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The density-matrix renormalization group sDMRGd is a numerical algorithm for the efficient
truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a
rather general decimation prescription. This algorithm has achieved unprecedented precision in the
description of one-dimensional quantum systems. It has therefore quickly become the method of
choice for numerical studies of such systems. Its applications to the calculation of static, dynamic, and
thermodynamic quantities in these systems are reviewed here. The potential of DMRG applications
in the fields of two-dimensional quantum systems, quantum chemistry, three-dimensional small grains,
nuclear physics, equilibrium and nonequilibrium statistical physics, and time-dependent phenomena is
also discussed. This review additionally considers the theoretical foundations of the method,
examining its relationship to matrix-product states and the quantum information content of the
density matrices generated by the DMRG.
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I. INTRODUCTION

Consider a crystalline solid; it consists of some 1026 or
more atomic nuclei and electrons for objects on a human
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scale. All nuclei and electrons are subject to the strong,
long-range Coulomb interaction. While this system
should a priori be described by the Schrödinger equa-
tion, its explicit solution is impossible to find. Yet, it has
become clear over the decades that in many cases the
physical properties of solids can be understood to a very
good approximation in the framework of some effective
one-body problem. This is a consequence of the very
efficient interplay of nuclei and electrons in screening
the Coulomb interaction, except on the very shortest
length scales.

This comforting picture may break down as various
effects invalidate the fundamental tenet of weak effec-
tive interactions, taking us into the field of strongly cor-
related quantum systems, in which the full electronic
many-body problem has to be considered. Of the routes
to strong correlation, let me mention just two, because it
is at their meeting point that, from the point of view of
physical phenomena, the density-matrix renormalization
group sDMRGd has its origin.

On the one hand, for arbitrary interactions, the
Fermi-liquid picture breaks down in one-dimensional
solids and gives way to the Tomonaga-Luttinger liquid
picture: essentially due to the small size of phase space,
scattering processes for particles close to the Fermi en-
ergy become so important that the sfermionicd quasipar-
ticle picture of Fermi-liquid theory is replaced by
sbosonicd collective excitations.

On the other hand, for arbitrary dimensions, screen-
ing is typically so effective because of strong delocaliza-
tion of valence electrons over the lattice. In transition
metals and rare earths, however, the valence orbitals are
inner d or f orbitals. Hence valence electrons are much
more localized, though not immobile. There is now a
strong energy penalty for placing two electrons in the
same local valence orbital, and the motion of valence
electrons becomes strongly correlated on the lattice.

To study strongly correlated systems, simplified model
Hamiltonians have been designed that try to retain just
the core ingredients needed to describe some physical
phenomenon and methods for their treatment. Localiza-
tion suggests the use of tight-binding lattice models, in
which local orbitals on one site can take Nsite=4 differ-
ent states of up to two electrons su0l , u↑ l , u↓ l , u↑ ↓ ld.

The simplest model Hamiltonian for just one valence
orbital sbandd with a kinetic-energy term selectron hop-
ping between sites i and j with amplitude tijd and Cou-
lomb repulsion is the on-site Hubbard model sHubbard,
1963, 1964d, in which just the leading on-site Coulomb
repulsion U has been retained:

ĤHubbard = − o
kijl,s

tijscis
† c

js
+ H.c.d + Uo

i
ni↑ni↓. s1d

kl designates bonds. In the limit U / t@1 double occu-
pancy u↑ ↓ l can be excluded, resulting in the Nsite=3
state t-J model:

ĤtJ = − o
kijl,s

tijscis
† cjs + H.c.d + o

kijl
JijSSi · Sj −

1
4

ninjD ,

s2d

in which the spin-spin interaction Jij=4tij
2 /U is due to a

second-order virtual hopping process possible only for
electrons of opposite spin on sites i and j. At half-filling,
the model simplifies even further to the spin-1

2 isotropic
Heisenberg model,

ĤHeisenberg = o
kijl

JijSi · Sj, s3d

placing collective santidferromagnetism, which it de-
scribes, into the framework of strongly correlated sys-
tems. These and other model Hamiltonians have been
modified in multiple ways.

In various fields of condensed-matter physics, such as
high-temperature superconductivity, low-dimensional
magnetism sspin chains and spin laddersd, low-
dimensional conductors, and polymer physics, theoreti-
cal research is focussing on the highly nontrivial proper-
ties of these seemingly simple models, which are
believed to capture some of the essential physics. Recent
progress in experiments on ultracold atomic gases
sGreiner et al., 2002d has allowed the preparation of
strongly correlated bosonic systems in optical lattices
with tunable interaction parameters, attracting many
solid-state physicists to this field. On the conceptual
side, important old and new questions are at the center
of the physics of strongly correlated quantum systems,
e.g., topological effects in quantum mechanics, the wide
field of quantum phase transitions, and the search for
exotic forms of order stabilized by quantum effects at
low temperatures.

The typical absence of a dominant, exactly solvable
contribution to the Hamiltonian, about which a pertur-
bative expansion as in conventional many-body physics
might be attempted, goes a long way towards explaining
the inherent complexity of strongly correlated systems.
This is why, apart from some exact solutions like those
provided by the Bethe ansatz or certain toy models,
most analytical approaches are quite uncontrolled in
their reliability. While these approaches may yield im-
portant insight into the nature of the physical phenom-
ena observed, it is ultimately up to numerical ap-
proaches to assess the validity of analytical
approximations.

Standard methods in the field are the exact diagonal-
ization of small systems, the various quantum Monte
Carlo methods, and, less widely used, coupled-cluster
methods and series expansion techniques. Since its in-
troduction by White s1992d, the density-matrix renor-
malization group has quickly achieved the status of a
highly reliable, precise, and versatile numerical method
in the field. Its main advantages are the ability to treat
unusually large systems at high precision at or very close
to zero temperature and the absence of the negative-
sign problem that plagues the otherwise most powerful
method, quantum Monte Carlo, making the latter of
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limited use for frustrated spin or fermionic systems. A
first striking illustration of DMRG precision was given
by White and Huse s1993d. Using modest numerical
means to study the S=1 isotropic antiferromagnetic
Heisenberg chain, they calculated the ground-state
energy at almost machine precision, E0
=−1.401 484 0389 71s4dJ, and the sHaldaned excitation
gap as D=0.410 50s2dJ. The spin-spin correlation length
was found to be j=6.03s2d lattice spacings. More ex-
amples of the versatility and precision that have made
the reputation of the DMRG method will be found
throughout the text. The major drawback of DMRG is
that it displays its full force mainly for one-dimensional
systems; nevertheless, interesting forays into higher di-
mensions have been made. By now, DMRG has, despite
its complexity, become a standard tool of computational
physics that many research groups in condensed-matter
physics will want to have at hand. In the simulation of
model Hamiltonians, it is part of a methodological triad
consisting of exact diagonalization, quantum Monte
Carlo, and DMRG.

Most DMRG applications still treat low-dimensional,
strongly correlated model Hamiltonians, for which the
method was originally developed. However, the core
idea of DMRG, the construction of a renormalization-
group flow in a space of suitably chosen density matri-
ces, is quite general. In fact, another excellent way of
conceptualizing DMRG is in the very general terms of
quantum information theory. The versatility of the core
idea has allowed the extension of DMRG applications
to fields quite far from its origins, such as the physics of
sthree-dimensionald small grains, equilibrium and far-
from-equilibrium problems in classical and quantum sta-
tistical mechanics, and the quantum chemistry of small
to medium-sized molecules. Profound connections to ex-
actly solvable models in statistical mechanics have
emerged.

The aim of this review is to provide both the algorith-
mic foundations of DMRG and an overview of its main
and by now quite diverse fields of applications.

I start with a discussion of the key algorithmic ideas
needed to deal with the most conventional DMRG
problem, the study of T=0 static properties of a one-
dimensional quantum Hamiltonian sSec. IId. This in-
cludes standard improvements to the basic algorithm
that should always be used to obtain a competitive
DMRG application, a discussion of how to assess the
numerical quality of DMRG output, and an overview of
applications. Having read this first major section, the
reader should be able to set up a standard DMRG with
the major algorithmic design problems in mind.

I move on to a section on DMRG theory sSec. IIId,
discussing the properties of the quantum states gener-
ated by DMRG smatrix-product statesd and the proper-
ties of the density matrices that are essential for its suc-
cess; the section is closed by a reexamination of DMRG
from a quantum information theory point of view. At
least some superficial grasp of the key results of this
section will be useful in the remainder of the review,
while a more thorough reading might serve as a sum-

mary. All the sections that come after these key concep-
tual sections can then, to some degree, be read indepen-
dently.

Among the various branches of applied DMRG, the
applications to dynamical properties of quantum sys-
tems are presented first sSec. IVd. Next, I discuss at-
tempts to use DMRG for systems with potentially large
numbers of local degrees of freedom such as phononic
models or Bose-Hubbard models sSec. Vd.

Moving beyond the world of T=0 physics in one di-
mension, DMRG as applied to two-dimensional quan-
tum Hamiltonians in real space with short-ranged inter-
actions is introduced and various algorithmic variants
are presented in Sec. VI.

Major progress has been made by abandoning the
concept of an underlying real-space lattice, as various
authors have developed DMRG variants for momentum
space sSec. VII.Ad, for small-molecule quantum chemis-
try sSec. VII.Bd, and for mesoscopic small grains and
nuclei sSec. VII.Cd. All these fields are currently under
very active development.

Early in the history of DMRG it was realized that its
core renormalization idea might also be applied to the
renormalization of transfer matrices that describe two-
dimensional classical sSec. VIII.Ad or one-dimensional
quantum systems sSec. VIII.Cd in equilibrium at finite
temperature. Here, algorithmic details undergo major
changes, such that this class of DMRG methods is often
referred to as TMRG (transfer-matrix renormalization
group).

Yet another step can be taken by moving to physical
systems that are out of equilibrium sSec. IXd. DMRG
has been successfully applied to the steady states of non-
equilibrium systems, leading to a non-Hermitian exten-
sion of the DMRG in which transition matrices replace
Hamiltonians. Various methods for time-dependent
problems are under development and have recently
started to yield results unattainable by other numerical
methods, not only at T=0, but also for finite tempera-
ture and in the presence of dissipation.

In this review, details of computer implementation
have been excluded. Rather, I have tried to focus on
details of algorithmic structure and their relation to the
physical questions to be studied using DMRG and to
give the reader some idea of the power and the limita-
tions of the method. In the more standard fields of
DMRG, I have not been sable to bed exhaustive even in
listing applications. In the less established fields of
DMRG, I have tried to be more comprehensive and to
provide as much discussion of their details as possible, in
order to make these fields better known and, hopefully,
to stimulate thinking about further algorithmic progress.
I have excluded, for lack of space, any extensive discus-
sions of the analytical methods whose development has
been stimulated by DMRG concepts. Last but not least,
it should be mentioned that some of the topics of this
review have been considered by other authors: White
s1998d gives an introduction to the fundamentals of
DMRG; a very detailed survey of DMRG as it was un-
derstood in late 1998 has been provided in a collection
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of lectures and articles sPeschel, Hallberg, et al., 1999d,
which also contains an account of DMRG history by
White. More recently, the application of TMRG to
quantum systems and two-dimensional DMRG has been
reviewed by Shibata s2003d. Hallberg s2003d gives a
rather complete overview of DMRG applications.
Dukelsky and Pittel s2004d focus on DMRG applications
to finite Fermi systems such as small grains, small mol-
ecules, and nuclei.

A word on notation: All state spaces considered here
can be factorized into local state spaces huslj labeled by
greek letters. DMRG forms blocks of lattice sites; I de-
note sbasisd states uml of such blocks by latin letters.
These states depend on the size of the block; when nec-
essary, I indicate the block length by subscripts um,l.
Correspondingly, usil is a local state on site i. Moreover,
DMRG typically operates with two blocks and two sites,
which are referred to as belonging to a “system” or “en-
vironment.” Where this distinction matters, it is indi-
cated by superscripts, umSl or usEl.

II. KEY ASPECTS OF DMRG

Historically, DMRG has its origin in the analysis by
White and Noack s1992d of the failure of real-space
renormalization-group sRSRGd methods to yield quanti-
tatively acceptable results for the low-energy properties
of quantum many-body problems. Most of the DMRG
algorithm can be formulated in standard sreal-spaced
renormalization-group sRGd language. Alternative
points of view in terms of matrix product states and
quantum information theory will be taken up later sSec.
III.A and Sec. III.Cd. Before moving on to the details,
let me mention a debate that has been going on among
DMRG practitioners on whether calling the DMRG al-
gorithm a renormalization-group method is a misnomer.
The answer depends on what one considers the essence
of a renormalization-group sRGd method. If this essence
is the systematic thinning out of degrees of freedom
leading to effective Hamiltonians, DMRG is an RG
method. However, it does not involve an ultraviolet or
infrared energy cutoff in the degrees of freedom, which
is at the heart of traditional RG methods and hence is
often considered as part of the core concept.

A. Real-space renormalization of Hamiltonians

The set of concepts grouped under the heading of
“renormalization” has proven extremely powerful in
providing succinct descriptions of the collective behavior
of systems of size L with a diverging number of degrees
of freedom Nsite

L . Starting from some microscopic Hamil-
tonian, degrees of freedom are iteratively integrated out
and accounted for by modifying the original Hamil-
tonian. The new Hamiltonian will exhibit modified as
well as new couplings, and renormalization-group ap-
proximations typically consist of physically motivated
truncations of the set of couplings newly generated by
the a priori exact elimination of degrees of freedom.

One obtains a simplified s“renormalized”d effective
Hamiltonian that should catch the essential physics of
the system under study. The success of this approach
rests on scale separation: for continuous phase transi-
tions, the diverging correlation length sets a natural
long-wavelength low-energy scale which dominates the
physical properties, and fluctuations on shorter length
scales may be integrated out and summed up into quan-
titative modifications of the long-wavelength behavior.
In the Kondo problem, the width of the Kondo reso-
nance sets an energy scale such that the exponentially
decaying contributions of energy levels far from the
resonance can be integrated out. This is the essence of
the numerical renormalization group sWilson, 1975d.

Following up on the Kondo problem, it was hoped
that thermodynamic-limit ground-state properties of
other many-body problems such as the one-dimensional
Hubbard or Heisenberg models might be treated simi-
larly, with lattice sites replacing energy levels. However,
results of real-space renormalization schemes turned out
to be poor. While a precise analysis of this observation is
hard for many-body problems, White and Noack s1992d
identified the breakdown of the real-space renormaliza-
tion group for the toy model of a single noninteracting
particle hopping on a discrete one-dimensional lattice
sthe “particle in a box” problemd. For a box of size L,
the Hilbert space spanned by huilj is L dimensional; in
state uil, the particle is on site i. The matrix elements of

the Hamiltonian are band diagonal, kiuĤuil=2;

kiuĤui±1l=−1 in some units. Consider now the following
real-space renormalization-group procedure:

s1d Describe interactions on an initial sublattice

s“block”d A of length , by a block Hamiltonian ĤA
acting on an M-dimensional Hilbert space.

s2d Form a compound block AA of length 2, and the

Hamiltonian ĤAA, consisting of two block Hamilto-

nians and interblock interactions. ĤAA has dimen-
sion M2.

s3d Diagonalize ĤAA to find the M lowest-lying eigen-
states.

s4d Project ĤAA onto the truncated space spanned by

the M lowest-lying eigenstates, ĤAA→ĤAA
tr .

s5d Restart from step s2d, with doubled block size: 2,

→,, AA→A, and ĤAA
tr →ĤA, until the box size is

reached.

The key point is that the decimation procedure of the
Hilbert space is to take the lowest-lying eigenstates of
the compound block AA. This amounts to the assump-
tion that the ground state of the entire box will essen-
tially be composed of energetically low-lying states liv-
ing on smaller blocks. The outlined real-space
renormalization procedure gives very poor results. The
breakdown can best be understood visually sFig. 1d: as-
suming an already rather large block size, where dis-
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cretization can be neglected, the lowest-lying states of A
all have nodes at the lattice ends, such that all product
states of AA have nodes at the compound block center.
The true ground state of AA has its maximum ampli-
tude right there, such that it cannot be properly approxi-
mated by a restricted number of block states.

Merely considering isolated blocks imposes wrong
boundary conditions, and White and Noack s1992d could
obtain excellent results by combining Hilbert spaces
from low-lying states of block A by assuming various
combinations of fixed and free boundary conditions si.e.,
enforcing a vanishing wave function or a vanishing
wave-function derivative, respectively, at the bound-
ariesd. They also realized that combining various bound-
ary conditions for a single particle would translate to
accounting for fluctuations between blocks in the case of
many interacting particles. Keeping this observation in
mind, we now return to the original question of a many-
body problem in the thermodynamic limit and formulate
the following strategy: In order to analyze which states
have to be retained for a finite-size block A, A has to be
embedded in some environment, mimicking the
thermodynamic-limit system in which A is ultimately
embedded.

B. Density matrices and DMRG truncation

Consider, instead of the exponentially fast growth pro-
cedure outlined above, the following linear growth pre-
scription sWhite, 1992d: Assume that for a system sa
block in DMRG languaged of length , we have an
MS-dimensional Hilbert space with states hum,

Slj. The

Hamiltonian Ĥ, is given by matrix elements km,
SuĤ,um̃,

Sl.
Similarly we know the matrix representations of local
operators such as km,

SuCium̃,
Sl.

For linear growth, we now construct Ĥ,+1 in the prod-
uct basis hum,

Sslj;hum,
SlusSlj, where usSl are the Nsite lo-

cal states of a new site added.
The thermodynamic limit is now mimicked by embed-

ding the system in an environment of the same size, as-
sumed to have been constructed in analogy to the sys-
tem. We thus arrive at a superblock of length 2,+2 sFig.
2d, in which the arrangement chosen is typical, but not
mandatory.

Because the final goal is the ground state in the ther-
modynamic limit, one studies the best approximation to
it, the ground state of the superblock, obtained by nu-
merical diagonalization:

ucl = o
mS=1

MS

o
sS=1

Nsite

o
sE=1

Nsite

o
mE=1

ME

cmSsSsEmEumSsSlumEsEl

= o
i

NS

o
j

NE

cijuilujl ; kcucl = 1, s4d

where cmSsSsEmE = kmSsS ;sEmE ucl. humSsSlj;huilj, and
humEsElj;hujlj are the orthonormal product bases of
system and environment ssubscripts have been droppedd
with dimensions NS=MSNsite and NE=MENsite, respec-
tively sfor later generalizations, we allow NSÞNEd.
Some truncation procedure from NS to MS,NS states
must now be implemented. Let me present three lines of
argument on the optimization of some quantum-
mechanical quantity, all leading to the same truncation
prescription focused on density-matrix properties. This
is to highlight different aspects of the DMRG algorithm
and to give confidence in the prescription found.

s1d Optimization of expectation values (White, 1998): If
the superblock is in a pure state ucl as in Eq. s4d,
statistical physics describes the physical state of the
system through a reduced density matrix r̂,

r̂ = TrEuclkcu , s5d

where the states of the environment have been
traced out,

kiur̂ui8l = o
j

cijci8j
* . s6d

r̂ has NS eigenvalues wa and orthonormal eigen-
states r̂uwal=wauwal, with oawa=1 and waù0. We
assume the states are ordered such that w1ùw2
ùw3ù¯ . The intuition that the ground state of the
system is best described by retaining those MS states
with largest weight wa in the density matrix can be
formalized as follows. Consider some bounded op-

erator Â acting on the system, such as the energy

FIG. 1. Lowest-lying eigenstates of sdashed lined blocks A and
ssolid lined AA for the problem of a single particle in a box in
the continuum limit.

FIG. 2. System meets environment: Fundamental density-
matrix renormalization-group sDMRGd construction of a su-
perblock from two blocks and two single sites.
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per lattice bond; iÂi=maxfzkfuÂufl / kf uflz;cA.

The expectation value of Â is found to be, using
Eqs. s4d and s6d,

kÂl = kcuÂucl/kcucl = TrSr̂Â . s7d

Expressing Eq. s7d in the density-matrix eigenbasis,
one finds

kÂl = o
a=1

NS

wakwauÂuwal . s8d

Then, if we project the system state space down to
the MS dominant eigenvectors uwal with the largest
eigenvalues,

kÂlapprox = o
a=1

MS

wakwauÂuwal , s9d

and the error for kÂl is bounded by

ukÂlapprox − kÂlu ø S o
a.MS

NS

waDcA ; ercA. s10d

This estimate holds in particular for energies. Sev-
eral remarks are in order. Technically, I have ne-
glected to trace the fate of the denominator in Eq.
s7d upon projection; the ensuing correction of s1
−erd−1 is of no relevance to the argument here, as
er→0. The estimate could be tightened for any spe-

cific operator, since we know kwauÂuwal, and a more
efficient truncation procedure could be named. For
arbitrary bounded operators acting on the system,
the prescription to retain the state spanned by the
MS dominant eigenstates is optimal. For local quan-
tities, such as energy, magnetization, or density, er-
rors are of the order of the truncated weight

er = 1 − o
a=1

MS

wa, s11d

which emerges as the key estimate. Hence a fast de-
cay of density-matrix eigenvalues wa is essential for
the performance of this truncation procedure. The
truncation error of Eq. s10d is the total error only if
the system had been embedded in the final and ex-
actly described environment. Considering the itera-
tive system and environment growth and their ap-
proximate representation at each step, we see that
additional sources of an environmental error have to
be considered. In practice therefore errors for ob-
servables calculated by DMRG are often much
larger than the truncated weight, even after addi-
tional steps to eliminate environmental errors have
been taken. Careful extrapolation of results in MS

sor erd is therefore highly recommended, as will be
discussed below.

s2d Optimization of the wave function (White, 1992,
1993): Quantum-mechanical objects are completely

described by their wave function. It is thus a reason-
able demand for a truncation procedure that the ap-

proximative wave function uc̃l in which the system
space has been truncated to be spanned by only MS

orthonormal states ual=oiuaiuil,

uc̃l = o
a=1

MS

o
j=1

NE

aajualujl , s12d

minimize the distance in the quadratic norm

iucl − uc̃li . s13d

This problem finds a very compact solution in a
singular-value decomposition, which was the origi-
nal approach of White: Singular-value decomposi-
tion will be considered in a slightly different setting
in the next section. The following is an alternative,
more pedestrian approach. Assuming real coeffi-
cients for simplicity, one has to minimize

1 − 2o
aij

cijaajuai + o
aj

aaj
2 s14d

with respect to aaj and uai. For the solution to be
stationary in aaj, we must have oicijuai=aaj, finding
that

1 − o
aii8

uairii8uai8 s15d

must be stationary for the global minimum of the
distance s13d, where we have introduced the density-
matrix coefficients

rii8 = o
j

cijci8j. s16d

Equation s15d is stationary, according to the
Rayleigh-Ritz principle, for ual being the eigenvec-
tors of the density matrix. Expressing Eq. s15d in the
density-matrix eigenbasis, the global minimum is
given by choosing ual to be the MS eigenvectors uwal
to the largest eigenvalues wa of the density matrix,
as they are all non-negative, and the minimal dis-
tance squared is, using Eq. s11d,

iucl − uc̃li2 = 1 − o
a=1

MS

wa = er. s17d

The truncation prescription now appears as a varia-
tional principle for the wave function.

s3d Optimization of entanglement (Gaite, 2001, 2003;
Galindo and Martín-Delgado, 2002; Osborne and
Nielsen, 2002; Latorre et al., 2004): Consider the su-
perblock state ucl as in Eq. s4d. The essential feature
of a nonclassical state is its entanglement, the fact
that it cannot be written as a simple product of one
system and one environment state. Bipartite en-
tanglement as relevant here can best be studied by
representing ucl in its form after a Schmidt decom-
position sNielsen and Chuang, 2000d: Assuming
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without loss of generality NSùNE, consider the
sNS3NEd-dimensional matrix A with Aij=cij.
Singular-value decomposition guarantees A
=UDVT, where U is sNS3NEd dimensional with or-
thonormal columns, D is an sNE3NEd-dimensional
diagonal matrix with non-negative entries Daa

=Îwa, and VT is an sNE3NEd-dimensional unitary
matrix; ucl can be written as

ucl = o
i=1

NS

o
a=1

NE

o
j=1

NE

Uia
ÎwaVaj

T uilujl

= o
a=1

NE

ÎwaSo
i=1

NS

UiauilDSo
j=1

NE

VjaujlD . s18d

The orthonormality properties of U and VT ensure
that uwa

Sl=oiUiauil and uwa
El=ojVjaujl form orthonor-

mal bases of system and environment, respectively,
in which the Schmidt decomposition

ucl = o
a=1

NSchmidt

Îwauwa
Sluwa

El s19d

holds. NSNE coefficients cij are reduced to NSchmidt

øNE nonzero coefficients Îwa, w1ùw2ùw3ù¯ .
Relaxing the assumption NSùNE, one has

NSchmidt ø minsNS,NEd . s20d

The suggestive labeling of states and coefficients in
Eq. s19d is motivated by the observation that upon
tracing out environment or system the reduced den-
sity matrices for system and environment are found
to be

r̂S = o
a

NSchmidt

wauwa
Slkwa

Su ; r̂E = o
a

NSchmidt

wauwa
Elkwa

Eu .

s21d

Even if system and environment are different sSec.
II.Dd, both density matrices would have the same
number of nonzero eigenvalues, bounded by the
smaller of the dimensions of system and environ-
ment, and an identical eigenvalue spectrum. Quan-
tum information theory now provides a measure of
entanglement through the von Neumann entropy,

SvN = − Tr r̂ ln2r̂ = − o
a=1

NSchmidt

waln2wa. s22d

Hence our truncation procedure to MS states pre-
serves a maximum of system-environment entangle-
ment if we retain the first MS states uwal for a
=1,… ,MS, as −x ln2x grows monotonically for 0
,xø1/e, which is larger than typical discarded
eigenvalues. Let me add that this optimization
statement holds strictly only for the unnormalized
truncated state. Truncation leads to a wave-
function norm Î1−er and enforces a new normal-
ization, which changes the retained wa and SvN.

While one may easily construct density-matrix
spectra for which upon normalization the trun-
cated state produced by DMRG no longer maxi-
mizes entanglement, for typical density-matrix
spectra the optimization statement still holds in
practice.

C. Infinite-system DMRG

Collecting the results of the last two sections, the so-
called infinite-system DMRG algorithm can now be for-
mulated sWhite, 1992d. Details of efficient implementa-
tion will be discussed in subsequent sections; here, we
assume that we are looking for the ground state.

s1d Consider a lattice of some small size ,, forming the
system block S. S lives on a Hilbert space of size MS

with states huM,
Slj; the Hamiltonian Ĥ,

S and the op-
erators acting on the block are assumed to be
known in this basis. At initialization, this may still
be an exact basis of the block sNsite

, øMSd. Similarly,
form an environment block E.

s2d Form a tentative new system block S8 from S and
one added site sFig. 2d. S8 lives on a Hilbert space of
size NS=MSNsite, with a basis of product states
huM,

Sslj;huM,
Sluslj. In principle, the Hamiltonian

Ĥ,+1
S acting on S8 can now be expressed in this basis

swhich will not be done explicitly for efficiency; see
Sec. II.Id. A new environment E8 is built from E in
the same way.

s3d Build the superblock of length 2,+2 from S8 and
E8. The Hilbert space is of size NSNE, and the ma-

trix elements of the Hamiltonian Ĥ2,+2 could in
principle be constructed explicitly, but this is
avoided for efficiency reasons.

s4d Find by large sparse-matrix diagonalization of Ĥ2,+2
the ground state ucl. This is the most time-
consuming part of the algorithm sSec. II.Id.

s5d Form the reduced density matrix r̂=TrEuclkcu as in
Eq. s6d and determine its eigenbasis uwal ordered by
descending eigenvalues sweightd wa. Form a new
sreducedd basis for S8 by taking the MS eigenstates
with the largest weights. In the product basis of S8,
their matrix elements are km,

Ss um,+1
S l; taken as col-

umn vectors, they form an NS3MS rectangular ma-
trix T. Proceed likewise for the environment.

s6d Carry out the reduced basis transformation Ĥ,+1
tr

=T†Ĥ,+1T onto the new MS-state basis and take

Ĥ,+1
tr →Ĥ,+1 for the system. Do the same for the en-

vironment and restart with step s2d with block size
,+1 until some desired final length is reached. Op-
erator representations also have to be updated ssee
Sec. II.Gd.

s7d Calculate desired ground-state properties senergies
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and correlatorsd from ucl; this step can also be car-
ried out at each intermediate length.

If the Hamiltonian is reflection symmetric, one may con-
sider system and environment to be identical. One is not
restricted to choosing the ground state for ucl; any state
accessible by large sparse-matrix diagonalization of the
superblock is allowed. Currently available algorithms for
this diagonalization limit us, however, to the lowest-lying
excitations ssee Sec. II.Id.

D. Infinite-system and finite-system DMRG

For many problems, infinite-system DMRG does not
yield satisfactory answers: The idea of simulating the fi-
nal system size cannot be implemented well by a small
environment block in the early DMRG steps. DMRG is
usually canonical, working at fixed particle numbers for
a given system size sSec. II.Ed. Electronic systems in
which the particle number is growing during system
growth to maintain particle density approximately con-
stant are affected by a lack of “thermalization” of the
particles injected during system growth; t-J models with
a relatively small hole density or Hubbard models far
from half-filling or with complicated filling factors are
particularly affected. The strong physical effects of im-
purities or randomness in the Hamiltonian cannot be
accounted for properly by infinite-system DMRG, as the
total Hamiltonian is not yet known at intermediate
steps. In systems with strong magnetic fields or close to a
first-order transition one may be trapped in a metastable
state favored for small system sizes, e.g., by edge effects.

Finite-system DMRG manages to eliminate these con-
cerns to a very large degree and to reduce the error
salmostd to the truncation error. The idea of the finite-
system algorithm is to stop the infinite-system algorithm
at some preselected superblock length L which is kept
fixed. In subsequent DMRG steps sFig. 3d, one applies
the steps of infinite-system DMRG, but instead of simul-
taneous growth of both blocks, growth of one block is
accompanied by shrinkage of the other block. Reduced
basis transformations are carried out only for the grow-
ing block. Let the environment block grow at the ex-
pense of the system block; to describe it, system blocks
of all sizes and operators acting on this block, expressed
in the basis of that block, must have been stored previ-
ously sat the infinite-system stage or previous applica-

tions of finite-system DMRGd. When the system block
reaches some minimum size and becomes exact, growth
direction is reversed. The system block now grows at the
expense of the environment. All basis states are chosen
while system and environment are embedded in the final
system and in the knowledge of the full Hamiltonian. If
the system is symmetric under reflection, blocks can be
mirrored at equal size, otherwise the environment block
is shrunk to some minimum and then regrown. A com-
plete shrinkage and growth sequence for both blocks is
called a sweep.

One sweep takes about two sif reflection symmetry
holdsd or four times the CPU time of the starting
infinite-system DMRG calculation. For better perfor-
mance, there is a simple, but powerful prediction algo-
rithm ssee Sec. II.Id, which cuts down calculation times
in finite-system DMRG by more than an order of mag-
nitude. In fact, it will be seen that the speedup is larger
the closer the current sgroundd state is to the final, fully
converged result. In practice, one therefore starts run-
ning the infinite-system DMRG with a rather small
number of states M0, increasing it while running through
the sweeps to some final Mfinal@M0. The resulting slow-
ing down of DMRG will be offset by the increasing per-
formance of the prediction algorithm. While there is no
guarantee that finite-system DMRG is not trapped in
some metastable state, it usually finds the best approxi-
mation to the ground state, and convergence is gauged
by comparing results from sweep to sweep until they
stabilize. This may take from a few to several dozen
sweeps, with electronic problems at incommensurate fill-
ings and random potential problems needing the most.
In rare cases it has been observed that seemingly con-
verged finite-system results are again suddenly improved
after some further sweeps without visible effect have
been carried out, showing a metastable trapping. It is
therefore advisable to carry out additional sweeps and
to judge DMRG convergence by carrying out runs for
various M. Where possible, choosing a clever sequence
of finite-system DMRG steps may greatly improve the
wave function. This has been successfully attempted in

FIG. 3. Finite-system DMRG algorithm: block growth and
shrinkage.

FIG. 4. Currents on rung r of a t-J ladder induced by a source
term on the left edge, after various sweeps of finite-system
DMRG. From Schollwöck et al., 2003.
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momentum-space DMRG sSec. VII.Ad and quantum-
chemistry DMRG sSec. VII.Bd.

To show the power of finite-system DMRG, consider
the calculation of the plaquette currents induced on a
t-J ladder by imposing a source current on one edge of
the ladder sSchollwöck et al., 2003d. Figure 4 shows how
the plaquette currents along the ladder evolve from
sweep to sweep. While they are perfectly converged af-
ter six to eight sweeps, the final result, a modulated ex-
ponential decay, is far from what DMRG suggests after
the first sweep, let alone in the infinite-system algorithm
snot shownd.

Despite the general reliability of the finite-system al-
gorithm there might be srelatively rared situations in
which its results are misleading. It may, for example, be
doubted whether competing or coexisting types of long-
range order are well described by DMRG, as we shall
see that it produces a very specific kind of wave func-
tion, the so-called matrix-product states sSec. III.Ad.
These states show either long-range order or, more typi-
cally, short-range correlations. In the case of competing
forms of long-range order, the infinite-system algorithm
might preselect one of them incorrectly, e.g., due to edge
effects, and the finite-system algorithm would then be
quite likely to fail to “tunnel” to the other, correct kind
of long-range order due to the local nature of the im-
provements to the wave function. Perhaps such a prob-
lem is at the origin of the current disagreement between
state-of-the-art DMRG sJeckelmann, 2002b, 2003b;
Zhang, 2004d and quantum Monte Carb results sSandvik
et al., 2003, 2004d on the extent of a bond-ordered wave
phase between a spin-density-wave phase and a charge-
density-wave phase in the half-filled extended Hubbard
model, but no consensus has as yet emerged.

E. Symmetries and good quantum numbers

A big advantage of DMRG is that the algorithm con-
serves a variety of, but not all, symmetries and good
quantum numbers of the Hamiltonians. They may be
exploited to reduce storage and computation time and
to thin out Hilbert space by decomposing it into a sum
of sectors. DMRG is optimal for studying the lowest-
lying states of such sectors, and refining any such decom-
position immediately gives access to more low-lying
states. Hence the use of symmetries is standard practice
in DMRG implementations. Symmetries used in DMRG
fall into three categories, continuous Abelian, continu-
ous non-Abelian, and discrete.

1. Continuous Abelian symmetries

The most frequently implemented symmetries in
DMRG are the Us1d symmetries leading to total magne-
tization Stot

z and total particle number Ntot as good scon-
servedd quantum numbers. If present for some Hamil-
tonian, all operators can be expressed in matrix form as
dense blocks of nonzero matrix elements with all other
matrix elements zero. These blocks can be labeled by
good quantum numbers. In DMRG, reduced basis trans-

formations preserve these block structures if one fixes
total magnetization and/or total particle number for the
superblock. Assume that block and site states can at a
given DMRG step be labeled by a good quantum num-
ber, say, particle number N. This is an essential prereq-
uisite scf. translational invariance leading to momentum
conservation; see belowd. As the total number of par-
ticles is fixed, we have Ntot=NmS +NsS +NsE +NmE.
Equation s6d implies that only matrix elements
kmSsSur̂um̃Ss̃Sl with NmS +NsS =Nm̃S +Ns̃S can be non-
zero. The density matrix thus has block structure, and its
eigenvectors from which the next block’s eigenbasis is
formed can again be labeled by particle number NmS

+NsS. Thus, for all operators, only dense blocks of non-
zero matrix elements have to be stored and considered.
For superblock wave functions, a tensorial structure
emerges as total particle number and/or magnetization
dictate that only product states with compatible quan-
tum numbers si.e., adding up to the fixed totald may have
nonzero coefficients.

The performance gains from implementing just the
simple additive quantum numbers magnetization and
particle number are impressive. Both in memory and
CPU time significantly more than an order of magnitude
will typically be gained.

2. Continuous non-Abelian symmetries

Non-Abelian symmetries that have been considered
are the quantum group symmetry SUqs2d sSierra and
Nishino, 1997d, SUs2d spin symmetry sMcCulloch and
Gulacsi, 2000, 2001, 2002; Wada, 2000; Xiang et al.,
2001d, and the charge SUs2d pseudospin symmetry sMc-
Culloch and Gulacsi, 2002d, which holds for the bipartite
Hubbard model without field sYang and Zhang, 1990d:
its generators are given by I+=ois−1dic↑i

† c↓i
† , I−=oi

s−1dic↓ic↑i, and Iz=oi
1
2 sn↑i+n↓i−1d.

Implementation of non-Abelian symmetries is much
more complicated than that of Abelian symmetries, the
best-performing one sMcCulloch and Gulacsi, 2002d
building on Clebsch-Gordan transformations and the
elimination of quantum numbers via the Wigner-Eckart
theorem. It might be crucial for obtaining high-quality
results in applications with problematically large trun-
cated weight such as in two dimensions, where the trun-
cated weight is cut by several orders of magnitude com-
pared to implementations using only Abelian
symmetries. The additional increase in performance is
comparable to that due to use of Us1d symmetries over
using no symmetries at all.

3. Discrete symmetries

I shall formulate these for a fermionic Hamiltonian of
spin-1

2 particles.

sad Spin-flip symmetry. If the Hamiltonian Ĥ is invari-
ant under a general spin flip ↑↔↓, one may intro-

duce the spin-flip operator P̂=piP̂i, which is imple-

mented locally on an electronic site as P̂iu0l= u0l,
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P̂iu↑ l= u↓ l, P̂iu↓ l= u↑ l, P̂iu↑ ↓ l=−u↑ ↓ l sfermionic

signd. As fĤ , P̂g=0, there are common eigenstates

of Ĥ and P̂ with P̂ucl= ± ucl.

sbd Particle-hole symmetry. If Ĥ is invariant under a

particle-hole transformation, fĤ , Ĵg=0 for the

particle-hole operator Ĵ=piĴi, where the local op-

eration is given by Ĵiu0l= u↑ ↓ l, Ĵiu↑ l= s−1diu↓ l,
Ĵiu↓ l= s−1diu↑ l , Ĵiu↑ ↓ l= u0l, introducing a distinc-
tion between odd and even site sublattices, and ei-

genvalues Ĵucl= ± ucl.

scd Reflection symmetry (parity). In the case of
reflection-symmetric Hamiltonians with open
boundary conditions, parity is a good quantum
number. The spatial reflection symmetry operator

Ĉ2 acts globally. Its action on a DMRG product
state is given by

Ĉ2umSsSsEmEl = s− 1dhumEsEsSmSl s23d

with a fermionic phase determined by h= sNmS

+NsSdsNmE +NsEd. Again, eigenvalues are given by

Ĉ2ucl= ± ucl. Parity is not a good quantum number
accessible to finite-system DMRG, except for the
DMRG step with identical system and
environment.

All three symmetries commute, and an arbitrary nor-
malized wave function can be decomposed into eigen-
states for any desired combination of eigenvalues ±1 by
successively calculating

uc±l =
1
2

sucl ± Ôucld , s24d

where Ô= P̂ , Ĵ , Ĉ2.
Parity may be easily implemented by starting the su-

perblock diagonalization from a trial state sSec. II.Id that
has been made santidsymmetric under reflection by Eq.

s24d. As fĤ , Ĉ2g=0, the final eigenstate will have the
same reflection symmetry. Spin-flip and particle-hole
symmetries may be implemented in the same fashion,

provided P̂ and Ĵ are generated by DMRG; as they are
products of local operators, this can be done along the
lines of Sec. II.G. Another way of implementing these
two local symmetries is to realize that the argument
given for magnetization and particle number as good
density-matrix quantum numbers carries over to the
spin-flip and particle-hole eigenvalues such that they can
also be implemented as block labels.

4. Missing symmetries

Momentum is not a good quantum number in real-
space DMRG, even if periodic boundary conditions
sSec. II.Hd are used and translational invariance holds.
This is because the allowed discrete momenta change
during the growth process, and, more importantly, be-

cause momentum does not exist as a good quantum
number at the block level. Other DMRG variants with
momentum as a good quantum number will be consid-
ered in Sec. VII.A.

F. Energies: Ground states and excitations

As a method working in a subspace of the full Hilbert
space, DMRG is variational in energy. It provides upper
bounds for energies EsMd that improve monotonically
with M, the number of basis states in the reduced Hil-
bert space. Two sources of errors have been identified,
the environmental error due to inadequate environment
blocks, which can be amended using the finite-system
DMRG algorithm, and the truncation error. Assuming
that the environmental error swhich is hard to quantify
theoreticallyd has been eliminated, i.e., finite-system
DMRG has reached convergence after sufficient sweep-
ing, the truncation error remains to be analyzed. Rerun-
ning the calculation of a system of size L for various M,
one observes for sufficiently large values of M that to a
good approximation the error in energy per site scales
linearly with the truncated weight,

fEsMd − Eexactg/L ~ er, s25d

with a nonuniversal proportionality factor typically of
order 1–10, sometimes more fthis observation goes back
to White and Huse s1993d; Legeza and Fáth s1996d give a
careful analysisg. As er is often of order 10−10 or less,
DMRG energies can thus be extrapolated using Eq. s25d
quite reliably to the exact M=` result, often almost at
machine precision. The precision desired imposes the
size of M, which for spin problems is typically in the
lower hundreds, for electronic problems in the upper
hundreds, and for two-dimensional and momentum-
space problems in the lower thousands. As an example
of DMRG precision, consider the results obtained for
the ground-state energy per site of the S=1 antiferro-
magnetic Heisenberg chain in Table I.

Experiments relate to energy differences or relative
ordering of levels. This raises the question of calculating
excitations in DMRG. Excitations are easiest to calcu-
late if they are the ground state in some other symmetry
sector of the Hamiltonian and are thus algorithmically
no different from true ground states. If, however, we are
interested in some higher-lying state in a particular Hil-
bert space sector, DMRG restricts us to the lowest-lying
such states because of the restrictions of large sparse-
matrix diagonalizations sSec. II.Id. Excited states have to
be “targeted” in the same way as the ground state. This
means that they have to be calculated for the superblock
at each iteration and to be represented optimally, i.e.,
reduced basis states have to be chosen such that the
error in the approximation is minimized. It can be
shown quite easily that this amounts to considering the
eigenstates of the reduced density matrix
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r̂S = TrEo
i

aiucilkciu , s26d

where the sum runs over all targeted states ucil sground
and a few excited statesd and oiai=1. There is no known
optimal choice for the ai, but it seems empirically to be
most reasonable to weigh states roughly equally. To
maintain a good overall description for all targeted
states at a fixed M, typically fewer than five or so excited
states are targeted. Best results are of course obtained
by running DMRG for each energy level separately.

G. Operators and correlations

In general, we shall also be interested in evaluating

static n-point correlators Ôi1¯in

snd =Ôi1

s1d
¯Ôin

s1d with respect
to some eigenstate of the Hamiltonian. The most rel-
evant cases are n=1 for density or local magnetization
and n=2 for two-point density-density, spin-spin, or
creation-annihilation correlators, kninjl, kSi

+Sj
−l, or kci

†cjl.
Let us first consider the case n=1. The iterative

growth strategy of DMRG imposes a natural three-step
procedure of initializing, updating, and evaluating corr-
elators.

s1d Initialization. Ôi acts on site i. When site i is added

to a block of length ,−1, ksuÔius̃l is evaluated. With
hum,lj being the reduced basis of the new block in-
corporating site i and hum,−1lj that of the old block,
one has

km,uÔium̃,l = o
m,−1ss̃

km,um,−1slksuÔius̃lkm,−1s̃um̃,l .

s27d

km, um,−1sl is already known from the density-
matrix eigenstates.

s2d Update. At each further DMRG step, an approxi-
mate basis transformation for the block containing

the site in which Ôi acts from hum,lj to hum,+1lj oc-

curs. As Ôi does not act on the new site, the opera-
tor transforms as

km,+1uÔum̃,+1l = o
m,m̃,s

km,+1um,slkm,uÔum̃,l

3km̃,sum̃,+1l . s28d

This expression is evaluated efficiently by splitting it
into two OsM3d matrix-matrix multiplications.

s3d Evaluation. After the last DMRG step

kmSsSsEmE ucl is known and kÔil reads, assuming

Ôi to act on some site in the system block,

kcuÔiucl = o
mSm̃SsSsEmE

kcumSsSsEmElkmSuÔium̃Sl

3 km̃SsSsEmEucl . s29d

In the case of two-point correlators, two cases have to
be distinguished, whether the locations i and j of the
contributing one-point operators act on different blocks
or on the same block at the last step. This expression is
again evaluated efficiently by splitting it into two OsM3d
matrix-matrix multiplications.

If they act on different blocks, one follows through
the procedure for one-point operators, yielding

kmSuÔium̃Sl and kmEuÔjum̃El. The evaluation is done by
the following modification of the one-point case:

kcuÔiÔjucl = o
mSm̃SsSsEmEm̃E

kcumSsSsEmElkmSuÔium̃Sl

3kmEuÔjum̃Elkm̃SsSsEm̃Eucl . s30d

If they act on the same block, it is wrong to obtain

kmuÔiÔjum̃l through

kmuÔiÔjum̃l = o
m8

kmuÔium8lkm8uÔjum̃l sfalsed , s31d

where an approximate partition of unity has been in-
serted. This partition of unity is close to 1 to a very good
approximation only when it is used to project the tar-
geted wave function, for which it was constructed, but
not in general.

Instead, such operators have to be built as a com-
pound object at the moment when they live in a product
Hilbert space, namely, when one of the operators acts on
a block sof length ,−1d, the other on a single site that
is being attached to the block. Then we know

km,−1uÔium̃,−1l and ksuÔjus̃l and within the reduced
bases of the block of length ,

km,uÔiÔjum̃,l = o
m,−1m̃,−1ss̃

km,um,−1slkm,−1uÔium̃,−1l

3 ksuÔjus̃lkm̃,−1s̃um̃,l s32d

is exact. Updating and final evaluation for compound
operators proceed as for a one-point operator.

One-point operators show similar convergence behav-
ior in M to that of local energy, but at reduced precision.
While there is no exact variational principle for two-
point correlations, derived correlation lengths are mono-
tonically increasing in M, but always underestimated.
The underestimation can actually be quite severe, of the

TABLE I. Ground-state energies per site E0 of the S=1 iso-
tropic antiferromagnetic Heisenberg chain for M block states
kept and associated truncated weight ersMd. Adapted from
White and Huse s1993d.

M E0sMd ersMd

36 −1.40148379810 5.61310−8

72 −1.40148403632 3.42310−10

110 −1.40148403887 1.27310−11

180 −1.401484038970 1.4310−13
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order of several percent, while the ground-state energy
has already converged almost to machine precision.

As DMRG always generates wave functions with ex-
ponentially decaying correlations sSec. III.Ad, power-law
decays of correlations are problematic. Andersson et al.
s1999d show that for free fermions the resulting correla-
tion function mimics the correct power law on short-
length scales increasing with M, but is purely exponen-
tial on larger scales. However, the derived correlation
length diverges roughly as M1.3, such that for M→`
criticality is recovered.

H. Boundary conditions

From a physical point of view, periodic boundary con-
ditions are normally highly preferable to the open
boundary conditions used so far for studying bulk prop-
erties, as surface effects are eliminated and finite-size
extrapolation works for much smaller system sizes. In
particular, open boundaries introduce charge or magne-
tization oscillations not always easily distinguishable
from true charge-density waves or dimerization fsee
White et al. s2002d for a thorough discussion on using
bosonization to make the distinctiong.

However, it was observed early in the history of
DMRG that ground-state energies for a given M are
much less precise in the case of periodic boundary con-
ditions than for open boundary conditions, with differ-
ences in the relative errors of up to several orders of
magnitude. This is reflected in the spectrum of the re-
duced density matrix, which decays much more slowly
ssee Sec. III.Bd. However, it has been shown by Verstra-
ete, Porras, and Cirac s2004d that this is an artifact of the
conventional DMRG setup and that, at some algorith-
mic cost, essentially the same precision for a given M
can be achieved for periodic as for open boundary con-
ditions sSec. III.Ad.

To implement periodic boundary conditions in the
infinite-system DMRG algorithm, the block-site struc-
ture is typically changed as shown in Fig. 5; other setups
however, are also feasible and used. For finite-system
DMRG, the environment block grows at the expense of
the system block, then the system block grows back, till
the configuration of the end of the infinite-system algo-
rithm is reached. This is repeated with changed roles
sunless translational invariance allows identification of
system and environment at equal sized. A minor techni-
cal complication arises from the fact that blocks grow at
both ends at various steps of the algorithm.

Beyond the usual advantages of periodic boundary
conditions, combining results for periodic and antiperi-
odic boundary conditions allows the calculation of re-
sponses to boundary conditions such as spin stiffness,
phase sensitivity sSchmitteckert and Eckern, 1996d, or
superfluid density sRapsch et al., 1999d. Periodic and an-
tiperiodic boundary conditions cL+1

† = ±c1
† are special

cases of the general complex boundary condition cL+1
†

=eifc1
†. Implementing the latter is a tedious but straight-

forward generalization of real-valued DMRG; memory

doubles, computation time quadruples. Numerical sta-
bility is assured because the density matrix remains Her-
mitian. This generalization has been used on a ring with
interactions and impurities to determine the current
Isfd, which is neither sawtoothlike nor sinusoidal
sMeden and Schollwöck, 2003ad, and thus to obtain the
conductance of interacting nanowires sMeden and
Schollwöck, 2003bd. For open boundary conditions,
complex-valued DMRG has been used to introduce in-
finitesimal current source terms for time-reversal sym-
metry breaking in electronic ladder structures sScholl-
wöck et al., 2003d.

I. Large sparse-matrix diagonalization

1. Algorithms

The key to DMRG performance is the efficient diago-
nalization of the large sparse-superblock Hamiltonian.
All large sparse-matrix diagonalization algorithms itera-
tively calculate the desired eigenstate from some sran-
domd starting state through successive costly matrix-
vector multiplications. In DMRG, the two algorithms
typically used are the Lanczos method sCullum and Wil-
loughby, 1985; Golub and van Loan, 1996d and the
Jacobi-Davidson method sSleijpen and van der Vorst,
1996d. The pleasant feature of these algorithms is that
for an N3N-dimensional matrix it takes only a much

smaller number Ñ!N of iterations, so that iterative ap-
proximations to eigenvalues converge very rapidly to the

maximum and minimum eigenvalues of Ĥ at machine
precision. With slightly more effort other eigenvalues at
the edge of the spectrum can also be computed. Typical
values for the number of iterations smatrix-vector mul-
tiplicationsd in DMRG calculations are of the order of
100.

2. Representation of the Hamiltonian

Naively, the superblock Hamiltonian is a
M2Nsite

2 -dimensional matrix. As matrix-vector multipli-
cations scale as sdimensiond2, DMRG would seem to be
an algorithm of order OsM4d. In reality, it is only OsM3d,
as typical tight-binding Hamiltonians act as sums over
two-operator terms: Assuming nearest-neighbor interac-
tions, the superblock Hamiltonian decomposes as

Ĥ = ĤS + ĤS• + Ĥ•• + Ĥ•E + ĤE. s33d

ĤS and ĤE contain all interactions within the system and
environment blocks, respectively, and are hence of di-
mension M. Multiplying them to some state ucl is of

order M3Nsite
2 . ĤS• and Ĥ•E contain interactions between

blocks and the neighboring sites and hence are of di-
mension MNsite. Consider a typical interaction S,

+S,+1
− ,

where , is the last site of the block and ,+1 a single site.
Then
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kmSsSuS,
+S,+1

− um̃Ss̃Sl = kmSuS,
+um̃SlksSuS,+1

− us̃Sl s34d

and multiplying this term to ucl is best carried out in a
two-step sequence: the expression

kmstnufl = o
m8s8

kmsuS+S−um8s8lkm8s8tnucl , s35d

which is of order OsM3Nsite
3 d for the determination of all

state coefficients, is decomposed as

km8stnunl = o
s8

ksuS−us8lkm8s8tnucl , s36d

of order OsM2Nsite
3 d, and

kmstnufl = o
m8

kmuS+um8lkm8stnunl , s37d

of order OsM3Nsite
2 d, where an order of Nsite is saved,

important for large Nsite. The Hamiltonian is never ex-
plicitly constructed. Such a decomposition is crucial

when block-block interactions ĤSE appear for longer-
ranged interactions. Considering again S+S−, with S−

now acting on the environment block, factorization of
the Hamiltonian again allows us to decompose the origi-
nal term

kmstnufl = o
m8n8

kmnuS+S−um8n8lkm8stn8ucl , s38d

which is of inconveniently high-order OsM4Nsite
2 d for the

determination of all state coefficients, as

km8stnunl = o
n8

knuS−un8lkm8stn8ucl , s39d

of order OsM3Nsite
2 d, and

kmstnucl = o
m8

kmuS+um8lkm8stnunl , s40d

of order OsM3Nsite
2 d, such that an order of M is saved

and the algorithm is generally of order OsM3d. This is
essential for its performance.

3. Eigenstate prediction

Providing a good guess for the final eigenstate as start-
ing state of the iterative diagonalization allows for arbi-
trary cutdowns in the number of iterations in the itera-
tive diagonalization procedures.

For both the infinite-system and the finite-system
DMRG it is possible to provide starting states that often
have overlap <1 with the final state, leading to a dra-
matic reduction of iterations, often down to fewer than
10, speeding up the algorithm by about an order of mag-
nitude.

In infinite-system DMRG, the physical system
changes from step to step. It seems intuitive that for a
very long system, the composition of the ground state
from block and site states may only weakly depend on
its length, such that the ground-state coefficients remain
almost the same under system growth. One might there-
fore simply use the old ground state as a prediction
state. This fails; while the absolute values of coefficients
hardly change from step to step in long systems, the
block basis states are fixed by the density-matrix diago-
nalization only up to the sign, such that the signs of the
coefficients are effectively random. Various ways of fix-
ing these random signs have been proposed sScholl-
wöck, 1998; Qin and Lou, 2001; Sun et al., 2002d.

In the case of the finite-system DMRG, the physical
system does not change from DMRG step to DMRG
step, just the structure of the effective Hilbert space
changes. White s1996bd has given a prescription for how
to predict the ground state expressed in the block-site
structure of the next DMRG step. If basis transforma-
tions were not incomplete, one could simply transform
the ground state from one basis to the next to obtain a
prediction state. The idea is to do this even though the
transformation is incomplete. The state obtained turns
out to be an often excellent approximation to the true
ground state.

Let us assume that we have a system with open
boundary conditions, with a current system block of
length , and an environment block of length L−,−2.
The target state is known through km,s,+1s,+2mL−,−2ucl.
Now assume that the system block is growing at the ex-
pense of the environment block, and we wish to predict
the coefficients km,+1s,+2s,+3mL−,−3ucl, where in both
DMRG steps ucl is describing the same quantum-
mechanical state. As we also know km,s,+1 um,+1l from
the current DMRG iteration and kmL−,−3s,+3 umL−,−2l
from some previous DMRG iteration, this allows us to
carry out two incomplete basis transformations: First, we
transform system block and site to the new system
block, giving

km,+1s,+2mL−,−2ucl = o
m,s,+1

km,+1um,s,+1l

3km,s,+1s,+2mL−,−2ucl; s41d

FIG. 5. Typical system and environment growth for periodic
boundary conditions in the infinite-system algorithm.
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second, we expand the current environment block into a
product-state representation of a block with one site less
and a site:

km,+1s,+2s,+3mL−,−3ucl = o
mL−,−2

kmL−,−3s,+3umL−,−2l

3km,+1s,+2mL−,−2ucl . s42d

The calculation involves two OsM3d matrix multiplica-
tions, and works independently of any assumptions for
the underlying model. It relies on the fact that by con-
struction our incomplete basis transformations are al-
most exact when applied to the target statessd.

J. Applications

In this section, I want to give a very brief overview of
applications of standard DMRG, which will not be cov-
ered in more detail in later sections.

From the beginning, there has been a strong focus on
one-dimensional Heisenberg models, in particular the
S=1 case, in which the Haldane gap D=0.41052J was
determined to five-digit precision by White and Huse
s1993d. Other authors have considered the equal-time
structure factor sSørensen and Affleck, 1994a, 1994b;
Sieling et al., 2000d and focused on topological order
sLou et al., 2002, 2003; Qin et al., 2003d. There has been
a particular emphasis on the study of the existence of
free S= 1

2 end spins in such chains sWhite and Huse,
1993; Batista et al., 1998, 1999; Polizzi et al., 1998; Hall-
berg et al., 1999; Jannod et al., 2000d, in which the open
boundary conditions of DMRG are very useful; for the
study of bulk properties authors typically attach real S
= 1

2 end spins that bind to singlets with the effective ones,
removing degeneracies due to boundary effects. Soon,
studies were carried over to the S=2 Heisenberg chain,
in which the first reliable determination of the gap D
=0.085s5d and the correlation length j<50 was provided
by Schollwöck and Jolicœur s1995d and confirmed and
enhanced in other works sSchollwöck, Golinelli, and
Jolicœur, 1996; Schollwöck and Jolicœur, 1996; Qin,
Wang, and Yu, 1997; Aschauer and Schollwöck, 1998;
Wang et al., 1999; Wada, 2000; Capone and Caprara,
2001d. The behavior of Haldane sinteger spind chains in
sstaggeredd magnetic fields was studied by Sørensen and
Affleck s1993d, Lou et al. s1999d, Ercolessi et al. s2000d,
and Capone and Caprara s2001d. In general, DMRG has
been very useful in the study of plateaus in magnetiza-
tion processes of spin chains sTandon et al., 1999; Citro
et al., 2000; Lou, Qin, Ng, et al., 2000; Lou, Qin, and Su,
2000; Yamamoto et al., 2000; Kawaguchi et al., 2002;
Silva-Valencia and Miranda, 2002; Hida, 2003d.

The isotropic half-integer spin Heisenberg chains are
critical. The logarithmic corrections to the power law of
spin-spin correlations in the S= 1

2 chain were first consid-
ered by Hallberg et al. s1995d, later by Hikihara and Fu-
rusaki s1998d, Tsai and Marston s2000d, Shiroishi et al.
s2001d, and Boos et al. s2002d. For the S= 3

2 case, the
central charge c=1 and again the logarithmic corrections

to the spin-spin correlations were determined by Hall-
berg et al. s1996d. Quasiperiodic S= 1

2 chains were con-
sidered by Hida s1999b, 2000d and the case of transverse
fields by Hieida et al. s2001d.

Bilinear-biquadratic S=1 spin chains have been exten-
sively studied sBursill et al., 1994; Schollwöck, Jolicœur,
and Garel, 1996; Sato, 1998d as well as the effect of
Dzyaloshinskii-Moriya interactions sZhao et al., 2003d.

Important, experimentally relevant generalizations of
the Heisenberg model are obtained by adding frustrat-
ing interactions or dimerization, the latter modeling ei-
ther static lattice distortions or phonons in the adiabatic
limit. The ground-state phase diagrams of such systems
have been extensively studied.1 DMRG has been instru-
mental in the discovery and description of gapped and
gapless chiral phases in frustrated spin chains sKaburagi
et al., 1999; Hikihara, Kaburaga, et al., 2000a; Hikihara,
2001, 2002; Hikihara et al., 2001a, 2001bd. Critical expo-
nents for a supersymmetric spin chain were obtained by
Senthil et al. s1999d.

As a first step towards two dimensions and due to the
many experimental realizations, spin ladders have been
among the first DMRG applications going beyond
simple Heisenberg chains, starting with White et al.
s1994d. In the meantime, DMRG has emerged as a stan-
dard tool for the study of spin ladders sWhite, 1996a;
Legeza and Sólyom, 1997; Wang, 2000; Fath et al., 2001;
Hikihara and Furusaki, 2001; Trumper and Gazza, 2001;
Zhu et al., 2001; Wang et al., 2002; Kawaguchi et al.,
2003d. A focus of recent interest has been the effect of
cyclic exchange interactions on spin ladders sSakai and
Hasegawa, 1999; Honda and Horiguchi, 2001; Nunner et
al., 2002; Hikihara et al., 2003; Läuchli et al., 2003d.

Among other spin systems, ferrimagnets have been
studied by Pati, Ramesha, and Sen s1997a, 1997bd, Tone-
gawa et al. s1998d, Hikihara, Tonegawa, et al. s2000d, and
Langari et al. s2000d. One-dimensional toy models of the
kagomé lattice have been investigated by Pati and Singh
s1999d, Waldtmann et al. s2000d, and White and Singh
s2000d, whereas supersymmetric spin chains have been
considered by Marston and Tsai s1999d.

Spin-orbit chains with spin and pseudospin degrees of
freedom are the large-U limit of the two-band Hubbard
model at quarter filling and are hence an interesting and
important generalization of the Heisenberg model.
DMRG has allowed full clarification of the rich phase
diagram sPati et al., 1998; Yamashita et al., 1998, 2000a,
2000b; Itoi et al., 2000; Pati and Singh, 2000d.

DMRG in its finite-system version has also been very
successful in the study of systems with impurities or ran-
domness, in which the true ground state can be found

1Such studies include those of Bursill et al. s1995d; Kolezhuk
et al. s1996, 1997d; Pati et al. s1996d; White and Affleck s1996d;
Pati, Chitra, et al. s1997d; Uhrig et al. s1999a, 1999bd; Maeshima
and Okunishi s2000d; Itoi and Qin s2001d; Kolezhuk and
Schollwöck s2002d.
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with reasonable precision.2 There has also been work on
edges and impurities in Luttinger liquids sQin et al.,
1996; Qin, Fabrizio, et al., 1997; Bedürftig et al., 1998;
Schönhammer et al., 2000d.

The study of electronic models is somewhat more
complicated because of the larger number of degrees of
freedom and because of the fermionic sign. However,
DMRG is free of the negative-sign problem of quantum
Monte Carlo and hence the method of choice for one-
dimensional electronic models. Hubbard chains3 and
Hubbard ladders4 have been studied in the entire range
of interactions as the precision of DMRG is found to
depend only weakly on the interaction strength. The
three-band Hubbard model has been considered by
Jeckelmann et al. s1998d and Nishimoto, Jeckelmann,
and Scalapino s2002d. Similarly, authors have studied
both the t-J model on chains sChen and Moukouri, 1996;
White and Scalapino, 1997b; Mutou et al., 1998a; Dou-
blet and Lepetit, 1999; Maurel et al., 2001d and on lad-
ders sHaywood et al., 1995; White and Scalapino, 1997a,
1998c; Rommer et al., 2000; Siller et al., 2001, 2002d.

The persistent current response to magnetic fluxes
through rings has been studied by Byrnes et al. s2002d
and Meden and Schollwöck s2003ad; also it has been
studied in view of possible quasiexact conductance cal-
culations sMeden and Schollwöck, 2003b; Molina et al.,
2003d.

Even before the advent of the Hubbard model, a very
similar model, the Pariser-Parr-Pople model sPariser and
Parr, 1953; Pople, 1953d, accommodating both dimeriza-
tion effects and longer-range Coulomb interaction, had
been invented in quantum chemistry to study conjugated
polymer structures. DMRG has therefore been applied
to polymers by many authors,5 moving to more and
more realistic models of molecules, such as polydiacaty-

lene sRace et al. s2001, 2003d, polyparaphenylene sAnu-
sooya et al., 1997; Barford et al., 1998; Bursill and Bar-
ford, 2002d, or polyenes sBursill and Barford, 1999;
Barford et al., 2001; Zhang and George, 2001d. Polymer
phonons have also been considered in the nonadiabatic
case sBarford, Bursill, and Lavrentiev, 2002d. There is
closely related work on the Peierls-Hubbard model
sPang and Liang, 1995; Jeckelmann, 1998; Otsuka, 1998;
Anusooya et al., 1999d.

Since the early days of DMRG history sYu and White,
1993d interest has also focused on the Kondo lattice, ge-
neric one-dimensional structures of itinerant electrons
and localized magnetic moments, for both the
one-channel6 and two-channel cases sMoreno et al.,
2001d. Anderson models have been studied by Guerrero
and Yu s1995d and Guerrero and Noack s1996, 2001d.

The bosonic version of the Hubbard model has been
studied by Kühner and Monien s1998d, Kühner et al.
s2000d, and Kollath et al. s2004d, with emphasis on disor-
der effects by Rapsch et al. s1999d. Sugihara s2004d has
used DMRG to study a bosonic 111-dimensional field
theory.

Going beyond one dimension, two-dimensional elec-
tron gases in a Landau level have been mapped to one-
dimensional models suitable for DMRG sShibata and
Yoshioka, 2001, 2003; Bergholtz and Karlhede, 2003d;
DMRG was applied to molecular iron rings sNormand et
al., 2001d and has elucidated the lowest rotational band
of the giant Keplerate molecule Mo72Fe30 sExler and
Schnack, 2003d. More generic higher-dimensional appli-
cations will be discussed later.

Revisiting its origins, DMRG can also be used to pro-
vide high-accuracy solutions in one-particle quantum
mechanics sMartín-Delgado et al., 1999d. As there is no
entanglement in the one-particle wave function, the re-
duced basis transformation is formed from the MS

lowest-lying states of the superblock projected onto the
system safter reorthonormalizationd. It has been applied
to an asymptotically free model in two dimensions
sMartín-Delgado and Sierra, 1999d and modified for up
to three dimensions sMartín-Delgado et al., 2001d.

III. DMRG THEORY

DMRG practitioners usually adopt a quite pragmatic
approach when applying this tool to the study of some
physical system. They consider the convergence of
DMRG results upon tuning the standard DMRG con-
trol parameters, system size L, size of the reduced block
Hilbert space M, and the number of finite-system
sweeps, and judge DMRG results to be reliable or not.
Beyond empiricism, in recent years a coherent theoreti-

2Impurities have been studied by Schmitteckert and Eckern
s1996d, Wang and Mallwitz s1996d, Martins et al. s1997d,
Mikeska et al. s1997d, Zhang et al. s1997d, Laukamp et al.
s1998d, Lou et al. s1998d, Schmitteckert et al. s1998d, Zhang,
Igarashi, and Fulde s1998d, Ng et al. s2000d, whereas other au-
thors have focused on random interactions or fields: Hida
s1996, 1997a, 1997b, 1999ad; Hikihara et al. s1999d; Juozapavi-
cius et al. s1999d; Urba and Rosengren s2003d.

3Studies include Sakamoto and Kubo s1996d; Daul and Noack
s1997, 1998, 2000d; Lepetit and Pastor s1997d; Zhang s1997d;
Aligia et al. s2000d; Daul s2000d; Daul and Scalapino s2000d;
Lepetit et al. s2000d; Maurel and Lepetit s2000d; Nishimoto et
al. s2000d; Aebischer et al. s2001d; Jeckelmann s2002bd.

4See, for example, Noack et al. s1994, 1995a, 1995b, 1997d;
Vojta et al. s1999, 2001d; Bonca et al. s2000d; Daul, Scalapino,
and White s2000d; Weihong et al. s2001d; Hamacher et al.
s2002d; Marston et al. s2002d; Scalapino et al. s2002d; Schollwöck
et al. s2003d.

5These include Anusooya et al. s1997d; Lepetit and Pastor
s1997d; Ramasesha et al. s1997, 2000d; Shuai, Bredas, et al.
s1997d, Shuai, Pati, Bredas, et al. s1997d; Shuai, Pati, Su, et al.
s1997d; Boman and Bursill s1998d; Kuwabara et al. s1998d;
Shuai et al. s1998d; Yaron et al. s1998d; Bendazzoli et al. s1999d;
Barford and Bursill s2001d; Barford, Bursill, and Smith s2002d;
Raghu et al. s2002d.

6See the work of Carruzo and Yu s1996d; Shibata, Nishino, et
al. s1996d, Shibata, Ueda, et al. s1996d, Caprara and Rosengren
s1997d; Shibata, Sigrist, and Heeb s1997d; Shibata, Tsvelik, and
Ueda s1997d; Shibata, Ueda, and Nishino s1997d; Sikkema et al.
s1997d; Wang s1998d; McCulloch et al. s1999d; Watanabe et al.
s1999d; Garcia et al. s2000, 2002d.
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cal picture of the convergence properties and the algo-
rithmic nature of DMRG has emerged, and it is fair to
say that we now have good foundations of a DMRG
theory: DMRG generically produces a particular kind of
ansatz state, known in statistical physics as a matrix-
product state; if it well approximates the true state of the
system, DMRG will perform well. In fact, it turns out to
be rewarding to reformulate DMRG in terms of varia-
tional optimization within classes of matrix-product
states sSec. III.Ad. In practice, DMRG performance is
best studied by considering the decay of the eigenvalue
spectrum of the reduced density matrix, which is fast for
one-dimensional gapped quantum systems, but generi-
cally slow for critical systems in one dimension and all
systems in higher dimensions sSec. III.Bd. This renders
DMRG applications in such situations delicate at best.
A very coherent understanding of these properties is
now emerging in the framework of bipartite entangle-
ment measures in quantum information theory.

A. Matrix-product states

Like conventional RG methods, DMRG builds on
Hilbert-space decimation. There is, however, no Hamil-
tonian flow to some fixed point and no emergence of
relevant and irrelevant operators. Instead, there is a flow
to some fixed point in the space of the reduced density
matrices. As has been pointed out by various authors
sÖstlund and Rommer, 1995; Martín-Delgado and Si-
erra, 1996; Rommer and Östlund, 1997; Dukelsky et al.,
1998; Takasaki et al., 1999d, this implies that DMRG
generates position-dependent matrix-product states
sFannes et al., 1989; Klümper et al., 1993d as block states.
However, there are subtle but crucial differences be-
tween DMRG states and matrix-product states
sTakasaki et al., 1999; Verstraete, Porras, and Cirac,
2004d that have important consequences regarding the
variational nature of DMRG.

1. Matrix-product states

These are simple generalizations of product states of
local states, which we take to be on a chain,

usl = us1l ^ us2l ^ ¯ ^ usLl , s43d

obtained by introducing linear operators Âifsig depend-
ing on the local state. These operators map from some
M-dimensional auxiliary state space spanned by an or-
thonormal basis hublj to another M-dimensional auxil-
iary state space spanned by hualj:

Âifsig = o
ab

sAifsigdabualkbu . s44d

One may visualize the auxiliary state spaces to be lo-
cated on the bonds si , i+1d and si−1, id. The operators
are thus represented by M3M matrices sAifsigdab; M
will be seen later to be the number of block states in
DMRG. We further demand for reasons explained be-
low that

o
si

ÂifsigÂi
†fsig = I . s45d

A position-dependent unnormalized matrix-product
state for a one-dimensional system of size L is then
given by

ucl = o
hsj
SkfLup

i=1

L

ÂifsigufRlDusl , s46d

in which kfLu and ufRl are left and right boundary states
in the auxiliary state spaces located in the above visual-
ization to the left of the first and to the right of the last
site. They are used to obtain scalar coefficients. Position-
independent matrix-product states are obtained by mak-

ing Eq. s44d position independent, Âifsig→Âfsig. For
simplicity, we shall consider only those in the following.

For periodic boundary conditions, boundary states are
replaced by tracing the matrix product:

ucl = o
hsj

TrFp
i=1

L

ÂifsigGusl . s47d

The best-known matrix-product state is the valence-
bond-solid ground state of the bilinear-biquadratic S=1
Affleck-Kennedy-Lieb-Tasaki Hamiltonian sAffleck et
al., 1987, 1988d, in which M=2.

2. Correlations in matrix-product states

Consider two local bosonic sfor simplicity; see Ander-

sson et al., 1999d operators Ôj and Ôj+l, acting on sites j
and j+ l, applied to the periodic boundary condition
matrix-product state of Eq. s47d. The correlator Csld
= kcuÔjÔj+lucl / kc ucl is then found, with Tr X Tr Y
=TrsX ^ Yd and sABCd ^ sXYZd= sA ^ XdsB ^ YdsC
^ Zd, to be given by

Csld =
Tr ŌjĪ

l−1Ōj+lĪ
L−l−1

Tr ĪL
, s48d

where we have used the following mapping sRommer
and Östlund, 1997; Andersson et al., 1999d from an op-

erator Ô acting on the local state space to an

M2-dimensional operator Ō acting on products of auxil-
iary states uabl= ual ^ ubl:

Ō = o
ss8

ks8uÔuslÂ*fs8g ^ Âfsg . s49d

Note that Â* stands for Â complex-conjugated only as

opposed to Â†. Evaluating Eq. s48d in the eigenbasis of

the mapped identity, Ī, we find that in the thermody-
namic limit L→`
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Csld = o
i=1

M2

ciS li

uliu
Dl

exps− l/jid s50d

with ji=−1/ lnuliu. The li are the eigenvalues of Ī, and

the ci depend on Ô. This expression holds because, due
to Eq. s45d, uli.1uø1 and l1=1 for the eigenstate
kab ul1l=dab. Equation s45d is thus seen to ensure nor-
malizability of matrix-product states in the thermody-
namic limit. Generally, all correlations in matrix-product
states are either long ranged sif ciÞ0 for a li=1d or
purely exponentially decaying. They are thus not suited
for describing critical behavior in the thermodynamic
limit. Even for gapped one-dimensional quantum sys-
tems their utility may seem limited, as the correlators
Csld of these systems are generically of a two-
dimensional classical Ornstein-Zernike form,

Csld ,
e−l/j

Îl
, s51d

whereas exponential decay as in Eq. s50d is typical of
one-dimensional classical Ornstein-Zernike forms. How-
ever, matrix-product states such as the Affleck-
Kennedy-Lieb-Tasaki sAKLTd ground state arise as
quantum disorder points in general Hamiltonian spaces
as the quantum remnants of classical phase transitions in
two-dimensional classical systems; these disorder points
are characterized by dimensional reduction of their cor-
relations and typically characterize the qualitative prop-
erties of subsets of the Hamiltonian space, which turns
them into most useful toy models, as exemplified by the
AKLT state sSchollwöck, Jolicœur, and Garel, 1996d.
Away from the disorder points, choosing increasingly
large M as dimension of the ansatz matrices allows us to
model the true correlation form as a superposition of
exponentials for increasingly large l; even for power-law
correlations, this modeling works for not too long dis-
tances.

3. DMRG and matrix-product states

To show that a DMRG calculation retaining M block
states produces M3M matrix-product states, Östlund
and Rommer s1995d considered the reduced basis trans-
formation to obtain a block of size ,,

km,−1s,um,l ; sA,dm,;m,−1s,
; sA,fs,gdm,;m,−1

, s52d

such that

um,l = o
m,−1s,

sA,fs,gdm,;m,−1
um,−1l ^ us,l . s53d

The reduced-basis transformation matrices A,fs,g auto-
matically obey Eq. s45d, which here ensures that hum,lj is
an orthonormal basis provided hum,−1lj is one as well.
We may now use Eq. s53d for a backward recursion to
express um,−1l via um,−2l and so forth. There is a scon-
ceptually irrelevantd complication as the number of

block states for very short blocks is less than M. For

simplicity, I assume that Nsite
Ñ =M and stop the recursion

at the shortest block of size Ñ that has M states, such
that

um,l = o
m

N
˜

o
sÑ+1,…,s,

sA,fs,g ¯ AÑ+1fsÑ+1gdm,mÑ

3 umÑl ^ usÑ+1 ¯ s,l , s54d

where we have boundary-site states umÑl;us1¯sÑl;
hence

um,l = o
s1,…,s,

sA,fs,g ¯ AÑ+1fsÑ+1gdm,,ss1¯sÑd

3us1 ¯ s,l . s55d

A comparison to Eq. s46d shows that DMRG generates
position-dependent M3M matrix-product states as
block states for a reduced Hilbert space of M states; the
auxiliary state space to a local state space is given by the
Hilbert space of the block to which the local site is the
latest attachment. Combining Eqs. s4d and s55d, we find
that the superblock ground state of the full chain is the
variational optimum in a space spanned by products of
two local states and two matrix-product states,

ucl = o
mSmE

o
hsj

cmSsL/2sL/2+1mE

3 sAL/2−1fsL/2−1g ¯ AÑ+1fsÑ+1gdmS,ss1¯sÑd

3 sAL/2+2fsL/2+2g ¯ AL−ÑfsL−ÑgdmE,ssL+1−Ñ¯sLd

3us1 ¯ sLl , s56d

which I have written for the case of the two single sites
at the chain center; an analogous form holds for all
stages of the finite-system algorithm.

For gapped quantum systems we may assume that for
blocks of length ,@j the reduced basis transformation
becomes site independent, such that the ansatz matrix A
generated by DMRG is essentially position independent
in the bulk. At criticality, the finite-dimensional matrix-
product state generated introduces some effective corre-
lation length sgrowing with Md. In fact, this has been
verified numerically for free fermions at criticality,
where the ansatz matrices for bulk sites converged ex-
ponentially fast to a position-independent ansatz matrix,
but where this convergence slowed down with M
sAndersson et al., 1999d.

The effect of the finite-system algorithm can be seen
from Eq. s56d to be a sequence of local optimization
steps of the wave function that have two effects: on the
one hand, the variational coefficients cmSsSsEmE are op-
timized, and on the other, a new, improved ansatz matrix
is obtained for the growing block, using the improved
variational coefficients for a new reduced basis transfor-
mation.

In practical applications one observes that, even for
translationally invariant systems with periodic boundary
conditions and repeated applications of finite-system
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sweeps, the position dependency of the matrix-product
state does not go away completely as it strictly should,
indicating room for further improvement. Dukelsky et
al. s1998d and Takasaki et al. s1999d have pointed out and
numerically demonstrated that finite-system DMRG
sand TMRG; see Sec. VIIId results can be improved and
better matrix-product states for translationally invariant
Hamiltonians can be produced by switching, after con-
vergence is reached, from the S••E scheme for the
finite-system algorithm to an S•E scheme and carrying
out some more sweeps. The rationale is that the varia-
tional ansatz of Eq. s56d generates safter the Schmidt
decomposition and before truncationd ansatz matrices of
dimension MNsite at the two local sites due to Eq. s20d,
whereas they are of dimension M at all other sites; this
introduces a notable position dependence, deteriorating
the overall wave function. In the new scheme, the new
ansatz matrix, without truncation, also has dimension M
fthe dimension of the environment in Eq. s20dg, so that
the local state is not favored. The variational state now
approaches its global optimum without further trunca-
tion, just improvements of the ansatz matrices.

The observation that DMRG produces variational
states formed from products of local ansatz matrices has
inspired the construction of variational ansatz states for
the ground state of Hamiltonians sthe recurrent varia-
tional approach; see Martín-Delgado and Sierra in Pe-
schel, Hallberg, et al., 1999d and the dominant eigenstate
of transfer matrices sthe tensor-product variational ap-
proach; Nishino et al., 2000, 2001; Maeshima et al., 2001;
Gendiar and Nishino, 2002; Gendiar et al., 2003d.

Closer in spirit to the original DMRG concept is the
product wave-function renormalization group sNishino
and Okunishi, 1995; Hieida et al., 1997d. This has been
applied successfully to the magnetization process of spin
chains in an external field where infinite-system DMRG
is highly prone to metastable trapping sSato and Akutsu,
1996; Hieida et al., 1997, 2001; Okunishi et al., 1999ad
and to the restricted solid-on-solid model sAkutsu and
Akutsu, 1998; Akutsu et al., 2001a, 2001bd. While in
DMRG the focus is to determine for each iteration ssu-
perblock sized the wave function numerically as precisely
as possible in order to derive the reduced basis transfor-
mation, the product wave-function renormalization
group operates directly on the A matrices itself: at each
iteration, one starts with an approximation to the wave
function and local ansatz matrices related to it by a
Schmidt decomposition. The wave function is then
somewhat improved, by carrying out a few Lanczos
steps at moderate effort, and again Schmidt decom-
posed. The transformation matrices thus obtained are
used to transform simproved the local ansatz matrices,
which in turn are combined with the decomposition
weights to define a wave function for the next larger
superblock. The final result is reached when both the
ansatz and transformation matrices become identical, as
they should at the DMRG fixed point for reduced basis
transformations.

4. Variational optimization in matrix-product states

If we compare Eq. s46d to Eq. s56d, we see that the
DMRG state differs from a true matrix-product state in
its description of ucl: The A matrices link auxiliary state
spaces of a bond on the right of a site to those on the left
for sites in the left block, but vice versa in the right
block. This may be mended by a transposition. This
done, one may write the prefactors of us1¯sLl as a true
product of matrices by rewriting cmSsL/2sL/2+1mE as an
M3M matrix sCfsL/2sL/2+1gdmS;mE. The remaining
anomaly is, as pointed out above, that the formal trans-
lational invariance of this state is broken by the indexing
of C by two sites, suggesting the modification of the
S••E scheme for the finite-system algorithm to an S•E
scheme as discussed above. However, as Verstraete, Por-
ras, and Cirac s2004d have demonstrated, it is conceptu-
ally and algorithmically worthwhile to rephrase DMRG
consistently in terms of matrix-product states right from
the beginning, thereby also abandoning the block con-
cept.

To this end, they introduce swith the exception of the
first and last sites; see Fig. 6d two auxiliary state spaces
of dimension M , a, to the left and b, to the right of site
,, such that on bond , one has auxiliary state spaces b,

and a,+1. They now consider maps from a, ^ b,→H,

from the product of two auxiliary state spaces to the
local state space, which can be written using matrices
sA,fsgdab:A,=os,

oa,b,
sA,fsgdabus,lka,b,u. The ual and

ubl are states of the auxiliary state spaces. On the first
and last site, the corresponding schemes map only from
one auxiliary state space. These maps can now be used
to generate a matrix-product state. To this purpose, Ver-
straete, Porras, and Cirac s2004d apply the string of maps
A1 ^ A2 ^ ¯ ^ AL to the product of maximally en-
tangled states uf1luf2l¯ ufL−1l, in which ufil
=obi=ai+1

ubiluai+1l. The maximal entanglement, in the
language of matrix-product states, ensures that the pref-
actors of us1¯sLl are given by products of Afsg matri-
ces, hence this construction is a matrix-product state.
Comparing this state to the representation of ucl in Eq.
s56d, one finds that the maps A are identical to the spos-
sibly transposedd basis transformation matrices Afsg,
with the exception of the position of the single sites: in
the S••E setup sbottom half of Fig. 6d, there are no
auxiliary state spaces between the two single sites, and
one map corresponds to Cfs,s,+1g. In the S•E setup
stop half of Fig. 6d, this anomaly disappears and cor-
rectly normalized Afs,g can be formed from Cfs,g.

The sfinite-systemd DMRG algorithm for the S•E
setup can now be reformulated in this picture as follows:
sweeping forward and backward through the chain, one
keeps for site , all A at other sites fixed and seeks the
C, that minimizes the total energy. From this, one deter-
mines A, and moves to the next site, seeking c,+1, and
so on, until all matrices have converged. In the final
matrix-product state one evaluates correlators as in Eq.
s48d. It is important to note that in this setup there is no
truncation error, as explained above in the language of
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Schmidt decomposition. Shifting the active site therefore
does not change the energy, and the next minimization
can only decrease the energy sor keep it constantd. This
setup is therefore truly variational in the space of the
states generated by the maps A and reaches a minimum
of energy within that space sthere is of course no guar-
antee of reaching the global minimumd. By comparison,
the setup S••E leads to a reduced basis transformation
and always excludes two different auxiliary state spaces
from the minimization procedure. It is hence not strictly
variational.

In this setup the generalization to periodic boundary
conditions is now easy. Additional auxiliary state spaces
a1 and bL are introduced and maximally entangled as for
all other bonds. There is now complete formal transla-
tional invariance of the ansatz ssee Fig. 7d. On this setup,
one optimizes maps smatricesd A one by one, going for-
ward and backward.

Verstraete, Porras, and Cirac s2004d have shown that,
for a given M, they obtain roughly the same precision
for periodic boundary conditions as for open boundary
conditions. This compares extremely favorably with
standard DMRG for periodic boundary conditions
where sin the worst cased up to M2 states are needed for
the same precision.

B. Properties of DMRG density matrices

In order to gain a theoretical understanding of
DMRG performance, we now take a look at the prop-
erties of the reduced density matrices and their trunca-
tion. Obviously, the ordered eigenvalue spectrum wa of
the reduced density matrix r̂ should decay as quickly as
possible to minimize the truncated weight er=1
−oa=1

M wa for optimal DMRG performance. This intu-
itively clear statement can be quantified: there are four
major classes of density-matrix spectra, in descending
order of DMRG performance.

sid Density-matrix spectra for M3M matrix-product
states as exact eigenstates of quantum systems,
with a finite fixed number of nonvanishing eigen-
values, leading to optimal DMRG performance.

siid Density-matrix spectra for non-matrix-product
states of one-dimensional quantum systems with
exponentially decaying correlations, and with
leading exponential decay of wa; spectra remain-
ing essentially unchanged for system sizes in ex-
cess of the correlation length.

siiid Density-matrix spectra for states of one-
dimensional quantum systems at criticality, with a
decay of wa that slows down with increasing sys-
tem size, leading to DMRG failure to obtain ther-
modynamic limit behavior.

sivd Density-matrix spectra for states of two-
dimensional quantum systems both at and away
from criticality, in which the number of eigenval-
ues to be retained to keep a fixed truncation error

grows exponentially with system size, restricting
DMRG to very small system sizes.

All scenarios translate to classical systems of one ad-
ditional dimension, due to the standard quantum-
classical mapping from d- to sd+1d-dimensional systems.

1. DMRG applied to matrix-product states

A state uc̃l of the matrix-product form of Eq. s46d with

dimension M̃ can be written as

uc̃l = o
a=1

M̃

uc̃a
Sluc̃a

El → ucl = o
a=1

M̃

Îwauca
Sluca

El , s57d

where we have arbitrarily cut the chain into sleftd system
and srightd environment with

uc̃a
Sl = o

hsSj

kfSup
iPS

AfsigualusSl , s58d

and similarly uc̃a
El; ucl , uca

Sl, and uca
El are the correspond-

ing normalized states. An appropriate treatment of
boundary sites is tacitly implied fcf. the discussion
before Eq. s55dg. Then the density matrix r̂S

=oa=1
M̃ wauca

Slkca
Su and has a finite spectrum of M̃ nonva-

nishing eigenvalues. The truncated weight will thus be

zero if we choose M.M̃ for DMRG, as DMRG gener-
ates these states fsee Eq. s55dg.

In such cases, DMRG may be expected to become an
exact method up to small numerical inaccuracies. This
has been observed recurrently; Kaulke and Peschel sin
Peschel, Hallberg, et al., 1999d provide an excellent ex-
ample, the non-Hermitian q-symmetric Heisenberg
model with an additional boundary term. This Hamil-
tonian is known to have matrix-product ground states of

varying complexity si.e., matrix sizes M̃d for particular
choices of parameters ssee also Alcaraz et al., 1994d.
Monitoring the eigenvalue spectrum of the DMRG den-
sity matrix for a sufficiently long system, Kaulke and
Peschel found that indeed it collapses at these particular

values: all eigenvalues but the M̃ largest vanish at these
points sFig. 8d. Similarly, a class of two-dimensional
quantum Hamiltonians with exact matrix-product
ground states has been studied using DMRG by Hieida
et al. s1999d.

2. DMRG applied to generic gapped one-dimensional
systems

It is quite easy to observe numerically that for gapped
one-dimensional quantum systems the eigenvalue spec-
trum of the density matrices decays essentially exponen-
tially such that the truncated weight can be reduced ex-
ponentially fast by increasing M, which is the hallmark
of DMRG success. Moreover, the eigenvalue spectrum
converges to some thermodynamic-limit form.

Peschel, Kaulke, and Legeza s1999d have confirmed
these numerical observations by studying exact density-
matrix spectra that may be calculated for the one-
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dimensional Ising model in a transverse field and the
XXZ Heisenberg chain in its antiferromagnetic gapped
regime, using a corner transfer-matrix method sBaxter,
1982d.

In those cases, the eigenvalues of r̂ are given, up to a
global normalization, as

w ~ expS− o
j=0

`

ejnjD s59d

with fermionic occupation numbers nj=0,1 and an essen-
tially linear energy spectrum ej: these are typically some
integer multiple of a fundamental scale e. The density-
matrix eigenvalue spectrum shows clear exponential de-
cay only for large eigenvalues due to the increasing de-
gree of degeneracy of the eigenvalue spectrum, as the
number of possible partitions of en into ejnj grows.
DMRG density matrices perfectly reproduce this behav-
ior sFig. 9d. Combining such exactly known corner
transfer-matrix spectra with results from the theory of
partitions, Okunishi et al. s1999bd derived the asymptotic
form

wa , exps− const 3 ln2ad s60d

for the ath eigenvalue ssee also Chan et al., 2002d.
These observations imply that for a desired truncated

weight the number of states to be kept remains finite
even in the thermodynamic limit and that the truncated
weight decays exponentially fast in M, with some price
to be paid due to the increasing degree of degeneracy
occurring for large M.

3. DMRG applied to one-dimensional systems at
criticality

Numerically, one observes at criticality that the eigen-
value spectrum decays dramatically slower and that for
increasing system size this phenomenon tends to aggra-
vate sChung and Peschel, 2001d, with errors in, e.g.,

ground-state energies increasing by several orders of
magnitude compared to gapped systems sLegeza and
Fáth, 1996d.

Hence the double question arises of the decay of the
eigenvalue spectrum for the density matrix of a given
system size and the size dependency of this result.
Chung and Peschel s2001d have shown for generic
Hamiltonians quadratic in fermionic operators that the
density-matrix spectrum is once again of the form of Eq.
s59d, but the energies ej are now no longer given by a
simple relationship linear in j. Instead, they show much
slower, curved growth, that slows down with system size.
Translating this into actual eigenvalues of the density
matrix, they show less than exponential decay, slowing
down with system size. This implies that for one-
dimensional quantum systems at criticality numerical
convergence for a fixed system size will no longer be
exponentially fast in M. Maintaining a desired truncated
weight in the thermodynamic limit implies a diverging
number M of states to be kept.

4. DMRG in two-dimensional quantum systems

Due to the large interest in two-dimensional quantum
systems, we now turn to the question of DMRG conver-
gence in gapped and critical systems. In the early days of
DMRG, Liang and Pang s1994d observed numerically
that to maintain a given precision, an exponentially
growing number of states M,aL, a.1, had to be kept
for system sizes L3L. However, reliable information
from numerics is very difficult to obtain here, due to the
very small system sizes in actual calculations. Chung and
Peschel s2000d have studied a sgappedd system of inter-
acting harmonic oscillators, in which the density matrix
can be written as the bosonic equivalent of Eq. s59d, with
eigenvalues, again up to a normalization,

w ~ expS− o
j=0

`

ejbj
†bjD . s61d

Considering strip systems of size L3N with NøL, nu-
merical evaluations have shown that

ej , const 3 j/N , s62d

hence the eigenvalue decay slows down exponentially
with inverse system size. This 1 /N behavior can be un-
derstood by considering the spectrum of N chains with-
out interchain interaction, which is given by the spec-
trum of the single chain with N-fold degeneracy
introduced. Interaction will lift this degeneracy, but will
not fundamentally change the slowdown this imposes on
the decay of the density-matrix spectrum fsee also du
Croo de Jongh and van Leeuwen s1998d for the generic
argumentg. Taking bosonic combinatorics into account,
one finds

wa , expf− sconst/Ndln2ag , s63d

which is a consistent extension of Eq. s60d. For a system
of size 10310, typical truncation errors of 10−5 for M
=100, 10−7 for M=500, and 10−8 for M=1000 have been

FIG. 6. Pictorial representation of S•E saboved and S• •E
sbelowd DMRG schemes for open boundary conditions as in-
troduced by Verstraete, Porras, and Cirac, 2004. Paired dots
represent auxiliary state spaces linked to a local state space.
Straight lines symbolize maximal entanglement, ellipses and
rectangles map to local state spaces as detailed in the text.
Note the special role of the boundary sites. Adapted from Ver-
straete, Porras, and Cirac, 2004.
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reported ssee Fig. 10d, reflecting the very slow conver-
gence of DMRG in this case.

For a critical system, the noninteracting fermion
model may be used once again as a model system
sChung and Peschel, 2001d. For M=2000 states, for this
simple model, the resulting truncation error is 5310−2

for systems of size 12312, 5310−1 for 16316, and 10−1

for size 20320. Here, DMRG is clearly at its limits.

5. DMRG precision for periodic boundary
conditions

While for periodic boundary conditions the overall
properties of DMRG density matrices are the same as
those of their open-boundary-condition counterparts,
their spectra have been observed numerically to decay
much more slowly. Away from criticality, this is due to
some susually only approximated additional factor-of-2
degeneracy of the eigenvalues. This can be explained by
studying the amplitudes of density-matrix eigenstates.
Chung and Peschel s2000d have demonstrated in their
noncritical harmonic-oscillator model that the density-
matrix eigenstates associated with high eigenvalue
weight are strongly located close to the boundary be-
tween system and environment sFig. 11d. Hence, in a
periodic system, in which there are two boundary points,
there are for the high-weight eigenvalues two essentially
identical sets of eigenstates localized at the left and right
boundary, respectively, leading to the approximate
double degeneracy of high-weight eigenvalues. At criti-
cality, no such simple argument holds, but DMRG is
similarly affected by a slower decay of spectra.

In a recent study, Verstraete, Porras, and Cirac s2004d
have shown that this strong deterioration of DMRG is
essentially due to its particular setup for simulating pe-
riodic boundary conditions, and have provided a new
formulation of the algorithm which produces results of
the same quality as for open boundary conditions for the
same number of states kept, at the cost of losing matrix
sparseness ssee Sec. III.Ad.

C. DMRG and quantum information theory—A new
perspective

As understood in the early phases of DMRG devel-
opment sWhite, 1992; White and Noack, 1992d, the rea-
son for the success of the method is that no system is
considered in isolation, but embedded in a larger entity.
In fact, as discussed in Sec. II.B, DMRG truncation can
be understood in the language of quantum information

theory as preserving the maximum entanglement be-
tween system and environment as measured by the von
Neumann entropy of entanglement,

S = − Tr r̂ ln2r̂ = − o
a

waln2wa, s64d

in an M-dimensional block state space.
Latorre et al. s2004d have calculated the entropy of

entanglement SL for systems of length L embedded in
infinite sandisotropic XY chains and for systems embed-
ded in finite, periodic Heisenberg chains of length N,
both with and without external field. Both models show
critical and noncritical behavior depending on aniso-
tropy and field strength. In the limit N→`, SLøL,
which is obtained by observing that entropy is maximal
if all 2L states are equally occupied with amplitude 2−L.
They find that SL→` for L→` at criticality, but satu-
rates as SL→SL

* for L<j in the noncritical regime. At
criticality, however, SL grows far less than permitted by
SLøL, but obeys logarithmic behavior,

SL = k log2L + const. s65d

The constant k is found to be given by k=1/6 for the
anisotropic XY model at the critical field Hc=1 and by
k=1/3 for the isotropic XY model at Hc=1 as well as
the isotropic Heisenberg model for HøHc=1 sfor an
isotropic XY model in field H,Hc, see Fig. 12d. Away
from criticality, the saturation value SL

* decreases with
decreasing correlation length j sFig. 13d.

One-dimensional quantum spin chains at criticality
are described by conformally invariant s1+1d-dimen-
sional field theories. In fact, Eq. s65d can be linked
sGaite, 2003; Latorre et al., 2004d to the geometric en-
tropy sCallan and Wilczek, 1994d of such field theories,

FIG. 7. Periodic boundary condition setup used in the algo-
rithm of Verstraete, Porras, and Cirac s2004d. Labeling as in
previous figure. Adapted from Verstraete, Porras, and Cirac,
2004.

FIG. 8. Largest density-matrix eigenvalues vs a tuning param-
eter a in a q=1/4-symmetric Heisenberg chain. Largest eigen-
value <1 invisible on logarithmic scale; eigenvalue collapse
indicates pure matrix-product states of small finite dimension.
From Kaulke and Peschel in Peschel, Hallberg, et al., 1999.
Reprinted with permission.
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SL
geo =

c + c̄

6
log2L , s66d

where c sc̄d are the central charges, if one observes that
for the anisotropic XY model c= c̄=1/2 and for the
Heisenberg model and isotropic XY model c= c̄=1.

Geometric entropy arguments for sd+1d-dimensional
field theories use a bipartition of d-dimensional space by
a sd−1d-dimensional hypersurface, which is shared by
system S and environment E. By the Schmidt decompo-
sition, S and E share the same reduced density-matrix
spectrum, hence entanglement entropy, which is now ar-
gued to reside essentially on the shared hypersurface scf.
the locus of highest-weight density-matrix eigenstates in
Fig. 11; see also Gaite, 2001d. Taking the thermodynamic
sinfraredd limit, we find that entropy scales as the hyper-
surface area,

SL ~ SL

l
Dd−1

, s67d

where l is some ultraviolet cutoff which in condensed-
matter physics we may fix at some lattice spacing. Intro-
ducing a gap smassd, an essentially infrared property,
into this field theory does not modify this behavior gen-
erated on ultraviolet scales on the hypersurface. In d
=1, a more careful argument shows that there is a ssub-
leadingd logarithmic correction as given above at critical-
ity or a correction saturating at some L away from criti-
cality.

SL is the number of qubits corresponding to the en-
tanglement information. To code this information in
DMRG, one needs a system Hilbert space of size M
ù2SL; in fact, numerical results indicate that M and 2SL

are—to a good approximation—proportional. Taking
the linear dimensions of total space and embedded sys-
tem to N ,L→`, quantum information theory hence
provides us with a unified picture of DMRG perfor-

mance, which is in perfect agreement with the observa-
tions obtained by studying density-matrix spectra:

sid In one-dimensional quantum systems away from
criticality, DMRG yields very precise results for
the thermodynamic limit for some finite number

of states kept, M,2SL
*
, which grows with the cor-

relation length.

siid In one-dimensional quantum systems at criticality,
the number of states that has to be kept will di-
verge as

MsLd , Lk, s68d

with k from Eq. s65d. This explains the failure of
DMRG for critical one-dimensional systems as
L→`. As k is small, this statement has to be
qualified; DMRG still works for rather large finite
systems.

siiid In higher-dimensional quantum systems, the num-
ber of states to be kept will diverge as

MsLd , 2Ld−1
, s69d

rendering the understanding of thermodynamic-
limit behavior by conventional DMRG quite im-
possible; information is beyond retrieval just as in
a black hole—whose entropy scales with its sur-
face, as the entanglement entropy would in a
three-dimensional DMRG application. In any
case, even for higher-dimensional systems,
DMRG may be a very useful method as long as
system size is kept resolutely finite, as it is in
nuclear physics or quantum chemistry applica-
tions. Recent proposals sVerstraete and Cirac,
2004d also show that it is possible to formulate
generalized DMRG ansatz states in such a way
that entropy shows correct size dependency in
two-dimensional systems ssee Sec. VId.

Legeza et al. s2003ad have carried the analysis of
DMRG state selection using entanglement entropy even
further, arguing that the acceptable truncated weight—
not identical to, but closely related to the entropy of
entanglement, which emerges as the key quantity—
should be kept fixed during DMRG runs, determining
how many states M have to be retained at each iteration.
This dynamical block state selection has already been
applied in various contexts sLegeza and Sólyom, 2003;
Legeza et al., 2003bd. More recently, Legeza and Sólyom
s2004d have tightened the relationship between quantum
information theory and DMRG state selection by pro-
posing a further refinement of state selection. M is now
chosen variably to keep loss of quantum information be-
low some acceptable threshold. They argue that this loss
is given as

xsEd ; Ssr̂d − ptypSsr̂typd − s1 − ptypdSsr̂atypd . s70d

Here, r̂=ptypr̂typ+ s1−ptypdr̂atyp. For a given M , r̂typ is
formed from the M dominant eigenstates of r̂ , r̂atyp
from the remaining ones, with 1−ptyp being the trun-

FIG. 9. Density-matrix eigenvalues wn vs eigenvalue number n
for a gapped XXY Heisenberg chain of L=98 and three values
of anisotropy D.Dc=1. Degeneracies are as predicted analyti-
cally. From Peschel, Kaulke, and Legeza, 1999. Reprinted with
permission.
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cated weight and r̂typ,atyp scaled to have trace one.
Legeza and Sólyom s2004d report a very clear linear re-
lationship between DMRG errors and xsEd.

IV. ZERO-TEMPERATURE DYNAMICS

As we have seen, DMRG is an excellent method for
calculating ground states and selected excited eigen-
states at almost machine precision. On the other hand,
the targeting of specific states suggests that DMRG is
not suitable for calculating dynamical properties of
strongly correlated systems even at T=0, as the time
evolution of general excited states will explore large
parts of the Hilbert space. Closer inspection has re-
vealed, however, that the relevant parts of Hilbert space
can be properly addressed by DMRG. For some opera-

tor Â, one may define a stime-dependentd Green’s func-
tion at T=0 in the Heisenberg picture by

iGAst8 − td = k0uÂ†st8dÂstdu0l s71d

with t8ù t for a time-independent Hamiltonian Ĥ. Going
to frequency range, the Green’s function reads

GAsv + ihd = k0uÂ† 1

E0 + v + ih − Ĥ
Âu0l , s72d

where h is some positive number to be taken to zero at
the end. We may also use the spectral or Lehmann rep-

resentation of correlations in the eigenbasis of Ĥ,

CAsvd = o
n

zknuÂu0lz2dsv + E0 − End . s73d

This frequency-dependent correlation function is related
to GAsv+ ihd as

CAsvd = lim
h→0+

−
1

p
Im GAsv + ihd . s74d

In the following, I shall also use GAsvd and CAsv+ ihd
where the limit h→0+ will be assumed to have been
taken in the former and omitted in the latter case. The
role of h in DMRG calculations is threefold: First, it
ensures causality in Eq. s72d. Second, it introduces a fi-
nite lifetime t~1/h to excitations, such that on finite
systems they can be prevented from traveling to the
open boundaries where their reflection would induce
spurious effects. Third, h provides a Lorentzian broad-
ening of CAsvd,

CAsv + ihd =
1

p
E dv8CAsv8d

h

sv − v8d2 + h2 , s75d

which serves either to broaden the numerically obtained
discrete spectrum of finite systems into some
thermodynamic-limit behavior or to broaden analytical
results for CA for comparison to numerical spectra in
which h.0.

Most DMRG approaches to dynamical correlations
center on the evaluation of Eq. s72d. The first, which I
refer to as Lanczos vector dynamics, was pioneered by
Hallberg s1995d and calculates highly time-efficient, but
comparatively rough approximations to dynamical quan-
tities, adopting the Balseiro-Gagliano method to
DMRG. The second approach, which is referred to as
the correction vector method sRamasesha et al., 1997;
Kühner and White, 1999d, is yet another, older scheme
adapted to DMRG, one much more precise, but numeri-
cally much more expensive. A third approach, called dy-
namical DMRG, has been proposed by Jeckelmann
s2002ad; while on the surface it is only a minor reformu-
lation of the correction vector method, it will be seen to
be much more precise.

Very recently, dynamical correlations as in Eq. s71d
have also been calculated directly in real time using

FIG. 10. Density-matrix eigenvalues wn for rectangular two-
dimensional gapped systems of interacting harmonic oscilla-
tors. The leftmost curve corresponds to the one-dimensional
case. From Chung and Peschel, 2000. Reprinted with permis-
sion.

FIG. 11. Amplitudes of highest-weight single-particle eigen-
states of the left-block density matrix for a one-dimensional
open chain of L=32 interacting harmonic oscillators. From
Chung and Peschel, 2000. Reprinted with permission.
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time-dependent DMRG with adaptive Hilbert spaces
sVidal, 2003, 2004; Daley et al., 2004; White and Feiguin,
2004d, as will be discussed in Sec. IX.C. These may then
be Fourier transformed to a frequency representation.
As time-dependent DMRG is best suited for short times
si.e., high frequenciesd, and the methods discussed in this
section are typically best for low frequencies, this alter-
native approach may be very attractive to cover wider
frequency ranges.

All approaches share the need for precision control
and the elimination of finite-system and/or boundary ef-
fects. Beyond DMRG-specific checks of convergence,
precision may be checked by comparisons to indepen-
dently obtained equal-time correlations using the fol-
lowing sum rules:

E
−`

`

dv CAsvd = k0uÂ†Âu0l , s76d

E
−`

`

dv vCAsvd = k0uÂ†fĤ,Âgu0l , s77d

E
−`

`

dv v2CAsvd = k0ufÂ†,ĤgfĤ,Âgu0l , s78d

where the first equation holds for hù0 and the latter
two only as h→0. As DMRG is much more precise for
equal-time than dynamical correlations, comparisons are
made to DMRG results which for the purpose may be
considered exact. Finite-size effects due to boundary
conditions can be treated in various ways. They can be
excluded completely by the use of periodic boundary
conditions at the price of much lower DMRG precision
sHallberg, 1995d. In cases where open boundary condi-
tions are preferred, two situations should be distin-

guished. If Â acts locally, such as in the calculation of an
optical conductivity, one may exploit the fact that finite
h exponentially suppresses excitations sJeckelmann,
2002ad. As they travel at some speed c through the sys-
tem, a thermodynamic limit L→`, h→0 with h=c /L
may be taken consistently. For the calculation of dy-
namical structure functions like those obtained in elastic

neutron scattering, Â is a spatially delocalized Fourier
transform, and another approach must be taken. The
open boundaries introduce both genuine edge effects
and a hard cut to the wave functions of excited states in
real space, leading to a large spread in momentum
space. To limit bandwidth in momentum space, filtering
is necessary. The filtering function should be narrow in
momentum space and broad in real space, while simul-
taneously strictly excluding edge sites. Kühner and
White s1999d have introduced the so-called Parzen filter
FP,

FPsxd = H1 − 6uxu2 + 6uxu3, 0 ø uxu ø 1/2

2s1 − uxud3, 1/2 ø uxu ø 1,J s79d

where x= i /LPP f−1,1g, the relative site position in the
filter for a total filter width 2LP. In momentum space FP

has a wave-vector uncertainty Dq=2Î3/LP, which scales
as L−1 if one scales LP with system size L. For finite-size
extrapolations it has to be ensured that filter size does
not introduce a new size dependency. This can be en-
sured by introducing a Parzen-filter prefactor given by
Î140p /151LP.

A. Continued-fraction dynamics

The technique of continued-fraction dynamics was
first exploited by Gagliano and Balseiro s1987d in the
framework of exact ground-state diagonalization. Obvi-
ously, the calculation of Green’s functions as in Eq. s72d
involves the inversion of Ĥ sor more precisely, E0+v

+ ih−Ĥd, a typically very large sparse Hermitian matrix.
This inversion is carried out in two, at least formally,
exact steps. First, an iterative basis transformation tak-

ing Ĥ to a tridiagonal form is carried out. Second, this
tridiagonal matrix is then inverted, allowing the evalua-
tion of Eq. s72d.

FIG. 12. sColor in online editiond Diverging von Neumann
entropy SL vs block length L for a critical isotropic XY chain
in external fields H,Hc. Increasing field strengths suppress
entropy. From Latorre et al., 2004. Reprinted with permission.

FIG. 13. sColor in online editiond Saturating density-matrix
entropy SL vs block length L for an Ising chain in a transverse
field HøHc. Saturation entropy grows with H→Hc; diver-
gence is recovered at criticality stop curved. From Latorre et
al., 2004. Reprinted with permission.
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Let us call the diagonal elements of Ĥ in the tridiago-
nal form an and the subdiagonal elements bn

2. The coef-
ficients an ,bn

2 are obtained as the Schmidt-Gram coeffi-
cients in the generation of a Krylov subspace of un-
normalized states starting from some arbitrary state,

which we take to be the excited state Âu0l:

ufn+1l = Ĥufnl − anufnl − bn
2ufn−1l , s80d

with

uf0l = Âu0l , s81d

an =
kfnuĤufnl

kfnufnl
, s82d

bn
2 =

kfn−1uĤufnl
kfn−1ufn−1l

=
kfnufnl

kfn−1ufn−1l
. s83d

The global orthogonality of the states ufnl sat least in
formal mathematicsd and the tridiagonality of the new

representation si.e., kfiuĤufjl=0 for ui− ju.1d follow by in-
duction. It can then be shown quite easily by an expan-
sion of determinants that the inversion of E0+v+ ih

−Ĥ leads to a continued fraction such that the Green’s
function GA reads

GAszd =
k0uÂ†Âu0l

z − a0 −
b1

2

z − a1 −
b2

2

z − ¯

, s84d

where z=E0+v+ ih. This expression can now be evalu-
ated numerically, giving access to dynamical correla-
tions.

In practice, several limitations occur. The iterative
generation of the coefficients an ,bn

2 is equivalent to a

Lanczos diagonalization of Ĥ with starting vector Âu0l.
Typically, the convergence of the lowest eigenvalue of
the transformed tridiagonal Hamiltonian to the ground-

state eigenvalue of Ĥ will have happened after n
,Os102d iteration steps for standard model Hamilto-
nians. Lanczos convergence is, however, accompanied
by numerical loss of global orthogonality, which compu-
tationally is ensured only locally, invalidating the inver-
sion procedure. The generation of coefficients has to be
stopped before that. Kühner and White s1999d have pro-
posed monitoring, for normalized vectors, kf0 u fnl.e as a
termination criterion. The precision of this approach
therefore depends on whether the continued fraction

has sufficiently converged at termination. With Âu0l as

the starting vector, convergence will be fast if Âu0l is a
long-lived excitation sclose to an eigenstated such as
would be the case if the excitation were part of an exci-
tation band; this will typically not be the case if it is part
of an excitation continuum.

It should also be mentioned that, beyond the above
complications also arising for exact diagonalization with

an exact Ĥ, additional approximations are introduced in
DMRG, as the Hamiltonian itself is of course not exact.

Instead of evaluating the continued fraction of Eq.
s84d, one may also exploit the fact that, upon normaliza-
tion of the Lanczos vectors ufnl and accompanying re-
scaling of an and bn

2, the Hamiltonian is iteratively trans-
formed into a tridiagonal form in a new approximate
orthonormal basis. When one transforms the basis hufnlj
by a diagonalization of the tridiagonal Hamiltonian ma-

trix to the approximate energy eigenbasis of Ĥ , hunlj
with eigenenergies En, the Green’s function can be writ-
ten within this approximation as

GAsv + ihd = o
n

k0uÂ†unlknu
1

E0 + v + ih − En
unl

3knuÂu0l , s85d

where the sum runs over all approximate eigenstates.
The dynamical correlation function is then given by

CAsv + ihd =
h

p
o
n

zknuÂu0lz2

sE0 + v − End2 + h2 , s86d

where the matrix elements in the numerator are simply
the uf0l expansion coefficients of the approximate eigen-
states unl.

For a given effective Hilbert-space dimension M, op-
timal precision within these constraints can be obtained
by targeting not only the ground state, but also a se-
lected number of states of the Krylov sequence. While a
first approach is to take arbitrarily the first n states gen-
erated ssay, five to tend at equal weight, the approximate
eigenbasis formulation gives direct access to the relative
importance of the vectors. The importance of a Lanczos

vector ufnl is given by, writing uAl=Âu0l,

ln = o
m

zkAumlz2zkmufnlz2, s87d

which assesses the contribution the vector makes to an
approximative eigenstate uml, weighted by that eigen-
state’s contribution to the Green’s function. The density
matrix may then be constructed from the ground state
and a number of Lanczos vectors weighted according to
Eq. s87d. The weight distribution indicates the applica-
bility of the Lanczos vector approach: for the spin-1
Heisenberg chain at q=p, where there is a one-magnon
band at v=D=0.41J, three target states carry 98.9% of
total weight, whereas for the spin-1 /2 Heisenberg chain
at q=p with a two-spinon continuum for 0øvøpJ, the
first three target states carry only 28.0%, indicating se-
vere problems with precision sKühner and White, 1999d.

There is currently no precise rule for resolving the
dilemma of targeting as many states as possible while
retaining sufficient precision in the description of each
single one.
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As an example of the excellent performance of this
method, one may consider the isotropic spin-1 Heisen-
berg chain, for which the single-magnon line is shown in
Fig. 14. Exact diagonalization, quantum Monte Carlo,
and DMRG are in excellent agreement, with the excep-
tion of the region q→0, where the single-magnon band
forms only the bottom of a magnon continuum. Here
Lanczos vector dynamics do not correctly reproduce the
2D gap at q=0, which is much better resolved by quan-
tum Monte Carlo.

The intuition that excitation continua are badly ap-
proximated by a sum over some Os102d effective excited
states is further corroborated by considering the spectral
weight function S+sq=p ,vd fuse A=S+ in Eq. s74dg for a
spin-1 /2 Heisenberg antiferromagnet. As shown in Fig.
15, Lanczos vector dynamics roughly capture the right
spectral weight, including the 1/v divergence, as can be
seen from the essentially exact correction vector curve,
but no convergent behavior can be observed upon an
increase of the number of targeted vectors. The very fast
Lanczos vector method is thus certainly useful for get-
ting a quick overview of spectra, but is not suited to
detailed quantitative calculations of excitation continua,
only excitation bands. Nevertheless, this method has
been applied successfully to the S= 1

2 antiferromagnetic
Heisenberg chain sHallberg, 1995d, the spin-boson
model sNishiyama, 1999d, the Holstein model sZhang et
al., 1999d, and spin-orbital chains in external fields sYu
and Haas, 2000d. Okunishi et al. s2001d have used it to
extract spin chain dispersion relations. Garcia et al.
s2004d have used continued-fraction techniques to pro-
vide a self-consistent impurity solver for dynamical
mean-field calculations sMetzner and Vollhardt, 1989;
Georges et al., 1996d.

B. Correction vector dynamics

Even before the advent of DMRG, another way of
obtaining more precise spectral functions had been pro-
posed by Soos and Ramasesha s1989d; it was first applied
using DMRG by Ramasesha et al. s1997d and Kühner
and White s1999d. After preselection of a fixed fre-
quency v one may introduce a correction vector:

ucsv + ihdl =
1

E0 + v + ih − Ĥ
Âu0l , s88d

which, if known, allows for trivial calculation of the
Green’s function and hence the spectral function at this
particular frequency:

GAsv + ihd = kAucsv + ihdl . s89d

The correction vector itself is obtained by solving the
large sparse linear equation system given by

sE0 + v + ih − Ĥducsv + ihdl = Âu0l . s90d

To actually solve this non-Hermitian equation system,
the current procedure is to split the correction vector
into real and imaginary parts, to solve the Hermitian

equation for the imaginary part, and exploit the relation-
ship to the real part:

fsE0 + v − Ĥd2 + h2gImucsv + ihdl = − hÂu0l s91d

Reucsv + ihdl =
Ĥ − E0 − v

h
Imucsv + ihdl . s92d

The standard method for solving a large sparse linear
equation system is the conjugate-gradient method
sGolub and van Loan, 1996d, which effectively generates
a Krylov space, as does the Lanczos algorithm. The main
implementation work in this method is to provide

Ĥ2Imucl. Two remarks are in order. The reduced basis

representation of Ĥ2 is obtained by squaring the effec-
tive Hamiltonian generated by DMRG. This approxima-
tion is found to work extremely well as long as both real
and imaginary parts of the correction vector are in-
cluded as target vectors. While the real part is not
needed for the evaluation of spectral functions, sE0+v

−ĤdImucl,Reucl due to Eq. s92d; and targeting Reucl
ensures minimal truncation errors in Ĥ Imucl. The fun-
damental drawback of using a squared Hamiltonian is
that, for all iterative eigenvalue or equation solvers, the
speed of convergence is determined by the matrix con-
dition number, which drastically deteriorates by the
squaring of a matrix. Many schemes are available to im-
prove the convergence of conjugate-gradient methods,
usually based on providing the solution to some related
but trivial equation system, such as that formed from the
diagonal elements of the large sparse matrix sGolub and
van Loan, 1996d.

In the simplest form of the correction vector method,
the density matrix is formed from targeting four states,

u0l , Âu0l , Imucsv+ ihdl, and Reucsv+ ihdl.
As has been shown by Kühner and White s1999d, it is

not necessary to calculate a very dense set of correction
vectors in v space to obtain the spectral function for an
entire frequency interval. Assuming that the finite con-
vergence factor h ensures a good description of an entire
range of energies of width <h by the correction vector,
they applied the Lanczos vector method as detailed in

the last section to Âu0l, using the effective Hamiltonian
obtained by also targeting the correction vector, to ob-
tain the spectral function in some interval around their
anchor value for v. Comparing the results for some v
obtained by starting from neighboring anchoring fre-
quencies allows for excellent convergence checks sFig.
16d. In fact, they found that the best results were ob-
tained for a two-correction-vector approach in which
two correction vectors were calculated and targeted for
two frequencies v1, v2=v1+Dv and the spectral func-
tion obtained for the interval fv1 ,v2g. This method was,
for example, able to provide a high-precision result for
the spinon continuum in the S=1/2 Heisenberg chain
where standard Lanczos dynamics fails sFig. 15d.

Reducing the broadening factor h, it is also possible to
resolve finite-system peaks in the spectral function, ob-
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taining to some approximation both location and weight
of the Green’s-function poles.

The correction vector method has been applied to de-
termine the nonlinear optical coefficients of Hubbard
chains and derived models by Pati et al. s1999d; Kühner
et al. s2000d have extracted the ac conductivity of the
Bose-Hubbard model with nearest-neighbor interac-
tions. Raas et al. s2004d have used it to study the dy-
namic correlations of single-impurity Anderson models
and were able to resolve sharp dominant resonances at
high energies, using optimized algorithms for the matrix
inversion needed to obtain the correction vector.

C. Dynamical DMRG

A further important refinement of DMRG dynamics
is obtained by a reformulation of the correction vector
method in terms of a minimization principle, which has
been called “dynamical DMRG” sJeckelmann, 2002ad.
While the fundamental approach remains unchanged,
the large sparse equation system is replaced by a mini-
mization of the functional

WA,hsv,cd = kcusE0 + v − Ĥd2 + h2ucl + hkAucl

+ hkcuAl . s93d

At the minimum, the minimizing state is

ucminl = Imucsv + ihdl . s94d

Even more importantly, the value of the functional itself
is

WA,hsv,cd = − phCAsv + ihd , s95d

such that for the calculation of the spectral function it is
not necessary to explicitly use the correction vector. The
huge advantage is that if the correction vector is known
to some precision e swhich will be essentially identical
for the equation solver and the minimizerd, the value of
the functional itself is, by general properties of varia-
tional methods, known to the much higher precision e2.
Hence the DMRG algorithm is essentially implemented
as in the correction vector method, with the same target
vectors, until they converge under sweeping, but with
the minimization of WA,hsv ,cd replacing the sparse
equation solver. Results that are obtained for a sequence
of vi may then be extended to other v by suitable inter-
polation sJeckelmann, 2002ad, also exploiting first de-
rivatives of spectral functions that are numerically acces-
sible at the anchor points.

For dynamical quantities, there are no strict state-
ments on convergence. However, convergence for large
M seems to be monotonic, with CA typically underesti-
mated.

The high-quality numerical data obtained from dy-
namical DMRG in fact allow for an extrapolation to the
thermodynamic limit. As pointed out by Jeckelmann
s2002ad, the double limit

CAsvd = lim
h→0

lim
L→`

CAsL ;v + ihd , s96d

where limits may not be interchanged and which is very
hard to take numerically, may be taken as a single limit,

CAsvd = lim
hsLd→0

CAfL ;v + ihsLdg , s97d

provided that hsLd→0 as L→` is chosen such that the
finiteness of the system is not visible for the chosen hsLd
and it thus seems to be in the thermodynamic limit from
a level-spacing perspective. This implies that hsLd
.dvsLd, the maximum level spacing of the finite system
around energy v. For a typical tight-binding Hamil-
tonian such as the Hubbard model, one finds

hsLd ù
c

L
, s98d

where c is the bandwidth sand, in such Hamiltonians,
also a measure of propagation velocityd. The key argu-
ment is now that if hsLd is chosen according to that
prescription, the scaling of numerical results broadened
by hsLd is the same as for some thermodynamic-limit
form known or conjectured analytically subject to
Lorentzian broadening using the same h. From Lorent-
zian broadening of model spectra one can then show
that a local d peak in an otherwise continuous spectrum
with weight C0 scales as C0 /phsLd, and that a power-law
divergence sv−v0d−a at a band edge is signaled by a
scaling as hsLd−a. More model spectra are discussed by
Jeckelmann s2002ad.

Dynamical DMRG has been extensively used to study
the spectrum and the optical conductivity of the ex-
tended Hubbard model sJeckelmann et al., 2000; Essler
et al., 2001; Jeckelmann, 2003a; Kim et al., 2004d. The
optical conductivity may be calculated as

s1svd = −
1

Lv
lim
h→0

Im GJsv + ihd , s99d

with the current operator Ĵ=−ieoistiscs,i
† cs,i+1−cs,i+1

† cs,id.
Another possibility is to use

FIG. 14. Single-magnon line of the S=1 Heisenberg antiferro-
magnet from exact diagonalization, quantum Monte Carlo,
and DMRG for various system sizes and boundary conditions.
From Kühner and White, 1999. Reprinted with permission.
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s1svd = −
1

Lv
lim
h→0

Imfsv + ihdGDsv + ihdg , s100d

with the dipole operator D̂=−eoiisni−1d.
In the noninteracting limit U=0, the optical conduc-

tivity is nonvanishing in a band 2uDu,v,4t with square-
root edge divergences. Dynamical DMRG quantita-
tively reproduces all features of the exact solution,
including the divergence. It is even possible to extract
the degree of the singularity. Moving to the strongly in-
teracting case U@ t, one expects two continuous bands
due to the dimerization at 2uDuø uv−Uuø4t and the
Hubbard resonance at v=U. Figure 17, which compares
to analytical solutions, shows both that the bands are
reproduced with excellent quality sup to broadening at
the edgesd and that the d singularity is measured with
extremely high precision. Similarly, very precise spectral
functions for the Hubbard model away from half-filling
have been obtained sBenthien et al., 2004d. Nishimoto
and Jeckelmann s2004d have shown that dynamical
DMRG may also be applied to impurity problems, such
as the flat-band single-impurity Anderson model, upon
suitable discretization of the band. Recently, Nishimoto
et al. s2004d have extended this to a precise calculation of
the Green’s function of a single-impurity Anderson
model with arbitrary band, thereby providing a high-
quality self-consistent impurity solver needed for dy-
namical mean-field calculations sMetzner and Vollhardt,
1989; Georges et al., 1996d.

V. BOSONS AND DMRG: MANY LOCAL DEGREES OF
FREEDOM

So far, our discussion of DMRG applications has been
largely restricted to quantum spin and electronic sys-
tems, which are characterized by a fixed, usually small
number of degrees of freedom per site. As algorithmic
performance relies heavily on Nsite small fformally
OsNsite

3 d, in practice rather OsNsite
2 dg, one may wonder

whether DMRG is applicable to bosonic degrees of free-

dom with Nsite=`. Such bosonic degrees of freedom oc-
cur, for example, in the Bose-Hubbard model,

ĤBH = − to
i

bi+1
† bi + bi

†bi+1 +
U

2 o
i

nisni − 1d , s101d

which has come to the forefront of research due to the
realization of a tunable quantum phase transition from a
Mott insulating to a superfluid phase in ultracold
bosonic atomic gases in optical lattices sGreiner et al.,
2002d. Another model of interest is the Holstein model,
in which electrons salso spinless fermions or XY spinsd
couple to local squantumd phonons that react dynami-
cally and are not a priori in some adiabatic limit,

ĤHol = − to
i

cs,i+1
† cs,i + cs,i

† cs,i+1 − go
i

sbi
† + bidsni − 1d

+ vo
i

sbi
†bi + 1/2d . s102d

It models electrons in a vibrating lattice and opens the
way to polaron physics. Yet another model is the spin-
boson model, which models the dissipative coupling of a
two-state system to a thermal reservoir given by bosonic
oscillators:

ĤSB = −
D

2
sx + o

i
vibi

†bi +
sz

2 o
i

fisbi
† + bid . s103d

A. Moderate number of degrees of freedom

The simplest conceptual approach is to arbitrarily
truncate the local-state space to some Nmax for the
bosonic degrees of freedom and to check for DMRG
convergence both in M and in Nmax. This approach has
been very successful in the context of the Bose-Hubbard
model in which the on-site Coulomb repulsion U sup-
presses large occupation numbers. It has been used for
the standard Bose-Hubbard model sKühner and Mon-
ien, 1998; Kühner et al., 2000d, with a random potential
sRapsch et al., 1999d, in a parabolic potential due to a
magnetic trap for cold atoms sKollath et al., 2004d, and
with non-Hermitian hopping and a pinning impurity to
model superconductor flux lines sHofstetter et al., 2004d.
Typically, allowing for about three to five times the av-
erage occupation is sufficient as Nmax. Similarly, the
physics of the fluctuation of confined membranes sNish-
iyama, 2002a, 2002b, 2003d and quantum strings sNish-
iyama, 2001d necessitates the introduction of a larger
number of local vibrational states. Other applications
that are more problematic have been to phonons, both
with sCaron and Moukouri, 1996; Maurel and Lepetit,
2000; Maurel et al., 2001d and without sCaron and Mouk-
ouri, 1997d coupling to magnetic or fermionic degrees of
freedom. While they are believed to be reliable in giving
a generic impression of physical phenomena, for more
precise studies more advanced techniques are necessary
scompare the results of Caron and Moukouri, 1996 and
of Bursill, 1999d.

FIG. 15. Spectral weight S+sq=p ,vd of the S=1/2 Heisenberg
antiferromagnet from Lanczos vector and correction vector
DMRG. NL indicates the number of target states; M=256.
Note that spectral weight times v is shown. From Kühner and
White, 1999. Reprinted with permission.
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B. Large number of degrees of freedom

Essentially three approaches have been taken to re-
duce the large, possibly divergent number of states per
site to a small number manageable by DMRG.

Bursill s1999d has proposed a so-called four-block ap-
proach that is particularly suited to periodic boundary
conditions and is a mixture of Wilson numerical renor-
malization group and DMRG ideas. Starting from four
initial blocks of size 1 with M states sthis may be a rela-
tively large number of electronic and phononic degrees
of freedomd forming a ring, one solves for the ground
state of that M4-state problem; density matrices are then
formed to project out two blocks and form a new block
of double size with M2 states, which are truncated down
to M using the density-matrix information. From four of
these blocks, a new four-block ring is built, leading to a
doubling of system size at every step. Calculations may
be simplified beyond the usual time-saving techniques
by reducing the number of M4 product states to some
smaller number of states for which the product of their
weights in the density matrices is in excess of some very
small e, of the order of 10−25 to 10−10. Translation opera-
tors applied to the resulting ground state of the four
blocks on the ring allow the explicit construction of spe-
cific momentum eigenstates, in particular for k=0 and
k=p. For both an XY-spin sBursill, 1999d and isotropic-
spin sBursill et al., 1999d variety of the Holstein model,
this method allows one to trace out very precisely a
Kosterlitz-Thouless phase transition from a quasi-long-
ranged antiferromagnet for small spin-phonon coupling
to a dimerized, gapped phase. As Kosterlitz-Thouless
phase transitions exhibit an exponentially slow opening
of the gap sOkamoto and Nomura, 1992d, the exact lo-
calization of the transition by analyzing the gap is prob-
lematic. It is rather convenient to apply the level-
spectroscopy technique sNomura and Okamoto, 1994d,
which locates the phase transition by a small-system
finite-size extrapolation of the crossing points g* of the
lowest-lying excitation of different symmetries, includ-
ing k=0 and k=p states that are easily accessible in the

four-block approach. It was found that, in the neighbor-
hood of the phase transition, roughly 30 phonon states
were sufficient to obtain converged results. A similar
scenario for the Kosterlitz-Thouless transition was ob-
tained for spinless fermions in the Holstein model sBur-
sill et al., 1998d.

An approach more in the spirit of DMRG, the so-
called local state reduction, was introduced by Zhang,
Jeckelmann, and White s1998d. While it can also be com-
bined with exact diagonalization, I want to formulate it
in a DMRG setup. Assuming a chain with fermionic and
a small number of bosonic degrees of freedom on each
site, one of the sites is chosen as the “big site” to which
a further number of bare bosonic degrees of freedom is
added. Within a DMRG calculation, a density matrix is
formed for the big site to truncate the number of de-
grees of freedom down to some fixed number of optimal
degrees of freedom. This procedure is repeated through-
out the lattice in the finite-system algorithm, sweeping
for convergence and for the addition of further bosonic
degrees of freedom. The standard prediction algorithm
makes the calculation quite fast. Physical quantities are
then extracted within the optimal phononic state space.
As can be seen from Fig. 18, merely keeping two or
three optimal states, in which high-lying bare states have
non-negligible weight, may be as efficient as keeping of
the order of a hundred bare states. This approach has
allowed the demonstration of the strong effect of quan-
tum lattice fluctuations in trans-polyacetylene sBarford,
Bursill, and Lavrentiev, 2002d. Combined with Lanczos-
vector dynamics, very precise dynamical susceptibilities
have been extracted for spin-boson models sNishiyama,
1999d. Extensions of the method are offered by Fried-
man s2000d and Fehske s2000d.

Jeckelmann and White s1998d have devised a further
approach in which 2n bosonic degrees of freedom are
embodied by n fermionic pseudosites: writing the num-
ber of the bosonic degree of freedom as a binary num-
ber, the degree of freedom is encoded by empty and full
fermionic pseudosites as dictated by the binary number.
All operators on the bosonic degrees of freedom can
now be translated into srather complicatedd operators on
the fermionic pseudosites. Finite-system DMRG is then
applied to the resulting Hamiltonian. Jeckelmann and
co-workers have been able to study polaronic self-
trapping of electrons in the Holstein model for up to 128
phonon states and have located very precisely the metal-
insulator transition in this model sJeckelmann et al.,
1999d.

VI. TWO-DIMENSIONAL QUANTUM SYSTEMS

Since the spectacular discovery of high-Tc supercon-
ductivity related to CuO2 planes, there has been a strong
focus on two-dimensional quantum systems. Early on, it
was suggested that the Hubbard model or the t-J model
away from half-filling might be simple yet powerful
enough to capture essential features of high-Tc super-
conductivity. The analytical study of these quantum sys-
tems is plagued by problems similar to the one-

FIG. 16. Spectral weight of the S=1/2 Heisenberg antiferro-
magnet from correction vector DMRG. M=256 states kept.
Spectral weights have been calculated for v intervals starting
from various anchoring frequencies for the correction vector.
From Kühner and White, 1999. Reprinted with permission.
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dimensional case, as in many effective field theories d
=2 is the lower critical dimension and few exact results
are available. Numerically, exact diagonalization meth-
ods are even more restricted in two dimensions, and
quantum Monte Carlo is difficult to use for fermionic
models away from half filling due to the negative-sign
problem. Can DMRG help?

The first step in any two-dimensional application of
DMRG is to identify blocks and sites in order to apply
the strategies devised in the one-dimensional case. As-
suming nearest-neighbor interactions on a square lattice,
one might organize columns of sites into one supersite
such that blocks are built from supersites, sweeping
through the system horizontally. While this approach
maintains short-ranged interactions, it must fail for any
two-dimensional strip of appreciable width L as the
number of states per supersite grows exponentially as
Nsite

L and is only useful for narrow ladder systems.
The standard approach fNoack, White, and Scalapino

in Landau et al. s1994d, Liang and Pang s1994d, White
s1996bdg, known as the multichain approach, is to define
a suitable one-dimensional path over all sites of the two-
dimensional lattice, such as the configuration shown in
Fig. 19.

One may now apply standard one-dimensional finite-
system DMRG at the price of long-ranged interactions
of range 2L both within and between blocks, as indi-
cated in Fig. 19. An inherent difficulty is the preparation
of blocks and operators for application of the finite-
system algorithm, as there is no precursor infinite-
system DMRG run in some sequence of smaller systems
possible in this setup. Few compositions of smaller
blocks in this scheme resemble the final system at all.
While Liang and Pang s1994d have simply switched off
all non-nearest-neighbor interactions in the mapped
one-dimensional system and applied standard infinite-
system DMRG in order to switch on all interactions in
finite-system runs, one can also grow blocks in a stan-
dard infinite-system DMRG run, where some very short,
exactly solvable system is used as environment such that
the entire superblock remains treatable. This and similar
warmup procedures will generate starting states for

finite-system DMRG far from anything physically real-
istic. As finite-system DMRG provides only sequential
local updates to that state, there is no guarantee that the
system will not get trapped in some local minimum state.
That such trappings do exist is seen from frequent ob-
servations that seemingly converged systems may, after
many further sweeps, suddenly experience major
“ground-state” energy drops into some new spossibled
ground state.

White and co-workers have followed the approach of
exploiting local trappings by theorizing ahead of using
DMRG on possible ground-state types using other ana-
lytical or numerical techniques and of forcing these
types of states onto the system by the application of
suitable local magnetic fields and chemical potentials.
These external fields are then switched off and the con-
vergence behavior of the competing proposed states un-
der finite-system DMRG observed. This procedure gen-
erates a set of states, each of which corresponds to a
local energy minimum. The associated physical proper-
ties may be measured and compared ssee White and
Scalapino, 1998a and White and Scalapino, 2000 for a
discussiond. In the multichain approach, the two-
dimensional Heisenberg model sWhite, 1996bd, the two-
dimensional t-J model sWhite and Scalapino, 1998a,
1998b, 2000; Kampf et al., 2001; Chernychev et al., 2003d
with particular emphasis on stripe formation, and the
six-leg ladder Hubbard model sWhite and Scalapino,
2003d have been studied.

Among competing setups sdu Croo de Jongh and van
Leeuwen, 1998; Henelius, 1999; Farnell, 2003; Moukouri
and Caron, 2003d, Xiang et al. s2001d have set up a two-
dimensional algorithm that uses a true DMRG calcula-
tion all along and builds L3L systems from previously
generated sL−1d3 sL−1d systems while keeping the lat-
tice structure intact. It can be applied to all lattices that
can be arranged to be square with suitable interactions.
For example, a triangular lattice is a square lattice with
additional next-nearest-neighbor interactions along one
diagonal in each square.

A one-dimensional path is organized as shown in Fig.
20, where the pair of free sites may be zipped through
the square along the path using the standard finite-
system algorithm, yielding arbitrary block sizes. In par-
ticular, one may obtain triangular upper or lower blocks
as shown in Fig. 21. Combining these blocks from a sL
−1d3 sL−1d system and adding two free sites at the cor-
ners, one arrives at an L3L system. Here, the upper left
free site can be zipped to be a neighbor of the lower-
right free site, as it sits next to active block ends si.e., the
ends where new sites are addedd. The pair of free sites
can now be zipped through the system to yield the de-
sired triangular blocks for the step L→L+1.

This approach systematically yields lower energies
than the multichain approach for both two-dimensional
square and triangular S=1/2 Heisenberg models with
the exception of very small systems. Even for a rela-
tively modest number of states kept sM=300d, Xiang et
al. s2001d report thermodynamic-limit extrapolations in
good agreement with large-scale quantum Monte Carlo

FIG. 17. Optical conductivity for a Peierls-Hubbard model in
the U@ t limit, L=128, h=0.1, V=v−U: solid line, dynamical
DMRG; dot-dashed line, broadened exact d contribution;
dashed line, unbroadened thermodynamic-limit bands. Note
log-linear scale. From Jeckelmann, 2002a. Reprinted with per-
mission.
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simulations: For the square lattice, they find E`

=−0.3346 versus a quantum Monte Carlo result E`

=−0.334 719s3d sSandvik, 1997d. The potential of this ap-
proach seems far from exploited at the moment.

So far, I have been tacitly assuming that interactions
are of the same order along both spatial directions. Ex-
perimentally, a relatively frequent situation is that one-
dimensional quantum systems are weakly coupled along
a second axis. At high enough temperatures this interac-
tion will washed out, but at sufficiently low temperatures
there will be a crossover from one- to two-dimensional
behavior. Such systems may be studied by attempting a
precise one-dimensional description and introducing the
weak interchain interaction on the mean field or some
other perturbative level. Moukouri and Caron s2003d
and Moukouri s2004d have used DMRG in a similar
spirit by solving a one-dimensional system using stan-
dard DMRG with M states and determining the M8
lowest-lying states for the superblock. Chain lengths are
chosen such that the lowest-lying excitation of the finite
chain is down to the order of the interchain coupling.
These states are taken to be the states of a “site,” and
are combined to a new effective Hamiltonian, which is
once again treated using DMRG. Results for weakly
coupled spin chains are in good agreement with quan-
tum Monte Carlo results; however, M8 is currently se-
verely limited to several tens.

A severe limitation on two-dimensional DMRG is
provided by the exponential growth of M with L for a
preselected truncated weight or ground-state precision
sSec. III.Bd. For frustrated and fermionic systems be-
yond the very small exact diagonalization range s636
for S=1/2 spinsd, DMRG may yet be the method of
choice as quantum Monte Carlo suffers from the
negative-sign problem and even medium-sized fermionic
systems of size, say, 12312 sites would be most useful; in
models with non-Abelian symmetries, the implementa-
tion of the associated good quantum numbers has been
shown to reduce drastically the truncation error for a
given number of states sMcCulloch and Gulacsi, 2000,
2001, 2002; McCulloch et al., 2001d.

Very recently, Verstraete and Cirac s2004d have pro-
posed a new approach to two-dimensional quantum sys-
tems combining a generalization of their matrix-product
formulation of DMRG sVerstraete, Porras, and Cirac,
2004d and imaginary-time evolution sVerstraete, Garcia-
Ripoll, and Cirac, 2004d, discussed in Sec. III.A and Sec.
IX.C. One-dimensional matrix-product states are
formed from matrix products of M3M matrices
sAfsgdab, with M-dimensional auxiliary state spaces on
the bond to the left and right of each site. The two-
dimensional generalization for a square lattice is given
by the contraction of tensors sAfsgdabgd with
M-dimensional auxiliary state spaces on the four adja-
cent bonds. Finite-temperature and ground states are
calculated by imaginary-time evolution of a totally
mixed state along the lines of Verstraete, Garcia-Ripoll,
and Cirac s2004d. As tensorial contractions lead sin con-
trast to the case of the ansatz matrices Afsg appearing in

one dimensiond to a proliferation of indices on resulting
tensors, a suitable truncation scheme is needed, as de-
scribed by Verstraete and Cirac s2004d.

An appealing feature of this approach is that the en-
tropy of entanglement for a cut through a system of size
L3L will scale, for fixed M, linearly in system size, as it
should generically. The errors in energy seem to de-
crease exponentially in M. M is currently very small sup
to 5d, as the algorithm scales badly in M; however, as M
variational parameters are available on each bond, even
a small M corresponds to large variational spaces. At the
time of writing, it is too early to assess the potential of
this new approach; however, current results and the con-
ceptual clarity of this approach make it seem very prom-
ising.

VII. BEYOND REAL-SPACE LATTICES: MOMENTUM-
SPACE DMRG, QUANTUM CHEMISTRY, SMALL GRAINS,
AND NUCLEAR PHYSICS

In this section, I shall consider three groups of
DMRG applications that seem to have very little in
common at first sight: the study of translationally invari-
ant low-dimensional models in momentum space, high-
precision quantum chemistry calculations for small mol-
ecules, and studies of small grains and nuclei. However,
from a DMRG point of view, all share fundamental
properties. Let me first discuss momentum-space
DMRG, move on to quantum chemistry, and finish by
considering small grains and nuclear physics.

A. Momentum-space DMRG

Real-space DMRG precision dramatically deterio-
rates when applied to long-ranged interactions or hop-
pings. Moreover, momentum is not accessible as a good
quantum number in real-space DMRG. Momentum-
space DMRG, on the other hand, makes momentum a
good quantum number, works naturally with periodic
boundary conditions, and allows trivial manipulation of
the single-particle dispersion relation. Momentum-space
DMRG has already yielded highly satisfying dispersion
relations and momentum distributions in excellent
agreement with analytical results sNishimoto, Jeckel-
mann, et al., 2002d.

FIG. 18. Optimal vs bare phonon states: ground-state energy
convergence for a four-site Holstein model at half-filling vs
number of soptimal, bared phonon states kept. From Zhang,
Jeckelmann, and White, 1998.
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Consider for definiteness a Hubbard model with local
interaction U, but long-ranged hopping tij,

ĤLR = o
ijs

tijcs,i
† cs,j + Uo

i
ni↑ni↓ s104d

in arbitrary dimensions; site i is localized at ri and tij
= tsri−rjd. With L lattice sites, Fourier transformations

cs,k
† =

1
ÎL

o
j

eik·rjcs,j
† s105d

yield the band structure

eskd = o
r

e−ik·rtsrd s106d

and the Hamiltonian

Ĥ = o
k,s

eskdcs,k
† cs,k +

U

L o
k1,k2,k3

c↑k1

† c↓k2

† c↓k3
c↑k1+k2−k3

.

s107d

The reciprocal lattice points k are now taken to be
“sites.” Note that L is not the linear size of the lattice,
but is taken to be the total lattice size sbecause of the
typical DMRG mapping to one dimensiond.

The key idea sXiang, 1996d is to arrange these sites
into a one-dimensional chain with long-ranged interac-
tions that is treated by the real-space finite-system
DMRG sNishimoto, Jeckelmann, et al., 2002; Legeza et
al., 2003ad. In addition to the conventional good quan-
tum numbers, states will also be classified by total mo-
mentum, which allows a further substantial segmenta-
tion of Hilbert space sby a factor of order Ld. Hence for
the same number of states kept, momentum-space
DMRG is much faster than real-space DMRG.

To obtain an efficient implementation, several issues
have to be addressed.

sid In momentum space there is a huge proliferation
of interaction terms of OsL3d that have to be gen-
erated, stored, and applied to wave functions effi-
ciently.

siid For an application of the finite-system DMRG al-
gorithm, we need to provide blocks and operators
living on these blocks for all block sizes. In real
space, they are naturally generated during the

infinite-system stage of the algorithm. In momen-
tum space, another warmup procedure must be
found.

siiid On a one-dimensional lattice with short-ranged
interactions it is natural to group sites as they are
arranged in real space. In momentum space with
long-ranged interactions, there is no obvious site
sequence, even in the one-dimensional case. Does
the arrangement affect convergence properties? Is
there an optimal arrangement?

Let us discuss these points in the following.

sid DMRG operator representation for general two-
body-interaction Hamiltonians. In principle we
should like to use DMRG to treat the generic
Hamiltonian

Ĥtwo-body = o
ij

Tijci
†cj + o

ijkl
Vijklci

†cj
†ckcl, s108d

where Tij encodes kinetic energy and one-body
potentials and Vijkl a generic two-body sCoulombd
interaction; for simplicity, we assume spin to be
contained in the orbital indices. In the worst-case
scenario, all Vijkl are different, although symme-
tries and model properties may yield decisive sim-
plifications. In momentum space, for example,
VijklÞ0 for one l only once ijk is fixed due to
momentum conservation.

As for operators living on the same block,

kmuci
†cjum̃l Þ o

m·8

kmuci
†um8lkm8ucjum̃l , s109d

all operator pairings have to be stored separately.
Leaving aside the simpler case in which one or
two of the four operators live on the single sites in
DMRG, and assuming that they are all either in
block S or E, this suggests that for L sites of the
order of OsL4d operators have to be stored. As
their form changes for each of the L possible
block sizes, the total memory consumption would
be OsL5M2d on disk for all blocks and OsL4M2d in
RAM for the current block. At the same time, for
each of the L steps of a sweep, calculation time

FIG. 19. Standard reorganization of a two-dimensional lattice
as a zigzag one-dimensional chain with long-ranged interac-
tions for DMRG treatment. Typical blocks during a finite-
system DMRG application are shown. FIG. 20. Diagonal reorganization of a two-dimensional lattice

as used by Xiang et al. s2001d. Typical blocks during a finite-
system DMRG application are shown.
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would be of order OsL4M3d, or OsL5M3d for the
entire calculation.

Memory consumption as well as the associated
calculation time can, however, be reduced drasti-
cally sXiang, 1996d. Let us consider the three pos-
sible operator distributions on blocks S and E.

sad Four operators in one block s4/0d: Terms
Vijklci

†cj
†ckcl are absorbed into a single-block

Hamiltonian operator during block growth. As-
suming i , j ,k are in the previous block and site l is
added to form the current block, a representation
of ci

†cj
†ck in the previous block basis allows the for-

mation of Vijkl3ci
†cj

†ck3cl in the block-plus-site
product basis, which is then transformed into the
basis of the current block and added into the
single-block Hamiltonian operator. For L blocks,
OsL3d representations each of ci

†cj
†ck are necessary.

These in turn can be compounded into complemen-
tary operators,

Ol = o
ijk

Vijklci
†cj

†ck, s110d

so that

o
ijkl

Vijklci
†cj

†ckcl → o
l

Olcl. s111d

The complementary operators can be constructed
as discussed in Sec. II.G, assuming the knowledge
of two-operator terms ci

†cj
†. For L blocks, OsL2d of

those exist, leading to memory consumption
OsL3M2d on disk and OsL2M2d in RAM.

sbd Three operators in a block s3/1d: One applies the
strategy of Eqs. s110d and s111d, with Ol and cl act-
ing on different blocks.

scd Two operators in a block s2/2d: Again, the
complementary-operator technique can be applied,
with the modification that each complementary op-

erator living on block S has now two matching op-
erators in E. A further class of complementary op-
erators

Okl = o
ij

Vijklci
†cj

† s112d

allows the simplification

o
ijkl

Vijklci
†cj

†ckcl → o
kl

Oklckcl. s113d

Memory consumption for the second type of
complementary operator is OsL3M2d on disk and
OsL2M2d in RAM. Taking all operator combina-
tions together, global memory consumption is to
leading order OsL3M2d on disk and OsL2M2d in
RAM, which is a reduction by L2 compared to the
naive estimate. In momentum space, due to mo-
mentum conservation, memory consumption is re-
duced by another factor of L to OsL2M2d on disk
and OsLM2d in RAM.

Using the complementary-operator technique,
calculation times are dominated by the s2/2d terms.
In analogy to the construction of s4/0d terms “on
the fly” by generating the new terms of the sum,
transforming them, and adding them into the op-
erator, the Okl can be constructed at a computa-
tional expense of OsL3M2d for generating the L
new terms to be added to each of the L2 comple-
mentary operators with M2 matrix elements each
and OsL2M3d for transforming the L2 operators
into the current basis. Using the multiplication
technique of Sec. II.I, multiplying the Hamiltonian
to the state vector costs OsL2M3d time at each step
or OsL3M3d per sweep. Global calculation time per
sweep is thus OsL3M3d+OsL4M2d, a reduction by
L2 for the dominant first term stypically, M@L for
the relevant DMRG applicationsd.

siid Setting up finite-system blocks. The standard prac-
tice currently adopted in momentum space
sXiang, 1996; Nishimoto, Jeckelmann, et al., 2002d
is to use standard Wilsonian renormalization
sWilson, 1975, 1983d: for the chosen sequence of
momenta, blocks are grown linearly sas in infinite-
system DMRGd, but diagonalized without super-
block embedding and the lowest-energy states re-
tained, with the important modification that it
should be ensured that at least one or two states
are retained for each relevant Hilbert-space sec-
tor, i.e., all sectors within a certain spread about
the average momentum, particle number, and
magnetization. Otherwise DMRG may miss the
right ground state, as certain sectors that make an
important contribution to the ground state may
not be constructed during the finite-system sweep.
Left and right block sectors must be chosen such
that all of them find a partner in the other block
to combine to the desired total momentum, par-

FIG. 21. Composition of blocks from a sL−1d3 sL−1d system
and two free sites into an L3L system as used by Xiang et al.
s2001d. The heavy solid line indicates the one-dimensional path
through the lattice. The lattice subsets surrounded by the bro-
ken lines are blocks A and B; the last added sites are indicated
by broken circles. Note that blocks overlap for the smaller
lattice and are “pulled apart” for the big lattice. The s and P
stand for the new sites added.
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ticle number, and magnetization. Moreover, it is
advantageous to choose corresponding states in
different sectors such that obvious symmetries are
not broken, e.g., Sz↔−Sz if the final state is
known to be in the Stot

z =0 sector; it has also been
found that choosing initial block sizes too small
may result in much slower convergence or trap-
ping in wrong minima sLegeza et al., 2003ad.

siiid Determining the order of momentum sites. Nish-
imoto, Jeckelmann, et al. s2002d report that what
works best for short-ranged Hubbard models is
ordering the levels according to increasing dis-
tance to the Fermi energy of the noninteracting
limit, ueskd−eFu, thus grouping levels that have
strong scattering together, whereas for longer-
ranged Hubbard models a simple ordering ac-
cording to eskd works best. Similar results have
been reported by Legeza et al. s2003ad, who could
demonstrate trapping in wrong minima for inad-
equate orderings; Legeza and Sólyom s2003d have
provided a quantum-information-based method
to avoid such orderings.

Nishimoto, Jeckelmann, et al. s2002d have car-
ried out extensive convergence studies for Hub-
bard models in one dimension and two dimen-
sions with various hoppings. Convergence seems
to be dominated by the ratio of interaction to
bandwidth, U /W rather than some U / t. The
momentum-space DMRG algorithm becomes ex-
act in the U /W→0 limit; convergence deterio-
rates drastically with U /W, but is acceptable for
U /Wø1, which is Uø8t for the 2D Hubbard
model with nearest-neighbor hopping. Generally
it seems that for momentum-space DMRG con-
vergence depends only weakly on the range of
hopping as opposed to real-space DMRG.
Momentum-space DMRG is worst at half-filling
and deteriorates somewhat with dimension sif cal-
culations for the same physical scale U /W are
comparedd. In two dimensions, for moderate U,
momentum-space DMRG is more efficient than
real-space DMRG.

As can be seen from the results of Nishimoto,
Jeckelmann, et al. s2002d, even for values of M as
large as several 1000, convergence is not achieved.
Due to the complex growth scheme, it cannot be
taken for granted even after many sweeps that the
environmental error has been eliminated; as in
two-dimensional real-space DMRG, sudden
drops in energy are observed. In their application,
Nishimoto, Jeckelmann, et al. s2002d report that
for fixed M a fit formula in 1/M,

EfitS 1

M
D = E` +

a1

M
+

a2

M2 + ¯ , s114d

works very well and improves results by over an
order of magnitude even for final M=2000. Build-
ing on the proportionality between truncated
weight and energy error for eliminated environ-

mental error, Legeza et al. s2003ad have pro-
posed a “dynamical block selection scheme” to
vary M to maintain a fixed truncated weight.
They find that in this approach

Eserd − Eexact

Eexact
= Laer s115d

is very well satisfied for a<1, where er is the trun-
cated weight. A further advantage of this ap-
proach is that the number of states needed for a
certain precision varies widely in momentum-
space DMRG, so that for many DMRG steps
important savings in calculation time can be
realized.

All in all, momentum-space DMRG seems a promis-
ing alternative to real-space DMRG, in particular for
longer-ranged interactions sfor short-ranged interactions
in one dimension, real-space DMRG remains the
method of choiced. However, momentum-space DMRG
presents additional complications soptimal ordering of
levels, efficient encodingd that may not yet have been
optimally solved.

B. Quantum chemistry

A field in which DMRG will make increasingly impor-
tant contributions in the next few years is quantum
chemistry. While the first quantum-chemical DMRG cal-
culations on cyclic polyene by Fano et al. s1998d and
polyacetylene by Bendazzoli et al. s1999d were still very
much in the spirit of extended Hubbard models, more
recent work has moved on to calculations in generic
bases with arbitrary interactions. Let me situate this lat-
ter kind of DMRG application in the general context of
quantum chemistry.

Within the framework of the Born-Oppenheimer ap-
proximation, i.e., fixed nuclear positions, two major
ways of determining the electronic properties of mol-
ecules are given by Hartree-Fock sHFd and post-HF cal-
culations and density-functional theory. Density-
functional theory is computationally rather inexpensive
and well-suited to quick and quite reliable studies of
medium-sized molecules, but is not overly precise, in
particular for small molecules. Here, Hartree-Fock cal-
culations, incorporating Fermi statistics exactly and
electron-electron interactions on a mean-field level, pro-
vide good sinitiald results and a starting point for further
refinement, so-called post-HF calculations. Quantum
chemistry DMRG is one such calculation.

For both the HF and post-HF calculations, one starts
from a first-quantized Schrödinger equation sin atomic
unitsd for the full molecule with N electrons; second
quantization is achieved by introducing some suitably
chosen basis set huwilj. In this way, a general two-body
interaction Hamiltonian as in Eq. s108d can be derived.

A HF calculation now solves this Hamiltonian at
mean-field level, and it can be reexpressed in terms of
the HF orbitals. A closed-shell singlet ground state is
then simply given by
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uHFl = c↑1
† c↓1

†
¯ c↑N/2

† c↓N/2
† u0l . s116d

Within standard quantum chemistry post-HF calcula-
tions, one improves now on this ground state by a
plethora of methods. Simple approaches consist in di-
agonalizing in the subspace of one- or two-particle ex-
cited states; others choose a certain subset of electrons
and diagonalize the Hamiltonian fully in one subset of
orbitals for those scomplete active spaced. Taking all
electrons sexcitationsd and all orbitals into account, one
obtains, within the originally chosen basis set, the exact
many-body solution, known as the full configuration-
interaction solution. While the approximate schemes
typically scale as N5 to N7 in the number of orbitals, full
configuration-interaction solutions demand exponential
effort and are available only for some very small mol-
ecules.

From the DMRG point of view, determining the
ground state of the full second-quantized Hamiltonian is
formally equivalent to an application of the momentum-
space DMRG, with some additional complications. As
momentum conservation does not hold for Vijkl, there
are OsNd more operators. Moreover, the basis set must
be chosen carefully from a quantum chemist’s point of
view. As in momentum-space DMRG, a good sequence
of the strongly different orbitals has to be established for
DMRG treatment so that convergence is optimized.
Also, an initial setup of blocks must be provided, includ-
ing operators.

Orbital ordering in quantum chemistry turns out to be
crucial to the performance of the method; a badly cho-
sen ordering may lead to much slower convergence or
even trapping in some higher-energy local minimum.
The simplest information available, the HF energy and
occupation of the orbitals, has been exploited by White
and Martin s1999d, Daul, Ciofini, et al. s2000d, and
Mitrushenkov et al. s2001, 2003d to enforce various or-
derings of the orbitals.

Chan and Head-Gordon s2002d have proposed the use
of the symmetric reverse Cuthill-McKee reordering
sCuthill and McKee, 1969; Liu and Sherman, 1975d,
in which orbitals are reordered such that Tij matrix ele-
ments above a certain threshold are as band diagonal as
possible. This reduces effective interaction range, lead-
ing to faster convergence in M and reduced sweep num-
ber, as confirmed by Legeza et al. s2003bd, who opti-
mized the position of the Fock term Tij
+ok occupieds4Vikkj−2Vikjkd and reported reductions in M
by a third or so.

Another approach exploits the short range of chemi-
cal interactions which in the basis of typically delocal-
ized HF orbitals leads to a large effective range of inter-
actions detrimental to DMRG. This may be reduced by
changing to more localized orbitals. Orbital-localization
techniques were first studied by Daul, Ciofini, et al.
s2000d, who applied a localization procedure sPipek and
Mezey, 1989d to the unoccupied orbitals to avoid in-
creases in the starting configuration energy, but they did
not find remarkable improvement over orderings of the
unmodified HF orbitals.

Quantum information techniques have been used by
Legeza and Sólyom s2003d both for momentum-space
and quantum chemistry DMRG to devise optimal order-
ings. Studying various ad hoc orderings, they find fastest
and most stable convergence under sweeping for those
orderings that maximize entanglement entropy fEq.
s22dg between orbitals and the rest of the chain for or-
bitals at the chain center; orderings are hence chosen
such that strongly entangled orbitals are brought to the
chain center soften those closest to the Fermi surfaced.
This ordering can be constructed iteratively, starting
from a first guess as obtained by the Cuthill-McKee or-
dering.

Once the orbital ordering has been selected, current
applications follow a variety of warmup procedures to
build all sizes of blocks and to ensure that block states
contain as many states as possible relevant for the final
result. This may be done by augmenting the block being
built by a toy environment block with some low-energy
states that provide an environment compatible with the
block, i.e., leading to the desired total quantum numbers
sChan and Head-Gordon, 2002d, doing infinite-system
DMRG on left and right blocks while also targeting ex-
cited states sMitrushenkov et al., 2001d, and defining a
minimum number of states to be kept even if the non-
zero eigenvalues of the density matrix do not provide
enough states sLegeza et al., 2003ad. Block-state choice
can also be guided by entanglement entropy calculations
sLegeza and Sólyom, 2003d.

Various molecules have by now been studied using
DMRG, both for equilibrium and out-of-equilibrium
configurations, ground states, and excitations. H2O has
been serving as a benchmark in many quantum chemis-
try calculations and has been studied within various fi-
nite one-particle bases, more recently in the so-called
double z polarized sDZPd basis sBauschlicher and Tay-
lor, 1986d with 8 electrons in 25 orbitals sand 2 “frozen”
electrons in the 1s oxygen orbitald and the larger triple z
plus double polarization sTZ2Pd basis sWidmark et al.,
1990d of 10 electrons in 41 orbitals. While the larger ba-
sis will generally yield lower energies, one can compare
how close various approximations come to an exact di-
agonalization sfull configuration interaction if at all pos-
sibled solution within one particular basis set. In the
smaller DZP basis, the exact ground-state energy is at
−76.256 634 H sHartreed. While the Hartree-Fock solu-
tion is several hundred mH above, and the single and
double configuration-interaction solution about ten mH
too high, and various coupled-cluster approximations
sBartlett et al., 1990d are reaching chemical accuracy of 1
mH with errors between 4.1 and 0.2 mH, DMRG results
of various groups sWhite and Martin, 1999; Daul,
Ciofini, et al., 2000; Chan and Head-Gordon, 2002d are
better than 0.2 mH at M,400, reaching an error of
about 0.004 mH at M,900 sChan and Head-Gordon,
2002; Legeza et al., 2003ad. Moving to the larger TZ2P
basis sChan and Head-Gordon, 2003d, in which there is
no exact solution, accuracies of all methods are ranking
similarly, with DMRG outperforming the best coupled-
cluster results with an error of 0.019 mH at M,3000
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and reaching an error of 0.005 mH at M,5000, with the
extrapolated result being −76.314 715 H. The compari-
son is even more favorable if the nuclei are arranged
away from their equilibrium configuration.

Excellent performance is also observed in the extrac-
tion of dissociation energy curves for N2 sMitrushenkov
et al., 2001d and water sMitrushenkov et al., 2003d.

Low-lying excited states have been studied for HHeH
sDaul, Ciofini, et al., 2000d, CH2 sLegeza et al., 2003ad,
and LiF sLegeza et al., 2003bd; the latter case has pro-
vided a test system to study how efficiently methods map
out the ionic-neutral crossover of this alkali halogenide
for increasing bond length. With relatively modest nu-
merical effort sM not in excess of 500 even at the com-
putationally most expensive avoided crossingd relative
errors of 10−9, 10−7, and 10−3 for the ground-state energy,
first-excited-state energy, and the dipole moment com-
pared to the full configuration-interaction solution
sBauschlicher and Langhoff, 1988d have been obtained.
The dipole-moment precision increases by orders of
magnitude away from the avoided crossing.

To assess the further potential of quantum chemistry
DMRG for larger molecules and N orbital bases, it
should be kept in mind that the generic N4 scaling of the
algorithm—which does compare extremely favorably
with competing methods that scale as N5 to N7—is modi-
fied by several factors. On the one hand, for a given
desired error in energy, various authors report, as for
conventional DMRG, that dE,er, the truncated weight,
which scales sSec. III.Bd as er=exps−k ln2Md. k, how-
ever, shrinks with size in a model-dependent fashion, the
most favorable case being that orbitals have essentially
chainlike interactions with only a few nearest-neighbor
orbitals. It may be more realistic to think about molecu-
lar orbitals as arranged on a quasi-one-dimensional strip
of some width L related to the number of locally inter-
acting orbitals; in that case, for standard strip geom-
etries, the constant has been found to scale as L−1. So N4

scaling is in my view overly optimistic. On the other
hand, on larger molecules orbital-localization techniques
may be more powerful than on the small molecules stud-
ied so far, so that orbital interactions become much
more sparse and scaling may actually improve.

One other possible way of improving the scaling prop-
erties of quantum chemistry DMRG might be the ca-
nonical diagonalization approach proposed by White
s2002d, which attempts to transform away numerically by
a sequence of canonical basis transformations as many
as possible of the nondiagonal matrix elements of the

second-quantized Hamiltonian Ĥ of Eq. s108d. This is

done so that entire orbitals can be removed from Ĥ,
resulting in a new, smaller quantum chemistry problem
in a different basis set, which may then be attacked by
some DMRG technique like those outlined above. The
removed orbitals, which are no longer identical with the
original ones, are typically strongly overlapping with the
energetically very high-lying and low-lying orbitals of
the original problem that are almost filled or empty. Of
course, these transformations cannot be carried out for

the exponentially large number of Hilbert-space states.
White s2002d moves to the HF basis and carries out a
particle-hole transformation; the canonical transforma-
tions are then carried out in the much smaller space of
states not annihilated by one of the Vijkl and formed by
the minimum of creation operators from the HF vacuum
sground stated. For example, the term Vijkldi

†djdkdl,
where the di

† ,di are particle-hole transformed fermionic
operators, implies the consideration of the “left” state
di

†u0l with HF energy El and the “right” state dj
†dk

†dl
†u0l

with HF energy Er. In this smaller state space, a se-
quence of canonical basis transformations may be imple-
mented as a differential equation, as originally proposed
by Wegner s1994d as the flow-equation method: and
Glazek and Wilson s1994d as similarity renormalization.
With A some anti-Hermitian operator, a formal time de-
pendence is introduced to the unitary transformation

Ĥstd=expstAdĤs0dexps−tAd, where Ĥs0d is the original
Hamiltonian of Eq. s108d expressed in the HF basis. The
corresponding differential equation,

dĤstd
dt

= fA,Ĥstdg , s117d

is modified by making A time dependent itself. One now
expands

Ĥstd = o
a

aastdha s118d

and

Astd = o
a

saaastdha, s119d

where each ha is the product of creation and annihila-
tion operators and each sa some constant yet to be cho-
sen under the constraint of the anti-Hermiticity of A. To
avoid operator algebra, White introduces

fha,hbg = o
g

Bab
g hg, s120d

where additional contributions to the commutator that
cannot be expressed by one of the operator terms in Eq.
s118d are suppressed; this eliminates three-body interac-
tions generically generated by the transformation and
not present in the original Hamiltonian. Then Eq. s117d,
with A time dependent, reduces to a set of differential
equations,

dagstd
dt

= o
ab

Bab
g saaastdabstd , s121d

that can now be integrated numerically up to some time
t. It can now be shown that the goal of diminishing aastd
for all nondiagonal contributions to Ĥ can be achieved
efficiently by setting

sa = sEl − Erd−1, s122d

where El and Er are the HF energies of the left and right
HF orbitals in ha. Stopping after some finite time t, one
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can now remove orbitals se.g., with the lowest occu-
pancy, that is, almost full or empty before the particle-
hole transformationd and use DMRG for the full many-
body problem in the reduced orbital space. White s2002d
finds this approach to yield very good results as com-
pared to full configuration-interaction calculations for a
stretched water molecule, but as of now the full poten-
tial of the method remains unexplored.

To conclude, in my opinion DMRG has been estab-
lished as a competitive method with essentially the same
quality as the full configuration-interaction method in
quantum chemistry and should be taken seriously. How-
ever, efficient geometrical optimization techniques to
determine lowest-energy molecular geometries are still
lacking.

C. DMRG for small grains and nuclear physics

Let us reconsider the generic Hamiltonian of Eq.
s108d, where energy levels above and below the Fermi
energy are ordered in ascending fashion and where a
simple model interaction is chosen. This Hamiltonian
can then be treated in the following so-called particle-
hole reformulation of infinite-system real-space DMRG
sDukelsky and Sierra, 1999, 2000d: Starting from two ini-
tial blocks from a small number of states, one shole
blockd from the lowest unoccupied one-particle levels
above the Fermi energy and the other sparticle blockd
from the highest occupied one-particle levels below, we
iteratively add further states to particle and hole blocks,
moving away from the Fermi surface, determine the
ground state, and in the usual DMRG procedure calcu-
late density matrices and the reduced basis transforma-
tions by tracing out particle and hole states, respectively.
This approach may work if there is a clear physical rea-
son that states far away from the Fermi surface will
hardly influence low-energy physics and if interactions
show translational invariance in energy space; otherwise
the infinite-system algorithm should fail. The advantage
of such simple models is that much larger systems can be
treated than in quantum chemistry.

A model Hamiltonian which happens to combine both
features is the reduced BCS Hamiltonian

ĤBCS = o
js

sej − mdcjs
† cjs − ldo

ij
ci↑

† ci↓
† cj↓cj↑, s123d

where DMRG has been able to definitely settle long-
standing questions sDukelsky and Sierra, 1999, 2000;
Dukelsky and Pittel, 2001d on the nature of the break-
down of BCS superconductivity in small grains, ex-
pected when the level spacing d in the finite system be-
comes of the order of the BCS gap D sAnderson, 1959d.
DMRG has conclusively shown that there is a smooth
crossover between a normal and a superconducting re-
gime in the pairing order parameter and other quanti-
ties, in contradiction to analytical approaches indicating
a sharp crossover. This approach to DMRG has been
extended to the study of the Josephson effect between
superconducting nanograins with discrete energy levels
sGobert, Schollwöck, and von Delft, 2004d and to the

observation and calculation of well-defined quasiparticle
excitations in small interacting disordered systems with
high dimensionless conductance g sGobert, Schechter, et
al., 2004d.

Particle-hole DMRG has also been applied success-
fully in nuclear physics sDukelsky and Pittel, 2001; Dim-
itrova et al., 2002; Dukelsky et al., 2002d in the frame-
work of the nuclear shell model, in which a nucleus is
modeled by core orbitals completely filled with neutrons
and protons sa “doubly magic core”d and valence orbit-
als partially filled with nucleons. The core is considered
inert, and, starting from some Hartree-Fock-level orbital
configuration for the valence nucleons, a two-body
Hamiltonian for these nucleons is solved using the
particle-hole method. This is conceptually very similar
to the post-HF approaches of quantum chemistry, with
model interactions for the nucleons as they are not so
precisely known, such as pairing interactions, quadrupo-
lar interactions, and the like.

This approach has been very successful for nucleons
in very large angular momentum shells interacting
through a pairing and a quadrupolar force in an oblate
nucleus sDukelsky and Pittel, 2001d, with up to 20 par-
ticles of angular momentum j=55/2, obtaining energies
converged up to 10−6 for M=60; for 40 nucleons of j
=99/2, four-digit precision was possible; in this case,
38% of energy was contained in the correlations sDukel-
sky et al., 2002d. For more realistic calculations of the
nucleus 24Mg, with four neutrons and four protons out-
side the doubly magic 16O core, convergence in M was
so slow that almost the complete Hilbert space had to be
considered for good convergence sDimitrova et al.,
2002d. The fundamental drawback of the particle-hole
approach is that it does not allow for an easy implemen-
tation of the finite-system algorithm slevels far away
from the Fermi surface hardly couple to the system, giv-
ing little relevant information via the density matrixd
and that angular momentum conservation is not ex-
ploited. Pittel et al. s2003d are currently aiming at imple-
menting an algorithm for nuclei using angular momen-
tum, circumventing these difficulties ssee also Dukelsky
and Pittel, 2004d.

VIII. TRANSFER-MATRIX DMRG: CLASSICAL AND
QUANTUM SYSTEMS

Conventional DMRG is essentially restricted to T=0
calculations, with some computationally expensive for-
ays into the very-low-temperature regimes possible
sMoukouri and Caron, 1996; Batista et al., 1998; Hall-
berg et al., 1999d. Decisive progress was made by
Nishino s1995d, who realized that the DMRG idea could
also be used for the decimation of transfer matrices,
leading to the name of transfer-matrix renormalization
group sTMRGd. This opened the way to DMRG studies
of classical statistical mechanics at finite temperature for
systems on two-dimensional L3` strips. If one applies
the generic mapping of d-dimensional quantum systems
at finite temperature to sd+1d-dimensional classical sys-
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tems, TMRG also permits study of thermodynamic
properties of one-dimensional quantum systems at finite
temperature.

A. Classical transfer-matrix DMRG in two dimensions:
TMRG

Consider the textbook transfer-matrix method for a

one-dimensional classical system with Hamiltonian Ĥ
and Nsite states usil on each site i, e.g., the Ising model.
Assuming nearest-neighbor interactions, one performs a

local decomposition of the Hamiltonian Ĥ=oĥi, where

each ĥi contains the interaction between sites i and i+1.
Taking the partition function of a system of length N
with periodic boundary conditions,

ZL = Tr e−bH = Tr e−oi=1
N bĥi, s124d

and inserting identities osi
usilksiu, one obtains for a

translationally invariant system ZL=Tr T N, where the
Nsite3Nsite transfer matrix T reads

ksiuT usi+1l = ksiue−bhiusi+1l .

From this, one deduces for N→` the free energy per
site f=−kBT ln l1fTg, where l1 is the largest eigenvalue
of T, from which all thermodynamic properties follow.

Moving now to a two-dimensional geometry, on a strip
of dimension L3N with a short-ranged Hamiltonian,
the transfer-matrix method may be applied in the limit
N→` for some finite width L!N, treating a row of L
sites as one big site; transfer-matrix size then grows as
Nsite

L , strongly limiting this approach in complete analogy
to the exact diagonalization of quantum Hamiltonians.
Hence sFig. 22d the first dimension, with finite system
length L, is attacked by DMRG applied to the transfer
instead of the Hamiltonian matrix, to keep transfer-
matrix size finite and sufficiently small by decimation,
while retaining the most important information. Results
are extrapolated to infinite size. The second dimension,
with infinite system length, is accounted for by the one-
dimensional transfer-matrix method.

To prove that this concept works, i.e., that an optimal
decimation principle can be set up for transfer matrices
in analogy to the case made for Hamiltonians, consider a
short-ranged classical Hamiltonian at T.0 on a L3N
strip, where N→`. We now define an unnormalized

density matrix r̂u=e−bĤ sin reality an evolution operatord
by

ks̃ur̂uusl = ks̃ufT sLdgNusl , s125d

where s̃ and s label states of the L sites on top and
bottom of the strip. T sLd is the band transfer matrix of
Fig. 22. The partition function Z=Tr r̂u is then given as

Z = o
i=1

Nsite
L

li
N, s126d

where l1.l2ù¯ are the eigenvalues of T sLd; the larg-
est being positive and nondegenerate for positive Boltz-
mann weights, partition function and unnormalized den-
sity matrix simplify in the thermodynamic limit N→` to

Z = l1
N s127d

and

r̂u = l1
Nul1lkl1u , s128d

where ul1l is the normalized eigenvector of the largest
transfer-matrix eigenvalue.

Consider now Fig. 23. The unnormalized density ma-
trix has exactly the same form, up to the prefactor, of the
pure-state projector of standard DMRG, with ul1l as-
suming the role of the target state there. Tracing out the
right “environment” half, the left “system” unnormal-
ized reduced density matrix is given by

r̂uS = TrEl1
Nul1lkl1u = l1

N o
a=1

Nsite
L/2

wauwalkwau , s129d

where wa are the positive eigenvalues to the normalized
eigenvectors uwal of the reduced system density matrix;
oawa=1. Completing the partial trace, one finds

Z = TrSr̂uS = l1
N o

a=1

Nsite
L/2

wa, s130d

so that indeed the best approximation to Z is obtained
by retaining in a reduced basis the eigenvectors to the
largest eigenvalues wa as in conventional DMRG.

Let us explain the DMRG transfer-matrix renormal-
ization sNishino, 1995d in more detail. Because the trans-
fer matrix factorizes into local transfer matrices, some
minor modifications of the standard DMRG approach
are convenient. Assume as given an M3M transfer ma-
trix of a system of length L,

kmsuT sLdum̃s̃l , s131d

where the sites at the active sgrowthd end are kept ex-
plicitly as opposed to standard DMRG, and uml , um̃l are
block states sFig. 24d. Considering now the superblock of
length 2L, we see that the transfer matrix reads

kmSsSsEmEuT s2Ldum̃Ss̃Ss̃Em̃El

= kmSsSuT sLdum̃Ss̃SlksSsEuT s2dus̃Ss̃El

3kmEsEuT sLdum̃Es̃El . s132d

Lanczos diagonalization yields the eigenvector of
T s2Ld to the maximum eigenvalue l1. Again in some
analogy to conventional DMRG, the fact that the trans-
fer matrix is a product can be used to speed up calcula-
tions by decomposing ufl=T s2Lducl into three successive
multiplications, ufl=T sLdfT s2dsT sLducldg.
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The obtained eigenvector now yields the reduced den-
sity matrices and the reduced basis transformations. The
last step is to build the MNsite3MNsite transfer matrix
for a system of length L+1 sFig. 25d:

kmsuT sL+1dum̃s̃l = o
nñtt̃

kmuntlkntuT sLduñt̃lktsuT s2dut̃s̃l

3kñt̃um̃l . s133d

The TMRG procedure is repeated up to the desired
final length, the free energy then obtained from l1; this
allows the calculation of all thermodynamic quantities
through numerical differentiation of the free energy. To
avoid numerically unstable second derivatives for spe-
cific heat and susceptibility, it is convenient to consider
the first-order derivative of the average energy extracted
from expectation values such as ksisjl= kl1usisjul1l ob-

tained by replacements e−bĥi→sie
−bĥi in the above cal-

culations. At the same time, correlation lengths may be
extracted both from these expectation values or from
the two leading transfer-matrix eigenvalues,

j = − 1/ln Resl2/l1d . s134d

To refine results, a finite-system calculation can be set up
as in conventional DMRG. A main technical difference
between conventional DMRG and classical transfer-
matrix DMRG is the absence of good quantum num-
bers, which simplifies the algorithm but is hard on com-
putational resources.

A large body of work has emerged that strongly relies
on the finite strip width provided by the TMRG, study-
ing competing bulk and surface effects in two-
dimensional Ising models on a L3` strip. The confined
Ising model has been used to model two coexisting
phases in the presence of bulk and surface fields, as well
as gravity, in order to model wetting and coexistence
phenomena and the competition of bulk and surface ef-
fects in finite geometries. In the case of opposing surface
fields favoring phase coexistence at zero bulk field up to
some temperature that sunintuitivelyd goes to the wet-
ting temperature for L→` sParry and Evans, 1990d, it
could be shown that gravity along the finite-width direc-
tion suppresses fluctuations such that it restores the bulk
critical temperature as limiting temperature for coexist-
ence sCarlon and Drzewiński, 1997, 1998d. These studies
were extended to the competition of surface and bulk
fields sDrzewiński et al., 1998d. Further studies eluci-
dated finite-size corrections to the Kelvin equation at
complete wetting for parallel surface and bulk fields
sCarlon et al., 1998d, the nature of coexisting excited
states sDrzewiński, 2000d, the scaling of cumulant ratios
sDrzewiński and Wojtkiewicz, 2000d, and an analysis of
the confined Ising model at and near criticality for com-
peting surface and bulk fields sMaciolek, Drzewiński,
and Ciach, 2001; Maciolek, Drzewiński, and Evans,
2001d. In the case of the Potts model with Q.4, where
there is a first-order phase transition in the bulk sBaxter,
1982d but a second-order phase transition at the surface
sLipowsky, 1982d, TMRG permitted the extraction of

surface critical exponents that demonstrate the Q inde-
pendence of the universality class of the surface transi-
tion sIgloi and Carlon, 1999d.

TMRG has also been used to study critical properties
of truly two-dimensional classical systems sHonda and
Horiguchi, 1997; Tsushima et al., 1997; Carlon, Chat-
elain, and Berche, 1999; Sato and Sasaki, 2000d, such as
the spin-3 /2 Ising model on a square lattice sTsushima et
al., 1997d, the Ising model with line defects sChung et al.,
2000d, the three-state chiral clock model as example of a
commensurate-incommensurate phase transition sSato
and Sasaki, 2000d, the 19-vertex model in two dimen-
sions as a discrete version of the continuous XY model
to study the Kosterlitz-Thouless phase transition
sHonda and Horiguchi, 1997d, and the random
exchange-coupling classical Q-state Potts model which
was demonstrated to have critical properties indepen-
dent of Q sCarlon, Chatelain, and Berche, 1999d. Lay
and Rudnick s2002d have used the TMRG to study a
continuous Ginzburg-Landau field-theory formulation
of the two-dimensional Ising model by retaining the
largest eigenvalue eigenfunctions of bond transfer matri-
ces as state space.

Gendiar and Surda s2000d have extended the TMRG
to periodic boundary conditions to obtain, at the ex-
pense of the expected lower DMRG precision much bet-
ter thermodynamic-limit scaling behavior for L→`.
Critical temperature and thermal and magnetic critical
exponents of the two-dimensional Ising model are all
extracted with modest computational effort at a stagger-
ing six- to seven-digit precision compared to the On-
sager solution.

B. Corner transfer-matrix DMRG: An alternative approach

Following Baxter s1982d, one may conclude that the
essential aspect of the reduced density-matrix is that it
represents a half cut in the setup of Fig. 23 whose spatial
extension is to be taken to the thermodynamic limit. The
same setup can be obtained considering the geometry of
Fig. 26, where four corner transfer matrices are defined
as

FIG. 22. Strategy for the DMRG treatment of two-
dimensional classical systems.
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ks8uCsLdusl = o
sint

p
kijkll

ksisjuT s2dusksll , s135d

where the product runs over all site plaquettes and the
sum over all internal site configurations, i.e., the states
on the sites linking to neighboring corner transfer matri-
ces are kept fixed. The corner-site state is invariant un-
der application of the these matrices. The unnormalized
reduced density matrix is then given by

kss5dur̂uuss1dl = o
ss4dss3dss2d

kss5duCsLduss4dlkss4duCsLduss3dl

3kss3duCsLduss2dlkss2duCsLduss1dl s136d

with the center site fixed. Diagonalizing CsLd, and ob-
taining eigenvalues li and eigenvectors ulil, we see that
the reduced density matrix r̂usLd then reads

r̂usLd = o
i

li
4ulilkliu s137d

and the partition function, obtained by tracing out the
reduced density matrix, is

ZsLd o
i

li
4. s138d

Following the argument for classical TMRG, Nishino
and Okunishi s1996d have introduced the corner transfer-
matrix renormalization group. A sequence of increas-
ingly large corner transfer matrices is built sFig. 27d as

kmssCuCsL+1dum̃s̃sCl = o
nñtC

kssCuT s2dutCs̃l

3kntCuCsLduñtCl

3kmsuT sLduntCl

3kñtCuT sLdum̃s̃l , s139d

where previous reduced basis transformations are sup-
posed to have taken place for CsLd and T sLd. Similarly,
T sL+1d is built as in classical TMRG. Diagonalizing CsL+1d

yields eigenvalues li and associated eigenvectors, the M

most important of which define the reduced basis trans-
formation. This reduced basis transformation is then car-
ried out on T sL+1d and CsL+1d, completing one corner
TMRG step. The crucial advantage of this algorithm is
that it completely avoids the diagonalization of some
large sparse matrix.

The corner TMRG allows us to calculate quantities
similar to TMRG, all thermodynamic variables as some
derivative of the free energy or using local expectation
values. For the two-dimensional Ising model, Nishino
and Okunishi s1997d obtained Ising critical exponents at
four-digit precision, using systems of up to L=20 000.
For the Q=5 two-dimensional Potts model, which has a
very weak first-order transition, they could determine
the latent heat L<0.027 compared to an exact L
=0.0265 sBaxter, 1982d, which is hard to see in Monte
Carlo simulations due to metastability problems. Other
applications have considered the spin-3 /2 Ising model
sTsushima and Horiguchi, 1998d and a vertex model with
seven vertex configurations, modeling an order-disorder
transition sTakasaki et al., 2001d. More recent extensions
study self-avoiding-walk models in two dimensions sFos-
ter and Pinettes, 2003a, 2003bd.

One may also generalize the corner TMRG to three-
dimensional classical models sNishino and Okunishi,
1998d. While the implementation is cumbersome, the
idea is simple: the semi-infinite cut line in the plane lead-
ing to four corner matrices gives way to a semi-infinite
cut plane in some volume leading to eight corner ten-
sors, two of which have an open side. Growing these
corner tensors involves concurrent growing of corner
matrices, band transfer matrices, and plaquette transfer

FIG. 23. Pictorial representation of the partition function, the
sunnormalizedd density matrix, and the reduced density matrix
for a two-dimensional classical system on a strip geometry. The
black stripe represents a band transfer matrix. Adapted from
Nishino in Peschel, Hallberg, et al., 1999.

FIG. 24. Transfer-matrix DMRG step.

FIG. 25. Construction of the enlarged transfer matrix.
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matrices. Numerical results, however, indicate clear
practical limitations of the concept.

C. Quantum statistical mechanics in one dimension:
Quantum TMRG

It is now straightforward—at least in principle—to ex-
tend classical TMRG to the calculation of the thermo-
dynamics of one-dimensional quantum systems due to
the general relationship between d-dimensional quan-
tum and sd+1d-dimensional classical problems. This ap-
proach was first used by Bursill et al. s1996d and fully
developed by Wang and Xiang s1997d as well as by Shi-
bata s1997d. To appreciate the following, it is best to
visualize quantum TMRG as an extension of the quan-
tum transfer-matrix method sBetsuyaku, 1984, 1985d in
the same way conventional DMRG extends exact diago-
nalization.

Consider the mapping of one-dimensional quantum
systems to two-dimensional classical systems, as used in
the quantum transfer-matrix and quantum Monte Carlo
sSuzuki, 1976d methods: Assume a Hamiltonian that
contains nearest-neighbor interactions only and is in-
variant under translations by an even number of sites.
We now introduce the well-known checkerboard decom-

position sSuzuki, 1976d Ĥ=Ĥ1+Ĥ2. Ĥ1=oi=1
N/2ĥ2i−1 and

Ĥ2=oi=1
N/2ĥ2i. Here ĥi is the local Hamiltonian linking

sites i and i+1; neighboring local Hamiltonians will in

general not commute, hence fĤ1 ,Ĥ2gÞ0. However, all

terms in Ĥ1 or Ĥ2 commute. N is the system size in real
space swhich we shall take to infinityd.

Following Trotter s1959d, we consider a sequence of
approximate partition functions

ZL ª Trse−bH1/Le−bH2/LdL, s140d

with Trotter number L. Then

Z = lim
L→`

ZL s141d

holds: quantum effects are suppressed as neglected com-
mutators between local Hamiltonians scale as sb /Ld2.

One now expands Ĥ1 and Ĥ2 in the exponentials of
ZL in Eq. s140d into the sums of local Hamiltonians and
inserts 2L+1 times the identity decomposition

I = p
i=1

N

So
si

usilksiuD , s142d

sandwiching each exponential. Introducing an additional
label j for the identity decompositions, we find s2L+1d
3N sites, of which each site carries two labels, corre-
sponding to two dimensions, the real-space coordinate
ssubscriptd i and the Trotter-space simaginary-timed co-
ordinate ssuperscriptd j. Thinking of both coordinates as
spatial, one obtains a two-dimensional lattice of dimen-
sion s2L+1d3N, for which the approximate partition
function ZL reads

ZL = Trp
i=1

N/2

p
j=1

L

ks2i−1
2j+1s2i

2j+1ue−bh2i−1/Lus2i−1
2j s2i

2jl

3ks2i
2js2i+1

2j ue−bh2i/Lus2i
2j−1s2i+1

2j−1l .

Figure 28 shows that as in a checkerboard only every
second plaquette of the two-dimensional lattice is active
si.e., blackd. To evaluate ZL the trace is taken over all
local states of the s2L+1d3N sites, while noting that the
trace in Eq. s140d enforces periodic boundary conditions
along the imaginary-time direction, usi

1l= usi
2L+1l. Noth-

ing specific needs to be assumed about boundary condi-
tions along the real-space direction. Note that the orien-
tation of the transfer matrix has changed compared to
Fig. 22.

Working backward from the partition function ZL, we
can now identify transfer and density matrices. Introduc-
ing a local transfer matrix as t̂k=exps−bhk /Ld, and ex-
ploiting the assumed restricted translational invariance,
we find that the global transfer matrices

ks1
¯ s2L+1uT 1

s2L+1dun1
¯ n2L+1l

= p
j=1

L

ks2j+1n2j+1ut̂1us2jn2jl ,

kn1
¯ n2L+1uT 2

s2L+1dut1
¯ t2L+1l

= p
j=1

L

kn2jt2jut̂2un2j−1t2j−1l

can be defined ssee Fig. 28d, representing odd and even
bonds on the chain because of the alternating checker-
board decomposition. The local transfer matrices are
linking the states of two sites at different Trotter times
and are evaluated using the Trotter-time-independent

eigenbasis of the local Hamiltonian, ĥuil=Eiuil:

e−bĥ/L = o
i

e−bEi/Luilkiu . s143d

Summing over all internal degrees of freedom unil, we
obtain matrix elements

FIG. 26. Corner transfer-matrix setup for the calculation of
reduced density matrices and partition functions in two-
dimensional classical models.
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ks1
¯ s2L+1uT1T2ut1

¯ t2L+1l . s144d

Using the global transfer matrices, the unnormalized
density matrix reads

r̂uL = fT1T2gN/2 s145d

and

ZL = TrfT1T2gN/2, s146d

somewhat modified from the classical TMRG expres-
sion.

As ZL=l1
N/2+l2

N/2+¯, where li are the eigenvalues of
T1T2, the largest eigenvalue l1 of T1T2 dominates in the
thermodynamic limit N→`. The density matrix simpli-
fies to

r̂uL = l1
N/2ucRlkcLu , s147d

where kcLu and ucRl are the left and right eigenvectors to
eigenvalue l1. Due to the checkerboard decomposition,
the transfer matrix T1T2 is nonsymmetric, so that left and
right eigenvectors are not identical. Normalization to
kcL ucRl=1 is assumed. The free energy per site is given
as

fL = −
1
2

kBT ln l1. s148d

If ZL si.e., the eigenvalue l1d is calculated exactly, com-
putational effort scales exponentially with L as in exact
diagonalization. As the errors scale as sb /Ld2, reliable
calculations are restricted to small b, and the interesting
low-temperature limit is inaccessible. Instead, one can
adopt the classical TMRG on the checkerboard transfer
matrix to access large L, hence low temperatures.

Conceptually, the main steps of the algorithm are un-
changed from the classical case and the argument for the
optimality of the decimation procedure is unchanged.
Explicit construction and decimation formulas are, how-
ever, slightly changed from the classical case and are
much more complicated notationally because of the
checkerboard decomposition ssee Wang and Xiang, 1997
and Shibata, 1997, 2003d.

At the start, the transfer matrix T s3d of two plaquettes
is given by sFig. 29d

T s3dss1
3s2

3;s1
2s3

2;s2
1s3

1d

= o
s2

2

ks1
3s2

3ut̂1us1
2s2

2lks2
2s3

2ut̂2us2
1s3

1l . s149d

The addition of plaquettes follows a zigzag pattern.
Let us consider just the case in which the transfer matrix
grows to comprise an even number of plaquettes. This
number is L. Then the growth formula reads sFig. 29d

T sL+1dss1
L+1s2

L+1;m1s1
Lm3s3

L;s2
1s3

1d

= o
s2

L

ks1
L+1s2

L+1ut̂1us1
Ls2

LlT sLdss2
Ls3

L;m1m3;s2
1s3

1d .

I distinguish between inner and outer states, the outer
states being those of the first and last row of the transfer
matrix. For the inner states, the compound notation m1
and m3 indicates that they may have been subject to a
reduced basis transformation beforehand. If the number
of states m1s1

L and m3s3
L is in excess of the number of

states to be kept, a reduced basis transformation is car-
ried out, m1s1

L→m̃1 and m3s3
L→m̃3, using the reduced

basis transformation as obtained in the previous super-
block diagonalization.

The superblock transfer matrix of 2L plaquettes is
now formed from the product of two such T sL+1d, sum-
ming over states s2

1;s2
2L+1 and s2

L+1 sFig. 30d. This su-
perblock transfer matrix is diagonalized using some
large sparse eigensolver to get the maximum eigenvalue
l1 and the right and left eigenvectors kcLu and ucRl,
which may be chosen mutually biorthonormal; kcL ucRl
=1. In view of the possible need for a reduced basis
transformation in the next step, nonsymmetric reduced
density matrices are formed,

r̂ = TrucRlkcLu , s150d

where the trace is over all states in columns 1 and 3
except m̃1 , m̃3 , s1

L+1, and s3
L+1, as they are the states

subject to a subsequent reduced basis transformation.
Row and column matrices of the M left and right eigen-
vectors with highest eigenvalue weight yield the trans-
formation matrices for left and right basis states, i.e., in
columns 1 and 3. This construction implies that basis
vectors km1u and um3l will also be biorthonormal. The
procedure is repeated until the system has reached the
desired final size of 2Lmax plaquettes.

Several technical issues have to be discussed for quan-
tum TMRG. An important reduction of the computa-
tional load comes from the existence of modified good
quantum numbers derived from conservation laws of the
underlying Hamiltonian. Their existence was already ob-
served in the quantum transfer-matrix method sNomura
and Yamada, 1991d: The action of a local magnetization-
conserving Hamiltonian in Trotter direction between
imaginary times j and j+1 obeys fS1

j+1gz+ fS2
j+1gz= fS1

j gz

+ fS2
j gz or fS1

j+1gz− fS1
j gz=−fS2

j+1gz+ fS2
j gz. This generalizes

to ojs−1djfS1
j gz=−ojs−1djfS2

j gz. Thus the staggered mag-
netization, summed in the Trotter direction, is a con-
served quantity, i.e., constant along the real-space axis:

FIG. 27. Corner transfer-matrix growth using band and
plaquette transfer matrices. Solid states are summed over.
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Q = o
j=1

2L

s− 1di+jfSi
jgz = cst. s151d

In fermionic systems, particle number conservation im-
plies that P=oj=1

2L s−1di+jni
j is an additional good quantum

number sShibata and Tsunetsugu, 1999ad. As in T=0
DMRG, the good quantum numbers are conserved by
the DMRG decimation process. Moreover, the eigen-
state with the maximum eigenvalue is always in the sub-
space Q=0 sor P=0, respectivelyd: Thermodynamic
quantities are independent of boundary conditions in
high-temperature phases, which are found for all finite
temperatures in one dimension. For open boundary con-
ditions in real space, the lack of an update at the open
ends at every second Trotter time step implies the sub-
traction of equal quantities when forming Q, leading to
Q=0.

An important technical complication occurs because
the transfer matrices to be diagonalized are asymmetric
due to the checkerboard decomposition. We therefore
have to distinguish between left and right eigenvectors
kcLu and ucRl. Non-Hermitian diagonalization routines
lack the stabilizing variational principle of the Hermitian
case and have to be monitored extremely carefully. The
simplest choice, very slow but stable, is the power
method applied to the transfer matrix and its transpose.
Faster algorithms that have been used to obtain stable
results are the Arnoldi and unsymmetric Lanczos meth-
ods sGolub and van Loan, 1996d, combined with rebior-
thogonalization. Once the eigenvectors have been ob-
tained, the unsymmetric density matrix fEq. s150dg has
to be fully diagonalized. Here, two numerical problems
typically occur: the appearance of complex-conjugate ei-
genvalue pairs with spurious imaginary parts and the
loss of biorthonormality. The former is dealt with by dis-
carding the spurious imaginary parts and by taking the
real and imaginary part of one of the eigenvectors as
two real-valued eigenvectors. The latter, less frequent
problem is dealt with by iterative reorthogonalization
sAmmon et al., 1999d.

Both left and right eigenvectors kcLu and ucRl are
needed to construct the density matrix as in Eq. s150d.
Having both eigenvectors, a symmetric choice fwith
kcRu= sucRld†g

r̂symm = Tr
1
2

fucRlkcRu + ucLlkcLug s152d

for the density matrix is also conceivable, if one argues
that this amounts to trying to optimally represent both
the left and right eigenvectors at the same time. This
choice is much more stable numerically, as no complex
eigenvalue problem appears and diagonalization rou-
tines are much more stable, and it somehow also ac-
counts for the information carried by both eigenvectors.
A detailed study by Nishino and Shibata s1999d clearly
favors the asymmetric choice. They showed that if the
asymmetric density matrix has real eigenvalues, it is for
M retained states as precise as the symmetric choice for
2M states; if they are complex, there is no such advan-
tage.

For the extraction of physical quantities it is now ad-
vantageous not to fix the inverse temperature b and vary
the Trotter number L, but to replace b /L by a fixed
initial inverse temperature b0!1 in Eq. s140d. Quantum
TMRG growth then reaches for 2L plaquettes all in-
verse temperatures b0 ,2b0 ,… ,Lb0. At each step we ob-
tain the free energy per site fsTd and thus all thermody-
namic quantities, such as the internal energy u,
magnetization m, specific heat at constant volume cv,
and magnetic susceptibility x by numerical differentia-
tion. Temperatures less than a hundredth of the main
energy scale of the Hamiltonian can be reached. Conver-
gence must be checked both in M→` and in b0→0; the
latter convergence is in b0

2. For a fixed number of
plaquettes, finite-system DMRG runs can be carried out.

Severe numerical problems may occur for the second-
order derivatives cv and x. A direct calculation of u and
m, which are expectation values, reduces the number of
differentiations to one.

To do this, consider the internal energy kul
=Z−1Trfĥ1e−bĤg. In the Trotter decomposition T1
changes to

ks1
¯ s2L+1uT u

s2L+1dun1
¯ n2L+1l

= ks3n3uĥ1e−bĥ1us2n2lp
j=2

L

ks2j+1n2j+1ut̂1us2jn2jl s153d

and therefore fkcLu and ucRl are the left srightd eigenvec-
tors of l1g

kul =
Trfĥ1e−bĤg

Trfe−bĤg
=

kCLuTuT2uCRl
l1

. s154d

A direct calculation of cv from energy fluctuations is less
accurate. The susceptibility can be obtained from calcu-
lating the magnetization m at two infinitesimally differ-
ent fields.

In the beginning, applications of the quantum TMRG
focused on the thermodynamics of simple Heisenberg
spin chains sShibata, 1997; Wang and Xiang, 1997;
Xiang, 1998d; but modified se.g., frustrated and dimer-
izedd spin chains are also easily accessible sMaisinger
and Schollwöck, 1998; Klümper et al., 1999, 2000;

FIG. 28. Checkerboard decomposition: active vs inactive
plaquettes of the two-dimensional effective classical model.
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Johnston et al., 2000; Maeshima and Okunishi, 2000;
Wang et al., 2000; Karadamoglou et al., 2001; Shibata
and Ueda, 2001d; for frustrated chains, effective sites of
two original sites are formed to ensure nearest-neighbor
interactions and applicability. Quantum TMRG studies
of ferrimagnetic spin chains have revealed an interesting
combination of thermodynamics typical of ferromagnets
and antiferromagnets sMaisinger et al., 1998; Yamamoto
et al., 1998; Kolezhuk et al., 1999d. In fact, the results are
remarkably similar to those obtained for spin ladders
sHagiwara et al., 2000; Wang and Yu, 2000d.

Electronic degrees of freedom have been studied for
the t-J model by Ammon et al. s1999d, and Sirker and
Klümper s2002a, 2002bd and for the Kondo lattice sShi-
bata et al., 1998; Shibata and Tsunetsugu, 1999bd. Lately,
quantum TMRG has also been applied to the algorith-
mically very similar spin-orbit chain by Sirker and Kha-
liullin s2003d.

Rommer and Eggert s1999d studied one localized im-
purity linking two spin chains in the thermodynamic
limit; there has also been strong interest in the case of

multiple mobile impurities sAmmon and Imada, 2000a,
2000b, 2001d.

Dynamic properties at finite temperature are among
the most frequently available experimental data. Quan-
tum TMRG offers, in close analogy to quantum Monte
Carlo calculations, a way to calculate these properties,
albeit with far less than the usual precision. It has been
applied to anisotropic spin chains sNaef et al., 1999d and
the one-dimensional Kondo chain sMutou et al., 1998b,
1999; Shibata and Tsunetsugu, 1999ad and has been used
to calculate nuclear relaxation rates sNaef and Wang,
2000d. One starts by calculating imaginary-time correla-
tions Gstd and inserting two operators at different
imaginary times and time distance t into the transfer
matrix analogous to Eq. s153d. The spectral function
Asvd can now be extracted from the well-known rela-
tionship to Gstd,

Gstd =
1

2p
E

0

`

dvKst,vdAsvd , s155d

where the kernel Kst ,vd is

Kst,vd = e−tv + e−bv+tv s156d

and the extension to negative frequencies obtained
through As−vd=e−bvAsvd. This decomposition is not
unique; other authors also use related expressions sNaef
et al., 1999d, but the essential difficulty in using these
expressions is invariant: If we introduce a finite number
of discrete imaginary times ti and frequencies vj, and a
set Kij=Ksti ,vjd, Gi=Gstid, Aj=Asvjd, the spectral func-
tion Asvd is in principle obtained from inverting sby car-
rying out a singular-value decomposition of Kijd

Gi = o
j

KijAj, s157d

which, as has been known to practitioners of quantum
Monte Carlo for a long time, is a numerically unstable
procedure, because Kij is very badly conditioned. The
ratio of its largest eigenvalues to its smallest eigenvalues
is normally so big that it is not encoded properly in com-
puter number representations. Naef et al. s1999d have
argued, as is done in quantum Monte Carlo, that given
the algorithm-based imprecisions in the imaginary-time
data, one may merely try to find the spectral function
that is sin a probabilistic sensed most compatible with the
raw data. This maximum-entropy procedure leads to
finding the set hAsvjdj that maximizes

aSfAg −
1
2

x2fAg , s158d

where SfAg is the relative entropy

SfAg = o
j

fAj − mj − AjlnsAj/mjdgs1 + e−bvd s159d

and x2fAg accommodates the noisiness of the raw data,

FIG. 29. Two-plaquette transfer matrix T s3d and transfer-
matrix growth. P are summed over.

FIG. 30. Quantum transfer-matrix DMRG step. P are
summed over; note the periodic boundary conditions.
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x2fAg = o
i
SGi − o

j
KijAjD2Ysi

2. s160d

In the relative entropy, mj is some spectral function that
embodies previous knowledge relative to which infor-
mation of Asvjd is measured. It may simply be assumed
to be flat. The factor 1+e−bv ensures that contributions
for v,0 are considered correctly. si

2 measures the esti-
mated error of the raw data and is in TMRG of the
order of 10−6. It is found by looking for that order of
magnitude of si

2 where results change least by varying it.
a is determined self-consistently such that, of all solu-
tions that can be generated for various a, the one most
probable in the light of the input data is chosen sJarrell
and Gubernatis, 1996d.

Another way of calculating Asvd is given by Fourier-
transforming the raw imaginary-time data to Matsubara
frequencies on the imaginary axis, vn= s2n+1d /p for fer-
mions and vn=2n /p for bosons, using ti= ib /L and

Gsivnd =
b

Lo
i=0

L

eivntiGstid . s161d

Gsivnd is written in some Padé approximation and then
analytically continued from ivn to infinitesimally above
the real frequency axis, v+ ih ,h=0+.

The precision of quantum TMRG dynamics is far
lower than that of T=0 dynamics. Essential spectral fea-
tures are captured, but results are not very reliable
quantitatively. A serious alternative is currently emerg-
ing in time-dependent DMRG methods at finite tem-
perature sSec. IX.Cd, but their potential in this field has
not yet been demonstrated.

IX. SYSTEMS OUT OF EQUILIBRIUM: NON-HERMITIAN
AND TIME-DEPENDENT DMRG

The study of strongly correlated electronic systems,
from which DMRG originated, is dominated by at-
tempts to understand equilibrium properties of these
systems. Hence the theoretical framework underlying all
previous considerations has been that of equilibrium sta-
tistical mechanics, which has been extremely well estab-
lished for a long time. Much less understanding and in
particular no unifying framework is available so far for
nonequilibrium physical systems, the main difficulty be-
ing the absence of a canonical sGibbs-Boltzmannd en-
semble. Physical questions to be studied range from
transport through quantum dots with strong voltage bias
in the leads far from linear response, to reaction-
diffusion processes in chemistry, to ion transport in bio-
logical systems, to traffic flow on multilane systems.
Quite generically these situations may be described by
time-evolution rules that, if cast in some operator lan-
guage, lead to non-Hermitian operators sGlauber, 1963d.

The application of DMRG to such problems in one
spatial dimension was pioneered by Hieida s1998d, who
studied, using a transfer-matrix approach, the discrete-
time asymmetric exclusion process, a biased hopping of
hard-core particles on a chain with injection and re-

moval of particles at both ends sDerrida et al., 1993d.
Excellent agreement with exact solutions for particular
parameter sets swhich correspond to matrix-product An-
sätzed and with other numerics was found. Kaulke and
Peschel s1998d studied the q-symmetric Heisenberg
model out of equilibrium.

A. Transition matrices

In the field of nonequilibrium statistical mechanics
there has been special interest in those one-dimensional
systems with transitions from active to absorbing steady
states under a change of parameters. Active steady
states show internal particle dynamics, whereas absorb-
ing steady states are truly frozen se.g., a vacuum stated.
These transitions are characterized by universal critical
exponents, quite analogously to equilibrium phase tran-
sitions ssee Hinrichsen, 2000 for a reviewd. Carlon, Hen-
kel, and Schollwöck s1999d have shown that DMRG is
able to provide reliable estimates of critical exponents
for nonequilibrium phase transitions in one-dimensional
reaction-diffusion models. To this end they applied
DMRG to a snon-Hermitiand master equation of a
pseudo-Schrödinger form. This approach has been at the
basis of most later DMRG work on out-of-equilibrium
phenomena. Considering a chain of length L, in which
each site is either occupied by a particle sAd or empty
sxd, the time evolution of the system is given in terms of
microscopic rules involving only neighboring sites. Typi-
cal rules of evolution are site-to-site hopping sdiffusiond
Ax↔xA or the annihilation of neighboring particles
AA→xx, all with some fixed rates. Nonequilibrium
phase transitions in the steady state may arise for com-
peting reactions, such as AA→xx and Ax ,xA→AA
simultaneously present. The last model is referred to as
the contact process. Its steady-state transition between
steady states of finite and vanishing density in the ther-
modynamic limit is in the universality class of directed
percolation.

Once the reaction rates are given, the stochastic evo-
lution follows from a master equation, which can be
written as

duPstdl
dt

= − ĤuPstdl , s162d

where uPstdl is the state vector containing the probabili-
ties of all configurations, as opposed to the true quan-
tum case, in which the coefficients are probability ampli-

tudes. The elements of the “Hamiltonian” Ĥ swhich is
actually a transition matrixd are given by

ksuĤutl = − wst → sd ; s Þ t ,

ksuĤusl = o
tÞs

wss → td , s163d

where usl , utl are the state vectors of two particle con-
figurations and wst→sd denotes the transition rates be-
tween the two states and is constructed from the rates of
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the elementary processes. Ĥ will in general be non-

Hermitian. Since Ĥ is a stochastic matrix, its columns
add to zero. The left ground state kcLu is hence given by

kcLu = o
s

ksu , s164d

with ground-state energy E0=0, since kcLuĤ=0; the right
ground state ucRl is problem-dependent. All other eigen-

values Ei of Ĥ have a non-negative real part ReEiù0
sAlcaraz et al., 1994; van Kampen, 1997d.

Since the formal solution of Eq. s162d is

uPstdl = e−ĤtuPs0dl , s165d

the system evolves towards its steady state uPs`dl. Let
Gª infiRe Ei for iÞ0. If G.0, the approach towards the
steady state is characterized by a finite relaxation time
t=1/G, but if G=0, that approach is algebraic. This situ-
ation is quite analogous to noncritical phases stÞ0d and
critical points st=`d, respectively, which may arise in
equilibrium quantum Hamiltonians. The big advantage
of DMRG is that the steady-state behavior is addressed
directly and that all initial configurations are inherently
averaged over in this approach; the price to be paid is
restriction to relatively small system sizes, currently L
,100, due to inherent numerical instabilities in non-
Hermitian large sparse eigenvalue solvers.

Standard DMRG as in one-dimensional T=0 quan-
tum problems is now used to calculate both left and
right lowest eigenstates. Steady-state expectation values
such as density profiles or steady-state two-point corre-
lations are given by expressions

knil = kcLuniucRl/kcLucRl , s166d

where the subscripts L ,R serve to remind us that two
distinct left and right ground states are employed in the
calculation. The gap allows the extraction of the relax-
ation time on a finite lattice and the use of standard
finite-size scaling theory. The Bulirsch-Stoer-
transformation extrapolation scheme sHenkel and
Schütz, 1988d has been found very useful in extracting
critical exponents from the finite-size scaling functions
for density profiles and gaps. In this way Carlon, Hen-
kel, and Schollwöck s1999d determined both bulk and
surface critical exponents of the contact process and
found their values to be compatible with the directed-
percolation class, as expected.

In cases where the right ground state is also trivially
known se.g., the empty stated, DMRG calculations can
be made more stable by shifting this trivially known
eigenstate pair to some high energy in Hilbert space by
adding a term EshiftucRlkcLu to the Hamiltonian, turning
the nontrivial first excitation into the more easily acces-
sible ground state.

For a correct choice of the density matrix it is always
crucial to target the ground state, even if it has shifted
away; otherwise it will reappear due to numerical inac-
curacies in the representation of the shift operator sCar-
lon, Henkel, and Schollwöck, 2001d. Moreover, the

trivial left ground state must be targeted, although it
contains no information, to get a good representation of
the right eigenstates that are joined in a biorthonormal-
ity relation sCarlon, Henkel, and Schollwöck, 1999d. For
non-Hermitian Hamiltonians, there is also a choice be-
tween symmetric and nonsymmetric density matrices. It
was found empirically sCarlon, Henkel, and Schollwöck,
1999d that the symmetric choice

r̂ = TrE
1
2

sucRukcRu + ucLlkcLud s167d

was most efficient, as opposed to quantum TMRG, in
which the nonsymmetric choice is to be preferred. This
is probably due to numerical stability: a nonsymmetric
density matrix makes this numerically subtle DMRG
variant even less stable. The same observation was made
by Senthil et al. s1999d in the context of SUSY chains.

The method has been applied to the asymmetric ex-
clusion model by Nagy et al. s2002d. A series of papers
has been able to show impressive results on reptating
polymers exposed to the drag of an external field such as
in electrophoresis in the framework of the Rubinstein-
Duke model sCarlon, Drzewinski, and van Leeuwen,
2001, 2002; Paeßens and Schütz, 2002; Barkema and
Carlon, 2003; Paeßens, 2003d. DMRG has been able to
show for the renewal time slongest relaxation timed t a
crossover from an sexperimentally observedd behavior
t,N3.3±0.1 for short polymers to the theoretically pre-
dicted t,N3 for long polymers.

Another field of application that is under active de-
bate is determination of the properties of the one-
dimensional pair-contact process with single-particle dif-
fusion sPCPDd, which is characterized by the reactions
AA→xx, xAA ,AAx→AAA. While early field-
theoretic studies sHoward and Täuber, 1997d showed
that its steady-state transition was not in the directed-
percolation class, the first quantitative data came from a
DMRG study sCarlon, Henkel, and Schollwöck, 2001d
and suggested again a universality class different from
directed percolation. At present, despite further exten-
sive DMRG studies sHenkel and Schollwöck, 2001;
Barkema and Carlon, 2003d and additional simulational
and analytical studies, no consensus on the critical be-
havior of the one-dimensional PCPD has been reached
yet. It may be safely stated that DMRG has sparked a
major debate in this field. While the raw data as such are
not disputed, the extrapolations to the infinite-size limit
are highly controversial. The answer to this issue is be-
yond the scope of this review.

B. Stochastic transfer matrices

Kemper et al. s2001d have made use of the pseudo-
Hamiltonian formulation of stochastic systems as out-
lined above to apply the formalism of quantum TMRG.
The time evolution of Eq. s165d and the Boltzmann op-

erator e−bĤ are formally identical, such that in both cases
the transfer-matrix construction outlined in Sec. VIII.C
can be carried out. In the thermodynamic limit N→` all
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physical information is encoded in the left and right
eigenvectors to the largest eigenvalue, which are ap-
proximately represented using the TMRG machinery.

In the stochastic TMRG the local transfer matrices
are direct evolutions in a time interval Dt obtained from
the discretized time evolution,

uPst + Dtdl = e−ĤDtuPstdl . s168d

Otherwise, the formalism outlined in Sec. VIII.C carries
over identically, with some minor but important modifi-
cations. Boundary conditions in time are open, since pe-
riodic boundary conditions would set the future equal to
the past. Moreover, stochastic TMRG only works with a
symmetric density matrix constructed from left and right
eigenvectors: Enss and Schollwöck s2001d have shown
that the open boundary conditions imply that the un-
symmetric choice of the density matrix, r̂=TrEucRlkcLu,
which was superior in quantum TMRG, has no meaning-
ful information because it has only one nonzero eigen-
value. Moreover, for stochastic TMRG the use of the
symmetric choice, r̂= s1/2dTrEfucLlkcLu+ ucRlkcRug, is
mandatory.

The advantages of the stochastic TMRG are that it
works in the thermodynamic limit and that, although it
can only deal with comparatively short time scales of
some hundred time steps, it automatically averages over
all initial conditions and is hence bias-free. It can be
seen as complementary to the method of the last section.
Unfortunately, it has also been shown by Enss and
Schollwöck s2001d that there is a critical loss of precision
strongly limiting the number L of possible time steps; it
is a property of probability-conserving stochastic trans-
fer matrices that the norm of the left and right eigenvec-
tors to the largest eigenvalue diverges exponentially in
L, while biorthonormality kcL ucRl=1 should hold ex-
actly as well, which cannot be ensured by finite com-
puter precision.

Building on the observation by Enss and Schollwöck
s2001d that the local physics at some place and at time t
is determined by past events in a finite-sized light cone,
Kemper et al. s2003d have applied a variant of the corner
transfer-matrix algorithm to the light cone sFig. 31d, re-
porting that the numerical loss-of-precision problem
now occurs at times several orders of magnitude larger,
greatly enhancing the applicability of stochastic TMRG.
This method has been applied by Enss et al. s2004d to
study scaling functions for aging phenomena in systems
without detailed balance.

C. Time-dependent DMRG

So far, all physical properties discussed in this review
and obtained via DMRG have been either true equilib-
rium quantities, static or dynamic, or steady-state quan-
tities. However, time-dependent phenomena in strongly
correlated systems are increasingly coming to the fore-
front of interest. On the one hand, in technological ap-
plications such as are envisaged in nanoelectronics, it
will be of great interest to fully understand the time-

dependent response of quantum many-body systems to
external time-dependent perturbations and to calculate
transport far from equilibrium. On the other hand, the
recent mastery of storing ultracold bosonic atoms in a
magnetic trap superimposed by an optical lattice has al-
lowed us to drive, at will, by time-dependent variations
of the optical lattice strength, quantum phase transitions
from the superfluid smetallicd to the Mott insulating re-
gime, which is one of the key phase transitions in
strongly correlated electron systems sGreiner et al.,
2002d.

The fundamental difficulty can be seen when consid-
ering the time evolution of a quantum state ucst=0dl un-
der the action of some time-independent Hamiltonian

Ĥucnl=Enucnl. If the eigenstates ucnl are known, ex-
panding ucst=0dl=oncnucnl leads to the well-known time
evolution

ucstdl = o
n

cnexps− iEntducnl , s169d

where the modulus of the expansion coefficients of ucstdl
is time independent. A sensible Hilbert-space truncation
is then given by a projection onto the large-modulus
eigenstates. In strongly correlated systems, however, we
usually have no good knowledge of the eigenstates. In-
stead, one uses some orthonormal basis with unknown
eigenbasis expansion, uml=onamnucnl. The time evolu-
tion of the state ucst=0dl=omdms0duml then reads

ucstdl = o
m

So
n

dms0damne−iEntDuml ; o
m

dmstduml ,

s170d

where the modulus of the expansion coefficients is time
dependent. For a general orthonormal basis, Hilbert-
space truncation at one fixed time si.e., t=0d will there-
fore not ensure a reliable approximation of the time
evolution. Also, energy differences matter in time evo-
lution. The sometimes justified hope that DMRG yields
a good approximation to the low-energy Hamiltonian is
hence of limited use.

All time-evolution schemes for DMRG so far follow
one of two different strategies. Static Hilbert-space
DMRG methods try to enlarge the truncated Hilbert
space optimally to approximate ucst=0dl so that it is big
enough to accommodate si.e., maintain large overlap
with the exact resultd ucstdl for a sufficiently long time to
a very good approximation. More recently, adaptive
Hilbert-space DMRG methods keep the size of the trun-
cated Hilbert space fixed, but try to change it as time
evolves so that it also accommodates ucstdl to a very
good approximation.

1. Static time-dependent DMRG

Cazalilla and Marston s2002d were the first to exploit
DMRG to systematically calculate quantum many-body
effects out of equilibrium. After applying a standard

DMRG calculation to the Hamiltonian Ĥst=0d, the
time-dependent Schrödinger equation is numerically in-
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tegrated forward in time, building an effective Ĥeffstd
=Ĥeffs0d+ V̂effstd, where Ĥeffs0d is taken as the last super-

block Hamiltonian approximating Ĥs0d. V̂effstd as an ap-

proximation to V̂ is built using the representations of
operators in the final block bases:

i
]

]t
ucstdl = fĤeff − E0 + V̂effstdgucstdl . s171d

The initial condition is obviously to take ucs0dl= uc0l ob-
tained by the preliminary DMRG run. Forward integra-
tion can be carried out by step-size adaptive methods
such as Runge-Kutta integration based on the infinitesi-
mal time-evolution operator

ucst + Dtdl = s1 − iĤstdDtducstdl . s172d

As an application, Cazalilla and Marston have consid-
ered a quantum dot weakly coupled to noninteracting
leads of spinless fermions, where time dependency is in-
troduced through a time-dependent chemical potential
coupling to the number of particles left and right of the
dot,

V̂std = − dmRstdN̂R − dmLstdN̂L, s173d

which is switched on smoothly at t=0. Setting dmL
=−dmR, one may gauge-transform this chemical poten-
tial away into a time-dependent complex hopping from
and to the dot,

tqstd = tqexpFiE
−`

t

dt8dmLst8dG . s174d

The current is then given by evaluating the imaginary
part of the local hopping expectation value. Obviously,
in a finite system currents will not stay at some steady-
state value but go to zero on a time scale of the inverse
system size when lead depletion has occurred.

In this approach the hope is that an effective Hamil-
tonian obtained by targeting the ground state of the t
=0 Hamiltonian will be capable of catching the states
that will be visited by the time-dependent Hamiltonian
during time evolution. Cazalilla and Marston argue that
on short time scales the perturbation can only access a
few excited states, which are well represented in the ef-
fective Hamiltonian. With one exception sLuo et al.,
2003d this seems borne out in their main application,
transport through a quantum dot; in many other appli-
cations, this approach is not sufficient.

As one way out of this problem, it has been demon-
strated sLuo et al., 2003d that using a density matrix that
is given by a superposition of states ucstidl at various
times of the evolution, r̂=oi=0

Nt aiucstidlkcstidu with oai=1
for the determination of the reduced Hilbert space is
much more precise, whereas simply increasing M is not
sufficient. Of course, these states are not known initially;
it was proposed to start from a small DMRG system,
evolve it in time, take these state vectors, use them in
the density matrix to determine the reduced Hilbert

space, and then to move on to the next-larger DMRG
system where the procedure is repeated, which is very
time consuming.

It is important to note that the simple Runge-Kutta
approach is not even unitary and should be improved by
using, e.g., the unitary Crank-Nicholson time evolution
sDaley et al., 2004d.

Instead of considering time evolution as a differential
equation, one may also consider the time-evolution op-

erator exps−iĤtd, which avoids the numerical delicacies
of the Schrödinger equation. Schmitteckert s2004d com-
putes the transport through a small interacting nano-
structure using this approach. To this end, he splits the
problem into two parts: By obtaining a relatively large
number of low-lying eigenstates exactly swithin time-
independent DMRG precisiond, he can calculate their
time evolution exactly. For the subspace orthogonal to
these eigenstates, he uses an efficient implementation of

the matrix exponential ucst+Dtdl=exps−iĤDtducstdl us-
ing a Krylov subspace approximation; the reduced Hil-
bert space is determined by finite-system sweeps, con-
currently targeting all ucstidl at fixed times ti up to the
time presently reached in the calculation. The limitation
to this algorithm comes from the fact that to target more
and more states as time evolves, the effective Hilbert
space chosen has to be increasingly large.

2. Adaptive time-dependent DMRG

Time-dependent DMRG using adaptive Hilbert
spaces was first proposed in essentially identical form by
Daley et al. s2004d and White and Feiguin s2004d. Both
approaches are efficient implementations of an algo-
rithm for the classical simulation of the time evolution of
weakly entangled quantum states invented by Vidal
s2003, 2004d fknown as the time-evolving block-
decimation sTEBDd algorithmg. This algorithm was
originally formulated in the matrix-product-state lan-
guage. For simplicity, I shall explain the algorithm in its
DMRG context. A detailed discussion of the very strong
connection between adaptive time-dependent DMRG
and the original simulation algorithm is given by Daley
et al. s2004d. It turns out that DMRG naturally attaches
good quantum numbers to state spaces used by the
TEBD algorithm, allowing for drastic increases in per-
formance due to the use of good quantum numbers.

Time evolution in the adaptive time-dependent
DMRG is generated using a Trotter-Suzuki decomposi-
tion as discussed for quantum TMRG sSec. VIII.Cd. As-

FIG. 31. Transfer-matrix renormalization group sTMRGd ap-
plied to the causal light cone of a stochastic Hamiltonian
evolving in real time: four corner transfer matrices make up
the light cone. From Kemper et al., 2003. Reprinted with per-
mission.
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suming only nearest-neighbor interactions, the decom-

position reads Ĥ=Ĥ1+Ĥ2. Ĥ1=oi=1
N/2ĥ2i−1 and Ĥ2

=oi=1
N/2ĥ2i. Here ĥi is the local Hamiltonian linking sites i

and i+1; neighboring local Hamiltonians will in general

not commute, hence fĤ1 ,Ĥ2gÞ0. However, all terms in

Ĥ1 or Ĥ2 commute. The first-order Trotter decomposi-
tion of the infinitesimal time-evolution operator then
reads

exps− iĤDtd = exps− iĤ1Dtdexps− iĤ2Dtd + OsDt2d .

s175d

Expanding Ĥ1 and Ĥ2 into the local Hamiltonians, one
infinitesimal time step t→ t+Dt may be carried out by
performing the local time-evolution on ssayd all even
bonds first and then all odd bonds. In DMRG, a bond
can be time evolved exactly if it is formed by the two
explicit sites typically occurring in DMRG states. We
may therefore carry out an exact time evolution by per-
forming one finite-system sweep forward and backward
through an entire one-dimensional chain, with time evo-
lutions on all even bonds on the forward sweep and all
odd bonds on the backward sweep, at the price of the
Trotter error of OsDt2d. This procedure necessitates that
ucstdl be available in the right block bases, which is en-
sured by carrying out the reduced basis transformations
on ucstdl that in standard DMRG form the basis of
White’s prediction method sWhite, 1996bd. The decisive
idea of Vidal s2003, 2004d was now to carry out a new
Schmidt decomposition and make a new choice of the
most relevant block basis states for ucstdl after each local
bond update. Therefore, as the quantum state changes
in time, so do the block bases such that an optimal rep-
resentation of the time-evolving state is ensured. Choos-
ing new block bases changes the effective Hilbert space,
hence the name adaptive time-dependent DMRG.

An appealing feature of this algorithm is that it can be
very easily implemented in existing finite-system
DMRG. One uses standard finite-system DMRG to gen-
erate a high-precision initial state ucs0dl and continues to
run finite-system sweeps, one for each infinitesimal time
step, merely replacing the large sparse-matrix diagonal-
ization at each step of the sweep by local bond updates
for the odd and even bonds, respectively.

Errors are reduced by using the second-order Trotter
decomposition

e−iĤDt = e−iĤ1Dt/2e−iĤ2Dte−iĤ1Dt/2 + OsDt3d . s176d

As Dt−1 steps are needed to reach a fixed time t, the
overall error is then of order OsDt2d. One efficient way
of implementing this is to group the half time steps of
two subsequent infinitesimal evolution steps together,
i.e., carry out the standard first-order procedure, but cal-
culate expectation values as averages of expectation val-

ues measured before and after an exps−iĤ2Dtd step.
Further errors are produced by the reduced basis

transformations and the sequential update of the repre-
sentation of block states in the Schmidt decomposition

after each bond update during an infinitesimal time step.
Applications of adaptive time-dependent DMRG so far
for the time-dependent Bose-Hubbard model sDaley et
al., 2004d and spin-1 Heisenberg chains sWhite and
Feiguin, 2004d have demonstrated that it allows access to
large time scales very reliably. The errors mentioned can
be well controlled by increasing M and can show signifi-
cant accumulation only after relatively long times.

3. Time-dependent correlations

Time-dependent DMRG also yields an alternative ap-
proach to time-dependent correlations which have been
evaluated in frequency space in Sec. IV. Alternatively,
one may calculate expressions as

kcuci
†stdcjs0ducl = kcue+iĤtci

†e−iĤtcjucl s177d

constructing both ucl and ufl=cjucl using standard
DMRG stargeting bothd, and calculating both ucstdl and
ufstdl using time-dependent DMRG. The desired cor-
relator is then simply given as

kcstduci
†ufstdl s178d

and can be calculated for all i and t as time proceeds.
Frequency-momentum space is reached by Fourier
transformation. Finite system sizes and edge effects im-
pose physical constraints on the largest times and dis-
tances ui− ju or minimal frequencies and wave vectors ac-
cessible, but unlike dynamical DMRG, one run of the
time-dependent algorithm is sufficient to cover the en-
tire accessible frequency-momentum range. White and
Feiguin s2004d report a very successful calculation of the
one-magnon dispersion relation in an S=1 Heisenberg
antiferromagnetic chain using adaptive time-dependent
DMRG, but similar calculations are in principle feasible
in all time-dependent methods.

D. Finite temperature revisited: Time evolution and
dissipation at T.0

While our discussion so far has been restricted to time
evolution at T=0, it is possible to generalize to the spos-
sibly dissipatived time evolution at T.0 sVerstraete,
Garcia-Ripoll, and Cirac, 2004; Zwolak and Vidal, 2004d.
Both proposals are in the spirit of adaptive Hilbert-
space methods. One prepares a T=` completely mixed
state r̂`, essentially the identity operator, from which a

finite-temperature mixed state exps−bĤd at b−1=T.0 is
created by imaginary-time evolution, i.e.,

exps− bĤd = se−tĤdNr̂`se−tĤdN, s179d

where b=2Nt and t→0. The infinitesimal-time evolu-

tion operator e−tĤ is Trotter decomposed into locally
acting bond evolution operators. The finite-temperature
state is then evolved in real time using Hamiltonian or
Lindbladian dynamics. The differences reside essentially
in the representation of mixed states and the truncation
procedure.
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Verstraete, Garcia-Ripoll, and Cirac s2004d consider
the T=0 matrix-product state of Eq. s47d, where the
Aifsig are interpreted ssee Sec. III.Ad as maps from the
tensor product of two auxiliary states sdimension M2d to
a physical state space of dimension Nsite. This can be
generalized to finite-temperature matrix-product density
operators,

r̂ = o
hsjhs8j

TrFp
i=1

L

M̂ifsisi8gGuslks8u . s180d

Here, the M̂fsisi8g are now maps from the tensor prod-
uct of four auxiliary state spaces stwo left, two right of
the physical sited of dimension M4 to the
Nsite

2 -dimensional local density-operator state space. The
most general case allowed by quantum mechanics is for

M̂ to be a completely positive map. The dimension of M̂
seems to be prohibitive, but it can be decomposed into a
sum of d tensor products of A maps as

M̂ifsisi8g = o
ai=1

d

Aifsiaig ^ Ai
*fsi8aig . s181d

In general, døNsiteM
2, but it will be important to realize

that for thermal states d=Nsite only. At T=0, one recov-
ers the standard matrix-product state, i.e., d=1. In order
to actually simulate r̂, Verstraete, Garcia-Ripoll, and
Cirac s2004d consider the purification

ucMPDOl = o
hsjhaj

TrFp
i=1

L

ÂifsiaigGusal , s182d

such that r̂=TraucMPDOlkcMPDOu. Here, ancilla state
spaces huailj of dimension d have been introduced.

In this form, a completely mixed state is obtained
from matrices Aifsiaig~ I ·dsi,ai

, in which M may be 1 and
normalization has been ignored. This shows d=Nsite.
This state is now subjected to infinitesimal evolution in

imaginary time, e−tĤ. As it acts on s only, the dimension
of the ancilla state spaces need not be increased. Of
course, for T=0 the state may be efficiently prepared
using standard methods.

The imaginary-time evolution is carried out after a
Trotter decomposition into infinitesimal time steps on

bonds. The local bond evolution operator Ûi,i+1 is con-
veniently decomposed into a sum of dU tensor products
of on-site evolution operators,

Ûi,i+1 = o
k=1

dU

ûi
k

^ ûi+1
k . s183d

dU is typically small, say 2 to 4. Applying now the time
evolution at, say, all odd bonds exactly, the auxiliary
state spaces are enlarged from dimension M to MdU.

One now has to find the optimal approximation uc̃st
+Dtdl to ucst+Dtdl using auxiliary state spaces of dimen-
sion M only. Hence the state spaces of dimension MdU

must be truncated optimally to minimize iuc̃st+Dtdl

− ucst+Dtdli. If one uses the matrices composing the
state at t as initial guesses and keeps all but one A ma-
trix fixed, one obtains a linear equation system for this
A; sweeping through all A matrices several times is suf-
ficient to reach the fixed point that is the variational
optimum. As temperature is lowered, M will be in-
creased to maintain a desired precision. Once the ther-
mal state is constructed, real-time evolutions governed
by Hamiltonians can be calculated similarly. In the case
of Lindbladian time evolutions, they are carried out di-
rectly on states of the form of Eq. s180d, which is for-
mally equivalent to a matrix-product state on a local
Nsite

2 -dimensional state space.
The approach of Zwolak and Vidal s2004d is based on

the observation that local sdensityd operators
orss8uslks8u can be represented as Nsite3Nsite Hermitian
matrices. They now reinterpret the matrix coefficients as
the coefficients of a local “superket” defined on a
Nsite

2 -dimensional local state space. Any globally acting
sdensityd operator is now a global superket expanded as
a linear combination of tensor products of local super-
kets,

r̂ = o
s̄1=1

Nsite
2

¯ o
s̄L=1

Nsite
2

cs̄1¯s̄L
us̄1 ¯ s̄Ll . s184d

Here, us̄il= usilusi8l, the state space of the local superket.
We have now reached complete formal equivalence be-
tween the description of a pure state and a mixed state,
such that the time-evolving block decimation algorithm
sVidal, 2003, 2004d or its DMRG incarnation sDaley et
al., 2004; White and Feiguin, 2004d can be applied to the
time evolution of this state.

Choosing the local totally mixed state as one basis
state of the local superket state space, say s̄i=1, we find
that the global totally mixed state has only one nonzero
expansion coefficient, c1¯1=1 upon suitable normaliza-
tion. This shows that the T=` state, as in the previous
algorithm, takes a particularly simple form in this expan-
sion; it can also be brought very easily to some matrix-
product form corresponding to a DMRG system consist-
ing of two blocks and two sites. The time-evolution
operators, whether of Hamiltonian or Lindbladian ori-
gin, now map from operators to operators and are hence
referred to as superoperators. If one represents opera-
tors as superkets, these superoperators are formally
equivalent to standard operators. As in the T=0 case
therefore they are now Trotter decomposed, applied in
infinitesimal time steps to all bonds sequentially, with
Schmidt decompositions being carried out to determine
block ssuperdstate spaces. The number of states kept is
determined from the acceptable truncation error.
Imaginary-time evolutions starting from the totally
mixed state generate thermal states of a given tempera-
ture that may then be subjected to some evolution in
real time. It turns out again that the number of states to
be kept grows with inverse temperature.

For the simulation of dissipative systems, both ap-
proaches are effectively identical except for the optimal
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approximation of Verstraete, Garcia-Ripoll, and Cirac
s2004d replacing the somewhat less precise truncation of
the approach of Zwolak and Vidal s2004; see the discus-
sion of the precision achievable for various DMRG set-
ups in Sec. III.Ad.

X. OUTLOOK

What lies ahead for DMRG? On the one hand,
DMRG is quickly becoming a standard tool, to be rou-
tinely applied to the study of all low-energy properties
of strongly correlated one-dimensional quantum sys-
tems, most often probably using black-box DMRG
codes. On the other hand, there are several axes of
DMRG research that I expect to be quite fruitful in the
future: DMRG might emerge as a very powerful tool in
quantum chemistry in the near future; its potential for
time-dependent problems is far from being understood.
Last but not least I feel that two-dimensional model
Hamiltonians will be increasingly within reach of
DMRG methods, at least for moderate system sizes that
are still beyond the possibilities of exact diagonalization
and quantum Monte Carlo.

The strong link of DMRG to quantum information
theory has only recently begun to be exploited—DMRG
variants to carry out complex calculations of interest in
quantum information theory might emerge, while
DMRG itself could be applied in a more focused man-
ner using the new insights about its intrinsic rationale. In
that sense, DMRG would be at the forefront of a grow-
ing entanglement between condensed-matter physics
and quantum computation.
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