i.e., the
appearance of long-range order in whole regions in the phase diagram. The concept of generic scale
invariance and its influence on critical behavior is explained using various examples, both classical and
quantum mechanical. The peculiarities of quantum phase transitions are discussed, with emphasis on
the fact that they are more susceptible to the effects of generic scale invariance than their classical
counterparts. Explicit examples include the quantum ferromagnetic transition in metals, with or
without quenched disorder; the metal-superconductor transition at zero temperature; and the
quantum antiferromagnetic transition. Analogies with classical phase transitions in liquid crystals and
classical fluids are pointed out, and a unifying conceptual framework is developed for all transitions
that are influenced by generic scale invariance.
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PREAMBLE

The theoretical understanding of classical, or thermal,
phase transitions, which occur at a nonzero temperature,
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is very well developed. A characteristic feature of con-
tinuous phase transitions, or critical points, is that the
free energy, as well as time correlation functions, obey
generalized homogeneity laws. This leads to scale invari-
ance, i.e., power-law behavior of various thermodynamic
derivatives and correlation functions as functions of the
temperature, external fields, wave number, time, etc.
Quantum phase transitions, which occur at zero tem-
perature as a function of some nonthermal control pa-
rameter such as composition or pressure, are not yet as
well understood. One feature that has slowed down
progress has turned out to be a connection between
quantum phase transitions and the phenomenon known
as generic scale invariance, which refers to power-law
decay of correlation functions in entire phases, not just
at an isolated critical point. It turns out that the critical
behavior at some classical phase transitions is also
heavily influenced by a coupling between generic and
critical scale invariance, but these phenomena have usu-
ally not been cast in this language. The goal of this re-
view article is to give a unifying discussion of the cou-
pling between critical behavior and generic scale
invariance, for both classical and quantum phase transi-
tions and for both static and dynamic critical behavior.
Accordingly, we limit our discussion to phase transitions
in which this coupling is known or suspected to be im-
portant.

The structure of this paper is as follows. In Sec. I we
give a brief introduction to phase transitions, both clas-
sical and quantum. In Sec. II we discuss the concept of
generic scale invariance and illustrate it by means of
various examples. These concepts are less well known
than those pertaining to phase transitions, so our expo-
sition is more elaborate. In Secs. III and IV we return to
phase-transition physics and discuss the influence of ge-
neric scale invariance on classical and quantum transi-
tions, respectively. We conclude in Sec. V with a sum-
mary and a discussion of open problems.

I. PHASE TRANSITIONS

Phase transitions are among the most fascinating phe-
nomena in nature. They also have far-reaching implica-
tions. The liquid-gas and liquid-solid transitions in water,
for instance, are common occurrences of obvious impor-
tance. The transition from a paramagnetic phase to a
ferromagnetic one in the elements iron, nickel, and co-
balt made possible the invention of the compass. The
structural transition in tin from the B8 phase (white tin) to
the « phase (gray tin) is responsible for the degradation
of tin artifacts below a temperature of about 286 K,
known as the tin pest. One could continue with a long
list, but these three examples may suffice to demonstrate
that phase transitions come in a wide variety of phenom-
enologies with no entirely obvious unifying features. Ac-
cordingly, early attempts at a theoretical understanding
of phase transitions focused on particular examples. van
der Waals (1873) developed the first example of what
was later to become known as a mean-field theory, in this
case to describe the liquid-gas transition. Weiss (1907)
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gave a mean-field theory of ferromagnetism that was
based on the concept of the mean field seen by each
“elementary magnet” (spin had yet to be discovered at
that time) that is produced by all other elementary mag-
nets. A unification of all mean-field theories was
achieved by Landau (1937a, 1937b, 1937c, 1937d; all of
these papers, or their translations, are reprinted in Lan-
dau, 1965). He introduced the general concept of the
order parameter, a thermodynamic observable that van-
ishes in one of the phases separated by the transition
(the disordered phase') and is nonzero in the other (the
ordered phase). In the case of the ferromagnet, the order
parameter is the magnetization; in the case of the liquid-
gas transition, the order parameter is the density differ-
ence between the two phases. Landau theory underlies
all later theories of phase transitions, and we therefore
discuss it first.

A. Landau theory

Landau theory is based on one crucial assumption,
namely, that the free energy F is an analytic function of
the order parameter” m, and hence can be expanded in a
power series,

3 (1.1)

Here r, v, u, etc., are parameters of the Landau theory
that depend on all of the degrees of freedom other than
m. F} is sometimes referred to as the Landau functional,
although it actually is just a function of the variable m.
The physical value of m is the one that minimizes Fj.
Landau theory is remarkably versatile. For sufficiently
large r, the minimum of F is always located at m=0,
while for sufficiently small r it is located at some m # 0.
If v #0, the transition from m =0 to m # 0 occurs discon-
tinuously, and the theory describes a first-order transi-
tion, with the liquid-gas transition, except at the liquid-
gas critical point, being the prime example. If v=0,
either accidentally or for symmetry reasons, it describes
a second-order transition, or critical point, at r=0, pro-
vided u>0. Prime examples are the ferromagnetic tran-
sition in zero magnetic field and the liquid-gas transition
at the critical point. Furthermore, Landau theory applies
to both classical and quantum systems, including systems
at zero temperature (7=0). In the latter case, the free
energy F=U-TS reduces to the internal energy U.? This
is not an academic case. Consider a ferromagnet with a
low Curie temperature 7T, e.g., UGe,. By varying a non-

F = F; (m) =rm? +vm® + um* + O(m°).

'We shall use the term “disordered phase” in the sense of
“phase without long-range order.” This is not to be confused
with the presence of quenched disorder, which we shall also
discuss.

’In this section we consider a scalar order parameter for sim-
plicity, but later we shall encounter more general cases.

SAt T>0, a stable phase can have a higher internal energy U
than an unstable one, as long as its entropy S is also higher. At
T=0, the stable phase must represent a minimum of the inter-
nal energy.
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FIG. 1. Phase diagram of UGe,. Adapted from Saxena et al.,
2000.

thermal control parameter, e.g., hydrostatic pressure,
one can suppress the Curie temperature to zero (see Fig.
1). The phase transition can then be triggered in particu-
lar by varying the pressure at 7=0. Obviously, Landau
theory predicts the same critical behavior in either case:
The magnetization m vanishes as m(r— 0)=-r/2u, ir-
respective of how r is driven to zero. This is an example
of the “superuniversality” inherent in Landau theory: It
predicts the critical exponents to be the same for all
critical points. For instance, the critical exponent 3, de-
fined by m«|r|P, is predicted to have the value S=1/2.
A complete description of a statistical-mechanics sys-
tem requires, in addition to the thermodynamic proper-
ties encoded in the free energy, knowledge of time cor-
relation functions. Of particular interest is the order-
parameter susceptibility x,,. As a critical point is
approached from the disordered phase, the harbingers
of the latter’s instability are diverging order-parameter
fluctuations, which lead to a divergence of y,, at zero
frequency and wave number. Within Landau theory,
these fluctuations are described in a Gaussian approxi-
mation (Landau and Lifshitz, 1980). For the wave-
number-dependent static order-parameter susceptibility
Xm(k) this yields the familiar Ornstein-Zernike form

Xim(k) (1.2a)

r+ck®

with ¢ a constant. In real space, this corresponds to ex-
ponential decay,

Xon(X) o || Le7HIE] (1.2b)

where the correlation length ¢ diverges, for r—0, ac-
cording to &xr 12,

The order-parameter fluctuations at criticality, r=0,
are an example of a soft mode.,* ie., fluctuations that
diverge in the limit of small frequencies and wave num-

“The terms “soft,” “gapless,” and “massless” are used inter-
changeably in this context, with the first and second most
popular in classical and quantum statistical mechanics, respec-
tively, and the third one borrowed from particle physics.
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bers as illustrated by Egs. (1.2a) and (1.2b). The soft-
mode concept will play a crucial role in the remainder of
this article. In addition to modes that are soft only at the
critical point, we shall discuss, in Sec. II, modes that are
soft in an entire phase. The coupling between such “ge-
neric soft modes” and the critical order-parameter fluc-
tuations can have profound consequences for the critical
behavior, as we shall see in Secs. III and IV. These con-
sequences are the main topic of this review, but before
we can discuss them we need to recall some additional
aspects of critical behavior.

Equations (1.2a) and (1.2b) define three additional
critical exponents, namely, the correlation length expo-
nent v, defined by &x|r|7”, and the susceptibility expo-
nents y and 7, defined by x,,(k=0)er~” and Y,,(r=0)
«|k|[?*7. Landau theory universally predicts v=1/2, y
=1, and 7=0.

Universality is actually observed in experiments, but it
is weaker than the superuniversality predicted by Lan-
dau theory, and the observed values of the exponents
are in general different from what Landau theory pre-
dicts. For instance, all bulk Heisenberg ferromagnets
have a B=0.35 (see, for example, Zinn-Justin, 1996),
which is significantly smaller than the Landau value.
Similarly, all bulk Ising ferromagnets have a common
value of B, but that value, 8~0.32, is different from the
one in Heisenberg systems. The critical exponents also
turn out to be different for systems of different dimen-
sionality, again in contrast to the prediction of Landau
theory. For instance, in two-dimensional Ising ferromag-
nets, 8=1/8 (Onsager, 1948; Yang, 1952).

B. Landau-Ginzburg-Wilson theory, the renormalization
group, and scaling

The reason for the failure of Landau theory to cor-
rectly describe the details of the critical behavior is that
it does not adequately treat the fluctuations of the order
parameter about its mean value. The deviations of these
fluctuations from a Gaussian character in general are
stronger for lower dimensionalities and for order param-
eters with fewer components. This explains why the
critical behavior of Ising magnets deviates more strongly
from the Landau value than that of Heisenberg magnets
and why the exponents of bulk systems are closer to the
mean-field values than those of thin films. This observa-
tion suggests that Landau theory might actually yield the
correct critical behavior in systems with a sufficiently
high dimensionality d. Indeed, it turns out that in gen-
eral there is an upper critical dimensionality, d;, such
that for d >d_ fluctuations are unimportant for the lead-
ing critical behavior, and Landau theory gives the cor-
rect answer (this follows from the Ginzburg criterion;
see, for example, Cardy, 1996, Sec. 2.4). For the ferro-
magnetic transition at 7>0, d;=4. For d<d_, fluctua-
tions need to be taken into account beyond the Gaussian
approximation in order to obtain the correct critical be-
havior. This problem was solved by Wilson (Wilson and
Kogut, 1974; see also, Ma, 1976; Fisher, 1983). He gen-
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eralized the Landau functional, Eq. (1.1), by writin§ the
partition function Z=e¢"'7 as a functional integral,

Z=eltT= f D[ ple 4], (1.3a)
where
1
S[e]= v f dx{F($(x)) + c(V ¢(x))?] (1.3b)

is usually referred to as the action. Here V is the system
volume, and ¢ is a fluctuating field whose average value
with respect to the statistical weight exp(-S) is equal to
m. This Landau-Ginzburg-Wilson (LGW) functional is
then analyzed by means of the renormalization group
(RG);6 the lowest-order, i.e., saddle-point-Gaussian, ap-
proximation recovers Landau theory. Wilson’s RG takes
advantage of the fact that at a critical point there is a
diverging length scale, namely, the correlation length &,
which dominates the long-wavelength physics. By inte-
grating out all fluctuations on smaller length scales, one
can derive a succession of effective theories that de-
scribe the behavior near criticality. The RG made pos-
sible the derivation and proof of the behavior near criti-
cality known as scaling, which previously had been
observed empirically and summarized in the scaling
hypothesis.” Due to scaling, all static critical phenomena
are characterized by two independent critical exponents,
one for the reduced temperature® r=|T—T,| and one for
the field 4 that is conjugate to the order parameter. Let
u=(r,h) define the space spanned by these two param-
eters. Under RG iterations, the system moves away
from criticality according to

p— u(b) = (rb'",hb"), (1.4a)

where b>1 is the RG rescaling factor. » is the correla-
tion length exponent defined above, and y,, is related to
the susceptibility exponent 7 by

yr=(d+2-n)2. (1.4b)

The exponents 1/v and y,, illustrate the more general
concept of scale dimensions, which determine how pa-
rameters change under RG transformations. If p is some
parameter with scale dimension [p], then p(b)=p,bl"],
with pg=p(b=1). Accordingly, [r]=1/v, and [h]=y,. Pa-
rameter values u* with the property u"(b)=u" constitute

>We use units such that Boltzmann’s constant, Planck’s con-
stant, and the Bohr magneton are equal to unity.

6Pedagogical expositions of the Wilsonian RG have been
given by Wilson and Kogut (1974); Ma (1976); Fisher (1983);
Goldenfeld (1992); and Cardy (1996).

"The state of affairs just before the invention of the RG was
reviewed by Kadanoff ez al. (1967) and Stanley (1971).

0ne needs to distinguish between the exact or fully renor-
malized value of r, which appears in formal scaling arguments,
the bare value of r, which appears in Landau theory or in the
LGW functional, and any partially renormalized values. We
shall explicitly make this distinction when doing so is essential,
but will suppress it otherwise.
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a RG fixed point. Parameters with positive, zero, and
negative scale dimensions with respect to a particular
fixed point are called relevant, marginal, and irrelevant
parameters, respectively. A critical fixed point is charac-
terized by the presence of two and only two relevant
parameters, r and h. The critical behavior of all ther-
modynamic quantities follows from a generalized
homogeneity law satisfied by the free-energy density f
=—(T/V)n Z,

f(r,h) = b= f(rb"" hb¥n). (1.5)

The derivation of this relation was one of the major tri-
umphs of the RG. In conjunction with the Wilson-Fisher
€ expansion (Wilson and Fisher, 1972), it allows for the
computation of the critical exponents in an asymptotic
series’ about d.

In addition to the diverging length scale set by &, there
is a diverging time scale ;. Its divergence is governed by
the dynamical critical exponent z, according to 7, &,
and it results in the phenomenon of “critical slowing
down” (van Hove, 1954; see also Landau and Khalatni-
kov, 1954; a translation of the latter paper appears in
Landau, 1965, p. 626), that is, the very slow relaxation
towards equilibrium of systems near a critical point. The

critical behavior of time correlation functions
C(k,Q;r,h) is given by
C(k,Q:r,h) = b*cC(kb,Qb%;rb"" hb*h). (1.6)

Here ) denotes the frequency, which derives from a
Fourier transform of the time dependence. x is an ex-
ponent that is characteristic of the correlation function
C. This relation was first postulated as the “dynamical
scaling hypothesis” (Ferrell et al., 1967, 1968; Halperin
and Hohenberg, 1967) and was later also derived by dy-
namical RG techniques (Hohenberg and Halperin,
1977).

C. Classical versus quantum phase transitions

In classical statistical mechanics, the dynamical critical
exponent z is independent of the static critical behavior
(Ma, 1976; Hohenberg and Halperin, 1977). The reason

It is a popular misconception that the RG is useful only for
dealing with critical phenomena. In fact, the technique is much
more powerful and versatile, and can describe entire phases as
well as the transitions between them; see Sec. II below. Al-
though this was realized by the founding fathers of the RG
(see Anderson, 1984, Chap. 5; Fisher, 1998), it has been ex-
ploited only recently (see, for example, Shankar, 1994). It is
interesting to note that the systematic application of the Wil-
sonian RG to condensed-matter systems implements a pro-
gram that in a well-defined way is the opposite of that in high-
energy physics. In condensed-matter physics, the microscopic
theory is known for all practical purposes, viz., the many-body
Schrodinger equation. By applying the RG one derives effec-
tive theories valid at lower and lower energy scales. In high-
energy physics, some effective theory valid at relatively low
energies is known (say, the standard model), and the goal is to
deduce a “more microscopic” theory valid at higher energies.
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is as follows. Classically, the canonical partition function
for a system consisting of N particles with f degrees of
freedom is given as an integral over phase space of the
Boltzmann factor,

1
- -BH(p.q)
=N f dp dqg e

:% f dp ePin®) J dg ePllool®

= const X f dq e PHpol®) (1.7)

Here B=1/T is the inverse temperature, p and g repre-
sent the generalized momenta and coordinates, respec-
tively, H is the Hamiltonian, and Hy;, and H,,, are the
kinetic and potential energy, respectively.'” Due to the
factorization of the phase-space integral indicated in Eq.
(1.7), one can integrate over the momenta and solve for
the thermodynamic critical behavior without reference
to the dynamics.

In quantum statistical mechanics, the situation is dif-

ferent. The Hamiltonian H, and its constituents I:Ikin and

A

H,, are now operators, and I:Ikin and I:IPDt do not com-
mute. Consequently, the grand canonical partition func-
tion,

7 =Tr e—ﬁ(lﬁl—uﬁ’) =Tr e‘ﬁ(l:lkin"'f}pot_l’«[:/), (1.8)
does not factorize, and one must solve for the dynamical
critical behavior together with the thermodynamics. This
becomes even more obvious if one rewrites the partition
function as a functional integral (Casher et al., 1968;
Negele and Orland, 1988). We shall consider fermionic
systems, in which case the latter is taken with respect to

Grassmann-valued (i.e., anticommuting) fields ¢ and y,"!

Z= J D[, heSH4, (1.9a)

The action § is determined by the Hamiltonian,

_ B _
ST - f ar f axS Gl 1) .+ 1))
0 o

B
- f dr f dx H(,(x,7),,(x,7).  (1.9b)
0

Here x denotes the position in real space, o is the spin

index,'? and the fields 1,7/,,(x,7') and ¢,(x,7) are, for each
value of 7, in one-to-one correspondence with the cre-
ation and annihilation operators of second quantization,

10We assume that there are no velocity-dependent potentials.

"For a thorough treatment of Grassmannian algebra and cal-
culus, see Berezin, 1966.

Lo may also comprise other quantum numbers, e.g., a band
index, depending on the model considered.
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&Z(x) and i,(x), respectively. They obey antiperiodic
boundary conditions, ¢, (x,7=0)=—¢,(x,7=8). The
function H is defined such that H= Jdx H( @Z(x) , 1,?/(,(x)).

w is the chemical potential, and N in Eq. (1.8) is the
particle number operator. A quantum-mechanical gener-
alization of the LGW functional can be derived from
Eq. (1.9b) by constraining appropriate linear combina-

tions of products  of fermion fields to a bosonic order-
parameter field ¢ and integrating out all other degrees
of freedom. Often one can also just write down a LGW
functional based on symmetries and other general con-
siderations.

Due to the coupling of statics and dynamics, the scal-
ing relation (1.5) for the free energy must be generalized
to (see, for instance, Sachdev, 1999)

f(r,h,T) = b~ If(r b" h b¥n, T b7). (1.10)

This relation reflects the fact that the temperature is
necessarily a relevant operator at a 7=0 critical point
and that temperature and frequency are expected to
scale the same way."

Equation (1.9b) displays another remarkable property
of quantum statistical mechanics. The auxiliary variable
7, usually referred to as imaginary time, acts effectively
as an extra dimension. For nonzero temperature, S
=1/T <o, this extra dimension extends only over a finite
interval. If one is sufficiently close to criticality that the
condition 7,>1/T is fulfilled, the extra dimension will
not affect the leading critical behavior. Rather, it will
only lead to corrections to scaling that are determined
by finite-size scaling effects (Barber, 1983; Cardy, 1996).
We thus conclude that the asymptotic critical behavior at
any transition with a nonzero critical temperature is
purely classical. However, a transition at 7=0 is de-
scribed by a theory in an effectively different dimension,
and will therefore in general be in a different universal-
ity class. This raises the question of how continuity is
ensured as one moves to 7=0 along the phase-
separation line. The resolution is that, at low tempera-
tures, the critical region, i.e., the region around the
phase-separation line where critical behavior can be ob-
served, is divided into several regimes. Asymptotically
close to the transition the critical behavior is classical at
any nonzero temperature,14 but since this asymptotic
classical regime is bounded by a crossover at 1/7,~T, it
shrinks to zero as T—0. In the vicinity of the quantum
critical point, quantum critical behavior is observed ex-
cept in the immediate vicinity of the phase boundary.

13 As we shall see later, the latter expectation can be violated,
due to (1) the existence of multiple temperature and/or fre-
quency scales and (2) the existence of dangerous irrelevant
variables (Fisher, 1983).

YThis includes the transitions at nonzero temperature in, say,
superconductors or superfluids. Although the occurrence of
the transition in these cases, and indeed the very existence of
the order parameter, depend on quantum mechanics, the criti-
cal properties are described by classical physics.
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p

FIG. 2. Schematic phase diagram in the 7-p plane, as in Fig. 1.
The solid line is the phase-separation line, separating the fer-
romagnetic (FM) phase from the paramagnetic (PM) one,
which ends in the quantum critical point (QCP). The critical
region in the vicinity of the phase-transition line is bounded by
the dashed lines, which are defined as the loci of points where
the correlation length is a certain multiple of the microscopic
length scale. The critical region is separated into four regimes
that show different scaling behaviors: Region I (light shading)
displays classical scaling governed by the classical fixed point.
Regions IIa and IIb (dark shading) display static or
temperature-independent quantum scaling governed by the
zero-temperature fixed point, and region I1I (medium shading)
displays dynamic or temperature quantum scaling. In regions
IVa and IVDb one has crossover scaling governed by both fixed
points. The edges of the critical region, as well as the bound-
aries between the various scaling regimes, are not sharp. No-
tice that the dashed lines are not parallel to the phase-
separation line, since both the exponents v and the critical
amplitudes associated with the classical and quantum fixed
points, respectively, in general have different values.

This quantum critical regime is in turn divided into a
region characterized by 7T=<r'?, where one sees static
quantum critical behavior approximately independent of
the temperature, and a region characterized by T=r",
where one observes dynamic or temperature scaling. In
the literature, the term “quantum critical regime” is of-
ten used for the latter region only. Finally, there is a
regime inside the critical region but outside both the
asymptotic classical and the quantum scaling regimes.
This is characterized by crossover scaling governed by
both the classical and quantum fixed points. These vari-
ous regimes are shown schematically in Fig. 2.
Equation (1.9b) suggests that imaginary time or in-
verse temperature always scales like a length, i.e., that
the dynamical critical exponent z=1 at any quantum
phase transition. Indeed, early work generalizing the
Wilsonian RG to quantum systems either dealt with sys-
tems in which z=1 (Suzuki, 1976) or assumed that z=1
universally (Beal-Monod, 1974). This is misleading, how-
ever. The point is that Eq. (1.9b) represents the bare
microscopic action. Under renormalization, or even
when integrating out degrees of freedom to derive a
bare effective action, the relation between space and
imaginary time can change. As a result, z can assume
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any positive value, as was realized by Hertz (1976)."
Hertz also noted the following interesting consequence
of the space-time nature of quantum statistical mechan-
ics, which holds independently of the exact value of z.
Since the quantum-mechanical theory is effectively
higher dimensional than the corresponding classical one,
fluctuation effects are weaker, and mean-field theory will
be more stable. Indeed, since Landau theory is valid
classically for d>d_, quantum mechanically it should be
valid for d>d;-z. Since d{=4 for many phase transi-
tions, and usually z=1, it seems to follow that most
quantum phase transitions in the most interesting di-
mension, d=3, show mean-field critical behavior. Hertz
(1976) demonstrated this conclusion by means of a de-
tailed LGW theory of the quantum phase transition in
itinerant Heisenberg ferromagnets, in which d;=4 and
z=3 in Hertz’s theory.

D. The soft-mode paradigm

The above chain of arguments implies that a quantum
phase transition is closely related to the corresponding
classical phase transition in a higher dimension. Since
this higher dimension will usually be above the upper
critical dimension, the conclusion seems to be that quan-
tum phase transitions generically show mean-field criti-
cal behavior and are thus uninteresting from a critical
phenomena point of view. In this review we discuss one
of the reasons why this is in general not correct. More
generally, we shall discuss how the entire concept of a
LGW theory in terms of a single order-parameter field
can break down for either classical or quantum transi-
tions, and why this breakdown is more common for the
latter than for the former. The salient point is that a
correct description of a phase transition, i.e., of phenom-
ena at long length and time scales, must take into ac-
count a/l soft modes. If there are soft modes in addition
to the order-parameter fluctuations, and if the former
couple sufficiently strongly to the latter, then the behav-
ior cannot be described in terms of a local field theory
for the order-parameter fluctuations only. Away from
the quantum phase transition, these extra soft modes,
via interactions or nonlinear couplings, lead to power-
law correlations in various physical correlation func-
tions. This phenomenon is called generic scale invariance
and we shall discuss it in Sec. II.

In a derivation of a LGW functional from a micro-
scopic theory this manifests itself as follows. As men-

50ne might object that the underlying microscopic theory
must be Lorentz invariant, so z=1 after all. Again, this argu-
ment ignores the fact that the RG derives an effective low-
energy theory valid at small wave numbers and frequencies. In
the critical theory, the relevant frequency, 1/7 is zero. An-
other way to say this is that the speed of light has been renor-
malized to c=2. The critical theory is therefore rigorously non-
relativisticc. As we have seen above, at any nonzero
temperature, # renormalizes to zero, and the critical theory is
also rigorously non-quantum-mechanical.
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tioned above, such a derivation involves integrating out
all degrees of freedom other than the order-parameter
field. The parameters in the LGW functional are given
in terms of integrals over the correlation functions of
these degrees of freedom. If there are soft modes other
than the order-parameter fluctuations, then these inte-
grals may not exist, which can lead to diverging coeffi-
cients in the LGW theory. At the level of Landau or
mean-field theory this manifests itself as a nonanalytic
dependence of the free energy on the mean-field order
parameter. We shall see later, in Secs. I1I.A.3 and IV.A.3,
respectively, that both in liquid crystals and in quantum
ferromagnets, extra soft modes lead to an effective Lan-
dau free energy

F=rm*+vm*Inm? + um*+ - - (1.11)

as opposed to Eq. (1.1). The situation gets worse if
order-parameter fluctuations are taken into account.
Writing down a LGW theory based on symmetry consid-
erations, or even deriving one in some crude approxima-
tion, will in general lead to erroneous conclusions if ad-
ditional soft modes are present. A correct derivation,
however, will lead to coefficients that are singular func-
tions of space and imaginary time, which renders the
theory useless. A more general approach, which keeps
all of the soft modes on an equal footing, is thus called
for. Getting in trouble by integrating out, explicitly or
implicitly, additional excitations is not unprecedented in
physics. For instance, the Fermi theory of weak interac-
tions can be considered as resulting from integrating out
the W gauge bosons in the Standard Model. This results
in a theory that is not renormalizable (see, for example,
LeBellac, 1991).

Before we enter into details, let us elaborate some-
what on the general aspects of this breakdown of LGW
theory. Imagine a transition from a phase with an
already-broken continuous symmetry to one with an ad-
ditional broken symmetry. Then the Goldstone modes of
the former will in general influence the transition. A
good classical example of this mechanism is the
nematic-smectic-A transition in liquid crystals (de
Gennes and Prost, 1993), which we shall discuss in Sec.
IIILA. However, for the most obvious classical phase
transitions, e.g., for the liquid-gas critical point, generic
soft modes affect only the dynamics, i.e., the critical be-
havior of transport coefficients (Hohenberg and Halp-
erin, 1977). Quantum mechanically, the concept is more
important, for two reasons: (1) There are more soft
modes at T=0 than at 7>0. An example that will be
important for our discussion is the particle-hole excita-
tions in an electron fluid that are soft at 7=0 and ac-
quire a mass proportional to 7 at T>0. They couple
strongly to the magnetization, with consequences for the
quantum ferromagnetic transitions that will be discussed
in Sec. IV below. They also provide a good example of
the phenomenon of generic scale invariance, which we
shall discuss in detail in Sec. II. (2) Quantum mechani-
cally, the statics and the dynamics are coupled, as we
have discussed above, and therefore effects that classi-
cally would affect only the dynamics influence the static
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critical behavior as well. As a result of these two points,
the original concept of mapping a quantum phase tran-
sition onto the corresponding classical transition in a
higher dimensionality turns out to be mistaken. Rather,
the mapping is in general onto a classical transition with
additional soft modes.

In systems with generic scale invariance the correla-
tion length, which diverges at the critical point, must be
defined differently from Eq. (1.2b). The reason for this is
that the order-parameter correlations decay as power
laws both at and away from the critical point, albeit with
different powers, the decay being slower at criticality. In
this case, ¢ is the length scale that separates the generic
power-law correlations from the critical ones. Specifi-
cally, in the scaling region, and for |x|<§, the correla-
tions obey the critical power law, while for |x|>¢ the
correlations show the generic power law.

In addition to this mechanism, there are other reasons
why quantum phase transitions can be more complicated
than one might naively expect. In low-dimensional sys-
tems, topological order can lead to very nontrivial ef-
fects. One example is the intricate behavior of spin
chains (Haldane, 1982, 1983); another is the recent pro-
posal of exotic quantum critical behavior in two-
dimensional quantum antiferromagnets (Senthil ez al.,
2004a, 2004b). In addition, the quantum phase transition
may have no classical counterpart, and hence no classi-
cal upper critical dimension. Examples include metal-
insulator transitions (Mott, 1990; Kramer and MacKin-
non, 1993; Belitz and Kirkpatrick, 1994) and transitions
between quantum Hall states (Sondhi et al., 1990). These
phenomena are beyond the scope of the present review.

Finally, we mention that there are also examples of
quantum phase transitions in which none of the above
complications arise and Hertz theory (Hertz, 1976) is
valid. This class of transitions includes quantum meta-
magnetic transitions (Millis, Schofield, et al., 2002; see
Fig. 16 for an example) and the liquid-crystal-like tran-
sitions in high-7, superconductors and quantum Hall
systems (Du et al., 1999; Emery et al., 1999; Lilly et al.,
1999; Oganesyan et al., 2001). One would also expect this
class to include clean antiferromagnetic systems without
local moments, although no convincing experimental ex-
amples have been found so far. A general classification
of which quantum phase transition should be affected by
generic soft modes has been attempted by Belitz et al.
(2002). Although they are very interesting, we shall not
further consider these “simple” quantum phase transi-
tions in this review.

Il. GENERIC SCALE INVARIANCE

Correlation functions characterize how fluctuations at
one space-time point are correlated with fluctuations at
another point (see, for example, Forster, 1975). The de-
fault expectation is that they decay exponentially for
large distances in space or time; we expect fluctuations
that are far apart to be weakly correlated. If they are,
then there is a characteristic length or time scale associ-
ated with the decay, and the correlations are said to be
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of short range. It is well known that at special points in
the phase diagram, at critical points in particular, certain
correlations may decay only as power laws in space
and/or time (see, for example, Ma, 1976). In this case,
the correlations are called long ranged (in space) or long
lived (in time); we shall call them long ranged regardless
of whether the reference is to space or to time. Such
correlation functions exhibit scale invariance: A scale
change in space and/or time can be compensated by
multiplying the correlation function by a simple scale
factor. This property is conveniently expressed in terms
of generalized homogeneous functions (see, for ex-
ample, Chaikin and Lubensky, 1995); see, for example,
Egs. (1.5) and (1.6). In addition, systems can exhibit
scale invariance in whole regions of the phase diagram,
rather than only at special points. In this case one speaks
of “generic scale invariance” (GSI; Law and Nieuwoudt,
1989; Nagel, 1992; Dorfman et al., 1994). In this section
we discuss various mechanisms for GSI in both classical
and quantum systems, highlighting their similarities and
differences. Before we go into detail, we list several
mechanisms that can lead to this phenomenon.

(1) Spontaneous breaking of a global continuous sym-
metry leads to Goldstone modes that are massless
everywhere in the broken-symmetry phase (Forster,
1975; Zinn-Justin, 1996). This mechanism is opera-
tive in both classical and quantum systems.

(2) Gauge symmetries lead to soft modes since a mass
would be incompatible with gauge invariance (Ry-
der, 1985; Weinberg, 1996a, 1996b; Zinn-Justin,
1996). The only case we shall be interested in is the
U(1) gauge symmetry that underlies the massless-
ness of the photon.

Both of these mechanisms, if operative, lead to soft
modes that directly result, in obvious ways, from the
symmetry in question, and hence lead to GSI that we
shall refer to as direct GSI. What is usually less obvious
is that these soft modes, via mode-mode coupling ef-
fects, can lead to other modes’ becoming soft as well. We
shall see various examples of these indirect GSI effects.
Another source of direct generic scale invariance is

(3) conservation laws, which lead to power-law tempo-
ral decay of local time correlation functions (Forster,
1975). There are two ways in which conservation
laws can lead to indirect GSI:

(3a) The conservation laws can appear in conjunction
with mode-mode coupling effects, or nonlinearities
in the equations of motion (Pomeau and Resibois,
1975; Boon and Yip, 1991). In classical systems, this
leads to long-ranged time correlation functions; in
quantum systems, it leads to long-ranged time cor-
relation functions and thermodynamic quantities.

(3b) Conservation laws in conjunction with a nonequilib-
rium situation (Kirkpatrick et al., 1982a, 1982b;
Schmittmann and Zia, 1995) can lead to long-ranged
time correlation functions and thermodynamic
quantities even in classical systems.
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In what follows we discuss specific examples, starting
with classical systems.

A. Classical systems

We now illustrate the four mechanisms listed above by
means of four examples that show how they lead to
long-ranged correlations in classical systems. For each
case we give a general discussion, followed by the speci-
fication of a suitable model and a demonstration of how
explicit calculations and, where applicable, RG argu-
ments yield generic scale invariance.

1. Goldstone modes

To illustrate the Goldstone mechanism for long-
ranged spatial correlations in equilibrium, we choose as
an example a generalized Heisenberg ferromagnet with
an N-dimensional order parameter. N=3 represents the
usual Heisenberg magnet, which will be relevant later in
this review. Let ¢(x) be the fluctuating magnetization,
with m=(¢(x)) its average value, and let & be an exter-
nal magnetic field conjugate to the order parameter.
Goldstone’s theorem (Goldstone, 1961; Goldstone et al.,
1962) states that, whenever there is a spontaneously bro-
ken global continuous symmetry, there will be massless
modes. (This is not true for local, or gauge, symmetries;
see Sec. II.A.2 below.) To understand this concept, sup-
pose that the action is invariant under rotations of the
vector field ¢ provided that A=0. This implies that the
order parameter in zero field vanishes, m(h=0)=0, due
to rotational invariance. However, in the limit A—0
there are two possible behaviors, depending on the tem-
perature, which determine whether the system is in the
disordered phase or in the ordered phase, namely,

m(h — 0)=0 (disordered phase), (2.1a)

m(h —0) #0 (ordered phase). (2.1b)

The situation in the ordered phase is sometimes also
characterized by saying that the action obeys the sym-
metry while the state does not, and it is referred to as a
spontaneously broken continuous symmetry.16 In the or-
dered phase, one still has invariance with respect to ro-
tations that leave the vector m fixed, i.e., with respect to
the subgroup O(N-1) that is the little group of m. Gold-
stone’s theorem says that this results in as many soft
modes as the quotient space O(N)/O(N-1) has dimen-
sions, i.e., there are dim [O(N)/O(N-1)]=N-1 Gold-
stone modes. These soft modes are perpendicular or
transverse to the direction m of the spontaneous order-
ing. For example, if ¢p=(¢,...,¢y) and there is sponta-
neous ordering in the N direction, then one has, in the
limit £#— 0 and for asymptotically small wave numbers,

In this case, the continuous symmetry is characterized by
the group O(N), but the concept is valid for arbitrary Lie
groups. A useful reference for Lie groups, or continuous
groups, is Gilmore, 1974.

Rev. Mod. Phys., Vol. 77, No. 2, April 2005

(pilk)p(~ k) = 8/ ¢k (i,j=1,..,N=1),  (22a)

where ( is called the stiffness coefficient of the Goldstone
modes. In real space say, in, three dimensions, this im-
plies that for large distances, |x;—x,| — <,

(¢i(x1)¢>j(x2)) os 1/|x1 — x2| . (22b)

We see that Goldstone’s theorem gives rise to power-law
correlations, or GSI, in the entire ordered phase. In the
terminology explained above, this is an example of di-
rect GSI.

a. Nonlinear o model

To illustrate the Goldstone mechanism more explic-
itly, and for later reference, let us consider the derivation
of a nonlinear o model (Gell-Mann and Lévy, 1960;
Polyakov, 1975; Brézin and Zinn-Justin, 1976; Nelson
and Pelcovits, 1977; Zinn-Justin, 1996) for our
O(N)-symmetric Heisenberg ferromagnet. We specify
the action by

Sl¢]= f dx{r¢*(x) + c(V (x))* + u ¢*(x)

—h ¢n(x)]. (2.3)
Here ¢*=¢;¢' and (Vp)>=d,¢p,0°¢', with i=1,...,N and
a=1,...,d in d dimensions. Summation over repeated

indices is implied, and we have assumed an external field
in the N direction. § determines the partition function
via Eq. (1.3a). For A=0, it is obviously invariant under
O(N) rotations of the vector field ¢. In the low-
temperature phase, where the O(N) symmetry is spon-
taneously broken,'” it is convenient to decompose ¢ into

its modulus p and a unit vector field ¢,

d(x) = p(x)p(x), H(x)=1.

¢ parametrizes the (N—1) sphere, which is isomorphic to

the coset space O(N)/O(N-1). In terms of p and (25, the
action is'®

(2.4)

Slp. )= f dx p*(x)[V ()] + J dx[rp?(x)

+c?[Vp() P+ up*(x)] - h f dx p(x) py(x).

(2.5)

The bare values of ¢V and ¢ are equal to c. Notice that
the field ¢ appears only in conjunction with two gradi-

ent operators. This implies that the ¢ fluctuations rep-
resent the N—1 Goldstone modes of the problem, while

YProvided that d>2; no spontaneous symmetry breaking oc-
curs in d<2 (Mermin and Wagner, 1966).

3The change of variables from ¢ to (p, ) also changes the
integration measure in Eq. (1.3a). If one eliminates o in terms

of m, Egs. (2.6a) and (2.6b), the measure changes again; see
Zinn-Justin, 1996.
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the p fluctuations represent the massive mode. Assum-
ing the system is in the ordered phase, and taking the

order to be in the N direction, we parametrize ¢ as fol-
lows:

B(x) = (m(x),0(x)),

where the vector 7 represents the N—1 transverse direc-
tions, and

o(x) =[1 - 7 (x)]"2.

Next we split off the expectation value of the massive
field by writing p(x)=M + Sp(x), with M =(p(x)). Absorb-
ing appropriate powers of M into the coupling constants,
we can write the action

(2.6a)

(2.6b)

S[p’ 77] = SNLa’M[ﬂ] + 5S[p9 77] (273)
Here
SnLoml 7] = g f dx[(V m(x))* + (Vo(x))*]
-h f dx o(x) (2.7b)

is the action of the O(N) nonlinear o model, with the
bare value of { equal to 2cM?. 8S is the part of the action
that contains the dp fluctuations as well as the coupling

between Sp and @,

sS=r J dx(8p(x))* + O(3p™,(V 5p)*,58p, 5p(V $)?).
(2.7¢)

This parametrization of the model accomplishes an ex-
plicit separation into modes that are soft in the broken-
symmetry phase (i.e., the s fields), modes that are mas-
sive (i.e., the &p field), and couplings between the two.

b. Generic scale invariance from explicit calculations
At the Gaussian level, the action reads

¢

Sg= ) dx(V m(x))* + g J dx(7(x))?

+r f dx(5p(x))? + c? f dx(V 8p(x))>. (2.8)
Here we see explicitly that the Gaussian ar propagators
are soft as 1 —0,

(mi(k) (= k) = 8/ (LK + h). (2.9)

That is, they have the form given by Eq. (2.2a), while the
Jp propagator is massive. Explicit perturbative calcula-
tions (Nelson and Pelcovits, 1977) show that this does
not change within the framework of a loop expansion. It
is also interesting to consider the explicit perturbation
theory for the magnetization m=M({co(x)). To one-loop
order, Eq. (2.6b) yields
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1
mivt=1- 1 f (mip) (- p))
V4

=m(h =0)/M + consth'*2"2, (2.10)
Here [,=] dp/(2m)?, and we show only the leading
nonanalytic dependence of m on A.

c. Generic scale invariance from RG arguments

The next question is whether these perturbative re-
sults are generic, and valid independent of perturbation
theory. Within a perturbative RG (Brézin and Zinn-
Justin, 1976; Nelson and Pelcovits, 1977) this can be
checked order by order in a loop expansion. The fact
that Eqgs. (2.9) and (2.10) are valid to all orders in per-
turbation theory, and are indeed exact properties inde-
pendent of any perturbative scheme, hinges on the proof
of the renormalizability of the nonlinear o model
(Brézin et al., 1976).

Here we present a much simpler, if less complete, ar-
gument based on power counting (Belitz and Kirk-
patrick, 1997). We employ the concept of Ma (1976),
whereby one postulates a fixed point and then self-
consistently checks its stability. Accordingly, we assign a
scale dimension [L]=-1 to lengths L and look for a
fixed point where the fields have scale dimensions

[m(x)]=(d-2)/2, (2.11a)

[Sp(x)]=d/2 (2.11b)
in d dimensions. This ansatz is motivated by the expec-
tation that the Gaussian approximation for the = corre-
lation, Eq. (2.9), is indeed exact and that &p is massive.
Power counting shows that { and r are marginal, while
all other coupling constants are irrelevant except for #,
which is relevant with [4]=2. In particular, all terms in
oS that do not depend on £ are irrelevant with respect to
the putative fixed point, and so is the term (Vo)? in
Snrom- The fixed point is thus stable and describes the
ordered phase. The fixed-point action plus the most rel-
evant external-field term is Gaussian,

Spp = g J dx(V m(x))? + ]% f dx(m(x))?

+r J dx(8p(x))?. (2.12)

We see that the -7 correlation function for asymptoti-
cally small wave numbers is indeed given by Eq. (2.9),
i.e., one has soft Goldstone modes, or GSI, everywhere
in the ordered phase. Notice that the above RG argu-
ments prove this statement, although the proof is not
rigorous in a mathematical sense. Furthermore, the
fixed-point value of the magnetization, m=M(o(x)), is
given by M, and the leading correction is given by the
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a7 correlation function.!” The scale dimensions of 7
and / then yield

m(h) =m(h =0) + const X h'@272, (2.13a)

in agreement with the perturbative result, Eq. (2.10).
This in turn implies that the longitudinal susceptibility

XL = dmloh = B2 (2.13b)

diverges in the limit #—0 for all d<4 (Brézin and Wal-
lace, 1973). Alternatively, the zero-field susceptibility di-
verges in the homogeneous limit as

Xk — 0) o [k| =4, (2.13¢)

In real space this corresponds to a decay as 1/]x|>@2),

The above arguments assume that no structurally new
terms are generated under renormalization which might
turn out to be marginal or relevant; this is one of the
reasons why the proof is not rigorous. With this caveat,
they show that several properties of isotropic Heisen-
berg ferromagnets that are readily obtained by means of
perturbation theory are indeed exact. They also illus-
trate how much more information can be extracted from
simple power counting after performing a symmetry
analysis and separating the soft and massive modes, as
opposed to doing power counting on the original action,
Eq. (2.3) (Ma, 1976). More importantly for our present
purposes, they illustrate how soft modes in the presence
of nonlinearities lead to slow decay of generic correla-
tion functions. In the present case, the transverse Gold-
stone modes couple to the longitudinal fluctuations,
which leads to the long-range correlations expressed in
Eq. (2.13c). This is an example of indirect GSI due to
mode-mode coupling effects. In Sec. II.A.3 we shall see
that a very similar mechanism leads to long-ranged time
correlation functions in classical fluids.

2. U(1) gauge symmetry

The second mechanism on our list is generic scale in-
variance caused by a gauge symmetry. Let us consider ¢*
theory again, Eq. (2.3), with N=2 or, equivalently, with a
complex scalar field ¢. Let us further require that the
theory be invariant under local U(1) gauge transforma-
tions,

P(x) — ¢'(x) =NV (x),

with an arbitrary real field A. It is well known (see, for
example, Ryder, 1985) that this requirement forces the
introduction of a gauge field A with components A, («
=1,2,3 in three dimensions) that transforms as

(2.14a)

Alx) - A'(x) =A(x) +$VA(x), (2.14b)

and a new action

YA detailed analysis shows that 85 does not contribute to the
leading corrections to scaling at the stable fixed point.
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S[¢,A]=fdx<r|¢(x)|2+6|[V—iqA(x)]¢(x)|2

+u|p(x)|* +

1
1677MFa'B(x)FaB(x)> ., (2.15a)

where

Fop(x) = 0,A g(x) — dpA o(x). (2.15b)

Here w and g are coupling constants that characterize
the gauge field A and its coupling to ¢, respectively. The
usual interpretation of this action is that of a charged
particle, or excitation, with charge ¢, described by ¢,
that couples to electromagnetic fluctuations, or photons,
described by the vector potential A. We shall see in Sec.
III.A.1, however, that it can describe other systems as
well, at least within certain limits.

a. Symmetric phase

Let us first discuss the symmetric phase, in which both
fields have zero expectation values. In this phase, we
expect the Gaussian A propagator to be massless, as the
A field appears only in conjunction with derivatives.
This is a consequence of the local gauge invariance; a
term of the form m2A%(x) would violate the latter. How-
ever, the action S, Eq. (2.15a), comes with the usual
problems related to gauge fields. That is, the A propa-
gator does not exist, since the A vertex has a zero eigen-
value. We deal with this problem by gauge fixing, i.e., we
work in Coulomb gauge, V- A(x)=0, which we enforce
by adding to the action a gauge-fixing term (Ryder, 1985,
Chap. 7.1)

SGF:l f dx(V - A(x))?, (2.16)
n

with 7—0. One finds from Egs. (2.15a) and (2.16)

(AR)A S~ ) = 4L,
so the photon is indeed soft. Local gauge invariance thus
leads to GSI in an obvious way; this is another example
of direct GSI. Notice that this mechanism is distinct
from the one related to conservation laws, to be dis-
cussed in Sec. II.A.3 below: While local gauge invari-
ance is sufficient for the conservation of the charge ¢, it
is not necessary; a global U(1) suffices to make ¢ a con-
served quantity.

The ¢ field, however, has two massive components
with equal masses. Writing ¢=(¢;+i¢,)/ V2, with ¢, and
¢, real, we have

(k) (= By = 8 (r+c k) (i,j=1,2). (2.17b)

‘We thus have two massive scalar fields and one mass-
less vector field with two degrees of freedom.”

(2.17a)

The vector field, or photon, has only two degrees of free-
dom, rather than three. In the gauge we have chosen this is
obvious, since the propagator, Eq. (2.17a), is purely transverse.
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b. The broken-symmetry phase

We now turn to the phase in which the local U(1)
symmetry is spontaneously broken. Suppose the sponta-
neous expectation value of ¢ is in the ¢, direction, so we
have

B(x) = v + [y (x) + iy (¥) ]2,

with v real and equal to \-r/2u at tree level. If we ex-
pand about the saddle-point solution ¢=v, A =0, we find
to Gaussian order

S= f dx{Zuvz(sﬁl () + %(V $1(0))* + cg* v} (A(x))?

1
* Toms Fa 0 FP0) + g(v br(x))?

~\2cqvA@x)- V ¢2(x)} . (2.18)

There are two interesting aspects of this action. First,
the vector field has acquired a mass that is proportional
to v2. Second, the field ¢,, which is often called the
Higgs field in this context, and which we would expect to
form the Goldstone mode associated with spontaneously
broken U(1) or O(2) symmetry, couples to the now-
massive vector field. Indeed, ¢, can be eliminated from
the Gaussian action by shifting A, A(x)—A(x)
—V ¢,(x)/\2qv. Notice that this shift just amounts to a
change of gauge and hence does not change the physical
nature of the vector field.?' It does, however, give A a
longitudinal component and thus increases the number
of photon degrees of freedom from two to three. With
this shift, the Gaussian action consists of only the first
four terms in Eq. (2.18), which leads to the following
propagators:

8,5+ k k g/m?
(A R)A (- ko)) = dmrp—E——L—

. (2.19a)

1
(1(k) i (- k)) = PRI (2.19b)

+ ck?

with m?=4mucqg>>.
We see that now there are two massive fields, namely,
a massive scalar field with one degree of freedom and a
massive vector field with three degrees of freedom. In
particular, there is no Goldstone mode, despite the spon-
taneously broken O(2) symmetry. Pictorially speaking,

ley writing ¢ in terms of an amplitude and a phase, one can
choose a gauge such that the entire action, not just the Gauss-
ian part, is independent of ¢,. This is known as the “physical”
or “unitary” gauge (Ryder, 1985, Chap. 8.3). Other choices,
which retain ¢, and lead to a different A propagator, are pos-
sible. It has been shown that all these formulations are indeed
physically equivalent; the contributions from any nonzero ¢,
propagator cancel against pieces of the A propagator and thus
do not contribute to any observable properties. See Ryder
(1985), Weinberg (1996b), and Zinn-Justin (1996) for detailed
discussions of this point.
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the gauge field has eaten the Goldstone mode and has
become massive in the process. This phenomenon is
commonly referred to as the Higgs mechanism (Ander-
son, 1963; Higgs, 1964a, 1964b). Notice that the situation
is complementary, in a well-defined sense, to the case
without a gauge field in Sec. II.A.1: Without local gauge
invariance, one has two massive modes in the disordered
phase and one massive mode and one soft Goldstone
mode in the ordered phase. In the gauge theory, there is
a massless mode (the photon) in the disordered phase,
and no massless modes in the ordered phase. While
there are no obvious examples of indirect GSI involving
photons, we shall see in Sec. III.A.1 that the nature of
the mass acquired by ¢, in the ordered phase can have a
drastic influence on the nature of the phase transition.

We close this subsection with one additional remark.
In particle physics, local gauge invariance is an indis-
pensable requirement, since it is necessary for Lorentz
invariance. In the theory of phase transitions there is no
such requirement, since the critical theory is rigorously
nonrelativistic (see footnote 15). Nevertheless, it is im-
portant if an order-parameter field couples to photons,
and also in some other cases. We shall elaborate on this
in Sec. III.

3. Long-time tails

We now turn to the third mechanism on our list,
namely, long-ranged correlations in time correlation
functions due to conservation laws. Let us consider time
correlation functions involving the local currents of con-
served quantities, e.g., mass, momentum, Or energy.
Time integrals over the spatial averages of these corre-
lation functions, referred to as Green-Kubo expressions
(Green, 1954; Kubo, 1957, 1959), determine the trans-
port coefficients of fluids. A simple example is the veloc-
ity autocorrelation function of a tagged particle. It is
defined as

Cp(1) =v(1) - v(0))eq, (2.20a)

where v(0) is the initial velocity of the tagged particle,
v(t) its velocity at a later time ¢, and (:--).q denotes an
equilibrium ensemble average. The coefficient of self-
diffusion in a d-dimensional system is then given by (see,
for example, Boon and Yip, 1991)

= %Jw dtCp(1).

0

(2.20b)

Analogous expressions determine the coefficients of
shear viscosity #, bulk viscosity ¢, and heat conductivity
\, in a classical fluid (and, when appropriate, in a classi-
cal solid). In general we denote these current correlation
functions by C,(t), where u can stand for D, 7, {, or \.

In traditional many-body theories (e.g., the Boltz-
mann equation), the C,, were always found to decay ex-
ponentially in time (Chapman and Cowling, 1952; Dorf-
man and van Beijeren, 1977; Cercignani, 1988), with a
characteristic decay time on the order of the mean free
time between collisions, and until the mid-1960s this was
believed to be generally true. It thus came as a great
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FIG. 3. Normalized velocity autocorrelation function pp(z)
=Cp(1)/{(v*(0)) as a function of the dimension-less time ¢"
=t/ty, where t; is the mean free time. The X’s indicate com-
puter results obtained by Wood and Erpenbeck (1975) for a
system of 4000 hard spheres at a reduced density correspond-
ing to V/V,=3, where V is the actual volume and V|, is the
close-packing volume. The dashed curve represents the theo-
retical curve pp(H)=ap(t")~>2. The solid curve represents a
more complete evaluation of the mode-coupling formula with
contributions from all possible hydrodynamic modes and with
finite-size corrections included (Dorfman, 1981). From Dorf-
man et al., 1994.

surprise when both numerical molecular-dynamics stud-
ies (Alder and Wainwright, 1967, 1968, 1970), and,
shortly thereafter, more sophisticated theories (Dorfman
and Cohen, 1970, 1972, 1975; Ernst et al., 1970, 1971,
1976a, 1976b) showed that all of these correlations decay
for asymptotically long times as 1/¢t¥2. This power-law
decay in time is a type of GSI that is referred to as a
long-time tail. In Fig. 3 we show results of both computer
simulations and theoretical calculations for Cp(¢) for a
hard-sphere fluid in three dimensions. The long-time tail
is clearly visible.

a. Fluctuating hydrodynamics

The simplest and most general way to understand the
long-time-tail mechanism in a classical fluid is via the
equations of fluctuating hydrodynamics (Ernst et al.,
1971), i.e., the Navier-Stokes equations with appropriate
Langevin forces added, although explicit many-body cal-
culations, within the framework of a generalized kinetic
theory, are also possible and give identical results for the
long-time tails (Dorfman and Cohen, 1972, 1975).%> The
hydrodynamic approach gives the exact long-time be-
havior because the slowest-decaying fluctuations in a
classical fluid are the fluctuations of the conserved vari-
ables, which are described by the hydrodynamic equa-

Z’Notice that the term “kinetic theory,” which is often used
synonymously with “Boltzmann theory,” is used much more
generally by these authors.
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tions. The conserved variables are the mass density p,
the momentum density g=pu, with u the fluid velocity,
and the energy density € or, alternatively, the entropy
density s. In the long-wavelength and low-frequency
limit the fluctuations of these variables are described ex-
actly by the equations (Landau and Lifshitz, 1987)

ap+d,8%=0, (2.21a)

08+ &ggauﬁ =—d,p+ ﬁﬁ{ 9 uP + Pu,)

(¢ 5 oo
+ g—Tn (Saﬁ&.yuy‘i‘Paﬂ 5

(2.21b)

pT (3, + uyd*)s =3, (N“T + q%). (2.21¢)
Here p denotes the pressure, and summation over re-
peated indices is implied. In Eq. (2.21c) we have ne-
glected a viscous dissipation term that represents en-
tropy production, since it is irrelevant to the leading
long-time tails. The Langevin forces P,z and g, are un-
correlated with the initial hydrodynamic variables, and
satisfy

(P px,0P,,(x' 1) = ZT[ (Sap S0+ SO,

(d-1)
+ (g_ d 77) 5a35/.w:|

X8x—-x")o(t—-1), (2.22a)

<qa(x7t)qﬁ(x,7t,)> =2\ Tz&aﬁg(x _x,)a(t - t,)v
(2.22b)
(Poplx,t)q,(x",t") = 0. (2.22¢)

The above equations can be derived in a number of
ways (Fox and Uhlenbeck, 1970; Landau and Lifshitz,
1987) and are known to exactly describe the long-
wavelength and low-frequency fluctuations in a fluid.

b. Generic scale invariance from explicit calculations

To illustrate how the long-time tails arise we choose a
slightly different example than the self-diffusion coeffi-
cient discussed above, namely, the shear viscosity 7. The
appropriate time correlation function that enters the
Green-Kubo formula in this case is the autocorrelation
of the transverse velocity current, or the stress tensor
(Ernst et al., 1971). The basic idea is that # in the above
equations is really a bare transport coefficient that gets
renormalized by the nonlinearities and fluctuations. We
shall present a simplified calculation of # (Kirkpatrick et
al., 2002) and then discuss more general results.

For simplicity, we assume an incompressible fluid. The
mass conservation law then reduces to the condition
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V- u(x,)=0, (2.23)

and the momentum conservation law is a closed partial
differential equation for u,

Oy + uﬁéﬁua =—dplp+ yv&ﬁﬂﬁua +dgPuglp. (2.24)

Here v=7/p is the kinematic viscosity, which we assume
to be constant. The pressure term serves only to enforce
the condition of incompressibility. In fact, it can be
eliminated by taking the curl of Eq. (2.24), which turns it
into an equation for the transverse velocity. The cause of
the long-term tails is the coupling of slow hydrodynamic
modes due to the nonlinear term in Eq. (2.24); this is
another example of the mode-mode coupling effects
mentioned in the introduction to the current section.
Since we shall treat this term as a perturbation, we have
formally multiplied it by a coupling constant y whose
physical value is unity. We shall take the nonlinearity
into account to lowest nontrivial order in 7.

Consider the velocity autocorrelation function tensor,

Coplk,t) = (u(k,ug(— k,0)). (2.25)

An equation for C can be obtained by Fourier trans-
forming Eq. (2.24), multiplying by u4(-k,0), and averag-
ing over the noise while keeping in mind that the noise is
uncorrelated with the initial fluid velocity. In the case of
an incompressible fluid we need consider only the
transverse-velocity correlation function C,. This is eas-
ily done by multiplying with unit vectors, 121” (@
=1,2,...,d-1)), that are perpendicular to k, which elimi-
nates the pressure term. We obtain

(0, + vikH)C | (k,t) = — i?’kﬂlg(falg(i)ﬁ

X D (ut(k — q,0)u(q,)uf(- k,0)).
q

(2.26)

Here we have used the incompressibility condition, Eq.
(2.23), to write all gradients as external ones. To zeroth
order in y we find, with the help of the f-sum rule (For-
ster, 1975), C, (k,0)=T/p,

C,(k,t) = (Tlp)e ™" + O(y). (2.27a)

This is the standard result obtained from linearized hy-
drodynamics (Chapman and Cowling, 1952), which pre-
dicts exponential decay for k# 0.2 Notice that it
amounts to GSI in time space for the local time correla-
tion function,

C (x=0,f) o 1/192. (2.27b)

This is an immediate consequence of the conservation
law for the transverse momentum, and hence an ex-
ample of direct GSIL.

“The reader might find it curious that this derivation did not
make explicit use of the Langevin force correlations, Egs.
(2.22). However, it needs various equal-time correlation func-

tions as input, which contain the same information as Egs.
(2.22).
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To calculate corrections due to the nonlinearity, we
need an equation for the three-point correlation func-
tion in Eq. (2.26). The simplest way to obtain this is to
use the time translational invariance properties of this
correlation function to put the time dependence in the
last velocity, and then use Eq. (2.24) again. The result is
an equation for the three-point function in terms of a
four-point one that is analogous to Eq. (2.26). To solve
this equation, we note that, due to the velocity’s being
odd under time reversal, the equal-time three-point cor-
relation vanishes. By means of a Laplace transform, one
can therefore express the three-point function as a prod-
uct (in frequency space) of the zeroth-order result for
C,, Eq. (2.27a), and the four-point function. To leading
(i.e., zeroth) order in vy the latter factorizes into products
of velocity autocorrelation functions. Upon transform-
ing back into time space, and to quadratic order in the
coupling constant y, we obtain

t
(9, + vkz)CL(k,t)+f dr%(k,t—7)C (k,7)=0,
0

(2.28a)
with

S (k1) = %%kﬂkz [Co¥(q,0)CH"(k - q.1)
q

+ C(q, ) C(k — g0 1k kD 5+ O(¥).
(2.28b)

The self-energy X is proportional to k? and thus provides
a renormalization of the bare viscosity v, or the time
correlation function that determines the shear viscosity,
C,(1). This correction to v is time and wave number de-
pendent.

The source of the long-time tails is now evident. In
our model of an incompressible fluid, only the transverse
component of C,z is nonzero,

Cop(q,0) = (Oap— GG p)C1(q,1). (2.29)
Putting y=1, and defining 6C,(1)=p limy_ oS (k,1)/k?,
one obtains for asymptotically long times

d*-2 1
dd+?2) ) (8mvr)¥?”
The correction to the static, or zero-frequency, shear vis-

cosity is given by dnx [gdt 6C,(1) [cf. Eq. (2.20b)]. We
thus have

C,(t — ) = 6C,(t — w) o 742,

8C, (1) = Tp( (2.30a)

(2.30b)

This is the well-known contribution of the transverse
velocity modes to the long-time tail of the viscosity
(Ernst et al., 1976a, 1976b). Notice that C, describes cor-
relations of shear stress, which is not conserved. The
long-time tail therefore is a result of mode-mode cou-
pling effects and hence an example of indirect GSI. In a
compressible fluid, a similar process coupling two longi-
tudinal modes also contributes to the leading long-time
tail. The other transport coefficients, e.g., A and ¢, also
have long-time tails proportional to 1/t%?, and all of
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them have less-leading long-time tails proportional to
1/£4+D2 or weaker (Ernst ef al., 1976a, 1976b; Dorfman,
1981).

For the frequency-dependent kinematic viscosity, the
nonexponential decay of Sv(¢) implies a nonanalyticity at
zero frequency. More generally, the algebraic 1/t long-
time tails in the long-time limit imply, for the frequency
or wave-number-dependent transport coefficients w, a
nor;imalyticity at zero frequency (), or wave number
|k|a

w(Q)/u(0) =1 = Q@272 (2.31a)

(k) w(0) = 1 = b|kl|*2, (2.31b)

where the prefactors ¢ and b/ are positive, and only the
leading nonanalyticities are shown. For the implications
of these results in d<2, see footnote 49 below.

4. Spatial correlations in nonequilibrium steady states

Finally, we consider a fluid in a nonequilibrium steady
state; the equations of fluctuating hydrodynamics can be
extended to this case (Ronis ef al., 1980). It has been
known for some time that these systems in general ex-
hibit generic scale invariance in both time correlation
functions and thermodynamic quantities (see, for ex-
ample, Dorfman et al,, 1994). The spatial correlations
responsible for the GSI in thermodynamic susceptibili-
ties are closely related to long-time tails of the equilib-
rium time correlation functions. We shall consider a fluid
in a steady, spatially uniform, temperature gradient V7,
but far from any convective instability. Further, we use a
number of approximations that enable us to focus on the
most interesting effects of such a gradient. For a justifi-
cation of this procedure, as well as the underlying de-
tails, we refer the reader to the original literature (Kirk-
patrick et al., 1982a, 1982b).

We write the temperature T=Ty+ T as fluctuations
6T about an average value Ty and focus on the coupling
between fluctuations of the transverse fluid velocity u |
and 67. If we neglect the nonlinearity in Eq. (2.21b),
Egs. (2.21) can be written

1
atul_,a = Vaﬁélﬁuj_,a + p_(&BPaB)J_ ) (232&)
0

3,6T + u T = D 10,0*5T + 9,9, (2.32b)

poToc,
where py is the average mass density, ¢, is the specific
heat per mass at constant pressure, and Dy=\/pyc, is

2To avoid misunderstandings, we note that a static transport
coefficient, u(k,Q=0), is a time integral over a time correla-
tion function; see the Green-Kubo formula, Eq. (2.20b). As
such, it is long ranged in space, just as u(k=0,() is in time. A
static susceptibility, however, is related to an equal-time corre-
lation function via the fluctuation-dissipation theorem (Forster,
1975) and is not long ranged in space in classical equilibrium
systems.
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the thermal diffusivity. These bilinear equations can be
solved by means of Fourier and Laplace transforma-
tions. Focusing on static, or equal-time, correlations, one
finds, for example,

N @) pT(ark, - V T)?
(|8p(h0)| >—pT<ap DD (2.33a)
. k -VT
[k, - g(k)]op(- k)) = pTaT—(V D (2.33b)
where
_ Yo
ar=-— p( aT)p (2.33¢)

is the thermal expansion coefficient at constant pressure.

There are several remarkable aspects of these results.
First, Eq. (2.33a) for the density correlations implies that
the first term, which also exists in equilibrium, is delta
correlated in real space, while the second term decays as
const—|x| in three dimensions (Schmitz and Cohen, 1985;
de Zarate et al., 2001). Equation (2.33b) shows that the
transverse-momentum—density correlation function de-
cays as 1/]x| in three dimensions. Both of these results
show that spatial correlations in a nonequilibrium steady
state exhibit GSI. Second, the right-hand side of Eq.
(2.33b) is essentially the integrand of a long-time-tail
contribution to the heat conductivity N (Hohenberg and
Halperin, 1977). This demonstrates the close connection
between the long-time tails in equilibrium time correla-
tion functions and the spatial GSI of equal-time correla-
tion functions in nonequilibrium situations. As in the
case of the equilibrium long-time tails, this is an example
of indirect GSI.

These fluctuations can be directly measured by small-
angle light-scattering experiments. Specifically, the dy-
namic structure factor S,,(k,t)=(dp(k,t)p(-k,0)),
which is proportional to the scattering cross section, in a
nonequilibrium steady state has the form (Dorfman et

al., 1994)
S, (k1) = Sol(1 + Ap)e PR — 4 o=k, (2.34a)

where S is the structure factor in equilibrium, and

v (k- VTP
TD{(/-D?) k*

Ay (2.34b)

) (IGL-VT)

AT R (2.34¢)

For =0 one recovers the equal-time density correlation
function, Eq. (2.33a). The amplitudes A and A, are pro-
portional to (VT)?/k*, which has been verified by experi-
ments (see Fig. 4). Notice that the amplitude of the tem-
perature fluctuations is enhanced by a factor of a
hundred compared to the scattering by an equilibrium
fluid. In real space, this strongly singular wave-number
dependence corresponds to a decay as const—|x| in three
dimensions.
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FIG. 4. Amplitudes A7 and A, of the nonequilibrium tempera-
ture and transverse-momentum (viscous) fluctuations in liquid
hexane at 25 °C as a function of (VT)?/k*. The symbols indi-
cate experimental data. The solid lines represent the values
predicted by Eqgs. (2.34). Notice the excellent agreement with
no adjustable parameters. From Li et al., 1994.

B. Quantum systems

The same mechanisms discussed above for classical
systems also lead to long-range correlations in space and
time in quantum systems. The chief distinctions between
quantum systems (most interesting at 7=0) and classical
systems are as follows.

(1) There are more soft, or gapless, modes in quantum
systems. These extra modes are due to a Gold-
stone mechanism that is absent at 7#0. For ex-
ample, particle-hole excitations across a Fermi sur-
face are soft at 7=0 but acquire a mass at 7+#0.

(2) As discussed in Sec. I.C, there is a coupling be-
tween the statics and the dynamics in quantum sta-
tistical mechanics that is absent in the classical
theory. In general, this means that long-ranged cor-
relations in time correlation functions imply long-
ranged spatial correlations in equal-time correla-
tion functions, and thus in thermodynamic
susceptibilities.

In this subsection we explain these points in some de-
tail and lay the foundation for later sections in which we
discuss the importance of generic scale invariance for
understanding many quantum phase transitions. Our fo-
cus will be on itinerant interacting electron systems. To
motivate our discussions and to make contact with the
classical results discussed in the preceding section, we
first give some of the results showing GSI in zero- or
very-low-temperature electron systems, both disordered
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and clean.”” We choose to discuss the disordered case
first, because in this case the nonanalyticities that reflect
the GSI are well known, although they usually have not
been thought of as examples of GSI. In noninteracting
electron systems the;/ are usually referred to as “weak-
localization effects,”” and in interacting ones as “inter-
action effects” or “Altshuler-Aronov effects”; we shall
collectively refer to both classes as “GSI effects.””” The
fact that there are analogous effects in clean electron
systems is much less well known. We then discuss the
most important soft modes in electron fluids, paying par-
ticular attention to those that exist only at 7=0. This is
followed by an account of two distinct approaches to
GSI in quantum systems: The first approach is via ex-
plicit many-body calculations, which is analogous to a
generalized kinetic-theory approach to the classical
fluid. The second approach relies on the concept of
clean and disordered Fermi-liquid fixed points and uses
very general RG arguments. This is analogous to the
treatment of the classical Heisenberg ferromagnet dis-
cussed in Sec. IL.A.1.c.

1. Examples of generic scale invariance in itinerant
electron systems

a. Disordered systems in equilibrium

In the entire metallic phase of disordered interacting
electron systems, various transport coefficients and ther-
modynamic quantities show nonanalytic frequency and
wave-number dependencies that represent generic scale
invariance. Since we are dealing with a quantum system,
there also are corresponding nonanalytic temperature
dependencies. For instance, for 2<d <4, the electrical
conductivity o, the specific heat coefficient y=Cy,/T, and
the static spin susceptibility y,, as functions of the wave
vector k, the frequency (), and the temperature 7, are
given by (for reviews, see Altshuler and Aronov, 1984;
Lee and Ramakrishnan, 1985)

o(Q — 0,7=0)/0(0,0) =1 + 504272, (2.35a)
o(Q=0,T— 0)/(0,0) = 1 + &5T\42)72, (2.35b)
WT — 0)/9(0) =1 + c}T4212, (2.35¢)

»We shall refer to systems with and without quenched disor-
der as disordered and clean, respectively.

The term “weak localization” is ill defined and is differently
applied by different authors. The most restrictive meaning re-
fers to the weakly nonmetallic weak-disorder regime in d=2,
but we use it to denote the nonanalytic dependence of observ-
ables on the frequency or the wave number in noninteracting
disordered electron systems in any dimension.

?TOccasionally both classes have been collectively called
“weak-localization effects” (as in Kirkpatrick er al., 2002).
Since most people associate weak localization with quenched
disorder, at least to some degree, this use of the term tends to
obscure the fact that precisely analogous effects are found in
clean systems.
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FIG. 5. Static low-T conductivity of nine Si:B samples in a
magnetic field plotted vs V7. Adapted from Dai et al., 1992.

Xs(k — 0,T =0)/x,(0,0) = 1 — c¥s|k|-2. (2.35d)

Here the ¢”* are positive coefficients that depend on
the disorder, the interaction strength,® and the dimen-
sionality. In d=2 and d=4 the fractional powers in these
equations are replaced by integer powers times loga-
rithms. In the time domain, Eq. (2.35a) implies that cur-
rent correlations decay as 1/t72, while Eq. (2.35d) im-
plies that spatial spin correlations decay as 1/72@1),

All of the above effects are examples of indirect GSI,
as will become clear from the derivations given below.
There are other examples of long-ranged correlations in
addition to the ones given above; which were chosen
because of their experimental relevance. For instance,
an experiment showing the VT dependence of the con-
ductivity expressed by Eq. (2.35b) is shown in Fig. 5. It is
of interest to note, however, that not all obvious corre-
lation functions have nonanalyticities and exhibit GSI.
For example, explicit calculations show that the density
susceptibility, or compressibility, has no |k|*~? nonanaly-
ticity, in contrast to the spin susceptibility, Eq. (2.35d).
This has been discussed by Belitz et al. (2002).

b. Clean systems in equilibrium

For clean electronic systems, two interesting nonana-
lyticities that reflect GSI are, for 1<d <3,

YT — 0)/9(0) =1+ b)JT!, (2.36a)

BSome of these nonanalyticities, e.g., the one in Eq. (2.35a),
are present even in noninteracting electron systems (see, for
example, Lee and Ramakrishnan, 1985; Kramer and MacKin-
non, 1993), which are analogous to the classical Lorentz model
(see, for example, Hauge, 1974). We shall be mainly interested
in interacting electron systems, which are analogous to classi-
cal fluids.
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xs(k — 0,T =0)/x(0,0) = 1 + bs|k|41, (2.36b)

with the b} positive, interaction-dependent coefficients
(for a recent overview, see Chubukov and Maslov, 2003;
Chubukov et al., 2005). In d=1 and d=3 the integer pow-
ers in these equations become multiplied by logarithms.

Let us explain the interesting sign difference between
the nonanalytic corrections to the spin susceptibility in
the clean and dirty cases, respectively, which will be-
come important in Sec. IV. Quenched disorder is known
to increase the effective spin-triplet interaction strength
between the electrons (Altshuler and Aronov, 1984).
This effect is strongest at zero wave number. x(0,0) is
therefore enhanced,29 but the enhancement effect de-
creases with increasing wave number, which leads to the
negative correction in Eq. (2.35d). In the clean case,
however, the generic soft modes represent fluctuations
that weaken the tendency towards ferromagnetism. This
effect decreases x,(0,0) compared to the Pauli value
(more precisely, the Pauli value with mean-field, or
Hartree-Fock, corrections), and the wave-number-
dependent correction is positive.

2. Soft modes in itinerant electron systems

Let us now consider the soft modes that are respon-
sible for the results listed above. Apart from the soft
modes due to the standard conservation laws, which are
the same as in the classical case, the most interesting soft
modes in itinerant electron systems are the Goldstone
modes of a broken symmetry that is characteristic of
quantum systems. To understand these new modes, we
consider the formal action given by Eq. (1.9b) in more
detail. Specifying the Hamiltonian, we consider a model
action

S = SO + Spot + Sint’
with

(2.37a)

So = f dx X, P, ()~ 3, + V212m, + plp,(x), (2.37b)

Spot = f dx u(x) iy (x) i, (x). (2.37¢)
Here x=(x,7) and [dx=[dx[ gd 7, m, is the electron
mass, u is the chemical potential, and u(x) is a one-body
potential. u can represent an electron-lattice interaction,
but for the physical applications we are interested in this
would not lead to qualitative deviations from the behav-
1or of a simple “jellium” model of a parabolic band, and
we shall therefore not pursue this possibility. We will,
however, want to treat the interaction of electrons with

*Note that this represents an effect of disorder that enhances
the tendency towards ferromagnetism. It comes in addition to
the more basic, and more obvious, opposite effect due to the
dilution of the ferromagnet (Grinstein, 1985). The important
point for our argument is that the former effect is wave-
number dependent, while the latter is not.
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quenched (i.e., static) random impurities (Edwards,
1958; Abrikosov et al., 1963). In this case u(x) is a ran-
dom function. It is governed by a distribution that we
take to be Gaussian with zero mean, and a second mo-
ment

Sx—y)

. 2.38
ZWNFTrel ( )

{u(x)u(y)las = Updx —y) =

Here {- - -} denotes the disorder average, 7, is the elas-
tic relaxation time, and N is the density of states per
spin at the Fermi surface. The factors in Eq. (2.38) are
chosen such that the disordered average Green’s func-
tion has a single-particle lifetime equal to 1/27,. We
will consider both clean systems, in which Uy=0, and
disordered ones, in which Uy,>0.

Sint in Eq. (2.37a) represents the Coulomb potential,
but it is often advantageous to integrate out certain de-
grees of freedom to arrive at an effective short-range
interaction. For our present purposes it is not necessary
to specify the precise form of Sj,; it will suffice to pos-
tulate that the ground state of the interacting system is a
Fermi liquid for Uy=0, or a disordered Fermi liquid for
Uy+# 0. However, for later reference we write down a
popular model (Abrikosov et al., 1963) that describes the
self-interaction of the electron number density, n(x), and
the electron spin density, ny(x), via pointlike, instanta-
neous interaction amplitudes I'y and I';, respectively,

Sint = _TFS J dx n(x)n(x) + % f dx ny(x) - ny(x).
(2.39a)

In terms of fermionic fields, n and ng are given by

n(x) = 2 4, () ,(x), (2.39b)

ny(xX) = 2 (%) 0y o1 P (). (2.39¢)

!
o,0

Here o=(0",0”,0%) represents the Pauli matrices. An
underlying repulsive Coulomb interaction leads to T,
I''>0 in Eq. (2.39a).

It is useful to perform a Fourier representation from
imaginary time to fermionic Matsubara frequencies w,
=27T(n+1/2),

ko
U o(X) =NT f dr e“n"i,(x),

0

(2.40a)

A disordered analog of Landau’s Fermi-liquid theory (see,
for example, Baym and Pethick, 1991) has been developed by
Castellani and Di Castro (1985, 1986); Castellani, Di Castro, et
al. (1987); Castellani, Kotliar, and Lee (1987); Castellani et al.
(1988).
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B
,.o(x) = T f dr e, (x). (2.40Db)

0

The noninteracting part of the action can then be writ-
ten

So=So+Spot = J dx 2, i o(X)[iw, + V2 2m, + p

o.n

10001y o). (2.41)
In the disordered case, it is further convenient to inte-
grate out the quenched disorder by means of the replica
trick (Edwards and Anderson, 1975; for a pedagogical
discussion of this technique, see Grinstein, 1985). Ac-
cordingly, one introduces N identical replicas of the sys-
tem, labeled by an index a, and integrates out u(x). Sy
then gets replaced by

1 N
Sais= 10— 2
’ 47TNFTrela,B:1

Xyl vl (x),

and physical quantities are obtained by letting N—0 at
the end of calculations.
We now note two crucial features (Wegner and

dx 2 s )Y (%)

(2.42)

Schifer, 1980). First, for w,=0, the action S’O is invariant
under transformations of the fermionic fields that leave

S, i, invariant. That is, S‘O is invariant under a con-
tinuous rotation in frequency space.”’ Second, this sym-
metry is spontaneously broken whenever Ny # 0. To see
this, consider the order parameter

Q: lin(l)Jr(lZ/n,o(x)(»[/n,u(x))_ 1%7<&n,u(x)wn,o(x)>-
(2.43)

O is the difference between retarded and advanced
Green’s functions and is proportional to Ng. The causal
Green’s function has a cut along the real axis for all

frequencies at which Q o Ng#0, which breaks the sym-
metry between frequencies with positive and negative
imaginary parts or between retarded and advanced de-
grees of freedom. Since S;,, cannot explicitly break this
symmetry,”” this will result in soft modes according to
Goldstone’s theorem. Technically, these soft modes are
most conveniently discussed in terms of fluctuations of
4 X 4 matrices that are isomorphic to bilinear products of
fermionic fields (Efetov er al., 1980),

1Because of the anticommuting nature of the fermion fields,
the Lie group in question is symplectic; for a model with 2M
Matsubara frequencies it is Sp (2M).

3This follows generally from time translational invariance
and can be checked explicitly for the interaction defined in Eq.
(2.39a).
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— iy~ Yt~ uda Y
0, = i —_lﬂu_l_ﬁzT —_lﬂu_'Zzi —_‘/’u'/’u @%T
2 Iy sy g -y
iy — s - i mel//m

(2.44)

Here all fields are understood to be at the position x,
and 1=(n;,q;), etc., comprises both frequency labels n
and, for the disordered case, replica labels a. Since a
nonzero frequency explicitly breaks the symmetry, one
expects on the one hand, for nyn,<<0,

N,
T (0,1, (K) Oy (= ) o (2.45)

ny wnz
For nyn,>0, on the other hand, one expects the corre-
lation function to approach a finite constant in the limit
of small wave numbers and frequencies. That is, Q,,,, is
soft if the frequencies w, and w,, have opposite signs,
and is massive if they have the same sign. For later ref-
erence, let us introduce a notation that distinguishes be-
tween the soft and massive components of Q. We write

Gumx) ifn>0m<0
Qnm(x) = Cllm(x) ifn<0,m>0
P,.(x) if nm>0.

(2.46)

Explicit calculations confirm these expectations (Efe-
tov et al., 1980; Wegner and Schifer, 1980; Belitz and
Kirkpatrick, 1997). For technical reasons, it is conve-
nient to expand the 4 X 4 matrix given by Eq. (2.44) in a
spin-quaternion basis,

3
0p(x) = 2 (1,®5).0,(), (2.47)

r,i=0

with 7y=s5) the 2X2 unit matrix, and 7;=-s;=-i0;
(7=1,2,3). In this basis, i=0 and i=1,2,3 describe the spin-
singlet and spin-triplet degrees of freedom, respectively.

r=0,3 corresponds to the particle-hole channel (i.e.,
products of ¢), while r=12 describes the particle-
particle channel (i.e., products g or ).

For small wave numbers and low frequencies, and for

disordered noninteracting electrons, one finds (Efetov et
al., 1980)™

(+q12(k)q34(p)) = r Ok + p) 6,56,;61304Dp (k) ,

(2.48a)
with

*The normalizations of these propagators in the literature
vary, depending on how the Q fields have been scaled. The
normalization used in Egs. (2.48) corresponds to a dimension-
less Q(x), in accord with the usual convention in the nonlinear
o model [see Egs. (2.62) below], while the Q(x) as defined by
Eq. (2.44) is dimensionally a density of states.
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Dnlnz(k) = (disordered).

K+ GH|ou,,1 -

i

(2.48b)

Here H=m Ng/4, and G=8/moy*x1/7,, with oy the
conductivity in the Boltzmann approximation; see Eq.
(2.56) below. 1/GH=D is the electron diffusion coeffi-
cient. In the low-disorder limit, D:V%Trel/ d, with vg the
Fermi velocity. Note that this structure is consistent with
Eq. (2.45), which was based on very the general argu-
ments and Goldstone’s theorem. For clean noninteract-
ing systems, Eq. (2.48a) is still valid, but G=2/Ngvg, and
D is given by34

1
|k| + GH|(1),11 - wn2|

Dnlnz(k) = (clean). (2.48¢)

H is the same in either case. As expected, for disordered
electrons D is diffusive, while for clean electrons it is
ballistic.

For interacting systems, clean or disordered, the re-
sults are structurally the same (Finkelstein, 1983; Belitz
and Kirkpatrick, 1997). The correlation functions remain
diffusive and ballistic, respectively, but they are no
longer the same in the spin-singlet (i=0) and spin-triplet
(i=1,2,3) channels. Rather, instead of H in Egs. (2.48b)
and (2.48c), the combinations H+ K, and H+ K, respec-
tively, appear in the two channels, with Ks’t:ﬂ-N%Fs,t/ 2.
We shall not give detailed correlation functions for the
interacting case; we just mention the physical signifi-
cance of these various coupling constants. H determines
the specific-heat coefficient y=Cy,/ T via y=8mwH/3 (Cas-
tellani and Di Castro, 1986)* and can be interpreted as a
quasiparticle density of states (Castellani, Kotliar, and
Lee, 1987). H+ K,=mwdn/du and H+ K=y, are propor-
tional to the thermodynamic density susceptibility dn/du
and the spin susceptibility y,, respectively (Castellani et
al., 1984b, 1986; Finkelstein, 1984a). Notice that dn/du,
Xs» and 3y/27* all are equal to Ny for noninteracting
electrons, but differ for interacting systems.

The above discussion assumes that the underlying
continuous symmetry [see the discussion above Eg.
(2.43)] is not broken explicitly. Such an explicit symme-
try breaking occurs, for example, in the presence of a
magnetic field, magnetic impurities, or spin-orbit scatter-
ing (Efetov et al., 1980; Castellani et al., 1984a; Finkel-
stein, 1984a, 1984b). In the presence of any of these sym-
metry breakers, some of the channels classified by the
spin and particle-hole indices i and r of the matrix iQ
become massive. For instance, magnetic impurities lead

34Equation (2.48c) is a schematic representation, which has
the correct scaling properties, of a more complicated function.
In contrast, Eq. (2.48b) represents the exact propagator in the
limit of small frequencies and wave numbers.

3This reference established the relation between yy and H
for disordered systems only. A later proof by means of Ward
identities (Castellani et al., 1988) can be generalized to apply to
clean systems as well.
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FIG. 6. Diagrammatic representation of the Green’s function
G and the impurity factor u,.

to a mass in both the particle-particle channel (r=1,2)
and the spin-triplet channel (i=1,2,3). A summary of
these effects has been given by Belitz and Kirkpatrick
(1994). The nonanalyticities in various observables cited,
in Sec. II.B.1 above are cut off accordingly, depending
on which soft channel they rely on.

3. Generic scale invariance via explicit calculations

One way to obtain the results cited in Sec. I1.B.1 is by
explicit many-body, or Feynman diagram, calculations to
lowest order in a small parameter (Abrikosov et al.,
1963; Fetter and Walecka, 1971). To illustrate this ap-
proach, we compute the electrical conductivity ¢ in a
noninteracting, disordered, electronic system, to lowest
nontrivial order in the disorder about the Boltzmann
value. The calculation starts with the Kubo expression
for o(Q)) (Kubo, 1957),

; 2
() = _L[w(q =0,i0,) + K} . (2.49)
i€, m Jia,—0+i0

with 7 the longitudinal current correlation function,

-1 (" . . .
m(q,iL,) = ? f dr (T q-j(q,7q-j(q,0)).
0
(2.49b)

Here T, is the imaginary time-ordering operator and j is
the current operator,

J@) =3 kil i (2.49¢)
m

with @™ and 4 electron creation and annihilation opera-

tors, respectively. Wick’s theorem can be used to evalu-

ate time-ordered correlation functions such as the one in

Eq. (2.49b).

For our present purposes, the small parameter for a
perturbative treatment is the impurity density n;, or, al-
ternatively, 1/kg{, with kg the Fermi wave number and €
the mean free path between electron-impurity collisions.
The averaging over the positions of the impurities can
be performed using standard techniques (Edwards, 1958;
Abrikosov et al, 1963). The building blocks of the
theory are the bare-electron Green’s function,

B
GO (q,iw,) = f dr e (T (Dab0),  (2.50)

0
and the impurity factor U, Eq. (2.38). The subscript 0 in
Eq. (2.50) indicates that both the average and the time

dependence of @ are taken with the free-electron part of
the Hamiltonian only. Diagrammatically, we denote G'*

Rev. Mod. Phys., Vol. 77, No. 2, April 2005

= ,/ \\\
|+‘
G = —p—
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FIG. 7. The electronic self-energy and the Green’s function in
the Born approximation.

by a directed straight line, and u, by two broken lines
(one for each factor of the impurity potential) and a
cross (for the factor of n;~1/kgf); see Fig. 6. For our
free-electron model we have

G9q,iw,) = (i, - ¢*2m, + w)". (2.51)

The exact disorder-averaged Green’s function can be
written in terms of a self-energy 3 as

G(q,iw,) =[iw, — ¢*2m. + u+2(q,iw,)]".  (2.52a)

The Born approximation for 3 and for G is shown dia-
grammatically in Fig. 7. Analytically, it is given by

3(q.iw,) = ZLsgn(wn). (2.52b)

Trel

In this approximation, single-particle excitations decay
exponentially with a mean free time 7. One commonly
defines a (longitudinal) current vertex function I' by
writing 7 as

m(q,iQ),) = f T> To(p.q)G(p - q12,iw, — iQ,/2)

p o,
X G(p+ql2,iw, +iQ,/2)T(p,q;io,,i,).
(2.53a)
Here [,=] dp/(2m)? in d dimensions, and
Top.q)=p-q/lq| (2.53b)

is the bare current vertex. It is often convenient to ex-
press I' in terms of another vertex function, A, via the

o o
L ]

FIG. 8. Diagrammatic representation of the current correla-
tion function and of the relation between the functions I' and
A.

k|
I
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» > —> —T> T
1 [} [ |
A = % + k% + 0 xkx o+
A i R

FIG. 9. The vertex function A in the Boltzmann approxima-
tion.

I'p,q;iw,,iQ,)
=Lo(p,q) + J Lo(k,q)G(k - q/2,iw, —i€,)
k

XGk+ql2,iw,+iQ,/2)Ak,p,q;iw,,iQ,). (2.54)

Diagrammatically, these equations are illustrated in Fig.
8.

The Boltzmann approximation Ap for A (which is
equivalent to solving the Boltzmann equation for o) is
shown diagrammatically in Fig. 9. Analytically, we find,
for small ), and g,

Ap (k’P’q;iwmiQanHO =0[- w,(w, +Q,)]
4mNpug
—_—. 2.55
pe+lel Y
Using this in Eq. (2.54), and the result in Egs. (2.53a)
and (2.49a), we find that the Boltzmann approximation
for o is*®

(2.56)

00 =ne’Tlm,.

There are, of course, an infinite number of corrections to
oo of O(1/kgt) and higher. Of particular interest to us
are the contributions that couple to the electronic soft
modes, Egs. (2.48). As in the classical long-time tail cal-
culation (Sec. I1.A.3.b), it is the coupling of these modes
to the current fluctuations that lead to the slow decay of
current correlations and to a singular dependence of the
conductivity on the frequency. The relevant diagrams for
this soft-mode contribution to ¢ are the so-called maxi-
mally crossed diagrams shown in Fig. 10 (Gorkov et al.,
1979). For these contributions to A, which we denote by
Ayic, we find

Anic (k.p.q;i@,,iQ,)|g~p = O[- 0, (0, + Q)]
» 47Ngul
D(k +p)*+|Q,|
(2.57)

Notice that this is just the Boltzmann result, Eq. (2.55),
with ¢—k+p (Vollhardt and Wolfe, 1980). For small

*Due to our pointlike impurity potential, I" in the Boltzmann
approximation is equal to I'y, and the conductivity is given in
terms of the single-particle relaxation time 7. For a more
general scattering potential, the vertex corrections in Eq. (2.54)
are nonzero, and the Boltzmann conductivity is given by Eq.
(2.56) with 7 replaced by the transport relaxation time 7.
See Abrikosov et al. (1963), Sec. 39.2.
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FIG. 10. Crossed-ladder contribution to A.

real frequencies this contribution leads to the following
result for the conductivity (Gorkov ef al., 1979):

a(Q) = o 1 - (2.58)

1 j 1
7NeJ, —iQ+ Dg’

In d=2, this “correction” to oy leads to a (negative) loga-
rithmic divergence. This reflects the fact that, at least for
noninteracting electrons, there is no metallic state in d
=2 (Abrahams et al, 1979). This phenomenon (the
“weak localization” proper; see footnote 26) has gener-
ated a huge body of literature (for reviews, see Berg-
mann, 1984; LLee and Ramakrishnan, 1985; Kramer and
MacKinnon, 1993). To the extent that it is caused by the
long-time tail’s not being integrable, this is analogous to
the breakdown of classical hydrodynamics in d<2 (see
Sec. I1.A.3.b), although the physics behind it is quite dif-
ferent.

In d>2, Eq. (2.58) predicts that o({)) is a nonanalytic
function of frequency, the small-frequency behavior for
2<d<4 being

a(Q — 0)/a(0) = 1 + const X Q@272 (2.59a)

with const>0. This particular correction is one of sev-
eral that contribute to Eq. (2.35a); in the nomenclature
explained at the beginning of Sec. II.B it is the weak-
localization contribution. Another one is the interaction
contribution that was found by Altshuler et al. (1980).%
In the time domain this corresponds to a behavior of the
current-current correlation function, Eq. (2.49b), at long
(real) times ¢,

m(g=0,t — o) ~ -1/t (2.59b)

Since the current is not conserved in our model, this is
an example of indirect GSI. Notice that the exponent is
the same as for the corresponding long-time tail in a
classical fluid, Eq. (2.31a), but the sign is different. Physi-
cally this means that, in the quantum case, the leading
long-time tails decrease the diffusion coefficient, while
in the classical fluid case they increase it. This is because
the scattering in the electron-impurity model is due to

37Hist0rically, the interaction effect predates weak localiza-
tion. It was first discussed by Schmid (1974) for the electron
inelastic lifetime and by Altshuler and Aronov (1979) for the
density of states; a closely related effect was found by Brink-
man and Engelsberg (1968).



600 Belitz, Kirkpatrick, and Vojta: How generic scale invariance influences phase transitions

static impurities, while in the classical fluid it is due to
the other fluid par‘[icles.38

4. Generic scale invariance via renormalization-group
arguments

The results given in Secs. I1.B.1 and I1.B.3 can also be
obtained independent of perturbation theory, by general
RG and scaling arguments, which establish these long-
time tails as the exact leading behavior for long times or
small frequencies (Belitz and Kirkpatrick, 1997). These
authors showed that, in the disordered case, the GSI
effects in d>2 can be understood as corrections to scal-
ing at a stable zero-temperature fixed point that de-
scribes a disordered Fermi liquid. This also makes more
explicit the connection between weak-localization and
Altshuler-Aronov effects, on the one hand, and the
Goldstone modes of the O(N) nonlinear ¢ model (Sec.
II.A.1), or the hydrodynamic theory of GSI (Sec. I1.A.4),
on the other.® This is the first instance in which we see a
close, if not entirely obvious, analogy between classical
and quantum effects.

a. Disordered electron systems

The long-wavelength and low-frequency excitations in
a noninteracting disordered electron system can be de-
scribed by a nonlinear o model (Wegner, 1979; Wegner
and Schiifer, 1980; McKane and Stone, 1981). This ap-
proach has been generalized to interacting systems by
Finkelstein (1983); a derivation in the spirit of Wegner
and Schifer (1980) has been given by Belitz and Kirk-
patrick (1997) and Belitz et al. (1998). As for the simpler
o model derived and discussed in Sec. II.A.1, the basic
idea is to construct an action solely in terms of the mass-
less modes. The derivation of the effective theory then
becomes a two-step process. First, one needs to identify
the massless modes of the system (see Sec. II.B.2). Sec-
ond, the microscopic theory, Eqgs. (2.37)—(2.39), must be
transformed into an effective one that keeps only the
soft modes, while all other degrees of freedom are inte-
grated out in some reasonable approximation. The re-
sult of this procedure is a generalized nonlinear o
model. Within this theory the partition function can be

written as an integral over a matrix field O that essen-
tially contains the soft sectors of the field Q, Eq. (2.44),

*®This makes the electron-impurity model more closely
analogous to the classical Lorentz model, which shows a
weaker 1/£@+272 long-time tail (with a negative sign) than the
classical fluid (Hauge, 1974). The mode-mode coupling effects
are stronger in the quantum system than in the classical one,
which is why the electron model has a long-time tail with the
same strength as the classical fluid but with the sign of the
classical Lorentz model.

¥We note in passing that it is possible to cast classical hydro-
dynamics in the form of a field theory Martin et al., 1973). This
technique has not been applied so far to long-term tails; doing
so would make the analogy even closer.
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7= f D[O]eA2), (2.60)

The effective action A is given by

A= % dx tr(VO(x))2 + 2H f dx tr(QO0(x))
+ Ay (2.61a)

Here A~ O(TT'Q?) is the interaction part of the ac-
tion, i.e., Sj,; from Eq. (2.39a) expressed in terms of Q
matrices. Schematically, leaving out the detailed struc-
ture of the frequency, replica, and spin-quaternion la-
bels, it is of the form™

A =TT f dx O(x)0(x). (2.61b)

For our present purposes, I" can stand for either I'y or I'..
() is a diagonal matrix with fermionic Matsubara fre-
quencies as diagonal elements, and the coupling con-

stants G and H were defined after Eq. (2.48b). Q is sub-
ject to the constraints

Qx)=1, 0'=0, tr O(x)=1.

A standard way to enforce these constraints, analogous

(2.62a)

to Egs. (2.6), is to write Q as a block matrix in frequency
space,

A ((L-qgh'"” q )
0 ( q’r -(1- qTq)l/z ’

where the matrix g has elements g,,,, with n=0, m <0.

Insight into the GSI effects in a disordered metal can
be gained by an RG analysis that focuses on a stable
fixed point of the above generalized o model (Belitz and
Kirkpatrick, 1997). This fixed point provides an RG de-
scription of the disordered Fermi-liquid ground state
(see footnote 30), in analogy to Shankar’s RG descrip-
tion of a clean Fermi liquid (Shankar, 1994). The proce-
dure is analogous to that in Sec. II.A.1.c. We again de-
fine the scale dimension of a length L to be [L]=-1. The
stable disordered Fermi-liquid fixed point is character-
ized by the choice

[q)]=-(d-2)2

for the scale dimension of the field ¢, which corresponds
to diffusive correlations of the g. This choice is consis-
tent with what one expects for the soft modes in a dis-
ordered metal; see Eq. (2.48b). In addition, the scale di-
mension of the frequency or temperature, i.e., the
dynamical scaling exponent z=[Q]=[T], is needed. In
order for the fixed point to be consistent with diffusion,
the frequency must scale as the square of the wave num-
ber, so we choose

(2.62b)

(2.63)

OThe complete expression (Finkelstein, 1983) will not be
needed here.
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z=2. (2.64)

Now we expand the action in powers of g. In a symbolic
notation that leaves out everything not needed for
power counting purposes, we have

1
.A=—Efdx(Vq)2+Hfdx(2(]2+I‘Tfalxq2

+0(V2¢*,Q ¢* T¢). (2.65)

Power counting shows that all of the coupling constants
in Eq. (2.65) have vanishing scale dimensions with re-
spect to our disordered Fermi-liquid fixed point,

[G]=[H]=[I'T=0. (2.66)

Now consider the leading corrections to the fixed-
point action, as indicated by Eq. (2.65). Power counting
shows that all of these terms are irrelevant with respect
to the disordered Fermi-liquid fixed point as long as d
>2. Furthermore, all of the terms that were neglected in
deriving the generalized nonlinear ¢ model can be
shown to be even more irrelevant than the ones consid-
ered here. The conclusion from these arguments is that
the terms given explicitly in Eq. (2.65) constitute a stable
fixed-point action and that the leading irrelevant opera-
tors (which we denote collectively by u) have scale di-
mensions

[u]=-(d-2). (2.67)

These results can be used to derive the GSI effects
from scaling arguments. We first consider the dynamical
conductivity o({)). Its bare value is proportional to G,
and according to Eq. (2.66) its scale dimension is zero.
We therefore have the homogeneity law (see Sec. 1.B)

a(Q,u) = o(Q b*,u b~42), (2.68a)

By putting b=1/Q"%, and using z=2 as well as the fact
that o(1,x) is an analytic function of x, we find that the
conductivity has a singularity at zero frequency, or long-
time tail, of the form

a(Q) = o(Q = 0) + const X Q422 (2.68b)

That is, we recover Egs. (2.35a) and (2.59a). The present
analysis proves (with the same caveats as in Sec.
I1.A.1.c) that the Q@22 is the exact leading nonanalytic
behavior.

The specific-heat coefficient y=C,/T is proportional
to the quasiparticle density of states H, whose scale di-
mension vanishes according to Eq. (2.66). We thus have

WT,u) = y(Th*,ub™*?), (2.69)

which leads to the low-temperature behavior given by
Eq. (2.35b).

Finally, we consider the wave-vector-dependent spin
susceptibility x,(k). xs is a two-particle correlation and
thus can be expressed in terms of a Q-Q correlation
function. The leading correction to the finite Fermi-
liquid value is obtained by replacing both of the Q’s by
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q. We thus have structurally x,~ T[dx{q’q), with scale
dimension [x,]=0. The corresponding homogeneity law
is

xs(k,u) = xs(kb,ub™""2), (2.70)

which leads to a nonanalytic dependence on the wave
number, as given by Eq. (2.35¢).

We conclude with an important caveat. Like all scal-
ing arguments, those presented above are exact but very
formal. There is no guarantee that the prefactors of the
various nonanalyticities, i.e., the coefficients ¢, are
nonzero. Indeed, explicit calculations show that both ¢}
and c¢}* are nonzero only in the presence of electron-
electron interactions (see, for example, Altshuler and
Aronov, 1984). Further, the same arguments would lead
to the conclusion that the density susceptibility has the
same form as Eq. (2.70) for the spin susceptibility, while
perturbation theory finds that the corresponding prefac-
tor vanishes even in the presence of interactions (see the
discussion at the end of Sec. II.B.1.a). The situation is
thus as follows: If explicit calculation shows that a
nonanalyticity has a nonzero prefactor, then scaling ar-
guments can be used to show that the perturbative result
is indeed the leading nonanalytic behavior, which one
can never conclude from perturbation theory alone.
However, the scaling arguments by themselves can never
establish the existence of a particular nonanalyticity.

b. Clean electron systems

Structurally identical arguments can be made for
clean electronic systems (Belitz and Kirkpatrick, 1997).
There are two motivating factors. First, while the weak-
localization effects are clearly caused by disorder, disor-
der plays a much less crucial role in the explicit calcula-
tions for the Altshuler-Aronov effects which lead to the
same type of nonanalyticities, and the scaling arguments
presented above do not at all depend on disorder in any
obvious way. Second, it is well known that in d=1, a
perturbative expansion in powers of the interaction
breaks down due to logarithmic divergencies, and that
this divergence is related to the breakdown of Fermi-
liquid theory in this dimension (Dzyaloshinski and Lar-
kin, 1971; Schulz, 1995). A natural question is, what hap-
pens to these singularities for d>1?7 Explicit
perturbation theory shows that both clean and disor-
dered interacting electronic systems have related
nonanalyticities that reflect generic scale invariance and
that these singularities are closely related to the terms
that cause the breakdown of Fermi-liquid theory in d
=1 (Belitz et al., 1997; Chitov and Millis, 2001; Chu-
bukov and Maslov, 2003, 2004; Galitski and Das Sarma,
2004).

The formal scaling arguments for these effects pro-
ceed as in Sec. I1.B.4.a above. The only structural differ-
ence is that the two-point vertex in the disordered case,

re =k>+ GHCQ, is replaced by I'? =|k|+ GHQ in

disordered . . clean )
the clean case, and in the terms of higher order in ¢, the

V2 operator in the disordered case is effectively replaced
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by a V operator. In terms of scale dimensions, the net
result of these substitutions, using the notation of the
previous subsection, is

[g)]=~(d-1)2, (2.71a)
z=1, (2.71b)
[u]=-(d-1), (2.71¢)

with u denoting the least irrelevant variables. Note that
technically the difference between the disordered and
clean cases is that (d—2) in the disordered case is re-
placed by (d-1) in the clean case.

Using Egs. (2.71) and arguments identical to those
used in the disordered case, one obtains the results given
by Egs. (2.36). As for the disordered case, this reasoning
shows that Egs. (2.36) are exact.

5. Another example of generic scale invariance:
Disordered systems in a nonequilibrium steady state

The electron-impurity model in a nonequilibrium
steady state has been studied (Yoshimura and Kirk-
patrick, 1996) by means of many-body diagrammatic
techniques in conjunction with Zubarev’s nonequilib-
rium statistical operator method (Zubarev, 1974). This
work showed that effects analogous to those discussed in
Sec. II.A .4 for classical nonequilibrium fluids also exist
in disordered electron systems at 7=0 and that quantum
GSI effects due to nonequilibrium conditions are stron-
ger, i.e., of longer range, than in classical systems.

The particular model studied was that defined by Egs.
(2.37) and (2.38), without the electron-electron interac-
tion term S;,, but in the presence of a chemical-
potential gradient Vu. Consider the nonequilibrium part
of the electronic structure factor

Cy(x,y) = {(n(x) on(y))}giss (2.72)

where (---) denotes a nonequilibrium thermal average.
As one might expect, the calculation leads to a result
that is analogous to the one in the classical fluid, Egs.
(2.34), viz.,

NF/'L Trel

6d (D kz)z[zs(v w?-12(k- Vw?]. (2.73)

Cy(k) =

As in the classical fluid, this corresponds to a decay of
correlations in real space given by const—|x| in three di-
mensions.
In comparison, for a classical Lorentz gas (Hauge,
1974; see also footnotes 28 and 38) one finds instead
Cy(k) ~ (V w)?Ik>. (2.74)
That is, in both quantum and classical cases C, exhibits

GSI, but the effect is stronger in the quantum case due
to the existence of more soft modes.
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6. Quantum Griffiths phenomena: Power laws from rare
regions in disordered systems

In this section we discuss another mechanism for long-
range correlations in time in disordered quantum sys-
tems, the so-called quantum Griffiths phenomena. In
contrast to the examples above, the relevant soft modes
are local in space.

Griffiths phenomena are nonperturbative effects of
rare strong-disorder fluctuations. They were first discov-
ered in the context of classical phase transitions in
quenched disordered systems (Griffiths, 1969). Griffiths
phenomena can be understood as follows: In general,
impurities will decrease the critical temperature 7, from
its clean value 7°. In the temperature region 7,<T
< Y{C) the system does not display global order, but in an
infinite system one will find arbitrarily large regions that
are devoid of impurities and hence show local order,
with a small but nonzero probability that usually de-
creases exponentially with the size of the region. These
static disorder fluctuations are known as rare regions,
and the order-parameter fluctuations induced by them
belong to a class of excitations known as local moments;
sometimes they are also referred to as instantons. Since
they are weakly coupled to one another, and flipping
them requires changing the order parameter in a whole
region, the rare regions have very slow dynamics. Grif-
fiths (1969) was the first to show that they lead to a
nonanalytic free energy everywhere in the region T,
<T< T‘C), which is known as the Griffiths phase, or, more
appropriately, the Griffiths region. In generic classical
systems, the contribution of Griffiths singularities to
thermodynamic (equilibrium) observables is very weak,
since the singularity in the free energy is only an essen-
tial one. In contrast, the consequences for the dynamics
are much more severe, with the rare regions dominating
the behavior for long times (Randeria et al., 1985; Bray,
1988; Dhar et al, 1988). In the classical McCoy-Wu
model, in which the disorder along a certain direction is
correlated, the Griffiths singularities have drastic effects
even for the statics (McCoy and Wu, 1968, 1969).

At quantum phase transitions, the quenched disorder
is perfectly correlated in one of the relevant dimensions,
viz., the imaginary time dimension. Therefore the quan-
tum Griffiths effects are generically as strong as in the
classical McCoy-Wu model (Thill and Huse, 1995;
Rieger and Young, 1996). One of the most obvious real-
izations of quantum Griffiths phenomena can be found
in random quantum Ising models,

HZEJijO'fU'fJFEhiU'f,
(o) i

(2.75)

with Pauli matrices o° and ¢%, where the summation
runs over nearest neighbors on a lattice. Both the Ising
couplings J; and the transverse fields 4; are independent
random variables. This model has been studied exten-
sively in d=1 (Fisher, 1995; Young and Rieger, 1996;
Young, 1997; Igléi and Rieger, 1998; Igléi et al., 1999)
and in d=2 (Rieger and Young, 1996; Pich et al., 1998;
Motrunich et al., 2000), and the results are expected to
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hold qualitatively in d=3 as well (Motrunich et al., 2000).
Let us consider a system that is globally in the disor-
dered phase, with a rare region of volume Vj that is
locally in the ordered phase. The probability density
for such a region to occur is exponentially small, p
cexp(—aVy), with a a disorder-dependent coefficient.
However, since the volume dependence of the local en-
ergy gap A is also exponential (Young and Rieger, 1996),
A ~exp(-bVy), the probability density P(A) for finding a
gap of size A varies as A to a power. One thus has
(Young, 1997)

P(A) = p(VR)|dV gldA] o« AYP1, (2.76)

Thus we obtain a power-law density of low-energy exci-
tations. Notice that the exponent a/b (which in the lit-
erature is often called an inverse dynamical scaling ex-
ponent and is denoted by 1/z) is a continuous function
of the disorder strength.

Many results follow from this. For instance, a region
with a local energy gap A has a local spin susceptibility
that decays exponentially in the limit of long imaginary
times, xjoc(7— %) xexp(—A7). Averaging by means of P,
Eq. (2.76), yields

7, (2.77a)

The temperature dependence of the static average sus-
ceptibility is then

Xioo(T — %) &

ur
= [ amatn e 2.77b)
0

If a<b, the local zero-temperature susceptibility di-
verges, even though the system is globally still in the
disordered phase. The typical correlation function falls

off much faster than the average one; for d=1, Young
(1997) has found a stretched-exponential behavior,

(2.77¢)

with ¢ another coefficient. The large difference between
the average and the typical values is characteristic of
very broad probability distributions of the correspond-
ing observables.

XIP(7— ) < exp(— ¢ 74@*D))

7. Quantum long-time tails from detailed balance

Finally, we discuss a very simple source of long-time
tails, or temporal GSI, which is operative at zero tem-
perature only. To be specific, consider a model with spin
diffusion. The imaginary, or dissipative, part of the dy-
namical spin susceptibility as a function of wave number
and real frequency is

: DK*Q)
X'(k,Q) = X(k)Qz (DI
with D the spin-diffusion coefficient and x(k) the static
spin susceptibility. x”"(k,Q) is an analytic function of fre-
quency. Upon Fourier transformation, this yields an ex-
ponential decay of correlations in real time, x(k,t)
xexp(-Dk*). Now consider the dynamic structure fac-
tor, S(k,Q), and the symmetrized fluctuation function,

(2.78)
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o(k,Q), which are defined by (Forster, 1975)
S(k,Q) = f dx f dt e FFHU NI (v 1) M(0,0)),

(2.79a)

1 * _—
(P(st) — 5 f dxf dt e—zk»xﬂﬂ.t

X{(M (x,t)M(0,0) + M(0,0)M(x,1)), (2.79b)

where M is the magnetization operator. (We neglect the

vector nature of M for simplicity.) The fluctuation-
dissipation theorem (Callen and Welton, 1951; see also
Forster, 1975) relates these two correlation functions to
X" via

S(k,Q) = Y'(k,Q), (2.80a)

1—e P2

o(k,Q) = coth(8Q/2) Y (k, Q). (2.80b)

For any nonzero temperature, these correlations are
again analytic functions of the frequency, and their Fou-
rier transforms therefore decay exponentially in time.
However, in the zero-temperature limit, 8— o (and for
k #0), neither of these correlation functions is analytic
at (1=0; that is, they are proportional to QO(}). This
nonanalyticity leads to a power-law decay in real time
(see, for example, Lighthill, 1958),

S(k,t — ) o (k,t — ) o 1/¢%. (2.81)

Physically, the nonanalyticities in Eqgs. (2.80) at 7=0 re-
flect the absence of excitations in the ground state, as
shown in the detailed balance relation

S(k,— Q) = e PS(k,Q), (2.82)

which implies that S(k,Q)) at 7=0 must vanish for
<0. Note that these long-time tails are present at all
wave numbers, not just in the long-wavelength limit.
More generally, the above considerations imply that §
and ¢ will display long-time tails for any zero-
temperature system. For low but nonzero temperature
there will be a preasymptotic long-time tail followed by
an exponential asymptotic decay.

For later reference we also consider the spin suscepti-
bility at imaginary Matsubara frequencies i), =i27Tn,

" dwy'kw) . DK

k,iQ),) = =x(k
x(k,i€2,,) Jx v w0, X( )|Qn|+Dk2’

(2.83)

which is a nonanalytic function of (},. Accordingly, the
imaginary time correlation  function  x(k,7)
=T=,e7My(k,iQ),) at T=0 has a long-time tail for large
imaginary time 7,

x(k,7— ) < 1/7. (2.84)

More generally, any imaginary time correlation function
has a long imaginary time tail if the corresponding
causal function is nonanalytic at zero frequency.
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lll. INFLUENCE OF GENERIC SCALE INVARIANCE ON
CLASSICAL CRITICAL BEHAVIOR

We now combine the concept of generic scale invari-
ance with critical phenomena. Given that critical phe-
nomena are driven by soft modes, one expects that soft
modes connected to GSI, provided they couple to the
order-parameter fluctuations, will influence the critical
behavior. This is indeed the case in both classical and
quantum systems. In this section we shall discuss two
classical examples. The first one deals with the nematic—
smectic-A transition in liquid crystals, where the generic
soft modes are the Goldstone modes of the nematic
phase (Halperin et al., 1974; Chen et al., 1978). This turns
out to be closely related to the normal-metal-
superconductor transition, in which the generic soft
modes are virtual photons. The second example consid-
ers phase separation in a binary liquid subject to shear,
and the generic soft modes are due to the nonequilib-
rium situation (Onuki and Kawasaki, 1979). Another
classical example, which we shall not dicuss here, in-
volves the ferromagnetic transition in compressible mag-
nets (Aharony, 1976; Bergman and Halperin, 1976).
Quantum phase transitions will be discussed in Sec. IV
below.

A. The nematic-smectic-A transition in liquid crystals

Nematic liquid crystals consist of rod-shaped mol-
ecules. In the nematic phase, there is directional order,
i.e., the rod axes tend to be parallel to one another,
while the centers of gravity of the molecules do not
show long-range order (de Gennes and Prost, 1993). In
the smectic-A phase, the molecules are additionally ar-
ranged in layers. Within each layer, the rod axes are on
average aligned perpendicular to the layer, but the mol-
ecules still form a two-dimensional liquid. In either
phase, there are Goldstone modes associated with the
broken rotational invariance that is characteristic of the
directional order. It turns out that these Goldstone
modes couple to the order parameter for the smectic-A
order and have an important influence on the critical
behavior. Let us now discuss this effect, following Halp-
erin et al. (1974), Chen et al. (1978), and de Gennes and
Prost (1993).

1. Action, and analogy with superconductors

The layers of the smectic-A phase are described as a
density modulation in, say, the z direction,

p(x) = py + pi(x)cos[qz + ¢(x)]. (3.1

In the smectic-A phase, the fluctuating amplitude p,(x)
has a nonzero mean value, g is the wave number associ-
ated with the smectic layer spacing, and ¢ is a phase. It is
convenient to combine p; with ¢ to form a complex or-
der parameter [see de Gennes and Prost (1993), and ref-
erences therein]

P(x) = py(x)e®™. (3.2)
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One piece of the action for the smectic-A order then
takes the form

Sal¥] - j x| P + | ¥ ) + 1 )1
(3.3a)

This is the LGW functional for a complex scalar field or,
equivalently, the O(2) version of Eq. (2.3).4 ro and u, are
bare parameters that will be renormalized later. This ac-
tion is incomplete. One must add to it (1) a term describ-
ing the fluctuations of the nematic order parameter, and
(2) a term describing the coupling between the two. The
nematic rods are described by a unit vector called the
director n, and the director fluctuations are given by
A(x)=n(x)—2. To linear order in the fluctuations, n’*=1
enforces A = (Ax,Ay,O). The Gaussian contribution of A
to the action takes the form of three gradient-squared
terms (de Gennes and Prost, 1993), viz.,

SnlA]= j dx{K\[V - AT + K2+ (V X A(x))F

+ K3[dA(x)/9z]%}, (3.3b)

where K;, K,, and K3 are related to elastic constants.
The coupling between ¢ and A can be shown to be ad-
equately represented by replacing the Vi in Eq. (3.3a)
by

Vi(x) — [V-igA(x)](x). (3.3¢)

We see that the coupling between the order parameter
and the director fluctuations takes the same form as the
coupling between the order parameter and the vector
potential in Eq. (2.15a). It is important to realize, how-
ever, that the action given by Egs. (3.3), in contrast to
Eqgs. (2.15a), is not invariant under local gauge transfor-
mations due to the additional gradient terms in Eq.
(3.3b). This has profound consequences for the ordered
phase; for instance, it leads, via a Landau-Peierls insta-
bility, to the absence of true long-range order in a smec-
tic (Lubensky, 1983; see also footnote 42 below). How-
ever, it has been shown that a simplified action obtained
by neglecting K; and putting K,=K3;=1/8mu has the
same critical properties (Lubensky, 1983). Although the
full action has properties that are in general very differ-
ent from those of the gauge theory given in Eq. (2.15a),
the former thus reduces to the latter for the purposes of
determining the critical behavior. Keeping in mind that
A lies in the xy plane, an appropriate effective action is

“The gradient terms parallel and perpendicular to the layers
have different coefficients, but the action can be made isotro-
pic by an appropriate real-space scale change.
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SnalhA]= f dx{r0|¢(x)|2 +¢|[V-igA(x)]y(x)?
+ 1o (x)[* + L[V X A(x)]z}. (3.4)
8w

As we have discussed in Sec. I1.A.2, this action formally
is gauge invariant.** We also recognize it as the action of
a spin-singlet superconductor, with ¢ the superconduct-
ing order parameter, A the vector potential, g the Coo-
per pair charge, and u the magnetic permeability (see,
for example, de Gennes, 1989). The nematic-smectic-A
transition can thus be mapped onto a superconductor—
normal-metal transition, even though the generic soft
modes in the superconducting case, viz., the photons,
have a very different origin from that of the director
fluctuations: The latter are the Goldstone modes of a
broken symmetry, while the former are the result of
gauge invariance, as was discussed in Sec. II. This re-
markable analogy (Halperin and Lubensky, 1974) is a
good example of the versatility of effective-field theo-
ries. This becomes even more apparent upon the realiza-
tion that the action (3.4) is closely related to the scalar
electrodynamics problem studied by Coleman and Wein-
berg (1973), which demonstrated a mechanism for the
spontaneous generation of mass in particle physics.

We make one final remark to put this section into
context. In the disordered phase we have generic long-
ranged correlations, or GSI, from the gauge-field flucta-
tions [see Eq. (2.17a)]. In the following subsections we
shall see how these generic long-ranged correlations
modify the critical behavior compared to the one that
would result from Sy, Eq. (3.3a), alone. In particular, see
Eq. (3.7) below and the discussion following it.

2. Gaussian approximation

The simplest way to deal with the action Sy, is to
treat it in Gaussian approximation, that is, to neglect the
nonlinear coupling between A and . The #* term needs
to be kept for stability reasons, of course. In this ap-
proximation the model reduces to an XY model, which
makes the liquid crystal analogous to a superfluid rather
than to a superconductor, and it predicts a continuous
transition in the XY universality class (de Gennes, 1972).
As we know from Sec. II.A.2 and will see again below,
this Gaussian approximation misses some crucial aspects
of the full model.

1t is important to realize, however, that the only physical
gauge is still the one in which A,=0. Gauge transformations
that take one to, e.g., the Coulomb gauge used in Sec. I1.A.2
lead to a transformed order parameter that no longer repre-
sents a physical observable. For instance, the transformed or-
der parameter exhibits true long-range order in the smectic
phase, whereas, as mentioned in the text, the original one does
not (Lubensky, 1983; de Gennes and Prost, 1993). Another way
to say this is that the phase of the order parameter in a smectic
is observable, while in a superconductor it is not.
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3. Renormalized mean-field theory

The action (3.4) is characterized by two length
scales.¥ In a superconducting language, they are the co-
herence length

£=cllr| (3.52)
and the London penetration depth
N =kt = V18 muegX|px) ). (3.5b)

Here r is the renormalized distance from the critical
point (see below). The ratio xk=N/é=1/k\¢ is the
Landau-Ginzburg parameter. Notice that « is indepen-
dent of r, since (|yf)c\|r|. k<1 characterizes type-I su-
perconductors, in which the order-parameter coherence
length is larger than the penetration depth. In a mag-
netic field, these materials form a Meissner phase that
completely expels the magnetic flux.* In the extreme
type-I limit, k<1, order-parameter fluctuations are neg-
ligible, (x)=(y(x))= 1, and the part of the action that
depends on the vector potential takes the form

1 J dx[k2A%(x) + (V X A(x)?].
8w

We see that in the normal conducting phase the trans-
verse photons are soft, as they should be according to
Sec. II.A.2.a (these are the generic soft modes), while in
the superconducting phase they acquire a mass propor-
tional to k, o, (see Sec. II.LA.2.b). Choosing a gauge-
fixing term, Eq. (2.16), with 77:1,45 one finds for the A
propagator

~ ~ 4
(A ALY = 8updl = 3) 13 G

(3.6)

Since the vector potential no longer couples to any
fluctuating fields, it can be integrated out to obtain an
action entirely in terms of the superconducting order

parameter (Halperin et al., 1974),

“The full action for the liquid-crystal problem contains many
more length scales. Hence more cases than the type I and type
IT of the superconductor need to be distinguished. These have
not been fully classified.

#To avoid misunderstandings, we stress that the conclusions
drawn below are valid in the absence of an external magnetic
field, as the vector potential A can describe spontaneous elec-
tromagnetic fluctuations.

“Notice that the renormalized mean-field theory neglects all
fluctuations of the field ¢, in contrast to the Gaussian theory
discussed in Sec. II.A.2.b. No particular gauge needs to be
chosen in order to eliminate the Higgs field. One should also
keep in mind that the full action for the liquid crystal, which is
not gauge invariant due to the additional gradient terms in Eq.
(3.3b), has a different soft-mode spectrum in the ordered phase
than the superconductor.
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Serl ] = lnf D[A]e‘SNA['JI,A]

= V(roly? + uplh) - %Tr In(V2+k}).  (3.7)

Here Sy, is given by Eq. (3.4), V is the system volume,
and we have neglected a constant contribution to the
action. The above procedure is exact to the extent that
fluctuations of ¢ can be neglected; otherwise, it is an
approximation. It produces an action entirely in terms of
¢, but, since one has integrated out a soft mode, the
price one pays is that this action is nonlocal.*® The effect
of the nonlocality is most conveniently studied by ex-
panding the equation of state in powers of the order
parameter ¢, and the free-energy density f=T S.;/V can
be obtained by integrating the result order by order. The
details have been given by Chen et al. (1978). The result
for the leading terms in three dimensions is

AT=rlgf = vslyf® + ulyt* ~ gy (d=3).

Here we have added a field /& conjugate to the order
parameter. r and u are given by ry and u, with additive
corrections proportional to ug? and (ug?)?, respectively.
These changes do not affect the behavior of the theory.
However, v;>0 is a positive coupling constant propor-
tional to \ug? that drives the transition first order. No-
tice that the new term generated by the generic soft
modes is nonanalytic in the order parameter; such a
term can never appear in a local Landau expansion. This
provides a rather extreme example of generic soft
modes influencing critical behavior: The critical point is
destroyed, and a first-order transition takes place in-
stead. This phenomenon is known as a fluctuation-
induced  first-order tramsition in condensed-matter
physics47 and as the Coleman-Weinberg mechanism in
high-energy physics. Interestingly, it is not the soft mode
per se that produces the first-order transition; it is the
fact that a nonzero order parameter gives the soft mode
a mass. This is an example of a more general principle
that has been explored by Belitz et al. (2002). For later
reference we also give here the free-energy density in
four dimensions (Chen et al., 1978), although this case is
not of physical relevance for liquid crystals,

AT =rlgf + vyl ' In|d + uf* = hyp (d=4),

with v,>0.

Note that the free-energy functionals given by Eqgs.
(3.8a) and (3.8b) are nonanalytic in ¢ and that this
nonanalyticity has nothing to do with the phase transi-
tion. Indeed, they denote the proper free energy for the
order parameter caused by a conjugate field far from the
transition. Physically, the nonanalyticity reflects GSI in
the disordered phase, and it is directly related to a

(3.8a)

(3.8b)

*More precisely, the mode that has been integrated out has a
small mass (for small |#{) that is given by the order parameter.

#Notice that the fluctuations in question are not the order-
parameter fluctuations, but rather the generic soft modes.
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nonanalytic wave-number dependence of the order-
parameter susceptibility y,. This becomes obvious if one
remembers that in any mean-field theory, r=1-Ty,,
with I' the appropriate interaction coupling constant,
and that ¢ scales like a wave number far from the phase
transition, as can be seen from Egs. (3.5b) and (3.7). In a
scaling sense, Eq. (3.8a) thus corresponds to a wave-
number dependence of y,, given by

k|, (3.9a)

with bX¥>0 a positive coefficient. Notice that this is
analogous to Egs. (2.36b) and (2.35d), although Y, is not
observable for the superconductor, and is related to an
observable susceptibility in a complicated way for the
liquid crystal. In Sec. IV we shall discuss examples in
which the magnetic susceptibility, which is directly mea-
surable, plays an analogous role. In real space, this be-
havior corresponds to

Xs(r >0, ]x| — o0) o 1/|x|*. (3.9b)
This manifestation of GSI is ultimately responsible for
the failure of the Gaussian theory to correctly describe
the phase transition.

The conclusion that the nematic—smectic-A transition
and the BCS superconducting transition are of first or-
der is inevitable if order-parameter fluctuations are neg-
ligible. Quantitatively, the effect turns out to be unob-
servably small in superconductors, as the first-order
nature of the transition is predicted to manifest itself
only within about one uK from the transition tempera-
ture. In liquid crystals, however, the numbers are much
more favorable (Halperin ef al., 1974). After a long time
of confusion, careful experiments have indeed confirmed
the first-order nature of the transition in a variety of
liquid crystals (Anisimov et al., 1990; Lelidis, 2001;
Yethiraj et al., 2002).

4. Effect of order-parameter fluctuations

Interesting and technically difficult questions arise
when order-parameter fluctuations are taken into ac-
count. First-order transitions are often thought of as un-
affected by order-parameter fluctuations, almost by defi-
nition, since they preempt a fluctuation-driven critical
point. However, if the first-order transition takes place
within the critical region of an unrealized second-order
transition, then the critical fluctuations associated with
the latter can destabilize the mechanism that drives the
transition first order. The resulting transition can then be
continuous but described by a fixed point different from
the one that destabilizes the fluctuation-induced first-
order transition. An explicit example of such a
“fluctuation-induced second-order transition” was given
by Fucito and Parisi (1981). How this works technically
becomes clear once one realizes that, within a RG treat-
ment, a fluctuation-induced first-order transition comes
about by the quartic coupling constant u flowing to
negative values. Critical fluctuations can weaken this
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FIG. 11. Velocity field in a fluid subject to a steady, plane
Couette flow.

tendency and lead to a positive fixed-point value of u
after all. We shall discuss an explicit example of this in
Sec. IV.A below.

For the superconducting/nematic—smectic-A transition
problem, a RG analysis to one-loop order has been per-
formed by Chen et al. (1978). To first order in e=4-d,
these authors found no critical fixed point and con-
cluded that the transition is always of first order, both
for superconductors and for liquid crystals, and for both
type-I and type-II materials. However, later work by
Dasgupta and Halperin (1981), prompted by mounting
experimental evidence that the transition is of second
order in type-II materials, concluded that, as one enters
into the type-II region, the first-order transition be-
comes weaker and weaker until the transition reverts to
second order in the so-called inverted XY universality
class. This has been confirmed by a sizable body of nu-
merical and analytical evidence (see, for example, Her-
but et al., 2001, and references therein). Why the pertur-
bative RG does not show this fixed point is not quite
clear.

B. Critical behavior in classical fluids

Our second classical example deals with the critical
behavior of a classical fluid, both in equilibrium (Ka-
wasaki, 1976; Hohenberg and Halperin, 1977) and in a
nonequilibrium situation created by applying a constant
rate of shear (Onuki and Kawasaki, 1979). Let us con-
sider a fluid confined between two parallel plates subject
to a constant rate s of shear (see Fig. 11). The average
local velocity is given by

v(x) =sye,, (3.10)

with e, a unit vector in the x direction. This externally
induced velocity has to be added to the Navier-Stokes
equations (2.21). Close to the liquid-gas critical point,
these equations can be replaced by the following set of
simpler equations (Kawasaki, 1970; Onuki and Ka-
wasaki, 1979):

I J

W alﬂua+)\(9¢9a5S[ 1+ 60, (3.11a)
— =—sy—i— =d,0%— dla
gt VgV PO 5 0 5y S 6,
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u®

__B &’i B, a @
P 2<¢a 5¢S[¢])L+Wﬁa u“+ 9. (3.11b)

Here the order parameter ¢ represents the specific en-
tropy, u is the deviation of the local velocity from its
average v, and \ and 7 are the bare thermal conductivity
and the bare shear viscosity as in Eqs. (2.21).*® v, de-
notes the transverse part of a vector v. § is a classical
action, or free-energy functional, given by

S[:,Z/]:fdx[rl,lfz+c(V1//)2+u 1, (3.11¢)
and 6 and ¢ are Langevin forces that obey
(6(x,0)0(x" 1)) = = 2AV?>S(x —x") 8t - 1'), (3.11d)
(Lo, 08px" 1)) = = 28,5mV8x —x") 8t - 1').
(3.11e)

In the absence of shear, s=0, Egs. (3.11) describe
model H of Hohenberg and Halperin (1977), a time-
dependent Ginzburg-Landau theory for the conserved
order parameter ¢ coupled to the conserved auxiliary
field u. Since the shear modes are soft, this coupling
influences the critical behavior. We shall now discuss this
influence, first in equilibrium and then for a system with
s#0.

1. Critical dynamics in equilibrium fluids

In Sec. II.B, when discussing long-time tails, we con-
sidered corrections to the bare kinematic viscosity v in
the GSI region far from criticality and mentioned that
analogous results hold for other transport coefficients.
Of particular interest for the critical dynamics near the
liquid-gas critical point is a contribution to the correc-
tion to the thermal conductivity, d\, from the coupling of
transverse-velocity fluctuations to the entropy fluctua-
tions described by Egs. (3.11) for s=0. Before perform-
ing the wave-number integral, this particular contribu-
tion, which we denote by O\, is (Kawasaki, 1976;
Hohenberg and Halperin, 1977)

1 ~ . 2 2
O\ (k1) = ;2 X(p)X k- pO)2e =Pt (3.12)
p i

Here Dy=N\/p c, is the thermal diffusivity in terms of c,,
the specific heat at constant pressure. y is the order-
parameter susceptibility for the phase transition, where
we have anticipated that near the critical point we shall
need the momentum-dependent yx, and p,=p+k/2. Set-
ting k=0 and carrying out the momentum integral leads
to a %2 long-time tail. The correction to the thermal
conductivity is obtained by integrating SA(f) over all

“Here we discuss a pure fluid for simplicity. For experimental
purposes, binary fluids are preferred for technical reasons. This
changes the interpretation of the various quantities in Egs.
(3.11), but the physics remains the same.
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times, as in the case of the kinematic viscosity.*’

By examining Eq. (3.12) one easily identifies a mecha-
nism by which the long-time-tail effects can become
even stronger. Consider a system with long-range static
correlations, for instance due to Goldstone modes or to
the vicinity of a continuous phase transition. In either
case, some susceptibilities, e.g., the x in Eq. (3.12), be-
come long ranged, amplifying the lont-time-tail effect.
Before we discuss the realization of this scenario in the
vicinity of a phase transition we make one last point
concerning long-time tails. So far we have stressed the
leading tails that decay as %2, but there are numerous
subleading tails as well. Most of them are uninteresting,
but one becomes important near the critical point, via
the mechanism discussed in the last paragraph. Accord-
ing to Eq. (3.12), a central quantity for determining the
critical contribution to \ is the shear viscosity # [which
enters v; see the definition of v after Eq. (2.24)]. It turns
out that the contribution to #» that is dominant near the
critical point is a subleading long-time tail away from
criticality. It involves a coupling of two heat or entropy
modes and is given by (Kawasaki, 1976)

1 ;)2
x(p)  xk-p)
X (k, - p)teDrlp*+k=p1)

snlhe) = 155 xp)xik —p)(
p

(3.13)

with A a constant. Away from the critical point, this
long-time tail decays as ~¥>*?) so in fact it is a next-to-
next leading long-time tail. Nevertheless, it is the domi-
nant mode-coupling contribution to # near the critical
point because of the two factors of y in the numerator of
Eq. (3.13).

Near continuous phase transitions, fluctuations grow
and ultimately diverge at the critical point. For the
liquid-gas critical point the order parameter is the differ-
ence between the density and the critical density, and
the divergent fluctuations are the density fluctuations as
described by the density susceptibility. The susceptibility
x in Eq. (3.13) is proportional to this divergent suscepti-
bility. In the Ornstein-Zernike approximation it is given
by Egs. (1.2). Away from the critical point, r#0, y de-
cays exponentially in real space; see Eq. (1.2b).

Carrying out the time integral, we find that the lead-
ing singular contribution to the static, wave-number-
dependent thermal conductivity is (Hohenberg and Hal-
perin, 1977)

“These results imply that for d<2, conventional hydrody-
namics does not exist. Indeed, it is now known that for these
dimensions the hydrodynamic equations are nonlocal in space
and time. For a discussion of this topic, see Forster et al. (1977),
and references therein. In smectic liquid-crystal phases this ef-
fect is stronger, since some susceptibilities behave, for certain
directions in wave-vector space, as 1/k*, amplifying the long-
time-tail effect. This causes a breakdown of local hydrodynam-
ics for all dimensions d <5 (Mazenko et al., 1983).
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FIG. 12. The thermal diffusivity Dy=\/p ¢, of carbon dioxide
in the critical region as a function of density at various tem-
peratures (7.=304.12 K). The symbols indicate experimental
data for D7 measured directly, and for N/p ¢, deduced from
thermal-conductivity data. The solid curves represent values
calculated from the mode-coupling theory. Adapted from
Luettmer-Strathmann et al., 1995.

> (k- py

1 i
k) == x(p) (3.14)
P p P

V] % + DTP_Z*_ '
Using Eq. (1.2a) in this equation we see that the homo-
geneous thermal conductivity is infinite at the critical
point for all d<4, diverging as |r|"4~¥’2, This is a result
of the amplification of the long-time tail by the critical
fluctuations.

By the same mechanism, we see that Eq. (1.2a) leads
to a logarithmically singular contribution to 67, if we
take into account that Eq. (3.14) implies that, at the criti-
cal point, D (k) ~|k|*2.

The above conclusions result from one-loop calcula-
tions that use the Ornstein-Zernike susceptibility. To go
beyond these approximations it is necessary to (1) use
the correct scaling form for the susceptibility, and (2) use
either a self-consistent mode-coupling theory (Kadanoff
and Swift, 1968) or a RG approach (Forster et al., 1977,
Hohenberg and Halperin, 1977) to improve on the one-
loop approximation. The result is that the thermal con-
ductivity diverges as

N o [0 (3.15a)
and that the thermal diffusivity vanishes as
Dy |r]%97, (3.15b)

This is in good agreement with experimental results, as
shown in Fig. 12, which compares experimental and the-
oretical results for the thermal diffusivity of carbon di-
oxide in the critical region.

All of the above results are obtained by considering
the effects on the dynamics (i.e., on transport coeffi-
cients) of the static critical behavior, as expressed by the
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susceptibility y, which has been determined indepen-
dently. There is no feedback of the critical dynamics on
the statics. This is an example of the missing coupling
between the statics and the dynamics in classical equilib-
rium systems that we alluded to in the Introduction. As
we shall see, this changes in a nonequilibrium situation.

2. Critical dynamics in a fluid under shear

Let us now consider Egs. (3.11) in the presence of
shear, s # 0. In this situation the entire fluid can still be at
its critical temperature and density. One therefore still
expects a sharp phase transition (in an infinitely large
system), albeit a nonequilibrium one. This is in contrast
to driving the system out of equilibrium by means of,
e.g., a temperature gradient. Inspecting Eq. (3.11a), we
make the following observations: (1) Shear will have a
tendency to make the order-parameter susceptibility less
soft. This is obvious since the operator yd/dx in Eq.
(3.11a), which scales like a mass by naive power count-
ing, enters additively to the diffusive operator V2. In ad-
dition, the susceptibility will become anisotropic. (2) 1/s
sets a new time scale in the problem, which needs to be
compared to the relaxation time 7. One therefore ex-
pects equilibrium critical behavior in the weak-shear re-
gion s7<<1, and a crossover to different behavior in the
strong-shear region s7>1. Alternatively, one can define
a characteristic wave number k; by 7(kj)=1/s. The
strong-shear region is then given by k,¢>1, with & the
order parameter correlation length.

It follows from point (1) above that the upper critical
dimension cannot be greater than the one in the equilib-
rium case, which is equal to 4. At least for d>4, the
nonlinearities in the stochastic equations (3.11) must
therefore be irrelevant. In the linearized equations, ¢
and u decouple, and the equation for the former be-
comes

d d
—l//:—sy—t,b+ AV2(r = V)i + 6. (3.16)
ot ox
The static order-parameter susceptibility,
1 [dQ .
xylk) =~ f P J dr e (g0 _(0)), (3.17)
T) 2w

can be obtained from Eq. (3.16), Fourier transforming
and using Eq. (3.11d). This yields the following differen-
tial equation for x,:

[x K(r+ k) - %skx } xy(k) = Nk (3.18)

a
ak,
In the strong-shear region, the solution of this equation
is adequately represented by (Onuki and Kawasaki,
1979)

xy(k) =1/(r + const X K321k |75 + IP), (3.19a)

with the constant of O(1). This is the generalization of
the Ornstein-Zernike susceptibility, Eq. (1.2a), to a
sheared system. [Remember that y in Eq. (3.14) is pro-
portional to y,.] As expected, y,(k) is strongly aniso-
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tropic and less soft than for s=0. The nonequilibrium
situation induces long-ranged static order-parameter
correlations even away from criticality that manifest
themselves in the nonanalytic wave-number dependence
of x,. In real space in d=3, one finds power-law corre-
lations at r# 0 (Onuki and Kawasaki, 1979),

Xy(r > 0,]x| — o) o 1/]x|™® (3.19b)

for |x | |<k;'<|x|, where x=x , +xé,. For |x |> x|, how-
ever, x, decays exponentially. That is, , exhibits GSI
(and extreme anisotropy). At criticality, r=0, x, is of
even longer range (Onuki and Kawasaki, 1979). If we
use Eq. (3.19a) for r=0 in Eq. (3.14), we find

k

S\ (k=0) o J dp p*=k;*|p,| P
0

kA\'
o ks_S/Sf dp pd—17/5' (320)
0

In contrast to the equilibrium situation, where é\(k=0)
diverged for all d=<4, we see that in the presence of
shear the divergence occurs only for d<12/5.

The above result suggests that the critical behavior of
the thermal conductivity \ is mean-field-like, i.e., given
by the time-dependent Ginzburg-Landau theory, for d
>12/5, and in particular in d=3. The physical reason is
that the long-range order-parameter correlations stabi-
lize the mean-field critical behavior. It is not obvious
that this conclusion is correct, though, as it has been
derived by using the approximation (3.19a), which ne-
glected the nonlinearities in the equations of motion.
Onuki and Kawasaki (1979) have performed a RG
analysis which shows that the simple argument given
above is indeed correct. In the presence of shear, the
upper critical dimensionality is d;=12/5, and for d>d
there is a new simple critical fixed point where y,, and 6\
are given by Egs. (3.19a) and (3.20), respectively. The
RG treatment shows that the flow equations for y, and
the transport coefficients are coupled. This means that,
contrary to the equilibrium case, it is not possible to
solve for the static critical behavior independently of the
dynamics. Onuki and Kawasaki (1979) also considered
the equation of state, which they found to be of mean-
field form for d>12/5. In particular, the critical expo-
nent B has its mean-field value S=1/2.

Another theoretical prediction regards the suppres-
sion of the critical temperature by the shear. Consider
the inverse correlation length ¢! as a function of r and s.
Since s is an inverse time, it is expected to scale with the
dynamical critical exponent z. Dynamical scaling then
predicts the relation

Elrs)=b1EN(r b s b = (1,sr?),  (3.21)

with b an arbitrary scale factor, and v and z the correla-
tion length exponent and the dynamical critical expo-
nent, respectively, at the equilibrium transition. For s
#0, the inverse correlation length thus vanishes not at
r=0, but rather at r=const X s'/*%. The shear dependence
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FIG. 13. Critical temperature vs shear in the binary fluid
cyclohexane-aniline. Symbols represent the experimental data,
and the solid line corresponds to the theoretical exponent
1/vz=0.53. Adapted from Beysens and Gbadamassi, 1980.

of the critical temperature, for small shear, is therefore
T.(s) = T.(0) — const X s'/*%, (3.22)

At the equilibrium transition, »~0.63, and z=3 in d
=3 (Hohenberg and Halperin, 1977). Many of these re-
sults have been confirmed experimentally in light-
scattering experiments on binary fluids (Beysens and
Gbadamassi, 1980). For the T, suppression, the experi-
mental results are shown in Fig. 13 together with the
theoretical prediction.

The classical nonequilibrium phase transition de-
scribed above is very much analogous to the equilibrium
quantum phase transition in a ferromagnet with
quenched disorder, which we shall discuss in Sec. IV.B.
In that case, too, the order-parameter susceptibility re-
flects long-ranged correlations, although they are due to
generic soft modes rather than a nonequilibrium situa-
tion. This in turn leads to the stabilization of a simple
Gaussian critical fixed point, much like in the nonequi-
librium classical fluid. An important difference is that in
the quantum ferromagnetic case, the equation of state is
not mean-field-like; see Eq. (4.24b) below. The reason
for this difference is not known.

IV. INFLUENCE OF GENERIC SCALE INVARIANCE ON
QUANTUM CRITICAL BEHAVIOR

We now turn to quantum systems. As we have dis-
cussed, the only qualitative difference compared to the
classical case is the coupling between the statics and the
dynamics in quantum mechanics, which leads to long-
time tails affecting the critical behavior of thermody-
namic quantities even in equilibrium. Otherwise, the
phenomena are qualitatively very much analogous.
However, there is an important quantitative difference.
In any itinerant electron system, there are generic soft
modes, viz., the particle-hole excitations that can be un-
derstood as Goldstone modes, as explained in Sec.
I1.B.2, which are soft only at zero temperature. Our first
example for which these particle-hole excitations play
the role of the generic soft modes is the case of the
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ferromagnetic transition in metals at 7=0. We shall treat
clean and disordered systems separately, since they turn
out to behave quite differently and are qualitatively re-
markably similar to the classical nematic—smectic-A
transition discussed in Sec. III.A, on the one hand, and
to the critical dynamics of a classical fluid under shear
(Sec. II1.B.2), on the other. Another example is the tran-
sition from a normal metal to a BCS superconductor T
=0, which we cover in Sec. IV.C. The case of the quan-
tum antiferromagnetic transition, which is very different
and at this point rather incompletely understood, is dis-
cussed in Sec. IV.D.

A. Quantum ferromagnetic transition in clean systems

Let us consider the phase transition in a clean itiner-
ant quantum Heisenberg ferromagnet as our first ex-
ample of a quantum phase transition that is influenced
by generic soft modes. In Sec. IV.B we shall discuss the
effects of quenched disorder and also give some addi-
tional technical details.

Our exposition does not follow historical lines. The
first detailed theory of the quantum ferromagnetic tran-
sition was given in an influential paper by Hertz (1976),
who derived an effective action from a microscopic
model and concluded that the critical behavior is mean-
field-like in all dimensions d>1. As we shall show, this
conclusion was the result of an approximation that ig-
nored all but the most basic aspects of the generic soft
modes.

1. Soft-mode action for itinerant quantum ferromagnets

The order parameter is the fluctuating magnetization
field M(x) [with x=(x,7) the space—-imaginary-time coor-
dinate, as in Sec. I1.B.2], whose expectation value is pro-
portional to the magnetization m. The generic soft
modes in this system are the diffusive particle-hole exci-
tations. They were parametrized in Sec. I1.B.2 in terms
of the soft sector ¢ of the matrix field Q [see Egs. (2.46)
and (2.47), with the corresponding propagator given by
Eq. (2.48¢c)]. The coupling between the two is provided
by the fact that the magnetization couples linearly to the
spin density, which can be expressed in terms of the Q.
The action will thus consist of a part that depends only
on the magnetization, a part that depends only on the
generic soft modes, and a coupling between the two,

A[M,Q]ZAM+ Aq+AM,q' (41)

Ay, is a static, local, LGW functional for the magnetiza-
tion fluctuations. It can be chosen static because, as we
shall see in Sec. IV.A.2, the low-frequency dynamical
part will be generated by the coupling to the ballistic
modes. We thus write
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AylM] = f dx[M(x)(ry— cV*)M(x) + upM*(x)].

(4.2)

A, must yield the ballistic propagator of the soft modes,
Egs. (2.48). The Gaussian part of the fermionic action
will therefore have the form

4 ; ; '
.AS,Z) -G f dxdy > 2> erI12(x)T522),34(x_y)lr%“(y)'

1234 ri
(4.3a)

The particle-particle degrees of freedom are irrelevant
for this problem, and we can therefore restrict the sum
over the index r to r=0.3. The vertex function I'® is
most easily written in momentum space,

TR 3(k) = 813802 (k) + 81354827 TGK,

+681_35.4(1 - 8027 TGK,, (4.3b)

with

r'2%k) = |k| + GHQ, ;. (4.3¢)

The inverse of I'®? yields the noninteracting propaga-
tor, Egs. (2.48a) and (2.48c), the inverse of I'® its gen-
eralization to interacting systems. Ky is the spin-singlet

interaction amplitude defined after Eq. (2.48¢c), and Izt is
a “residual” spin-triplet interaction.

A 4 originates from a term Ay_o that couples M and
Q. Such a term must be present, since in the presence of
a magnetization the fermionic spin density will couple
linearly to it. Using Eq. (2.44) to express the spin density
in terms of Q, we thus obtain

P0ne might argue that the spin-triplet degrees of freedom
are included in M, so also including them in A, constitutes
double counting. To see that this is not true, imagine deriving
the effective action from a microscopic model, e.g., Egs.
(2.37)—(2.39). This introduces M by decoupling the spin-triplet
interaction term in Eq. (2.39a) by means of a Hubbard-
Stratonovich transformation (Stratonovich, 1957; Hubbard,
1959), which leaves spin-triplet degrees of freedom in the non-
interacting part of the action S, and hence in A(qz).

A weaker version of the same objection is that K, should be
zero, since it represents the interaction that has been decou-
pled. However, this argument ignores the fact that a spin-
triplet interaction will be generated from the spin-singlet one
under renormalization, even if there is none in the bare action.

The only restriction on kl is therefore that it must not be so
large as to induce a ferromagnetic instability in the electronic
“reference system” described by A, in the absence of a cou-
pling to M.
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3
-AM—Q = 2C1\/7—‘f de E M;(X)

n i=1
X 2 (_ 1)r/22 tl‘[(T, ® Si)Qm,m+n(x)]a
r=03 m
(4.4a)

with a model-dependent coefficient ¢;. Defining a sym-
metrized magnetization field by

blz(x) = 2 (Tr ® Si)iblz(x),

ir

(4.4b)

with components
115(x%) = (= )22 80 [M,(x) = (= )M, (x)] (4.4c)
n
allows us to rewrite Eq. (4.4a) in a more compact form,

Ayo=c\T f dx tr(b(x)Q(x)). (4.4d)
Using Eq. (2.46) in Eq. (4.4a) or Eq. (4.4d), and integrat-
ing out the massive P fluctuations, obviously leads to a
series of terms coupling M and g, M and g2, etc. We thus
obtain Ay, , in the form of a series,

AM,q = AM—q + AM_qZ + - (453)

The first term in this series is obtained by just replacing
O with g and ¢, respectively, in Eq. (4.4d):

3
dxY, >, b ,(x)ig,(x).  (4.5b)

roi=1

172
Ayg=8c,T"?
12
The next term in this expansion has an overall structure

Ap_g2 cz\’?f dx tr(b(x)q(x)g'(x)), (4.5¢)
with ¢, another positive constant. The detailed structure
(Kirkpatrick and Belitz, 2002) can be obtained by inte-
grating out the P fluctuations in the tree approximation,
in analogy to the derivation of the nonlinear o model in
the disordered case (Wegner and Schifer, 1980; McKane
and Stone, 1981). Terms of higher order in ¢ in this ex-
pansion will turn out to be irrelevant for determining the
behavior at the quantum phase transition.

Let us pause here and compare our soft-mode action
with the one for the classical liquid-crystal transition in
Sec. IIILA.1. The order-parameter part of the action,
Egs. (3.3a) and (4.2), respectively, is a ¢* theory in either
case, and the generic soft modes are described by a
Gaussian action, Egs. (3.3b) and (4.3a), respectively. Fi-
nally, in either case there is a direct coupling between
the order parameter and the generic soft modes. In the
case of the liquid crystal, this coupling is between the
square of the order parameter and the square of the
soft-mode field, while in the case of the magnet the or-
der parameter couples linearly to all powers of the soft-
mode field, but this does not have major physical conse-
quences, as we shall see. Apart from this, the main
difference is that in the quantum case the fields depend
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on time or frequency in addition to position or wave
vector, which leads to a more complicated detailed struc-
ture of the terms in the action, the coupling terms in
particular. Given these structural similarities, it is natu-
ral to analyze the quantum ferromagnetic transition in
analogy to the liquid crystal one of Secs. III.A.2 and
IILLA.3.

2. Gaussian approximation

A strict Gaussian approximation neglects the term
Ay, Eq. (4.5¢). One can then integrate out the intrin-
sic soft modes ¢ to obtain an action (Hertz, 1976)

AulM] =X M(k)M,,' (k)M(- k) + O(M*), (4.6)
k

where k=(k,(,) is a momentum-frequency four-vector,
d=4Gc?/m, and M~! is the inverse of the paramagnon
propagator,

1
ro+ ck? + d|Q,|/(|k| + GH|Q,|)"
In the context of the full action, M gives the Gaussian
M propagator,

M, (k) = (4.7a)

) . 1
<M2(k)MIm(P)> = 5k,—p an,fm Sij5

i3 M),

(4.7b)
M and the fermionic propagator D, Eq. (2.48c), with the
latter suitably generalized to allow for the interaction

amplitudes K, and K,, are the Gaussian propagators of
the coupled field theory.”" The |(,|/|k| structure of the
dynamical piece of M is characteristic of the itinerant
electron degrees of freedom that couple to the magnetic
ones; it also manifests itself in the frequency dependence
of the Lindhard function (see, for example, Pines and
Nozieres, 1989). Technically, it results from the inverse
of the vertex I'?, Eq. (4.3b), which gets multiplied by a
frequency due to frequency restrictions inherent in the
definition of the g. This illustrates how the coupling to
the generic soft modes generates the dynamics of the
order parameter; see the remark above Eq. (4.2).

Ay is Hertz’s action, which predicts a continuous tran-
sition with mean-field critical behavior for all dimen-
sions d>1. From our experience with the analogous
classical transitions in Sec. III.A above, we suspect that
the Gaussian approximation yields qualitatively incor-
rect results. Indeed, internal inconsistencies of Hertz’s
results have been discussed by Sachdev (1994) and
Dzero and Gorkov (2003). More explicitly, the instability
of Hertz’s fixed point can be shown formally by means of
arguments analogous to those we shall present in Sec.
IV.B.4.b for the case of disordered magnets. In what fol-
lows, we show that the transition can be either of first
order or of second order with non-mean-field critical be-
havior.

SThere also are mixed propagators (b ¢), but they do not
enter any diagrams that are important for the phase transition.
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3. Renormalized mean-field theory

As a first step to improve upon the Gaussian approxi-
mation, it is natural to construct a renormalized mean-
field theory in analogy to Sec. III.A.3. The relevant
length scales are the magnetic coherence length

g=cllr| (4.8a)
and a length
N=1/G H2c)\T(M3(x)) = 1/A com, (4.8b)

where m is the magnetization. A=G\7H>/8 depends on
microscopic length and energy scales only and ensures
that m is dimensionally an inverse volume. In a magnetic
phase, N determines the mass in the transverse spin-
triplet ¢ propagator, just as the London penetration
depth determines the mass of the transverse photon in a
superconductor, or the mass of the director fluctuations
in a smectic-A phase; see Eq. (3.6). The Ginzburg-
Landau parameter,

K= M€ ules\e, (4.8¢)

is again independent of m or |r|.
Let us now neglect the fluctuation of the magnetic
order parameter, i.e., we put

M (x) = 838,0mA/GHAT. (4.9)

In the limit N <¢ this approximation becomes exact; in
general, its validity will need to be investigated. g can
then be integrated out, in exact analogy to the treatment
of A in Sec. III.A.3. The result for the free-energy den-
sity f, in a magnetic field 4 and with fy=f(m=0), is

2
f=fo+rom®+ugm*—hm+—= >, T, In N(k,Q,;;m).
vk<A n

(4.10a)

A is an ultraviolet momentum cutoff, and
N(k,Q,;:m) =16 3G*K?m*Q? + (|k| + GHQ,))?

x[|k| + G(H + K)Q, ] (4.10D)

Minimizing f with respect to the magnetization gives the
equation of state.

The integral in Eq. (4.10a) has been analyzed by Kirk-
patrick and Belitz (2002). In d=3, the equation of state
was found to take the form

2
h=2rm + dvm’In(m?® + T) + m3(4u0 + ZV%) )
m-+ T
(4.11a)

For the free-energy density at T=h=0, this implies (Be-
litz et al., 1999)

f=fo+rm?+vym*ln m? + um* (4.11b)

in d=3, and
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d+1

f=fo+rm?>—vm®t +um* (4.11¢)

in generic dimensions. In these equations, f, m, and T
are measured in terms of suitable microscopic quantities
such that r, v,;, and u are all dimensionless. » and u are
given by r( and u, respectively, plus additive renormal-
izations from the soft modes, in analogy to the classical
example of renormalized mean-field theory in Sec.
II1.A.3. v,>0 is quadratic in c%, so in strongly correlated
systems v, is larger than in weakly correlated ones. A
comparison with Eq. (3.8b) shows that the free energy
for the quantum ferromagnet in d=3 is precisely analo-
gous to that of the classical liquid crystal in d=4 in the
same approximation.

This free-energy functional is nonanalytic in m, in
analogy to Egs. (3.8) in our classical example, and the
same discussion applies. Namely, the nonanalyticity re-
flects GSI in the paramagnetic phase, and it is directly
related to the nonanalytic wave-number dependence of
the spin susceptibility, Eq. (2.36b). In real space, the lat-
ter corresponds to

Xs(r > 0,]x| — o) o 1/[x4 1, (4.12)

This manifestation of GSI is the ultimate physical reason
behind the failure of Hertz theory to correctly describe
the quantum critical behavior.

Note that the derivation of the above mean-field re-
sult for the free energy, Egs. (4.11b) and (4.11c), implic-
ity assumes that the nonanalytic wave-number depen-
dence of y, given by Eq. (2.36b) or Eq. (4.12), which is
exact in the paramagnetic phase, continues to hold in
the critical region. This is a nontrivial assumption. In
Sec. IV.A.4 below we shall discuss how critical fluctua-
tions can modify this result. This point has recently been
addressed by Chubukov et al. (2003).

The phase diagram predicted by these equations in
d=3 is shown, in a more general context, in the first
panel of Fig. 20 below. There is a tricritical point at

T=T,=e"?. (4.13a)

At T=0, there is a first-order phase transition at r=ry,
with the magnetization changing discontinuously from
zero to a value m;. One finds

—(1+ulv)i2

r=vml, mj=e (4.13b)

In d=2, there is no finite-temperature magnetic phase
transition. However, at zero temperature there is a
quantum phase transition, which is predicted by Egs.
(4.10) to be discontinuous. In d >3 the nonanalytic terms
produced by the soft modes are subleading, and the
transition is described by ordinary mean-field theory.
The generalized mean-field theory thus suggests an up-
per critical dimension d;=3. As we shall see in the next
subsection, a more sophisticated analysis confirms this
result.

4. Effects of order-parameter fluctuations
The renormalized mean-field theory predicts that the

quantum ferromagnetic transition in clean systems is al-
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ways of first order. As we have already discussed, this
conclusion is certainly valid in the limit A <¢. In general,
however, the order-parameter fluctuations need to be
taken into account. This can be done by a systematic RG
analysis of the action, Eq. (4.1). In contrast to the liquid-
crystal case, it turns out that a one-loop calculation pre-
dicts, under certain conditions, a critical fixed point that
corresponds to a second-order transition.

The fixed point found by Kirkpatrick and Belitz
(2002) has the property that G is marginal. To one-loop
order, in d=3, and for r=0, the coupling constants u, H,
¢y, and ¢ obey the flow equations52

du )
T S 2u-A,c5/H, (4.14a)
AH e A (4.14b)
dinb S gmp 0 '
dC2
TInb =—0,, (4.14¢)

with b the RG length rescaling factor, and A,, Ay, and
A, positive constants. In a purely perturbative treat-
ment, ¢, and H on the right-hand side of Eq. (4.14a) are
constants, and u inevitably becomes negative at large
scales (b— ). A negative u is usually interpreted as sig-
naling a first-order transition;™ this is the RG version of
the conclusion that the transition is always of first order.
However, this perturbative argument is not consistent
since, at the same level of the analysis, Eq. (4.14b) pre-
dicts a singular specific-heat coefficient H, which couples
back into the coefficients of the Landau theory. This
feedback is taken into account by solving the one-loop
equations (4.14) self-consistently, whereby the one-loop
correction to the u-flow equation decreases with increas-
ing scale, due to a combination of ¢, being irrelevant and
H increasing under renormalization. The conclusion that
u flows to negative values is therefore no longer inevi-
table. Indeed, a solution of the above flow equations
(Kirkpatrick and Belitz, 2002) shows that

u(b — ) = [ty — (A AN cr0)2colb ™ o (1K — Kk2)b72,
(4.15)

with ug=u(b=1), etc., the bare coupling constants, « the
Ginzburg-Landau parameter from Eq. (4.8c), and k.
xyA,/A,. We see that the RG analysis predicts an

52 At this level of detail in the discussion it is not obvious that
there are two time scales in the problem, one related to the
order-parameter fluctuations and the other to the fermionic
degrees of freedom. As a consequence, ¢, which couples the
two, does not have a unique scale dimension and can be either
marginal or irrelevant, depending on the context. The flow
equation (4.14c) applies to its irrelevant incarnation. We shall
discuss this point in more detail in Sec. IV.B.4.

SWhile this interpretation of u flowing to negative values is
not always correct, in the current case it is bolstered by the
renormalized mean-field theory.
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FIG. 14. Phase diagram of MnSi as measured by Pfleiderer et
al. (1997). The insets show the behavior of the susceptibility
close to the transition point. From Vojta et al., 1999.

asymptotically negative value of u and hence a
fluctuation-induced first-order transition, for small val-
ues of the Ginzburg-Landau parameter, k< k., in agree-
ment with the renormalized mean-field theory and in
analogy with the liquid-crystal case. For x> k., however,
u stays positive and one finds a critical fixed point, in
contrast to the liquid-crystal case. As mentioned in Sec.
III.A.4 above, the mechanism for this “fluctuation-
induced second-order transition” is very similar to the
one discussed by Fucito and Parisi (1981) for a classical
system. The critical behavior at this transition will be
summarized in the next section.

There is experimental evidence that the quantum fer-
romagnetic transition in clean systems is of first order in
some materials but continuous in others, consistent with
the theoretical picture given above. Pfleiderer et al
(1997) have reported a continuous transition in MnSi at
moderate hydrostatic pressures corresponding to rela-
tively high values of T, while the transition becomes
first order if 7. is driven to low values by higher values
of the pressure; see Figs. 14 and 153 Qualitatively the
same magnetic phase diagram has been observed in
UGe, (Huxley et al., 2001); see Fig. 16. In ZrZn,, how-
ever, the magnetic transition is of second order down to
the lowest temperatures observed (Pfleiderer, Uhlarz, et
al., 2001). The latter two materials are of particular in-
terest since they also have a phase of coexistent ferro-
magnetism and superconductivity. The superconductiv-

54Strictly speaking, MnSi is not a ferromagnet, but rather a
weak helimagnet. It has been speculated that local remnants of
the helical order are responsible for the non-Fermi-liquid
properties observed in the paramagnetic phase (Doiron-
Leyraud et al., 2003; Pfleiderer et al., 2004). The influence of
the helical order on the quantum critical behavior has been
studied by Vojta and Sknepnek (2001).
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FIG. 15. Magnetic susceptibility (in SI units) vs temperature
for MnSi at pressures corresponding to the data points in Fig.
14. Pressure values for the curves from right to left: 1.80, 3.80,
6.90, 8.60, 10.15, 11.25, 12.15, 13.45, 13.90, 14.45, 15.20, 15.70,
and 16.10 kbar. The change from a sharply peaked susceptibil-
ity consistent with a second-order transition to a discontinuous
one, as expected for a first-order transition, is apparent. From
Pfleiderer et al., 1997.

ity is very vulnerable to disorder, which testifies to the
fact that the samples in question are very clean. Another
material in which a continuous transition is observed
down to very low temperatures is Ni Pd,_, (Nicklas et
al., 1999). While the substitutional nature of this system
inevitably introduces some disorder, the quantum phase
transition occurs at low Ni concentration (x=0.02), and
disorder is believed to play a minor role at the transi-
tion.

While the soft-mode theory is consistent with these
observations, it is not the only possible explanation. An-
other obvious possibility is band-structure effects, which
can change the sign of the coefficient # in an ordinary
Landau theory [Eq. (4.10a) without the last term] and
thus lead to first-order transitions in some materials and
second-order transitions in others. Indeed, band-
structure effects have been proposed as the source of the
first-order transition, the superconductivity, and an ob-
served metamagnetic transition within the ferromagnetic
phase (Pfleiderer and Huxley, 2002; Sandeman et al.,
2003).

; 1.5 b ] ® e, .‘ —
:'_'m iL i
= ¢ o amy,
= T=23K
0.5 | 4
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0 : : -y g —
0 5 10 15 20

p (kbar)

FIG. 16. Magnetization vs hydrostatic pressure at 7=2.3 K for
UGe,. The intial first-order transition at p=15 kbar is fol-
lowed by a metamagnetic transition at p~12 kbar. Adapted
from Pfleiderer and Huxley, 2002.
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5. Critical behavior at the continuous transition
a. Critical behavior in d=3

A solution of the RG flow equations for the case «
>k, (Kirkpatrick and Belitz, 2002) yields a wave-
number-dependent coefficient ¢ in the paramagnon
propagator, Eq. (4.7b),

c(k — 0) o (In 1/|k[) =%, (4.16)

where the exponent is determined by the ratio Ay/A.
=27. Expressing the logarithmic corrections to power-
law scaling in terms of scale-dependent exponents, the
critical exponent 7, which describes the wave-number
dependence of the paramagnon propagator at criticality,

is therefore given by
L nin bn b (4.17a)
=—Inlnb/Inb. .17a

7= 26

The parameters r and d in the paramagnon propagator
are not renormalized. The correlation length exponent
v, the susceptibility exponent 7y, and the dynamical ex-

ponent z can therefore be directly read off from Egs.

(4.7b),
v=1/2-7n), y=1. (4.17b)

The order-parameter exponents 8 and 6 can be obtained
from scaling arguments for the free energy. The result is

B=1/2, &=3. (4.17¢)

Finally, one can generalize the definition of the specific-
heat exponent « familiar from thermal phase transitions
by defining Cy o« T7¢ at criticality. One finds

a=—1+(nlnb/Inb - n)/z.

z=3-7,

(4.174d)

The result for # is valid to leading logarithmic accuracy;
the values of vy, B, and &, as well as the relations between
n and v, z, and «, respectively, are exact.

The theory thus predicts the critical behavior in d=3
to be mean-field-like with logarithmic corrections. Al-
though the fixed point found by Hertz (1976) is unstable,
it is only marginally so. Hertz’s results, and their exten-
sion to nonzero temperatures by Millis (1993), should
therefore apply apart from corrections that are too small
to be detectable with current experimental accuracies.

Although the critical behavior has not been probed
directly experimentally, a combination of various expo-
nents determines the shape of the phase diagram at low
temperatures. To see this, consider a homogeneity law
for the magnetization, which can be obtained by differ-
entiating Eq. (1.10) twice with respect to 4 and putting
h=0:

m(r,T,u) = b= 2 (rbV", Th?, ub™). (4.18a)

Here we have included the coefficient u of the quartic
term in the free energy, even though its scale dimension
[u]<0 is negative and u is thus irrelevant. The reason is
that u is a dangerous irrelevant variable with respect to
the magnetization (Ma, 1976; Fisher, 1983), which influ-
ences the critical behavior of m. To see this, consider the
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FIG. 17. Phase diagram of Ni,Pd,_,. Equation (4.19) is obeyed
over an x range of two decades close to the transition. From
Nicklas et al., 1999.

equation of state, Eq. (4.11a). In the absence of the soft-
mode corrections, one has m o \—r/u. m thus depends on
r/u, and the homogeneity law can be written

m(riu,T) = b~ D ((r/u) b1, ThH?)

= (r/w)Pm(1, T(rfu) /01Dy (4.18b)
where B=v(d+z-2y,)/(1-v[u]). The relation between
T, and r is now obtained from the requirement that m
have a zero for T=T,. This yields r=const x T(-"{uD/»z
(Millis, 1993; Sachdev, 1997). [u]=4—d -z, as can be seen
from Eq. (4.2) by power counting, and, neglecting the
logarithmic corrections to scaling, we find from Egs.
(4.17) (Millis, 1993),

T, o P4, (4.19)
This agrees well with the phase diagram measured in
Ni,Pd,_, and also with the portion of the phase diagram

in MnSi where the transition is continuous; see Figs. 17
and 18.

)
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FIG. 18. Phase diagram of MnSi. These are the same data as in
Fig. 14, scaled to display the relation given in Eq. (4.19). The
tricritical point separating second- and first-order transitions
coincides with the point at which the scaling breaks down.
Adapted from Pfleiderer et al., 1997.
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b. Critical behavior in d #3

In d>3, the RG analysis shows that Hertz’s fixed
point is stable, and all exponents have their mean-field
values. This confirms the suggestion of the renormalized
mean-field theory that the upper critical dimension is
d;=3.

In d <3, the critical behavior can be studied by means
of an expansion in e=3—d. Kirkpatrick and Belitz (2002)
have found a fixed point where G, H, ¢, and c¢; are mar-
ginal. ¢, can again be either marginal or irrelevant, de-
pending on the context. A one-loop calculation of the
exponent 7 and the specific-heat exponent « yields

n=— €26,

a=-dl(3- 7). (4.20)

v, Z, v, B, and & are still given by Egs. (4.17b) and (4.17¢).

B. Quantum ferromagnetic transition in disordered
systems

If one adds quenched disorder to the problem consid-
ered in the previous subsection, the action changes rela-
tively little. The nature of the generic soft modes
changes; they are now diffusive rather than ballistic in
nature, but this change by itself will clearly change only
the upper critical dimensionality. Apart from this, the
disorder needs to be averaged over, e.g., by means of the
replica trick. It turns out that the disorder average leads
to some terms in perturbation theory having a sign that
is opposite from the corresponding one in the clean case.
For instance, the one-loop correction to the quartic cou-
pling constant u is positive, and as a result the phase
transition is always of second order. Treating the generic
soft modes in tree approximation, Hertz (1976) con-
cluded that the critical behavior is mean-field-like for all
d>0. This turns out not to be true, for reasons analo-
gous to those that invalidate Hertz’s theory in the clean
case. It turns out, however, that the critical behavior can
still be determined exactly for all dimensions d>2, al-
though it is not mean-field-like. Historically, this exten-
sion of Hertz’s theory for the disordered case was devel-
oped earlier than the corresponding treatment of the
clean case (Kirkpatrick and Belitz, 1996; Belitz et al.,
2001a, 2001b). Here we explain the structure of this
theory and summarize its results.

1. Soft-mode action

The action as given in Sec. IV.A.1 remains valid, with
two modifications. First, all fields carry replica indices
that need to be summed over. Specifically, M carries one
replica index, while Q and ¢ carry two replica indices, as
explained in connection with Eq. (2.44). The symme-
trized magnetization field b is diagonal in its two replica
indices. Second, the fermionic vertex function I'®
changes; Egs. (4.3b) and (4.3¢) get replaced by
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ir(lzz),34(k) = 513524F(122’0)(k) + 61-32-46a,a,0,

apap Tajay

X 27 TG[ 80K, + (1 = 80) K] (4.21a)
with replica indices «;, and
I'30k) = I + GHQ, _,, . (4.21b)

All other terms in the action remain unchanged, except
for the addition of replica indices.

It is obvious from simple physical considerations that
the quenched disorder must lead to additional terms in
the action. For instance, consider the bare distance from
the critical point, r in Eq. (4.2), a random function of
space, and integrate out this “random mass” with re-
spect to some distribution function. This will generate
terms of higher order in M, starting at O(M*), that have
a different imaginary-time structure than the uM* term
in Eq. (4.2). Such random-mass terms do indeed get gen-
erated by the basic disorder term in an underlying mi-
croscopic action, Eq. (2.37¢) or (2.42), and thus need to
be added to the effective action. However, they turn out
to be irrelevant for the critical behavior in all dimen-
sions except d=4, and we therefore neglect them.

2. Gaussian approximation

Keeping only terms that are bilinear in the fields
yields the Gaussian approximation, as in the clean case.
The paramagnon propagator now reads

1
ro+c k> +d|Q, /(K> + GH|Q,|)"

M, (k) = (4.22)

Formally this is the same as Eq. (4.7a) with |k| replaced
by k?, but the coefficient G has a different physical in-
terpretation, as was explained in connection with Egs.
(2.48). The basic fermionic propagator is given by Eq.
(2.48b). As in the clean case, there is a mixed propagator
that turns out not to be important for the determination
of the critical behavior.

3. Renormalized mean-field theory

A renormalized mean-field theory can be constructed
in exact analogy to the treatment of the clean case in
Sec. IV.A.3 (Sessions and Belitz, 2003). The free energy
in this approximation is again given by Eq. (4.10a), but
the quantity N in Eq. (4.10b) is replaced by

[I2 + G(H + K)Q, P + 32\'me, G2m?
(2 + GHQ,)? + 2\me,GPm?
(4.23)

N(k,Q,;m) =

An analysis of the integral in Eq. (4.10a) with this ex-
pression for N yields a free energy at 7=0 of the form

(d+2)12

f=fo+rm*>+wm +um*-h, (4.24a)

or, equivalently, an equation of state
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dr2 3

h=rm+wm® +um’. (4.24b)

In Egs. (4.24), w>0 is a positive coefficient that is pro-
portional to the disorder, and r and u again represent
additive renormalizations of r, and u, respectively.

Regarding the nonanalytic dependence of f on m, the
same comments apply as in the clean case (Sec. IV.A.3),
and an assumption analogous to that mentioned after
Eq. (4.12) has been made. As far as the GSI is con-
cerned, the only difference is that the decay of the spin
susceptibility in real space far from the transition is
given, not by Eq. (4.12), but by

xo(r >0, (4.25)

which is the Fourier transform of Eq. (2.35d). In addi-
tion, the magnetization now scales as a wave number
squared, which explains the exponent of the nonanaly-
ticity in Eq. (4.24a).

Despite these similarities, there is a crucial sign differ-
ence between the nonanalytic term in the clean case,
Egs. (4.11b), (4.11¢c), and in the one in Egs. (4.24). Al-
though this is not of much significance from a GSI point
of view, it causes the quantum phase transition to be of
first order in the clean case (at least at the level of the
renormalized mean-field theory), while it is of second
order in the disordered case. Physically, this can be un-
derstood by means of arguments very similar to those
that explained the sign difference between Egs. (2.35d)
and (2.36b), respectively. In the clean case, the nonana-
lyticity is produced by fluctuation effects, represented by
the generic soft modes, which weaken the tendency to-
wards ferromagnetism. Accordingly, the constant contri-
bution from the integral over In N in Eq. (4.10a), which
changes r, to r, is positive. The appearance of a nonzero
magnetization gives the soft modes a mass and hence
weakens these fluctuations, so the leading m-dependent
correction to the constant contribution is negative. In
the disordered case, however, the quenched disorder
leads to diffusive motion of the electrons, which is much
slower than the ballistic dynamics in the clean case. This
increases the effective interaction strength between the
electrons, which in turn favors ferromagnetism. Conse-
quently r is smaller than r,. A nonzero magnetization
again weakens this effect, and therefore the leading
nonanalytic m dependence of the free energy is positive.

A more general form of the free energy in the renor-
malized mean-field approximation, which is valid for T

x| — o) o< 1/Jx[?42,
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FIG. 19. Phase diagram in the G-r plane resulting from Eq.
(4.26) at T=0 for u=1, v=0.5, A=0.5, By=B;=1, showing a
second-order transition (dashed line), a first-order transition
(solid line), a critical end point (CEP), and a critical point (CP).
From Belitz et al., 1999.

=( and allows the zero-disorder limit to be taken, has
been considered by Belitz er al. (1999). The free-energy
density discussed by these authors takes the form

f=fo+rm*+ (Gleg) Am*[m? + (B;T)* 14
+vm*In[m? + (T + BG)?*] + um®* + O(m®). (4.26)

Here Bt and B are dimensionless parameters that
measure the relative strengths of the temperature and
the disorder dependence, respectively, in the two
nonanalytic terms, and A is a measure of how strongly
correlated the system is. They are all expected to be of
order unity. For G=0 the resulting equation of state re-
duces to Eq. (4.11a). For sufficiently large disorder G,
the logarithmic term is unimportant, and at 7=0 one
recovers Eqs. (4.24). This form of the free energy thus
interpolates between the clean and disordered cases. It
displays a rich phenomenology, as shown in Figs. 19 and
20. Notice that, for a disorder larger than a threshold
value, the phase diagrams shown in these figures predict
a second magnetic transition inside the ferromagnetic
phase that is always of first order.

The critical exponents 8=2/(d-2) and 6=d/2 (for 2
<d < 6) can be read off from Eq. (4.24b), but a determi-
nation of the remaining exponents requires the consid-
eration of order-parameter fluctuations. We shall discuss
this in the next subsection, where we shall also see that
the critical behavior predicted by the renormalized
mean-field theory is very close to the exact one.

041la=0] s1cp "[G=Gy, =0.0173]  []G=0.07] " [G=G, =0.092] I G=0.13<GCI
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FIG. 20. Phase diagrams in the 7-r plane resulting from Eq. (4.26) for u=B5=1, v=B;=A=0.5. TCP and TCEP denote a tricritical
point and a tricritical end point, respectively. All other symbols are the same as in Fig. 19. From Belitz et al., 1999.
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4. Effects of order-parameter fluctuations

The effects of order-parameter fluctuations on the dis-
ordered ferromagnetic quantum phase transition have
been studied at various levels. Hertz (1976) and Millis
(1993) considered order-parameter fluctuations but inte-
grated out the generic soft modes in a tree approxima-
tion that neglects all fermionic loops. Kirkpatrick and
Belitz (1996) kept fermionic loops but still integrated out
the fermions, which led to a nonlocal field theory in
terms of the order parameter only, which they analyzed
by means of power counting. Belitz et al. (2001a, 2001b)
kept all of the soft modes explicitly and on an equal
footing, in analogy to the theory for clean systems dis-
cussed in Sec. IV.A and to the classical theories covered
in Sec. III. This theory contains the previous ones as
approximations, and we shall sketch it in the remainder
of this section.

a. Coupled field theory and power counting

In contrast to the clean case (Sec. IV.B.1), for disor-
dered magnets the fermionic part of the soft-mode ac-
tion is known in closed form, namely, the nonlinear o
model, Egs. (2.61) and (2.62), with no spin-triplet inter-
action. The order-parameter part of the action is again
given by Eq. (4.2), with a replicated M field as explained
in Sec. IV.B.1, and the coupling between the two is given

by Eq. (4.4a) , with O replaced by O and replica indices
added as appropriate. This action can be written down
on general principles or it can be derived from the com-
plete nonlinear o model, Egs. (2.61), by performing a
Hubbard-Stratonovich decoupling (Stratonovich, 1957,
Hubbard, 1959) of the spin-triplet interaction and add-
ing an M* term.” Since the nonlinear o model has been
derived from a microscopic action, this also provides a
derivation of the final effective action from a micro-
scopic starting point, if that is desired.

We now expand this effective action in powers of M
and g. In a schematic notation that omits everything not
necessary for power counting, we have

Aeff[qu] = AM + Aq + AM,q’
with

(4.27a)

Ay =- J dx M[r+ 20" + cIM + O(;M*, M),

(4.27b)
Ag=- 1 f dx(9.q)* + HJ dx Qg%+ Kva dx q*
G :

1

-— | dx &iq4+H4fdx Qq*
Gy

+O(Tq%,7:4°.Q4°%), (4.27¢)

3The quartic and higher terms in M originate from massive
modes in the underlying miscroscopic action, which have been
dropped in deriving the nonlinear o model.
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+ O(TMg*. (4.27d)
Here the fields are understood to be functions of posi-
tion, frequencies, and replica labels. Only quantities that
carry a scale dimension are shown. Accordingly, fre-
quency and replica sums have been omitted, but appro-
priate powers of the temperature are shown. All of the
terms except the second one in 4, can be obtained by
combining Egs. (4.2) and (4.3a), (4.4), (4.5), and (4.21).
The bare value of the coefficient c,;_, is zero, but we
shall see that such a term is generated under renormal-
ization.

For a power-counting analysis of this effective action,
we assign scale dimensions [L]=-1 and [T]=[Q]=-z to
lengths and temperatures or frequencies, respectively. It
is important to note that z is unlikely to have a unique
value: Since the critical paramagnon propagator will in
general have a frequency-wave-number relation that is
different from that of the fermionic g propagator, we
expect at least two different time scales in the problem,
hence two different values of z. This needs to be taken
into account in the power-counting analysis.

b. Hertz’s fixed point

The fixed point identified by Hertz (1976) is recovered
from Eqgs. (4.27) by requiring that the coefficients ¢ and
c; be dimensionless. The field g is expected to be diffu-
sive, and we therefore choose its scale dimension to be
[q]=(d-2)/2, in accord with Egs. (2.63). From A,, we
then obtain [M]=(d-2)/2 and [t]=2. r is thus relevant,
as expected, and the correlation length exponent is v
=1/[r]=1/2. ¢,_, is also relevant, of course, but since its
bare value is zero we ignore it for now. The first term in
A 4 produces the dynamical part of the paramagnon, as
was demonstrated in Sec. IV.A.2. The scale dimension of
the T prefactor thus yields the paramagnon or critical
dynamical exponent z.=4. The frequency and the tem-
perature in the second and third terms, respectively, in
A, carry the fermionic time scale z,=2 that is consistent
with diffusion. G, H, and K are then all marginal, and
all higher-order terms in A, are irrelevant. For the scale
dimension of ¢, one finds

[co]=-(d+2z-06)2. (4.28)
Due to the existence of two time scales, mentioned
above, one needs to distinguish between two different
variants of ¢,, which differ with respect to the value of z
that enters their scale dimension. With z=z.=4, ¢c;=c¢; is
irrelevant for all d>2. However, with z=z,=2, c=c; is
relevant with respect to the putative fixed point for d
< 4. This instability of Hertz’s fixed point is indeed real-
ized. Consider, for instance, the renormalization of the
M? vertex by means of the diagram shown in Fig. 21.
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FIG. 21. One-loop renormalization of the M? vertex. Dashed
lines denote M fields, solid lines denote g propagators, and the
vertices carry a factor of ¢, each.

Since it is a pure fermion loop, the factors of T that
come with the vertices and that are absorbed into the
loop integral over the frequency indeed carry the fermi-
onic time scale, and the relevant coupling constant is c;.
We note that this is the same perturbative contribution
that leads to the nonanalytic wave-number dependence
of the spin susceptibility deep in the paramagnetic
phase, Eq. (2.35d). The term with coupling constant c;_,
is thus generated from the ¢, coupling. It is convenient
to explicitly add this term to the bare action, as we have
done in Eq. (4.27b), although the physics it represents is
already contained in the ¢, coupling term. Indeed, with
respect to Hertz’s fixed point, (c5)? and c,_, have the
same scale dimension, [c,_,]=2[c;]=4-d.

One thus finds that the generic soft modes render
Hertz’s fixed point unstable, and this first becomes ap-
parent at one-loop order. This instability, although not
its source, can also be deduced from the fact that the
mean-field value for the correlation length exponent v
=1/2 violates, for all d <4, the rigorous bound provided
by the Harris criterion (Harris, 1974; Chayes et al., 1986)
for systems with quenched disorder, v=2/d.

c. A marginally unstable fixed point

The behavior of the renormalized mean-field theory is
recovered from the RG if one (1) takes the c,;_, term
into account, and (2) drops the requirement that ¢, be
marginal. We thus require only that ¢; be marginal,
which implies [M]=1+(d-z)/2, and that [gq]=(d-2)/2
and z,=2 as before. At this point it is useful to consider
an analogy between the present problem and that of a
classical fluid under shear, discussed in Sec. III.B.2. In
the latter case, long-ranged correlations between order-
parameter fluctuations stabilized mean-field critical be-
havior in dimensions lower than the usual upper critical
dimension. In the current problem, the cd,zo’?z‘z term in
the action represents long-range order-parameter corre-
lations that decay as |x|2-D. By analogy with the clas-
sical fluid example, it is therefore natural to expect the
stabilization of a Gaussian fixed point where c,_, is mar-
ginal in the critical paramagnon. This implies [M]=1 and
hence a critical time scale and an exponent 7 character-
ized by

Z,=4-n=d. (4.29a)
r is relevant with [r]=d -2, which corresponds to a cor-
relation length exponent
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v=1/(d-2). (4.29b)

In contrast to the situation at Hertz’s fixed point, this
respects the Harris criterion.

Equation (4.29a) implies that the magnetic susceptibil-
ity at criticality decays in real space according to

Xs(r =0, |x| = o2) o< 1/]x]?. (4.30)

In the relevant dimensionality range, d >2, these corre-
lations are of longer range than the power-law correla-
tions in the paramagnetic phase, Eq. (4.25). We see that,
as in the case of the classical fluid, Sec. II1.B.2, the long-
ranged correlations or GSI in the disordered phase in-
fluence the critical behavior and lead to correlations
with an even longer range at the critical point.

The results given above hold for 2<d <4. For d>4,
7n=0 and v=1/2 have their mean-field values, and z,.=4.
The exponents B and & can be obtained either from scal-
ing arguments for the free energy (Belitz et al., 2001b) or
from repeating the above counting arguments in the fer-
romagnetic phase (Sessions and Belitz, 2003). By either
method one finds the same result as from Eq. (4.24b),
Viz.,

B=2/(d-2), 5=d2. (4.31)

These relations hold for 2 <d <6, while for d > 6 one has
the mean-field values B=1/2, 6=3. A detailed analysis
reveals that Hertz’s fixed point is actually stable for all
d>4, but for 4<d<6 the coefficient w in Eq. (4.24b)
acts as a dangerous irrelevant variable with respect to
the magnetization, which explains why 8 and & lock into
their mean-field values only for d>6.

What remains to be done is to investigate the stability
of the Gaussian fixed point with the critical behavior
described above. It turns out that it is marginally un-
stable and that the exact critical behavior is given by the
power laws given above with additional logarithmic cor-
rections to scaling. We present these results next.

d. Exact critical behavior

The results of the previous subsection characterize a
Gaussian fixed point that was described by the theory
given by Kirkpatrick and Belitz (1996). To check its sta-
bility, one needs to consider the scale dimensions of the
remaining terms in the action. ¢, has a scale dimension

[c,]=1-2z/2 (4.32)

with respect to the Gaussian fixed point, which implies
that ¢j (i.e., c; with z=z,) is marginal. This was to be
expected, since ¢,;_,, which describes the same physics as
¢y, 1s also marginal. However, it implies that the non-
Gaussian ¢, term must be kept as part of the fixed-point
action. All other terms are nominally irrelevant. How-
ever, it turns out that, for subtle reasons again related to
the existence of multiple time scales, the terms of order
q* in A, can also be effectively marginal and must be
kept as part of the fixed-point action. For all d>2, the
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latter then consists of the terms shown explicitly in Egs.
(4.27).°

Since the fixed-point action is not Gaussian, the exact
critical behavior cannot be obtained simply by power
counting. However, it turns out that the problem can still
be solved exactly, by means of an infinite resummation
of perturbation theory (Belitz et al., 2001b). For 2<d
<4, the result consists of logarithmic corrections to the
exponents derived in the previous subsection. For in-
stance, the correlation length depends on r via

Eo r—le—constx[ln ln(l/r)]z’ (4.33)

to leading logarithmic accuracy. Notice that the correc-
tion to the power law varies more slowly than any power
of r, but faster than any power of In r. This behavior is
conveniently expressed in terms of exponents that are
scale dependent via a function g, whose asymptotic be-
havior for large arguments is

g(x> 1) = [2 In(d/2)/m] Relntc@oP2n@2) (4 34)

The dimensionality-dependent coefficient ¢(d) goes to
zero for d—4 and to a constant for d —2. In the case of
v, Eq. (4.33) corresponds to

1/v=d-2+1Ing(lnb)/Inb. (4.35a)
For the other exponents one obtains
z2.=4-7n=d+Ing(nb)/Inb, (4.35b)
o=-al2d=2J2, (4.35¢)
B=2v, y=1, (4.35d)
7,=2+Ing(lnb)/In b, (4.35¢e)

where the specific-heat exponent « is defined as in the
context of Eq. (4.17d).

The critical behavior of various transport coefficients
and relaxation rates, as well as the tunneling density of
states, have also been determined (Belitz et al., 2000,
2001b). In particular, these authors showed that the qua-
siparticle properties at criticality are those of a marginal
Fermi liquid (Varma et al., 1989). Here we quote just the
result for the electrical conductivity. In d=3 at criticality,
one finds a nonanalytic temperature dependence in ad-
dition to a noncritical background term,

1/3
o(T — 0) = o(T =0) + const X {Tg(%ln(eﬂT))] ,

(4.36)
with g(x) from Eq. (4.34).

A more conventional approach would be to not include the
c,_o term in the action, but rather have its effects included in a
renormalization of ¢ while working in d=4-e€. This can be
done, but the loop expansion in this case does not lead to a
controllable expansion in powers of € since ¢, remains strictly
marginal order by order. Nevertheless, such a procedure yields
interesting technical insights (Belitz et al., 2004).
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FIG. 22. Phase diagram of URuReSi, showing ferromagnetic
(FM), antiferromagnetic/“hidden order” [AFM (HO)], super-
conducting (SC), and non-Fermi-liquid (NFL) phases. The dif-
ferent symbols refer to different methods for determining the
phase boundaries. Adapted from Bauer, 2002 and Bauer et al.,
2005.

Experimentally, there are few systematic studies of
the influence of quenched disorder on the ferromagnetic
quantum phase transition. URu,_,Re,Si, shows a rich
phase diagram in the 7-x plane, with phases displaying
ferromagnetic, antiferromagnetic, and superconducting
order in addition to a paramagnetic non-Fermi-liquid
(“strange metal”) phase (Dalichaouch et al., 1989; Stew-
art, 2001; Bauer, 2002; Bauer et al., 2005); see Fig. 22.
Near x=0.3 there is a quantum phase transition from the
ferromagnetic phase to the strange-metal phase that has
been studied in some detail by Bauer (2002) and Bauer
et al. (2005). These authors found a value of §=1.5 , in
agreement with Eq. (4.35¢) (ignoring logarithmic correc-
tions to scaling). The specific-heat coefficient for 7— 0 is
found to diverge logarithmically, or as a very small
power of T, which is, within the experimental accuracy,
consistent with Eq. (4.35c). However, the experimental
values of two other exponents, 8=0.9 and y=0.5, do not
agree with the theoretical prediction. Also, the logarith-
mic divergence of the specific-heat coefficient is ob-
served to persist away from the quantum critical point in
both the paramagnetic and the ferromagnetic phases.
Similar non-Fermi-liquid properties have been found in
the paramagnetic phase of other materials that display a
quantum ferromagnetic transition, e.g., in MnSi
(Pfleiderer, Julian, and Lonzarich, 2001). We shall come
back to these observations in Secs. IV.D and V.

DiTusa et al. (2003) have investigated Fe;_.Co,S,,
which displays a 7=0 insulator-metal transition at a very
small value of x (x<0.001), followed by a quantum
paramagnet-to-ferromagnet transition at x~0.032. The
strength of the quenched disorder is substantial in this
system, with values of kg{ ranging from 2 to 15 for x
between 0.001 and 0.17. The authors have reported scal-
ing of the conductivity near the ferromagnetic transition
that is consistent with Eq. (4.36).
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5. Effects of rare regions on the phase transition for an
Ising system

We now turn to rare regions and nonperturbative dis-
order effects. In contrast to the previous subsections,
which considered Heisenberg ferromagnets, we shall
now discuss a special effect for magnetic order param-
eters with an Ising symmetry. In such systems, the rare-
region effects are much stronger than the quantum Grif-
fiths phenomena discussed in Sec. I1.B.6 because of the
coupling between the order parameter and the generic
soft modes. To see this, consider a particular rare region
devoid of impurities. Within such a region, the appropri-
ate paramagnon propagator is given by Eq. (4.7a), and
the coupling between the magnetization and the conduc-
tion electrons is reflected by the dependence on |Qn|.57
In imaginary time space, this corresponds to a long-time
tail given by 1/7 (see Sec. ILB.7). At T=0, every rare
region thus maps onto a clean, classical
(d+1)-dimensional Ising model that is finite in d dimen-
sions and infinite in one dimension. The interactions be-
tween the spins are short ranged in the former and long
ranged, proportional to 1/77, in the latter.

This long-range interaction can have drastic conse-
quences, namely, the sharp quantum phase transition
can be destroyed by smearing. This can be understood
as follows: A one-dimensional Ising model with a 1/7?
interaction is known to possess an ordered phase (Thou-
less, 1969; Cardy, 1981). A rare region can therefore de-
velop a static order parameter independently from the
rest of the system. This result is consistent with the one
obtained by Millis, Morr, and Schmalian (2002), who di-
rectly calculated the tunneling rate of a Griffiths island
in an itinerant system and found it to vanish for a suffi-
ciently large island. Suppose a nonzero average order
parameter first appears on a rare region, rather than in
the bulk of the system. Since the order is truly static, the
ordered region will effectively act like a small perma-
nent magnet embedded in the system, and it will be en-
ergetically favorable for subsequent rare regions to align
their order parameter with the first one (assuming that
the effective interaction between the regions is also fer-
romagnetic). As a result, a finite magnetization appears
as soon as a finite volume of rare regions start to order.
This magnetization is exponentially small, and the cor-
relation length does not diverge at this point. However,
the ordered rare regions provide an effective magnetic
field seen by the bulk of the system; therefore the latter
cannot undergo a sharp quantum phase transition
(Voijta, 2003). Notice that the number of ordered regions
changes continuously with the control parameter, so the
smeared transition is not given simply by the behavior of
electrons in a fixed magnetic field. Rather, order devel-
ops in different parts of the system at different values of

>'This is sometimes referred to as Landau damping, in anal-
ogy to the fate of the plasmon when it enters the particle-hole
continuum. In the absence of such a coupling, e.g., in the pure
spin model given by Eq. (2.75), one would have a propagating
mode with a frequency dependence on Qi
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the control parameter, and the order parameter close to
the smeared transition is very inhomogeneous in space.
The same mechanism also destroys classical phase tran-
sitions in systems with planar defects (Sknepnek and
Voijta, 2003; Vojta, 2003b).

The above arguments are valid at 7=0, where the sys-
tem is infinite in the imaginary-time direction. The be-
havior at finite temperatures is less well established.
Since the rare regions are far apart, their interaction is
very small. Therefore the relative alignment between
the order parameter on different rare regions vanishes
already at a temperature that is exponentially small in
the density of the rare regions, i.e., double-exponentially
small in the disorder strength. Above this temperature,
the rare regions act as independent classical moments.
Whether or not there is a second crossover at even
higher temperatures to quantum Griffiths behavior simi-
lar to that in undamped systems (as discussed in Sec.
I1.B.6) is not fully understood; it appears to be a ques-
tion of the microscopic parameter values (Castro Neto
and Jones, 2000; Millis Morr, and Schmalian, 2002).

In systems with continuous order-parameter symme-
try, the rare-region effects are weaker. Specifically, the
quantum phase transition will remain sharp because the
rare regions cannot develop static order. This can be
seen by mapping each rare region onto a classical one-
dimensional XY or Heisenberg model with 1/7? interac-
tion. In contrast to the corresponding Ising model, these
models do not have an ordered phase (Kosterlitz, 1976;
Bruno, 2001). The quantum Griffiths behavior in the vi-
cinity of the transition has not yet been worked out in
detail, but it is likely to be of a more conventional type.

C. Metal-superconductor transition

Sufficiently strong quenched nonmagnetic disorder®®
decreases the critical temperature 7. for the
superconductor-metal transition in bulk conventional
superconduc‘[ors5 ? (see Fig. 23). At a critical value of the
disorder, 7, vanishes, and there is a quantum phase tran-
sition from a normal-metal phase to a superconducting
phase in which the concepts of additional soft modes
and GSI effects play a crucial role. Since the generic soft
modes in question, particle-hole excitations again, are
massive at nonzero temperature, this quantum phase
transition requires a theoretical description that is quali-
tatively different from BCS theory and the theories that
describe fluctuation corrections to it. Such a theory,
whose main predictions should not be hard to check ex-
perimentally, is presented below. An alternative, and

BWeak disorder can actually enhance 7, sometimes substan-
tially so. Aluminum, and many other low-7, superconductors,
are examples of this effect.

Y Also very interesting are the analogous effects in thin su-
perconducting films, where nonmagnetic disorder leads to a
transition from a superconducting phase to an insulating one,
with or without an intermediate metallic phase. This topic is
beyond the scope of this review.
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FIG. 23. Superconducting 7, vs normal-state resistivity for
three superconducting materials. The data are taken from
Rowell and Dynes (1980); the lines are fits to a theory for T,
degradation that is not important for the present discussion.
From Belitz and Kirkpatrick, 1994.

physically different, theory has been proposed by Vish-
veshwara et al. (2000). These authors have proposed that
the normal-metal-superconductor transition triggered
by disorder leads generically to a gapless superconduct-
ing state, and they assert that the resulting gapless qua-
siparticle excitation spectrum will have consequences for
the critical behavior. It remains to be worked out to
what extent this assertion is correct, or to what extent
the gaplessness is a property of the stable fixed point
that describes the superconducting phase, rather than
the critical fixed point. We shall comment further on this
in Sec. V.B.2.b.

One can construct a theory for the metal-
superconductor transition that is structurally very simi-
lar to that for the disordered ferromagnetic transition
discussed in the previous section (Zhou and Kirkpatrick,
2004), so we shall keep the discussion brief. There are,
however, a few crucial differences. The most important
one is that the superconducting order-parameter field
W(x), whose expectation value is closely related to the
anomalous Green’s function and the superconducting
gap function, is related to the bilinear product of fer-
mion fields at equal and opposite frequencies,

\I’(x) ~ lpn,o-(x)(p—n,—a(x)’ (437)

which in turn can be expressed in terms of the matrix
elements g of the matrix Q; see Egs. (2.44) and (2.46).
Since the g are soft modes [see Eqgs. (2.48)], this means
that the coupling of the order parameter to the generic
soft modes is even stronger than in the ferromagnetic
case, and therefore the effects of GSI are even more
dramatic.
We write the action as
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A[\I’,Q] = A\p + Aq + -A\I’,q'

Ay is analogous to Ay, in Eq. (4.2). It is a static, local,
LGW functional for a three-dimensional XY model. The
order-parameter field one can take to be complex valued
or as having two components ¥} (x), with r=1,2. Struc-
turally it is identical to Eq. (4.2) with M’ (x) replaced by
P’ (x). Since we are dealing with a disordered system, WV
also carries a replica label. The fermionic part of the
action, A, is identical to that in the previous section,
except now the particle-particle or Cooperon degrees of
freedom, r=1,2, need to be taken into account. In par-
ticular, the Gaussian part of A, is given by Eq. (4.3a)
with I' given by Egs. (4.21) for r=0,3 and by

r:l,ér(122)734(k) = 513 5241—‘&22’0)(1()
+ 6100112.3+400,a,0,

a2a4 QIQS

(4.38)

27TGK, (4.39)
for r=1,2. Here 29 is given by Eq. (4.21b), and K, is a
repulsive Cooper channel interaction that is generated
by the particle-hole channel electron-electron interac-
tions K and K, in analogy to the mechanism that gen-

erated K, in Eq. (4.3b). K, is also disorder dependent.

As we shall see below, K, is responsible for driving T, to
zero. The bare attractive Cooper channel interaction
that is due to, e.g., phonon exchange is denoted by K,
=—|K.<0. The coupling between ¥ and ¢ originates
from a term Ay_ that can be written, in analogy to Eq.
(4.4d),

Ay_g= c1i\r’7‘f dx tr(B(x)Q(x)). (4.40a)
The functional form of this term becomes plausible if
one realizes that the order-parameter field W acts like an
external field that couples to the particle-particle num-
ber density. To bilinear order this yields a contribution
to Ay, given by

Ay_g=-38 Cl\”?E dx 2, ,Bip(x)0q1,(x).  (4.40b)
12 =12

Here ¢, %|K|'?, and

Brio(X) = 850y 20 G o, Wi (). (4.40c)
n

This structure is in exact analogy to Egs. (4.4) and (4.5)
for the magnetic case, only the factor of i in Eq. (4.40a),
the sign in Eq. (4.40b), and the frequency structure in
Eq. (4.40c) reflect the particle-particle channel. Again in
analogy with the magnetic case, one can further expand

Ay, in powers of g. The next term in this expansion has
an overall structure

Ay T f dx tr(B(x)q(x)q"(x)) . (4.41)

It is now straightforward to determine the Gaussian
propagators. In particular, the order-parameter correla-
tion function reads
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(W)W (X)) = S _pOrsOapSumNo(X), (4.422)
with
N, (k) = S — (4.42b)
ro— C(k,(2,,)
Here
) = ciIn[Qy/(DE? +|Q,))] (4.420)

1+ (KJH)I[Qy/(DI? + Q)]

where () is an ultraviolet frequency cutoff and r is the
coefficient of the W2 in Ay. For asymptotically small
wave numbers and frequencies the critical propagator is
given by

const -1

QD+ )]

N, (k) =] r (4.42d)

with const>0 and r:rO—C%H / kc the Gaussian distance
from the quantum critical point.

The Gaussian theory represented by Egs. (4.42) has
several interesting properties. First, for given ry>0, H,

and K, there is a quantum phase transition at a critical
strength of ¢} |K|, which yields r=0. Second, for fixed
other parameters in the superconducting phase, an in-

crease of K, which is an increasing function of disorder,
will drive the system into the normal-metal phase. This
is consistent with other theories that have identified the
Coulomb pseudopotential as an important source of 7
degradation in disordered superconductors (Finkelstein,
1987; Kirkpatrick and Belitz, 1992; see Belitz and Kirk-
patrick, 1994, for a discussion of earlier theories of this
effect). Third, as in the ferromagnetic case there are
long-ranged order-parameter correlations in the disor-
dered phase away from criticality. Equation (4.42d) im-
plies for the order-parameter susceptibility

xu(r>0,|x| = ) < 1/|x|“In|x|. (4.43)

A comparison with Eq. (4.25) shows that the correla-
tions are of even longer range than in the ferromagnetic
case for all d>2. This reflects the strong coupling of the
superconducting order parameter to the generic soft
modes mentioned in connection with Eq. (4.37).

Most of the critical behavior predicted by the Gauss-
ian theory can simply be read off from Egs. (4.42) (Kirk-
patrick and Belitz, 1997). The correlation length de-
pends exponentially on r, rather than as a power law,

&~ el (4.442)

For the correlation length exponent this implies v=oo.
The exponent vy has its mean-field value,

and the exponents 7 and z for the order parameter (V)
and the fermionic (q) degrees of freedom, respectively,
are
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=2, n,=0, (4.44¢)

The order-parameter susceptibility at criticality decays
in real space as

gy =24=2.

(4.45)

As expected, the critical order-parameter fluctuations
are of even longer range than those reflecting GSI in the
disordered phase, Eq. (4.43).

These results also follow from a tree-level RG analy-
sis of the field theory. The exponents 7 are related to the
scale dimensions of the fields via

[q(x)]=~(d -2+ n,)2,

X (r = 0,]] — o) o« In[x|/|x|.

(4.46a)

[W(x)]=—(d -2+ 79)/2. (4.46b)

As in the magnetic case, Sec. IV.B.4.c, there is a critical
fixed point at which ¢; is marginal and the fermions are
diffusive, with exponents given by Eq. (4.44). However,
in contrast to the magnetic case, the coupling constant c,
of the term Ay._2 is RG irrelevant, and so are all higher
terms in the expansion in powers of g. We therefore
conclude that the Gaussian critical behavior is exact.
The most obvious technical reason for this surprising
result is that the time scales for the order-parameter
fluctuations and the fermions, respectively, are the same,
which renders inoperative the mechanism that led to the
possibility of ¢,’s being marginal in Sec. IV.B.4. Physi-
cally, the very long range of the order-parameter fluctua-
tions reflecting the GSI stabilizes the Gaussian critical
behavior. This is in agreement with the fact that long-
ranged order-parameter correlations in classical systems
stabilize mean-field critical behavior (Fisher et al., 1972).

The renormalized mean-field theory, the equation of
state, and the critical exponent B can be discussed in
analogy to the magnetic case (Kirkpatrick and Belitz,
1997; Zhou and Kirkpatrick, 2004).

The theory of the metal-superconductor transition
presented above is assuming conventional s-wave spin-
singlet superconductors. It is interesting to ask how the
phase-transition scenario is modified by exotic (i.e., non-
zero angular momentum, €>0) pairing. First of all, in
contrast to conventional superconductivity, exotic super-
conductivity is rapidly destroyed by nonmagnetic disor-
der because Anderson’s theorem (Anderson, 1959) does
not hold. This has been observed, for example, in ZrZn,
(Pfleiderer, Uhlarz, et al., 2001), which is believed to be a
p-wave spin-triplet superconductor, €=1. Recently, the
resulting quantum phase transition between a dirty
metal and an exotic superconductor has been studied
within a Landau-Ginzburg-Wilson approach (Sknepnek
et al., 2002). It turns out that the nonzero order-
parameter angular momentum suppresses the effects of
GSI on this transition. The nonanalytic wave-number
dependence in the Gaussian order-parameter propaga-
tor NV, (k) takes the form k*‘In k. Thus, compared to the
s-wave case, Eq. (4.42d), the nonanalytic term is sup-
pressed by a factor of k*‘. This can be understood as
follows: In the presence of nonmagnetic quenched disor-
der, the dominant electronic soft modes are those that
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involve fluctuations of the number density, spin density,
or anomalous density in the zero-angular-momentum
channel, while the corresponding densities in higher-
angular-momentum channels are not soft. Since the dif-
ferent angular momentum modes are orthogonal at zero
wave number, the coupling between a finite angular mo-
mentum order parameter and the zero-angular-
momentum soft modes must involve powers of the wave
number |k|.

In conclusion, for €>1, the GSI-induced nonanalytic
term is subleading compared to the conventional k?
term, and it will not influence the critical behavior. For
{=1, the nonanalytic term is marginally relevant. The
ultimate fate of the transition has not yet been worked
out, mainly because of (unrelated) complications stem-
ming from disorder fluctuations similar to those in dis-
ordered itinerant antiferromagnets.

D. Quantum antiferromagnetic transition

Let us now consider a quantum antiferromagnetic
transition, in analogy to the ferromagnetic one discussed
in Sec. III.B.1. A crucial difference between these two
cases is that in the latter, both the order-parameter field
M (whose average is the magnetization) and the generic
soft modes are soft at zero wave number, while in the
former, the order-parameter field N (whose average is
the staggered magnetization) is soft at a nonzero wave
number |p|. As a result, the hydrodynamic wave number
k in the dynamical piece of the ferromagnetic Gaussian
action, Eq. (4.6), gets replaced by p, and one has (Hertz,
1976)

AN =D N(k)(r + ¢ k> + d|Q,))N(k) + O(N%).
k

(4.47)

Here k is the wave vector measured from the reference
wave vector p. The missing inverse wave number in the
frequency term reflects the much weaker coupling, com-
pared to the ferromagnetic case, of the particle-hole ex-
citations to the order parameter field.” Because of this
weaker coupling, one expects the Gaussian approxima-
tion to be much better here than in the ferromagnetic
case. Indeed, it is easy to show that the effects that
needed to be taken into account for the ferromagnet are
irrelevant with respect to the mean-field transition de-
scribed by Eq. (4.47). One thus expects a continuous
transition with mean-field critical behavior in all dimen-
sions d>2. The finite-temperature properties of this
theory have been worked out in detail by Millis (1993).
It is important to remember that Eq. (4.47) assumes that
the only relevant soft modes at the quantum antiferro-

This holds for a generic shape of the Fermi surface. Special
geometric features of the Fermi surface can cause particle-hole
excitations to be soft at the same wave vector as the order
parameter even in an antiferromagnet; see Abanov and Chu-
bukov (2000) and the discussion below.
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magnetic transition are the order-parameter fluctua-
tions.

Experimental observations are not in agreement with
this expectation, probably because most metallic materi-
als that display easily accessible quantum antiferroma%-
netic transitions are far from being simple metals.”"
They fall into the class of heavy-fermion materials; an
overview has been given by Coleman et al. (2001). The
best-studied system is CeCug_,Au,, which shows a quan-
tum phase transition to an antiferromagnetic state at a
critical gold concentration x,~0.1 (von Lohneysen et al.,
1994). There are experimental indications for the quan-
tum critical fluctuations being two dimensional or quasi-
two-dimensional in nature (Stockert et al., 1998). A de-
tailed phenomenological analysis of neutron scattering
experiments (Schroder ef al., 2000) has shown that the
magnetic susceptibility is well described by the form

Xk, Q) =a[(—iQ+b T)+ 6(k)*T . (4.48)

Here a and b are constants, a=0.75+0.05, and 6(k) is the
wave-vector-dependent Weiss temperature. This type of
behavior is often referred to as “local quantum critical-
ity,” as it is believed (although not universally so; see
below) to point to atomic-scale physics as the cause of
the antiferromagnetism, as opposed to the Fermi-liquid
or spin-density-wave description that underlies Eqg.
(4.47). The possibility of such a local quantum critical
point was first pointed out by Si et al. (1999).

Perhaps the most obvious violation of the expected
mean-field behavior is the occurrence of the exponent
a+# 1. Other discrepancies between the observed behav-
ior and the one expected from Hertz theory have been
discussed by Coleman et al. (2001) and Si et al. (2001). A
prominent one is that frequency and temperature are
observed to scale in the same way; see Fig. 24. This ob-
servation is usually referred to as Q/T scaling, and it is
expected to hold at a quantum critical point that exhibits
hyperscaling (Sachdev and Ye, 1992). By contrast, in
Hertz theory Q scales as T%2 (Millis, 1993).%> Another
discrepancy is the behavior of the specific-heat coeffi-
cient, which is observed to diverge logarithmically, while
in Hertz theory it remains finite and shows a square-root
cusp singularity (Millis, 1993). Schroder et al. (2000) have
proposed the following physical picture to explain this
violation. In CeCuAu, or any heavy-fermion material,
the highly localized f orbitals of the lanthanide (in this
case, Ce) or actinide provide local magnetic moments,

1 An interesting counterexample is the case of Cry_,V,,
which is a common transition metal yet displays properties,
both at its antiferromagnetic quantum critical point and away
from it, that are very similar to the exotic behavior shown by
the heavy-fermion materials and high-7, superconductors (Yeh
et al., 2002). We shall come back to this in Sec. V.

62Naively, one might expect /T scaling simply to follow
from the fact that the scale dimension of 7 is given by the
dynamical critical exponent z and hence is the same as that of
Q. In general, this is not true due to the presence of (1) mul-
tiple temperature scales, and (2) dangerous irrelevant vari-
ables. See Millis (1993); Sachdev (1997).
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FIG. 24. The magnetic structure factor in CeCusgAug; as
measured by neutron scattering at various frequencies and
temperatures, as a function of w/T. The inset shows a measure
of the scatter of the scaling plot for various values of the ex-
ponent . Adapted from Schroder et al., 2000.

while the more extended s, p, and d orbitals provide a
Fermi surface. An increase in Au doping increases the
hybridization between the localized and extended orbit-
als, which increases the coupling between the local mo-
ments via the conduction electrons and hence the Néel
temperature 7y. If the hybridization becomes too
strong, however, the f electrons are incorporated into
the Fermi surface, and the antiferromagnetism disap-
pears. As a function of doping, Ty thus goes through a
maximum and disappears at a critical doping concentra-
tion; see Fig. 25. If this were all that happened, Hertz
theory should apply. However, there is a second tem-
perature scale besides Ty, namely, the Kondo tempera-
ture Tk. Only for T<Tg do the local moments of the f
orbitals become screened by the conduction electrons,
and the hybridization becomes effective. Schroder et al.
(2000) have proposed that Tk vanishes at the same criti-
cal concentration as Ty; see Fig. 25(b). In this picture,
there is no heavy-electron Fermi surface at the quantum
critical point, and Hertz theory is inapplicable. Notice
that, according to this picture, there is nothing techni-
cally wrong with Hertz theory; the reason for its failure

(a) /[ (b) (©)

LM , LM /

AFM | AFM

FIG. 25. Schematic phase diagram for CeCug_,Au,. Shown are
the antiferromagnetic (AFM) phase, the local-moments (LM)
region, and the Fermi-liquid (FL) region. The Néel tempera-
ture Ty (solid lines) represents a true phase transition, while
the Kondo temperature Tk (dashed lines) denotes a crossover.
The three scenarios shown correspond to the three different
physical situations discussed in the text. Adapted from
Schroder et al., 2000.
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is that the model does not contain crucial slow degrees
of freedom. Alternatively, one could imagine a scenario
in which Tk remained nonzero into the antiferromag-
netic phase [see Fig. 25(a)], but the experiments show
that this is not the case in CeCuAu. Finally, it is conceiv-
able, at least in principle, that the local-moment region
might extend to zero temperature in an entire region of
the phase diagram, as shown in Fig. 25(c), although there
is currently no explicit theory that can explain why the
unscreened local moments in heavy-fermion systems
would not order at sufficiently low temperatures. Still, it
is interesting to note that there are cases in which a
non-Fermi-liquid phase is observed adjacent to an anti-
ferromagnetic one, e.g., in URu,_,Re Si,; see Fig. 22.

Theoretically, the quantum antiferromagnetic transi-
tion is an open problem that is under very active consid-
eration. A theoretical description of the above scenario
involves the so-called Kondo lattice problem, i.e., the in-
teraction of many localized spins with each other and
with a band of conduction electrons. Si and collabora-
tors have studied such a model within a dynamical
mean-field approach (Si et al, 2001; Si, 2003). In this
approximation, these authors find what they call a local
quantum critical point, which has many properties con-
sistent with the observations. The exponent « is nonuni-
versal. More recently, Senthil e al. (2004) have proposed
that the magnetic state is an unconventional spin-density
wave in which spin-charge separation has taken place.
Coleman et al. (2000) have developed a supersymmetric
representation of spin operators that allows for a treat-
ment of both magnetism and the Kondo effect in the
context of a large-N expansion. These authors have
speculated that, if applied to the Kondo lattice problem,
this formalism could give rise to two different types of
fixed points: A weak-coupling fixed point of Hertz type
and a non-Fermi-liquid fixed point that displays spin-
charge separation. There is, however, no consensus that
the existence of a Fermi surface precludes an explana-
tion of the observations. Rosch et al. (1997) have pro-
posed an explanation in terms of three-dimensional con-
duction electrons coupling to two-dimensional
ferromagnetic fluctuations. In a two-dimensional spin-
fermion model, Abanov and Chubukov (2000) have
found that special nesting properties of the Fermi sur-
face lead to an exponent a= 0.8, but their results do not
display /T scaling. A breakdown of the LGW expan-
sion due to nesting has also been discussed by Lercher
and Wheatley (2000); for a review, see Abanov et al.
(2003). Sachdev and Morinari (2002) have found that
similar “nonlocal” forms of the dynamic susceptibility
are obtained in two-dimensional models where an order
parameter couples to long-wavelength deformations of a
Fermi surface.

Notice that all of these theories involve some coupling
of soft modes, generic or otherwise, to the order param-
eter, although there currently is no consensus about
their nature and origin. In the order of theoretical ideas
listed above, they are
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(1) slow local-moment fluctuations that serve as “Fermi
surface shredders,”

(2) other fluctuations that destroy the Fermi surface,®
(3) ferromagnetic fluctuations,

(4) particle-hole fluctuations across a Fermi surface
with special geometric features,

(5) volume and shape deformation of the Fermi surface.

We finally mention that antiferromagnetic quantum
criticality, in particular in two dimensions, has received
much attention in connection with high-7 superconduc-
tivity, a topic that is beyond the scope of this article.

V. DISCUSSION AND CONCLUSION

In this section we summarize the main theoretical
ideas we have presented, as well as the experimental
situation. We also discuss a number of open problems in
the field of quantum phase transitions and suggest a
number of new experiments to address some of these.

A. Summary of review

Early work on quantum phase transitions suggested
that most of them were conceptually quite simple, since
they are related to corresponding classical phase transi-
tions in a higher dimension. This led to the conclusion
that quantum critical behavior generically would be
mean-field-like. For a number of reasons, these conclu-
sions have turned out not to be valid in general. In this
review we have discussed one of the mechanisms that
invalidates the mapping of a quantum phase transition
onto a simple classical one in higher dimensions. The
central idea behind this mechanism is as follows: The
soft-mode spectrum of many-body systems is in general
different at 7=0 from the one at 7>0, since there are
soft modes at T=0 that develop a mass at nonzero tem-
perature. These soft modes lead to long-ranged correla-
tions in entire regions of the phase diagram, a phenom-
enon known as generic scale invariance. Physically, both
the generic soft modes and the critical order-parameter
fluctuations are equally important in the long-
wavelength limit, and if the coupling between them is
sufficiently strong, the former will influence the leading
critical behavior. This can happen for classical phase
transitions as well, but it is less common, since at 7>0
there are fewer soft modes than at 7=0. These observa-
tions led to the general paradigm that effects related to
generic scale invariance are of fundamental importance
for the theory of generic quantum critical points. As a
result, quantum phase transitions are typically related to
classical phase transitions with complications due to the
presence of generic scale invariance, rather than to
simple classical phase transitions.

%These soft modes are generic in the sense of our definition
only in the scenario depicted in Fig. 25(c).
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In Sec. II we reviewed the concept of generic scale
invariance in both classical and quantum systems. Al-
though in both cases examples are plentiful, in the quan-
tum case this is especially so because of additional Gold-
stone modes that exist at zero temperature. We
distinguished between direct and indirect generic scale
invariance effects, the former being immediate conse-
quences of Goldstone’s theorem, conservation laws, or
gauge symmetries, while the latter arise from the former
via mode-mode coupling effects. Classical examples dis-
cussed include Goldstone modes in Heisenberg ferro-
magnets or analogous systems, which lead to long-
ranged susceptibilities everywhere in the magnetically
ordered phase; local gauge invariance in superconduct-
ors or liquid crystals, in which context we have stressed
interesting analogies between statistical mechanics and
particle physics; long-time tails in time correlation func-
tions, which determine the transport coefficients in a
classical fluid in equilibrium; and long-ranged spatial
correlations in a classical fluid in a nonequilibrium
steady state. All the examples of generic scale invariance
in the quantum case involved interacting electron sys-
tems, namely, weak-localization effects in disordered
materials and the analogous effects in clean ones; and
nonequilibrium effects analogous to those in classical
fluids. Throughout this discussion we stressed the cou-
pling between the statics and the dynamics in quantum
systems, which leads to long-ranged spatial correlations
in quantum systems even in equilibrium.

In Sec. IIT we discussed some classical phase transi-
tions in which generic scale invariance plays a central
role. Our first example was the nematic—smectic-A tran-
sition in liquid crystals, which maps onto the classical
superconductor-normal-metal transition. In this case the
relevant generic soft modes are the director fluctuations,
which are Goldstone modes due to a broken rotational
symmetry. They can drive the transition first order, even
though in their absence one expects a continuous tran-
sition. The other classical phase transition discussed was
the critical point in a classical fluid. Here the generic soft
modes are due to conservation laws. In equilibrium, they
influence the critical dynamics only. However, in a fluid
that is subject to shear they also couple to the static
critical behavior. In this case, long-ranged static correla-
tions due to the generic soft modes stabilize mean-field
critical behavior below the equilibrium upper critical di-
mension.

Section IV was devoted to four examples of quantum
phase transitions. For the first three, namely, the quan-
tum ferromagnetic transition in clean and disordered
itinerant electron systems, respectively, and the normal-
metal-superconductor transition at 7=0, the generic
soft modes are the particle-hole excitations that cause
the weak-localization effects and their clean counter-
parts. The clean ferromagnetic case turned out to be
analogous to the classical nematic—smectic-A transition
in that the generic soft modes can lead to a fluctuation-
induced first-order transition. The disordered quantum
ferromagnetic transition is analogous to the classical
fluid under shear, in the sense that static long-ranged
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correlations due to the generic soft modes stabilize a
simple critical fixed point, and the critical behavior can
be determined exactly even in d=3. In the case of a
superconducting transition, this effect is even stronger,
and the critical fixed point is Gaussian. Our fourth ex-
ample dealt with the quantum antiferromagnetic transi-
tion, in which the critical behavior is currently not un-
derstood. There are many indications that, in the
materials studied so far, generic soft modes related to
local magnetic moments exist and couple to the critical
order-parameter fluctuations, but a detailed theory of
this effect remains to be worked out.

B. Open problems and suggested experiments

We conclude by listing a number of open questions,
both theoretical and experimental, the answers to which
would help shed light on some of the problems we have
discussed. Our remarks are necessarily incomplete and
speculative.

1. Generic scale invariance and soft modes

There are strong indications that the list of mecha-
nisms for generic scale invariance in Sec. II is incom-
plete, even for relatively simple systems. Here we briefly
mention two examples.

a. Generic non-Fermi-liquid behavior

As mentioned in Sec. IV.B.4, behavior not consistent
with Landau’s Fermi-liquid theory has been observed in
a variety of materials far from any quantum critical
point. While such exotic behavior may not come as too
much of a surprise in strongly correlated systems involv-
ing rare earths or actinides, the well-documented case of
MnSi (Pfleiderer, Julian, and Lonzarich, 2001) makes it
likely that some more basic understanding is lacking.
The observations clearly show that long-ranged correla-
tions exist in a large region of parameter space and are
not caused by any quantum phase transition. For in-
stance, the resistivity has a 7°> asymptotic temperature
dependence up to a factor of 2 in parameter space away
from the quantum ferromagnetic transition. This generic
long-time-tail behavior cannot be explained in an obvi-
ous way by any existing theory. Apart from being intrin-
sically interesting, this also raises the question of
whether there are unknown generic soft modes that will
be important for a complete understanding of the quan-
tum phase transition. One obvious candidate would be
slow fluctuations of local magnetic moments, which have
been invoked for many mysterious effects, from hard-to-
understand aspects of metal-insulator transitions (for a
review see Sec. IX.B of Belitz and Kirkpatrick, 1994) to
the critical behavior at the quantum antiferromagnetic
transition (see Sec. IV.D). So far, however, there is no
detailed theory that is capable of describing these soft
modes.
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b. Soft modes due to nested Fermi surfaces

Abanov and Chubukov (2000) have discussed nesting
properties of Fermi surfaces that are important for
quantum antiferromagnetic transitions. In the language
of this review, the effect considered by these authors is
likely a change of the properties of the generically soft
particle-hole excitations. It would be useful to confirm
this conjecture explicitly and to develop a general clas-
sification of the effects of Fermi-surface geometries on
generic soft modes.

2. Aspects of the quantum ferromagnetic transitions

a. Disordered ferromagnets

A detailed experimental study of the critical behavior
of both thermodynamic and transport properties near
the quantum ferromagnetic transition in a disordered
itinerant electron system would be very interesting.
Some recent results on Fe;_,Co,S, (DiTusa et al., 2003)
appear to be consistent with the log-log-normal correc-
tions to power-law scaling discussed in Sec. IV.B. A
more precise determination of the critical behavior in
this or other systems would be of great help in confirm-
ing or refuting the theoretical ideas.

Also of interest would be a systematic study of the
destruction of the first-order ferromagnetic transition by
nonmagnetic disorder that is predicted by the theory dis-
cussed in Sec. IV.B. For instance, the theory predicts
that the tricritical point observed in MnSi and UGe, will
move to lower and lower temperatures with increasing
strength of quenched disorder, turn into a tricritical end
point, then a critical end point, and finally the first-order
transition should disappear (see Fig. 20). An experimen-
tal check of this prediction would be very valuable. For
instance, it would give an indication of whether or not
an understanding of the non-Fermi-liquid nature of the
paramagnetic phase, mentioned in Sec. V.B.1, is impor-
tant for describing the quantum phase transition.

b. Itinerant ferromagnets with magnetic impurities

An interesting quantum phase transition to study ex-
perimentally would be the ferromagnetic transition in an
itinerant electron system with dilute magnetic impuri-
ties, which would fundamentally change the soft-mode
structure in systems with or without additional nonmag-
netic disorder. Such a study would provide an important
check of the soft-mode paradigm, especially if it were
possible to start with no magnetic impurities and study
the crossover induced by their gradual introduction. In
the absence of complications due to Kondoesque effects,
one would expect a local LGW theory for the order-
parameter fluctuations to be valid, since the magnetic
impurities cut off the soft modes that strongly couple to
the order-parameter fluctuations. Without nonmagnetic
disorder, this would be Hertz’s original theory, while in
the nonmagnetically disordered case, rare-region effects
could well play an important role.

It is likely, however, that Kondo screening effects and
interactions between the impurity sites will lead to com-
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plications not unlike those believed to be responsible for
the observations in quantum antiferromagnets (Sec.
IV.D), which are not understood. Generally, the physics
of local moments, and their influence on the properties
of conduction electrons, is one of the most important
unsolved problems in condensed-matter physics.

c. Clean ferromagnets

The finite-temperature behavior of the observables
near the continuous quantum ferromagnetic transition
in clean itinerant electron systems has not been worked
out. Given the existing RG description, which was
briefly discussed in Sec. IV.A.4, and the existing theory
of finite-temperature effects near Hertz’s fixed point
(Millis, 1993), this should be a relatively straightforward
problem.

3. Metal-superconductor transition

a. Experimental study of critical behavior

It would be interesting to study experimentally the
quantum phase transition between a disordered metal
and a disordered conventional bulk superconductor. The
theory reviewed in Sec. IV.C predicts that the quantum
phase transition is governed by a Gaussian fixed point. If
this is correct, there will be no crossover to mean-field
behavior, and the asymptotic critical behavior will be
observable, in contrast to the situation at the thermal
transition. Since the predicted Gaussian critical behavior
is radically different from mean-field critical behavior,
this should be easy to observe.

b. Quantum phase transition to a gapless superconductor

The metal-superconductor transition described in Sec.
IV.C assumed that the superconducting state was a con-
ventional gapped state. It would be interesting to con-
struct an analogous theory for the case of a gapless su-
perconductor, especially in light of the suggestion by
Vishveshwara er al. (2000) that the superconducting
ground state in a disordered system will generically be
gapless. On general grounds it is likely that the critical
behavior will be the same in both cases if the transition
is approached from the metallic side. However, the gap-
less superconducting state will have additional soft
modes, and these modes may influence some of the criti-
cal behavior, such as the exponents governing the equa-
tion of state, when the transition is approached from the
superconducting side.

4. Aspects of the quantum antiferromagnetic transitions

a. Phenomenological theory of the quantum
antiferromagnetic problem

As discussed in Sec. IV.D, the quantum antiferromag-
netic transition in real systems remains rather incom-
pletely understood. In most materials studied so far, a
basic ingredient of the problem seems to be itinerant
electrons coupled to local moments. The latter are not
screened since, at or near the quantum critical point, the
Kondo temperature vanishes due to critical fluctuation
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effects. In the absence of a more fundamental approach
to this very complicated problem, it would be very inter-
esting to construct a purely phenomenological theory of
these coupled fluctuations, including the soft modes as-
sociated with the slow temporal decay of local moments.

b. Simple quantum antiferromagnets

As we mentioned in Sec. IV.D, most of the work on
the quantum antiferromagnetic transition has focused
on heavy-fermion compounds and high-7, supercon-
ductors, partly due to the general interest in these sys-
tems. These materials are far from being simple metals,
and their behavior is heavily influenced by local-moment
physics, among other complications. It would be inter-
esting to find and study an itinerant electron system
without local moments that has a quantum antiferro-
magnetic transition, provided such materials do indeed
exist. The complicated behavior of Cry_,V, (see footnote
61) is discouraging in this respect, although at least some
properties of this material have been explained as due to
nesting properties of the Fermi surface (Norman et al.,
2003; Bazaliy et al., 2004; Pépin and Norman, 2004). In
the absence of disorder, the quantum phase transition in
such a systems should be described by Hertz’s theory.
The introduction of nonmagnetic disorder would likely
lead to a quantum phase transition where statistically
rare events are important.

5. Nonequilibrium quantum phase transitions

In Sec. II1.B.2 we discussed a classical nonequilibrium
phase transition in which generic scale invariance plays a
role. The general topic of classical phase transitions in
driven systems has received a substantial amount of at-
tention (Schmittmann and Zia, 1995). In Sec. I1.B.5 we
discussed how nonequilibrium situations at zero tem-
perature can lead to correlations that are of even longer
range than in equilibrium. Experimentally, however, the
problem of nonequilibrium quantum phase transitions
has received little attention so far. In quantum Hall sys-
tems, which we have not discussed in this review,
electric-field effects have been studied (see Sondhi ef al.,
1990), but in this case the electric field acts as a relevant
operator with respect to the transition. Experiments that
show an actual nonequilibrium quantum phase transi-
tion would be of interest.

6. Other quantum phase transitions in which generic
scale invariance might play a role

In addition to the examples covered in this review,
one can think of quantum phase transitions that have
not been investigated so far either theoretically or ex-
perimentally, for which GSI effects are likely to play a
central role. For example, the order parameter for the
spin-triplet analog of the isotropic-to-nematic phase
transition that has been proposed by Oganesyan et al.
(2001) to occur in quantum Hall systems is expected to
couple to generic soft modes. For this transition, in con-
trast to its spin-singlet analog, a simple LGW theory is
therefore unlikely to be valid.
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