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The most successful cosmological models to date envision structure formation as a hierarchical
process in which gravity is constantly drawing lumps of matter together to form increasingly larger
structures. Clusters of galaxies currently sit atop this hierarchy as the largest objects that have had
time to collapse under the influence of their own gravity. Thus their appearance on the cosmic scene
is also relatively recent. Two features of clusters make them uniquely useful tracers of cosmic
evolution. First, clusters are the biggest things whose masses we can reliably measure because they are
the largest objects to have undergone gravitational relaxation and entered into virial equilibrium.
Mass measurements of nearby clusters can therefore be used to determine the amount of structure in
the universe on scales of 1014–1015M(, and comparisons of the present-day cluster mass distribution
with the mass distribution at earlier times can be used to measure the rate of structure formation,
placing important constraints on cosmological models. Second, clusters are essentially “closed boxes”
that retain all their gaseous matter, despite the enormous energy input associated with supernovae and
active galactic nuclei, because the gravitational potential wells of clusters are so deep. The baryonic
component of clusters therefore contains a wealth of information about the processes associated with
galaxy formation, including the efficiency with which baryons are converted into stars and the effects
of the resulting feedback processes on galaxy formation. This article reviews our theoretical
understanding of both the dark-matter component and the baryonic component of clusters, providing
a context for interpreting the flood of new cluster observations that are now arriving from the latest
generation of x-ray observatories, large optical surveys, and measurements of cluster-induced
distortions in the spectrum of the cosmic microwave background.
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I. INTRODUCTION

Cosmology has recently reached an important mile-
stone. A wide variety of cosmological observations now
support a single model for the overall architecture of the
observable universe and the development of galaxies
and other structures within it. According to this so-
called concordance model, the geometry of the observ-
able universe is indistinguishable from a flat geometry,
implying that its total energy density is very close to the
critical density needed to close the universe. The two
dominant components of the universe appear to be a
nonbaryonic form of dark matter, whose gravity is re-
sponsible for structure formation, and a mysterious form
of dark energy, whose pressure is currently causing the
expansion of the universe to accelerate. The mean den-
sity of baryonic matter is about 15% of the total amount
of matter, and we can observe the baryonic matter only
because the gravitational attraction of nonbaryonic dark
matter has drawn the baryonic gas into deep potential
wells, where a small fraction of it condenses into stars
and galaxies.

This model explains many different features of the
observable universe, but it is not entirely satisfying be-
cause the nature of the dark matter and the provenance
of the dark energy remain unknown. The implications of
dark energy for fundamental physics are particularly se-
rious, so we need to be sure that it is absolutely neces-
sary as an explanation of the astronomical observations.
In addition, many aspects of galaxy formation remain
poorly understood. Dark-matter models successfully ac-
count for the spatial distribution of mass in the universe,
as traced by the galaxies, but they do not explain all the
properties of the galaxies themselves. Dark matter ini-
tiates the process of galaxy formation, but, once stars
begin to form, supernova explosions and disturbances
wrought by supermassive black holes can inhibit further
star formation by pumping thermal energy into the uni-
verse’s baryonic gas.

Clusters of galaxies are a particularly rich source of
information about the underlying cosmological model,
making possible a number of critical tests. According to
the concordance model, clusters are the largest and most
recent gravitationally relaxed objects to form because
structure grows hierarchically. The universe begins in a
state of rapid expansion whose current manifestation is
Hubble’s law relating a galaxy’s recessional velocity vr to
its distance d through Hubble’s constant H0: vr=H0d.
Generalizing this feature of the local universe to all of
observable space links an object’s cosmological redshift
z= slobserved/lrestd−1 with a unique time tszd since the

big bang, enabling us to probe the evolution of the uni-
verse with observations of distant objects.1 Gravity
drives structure formation in this expanding realm be-
cause the matter density has been nearly equal to the
critical density during much of cosmic history. Regions
whose density slightly exceeds the mean density are
therefore gravitationally bound and eventually decouple
from the expansion, collapse upon themselves, and enter
a state of virial equilibrium in which the mean speeds of
the component particles are approximately half the es-
cape velocity. Because density perturbations in the con-
cordance model have greater amplitudes on smaller
length scales, small subgalactic objects are the first to
decouple, collapse, and virialize. These small objects
then collect into galaxies, and galaxies later collect into
clusters of galaxies, whose masses now top out at
roughly 1015 times that of the Sun’s s1015M(d. Thus the
growth and development of clusters directly trace the
process of structure formation in the universe.

Section II outlines the observable properties of galaxy
clusters that enable us to measure their masses. Observ-
ables in the optical band include the overall luminosity
of a cluster’s galaxies, which scales with the overall mass,
the velocity dispersion of a cluster’s member galaxies,
which responds to the depth of the cluster’s potential
well, and gravitational lensing of background galaxies by
the cluster’s potential. Observables in the x-ray band in-
clude the overall x-ray luminosity of a cluster, coming
from the hot gas trapped in the cluster’s gravitational
potential, the temperature inferred from the x-ray spec-
trum of that gas, and the abundances of various ele-
ments inferred from the emission lines in that spectrum.
This hot gas also leaves an imprint on the microwave sky
because its electrons Compton scatter the photons of the
cosmic microwave background radiation. Microwave ob-
servations are therefore an alternative source of infor-
mation about the hot gas and its temperature.

Once we have measured the masses of a sample of
clusters, we can use that sample to study cosmology. Sec-
tion III explains how the characteristics of the cluster
population relate to cosmological models. It begins by
summarizing the elements of the concordance model
and provides a number of useful analytical approxima-
tions to the results of numerical simulations of cluster
formation based on this model. Then it covers the dicey
middle ground linking those simulations with observa-
tions, currently the main source of uncertainty in deriv-
ing cosmological parameters from cluster observations.
The section concludes with a look at the evolution ob-
served in the cluster population and the constraints that
cluster evolution places on cosmological models.

Section IV takes up the subject of the baryonic com-
ponent of clusters, with two purposes in mind. First, in
order to improve the precision of cosmological measure-
ments with clusters, we need to know how the process of

1In this definition, lrest is the wavelength of a photon emitted
by a distant object, and lobserved is the wavelength it is ob-
served to have when it reaches Earth.
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galaxy formation affects the relations used to derive
cluster masses from observations of a cluster’s hot gas
and galaxies. Current numerical simulations accurately
reproduce the behavior of the dark component, whose
interactions are purely gravitational, but fail to repro-
duce with similar accuracy the observed behavior of the
baryonic component, whose interactions are also hydro-
dynamical and thermodynamical. These discrepancies
between simulations and observations indicate that gal-
axy formation alters the state of a cluster’s hot gas in a
way that preserves information about the poorly under-
stood feedback processes that regulated galaxy forma-
tion long before the cluster reached its present state.
Our second purpose is therefore to try to decipher what
the state of the hot gas is saying about the process of
galaxy formation, so as to gain insight into those feed-
back processes. Section V concludes the review with
some brief remarks about ongoing and future cluster
surveys.

Despite this article’s length, it falls somewhat short of
being a comprehensive review of cluster physics, which
would require more pages than this journal is inclined to
provide. Instead, I have tried to assemble a readable
introduction to cluster evolution for nonexperts, concen-
trating on the middle ground connecting theory to ob-
servations and distilling the key theoretical results into a
set of simple analytical tools useful to observers. For
more on the subject of clusters and their evolution, read-
ers should consult Sarazin s1988d, Borgani, Mezzetti, et
al. s2002d, Rosati et al. s2002d, and Mulchaey et al. s2004d.

II. OBSERVABLE PROPERTIES OF CLUSTERS

Clusters of galaxies might have been called something
different if they had first been discovered in a waveband
other than visible light, because all the stars in all of a
cluster’s galaxies represent only a small fraction of a
cluster’s overall mass. Clusters contain substantially
more mass in the form of hot gas, observable with x-ray
and microwave instruments. This section outlines how
clusters are observed in all three of these wavebands and
how those observations reveal a cluster’s total mass,
which turns out to be about seven times the combined
baryonic mass in stars and hot gas sWhite et al., 1993;
David et al., 1995; Evrard, 1997; Allen et al., 2002d.

A. Clusters in optical light

Optical identification of galaxy clusters has been going
on for quite a long time. By the end of the eighteenth
century Charles Messier s1784d and William Herschel
s1785d had already recognized concentrations of galaxies
in the constellations Virgo and Coma Berenices. Today
these are known as the Virgo cluster and the Coma clus-
ter. Optical discoveries of clusters continued to accumu-
late as observing power grew over the next two centuries
ssee Biviano, 2001, for a review of the historyd, culminat-
ing with the definitive cluster catalogs of George Abell
and collaborators sAbell, 1958; Abell et al., 1989d.

Abell’s catalogs contain most of the known nearby gal-
axy clusters and are the foundation for much of our
modern understanding of clusters.

Abell recognized that projection effects can compli-
cate the identification of clusters in optical galaxy sur-
veys and therefore was careful in defining his clusters.
Working from the Palomar Sky Survey plates, he esti-
mated the distance of each cluster candidate from the
apparent brightness of its tenth-brightest member gal-
axy. He then counted all the galaxies lying within a fixed
projected radius and brighter than a magnitude limit two
magnitudes fainter than the third-brightest member. The
bounding radius, which he determined from the distance
estimate, is now known to be ,2 Mpc and was the same
for all clusters.2 In order to compensate for projection
effects, he subtracted from his galaxy counts a back-
ground level equivalent to the mean number of galaxies
brighter than the magnitude limit for the cluster in simi-
larly sized, cluster-free regions of the plate, and retained
all cluster candidates with a net excess of 50 galaxies
brighter than the limiting magnitude.

Most of the optical cluster identification techniques
used today extend and refine Abell’s basic approach
se.g., Lumsden et al., 1992; Postman et al., 1996; Dalton
et al., 1997d, often augmenting it with information about
galaxy colors se.g., Gladders and Yee, 2000; Bahcall,
McKay, et al., 2003; Nichol, 2004d. These improvements
are necessary because the contrast of clusters against the
background galaxy counts decreases with cluster dis-
tance. Galaxy colors can help identify distant clusters
because many cluster galaxies are significantly redder
than other galaxies at a similar redshift, owing to their
lack of ongoing star formation. The colors of their aging
stellar populations therefore place these cluster mem-
bers on a narrow and distinctive locus, known as the
“red sequence,” in a plot of galaxy color versus magni-
tude ssee, for example, Gladders and Yee, 2000d.

Once suitable cluster candidates are found, their sta-
tus as true mass concentrations can be checked by mea-
suring the underlying mass. Optical observations offer
two complementary ways to perform such measure-
ments, through the orbital velocities of the member gal-
axies and through the degree to which galaxies lying be-
hind the cluster are lensed by the cluster’s gravitational
potential. We shall discuss both of these methods after a
few more words about how galaxy counts relate to the
overall optical luminosities of clusters.

1. Optical richness

To the extent that light traces mass in the universe,
the total optical luminosity of a cluster is itself an indi-
cator of a cluster’s mass. Measuring the luminosity of
every galaxy in a cluster is impractical, especially for
distant clusters in which only the brightest galaxies can
be observed. However, because the luminosity distribu-
tion function of cluster galaxies is nearly the same from

2The megaparsec is astronomers’ favored unit of distance on
cluster scales: 1 Mpc=3.0931024 cm=3.263106 light years.
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cluster to cluster, observing the high-luminosity tip of
that distribution allows one to normalize the overall gal-
axy luminosity function for the cluster, yielding esti-
mates for both the cluster’s total optical luminosity and
its mass.

Abell’s catalogs encode this information by placing
clusters in categories of richness corresponding to the
net excess of galaxies brighter than the magnitude limit
used to define each cluster. The richest clusters sclass 5d
contain over 300 galaxies brighter than the magnitude
limit, while the poorest sclass 1d contain only 50–79 such
galaxies. Clusters not quite making Abell’s cut s30–49
galaxies above the magnitude limitd were assigned to
richness class 0. Within this system, the Coma cluster
was originally ranked in richness class 2.

Invoking assumptions about the shape of the luminos-
ity distribution function helps to link richness more di-
rectly to a cluster’s total luminosity. Cluster galaxies gen-
erally adhere to a luminosity distribution function
following the form proposed by Schechter s1976d, with
the number of galaxies in luminosity range dL about L
proportional to L−a exps−L /L*d, with a<1 ssee, for ex-
ample, Balogh, Christlein, et al., 2001d. Assuming this
distribution function, Postman et al. s1996d define a rich-
ness parameter Lcl equivalent to the number of cluster
galaxies brighter than the characteristic luminosity L*.
They find that Lcl is highly correlated with Abell’s rich-
ness measure, but the scatter between richness and Lcl is
large.

Another richness parameter in current use is Bcg, the
amplitude of the correlation function between the clus-
ter center and the member galaxies sLongair and Seld-
ner, 1979; Yee and López-Cruz, 1999d. It is derived from
the angular correlation function of galaxies measured
down to a given magnitude limit, after removing the
background counts, and is normalized by dividing out
the expected luminosity distribution function of galaxies
integrated down to that magnitude limit. This richness
parameter also correlates with Abell’s richness, but
again the scatter is broad. Yee and Ellingson s2003d show
that Bcg correlates well with other global properties of
clusters, suggesting that richness observations may be-
come an inexpensive way to measure cluster masses, but
first the mass-richness relation must be calibrated and
the scatter in that relation must be quantified.

2. Galaxy velocities

Once a cluster has been optically identified, obtaining
the radial velocities vr of the cluster galaxies from their
redshifts helps in mitigating projection effects and in
measuring the cluster’s mass. Because the velocity distri-
bution of a relaxed cluster’s galaxies is expected to be
Gaussian in velocity space, galaxies with velocities fall-
ing well outside the best-fitting Gaussian envelope are
unlikely to be cluster members and are generally disre-
garded. Fitting the velocity distribution expf−svr

− kvrld2 /2s1D
2 g to the remaining galaxies then yields a

one-dimensional velocity dispersion s1D for the cluster.
If the velocity distribution of a cluster candidate is far

from Gaussian, then it is probably not a real cluster but
rather a chance superposition of smaller structures. Ob-
viously, the accuracy of s1D depends critically on the
number of galaxies with measured velocities and the
method for identifying and eliminating nonmembers.

Zwicky s1933, 1937d was the first to measure a cluster’s
velocity dispersion, finding s1D,700 km s−1 for the
Coma cluster. He correctly concluded from this fact and
his estimate of the Coma cluster’s overall radius that this
cluster’s mass must be far greater than the observed
mass in stars—the first evidence for dark matter in the
universe. Shortly thereafter, Smith s1936d showed that
the same was true of the Virgo cluster. Zwicky’s reason-
ing involved the virial theorem of classical mechanics,
which applies to steady, gravitationally bound systems.
Differentiating the system’s moment of inertia I
=oimiri

2 twice with respect to time and setting the result
to zero produces the virial relation

o
i

miṙi
2 = − o

i
mir̈i · ri. s1d

The left-hand side is twice the total kinetic energy of the
cluster’s particles, and in a spherically symmetric system
of mass M with a Gaussian velocity distribution, that
kinetic energy is 3Ms1D

2 /2. If the system is isolated, then
the right-hand side is equal to the absolute value of the
gravitational potential energy, which can be expressed as
GM2 /rG, where

rG ; M2So
i

o
i,j

mimj

rij
D−1

<
p

2
M2So

i
o
i,j

mimj

r',ij
D−1

s2d

and rij is the separation between particles i and j. The
approximation gives rG for a spherically symmetric sys-
tem in terms of the projected particle separations r'.ij in
the plane of the sky sLimber and Mathews, 1960d. Ac-
cording to the virial theorem, the mass of a spherical,
isolated cluster should therefore be M=3s1D

2 rG /G.
Applying this virial analysis to real clusters is not

quite so simple because clusters are not isolated
systems—there is no clean boundary separating a cluster
from the rest of the universe. Segregating the cluster
from the outlying regions with an arbitrary bounding
surface alters the interpretation of the right-hand side of
Eq. s1d. In a steady state, the momentum flux of particles
exiting the boundary is equal to that entering, so the
bounding surface is formally equivalent to a reflecting
wall that adds a pressure correction term, offsetting
some of the gravitational potential energy sThe and
White, 1986; Carlberg, Yee, and Ellingson, 1997d. One
must also account for objects seen in projection, such as
infalling galaxies that have not yet entered into virial
equilibrium and interlopers that are not true cluster
members—problems that have led to the invention of
various kinds of projected mass estimators sBahcall and
Tremaine, 1981; Heisler et al., 1985d.

Extensive redshift measurements now allow observers
to measure much more than just a cluster’s velocity dis-
persion, enabling detailed studies of a cluster’s mass pro-
file and dynamical state. Generally a cluster’s velocity
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dispersion declines with projected radius, implying that
the relationship between projected radius and the mass
enclosed within that radius is somewhat shallower than
linear in the cluster’s outskirts sRood et al., 1972; Kent
and Gunn, 1982; Carlberg, Yee, and Ellingson, 1997d.
Beyond the approximate virial radius of a cluster, the
enclosed mass continues to increase and the galaxies
move primarily on infalling radial trajectories sKaiser,
1987; Regos and Geller, 1989; Diaferio and Geller, 1997;
Biviano and Girardi, 2003d. Even farther out is a thin
region where galaxies are nearly stationary with respect
to the cluster, because there the cluster’s gravity has just
succeeded in reducing the outward Hubble flow to a
standstill sKaiser, 1987; Rines et al., 2003d. Eventually
these galaxies will fall back toward the cluster and be-
come cluster members.

Because clusters are dynamical systems that have not
quite finished forming and equilibrating, the velocity dis-
persion and virial theorem by themselves do not yield an
exact cluster mass measurement. Detailed information
on the spatial distribution of galaxy velocities is of great
help in measuring the masses of large, nearby clusters,
but similar information is very difficult to obtain for the
distant clusters so interesting to cosmologists. In lieu of
detailed observations, one can use simulations of cluster
formation to calibrate the approximate virial relation-
ship between velocity dispersion and cluster mass, but
we shall postpone discussion of that procedure to the
discussion of dark-matter dynamics in Sec. III.

3. Gravitational lensing

In his remarkable 1937 paper on the Coma cluster,
Zwicky also proposed that cluster masses could be mea-
sured through gravitational lensing of background galax-
ies. That technique did not become practical for six
more decades but is now one of the primary methods for
measuring cluster mass. Lensing is sensitive to the clus-
ter’s mass within a given projected radius r' because the
mass within this radius deflects photons toward our line
of sight through the cluster’s center. When the deflection
angle is small compared to a background galaxy’s angu-
lar distance from the cluster center, weak lensing shifts
each point in the galaxy’s image to a slightly larger an-
gular distance from the cluster’s center, thereby distort-
ing the image by stretching it tangentially to r'. Measur-
ing the weak-lensing distortion of any single galaxy is
nearly impossible because the exact shape of the un-
lensed galaxy is generally unknown. Instead, observers
must measure the shear distortion of an entire field of
background galaxies, under the assumption that any in-
trinsic deviations of galaxy images from circular symme-
try are uncorrelated.

Many excellent articles explain this weak-lensing tech-
nique in more detail sTyson et al., 1990; Kaiser and
Squires, 1993; Hoekstra et al., 1998; Mellier, 1999; Bar-
telmann and Schneider, 2001d. Here we wish only to give
a flavor of how a cluster’s mass can be measured from
the lensing it induces. The deflection angle itself de-
pends on the gradient of the gravitational potential in

the lensing system, meaning that a mass sheet of con-
stant surface density produces no shear and goes unde-
tected. Additional mass that is distributed symmetrically
about the line of sight through a cluster’s center bends
photon paths by an angle twice that expected from New-
tonian physics, 4GMs,r'd /c2r', which can be measured
from the shear distortion and redshift distribution of the
background galaxies. Obtaining a cluster mass from the
mass Ms,r'd along the column bounded by r' requires
additional assumptions about how mass is distributed
within this column. A particularly simple mass configu-
ration would be a singular isothermal sphere, in which
s1D remains constant with radius and Msrd=2s1D

2 r /G
sSec. III.B.2d; notice that the boundary pressure term
required in this configuration alters the usual virial rela-
tion. The deflection angle for this mass distribution is
4ps1D

2 /c2, independent of radius. In general, however,
the cluster potential will not be precisely isothermal, nor
will the cluster be perfectly spherical.

Simulations of large-scale structure formation suggest
that superpositions of other mass concentrations limit
the accuracy of weak-lensing masses, at least for clusters
defined to be within spherical volumes. Projected mass
fluctuations along the line of sight to a distant cluster
can be on the order of ,1014M( sMetzler et al., 1999,
2001; Hoekstra, 2001d. On the other hand, weak-lensing
masses are expected to correlate quite well with cluster
richness, another measure of the mass within a cylindri-
cal region, raising the possibility that at least some of the
projected mass can be accounted for by using galaxy
colors to separate these mass concentrations from the
cluster in redshift space.

B. Clusters in x rays

Clusters of galaxies are x-ray sources because galaxy
formation is inefficient. Only about a tenth of the uni-
verse’s baryons reside within stars in galaxies, leaving
the vast majority adrift in intergalactic space. Most of
these intergalactic baryons are extremely difficult to ob-
serve, but the deep potential wells of galaxy clusters
compress the associated baryonic gas and heat it to x-ray
emitting temperatures. The gas temperature inferred
from a cluster’s x-ray spectrum therefore indicates the
depth of a cluster’s potential well, and the emission-line
strengths in that spectrum indicate the abundances of
elements like iron, oxygen, and silicon in the intracluster
medium sICMd. Here we outline the primary character-
istics of that x-ray emission. For a more detailed discus-
sion of the physics, see Sarazin s1988d.

1. X-ray surface brightness

Extended x-ray emission from clusters of galaxies was
first observed in the early 1970s sGursky et al., 1971;
Forman et al., 1972; Kellogg et al., 1972d, but was cor-
rectly attributed to thermal bremsstrahlung several
years earlier by Felten et al. s1966d, who were inspired
by a spurious x-ray detection of the Coma cluster. For
typical cluster temperatures skT*2 keVd the emissivity
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of thermal bremsstrahlung dominates that from emis-
sion lines, but below ,2 keV that situation reverses,
given the typical heavy-element abundances relative to
hydrogen which are ,0.3 times those found in the Sun.
The rate at which the ICM radiates energy can be ex-
pressed in terms of a cooling function LcsTd computed
assuming that collisional ionization equilibrium deter-
mines the relative abundance of each ion. Many colli-
sional ionization codes have been developed to compute
the emissivity and x-ray spectrum of such gas ssee, for
example, Raymond and Smith, 1977d. Because these
cooling processes all involve electrons colliding with
ions, the resulting cooling function is usually defined so
that either nenHLcsTd or nenionLcsTd is the luminosity
per unit volume. Tozzi and Norman s2001d give a useful
fit to the computations of Sutherland and Dopita s1993d
for abundances equal to 0.3 times their solar values. For
typical ICM temperatures, Lc,10−23 erg cm3 s−1.

In most clusters, the intracluster gas appears to be in
approximate hydrostatic equilibrium. Assuming spheri-
cal symmetry, the equation of hydrostatic equilibrium
can be written

d ln rg

d ln r
+

d ln T

d ln r
= − 2

Tfsrd
T

, s3d

where rg is the gas density and kBTfsrd=GMsrdmmp /2r
is the characteristic temperature of a singular isothermal
sphere with the same value of Msrd /r. Making the addi-
tional assumption that the gas is isothermal leads to a
classic model for the x-ray surface brightness of clusters
known as the beta model sCavaliere and Fusco-
Femiano, 1976d. If the velocity distribution of the par-
ticles responsible for Msrd is also isothermal with a con-
stant velocity dispersion s1D, then Poisson’s equation
implies

d ln rg

dr
= −

mmp

kT

df

dr
= b

d ln r

dr
, s4d

where the eponymous b;mmps1D
2 /kT ssee Sarazin,

1988d. Given the approximate isothermal potential of
King s1962d, rsrd~ f1+ sr /rcd2g−3/2, in which rc is a core
radius that keeps the profile from becoming singular at
the origin, the gas density profile becomes rgsrd~ f1
+ sr /rcd2g−3b/2. The expected x-ray surface brightness pro-
file for an isothermal gas is then ~f1+ sr /rcd2g−3b+1/2, and
fitting this model to the observations gives the best-fit
parameters rc, bfit and the normalization of the gas-
density distribution.

Beta models generally describe the observed surface-
brightness profiles of clusters quite well in the radial
range from ,rc to ,3rc, with bfit<2/3 and rc,0.1rG
giving the best fits for rich clusters sJones and Forman,
1984d and a possible trend toward lower b values in
poorer clusters sHorner et al., 1999; Helsdon and Pon-
man, 2000; Finoguenov, Reiprich, et al., 2001; Sanderson
et al., 2003d. The x-ray luminosity integrated over radius
converges for b.0.5, meaning that most of the observed
x rays come from a relatively small proportion of the
ICM. However, beta models often underestimate the

central surface brightness sJones and Forman, 1984d and
tend to overestimate the brightness at r@rc sVikhlinin et
al., 1999d. These discrepancies arise in part because the
intracluster medium is not strictly isothermal sSec.
III.C.2d and because real cluster potentials differ from
the King model sSec. III.B.2d.

The centrally concentrated surface-brightness profiles
of clusters make x-ray surveys very effective at finding
cluster candidates. Because x-ray emission depends on
density squared, clusters of galaxies stand out strongly
against regions of lesser density, minimizing the compli-
cations of projection effects ssee Rosati et al., 2002, for a
recent reviewd. Surveys of x-ray-selected clusters cur-
rently extend to z<1.3 sStanford et al., 2001; Rosati et
al., 2004d, a limit owing to the decline of surface bright-
ness with redshift sSec. III.A.2d. Unfortunately, x-ray lu-
minosity correlates less well than one would like with
the optical properties of clusters. Early studies showed
that x-ray luminosity correlates with optical richness but
with a large scatter sBahcall, 1977; Mushotzky, 1984d,
and that situation has not improved much in the inter-
vening decades sDonahue et al., 2002; Gilbank et al.,
2003; Kochanek et al., 2003d. The optical properties of
very luminous x-ray clusters are well behaved sLewis et
al., 1999d, but deep optical surveys have found distant
cluster candidates that appear to have velocity disper-
sions much larger than one would guess from their x-ray
luminosity sLubin et al., 2004d. These objects may be
superpositions of smaller clusters whose joint velocity
distribution seems like that of a larger relaxed cluster.

2. Plasma temperature

Clusters in hydrostatic equilibrium have a plasma
temperature that is closely related to the overall mass.
Measuring that temperature requires higher-quality data
than a simple luminosity measurement, because the pho-
tons must be divided among multiple energy bins. Ide-
ally, one would like enough data to measure both Tsrd
and rgsrd, in which case Eq. s3d can be solved directly for
Msrd. Even with the highest-quality data, the derived
mass is still slightly model dependent because Tsrd and
rsrd must be determined by deprojecting the surface-
brightness information sFabian et al., 1981; Kriss et al.,
1983; White et al., 1997; Pizzolato et al., 2003d.

In practice, the quality of the mass measurement de-
pends on what the total number of observed x-ray pho-
tons allows. With limited information about the tem-
perature gradient, one can fit a polytropic law3 T
~rg

geff−1, giving the radial dependence of temperature in
terms of an effective adiabatic index geff with density as
the radial coordinate. However, data on distant clusters
often do not allow a temperature gradient to be mea-
sured and sometimes are even insufficient to give an ac-
curate temperature. In those cases, one must rely on
scaling laws that connect x-ray luminosity with tempera-

3Note that this is not an actual equation of state for the gas
but only a fitting formula for Tsrd as a function of rgsrd.
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ture and temperature with mass, calibrated with either
high-quality observations or numerical simulations of
cluster formation that include all the relevant physics
sSec. III.Cd.

Limitations in the measurement of cluster tempera-
ture systematically affect the mass one infers for the
cluster. If only a single temperature can be measured,
then the isothermal beta model implies

Msrd
r

=
3bkBT

Gmmp

sr/rcd2

1 + sr/rcd2 . s5d

Note that at large radii this relation approaches the one
for isothermal gas in a singular isothermal potential,
Msrd /r=2kBT /Gmmp, as long as b=2/3. However,
single temperatures gleaned from a cluster’s overall
spectrum need to be treated with caution. Global cluster
temperatures quoted in the literature are generally
spectral-fit temperatures sTspd obtained by fitting a
single-temperature emission model to an overall cluster
spectrum containing multiple temperature components.
These spectral-fit temperatures are similar to, but not
identical to, the cluster’s luminosity-weighted tempera-
ture Tlum, in which each temperature component is
weighted by rg

2. Numerical simulations indicate that both
Tsp and Tlum can differ from the mass-weighted gas tem-
perature Tg and from one another by ,10–20 %
sMathiesen and Evrard, 2001; Mazzotta et al., 2004d.

A modest amount of spatially resolved temperature
information improves the mass measurement. Allowing
for a temperature gradient corresponding to T~rg

geff−1

changes the estimated mass to

Msrd
r

=
3bgeffkBTsrd

Gmmp

sr/rcd2

1 + sr/rcd2 . s6d

Observers are still working toward a consensus on the
temperature gradients of clusters sMarkevitch et al.,
1998; Irwin and Bregman, 2000; De Grandi and Mo-
lendi, 2002; Pratt and Arnaud, 2002; Mushotzky, 2004d,
but measured values of geff often range as high as 1.2
sFinoguenov, Reiprich, et al., 2001d. Cluster tempera-
tures are extremely difficult to observe in the neighbor-
hood of the virial radius, but extrapolating a geff=1.2
gradient to 10rc leads to a gas temperature less than half
the core temperature. Including temperature-gradient
information can therefore lower the estimated mass for
a cluster of temperature Tlum by up to ,50%.

Despite the potential for systematic uncertainties, the
luminosity-weighted temperatures of clusters correlate
well with their velocity dispersions. Most of the recent
comparisons for low-redshift clusters find that s1D

~Tsp
,0.6, slightly steeper than expected if both quantities

track cluster mass sLubin and Bahcall, 1993; Xue and
Wu, 2000d. Those same comparisons find normalizations
of this relation for rich clusters in the range bsp

=mmps1D
2 /kTsp=0.9–1.0 sFig. 1d. The discrepancy be-

tween bsp and bfit is no cause for concern. It arises be-
cause the true mass profile is not a King model and be-
cause clusters are not in perfect hydrostatic equilibrium

sEvrard, 1990; Bahcall and Lubin, 1994d. More worri-
some are recent observations suggesting that the x-ray
temperatures of distant optically selected clusters with
unusually small x-ray luminosities are also considerably
cooler than their velocity dispersions would indicate
sLubin et al., 2004d. However, more extensive redshift
measurements have shown that at least one of these sys-
tems is composed of several smaller systems that have
not yet merged to form a single large cluster sGal and
Lubin, 2004d.

3. Measuring abundances

Abundances of elements like iron, oxygen, and silicon
in the intracluster medium are relatively easy to mea-
sure from their emission-line fluxes, as long as the tem-
perature of the line-emitting gas is well defined. Because
of the low density of intracluster gas, collisional deexci-
tation is negligible, so every collisional excitation pro-
duces a photon that leaves the cluster. Thus one can fit
the optically thin spectrum of a collisionally ionized,
single-temperature plasma to the observed spectrum,
adjusting the abundances in the model to produce the
best fit. The high spectral resolution of today’s x-ray ob-
servatories, Chandra and XMM-Newton, allows abun-
dance determinations for individual elements if enough
photons can be gathered. Otherwise, the solar pattern of
abundance ratios is assumed for elements other than H
and He, and the normalization of the overall pattern is
fit to the observations. Because the most abundant ele-
ments are almost completely ionized in the hottest clus-
ters, these abundance determinations depend heavily on
the strength of the K-shell emission lines of iron, some-
times the only lines that are measurable.

FIG. 1. Relation between velocity dispersion and temperature
for a heterogeneous sample drawn from the literature: j, data
on galaxy groups; s, cluster data; dotted lines, best power-law
fits for groups; solid lines, best fits for clusters. The best-fitting
relation to the combined sample is s1D=102.51±0.01

km s−1sT /1 keVd0.61±0.01, corresponding to bsp=0.97 at 6 keV.
From Xue and Wu, 2000.
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On average, the overall abundances of heavy ele-
ments with respect to hydrogen in clusters are about 0.3
times the solar ratios. Just as with temperature, this de-
termination is weighted toward the cluster core because
of the rg

2 emissivity. Spatially resolved observations of Fe
K-line emission show that iron abundances, at least, can
be higher at the cluster’s center, particularly when a gi-
ant, central-dominant galaxy is there. This iron excess is
consistent with being supernova debris from the giant
galaxy’s stars sDe Grandi et al., 2003d. Farther out in
clusters, these Fe gradients appear to flatten at ,0.3
times the solar level, extending to about ,5rc, beyond
which point the x-ray surface brightness is too low for
accurate abundance and temperature measurements.
This abundance level does not seem to have changed
substantially from redshift z,1 to the present sDonahue
et al., 1998, 1999; Tozzi et al., 2003d.

The total amount of iron implied by extrapolating this
ratio over an entire cluster is quite impressive, exceeding
the total amount of iron contained within all the stars in
the cluster’s galaxies sRenzini, 1997d. Explaining how all
that iron got into the intracluster medium is challenging.
It is comparable to the total amount of iron produced by
all the supernovae thought to have exploded during the
history of the cluster, and, according to some estimates,
it requires a disproportionately large number of massive
stars to have formed in order to produce enough super-
novae sDavid et al., 1991; Matteucci and Gibson, 1995;
Loewenstein and Mushotzky, 1996; Gibson and Mat-
teucci, 1997; Loewenstein, 2001; Portinari et al., 2003d.

Presumably all these supernovae could have driven
strong gaseous outflows known as galactic winds that
expelled the heavy elements into the intracluster me-
dium sLarson and Dinerstein, 1975; Heckman et al.,
1990d. However, such powerful galactic winds are hard
to produce in numerical simulations of galaxies, because
much of the energy released by massive-star stype-IId
supernovae is transferred to cool gas within the galaxy,
where it is radiated away before it manages to drive a
powerful wind sMac Low and Ferrara, 1999d. Alterna-
tively, some of this iron may come from exploding white
dwarfs stype-Ia supernovaed, whose iron yields are
higher than those of type-II supernovae. In either case,
the total amount of kinetic energy released by the super-
novae that created these elements is enormous, corre-
sponding to ,0.3–1 keV per particle in the intracluster
medium sFinoguenov, Arnaud, et al., 2001; Pipino et al.,
2002d. Yet, the efficiency of energy transfer from super-
novae to the ICM remains an open question sKravtsov
and Yepes, 2000d.

In principle, one can probe the origins of elements in
the ICM and assess whether massive stars were dispro-
portionately common earlier in time by comparing the
abundances of massive-star products, like oxygen, to
that of iron, which may come largely from type-Ia super-
novae. No clear answer has yet emerged from such stud-
ies, which depend heavily on a proper understanding of
the gas temperature distribution to get the correct el-
emental abundances ssee, for example, Buote et al.,
2003d. Some studies have concluded that the relative

abundance patterns in the intracluster medium are near
solar, implying that the stellar populations producing
those supernovae were similar to those in our own gal-
axy sRenzini, 2004d. Other studies find an excess of oxy-
gen and other elements of similar atomic number, sug-
gesting that the cluster’s galaxies produced an unusually
large number of massive stars early in the cluster’s his-
tory ssee, for example, Finoguenov et al., 2003d.

C. Clusters in microwaves

Hot gas in clusters can also be observed through its
effects on the cosmic microwave background. The back-
ground itself has a virtually perfect blackbody spectrum
sMather et al., 1990d. Soon after the discovery of this
background radiation, Weymann s1965, 1966d computed
how Compton scattering would distort its spectrum,
slightly shifting some of the microwave photons to
higher energies as they passed through hot intergalactic
gas. Sunyaev and Zeldovich s1970, 1997d then predicted
that hot gas in clusters of galaxies would indeed produce
such a distortion, now known as the Sunyaev-Zeldovich
sS-Zd effect.

1. The Sunyaev-Zeldovich effect

Two decades after this prediction there were only a
few marginal detections sBirkinshaw, 1991d, but many
clusters were detected at high significance in the ensuing
decade sBirkinshaw, 1999; Carlstrom et al., 2000d. With
multiple new and highly capable S-Z instruments com-
ing on line in the next few years, another quantum leap
in this area is poised to happen, enabling wide-field cos-
mological studies of clusters to extend through much of
the observable universe sCarlstrom et al., 2002d. A num-
ber of recent reviews elucidate the details of the S-Z
effect se.g., Birkinshaw, 1999; Carlstrom et al., 2002d.
Here we summarize only a few fundamentals.

To lowest order, the shape of the distorted spectrum
depends on a single parameter proportional to the prod-
uct of the probability that a photon passing through the
cluster will Compton scatter and the typical amount of
energy a scattered photon gains:

y =E kBT

mec
2nesTdl , s7d

where sT is the Thomson cross section and the integral
is over a line of sight through the cluster. Because the
optical depth of the cluster is small, the change in micro-
wave intensity at any frequency is linearly proportional
to y!1, with reduced intensity at long wavelengths and
enhanced intensity at short wavelengths. Relativistic cor-
rections in hot clusters add a slight frequency depen-
dence to the magnitude of the effect, making cluster
temperatures measurable with precise observations of
the microwave distortion at several frequencies ssee
Carlstrom et al., 2002, for a discussiond. A cluster’s mo-
tion with respect to the microwave background produces
additional distortion, known as the kinetic S-Z effect,
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but here we shall concern ourselves only with the ther-
mal S-Z effect.

Cosmological applications of the thermal S-Z effect in
clusters benefit greatly from the fact that the effect is
independent of distance, unlike optical and x-ray surface
brightness. Thus a dedicated S-Z cluster survey effi-
ciently finds clusters out to arbitrarily high redshifts. Be-
cause not all these clusters will be well resolved, the
surveys will be measuring an integrated version of the
distortion parameter:

Y =E ydA ~E neTdV , s8d

where the first integral is over a cluster’s projected sur-
face area and the second is over its volume. The Y pa-
rameter therefore tells us the total thermal energy of the
electrons, from which one easily derives the total gas
mass times its mass-weighted temperature within a given
region of space. If these regions can be chosen so that
the gas mass is always proportional to the cluster’s total
mass, then the observable Y can be used as a measure of
cluster mass, once the relationship between Y and mass
has been calibrated.

The impressive power of the S-Z effect for finding
distant clusters also has a significant drawback, namely,
sky confusion owing to projection effects. Along any line
of sight through the entire observable universe, the
probability of passing within the virial radius of a cluster
or group of galaxies is of order unity sVoit et al., 2001d.
Because a cluster’s S-Z distortion does not diminish with
distance, many of the objects in a highly sensitive S-Z
survey will significantly overlap. Information on galaxy
colors will help to separate nearby objects from more
distant ones, but the implications of sky confusion for
making accurate mass measurements are still a matter to
be reckoned with ssee, for example, White et al., 2002d.
One way to avoid the problem of sky confusion would
be to measure the statistical S-Z properties of clusters in
the angular power spectrum of the microwave sky in-
stead of analyzing the clusters themselves sda Silva et al.,
2001; Holder and Carlstrom, 2001; Seljak et al., 2001d. In
fact, this statistical signal may already have been de-
tected sPearson et al., 2003; Kuo et al., 2004d

2. Comparing Sunyaev-Zeldovich with x-ray observations

Comparisons of a cluster’s x-ray and S-Z properties
are useful in several different ways. X-ray observations
are nicely complementary to S-Z observations of clus-
ters because they give the integral of rg

2 along lines of
sight through a cluster in addition to a gas temperature.
Assuming that clusters are spherical objects with smooth
gas distributions, one can divide the product of tempera-
ture and the line-of-sight integral of rg

2 by the observed y
value to obtain a cluster’s gas density profile. Combining
the data in this way can be particularly useful in studying
the outskirts of clusters, where the x-ray surface bright-
ness is difficult to observe but the S-Z signal remains
substantial. With this density profile in hand, one can
then derive the line-of-sight thickness of the cluster from

either the x-ray or the S-Z observations. This type of
information could help to solve the S-Z projection prob-
lem in fields where there are high-quality x-ray and S-Z
data.

If a cluster is indeed spherical, then a comparison of
its physical thickness with its apparent angular size di-
rectly gives its distance, which can be used to determine
the scale and geometry of the universe sBirkinshaw et
al., 1991d. Deriving the scale of the universe in this way
is subject to numerous systematic effects. For example,
clusters are not all perfectly spherical. Many appear
slightly ellipsoidal in x-ray images, calling for a sample
of clusters with random orientations to beat down this
systematic effect, although three-dimensional recon-
structions are possible with the addition of gravitational-
lensing data sZaroubi et al., 2001d. Note also that com-
parisons of x-ray images to S-Z images would produce
nonsensical distances if the intracluster medium were
highly clumpy, owing to the rg

2 x-ray emissivity. The fact
that cluster distances found in this way are consistent
with the standard calibrations of Hubble’s law indicates
that the x-ray-emitting gas is well behaved and that most
clusters are in approximate hydrostatic equilibrium.

III. EVOLUTION OF THE DARK COMPONENT

Cluster masses measured with the techniques outlined
in the previous section range from around 1014M( to
more than 1015M(, the vast majority of which appears to
be dark matter that emits no detectable radiation. Even
using alternative theories of gravity, it is difficult to ex-
plain the cluster observations without dark matter domi-
nating the overall mass sSanders, 2003d. In contrast, ex-
plaining the characteristics of clusters and their
evolution with redshift is much easier with models in
which nonbaryonic cold dark matter dominates the mass
density of the universe.

This section explains how the evolution of the dark
component of the universe, including both dark matter
and dark energy, is thought to be reflected in the evolu-
tion of cluster properties. It begins with a summary of
the concordance model for cosmology and some closely
related alternatives, all of which are predicated on the
existence of nonbaryonic cold dark matter. It then ex-
plains how dark matter drives cluster formation in such
models, providing some simple analytical approxima-
tions to the extensive numerical work that has been
done on the subject. These models do a good job of
accounting for the basic properties of observed clusters,
allowing astronomers to measure several of the param-
eters in the concordance model using cluster observa-
tions, most notably the overall mass density of the uni-
verse and the amplitude of the initial spectrum of
density perturbations that eventually produces all the
structure we observe.

The accuracy of those parameter measurements is cur-
rently limited by uncertainties in the relationships be-
tween cluster masses and the observable properties that
trace those masses. Numerical simulations of cluster for-
mation do not yet provide precise calibrations of these
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relations because they do not yet account for all of the
thermodynamical processes associated with galaxy for-
mation. The third part of this section surveys the mass-
observable relations and how the uncertainties in those
relations affect cosmological parameters derived from
them. The fourth part of this section examines how the
properties of clusters evolve and how fitting that evolu-
tion with cosmological models improves the accuracy of
the derived cosmological parameters. Even though cur-
rent surveys of distant clusters contain relatively few ob-
jects, they already place strong constraints on the overall
matter density. Larger cluster surveys in both the micro-
wave and x-ray bands have the potential to place much
stronger constraints on the overall cosmological model,
measuring both dark-matter and dark-energy param-
eters to 5% statistical accuracy, independently of other
cosmological observations.

A. A recipe for the universe

Our current understanding of cluster evolution is an
outgrowth of the overall cosmological model, whose pri-
mary features depend on just a handful of parameters.
One set of parameters specifies the global cosmological
model, which describes the overall geometry of the uni-
verse, the mean density of its contents, and how its scale
changes with time. The other important set of param-
eters specifies the initial spectrum of density perturba-
tions that grew into the galaxies and clusters of galaxies
we see today. Here we define both sets of parameters
and their roles in the context of the overall model. More
extensive and detailed discussions of this recipe for the
universe can be found in some of the excellent books on
cosmology se.g., Peebles, 1993; Peacock, 1999d.

1. Global dynamics

The expansion of the universe can be characterized by
a time-dependent scale factor astd proportional to the
mean distance between the universe’s galaxies. Hubble’s
law relating the distance d between two galaxies and the
speed v at which they appear to move apart can then be
written as v=Hstdd, where Hstd= ȧ /a is the Hubble pa-
rameter. Many independent measurements indicate that
the value of this parameter at the current time t0 is
Hst0d=H0=71±7 km s−1 Mpc−1 sFreedman et al., 2001d.
The value of H0, known as Hubble’s constant, is often
further distilled in the literature into the dimensionless
quantity h=H0 / s100 km s−1 Mpc−1d. Sometimes this re-
view will use the more suitable alternative h70
=H0 / s70 km s−1 Mpc−1d when characterizing observable
cluster properties.

On very large scales, the universe appears homog-
enous and isotropic. Astronomers therefore assume that
the time-dependent behavior of Hstd obeys the
Friedmann-Lemaitre model of the universe, in which

ä

a
= −

4
3

pGSr +
3p

c2 D , s9d

where rstdc2 is the mean density of mass-energy and pstd
is the pressure owing to that energy density. Local en-
ergy conservation requires that

ṙc2 = − 3
ȧ

a
src2 + pd , s10d

and we can use this expression to integrate the dynami-
cal equation as long as we know the equation of state
linking r and p. If the equation of state has the form p
=wrc2, then density changes with the expansion as r
~a−3s1+wd. For a single mass-energy component with a
constant value of w we therefore obtain

ȧ2 =
8pG

3
r0a−s1+3wd + const, s11d

where r0 is the value of the energy density when a=1
and the constant of integration is related to the global
curvature of the universe.

It is most convenient to normalize the scale factor so
that it equals unity at the current time. Then the cosmo-
logical redshift z of radiation from distant objects is sim-
ply related to the scale factor of the universe when that
radiation was emitted: a= s1+zd−1. This definition allows
us to link the constant of integration to more familiar
parameters, obtaining

S ȧ

a
D2

= H0
2fV0s1 + zd3s1+wd + s1 − V0ds1 + zd2g , s12d

where V0 is the current energy density r0 in units of the
current critical density rcr0=3H0

2 /8pG.
Several different components of the universe, each

with a different equation of state, can influence the over-
all expansion history. Nonrelativistic particles with a
mass density rM contribute negligible pressure, corre-
sponding to w=0. The energy density rRc2 in photons
and other relativistic particles exerts a pressure with w
=1/3. Einstein’s cosmological constant acts like an en-
ergy density rLc2 that remains constant while the uni-
verse expands and therefore exerts a pressure corre-
sponding to w=−1. Including each of these components
yields the dynamical equation

H2szd = S ȧ

a
D2

= H0
2fVMs1 + zd3 + VRs1 + zd4 + VL

+ s1 − V0ds1 + zd2g , s13d

where Vx is the current mass-energy density in compo-
nent x in units of rcr0 and V0=VM+VR+VL. The value
of Vx at an arbitrary redshift is given by Vxszd=Vxs1
+zd3s1+wdfHszd /H0g−2.

Each of these energy-density parameters can be fur-
ther articulated. The matter density parameter VM con-
sists of a contribution Vb from baryons and a contribu-
tion VCDM from nonbaryonic cold dark matter. The
radiation density parameter includes contributions from
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the photons of the microwave background, VCMB, and
from relic neutrinos produced in the big bang, Vn, as
long as they remain relativistic particles. Finally, because
the physical origin of the VL term remains mysterious, it
may not be correct to assume that the energy density
responsible for it stays constant with time. In order to
check this possibility observationally, one can replace
the VL term with a generalized dark-energy term VLs1
+zd3s1+wd and attempt to measure the value of w sTurner
and White, 1997; Wang and Steinhardt, 1998d.

Recent observations, including the cluster studies we
shall discuss later, have provided approximate values for
many of these energy-density parameters, allowing us to
estimate when each of the various energy components
dominated the dynamics sFig. 2d. Dark energy with VL

<0.7 seems to be most important at the current epoch,
and because of the scaling of other terms with redshift, it
will grow increasingly dominant as time progresses.
Nonrelativistic matter appears to have a density corre-
sponding to VM<0.3, implying that matter dominated
the dynamics at z*1. The radiation term was most im-
portant in the distant past, prior to the redshift zeq
= sVM/VRd−1 of matter-radiation equality. Neutrinos
with masses less than a few eV will be relativistic par-
ticles at this epoch, leading to

zeq = 2.37 3 104VMh2 s14d

for TCMB=2.73 K at z=0 and three families of neutrinos.

2. Global geometry

Geometry in a universe that is homogenous and iso-
tropic has the same radius of curvature everywhere, but
its overall architecture can be either positively curved,
flat, or negatively curved, depending on the value of V0.
Because the scale of the universe is changing with time,
the most sensible coordinate system to use when de-
scribing its geometry is one that expands along with the
universe. In such a comoving coordinate system, a radial
interval in spherical coordinates has length astddr, and
the interval corresponding to a small transverse angle
dc=Îdu2+sin2 u ·df2 depends on the radius of curvature
astdRk. For positive curvature, analogous to the surface
of a sphere, the transverse interval is astdRk sinsr /Rkddc,
and for negative curvature it is astdRk sinhsr /Rkddc.

We can therefore write the Robertson-Walker metric
that describes such a universe as

c2dt2 = c2dt2 − a2stdfdr2 + Rk
2Sk

2sr/Rkddc2g , s15d

where Sksxd=sin x for positive curvature sk=1d, Sksxd
=sinh x for negative curvature sk=−1d, and a flat uni-
verse sk=0d corresponds to Rk→`. The metric can be
written in the more familiar form

FIG. 2. Evolution of energy densities with redshift for different cosmological models: solid lines, the concordance model with
VM=0.3, VL=0.7, and w=−1; dotted lines, a dark-energy model with VM=0.3, VL=0.7, and w=−0.8; long-dashed
lines, an open-universe model with VM=0.3 and VL=0.0; short-dashed lines, a critical-uiniverse model with VM=1.0 and VL

=0.7. The upper group of lines illustrates VMszd, the left-hand group of lines illustrates VLszd, and the right-hand group of lines
illustrates VRszd. Structure in the universe grows most rapidly while VMszd<1, because positive density perturbations then exceed
the critical density. This period of time occurs between the redshift zeq when VMszeqd=VRszeqd and the redshift at which VM begins
to drop. Notice that the redshift zeq is earlier for larger present-day values of VM and that the redshift at which VMszd begins to
decline depends on the characteristics of dark energy. Observations of clusters and their evolution provide opportunities to
constrain the values of VM, VL, and w because the timing of both of these epochs influences the properties of the cluster
population.
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c2dt2 = c2dt2 − a2stdF drk
2

1 − krk
2/Rk

2 + rk
2dc2G s16d

with the definition rk;RkSksr /Rkd. Plugging this metric
into Einstein’s field equations leads to

H2szd = S ȧ

a
D2

=
8pGr

3
−

kc2

a2Rk
2 , s17d

which relates the radius of curvature to other cosmologi-
cal parameters:

Rk =
c

H0
Î k

V0 − 1
. s18d

Notice that the universe at early times is effectively flat
as long as VM+VR.0 because the horizon size of the
observable patch is ,c /Hszd! s1+zd−1Rk for observers
at times corresponding to large values of the redshift z.

The low-redshift universe may also be effectively flat,
but that is not guaranteed. Consequently both the ex-
pansion of the universe and its curvature need to be
taken into account when we observe highly redshifted
objects like distant clusters of galaxies. Because the met-
ric relates the comoving radial coordinate r to redshift
through dr /dz=−c /Hszd, the coordinate distance to an
object with an observed redshift z is

rszd = cE
0

z dz

Hszd
. s19d

Relations involving the divergence of light paths can
then be compactly written in terms of rkszd
=RkSkfrszd /Rkg, which reduces to rszd in a flat universe.
For example, the angle subtended at coordinate distance
rszd by the transverse length l becomes

c =
s1 + zdl

rkszd
. s20d

In a flat, static universe, an object of physical size l
would subtend this same angle if it were at the distance
dAszd=rkszd / s1+zd, sometimes called the angular-size
distance. Likewise, the comoving volume within a solid
angle dV and a redshift interval dz is given by

d2Vco

dVdz
=

crk
2szd

Hszd
. s21d

These formulas are useful to cluster cosmology because
they allow us to constrain Hszd and the cosmological
parameters that go into it if we know either the trans-
verse sizes of high-redshift clusters or their number den-
sity within a given comoving volume. Figure 3 shows
how the comoving volume of the universe depends on
redshift for several different sets of cosmological param-
eters.

When surveying the universe for clusters, we also
need to know how the geometry and expansion of the
universe affect the apparent brightness of a cluster and
the galaxies within it. The expansion alone reduces the
energy flux received from a distant object by two factors

of 1+z, with one factor coming from the time dilation of
the photon flux owing to expansion and the other from
the redshift of the photons themselves. The observed
energy flux from an object of luminosity L is therefore

F =
L

4ps1 + zd2rk
2szd

. s22d

We would measure the same flux from an equivalent
object in a flat, static universe if it were at a distance
dLszd= s1+zdrkszd, sometimes called the luminosity dis-
tance. The consequences for surface brightness, equal to
flux per unit solid angle, are even more dramatic. In a
flat, static universe, an object’s surface brightness re-
mains constant, but its surface brightness in an expand-
ing universe is reduced by a factor dA

2 /dL
2 ~ s1+zd−4,

meaning that extended objects like clusters are far less
bright at high redshifts.

It would be nice if rkszd could be expressed analyti-
cally for a general cosmology, but in most cases it can-
not. However, a useful analytical expression for the di-
vergence factor does exist for the case in which VR and
VL are negligible sMattig, 1958d:

rkszd =
2c

H0

VMz + sVM − 2dsÎ1 + VMz − 1d
VM

2 s1 + zd
. s23d

Usually one needs to integrate Eq. s19d numerically and
then insert the results into the Sk function to obtain the
rest of the relations.

3. Density perturbations

The very existence of galaxy clusters and the human
beings who observe them demonstrates that the universe
is not perfectly homogeneous. Therefore the matter

FIG. 3. Redshift dependence of comoving volume in various
cosmologies. The quantity dVco/dz is the comoving volume of
the entire sky between redshift z and z+dz, divided by the
redshift interval dz. If clusters were a nonevolving population
of objects, one could distinguish between these cosmologies
simply by counting the number of clusters on the sky in each
redshift interval.
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density in the early universe must have been slightly
lumpy. At some early time these perturbations away
from the mean density krMl correspond to an overden-
sity field

dsxd =
rMsxd − krMl

krMl
s24d

with Fourier components

dkskd =E dsxdeik·xd3x . s25d

In the plausible case that dsxd is isotropic, it can be char-
acterized by an isotropic power spectrum

Pskd ; kudku2l . s26d

If dsxd is also a Gaussian random field, then Pskd is a
complete statistical description of the initial perturba-
tion spectrum.

The physical meaning of Pskd becomes clearer if we
assume it has a power-law form, with Pskd~kn, and con-
sider the variance in mass within identical volume ele-
ments corresponding to the length scale k−1. For ex-
ample, let Wsrd be a spherical window function that goes
quickly to zero outside some characteristic radius rW and
whose integral over all of space is unity. The mass per-
turbation smoothed over the window is

dM

M
srd =E dsxdWsux − rudd3x . s27d

Using the convolution theorem, we can then write down
the variance s2;kudM /Mu2l on this mass scale in terms
of Wk, the Fourier transform of Wsrd:

s2 =
1

s2pd3 E PskduWku2d3k . s28d

The variance in mass on scale k for a power-law pertur-
bation spectrum is therefore s2~kn+3, because the win-
dowing averages out modes with k@rW

−1. Thus the typi-
cal mass fluctuation on mass scale M~k−3 is

dM

M
~ M−sn+3d/6. s29d

Notice that large-scale homogeneity of the universe re-
quires n.−3.

It is also illuminating to consider how Pskd relates to
fluctuations in the gravitational potential, dF~kdM.
The potential fluctuations owing to a power-law pertur-
bation spectrum scale as dF~ksn−1d/2. The magnitude of
these fluctuations therefore diverges on either the high-
mass end or the low-mass end, except in the case of n
=1. This special property of the Pskd~k power spectrum
was noted independently by Harrison s1970d, Peebles
and Yu s1970d, and Zeldovich s1972d. Not only is this the
most natural power-law spectrum, it also appears to be a
good approximation to the true power spectrum of den-
sity fluctuations in the early universe. Inflationary mod-
els for the seeding of structure in the universe produce a

Gaussian density field with a power-law index close to
n=1 sGuth and Pi, 1982d, which is consistent with the
observed fluctuations in the cosmic microwave back-
ground ssee, for example, Spergel et al., 2003d.

4. Growth of linear perturbations

Once the universe has been seeded with density per-
turbations, they begin to grow because the gravity of
slightly overdense regions attracts matter away from
neighboring, slightly underdense regions. A complete
treatment of perturbation growth is beyond the scope of
this review, but some key features can be clarified with a
simple toy model consisting of a uniform-density sphere
that is slightly denser than its surroundings. The equa-
tion of motion for the radius R of an expanding homo-
geneous sphere is analogous to the one governing the
universe as whole. Integrating Eq. s9d with a=R /R0,
where R0 is an arbitrary fiducial radius at which r=r0,
gives

Ṙ2

2
−

4pGr0R0
3+3w

3
R−s1+3wd = e . s30d

The constant of integration e in this equation is again
related to spatial curvature but can also be interpreted
as the net specific energy of the sphere.

Now consider the behavior of two nearly identical
spheres that both begin expanding from R=0 at t=0 but
have specific energies that differ by a small amount de

! Ṙ2 /2. As these two spheres evolve, their radii will be-
come slightly different by an amount R2−R1=dR, which
satisfies the equation

E
0

R dR1

Ṙ1

= E
0

R+dR dR2

Ṙ2

. s31d

In the linear regime, we can make the substitution Ṙ2
−1

= s1− Ṙ1
−2dedṘ1

−1. If we then take the sphere of radius R1
to be representative of the universe at large, we obtain

dR

R
=

de

R0
2

ȧ

a
E

0

a da

ȧ3 . s32d

Because dr /r=−3s1+wddR /R, this model leads to the
following growth function for linear perturbations:

Dsad ~
dr

r
~

ȧ

a
E

0

a da

ȧ3 , s33d

which is conventionally normalized so that Dsad=1 at
z=0. Notice that the rate of perturbation growth implied
by Dsad does not depend on the scale of the perturba-
tion, implying that density perturbations on all scales
grow in unison.

This expression for the growth function is identical to
those obtained through more rigorous arguments se.g.,
Heath, 1977; Peebles, 1993d. In a matter-dominated uni-
verse, perturbation amplitudes grow in proportion to the
scale factor a. In a radiation-dominated universe, they
grow ~a2. Handy numerical algorithms for computing
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Dsad can be found in Hamilton s2001d. A good approxi-
mation for the general case with a constant dark-energy
density is

Dszd =
5VMszd
2s1 + zdHVMszd4/7 − VLszd + F1 +

VMszd
2

G
3F1 +

VLszd
70

GJ−1

s34d

ssee Lahav et al., 1991; Carroll et al., 1992d.
If the dark-energy density is homogeneous but not

constant in time, then the dark-energy density in the
perturbed sphere of radius R2 does not depend on its
radius. In that case, one must solve a differential equa-
tion to determine the evolution of d;dr /r in the linear
regime. Differentiating R2=R1s1−d /3d twice with re-
spect to time and keeping only the lowest-order terms
leads to

d̈ + 2
ȧ

a
ḋ = 4pGrMszdd s35d

in a universe with negligible radiation density. Wang and
Steinhardt s1998d derive a useful approximation to the
growth function by defining aw such that

d ln d

d ln a
= fVMszdgaw. s36d

For a slowly varying equation of state, udw /dVMszdu
! f1−VMszdg−1, they find that

aw =
3

5 − w/s1 − wd
+

3
125

s1 − wds1 − 3w/2d
s1 − 6w/5d3

3f1 − VMszdg s37d

to lowest order in 1−VMszd. Using this expression for aw
in the integral

Dsad < a expSE
a

1

h1 − fVMszdgawj
da

a D s38d

reproduces the growth function obtained from numeri-
cal integration of Eq. s33d to better than 1% for VMszd
.0.2.

These growth functions are valid only as long as pres-
sure gradients do not alter the dynamics of the pertur-
bation. Pressure effects are not an issue when the scale
of a perturbation is larger than the Hubble length cH−1.
In that regime, the growth functions found by solving
Eqs. s33d and s35d remain valid. Yet, as the universe ages,
it encompasses perturbations of increasingly large scale,
and additional physical effects enter the picture.

The bad news is that a variety of processes alter the
scale-free nature of the original perturbation spectrum.
The good news is that the imprint of these processes on
Pskd can tell us a great deal about the contents and dy-
namics of the universe. During the radiation-dominated
era of the universe sz.zeqd, pressure effects begin to
alter the growth of a given mode when its wavelength is
finally contained within the horizon length ,cH−1. Then

radiation pressure can effectively resist gravitational
compression, inhibiting further growth of modes at that
wavelength. Instead, these modes in the coupled
photon-baryon fluid begin to oscillate as acoustic waves
and eventually damp, owing to photon diffusion out of
higher-density, higher-temperature regions. Perturbation
growth in the dark-matter component therefore stalls
near the amplitude at which the perturbations were first
contained within the horizon, because the gravitationally
dominant photon component no longer spurs mode
growth. These perturbations then resume growing at zeq,
when matter begins to dominate the dynamics. The tran-
sition from radiation domination to matter domination
therefore imprints a bend in Pskd on a length scale cor-
responding to the horizon scale at zeq.

Perturbation growth is scale independent during the
matter-dominated era only insofar as the matter can be
considered cold on the scale of the perturbation. If the
characteristic velocities of the matter particles are not
small compared to the escape velocity from the pertur-
bation, then both pressure forces and particles streaming
out of denser regions can damp small-scale perturba-
tions. Each effect of this type imprints its own character-
istic feature on Pskd.

All of these scale-imprinting effects that alter Pskd
from the time the primordial power spectrum is created
until the present day are typically subsumed into a single
quantity known as the transfer function, defined to be

Tskd ;
dksz = 0d

dkszdDszd
, s39d

where the symbol k refers to comoving modes with wave
number s1+zdk in physical space, a convention implicit
throughout this review. The redshift z in this definition is
assumed to be large enough that dkszd reflects the origi-
nal power spectrum imprinted by inflation or some other
process. The transfer function therefore represents all
the alterations of the original power spectrum that sub-
sequently occur, except for those involving mode growth
in the nonlinear regime. If the primordial spectrum is a
power law of index np<1, then the power spectrum of
linear perturbations at z=0 is Pskd~knpT2skd.

5. The cold-dark-matter power spectrum

The most successful models for the formation of
large-scale structures like clusters of galaxies assume
that cold dark matter sCDMd is responsible. Particles
that interact only through gravity exert negligible pres-
sure, and, if their random velocities are small, then they
will not be able to escape from incipient potential wells
on the scales of interest. That is, they will be too “cold”
to damp the relevant perturbations by freely streaming
out of them. Thus the transfer function for a universe
containing only radiation and cold dark matter has just
one feature, corresponding to the wave number of the
mode that enters the horizon at the matter-radiation
equality redshift zeq, with a comoving size leq

,cH0
−1sVMzeqd−1/2,20sVMh2d−1 Mpc.
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Growth of modes with smaller comoving wavelengths
temporarily stalls from the redshift at which they enter
the horizon until zeq. Because radiation dominates the
universe during this time interval, the comoving size of
the horizon scales as a, while the growth function scales
as a2. Short-wavelength perturbations therefore miss out
on a growth factor ,skleqd2, corresponding to the square
of the change in scale factor from the time a perturba-
tion enters the horizon to the time of matter-radiation
equality. Growth of long-wavelength modes, on the
other hand, does not stall at all. The behavior of the
CDM transfer function in the two extremes is Tskd<1
for k! leq

−1 and Tskd<skleqd−2 for k@ leq
−1. For np=1, these

scalings translate to dM /M,M−2/3 on large scales and to
dM /M,const on small scales, meaning that structure
formation in a CDM universe is hierarchical, with small-
scale perturbations reaching the nonlinear regime be-
fore larger-scale ones.

Numerical computations are needed to derive the ex-
act CDM transfer function, but many authors have pro-
vided useful analytical fits to those numerical results.
One such expression is

Tskd =
lns1 + 2.34qd

2.34q
f1 + 3.89q + s16.1qd2 + s5.46qd3

+ s6.71qd4g−1/4, s40d

with q=ksVMh2d−1 Mpc sBardeen et al., 1986d. Allowing
for trace populations of baryons and massive neutrinos
alters the CDM power spectrum in minor but interesting
ways. For example, a small proportion of baryons lowers
the apparent dark-matter density parameter, causing a
shape-preserving shift in the CDM transfer function
sPeacock and Dobbs, 1994d. This shift can be repro-
duced by setting q=ksGhd−1 Mpc, so that it includes a
shape parameter G=VMh expf−Vbs1+Î2h /VMdg sSug-
iyama, 1995d. Fitting formulas accommodating addi-
tional modifications owing to baryons and massive neu-
trinos can be found in Eisenstein and Hu s1998, 1999d.

6. Power-spectrum normalization

The preceding sections give the theoretical expecta-
tions for the shape and growth rate of the density per-
turbation spectrum but do not specify its normalization.
Because inflationary theories do not make firm predic-
tions about the amplitude of the primordial power spec-
trum, the normalization of Pskd must be determined ob-
servationally. For example, measurements of the
present-day mass distribution of the universe indicate
that dM /M<1 within comoving spheres of radius
8h−1 Mpc sSec. III.Cd, as suggested by early galaxy sur-
veys showing that the variance in galaxy counts was of
order unity on this length scale sDavis and Peebles,
1983d.

This feature of the universe is the motivation for ex-
pressing the power-spectrum normalization in terms of
the quantity s8, where

s8
2 =

1

s2pd3 E PskduWku2d3k s41d

is the variance defined with respect to a top-hat window
function Wsrd having a constant value inside a comoving
radius of 8h−1 Mpc and vanishing outside this radius.
When using this formula, one must keep in mind that
Pskd refers to the power spectrum of linear perturba-
tions evolved to z=0 according to the growth function
Dszd, which is valid only for small perturbations. There
are other ways of characterizing the power-spectrum
normalization, but s8 is the most widely used parameter.

7. Summary of cosmological parameters

At the beginning of this section, we promised a recipe
that would encapsulate the overall cosmological model
in two small sets of parameters. The set governing the
global behavior of the universe consists of H0, VM, Vb,
VR, VL, and w. The set governing the initial density per-
turbation spectrum consists of s8 and np. The shape pa-
rameter G is not a free parameter in standard cold-dark-
matter models but is sometimes treated as a free
parameter in order to test variants of the standard
model.

In the concordance model, also known as the LCDM
model, to denote cold dark matter with a cosmological
constant, these parameters are all assigned values close
to the most likely values implied by observations:

• Hubble’s constant. The consensus value of this pa-
rameter, measured primarily from the expansion rate
of the local universe, is H0=71±7 km s−1 Mpc−1

sFreedman et al., 2001d.

• Matter density. Several different methods involving
clusters indicate that VM<0.3 sSecs. III.C and
III.D.3d. Combining the results of distant supernova
observations and observations of temperature pat-
terns in the microwave background gives a similar
value for this parameter. Figure 4 shows one example
of these mutual constraints in the VM-VL plane.

• Baryon density. The abundances of light elements
formed during primordial nucleosynthesis indicate
that Vb=0.02h−2, equal to Vb=0.04 for the value of
Hubble’s constant given above sBurles et al., 2001d.
This value is consistent with the baryon density in-
ferred from the fluctuations in the cosmic microwave
background sSpergel et al., 2003d.

• Radiation density. The energy density VR in electro-
magnetic radiation is simply calculated from the mi-
crowave background temperature TCMB=2.728
±0.004 sFixsen et al., 1996d and Hubble’s constant.
Neutrinos may also contribute to the energy density
in relativistic matter, if their masses are sufficiently
small, but this contribution is currently too small to
affect the global dynamics.
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• Dark-energy density. Observations of distant super-
novae imply that the expansion of the universe is
accelerating at a rate consistent with a constant dark-
energy density corresponding to VL<0.7 sRiess et
al., 1998, 2004; Perlmutter et al., 1999d. Combining
the matter density inferred from clusters with the flat
geometry inferred from temperature patterns in the
microwave background corroborates this result
sBahcall et al., 1999; see also Fig. 4d.

• Dark-energy equation of state. Observations of mi-
crowave background patterns, when combined with
observations of large-scale structure, are consistent
with Einstein’s cosmological constant sw=−1.0d but
not with w*−0.8 sSpergel et al., 2003d. Alternatively,
combining cluster surveys with observations of dis-
tant supernovae leads to similar constraints, w
=−0.95−0.35

+0.30 sSchuecker et al., 2003d. However, theo-
retical arguments suggest that the parameter w may
be redshift dependent sPeebles and Ratra, 2003d.

• Normalization of density perturbations. The cluster
observations discussed in Secs. III.C and III.D.3 in-
dicate that the power-spectrum normalization falls
into the range s8<0.7–1.0. This range is consistent
with both structures in the cosmic microwave back-
ground and other observations of large-scale struc-
ture.

• Slope of primordial perturbation spectrum. All avail-
able information indicates that np<1. Constraints
from observations of the microwave background,

when combined with optical observations of large-
scale structure, give np=0.97±0.03 sSpergel et al.,
2003d.

• Shape parameter of perturbation spectrum. The con-
cordance values of VM, Vb, and H0 given above im-
ply G<0.2, which agrees with the value of G derived
from observations of large-scale structure ssee, for
example, Peacock and Dodds, 1994; Schuecker et al.,
2001; Szalay et al., 2003d, an important element of
self-consistency in the concordance model.

Several other closely related models have been pur-
sued during the last two decades, but none of them has
proven as successful in explaining such a large number
of observations. Here are a few variants, some of which
will be discussed later in connection with the parameter
constraints derived from cluster surveys:

• Standard cold dark matter (SCDM). In this model,
the universe is assumed to be flat, with no dark en-
ergy, so VM=1 and VL=0. For this value of the mat-
ter density, measurements of large-scale structure, in-
cluding clusters, imply that s8=0.4–0.5 sSec. III.Cd.
However, the shape parameter implied for this
model, given the observed Hubble constant, is G
<0.7, which conflicts with observations of large-scale
structure sSzalay et al., 2003d. Also, this value of VM
leads to a baryon-to-dark-matter ratio fb=Vb /VM
that is inconsistent with cluster observations sSec.
III.C.7d.

• Tilted cold dark matter. One way to make models
with VM=1 more consistent with large-scale struc-
ture observations is to assume that the primordial
perturbation spectrum is “tilted” so that it is signifi-
cantly shallower than np=1 ssee, for example, Cen et
al., 1992d. However, such models conflict with the
strong constraints on np inferred from microwave
background observations.

• Ad hoc power spectrum (tCDM). Another option for
making VM=1 models more consistent with observa-
tions is to arbitrarily adjust the shape of the pertur-
bation spectrum to fit the observations. One such re-
alization is the tCDM model sJenkins et al., 1998d,
which sets VM=1, s8=0.5, and G=0.2, even though
there is little physical justification for having such a
low value of G in a cosmology with such a large mat-
ter density sbut see White et al., 1995d.

• Open cold dark matter (OCDM). There is also the
option of accepting the evidence that VM<0.3 but
dispensing with dark energy sVL=0d so that the uni-
verse has an open geometry. In this case, the pertur-
bation spectrum can be identical to the one in the
LCDM concordance model, but the growth rate of
those perturbations differs because of the changed
expansion rate at late times.

This review does not consider models involving forms
of dark matter other than cold dark matter, but it does
consider models with generalized forms of dark energy

FIG. 4. Cosmological constraints from cluster evolution
sVikhlinin et al., 2003d, supernovae sRiess et al., 1998; Perlmut-
ter et al., 1999d, and WMAP observations of the cosmic micro-
wave background sSpergel et al., 2003d. The horizontal axis
labeled V gives the value of VM; the vertical axis labeled L
gives the value of VL. These particular contraints from cluster
evolution are based on the baryonic mass function of clusters
sSec. III.D.3d, but other measures of cluster evolution give
similar results. The complementarity of these constraints is evi-
dent from the figure, and the common region of overlap near
VM=0.3 and VL=0.7 is reassuring evidence of consistency in
the overall picture. Figure courtesy of Alexey Vikhlinin.
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having wÞ−1. Current cluster surveys are not yet large
enough to place strong constraints on this equation-of-
state parameter but they might provide much stronger
constraints in the coming decade sSec. III.D.4d.

B. Cluster formation

Cluster formation from perturbations in the density
distribution of cold dark matter is a hierarchical process.
Small subclumps of matter are the first pieces of the
cluster to deviate from the Hubble flow and undergo
gravitational relaxation because the density perturba-
tions have larger amplitudes on smaller mass scales,
These small pieces then merge and coalesce to form pro-
gressively larger structures as perturbations on larger
mass scales reach the nonlinear regime. A full under-
standing of the details of this hierarchical merging pro-
cess requires numerical simulations, but simplified,
spherically symmetric models of cluster formation illus-
trate many of the important concepts. This part of the
review shows how a cluster would grow from a spheri-
cally symmetric mass perturbation and then refines the
details of that simplified approach, based on what we
have learned from numerical simulations.

1. Spherical collapse

The most basic features of cluster formation can be
understood in terms of a spherically symmetric collapse
model sGunn and Gott, 1972; Fillmore and Goldreich,
1984; Bertschinger, 1985d. In such a model, the matter
that goes on to form a cluster begins as a low-amplitude
density perturbation that initially expands along with the
rest of the universe. The perturbation’s gravitational pull
gradually slows the expansion of that matter, eventually
halting and reversing the expansion. A cluster of matter
then forms at the center of the perturbation, and the
rate at which additional matter accretes onto the cluster
depends on the distribution of density with radius in the
initial perturbation.

In a geometry that is perfectly spherically symmetric,
the behavior of an individual mass shell in the presence
of a homogeneous generalized dark-energy field follows
the equation of motion

r̈sh = −
GMsh

rsh
2 −

1 + 3w

2
VLH0

2s1 + zd3s1+wdrsh, s42d

where rsh is the shell radius and Msh is the mass enclosed
within rsh. Throughout the early evolution of a spherical
perturbation, the value of Msh within a given mass shell
remains constant. Thus, if the dark-energy term is neg-
ligible, the radius of a mass shell obeys the parametric
solution rsh=rtafs1−cos uMd /2g, t= tcfsuM−sin uMd /2pg,
with a turnaround radius rta= fs2GMshtc

2d /p2g1/3 for a
shell that collapses to the origin at time tc. The solution
for VL<0.7 and w<−1 is not much different because
the dark-energy term remains &15% of the matter term
during the trajectory of all shells that collapse to the
origin by the present time. If greater accuracy is needed,

a shell’s trajectory can be computed numerically from
Eq. s42d.4

Once a shell collapses, the mass within it no longer
remains constant. Because the dark matter within a col-
lapsing shell is collisionless, shells on different trajecto-
ries can easily interpenetrate. The radii of collapsed
shells in this idealized geometry therefore oscillate sym-
metrically about the origin, and the amplitudes of these
oscillations modestly decrease with time, as mass associ-
ated with other collapsed shells accumulates within the
oscillations’ turning points sGunn, 1977d.

The accretion process in real clusters is not so sym-
metric. Instead, gravitational forces between infalling
clumps of matter produce a time-varying gravitational
potential that randomizes the velocities of the infalling
particles, yielding a Maxwellian velocity distribution in
which temperature is proportional to the particle mass.
This process, known as “violent relaxation” sLynden-
Bell, 1967d, leads to a state of virial equilibrium in which
the total kinetic energy EK is related to the total gravi-
tational potential energy EG through the equation

EG + 2EK = 4pPbrb
3 , s43d

where Pb is the effective pressure owing to infalling mat-
ter at the boundary rb of the collapsed system sSec.
II.A.2d. Setting Pb to zero yields the usual form of the
virial theorem for gravitationally bound systems.

A common toy model for estimating the location of a
cluster’s outer boundary is the spherical top-hat model,
which assumes that the perturbation leading to a cluster
is a spherical region of constant density. All of the mass
shells in such a perturbation move in unison and col-
lapse to the origin simultaneously. The virial theorem
therefore suggests that the bounding radius of the clus-
ter after it collapses and relaxes should be in the neigh-
borhood of half the turnaround radius. Numerical simu-
lations indeed show that particle velocities within this
radius are generally isotropic and those outside this ra-
dius are generally infalling, but the boundary between
the isotropic and infalling regions is not particularly dis-
tinct sEvrard, 1990; Navarro and White, 1993d.

The spherical top-hat model has actually led to sev-
eral different definitions for the virial radius of a cluster.
If one assumes that all the mass in the original top-hat
perturbation ends up within rta /2, then the mass density
in that region is 6M /prta

3 . In a matter-dominated uni-
verse with zero dark energy, this density is equal to Dv
=8p2 / sHtd2 times the critical density rcr;3H2 /8pG.
Thus, for a flat, matter-dominated universe in which
Ht=2/3, the mean density of a perturbation that has just
collapsed is taken to be 18p2<178 times the critical den-

4Here we are making the standard assumption that the col-
lapsing dark matter has no effect on the local dark-energy den-
sity ssee, for example, Wang and Steinhardt, 1998; Weinberg
and Kamionkowski, 2003d. If in fact the dark-matter collapse
alters the local properties of dark energy, the dynamics could
be somewhat altered sMota and van de Bruck, 2004d.
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sity. A useful approximation for Dv in a flat universe with
a nonzero cosmological constant sw=−1d is

Dv = 18p2 + 82fVMszd − 1g − 39fVMszd − 1g2 s44d

sBryan and Norman, 1998d. Because the outer radius of
a real cluster is not distinct, one pragmatic definition of
the virial radius is then the radius rv within which the
mean matter density is Dvrcr sEke et al., 1996d. However,
the numerical value of Dv in a flat, matter-dominated
universe has inspired other definitions. A common alter-
native is the scale radius r200, within which the mean
matter density is 200rcr. Another frequently used scale
radius is r180m, within which the mean matter density is
180 times the mean background density VMszdrcr. As
long as VMszd<1, both of these scale radii are nearly
identical to rv, but because VM<0.3 at the present time,
these radii are now somewhat different, with r200,rv
,r180m. This multiplicity of definitions for the radius of a
cluster is a potential source of confusion, but, as we shall
see below, each of these scale radii can be particularly
well suited to certain applications.

2. Cluster mass profiles

Observations of galaxy clusters have long indicated
that the velocity dispersion of a cluster’s galaxies re-
mains relatively constant with distance from the cluster’s
center, implying an underlying mass-density profile
rMsrd~r−2. The simplest analytical cluster model consis-
tent with such a density profile is the singular isothermal
sphere, in which the velocity dispersion sv is constant
and isotropic at every point and rMsrd=sv

2 /2pGr2 se.g.,
Binney and Tremaine, 1987d. This model is useful for
making analytical estimates of cluster properties, but it
is incomplete because the total mass diverges linearly
with radius.

Numerical simulations of cluster formation produce
dark-matter halos whose density profiles are shallower
than isothermal at small radii and steeper than isother-
mal at large radii. A generic form for representing these
profiles is

rMsrd ~ r−psr + rsdp−q, s45d

where the parameters p and q describe the inner and
outer power-law slopes and the radius rs specifies where
the profile steepens. Groups that have fit such profiles to
simulated clusters disagree about the best values of p
and q but typically find 1&p&1.5 and 2.5&q&3. Spe-
cific examples include the Navarro-Frenk-White profile,
with p=1 and q=3 sNavarro et al., 1997d, the Moore
profile, with p=1.5 and q=3, and the Rasia et al. s2003d
profile, with p=1 and q=2.5. Both optical and x-ray ob-
servations indicate that density profiles of this sort are
good representations of the underlying mass profiles of
clusters, at least outside of the innermost regions sCarl-
berg, Yee, Ellingson, Morris, et al., 1997; Pratt and Ar-
naud, 2002; Lewis et al., 2003d. The asymptotic inner
slope p is currently a matter of great observational inter-
est, as the cuspiness of dark-matter density profiles at r

=0 is one of the acid tests of the CDM paradigm for
structure formation ssee Navarro et al., 2003, and refer-
ences thereind. However, we shall not discuss that issue
here because the global properties of clusters depend
little on the value of p. In this review, we shall use the
Navarro-Frenk-White profile when necessary because it
remains the most widely used fitting formula for repre-
senting the results of cosmological simulations.

The transition of the density profile from shallow to
steep can also be expressed in terms of a concentration
parameter c=rb /rs, which expresses the bounding radius
of the cluster in units of rs. Because the concentration
parameter depends on rb, numerical values of c depend
somewhat on whether the bounding radius is taken to be
rv, r200, r180m, or something similar. However, these radii
are not vastly different because they are generally sev-
eral times larger than rs, meaning that the enclosed mass
is not rapidly diverging in the neighborhood of the virial
radius. Typical concentration parameters for simulated
clusters are in the range c,4–10, with a scatter in ln c of
0.2–0.35 sJing, 2000d. Also, lower-mass objects tend to
have higher halo concentrations because they formed
earlier in time, when the overall density of the universe
was greater sNavarro et al., 1997; Bullock et al., 2001;
Eke et al., 2001d.

3. Defining cluster mass

Even with these more sophisticated forms for the den-
sity profile, mass still diverges with radius. Thus a clus-
ter’s mass and all the relations linking that mass to other
observable quantities depend on how one chooses to de-
fine a cluster’s outer boundary. One would like to define
that boundary so as to maximize the simplicity of the
relationships between cluster mass and other observ-
ables, but no single definition is best for all applications.

The easiest way to link observations to theoretical
models is through definitions taking the mass of a cluster
to be MD, the amount of matter contained in a spherical
region of radius rD whose mean density is D ·rcr. It is also
common for cluster mass to be defined with respect to
the background mass density, so that the mean density
of matter within the virial radius is D ·VMszdrcr, but ap-
plying this definition to observations requires prior
knowledge of VM. Spherical top-hat collapse suggests
that Dv is a good choice for the density threshold. How-
ever, observers often prefer to raise that threshold to
D=200 or even D=500 for two reasons. The properties
of a cluster are easier to observe in regions where the
density contrast is higher, and simulations show that the
region within r500 is considerably more relaxed than the
region within rv.

As an example of such definitions in action, consider
the relation between velocity dispersion and the virial
mass Mv obtained by truncating a singular isothermal
sphere at the virial radius rv:
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Mv = fs

4sv
3

GHDv
1/2 , s46d

where the factor fs is a parameter that can be adjusted
to account for the fact that clusters are not perfect iso-
thermal spheres sEvrard, 1989; Eke et al., 1996; Bryan
and Norman, 1998d. The presence of this parameter is a
reminder that the derivation of this relation should not
be taken too literally. Truncation of the mass distribu-
tion at rD formally implies a nonzero boundary pressure
that shifts the virial relation for this configuration so that
EK=−3EG /4, which is inconsistent with the definition of
rv sVoit, 2000d. This functional form for the Mv-sv is
useful primarily as a fitting formula that accounts for
most of the cosmology-dependent changes in the nor-
malization of the relation. However, because the density
profiles of dark-matter halos defined in this way depend
on both mass and redshift, the correction factor fs is not
a universal constant.

Recent work has shown that defining a cluster’s mass
using the threshold D=200 leads to an M200-sv relation
that is remarkably independent of cosmology. Evrard
s2004d finds that the relation

M200 =
1015h−1M(

H/H0
S sv

1080 km s−1D3

s47d

is an excellent fit to a wide range of simulated clusters
sampled over a wide range of redshifts. This relation is
equivalent to setting fs=1.2 and Dv=200 in Eq. s46d.

Conversions between Mv and MD defined with respect
to an arbitrary D are straightforward as long as a clus-
ter’s concentration parameter is known. From the defi-
nitions of these masses, we have

MD

Mv
=

D

Dv
S rD

rv
D3

, s48d

and the halo concentration gives the relationship be-
tween rD and rv. Hu and Kravtsov s2003d have provided
a useful approximation for this relation in the case of a
Navarro-Frenk-White profile. Recasting their formulas
in slightly different notation, one can write the halo con-
centration cD, defined with respect to rD, in terms of the
concentration cv, defined with respect to rv:

cD =
1

Fa1fc
2pc + S3

4
D2G−1/2

+ 2fc

, s49d

with fc= sD /cv
3Dvdflns1+cvd−cv / s1+cvdg, pc=a2+a3ln fc

+a4sln fcd2 and sa1 , . . . ,a4d= s0.5116,−0.4283,−3.13
310−3 ,−3.52310−5d. Plugging the ratio rD /rv=cD /cv
given by this approximation into Eq. s48d converts clus-
ter masses with an accuracy of ,0.3% for the halo con-
centrations typical of clusters.

Some other definitions of cluster mass are useful in
certain contexts but are more difficult to relate to the
top-hat collapse model. For example, observers who
measure cluster mass using gravitational lensing or the
total optical luminosity are essentially measuring cluster

mass within a cylinder along the line of sight rather than
a sphere. In principle, these observations can be linked
with cluster masses defined with respect to a cylindrical
boundary, but the relationships between those cylindri-
cal masses and models of structure formation are not as
well understood as their spherical counterparts. On the
theoretical side, the masses of clusters identified in nu-
merical simulations are sometimes defined using a
“friends-of-friends” algorithm that links neighboring
mass particles sDavis et al., 1985d. However, clusters de-
fined in this way often have irregular boundaries sWhite,
2001d, making this sort of definition difficult to apply to
observations. Masses defined within spheres also have
their shortcomings, particularly when two clusters are
just beginning to merge, but in general provide the most
direct link between cosmological models and observa-
tions.

4. Cluster mass function

Some of the most powerful constraints on current cos-
mological models come from observations of how clus-
ters evolve with time. Because cosmological time scales
are so long, we cannot observe how individual clusters
evolve but rather observe how the demographics of the
entire cluster population changes with redshift. An im-
portant conceptual tool in this effort is the cluster mass
function, nMsMd, which gives the number density of clus-
ters with mass greater than M in a comoving volume
element. Notice that the cluster mass function inevitably
depends on how one defines cluster mass.

Combining spherical top-hat collapse with the growth
function for linear perturbations has led to a widely used
semianalytical method for expressing the cluster mass
function in terms of cosmological parameters. Press and
Schechter s1974d pioneered the basic approach, which
was refined and extended by Bond et al. s1991d, Bower
s1991d, and Lacey and Cole s1993d. This class of models
simplifies the problem of structure formation by assum-
ing that all density perturbations continue to grow ac-
cording to the linear growth rate Dszd, even when their
amplitudes become nonlinear. When perturbations are
treated in this way, their variance on mass scale M as a
function of redshift is

s2sM,zd =
D2szd
s2pd3 E PskduWksMdu2d3k , s50d

where WksMd=3ssin krM−krM cos krMd / skrMd3 with rM
= s3M /4pVMrcr0d1/3 is the Fourier-space representation
of a top-hat window function that encloses mass M. The
normalization of Pskd is set so that ssM8 ,0d=s8 for M8

;s8h−1 Mpcd3H0
2VM/2G=6.031014VMh−1M(. These

perturbations are then assumed to collapse and virialize
when their density contrast d=dr /r exceeds a critical
threshold dc.

Suppose the initial density perturbations are Gaussian
with a variance s2sM ,zd that declines monotonically
with mass. Then, according to the Press-Schechter ap-
proach, the probability that a region of mass M exceeds
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the collapse threshold at redshift z is erfcfdc /Î2ssM ,zdg,
where erfcsxd is the complementary error function. Im-
plicit in this expression is the notion that all the mass in
the universe belongs to collapsed, virialized objects
when viewed on sufficiently small mass scales. It then
follows that the cluster mass function on scale M at red-
shift z is

nMsM,zd =
VMrcr0

M
erfcF dc

Î2ssM,zdG . s51d

This expression implies that the shape of the mass func-
tion depends only on ssM ,zd and remains invariant with
respect to the characteristic collapsing mass scale M*szd,
at which ssM* ,zd=dc. Observers often work with the
mass function in a differential form, such as dnM /d ln M,
but theorists prefer expressing the differential form in
terms of the shape-governing function ssM ,zd. Then the
differential mass function takes the form

dnM

d ln s−1 =Î 2

p

VMrcr0

M

dc

s
expF−

dc
2

2s2G . s52d

Both of these forms for the mass function can be
straightforwardly extended to cases in which the pertur-
bations are non-Gaussian sRobinson et al., 2000d.

The value of the critical threshold dc was originally
inferred from spherical top-hat collapse. Expanding the
parametric solution for spherical collapse in powers of
uM leads to the following relation at early times:

rsh < S9GMt2

2
D1/3F1 −

1
20
S12pt

tc
D2/3G . s53d

The leading term in this expression characterizes the be-
havior of a critical-density sphere and the second term
describes how the evolution of a slightly overdense
sphere deviates from that of a critical-density sphere.
Assuming that this deviation grows according to Eq. s53d
until the moment of collapse and virialization st= tcd
gives the value of the critical threshold in a flat universe
with VM=1: dc=3s12pd2/3 /20<1.686. Generalizing this
treatment to cases in which VMÞ1 produces only minor
differences in dc for interesting values of the cosmologi-
cal parameters sLacey and Cole, 1993; Eke et al., 1996d.

The preceding derivation of the cluster mass function
is not terribly rigorous, but it is useful because adopting
dc=1.686 leads to mass functions that agree reasonably
well with those derived from numerical simulations.
Treating perturbation collapse as ellipsoidal rather than
spherical improves that agreement sSheth et al., 2001d.
Sheth and Tormen s1999d have shown that the expres-
sion

dnM

d ln s−1 = AsÎ2as

p
F1 + S s2

asdc
2DpsGVMrcr0

M

dc

s

3expF−
asdc

2

2s2 G , s54d

with As=0.3222, as=0.707, and ps=0.3, is quite an accu-
rate representation of the mass functions from several

different numerical simulations. However, because semi-
analytical mass functions like these are not rigorously
derived, they are essentially just fitting formulas that
conveniently express the simulation results and should
be treated cautiously outside the cosmological models
against which they have been tested.

A particularly well-tested fitting formula for cluster
mass functions has been provided by Jenkins et al.
s2001d. Combining results for simulated clusters span-
ning a mass range from ,1012M( to .1015M( and
sampled at a number of different redshifts, they found
that the form of dnM /d ln s−1 was nearly invariant if
they defined cluster mass to be M180m, the mass within a
sphere of mean density 180VMszdrcr. When this defini-
tion of cluster mass is used, the formula

dnM

d ln s−1 = AJ
VMrcr0

M
expf− uln s−1 + BJueJg s55d

with AJ=0.301, BJ=0.64, and eJ=3.82, reproduces the
cluster mass function to ,20% accuracy for all the cos-
mologies tested, including LCDM, tCDM, and OCDM.
In this expression, AJ governs the fraction of the total
mass in collapsed objects, eBJ functions as a collapse
threshold analogous to dc, and eJ stretches the mass
function to fit the simulations. The Sheth-Tormen mass
function of Eq. s54d fits these same numerical simula-
tions nearly as well.

The exponential sensitivity to mass and redshift evi-
dent in these expressions for the cluster mass function is
both a blessing and a curse. On the one hand, it makes
cluster counts and their evolution with redshift a very
powerful probe of cosmological parameters. Figure 5,
showing the cluster mass function and its evolution with
time for five different cosmologies, illustrates how sensi-
tive mass-function evolution is to the matter density. On
the other hand, any systematic errors in the measure-
ment of cluster mass, including inconsistencies in the
definition of cluster mass, are also exponentially ampli-
fied by the steepness of the mass function.

5. Cluster bias

Another observable feature of the cluster population,
closely related to the mass function, is the tendency of
galaxy clusters to cluster with one another. Fluctuations
in the number density of clusters on large scales are ob-
served to be more pronounced than the fluctuations of
the underlying matter density sBahcall and Soneira,
1983; Klypin and Kopylov, 1983; Postman et al., 1992;
Collins et al., 2000; Bahcall, Dong, et al., 2003d. In other
words, the fractional deviation of dnM /d ln s−1 from its
mean value within a given volume of the universe is
observed to be larger than dr /r in that same volume.
The ratio bsMd between the perturbation in the number
density of clusters of mass M and the perturbation am-
plitude of the matter density is known as the bias param-
eter, and it is taken to be independent of length scale, as
long as that length scale is much larger than a cluster.

Cluster bias can be interpreted as a modulation of the
collapse threshold by long-wavelength density modes
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sKaiser, 1984; White et al., 1987; Cole and Kaiser, 1989d.
The idea here is that a long-wavelength density en-
hancement of amplitude dr /r=e lowers the effective
collapse threshold for smaller-scale structures to dc−e,
thereby inducing an offset in dnM /d ln s−1 from its mean
value on mass scale M. This contribution adds to the
perturbation e in cluster number density owing to the
amplitude of the large-scale mode. Dividing the sum of
these two offsets by e leads to an expression relating the
bias parameter to the mass function sMo and White,
1996; Sheth and Tormen, 1999d:

bsMd = 1 −
d

ddc
FlnS dnM

d ln s−1DG . s56d

Plugging in the Sheth-Tormen mass function of Eq. s54d
produces

bsMd = 1 +
1

dc
Fasdc

2

s2 − 1 +
2ps

1 + sasdc
2/s2dps

G . s57d

Hu and Kravtsov s2003d show that the parameter values
as=0.75 and ps=0.3 accurately reproduce the bias of
cluster-sized halos seen in large-scale numerical simula-
tions, when cluster mass is taken to be M180m. Notice
that small values of ssMd lead to large values of bsMd,
meaning that rare, high-mass objects are much more
likely to be found in regions of the universe where the
surrounding matter density is higher than average.

C. Measuring the cluster mass function

Equations s52d, s54d, and s55d illustrate why cosmolo-
gists are so enthusiastic about the cluster mass function.
Dividing an accurate measurement of the mass function
by VMrcr0 directly leads to an accurate measurement of

FIG. 5. Mass-function evolution in five different cosmologies. The fiducial model in all cases is the LCDM model with VM=0.3,
VL=0.7, w=−1, and s8=0.9. Upper left: panel compares cluster evolution in the LCDM case with a standard cold-dark-matter
model sSCDMd having VM=1.0, VL=0.0, and s8=0.5. Evolution in the SCDM case is much more dramatic, and the steeper slope
of the mass function strongly disagrees with observations of local clusters sReiprich and Böhringer, 2002d. Lower left: retaining
VM=1.0 and VL=0.0 while adjusting the power spectrum so that G=0.21 gives a tCDM model in which the slope of the low-
redshift mass function is more acceptable, but the evolution is still very strong. Upper right: dispensing with dark energy while
keeping the matter density low gives an OCDM model sVM=0.3, VL=0, s8=0.9d with less evolution than the LCDM case because
structure formation starts to ramp down earlier in time ssee Fig. 2d. Lower right: dark energy in a wCDM model identical to the
LCDM model except with w=−0.8 also slows cluster evolution relative to the LCDM case.
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the primordial power spectrum ssMd on mass scales
,1014–1015M(. Furthermore, any uncertainty in rcr0
scales out of the power spectrum’s normalization, be-
cause measured values of cluster number density scale
as h3, making the quantity M8rcr0

−1 sdnM /d ln s−1d inde-
pendent of h. One is left with only a degeneracy be-
tween s8 and VM. Taking the logarithmic derivative of
Eq. s52d with respect to s at constant M shows that the
mass function is roughly ~s2 in the region where s<1.
Hence the measured level of that normalization in the
local universe reflects the parameter combination s8VM

a ,
with a<0.5.

This degeneracy can be broken in three ways. First,
one can simply measure VM or s8 in some other way.
Second, one can measure the cluster mass function over
a range of masses and rely on a precise measurement on
the mass function’s shape to break the degeneracy, as-
suming that the CDM power spectrum sSec. III.A.5d is
valid. Or, third, one can measure the evolution of the
cluster mass function, which is highly sensitive to VM.
We shall explore that option in more depth in Sec. III.D,
but first we need to examine some of the obstacles to
accurate mass-function measurements.

1. Linking mass with observables

In order to measure the mass function using a large
sample of clusters, we need to relate cluster mass to an
easily observable quantity. Doing this properly requires
a consistent definition of mass sSec. III.B.3d and a well-
calibrated relation linking that mass to some observable,
but which mass definition works best? Expressions like
the Jenkins mass function fEq. s55dg appear to be cos-
mologically invariant when cluster masses are defined
with respect to the background mass density se.g.,
M180m; see Sec. III.B.4d. On the other hand, the structure
of a cluster, as reflected in its dark-matter velocity dis-
persion, seems to be cosmologically invariant when clus-
ter masses are defined with respect to the critical mass
density se.g., M200; see Sec. III.B.3d. To paraphrase
Evrard s2004d, Nature appears to do accounting relative
to the mean mass density and dynamics relative to the
critical density.

Because simulations suggest that dynamical quantities
like the galaxy velocity dispersion and the x-ray-
determined gas temperature should be more tightly cor-
related with M200 than with M180m, we shall take M200 to
be the primary definition of cluster mass. Methods like
those outlined in Sec. III.B.3 can then be used to convert
a mass function in M200 to one in M180m. Alternatively,
one can fit the results of large-scale simulations to deter-
mine a cosmology-dependent correction to the Jenkins
mass function for use with the mass definition M200.
Evrard et al. s2002d have done that, finding that substi-
tuting AJ=0.27−0.07s1−VMd, BJ=0.65+0.11s1−VMd,
and eJ=3.8 into Eq. s55d reproduces the M200 mass func-
tion in simulations at z=0. Despite the tight relationship
between M200 and the dark-matter velocity dispersion in
simulations, the link between M200 and observable quan-

tities is still a potentially large source of systematic error.
Even if the galaxy velocity dispersion were identical to
that of the dark matter, accurately measuring that dis-
persion within a sphere of radius r200 requires an enor-
mous number of data to minimize projection effects
sRines et al., 2003d.

To see how systematic errors corrupt the mass-
function measurement, consider the general case for a
generic observable X. Suppose a cluster survey deter-
mines the comoving number density distribution
dnM /d ln X within logarithmic bins of the observable.
Converting this distribution to a mass function
dnM /d ln s−1 via the chain rule requires, at minimum,
knowledge of the normalization and effective power-law
index aX;d ln X /d ln M of the M200-X relation over the
observed range in X, as well as the effective power-law
index aM;d ln s−1 /d ln M of the mass fluctuations. Fit-
ting a semianalytic expression for the mass function like
Eq. s55d to the observations for a fixed value of VM then
determines sfit=ssMfitd on a particular mass scale Mfit,
and consequently determines s8<sMfit /M8daMsfitsMfitd.

Any systematic offset DM /M in the normalization of
the M200-X relation produces a corresponding offset in
the measured power-spectrum normalization:

Ds8

s8
= SaM +

d ln sfit

d ln Mfit
DDM

M

= aXFaM +
1

eJsln s−1 + BJdeJ−1GDX

X
s58d

sVoit, 2000; Evrard et al., 2002; Seljak, 2002d. The second
line of this equation assumes that sfit has been deter-
mined using the Jenkins mass function of Eq. s55d. On
the mass scale of rich clusters s*1014.5M(d, Evrard et al.
s2002d find that the factor in parentheses is <0.4, imply-
ing that a systematic 25% error in mass would lead to a
10% error in the measurement of s8. Below this mass
scale the factor in parentheses increases, leading to an
even larger error in the power-spectrum normalization
for a given mass offset sHuterer and White, 2002d.

Dispersion in the value of the mass-tracing observable
for clusters of fixed mass is another important source of
uncertainty that must be dealt with carefully because of
the exponential slope of the mass function sPierpaoli et
al., 2003d. Significant scatter boosts the normalization of
dnM /d ln X over the expectation for the no-scatter case,
as the overall number of lower-mass clusters scattering
to higher values of X far exceeds the number of higher-
mass clusters scattering in the opposite direction. Under-
estimating this scatter leads to an overestimate of s8 that
can be particularly severe if the scatter has a long non-
Gaussian tail to large values of X. Situations in which
such a tail could arise include merger shocks that sub-
stantially boost the temperature and luminosity in a sig-
nificant subset of x-ray-selected clusters sRicker and Sa-
razin, 2001; Randall et al., 2002d and superpositions of
galaxies that boost the apparent richness and velocity
dispersion in an optically selected sample sHaarlem et
al., 1997d.
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Surveys that probe deep into the universe for clusters
must also cope with redshift evolution in the mass-
observable relation. That is, if M200~XaXs1+zdbX, then
one needs to know the value of bX. This source of un-
certainty affects both the mapping of X onto mass for
individual clusters and the number density one infers for
clusters of a given mass from a survey based on the ob-
servable X.

A sufficiently large cluster survey can circumvent
many of these systematic problems through self-
calibration sLevine et al., 2002; Hu, 2003; Majumdar and
Mohr, 2003, 2004d. This procedure treats all parameters
describing the systematic uncertainties in such things as
the scatter, normalization, and evolution of the mass-
observable relation as free parameters in the overall cos-
mological model. By fitting a large number of clusters
spanning a wide range in redshift to this overall model,
one can determine not only the global cosmological pa-
rameters but also the most likely values of the free pa-
rameters in the mass-observable relation. However,
treating the systematic uncertainties in this way has a
cost. Each free parameter that is added weakens the sta-
tistical constraints on the cosmological measurements
sMajumdar and Mohr, 2003d.

2. Mass-temperature relation

Among the observables that trace cluster mass, x-ray
temperature has received considerable recent attention
because it is closely related to the depth of a cluster’s
potential well and can be readily observed to z,1 with
current x-ray telescopes sSec. II.B.2d. Henry and Arnaud
s1991d pioneered the technique of measuring the cluster
mass function with x-ray temperatures, using cluster
temperatures determined at z<0 with the Einstein, Exo-
sat, and HEAO/OSO satellites. Cluster temperatures
measured with the ASCA satellite improved the preci-
sion of this measurement sIkebe et al., 2002d, and tem-
peratures measured with the Chandra and XMM-
Newton telescopes should improve that precision even
more. Because the data are now of such high quality,
systematic uncertainty in the link between mass and
temperature is the main factor limiting this technique.

Mass and temperature ought to be simply related for a
cluster in hydrostatic equilibrium. The gas temperature
of a singular isothermal sphere with mass M200 inside
radius r200 is

kBT200 =
GM200mmp

2r200

=
mmp

2
f10GM200Hszdg2/3

= s8.2 keVdS M200

1015h−1M(

D2/3FHszd
H0

G2/3

. s59d

Realistic departures from hydrostatic equilibrium can be
assessed with simulations of structure formation that in-
clude hydrodynamics, but they do not have a large effect
on the mass-temperature relation. These models indeed

find that gas temperature scales with M200
2/3 , so that T

<T200, with a scatter of only 10–15 % ssee, for example,
Evrard et al., 1996; Frenk et al., 1999d. However, to cali-
brate the mass-temperature relation more precisely, we
need a more specific definition of temperature.

Clusters are not perfectly isothermal, so any single
number specifying a cluster’s gas temperature is some
sort of weighted mean. The luminosity-weighted mean
temperature Tlum obtained by weighting each gas par-
cel’s temperature by ~rg

2 is a popular choice for compar-
ing theory with observations because each temperature
component contributes in proportion to its photon flux
in the cluster’s overall spectrum sSec. II.B.2d. The
spectral-fit temperature Tsp has not yet received much
attention in theoretical work because it depends some-
what on the procedure used to fit the spectrum, but
Mazzotta et al. s2004d have recently developed a tem-
perature weighting scheme for theoretical models that
appears to track Tsp quite closely.

A bewildering variety of parameters has been used in
the literature to express the mass-temperature relation’s
normalization. Here we shall express the normalization
of the M200-Tlum relation in terms of Tlum/T200. This
choice has two advantages: It does not link the normal-
ization to any particular mass or temperature scale, and
Tlum/T200=1 for both a singular isothermal sphere and
an isothermal beta model with b=2/3.

Uncertainty in this normalization factor is currently
the single most important issue afflicting cluster mass-
function measurements with x-ray observations. Table I
provides some recent observational and theoretical cali-
brations of this relation, in three different groups. The
first group gives calibrations from hydrodynamical simu-
lations that do not account for galaxy formation, which
generally fall into the range Tlum/T200=0.8–1.0. In some
cases, an M500-Tlum relation has been converted to M200,
assuming M200=1.4M500, appropriate for halo concentra-
tion c=5. The second group gives calibrations inferred
from observations, which fall into the range Tlum/T200
=1.1–1.4. In other words, clusters of a given tempera-
ture seem to be 30% to 60% less massive than one
would expect from the simulations. Apparently galaxy
formation changes the normalization of the M200-Tlum
relation, for reasons discussed in detail in Sec. IV, al-
though some of this discrepancy may also stem from
systematic offsets in the observational interpretation.
The third group of normalization factors, which tend to
lie in between the first two groups, comes from simula-
tions that attempt to account for the effects of galaxy
formation. Given this uncertainty in the mass-
temperature normalization, the systematic uncertainty
in s8 values derived from cluster temperatures is about
25%, because s8~ sTlum/T200d3/5 according to Eq. s58d for
rich clusters sEvrard et al., 2002d.

Efforts are underway to reconcile the observed nor-
malization of the M200-Tlum relation with theoretical ex-
pectations. Some of the discrepancy probably arises
from systematic errors in the masses derived from x-ray
observations. Hydrostatic equilibrium is usually as-
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sumed, but the turbulent velocities in simulated clusters
can sometimes be ,20–30% of the sound speed, in
which case the hydrostatic assumption would lead to
masses underestimated by ,10–15% sRicker and Sa-
razin, 2001; Rasia et al., 2003d. In addition, the beta-
model formalism often used to derive cluster mass may
have systematic problems. Applying this model to simu-
lated clusters tends to underestimate their masses
sMuanwong et al., 2002; Borgani et al., 2003; see the last
line of Table Id, and recent XMM-Newton observations
suggest that the correction for temperature gradients
may be excessive sPratt and Arnaud, 2002, 2003; Mush-
otzky, 2004d.

Alternative mass measurements would be very helpful
in solving these problems. Calibration of the mass-
temperature relation with lensing observations has met
with mixed success. Weak-lensing measurements of mas-
sive, relaxed clusters agree with the masses derived from
x-ray data under the assumption of hydrostatic equilib-
rium sAllen et al., 2001d. However, that agreement seems

to be poorer for less relaxed clusters sSmith et al., 2003d.
Measurements of cluster mass from the galaxy velocity
field in and around a few very-well-observed clusters
also tend to support the x-ray-derived masses sRines et
al., 2003d. Because the calibration may depend system-
atically on how clusters are selected, self-calibration of a
large cluster survey may ultimately be the best way of
calibrating the M200-Tlum relation. A thorough under-
standing of how galaxy formation affects that relation
would help reduce the number of free parameters that
need to be calibrated, thereby reducing the statistical
uncertainties achievable with self-calibration.

3. Mass-luminosity relation

X-ray luminosity also correlates well with cluster mass
and is easier to measure than x-ray temperature, allow-
ing for mass-function measurements using much larger
cluster samples. However, the correlation between mass
and luminosity is not as tight as that between mass and

TABLE I. Normalization of the mass-temperature relation.

Tlum/T200
a

Models without radiative cooling
Navarro et al. s1995d 0.99
Evrard et al. s1996db 0.91
Bryan and Norman s1998d 0.80
Thomas et al. s2001d 0.98
Muanwong et al. s2002dc 0.57
Muanwong et al. s2002dd 0.90

Observations Tlum/T200
a

Horner et al. s1999de s1.08±0.04dT6
−0.19

Horner et al. s1999df s1.40±0.16dT6
−0.02

Nevalainen et al. s2000dg s1.20±0.12dT6
−0.20

Finoguenov, Reiprich, and Böhringer s2001db ,h s1.18±0.10dT6
−0.33

Finoguenov, Reiprich, and Böhringer s2001db ,i s1.26±0.11dT6
−0.19

Finoguenov, Reiprich, and Böhringer s2001db ,j s1.33±0.18dT6
−0.02

Models with radiative cooling Tlum/T200
a

Muanwong et al. s2002d 0.79T6
−0.31

Muanwong et al. s2002dk 0.88T6
−0.09

Borgani, Murante, et al. s2003db s1.03±0.03dT6
−0.06

Borgani, Murante, et al. s2003db ,l s1.24±0.03dT6
−0.06

aT6;kBTlum/6 keV.
bConversion from M500 assumes M200=1.4M500.
cTlum computation includes gas with cooling time ,6 Gyr.
dTlum computation excludes gas with cooling time ,6 Gyr.
eMasses estimated using isothermal beta model.
fMasses estimated using polytropic beta model.
gConversion from M1000 assumes M200=2.0M1000.
hFull sample, masses from isothermal beta model.
iFull sample, masses from polytropic beta model.
jSubset with kBTlum, polytropic beta model.
kTlum computed with cooling cores removed.
lMasses inferred from polytropic beta-model fits.
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temperature, having a scatter of ,50% sReiprich and
Böhringer, 2002d. Additionally, the normalization and
slope of the relation depend heavily on the physics of
galaxy formation sSec. IV.Cd. Because our understanding
of the connection between galaxy formation and a clus-
ter’s x-ray luminosity is not yet mature enough to cali-
brate the mass-luminosity relation with simulations, we
need to rely solely on observational calibrations.

One common way to calibrate the mass-luminosity re-
lation is to combine the mass-temperature relation with
the observed luminosity-temperature relation ssee, for
example, Borgani et al., 1999d. On cluster scales, the re-
lation between the total sbolometricd x-ray luminosity
and Tlum is approximately a power law. Normalizing the
relation at 6 keV, in the heart of the temperature range
for rich clusters, leads to the expression LX
=L6sTlum/6 keVdaLT, and Table II gives some represen-
tative values of L6 and aLT. Excising the central regions
of clusters, out to about 100 kpc in radius, reduces the
scatter in the relation because cooling and nongravita-
tional heating processes affect the temperature and lu-
minosity of these regions differently from cluster to clus-
ter sFabian et al., 1994; Allen and Fabian, 1998;
Markevitch, 1998; Voit et al., 2002d.

The power-law index of the LX-Tlum relation clearly
indicates that galaxy formation has affected the
LX-Tlum relation. If the density distribution of intraclus-
ter gas within r200 were self-similar, independent of clus-
ter mass, then one would expect bremsstrahlung emis-
sion to give LX~rgM200Tlum

1/2 ~Tlum
2 sKaiser, 1986d. The

steepness of the observed power-law index indicates that
nongravitational processes have raised the entropy of
the intracluster gas, making it harder to compress, par-
ticularly in the shallower potential wells of cool clusters.
This excess entropy therefore lowers the luminosities of
all clusters by lowering the mean gas density and steep-
ens the LX-Tlum relation, because the impact of excess
entropy decreases as cluster temperature rises sEvrard
and Henry, 1991; Kaiser, 1991; see also Sec. IV.Cd.

Calibrating the mass-luminosity relation by coupling
the mass-temperature relation with the observed
luminosity-temperature relation leads, not surprisingly,
to values of s8 that are similar to those derived from the
mass-temperature relation alone and are subject to the
same systematic uncertainties that plague the mass-
temperature calibration. There is, however, a route to
the mass-luminosity calibration that circumvents the
middle step involving the mass-temperature relation.

The mass-luminosity relation can be calibrated more
directly with high-quality x-ray imaging and temperature
data on a complete sample of clusters. Reiprich and
Böhringer s2002d have done this with ROSAT imaging
data and ASCA temperatures, finding

LX = 1045.0±0.3h70
−2erg s−1S M200

1015h70
−1M(

D1.8

. s60d

Their mass calibration assumes that the cluster gas is in
hydrostatic equilibrium and obeys an isothermal beta
model. The masses they derive are therefore higher than
those one would find after correcting for a possible
negative-temperature gradient at large radii but do not
account for any turbulent pressure support. With this
mass-luminosity relation, they find a cluster mass func-
tion whose normalization corresponds to s8
=0.68sVM/0.3d−0.38.

Furthermore, because their observed cluster sample
extends over two decades in mass, Reiprich and
Böhringer s2002d attempted to break the s8-VM degen-
eracy by fitting the mass function’s shape with a CDM
power spectrum, finding a best fit of VM=0.12−0.04

+0.06 and
s8=0.96−0.12

+0.15, with VM,0.31 at the 3s level. The unusu-
ally low best-fit value of VM arises because their derived
mass function is shallower than that expected for VM
=0.3. However, Pierpaoli et al. s2003d have applied that
same LX-M200 relation to the larger REFLEX cluster
sample sBöhringer et al., 2002d, finding s8=0.86−0.16

+0.12 and
VM=0.23−0.06

+0.10. Results similar to these latter values are

TABLE II. Luminosity-temperature relation at z<0.

Source L6
a aLT

Edge and Stewart s1991d 6.3±1.3 2.62±0.10
David et al. s1993d 5.6±0.9 3.37±0.05
Markevitch s1998db 6.4±0.6 2.64±0.27
Allen and Fabian s1998dc 5.7±3.4 2.92±0.45
Allen and Fabian s1998dd 14.6±7.3 3.08±0.58
Arnaud and Evrard s1999de 5.9±0.4 2.88±0.15
Xue and Wu s2000d 7.6±1.2 2.79±0.08
Novicki et al. s2002d 6.0±4.2 2.82±0.43
Ettori et al. s2002d 7.3±1.8 2.54±0.42

aBolometric x-ray luminosity is LX=L6sTlum/6 keVdaLT with L6 in units of 1044h70
−2 erg s−1.

bCores of clusters excised to avoid cool cores.
cClusters without cores.
dClusters with cool cores.
eSample avoids clusters with cool cores.
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also found from the mass-luminosity relation when clus-
ter evolution is used to break the s8-VM degeneracy
sSec. III.Dd.

4. Mass-richness relation

Optical telescopes have gathered much larger cluster
samples than have x-ray telescopes, but deriving a mass
function from these samples is not so straightforward.
Projection effects complicate both the measurement of
cluster mass and the computation of the sample volume
associated with a given mass. Clusters in optical surveys
are selected on the basis of richness, which depends on
the number of galaxies observed within a certain pro-
jected radius from the center of the cluster sSec. II.A.1d.
Thus, even if optical luminosity traces mass exactly, gal-
axy concentrations lying outside r200 but projected along
the same line of sight can boost the apparent mass, in-
troducing non-Gaussian uncertainties in the mass-
richness relation. Likewise, the effective volume associ-
ated with a given cluster mass in a richness-selected
survey is harder to quantify than in a survey with a defi-
nite x-ray flux cutoff. Nevertheless, when richness is rig-
orously defined, it correlates well with a cluster’s x-ray
properties sYee and Ellingson, 2003d. However, the scat-
ter between optical richness and x-ray luminosity is still
large compared with the accuracy to which one would
like to derive cosmological parameters sDonahue et al.,
2001, 2002; Gilbank et al., 2003; Kochanek et al., 2003d.

Measuring cluster masses purely on the basis of
galaxy-count richness necessitates a different approach
to defining a cluster’s radius and therefore its mass. Be-
cause traditional measures of richness depend on the
radius within which galaxies are counted, they are de-
fined with respect to a fixed physical radius, independent
of mass, at each redshift. For this reason, observations of
cluster richness are sometimes compared with simula-
tions on the basis of cluster masses measured within a
constant physical or comoving radius sBode et al., 2001d.
Deriving a mass-richness relation from simulations of
galaxy formation also involves an observational calibra-
tion of the cluster mass-to-light ratio, which according to
Eq. s59d introduces a systematic uncertainty in s8 that is
,40% of the uncertainty in the mass-to-light conver-
sion.

Making such a comparison with the early clusters
from the Sloan Digital Sky Survey, Bahcall, McKay, et al.
s2003d find a mass-function normalization implying s8
=0.69±0.07sVM/0.3d−0.6. Adding mass-function shape
information to break the degeneracy leads to VM

=0.19−0.07
+0.08 and s8=0.9−0.2

+0.3, which is in reasonably good
agreement with the x-ray-derived values. Unfortunately,
because there is as yet no simple parametric form,
analogous to the Jenkins mass function, giving the mass
function defined with respect to a fixed radius, it is not
clear how to self-calibrate the associated mass-richness
relation to high accuracy with a large survey.

5. Velocity dispersion and mass

Velocity dispersion is the optical analog to x-ray tem-
perature. Thus one would expect a mass function de-
fined on the basis of velocity dispersion to coincide with
those defined with respect to cluster temperature. Mea-
surements of rich clusters indicate that s1D

2

= s1.0±0.1dkBTlum/mmp se.g., Xue and Wu, 2000, Sec.
II.B.2d, which reassuringly suggests that both quantities
accurately trace mass. On the other hand, Evrard et al.
s2002d have pointed out that combining this relation
with the observational calibration of the M200-Tlum rela-
tion sTlum<1.2T200d leads to a puzzle. While it might be
possible for nongravitational effects associated with gal-
axy formation to boost Tlum, it is more difficult to imag-
ine why nongravitational effects would boost the galaxy
velocity dispersion by a similar factor.

Mass functions derived from velocity dispersion mea-
surements also suggest that the masses derived from
those measurements are larger than those derived from
x-ray data. Using the virial theorem with a pressure cor-
rection term sSec. II.A.2d, Girardi et al. s1998d derive a
cluster mass function from velocity dispersions whose
normalization indicates s8= s1.01±0.07dsVM/0.3d−0.43,
implying an overall number density at a given cluster
mass about two times larger than the x-ray measure-
ments. A discrepancy in s8 as large as 30% could arise if
the optically determined masses were over 50% larger,
but the actual mass discrepancies appear not to be quite
so large. Reiprich and Böhringer s2002d find that in the
42 clusters they have in common with Girardi et al.
s1998d the virial masses are 25% larger, on average, than
the x-ray masses. Another factor that could contribute
to this discrepancy is scatter in the M200-s1D relation. An
underestimate of the scatter would drive up the inferred
mass-function amplitude, raising the best-fitting value of
s8.

Part of the discrepancy between the optical and x-ray-
determined masses may stem from how velocity disper-
sions are observed. Because s1D declines with projected
radius, its observed value will depend on the cutoff ra-
dius. Also, any foreground or background interlopers
projected onto the cluster can contaminate the velocity-
dispersion measurement. Ideally, one would like to cut
off the measurement at a spherical boundary with radius
r200, inside of which the relation between dark-matter
velocity dispersion and mass is well calibrated, but the
large number of galaxy velocities needed to measure ac-
curately the mass profile near the virial radius make this
approach impractical for large cluster samples. In a
small sample of eight rich clusters, Rines et al. s2003d
have used an average of almost 200 galaxy velocities per
cluster, extending to well beyond r200, to measure the
mass M200 within r200. The masses they find are consis-
tent with both the x-ray-determined masses and the
virial theorem including a surface-pressure correction.

6. Weak lensing and mass

Weak lensing is a very promising method for measur-
ing cluster masses that is independent of a cluster’s
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baryon content, dynamical state, and mass-to-light ratio.
The main systematic problem in weak-lensing mass mea-
surements comes from the lensing done by excess mass
outside the virial radius but along the line of sight
through the cluster sMetzler et al., 1999, 2001; Hoekstra,
2001d. So far, weak lensing’s main contribution to cluster
studies has been to assist in the calibration of other mass
estimators ssee, for example, Allen et al., 2001d.

Techniques for compiling cluster samples selected on
the basis of weak lensing are still in their infancy. Only a
few clusters with confirmed spectroscopic redshifts have
been detected in weak-lensing surveys se.g., Wittman et
al., 2001, 2003; Dahle et al., 2003; Schirmer et al., 2003d.
However, deep optical surveys covering wide patches of
the sky should turn up many more such clusters in the
coming decade. In the meantime, smaller weak-lensing
surveys sensitive to large-scale structure are comple-
menting the cluster work because they provide values of
s8 that are independent of the cluster measurements.
Numbers currently in the literature span approximately
the same range as those derived from clusters, going
from s8= s0.72±0.08dsVM/0.3d−0.57 sJarvis et al., 2003d on
the low end to s8= s0.97±0.14dsVM/0.3d−0.44 sBacon et
al., 2003d on the high end.

7. Baryons and mass

Yet another technique for measuring the cluster mass
function relies on the constancy of the ratio of baryons
to dark matter in massive clusters. X-ray observations
from Chandra indicate that the ratio of hot baryonic gas
to total gravitating matter within a given radius asymp-
totically approaches s0.113±0.005dh70

−3/2 in relaxed, high-
mass clusters sAllen et al., 2002d. Correcting for the
baryons in stars, whose mass is approximately 0.16h70

1/2

times that of the hot gas sSec. IV.Dd raises the overall
ratio of baryons to dark matter in clusters to fb=0.13 for
h70=1.0.

This ratio is itself one of the best tools for measuring
VM sWhite et al., 1993; David et al., 1995; Evrard, 1997;
Allen et al., 2002d. No known hydrodynamic process can
drive a large proportion of a rich cluster’s baryons out of
the cluster’s deep potential well. Thus the ratio of bary-
ons to dark matter in a cluster is expected to be similar
to the global ratio in the universe. Dividing the mean
baryon density Vb=0.045h70

−2, consistent with both the
abundances of light elements sBurles et al., 2001d, and
microwave background fluctuations sSpergel et al.,
2003d, by the baryon fraction fb implies VM<0.3. Allen
et al. s2002d find VM=0.30−0.03

+0.04 after marginalizing over
the uncertainties in Vb and Hubble’s constant.

One can also use the ratio of baryons to dark matter
to constrain dark energy sSasaki, 1996; Pen, 1997d. Mea-
surements of this ratio in clusters depend on the rela-
tionship between transverse size and redshift, which de-
pends on both VM and VL sSec. III.A.2d. If the actual
ratio remains constant with redshift, then the measured
ratios will be independent of redshift only if the correct
values of VM and VL are used in the measurement.
Allen et al. s2004d have recently shown that the mea-

sured baryon-to-dark-matter ratio in a sample of 26 clus-
ters, ranging up to z<0.9, is consistent with the low-
redshift ratio for VL=0.94−0.23

+0.21 ssee also Allen et al., 2002;
Ettori et al., 2003d. However, the degree to which the
actual ratio is redshift independent is not yet known.

If the ratio of baryons to dark matter were completely
independent of cluster mass and radius, then measure-
ments of the baryon mass inside a radius containing a
mean baryon density of 200fbrcr would directly give
M200. The cluster mass function could then be deter-
mined by measuring the baryon masses within a given
scale radius sVikhlinin et al., 2003; Voevodkin and
Vikhlinin, 2004d. In fact, the baryon fraction is not quite
constant in clusters, probably owing to the same galaxy-
formation effects that shift the M-T and L-T relations
sSec. IV.Cd. For example, Mohr et al. s1999d find that the
ratio of gas mass to dark matter is ~Tlum

0.36±0.22 in clusters
cooler than about 6 keV and is statistically inconsistent
with a constant value at the 99% level. Other studies
concur that the proportion of hot gas in low-mass clus-
ters is smaller than that in high-mass clusters sNeumann
and Arnaud, 2001; Sanderson et al., 2003d.

After correcting for this effect, Voevodkin and Vikhli-
nin s2004d infer a cluster mass function from the baryon
mass function signifying s8=0.72±0.04 for the assumed
cosmology sV=0.3, VL=0.7, and h=0.71d. Furthermore,
the shape parameter G=0.13±0.07 of the mass function
is consistent with the CDM power spectrum given the
assumed values of VM and h. Notice that this value of s8
agrees with those derived from the observationally cali-
brated M200-Tlum and M200-LX relations, even though it
does not explicitly rely on those calibrations.

D. Evolution of the mass function

Measurements of evolution in the cluster mass func-
tion can considerably tighten all these constraints on
cosmological parameters. What we actually observe, of
course, is the dependence on redshift of the observables
that trace the cluster mass function. For a given cluster
sample we can measure the number of clusters dN
within a given solid angle dV and redshift interval fz ,z
+dzg that fall into the range fX ,X+dXg of the observ-
able X. With full knowledge of the mass-observable re-
lation MsX ,zd and its scatter as a function of redshift,
we could then derive the redshift distribution

d3N

dMdVdz
sM,zd =

dnM

dM
sM,zd ·

d2Vco

dzdV
szd s61d

for clusters of mass M directly from the observations.
This distribution of clusters with redshift would then
provide strong constraints on cosmological models
through both the mass-function evolution factor
dnM /dM and the comoving volume factor d2Vco/dVdz
from Eq. s21d.

As the reader probably suspects by now, our ability to
constrain cosmological parameters through the redshift
distribution of clusters is currently limited by our under-
standing of evolution in the mass-observable relations.
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However, this problem is not as severe as one might
expect because the evolution in the mass function itself
is so dramatic, especially for VM<1. This part of the
review discusses what we have learned about structure
formation and cosmological parameters by observing
cluster evolution. It begins with a description of how
mass-function evolution depends on cosmological pa-
rameters and then considers the complications arising
from evolution of the observables themselves. It con-
cludes with a summary of current constraints on VM
from cluster evolution and a look at the prospects for
measuring VL and w with large cluster surveys.

1. Dependence on cosmology

Evolution of the mass function is highly sensitive to
cosmology because the matter density controls the rate
at which structure grows. When the mass function can
be expressed in terms of formulas like Eqs. s52d, s54d, or
s55d, its evolution is controlled entirely by the growth
function Dszd, which is a well-defined function of VM,
VL, and w sSec. III.B.4d. Small-amplitude density pertur-
bations grow as Dszd= s1+zd−1 when VMszd<1, but per-
turbation growth stalls when VMszd!1. This effect
manifests itself most strongly in high-mass clusters be-
cause they are the latest objects to form in a hierarchical
cosmology with a CDM-like power spectrum sEvrard,
1989; Peebles et al., 1989; Oukbir and Blanchard, 1992;
Eke et al., 1996; Viana and Liddle, 1996d. The exponen-
tial dependence of the mass function on ssM ,zd
=DszdssM ,0d makes the effect quite dramatic for ob-
jects sufficiently massive that ssM ,0d,1.

Dependence of the mass function on VL and w is a
little more subtle. These parameters affect mass-
function evolution by altering the redshift at which
VMszd departs significantly from unity for a given value
of VM at z=0 sHaiman et al., 2001d. The time at which
dark energy begins to dominate the dynamics of the uni-
verse is later for both smaller values of VL and smaller
smore negatived values of w ssee Fig. 2d, leading to
greater evolution of the mass function between z,1 and
the present sWang and Steinhardt, 1998; Weller et al.,
2002; Battye and Weller, 2003d.

Measurements of how the mass function changes with
redshift can provide additional information about VL

and w through the expansion rate of the universe. If the
mass function of clusters is precisely known, then num-
ber counts of clusters exceeding a given mass in each
redshift interval dz reveal the volume associated with
that redshift interval and can be used to determine the
dynamics of the universe’s expansion. The number of
clusters with mass .M on the celestial sphere in the
redshift interval dz is given by

dN

dz
sMd =

4prk
2szdc

Hszd
nMsM,zd . s62d

Figure 6 shows this number-redshift distribution for sev-
eral different cosmological models. Notice that the sta-
tistical power of cluster surveys is ultimately limited by

the total number of massive clusters in the observable
universe, which is of order 105.

2. Evolution of the observables

All of the mass-observable relations discussed in Sec.
III.C evolve with redshift, partly because the definition
of M200 is pinned to the critical density and partly be-
cause of galaxy-formation physics. Clusters of a given
mass are hotter earlier in time because their matter den-
sity is larger; both T200 and the square of the dark-matter
velocity dispersion for a fixed value of M200 vary with
redshift as H2/3szd sSec. III.C.2d. One therefore expects
Tlum and the square of the galaxy velocity dispersion to
depend on redshift in the same way, but it is possible
that the physics of galaxy formation adds additional red-
shift evolution that must be accounted for in precise cos-
mological measurements. Galaxy formation plays a
more explicit role in the mass-richness and M200-LX re-
lations, because the optical luminosities of galaxies
evolve with time and because the physics of galaxy

FIG. 6. Predicted number of clusters on the sky as a function
of redshift in different cosmologies. Upper panel shows the
number of clusters per unit redshift with M200.3
31014h70

−1M( over the entire sky. Notice that there are a few
tens of thousands of such clusters on the sky in models with
VM=0.3, most of them at z,1. There are many fewer massive
clusters at z.0.5 in the tCDM model with VM=1 because
cluster evolution is so rapid in that case. The lower panel
shows the numbers of clusters with M200.131015h70

−1M(. Dif-
ferences between models with VM<0.3 but differing values of
VL and w should be detectable in large cluster surveys contain-
ing ,104 clusters and extending to z,1.
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formation alter the LX-TX relation sSec. IV.Cd. Scatter in
the mass-observable relation might also be larger at
higher redshifts, given that the proportion of relaxed
clusters may well be smaller earlier in time.

As an example of how mass-observable evolution af-
fects observations of mass-function evolution, consider

its effects on x-ray surveys. The upper left of Fig. 7
shows how the cluster mass function evolves for two dif-
ferent cosmologies, a standard LCDM model sVM=0.3,
VL=0.7, w=−1, s8=0.9d and a tCDM model sVM=1.0,
VL=0.0, s8=0.5, G=0.21d whose power spectrum has
been adjusted by hand so that its shape is similar to that

FIG. 7. Evolution of the cluster mass function and its manifestations in temperature and luminosity: solid lines, LCDM
sVM=0.3, VL=0.7, w=−1, s8=0.9d; dashed lines, tCDM sVM=1.0, G=0.21, s8=0.5d. Upper left: evolution of the mass function is
far more pronounced in tCDM than in LCDM because it is so sensitive to the current matter density. Each set of three lines shows
the differential mass function dnM /d ln M at z=0, 0.5, and 1.0, from top to bottom; black squares show the value of the mass
function at a fiducial mass of 1015h70

−1M(. Upper right: the same mass functions plotted against temperature, assuming T
=T200sM200,zd. Notice that the higher-redshift curves have shifted to the right, weakening the evolution in temperature space,
because clusters of a given mass have higher temperatures at higher redshifts. In order to convert these curves to temperature
functions, one would need to convolve them with the scatter in the mass-temperature relation and multiply by d ln M /d ln T
<1.5. The lower two panels show these same curves as a function of luminosity, assuming LX= s631044h70

−2 erg s−1d
3sT200/6 keVd3 at z=0 and two different redshift dependences of the LX-T relation. Lower left: without LX-T evolution, the
curves are just relabeled versions of the ones in the upper-right panel. Lower right: the strong LX-T evolution fLX~T3s1+zd1.5g,
however, shifts the three curves in the LCDM case nearly on top of one another at LX<1044h70

−1 erg s−1. Convolving these curves
with the dispersion in the mass-luminosity relation and multiplying by d ln M /d ln L<0.5 converts them to luminosity functions.
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of the LCDM model, as required by observations of
large-scale structure sSec. III.Cd. Mass-function evolu-
tion is quite pronounced in both models but is far stron-
ger in the tCDM model.

Evolution in the mass-temperature relation weakens
the observed amount of cluster evolution when cluster
number density is plotted as a function of temperature.
The upper right of Fig. 7 shows the result of using a
M200-Tlum relation with Tlum/T200=1 and zero dispersion.
Because clusters of a given mass are hotter at earlier
times, the higher-redshift curves have translated to
higher temperatures, compared with their positions in
the upper left panel. Additional mass-temperature evo-
lution exceeding that predicted by the virial theorem,
and corresponding to values of Tlum/T200 that increase
with redshift, would further reduce the evolution, but
there is currently no evidence for such evolution.

Redshift-dependent changes in the luminosity-
temperature relation can have additional evolution-
softening effects. The LX~Tlum

3 power-law form of the
relation appears to remain the same with redshift, but
the amount of evolution in the normalization is uncer-
tain. Early assessments suggested no evolution in the
normalization sMushotzky and Scharf, 1997; Borgani et
al., 1999; Donhaue et al., 1999d. The lower right of Fig. 7
shows the evolution of cluster number density plotted
against luminosity for a nonevolving normalization and
LX=631044h70

−2 erg s−1sTlum/6 keVd3, again with no dis-
persion. These curves differ from the temperature-
function curves only in the labeling of the horizontal
axis. More recent results indicate that higher-redshift
clusters of a given temperature are more luminous, with
an evolving relation LX~Tlums1+zdbLT, where 0.5&bLT
&1.5 sVikhlinin et al., 2002; Ettori et al., 2003; Lumb et
al., 2003; see Sec. IV.C.4d. Figure 7 shows the same dis-
tribution functions for bLT=1.5, at the high end of the
suggested range. The extra redshift dependence in this
case slides the high-redshift curves even further to the
right, roughly compensating for all of the evolution in
the underlying mass function.

These examples underscore the importance of con-
straining evolution in the mass-observable relations,
even if the observables could be perfectly measured. In
addition, one must bear in mind that the observations
themselves can introduce spurious redshift dependences
in the mass-observable relations, largely because distant
clusters are more difficult to observe than nearby ones.
Optical projection effects become progressively harder
to deal with at high redshift, complicating observations
of richness and velocity dispersion. Observations of
weak lensing have fewer background galaxies to mea-
sure, and the decline in x-ray surface brightness makes
cluster temperature measurements more difficult. In
many ways, the Sunyaev-Zeldovich effect is the most
promising observable for characterizing high-redshift
clusters because its magnitude does not depend on red-
shift sSec. II.Cd.

There are three basic ways to deal with evolution in
the normalization and perhaps the scatter of a mass-
observable relation:

• Assume a model for the evolution of the relation.
Numerical simulations can be very helpful in provid-
ing a model for evolution of the normalization and
scatter of mass-observable relations, but they give
accurate results only if they include all the relevant
physics.

• Assume a parametric form for the mass-observable
relation inspired by theoretical models and try to
calibrate it directly with observations. The normal-
ization of the relation is usually assumed to be pro-
portional to either s1+zd or Hszd raised to a power
determined by a fit to observations. In practice, how-
ever, the mass-observable relations for distant clus-
ters are not directly calibrated. What we have instead
are relations that link one easily observed quantity,
such as x-ray luminosity, to another that is more
closely related to mass, like x-ray temperature or the
weak-lensing distortion.

• Assume a parametric form for the mass-observable
relation and apply self-calibration techniques to a
large cluster survey to find the most likely param-
eters describing mass-observable evolution sLevine
et al., 2002; Hu, 2003; Majumdar and Mohr, 2003,
2004d. Parameters involving redshift-dependent scat-
ter in the relation can also be included in such an
analysis. This technique is very promising but re-
quires large surveys of distant clusters, which are not
yet in hand. Its accuracy is limited by the number of
free parameters needed to describe the mass-
observable relations—the fewer, the better. Having a
realistic physical model for mass-observable evolu-
tion helps boost the accuracy achievable with self-
calibration by reducing the number of unknown
parameters.

A decade from now, when much larger cluster samples
will be available, self-calibration will probably be the
best way to calibrate the mass-observable relations. In
the meantime, it would be wise to spend some effort on
direct observational calibrations through cross-
comparisons of multiple mass-tracing observables.

3. Constraints on dark matter

Surveys of distant clusters find modest evolution in
their comoving number density fully consistent with cos-
mological models in which VM<0.3. Because the rate of
mass-function evolution at moderate redshifts sz&0.5d is
governed primarily by the overall matter density, this
conclusion does not depend strongly on the value of VL.
Here we focus on the constraints on VM derived from
x-ray surveys, whose observables—LX, TX, and baryonic
mass—are related to the spherical mass M200 through
simple parametric relations.

Evolution in the x-ray temperature function was first
observed by Henry s1997d, who showed that the comov-
ing number density of ,5 keV clusters at z,0.35 was
only slightly smaller than it is today. Assuming standard
evolution of the mass-temperature relation, Eke et al.
s1998d derived matter-density constraints VM=0.38±0.2
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for VL=1−VM and VM=0.44±0.2 for VL=0 from these
data, using a maximum-likelihood analysis to take full
advantage of the sparse temperature data. More conser-
vative analyses that simply counted clusters hotter than
a given temperature found weaker constraints sViana
and Liddle, 1999d. Henry s2000, 2004d provided a com-
plete discussion of the cluster temperature data and the
maximum-likelihood analysis technique ssee Fig. 8d.

Temperature measurements of a handful of hot clus-
ters at higher redshifts have shown that the rate of clus-
ter temperature evolution remains modest at higher red-
shifts sDonahue, 1996; Donahue et al., 1998, 1999;
Henry, 2000d. The comoving number density of *8 keV
clusters at z,0.5–0.8 is no less than about one-tenth of
its current value, in strong disagreement with the stan-
dard expectation in an VM=1 universe ssee Fig. 7d. In-
cluding these hot, distant clusters in the analysis further
strengthens the constraints on the matter density, ruling
out VM=1 at the 3s level for standard mass-temperature
evolution sBahcall and Fan, 1998; Donahue et al., 1998;
Donahue and Voit, 1999; Evrard et al., 2002d. In order
for such hot clusters to exist in a flat, matter-dominated
universe, the mass-temperature relation would have to
evolve in a nonstandard way, with an increase in either
the scatter or the normalization at z*0.5. Evrard et al.
s2002d have shown that the tCDM mass function of Fig.
7 is consistent with the temperature-function observa-
tions only if the mass-temperature normalization factor
Tlum/T200 is ,1.5 times higher at z,0.5 than at present.
Such a big change seems unlikely in light of alternative
observations of these hot, high-redshift clusters that

agree with the large masses inferred from the standard
normalization sLuppino and Gioia, 1995; Donahue et al.,
1998; Tran et al., 1999d.

Observations of evolution in the x-ray luminosity
function have greater statistical power because many
more clusters have known luminosities than have known
temperatures, but uncertainties in luminosity-
temperature evolution dilute the constraints they place
on VM. Many x-ray surveys ssee Fig. 9d have shown that
the comoving number density of clusters at a given lu-
minosity changes very little from redshift z,0.8 to the
present for LX&1044 erg s−1; significant evolution is seen
only for clusters with LX*1045 erg s−1 sRosati et al.,
2002; Mullis et al., 2004d. Evolution this mild is generally
expected in cosmological models with VM<0.3. Strong
evolution in the luminosity-temperature relation must
occur in models with VM=1 for the observed evolution
in the luminosity function to be so weak ssee Fig. 7d. An
extensive analysis by Borgani et al. s2001d of luminosity-
function evolution in the ROSAT Deep Cluster Survey,
which extends to z,1, indicates that VM=0.35−0.10

+0.13,
where the error bars signify the 1s confidence interval.
Models with VM=1 fall outside the 3s confidence inter-
val, even when the normalization of the luminosity-
temperature relation is allowed to vary with redshift as
LX~Tlums1+zd.

The evolution of the baryon mass function observed
with x-ray telescopes agrees with the conclusions drawn
from the luminosity and temperature functions. Vikhli-
nin et al. s2003d have measured the baryon mass function
in a sample of clusters at z,0.5, finding that the comov-
ing number density of massive clusters at that redshift is
roughly one-tenth of the current value. This result im-

FIG. 8. Observed evolution in the integrated cluster tempera-
ture function ns.kTd giving the comoving number density of
clusters with temperatures exceeding kT: s, low-redshift tem-
perature function from a sample of clusters with mean redshift
z=0.051; P, observed temperature function of clusters with a
mean redshift of z=0.429. The data points in each case are
correlated because ns.kTd at a given temperature is a cumu-
lative function depending on all data points at higher tempera-
tures. Dotted line, predicted temperature functions at z
=0.051; solid line, z=0.429 for the best-fitting model: VM
=0.28, VL=0.98, s8=0.68. Figure from Henry, 2004.

FIG. 9. Observed evolution in the cluster luminosity function,
from many different cluster surveys spanning the range 0&z
&1. The vertical axis gives the luminosity functions derived
from these surveys in terms of f;dn /dLX, and the shaded
region shows the luminosity function at z<0. Significant evo-
lution is seen only at LX*1045 erg s−1, consistent with LCDM
models with a moderate amount of evolution in the LX-T re-
lation ssee Fig. 7d. From Mullis et al., 2004.
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plies VM=0.25±0.1 s1s confidence intervald for VL=1
−VM.

Optical studies concur that cluster evolution has been
relatively modest since z,0.5, buttressing the conclu-
sion that VM,1. In fact, the evolution of optically se-
lected clusters appears even milder than the evolution in
x-ray-selected clusters sPostman et al., 2002d, which
would imply an even smaller value of VM. However, it is
not yet clear how much of this discrepancy arises from
differences between the projected masses measured by
optical surveys and the spherical masses measured by
x-ray surveys.

4. Constraints on dark energy

Existing cluster surveys, taken by themselves, do not
yet place strong constraints on dark energy, but that situ-
ation is likely to change in the coming decade, with the
advent of large, deep cluster surveys in the optical, x-ray,
and microwave bands. Currently, the most interesting
information that clusters provide about dark energy
comes from combining the results of cluster surveys with
other information. If the overall geometry of the uni-
verse is indeed flat, as seems quite evident from the tem-
perature patterns in the cosmic microwave background
ssee, for example, Spergel et al., 2003d, then the matter
density inferred from clusters implies VL=1−VM
=0.7±0.1, in agreement with measurements of VL from
the supernova magnitude-redshift relation sRiess et al.,
1998; Perlmutter et al., 1999d. Geometrical arguments in-
volving clusters provide weaker support for this conclu-
sion. If the baryon fraction of clusters at a given tem-
perature is assumed to remain constant with time, then
the transverse sizes of clusters as a function of redshift
can be used to constrain the geometry of the universe.
Studies using such methods disfavor VL=0 sMohr et al.,
2000; Arnaud et al., 2002; Allen et al., 2004d.

Large cluster surveys extending to z,1 have the po-
tential to place much stronger constraints on the dark-
energy parameters VL and w, independent of other in-
formation, as long as these surveys are large enough to
permit self-calibration of the mass-observable relation-
ships sHolder et al., 2001; Levine et al., 2002; Weller et
al., 2002d. The accuracy achievable with self-calibration
depends critically on the nature of cluster evolution, be-
cause the self-calibration procedure requires evolution
of the relevant mass-observable relation to be expressed
in a parametric form. Constraints on the cosmological
parameters are considerably weaker if the actual evolu-
tion does not follow the assumed parametric form. How-
ever, cross-calibration of mass-observable evolution
through intensive supplementary observations of a small
subset of the large survey restores much of the potential
inherent in self-calibration sMajumdar and Mohr, 2003d.

Including information on cluster bias inherent in a
large cluster survey further tightens the constraints on
dark energy. Because the tendency of clusters to cluster
with one another depends in a simple way on the cos-
mological model sSec. III.B.5d, folding this information
into the self-calibration procedure improves the accu-

racy with which cosmological parameters can be mea-
sured sMajumdar and Mohr, 2004d. Figure 10 shows how
the estimated constraints on VM and w tighten when
information about cluster bias is added. It assumes that
the universe is flat sVL=1−VMd and considers three dif-
ferent planned cluster surveys: two large Sunyaev-
Zeldovich surveys sSPT and Planckd and a large x-ray
survey sDUETd, each of which will find 20 000–30 000
clusters to z*1 ssee Majumdar and Mohr, 2004, for de-
tailsd. In the most optimistic cases, the parameters VM,
VL, and w will be measured with ,5% accuracy.

A large survey also minimizes the sample variance
that arises from cluster bias sEvrard et al., 2002; Hu and
Kravtsov, 2003d. Because clusters tend to be clustered,
the variance in the number of clusters within small
sample volumes is larger than the Gaussian expectation,
adding systematic uncertainty to the measured mass
function. This effect is generally not large for current
cluster surveys but should be taken into account if one is
designing a cluster survey for making high-precision cos-
mological measurements.

FIG. 10. sColor in online editiond Expected constraints on cos-
mological parameters from self-calibrated surveys. The SPT
and Planck surveys will find 20 000–30 000 clusters through the
Sunyaev-Zeldovich effect. DUET is a proposed x-ray survey
designed to find ,20 000 clusters. Dotted lines, the expected
constraints on w and VM from self-calibration if redshift evo-
lution of the cluster observables behaves exactly according to
the standard scaling relations, allowing the redshift depen-
dences of those scaling relations to be fixed; long-dashed lines,
loosening of constraints when redshift evolution is determined
as part of the self-calibration; dot-dashed lines, tightening of
constraints when information about cluster bias is included in
the calibration. Solid lines, best-case scenario in which the self-
calibration includes both information about cluster bias and
supplementary followup calibrations of a small subset of the
survey. From Majumdar and Mohr, 2004.
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In summary, observations of cluster evolution already
constrain the density of gravitating matter to be VM
<0.3±0.1, meaning that VL<0.7±0.1 if the universe is
flat. Using this value of VM to break the VM-s8 degen-
eracy leads to s8<0.7−1.0, depending on the mass-
temperature calibration. The major source of uncer-
tainty in all these cosmological parameters is not the
statistics of the survey but rather uncertainties in the
normalization and rate of evolution in the mass-
observable relations. In order to better understand these
relations and how they evolve, we need to know how
galaxy formation affects the evolution of the stuff we
can observe—the baryons in clusters. That is where we
turn our attention next.

IV. EVOLUTION OF THE BARYONIC COMPONENT

Those who are cosmologists at heart are interested in
how galaxy formation affects the intracluster medium,
primarily because they would like to know how to mea-
sure cluster masses more accurately. Those who are as-
tronomers at heart are interested in the intracluster me-
dium as well, but for them its main attraction is that the
hot gas contains valuable information about the physical
processes that govern galaxy formation. Clarifying the
connections between galaxy formation and the mass-
observable relations is therefore important to both of
these lines of research.

One of the nagging mysteries in our current picture of
the universe is why so few of the universe’s baryons have
turned into stars sWhite and Rees, 1978; Cole, 1991;
White and Frenk, 1991d. Numerical simulations of cos-
mological structure formation that include baryonic hy-
drodynamics and the radiative cooling processes that
lead to galaxy formation predict that *20% of the bary-
ons should have condensed into galaxies, but fewer than
,10% have been found in the form of stars sBalogh,
Pearce, et al., 2001d. Some form of feedback, involving
supernovae and perhaps outflows from active galactic
nuclei, seems to have stymied condensation, but we are
still largely ignorant about how this feedback works.

Galactic winds like those observed from nearby star-
burst galaxies, in which multiple clustered supernovae
are driving the powerful outflows, are likely to be impor-
tant in regulating early star formation, but observational
constraints on the mass and energy flux in such winds
are sketchy at best sMartin, 1999; Heckman, 2002d, par-
ticularly at high redshift sPettini et al., 2000, 2001; Adel-
berger et al., 2003d. These galactic winds presumably had
a dramatic impact on the intergalactic medium and sub-
sequent galaxy formation, with effects that may have
persisted until the present day sBenson and Madau,
2003; Oh and Benson, 2003d. Likewise, quasars and
other forms of activity driven by black-hole growth in
the nuclei of young galaxies may have produced power-
ful outflows with lasting consequences for the intergalac-
tic gas, but the energy input from these objects is still
highly uncertain sVoit, 1994, 1996; Inoue and Sasaki,
2001; Nath and Roychowdhury, 2002; Scannapieco and
Oh, 2004d.

Unfortunately, the low-redshift intergalactic medium,
where most of the universe’s baryons are thought to re-
side, is notoriously hard to observe. Because the major-
ity of this gaseous matter remains undetected, it is some-
times referred to as the “missing baryons” ssee, for
example, Cen and Ostriker, 1999d. A handful of quasars
are bright enough beacons for probing the missing bary-
ons via absorption-line studies with the ultraviolet spec-
trographs on the Hubble Space Telescope sShull et al.,
1996; Penton et al., 2002d, and that number will increase
if the Cosmic Origins Spectrograph is installed on
Hubble. However, the inferences drawn from such stud-
ies depend critically on the uncertain heavy-element
abundance and ionization state of these intergalactic
clouds sTripp et al., 2000; Shull et al., 2003d.

Clusters of galaxies are still the only places in the uni-
verse where we have anything approaching a complete
accounting of intergalactic baryons, their thermal state,
and their heavy-element enrichment. Thus observations
of the intracluster medium can provide unique insights
into the cooling and feedback processes that govern gal-
axy formation. In order to interpret the signatures of
galaxy formation in the intracluster medium, we need to
understand how the thermodynamic properties of to-
day’s clusters are linked to the physics of the intergalac-
tic baryons at z*2, the epoch of galaxy formation.

This section of the review discusses the current under-
standing of the interactions between galaxy formation
and the intracluster medium, focusing in particular on
how those interactions affect the mass-observable rela-
tions so crucial to cosmology. It begins by outlining the
properties that clusters would have if radiative cooling
of the universe’s baryons and subsequent galaxy forma-
tion were suppressed. Because these properties do not
agree with observations, radiative cooling and galaxy
formation must somehow have altered the structure of
the intracluster medium, with important consequences
for the mass-observable relations. The middle of this
section summarizes some of the recent progress that has
been made in understanding the role of galaxy forma-
tion and its impact on the observable properties of clus-
ters. The section concludes with a brief discussion of the
existing constraints on baryon condensation in clusters.

A. Structure formation and gravitational heating

People who study clusters of galaxies are sometimes
asked how the x-ray-emitting gas gets so hot. The an-
swer to that question is simple. If radiative cooling is
negligible, then gravitationally driven processes will heat
diffuse gas to the virial temperature of the potential well
that confines it. A tougher question would be to ask why
the intracluster medium has the density that it does. In
order to answer that question, one needs to know what
produces the entropy of the x-ray-emitting gas. Without
galaxy formation in the picture, shocks driven by hierar-
chical structure formation are the only source of entropy
for the intracluster medium, and this mode of entropy
production leads to clusters whose density and tempera-
ture structures are nearly self-similar.
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1. Intracluster entropy

Entropy is of fundamental importance for two rea-
sons: it determines the structure of the intracluster me-
dium, and it records the thermodynamic history of the
cluster’s gas. Entropy determines structure because high-
entropy gas floats and low-entropy gas sinks. A cluster’s
intergalactic gas therefore convects until its isentropic
surfaces coincide with the equipotential surfaces of the
dark-matter potential. Thus the entropy distribution of a
cluster’s gas and the shape of the dark-matter potential
well in which that gas sits completely determine the
large-scale x-ray properties of a relaxed cluster of galax-
ies. The gas density profile rgsrd and temperature profile
Tsrd of the intracluster medium in this state of convec-
tive and hydrostatic equilibrium are just manifestations
of its entropy distribution.

This review adopts the approach of other work in this
field and defines “entropy” to be

K ;
kBT

mmprg
2/3 . s63d

The quantity K is the constant of proportionality in the
equation of state P=Krg

5/3 for an adiabatic monatomic
gas and is directly related to the standard thermody-
namic entropy per particle, s=kBln K3/2+s0, where s0 is a
constant that depends only on fundamental constants
and the mixture of particle masses. Another quantity
frequently called “entropy” in the cluster literature is
S=kBTne

−2/3. In order to avoid confusion with the classi-
cal definition of entropy, we shall call this quantity Ke.
For the typical elemental abundances in the intracluster
medium, one can convert between these definitions us-
ing the relation

Ke = kBTne
−2/3 = 960 keV cm2S K

1034 erg cm2 g−5/3D .

s64d

A cluster achieves convective equilibrium when dK /dr
ù0 everywhere, and the entropy distribution that deter-
mines the gas configuration in this state can be ex-
pressed as KsMgd, where the inverse relation MgsKd is
the mass of gas with entropy ,K.

Comparisons between the entropy distributions of
clusters that differ in mass can be simplified by casting
those distributions into dimensionless form ssee, for ex-
ample, Voit et al., 2002d. Combining the mean density of
dark matter within the scale radius r200, the global
baryon fraction fb=Vb /VM, and the characteristic halo
temperature T200 gives the characteristic entropy scale

K200 =
kBT200

mmps200fbrcrd2/3 =
1
2
F2p

15
G2M200

fbHszd G2/3

. s65d

For fb=0.022h−2, this entropy scale reduces to

Ke,200 = 362kBTlum cm2ST200

Tlum
D

3 FHszd
H0

G−4/3SVM

0.3
D−4/3

. s66d

Writing the entropy scale in this way makes explicit the
fact that the observed temperature of a cluster is not
necessarily a reliable guide to the characteristic entropy
K200 of its halo. If the intracluster medium of a real clus-
ter is either hotter or cooler than T200, then one must
apply the correction factor T200/Tlum when computing
the cluster’s value of K200.

2. Entropy generation by smooth accretion

One way to approach the problem of gravitationally
driven entropy generation is through spherically sym-
metric models of smooth accretion, in which gas passes
through an accretion shock as it enters the cluster
sKnight and Ponman, 1997; Tozzi and Norman, 2001;
Voit et al., 2003d. If the incoming gas is cold, then the
accretion shock is the sole source of intracluster entropy.
If, instead, the incoming gas has been heated before
passing through the accretion shock, then the Mach
number of the shock is smaller, and the intracluster en-
tropy level reflects both the amount of preheating and
the production of entropy at the accretion shock.

Let us first consider the case of cold accreting gas, in
which the pressure and entropy of the incoming gas are
negligible. Suppose that mass accretes in a series of con-
centric shells, each with baryon fraction fb, that initially
comove with the Hubble flow as in the spherical collapse
model of Sec. III.B.1. In this simple model, a shell that
initially encloses total mass M reaches zero velocity at
the turnaround radius rta and falls back through an ac-
cretion shock at a radius rac in the neighborhood of the
virial radius rta /2.

Because the cold accreting gas is effectively pressure-
less, the equations that determine the post-shock en-
tropy are

Ṁg = 4prac
2 r1vac, s67d

vac
2 =

2GM

rta
, s68d

kBT2 =
1
3

mmpvac
2 , s69d

r2 = 4r1, s70d

where Ṁg= fbṀ is the gas accretion rate, r1 is the pre-
shock gas density, T2 and r2 are post-shock quantities,
and the accretion radius has been set to rac=rta /2. Equa-
tions s69d and s70d are restatements of the jump condi-
tions for strong shocks, assuming that the post-shock ve-
locity is negligible in the cluster rest frame sLandau and
Lifshitz, 1959; Cavaliere et al., 1997d and Eq. s68d is exact
only for cosmologies with VL=0.
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The post-shock entropy produced by smooth accre-
tion of cold gas at time t is therefore

Ksm =
vac

2

3s4r1d2/3 =
1
3
SpG2

fb
D2/3Fd ln M

d ln t
G−2/3

sMtd2/3.

s71d

Because the entropy generated at the shock front in-
creases monotonically with time, such an idealized clus-
ter never convects, but rather accretes shells of baryons
as if they were onion skins. The resulting entropy distri-
bution in dimensionless form is

KsmsMgd
K200

=
2
3
S15

2
D2/3

sH0t0d2/3

3 Fd ln h

d ln t
G−2/3Fhtshd

t0
G2/3

, s72d

where h;Mgstd / fbM200st0d is effectively a radial coordi-
nate corresponding to the amount of gas accreted by
time t divided by the amount accreted by the present
time t0. Given these assumptions, the entropy profile
arising from smooth accretion of cold gas depends en-
tirely on the mass accretion history Mstd, and the profiles
of objects with similar accretion histories should be self-
similar with respect to K200.

This simple model yields entropy distributions whose
overall shape agrees with cluster observations sVoit et
al., 2003d. The rate at which a cluster accretes matter
through hierarchical structure formation depends on the
growth function Dstd and the power-law slope aM
;d ln s−1 /d ln M of the perturbation spectrum on the
mass scale of the cluster: Mstd~ fDstdg1/2aM sLacey and
Cole, 1993; Voit and Donahue, 1998d. Clusters ranging in
mass from 1014M( to 1015M( grow roughly as Mstd~ t to
Mstd~ t2 in the concordance model sTozzi and Norman,
2001; Voit et al., 2003d. Plugging these growth rates into
Eq. s72d leads to entropy distributions between K~Mg

and K~Mg
4/3. Throughout much of a cluster, the gas

mass encompassed within a given radius rises approxi-
mately linearly with radius sSec. II.B.1d, meaning that
the Ksrd relation should be slightly steeper than linear.
Numerical models of smooth accretion by Tozzi and
Norman s2001d find Ksrd~r1.1. The entropy profile ob-
served outside the core regions of clusters also obeys
Ksrd~r1.1 sPratt and Arnaud, 2002, 2003d, but the extent
to which this agreement is coincidental is not clear.

If the accreting gas is not cold, then the intracluster
entropy profile produced by smooth accretion has an
isentropic core with an entropy level similar to the pre-
shock entropy sBalogh et al., 1999; Tozzi and Norman,
2001d. A nonzero initial entropy level K1 changes the
cold-accretion model outlined above by altering the
jump conditions represented by Eqs. s69d and s70d.
When K1 is no larger than the entropy generated at the
accretion shock, then the entropy profile created by
smooth accretion of warm gas can be closely approxi-
mated by adding 0.84K1 to the entropy profile KsmsMgd
from the cold-accretion case sDos Santos and Doré,

2002; Voit et al., 2003d. If K1 is larger than Ksm, then the
accretion shock is weak or nonexistent, and accretion is
nearly adiabatic, leading to an isentropic entropy profile
with the constant value K1.

3. Entropy generation by hierarchical merging

In real clusters the accreting gas is lumpy, not smooth,
which transforms the nature of entropy generation. In-
coming gas associated with accreting sublumps of matter
enters the cluster with a wide range of densities. There is
no well-defined accretion shock, but rather a complex
network of shocks as different lumps of infalling gas mix
with the intracluster medium of the main halo. Numeri-
cal simulations of this process beginning with cosmologi-
cal initial conditions produce clusters that have nearly
self-similar entropy structure se.g., Navarro et al., 1995d,
as expected from the scaling properties of hierarchical
structure formation sKaiser, 1986d.

Figure 11 shows entropy profiles of 40 clusters gener-
ated with a numerical simulation of a LCDM cosmology,
including hydrodynamics but not radiative cooling sKay,
2004; Voit et al., 2005d. The masses of these clusters span
more than a factor of 30, but when their entropy profiles
are divided by the appropriate value of K200, they lie
nearly on top of one another, at least outside the ap-
proximate core radius 0.1r200. This result is not unique to

FIG. 11. sColor in online editiond Dimensionless entropy
K /K200 as a function of scale radius r /r200 for 30 clusters simu-
lated without radiative cooling or feedback: j, the median
profile; dashed line, the power-law relation K /K200
=1.32sr /r200d1.1. Most of the entropy profiles shown lie close to
this relation in the radial range 0.1&r /r200&1.0. At smaller
radii, the entropy profiles generally flatten, and their disper-
sion increases. This flattening is likely to be a real effect, as it
sets in well outside the shaded box showing the gravitational
softening length of the simulation.
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the simulation method. All codes with sufficiently high
resolution find that nonradiative clusters have approxi-
mately self-similar entropy structure and, consequently,
self-similar density and temperature structure sFrenk et
al., 1999; Voit et al., 2005d.

The self-similarity of the entropy profile in nonradia-
tive clusters is a very useful point of comparison for in-
vestigating the effects of galaxy formation. Deviations
from this baseline profile are likely to be due to a com-
bination of radiative cooling and the feedback processes
that ensue. Voit et al. s2005d find that a good represen-
tation of the baseline entropy profile produced outside
the cores of clusters by hierarchical structure formation
is given by the power law KPL= s1.32±0.2dK200sr /r200d1.1.
Specifying the baseline entropy profile within the cluster
core s,0.1r200d is more difficult, both because there is
more dispersion in that region among simulated clusters
and because the results there depend somewhat on the
hydrodynamical method used in the simulations.

Another notable aspect of self-similarity in nonradia-
tive clusters is that the gas density profile and the dark-
matter density profile outside 0.1r200 have virtually iden-
tical shapes sNavarro et al., 1995; Frenk et al., 1999d. This
feature leads to another useful approximation to the en-
tropy profiles of nonradiative clusters sBryan, 2000d.
One can specify the gas density profile by assuming that
it obeys a Navarro-Frank-White density profile sSec.
III.B.2d with the same concentration as the dark matter
and a total baryon mass fbM200 within r200 and then com-
pute the temperature profile that would keep the gas in
hydrostatic equilibrium. The temperature and density
profiles in this kind of model approximately obey the
polytropic relation Tsrd~ frsrdggeff−1, with geff<1.1–1.2
sKomatsu and Seljak, 2001; Voit et al., 2002d. Combining
them produces an alternative baseline entropy profile
that depends on the concentration parameter c200 of the
dark-matter halo and that this review will denote as
KNFWsrd.

Despite the complexity of the shock structure in hier-
archical accretion, the numerically simulated entropy
profiles are similar in shape to those created by smooth
accretion models sBorgani, Rosati, et al., 2001; Borgani,
Governato, et al., 2002d. However, these profiles have
lower overall entropy levels than the smooth accretion
profiles sVoit et al., 2003d. Figure 12 demonstrates this
point by comparing the two approximations, KPL and
KNFW, of simulated nonradiative clusters with two en-
tropy profiles drawn from smooth accretion models, one
from the numerical computations of Tozzi and Norman
s2001d and the other from Eq. s72d, assuming M~ t3/2 and
H0t0=1, which are reasonable assumptions for LCDM
models.

The likely reason for this discrepancy is that smooth
accretion maximizes entropy production because it mini-
mizes the mean mass-weighted density of accreting gas
sPonman et al., 2003; Voit et al., 2003d. Smoothing the
accreting gas does not change the accretion velocity but
does reduce the mean density of accreting gas lumps.
Because post-shock entropy scales as vac

2 r1
−2/3, the mean

entropy of lumpy accreted gas is therefore less than in
the smooth-accretion case. This effect of smoothing
might not be entirely academic, because the observed
entropy profiles of low-temperature clusters show a
similar entropy boost relative to the baseline profile
sVoit and Ponman, 2003; Voit et al., 2005d.

4. Observed entropy profiles

Astronomers have known for more than a decade that
the structure of the intracluster medium in real clusters
cannot be self-similar because the luminosity-
temperature relation of clusters does not agree with self-
similar scaling sEdge and Stewart, 1991; Evrard and
Henry, 1991; Kaiser, 1991; Sec. III.C.3d. Only within the
last couple of years has the nature of that deviation from
self-similarity become clear. High-quality cluster obser-
vations with the XMM-Newton satellite are showing
that intracluster entropy profiles have the Ksrd~r1.1

shape characteristic of gravitational structure formation
outside of the core, but the overall normalization of
these profiles scales as Tlum

2/3 instead of Tlum, as in the
baseline profiles sPratt and Arnaud, 2003d. Analyses of
much larger cluster samples observed with earlier x-ray
telescopes have arrived at the same conclusion. Instead
of self-similarity with Ksr /r200d~Tlum, Ponman et al.
s2003d find altered similarity with Ksr /r200d~Tlum

2/3 at both

FIG. 12. Entropy profiles from smooth accretion and hierar-
chical accretion. Smoothing of the gas accreting onto a cluster
boosts entropy production while maintaining the characteristic
Ksrd~r1.1 entropy profile. The two lower lines show approxi-
mate entropy profiles produced by sshort-dashed lined hierar-
chical accretion, including the power-law expression from Fig.
11 and ssolid lined the KNFW model described in the text, with
c200=5. The two upper lines show entropy profiles resulting
from smooth accretion models, including sdotted lined a profile
computed by Tozzi and Norman s2001d for a 1015h−1M( cluster
with 300 keV cm2 of preheating and radiative cooling imple-
mented and slong-dashed lined a profile computed from Eq.
s72d and preheating amounting to 0.1K200. The two smooth
models run roughly parallel to the hierarchical accretion mod-
els but their normalizations are ,1.5 times higher.
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the core radius 0.1r200 and farther out in clusters, at the
scale radius r500<0.66r200. The question to be answered
is therefore how galaxy formation and feedback manage
to produce such a shift in the overall normalization of
cluster entropy profiles without substantially changing
their shape.

B. Galaxy formation and feedback

In the decade since astronomers became aware of
similarity breaking in clusters there have been many nu-
merical simulations devoted to understanding it. Our
understanding of this problem remains incomplete be-
cause including galaxy formation in cosmological models
of cluster formation is a formidable computational chal-
lenge, requiring codes that simulate three-dimensional
hydrodynamics spanning an enormous dynamical range
in length scales and that track a large number of physical
processes. The volume required to model a cosmologi-
cally significant sample of clusters is of order 1026 cm in
linear scale. Individual galaxies have sizes ,1023 cm,
star-forming regions within those galaxies can be as
small as 1019 cm, and the stars themselves are only
,1011 cm in size. Sophisticated hydrodynamical tech-
niques are now able to model the formation of the first
stars from cosmological initial conditions sAbel et al.,
2002d, but are far from being able to track in detail the
formation of an entire galaxy’s worth of stars, let alone
all the feedback processes that can occur.

For the time being, the difficulty of solving this prob-
lem from first principles means that modelers have to be
selective about the physical processes and conditions
that merit modeling. Important clues to what the essen-
tial processes are can be gleaned from the observed
characteristics of clusters. This part of the review sifts
through some of those clues, showing that radiative
cooling is likely to be the process that sets the entropy
scale of similarity breaking but that radiative cooling
cannot act alone. Otherwise, too much baryonic matter
would condense into stars and cold gas clouds.

1. Preheating

Early approaches to the problem of similarity break-
ing in clusters postulated that some sort of heating pro-
cess imposed a universal minimum entropy—an entropy
floor—on the intergalactic gas before it collected into
clusters sEvrard and Henry, 1991; Kaiser, 1991d. Impos-
ing a global entropy floor helps to bring the theoretical
LX-Tlum relation into better agreement with observa-
tions because this extra entropy makes the gas harder to
compress in cluster cores, where entropy is smallest, par-
ticularly in the shallower potential wells of low-
temperature clusters. This resistance to compression
breaks cluster similarity by lowering the core density
and therefore the x-ray emissivity in low-T clusters more
than in high-T clusters, thereby steepening the
LX-Tlum relation.

According to this preheating picture, the core entropy
level and scaling relations of clusters should reflect the

global entropy floor produced at early times. Initial mea-
surements of entropy at the core radius r0.1 demon-
strated that low-temperature clusters had greater
amounts of entropy than expected from self-similarity
and suggested that the level of the entropy floor was
,135 keV cm2 sPonman et al., 1999; Lloyd-Davies et al.,
2000d. This result matched well with numerical simula-
tions of cluster formation with preheating levels of
50–100 keV cm2 that produced clusters with approxi-
mately the right LX-Tlum relation sBialek et al., 2001d.

However, simple preheating now appears to be too
crude an explanation for similarity breaking. In the pre-
heating picture, low-temperature clusters should have
large isentropic cores sBalogh et al., 1999; Tozzi and Nor-
man, 2001d, but this prediction disagrees with the obser-
vations showing that the shapes of cluster entropy pro-
files do not depend significantly on temperature sSec.
IV.A.4d. In addition, the abundant evidence for interga-
lactic gas at &105 K from quasar absorption-line studies
clearly shows that preheating cannot be global at z*2,
and the preheating models themselves do not explain
why the level of the entropy floor should be
,135 keV cm2.

2. Radiative cooling

In contrast, the observed entropy scale of similarity
breaking emerges naturally from the process of radiative
cooling. Intergalactic gas both inside and outside of clus-
ters radiates thermal energy at a rate given by the cool-
ing function LcsTd, described in more detail in Sec.
II.B.1. Cooling that radiates an energy Dq per particle
reduces the entropy by D ln K3/2=Dq /kBT. Thus the
equation expressing these radiative losses can be written

dK3/2

dt
= −

3
2

Kc
3/2sTd
t0

, s73d

where

KcsTd = F2
3
Snenp

r2 D skBTd1/2LcsTd
smmpd1/2 G2/3

t0
2/3 s74d

is the entropy level at which constant-density gas at tem-
perature T radiates an energy equivalent to its thermal
energy in the time t0. The latter formula reduces to

KcsTd < 81 keV cm2S t0

14 Gyr
D2/3S T

1 keV
D2/3

s75d

when pure bremsstrahlung cooling is assumed.
The fact that the entropy threshold below which gas

cools within the universe’s lifetime is close to the en-
tropy floor inferred from clusters with ,2 keV tempera-
tures suggests that radiative cooling sets the entropy
scale for similarity breaking sVoit and Bryan, 2001d. Voit
and Ponman s2003d further quantify this point. Figure 13
shows how entropy measurements at 0.1r200 in a large
sample of clusters sPonman et al., 2003d compare with
the cooling threshold KcsTd for gas with heavy-element
abundances equal to 30% of their solar values relative to
hydrogen. Both the measured core entropies and the en-
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tropy threshold for cooling scale as T2/3, and they are
approximately equal, although the scatter in the data is
quite significant.

Section IV.C.1 below shows that radiative cooling also
accounts well for the scaling relations of global x-ray
properties like LX and Tlum with mass. However, casting
Eq. s75d in dimensionless form illustrates why at least
some feedback must compensate for cooling:

KcsTd
K200

< 0.2sHtd2/3FHszd
H0

G2/3S T

1 keV
D−1/3

. s76d

The cooling threshold in low-temperature clusters at the
present time is ,20% of the characteristic entropy K200,
and it is greater than that if emission-line cooling from
heavy elements is included. At earlier times, the dimen-
sionless cooling threshold is even higher, meaning that a
large proportion of the baryons belonging to the pro-
genitor objects that ultimately assembled into present-
day clusters should have condensed into stars or cold gas
clouds. This is one of the manifestations of the classic
overcooling problem of hierarchical galaxy formation
sWhite and Rees, 1978; Cole, 1991; Blanchard et al.,
1992d. Because the observed mass ratio of stars to hot
gas in clusters is only about 10% sSec. IV.Dd, wholesale
baryon condensation does not seem to have happened.

Recognition of this overcooling problem led Voit and
Bryan s2001d to propose a way for radiative cooling to
determine the entropy scale of similarity breaking with-
out acting alone. The basic idea is that gas with entropy
less than KcsTd cannot persist indefinitely. It must either
cool and condense or be heated until its entropy exceeds
KcsTd. At any given time, feedback is triggered by con-

densing gas parcels with entropy less than the cooling
threshold and acts until those parcels are eliminated by
either cooling, heating, or some combination of the two.
Thus the joint action of cooling and feedback imprints
an entropy scale corresponding to the cooling threshold,
regardless of how strong the feedback is. This kind of
effect has now been seen in a number of numerical
simulations that include cooling and differing forms of
feedback sBorgani, Governato, et al., 2002; Davé et al.,
2002; Borgani, Murante, et al., 2003; Kay et al., 2003;
Valdarnini, 2003d.

The fact that similarity breaking is not very sensitive
to the efficiency of feedback is good news for cosmolo-
gists but bad news for astrophysicists. It offers hope that
we can understand the mass-observable relations of clus-
ters without solving all the messy astrophysical problems
of feedback. Yet, it also implies that the mass-observable
relations alone do not tell us much about the nature of
that feedback. Instead, we must look to the spatially re-
solved entropy profiles of clusters sVoit and Ponman,
2003; Kay, 2004d and the ratio of condensed baryons to
hot gas in clusters sBalogh, Pearce, et al., 2001; Borgani,
Governato, et al., 2002; Borgani, Mutante, et al., 2003;
Kay et al., 2003d.

3. Feedback from supernovae

Supernovae are the most obvious candidates for sup-
plying the feedback that suppresses condensation, but it
is not clear that supernova heating and the galactic
winds it drives can provide enough entropy to keep the
fraction of condensed baryons below about 15%.
Heavy-element abundances in clusters imply that the to-
tal amount of supernova energy released during a clus-
ter’s history amounts to ,0.3–1 keV per gas particle in
the intracluster medium sFinoguenov, Arnaud, and
David, 2001; Pipino et al., 2002d. The amount of energy
input needed to explain the mass-observable relations
while avoiding overcooling is ,1 keV sWu et al., 2001;
Voit et al., 2002; Tornatore et al., 2003d at the upper end
of the range inferred from heavy elements, but the
transfer of supernova energy to the intracluster medium
must be highly efficient, which seems unlikely sKravtsov
and Yepes, 2000d. Supernova energy would have to be
converted almost entirely to thermal energy with very
little radiated away.

In order to avoid radiative losses, supernova heating
must raise the entropy of the gas it heats to at least
100 keV cm2. An evenly distributed thermal energy in-
put of order 1 keV would therefore have to go into gas
significantly less dense than 10−3 cm−3 to avoid such
losses. Gas near the centers of present-day clusters, not
to mention the galaxies where supernovae occur, is
denser than that, particularly at earlier times when most
of the star formation happened. Simulations that spread
supernova feedback evenly therefore produce too many
condensed baryons in clusters sBorgani, Governato, et
al., 2002d. Artificial algorithms that target supernova
feedback at gas parcels that would otherwise cool are
more successful at preventing overcooling sKay et al.,

FIG. 13. Comparison of entropy measured at 0.1r200 and the
cooling threshold in a large sample of clusters: small points,
entropy K0.1 measured at 0.1r200 in a sample of 64 clusters;
points with error bars, the mean entropy measurement in tem-
perature bins of eight clusters each; dotted line, mean entropy
predicted by simulations of clusters without radiative cooling
of feedback; solid line, value of the cooling threshold KcsTd
computed for heavy-element abundances 0.3 times their solar
values and t0=14 Gyr; dashed line, entropy predicted at 0.1r200
by the simple analytical model. From Voit and Ponman, 2003.
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2003d. However, efforts to implement a more realistic
version of targeted feedback in the form of galactic
winds are still not entirely successful at preventing over-
cooling sBorgani, Murante, et al., 2003d.

It remains to be seen whether supernova feedback
alone can account for the observed entropy profiles of
clusters. Voit et al. s2003d and Ponman et al. s2003d have
proposed that entropy input from galactic winds preced-
ing the accretion of gas onto clusters could lead to a
form of entropy amplification that would explain the ob-
servations. If galactic winds are strong enough to signifi-
cantly smooth out the lumpiness of the local intergalac-
tic gas, then the mode of accretion of this gas onto
clusters will be closer to smooth accretion than to hier-
archical accretion, thereby boosting the entropy gener-
ated through accretion shocks without changing the pro-
file’s characteristic shape. This effect is a plausible
explanation for the altered similarity of the observed
entropy profiles, but it has not yet been thoroughly
tested in simulations. Intriguing results by Kay s2004d
show that an extremely targeted feedback model, in
which supernovae heat the local gas to 1000 keV cm2,
successfully reproduces both the normalization and
shape of the observed entropy profiles.

4. Feedback from active galactic nuclei

If supernovae cannot prevent overcooling, then per-
haps supermassive black holes in the nuclei of galaxies
are what stop it sValageas and Silk, 1999; Wu et al., 2001;
Cavaliere et al., 2002d. The omnipresence of supermas-
sive black holes at the centers of galaxies sMagorrian et
al., 1998d and the excellent correlation of their masses
with the bulge and halo properties of the host galaxy
sFerrarese and Merritt, 2000; Gebhardt et al., 2000d
strongly suggest that the growth of black holes in the
nuclei of galaxies goes hand-in-hand with galaxy forma-
tion. Furthermore, the centers of many clusters with
low-entropy gas whose cooling time is less than the age
of the universe also contain active galactic nuclei that
are ejecting streams of relativistic plasma into the intra-
cluster medium sBurns, 1990d. It is therefore plausible
that supermassive black holes at the centers of clusters
provide feedback that suppresses further cooling when-
ever condensing intracluster gas accretes onto the cen-
tral black hole.

Such a feedback loop is attractive and consistent with
the circumstantial evidence, but the precise mechanism
of heating remains unclear. The bubbles of relativistic
plasma being inflated by the active galactic nuclei in
clusters appear not to be expanding fast enough to
shock-heat the intracluster medium because the rims of
the bubbles are no hotter than their surroundings sFa-
bian et al., 2000; McNamara et al., 2000d. Also, if active
galactic nuclei simply injected heat energy into the cen-
ter of a cluster, then one would expect to see a flat or
reversed entropy gradient in clusters with strong nuclear
activity, indicating that convection is carrying heat out-
ward. Instead, the entropy gradients in these cluster
cores increase monotonically outward sDavid et al.,

2001; Horner et al., 2004d. One possibility is that heating
is episodic sKaiser and Binney, 2003d and that we have
not yet found a cluster in the midst of an intense heating
episode. Another is that heating is somehow spread
evenly throughout the cluster core in a way that main-
tains the entropy gradient sBrüggen and Kaiser, 2002;
Ruszokowski and Begelman, 2002d. Yet another possibil-
ity is that bursts of relativistic plasma drive sound waves
into the intracluster medium that eventually dissipate
into heat sFabian et al., 2003d.

Unfortunately, none of these heating mechanisms has
yet been tested in the context of cosmological structure
formation, so we do not know their overall impact on
either baryon condensation or the global entropy pro-
files of clusters. Also, many aspects of the relationship
between cosmology and nuclear activity in galaxies re-
main highly uncertain. A major role for quasar feedback
is plausible. However, the connection between the
growth of central black holes in galaxies and galaxy for-
mation itself is not well understood, and the efficiency
with which black holes convert accretion energy into
outflows is unknown.

5. Transport processes

Heat-transport processes like thermal conduction and
turbulent mixing may also mitigate radiative cooling be-
cause gas that condenses sets up a temperature gradient
along which heat energy can flow. In gas without mag-
netic fields, electrons conduct heat along temperature
gradients giving a heat flux ks¹T, with ks<6
310−7 T5/2 erg cm−1 s−1 K−7/2 sSpitzer, 1962d, the so-
called Spitzer rate, valid when the scale length of the
temperature gradient is longer than the electron mean
free path. Clusters with central cooling times less than
H0

−1 indeed tend to have positive temperature gradients
within the central ,100 kpc, raising the possibility that
heat conduction at least partially balances radiative
losses. Many models for conduction in cluster cores have
been developed se.g., Tucker and Rosner, 1983; Bertsch-
inger and Meiksin, 1986; Bregman and David, 1988;
Rosner and Tucker, 1989; Sparks, 1992d, but conduction
does not satisfactorily balance radiative cooling.
Temperature-gradient observations are inconsistent with
steady-state balance between cooling and conduction in
a number of cluster cores sHorner et al., 2004; Voigt and
Fabian, 2004d. However, mixing of hot gas with cooler
gas facilitated by intracluster turbulence sKim and
Narayan, 2003d or active galactic nucleus sAGNd activity
sBrüggen and Kaiser, 2002d could enhance the effective-
ness of heat conduction.

It is possible that cooling, conduction, feedback, and
perhaps mixing as well are all needed for a complete
solution that explains the observed core temperature
gradients without overcooling. Conduction that balances
cooling in a steady state has often been dismissed on the
grounds that it is not stable enough to preserve the ob-
served temperature and density gradients for periods of
order *1 Gyr sCowie and Binney, 1977; Fabian, 1994d.
Because of conduction’s extreme sensitivity to tempera-
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ture, it is difficult for radiative cooling and conduction to
achieve precise thermal balance with a globally stable
temperature gradient sBregman and David, 1988; Soker,
2003d. On the other hand, conduction would have to be
suppressed by at least two orders of magnitude for ra-
diative cooling to produce the observed gradients sBin-
ney and Cowie, 1981; Fabian et al., 1981d. Recent theo-
retical analyses of conduction have concluded that this
level of suppression is unrealistically high sMalyshkin,
2001; Malyshkin and Kulsrud, 2001; Narayan and
Medvedev, 2001d. Combining cooling, conduction, and
feedback offers a way out of this dilemma. Hybrid mod-
els in which conduction compensates for cooling in the
outer parts of the core, while feedback from an active
galactic nucleus compensates for it in the inner parts,
have had some success in reproducing the observations
sRuszkowski and Begelman, 2002; Brighenti and
Mathews, 2003d.

C. Galaxy formation and cluster observables

Earlier we saw that the x-ray properties of the self-
similar clusters produced by purely gravitational struc-
ture formation do not agree with observations sSec.
IV.Ad. Observed clusters of a given mass appear to be
hotter than their theoretical counterparts and also less
luminous, especially at the cool end of the cluster tem-
perature range. Such disagreements have been worri-
some to cosmologists who would like to understand
what governs the cluster observables used to measure
mass, but these problems are on their way to being
solved. Both analytical work and hydrodynamical simu-
lations performed during the last several years are show-
ing that the observed LX-Tlum, M200-Tlum, and LX-M200
relations are natural outcomes of galaxy formation. Sig-
nificant uncertainties remain, but the theoretical founda-
tion for the mass-observable relations essential for prob-
ing cosmology with clusters is growing firmer.

1. Role of cooling

Radiative cooling turns out to be the most important
process to include. While it might seem paradoxical, al-
lowing the intracluster medium to radiate thermal en-
ergy actually causes its luminosity-weighted temperature
to rise. The reason for this behavior is that cooling se-
lectively removes low-entropy gas from the intracluster
medium, raising the mean entropy of what remains
sKnight and Ponman, 1997; Bryan, 2000; Pearce et al.,
2000d. In nonradiative cluster simulations, the entropy of
gas in the vicinity of the cluster core is below the cooling
threshold Kc. This aspect of nonradiative models is un-
physical, because gas with entropy less than Kc would
radiate an amount of energy greater than its total ther-
mal energy content over the course of the simulations.
When cooling is allowed to occur, this low-entropy core
gas condenses out of the intracluster medium and is re-
placed by higher-entropy core gas having a higher tem-
perature, a lower density, and therefore a lower luminos-
ity.

A simple analytical model illustrates the effect of the
cooling threshold on the LX-Tlum and M200-Tlum rela-
tions sVoit and Bryan, 2001; Voit et al., 2002; Wu and
Xue, 2002d. The model assumes that the intracluster en-
tropy distribution in the absence of galaxy formation
would be the KNFWsMgd distribution derived from the
density profile of the dark matter. Because condensation
and feedback both act to eliminate gas below the cooling
threshold, the model simply truncates the entropy distri-
bution at KcsT200d and discards all the gas with lower
entropy. One can interpret this gas removal either as
condensation or as extreme feedback that heats the sub-
threshold gas to a much higher entropy level. This cool-
ing and feedback need not occur at the center of the
cluster. In a hierarchical cosmology, much of the low-
entropy gas cools, condenses into galaxies, and produces
feedback long before the cluster is finally assembled.

Computing the hydrostatic configuration of the modi-
fied entropy distribution in the original dark-matter po-
tential gives LX and Tlum as a function of the mass M200
and concentration c200 of the dark-matter halo. Figures
14 and 15 show that the resulting LX-Tlum and
M200-Tlum relations generally agree well with observa-
tions but may slightly overpredict LX for objects cooler
than ,2 keV and do not account for the large scatter at
low temperatures. There are no free parameters in this
model, other than the cosmological parameters, because
the M200-c200 relation and the age of the universe used to
compute Kc depend only on cosmology, and the heavy-
element abundance used to compute the cooling thresh-
old is taken from observations.

Numerical simulations in which feedback is either
weak or nonexistent produce clusters whose properties
are quite similar to the ones in this simple analytical
model. Early numerical investigations of cooling in indi-
vidual clusters gave inconclusive results sSuginohara and
Ostriker, 1998; Lewis et al., 2000d, but simulations by
Muanwong et al. s2001d showed that adding cooling to a
large-scale cluster simulation could give an
LX-Tlum relation like the observed one. Subsequent nu-
merical work has confirmed that result se.g., Borgani,
Governato, et al., 2002; Davé et al., 2002; Kay et al., 2003;
Valdarnini, 2003d. Adding radiative cooling to the cos-
mological model produces good agreement with obser-
vations at all cluster temperatures *2 keV.

Even when the simulations implement strong feed-
back, the x-ray scaling relations change remarkably little
from the cooling-only case sBorgani, Governato, et al.,
2002; Kay et al., 2003d. The main effect on the
LX-Tlum relation of adding strong feedback to simula-
tions that already include cooling is to slightly reduce
the luminosity of cool s&2 keVd clusters, bringing them
into better agreement with observations. This insensitiv-
ity to the efficiency of feedback is another strong indica-
tion that the cooling threshold governs the entropy scale
for similarity breaking.

One point of disagreement among the analytical mod-
els, the simulations, and the observations concerns the
central temperature gradient. Many observed clusters
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have a relatively small amount of gas in their cores
whose cooling time is less than the age of the universe,
and in those clusters the core temperature gradient is
generally positive sdT /dr.0d. In the simple analytical
models outlined above, no gas is allowed to be below the
cooling threshold, resulting in a core that is nearly isen-
tropic and thus has a negative temperature gradient
sdT /dr,0d. Likewise, simulations with cooling and
feedback tend to have flat or negative temperature gra-
dients in the neighborhood of the core radius
s,100 kpcd.

This problem deserves attention because elevated
core temperatures in models with cooling are what bring
the theoretical M200-Tlum relation into agreement with
observations. Making the analytical model slightly more
realistic brings the predicted temperature gradient into
better agreement with observations. The discontinuous
cooling threshold applied by the simplest models is
overly crude because it completely removes gas just be-
low the threshold, while gas just above the threshold
does not cool at all. Instead, cooling acts upon the en-
tropy distribution as described by Eq. s73d. Voit et al.
s2002d show that modifying the baseline profile KNFW,
using this equation with T=T200 for a time t0, leads to an

entropy distribution that reproduces the observed tem-
perature gradients.

Simulations involving pure cooling do not agree with
this result. The temperature-gradient discrepancy be-
tween analytical models and simulations in the pure-
cooling case is still not understood, but may have some-
thing to do with the implicit stability of the cooling
process in the analytical model. In that model the
present-day intracluster medium is, by definition, spheri-
cally symmetric with a positive entropy gradient,
whereas thermal instabilities in the simulations that lead
to a more heterogenous entropy pattern at each radius
may be at the root of the negative temperature gradient.
Perhaps the observations are telling us that a stabilizing
influence, like conduction, erases small-scale thermal in-
stabilities without shutting off global cooling.

2. Role of feedback

The primary role of feedback is to regulate how many
baryons condense into stars and cold gas clouds. As
mentioned in the discussion of cooling, strong feedback
does not have a large effect on the LX-Tlum relation,
aside from a slight decrease in the luminosity of low-

FIG. 14. Luminosity-temperature relation: m, data from Arnaud and Evrard s1999d, who avoided clusters with cool cores; h,
cluster data from Markevitch s1998d with cool cores excised; 3, group data from Helsdon and Ponman s2000d and solid octagons,
from Osmond and Ponman s2004d, which were not corrected for cool cores; small points, simulated clusters from Borgani et al.
s2003d. These simulations implement radiative cooling and supernova feedback in the form of galactic winds. Lines show modified-
entropy models from Voit et al. s2002d with entropy truncated at the cooling threshold. There is a slight dependence on s8 in these
models because higher values of s8 lead to dark-matter halos with more concentrated cores. Both the analytical and numerical
models agree well with the data at kBTlum*2 keV. Agreement is not as good at lower temperatures, but the reasons for the
disagreement are unclear. More feedback may be needed in the numerical models to suppress the luminosities, and the large
scatter in the observations at &1 keV may reflect a wide range in the effectiveness of feedback.
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temperature clusters, as long as it is strong enough to
shut off cooling in the gas parcels that it affects. How-
ever, moderate feedback that heats gas to &100 keV cm2

can boost LX because it does not allow the core gas to
cool, but rather maintains it in an entropy state that al-
lows it to radiate considerable thermal energy sKay et
al., 2003d.

Some preheating and feedback models adequately ex-
plain the scaling relations without explicitly including
cooling se.g, Balogh et al., 1999; Bialek et al., 2001; Tozzi
and Norman, 2001; Babul et al., 2002d In these models,
the minimum entropy level introduced by heating is
typically a free parameter that is adjusted to give the
best-fitting LX-Tlum relation. The value of this best-
fitting entropy level turns out to be 100–400 keV cm2,
approximately corresponding to the level of the cooling
threshold. This correspondence is consistent with the
idea that the amount of heating needed to explain the
mass-observable relation is determined by the need to
shut off cooling, in which case cooling still sets the en-
tropy scale of similarity breaking, even when it is not
explicitly included in the model sVoit et al., 2002d.

From the standpoint of the mass-observable relations,
the most important effect of feedback itself has to do

with cluster richness. In both the simulations and the
analytical models, pure cooling leads to a larger fraction
of condensed baryons in cool clusters sMuanwong et al.,
2001; Borgani, Governato, et al., 2002; Davé et al., 2002;
Voit et al., 2002; Borgani, Murante, et al., 2003d, implying
that these objects might have a higher star-to-baryon ra-
tio and therefore a lower mass-to-light ratio. There are
some observational indications that the ratio of stellar
luminosity to mass in clusters is a function of mass sLin
et al., 2003d, but not all such studies agree. This issue will
need to be settled in order for optical richness measure-
ments to deliver high-precision mass functions sSec.
IV.Dd.

3. Role of smoothing

A full understanding of the LX-Tlum relation may in-
volve feedback indirectly, through its smoothing effects
on the intergalactic medium sSec. IV.A.3d. If the ob-
served preservation of Ksrd~r1.1 entropy profiles is in-
deed due to smoothing of the intergalactic medium fol-
lowed by accretion onto clusters, then the present-day
entropy profiles of clusters are evidence that galactic
winds were widespread prior to the accretion of gas into

FIG. 15. Mass-temperature relation: Large data points show cluster data from Finoguenov, Reiprich, et al. s2001d and Nevalainen
et al. s2000d, in which cluster masses were inferred from fitting polytropic beta models ssee Sec.d; dashed lines, M500-Tlum relation
measured in clustered simulated without cooling and feedback by Evrard et al. s1996d, which clearly disagree with the data points.
The other lines show the M500-Tlum relations predicted by the analytical models of Voit et al. s2002d, which agree much better with
the data. There is a slight difference between models with s8=0.9 sdotted linesd and s8=1.2 because higher values of s8 lead to
clusters with higher halo concentrations that produce slightly higher temperatures. Tiny points show data for clusters simulated by
Borgani et al. s2003d with radiative cooling and feedback in the form of supernova-driven galactic winds. The left-hand panel uses
the actual values of M500, which agree with the analytical models. The right-hand panel uses values of M500 inferred from fitting
polytropic beta models to the observations, which underestimate true cluster masses, especially at low temperature, suggesting
there may be a systematic observational bias in this method of mass measurement.
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today’s clusters. Rather than just affecting the core en-
tropy of clusters, a modest amount of entropy produced
by early winds may have been amplified by smooth ac-
cretion, boosting the entire entropy profile by a common
factor determined by the cooling threshold sVoit and
Ponman, 2003d. If that is indeed what happened, then it
would explain the observed alteration of cluster similar-
ity, such that Ksr /r200d~Tlum

2/3 sPonman et al., 2003; Pratt
and Arnaud, 2003d, which leads directly to the relation
LX~Tlum

3 sT200/Tlumd1.5 for pure bremsstrahlung emis-
sion, in agreement with the observations.

4. Predictions for evolution

Preheating, the cooling threshold, and the altered
similarity indicative of smoothing affect the time-
dependent behavior of the LX-Tlum relation differently,
offering a way to gather further information about their
relative influence on cluster structure. By defining

L̂ = E
0

r/r200 S rg

200fbrcr
D2

r̂2dr̂ , s77d

one can express the scaling of a cluster’s integrated x-ray
luminosity as

LX ~ LcsTlumdM200rcrL̂ s78d

~ Tlum
2 ST200

Tlum
D3/2

HszdL̂ , s79d

where the first line assumes the cluster is approximately
isothermal and the the second line is an approximation
that assumes pure bremsstrahlung emission. The self-
similar case,

LX ~ Tlum
2 Hszd , s80d

is well known to be a poor description of the data be-
cause its power-law slope at z<0 is too shallow.

The modified-entropy models of Voit et al. s2002d
show that enforcing a minimum core entropy level Kmin

breaks self-similarity in such a way that L̂
~Kmin

−3/2T200
3/2 H−2, if Kmin is a significant fraction of the

cluster’s characteristic entropy K200. In the pure preheat-
ing case, Kmin is assumed to be independent of both clus-
ter mass and redshift, leading to

LX ~ Tlum
3.5 ST200

Tlum
D3 1

Hszd
. s81d

In other words, pure preheating steepens the LX-Tlum a
little more than necessary but causes high-redshift clus-
ters to be less luminous than one would expect from
their temperatures because the entropy floor Kmin is a
larger proportion of K200 earlier in time. This prediction
appears to conflict with recent observations indicating
evolution in the opposite direction sVikhlinn et al.,
2002d.

Tying the minimum entropy scale to the cooling
threshold Kc~Tlum

2/3 t2/3 helps to solve this problem be-
cause it leads to

LX ~ Tlum
2.5 ST200

Tlum
D3 1

Hszdtszd
. s82d

In this case, a little bit of tilt in the Tlum/T200 relation,
consistent with observations ssee Table Id, is needed to
sufficiently steepen the LX-Tlum relation, and the sense
of the evolution agrees with observations. In a LCDM
universe, the redshift dependence of the luminosity nor-
malization is H−1t−1,s1+zd0.5,H0.75 out to z,0.5.

Altered similarity models linked to the cooling thresh-
old are in better agreement with the LX-Tlum slope but
produce less evolution. Assuming intracluster density
profiles that scale as rgsr /r200d~ sTlum/Kcd3/2 yields

LX ~ Tlum
3 ST200

Tlum
D3 1

H3szdt2szd
. s83d

The normalization of luminosity in this relation varies as
H−3t−2,s1+zd0.3,H0.5 to z,0.5.

Observations of evolution in the luminosity-
temperature relation are not yet precise enough to dis-
tinguish between these latter two possibilities. The usual
procedure is to compare the LX-Tlum relation measured
in a significantly redshifted cluster sample to the relation
measured at z<0. Vikhlinin et al. s2002d were the first to
detect evolution, finding LXsTlumd~ s1+zdbLT with bLT
=1.5±0.3, assuming a LCDM cosmology. These authors
compared the low-redshift sample of Markevitch s1998d
to a collection of 22 clusters in the redshift range 0.4
,z,0.8. Lumb et al. s2003d found a similar amount of
evolution, bLT=1.52−0.27

+0.24, using a smaller sample of eight
clusters at z<0.4, but not all studies find such strong
evolution, which exceeds the predictions of the basic
models outlined above. For example, Ettori et al. s2003d
find bLT=0.62±0.28 for a sample of 28 clusters at z
.0.4, using the Markevitch s1998d sample as the low-
redshift baseline and bLT=0.98±0.20 relative to the Ar-
naud and Evrard s1999d low-redshift baseline. Further-
more, the strength of the evolution found by Ettori et al.
s2003d becomes smaller for high-redshift clusters, consis-
tent with no evolution at all sbLT=0.04±0.33d when they
include only their 16 clusters with z.0.6 in the compari-
son with the Markevitch sample. Apparently, there are
some systematic uncertainties in these evolution mea-
surements that need to be accounted for.

D. Constraints on baryon condensation

The ultimate test for feedback models is whether they
account for both the proportion of condensed baryons
to hot gas in clusters and any dependence of that pro-
portion on cluster mass. In order to apply that test, we
would like to have firm numbers for the condensed bary-
ons in clusters, but such measurements can be difficult.
Even if the amount of starlight were perfectly measured,
converting integrated starlight to stellar mass involves
uncertain assumptions about both the star formation his-
tory of a cluster and the distribution function of stellar
masses at birth, a quantity known as the initial mass
function. Any variation in the star formation history or
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initial mass function with cluster mass can lead to spuri-
ous systematic trends in the cluster mass function in-
ferred from cluster richness.

Baryons contained in cold clouds are even harder to
constrain because gaseous matter in this form can be
nearly invisible, if it is sufficiently cold sFerland et al.,
1994, 2002d. However, it seems unlikely that large num-
bers of baryons exist in such a form, at least in rich
clusters. Adding the number of baryons inferred from
starlight to the amount of hot gas observed in rich clus-
ters accounts for nearly all the baryons expected from
the global ratio of baryons to dark matter, leaving little
room in the baryon budget for cold gas clouds.

The situation is less clear in lower-mass clusters and
groups of galaxies, in which the proportion of hot gas to
dark matter is significantly smaller. Summing the masses
of stars and hot gas accounts for only about half the
expected number of baryons in some cases, yet there is
no observational evidence for large quantities of cold
gas sWaugh et al., 2002d. Circumstantial evidence argues
against there being large reservoirs of cold baryons in
groups. Presumably, the rich clusters in which we now
see virtually all the baryons were hierarchically as-
sembled from objects like the baryon-poor groups of
galaxies we observe today. If large numbers of baryons
in their higher-redshift counterparts were locked away in
some cold, condensed form, then how were they re-
leased when these groups of galaxies merged to form
large clusters?

A more complete accounting of intracluster baryons,
especially in low-mass systems, is sorely needed in order
test the various feedback models described in Sec. IV.B.
The rest of this section summarizes some of the recent
work on constraining the number of condensed intra-
cluster baryons in the form of stars, the prospects for
measuring baryon condensation through the Sunyaev-
Zeldovich effect, and x-ray observations of nearby clus-
ters that may help solve the puzzles surrounding con-
densation and feedback.

1. Mass and light in clusters

Inferences of stellar mass from the observed starlight
are generally based on a mass-to-light ratio expressed in
solar units. That is, the mass-to-light ratio of the Sun in
all wavebands equals unity. Because young stellar popu-
lations tend to emit large amounts of blue light that
quickly dies out as the population ages, most recent as-
sessments of the stellar mass in clusters have concen-
trated on measurements of infrared starlight in the K
band at roughly 2 mm. Observing starlight in this band
minimizes the uncertainties owing to a cluster’s star for-
mation history. The old stellar populations characteristic
of elliptical galaxies tend to have a K-band mass-to-light
ratio YK<0.8 h70

−1, and mass-to-light ratios in spiral and
irregular galaxies can be up to a factor of 2 smaller sBell
and de Jong, 2000d. For the mix of galaxies seen in clus-
ters, Lin et al. s2003d estimate that the mean mass-to-
light ratio ranges from YK=0.7h70

−1 to 0.8h70
−1 as cluster

temperature climbs from 2 to 10 keV. From this mass-

to-light ratio, they infer that the fraction of intracluster
baryons in stellar form is f*<0.1 for rich clusters ssee
also Balogh, Pearce, et al., 2001d. Notice that this value is
about half that predicted by current simulations of clus-
ter formation including strong feedback, a discrepancy
that could become even larger with higher-resolution
simulations sBorgani, Murante, et al., 2003d.

Many studies, but not all of them, suggest that the
fraction of condensed baryons in stars may be a function
of cluster mass. The ratio of K-band light to total cluster
mass within r500 found by Lin et al. s2003d is YK

= s47±3dh70sM500/331014h70
−1M(d0.31, which translates to

a temperature dependence YK~Tlum
0.5±0.1. The ratio of

stellar mass to total mass in this study therefore ranges
from ,2.2% at 1014h70

−1M( to ,1.2% at 1015h70
−1M(.

Similar trends with shallower slopes are seen at other
wavelengths. Bahcall and Comerford s2002d find that the
ratio of total mass to starlight in the heart of the visible
spectrum sV-bandd is YV~Tlum

0.3±0.1. In blue light sB bandd,
Girardi et al. s2002d find YB~M0.25. However, other stud-
ies have found no significant dependence on mass. Ac-
cording to Kochanek et al. s2003d, the K-band mass-to-
light ratio inside r200 scales as YK~M200

−0.10±0.09.

2. Intergalactic stars

Measurements of the total stellar luminosity in clus-
ters generally focus on the light from galaxies, but what
about stars that are not in galaxies? At least some of a
cluster’s stars float unmoored in the spaces between a
cluster’s galaxies sFerguson et al., 1998d. These stars are
thought to have originated in galaxies but were later
stripped from their homes by tidal forces during a close
encounter with another galaxy. Current observational
limits, however, indicate that no more than 10–20% of a
cluster’s stars are outside of galaxies sDurrell et al.,
2002d, implying that failing to account for intergalactic
stars does not lead to large errors in measured mass-to-
light ratios.

3. Global Sunyaev-Zeldovich effect

If the baryons missing in low-mass clusters are not in
condensed form, then they must be in the form of hot
gas beyond the regions detectable with x-ray telescopes.
If that is indeed the case, then the best way of finding
them may be through the Sunyaev-Zeldovich effect.
Section II.C.1 showed that the integrated microwave dis-
tortion from a cluster scales with the electron tempera-
ture of the cluster and the overall mass in hot electrons.
If a significant proportion of baryons have condensed,
then the associated electrons are also locked away in
cold clouds, where they do not contribute to the
Sunyaev-Zeldovich signal.

Simulations of cluster formation that include cooling
indicate how the mean value of the y distortion owing to
clusters depends on cooling and feedback processes.
Models by da Silva et al. s2001d produce y=3.2310−6 in
the nonradiative case, dropping to y=2.3310−6 in the
case of radiative cooling without feedback. The differ-
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ence between the radiative and nonradiative cases is
somewhat smaller when feedback is implemented.
White et al. s2002d find y=2.5310−6 in the nonradiative
case and y=2.1310−6 when both cooling and feedback
are turned on. Testing for baryon condensation in this
way may eventually be possible, but the mean value of
the Sunyaev-Zeldovich distortion is also very sensitive
to other cosmological parameters, such as s8, which will
have to be very well constrained before we can use the
global y parameter to test feedback models.

4. Cooling flows in clusters

Cores of present-day clusters are among the best
places in the universe to observe the interplay between
condensation and feedback. Gas at the centers of many
clusters can radiate an amount of energy equal to the
thermal energy of the cluster in less than a billion years,
yet most of that gas is not condensing ssee Donahue and
Voit, 2004, for a recent reviewd. Early interpretations of
clusters with central cooling times less than the age of
the universe suggested that the core gas gradually con-
densed and was replaced by the surrounding material in
an orderly flow of cooling gas sCowie and Binney, 1977;
Fabian and Nulsen, 1977; Mathews and Bregman, 1978d.
The mass condensation rates inferred from x-ray imag-
ing ranged as high as ,102–103M( yr−1, implying that
the cores of these “cooling-flow” clusters should contain
*1012M( in the form of condensed baryons. However,
exhaustive searches for this mass sink generally have not
found stars forming at such a high rate sMcNamara and
O’Connell, 1989; O’Connell and McNamara, 1989d, nor
have they found sufficiently large collections of cold
baryonic clouds to account for the deposited mass
sBraine and Dupraz, 1994; McNamara and Jaffe, 1994;
O’Dea et al., 1994, 1998; Voit and Donahue, 1995d.

Now x-ray spectroscopy itself is showing that conden-
sation proceeds at a considerably slower rate, if it hap-
pens at all. The central gas in clusters with short cooling
times appears to reach temperatures ,Tlum/2, but very
little x-ray line emission is seen from gas at &Tlum/3
sPeterson et al., 2001, 2003d. Some sort of heating
mechanism seems to be inhibiting condensation below
this temperature. There are plenty of candidates for re-
supplying the radiated heat energy—supernovae, out-
flows from active galactic nuclei, electron thermal con-
duction, and turbulent mixing have all been suggested
ssee Sec. IV.Bd—but there is still no consensus on the
relative importance of these mechanisms.

A reduced amount of condensation still appears to be
occurring. For example, plenty of circumstantial evi-
dence links short central cooling times with star forma-
tion at the centers of clusters. Objects whose central
cooling time is less than the age of the universe fre-
quently contain emission-line nebulae whose properties
suggest that they are energized primarily by hot, young
stars sJohnstone et al., 1987; Voit and Donahue, 1997d.
Nebulae like these are never seen in clusters where the
central cooling time is greater than the universe’s age
sHu et al., 1985d. Also, objects with prominent nebulae

tend to have abundant cool molecular hydrogen gas, the
seed material for star formation sDonahue et al., 2000;
Edge, 2001; Edge and Frayer, 2003d. Efforts to estimate
the star formation rate from the ultraviolet light emanat-
ing from the centers of clusters indicate that it may be
consistent with the current upper limits on the conden-
sation rate drawn from x-ray spectroscopy sMcNamara
et al., 2004d.

An understanding of what regulates condensation and
star formation at the centers of present-day clusters will
help to solve more than just the overcooling problem of
galaxy formation. It is also relevant to an aspect of
bright galaxies that remains difficult to understand. The
luminosity distribution function of galaxies cuts off very
sharply at the high-luminosity end, far more sharply
than called for in standard models of galaxy formation.
Extremely powerful feedback can produce a sharp cut-
off, but the amount of energy input required seems to
implicate active galactic nuclei as the primary feedback
source sBenson et al., 2003; Scannapieco and Oh, 2004d.
Alternatively, thermal conduction might produce a
sharp cutoff because its efficiency rises so rapidly with
temperature sFabian et al., 2002; Benson et al., 2003d. As
the halo of a massive galaxy grows and its characteristic
temperature rises through a critical threshold ,107 K,
conduction can strongly suppress further cooling and
star formation if it is not inhibited by magnetic fields.
Detailed studies of cluster cores will be needed to test
these possibilities. Early efforts are indicating that con-
duction might not be efficient enough to prevent over-
cooling sDolag et al., 2004; Jubelgas et al., 2004d.

V. CONCLUDING REMARKS

The next decade of research into cluster evolution
promises to be very exciting. Large optical surveys like
the Sloan Digital Sky Survey are greatly increasing the
number of well-studied clusters of galaxies in the low-
redshift universe. Deep surveys looking for the Sunyaev-
Zeldovich effect will be finding thousands of clusters to
distances well beyond a redshift of z=1. The Chandra
and XMM-Newton x-ray observatories are providing our
most detailed look yet at the intracluster medium, its
thermodynamical state, and some of the feedback pro-
cesses that regulate condensation of intergalactic gas
into galaxies and stars. Also, dedicated x-ray satellite
missions to survey a large fraction of the sky for distant
clusters are currently being planned.

Making the most of these opportunities will require
cooperation between observers in those different wave-
bands, and theoretical modeling that closely links those
cluster observables to cosmological parameters. Optical
and infrared followup of Sunyaev-Zeldovich surveys will
be critical in order to determine the redshifts of the clus-
ter candidates. X-ray followup of a subset of the
Sunyaev-Zeldovich clusters will also be necessary to es-
tablish how the thermodynamics of galaxy formation af-
fects evolution of the mass-observable relations in the
microwave band. Concentrated efforts to observe a cali-
bration set of clusters in all of these wavebands will be
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very valuable in helping to establish how well the vari-
ous observables trace mass and the scatter in each of
these observables at a given mass.

If the LCDM concordance model is indeed a good
description of the overall architecture of the universe
and its initial perturbation spectrum, then the param-
eters describing the cosmological context in which gal-
axy formation happens ought to be precisely established
within this decade. Studies of cluster evolution will be
just one part of this overall effort, which also includes
distance determinations to high-redshift supernovae, in-
creasingly sensitive observations of the cosmic micro-
wave background, and mapping of large-scale structure.
However, consistency between the dynamics of cluster
evolution and the geometry of the universe, as measured
with supernova and microwave observations, will stand
as a particularly critical test of the overall model. With
success, most of the remaining secrets about galaxy
formation—other than what dark matter and dark en-
ergy actually are—will concern baryons and their com-
plex cooling and feedback processes.

Our understanding of what baryons do is rapidly pro-
gressing, thanks in large part to large-scale cosmological
simulations on massively parallel computers. Clusters
and their evolution place unique constraints on those
models because clusters are the only places in the uni-
verse where the majority of the baryons emit detectable
radiation, revealing their thermodynamic state and el-
emental abundances. Galaxy formation has clearly left
its mark in the intracluster medium, but we are just be-
ginning to decipher what it has written there in the gases
between the galaxies. Perhaps in ten more years there
will be as much optimism about understanding the bary-
onic side of galaxy formation as there is now about un-
derstanding the darker side.
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