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The last decade has witnessed both quantitative and qualitative progress in shell-model studies, which
have resulted in remarkable gains in our understanding of the structure of the nucleus. Indeed, it is
now possible to diagonalize matrices in determinantal spaces of dimensionality up to 109 using the
Lanczos tridiagonal construction, whose formal and numerical aspects are analyzed in this review. In
addition, many new approximation methods have been developed in order to overcome the
dimensionality limitations. New effective nucleon-nucleon interactions have been constructed that
contain both two- and three-body contributions. The former are derived from realistic potentials si.e.,
potentials consistent with two-nucleon datad. The latter incorporate the pure monopole terms
necessary to correct the bad saturation and shell-formation properties of the realistic two-body forces.
This combination appears to solve a number of hitherto puzzling problems. The present review
concentrates on those results which illustrate the global features of the approach: the universality of
the effective interaction and the capacity of the shell model to describe simultaneously all the
manifestations of the nuclear dynamics, either single-particle or collective in nature. The review also
treats in some detail the problems associated with rotational motion, the origin of quenching of the
Gamow-Teller transitions, double-b decays, the effect of isospin nonconserving nuclear forces, and
the specificities of neutron-rich nuclei. Many other calculations—which appear to have “merely”
spectroscopic interest—are touched upon briefly, although the authors are fully aware that much of
the credibility of the shell model rests on them.
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I. INTRODUCTION

In the early days of nuclear physics, the nucleus, com-
posed of strongly interacting neutrons and protons con-
fined in a very small volume, did not appear to be a
system to which the shell model, so successful in the
atoms, could be of much relevance. Other descriptions—
based on the analogy with a charged liquid drop—
seemed more natural. However, experimental evidence
of independent particle behavior in nuclei soon began to
accumulate, such as the extra binding related to some
precise values of the number of neutrons and protons
smagic numbersd and the systematics of spins and pari-
ties.

The existence of shell structure in nuclei had already
been noticed in the thirties, but it took more than a
decade and numerous papers ssee Elliott and Lane,
1957, for the early historyd before the correct prescrip-

tion was found by Mayer s1949d and Axel, Jensen, and
Suess s1949d. To explain the regularities of the nuclear
properties associated with magic numbers—i.e., specific
values of the number of protons Z and neutrons N—the
authors proposed a model of independent nucleons con-
fined by a surface-corrected, isotropic harmonic oscilla-
tor, plus a strong attractive spin-orbit term,1

Usrd =
1
2

"vr2 + DlW2 + ClW · sW . s1d

In modern language this proposal amounts to assuming
that the main effect of two-body nucleon-nucleon inter-
actions is to generate a spherical mean field. The wave
function of the ground state of a given nucleus is then
the product of one Slater determinant for the protons
and another for the neutrons, obtained by filling the
lowest subshells sor “orbits”d of the potential. This pri-
mordial shell model is nowadays called the independent-
particle model sIPMd or naive shell model. Its foundation
was laid by Brueckner s1954d, who showed how the
short-range nucleon-nucleon repulsion combined with
the Pauli principle could lead to nearly independent par-
ticle motion.

As the number of protons and neutrons departs from
the magic numbers it becomes indispensable to include
in some way the “residual” two-body interaction, to
break the degeneracies inherent in the filling of orbits
with two or more nucleons. At this point difficulties ac-
cumulate: “Jensen himself never lost his skeptical atti-
tude towards the extension of the single-particle model
to include the dynamics of several nucleons outside
closed shells in terms of a residual interaction” sWeiden-
müller, 1990d. Nonetheless, some physicists chose to per-
sist. One of our purposes here is to explain and illustrate
why it was worth persisting. The key point is that pas-
sage from the IPM to the interacting shell model—the
shell model for short—is conceptually simple but diffi-
cult in practice. In the next section we briefly review the
steps involved. Our aim is to give the reader an overall
view of the shell model as a subdiscipline of the many-
body problem. Italics are used for terms of nuclear jar-
gon when they appear for the first time. The rest of the
Introduction will look at the competing views of nuclear
structure and establish their connections with the shell
model. Throughout, the reader will be directed to the
sections of this review where specific topics are dis-
cussed.

A. The three pillars of the shell model

The strict validity of the IPM may be limited to closed
shells sand single-particle—or hole—states built on
themd, but it provides a framework with two important
components that help in dealing with more complex
situations. One is of a mathematical nature: the oscilla-
tor orbits define a basis of Slater determinants, the m

1We assume throughout adimensional oscillator coordinates,
i.e., r→ smv /"d1/2r.
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scheme, in which to formulate the Schrödinger problem
in the occupation number representation sFock spaced.
It is important to realize that the oscillator basis is rel-
evant, not so much because it provides an approxima-
tion to the individual nucleon wave functions, but be-
cause it provides the natural quantization condition for
self-bound systems.

Then, the many-body problem becomes one of diago-
nalizing a simple matrix. We have a set of determinantal
states for A particles, ai1

†
¯aiA

† u0l= ufIl, and a Hamil-
tonian containing kinetic and potential energies K and
V, respectively,

H = o
ij

Kijai
†aj − o

iøj

køl

Vijklai
†aj

†akal. s2d

This Hamiltonian adds one or two particles in orbits i , j
and removes one or two from orbits k , l, subject to the
Pauli principle shai

†ajj=dijd. The eigensolutions of the
problem uFal=oIcI,aufIl, are the result of diagonalizing
the matrix kfIuHufI8l, whose off-diagonal elements are
either 0 or ±Vijkl. However, the dimensionalities of the
matrices—though not infinite, since a cutoff is inherent
to a nonrelativistic approach—are so large as to make
the problem intractable, except for the lightest nuclei.
Stated in these terms, the nuclear many-body problem
does not differ much from other many-fermion prob-
lems in condensed matter, quantum liquids, or cluster
physics, with which it quite often shares concepts and
techniques. The differences come from the interactions,
which in the nuclear case are particularly complicated,
but paradoxically quite weak, in the sense that they pro-
duce sufficiently little mixing of basic states that the
zeroth-order approximations bear a significant resem-
blance to reality.

This is the second far-reaching physical component of
the IPM: the basis can be taken to be small enough to be
often tractable. Here some elementary definitions are
needed: The sneutron and protond major oscillator shells
of principal quantum number p=0,1,2,3,. . ., called
s ,p ,sd ,pf , . . ., respectively, of energy "vsp+3/2d, con-
tain orbits of total angular momentum j
=1/2 ,3 /2 , . . . ,p+1/2, each with its possible jz projec-
tions, for a total degeneracy Dj=2j+1 for each subshell,
and Dp= sp+1dsp+2d for the major shells. fOne should
not confuse the p=1 shell—p shell in the old spectro-
scopic notation—with the generic harmonic-oscillator
shell of energy "vsp+3/2d.g

When for a given nucleus the particles are restricted
to have the lowest possible values of p compatible with
the Pauli principle, we speak of a 0"v space. When the
many-body states are allowed to have components in-
volving basis states with up to N oscillator quanta more
than those pertaining to the 0"v space, we speak of a
N"v space soften referred to as a no-core spaced.

For nuclei up to A<60, the major oscillator shells
provide physically meaningful 0"v spaces. The simplest
possible example will suggest why this is so. Starting
from the first of the magic numbers, N=Z=2, 4He is no

doubt a closed shell. Adding one particle should pro-
duce a pair of single-particle levels: p3/2 and p1/2. Indeed,
this is what is found in 5He and 5Li. What about 6Li?
The lowest configuration, p3/2

2 , should produce four
states of angular momentum and isospin JT
=01,10,21,30. They are experimentally observed. There
is also a JT=20 level that requires the p3/2p1/2 configura-
tion. Hence the idea of choosing as basis pm sp stands
generically for p3/2p1/2d for nuclei up to the next closure,
N=Z=8, i.e., 16O. Obviously, the general Hamiltonian in
Eq. s2d must be transformed into an “effective” one
adapted to the restricted basis, the valence space. When
this is done, the results are very satisfactory sCohen and
Kurath, 1965d. The argument extends to the sd and pf
shells.

We have now identified two of the three “pillars” of
the shell model: a good valence space and an effective
interaction adapted to it. The third is a shell-model code
capable of coping with the secular problem. In Sec. I.C
we shall examine the reasons for the success of the clas-
sical 0"v shell-model spaces and propose extensions ca-
pable of dealing with more general cases. The interac-
tion will be touched upon in Sec. I.B.3 and discussed at
length in Sec. II. The codes will be the subject of Sec.
III.

B. Competing views of nuclear structure

Because shell-model work is so computer intensive, it
is instructive to compare its history and recent develop-
ments with the competing—or alternative—views of
nuclear structure that demand less sor nod computing
power.

1. Collective versus microscopic

The early shell model was hard to reconcile with the
idea of the compound nucleus and the success of the
liquid-drop model. With the discovery of rotational mo-
tion sBohr, 1952; Bohr and Mottelson, 1953d which was
at first as surprising as the IPM, the reconciliation
seemed to become harder. Resolution came with the re-
alization that collective rotors are associated with “in-
trinsic states” very well approximated by deformed
mean-field determinants sNilsson, 1955d, from which the
exact eigenstates can be extracted by projection to good
angular momentum sPeierls and Yoccoz, 1957d, an early
and spectacular example of spontaneous symmetry
breaking. When nuclear superfluidity was added to the
picture sBohr et al., 1958d, the unified model was born, a
basic paradigm that remains valid.

Compared with the impressive architecture of the uni-
fied model, what the shell model could offer were some
striking but isolated examples that pointed to the sound-
ness of a many-particle description. Among them, let us
mention the elegant work of Talmi and Unna s1960d, the
f7/2

n model of McCullen, Bayman, and Zamick s1964d—
probably the first successful diagonalization involving
both neutrons and protons—and the Cohen and Kurath
s1965d fit to the p shell, the first of the classical 0"v
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regions. It is worth noting that this calculation involved
spaces of m-scheme dimensionalities, dm, of the order of
100, while at fixed total angular momentum and isospin
dJT<10.

The microscopic origin of rotational motion was
found by Elliott s1958a, 1958bd. The interest in this con-
tribution was immediate, but it took quite a few years to
realize that Elliott’s quadrupole force and the underlying
SUs3d symmetry were the foundation, rather than an ex-
ample, of rotational motion ssee Sec. VId.

It is fair to say that for almost 20 years after its incep-
tion, in the mind of many physicists, the shell model still
suffered from an implicit separation of roles, which as-
signed it the task of accurately describing a few espe-
cially important nuclei, while the overall coverage of the
nuclear chart was understood to be the domain of the
unified model.

A somewhat intermediate path was opened by the
well-known interacting Boson model of Arima and Iach-
ello s1975d and its developments, which we do not dis-
cuss here. The interested reader can find the details in
Iachello and Arima s1987d.

2. Mean field versus diagonalizations

The first realistic2 matrix elements of Kuo and Brown
s1966d and the first modern shell-model code by French
et al. s1969d came almost simultaneously and opened the
way for the first generation of “large-scale” calculations,
which at the time meant dJT<100–600. They made it
possible to describe the neighborhood of 16O sZuker,
Buck, and McGrory, 1968d and the lower part of the sd
shell sHalbert et al., 1971d. However, the increases in
tractable dimensionalities were insufficient to promote
the shell model to the status of a general description,
and the role separation mentioned above persisted.
Moreover, the work done exhibited serious problems,
which could be traced to the realistic matrix elements
themselves ssee Sec. I.B.3d.

However, a fundamental idea emerged at the time: the
existence of an underlying universal two-body interac-
tion, which would permit replacement of the unified
model description by a fully microscopic one, based on
mean-field theory. The first breakthrough came when
Baranger and Kumar s1968d proposed a new form of the
unified model by showing that Elliott’s quadrupole force
could be derived from the Kuo-Brown matrix elements.
Adding a pairing interaction and a spherical mean field,
they proceeded to perform Hartree-Fock-Bogoliubov
calculations in the first of a successful series of papers
sKumar and Baranger, 1968d. Their work could be de-
scribed as shell model by other means, as it was re-
stricted to valence spaces of two contiguous major shells.

This limitation was overcome when Vautherin and
Brink s1972d and Dechargé and Gogny s1980d initiated
the two families of Hartree-Fock sHFd calculations

which became known as the Skyrme and Gogny ap-
proaches, respectively. These remain to this day the only
tools capable of giving microscopic descriptions
throughout the Periodic Table. They were later joined
by the relativistic HF approach sSerot and Walecka,
1986d. For a review of the three variants see Bender,
Heenen, and Reinhard s2003d. See also Péru, Girod, and
Berger s2000d and Rodriguez-Guzmán, Egido, and Rob-
ledo s2000d, and references therein, for recent work with
the Gogny force, which is the one with the closer con-
nection with realistic interactions sSecs. VI.A and II.Dd.

Since single determinantal states can hardly be ex-
pected to describe many-body solutions, everybody ad-
mits the need to go beyond the mean field. Nevertheless,
as it provides such a good approximation to the wave
functions stypically about 50%d it suggests efficient trun-
cation schemes, as will be explained in Secs. IV.B.1 and
IV.B.2.

3. Realistic versus phenomenological

Nowadays, many regions of the table of nuclides re-
main beyond the direct reach of the shell model, but
enough has happened in the last decade to transform it
into a unified view. Many steps—as outlined in Sec.
I.D—are needed to substantiate this claim. Here we in-
troduce the first: A unified view requires a unique inter-
action. Its free parameters must be few and well defined,
so as to make the calculations independent of the quan-
tities they are meant to explain. Here, because we touch
upon a different competing view of special interest for
shell-model experts, we recall the remarks at the end of
the first paragraph of Sec. I.B.2.

The exciting prospect that realistic matrix elements
might lead to parameter-free spectroscopy did not mate-
rialize. As the growing sophistication of numerical meth-
ods allowed treatment of an increasing number of par-
ticles in the sd shell, the results became disastrous. Then,
two schools of thought on the status of phenomenologi-
cal corrections emerged. In one of them, all matrix ele-
ments were considered to be free parameters. In the
other, only average matrix elements, or centroids—
related to the bad saturation and shell formation prop-
erties of the two-body potentials—needed to be fitted
sthe monopole wayd. The former led to the universal sd
interaction sWildenthal, 1984d, which enjoyed immense
success and for ten years set the standard for shell-
model calculations in a large valence space sBrown and
Wildenthal, 1988; see Brown, 2001, for a recent reviewd.
The second, which we adopt here, was initiated in Edu-
ardo Pasquini’s Ph.D. thesis s1976d, where the first cal-
culations in the full pf shell, involving both neutrons and
protons, were done.3 Twenty years later, we know that
the minimal monopole corrections proposed in his work
are sufficient to provide results of a quality comparable

2Realistic interactions are those consistent with data obtained
in two- sand nowadays three-d nucleon systems.

3Two months after receiving his Ph.D., Pasquini and his wife
“disappeared” in Argentina. Hence his work is only publicly
available in condensed form sPasquini and Zuker, 1978d.
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to those of the universal sd interaction for nuclei in f7/2
region.

However, there were still problems with the monopole
way: they showed up around and beyond 56Ni, as well as
in the failure to be competitive with the universal sd
interaction in the sd shell snote that the universal sd
interaction contains nonmonopole two-body corrections
to the realistic matrix elementsd. The solution was found
only recently with the introduction of three-body forces.
This far-reaching development will be explained in de-
tail in Secs. II, II.B, and V.A. Here we shall only antici-
pate the conclusions of these sections by offering two
syllogisms. First, the case for realistic two-body interac-
tions is so strong that we have to accept them as they
are. Little is known about three-body forces except that
they exist. Therefore problems with calculations involv-
ing only two-body forces must be blamed on the absence
of three-body forces. This argument raises sat leastd one
question: What is to be made of all the calculations, us-
ing only two-body forces, that give satisfactory results?
The answer lies in the second syllogism: All clearly iden-
tifiable problems are of monopole origin. They can be
solved reasonably well by phenomenological changes of
the monopole matrix elements. Therefore fitted interac-
tions can differ from realistic ones basically through
monopole matrix elements. sWe speak of R compatibil-
ity in this case.d The two syllogisms become fully consis-
tent by noting that the inclusion of three-body mono-
pole terms always improves the performance of the
forces that adopt the monopole way.

For the 0"v spaces, the Cohen-Kurath s1965d, the
Chung-Wildenthal sWildenthal and Chung, 1979d and
the FPD6 sRichter et al., 1991d interactions appear to be
R compatible. The universal sd sWildenthal, 1984d inter-
action is R incompatible. The recent set of pf-shell ma-
trix elements sGXPF1d, proposed by Honma et al. s2002,
2004d turns out to be R incompatible in a subtle way.
This will be analyzed in Secs. V.A and V.B.

C. The valence space

The choice of valence space should reflect a basic
physical fact: that the most significant components of the
low-lying states of nuclei can be accounted for by many-
body states involving the excitation of particles in a few
orbitals around the Fermi level. The history of the shell
model is that of the interplay between experiment and
theory to establish the validity of this concept. Our
present understanding can be roughly summed up by
saying that “a few” orbitals means essentially one or two
contiguous major shells.4

For a single major shell, the classical 0"v spaces, exact
solutions are now available from which instructive con-
clusions can be drawn. Consider, for instance, the spec-
trum of 41Ca from which we want to extract the single-

particle states of the pf shell. Remember that in 5Li we
expected to find two states and indeed found two. Now,
in principle, we expect four states. They are certainly in
the data. However, they must be retrieved from a jungle
of some 140 levels seen below 7 MeV. Moreover, the f7/2
ground state is the only one that is a pure single-particle
state. The others are split, even severely in the case of
the highest sf5/2d sEndt and van der Leun, 1990; Sec.
V.B.1 contains an interesting example of the splitting
mechanismd. So, how can we expect the pf shell to be a
good valence space? For a few particles above 40Ca it is
certainly not. However, as we shall show, it turns out
that above A=46, the lowest spfdm configurations5 are
sufficiently detached from all others as to generate wave
functions that can evolve to the exact ones through low-
order perturbation theory.

The ultimate ambition of shell-model theory is to get
exact solutions. Those provided by the sole valence
space are, so to speak, the tip of the iceberg in terms of
number of basic states involved. The rest may be so well
hidden as to make us believe in the literal validity of the
shell-model description in a restricted valence space. For
instance, the magic closed shells are good valence spaces
consisting of a single state. This does not mean that a
magic nucleus is 100% closed shell; 50% or 60% should
be enough, as we shall see in Sec. IV.B.1. In Sec. V.C.1 it
will be argued that the 0"v valence spaces account for
basically the same percentage of the full wave functions.
Conceptually the valence space may be thought of as
defining a representation intermediate between the
Schrödinger one, in which the operators are fixed and
the wave function contains all the information, and the
Heisenberg one, where the reverse is true.

At best, 0"v spaces can describe only a limited num-
ber of low-lying states of the same s“natural”d parity.
Two contiguous major shells can most certainly cope
with all levels of interest, but they lead to intractably
large spaces and suffer from a center-of-mass problem
sanalyzed in Appendix Cd. Here, a physically sound
pruning of the space is suggested by the IPM. What
made a success of the model is its explanation of the
observed magic numbers by the addition of a spin-orbit
term to the harmonic-oscillator sHOd field sfor shell for-
mation, see Sec. II.B.2d. If we separate a major shell into
two parts, HOspd=p. % rp, where p. is the largest sub-
shell having j=p+1/2, and rp is the “rest” of the
harmonic-oscillator p shell, we can define the extruded-
intruded sEId spaces as EIspd=rp % sp+1d.. The sp+1d.

orbit is expelled from HOsp+1d by the spin-orbit inter-
action and intrudes into HOspd. The EI spaces are well
established entities when only one fluid sproton or neu-
trond is active, giving rise to the shell closures at proton
number or neutron number 28, 50, 82, and 126. These
nuclei are “spherical,” amenable to exact diagonaliza-
tions, and fairly well understood ssee, for example, Ab-
zouzi et al., 1991d.

4Three major shells are necessary to deal with superdeforma-
tion.

5A configuration is a set of states having a fixed number of
particles in each orbit.
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As soon as both fluids are active, deformation effects
become appreciable, leading to coexistence between
spherical and deformed states and eventually to domi-
nance of the latter. To cope with this situation we pro-
pose extended EI spaces defined as EEIspd=rp % Dp+1,
where Dp=p. % sp.−2d %¯, i.e., the Dj=2 sequence of
orbits that contain p., which are needed to account for
rotational motion, as explained in Sec. VI. The EEIs1d
sp1/2 ,d5/2 ,s1/2d space was successful in describing the full
low-lying spectra for A=15–18 sZuker et al., 1968, 1969d.
It is only recently that the EEIs2d ss1/2 ,d3/2 , f7/2 ,p3/2d
space sregion around 40Cad has become tractable ssee
Secs. VI.D and VII.Cd. EEIs3d is the natural space for
the proton-rich region centered in 80Zr. For heavier nu-
clei exact diagonalizations are not possible, but the EEI
spaces provide simple and excellent estimates of quad-
rupole moments at the beginning of the well-deformed
regions sSec. VI.Cd.

As presented above, the choice of valence space is
primarily a matter of physics. In practice, when exact
diagonalizations are impossible, truncations are intro-
duced. They may be based on systematic approaches,
such as the approximation schemes discussed in Secs.
IV.B.1 and IV.B.2, or on the mean-field methods men-
tioned in Sec. I.B.2 and analyzed in Sec. VI.A.

D. About this review: The unified view

In this review we highlight several unifying aspects
common to the most recent successful shell-model cal-
culations:

sad An effective interaction connected with both the
two- and three-nucleon bare forces,

sbd explanation of the global properties of nuclei via
the monopole Hamiltonian,

scd the universality of the multipole Hamiltonian,

sdd a description of the collective behavior in the labo-
ratory frame, by means of the spherical shell
model,

sed a description of resonances using the Lanczos
strength function method.

The review is organized so as to treat these in turn.
References are given here only for work that will not be
mentioned later.

Section II. The basic tool for analyzing an interaction
is the monopole-multipole separation. The monopole
governs saturation and shell properties; it can be
thought of as the correct generalization of Eq. s1d.
Monopole theory is scattered through many references.
Only by the inclusion of three-body forces could a satis-
factory formulation be achieved. As this is a very recent
and fundamental development that makes possible a
unified viewpoint of the monopole-field concept, Sec. II
is largely devoted to it. The “residual” multipole force
has been extensively described in a single reference,
which will be reviewed briefly and updated. The aim of
the section is to show how realistic interactions can be

characterized by a small number of parameters.
Section III. The ANTOINE and NATHAN codes have

made it possible to evolve from dimensionalities dm,5
3104 in 1989 to dm,109, dJ,108 nowadays. The gains
are partly due to the increase in computing power, but
more importantly to the development of new algorithms
that take advantage of the enlarged disk and RAM size
available in contemporary computers. These algorithmic
advances in the construction of tridiagonal Lanczos ma-
trices will be described in Sec. III.

Section IV. The Lanczos construction can be used to
eliminate the “black box” aspect of the diagonalizations,
to a large extent. We show in Sec. IV how it can be
related to the notions of the partition function, evolution
operator, and level densities. Furthermore, it can be
turned into a powerful truncation method by combining
it with coupled-cluster theory. Finally, it describes
strength functions with maximal efficiency.

Section V. After describing the three-body mechanism
that solves the monopole problem, which had plagued
the classical 0"v calculations, we present some selected
examples of pf-shell spectroscopy. Special attention is
given to Gamow-Teller transitions, one of the main
achievements of modern shell-model work.

Section VI. Another major achievement is the recent
shell-model description of rotational nuclei. The new
generation of gamma detectors, Euroball and Gamma-
sphere, has made it possible to access high-spin states in
medium-mass nuclei, for which full 0"v calculations are
available. Their remarkable harvest includes a large
spectrum of collective manifestations that the spherical
shell model can predict or explain, for instance, de-
formed rotors, backbending, band terminations, and
yrast traps. Configurations involving two major oscilla-
tor shells have also been shown to account well for the
appearance of superdeformed excited bands.

Section VII. A combination of factors make light and
medium-light nuclei near the neutron drip line especially
interesting: sad They have recently come under intense
experimental scrutiny. sbd They are amenable to shell-
model calculations, sometimes even exact no-core ones.
scd They exhibit very interesting behavior, such as halos
and sudden onset of deformation. sdd They achieve the
highest N /Z ratios attained. sed When all sor most ofd
the valence particles are neutrons, the spherical shell-
model closures, dictated by the isovector channel of the
nuclear interaction alone, may differ from those in the
stability valley. These regions suggest some exacting
tests for the theoretical descriptions, which the conven-
tional shell-model calculations have passed satisfactorily.
For nearly unbound nuclei, the shell-model description
has to be supplemented by some refined extensions,
such as the shell model in the continuum, which is be-
yond the scope of this review. References to the subject
can be found in Bennaceur et al. s1999, 2000d, Id Betan
et al. s2002d, and Michel et al. s2002, 2003d, which deal
with the Gamow shell model.

Section VIII. There is a characteristic of the shell
model we have not yet discussed: its ability to give more
precise quantitative information on nuclear structure.
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Shell model wave functions are, in particular, of great
use in other disciplines. For example, weak decay rates
are crucial for the understanding of several astrophysical
processes, and neutrinoless bb decay is one of the main
sources of information about the neutrino masses. In
both cases, shell-model calculations play a central role.
The last section deals with these subjects, and some oth-
ers.

Appendix B contains a full derivation of the general
form of the monopole field.

Two recent reviews by Brown s2001d and Otsuka,
Honma, et al. s2001d have made it possible to simplify
our task and avoid redundancies. However we did not
feel that these reviews excused us from citing and com-
menting in some detail on important work that bears
directly on the subjects we treat.

Sections II and IV and the Appendixes are based on
unpublished notes by A. P. Zuker.

II. THE INTERACTION

The following remarks from Abzouzi, Caurier, and
Zuker s1991d still provide a good introduction to the
subject:

“The use of realistic potentials si.e., consistent with
NN scattering datad in shell-model calculation was
pioneered by Kuo and Brown s1966d. Of the enor-
mous body of work that followed we would like to
extract two observations. The first is that whatever
the forces shard- or soft-core, ancient or newd and
the method of regularization—Brueckner G ma-
trix sKuo and Brown, 1966; Kahana et al., 1969ad,
Sussex direct extraction sElliott et al. 1968d, or Ja-
strow correlations sFiase et al., 1988d—the effective
matrix elements are extraordinarily similar sRutsgi
et al., 1971; Pasquini and Zuker, 1978d. The most
recent results sJiang et al. 1989d amount to a vindi-
cation of the work of Kuo and Brown s1966d. We
take this similarity to be the great strength of the
realistic interactions, since it confers on them a
model-independent status as direct links to the
phase shifts.

The second observation is that when used in shell-
model calculations and compared with data these
matrix elements give results that deteriorate rap-
idly as the number of particles increases sHalbert
et al., 1971; Brown and Wildenthal, 1988d. It was
found sPasquini and Zuker, 1978d that in the pf
shell a phenomenological cure, confirmed by exact
diagonalizations up to A=48 sCaurier et al., 1989d,
amounts to very simple modifications of some av-
erage matrix elements scentroidsd of the Kuo-
Brown interaction sKuo and Brown, 1968d.”
Abzouzi et al. s1991d were able to obtain good spec-

troscopy in the p and sd shells only through more radical
changes in the centroids, involving substantial three-
body terms. In 1991 it was hard to interpret them as
effective, and there were insufficient grounds to claim
that they were real.

Nowadays, the need of true three-body forces has be-
come irrefutable: In the 1990s several two-body poten-
tials were developed—Nijmegen I and II sStoks et al.,
1993d, AV18 sWiringa et al., 1995d, and the charge-
dependent Bonn potential sCD-Bonn; Machleidt et al.,
1996d—that fit the <4300 entries in the Nijmegen data-
base sStoks et al., 1994d with x2<1, and none of them
seemed capable of predicting perfectly the nucleon vec-
tor analyzing power in elastic sN ,dd scattering sthe Ay
puzzled. Two recent additions to the family of high-
precision two-body potentials—a new “CD-Bonn”
sMachleidt, 2001d and the chiral Idaho-A and -B sEntem
and Machleidt, 2002d—have dispelled any hopes of solv-
ing the Ay puzzle with two-body-only interactions sEn-
tem et al., 2002d.

Furthermore, quasiexact two-body Green’s function
Monte Carlo results sPudliner et al., 1997; Wiringa et al.,
2000d, which provided acceptable spectra for Aø8
sthough they had problems with binding energies and
spin-orbit splittingsd, now encounter serious trouble in
the spectrum of 10B, as found through the no-core shell-
model calculations of Navrátil and Ormand s2002d and
Caurier et al. s2002d, and confirmed by Pieper et al.
s2002d, who also show that the problems can be rem-
edied to a large extent by introducing the new Illinois
three-body potentials developed by Pieper et al. s2001d.

It can be seen that the trouble detected with a two-
body-only description—with binding energies, spin-orbit
splittings, and spectra—is always related to centroids,
which, once associated with operators that depend only
on the number of particles in subshells, determine a
monopole Hamiltonian Hm that basically governs
Hartree-Fock self-consistency. As we shall show, the full
H can be separated rigorously into H=Hm+HM. The
multipole part HM includes pairing, quadrupole, and
other forces responsible for collective behavior, and—as
checked by many calculations—is well given by the two-
body potentials.

The preceding paragraph amounts to rephrasing the
two observations quoted at the beginning of this section
with the proviso that discrepancies with experiment can-
not be blamed on the—now nearly perfect—two-body
potentials. Hence the necessary “corrections” to Hm
must have a three-body origin. Given that we have no
complaint with HM, the primary problem is the mono-
pole contribution to the three-body potentials. This is
welcome news, because a full three-body treatment
would render most shell-model calculations impossible,
while the phenomenological study of monopole behav-
ior is quite simple. Furthermore, it is quite justified be-
cause there is little ab initio knowledge of the three-
body potentials.6 Therefore whatever information comes
from nuclear data beyond A=3 is welcome.

In shell-model calculations, the interaction appears as
matrix elements, which soon become far more numerous

6Experimentally there will never be enough data to deter-
mine them. The hope for a few-parameter description comes
from chiral perturbation theory sEntem and Machleidt, 2002d.
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than the number of parameters defining the realistic po-
tentials. Our task will consist in analyzing the Hamil-
tonian in the oscillator representation sor Fock spaced so
as to understand its workings and simplify its form. In
Sec. II.A we sketch the theory of effective interactions.
In Sec. II.B we explain how to construct from data a
minimal Hm, while Sec. II.C will be devoted to extract-
ing from realistic forces the most important contribu-
tions to HM. The basic tools are symmetry and scaling
arguments, the clean separation of bulk and shell effects,
and the reduction of H to sums of factorable terms sDu-
four and Zuker, 1996d.

A. Effective interactions

The Hamiltonian is written in an oscillator basis as

H = K + o
røs,tøu,G

Vrstu
G ZrsG

+ · ZtuG

+ o
røsøt,uøvøw,G

Vrstuvw
G ZrstG

+ · ZuvwG, s3d

where K is the kinetic energy, Vrr8
G the interaction matrix

elements, ZrG
+ sZrGd create sannihilated pairs sr;rsd or

triples sr;rstd of particles in orbits r, coupled to G=JT.
Dots stand for scalar products. The basis and the matrix
elements are large but never infinite.7

The aim of an effective interaction theory is to reduce
the secular problem in the large space to a smaller
model space by treating the coupling between them per-
turbatively, thereby transforming the full potential, and
its repulsive short-distance behavior, into a smooth
pseudopotential.

In what follows, if we have to distinguish between
large sN"vd and model spaces, we use H, K, and V for
the pseudopotential in the former and H, K, and V for
the effective interaction in the latter.

The general procedure for describing an exact eigen-
state in a restricted space was obtained independently
by Suzuki and Lee s1980d and Poves and Zuker s1981ad.8

It consists of dividing the full space into model suild and
external suald determinants and introducing a transfor-
mation that respects strict orthogonality between the
spaces and decouples them exactly:

uīl = uil + o
a

Aiaual, uāl = ual − o
i

Aiauil , s4d

kīuāl = 0, Aia is defined through kīuHuāl = 0. s5d

The idea is that the model space can produce one or
several starting wave functions that can evolve to exact
eigenstates through perturbative or coupled-cluster
evaluation of the amplitudes Aia, which can be viewed
as matrix elements of a many-body operator A. In
coupled-cluster theory sor exp S; Coester and Kümmel,
1960; Kümmel et al., 1978d one sets A=exp S, where S
=S1+S2+ ¯ +Sk is a sum of k-body operators. The de-

coupling condition kīuHuāl=0 then leads to a set of
coupled integral equations for the Si amplitudes. When
the model space reduces to a single determinant, setting
S1=0 leads to Hartree-Fock theory if all other ampli-
tudes are neglected. The S2 approximation contains both
low-order Brueckner theory and the random-phase ap-
proximation sRPAd. In the presence of hard-core poten-
tials, the priority is to screen them through the low-
order Brueckner theory and to discard matrix elements
contributing to the RPA. An important implementation
of the theory was due to Zabolitzky, whose calculations
for 4He, 16O, and 40Ca included S3 sBethe-Faddeevd and
S4 sDay-Yacoubovskyd amplitudes sKümmel, Lührmann,
and Zabolitzky, 1978d. This “Bochum truncation
scheme,” which retraces the history of nuclear-matter
theory, has the drawback that at each level it neglects
terms that one would like to keep.

The way out of this problem sHeisenberg and Mihaila,
1999; Mihaila and Heisenberg, 2000d consists of a new
truncation scheme in which some approximations are
made, but no terms are neglected, relying on the fact
that the matrix elements are finite. The calculations of
these authors for 16O sup to S3d can be ranked with the
quasiexact Green’s-function Monte Carlo and no-core
shell models for lighter nuclei.

In the quasidegenerate regime smany model statesd,
the coupled-cluster equations determine an effective in-
teraction in the model space. The theory is much simpli-
fied if we enforce the decoupling condition for a single
state whose exact wave function is written as

urefl = s1 + A1 + A2 + ¯ ds1 + B1 + B2 + ¯ durefl

= s1 + C1 + C2 + ¯ durefl , s6d

where C=exp S and urefl is a model determinant. The
internal amplitudes associated with the B operators are
those of an eigenstate obtained by diagonalizing Heff
=Hs1+Ad in the model space. As it is always possible to
eliminate the A1 amplitude, at the S2 level there is no
coupling i.e., the effective interaction is a state-
independent G matrix sZuker, 1984d, which has the ad-
vantage of providing an initialization for Heff. Going to
the S3 level would be very hard, and we examine what
has become standard practice.

The power of the coupled-cluster theory is that it pro-
vides a unified framework for the two things we expect
from decoupling: to smooth the repulsion and to incor-
porate long-range correlations. The former demands
jumps of, say, 50"v, the latter much less. Therefore it is

7Nowadays, the nonrelativistic potentials must be thought of
as derived from an effective field theory that has a cutoff of
about 1 GeV sEntem and Machleidt, 2002d. Therefore truly
hard cores are ruled out, and H should be understood to act on
a sufficiently large vector space, not over the whole Hilbert
space.

8The notations in both papers are very different, but the per-
turbative expansions are probably identical because the Her-
mitian formulation of Suzuki s1982d is identical to that given by
Poves and Zuker s1981ad. This paper also deals extensively
with the coupled-cluster formalism.
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convenient to treat them separately. Standard practice
assumes that G-matrix elements can provide a smooth
pseudopotential in some sufficiently large space and
then accounts for long-range correlations through per-
turbation theory. The equation to be solved is

Gijkl = Vijkl − o
ab

VijabGabkl

ea + eb − ei − ej + D
, s7d

where ij and kl now stand for orbits in the model space,
while in the pair ab at least one orbit is outside the
model space, ex is an unperturbed susually kineticd en-
ergy, and D a free parameter called the starting energy.
Hjorth-Jensen, Kuo, and Osnes s1995d describe in detail
a sophisticated partition that amounts to having two
model spaces, one large and one small.

In no-core shell-model calculations an N"v model
space is chosen with N<6–10. When initiated by Zheng
et al. s1993d the pseudopotential was a G matrix with
starting energy. Then the D dependence was eliminated,
either by arcane perturbative maneuvers or by direct
decoupling of two-body elements from a very large
space sNavrátil and Barrett, 1996d, further implemented
by Navrátil, Vary, and Barrett s2000ad and extended to
three-body effective forces sNavrátil et al. 2000; Navrátil
and Ormand, 2002d. It would be of interest to compare
the resulting effective interactions to the Brueckner and
Bethe-Faddeev amplitudes obtained in a full exp S ap-
proach swhich are also free of arbitrary starting ener-
giesd.

A most valuable contribution of the no-core model is
the proof that it is possible to work with a pseudopoten-
tial in N"v spaces. The method relies on exact diagonal-
izations, which soon become prohibitive; hence, in the
future, coupled-cluster theory may become the standard
approach. Going to S3 for N=50—as Heisenberg and
Mihaila s1999d did—is hard. For N=10 it should be
much easier. See in this respect Kowalski et al. s2004d.

Another important contribution of the no-core
method is that the excitation spectra converge well be-
fore the full energy, which formally validates the 0"v
diagonalizations with rudimentary potentials9 and
second-order corrections.

The 0"v results are very good for the spectra. How-
ever, having a good pseudopotential to describe energies
is not enough. The transition operators also need dress-
ing. For some of them, notably E2, the dressing mecha-
nism scoupling to 2"v quadrupole excitationsd has been
well understood for years ssee Dufour and Zuker, 1996,
for a detailed analysisd, and it yields the abundantly
tested and confirmed recipe of using effective charges of
<1.5e for the protons and <0.5e for neutrons. For
Gamow-Teller transitions, mediated by the spin-isospin
st± operator, the renormalization mechanism involves
an overall quenching factor of 0.7–0.8 whose origin is far
subtler. This will be examined in Secs. V.C.1 and V.C.2.

B. The monopole Hamiltonian

A many-body theory usually starts by separating the
Hamiltonian into an “unperturbed” and a “residual”
part, H=H0+Hr. The traditional approach consists in
choosing for H0 a one-body single-particle field. Since H
contains two- and three-body components, the separa-
tion is not mathematically clean. Therefore we propose
the following:

H = Hm + HM, s8d

where Hm, the monopole Hamiltonian, contains K and
all quadratic and cubic stwo- and three-bodyd forms in
the scalar products of fermion operators arx

† ·asy
,10 while

the multipole HM contains all the rest. A thorough dis-
cussion of the monopole Hamiltonian is given in Appen-
dix A, where full derivations can be found.

Our plan is to concentrate on the two-body part, and
introduce three-body elements as the need arises.

Hm has a diagonal part, Hm
d , written in terms of num-

ber and isospin operators sarx

† ·ary
d. It reproduces the av-

erage energies of configurations at a fixed number of
particles and isospin in each orbit sjt representationd or,
alternatively, at a fixed number of particles in each orbit
and each fluid sneutron-proton, np, or j representationd.
In jt representation the centroids

Vst
T =

o
J

Vstst
JT s2J + 1df1 − s− dJ+Tdstg

o
J

s2J + 1df1 − s− dJ+Tdstg
, s9ad

ast =
1
4

s3Vst
1 + Vst

0 d, bst = Vst
1 − Vst

0 , s9bd

are associated with the two-body quadratics in number
smsd and isospin operators sTsd,

mst =
1

1 + dst
mssmt − dstd , s10ad

Tst =
1

1 + dst
STs · Tt −

3
4

mstdstD , s10bd

to define the diagonal two-body part of the monopole
Hamiltonian sBansal and French, 1964; French 1969d,

Hmjt
d = Kd + o

søt
sastmst + bstTstd + Vm

d3. s11d

The two-body part is a standard result, easily extended
to include the three-body term

Vm
d3 = o

stu
sastumstu + bstuTstud , s12d

where mstu;mstmu, or mssms−1dsms−2d /6 and Tstu
;msTtu or sms−2dTsu. The extraction of the full Hm is

9Even old potentials provide good fits to the low-energy NN
phase shifts, the only ones that matter at 0"v.

10Here r and s are subshells of the same parity and angular
momentum; x and y stand for neutrons or protons.
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more complicated and is given in detail in Appendix B.
Here we need only note that Hm is closed under unitary
transformations of the underlying fermion operators,
and hence under spherical Hartree-Fock (HF) variation.
This property explains the appeal of separating Hm
+HM.

1. Bulk properties. Factorable forms

Hm must contain all the information necessary to pro-
duce the parameters of the Bethe-Weiszäcker mass for-
mula, and we start by extracting the bulk energy. The
key step involves reduction to a sum of factorable forms
valid for any interaction sDufour and Zuker, 1996d. Its
enormous power derives from the strong dominance of a
single term in all the cases considered so far.

For clarity we restrict our attention to the full iso-
scalar centroids defined in Appendix B, Eqs. sB18ad and
sB18cd,11

Vst = ast −
3dstbst

4s4js + 1d
. s13d

We diagonalize Vst

U−1Vm
d U = E ⇒ Vst = o

k
UskUtkEk, [ s14d

Vm
d = o

k
Eko

s
Uskmso

t
Utkmt − o

s
Vssms. s15d

For the three-body interaction, the corresponding cen-
troids Vstu are treated as explained by Dufour and Zuker
s1996d and Appendix B.1: The st pairs are replaced by a
single index x. Let L and M be the dimensions of the x
and s arrays, respectively. Construct and diagonalize an
sL+Md3 sL+Md matrix whose nonzero elements are
the rectangular matrices Vxs and Vsx. Disregarding the
contractions, the strictly three-body part Vs3d can then be
written as a sum of factors,

Vm
d3 = o

k
Ek

s3do
s

Usk
s1dms o

x;tu
Utu,k

s2d mtmu. s16d

Full factorization follows by applying Eqs. s14d and s15d
to the Utu,k

s2d matrices for each k.
In Eq. s15d a single term strongly dominates all others.

For the Kahana-Lee-Scott interaction sKahana et al.,
1969bd and including the first eight major shells, the re-
sult in Fig. 1 is roughly approximated by

Us <
4 − 0.5sl − klld + sj − ld

ÎDp

, s17d

where p is the principal quantum number of an oscillator
shell with degeneracy Dp=oss2js+1d= sp+1dsp+2d, kll
=olls2l+1d /ols2l+1d. The sunitaryd U matrices have
been affected by an arbitrary factor of 6 to have num-

bers of order unity. Operators of the form sDs=2js+1d

V̂ = o
s

msVs with o
s

DsVs = 0 s18d

vanish at closed shells and are responsible for shell ef-
fects. As l− kll and j− l are of this type, only the Up part
contributes to the bulk energy.

To proceed it is necessary to know how interactions
depend on the oscillator frequency v of the basis, re-
lated to the observed square radius sand hence to the
densityd through the estimate fBohr and Mottelson,
1969, Eq. s2-157dg

"v

sAd1/3 =
35.59

kr2l
⇒ "v <

40

A1/3 MeV. s19d

A d force scales as s"vd3/2. A two-body potential of short
range is essentially linear in "v; for a three-body one we
shall tentatively assume an s"vd2 dependence while the
Coulomb force goes exactly as s"vd1/2.

To calculate the bulk energy of nuclear matter we av-
erage out subshell effects through uniform filling
ms⇒mpDs /Dp. Though the V-type operators vanish, we
have kept them for reference in Eqs. s21d and s22d below.
The latter is an educated guess for the three-body con-
tribution. The eigenvalue E0 for the dominant term in
Eq. s15d is replaced by "vV0 defined so as to have Up
=1. The subindex m is dropped throughout. Then, using
Boole’s factorial powers, e.g., ps3d=psp−1dsp−2d, we ob-
tain the following asymptotic estimates for the leading
terms si.e., disregarding contractionsd:

Kd =
"v

2 o
p

mpsp + 3/2d ⇒
"v

4
spf + 3ds3dspf + 2d , s20d

Vd < "vV0So
p

mp

ÎDp

+ V̂D2

⇒ "vV0fpfspf + 4dg2, s21d
11These ensure the right average energies for T=0 closed

shells, which is not the case in Eq. s11d if one simply drops the
bst terms.

FIG. 1. The value of Us as given by Eq. s17d for the different
orbits of a major shell with principal quantum number p. Also
shown is the Up s=4/ÎDpd term, with Dp= sp+1dsp+2d.
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Vd3 < s"vd2bV0So
p

mp

Dp
+ V̂1DSo

p

mp

ÎDp

+ V̂2D2

⇒s"vd2bV0pf
3spf + 4d2. s22d

Finally, we relate pf to A:

o
p

mp = o
p=0

pf

2sp + 1dsp + 2d ⇒ A =
2spfds3d

3
. s23d

Note that in Eq. s22d we can replace s"vd2 with s"vd1+k

and change the powers of Dp in the denominators ac-
cordingly.

Assuming that nondiagonal Kd and Vd terms cancel,
we can vary with respect to "v to obtain the saturation
energy

Es = Kd + s1 − bvkpfdVd,

]E

]v
= 0 ⇒ bve

kpf =
Kd + Vd

sk + 1dVd

[ Es =
k

k + 1
sKd + Vdd =

"ve

4
k

k + 1
s1 − 4V0dS3

2
AD4/3

.

s24d

The correct saturation properties are obtained by fix-
ing V0 so that Es /A<15.5 MeV. The "ve<40A−1/3

choice ensures the correct density. It is worth noting that
the same approach leads to VC<3e2ZsZ−1d /5Rc sDuflo
and Zuker, 2002d.

It should be obvious that nuclear matter properties—
derived from finite nuclei—can be calculated with tech-
niques designed to treat finite nuclei. A successful theo-
retical mass table must necessarily extrapolate to the
Bethe-Weiszäcker formula sDuflo and Zuker, 1995d.
What may be surprising, though, is that such calculations
can be conducted so easily in the oscillator basis. This is
due to the separation and factorization properties of the
forces.

Clearly, Eq. s24d has no sor a triviald solution for k
=0, i.e., without a three-body term. Though two-body
forces do saturate, they do it at the wrong place and at a
heavy price because their short-distance repulsion pre-
vents direct Hartree-Fock variation. The crucial ques-
tion is now: Can we use realistic s2+3d-body potentials
soft enough to do Hartree-Fock? Probably we can. The
reason is that the nucleus is quite dilute, and nucleons
only “see” the low-energy part of the two-body potential
involving basically s-wave scattering, which has been tra-
ditionally well fitted by realistic potentials. This in turn
explains why primitive versions of such potentials give
results close to the modern interactions for G-matrix el-
ements calculated at reasonable "v values.

Before we move on, we reiterate what we have
learned so far: It may be possible to describe nuclear
structure with soft s2+3d-body potentials consistent with
the low-energy data coming from the A=2 and 3 sys-
tems.

2. The soft potential Vlow k

At the time this review was written we were not aware
that realistic soft potentials had actually been con-
structed by Bogner, Kuo, and Schwenk s2003d. The idea
is that the high-precision interactions are defined for ar-
bitrary relative momentum k, but are constrained by
nucleon-nucleon sNNd data available only for
k/2.1 fm−1. By integrating out the high-momentum
components of a given potential, it is possible to con-
struct a new one, Vlow k

L , that has the same scattering
properties for k,L but vanishes for k.L. As the high-
precision interactions give equivalent descriptions of the
NN data, for Lø2.1 fm−1, Vlow k

L becomes a universal
potential, independent of the one used in its construc-
tion. Furthermore effective-field theory provides argu-
ments to associate it naturally with a three-body force
sBogner and Schwenk, 2004d.

A comparison of Vlow k
L and G matrix elements—using

the techniques described in Sec. II.D—reveals that they
are essentially identical sSchwenk and Zuker, 2005d.
However, conceptually the difference is significant: G is
an effective interaction that depends on an empirically
defined starting energy fEq. s7dg, while Vlow k

L is a bare
potential that depends on a sharply defined cutoff L and
that is soft enough to allow a mean-field treatment sCor-
aggio et al., 2003d.

Historically, the “hard core” in the realistic forces has
been thought to be dictated by the NN phase shifts and
to be necessary to ensure proper saturation. The Vlow k
approach respects the phase shifts and ignores the hard
core, thus leading to a welcome simplification of the
many-body problem. It remains to deal with the three-
body force, which should ensure good saturation and
shell formation properties.

3. Shell formation

In a first approximation, nuclear binding energies are
given by the monopole Hamiltonian Hm

d . When the large
and smooth Bethe-Weiszäcker sliquid-dropd contribu-
tions are subtracted, one is left with energy patterns
called shell effects. They are locally smooth but inter-
rupted by spikes associated with closed-shell magic nu-
clei. These magic closures and the particle and hole
states built on them, which we call cs±1, are well repre-
sented by single determinants, and a good measure of
“magicity” sor shell formationd is given by the differ-
ences in binding energies sBEd sgapsd 2BEscsd−BEscs
+1d−BEscs−1d. A good test of the capacity of Hm

d to
ensure proper shell formation is provided by the evolu-
tion of the cs±1 spectra between major closures, as il-
lustrated in Fig. 2 for 40Ca and 48Ca.

It is found that the two-body realistic Hm
d does quite

well around 40Ca, but around 48Ca the f7/2 and d5/2 are
severely underbound with respect to their neighbors in
the pf and sd shells, respectively. The problem is quite
general: when the largest orbit in a major shell fills, it
binds itself and contributes to the binding of the largest
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orbits in neighboring shells in a way that NN forces fail
to reproduce sSchwenk and Zuker, 2005d.

As the largest orbit in oscillator shell p is precisely the
one that is expelled to become the intruder in shell
p−1, the two-body realistic Hm

d fails to produce the ob-
served EI magicity at N, Z=28, 50, 82, and 126. To cor-
rect this failure we must rely on three-body forces. The-
oretical research on this field is quite active, but
restricted to very light nuclei. Therefore it may be useful
to examine what is involved in a phenomenological ap-
proach. To do so we retrace the steps in the construction

of a minimal two-body H̃m
d , requiring that it reproduce

all the observed cs±1 states. With a half dozen param-
eters, a fit to the 90 available data leads to an rms de-
viation of some 220 keV. The gaps, not included in the
fit, also come out quite well and provide a test of the
reliability of the results sDuflo and Zuker, 1999d.

The construction steps can be followed in Fig. 3. First
we balance kinetic and potential contributions in Eqs.
s20d and s21d through

W − 4K = So
p

mp

ÎDp
D2

− 2o
p

mpsp + 3/2d , s25d

which has the advantage of canceling exactly to orders A
and A2/3. It can be seen in Fig. 3 that this term produces
enormous spikes at the oscillator closures. The inclusion
of three-body forces would not change this effect, but in
yielding accurate total bindings it would eliminate the
need for canceling bulk and surface terms through the
W−4K prescription that produces the unphysical drift in
A1/3 apparent in the figure. Next we add two one-body
terms borrowed from the independent-particle model,

ls ; al · s/A2/3, ll ; bflsl + 1d − psp + 3d/2g/A . s26d

fIn Duflo and Zuker s1999d these terms take a somewhat
more sophisticated form.g It can be seen in Fig. 3 that
these terms practically erase the spikes. The realistic Hm

d

does produce splittings between spin-orbit partners
close to the phenomenological ones, but nothing close to
term ll sSchwenk and Zuker, 2005d. It will demand some
ingenuity to construct a three-body contribution that
does an equivalent job. The combination W−4K+ ls+ ll
describes basically the cs±1 spectra around oscillator
closures. The evolution to EI closures is mediated by
terms we simply call G, and we finally obtain

Hm = H̃m
d = sW − 4Kd + ls + ll + G terms. s27d

It can be seen in Fig. 3 that the G terms do produce the
desired EI magicity, but as we shall see in Sec. V.A the
proper mechanism must be three-body.

The task ahead is to start with the two-body realistic
Hm

d swhich does some subtle things very welld and intro-
duce the necessary corrective action. In principle this
should be simpler than the construction we have out-
lined, which starts from scratch. The difficulty is that the
corrections must necessarily be three-body. The end re-
sults should resemble—more often than not—those ob-

tained with H̃m
d , of which we propose a sample. In Fig. 4

we show the situation for even t=N−Z=0–18. Plotting
along lines of constant t has the advantage of detecting
magicity for both fluids. In other words, spikes appear
when either fluid is closed and are reinforced when both
are closed. The spikes are invariably associated either
with the harmonic-oscillator magic numbers s8,20,40d or
the EI ones s14,28,50d, but the latter always show magic-
ity, while the former only do so at and above the double
closures sZ ,Nds8,14d, s20,28d, and s40,50d. For example,
at Z=20 40Ca shows as a weak closure. 42,44,46Ca are not
closed swhich agrees with experimentd, 48Ca is definitely
magic, and spikes persist for the heavier isotopes. At
Z=40, 80Zr shows a nice spike, a bad prediction for a
strongly rotational nucleus. However, there are no sor
weakd spikes for the heavier isotopes except at 90Zr and

FIG. 2. sColor in online editiond Schematic view of the evolu-
tion of the spectra of the nuclei at closed shells plus or minus
one particle going from 40Ca to 48Ca.

FIG. 3. sColor in online editiond The different contributions to
Hm=H̃m

d in Eq. s27d for N=Z nuclei plotted as a function of
neutron number N.
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96Zr, both definitely doubly magic. There are many
other interesting cases, and the general trend is the fol-
lowing: No known closure fails to be detected. Con-
versely, not all predicted closures are real. They may be
erased by pairing or deformation, as in the case of 80Zr.

Nonetheless, the predictive power for H̃m
d is quite good.

For further comments see Sec. V.A.

C. The multipole Hamiltonian

The multipole Hamiltonian is defined as HM=H−Hm.
As we are no longer interested in the full H, but its
restriction to a finite space, HM will be more modestly
called HM, with monopole-free matrix elements given by

Wrstu
JT = Vrstu

JT − drtdsuVrs
T . s28d

We shall describe briefly the main results of Dufour and
Zuker s1996d, emphasizing points that were not stressed
sufficiently in that paper and adding some new informa-
tion sSec. II.Dd.

There are two standard ways of writing HM:

HM = o
røs,tøu,G

Wrstu
G ZrsG

† · ZtuG, or s29d

HM = o
rstuG

fgg1/2frtsu
g sSrt

gSsu
g d0, s30d

where frtsu
g =vrtsu

g Îs1+drsds1+dtud /4. The matrix elements
vrtsu

g and Wrstu
G are related through Eqs. sA9d and sA10d,

given in Appendix A.
Replacing pairs by single indices rs;x, tu;y in Eq.

s29d and rt;a, su;b in Eq. s30d, we proceed as in Eqs.
s14d and s15d to bring the matrices Wxy

G ;Wrstu
G and fab

g

; frtsu
g to diagonal form through unitary transformations

Uxk
G ,uak

g . We obtain the factorable expressions

HM = o
k,G

Ek
Go

x
Uxk

G ZxG
† · o

y
Uyk

G ZyG, s31d

HM = o
k,g

ek
gSo

a
uak

g Sa
go

b
ubk

g Sb
gD0

fgg1/2, s32d

which we call the E sor normal, particle-particle, or ppd
and e sor multipole, particle-hole, or phd representa-
tions. As Hm contains all the g=00 and 01 terms, for HM,
vrtsu

00 =vrtsu
01 =0 fsee Eq. sB11dg. There are no one-body

contractions in the e representation because they are all
proportional to vrstu

0t .
The eigensolutions in Eqs. s31d and s32d using the

Kahana-Lee-Scott interaction sKahana et al., 1969b;
Lee, 1969d, yield the density of eigenvalues stheir num-
ber in a given intervald in the E representation that is
shown in Fig. 5 for a typical two-shell case. It is skewed,
with a tail at negative energies, which is what we expect
from an attractive interaction.

The e eigenvalues are plotted in Fig. 6. They are very
symmetrically distributed around a narrow central
group, but a few of them are neatly detached. The stron-
gest have gp=1−0,1+1 ,2+0 ,3−0 ,4+0. If the correspond-
ing eigenvectors are eliminated from H in Eq. s32d and

FIG. 4. sColor in online editiond Shell effects as a function of
proton number Z. They are obtained through Hm=H̃m

d in Eq.
s27d by filling the lowest oscillator orbits for nuclei with even
t=N−Z=0–8 supper paneld, and t=N−Z=10–18 slower
paneld.

FIG. 5. e-eigenvalue density for the KLS interaction in the
pf+sdg major shells s"v=9 MeVd. Each eigenvalue has multi-
plicity fGg. The largest ones are shown by arrows. From Du-
four and Zuker, 1996.
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the associated H in Eq. s31d is recalculated, the E distri-
bution becomes quite symmetric, as expected for a ran-
dom interaction.12

If the diagonalizations are restricted to one major
shell, negative parity peaks are absent, but for the posi-
tive parity ones the results are practically identical to
those of Figs. 5 and 6 except that the energies are
halved. This point is crucial: If up1

and up2
are the eigen-

vectors obtained in shells p1 and p2, their eigenvalues are
approximately equal, ep1

<ep2
=e. When diagonalizing in

p1+p2, the unnormalized eigenvector turns out to be up1
+up2

with eigenvalue e.
In the figures the eigenvalues for the two-shell case

are doubled, because they are associated with normal-
ized eigenvectors. To sum up, the contribution to HM
associated with the large G=01, and g=20 terms,

HP̄ = −
"v

"v0
uE01usP̄p

† + P̄p+1
† d · sP̄p + P̄p+1d , s33d

Hq̄ = −
"v

"v0
ue20usq̄p + q̄p+1d · sq̄p + q̄p+1d , s34d

turns out to be the usual pairing plus quadrupole Hamil-
tonians, except that the operators for each major shell of
principal quantum number p are affected by a normal-
ization. E01 and e20 are the one-shell values called ge-
nerically e in the discussion above. To be precise,

P̄p
† = o

rPp
Zrr01

† Vr
1/2/Vp

1/2, s35d

q̄p = o
rsPp

Srs
20qrs/Np, s36d

where

Vr = jr + 1, qrs =Î1
5

krir2Y2isl s37d

and

Vp =
1
2

Dp, N p
2 = Sqrs

2 >
5

32p
sp + 3/2d4. s38d

The pairing plus quadrupole sP+Qd model has a long
and glorious history sBaranger and Kumar, 1968; Bes
and Sorensen, 1969d and one big problem: as more shells
are added to a space, the energy grows, eventually lead-
ing to collapse. The only solution seemed to be to stay
within limited spaces, but then the coupling constants
had to be readjusted on a case-by-case basis. The nor-
malized versions of the operators presented above are
affected by universal coupling constants that do not
change with the number of shells. Knowing that "v0
=9 MeV, they are uE01u /"v0=g8=0.32 and ue20u /"v0=k8
=0.216 in Eqs. s33d and s34d.

Introducing Amf<
2
3 spf+3/2d3, the total number of

particles at the middle of the Fermi shell pf, we find that
the relationship between g8, k8, and their conventional
counterparts sBaranger and Kumar, 1968d is, for one
shell,13

0.32"v

Vp
>

19.51

A1/3Amf
2/3 = G ; G0A−1,

0.216"v

Np
2 >

1
2

216

A1/3Amf
4/3 =

x8

2
;

x08

2
A−5/3. s39d

To see how collapse occurs, let us assume m=OsDfd
=OsA2/3d in the Fermi shell and promote them to a
higher shell of degeneracy D. The corresponding pairing
and quadrupole energies can be estimated as

EP = − uGu4msD − m + 2d = − uGuOsmDd , s40d

and

Eq < − ux8uQ0
2 = − ux8uOsm2Dd , s41d

respectively, which for the two possible scalings, become

EPsoldd = OSmD

A
D ⇒ EPsnewd = OS m

A1/3D , s42d

Eqsoldd = OSm2D

A5/3 D ⇒ Eqsnewd = OS m2

A1/3D
D . s43d

If the m particles stay at the Fermi shell, all energies go
as A1/3, as they should. If D grows, both energies grow in
the old version. For sufficiently large D the gain will

12In the article of Dufour and Zuker s1996d, the crucial
phrase “if the corresponding eigenvectors are eliminated from
H” was omitted due to an erratum.

13According to Dufour and Zuker s1996d the bare coupling
constants should be renormalized to 0.32s1+0.48d and
0.216s1+0.3d.

FIG. 6. e-eigenvalue density for the KLS interaction in the
pf+sdg major shells. Each eigenvalue has multiplicity fgg. The
largest ones are shown by arrows. From Dufour and Zuker,
1996.
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become larger than the monopole loss OsmD1/2"vd
=OsD1/2A1/3d. Therefore the traditional forces lead the
system to collapse. In the new form there is no collapse:
EP stays constant, Eq decreases, and the monopole term
provides the restoring force that guarantees that par-
ticles will remain predominantly in the Fermi shell.

As a model for HM, P+Q is likely to be a reasonable
first approximation for many studies, provided it is
supplemented by a reasonable Hm, to produce the P
+Q+m model.

D. Universality of the realistic interactions

To compare sets of matrix elements we define the
overlaps

OAB = d2
−1 o

rstuG

VrstuA
G VrstuB

G fGg , s44d

ŌAB =
OAB

ÎOAAOBB

, s45d

where d2 is the dimensionality of the two-particle space,
each state being counted fGg= s2J+1ds2T+1d times.
Similarly, OAB

T is the overlap for matrix elements with
the same T. The upper set of numbers in Table I con-
tains what is probably the most important single result
concerning the interactions: a 1969 realistic potential
sKahana et al., 1969b; Lee, 1969d and a modern Bonn
one sHjorth-Jensen, 1996d. These differ in total

strengthssd OAA but the normalized cross overlaps ŌAB
are very close to unity.

Now all the modern realistic potentials agree closely
with one another in their predictions except for the
binding energies. For nuclear matter the differences are
substantial sPieper et al., 2001d, and for the Bonn A,
Bonn B, and Bonn C potentials, all earlier versions of
the CD-Bonn potential studied by Hjorth-Jensen et al.
s1995d they become enormous. However, the matrix el-
ements given in this reference for the pf shell have nor-
malized cross overlaps of better than 0.998. At the mo-
ment, the overall strengths must be viewed as free
parameters.

At a fundamental level the discrepancies in total
strength stem from the degree of nonlocality in the po-
tentials and the treatment of the tensor force. In the old
interactions, uncertainties were also due to the starting
energies and the renormalization processes, which again
affected mainly the total strengthssd, as can be gathered
from the bottom part of Table I.

The dominant terms of HM are central and Table II
collects their strengths sin MeVd for effective interac-
tions in the pf shell. These include the results of Kuo
and Brown s1968; KBd, the potential fit of Richter et al.
s1991; FPD6d, the Gogny force—successfully used in
countless mean-field studies—sDechargé and Gogny,
1980d, and BonnC sHjorth-Jensen et al., 1995d.

There is not much to choose between the different
forces, which is a nice indication that overall nuclear

TABLE I. The overlaps between the KLS sAd and Bonn sBd interactions for the first ten oscillator
shells s2308 matrix elementsd, followed by those for the pf shell s195 matrix elementsd for the BonnC
sCd and KB sKd interactions.

OAA
0 =17.56 OAA

1 =2.61 OAA=6.49

OBB
0 =11.84 OBB

1 =2.31 OBB=4.78

ŌAB
0 =0.98 ŌAB

1 =0.99 ŌAB=0.98

OCC
0 =3.71 OCC

1 =0.56 OCC=1.41

OKK
0 =3.02 OKK

1 =0.46 OKK=1.15

ŌCK
0 =0.99 ŌCK

1 =0.97 ŌCK=0.99

TABLE II. Leading terms of the multipole Hamiltonian. For the GXPF1 force see Sec. V.A.1.

Particle-particle Particle-hole
Interaction JT=01 JT=10 lt=20 lt=40 lt=11

KBa −4.75 −4.46 −2.79 −1.39 +2.46
FPD6b −5.06 −5.08 −3.11 −1.67 +3.17

GOGNYc −4.07 −5.74 −3.23 −1.77 +2.46
BonnCd −4.20 −5.60 −3.33 −1.29 +2.70
GXPF1e −4.18 −5.07 −2.92 −1.39 +2.47

aKuo and Brown s1968d.
bRichter et al. s1991d.
cDechargé and Gogny s1980d.
dHjorth-Jensen et al. s1995d.
eHonma et al. s2004d.
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data sused in the FPD6 and Gogny fitsd are consistent
with the NN data used in the realistic Kuo-Brown and
BonnC G matrices. The splendid performance of Gogny
deserves further study. The only qualm is with the weak
quadrupole strength of the Kuo-Brown interaction,
which can be understood by looking again at the bottom
part of Table I. In assessing the JT=01 and JT=10 pair-
ing terms, it should be borne in mind that their renor-
malization remains an open question sDufour and
Zuker, 1996d.

We conclude that some fine tuning may be in order
and three-body forces may sone dayd bring some multi-
pole news, but as of now the problem is Hm, not HM.

III. THE SOLUTION OF THE SECULAR PROBLEM IN A
FINITE SPACE

Once the interaction and the valence space are ready,
it is time to construct and diagonalize the many-body
secular matrix of the Hamiltonian describing the seffec-
tived interaction between valence particles in the valence
space. Two questions now need to be considered: which
basis to take to calculate the nonzero many-body matrix
elements and which method to use for diagonalization of
the matrix.

A. The Lanczos method

In the standard diagonalization methods sWilkinson,
1965d the CPU time increases as N3, N being the dimen-
sion of the matrix. Therefore these methods cannot be
used in large-scale shell-model calculations. Nuclear
shell-model calculations have two specific features. The
first is that, in the vast majority of cases, only a few sand
very often only oned eigenstates of a given angular mo-
mentum sJd and isospin sTd are needed. Second, the ma-
trices are very sparse. As can be seen in Fig. 7, the num-

ber of matrix elements varies linearly instead of
quadratically with the size of the matrices. For these rea-
sons, iterative methods are of general use, in particular
the Lanczos method sLanczos, 1950d. As an alternative,
the Davidson method sDavidson, 1975d has the advan-
tage of avoiding the storage of a large number of vec-
tors; however, the large increase in storage capacity of
modern computers has somewhat minimized these ad-
vantages.

The Lanczos method consists in the construction of an
orthogonal basis in which the Hamiltonian matrix sHd is
tridiagonal. A normalized starting vector sthe pivot stated
u1l is chosen. The vector ua1l=Hu1l has necessarily the
form

ua1l = H11u1l + u28l, with k1u28l = 0. s46d

One calculates H11= k1uHu1l through k1 ua1l=H11 and
normalizes u2l= u28l / k28 u28l1/2 to find H12= k1uHu2l
= k28 u28l1/2. Then one iterates until state ukl has been
found. The vector uakl=Hukl has necessarily the form

uakl = Hkk−1uk − 1l + Hkkukl + usk + 1d8l . s47d

One calculates kk uakl=Hkk, thereby finding usk+1d8l.
Normalizing this, one finds Hkk+1= ksk+1d8 u sk+1d8l1/2.

The sreal symmetricd matrix is diagonalized at each
iteration, and the iterative process continues until all the
required eigenvalues are converged according to some
criterion. The number of iterations depends little on the
dimension of the matrix. Besides, the computing time is
directly proportional to the number of matrix elements
and for this reason it is nearly linear sin the dimension of
the matrix, instead of cubic as in the standard methodsd.
It depends on the number of iterations, which in turn
depends on the number of converged states needed, as
well as on the choice of starting vector.

The Lanczos method can also be used as a projection
method. For example, in the m-scheme basis, a Lanczos
calculation with the operator J2 will generate states with
well-defined J. Taking these states as starting vectors,
the Lanczos procedure swith Hd will remain inside a
fixed J subspace and therefore will improve the conver-
gence properties. When only one converged state is re-
quired, it is convenient to use as the pivot state the so-
lution obtained in a previous truncated calculation. For
instance, starting with a random pivot, the calculation of
the ground state of 50Cr in the full pf space sdimension
in m scheme 14 625 540 Slater determinantsd requires
twice as many iterations as if we started with the pivot
obtained as a solution in a model space in which only
four particles were allowed outside the 1f7/2 shell sdi-
mension 1 856 720d. The overlap between these two 0+

states is 0.985. When more eigenstates are needed snc
.1d, the best choice for the pivot is a linear combination
of the nc lower states in the truncated space.

Even though the Lanczos method is very efficient in
the shell-model framework, numerical problems can
sometimes appear. Mathematically the Lanczos vectors
are orthogonal, but numerically this is not strictly true
due to the limited floating-point machine precision.

FIG. 7. sColor in online editiond m-scheme dimensions
scirclesd and total number of nonzero matrix elements
ssquaresd in the pf shell for nuclei with M=Tz=0 as a function
of neutron number N. The dotted and dashed lines serve as
guides for the eye.
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Hence small numerical errors in precision can, after
many iterations, produce catastrophes. In particular, the
states of lowest energy may reappear many times, ren-
dering the method inefficient. To solve this problem it is
necessary to orthogonalize each new Lanczos vector to
all the preceding ones. The same defects in precision can
cause the appearance of unexpected states. For example,
in an m-scheme calculation with a J=4, M=0 pivot,
when many iteration are performed, a J=0 or even a J
=2 state may suddenly appear. This specific problem can
be solved by projecting each new Lanczos vector onto
good J.

B. The choice of the basis

Given a valence space, the optimal choice of the basis
is related to the physics of the particular problem to be
solved. As we discuss later, depending on what states or
properties we want to describe sground state, yrast band,
strength function,…d and depending on the type of
nucleus sdeformed, spherical,…d different choices of the
basis are favored. There are essentially three possibili-
ties depending on the underlying symmetries: the m
scheme, the J coupled scheme, and the JT coupled
scheme.

As the m-scheme basis consists of Slater determi-
nants, the calculation of the many-body matrix elements
is trivial, since they are equal to the decoupled two-body
matrix elements up to a phase. This means that, inde-
pendently of the size of the matrix, the number of pos-
sible values of matrix elements is relatively limited.
However, the simplicity of the m scheme is counterbal-
anced by the fact that only Jz and Tz are good quantum
numbers. Therefore all the possible sJ,Td states are con-
tained in the basis, and as a consequence the dimensions
of the matrices are maximal. For a given number of va-
lence neutrons nv and protons zv the number of different
Slater determinants that can be built in the valence
space is

d = SDn

nv
D · SDp

zv
D , s48d

where Dn and Dp are the degeneracies of the neutron
and proton valence spaces. Working at fixed M and Tz
the bases are smaller fd=oM,Tz

dsM ,Tzdg. The J or JT
coupled bases divide the full m-scheme matrix into
blocks whose dimensions are much smaller. This is espe-
cially striking for the J=T=0 states ssee Table IIId.

It is often convenient to truncate the space. In the
particular case of the pf shell, calling f the largest sub-

shell sf7/2d, and r, generically, any or all of the other sub-
shells of the p=3 shell, the possible t truncations involve
the spaces

fm−m0rm0 + fm−m0−1rm0+1 + ¯ + fm−m0−trm0+t, s49d

where m0Þ0 if more than eight neutrons sor protonsd
are present. For t=m−m0 we have the full space spfdm

for A=40+m. However, low-order truncations st,3d
must be avoided, because different configurations are
affected in different ways, and they can lead to unphysi-
cal results.

In the late 1960s, the Rochester group developed the
algorithms needed for efficient work in the sJ ,Td
coupled basis and implemented them in the Oak-Ridge
Rochester Multi-Shell code sFrench et al., 1969d. The
calculation proceeds as follows: First, the states of ni
particles in a given ji shell are defined: ugil= usjidniviJixil,
where vi is the seniority and xi any extra quantum num-
ber. Next, the states of N particles distributed in several
shells are obtained by successive angular momentum
couplings of the one-shell basic states:

shfug1lug2lgG2ug3ljG3
¯ ugkldGk. s50d

Compared to the simplicity of the m scheme, the calcu-
lation of nonzero many-body matrix elements is much
more complicated. It involves products of 9j symbols
and coefficients of fractional parentage scfpd, i.e., the
single-shell reduced matrix elements of operators of the
form

saj1
† aj2

† dl,saj1
† aj2

dl,aj1
† ,fsaj1

† aj2
† dlaj3

gj4. s51d

This complexity explains why, in the OXBASH code
sBrown et al., 1985d the JT coupled basis states are writ-
ten in the m-scheme basis to calculate the nonzero
many-body matrix elements. The Oxford–Buenos Aires
shell-model code, widely distributed and used, has
proven to be an invaluable tool in many calculations.
Another recent code that works in JT coupled formal-
isms, though it has had much less use, is the Drexel Uni-
versity DUPSM sNovoselsky and Vallières, 1997d.

In the case of only J swithout Td coupling, a strong
simplification in the calculation of nonzero many-body
matrix elements can be achieved using the quasispin for-
malism sKawarada and Arima, 1964; Lawson and Mac-
farlane, 1965; Ichimura and Arima, 1966d, as in the code
NATHAN described below. The advantages of the
coupled scheme decrease when J and T increase. As an
example, in 56Ni the ratio dimsM=Jd /dimsJd is 70 for J
=0 but only 5.7 for J=6. The coupled scheme has an-
other disadvantage compared to the m scheme. This

TABLE III. Some dimensions in the pf shell.

A−40 4 8 12 16 20

M=Tz=0 4000 23106 1.103108 1.093109 2.293109

J=Tz=0 156 41355 1.783106 1.543107 3.133107

J=T=0 66 9741 3.323105 2.583106 5.053106

443Caurier et al.: The shell model as a unified view of nuclear structure

Rev. Mod. Phys., Vol. 77, No. 2, April 2005



concerns the percentage of nonzero matrix elements.
Consider, for example, the state 4+ in 50Ti sfull pf spaced;
the percentages of nonzero many-body matrix elements
are, respectively, 14% in the JT basis ssee Novoselsky et
al., 1997d, 5% in the J basis, and only 0.05% in m
scheme. For all these reasons and with the present com-
puting facilities, we conclude that the m scheme is the
most efficient choice for ordinary shell-model calcula-
tions, albeit with some notable exceptions that we shall
mention below.

C. The Glasgow m-scheme code

The steady and rapid increase of computer power in
recent years has resulted in a dramatic increase in the
dimensionality of shell-model calculations. Today it is
crucial to know the limits of a given computer code,
their origin, and their evolution. As far as the nonzero
many-body matrix elements can be calculated and
stored, diagonalization with the Lanczos method is
trivial. This means that the fundamental limitation of
standard shell-model calculations is the capacity to store
the nonzero many-body matrix elements. This is the ori-
gin of the term “giant” matrices, which we apply to
those for which it is necessary to recalculate the matrix
elements during the diagonalization process. The first
breakthrough in the treatment of giant matrices was the
shell-model code developed by the Glasgow group
sWhitehead et al., 1977d. Let us recall its basic ideas: It
works in the m scheme and each Slater determinant is
represented in the computer by an integer word. Each
bit of the word is associated with a given individual state
unljmtl. Each bit has the value 1 or 0, depending on
whether the state is occupied or empty. A two-body op-
erator ai

†aj
†akal will select words having the bits i , j ,k , l in

the configuration 0011, say, and change them to 1100,
generating a new word, which has to be located in the
list of all the words using the bisection method.

D. The m-scheme code ANTOINE

The shell-model code ANTOINE
14 sCaurier and

Nowacki, 1999d has retained many of these ideas, while
improving upon the Glasgow code in several respects.
To start with, it takes advantage of the fact that the di-
mension of the proton and neutron spaces is small com-
pared with the full space dimension, with the obvious
exception of semimagic nuclei. For example, the
1 963 461 Slater determinants with M=0 in 48Cr are gen-
erated with only the 4865 Slater determinants scorre-
sponding to all the possible M valuesd in 44Ca. The states
of the basis are written as the product of two Slater
determinants, one for protons and one for neutrons: uIl
= ui ,al. We use I ,J, capital letters for states in the full
space, i , j, lower-case letters for states of the first sub-

space sprotons or neutronsd, and a ,b, lower-case greek
letters for states of the second subspace sneutrons or
protonsd. The Slater determinants i and a can be classi-
fied by their M values, M1 and M2. The total M being
fixed, the Slater determinants of the two subspaces will
be associated only if M1+M2=M. A pictorial example is
given in Fig. 8.

It is clear that for each uil state the allowed ual states
run, without discontinuity, between a minimum and a
maximum value. Building the basis in the total space by
means of an i loop and a nested a loop, it is possible to
construct numerically an array Rsid that points to the uIl
state:15

I = Rsid + a . s52d

For example, according to Fig. 8, the numerical values of
R are Rs1d=0, Rs2d=6, Rs3d=12, . . .. Equation s52d holds
even in the case of truncated spaces, provided we define
subblocks labeled with M and t fthe truncation index
defined in Eq. s48dg. Before the diagonalization, all cal-
culations that involve only the proton or the neutron
spaces separately are carried out and the results stored.
For the proton-proton and neutron-neutron matrix ele-
ments the numerical values of Rsid, Rsjd, Wij, and a, b,
Wab, where kiuHujl=Wij and kauHubl=Wab, are precalcu-
lated and stored. Therefore in the Lanczos procedure a
simple loop on a and i generates all the proton-proton
and neutron-neutron matrix elements, WI,J= kIuHuJl. For
proton-neutron matrix elements the situation is slightly
more complicated. Let us assume that the uil and ujl
Slater determinants are connected by the one-body op-

14A version of the code can be downloaded from the URL
http://sbgat194.in2p3.fr/˜theory/antoine/main.html

15We use Dirac’s notation for the quantum-mechanical state
uil. The position of this state in the basis is denoted by i.

FIG. 8. sColor in online editiond Schematic representation of
the shell-model basis. Any shell-model basis state uIl is a prod-
uct of two Slater determinants, one for protons uil and another
for neutrons ual. In the upper row each box represents a pro-
ton Slater determinant, while in the lower row each box rep-
resents a neutron Slater determinant. They are grouped in
blocks with the same Jz value. Shell-model basis states uIl with
total Jz=0 are built taking Slater determinants for protons and
neutrons with the same absolute value of M but different signs
sdashed arrowsd. Any two-body proton-neutron operator
sam

† anal
†amd conserves the total value of M, hence an increase of

the M value of the protons must be accompanied by an equiva-
lent decrease of the M value of the neutrons supper and lower
curved arrowsd.
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erator aq
†ar swhere, in the list of all possible one-body

operators, appears at position pd, with q=nljm and r
=n8l8j8m8 and m8−m=Dm. Equivalently, the ual and ubl
Slater determinants are connected by a one-body opera-
tor whose position is denoted by m. We precalculate the
numerical values of Rsid, Rsjd, p, and a, b, m. Conserva-
tion of the total M implies that proton operators with
Dm must be associated with neutron operators with
−Dm. Thus we could draw the equivalent to Fig. 8 for
the proton and neutron one-body operators. In the same
way as we did before for I=Rsid+a, we can now define
an index K=Qspd+m that labels the different two-body
matrix elements. Then, we denote VsKd the numerical
value of the proton-neutron two-body matrix element
that connects the states ui ,al and uj ,bl. Once Rsid, Rsjd,
Qspd, and a, b, m are known, the nonzero elements of
the matrix in the full space are generated with three
integer additions:

I = Rsid + a, J = Rsjd + b, K = Qspd + m . s53d

The nonzero many-body matrix element of the Hamil-
tonian between states uIl and uJl is then

kIuHuJl = kJuHuIl = VsKd . s54d

The performance of the code is optimal when the two
subspaces have comparable dimensions. It becomes less
efficient for asymmetric nuclei sfor semimagic nuclei all
the matrix elements must be storedd and for large trun-
cated spaces. No-core calculations are typical in this
case. If we consider an N=Z nucleus like 6Li, in a va-
lence space that comprises up to 14 "v configurations,
there are 50 000 Slater determinants for protons and
neutrons with M=1/2 and t=14. Their respective coun-
terparts can only have M=−1/2 and t=0, and they have
dimensionality 1. This situation is the same as in
semimagic nuclei.

As long as two Lanczos vectors can be stored in the
RAM of the computer, the calculations are straightfor-
ward. Until recently this was the fundamental limitation
of the shell-model code ANTOINE. It is now possible to
overcome it by dividing the Lanczos vectors into seg-
ments:

Cf = o
k

Cf
skd. s55d

The Hamiltonian matrix is also divided into blocks so
that the action of the Hamiltonian during a Lanczos it-
eration can be expressed as

Cf
skd = o

q
Hsq,kdCi

sqd. s56d

The k segments correspond to specific values of M sand
occasionally td of the first subspace. The price to pay for
the increase in size is a strong reduction in performance
of the code. Now, kIuHuJl and kJuHuIl are not generated
simultaneously when uIl and uJl do not belong at the
same k segment of the vector, and longer computing
time is needed. As compensation, ANTOINE gives a natu-
ral way to parallelize the code, each processor calculat-

ing some specific Cf
skd, although it would never do it as

efficiently as the NATHAN code described below. This
technique allows the diagonalization of matrices with di-
mensions in the billion range, without parallelization.
All the nuclei of the pf shell can now be calculated with-
out truncation.

ANTOINE’s performance can be seen in Fig. 9, where
we have plotted the computing time it takes to make 15
Lanczos iterations in a Pentium 4 processor at 2.6 GHz,
as a function of the size of the basis. The line is fitted to
the points and corresponds to a slope of 1.1 in the log-
log plot. In this range of dimensions sand a few orders of
magnitude beyondd an N log N dependence works
equally well. Therefore the computing time varies al-
most linearly with the dimension of the basis.

Other m-scheme codes have recently joined ANTOINE
in the run, incorporating some of its algorithmic
findings. These include MSHELL sMizusaki, 2000d and
REDSTICK sOrmand and Johnson, 2002d.

E. The coupled code NATHAN

As the mass of the nucleus increases, the possibilities
for performing shell-model calculations become more
and more limited. To give an order of magnitude, the
dimension of the matrix of 52Fe with six protons and six
neutrons in the pf shell is 108. On the other hand, for
132Ba, which also has six protons and six neutron holes
in a valence space of five shells, four of them equivalent
to the pf shell plus the 1h11/2 orbit, the dimension
reaches 231010. Furthermore, when many protons and
neutrons are active, nuclei tend to get deformed and
their description requires even larger valence spaces.
For instance, to calculate the deformed nuclei in the vi-
cinity of 80Zr, the “normal” valence space, 2p3/2, 1f5/2,
2p1/2, 1g9/2, must be complemented with, at least, the
orbit 1d5/2. This means that we will have to restrict our
study to nuclei that are close to magic s130Xe remains an
easy calculationd or semimagic sfor instance, the tellu-

FIG. 9. sColor in online editiond Time needed to compute 15
Lanczos iterations in a Pentium 4 processor at 2.6 GHz as a
function of the m-scheme dimension of the basis. The points
correspond to calculations with the code ANTOINE for 46Ti,
48Ti, 48Cr, 50Cr, 52Fe, and 54Fe. The line represents a fit to the
points with slope 1.1 in the log-log plot.
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rium isotopesd configurations. These nuclei are spheri-
cal, so the seniority can provide a good truncation
scheme. This explains the appeal of a shell-model code
in a coupled basis and quasispin formalism.

In the shell-model code NATHAN sCaurier and
Nowacki, 1999d the fundamental idea of the code
ANTOINE is kept, i.e., splitting the valence space into two
parts and writing the full space basis as the product of
states belonging to these two parts. Now, uil and ual are
states with good angular momentum. They are built with
the usual techniques of the Oak-Ridge/Rochester group
sFrench et al., 1969d. Each subspace is now partitioned
with the labels J1 and J2. The only difference from the m
scheme is that, instead of having a one-to-one associa-
tion sM1+M2=Md for a given J1, we now have all the
possible J2, JminøJ2øJmax, with Jmin= uJ0−J1u and Jmax
=J0+J1. The continuity between the first state with Jmin
and the last with Jmax is maintained, and consequently
the fundamental relation I=Rsid+a still holds. The gen-
eration of proton-proton and neutron-neutron nonzero
many-body matrix elements proceeds exactly as in the m
scheme. For proton-neutron matrix elements the one-
body operators in each space can be written as Op

l

= saj1
† aj2

dl. There exists a strict analogy between Dm in
the m scheme and l in the coupled scheme. Hence we
can still establish a relation K=Qspd+v. The nonzero
many-body matrix element now read

kIuHuJl = kJuHuIl = hij · hab · WsKd , s57d

with hij= kiuOp
lujl, hab= kauOv

l ubl, and

WsKd ~ VsKd · 5 i a J

j b J

l l 0
6 , s58d

where VsKd is a two-body matrix element. We need to
perform—as in the m scheme code—the three integer
additions which generate I, J, and K, but, in addition,
there are two floating-point multiplications to be done,
since hij and hab, which in the m scheme were just
phases, are now a product of cfp’s and 9j symbols fsee
Eq. s3.10d in French et al., 1969g. Within this formalism
we can introduce seniority truncations, but the problem
of semimagic nuclei and the asymmetry between proton
and neutron spaces remain. To overcome this difficulty
in equalizing the dimension of the two subspaces we
have generalized the code to allow one of the two sub-
spaces to contain a mixture of proton and neutron or-
bits. For example, for heavy scandium or titanium iso-
topes, we can include the neutron 1f7/2 orbit in the
proton space. For the N=126 isotones we have only pro-
ton shells. We then take the 1i13/2 and 1h9/2 orbits as the
first subspace, while the 2f7/2, 2f5/2, 3p3/2, and 3p1/2 form
the second one. The states previously defined with Jp
and Jn are now labeled A1, J1 and A2, J2, respectively,
where A1 and A2 are the number of particles in each
subspace. In hij and hab mean values of all the operators
now appear in Eq. s51d.

The fact that in the coupled scheme the dimensions
are smaller and that angular momentum is explicitly en-
forced makes it possible to perform a very large number
of Lanczos iterations without storage or precision prob-
lems. This can be essential for the calculation of strength
functions or when many converged states are needed,
for example, to describe non-yrast-deformed bands. The
coupled code has another important advantage; it can be
easily parallelized. Our tests using up to 16 processors
show that the speedup of the parallel version is optimal.
The typical working dimension for large matrices in
NATHAN is 107 s109 with ANTOINEd. This means that
there is no problem in defining as many final vectors as
processors are available. The calculation of the nonzero
many-body matrix elements is shared between the dif-
ferent processors seach processor taking a piece of the
Hamiltonian, H=okHskdd, leading to different vectors
that are added to obtain the full one:

Cf
skd = HskdCi, Cf = o

k
Ci

skd. s59d

F. No-core shell model

The ab initio no-core shell model sNavrátil et al.,
2000a, 2000bd is a method of solving the nuclear many-
body problem for light nuclei using realistic internucleon
forces. The calculations are performed using a large but
finite harmonic-oscillator basis. Due to the basis trunca-
tion, it is necessary to derive an effective interaction
from the underlying internucleon interaction that is ap-
propriate for the basis size employed. The effective in-
teraction contains, in general, up to A-body components
even if the underlying interaction had, e.g., only two-
body terms. In practice, the effective interaction is de-
rived in a subcluster approximation retaining just two-
or three-body terms. A crucial feature of the method is
that it converges to the exact solution when the basis
size increases and/or the effective interaction clustering
increases sNavrátil et al., 2000bd.

At first, applications of this model were limited to re-
alistic two-nucleon interactions, either G-matrix-based
two-body interactions sZheng et al., 1994d, or interac-
tions derived by the Lee-Suzuki procedure sSuzuki and
Lee, 1980d for the no-core shell model sNavrátil and
Barrett, 1996d. This resulted in the elimination of the
purely phenomenological parameter D used to define
the G-matrix starting energy. A truly ab initio formula-
tion was presented by Navrátil and Barrett s1998d, in
which convergence to the exact solutions was demon-
strated for the A=3 system. The same was later accom-
plished for the A=4 system sNavrátil and Barrett, 1999d,
where it was also shown that a three-body effective in-
teraction could be introduced to improve the conver-
gence of the method. The ability of the no-core shell-
model approach to derive a three-body effective
interaction and apply it in either a relative-coordinate
sNavrátil et al., 2000d or a Cartesian-coordinate formal-
ism sNavrátil and Ormand, 2002d, together with its abil-
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ity to solve a three-nucleon system with a genuine three-
nucleon force sMarsden et al., 2002d, now opens up the
possibility of including a realistic three-nucleon force in
the Hamiltonian and performing calculations using two-
and three-nucleon forces for the p-shell nuclei. The suc-
cesses of the no-core approach include the first pub-
lished result of the binding energy of 4He with the CD-
Bonn nucleon-nucleon potential sNavrátil and Barrett,
1999d, the near-converged results for A=6 using a non-
local Hamiltonian sNavrátil et al., 2001d, and the first
observation of the incorrect ground-state spin in 10B
predicted by the realistic two-body nucleon-nucleon in-
teractions sCaurier et al., 2002d. This last result, together
with the already known problems of underbinding, con-
firms the need for realistic three-nucleon forces, a need
also indicated by the Green’s function Monte Carlo cal-
culations of Wiringa and Pieper s2002; see also Pieper
and Wiringa, 2001, for a review of the result of the
Urbana-Argonne collaboration for nuclei Aø10d.

Recently, a new version of the shell model code
ANTOINE has been developed for no-core shell-model
applications sCaurier, Navratil, et al., 2001d. This new
code allows one to perform calculations in significantly
larger basis spaces and makes it possible to reach full
convergence for the A=6 nuclei. In addition, it shows
promise for the investigation of slowly converging in-
truder states and states with unnatural parity. The larg-
est bases reached with this code so far are, according to
the number of harmonic-oscillator excitations, the 14"v
space for 6Li and, according the matrix dimension, the
10"v calculations for 10C. In the latter case, the
m-scheme matrix dimension exceeds 800 million.

G. Present possibilities

The combination of advances in computer technology
and in algorithms has enlarged the scope of possible
shell-model studies. The rotational band of 238U seems
still to be beyond the reach of shell-model calculations,
but predictions for 218U are already available. Let us list
some of the present opportunities.

sid No-core calculations. One of the major problems
of the no-core shell model is the convergence of
the results with the size of the valence space. For
6Li we can handle excitations up to 14"v and at
least 8"v for all p-shell nuclei.

siid The pf shell. This is where the shell model has
been most successful, and exact diagonalizations
are now possible throughout the region. Beyond
56Ni, as the 1f7/2 orbit becomes more and more
bound, truncated calculations are close to exact.
For instance, in 60Zn sMazzocchi et al., 2001d the
wave functions are fully converged when
6p-6h excitations are included.

siiid The r3 g-valence space. We use the notation rp for
the set of nlj orbits with 2sn−1d+ l=p, excluding
the orbit with maximum total angular momentum

j=p+1/2. This space describes nuclei in the re-
gion 28,N, Z,50; 56Ni is taken to be the inert
core. Most of these nuclei are nearly spherical and
can be treated without truncations. The bb decay
swith and without neutrinosd of 76Ge and 82Se is a
prime example. The deformed nuclei sN,Z
,40d are more difficult because they demand the
inclusion of the 2d5/2 orbit to describe prolate
states and oblate-prolate shape coexistence.

sivd The pfg space. An extension of the pf valence
space by the addition of the 1g9/2 orbitals is still
beyond present computing power. Furthermore,
serious center-of-mass spuriousness is expected in
the 1f7/2

−k 1g9/2
k configurations ssee Appendix Cd.

However, a restricted option, based on a reason-
able approximation, is available. For neutron-rich
nuclei in the nickel region, a tractable valence
space that avoids the center-of-mass problem can
be defined as a 48Ca core on top of which pf pro-
tons and r3 g neutrons are active.

svd Heavy nuclei. All the semimagic nuclei, for in-
stance, the N=126 isotones, can be easily studied,
and the addition of a few particles or holes re-
mains tractable. Some long chains of tellurium
and bismuth isotopes have been recently studied
sCaurier et al., 2003d.

IV. THE LANCZOS BASIS

There is a strong connection between the Lanczos al-
gorithm, the partition function, Zsbd=oikiuexps−bHduil,
and the evolution operator expsiHtd. In these three
cases, powers of the Hamiltonian determine the proper-
ties of the systems. The partition function can be written
as Zsbd=oErsEdexps−bEd, i.e., the Laplace transform of
the density of states, a quantity readily accessible once
the Hamiltonian has been fully diagonalized. The evolu-
tion operator addresses more specifically the problem of
evolving from a starting vector into the exact ground
state. We shall discuss both questions in turn.

A. Level densities

For many, the shell model is still synonymous with
diagonalizations, in turn synonymous with a black box.
One still hears questions such as: Who is interested in
diagonalizing a large matrix? As an answer we propose
to examine Fig. 10 showing the two point functions that
define the diagonal, Hii, and off-diagonal elements,
Hii+1, in a typical Lanczos construction. The continuous
lines are calculated knowing the first four moments of
the matrix si.e., of the 1+2-body Hamiltonian H it rep-
resentsd. These results hold at fixed quantum numbers,
i.e., when the matrix admits no block decomposition.

When the matrix is diagonalized the level density is
well reproduced by a continuous binomial,
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rbsx,N,p,Sd = pxNqx̄Nd
GsN + 1d

GsxN + 1dGsx̄N + 1d
N

S
, s60d

where x is an adimensional energy, x̄=1−x, N the num-
ber of valence particles, p an asymmetry parameter, p
+q=1, and S the span of the spectrum sdistance between
lowest and highest eigenstatesd. Introducing the energy
scale «, S, the centroid Ec, the variance s2, and x are
given by

S = N«, Ec = Np«, s2 = Nps1 − pd«2, x =
E

S
.

s61d

Note that rbsx ,N ,p ,Sd reduces to a discrete binomial,
s N

n
d, if x=n /N=n« /S, with integer n.
N, p, and S are calculated using the moments of the

Hamiltonian H, i.e., averages given by the traces of HK,
to be equated to the corresponding moments of
rbsx ,N ,p ,Sd, which for low K are the same as those of a
discrete binomial. The necessary definitions and equali-
ties follow:

d−1trsHKd = kHKl, Ec = kH1l, MK = ksH − EcdKl ,

s2 = M2, M̄K =
MK

sK , g1 = M̄3 =
q − p
ÎNpq

,

g2 = M4 − 3 =
1 − 6pq

Npq
, d = d0s1 + p/qdN. s62d

These quantities also define the logarithmic and inverse
binomial forms of Hii and Hii+1 in Fig. 10. Note that the
corresponding lines are almost impossible to distinguish
from those of the exact matrix. The associated level den-
sities are found in Fig. 11.

The mathematical status of these results is somewhat
mixed. Mon and French s1975d proved that the total
density of a Hamiltonian system is, to a first approxima-
tion, a Gaussian. Zuker s2001d extended the approxima-

tion to a binomial, but the result remains valid only in
the neighborhood of the centroid. Furthermore, one
does not expect it to hold generally because binomial
thermodynamics is trivial and precludes the existence of
phase transitions. In the example given above, we do not
deal with the total density, which involves all states, r
=oJTs2J+1ds2T+1drJT, but with a partial rJT at fixed
quantum numbers. In this case Zuker et al. s2001d con-
jectured that the tridiagonal elements given by the loga-
rithmic and inverse binomial forms are valid, and hence
describe the full spectrum. The conjecture breaks down
if a dynamical symmetry is so strong as to define new
sapproximatelyd conserved quantum numbers.

Granted that a single binomial cannot cover all situa-
tions, we may nonetheless explore its validity in nuclear
physics, where the observed level densities are ex-
tremely well approximated by the classical formula of
Bethe s1936d with a shift D,

rBsE,a,Dd =
Î2p

12
eÎ4asE+Dd

s4ad1/4sE + Dd5/4 . s63d

Obviously, if binomials are to be useful, they must
reproduce—for some range of energies—Eq. s63d. They
do indeed, as shown in Fig. 12, where the experimental

FIG. 10. sColor in online editiond Tridiagonal matrix elements
for a 6579-dimensional matrix, and the logarithmic and inverse
binomial snibd approximations. The x axis represents the index
of the matrix element normalized to the total dimension of the
matrix. From Zuker et al., 2001.

FIG. 11. sColor in online editiond Exact sbinsd and binomial
ssolid curved level densities for the matrix in Fig. 10.

FIG. 12. sColor in online editiond The experimental level den-
sity for 60Ni compared with the predictions of the Bethe and
the binomial formulas.
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points for 60Ni sIljinov et al., 1992d are also given.
Though the Bethe and binomial forms are seen to be
equivalent, the latter has the advantage that the neces-
sary parameters are well defined and can be calculated,
while in the former, the precise meaning of the a param-
eter is elusive. The shift D is necessary to adjust the
ground-state position. The problem also exists for the
binomial,16 and the result in the figure sZuker, 2001d
solves it phenomenologically. The shell-model Monte
Carlo method provides the only parameter-free ap-
proach to level densities sDean et al., 1995; Nakada and
Alhassid, 1997; Langanke, 1998d, whose reliability is now
established sAlhassid et al., 1999d. The problem is that
the calculations are hard.

As the shape of the level density is well reproduced by
a binomial except in the neighborhood of the ground
state, to reconcile simplicity with full rigor we have to
examine the tridiagonal matrix at the origin.

B. The ground state

Obviously, when performing a Lanczos calculation,
some dependence on the pivot should exist. We examine
it through the J=1T=3 pf states in 48Sc.17 The matrix is
8590 dimensional, and we calculate the ground state
with two pivots, one random shomogeneous sum of all
basic statesd, the other variational slowest eigenstate in
f7/2

8 spaced. A zoom on the first matrix elements in Fig. 13
reveals that they are very different for the first few itera-
tions, but soon they merge into the canonical patterns
discussed in the preceding section. The ground-state
wave function is unique, of course, but it takes the dif-
ferent aspects shown in Fig. 14. In both cases the con-
vergence is very fast, and it is not difficult to show in
general that it occurs for a number of iterations of order

N log N for dimensionality d=2N. However, the varia-
tional pivot is clearly better if we are interested in the
ground state. If its overlap with the exact solution ex-
ceeds 50%, all other contributions are bound to be
smaller and in general they will decrease uniformly.18

We shall see how to exploit this property of good pivots
to simplify the calculations.

1. The exp „S… method

In Sec. II.A we sketched the coupled-cluster for
expsSdg formalism. The formulation in the Lanczos basis
cannot do justice to the general theory, but it is a good
introduction to the underlying ideas. Furthermore, it
turns out to be quite useful.

The construction is as in Eqs. s46d and s47d, but the
succeeding vectors—except for the pivot—are not nor-
malized. Then, the full wave function takes the form

u0̄l = s1 + c1P1 + c2P2 + ¯ + cIPIdu0l , s64d

where Pm is a polynomial in H that, acting on the pivot,
produces orthogonal unnormalized vectors in the Lanc-
zos basis: Pmu0l= uml. Equation s47d becomes

Huml = Vmum − 1l + Emuml + um + 1l . s65d

To relate this to the normalized version sm⇒m̄d, we
divide by km uml1/2, then multiply and divide um−1l and
um+1l by their norms to recover Eq. s47d, and obtain
Em=Hm̄m̄, Vm= km uml / km−1 um−1l=Hm̄m̄−1

2 . The secu-

lar equation sH−Edu0̄l=0 leads to the recursion

cm−1 + sEm − Edcm + Vm+1cm+1 = 0, s66d

whose solution is equivalent to diagonalizing a matrix
with Vm+1 in the upper diagonal and 1 in the lower one,
which is of course equivalent to the symmetric problem.
However, here we shall solve the recursion by trans-
forming it into a set of nonlinear coupled equations for

16The energies refer to the mean scentroidd of the distribu-
tion, while they are measured with respect to the ground state.

17They are reached in the 48Casp ,nds48dSc reaction, which
will be our standard example of a Gamow-Teller transition.

18There are some very interesting counterexamples. One is
found in Fig. 24, where the natural pivot is heavily fragmented.

FIG. 13. sColor in online editiond Tridiagonal matrix elements
after 100 Lanczos iterations for a random and a variational
pivot. Hii denotes the diagonal matrix element and Hii+1 the
nondiagonal.

FIG. 14. sColor in online editiond The ground-state wave func-
tion in the Lanczos basis for a random and a variational pivot.
The plotted values are the squared overlaps of the successive
Lanczos vectors with the final wave function.
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the cm amplitudes. The profound reason for using an
unnormalized basis is that the first term in Eq. s66d, E
=E0+V1c1, implies that once c1 is known the problem is
solved. Calling «m=Em−E0 and replacing E=E0+V1c1
in Eq s66d leads to

cm−1 + s«m − V1c1dcm + Vm+1cm+1 = 0. s67d

Now we introduce

o cmPm = expso SmPmd . s68d

Expanding the exponential and equating terms, we have

c1 = S1, c2 = S2 +
1
2

S1
2, s69d

c3 = S3 + S1S2 +
1
3!

S1
3, etc. s70d

Note that we have used the formal identification PmPn
=Pn+m as a heuristic way of suggesting Eqs. s69d. Insert-
ing these in Eq. s67d and regrouping gives a system of
coupled equations. The first two are

0 = S2V2 + S1
2S1

2
V2 − V1D + S1«1 + 1, s71d

0 = S3V3 + S2«2 + S1S2sV3 − V1d +
1
2

S1
2«2

+ S1
3S 1

3!
V3 −

1
2

V1D + S1. s72d

Hence, instead of the usual cm truncations, we can use
Sm truncations, which have the advantage of providing a
model for the wave function over the full basis. At the
first iteration Eq. s71d is solved neglecting S2. The result-
ing value for S1 is inserted into Eq. s72d, which is solved
by neglecting S3. The resulting value for S2 is reinserted
into Eq. s71d and the process is repeated. Once S1 and S2
are known, the equation for S3 snot shownd may be in-
corporated, and so on. Since the energy depends only on
S1, convergence is reached when its value remains con-
stant from step to step. With a very good pivot, Eq. s71d
should give a fair approximation, improved by incorpo-
rating Eq. s72d and checked by the equation for S3.

If all amplitudes except S1 are neglected, the differ-
ence scheme fEq. s66dg is the same as would be obtained
for a harmonic H;«S0+VsS++S−d. Successive approxi-
mations amount to introducing anharmonicities. An
equivalent approach—numerically expedient—consists
of diagonalizing the matrices at each cm truncation level.
Then, after some iteration, the energies converge expo-
nentially. We introduce

convsi,a,e0,i0d = e0
exps− aid − 1

exps− ai0d − 1
, s73d

which equals e0 at point i= i0. We choose a so as to yield
convsi= i0+1d=esi0+1d, i.e., the correct energy at the
next point. Then we check that esi0+2d is well repro-
duced. Figure 15 provides an example, showing the effi-

ciency of the method for the ground state of 56Ni. The
index i is replaced by the truncation level i; t /2 fEq.
s49d with m=16,m0=0g. We set i0=1, fix a so as to repro-
duce the energy at the second iteration, and check that
the curve indeed gives the correct value at the third
point. The results reproduce those of the S2 truncation,
confirming that “exponential convergence” and expsSd
are very closely related. In this example, the closed-shell
pivot is particularly good, and the exponential regime
sets in at the first iteration. For the first excited state the
pivot is not so good, and the prediction has an error of
some 200 keV, which remains acceptable for practical
purposes. In general, the exponential regime sets in for
some value of i0 that may be quite large sFig. 14 suggests
i0<25 for the random pivotd. Fortunately, it is often pos-
sible to find good pivots, and this subject deserves com-
ment.

In the case of 56Ni the good pivot state is a closed
shell. As a consequence, the first iterations are associ-
ated with truncated spaces of much smaller dimension-
alities than the total one sdm<109d. This also happens
for lighter pf shell nuclei, for which the f7/2

m for eventu-
ally sf7/2p3/2dmg subspaces provide a good pivot. The
same argument applies for other regions. For well-
deformed nuclei Hartree-Fock calculations should pro-
vide good determinantal pivots, and hence enormous
gains in dimensionality, once projection to good angular
momentum can be tackled efficiently.

As we shall see next, the Lanczos and exp S proce-
dures provide a convenient framework in which to ana-
lyze other approaches.

2. Other numerical approximation methods

The exponential convergence method introduced in
the previous section was first described by Horoi et al.
s1999d, under a different but equivalent guise. In later
work, a hierarchy of configurations determined by their
average energy and width was proposed. Successive di-
agonalizations make it possible to reach the exact en-
ergy by exponential extrapolation. The method has been

FIG. 15. Energy gain of the ground state relative to the closed
shell and of the first excited state relative to the t=1 calcula-
tion in 56Ni as a function of the truncation level t. From Cau-
rier, Martinez-Pinedo, et al., 1999b.
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successfully applied to the calculation of the binding en-
ergies of the pf-shell nuclei sHoroi et al., 2002d and to
calculation of the excitation energies of the deformed 0+

states of 56Ni and 52Cr sHoroi et al., 2003d.
The work of Mizusaki and Imada s2002, 2003d is based

on the fact that the width of the total Hamiltonian in a
truncated space tends to zero as the solution approaches
the exact one. They have devised different extrapolation
methods and applied them to some pf-shell nuclei.

Andreozzi, Lo Iudice, and Porrino s2003d have re-
cently proposed a factorization method that allows for
importance sampling to approximate the exact eigenval-
ues and transition matrix elements.

A totally different approach that has proven its power
in other fields, the density-matrix renormalization
group, has been proposed sDukelsky and Pittel, 2001;
Dukelsky et al., 2002d, and Papenbrock and Dean s2003d
have developed a method based on the optimization of
product wave functions of protons and neutrons that
seems very promising.

Still, to our knowledge, the only prediction for a truly
large matrix that has preceded the exact calculation re-
mains that of 56Ni, J=2 in Fig. 15. It was borne out when
the diagonalization became feasible two years later.

3. Monte Carlo methods

Monte Carlo methods rely on the imaginary-time evo-
lution operator’s acting on some trial wave function

exps−bHdu0l, which tends to the exact ground state u0̄l as
b⇒`. This is very much what the Lanczos algorithm
does, but no basis is constructed. Instead, the energy sor

some observable V̂d is calculated through

k0ue−bH/2V̂e−bH/2u0l
k0ue−bHu0l

⇒
b→` k0̄uV̂u0̄l

k0̄u0̄l
, s74d

which is transformed into a quotient of multidimen-
sional integrals evaluated through Metropolis Monte
Carlo methods with importance sampling. A sign prob-
lem arises because the integrands are not positive defi-
nite, leading to enormous precision problems. The
Green’s-function Monte Carlo studies mentioned at the
beginning of Sec. II are conducted in coordinate space.
The shell-model Monte Carlo variant is formulated in
Fock space and hence directly amenable to comparisons
with standard shell-model results ssee Koonin, Dean,
and Langanke, 1997a, for a reviewd. The approach relies
on the Hubbard-Stratonovich transformation, and the
sign problem is circumvented either by an extrapolation
method or by choosing Hamiltonians that are free of it
while remaining quite realistic se.g., pairing plus quadru-
poled. At present the shell-model Monte Carlo approach
remains the only approach that can deal with much
larger valence spaces than the standard shell model. It
should be understood that this approach does not lead
to detailed spectroscopy, as it only produces ground-
state averages, but it is very well suited for finite-
temperature calculations. The introduction of Monte

Carlo techniques in the Lanczos construction is certainly
a tempting project.

The quantum Monte Carlo diagonalization method of
Otsuka, Honma, and Mizusaki s1998d consists in explor-
ing the mean-field structure of the valence space by
means of Hartree-Fock calculations that break the sym-
metries of the Hamiltonian. Good quantum numbers are
enforced by projection techniques sPeierls and Yoccoz,
1957d. Then the authors borrow from the shell-model
Monte Carlo approach to select an optimal set of basis
states, and the full Hamiltonian is explicitly diagonalized
on this basis. More basis states are iteratively added un-
til convergence is achieved. For a very recent review of
the applications of this method see Otsuka, Honma, et
al. s2001d. A strong connection between mean-field and
shell-model techniques is also at the heart of the Vampir
approach sPetrovici et al., 1999; Schmid, 2001d and of the
projected shell model sHara and Sun, 1995d.

C. Lanczos strength functions

The choice of pivot in the Lanczos tridiagonal con-
struction is arbitrary and it can be adapted to special
problems. One of the most interesting is the calculation
of strength functions sWhitehead, 1980; Bloom, 1984d: If
Uij is the unitary matrix that achieves diagonal form, its
first column Ui0 gives the amplitudes of the ground-state
wave function in the tridiagonal basis, while the first row
U0j determines the amplitude of the pivot in the jth
eigenstate. U0j

2 plotted against the eigenenergies Ej is
called the strength function for that pivot.

In practice, given a transition operator T, we use it to
act on a target state utl to define a pivot u08l=T utl that
exhausts the sum rule k08 u08l for T. Once it is normal-
ized it follows, by definition, that

u0l =
T utl

Îk08u08l
= o

j
U0jujl , s75d

whose moments,

k0uHku0l = o
j

U0j
2 Ej

k, s76d

are those of the strength function

SsEd = o
j

dsE − EjdU0j
2 , s77d

As the Lanczos vector uIl is obtained by orthogonalizing
HIu0l to all previous Lanczos vectors uil, i,I, the tridi-
agonal matrix elements are linear combinations of the
moments of the strength distribution. Therefore the
eigensolutions of the I3I matrix define an approximate
strength function SIsEd=oi=1,IdsE−EidkiuT u0l2, whose
first 2I−1 moments are the exact ones. The eigenstates
act as doorways, whose strength will be split until they
become exact solutions when I is large enough. This is
illustrated in Fig. 16, which retraces the fragmentation
process of the sum-rule pivot. In this case, a 48Sc door-
way is obtained by applying the Gamow-Teller operator
to the 48Ca ground state. The term doorway applies to
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vectors that have a physical meaning but are not eigen-
states. After full convergence is achieved for all states in
the resonance region, the strength function has the as-
pect shown at the bottom of the figure. In practice, all
the spikes are affected by experimental width, and as-
suming a perfect calculation, the observed profile would
have the aspect shown at the bottom of Fig. 17, after
convoluting with Gaussians of 150-keV width. The up-
per panel shows the result for 50 iterations and 250-
keV widths for the nonconverged states. The profiles
become almost identical.

V. THE 0"v CALCULATIONS

In this section we first revisit the p, sd, and pf shells to
explain how a three-body monopole mechanism solves
hitherto intractable problems. Then we propose a
sample of pf-shell results that will not be discussed else-
where. Finally Gamow-Teller transitions and strength
functions are examined in some detail.

A. The monopole problem and the three-body interaction

The importance of the monopole interaction was first
established by Bansal and French s1964d. Its efficiency in
cross-shell calculations was further confirmed by Zamick

s1965d, and the success of the model of Zuker, Buck, and
McGrory s1968d is implicitly due to a monopole correc-
tion to a realistic force. Zuker s1969d identified the main
shortcoming of the model as due to what must be now
accepted as a three-body effect.19 The associated trouble
showed up in 0"v calculations somewhat later simply
because it takes larger matrices to detect it in the sd
shell than in the Zuker-Buck-McGrory space sdimen-
sionalities of 600 as compared to 100 for six particlesd.
For up to five particles the results of Halbert et al. s1971d
with a realistic interaction were quite good, but at 22Na
they were so bad that they became the standard example
of the unreliability of the realistic forces sBrown and
Wildenthal, 1988d and led to the titanic20 universal sd
sUSDd fit of the 63 matrix elements in the shell by Wil-
denthal s1984d.

Though the pf shell demands much larger dimension-
alities, it has the advantage of containing two doubly

19The Zuker-Buck-McGrory model describes the region
around 16O through a p1/2s1/2d5/2 space. The French-Bansal pa-
rameters bpd and bps fsee Eq. s9bdg must change when going
from 14N to 16O, which requires a three-body mechanism.

20It took two years on a Vax. Nowadays it would take an
afternoon on a laptop.

FIG. 16. Evolution of the Gamow-Teller strength function of 48Ca as the number of Lanczos iterations on the doorway state
increases.
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magic nuclei, 48Ca and 56Ni, for which truncated calcu-
lations proved sufficient to identify very early the heart
of the monopole problem: the failure to produce
extruded-intruded sEId closures.

Figure 18 gives an idea of what happens in 49Ca with
the Kuo-Brown interaction sKuo and Brown, 1968d:

there are six states below 3 MeV, where only one exists.
In Pasquini s1976d and Pasquini and Zuker s1978d the
following modifications were proposed sf; f7/2 ,r
; f5/2 ,p3/2 ,p1/2d:

Vfr
TsKB1d = Vfr

TsKBd − s− dT300 keV,

Vff
0 sKB1d = Vff

0 sKBd − 350 keV,

Vff
1 sKB1d = Vff

1 sKBd − 110 keV. s78d

The first line defines KB8 in Fig. 18. The variants KB2
and KB3 in Poves and Zuker s1981bd keep the KB1 cen-
troids and introduce very minor multipole modifications.
KB3 was adopted as standard21 in successful calculations
in A=47–50 that will be described in the next sections
sCaurier et al., 1994; Martínez-Pinedo, Poves, Robledo,
et al., 1996; Martínez-Pinedo, Zuker, et al., 1997d.

For higher masses, there are some problems, but
nothing comparable to the serious ones encountered in
the sd shell, where modifications like those in Eq. s78d
are beneficial but sapparentlyd insufficient. The effective
single-particle energies in Fig. 19 are just the monopole
values of the particle and hole states at the subshell clo-
sures. They give an idea of what happens in a two-body

21The multipole changes—which were beneficial in the per-
turbative treatment of Poves and Zuker s1981bd—had much
less influence in the exact diagonalizations.

FIG. 17. The strength functions of Fig. 16 convoluted with
Gaussians of 150 keV width: upper panel, 50 iterations; bot-
tom panel, 1000 iterations.

FIG. 18. The level scheme of 49Ca obtained with the interac-
tions KB, KB8, and KB3, compared to the experimental result.
From Martínez-Pinedo, Zuker, et al., 1997.

FIG. 19. sColor in online editiond Effective single-particle en-
ergies in the pf shell along the N=Z line, computed with the
BonnC supper paneld and KB3 slower paneld interactions.
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description. At the origin, in 41Ca, the spectrum is the
experimental one. At 57Ni there is a bunching of the
upper orbits, which realistic BonnC and Kuo-Brown
models describe reasonably well, but they fail to pro-
duce a substantial gap. Hence the need of KB1-type cor-
rections. At the end of the shell, the BonnC and Kuo-
Brown interactions reproduce an expanded version of
the 41Ca spectrum that is most certainly incorrect. The

indication from H̃m
d in Eq. s27d is that the bunching of

the upper orbits should persist. By incorporating this
hint—which involves the Vrr8 centroids—and fine-tuning
the Vfr ones Poves et al. s2001d defined a KB3G sG
comes from improved gapsd interaction, which offers in-
teresting improvements over KB3 in A=50–52. Around
56Ni there are still some problems, though not as severe
as those encountered in the sd and p shells. Compared
to KB3, the interaction FPD6 sRichter et al., 1991d has a
better gap in 56Ni, but the orbit 1f5/2 is definitely too low
in 57Ni. This produces problems with the description of
Gamow-Teller processes ssee Borcea et al., 2001, for a
recent experimental check on the beta decay of 56Cud.

The classic fits of Cohen and Kurath s1965d defined
the state of the art in the p shell for a long time. The first
realistic G-matrix elements sKuo and Brown, 1966d dealt
with the sd shell, a subject of very active research at the
time. As the p shell problem was assumed to be solved,
nobody seems to have noticed that G matrices produce
in 10B a catastrophe parallel to the one in 22Na. The
work of Navrátil and Ormand s2002d, and Pieper, Varga,
and Wiringa s2002d acted as a powerful reminder that
brought to the fore the three-body nature of the discrep-
ancies.

Once this is understood, the solution follows: Eq. s78d
is assumed to be basically sound but the corrections are
taken to be linear in the total number of valence par-
ticles m sthe simplest form that a three-body term can
taked.

Using f;sp3/2 ,d5/2 , f7/2d generically in the sp ,sd ,pfd
shells, respectively, and r=p1/2 and r;d3/2 ,s1/2 for the p

and sd shells, Zuker s2003d proposes fk=k0+ sm
−m0dk1g

Vfr
TsRd ⇒ Vfr

TsRd − s− dTk ,

Vff
TsRd ⇒ Vff

TsRd − 1.5kdT0
, s79d

where R stands for any realistic two-body potential. The
results for 10B are shown in Fig. 20. The black squares
sNOd are from Navrátil and Ormand s2002, Fig. 4, 6"Vd.

The solid circles correspond to the bare Kahana-Lee-
Scott G matrix s"v=17 MeVd, the open squares to the
same with k=1.1, and the pentagons to the Cohen-
Kurath fit. Navrátil-Ormand and Kahana-Lee-Scott give
quite similar spectra, as expected from the discussion in
Secs. II.A and II.D. The k correction eliminates the se-
vere discrepancies with experiment and give values close
to those of Cohen and Kurath.

In 22Na the story repeats itself, as shown in Fig. 21:
BonnC and KB are very close to one another, the
ground-state spin is again J=1 instead of J=3, and the
whole spectrum is awful. The k correction restores the
levels to nearly correct positions, though the universal
sd model sUSDd still gives a better fit. This simple cure
was not discovered earlier because k is not a constant. In
24Mg we could still use the value for 22Na but around
28Si it must be substantially smaller. The spectra in Fig.
22 are obtained with ksmd=0.9−0.05sm−6d, and they
are now as good as those given by the universal sd
model.

To determine a genuine three-body effect si.e., the lin-
earity of kd a sufficiently large span of A values is nec-
essary. In the p shell, corrections to Vrr8 become indis-
pensable very soon and must be fitted simultaneously, as
was done successfully by Abzouzi et al. s1991d, so we do
not dwell on the subject. As we have seen, in the pf shell
KB3, which is nearly perfect in A=47–50, must be modi-
fied to KB3G for A=50–52, which also does well at the
lower masses. To find a real problem with a two-body R

FIG. 20. sColor in online editiond The excitation spectrum of
10B for different interactions described in the text: NO,
Navrátil and Ormand; KLS, Kahana-Lee-Scott; CK, Cohen-
Kurath. Adapted from Zuker, 2003.

FIG. 21. sColor in online editiond The excitation spectrum of
22Na for different interactions: KB, Kuo-Brown; USD, univer-
sal sd. Adapted from Zuker, 2003.
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interaction si.e., compatible with nucleon-nucleon
datad22 we have to move to 56,58Ni. In particular the first
BsE2ds2→0d transition in 58Ni falls short of the ob-
served value s140 e2 fm4d by a factor <0.4 with any
monopole corrected KB interaction. The problem can
be traced to weak quadrupole strength and it is not se-
rious; as explained in Sec. II.D, it is due to a normaliza-
tion uncertainty, and Table I shows that with equal nor-
malizations BonnC and Kuo-Brown in the pf shell are as
close as in the sd shell.

Zuker s2003d adopted BonnC. Small modifications of
the Vfr matrix were made to improve the salready rea-
sonabled r spectrum in 57Ni ssee Fig. 19d. The particular
mixture in Eq. s79d was actually chosen to make pos-
sible, in the simplest way, a good gap in 48Ca and a good
single-particle spectrum in 49Sc. It was found that for
A=48, ksm=8d<0.43. For A=56, truncated calculations
yielded ks16d&0.28. The BsE2ds2→0d in 58Ni indicated
convergence to the right value.

With ksm=8d, BonnC reproduces the yrast spectrum
of 48Cr almost as well as KB3, but not with a ksm=16d,
as shown in Fig. 23, indicating that the three-body drift

is needed, though not as urgently as in the sd shell. An-
other indication comes from the T=0 spectrum of 46V,
the counterpart of 22Na and 10B in the pf shell. The re-
alistic interactions again place the J=1 and J=3 states in
the wrong order; the correct one is reestablished by the
three-body monopole correction.

In Sec. II.B.2 it was shown that a good fit to cs±1
spectra around closed shells was sufficient to define a

plausible two-body monopole model H̃m
d . The trouble

with this approach is that sufficient information exists
around extruded-intruded sEId closures, and very little
for holes in the harmonic-oscillator ones. As a conse-
quence, almost everything concerning Vrr8 centroids
si.e., not involving the intruder orbitd had to be invented.
In addition, the very mechanism of EI shell formation
was forced to be two body, which we now know must be
three body. Therefore the new monopole strategy must
amount to keeping the realistic two-body potentials and
forcing all monopole corrections to be three body. Para-
doxically, the recently released two-body-only GXPF1
sHomma et al., 2004d fit to all pf-shell matrix elements
strongly supports this strategy, as we discuss in the next
section.

B. The pf shell

Systematic calculations of the A=47–52 isobars have
been made by Caurier, Zuker, et al. s1994; A=48, KB3d,
Martínez-Pinedo et al. s1997; A=47 and 49, KB3d, and
Poves et al. s2001; A=50–52, KB3Gd. Among the other
full 0"v calculations let us highlight the following:

sid The shell-model Monte Carlo studies using either
the FPD6 interaction sAlhassid et al., 1994d or the
KB3 interaction sLanganke et al., 1995d. A com-
parison of the exact results with the shell-model
Monte Carlo results can be found in Caurier,
Martinez-Pinedo, et al. s1999ad. For a review of

22It may be possible to fit the data with a purely two-body set
of matrix elements: The universal sd model is the prime ex-
ample, but it is R incompatible sDufour and Zuker, 1996d.

FIG. 22. sColor in online editiond The excitation spectra of
24Mg supper paneld and 29Si slower paneld for different inter-
actions: KB, Kuo-Brown; BC, BonnC; USD, universal sd.
Adapted from Zuker, 2003.

FIG. 23. sColor in online editiond Backbending plot for 48Cr.
The experimental data from Lenzi et al. s1996d scirclesd are
compared with the shell-model calculations using the BonnC
interaction with a two-body sdownward trianglesd and a three-
body supward trianglesd monopole correction and with the
GXPF1 interaction.
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the shell-model Monte Carlo results in the pf
shell, see also Koonin et al. s1997bd.

siid The recent applications of the exponential ex-
trapolation method sHoroi et al., 2002, 2003d.

siiid The calculations of Novoselsky et al. s1997d for
51Sc and 51Ti using the DUPSM code ssee also the
erratum in Novoselsky et al., 1998bd and for 52Sc
and 52Ti sNovoselsky et al., 1998ad.

sivd The extensive quantum Monte Carlo diagonaliza-
tions of the spectrum of 56Ni have been able to
reproduce the exact result for the ground-state
binding energy within 100–200 keV and to give a
fairly good description of the highly deformed ex-
cited band of this doubly magic nucleus sOtsuka et
al., 1998; Mizusaki et al., 1999, 2002d.

Other applications to the pf shell can be found in
Honma et al. s1996d. The existence of excited collective
bands in the N=28 isotones is studied by Mizusaki et al.
s2001d.

As mentioned above, a new interaction for the pf shell
sGXPF1d has been produced by a Tokyo-MSU collabo-
ration sHonma et al., 2002, 2004d, following the fitting
procedures that lead to the universal sd interaction splus
some monopole guidanced. The fit starts with the G ma-
trix obtained from the Bonn-C nucleon-nucleon poten-
tial sHjorth-Jensen et al., 1995d and privileges the upper
part of the pf shell, as seen by the very large difference
in single-particle energies between the 1f7/2 and 2p3/2 or-
bits s3 MeV instead of the standard 2 MeVd.

This approach has two noteworthy features, as can be
seen in Fig. 2 of Honma et al. s2004d s1d The monopole
matrix elements are global modulations of the realistic
ones sBonnCd. s2d The centroids involving the f7/2 orbit
have almost exactly the form adopted in Eq. s79d and in
KB3G. Remember, though, that fine tuning is necessary
since a 50-keV shift in a Vfr centroid amounts to an
800-keV shift in the spectrum of 57Ni.

As GXPF1 is a two body-only model, its authors find
it necessary to make some multipole changes, and here,
something even more remarkable happens: From Table
II in Honma et al. s2004d, it appears that most of the
multipole changes are made to ensure the right mono-
pole centroids, in particular the Vfr ones. To give an ex-
ample, the ,300-keV attraction in the V75 centroid is
achieved by making the V7575

J0 J=5,6 matrix elements
more attractive by ,600 keV. As explained in the dis-
cussion of Fig. 26 in Honma et al. s2004d, these selective
changes tend to reinforce the presence of the quadru-
pole force in the diagonal elements. They also transform
the very nice agreement with experiment for BonnC
with the proper three-body monopole corrections in Fig.
23 into a not-so-nice one. And they cause GXPF1 to
differ appreciably from the realistic matrix elements,
though the broad collective features are respected, as
can be seen in Table II. It is not obvious that GXPF1
could do better than KB3 and KB3G below 56Ni. At 56Ni
and above it does very well, but it is by no means clear

that three-body monopole-corrected forces could not
match the GXPF1—or the universal sd—performances.

Excellent spectroscopy is obtained around 56Ni. In the
calcium isotopes si.e., when only the T=1 neutron-
neutron interaction is actived this new interaction retains
the tendency of the bare G matrices sKuo-Brown,
Bonn-C, Kahana-Lee-Scottd to produce large gaps at N
=32 and N=34, in contrast to FPD6 or KB3G, which
only predict a large gap at N=32. Some early spectro-
scopic applications of GXPF1 to the heavy isotopes of
titanium, vanadium, and chromium are those of Janssens
et al. s2002d and Mantica et al. s2003d, who explore the
N=32–34 gaps. In particular, a recent measure sLiddick
et al., 2004d of the location of the 2+ state in 56Ti does not
support the large N=34 gap predicted by the new inter-
action.

Each nucleus has its interest, sometimes anecdotal,
sometimes fundamental. The agreement with experi-
ment for the energies, the quadrupole and magnetic mo-
ments, and the transitions, is consistently good, often
excellent. These results have been conclusive in estab-
lishing the soundness of the minimally monopole modi-
fied realistic interactionssd. There is no point in repro-
ducing them here, and we only present a few typical
examples concerning spectroscopic factors, isospin non-
conserving forces, and “pure spectroscopy.” Let us, how-
ever, single out 60Zn, the one with the largest m-scheme
dimension s2 292 604 744d, and give its ground-state en-
ergy calculated with KB3G s−84.65 MeVd for bench-
marking purposes.

1. Spectroscopic factors

The basic tenet of the independent-particle model is
that addition of a particle to a closed shell ar

†ucsl pro-
duces an eigenstate of the ucs+1l system. Nowadays we
know better: It produces a doorway that will be frag-
mented. If we choose ucsl= u48Cal and ucs+1l= u49Scl, the
four pf orbits provide the doorways. The lowest, f7/2,
leads to an almost pure eigenstate. The middle ones,
p3/2,1/2, are more fragmented, but the lowest level still
has most of the strength and the fragments are scattered
at higher energies. Figure 24 shows what happens to the
f5/2 strength: it remains concentrated on the doorway but
splits locally. The same evolution with energy of the qua-
siparticles sLandau’s term for single-particle doorwaysd
was later shown to occur generally in finite systems sAlt-
shuler et al., 1997d.

2. Isospin nonconserving forces

Recent experiments have identified several yrast
bands in mirror pf nuclei sO’Leary et al., 1997, 2002;
Bentley et al., 1998, 1999, 2000; Lenzi et al., 2001; Bran-
dolini, Sánchez Solano, et al., 2002d for A=47, 49, 50,
and 51. The naive view that the Coulomb energy should
account for the mirror energy differences turns out to be
untenable. The four pairs were analyzed by Zuker et al.
s2002d, who showed that three effects should be taken
into account. A typical result is proposed in Fig. 25,
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where VCM and VBM stand for Coulomb and nuclear
isospin-breaking multipole contributions, while VCm is a
monopole Coulomb term generated by small differences
of radii between the members of the yrast band. The
way these disparate contributions add to reproduce the
observed pattern is striking.

Another calculation of the isospin-nonconserving ef-
fects, and their influence in the location of the proton
drip line, is due to Ormand s1997d. He has also analyzed
the A=46 isospin triplet in Garrett et al. s2001d.

3. Pure spectroscopy

The nucleus we have chosen to illustrate this point is
also one that has been measured to complete the mirror
band sBentley et al., 2000d in A=51, whose mirror en-
ergy differences are as well described as those of A=49
in Fig. 25. Such calculations require very good wave
functions, and the standard test they have to pass is the
“purely spectroscopic” one.

Such an analysis usually proceeds as follows:

sid Quadrupole effective charges for neutrons, pro-

tons, and bare g factors in M1 transitions and mo-
ments are used. First one sets the quadrupole ef-
fective charges for neutrons and protons to qn

=0.5 and qp=1.5, respectively. Bare g factors of
gp

s =5.5857mN, gn
s =−3.3826mN, gp

l =1.0mN, and gn
l

=0.0mN in M1 transitions and moments are used.
Except when the M1 transitions are fully domi-
nated by the spin term, the use of effective g fac-
tors does not modify the results very much due to
the compensation between the spin and orbital
modifications.

siid Then the spectra of some relevant nuclei are com-
puted and compared with data. For instance, we
give a typical result for the nucleus 51Mn, whose
yrast band, calculated in the full pf-shell space, is
compared in Fig. 26 with the experiment data.
Here the low-lying part of the spectrum is fairly
well reproduced. On the other hand, the excita-
tion energy of the high-spin states is slightly too
large.

siiid Then, calculated electromagnetic transitions are
compared with data. An example of a satisfactory
fit is given in Table IV.

Note that the abrupt change in both BsM1d and BsE2d
for J= s17/2d− is very well reproduced by the calculation.
The origin of this isomerism is the sudden alignment of
two particles in the 1f7/2 orbit, which provides an intui-
tive physical explanation for the abrupt change in the
mirror energy difference sBentley et al., 2000d.

Finally, one analyzes the quality of the fit for some
selected ground-state moments. Here the experimental
values are known: mexp=3.568s2dmN and Qexp
=42s7d e fm2 sFirestone, 1996d and compare quite well
with the calculated mth=3.397mN and Qth=35 e fm2.

C. Gamow-Teller and magnetic dipole strength

Out of the approximately 2500 known nuclei that are
bound with respect to nucleon emission, only 253 are

FIG. 24. sColor in online editiond Spectroscopic factors, s2j
+1dSsj , tzd, corresponding to stripping of a particle in the orbit
1f5/2 sMartínez-Pinedo et al., 1997d.

FIG. 25. Experimental sO’Leary et al., 1997d and calculated
sZuker et al., 2002d mirror energy differences sMEDd for the
pair 49Cr-49Mn.

FIG. 26. Yrast band of 51Mn; experiment sBentley et al., 2000d
vs shell-model calculation in the full pf-shell space. Adapted
from Poves et al., 2001.
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stable. The large majority of the rest decay by b emis-
sion or electron capture, mediated by the weak interac-
tion. When protons and neutrons occupy the same or-
bits, as in our case, the dominant processes are allowed
Fermi and Gamow-Teller transitions. The information
obtained from the weak decays has been complemented
by the sp ,nd and sn ,pd reactions in forward kinematics,
which make it possible to obtain total Gamow-Teller
strengths and strength functions that cannot be accessed
by the decay data because of the limitations due to the
Qb windows. From a theoretical point of view, the com-
parison of calculated and observed strength functions
provides invaluable insight into the meaning of the va-
lence space and the nature of the deep correlations de-
tected by the “quenching” effect.

The half-life for a transition between two nuclear
states is given by sBehrens and Bühring, 1982; Schopper,
1966d

sfA + fedt =
6144.4 ± 1.6

sfV/fAdBsFd + BsGTd
. s80d

The value 6144.4±1.6 is obtained from the nine best-
known superallowed beta decays sTower and Hardy,
2002; see Wilkinson, 2002a, 2002b, for an alternative
studyd. Here fV and fA are the Fermi and Gamow-Teller
phase-space factors, respectively sWilkinson and Mace-
field, 1974; Chou et al., 1993d. fe is the phase space for
electron capture sBambynek et al., 1977d which is only
present in b+ decays. If t1/2 is the total lifetime, the par-
tial lifetime of a level with branching ratio br is t
= t1/2 /br.

BsFd and BsGTd are defined as

BsFd =Fkfio
k

t±
kiil

Î2Ji + 1
G2

, s81ad

BsGTd =FSgA

gV
D kfio

k
skt±

kiil

Î2Ji + 1
G2

. s81bd

Matrix elements are reduced fEq. sA3dg with respect to
spin only, 6 refers to b± decay, s=2S, and sgA /gVd
=−1.2720s18d sHagiwara et al., 2002d is the ratio of the
weak interaction axial-vector and vector coupling con-
stants.

For states of good isospin the value of BsFd is fixed. It
can be altered only by a small isospin-symmetry-
breaking dC correction sTower and Hardy, 2002d. Shell-
model estimates of this quantity can also be found in
Ormand and Brown s1995d,

BsFd = fTsT + 1d − Tzi
Tzf

gdifs1 − dCd , s82d

where dif allows only transitions between isobaric analog
states. Superallowed decays may shed light on the depar-
tures from unitarity of the Cabibbo-Kobayashi-
Maskawa matrix.

The total strengths S± are related by the sum rules

S−sFd − S+sFd = N − Z , s83ad

S−sGTd − S+sGTd = 3sN − Zd , s83bd

where N and Z refer to the initial state, and S±sGTd does
not contain the gA /gV factor. A comparison of the sp ,nd
and sn ,pd data with the Gamow-Teller sum rule sIkeda
et al., 1963d revealed the long-standing “quenching prob-
lem”; only approximately one-half of the sum-rule value
was found in the experiments.

The Gamow-Teller strength is not protected by a con-
servation principle and depends critically on the wave
functions used. Full 0"v calculations already show a
large quenching with respect to the independent-particle
limit, as can be seen in Table V, where the result of a full
pf calculation is compared with that obtained with an
uncorrelated Slater determinant having the same occu-
pancies:

TABLE IV. Transitions in 51Mn.

Expt. Theor.

BsM1d smN
2 d smN

2 d
7
2

−→ 5
2

− 0.207s34d 0.177
9
2

−→ 7
2

− 0.16s5d 0.116
11
2

−→ 9
2

− 0.662s215d 0.421
17
2

−→ 15
2

− 0.000 12s4d 0.000 03
19
2

−→ 17
2

− .0.572 0.797

BsE2d se2 fm4d se2 fm4d
7
2

−→ 5
2

− 528s146d 305
9
2

−→ 5
2

− 169s67d 84
9
2

−→ 7
2

− 303s112d 204
11
2

−→ 7
2

− 236s67d 154
11
2

−→ 9
2

− 232s75d 190
17
2

−→ 13
2

− 1.236s337d 2.215

TABLE V. Comparison of GT+ strengths. For 54Fe, 55Mn,
58Ni, and 59Co the calculations are truncated to t=8, t=4, t=6,
and t=4, respectively. The data are from Vetterli et al., 1990;
Alford et al., 1993; El-Kateb et al., 1994; Williams et al., 1995.

Correlated

Nucleus Uncorrelated Unquenched Q=0.74 Expt.

51V 5.15 2.42 1.33 1.2±0.1
54Fe 10.19 5.98 3.27 3.3±0.5

55Mn 7.96 3.64 1.99 1.7±0.2
56Fe 9.44 4.38 2.40 2.8±0.3
58Ni 11.9 7.24 3.97 3.8±0.4
59Co 8.52 3.98 2.18 1.9±0.1
62Ni 7.83 3.65 2.00 2.5±0.1
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S = o
i,k

ni
pnk

h

s2ji + 1ds2jk + 1d
kiisikl2. s84d

Here the sum on i runs over the proton sneutrond orbits
in the valence space, and k runs over the proton sneu-
trond orbits for S+ sS−d. np and nh denote the number of
particles and holes, respectively. The determinantal state
requires a quenching factor that is almost twice as large
as the standard quenching factor Q2= s0.74d2, which
brings the full calculation into line with experiment.

1. The meaning of the valence space

Before moving on to the explanation of the quenching
of the Gamow-Teller strength, it is convenient to recall
the meaning of the valence space, as discussed in Sec.
II.A.1. The 48Casp ,nd48Sc reaction sAnderson et al.,
1990d provides an excellent example. In Fig. 27, adapted
from Caurier, Poves, and Zuker s1995d, the experimental
data are compared with the strength function produced
by a calculation in the full pf shell using the interaction
KB3. The peaks have all J=1, T=3. In the pf shell there
are 8590 of them and the calculation has been pushed to
700 iterations in the Lanczos strength function to ensure
fully converged eigenstates below 11 MeV. Of these
eigenstates 30 are below 8 MeV. They are at the right
energy and have the right strength profile. At higher
energies the peaks are much too narrow compared with
experiment. This means that they may well be eigen-
states of the effective Hamiltonian in the pf shell, but
not eigenstates of the full system. Therefore they should
be viewed as doorway states, subject to further mixing
with the background of intruders that dominates the
level density after 8 MeV, as corroborated by the ex-
perimental tail that contains only intruders and can be
made to start naturally at that energy.

The KB3 effective interaction is doing a very good
job, but it is certainly not decoupling 8590 pf states from

the rest of the space. If the fact is not explicitly recog-
nized we end up with the often raised sHjorth-Jensen et
al., 1995d “intruder problem”: Decoupling cannot be en-
forced perturbatively when intruders are energetically
close to model states. Figure 27 indicates that although a
few eigenstates are well decoupled, it is possible to make
sense of many others if one interprets them as doorways.
A satisfactory description of the lowest states indicates
that the model space makes sense. It ensures good de-
coupling at the S2 level or simply in second-order per-
turbation theory, which guarantees a state-independent
interaction.

Energetically we are in good shape, and we concen-
trate on the renormalization of the Gamow-Teller op-
erator: the calculated strength has been quenched by a
factor <s0.74d2. Why? And why does this factor ensure
the right detailed strength for about 30 states below
8 MeV?

2. Quenching

To understand the quenching problem it is best to
start with a stentatived solution. The dressed states in
Eq. s4d are normalized to unity in the model space. This
trick is essential in the formulation of linked cluster or
exp S theories fhence Eq. s64dg. It makes possible the
calculation of the energy—and some transitions, such as
the E2—without knowledge of the norm of the exact
wave function. In general, though, we need an expecta-

tion value between exact, normalized states: kf̂iT iîl2. If
we write

uîl = au0"vl + o
nÞ0

bnun"vl , s85d

and a similar expression in a8, b8 for kf̂u, we find

kf̂iT iîl2 = Saa8T0 + o
nÞ0

bnbn8TnD2
, s86d

since the Gamow-Teller operator does not couple states
with different numbers of "v excitations. Let us make
two assumptions: sad the nÞ0 contributions can be ne-
glected in the svalenced states dominated by n=0 ones
fan estimate of Caurier, Poves, and Zuker s1995d sup-
ports this assumptiong; sbd a<a8; it follows that if the
projection of the physical wave function in the 0"v
space is Q<a2, its contribution to the transition will be
quenched by Q2.

Exactly the same arguments apply to transfer
reactions—for which T=as sor as

†d—but with these reac-
tions the arguments are simpler because TnÞ0=0. The
transition strength is given by the spectroscopic factor,
which can be identified with Q when one particle is re-
moved and 1−Q when it is added. The assumption that
the model amplitudes in the exact wave functions are
approximately constant is borne out by systematic calcu-
lations of Q in the p shell fChou et al., 1993, Q
=0.820s15dg, the sd shell fWildenthal et al., 1983, Q

FIG. 27. sColor in online editiond Gamow-Teller strength in
48Casp ,nd48Sc from Anderson et al. s1990d—after elimination
of the Fermi peak at around 6 MeV—compared with the cal-
culated peaks sKB3 interactiond after 700 Lanczos iterations
sCaurier, Poves, and Zuker, 1995d. The peaks have been
smoothed by Gaussians having the experimental width of the
first measured level.
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=0.744s2dg, and the pf shell fillustrated in Fig. 28,
Martínez-Pinedo, Poves, Caurier, and Zuker, 1996, Q
=0.744s15dg.

These numbers square well with the existing informa-
tion on spectroscopic factors from the data on d, p sVold
et al., 1978, Q<0.7d and e, e8p sCavedon et al., 1982, Q
=0.7; see also Pandharipande et al., 1997d. This consis-
tency is significant in that it backs assumption sad above,
which is trivially satisfied for spectroscopic factors. It of-
fers the prospect of accepting the Gamow-Teller data as
a measure of a very fundamental quantity that does not
depend on particular processes. The proposed “solu-
tion” to the quenching problem amounts to reading
data.

Experimentally, the challenge is to locate all the
strength, constrained by the Ikeda sum rule, which re-
lates the direct and inverse processes. The careful analy-
sis of Anderson et al. s1985d suggests, but does not
prove, that the experimental tail in Fig. 27 contains
enough strength to satisfy approximately the sum rule.
A similar result is obtained for 54Fesp ,nd. sAnderson et
al., 1990d. More recent experiments by the Tokyo group
establish that the strength located at accessible energies
exhausts 90s5d% of the sum rule in the 90Zrsn ,pd and
84s5d% in 27Alsp ,nd sWakasa et al., 1997, 1998d.

The theoretical problem is to calculate Q. It has been
compounded by a sociological one: The full Gamow-
Teller operator is sgA /gVdst, where gA /gV<−1.27 is the
ratio of weak axial-vector and vector coupling constants.
The hotly debated question is whether Q is due to non-
nucleonic renormalization of gA or nuclear renormaliza-
tion of st sOsterfeld, 1992; Arima, 2001d. We have
sketched above the nuclear case, along the lines pro-
posed by Caurier, Poves, and Zuker s1995d, but under a
new guise that makes it easier to understand. The calcu-
lations of Bertsch and Hamamoto s1982d, DroSdS et al.
s1986d, and Dang et al. s1997d manage to place significant
amounts of strength beyond the resonance region, but
they are based on 2p-2h doorways that fall somewhat
short of giving a satisfactory view of the strength func-

tions. No-core calculations are under way that should be
able to clarify the issue.

The purely nuclear origin of quenching is borne out
by sp ,p8d, sg ,g8d, and se ,e8d experiments that determine
the spin and convection currents in M1 transitions, in
which gA /gV play no role ssee Richter, 1995, for a com-
plete reviewd. An analysis of the data available for the
N=28 isotones in terms of full pf-shell calculations con-
cluded that agreement with experiment was achieved by
quenching the st operator by a factor 0.75s2d, fully con-
sistent with the value that explains the Gamow-Teller
data svon Neumann-Cosel et al., 1998; see Fig. 29d.
These results rule out the hypothesis of a renormaliza-
tion of the axial-vector constant gA; it is the st operator
that is quenched.

VI. SPHERICAL SHELL-MODEL DESCRIPTION OF
NUCLEAR ROTATIONS

Progress in the theory of the pf shell came in stages.
The first theoretical study, by McCullen, Bayman, and
Zamick s1964d, restricted to the f7/2 space, was a success,
but had some drawbacks: The spectra were not always
symmetric by interchange of particles and holes, and the
quadrupole moments had systematically the wrong sign.
The first diagonalizations in the full shell sPasquini,
1976; Pasquini and Zuker, 1978d solved these problems
to a large extent, but the very severe truncations neces-
sary at the time made it impossible to treat the pairing
and quadrupole forces on the same footing. The situa-
tion improved markedly when the pure two-body f7/2
part of the Hamiltonian H2, was addressed perturbating
with a three-body term HR1, mostly due to the quadru-
pole force sPoves and Zuker, 1981bd. The paper of Poves
and Zuker ended with these words.

“It may well happen, that in some cases, not in the
pf shell but elsewhere, HR1 will overwhelm H2.
Then, and we are only speculating, we shall speak,
perhaps, of the rotational coupling scheme.”
Indeed, some nuclei were indicating a willingness to

FIG. 28. Comparison of experimental and theoretical values of
the quantity TsGTd in the pf shell sMartínez-Pinedo, Poves,
Caurier, and Zuker, 1996d. The x and y coordinates correspond
to theoretical and experimental values, respectively. The
dashed line shows the best fit for Q=0.744. The solid line
shows the result obtained in the sd-shell nuclei sWildenthal et
al., 1983d.

FIG. 29. Effective spin g factor of the M1 operator deduced
from the comparison of shell-model calculations and data for
the total BsM1d strengths in the stable even mass N=28 iso-
tones. From von Neumann-Cosel et al., 1998.
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become rotational but could not quite make it, simply
because the perturbative treatment was inadequate. The
authors’ statement fell short of being prophetic for lack
of one extra condition: “not in the pf shell” should have
been “not necessarily… .”

At the time it was thought impossible to describe ro-
tational motion in a spherical shell-model context. The
glorious exception, discovered by Elliott s1958a 1958bd
was sapparentlyd associated with strict SUs3d symmetry,
approximately realized only near 20Ne and 24Mg.

A. Rotors in the pf shell

A new stage in pf-shell theory began when the
ANTOINE code sSec. III.Dd came into operation. Simula-
tions using this code established that 48Cr was definitely
a well-deformed rotor sCaurier, Zuker, et al., 1994d. This
is borne out by a comparison of the results of Caurier,
Zuker, et al. s1994d with the experimental spectrum of
Lenzi et al. s1996d in Fig. 30 ssee also Cameron et al.,
1993d and the transition properties in Table VI from
Brandolini et al. s1998d, where we have used

Q0ssd =
sJ + 1ds2J + 3d
3K2 − JsJ + 1d

QspecsJd, K Þ 1, s87d

BsE2,J → J − 2d =
5

16p
e2ukJK20uJ − 2,Klu2Q0std2,

K Þ 1/2,1 s88d

to establish the connection with the intrinsic frame de-
scriptions: A good rotor must have a nearly constant Q0,
which is the case up to J=10; then 48Cr backbends. Such
a behavior had earlier been thought to occur only in
much heavier nuclei.

Figure 31 compares the experimental patterns with
those obtained with KB3 and with the Gogny force. The
latter, when diagonalized, gives surprisingly good results.
When treated in the cranked Hartree-Fock-Bogoliubov
sHFBd approximation, the results are not so good. The
discrepancy is more apparent than real: The predictions
for the observables are very much the same in both
cases ssee Caurier, Egido, et al., 1995, for the detailsd.
The reason is given in Fig. 32, where exact KB3 diago-
nalizations are done, subtracting either of the two pair-
ing contributions, JT=01 or 10 sPoves and Martínez-
Pinedo, 1998d. It is apparent that the subtracted JT=01
pattern is quite close to the cranked HFB one in Fig. 31,
especially in the rotational regime before the backbend.
The JT=10 subtraction goes in the same direction. The
interpretation is clear: the cranked HFB approximation
does not “see” proton-neutron pairing at all, and it is not
very efficient in the low-pairing regime. As it does ev-
erything else very well, the inevitable conclusion is that
pairing can be treated in first-order perturbation theory,
i.e., the energies are very sensitive to it, but not the wave
functions. Floods of ink have gone into discussing
neutron-proton pairing, which is a problem for mean-
field theories but not for the Gogny force or the shell

model. Furthermore, the results show that ordinary pair-
ing is also a mean-field problem when nuclei are not
superfluids.

48Cr has become a benchmark for models of pf-shell
rotors. The models proposed to date include the cranked

FIG. 30. 48Cr level scheme: experiment sLenzi et al., 1996d vs
shell-model results using the interaction KB3.

TABLE VI. 48Cr; quadrupole properties of the yrast band.

J BsE2dexpt BsE2dtheor Q0std Q0ssd Q0stdff7/2 ,p3/2g

2 321s41d 228 107 103 104
4 330s100d 312 105 108 104
6 300s80d 311 100 99 103
8 220s60d 285 93 93 102
10 185s40d 201 77 52 98
12 170s25d 146 65 12 80
14 100s16d 115 55 13 50
16 37s6d 60 40 15 40
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HFB sCaurier, Egido, et al., 1955d, cranked Nilsson-
Strutinsky sJuodagalvis and Åberg, 1998d, projected
shell model sHara et al., 1999d, cluster model sDescouve-
mont, 2002d, and others. Nuclei in the vicinity also have
strong rotational features. The mirror pairs 47V- 47Cr
and 49Cr- 49Mn closely follow the semiclassical picture of
a particle or hole-hole strongly coupled to a rotor
sMartínez-Pinedo et al., 1997d in full agreement with the
experiments sCameron et al., 1991, 1994; O’Leary et al.,
1997; Bentley et al., 1998; Tonev et al., 2002d. 50Cr was
predicted to have a second backbending by Martínez-
Pinedo, Poves, Robledo, et al. s1996d. This has been con-
firmed experimentally sLenzi et al., 1997; see Fig. 33d.
When more particles or holes are added, the collective
behavior fades, though even for 52Fe, a rotorlike band
appears at low spin with an yrast trap at J=12+; both are
accounted for by the shell-model calculations sPoves and
Zuker, 1981b; Ur et al., 1998d. For spectroscopic com-
parisons with the odd-odd nuclei, see Brandolini et al.
s2001d and Lenzi et al. s1999d for 46V; see Svensson et al.
s1998d for 50Mn. Recently, a highly deformed excited

band has been discovered in 56Ni sRudolph et al., 1999d.
It is dominated by the configuration s1f7/2d12

s2p3/2 ,1f5/2 ,2p1/2d4. The calculations reproduce the band,
which starts at about 5-MeV excitation energy and has a
deformation close to b=0.4.

B. Quasi-SU~3!

To account for the appearance of backbending rotors,
a theoretical framework was developed by Zuker et al.
s1995d and made more precise by Martínez-Pinedo et al.
s1997d. Here we give a brief overview of the scheme,
which will be shown to apply even to the classic ex-
amples of rotors in the rare-earth region.

Let us start by considering the quadrupole force
alone, taken to act in a single oscillator shell, say, the
pth. It will tend to maximize the quadrupole moment,
which requires filling the lowest orbits obtained by di-
agonalizing the operator Q0=2q20=2z2−x2−y2. Using
the Cartesian representation, 2q20=2nz−nx−ny, we find
eigenvalues 2p, 2p−3, . . ., etc., as shown in the left panel
of Fig. 34, where spin has been included. By filling the

FIG. 31. sColor in online editiond The yrast band of 48Cr: ex-
periment vs the shell-model calculations with KB3 and the
Gogny force, and the cranked Hartree-Fock-Bogoliubov re-
sults with the Gogny force.

FIG. 32. sColor in online editiond Gamma-ray energies along
the yrast band of 48Cr sin MeVd: KB3, full interaction; KB3-
P10, KB3 with isoscalar pairing retired; KB3-P01, KB3 with
isovector pairing retired. Adapted from Poves and Martínez-
Pinedo, 1998.

FIG. 33. sColor in online editiond The yrast band of 50Cr: ex-
periment sLenzi et al., 1997d vs the shell-model calculation with
the KB3 interaction.

FIG. 34. Single-particle quadrupole moments of the Nilsson
orbits of the SUs3d and quasi-SUs3d Hamiltonians. The quad-
rupole moment of the lowest orbit is Q0=−2p for SUs3d and
Q0=−2p+1/2 for quasi-SUs3d in units of the oscillator param-
eter b2; p is the principal quantum number of the shell.
Adapted from Zuker et al., 1995.
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orbits in order we obtain the intrinsic states for the low-
est SUs3d representations sElliott, 1958a, 1958bd—sl ,0d
if all states are occupied up to a given level and sl ,md
otherwise. For instance, putting two neutrons and two
protons into the K=1/2 level leads to the s4p ,0d repre-
sentation. For four neutrons and four protons, the filling
is not complete and we have the striaxiald „8sp−1d ,4…
representation for which we expect a low-lying g band.

In jj coupling the angular part of the quadrupole op-
erator q20=r2C20 has matrix elements

kjmuC2uj + 2ml <
3fsj + 3/2d2 − m2g

2s2j + 3d2 , s89d

kjmuC2uj + 1ml = −
3mfsj + 1d2 − m2g1/2

2js2j + 2ds2j + 4d
. s90d

The Dj=2 numbers in Eq. s89d are—within the approxi-
mation made—identical to those in the LS scheme, ob-
tained by replacing j by l. The Dj=1 matrix elements in
Eq. s89d are small, for both large and small m, corre-
sponding to the lowest oblate and prolate deformed or-
bits, respectively. If the spherical j orbits are degenerate,
the Dj=1 couplings, though small, will mix strongly the
two Dj=2 sequences, e.g., sf7/2p3/2d and sf5/2p1/2d. The
spin-orbit splittings will break the degeneracies and fa-
vor the decoupling of the two sequences. Hence the idea
sZuker et al., 1995d of neglecting the Dj=1 matrix ele-
ments and exploiting the correspondence,

l → j = l + 1/2, m → m + 1/2 3 sgnsmd ,

which is one-to-one except for m=0. The resulting
“quasi-SUs3d” quadrupole operator respects SUs3d rela-
tionships, except for m=0, where the correspondence
breaks down. The resulting spectrum for quasi-2q20 is
shown in the right panel of Fig. 34. The result is not
exact for the K=1/2 orbits but a very good approxima-
tion.

To check the validity of the decoupling, a Hartree cal-
culation was done for H=«Hsp+Hq, where Hsp is the
observed single-particle spectrum in 41Ca sessentially
equidistant orbits with 2-MeV spacingsd and Hq is the
quadrupole force in Eq. s34d with a properly renormal-
ized coupling. The result is exactly a Nilsson s1955d cal-
culation sMartínez-Pinedo et al., 1997d,

HNilsson = "vS«Hsp −
d

3
2q20D , s91d

where

d

3
=

1
4

k2q20l
kr2l

=
k2q20l

sp + 3/2d4 . s92d

In the lower panel of Fig. 35 the results are given in the
usual form.

In the upper panel we have turned the representation
around: since we are interested in rotors, we start from
perfect ones fSUs3dg and let « increase. At a value of
<0.8 the four lowest orbits are in the same sequence as
on the right side of Fig. 34. sRemember here that the

real situation corresponds to «<1.0.d The agreement
even extends to the next group, although now there is an
intruder s1/2f310g orbitd. The suggestion is confirmed by
an analysis of the wave functions. For the lowest two
orbits, the overlaps between the pure quasi-SUs3d wave
functions calculated in the restricted Dj=2 space sfp
from now ond and those in the full pf shell exceed 0.95
throughout the interval 0.5,«,1. More interesting still:
the contributions to the quadrupole moments from these
two orbits vary very little and remain close to the values
obtained at «=0, as shown in Fig. 34.

We have learned that—for the rotational features—
calculations in the restricted sfpdn spaces account re-
markably well for the results in the full major shell spfdn

ssee the last column of Table VId. Let us move now to
larger spaces. In Fig. 36 we have yrast transition energies
for different configurations of eight particles in Dj=2
spaces. The force is that of Kahana, Lee, and Scott, "v
=9 MeV, the single-particle splittings are uniform at «
=1 MeV, and gds, say, is the lower sequence in the sdg,
p=4, shell. Rotational behavior is fair to excellent at low
J. As expected from the normalization property of the
realistic quadrupole force fEq. s36dg the moments of in-
ertia in the rotational region go as sp+3/2d2sp8+3/2d2,
i.e., if we multiply all the Eg values by this factor, the

FIG. 35. Nilsson diagrams in the pf shell: upper panel, energy
vs single-particle splitting «; lower panel, energy vs deforma-
tion d. Adapted from Martínez-Pinedo et al., 1997.
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lines become parallel. The intrinsic quadrupole moment
Q0 fEq. s87dg remains constant to within 5% up to a
critical J value at which the bands backbend.

Why and how do the bands backbend? We have no
simple answer, but Fig. 37 from Velázquez and Zuker
s2002d shows the behavior of the sgdsd8 space under the
influence of a symmetric random interaction, gradually
made more attractive by an amount a. The similarity
with Fig. 36 is clear. The appearance of backbending
rotors seems to be a general result of the competition
between deformation and alignment, characteristic of
nuclear processes.

The group-theoretical aspects of quasi-SU3 have been
recently discussed and applied to the description of the
sd-shell nuclei by Vargas, Hirsch, and Draayer s2001,
2002ad.

C. Heavier nuclei: Quasi+pseudo SU~3!

We have seen that quasi-SUs3d is a variant of SUs3d
that obtains for moderate spin-orbit splittings. For other

forms of single particle spacings, the pseudo-SUs3d
scheme sArima et al., 1969; Hecht and Adler, 1969; Raju
et al., 1973; see also Vargas et al., 2002b, for more recent
applicationsd will be favored sin which case we have to
use the left panel of Fig. 34, with pseudo-p=p−1d. Other
variants of SUs3d may be possible and are well worth
exploring. In cases of truly large deformation SUs3d it-
self may be valid in some blocks.

To see how this works, consider Fig. 38 giving a sche-
matic view of the single-particle energies in the space of
two contiguous major shells—in protons spd and neu-
trons snd—adequate for a shell-model description of the
rare-earth region.

We want to estimate the quadrupole moments for nu-
clei at the onset of deformation. We shall assume quasi-
SUs3d operates in the upper shells, and pseudo-SUs3d in
the lower ones. The number of particles in each shell for
which the energy will be lowest will depend on a balance
of monopole and quadrupole effects, but Nilsson dia-
grams suggest that, when nuclei acquire stable deforma-
tion, two orbits K=1/2 and 3/2—originating in the up-
per shells of Fig. 38—become occupied, i.e., the upper
blocks are precisely the eight-particle configurations we
have studied at length. Their contribution to the electric
quadrupole moment is then

Q0 = 8fepspp − 1d + enspn − 1dg , s93d

with pp=5, pn=6; ep and en are the effective charges.
Consider even-even nuclei with Z=60–66 and N

=92–98, corresponding to six to ten protons with
pseudo-p=3, and six to ten neutrons with pseudo-p=4 in
the lower shells. From the left side of Fig. 34 we obtain
easily their contribution to Q0, which added to that of
Eq. s93d yields a total

Q0 = 56ep + s76 + 4nden, s94d

for 152+2nNd, 154+2nSm, 156+2nGd, and 158+2nDy, respec-
tively. At fixed n, the value is constant in the four cases
because the orbits of the triplet K=1/2, 3 /2, 5 /2 in Fig.
34 have zero contribution for p=3. Q0 sgiven in dimen-

FIG. 36. Yrast transition energies Eg=EsJ+2d−EsJd for differ-
ent configurations, with the Kahana-Lee-Scott interaction.
Adapted from Zuker et al., 1995.

FIG. 37. Backbending patterns in the configuration sgdsd8 T
=0, with the Kahana-Lee-Scott interaction and with a random
interaction plus a constant Wrstu

JT =−a. From Velázquez and
Zuker, 2002.

FIG. 38. Schematic single-particle spectrum above 132Sn. Here
rp is the set of orbits in shell p excluding the largest. For the
upper shells the label l is used for the orbits j= l+1/2. Adapted
from Zuker et al., 1995.
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sionless oscillator coordinates, i.e., r→r /b with b2

<1.01A−1/3 fm2d, is related to the E2 transition probabil-
ity from the ground state by BsE2d↑ =10−5A2/3Q0

2. The
results, using effective charges of ep=1.4, en=0.6 calcu-
lated by Dufour and Zuker s1996d, are compared in
Table VII with the available experimental values. The
agreement is quite remarkable, and no free parameters
are involved. Note in particular the quality of the pre-
diction of constancy sor rather A2/3 dependenced at fixed
n, which does not depend on the choice of effective
charges. The discrepancy in 152Nd is likely to be of ex-
perimental origin, since systematics indicate, with no ex-
ception, much larger rates for a 2+ state at such low
energy s72.6 keVd. It can be seen that by careful analysis
of exact results one may arrive at very simple computa-
tional strategies. In the last example on BsE2d rates, the
simplicity is such that the computation reduces to a
couple of sums.

D. The 36Ar and 40Ca superdeformed bands

The arguments sketched above apply to the region
around 16O, where a famous four-particle—four-hole
s4p-4hd band starting at 6.05 MeV was identified by
Carter et al. s1964d, followed by an 8p-8h band starting
at 16.75 MeV sChevallier et al., 1967d. Shell-model cal-
culations in a very small space, p1/2d5/2s1/2, could account
for the spectroscopy in 16O, including the 4p-4h band
sZuker et al., 1968d, but the 8p-8h one requires at least
three major shells and was tackled by an a-cluster model
sAbgrall, Baron, et al., 1967; Abgrall, Caurier, and Mon-
sonego, 1967d. It is probably the first superdeformed
band detected and explained.

In 40Ca, the first excited 0+ state is the 4p-4h band-
head. It is only recently that another low-lying highly
deformed band has been found sIdeguchi et al., 2001d,
following the discovery of a similar structure in 36Ar
sSvensson et al., 2000d.

By applying the quasi+pseudo-SUs3d recipes of Sec.
VI.C we find that the maximum deformations attainable
are of 8p-8h character in 40Ca and 4p-4h in 36Ar with
Q0=180 e fm2 and Q0=136 e fm2, respectively.

The natural generalization of the Zuker-Buck-
McGrory space consists in the d3/2s1/2f7/2p3/2 orbits,
which keeps the space relatively free of center-of-mass
spuriousness. And indeed, it describes well the rota-
tional regime of the observed bands. However, to track
them beyond the backbend, it is convenient to increase
the space to d3/2s1/2pf. The adopted interaction, SDPF-
SM, is the restriction to this valence space of the inter-
action originally constructed by Retamosa et al. s1997d
and used by Caurier et al. s1998d. It consists of the uni-
versal sd and KB3 interactions for the intrashell sd- and
pf-shell matrix elements and the Kahana-Lee-Scott in-
teraction for the cross-shell sd and pf matrix elements,
plus the monopole adjustments dictated by new data on
the single-particle structure of 35Si from Nummela, Bau-
mann, et al. s2001; SDPF-NRd. SDPF-SM incorporates
the modifications to the single-particle energies and the
cross-shell monopoles needed to reproduce 29Si and the
evolution of the n-particle–n-hole states in the N=Z nu-
clei.

The calculations are conducted in spaces of a fixed
number of particles and holes. In Fig. 39 the calculated
energy levels in 36Ar are compared to the data. The
agreement is excellent, except at J=12, where the data
show a clear backbending, while the calculation pro-
duces a much smoother upbending pattern.

In Table VIII the calculated spectroscopic quadrupole
moments sQsd and the BsE2d’s are used to compute the
intrinsic Q as in Eqs. s87d and s88d, using standard effec-
tive charges dqp=dqn=0.5. As expected, both Q0ssd and
Q0std are nearly equal and constant—and close to the
quasi+pseudo-SUs3d estimate—up to the backbend. The
calculated BsE2d’s agree well with the experimental ones
sSvensson et al., 2001d. The value of Q0 corresponds to a
deformation b<0.5.

Now we examine the 8p-8h band in 40Ca sIdeguchi et
al., 2001d. The valence space adopted for 36Ar is trun-
cated by limiting the maximum number of particles in
the 1f5/2 and 2p1/2 orbits to two.

TABLE VII. BsE2d ↑ in e2b2 compared with experiment sRa-
man et al., 1989d.

N Nd Sm Gd Dy

92 4.47 4.51 4.55 4.58
2.6s7d 4.36s5d 4.64s5d 4.66s5d

94 4.68 4.72 4.76 4.80
5.02s5d 5.06s4d

96 4.90 4.95 4.99 5.03
5.25s6d 5.28s15d

98 5.13 5.18 5.22 5.26
5.60s5d

FIG. 39. sColor in online editiond The superdeformed band of
36Ar; experimental g-ray energies as a function of J sSvensson
et al., 2000d vs shell-model result in the space of the 4p-4h
configurations, with the SDPF-SM interaction.
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The experimental sIdeguchi et al., 2001d and calcu-
lated yrast gamma-ray energies are compared in Fig. 40.
The patterns agree reasonably well but the change of
slope at J=10—where the backbend in 48Cr starts sFig.
31d—is missed by the calculation, which only backbends
at J=20, the band termination for the configuration
f7/2

8 sd3/2s1/2d−8. The extra collectivity induced by the pres-
ence of sd particles in pseudo-SUs3d orbitals is respon-
sible for the delay in alignment, but it is apparently too
strong to allow for the change in slope at J=10.

The experimental Q0std=180−29
+39 obtained from the

fractional Doppler shifts corresponds to a deformation
b<0.6 sIdeguchi et al., 2001d. It is extracted from an
overall fit that assumes constancy for all measured val-
ues and corresponds exactly to the quasi+pseudo-SUs3d
estimate. It also squares well with the calculated
172 e fm2 in Table IX, where the steady decrease in col-
lectivity remains consistent with experiment within the
quoted uncertainties. A reanalysis of the experimental
lifetimes in the superdeformed band of 40Ca sChiara et
al., 2003d suggests that for low spins the deformation
would be smaller, due to mixing with less deformed
states of lower np-nh rank.

This calculation demonstrates that a detailed descrip-
tion of very deformed bands is within reach of the shell
model. The next step consists in remembering that states
at a fixed number of particles are doorways that will
fragment in an exact calculation, which remains to be
done.

The band in 36Ar has also been described with the
projected shell model by Long and Sun s2001d. Methods
beyond the mean field using the Skyrme interaction,
have recently been applied to both the 36Ar and the 40Ca
superdeformed bands by Bender, Flocard, and Heenen
s2003d.

E. Rotational bands of unnatural parity

The occurrence of low-lying bands of opposite parity
to the ground-state band is very frequent in pf shell nu-
clei. Their simplest characterization is as particle-hole
bands with the hole in the 1d3/2 orbit. In a nucleus whose
ground state is described by the configurations spfdn the
opposite-parity intruders will be s1d3/2d−1 spfdn+1. The
promotion of a particle from the sd to the pf shell costs
an energy equivalent to the local value of the gap, which
in this region is about 7 MeV. On the other side, the
presence of one extra particle in the pf shell may pro-
duce an important increase of the correlation energy,
which can compensate for the energy lost by the
particle-hole jump. For instance, the very-low-lying posi-
tive parity band of 47V can be interpreted as s1d3/2d−1 sa
proton holed coupled to spf8d T=0. Indeed, the correla-
tion energy of this pseudo 48Cr is larger than the corre-
lation energy of the ground state of 47V and even larger
than the correlation energy of the real 48Cr, explaining
why the band starts at only 260 keV of excitation energy
sPoves and Sánchez Solano, 1998d. The most extreme
case is 45Sc, where the intruder band based in the con-
figuration s1d3/2d−1 coupled to 46Ti, barely misses sby just
12 keVd becoming the ground state. Many bands of this

TABLE VIII. Quadrupole properties of the 4p-4h configura-
tion’s yrast-band in 36Ar sin e2 fm4 and e fm2d.

BsE2dsJ→J−2d
J Expt. Theor. Qspec Q0ssd Q0std

2 315 −36.0 126 126
4 372s59d 435 −45.9 126 124
6 454s67d 453 −50.7 127 120
8 440s70d 429 −52.8 125 114

10 316s72d 366 −52.7 121 104
12 275s72d 315 −53.0 119 96
14 232s53d 235 −54.3 120 82
16 .84 131 −56.0 122 61

FIG. 40. sColor in online editiond The superdeformed band in
40Ca; experimental g-ray energies as a function of J sIdeguchi
et al., 2001d vs shell-model result in the space of the 8p-8h
configurations, with the SDPF-SM interaction.

TABLE IX. Quadrupole properties of the 8p-8h configura-
tion’s yrast-band in 40Ca sin e2 fm4 and e fm2d, calculated in the
sdpf valence space.

J BsE2dsJ→J−2d Qspec Q0std Q0ssd

2 589 −49.3 172 172
4 819 −62.4 170 172
6 869 −68.2 167 171
8 860 −70.9 162 168

10 823 −71.6 157 164
12 760 −71.3 160 160
14 677 −71.1 149 157
16 572 −72.2 128 158
18 432 −75.0 111 162
20 72 −85.1
22 8 −79.1
24 7 −81.5
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type have been experimentally studied in recent years,
mainly at the GASP and EUROBALL detectors sBran-
dolini et al., 1999d and explained by shell-model calcula-
tions sBrandolini, Marginean, et al., 2002d.

VII. DESCRIPTION OF VERY NEUTRON-RICH NUCLEI

The study of nuclei lying far from the valley of stabil-
ity is one of the most active fields in today’s experimen-
tal nuclear physics. What is necessary to know specifi-
cally about these nuclei, from a shell-model point of
view? As everywhere else, it is the model space and the
monopole behavior of the interaction. They go together
because the effective single-particle energies ssee Sec.
Vd depend on occupancies, which in turn depend on the
model space.

In broad terms, the specificity of light and medium
neutron-rich nuclei is that the EI closures scorrespond-
ing to the filling of the p+1/2 orbit of each oscillator
shelld take over as boundaries of the model spaces. As
discussed in Sec. II.B.3, the harmonic-oscillator closures
may be quite solid for doubly magic nuclei, but they
become vulnerable in the semimagic cases.

For instance, the d3/2-f7/2 neutron gap in 40Ca of
<7 MeV goes down to <2.5 MeV around 28O. Since the
d5/2 orbit is well below its sd partners, now quite close to
f7/2, the natural model space is no longer the sd shell, but
the EI space bounded by the N=14 and 28 closures,
supplemented by the p3/2 subshell whenever the
p3/2-f7/2 gap becomes small. From <6 MeV in 56Ni, it
drops to <4.5 MeV in 48Ca, then <2 MeV in 40Ca, and
finally <0 MeV in 28Si. As explained at the end of Sec.
II.B.3, this monopole drift provides direct evidence for
the need of three-body mechanisms.

For the p shell, the situation is similar; the imposing
11.5 MeV p1/2-d5/2 gap in 16O is down to some 3 MeV in
12C. The monopole drift of the s1/2-d5/2 gap brings it
from about 8 MeV in 28Si to nearly −1 MeV in 12C. Ac-
cording to Ostuka, Fujimoto, et al. s2001d the drift may
well continue. In 8He, the s1/2-p1/2 bare gap is estimated
at 0.8 MeV.

All the numbers above sexcept the lastd are experi-
mental. The bare monopole values are smaller because
correlations substantially increase the value of the gaps,
but they do not qualitatively change the strong mono-
pole drifts. Their main consequence is that “normal”
states, i.e., those described by 0"v p or sd calculations,
often coexist with intruders that involve promotion to
the next oscillator shell. Let us examine how this hap-
pens.

A. N=8: 11Li, halos

The 1/2+ ground state in 11Be provided one of the first
examples of intrusion. The expected 0"v normal state
lies 300 keV higher. The explanation of this behavior has
varied with time sTalmi and Unna, 1960; Sagawa et al.,
1993; Suzuki and Otsuka, 1994; Auman et al., 2001; see

also Brown, 2001 for a recent review and Suzuki et al.,
2003 for a new multi-"v calculationd, but the idea has
remained unchanged. The normal state corresponds to a
hole on the N=8 closure. The monopole loss of promot-
ing a particle to the sd shell is compensated by a pairing
gain for the p1/2

−2 holes. A quadrupole gain due to the
interaction of the sd neutron with the p2 protons is plau-
sible but becomes questionable when we note that the
same phenomenon occurs in 9He, which has no p2 par-
ticles, suggesting the need for a further reduction of the
monopole loss sOtsuka, Fujimoto, et al., 2001d.

The interest in 11Be—as a “halo” nucleus—was re-
vived by the discovery of the remarkable properties of
11Li, which sits at the drip line s<200 keV two-neutron
separation energyd and has a very large spatial exten-
sion, due to a neutron halo sTanihata et al., 1985; Hansen
and Jonson, 1987d.

The shell model has no particular problem with halo
nuclei, whose large size is readily attributed to the large
size of the s1/2 orbit. As shown by Kahana et al. s1969ad
the use of Woods-Saxon wave functions affects the ma-
trix elements involving this orbit, but the uncertainties
involved are easily absorbed by the monopole field. As a

FIG. 41. sColor in online editiond Effective single-particle en-
ergies sin MeVd at N=20 from 28O sA=28d to 40Ca sA=40d: sad
obtained with the SDPF-NR interaction; sbd obtained with the
interaction of the Tokyo group sUtsuno et al., 1999d. Adapted
from Caurier, Nowacki, and Poves, 2002.
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consequence, the whole issue hinges on the s1/2 contri-
bution to the wave functions, which is sensitively de-
tected by the b decay to the first excited 1/2− state in
11Be. Borge et al. s1997d showed that calculations pro-
ducing a 50% split between the neutron closed shell and
the s1/2

2 p1/2
−2 configuration lead to the right lifetime. This

result was confirmed by Simon et al. s1999d. Further con-
firmation came from Navin et al. s2000d, with solid indi-
cations that the supposedly semimagic 12Be ground state
is dominated by the same s1/2

2 p1/2
−2 configuration.

B. N=20: 32Mg, deformed intruders

In the mid 1970s it was the sd shell that attracted the
most attention. Nobody seemed to remember 11Be, and
everybody sincluding the authors of this review active at
the timed were enormously surprised when a classic ex-
periment by Thibault et al. s1975d established that the
mass and b-decay properties of the 31Na ground state—

expected to be semimagic at N=20—could not possibly
be those of a normal state sWildenthal and Chung,
1979d. The next example of a frustrated semimagic was
32Mg sDetraz et al., 1979d. Early mean-field calculations
had interpreted the discrepancies as due to deformation
sCampi et al., 1975d but the experimental confirmation
took some time sGuillemaud-Mueller et al., 1984; Klotz
et al., 1993; Motobayashi et al., 1995d.

Exploratory shell-model calculations by Storm et al.
s1983d, including the 1f7/2 orbit in the valence space,
were able to improve the mass predictions; however, de-
formation was still absent. To obtain deformed solutions
demanded the inclusion of the 2p3/2 orbit, as demon-
strated by Poves and Retamosa s1987d. These calcula-
tions were followed by many others sWarburton et al.,
1990; Heyde and Woods, 1991; Fukunishi et al., 1992;
Poves and Retamosa, 1994; Otsuka and Fukunishi, 1996;
Dean et al., 1999; Siiskonen et al., 1999d, which mapped
an island of inversion, i.e., a region where the intruder

TABLE X. Properties of the even magnesium isotopes. N stands for normal and I for intruder.
Energies in MeV, BsE2d’s in e2 fm4, and Q’s in e fm2.

30Mg 32Mg 34Mg

N I Expt. N I Expt. N I Expt.

DEs0I
+d +3.1 −1.4 +1.1

0+ 0.0 0.0 0.0 0.0 0.0 0.0
2+ 1.69 0.88 1.48 1.69 0.93 0.89 1.09 0.66 0.67
4+ 4.01 2.27 2.93 2.33 s2.29d 2.41 1.86 2.13
6+ 6.82 3.75 9.98 3.81 3.52 3.50

BsE2d
2+→0+ 53 112 59s5d 36 98 90s16d 75 131 126s25d
4+→2+ 35 144 17 123 88 175
6+→4+ 23 140 2 115 76 176

Qspecs2+d −12.4 −19.9 −11.4 −18.1 −15.4 −22.7

FIG. 42. sColor in online editiond Two neu-
tron separation energies of the neutron-rich
isotopes of oxygen, fluorine, neon, sodium,
and magnesium, calculated with the
SDPF-NR interaction. Adapted from Caurier,
Nowacki, and Poves, 2002.
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configurations are dominant in the ground states. The
detailed contour of this island depends strongly on the
behavior of the effective single-particle energies, in turn
dictated by the monopole Hamiltonian. Let us recall
that, according to what we have learned in Sec. VI.B,
the configurations sd5/2s1/2dp

2−4sf7/2p3/2dn
2−4, corresponding

to N=20, Z=10–12, have a quasi-SUs3d quadrupole co-
herence close to that of SUs3d, i.e., maximal.

The effective single-particle energies in Fig. 41 repre-
sent Hm for the SDPF-NR sNummela, Baumann, et al.,
2001d and Tokyo group interactions sUtsuno et al., 1999d.
These models are quite similar, and both favor deforma-
tion. Both interactions lead to an “island of inversion”
for Z=10, 11, and 12; and N=19, 20, and 21.

Consider now some detailed information obtained
with the interaction SDPF-NR, described in Sec. VI.D,
by Caurier, Nowacki, and Poves s2001, 2002d. The S2N
values of Fig. 42 locate the neutron drip line, consistent
with what is known for oxygen and fluorine, where the
last bound isotopes are 24O and 31F sSakurai et al., 1999d.
Note the kink due to deformed correlations in the latter.
For the other chains, the behavior is smoother and the
last predicted bound isotopes are 34Ne, 37Na, and 40Mg.

Some results for the even Mg isotopes sN=18, N=20,
and N=22d are gathered in Table X. In 30Mg the normal
configuration is the one that agrees with the existing ex-
perimental data sPritychenko et al., 1999d. In 32Mg the
situation is the opposite, as the experimental data—the
2+ excitation energy sGuillemaud-Mueller et al., 1984d
and the 0+→2+ BsE2d sMotobayashi et al., 1995d—
clearly prefer the intruder. A preliminary measure of the
4+ excitation energy reported by Azaiez s1999d goes in
the same direction. Data and calculations suggest pro-
late deformation with b<0.5. In 34Mg the normal con-
figuration, which contains two pf neutrons, is already
quite collective. It can be seen, in the table, that it re-
sembles the 32Mg ground state. The 4p-2h intruder is
even more deformed sb<0.6d and a better rotor. Results
from the RIKEN experiments of Yoneda et al. s2000d
and Iwasaki et al. s2001d seem to favor the intruder op-
tion. In the quantum Monte Carlo diagonalization calcu-
lations of Utsuno et al. s1999d, the ground-state band is
dominantly 4p-2h; the 2+ comes at the right place, but
the 4+ is too high. Clearly, 34Mg is at the edge of the
island of inversion. Another manifestation of the in-
truder presence in the region has been found at Isolde
sNummela, Nowacki, et al., 2001d: The decay of 33Na
indicates that the ground state of 33Mg has Jp=3/2+ in-
stead of the expected Jp=3/2− or Jp=7/2−. This inver-

sion is nicely reproduced by the SDPF-NR calculation.

C. N=28: Vulnerability

Let us return briefly to Fig. 41. The scale does not do
justice to a fundamental feature—the drift of the
p3/2-f7/2 gap, which decreases as protons are removed. As
explained at the end of Sec. II.B.3, this behavior is con-
trary to a very general trend in heavier nuclei, and de-
mands a three-body mechanism to resolve the contradic-
tion. We recall that the oscillator closures are quite
vulnerable, even at the strict monopole level. As we
have seen, quadrupole coherence takes full advantage of
this vulnerability. By contrast, the EI closures are very
robust. However, because of the drift of the p3/2-f7/2 gap,
even the N=28 closure becomes vulnerable. The

TABLE XI. N=28 isotones: quasiparticle neutron gaps, difference in correlation energies between
the 2p-2h and the 0p-0h configurations and their relative position.

40Mg 42Si 44S 46Ar 48Ca 50Ti 52Cr 54Fe 56Ni

Gap 3.35 3.50 3.23 3.84 4.73 5.33 5.92 6.40 7.12
DECorr 8.45 6.0 6.66 5.98 4.08 7.59 10.34 10.41 6.19

E2p-2h
* −1.75 1.0 −0.2 1.7 5.38 3.07 1.50 2.39 8.05

FIG. 43. Lanczos structure function of the 2p-2h 0+ bandheads
of sad 40Mg and sbd 52Cr in the full 0"v space. The bars give the
square of the amplitude S of the bandhead in the physical state
located at this energy.
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SPDF-NR interaction leads to a remarkable result sum-
marized in Table XI: The decrease of the gap combined
with the gain of correlation energy of the 2p-2h leads to
a breakdown of the N=28 closure for 44S, 42Si, and 40Mg.
Towards N=Z, 52Cr and 54Fe exhibit large correlation
energies associated with the prolate deformed character
of their 2p-2h neutron configurations sb,0.3d.

When the 2p-2h bandheads of 40Mg and 52Cr are al-
lowed to mix in the full 0"v space, using them as pivots
in the Lanczos strength function procedure, they keep
their identity to a large extent. This can be seen in Fig.
43, where we have plotted the strength functions of the
2p-2h 0+ states in the full space. In 40Mg the 2p-2h state
represents 60% of the ground state, while in 52Cr it is
the dominant component s70%d of the first excited 0+.
This is a very interesting illustration of the mechanism of
intrusion; the intruder state is present in both nuclei, but
it is only in the very neutron-rich one that it becomes the
ground state.

Table XII gives an idea of the properties of the iso-
tones in which configuration mixing is appreciable. In
Fig. 44 we have plotted the low-energy spectra of the
heaviest known sulfur isotopes. The agreement with the
accumulated experimental results ssee Glasmacher,
1988, for a recent reviewd is excellent and extends to the
new data of Sohler et al. s2002d. Analyzing their proton

occupancies we conclude that the rise in collectivity
along the chain is correlated with the equal filling of the
d3/2 and s1/2 orbitals sthe d5/2 orbital remains always
nearly closedd. The maximum proton collectivity is
achieved when both orbitals are degenerate, which cor-
responds to the pseudo-SUs3d limit. For the neutrons,
maximum collectivity occurs at N=24, the f7/2 midshell.
According to the calculation, 42S is a prolate rotor with
an incipient g band. In 44S the spherical and deformed
configurations mix equally.

The N=27 isotones also reflect the regular transition
from sphericity to deformation in their low-lying spec-
trum. The excitation energy of the 3/2− state should be
sensitive to the correlations and to the neutron gap.
While in 47Ca, it lies quite high sat around 2 MeVd due
to the strong f7/2 closure, in 45Ar it appears at about
0.4 MeV. Concerning 43S, the information comes from
two recent experiments: the mass measurements at Ga-
nil by Sarazin et al. s2000d, which observed a low-lying
isomer around 400-keV excitation energy, and the
Michigan State University Coulex experiment of Ibbot-
son et al. s1999d, which detected a strong E2 transition
from the ground state to an excited state around
940 keV. According to our calculations, the ground state
corresponds to the deformed configuration and has spin

TABLE XII. N=28 isotones: spectra, quadrupole properties, and occupancies.

40Mg 42Si 44S 46Ar

E*s2+d sMeVd 0.81 1.49 1.22 1.51
E*s4+d 2.17 2.68 2.25 3.46

E*s02
+d 1.83 1.57 1.26 2.93

Qs2+d se fm2d −21 16 −17 20
BsE2d se2 fm2d 108 71 93 93
kn7/2l 5.54 6.16 6.16 6.91
sf7/2d8% 3 28 24 45

FIG. 44. Predicted level schemes of the heavy sulphur isotopes, compared with experiment sSohler et al., 2002d. Energies in keV,
BsE2d’s in e2 fm4.
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3/2−. The spherical single-hole state 7/2− would be the
first excited state and its lifetime is consistent with that
of the experimental isomer. The third known state is
short lived and should correspond to the 7/2− member
of the ground-state band.

D. N=40: From “magic” 68Ni to deformed 64Cr

Systematics is a most useful guide, but it has to be
used with care. The p and sd shells can be said to be
“full” 0"v spaces, in the sense that the region bound-
aries are well defined by the N=4, 8, and 20 closures,
with the exception of the very neutron-rich halo nuclei
and the island of inversion discussed previously. In the
pf shell the 0"v model space collapses at N=Z
<32–34 under the invasion of g9/2 intruder orbital.
Naturally, we expect something similar in the neighbor-
hood of N=40 isotones. Recent experiments involving
the Coulomb excitation of 66–68Ni sSorlin et al., 2002d,
the b decay of 60–63V sSorlin et al., 2003d, and the decay
and spectroscopy of the 67mFe sSawicka et al., 2003d, sup-
port this hypothesis. In addition, the b decays of the
neutron-rich isotopes 64Mn and 66Mn, investigated at
Isolde sHannawald et al., 1999d, which show a sudden
drop of the 2+ energies in the daughter nuclei 64Fe and
66Fe, also point in the same direction.

The direct inclusion of the g9/2 orbital in the fp va-
lence space would have the drawback of increasing dra-
matically the size of the problems to be treated and al-
lowing spurious center-of-mass contaminations.
Moreover, its validity would be restricted to nearly
spherical or moderately deformed states. Deformation
requires the addition of the d5/2 subshell. A compromise
is obtained with a 48Ca core with fp orbitals for protons,
to take explicitly into account core excitations from f7/2
to r3 orbitals and with r3g9/2 neutron orbitals. For the
most deformed cases, this valence space can be enlarged
to the d5/2 orbital.

The effective interaction is based on three blocks: sid
the two-body matrix element from the KB3G effective
interaction sPoves et al., 2001d; siid the G matrix of
Hjorth-Jensen et al. s1995d with the modifications of
Nowacki s1996d; and siiid the Kahana, Lee, and Scott G
matrix sKahana et al., 1969bd for the remaining matrix
elements. We have computed all the nickel isotopes and
followed their behavior at and beyond N=40. In Table
XIII we compare the excitation energy of the 2+ states in
the nickel chain with the available experimental data,
including the very recent 70Ni value sSorlin et al., 2002d.
The agreement is quite good, although the experiment
gives a larger peak at N=40. Similarly the BsE2d’s in Fig.
45 follow the experimental trends, including the drop at
68Ni recently measured by Sorlin et al. s2002d. Note that
for a strict closure the transition probability vanishes.
The ground-state wave function of 68Ni is 50% closed
shell and the extra occupancy of the g9/2 orbital, maxi-
mum at N=40, reflects the erosion of the N=40 shell
gap. These numbers are very sensitive to modifications
of the pf-g gap, and smaller values of the closed-shell
probability can be obtained without altering drastically
the rest of the properties. The shell-model results have
been compared with those of other methods by Langa-
nke, Terasaki, et al. s2003d.

The b decays of 60V and 62V indicate very low ener-
gies for the 21

+ states in 60Cr and 62Cr sSorlin et al., 2000,
2003d. If N=40 were a magic number, one would expect
higher 2+ energies as the shell closure approaches, par-
ticularly in 64Cr. As can be seen in Fig. 46, exactly the
opposite seems to happen experimentally. The three
possible model spaces tell an interesting story: pf;r3 is
acceptable at N=32,34. The addition of g9/2 does more
harm than good because the gaps have been arbitrarily
reduced to reproduce the N=36 experimental point by

FIG. 45. Experimental BsE2d’s s0+→2+d in e2 fm4 for the iso-
topes 56Ni– 68Ni sfilled circlesd sSorlin et al., 2002d. The dashed
line links the shell-model results.

TABLE XIII. 21
+ energies and g9/2 intruder occupation in the nickel isotopic chain, from Sorlin et al.,

2002.

62Ni 64Ni 66Ni 68Ni 70Ni 72Ni 74Ni

Es2+dcalc 1.11 1.24 1.49 1.73 1.50 1.42 1.33
Es2+dexpt 1.173 1.346 1.425 2.033 1.259
BsE2↑ dcalc 775 755 520 265 410 505 690
kn9/2l 0.24 0.43 0.67 1.07 0.84 0.55 0.45
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allowing 2p-2h jumps including d5/2. But then, in N=38
the 2+ is too high, and the experimental trend promises
no improvement at N=40.

Properties of the 21
+ energies given by the pfgd calcu-

lation are collected in Table XIV. They point to prolate
structures with deformation b<0.3.

VIII. OTHER REGIONS AND THEMES

A. Astrophysical applications

Astrophysical environments involve temperatures and
densities that are normally not accessible in laboratory
experiments. The description of the different nuclear
processes thus requires theoretical estimates. As dis-
cussed in previous sections, shell-model calculations are
able to satisfactorily reproduce many experimental re-
sults so that it should be possible to obtain reliable pre-
dictions for nuclei and/or conditions not yet accessible
experimentally.

As a first example, consider the decay properties of
nuclei totally stripped of the atomic electrons at typical
cosmic-ray energies of 300 MeV/A. A nucleus such as

53Mn, unstable in normal conditions, becomes stable.
Another isotope, 54Mn, could be used as a chronometer
to study the propagation of iron-group nuclei on cosmic
rays sDuvernois, 1997d, provided its half-life under
cosmic-ray conditions is known. The necessary calcula-
tion involves decay by second-forbidden unique transi-
tions to the ground states of 54Cr and 54Fe. Due to
phase-space arguments the b− decay to 54Fe is expected
to dominate. In two difficult and elegant experiments
the very small branching ratio for the b+ decay to the
ground state of 54Cr has been measured: s1.8±0.8d
310−9 by Zaerpoor et al. s1997d and s1.20±0.26d310−9

by Wuosmaa et al. s1998d. Taking the weighted mean of
these values, s1.26±0.25d310−9, and knowing that of
54Mn, 312.3s4d d, we obtain a partial b+ half-life of
s6.8±1.3d3108 yr, as compared with 5.63108 yr from
the shell-model calculation of Martínez-Pinedo and Vo-
gel s1998d, which yields 5.03105 yr for the dominant b−

branch. Both theoretical results are sensitive to uncer-
tainties in the renormalization of the unique second-
forbidden operators, which should be removed when
taking the ratio of the b− and b+ half-lives. Multiplying

TABLE XIV. Spectroscopic properties of 60–64Cr in the fpgd valence space.

60Cr 62Cr 64Cr

E*s2+d sMeVd 0.67 0.65 0.51
Qs se fm2d −23 −27 −31
BsE2d↓ se2 fm4d 288 302 318
Qi se fm2d from Qs 82 76 109
Qi se fm2d from BsE2d 101 103 106
E*s4+d sMeVd 1.43 1.35 1.15
Qs se fm2d −37 −30 −43
BsE2d↓ se2 fm4d 426 428 471
Qi se fm2d from Qs 102 84 119
Qi se fm2d from BsE2d 117 117 123

FIG. 46. sColor in online editiond Experimen-
tal sSorlin et al., 2000, 2003d and calculated 2+

energies of the very-neutron-rich chromium
isotopes in the pf, pfg, and pfgd spaces.
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the theoretical ratio by the experimental value of the b+

half-life yields a value of s6.0±1.2d3105 yr for the
b− branch. Using a similar argument, Wuosmaa et al.
s1998d estimate the partial b− half-life to be
s6.0±1.3fstatg±1.1ftheorgd3105. The influence of this
half-life on the age of galactic cosmic rays has been dis-
cussed recently by Yanasak et al. s2001d. Another pos-
sible cosmic-ray chronometer, 56Ni, could measure the
time between production of iron-group nuclei in super-
novae and the acceleration of part of this material to
form cosmic rays sFisker et al., 1999d. Before accelera-
tion, the decay of 56Ni proceeds by electron capture to
the 1+ state in 56Co with a half-life of 6.075s20d d. After
acceleration 56Ni is stripped of its electrons, the transi-
tion to the 1+ state is no longer energetically allowed,
and the decay proceeds to the 3+ state at 158 keV via a
second-forbidden unique transition. Currently only a
lower limit for the half-life of totally ionized 56Ni has
been established s2.93104 yrd sSur et al., 1990d. A recent
shell-model calculation by Fisker et al. s1999d predicts a
half-life of 43104 yr that is too short for 56Ni to serve as
a cosmic-ray chronometer.

Nuclear beta decay and electron capture are impor-
tant during the late stages of stellar evolution ssee Lan-
ganke and Martínez-Pinedo, 2003, for a recent reviewd.
At the relevant conditions in the star, electron capture
and b decay are dominated by Gamow-Teller sand
Fermid transitions. Earlier determinations of the appro-
priate weak-interaction rates were based in the phenom-
enological work of Fuller, Fowler, and Newman s1980,
1982a, 1982b, 1985d. The shell model makes it possible
to refine these estimates. For the sd-shell nuclei, impor-
tant in stellar oxygen and silicon burning, we refer the
reader to Oda et al. s1994d. More recently, it has been

possible to extend these studies to pf-shell nuclei rel-
evant for presupernova evolution and collapse sCaurier,
Langanke, et al., 1999: Langanke and Martínez-Pinedo,
2000, 2001d. The astrophysical impact of the shell-model-
based weak-interaction rates have recently been studied
by Heger, Langanke, et al. s2001d, and Heger, Woosley, et
al. s2001d.

The basic ingredient in the calculation of the different
weak-interaction rates is the Gamow-Teller sGTd
strength distribution. The GT+ sector directly deter-
mines the electron-capture rate and also contributes to
the beta-decay rate through the thermal population of
excited states sFuller et al., 1982ad. The GT− strength
contributes to the determination of the b-decay rate. To
be applicable to stellar weak-interaction rates, the shell-
model calculations should reproduce the available GT+
fmeasured by sn ,pd-type reactionsg and GT− fmeasured
in sp ,nd-type reactionsg. Many such comparisons with
the pioneering sn ,pd measurements performed at
TRIUMF sAlford et al., 1993; Rönnqvist et al., 1993; El-
Katab et al., 1994d, with a typical energy resolution of
<1 MeV, can be found in Caurier, Langanke, et al.
s1999d. Recently developed techniques, involving
sd , 2Hed charge-exchange reactions at intermediate ener-
gies sRakers et al., 2002d, have improved the energy
resolution by an order of magnitude or more. Figure 47
compares the shell-model GT+ distribution computed
using the KB3G interaction sPoves et al., 2001d with a
recent experimental measurement of the 51Vsd , 2Hed
performed at KVI sBäumer et al., 2003d.

Detailed comparisons of the shell-model GT− distri-
butions with the data obtained in sp ,nd charge-exchange
reaction measurements for 54,56Fe and 58,60Ni sRapaport
et al., 1983; Anderson et al., 1990d can also be found in
Caurier, Langanke, et al. s1999d. The GT− operator act-
ing on a nucleus with neutron excess and ground-state
isospin T can lead to states in the daughter nucleus with
three different isospin values sT−1,T ,T+1d. As a con-
sequence, the GT− strength distributions have signifi-
cantly more structure and extend over a larger
excitation-energy interval than the GT+ distributions,
making their theoretical reproduction more challenging.
Nevertheless, the agreement with the experimental data
is quite satisfactory. The shell-model results for 58Ni
have recently been compared with high-resolution data
s50 keVd obtained using the s3He, td reaction sFujita et
al., 2002d.

Shell-model diagonalization techniques have been
used to determine astrophysically relevant weak-
interaction rates for nuclei with Aø65. Nuclei with
higher masses are relevant to the study of the collapse
phase of core-collapse supernovae sLanganke and
Martínez-Pinedo, 2003d. The calculation of the relevant
electron-capture rates is currently beyond the capabili-
ties of shell-model diagonalization due to the enormous
dimensions of the valence space. However, this dimen-
sionality problem does not apply to shell-model Monte
Carlo methods ssee Sec. IV.B.3d. Moreover, the high
temperatures present in the astrophysical environment

FIG. 47. Comparison of the shell-model GT+ distribution
slower paneld for 51V with the high-resolution sd , 2Hed data
sfrom Bäumer et al., 2003d The shell-model distribution in-
cludes a quenching factor of s0.74d2.
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make necessary a finite-temperature treatment of the
nucleus; this makes shell-model Monte Carlo methods
the natural choice for this type of calculation. Initial
studies by Langanke et al. s2001d showed that the com-
bined effect of nuclear correlations and finite tempera-
ture was rather efficient in unblocking Gamow-Teller
transitions on neutron-rich germanium isotopes. More
recently these calculations have been extended to cover
all the relevant nuclei in the range A=65–112 by Lan-
ganke, Martínez-Pinedo, et al. s2003d. The resulting
electron-capture rates have a very strong influence in
the collapse sLanganke, Martínez-Pinedo, et al., 2003d
and postbounce sHix et al., 2003d.

The astrophysical r process23 is responsible for the
synthesis of at least half of the elements heavier than
A<60 sWallerstein et al., 1997d. Simulations of the r pro-
cess require a knowledge of nuclear properties far from
the valley of stability sKratz et al., 1998; Pfeiffer et al.,
2001d. As the relevant nuclei are not experimentally ac-
cessible, theoretical predictions for the relevant quanti-
ties si.e., neutron separation energies and half-livesd are
needed. The calculation of b-decay half-lives usually re-
quires two ingredients: the Gamow-Teller strength dis-
tribution in the daughter nucleus and the relative energy
scale between parent and daughter si.e., the Qb valued.
Due to the huge number of nuclei relevant for the r
process, the estimates of the half-lives are so far based
on a combination of global mass models and the quasi-
particle random-phase approximation ssee Langanke
and Martínez-Pinedo, 2003, for a description of the dif-
ferent modelsd. However, recently shell-model calcula-
tions have become available for some key nuclei with a
magic neutron number N=50 sLanganke and Martínez-
Pinedo, 2003d, N=82 sMartínez-Pinedo and Langanke,
1999; Brown et al., 2003d, and N=126 sMartínez-Pinedo,
2001d. All these calculations suffer from a lack of spec-
troscopic information on the regions of interest, which is
necessary to fine-tune the effective interactions. This
situation is improving at least for N=82, thanks to the
recent spectroscopic data on 130Cd sDillmann et al.,
2003d.

Nuclear reaction rates are the key input data for simu-
lations of stellar burning processes. Experiment-based
reaction rates for the simulation of explosive processes
such as novae, supernovae, x-ray bursts, x-ray pulsars,
and merging neutron stars are scarce because of the ex-
perimental difficulties associated with radioactive-beam
measurements sKäppeler et al., 1998.d Most of the
reaction-rate tables are therefore based on global model
predictions.

The most frequently used model is the statistical
Hauser-Feshbach approach sRauscher and Thielemann,
2000d. For nuclei near the driplines or near closed-shell
configurations, the density of levels is not high enough
for the Hauser-Feshbach approach to be applicable. For
these cases alternative theoretical approaches such as
the nuclear shell model need to be applied. Shell-model
calculations were used for the determination of the rel-
evant proton-capture reaction rates for sd-shell nuclei
necessary for rp process studies sHerndl et al., 1995d.
These calculations have recently been extended to in-
clude pf-shell nuclei sFisker et al., 2001d.

Knowledge of neutrino-nucleus reactions is necessary
for many applications, e.g., neutrino oscillation studies,
detection of supernova neutrinos, description of neu-
trino transport in supernovae, and nucleosynthesis stud-
ies. Most of the relevant neutrino reactions have not
been studied experimentally so far, and their cross sec-
tions are typically based on nuclear theory ssee Kolbe et
al., 2003, for a recent reviewd. The model of choice for
the theoretical description of neutrino reactions depends
of the energy on the neutrinos that participate in the
reaction.

For low neutrino energies, comparable to the nuclear
excitation energy, neutrino-nucleus reactions are very
sensitive to the appropriate description of the nuclear
response, which is very sensitive to correlations among
nucleons. The model of choice is then the nuclear shell
model. 0"v calculations have been used for the calcula-
tion of neutrino absorption cross sections sSampaio et
al., 2001d and scattering cross sections sSampaio et al.,
2002d for selected pf-shell nuclei relevant for supernovae
evolution. For lighter nuclei complete diagonalizations
can be performed in larger model spaces, e.g., 4"v cal-
culations for 16O sHaxton, 1987; Haxton and Johnson,
1990d and 6"v calculations for 12C sHayes and Towner,
2000; Volpe et al., 2000d. Another example of shell-
model calculations of neutrino cross sections is the series
of neutrino absorption cross sections on 40Ar of Ormand
et al. s1995d for solar neutrinos ssee Bhattacharya et al.,
1998, for an experimental evaluation of the same cross
sectiond. This cross section has recently been evaluated
by Kolbe et al. s2003d for supernova neutrinos. And the
evaluation by Haxton s1998d of the solar neutrino ab-
sorption cross section on 71Ga is relevant for the
GALLEX and SAGE solar neutrino experiments.

For higher neutrino energies the standard method of
choice is the random-phase approximation, as neutrino
reactions are sensitive mainly to the total strength and
energy centroids of the different multipoles contributing
to the cross section. In some selected cases, the Fermi
and Gamow-Teller contribution to the cross section
could be determined from a shell-model calculation
supplemented by RPA calculations for higher multi-
poles. This type of mixed calculation has been carried
out for several iron isotopes sKolbe et al., 1999; Toiv-
anen et al., 2001d and for 20Ne sHeger et al., 2005d.

23The r process was originally described as the rapid capture
of free neutrons by iron-peak and heavier nuclei during a su-
pernova. While the actual process of building heavy nuclei in a
supernova is more complicated, the term is still applied to
heavy-element production during type-II supernovae which
occur at the end of the lifetime of stars greater than about ten
solar masses.

474 Caurier et al.: The shell model as a unified view of nuclear structure

Rev. Mod. Phys., Vol. 77, No. 2, April 2005



B. bb decays

The double-beta decay is the rarest nuclear weak pro-
cess. It takes place between two even-even isobars,
when decay to the intermediate nucleus is energetically
forbidden or hindered by the large spin difference be-
tween the parent ground state and the available states in
the intermediate nuclei. It comes in three forms: The
two-neutrino decay bb2n,

Z
AXN → Z+2

A XN−2 + e1
− + e2

− + n̄1 + n̄2,

is just a second-order process mediated by the Standard
Model weak interaction. It conserves lepton number and
has already been observed in a few nuclei.

The second mode, the neutrinoless decay bb0n,

Z
AXN → Z+2

A XN−2 + e1
− + e2

−,

needs an extension of the Standard Model of elec-
troweak interactions as it violates lepton number. A
third mode, bb0n,x is also possible,

Z
AXN → Z+2

A XN−2 + e1
− + e2

− + x ,

in some extensions of the Standard Model and proceeds
via emission of a light neutral boson, a majoron x. The
last two modes, not yet experimentally observed, require
massive neutrinos—an issue already settled by the re-
cent measurements at Super-Kamiokande sFukuda et al.,
1998d, SNO sAhmad et al., 2002d, and KamLAND sEgu-
chi et al., 2003d. Interestingly, double-beta decay without
emission of neutrinos would be the only way to signal
the Majorana character of the neutrino and to distin-
guish between the different scenarios for the neutrino
mass differences. Experimentally, the three modes show
different electron energy spectra ssee Fig. 2 in Zde-
senko, 2002d. The bb2n and bb0n,x are characterized by a
continuous spectrum ending at the maximum available
energy Qbb, while the bb0n spectrum consists in a sharp
peak at the end of the Qbb spectrum. This should, in
principle, make it easier to observe the signature of this
mode. In what follows we shall concentrate on the bb2n

and bb0n modes.
The theoretical expression of the half-life of the 2n

mode can be written as

fT1/2
2n g−1 = G2nuMGT

2n u2, s95d

with

MGT
2n sJd = o

m

kJ+uusW t−uu1m
+ lk1m

+ uusW t−uu0+l
Em + E0sJd

s96d

sthere is an implicit sum over all the nucleonsd. G2n con-
tains the phase-space factors and the axial coupling con-
stant gA. The calculation of MGT

2n requires a precise
knowledge of the ground state of the parent nuclei plus
the ground state and occasionally a few excited states of
the granddaughter, both even-even. In addition, it is nec-
essary to have a good description of the Gamow-Teller
strength functions of both of them, which implies a de-
tailed description of the odd-odd intermediate nucleus.
This is why this calculation is a challenge for the nuclear

models, and why agreement with experiment in this
channel is taken as a quality factor to be applied to the
predictions of the models for the neutrinoless mode.

It is also a showcase for the use of the Lanczos
strength function method. This works as follows: Once
the relevant wave functions of parent and granddaugh-
ter are obtained, it is straightforward to build the door-
way states sW t−u0initial

+ l and sW t+uJfinal
+ l. In a second step, one

of these is fragmented using the Lanczos strength func-
tion, producing, at iteration N, N 1+ states in the inter-
mediate nucleus, with excitation energies Em. Overlap-
ping these vectors with the other doorway, entering the
appropriate energy denominators, and adding up the N
contributions gives an approximation to the exact value
of MGT

2n sN=1 gives just the closure approximationd. Fi-
nally, the number of iterations is increased until full con-
vergence is reached. The method is very efficient. For
instance, in the A=48 case, 20 iterations usually suffice.
The contributions of the different intermediate states to
the final matrix element are plotted in Fig. 48.

In the pf shell there is only one double-beta emitter,
namely, 48Ca. For many years, the experimental infor-
mation was limited to a lower limit on the 2n-bb half-life
T1/2

2n .3.631019 yr sBardin et al., 1970d. The calculation
of the 48Ca half-life was one of the first published results
stemming from the full pf shell calculations using the
code ANTOINE. The resulting matrix elements are
MGT

2n s0+d=0.083 and MGT
2n s2+d=0.051. For the ground-

state to ground-state decay 48Ca→ 48Ti, G2n=1.1
310−17 yr−1 sTsuboi et al., 1984d. The phase-space factor
hinders the transition to the 2+, which represents only
about 3% of the total probability. Putting everything to-
gether, and using the Gamow-Teller quenching factor al-

FIG. 48. Lanczos strength function for the 48Ca→ 48Ti 2n de-
cay. Each bar corresponds to the contribution of one interme-
diate state to the matrix element. Notice the interfering posi-
tive and negative contributions. From Caurier et al., 1990.
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ready discussed, the resulting half-life is T1/2
2n =3.7

31019 yr sCaurier et al., 1990; see also the erratum, Cau-
rier et al., 1994d. The prediction was a success, because a
later measure gave T1/2

2n =4.3−1.1
+2.4fstatg±1.4fsystg31019 yr

sBalysh et al., 1996d.
Among the other bb emitters in nature saround 30d,

only a few are potentially interesting for experiment be-
cause they have a Qbb value sufficiently large
sù2.5 MeVd for the 0n signal not to be drowned in the
surrounding natural radioactivity. With the exception of
150Nd, all of them can be described within a shell-model
approach. The results for the 2n mode of the lightest
emitters, 48Ca, 76Ge, and 82Se, for which full space cal-
culations are doable, are gathered in Table XV sCaurier
et al., 1996d. The shell-model Monte Carlo method has
also been applied to the calculation of 2n double-beta
decays by Radha et al. s1996d.

The expression for the neutrinoless beta-decay half-
life, in the 0+→0+ case, can be brought to the following
form sTakasugi, 1981; Doi et al., 1985d:

fT1/2
s0nds0+ − . 0+dg−1 = G0nFMGT

s0nd − S gV

gA
D2

MF
s0ndG2

3S kmnl
me

D2

,

where kmnl is the effective neutrino mass, G0n the kine-
matic space factor, and MGT

s0nd and MF
s0nd the following ma-

trix elements sm and n sum over nucleonsd:

MGT
s0nd = k0f

+io
n,m

hsrdssW n · sW mdtn−
tm−

i0i
+l , s97d

MF
s0nd = k0f

+io
n,m

hsrdtn−
tm−

i0i
+l . s98d

Here, due to the presence of the neutrino propagator,
the “neutrino potential” hsrd is introduced. In this case,
the matrix elements are just expectation values of two-
body operators, without a sum over intermediate states.
This was believed to make the results less dependent on
the nuclear model employed to obtain the wave func-
tion, an assumption that has not survived to the actual
calculations. Full details of the calculations, as well as
predictions for other 0n and 2n decays in heavier
double-beta emitters, can be found in Retamosa et al.
s1995d and Caurier et al. s1996d; see also Suhonen and
Civitarese s1998d for a recent and very comprehensive
review of the nuclear aspects of double-beta decay. The
upper bounds on the neutrino mass resulting from our

shell-model calculations, assuming a reference half-life
T1/2

0n ù1025 yr are collected in Table XVI.
For the heavier emitters, some truncation scheme has

to be employed, and seniority truncation seems to be the
best, because the dimensions are strongly reduced, in
particular for 0+ states. An interesting feature in the cal-
culation of the double-beta decay matrix elements is
shown in Fig. 49 for the 76Ge case. The convergence of
the MGT

0n matrix element is displayed as a function of the
truncation of the valence space, either by seniority v or
by configurations t st is the maximum number of par-
ticles in the g9/2 orbitald. The t=16 and v=16 values cor-
respond to the full space calculation and are conse-
quently equal. The two truncation schemes show very
distinct patterns, with the seniority truncation being the
more efficient. Such patterns have also been observed in
the tellurium and xenon isotopes. This seems to indicate
that the most favorable nuclei for the theoretical calcu-
lation of the 0n mode would be the spherical emitters, in
which seniority is an efficient truncation scheme.

C. Charge radius shifts in the calcium isotopes

We have already seen in Sec. VI.E that deformed
n-particle–n-hole configurations can appear at very low
excitation energy around shell closures and even be-
come yrast in the case of neutron-rich nuclei. This situ-
ation simply reflects the limitation of the spherical
mean-field description of the nucleus, and it shows that,
even in magic cases, the correlations produce a sizable
erosion of the Fermi surface. This is the case in the cal-

TABLE XV. Calculated T1/2
2n half-lives for several nuclei and

0+→0+ transitions.

Parent 48Ca 76Ge 82Se

T1/2
2n theor. syd 3.731019 2.631021 3.731019

T1/2
2n expt. syd 4.331019 1.831021 8.031019

TABLE XVI. 0n matrix elements and upper bounds on the
neutrino mass for T1/2

0n ù1025 yr kmnl in eV.

Parent 48Ca 76Ge 82Se

MGT
0n 0.63 1.58 1.97

MF
0n −0.09 0.19 −0.22

kmnl 0.94 1.33 0.49

FIG. 49. Variation of the upper bound on the neutrino mass
kmnl when the seniority truncations scirclesd and the configu-
ration truncations sdiamondsd are made less restrictive.
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cium isotopic chain. Experiments based on optical iso-
tope shifts or muonic atom data reveal that the nuclear
charge radii krc

2l follow a characteristic parabolic shape
with a pronounced odd-even staggering sPalmer, 1984;
Fricke et al., 1995d.

For a description of the nuclei around N=Z=20, a
model space comprising the orbits d3/2, 2s1/2, 1f7/2, and
2p3/2, is a judicious choice ssee Caurier, Langanke, et al.,
2001d. The interaction is the same as that used to de-
scribe the neutron-rich nuclei in the sd-pf valence space,
called SPDF-NR in Sec. VII, with modified single-
particle energies to reproduce the spectrum of 29Si
sSDPF-SMd.

Several important features of the nuclei at the sd /pf
interface are reproduced by the calculation, among oth-
ers, the excitation energies of the intruder 02

+ states in
the calcium isotopes, the location of the 3

2
+ states in the

scandium isotopes ssee Fig. 50d, and the excitation ener-
gies of the 2+ and 3− and the BsE2d’s between the 21

+ and
the 01

+ states in the calcium isotopes.
Due to the cross-shell pairing interaction, protons and

neutrons are lifted from the sd to the fp orbitals. The
former produce an increase of krc

2l that, using harmonic-
oscillator wave functions, can be expressed as

drc
2sAd =

1

Z
npf

p sAdb2, s99d

where Z=20 for the calcium chain, b is the oscillator
parameter, and npf

p is extracted from the calculated wave
functions. The charge radius shifts of the calcium iso-
topes relative to 40Ca are shown in Fig. 51, together with
the experimental values. The global trends are very well
reproduced, although the calculated shifts are a bit
smaller than the experimental ones. This is probably due

to the limitations in the valence space, which excludes
the 1d5/2, the 1f5/2, and the 2p1/2 orbits.

D. Shell-model calculations in heavier nuclei

There are some regions of heavy nuclei in which
physically sound valence spaces can be designed that are
at the same time tractable. A good example is the space
comprising the neutron orbits between N=50 and N
=82 for the tin isotopes sHjorth-Jensen et al., 1995;
Nowacki, 1996d. When protons are allowed, the dimen-
sions grow rapidly and the calculations have been lim-
ited until now to nuclei with few particle or holes on the
top of the closed shells ssee Covello et al., 1997, for a
review of the work of the Napoli groupd.

The shell-model Monte Carlo approach, which can
overcome these limitations, has been applied in this re-
gion to 128Te and 128Xe, which are candidates for g soft
nuclei, by Alhassid et al. s1996d. It has also been applied
to several dysprosium isotopes, A=152–162, in the
Kumar-Baranger space by White et al. s2000d. Quantum
Monte Carlo diagonalization has also been applied to
the study of the spherical-to-deformed transition in the
even barium isotopes with A=138–150 by Shimizu et al.
s2001d.

Hints on the location of the hypothetical islands of
superheavy elements can often be found in mean-field
calculations of the single-particle structure. The predic-
tions for nuclei far from stability can also be tested in
nuclei much closer to stability, where shell-model calcu-
lations are now feasible. In particular, recent systematic
mean-field calculations suggest a substantial gap for Z
=92 and N=126 s218Ud corresponding to the 1h9/2 shell
closure. On the other hand, the single-quasiparticle en-
ergies extrapolated from lighter N=126 isotones, up to
215Ac, do not support this conclusion. To shed light on
these controversial predictions, shell-model calculations

FIG. 50. Comparison between calculated ssmd and experimen-
tal sFirestone, 1996d intruder excitation energies in the calcium
and scandium isotopic chains. From Caurier, Langanke, et al.,
2001.

FIG. 51. Isotope shifts in the calcium chain: s, experiment
sPalmer, 1984; Fricke et al., 1995d; stars, shell-model calcula-
tions. From Caurier, Langanke, et al., 2001.
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fas well as experimental spectroscopic studies of 216Th
by Hauschild et al. s2001dg were undertaken by the
present authors. The shell-model calculations were for
the N=126 isotones up to 218U. These calculations were
performed in the 1h9/2, 2f7/2, 1i13/2, 3p3/2, 2f5/2, 3p1/2 pro-
ton valence space, using the realistic Kuo-Herling inter-
action sKuo and Herling, 1971d as modified by Brown
and Warburton sWarburton and Brown, 1991d. The cal-
culation reproduces nicely the ground-state energies, the
2+ energy systematics, and the high-spin trends. The
cases of 214Ra, 216Th, and 218U are shown in Fig. 52. The
only deviations between theory and experiment are in
the 3− energy. These reflect the particular nature of
these states, which are known to be very collective, and
correspond to particle-hole excitations of the 208Pb core.

No shell gap for Z=92, corresponding to the 1h9/2 clo-
sure, is predicted. On the contrary, the ground state of
the N=126 isotones is characteristic of a superfluid re-
gime with zero-seniority components representing more
than 95% of the wave functions for all nuclei.

E. Random Hamiltonians

The study of random Hamiltonians is a vast interdis-
ciplinary subject that is beyond the scope of this review

ssee Porter, 1965, for a collection of the pioneering pa-
persd. Therefore we shall only give here a bibliographi-
cal guide to work that has recently attracted wide atten-
tion and that may have consequences for future shell-
model studies.

Johnson et al. s1998, 1999d noticed that random inter-
actions had a strong tendency to produce J=0 ground
states. This is an empirical fact that was hitherto attrib-
uted to the pairing force. Bijker and Frank s2000a,
2000bd and Bijker et al. s1999d showed that this also oc-
curred in an interacting boson context and was associ-
ated with the typical forms of collectivity found in the
interacting boson model. For the fermion problem no
collectivity occurs for purely random interactions sHoroi
et al., 2001d. The origin of J=0 ground-state dominance
was attributed to “geometric chaoticity” by Mulhall et al.
s2000d. The geometric aspects of the phenomenon were
investigated in some simple cases by Zhao and Arima
s2001d, Zhao et al. s2001d, and Chau Huu-Tai et al.
s2002d. Velázquez and Zuker s2002d argued that the gen-
eral cause of J=0 ground-state dominance was to be
found in time-reversal invariance. They showed that
when the random matrix elements were displaced to
have a negative centroid, well-developed rotational mo-

FIG. 52. Experimental sHauschild et al., 2001d
vs theoretical spectra of 214Ra, 216Th, and
218U.
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tion appeared in the valence spaces where the realistic
interactions would also produce it sas in Fig. 37d. This is
very much in line with what was found by Cortes et al.
s1982d, and the interesting point is that the collective
ingredient induced by the displacement of the matrix
elements is the quadrupole force.

It is unlikely that we shall learn much more from
purely random Hamiltonians. However, the interplay of
random and collective interactions may deserve further
study. In particular, we know that a monopole plus pair-
ing Hamiltonian is a good approximation. Would it be a
good idea to replace the rest of the interaction by a
random one, instead of neglecting it?

IX. CONCLUSION

Nuclei are idiosyncratic, especially the lighter ones ac-
cessible to shell-model treatment. Energy scales that are
well separated in other systems ssuch as vibrational and
rotational states in moleculesd do overlap here, leading
to a strong interplay of collective and single-particle
modes. Nonetheless, secular behavior—both in the
masses and the spectra—eventually emerges, and the pf
shell is the boundary region where rapid variation from
nucleus to nucleus is replaced by smoother trends. As a
consequence, larger calculations become associated with
more transparent physics and give hints on how to ex-
tend the shell-model philosophy into heavier regions
where exact diagonalizations become prohibitive. In this
review we have not hesitated to advance some ideas on
how this could be achieved, by suggesting some final
solution to the monopole problem and exploiting the
formal properties of the Lanczos construction.

The shell model has been both a craft and a science:
one invented model spaces and interactions and tried to
impose them on the spectra. Sometimes it worked very
well. Then one wondered why such a phenomenology
succeeded, only to discover that there was not so much
phenomenology after all. It is to be hoped that this state
of affairs will persist.
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APPENDIX A: BASIC DEFINITIONS AND RESULTS

sid p is the principal oscillator quantum number;

siid Dp= sp+1dsp+2d is the ssingle fluidd degeneracy of
shell p;

siiid orbits are called r, s, etc. Dr=2jr+1;

sivd d̂rs=djrjs
but rÞs, and both have the same parity;

svd mr is the number of particles in orbit r, Tr is used
for both the isospin and the isospin operator. In
neutron-proton snpd schemes, mrx specifies the
fluid x. Alternatively we use nr and zr;

svid Vrstu
G or Vrstu

G are two-body matrix elements. Wrstu
G

is used after the monopole part has been
subtracted.

A few equations have to exhibit explicitly angular mo-
mentum sJd, and isospin sTd conservation. We use Bruce
French’s notations sFrench, 1966d: G stands for JT. Then
s−1dG= s−1dJ+T, fGg= s2J+1ds2T+1d, and in general FsGd
=FsJdFsTd. Also s−1dr= s−1djr+1/2, frg=2s2jr+1d. Expres-
sions are carried over to a neutron-proton formalism
simply by dropping the isospin factor.

The one-particle creation and anhilation operators

Arrz
= arrz

† , Brrz
= ãrrz

= s− 1dr+rzar−rz
sA1d

can be coupled to quadratics in A and B,

XGGz

† srsd = sArAsdGz

G , XGGz
srsd = sBrBsdGz

G ,

Sgz

g srtd = sArBtdgz

g . sA2d

ZGGz

† srsd= s1+drsd−1/2XGGz

† srsd is the normalized pair op-
erator and ZGGz

srsd its Hermitian conjugate.
For reduced matrix elements we use Racah’s defini-

tion

kaazuPgz

g ubbzl = s− 1da−azS a g b

− az gz bz
DkaiPgibl .

sA3d

The normal and multipole representations of H are ob-
tained through the basic recoupling

− fXG
†srsdXGstudg0 = − s− 1du+t−GFG

r
G1/2

dstSru
0

+ o
g

fGgg1/2s− 1ds+t−g−G

3H r s G

u t g
JsSrt

gSsu
g d0, sA4d

whose inverse is

479Caurier et al.: The shell model as a unified view of nuclear structure

Rev. Mod. Phys., Vol. 77, No. 2, April 2005



sSrt
gSsu

g d0 = s− 1du−t+gFg

r
G1/2

dstSru
0

− o
G

fGgg1/2s− 1ds+t−g−G

3H r s G

u t g
JfXG

†srsdXGstudg0. sA5d

The “normal” representation of V is then

V = o
røstøu,G

Vrstu
G ZrsG

† · ZtuG

= − o
srstudG

jrsjtufGg1/2Vrstu
G sXrsG

† XtuGd0, sA6d

where we have used

jrs = Hs1 + drsd−1/2 if r ø s ,

s1 + drsd1/2/2 if no restriction,J sA7d

so as to have complete flexibility in the sums. According
to Eq. sA4d, V can be transformed into the “multipole”
representation

V = o
srstudg

jrsjtuhfgg1/2vrtsu
g sSrt

gSsu
g d0 + dstd̂rufsg1/2vruss

0 Sru
0 j ,

sA8d

where ssum only over Pauli-allowed Gd

vrtsu
g = o

G

s− 1ds+t−g−GH r s G

u t g
JWrstu

G fGg , sA9d

Wrstu
G = o

g

s− 1ds+t−g−GH r s G

u t g
Jvrtsu

g fgg . sA10d

Equation sA5d suggests an alternative to Eq. sA8d:

V = o
srstudg

jrsjtufgg1/2vrstu
g

3FsSrt
gSsu

g d0 − s− 1dg+r−sSg

r
D1/2

dstd̂ruSru
0 G , sA11d

where each term is associated with a pure two-body op-
erator.

APPENDIX B: FULL FORM OF Hm

If we were interested only in extracting the diagonal
parts of the monopole Hamiltonian at fixed mT, HmT,
the solution would consist in calculating traces of H and
showing that they can be written solely in terms of num-
ber and isospin operators. Before we describe the tech-
nique for dealing with the nondiagonal parts of HmT, i.e.,
for generalizing to them the notion of the centroid, some
remarks on the appeal of such an operation may be in
order.

The full Hm contains all that is required for Hartree-
Fock sHFd variation, but it goes beyond. Minimizing the
energy with respect to a determinantal state will invari-
ably lead to an isospin violation because neutron and
proton radii tend to equalize sDuflo and Zuker, 2002d,

which demands different orbits of neutrons and protons.
Therefore, to assess accurately the amount of isospin
violation in the presence of isospin-breaking forces, we
must ensure conservation of isospin in their absence.
More generally, a full diagonalization of Hm would be of
great intrinsic interest, though it has never been carried
out. Now, the technical details.

Define the generalized number and isospin operators

Srs = d̂rsfrg1/2Srs
00, Trs =

1
2

d̂rsfrg1/2Srs
01, sB1d

which, for drs=1, reduce to Srr=nr, Trr=Tr. By definition
Hm contains the two-body quadratic forms in Srs and Trs,

Srtsu = zrsztusSrtSsu − dstSrud , sB2ad

Trtsu = zrsztuSTrt · Tsu −
3
4

dstSruD , sB2bd

which in turn become for drt=dsu=1, mrs and Trs in Eqs.
s10ad and s10bd.

It follows that the form of HmT must be

HmT = K + o
all

sartsuSrtsu − brtsuTrtsudd̂rtd̂su, sB3d

where the sum is over all possible contributions. This is a
special Hamiltonian containing only l=0 terms. Trans-
forming to the normal representation through Eq.
sA10d, we have

v00 = dl0dt0 ⇒ Vrstu
J0 = Vrstu

J1 = frsg−1/2,

v01 = dl0dt1 ⇒ Vrstu
J0 = 3frsg−1/2, Vrstu

J1 = − frsg−1/2

and therefore

Srtsu = o
G

ZrsG
† · ZtuG = o

J
ZrsJ0

† · ZtuJ0 + o
J

ZrsJ1
† · ZtuJ1,

sB4ad

− Trtsu =
3
4 o ZrsJ0

† · ZtuJ0 −
1
4 o ZrsJ1

† · ZtuJ1. sB4bd

Inverting, we obtain

o
J

ZrsJ0
† · ZtuJ0 =

1
4

sSrtsu − 4Trtsud , sB5ad

o
J

ZrsJ1
† · ZtuJ1 =

1
4

s3Srtsu + 4Trtsud . sB5bd

When jr= js= jt= ju and rÞs and tÞu, both Srust, Trust
and Srtsu, Trtsu are present. They can be calculated from
Eqs. sB5ad and sB5bd by exchanging t and u,

o ZrsJ0
† · ZutJ0 = − o s− 1dJZrsJ0

† · ZtuJ0

=
1
4

sSrust − 4Trustd , sB6ad
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o ZrsJ1
† · ZutJ1 = o s− 1dJZrsJ1

† · ZtuJ1

=
1
4

s3Srust + 4Trustd sB6bd

and by combining Eqs. sB5ad, sB5bd, sB6ad, and sB6bd,

o
J

ZrsJ0
† · ZtuJ0

f1 ± s− 1dJg
2

=
1
8

fsSrtsu − 4Trtsud 7 sSrust − 4Trustdg , sB7ad

o
J

ZrsJ1
† · ZtuJ1

f1 ± s− 1dJg
2

=
1
8

fs3Srtsu + 4Trtsud ± s3Srust + 4Trustdg . sB7bd

To write HmT we introduce the notations

FsPd = 1 − s1 − drsds1 − dtud , sB8d

Fsed ; sd̂rs − drsdsd̂tu − dtud . sB9d

So for r=s or t=u, FsPd=1 and for jr= js= jt= ju and
FsPd=0, Fsed=1. Then

HmT = K + o
røs

tøu

T,r=±

d̂rtd̂suhf1 − FsedgV̄rstu
T Vrstu

T

+ FsedV̄rstu
rT Vrstu

rT j ,

r = sgns− 1dJ, Vrstu
T = o

J
ZrsJT

† · ZtuJT,

Vrstu
±T = o

J
ZrsJT

† · ZtuJT
f1 ± s− 1dJg

2
. sB10d

The values of the generalized centroids V̄rstu
T and V̄rT are

determined by demanding that H−HmT=HM contain no
contributions with l=0. In other words,

Wrstu
JT = Vrstu

JT − d̂rtd̂suhf1 − FsedgV̄rstu
T + FsedV̄rstu

rT j sB11d

must be such that vrtsu
0t =0, and from Eq. sA10d

o
sJd

fJgWrstu
JT = 0 [ V̄rstu

T = o
sJd

fJgVrstu
JT /o

sJd
fJg . sB12d

Applying this prescription to all the terms leads to sob-

viously d̂rtd̂su=1 in all casesd

V̄rstu
T = o

sJd
Vrstu

JT fJgYo
sJd

fJg ,

o
sJd

fJg =
1
4

DrfDs + 2FsPds− 1dTg
1 + FsPd

,

V̄rstu
±T = o

J
Vrstu

JT fJgf1 ± s− 1dJgYo
J

fJgf1 ± s− 1dJg ,

o
J

fJgf1 ± s− 1dJg =
1
4

DrsDr 7 2d ,

Dr = frg, Fsed = 1, for V̄rstu
±T . sB13d

Through Eqs. sB5ad, sB5bd, sB7ad, and sB7bd we can
obtain the form of HmT in terms of the monopole opera-
tors by regrouping the coefficients affecting each of
them. To simplify the presentation we adopt the follow-
ing convention:

Ha ; rstu r ø s,t ø u , d̂rtd̂su = 1, BUT

Sa = Srtsu, Sā = Srust, Ta = Trtsu, Tā = Trust.
J

Then

HmT = K + o
a

f1 − FsedgsaaSa + baTad + Fsedsaa
dSa

+ ba
dTa + aa

e Sā + ba
e Tād , sB14ad

with

aa =
1
4

s3V̄a
1 + V̄a

0d ,

ba =
1
4

sV̄a
1 − V̄a

0d , sB14bd

aa
d =

1
8

s3V̄a
+1 + 3V̄a

−1 + V̄a
+0 + V̄a

−0d ,

aa
e =

1
8

s3V̄a
+1 − 3V̄a

−1 − V̄a
+0 + V̄a

−0d ,

ba
d =

1
2

s3V̄a
+1 + 3V̄a

−1 − V̄a
+0 − V̄a

−0d ,

ba
e =

1
2

s3V̄a
+1 − V̄a

−1 + V̄a
+0 − V̄a

−0d . sB14cd

1. Separation of Hmnp and Hm0

In an np formalism Hmnp is HmT under another guise;
neutron and proton shells are differentiated and the op-
erators Trs and Srs are written in terms of four scalars
Srxsy

; x ,y=n or p.
We may also be interested in extracting only the

purely isoscalar contribution to HmT, which we call Hm0.
The power of French’s product notation becomes par-
ticularly evident here, because the form of both terms is
identical. It demands some algebraic manipulation to
find sZuker, 1994d
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Hmnp or Hm0 = K + o
a
SV̄aSaf1 − Fsedg +

1
2

fsV̄a
+

+ V̄a
−dSa + sV̄a

− − V̄a
+dSāgFsedD sB15d

with

V̄rstu = o
sGd

Vrstu
G fGgYo

sGd
fGg ,

o
sGd

fGg = DrfDs − FsPdg/f1 + FsPdg ,

V̄rstu
± = o

G

VrstufGgf1 ± s− 1dG+2rg ,

o
G

fGgf1 ± s− 1dG+2rg = DrfDr 7 s− 1d2rg . sB16d

Of course we must remember that, for Hmnp,

Dr = 2jr + 1, s− 1d2r = − 1, G ; J, etc.,

while for Hm0

Dr = 2s2jr + 1d , s− 1d2r = + 1, G ; JT, etc.

It should be noted that Hm0 is not obtained by simply
discarding the b coefficients in Eqs. sB14d, because we
can extract some g=00 contribution from the Ta opera-
tors. The point will become quite clear when considering
the diagonal contributions.

2. Diagonal forms of Hm

Hm is unique, but its diagonal part Hm
d , which contains

only m and T operators, can take two forms that repro-
duce average energies of configurations either at fixed m
and T sHmT

d in a “T” formalismd or at fixed number of
protons and neutrons sHnp

d in an “np” formalismd. Only
Vrsrs

G matrix elements are involved, whose centroids will

be called simply Vrs and Vrs
T sthe overbar in V̄rstu

T was
meant to avoid confusion with possible matrix elements
Vrstu

1 or Vrstu
0 ; it can be safely dropped nowd. Then Eq.

sB14d becomes Eq. s11d, and Eq. sB15d becomes

Hmnp
d or Hm0

d = K + o
røs

Vrsnrsns − drsd/s1 + drsd . sB17d

We rewrite the relevant centroids incorporating ex-
plicitly the Pauli restrictions,

Vrs =

o
G

Vrsrs
G fGgf1 − s− 1dGdrsg

DrsDs − drsd
, sB18ad

Vrs
T =

4o
J

Vrsrs
JT fJgf1 − s− 1dJ+Tdrsg

DrfDs + 2drss− 1dTg
, sB18bd

ars =
1
4

s3Vrs
1 + Vrs

0 d = Vrs +
3
4

drs

Dr − 1
brs,

brs = Vrs
1 − Vrs

0 . sB18cd

The relationship between ars and Vrs makes it possible to
combine Eqs. s11d and sB17d and in a single form:

Hm
d = K + o 1

s1 + drsd
FVrsnrsns − drsd + brsSTr · Ts

−
3nrn̄r

4sDr − 1d
drsDG , sB19d

where now the brs term can be dropped to obtain Hm0
d or

Hmnp
d .
In the np scheme each orbit r goes into two rn and rp,

and the centroids can be obtained through sx ,y=n or
p, xÞyd

Vrxsy
=

1
2
FVrs

1 S1 −
2drs

Dr
D + Vrs

0 S1 +
2drs

Dr
DG ,

Vrxsx
= Vrs

1 . sB20d

Note that the diagonal terms depend on the representa-
tion Hmnp

d ÞHmT
d in general.

APPENDIX C: THE CENTER-OF-MASS PROBLEM

“What do you do about center of mass?” is probably
the standard question most shell-model practitioners
prefer to ignore or dismiss. Even if we may be tempted
to do so, there is no excuse for ignoring what the prob-
lem is, and here we would like to explain it in sufficient
detail to dispel some common misconceptions.

The center-of-mass sc.m.d problem arises because in a
many-body treatment it is most convenient to work with
A coordinates and momenta, while only A−1 of them
can be linearly independent since the solutions cannot
depend on the center-of-mass coordinate R= soirid /ÎA
or momentum P= soipid /ÎA. The way out is to impose a
factorization of the wave functions into relative and c.m.
parts: Fsr1r2¯rAd=Frelfc.m. The potential energy is
naturally given in terms of relative values, and for the
kinetic energy we should do the same by referring to the
c.m. momentum,

o
i
Spi −

P
ÎA

D2

= o
i

pi
2 − P2 =

1

Ao
ij

spi − pjd2, sC1d

and change accordingly Kij in Eq. s2d. As we are only
interested in wave functions in which the center of mass
is at rest sor in its lowest possible stated, we can add a
c.m. operator to the Hamiltonian H⇒H+lsR2+P2d,
and calling rij=ri−rj we have
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R2 + P2 = o
i

sri
2 + pi

2d −
1

Ao
ij

srij
2 + pij

2d , sC2d

so that upon diagonalization the eigenvalues will be of
the form E=Erel+lsNc.m.+3/2d, and it only remains to
select the states with Nc.m.=0. We are taking for granted
separation of c.m. and relative coordinates. Unfortu-
nately, this happens only for spaces that are closed under
the c.m. operator fEq. sC2dg. For Nc.m. to be a good
quantum number the space must include all possible
states with Nc.m. oscillator quanta. The problem was
raised by Elliott and Skyrme s1955d, who initiated the
study of “particle-hole” sphd excitations on closed shells.
They noted that acting with R− iP on the IPM ground
state of 16O su0ld leads to

Î 1
18

sp̄1s1 − Î2p̄3s1 − Î5p̄1d3 + p̄3d3 + 3p̄3d5du0l , sC3d

where p̄2j removes a particle and s1 or d2j add a particle
on u0l. As R− iP has tensorial rank JpT=1−0, Eq. sC3d is
telling us that out of five possible 1−0 excitations, one is
“spurious” and has to be discarded.

Assume now that we are interested in 2p-2p excita-
tions. They involve jumps of two oscillator quanta s2"vd,
and the c.m. eigenstates sR− iPd2u0l involve the operator
in Eq. sC3d, but also jumps to other shells, of the type
s̄pp̄ssdd; s̄ssdd or ssddspfdp̄ssdd; p̄spfd. Therefore, as an-
ticipated, relative-c.m. factorization can be achieved
only by including all states involving a given number of
oscillator quanta. The clean way to proceed is through
complete N"v spaces, discussed in Secs. II.A and III.F.
The 0"v and EI spaces are also free of problems sthe
latter because no 1"v 1−0 states existd. It remains to
analyze the EEI valence spaces, where c.m. spuriousness
is always present but strongly suppressed because the
main contributors to R− iP—of the type pj⇒p+1j±1,
with the largest j—are always excluded. Consider
EEIs1d=p1/2 ,d5/2 ,s1/2. The only possible 1"v 1−0 state is
p̄1s1, which according to Eq. sC3d accounts for
s1/18d% =5.6% of the spurious state. This apparently
minor problem was unduly transformed into a serious
one through a proposal by Gloeckner and Lawson
s1974d. It amounts to projecting c.m. spuriousness
through the H⇒H+lsR2+P2d prescription in the
EEIs1d space by identifying R− iP; p̄1s1. The procedure
is manifestly incorrect, as was repeatedly pointed out
ssee, for instance, Whitehead et al., 1977d, but the mis-
conception persists. An interesting and viable alterna-
tive was put forward by Dean et al. s1999d in calculations
with two contiguous major shells. Further work on the
subject would be welcome.
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