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Bogoliubov theory for excitations in Bose-Einstein condensates was formulated over 50 years ago to
qualitatively explain strongly interacting superfluids. Quantitative experimental verification of this
theory came with the long-awaited realization of gaseous, weakly interacting condensates. This
Colloquium reviews recent experimental advances in the study of Bogoliubov bulk excitations in
Bose-Einstein condensates, obtained using two-photon Bragg scattering.

CONTENTS

I. Introduction 187
II. Condensate Ground State 188

III. Bogoliubov Excitations 189
A. Bogoliubov theory—Homogeneous condensates 189
B. Bogoliubov theory—Inhomogeneous condensates 191

IV. Interactions Between Excitations 191
V. Two-Photon Bragg Transitions 192

A. Homogeneous condensates 192
B. Trapped condensates 194
C. Local-density approximation and Doppler

broadening 195
VI. Coherent Excitation Evolution 196

A. Frequency domain—Measurement of the
Bogoliubov spectrum 197

B. Time domain—Direct observation of the phonon
energy 199

VII. Incoherent Excitation Evolution 200
A. Time domain—Suppression of collisional damping at

low k 200
B. Frequency domain—Collisional line broadening and

shift 202
VIII. Wave Mixing of Excitations 203

A. Collisional “power” broadening and “ac-Stark” shift 203
B. Dressed-state approach 203

IX. Conclusions 204
Acknowledgments 204
References 204

I. INTRODUCTION

Unlike many other phase transitions, interactions are
not required for Bose-Einstein condensation sBECd to
occur. Einstein’s 1925 paper predicted the occurrence of

BEC in a completely ideal gas of bosons sEinstein,
1925d. Little theoretical effort was invested in BEC dur-
ing the years following Einstein’s prediction, since BEC
was regarded as not much more than a theoretical anec-
dote. Progress was eventually motivated, however, by
the study of superfluid 4He.

Fritz London’s 1938 hypothesis, relating the normal to
superfluid transition to Bose-Einstein condensation
sLondon, 1938d, motivated the theoretical study of inter-
acting Bose degenerate fluids and the comparison be-
tween the theoretical predictions and the results of the
experimental study of liquid 4He. London was able to
give a fairly accurate prediction for the l temperature
based on the theoretical value of the critical tempera-
ture for Bose-Einstein condensation, the mass of 4He
atoms, and the liquid density. Shortly after, Tisza used
the notion of BEC in his two fluid model sTisza, 1938d.
This model, describing the co-existence of a thermal and
a condensate phase in the fluid, qualitatively explained
the superfluid fountain effect and predicted the exis-
tence of second sound stemperature wavesd.

In his 1941 paper, Landau formulated a phenomeno-
logical description of superfluids as a weakly interacting
mixture of excitations such as phonons and rotons sLan-
dau, 1941d. Landau rejected London’s and Tisza’s point
of view, based on the argument that in such highly inter-
acting systems the use of an ideal gas description is in-
adequate. Years passed before the measurement of the
excitation spectrum of superfluid 4He. This spectrum is
indeed in complete disagreement with the free particle,
parabolic spectrum assumed by Tisza’s two-fluid model.
Despite the fact that it was not derived from microscopic
arguments, Landau’s excitation spectrum turned out to
be correct.

The Bogoliubov theory for excitations in a weakly in-
teracting Bose gas presented a breakthrough in the un-
derstanding of Landau’s excitation spectrum, despite the
fact that a weakly interacting gas is a crude approxima-
tion to liquid 4He. Roughly 60 years ago, in his seminal
work, Bogoliubov used field theoretical methods to
present a basis in which the Hamiltonian of a weakly
interacting gas of bosons is diagonal sBogoliubov, 1947d.
The Bogoliubov basis describes excitations that exhibit a
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phononlike, linear dispersion at low momentum. In this
sense, Bogoliubov theory reconciles the two different
points of view sLondon-Tisza vs Landaud, as it shows
that the quantum-mechanical description of a weakly in-
teracting Bose gas features both Bose-Einstein conden-
sation and a phonon excitation spectrum.

In 1958, Beliaev showed that the system’s Hamil-
tonian, when taken to a higher order than Bogoliubov
theory, describes interactions between the different Bo-
goliubov excitations sBeliaev, 1958d. These interactions
give rise to the finite lifetime of Bogoliubov excitations.

Despite the fact that they describe a weakly interact-
ing gas, the theories of Bogoliubov and Beliaev provide
qualitative explanations for features of the strongly in-
teracting superfluid 4He, including superfluidity itself.
The discrepancy in the quantitative results, however, is
unavoidable. The experimental verification of these
theories came with the long awaited realization of the
gaseous, weakly interacting BEC sAnderson et al., 1995;
Davis et al., 1995d.

Low-lying Bogoliubov excitations were experimen-
tally and theoretically studied almost immediately after
the realization of BEC. As Bogoliubov and Beliaev
theories were formulated for a homogeneous conden-
sate, further theoretical work was needed to incorporate
inhomogeneous trapped condensates into Bogoliubov
theory sEdwards et al., 1996; Pérez-García et al., 1996;
Stringari, 1996d. By perturbing the trapping potential at
the proper excitation frequency, the condensate is ex-
cited into one of the low-lying Bogoliubov modes sJin et
al., 1996; Mewes et al., 1996; Fort et al., 2000; Onofrio et
al., 2000d. The lifetime of these excitations is limited by
Beliaev and Landau damping processes sJin et al., 1997;
Pitaevskii and Stringari, 1997; Giorgini, 1998; Stamper-
Kurn et al., 1998d. Beautiful experiments have also
shown engineered Beliaev coupling between excitations
in two discrete, low-lying modes sHodby et al., 2001d.

In 1999, Ketterle’s group at MIT used the technique of
two-photon Bragg transitions to excite and spectroscopi-
cally probe excitations in BEC sStamper-Kurn et al.,
1999; Stenger et al., 1999d. Two-photon Bragg transitions
impart a well-defined momentum "k to the condensate.
As condensates are usually harmonically trapped, k is
not a good quantum number, and therefore it is a super-
position of Bogoliubov modes that is being excited. This
introduces a faster decay rate of the Bragg-driven exci-
tation due to dephasing between these different Bogo-
liubov modes. However, because of the relatively high
momentum imparted in such transitions, the excitation
wavelength can be made much shorter than the conden-
sate size. In this case high-energy modes are excited, and
the spread in energies of excited modes relative to their
average energy becomes small. Moreover, control over
the frequency difference between the Bragg beams en-
ables selectivity in the energies that are excited. Typi-
cally, Bragg-driven excitations are not in the low-lying
discrete regime mentioned above, but are part of a qua-
sicontinuum of modes. Owing to their short wavelength,
the nature of these excitations is dominated by the
“bulk” properties of the condensate rather than the con-

densate geometry. The comparison of these experiments
with Bogoliubov theory, which was initially formulated
for a homogenous infinite condensate, is quite good.
Thus the disadvantage of Bragg-driven excitations,
namely k not being a good quantum number, is compen-
sated by their expository value, a linear dependence of
the phonon energy on k being but one example.

In contrast to Beliaev coupling in the low-lying dis-
crete case, Beliaev damping in the Bragg regime couples
modes into a quasicontinuum of modes. This, as we plan
to show in the following, forms an analogy between a
macroscopically populated Bogoliubov mode, which is
coupled to a quasicontinuum of modes through its inter-
action with the ground-state condensate, and a laser
beam which is coupled to the electromagnetic vacuum
through the presence of an atom. As in the atom-laser
system, bosonic amplification can play an important role
by emphasizing a certain mode over the continuum.

The experimental study of Bogoliubov excitations in
BEC is paramount for the understanding of these quan-
tum degenerate gases. The spectrum of excitations car-
ries information on microscopic properties of the con-
densate, such as second-order density correlation, which
confirms the condensate is of gaseous nature, as well as
macroscopic properties such as the speed of sound and
the critical velocity for superfluidity in the condensate.

In this Colloquium we review the experimental
progress made during the last few years in the study of
weak excitations in BEC by means of photon scattering,
in the limit of zero temperature. These experiments
were performed with both sodium sStamper-Kurn et al.,
1999; Stenger et al., 1999; Vogels et al., 2002d and ru-
bidium sKatz et al., 2002; Ozeri et al., 2002; Steinhauer et
al., 2002, 2003d Bose-Einstein condensates.

II. CONDENSATE GROUND STATE

Bose-Einstein condensation is a statistical phase tran-
sition, at the end of which practically all of the atoms in
a weakly interacting gas of bosons occupy the quantum
ground state of the gas. Therefore a Bose-Einstein con-
densate can be fully described by the wave function
csr1 ,r2 ,… ,rN0

d, which is the ground-state solution to the
many-body Schrodinger equation,

Hcsr1,r2,…,rN0
d = Ecsr1,r2,…,rN0

d . s1d

A variational calculation can be used to minimize the
energy expectation value ec†HcdN0r with respect to c,
under the condition that the number of atoms in the gas
is constant, i.e., ec†cdN0r=N0. Assuming a contact
atomic interaction potential and that the many-body
wave function c can be factorized into a product of iden-
tical states f for all atoms, the variational minimization
leads to f being the solution of the well-known Gross-
Pitaevskii sGPd equation sCastin, 2001d,

S−
"2

2m
¹2 + Vextsrd + gufsrdu2Dfsrd = mfsrd , s2d

where g=4p"2a /m, a is the s-wave scattering length, m
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is the atomic mass, and nsrd= ufsrdu2 is the condensate
density at the point r. The three terms in the parentheses
on the left-hand side of Eq. s2d account for three differ-
ent contributions to the condensate energy. The first
term accounts for the kinetic energy of the gas, and is
related to the inverse size of the condensate through the
Heisenberg uncertainty relation. The second term is the
confining potential. For an infinite, homogeneous con-
densate these first two terms vanish. The third term rep-
resents the energy resulting from atom-atom interac-
tions. For positive g this latter energy is larger in higher
density regions. This atom-atom interaction term intro-
duces nonlinearity into the equation of state for the gas.
Owing to the nonlinearity of the Gross-Pitaevski equa-
tion m is not equal to E /N0, the energy per particle in
the gas, but rather represents the condensate’s chemical
potential m=dE /dN0 sCastin, 2001d.

For an infinite homogenous condensate m=gn. This
interaction energy leads to the introduction of a new
length scale,

j = "/Î2mgn . s3d

The healing length j is the minimal distance over which
the condensate wave function can vary significantly.

For a sufficiently large number of atoms, the kinetic
energy term can be neglected in Eq. s2d in what is known
as the Thomas-Fermi sTFd approximation sDalfovo et
al., 1999d. In the Thomas-Fermi regime Eq. s2d is re-
duced to an algebraic form that gives the condensate
density nsrd= s1/gdfVextsrd−mg for regions where Vext
,m, and nsrd=0 outside this region. When Vextsrd is a
harmonic trapping potential, the condensate profile is
that of an inverted parabola. The linear size of the con-
densate radial, or axial, dimensions, is referred to as
RTF, the Thomas-Fermi radius.

III. BOGOLIUBOV EXCITATIONS

Since the Gross-Pitaevski equation is a nonlinear
equation of state, the energy of an excitation will de-
pend on the excitation population. The notion an exci-
tation spectrum can be retained only in the limit of ex-
citations that are perturbations over the ground state. In
such a case the interaction between different excitations
is small compared to the interaction between an excita-
tion and the undepleted ground state. One can therefore
linearize the Gross-Pitaevski equation with respect to
the excitation wave function, leading to the Bogoliubov
theory sBogoliubov, 1947d.

Even though realizable trapped condensates are inho-
mogeneous, for expository value the first subsection will
describe excitations in an infinite and homogeneous con-
densate. The second subsection will deal with Bogoliu-
bov theory for the more general case of excitations in a
trapped, inhomogeneous condensate.

A. Bogoliubov theory—Homogeneous condensates

It is useful to describe Bogoliubov theory using sec-
ond quantization. Taking only two-body interactions
into account, we write the second-quantized Hamil-
tonian for a cold gas of N interacting atoms,

Ĥ = o
k

ek
0âk

†âk +
g

2V o
k1,k2,k3,k4

âk1
† âk2

† âk3âk4dk1+k2,k3+k4.

s4d

âk
† and âk are the creation and annihilation operators,

respectively, of atoms with momentum "k ,ek
0

= s"kd2 /2m is the free-particle kinetic energy, and V is
the volume of the gas. Since our atoms are bosons, âk

†

and âk obey the bosonic commutation relations,

fâk, âk8
† g = dk,k8,fâk, âk8g = fâk

+, âk8
† g = 0. s5d

The first term in Eq. s4d counts the number of atoms
having momentum "k, and allocates to each one of them
the corresponding kinetic energy, ek

0. The second term in
Eq. s4d describes collisions between pairs of atoms. The
d function ensures momentum conservation. As ex-
pected, the coupling constant for an S-wave collision is
independent of the relative momentum.

We now wish to neglect the depletion of the k=0
mode, and replace â0

† and â0 by their classical expecta-
tion value ÎN0. For this approximation to be valid, two
conditions must be fulfilled. First, interactions should be
weak enough that the depletion of the k=0 mode in the
ground state is small, meaning that the number of atoms
in an “interaction volume” is small, i.e., na3!1. Based
on the Bogoliubov approximation, it can be shown that
the quantum depletion of the ground state of a homoge-
neous condensate is proportional to Îna3 sFetter, 1998d,
demonstrating the self-consistency of the approxima-
tion. The second condition of Bogoliubov theory is the
assumption of few excitations, allowing us to neglect sfor
nowd all the terms below N0 order.

Under these assumptions, the Hamiltonian of the gas
can be diagonalized with a canonical transformation to
the Bogoliubov quasiparticle basis,

âk = ukb̂k − vkb̂−k
†

â−k
† = ukb̂−k

† − vkb̂k, s6d

given that uk and vk satisfy

uk
2 = vk

2 + 1 =
1
2
S ek

0 + gn

ek
+ 1D , s7d

where ek is the Bogoliubov quasiparticle energy, given
by

ek = Îek
0sek

0 + 2gnd = gnÎskjd2fskjd2 + 2g . s8d

uk and vk, the Bogoliubov quasiparticle amplitudes, are
real, positive, and isotropic.

The atomic composition of the Bogoliubov vacuum is
resolved by looking at the expectation value of different
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atomic number operators, with respect to the vacuum
state, yielding kâk

†âkl= kâ−k
† â−kl=vk

2. This isotropic distri-
bution of vk

2 atoms moving with momentum k, is the
quantum depletion of the condensate ground state.

According to Eq. s6d, an excitation is composed only
of atoms moving either with momentum "k or −"k. The
atomic composition of an excitation is found by taking
the expectation value of the atomic number operators,
and subtracting vk

2. We find kâk
†âkl−vk

2 =uk
2, and kâ−k

† â−kl
−vk

2 =vk
2. Thus Bogoliubov quasiparticles can be thought

of as composed of uk
2 atoms moving in the excitation

direction, and vk
2 atoms moving opposite to the excita-

tion direction. Although the total number of atoms that
compose a single excitation can be large, according to
Eq. s7d, the net momentum carried by a single excitation
is equal to "k.

The solid line in Fig. 1 shows the Bogoliubov energy
for a homogeneous condensate Eq. s8d as a function of
kj. The dashed line indicates the free particle parabolic
dispersion. Two regimes are evident in the spectrum. For
kj,1 the Bogoliubov dispersion is roughly linear,

ek < ck , s9d

where c=Îgn /m is the condensate speed of sound. This
linear regime of the spectrum is referred to as the pho-
non regime. In the phonon regime vk

2 ,uk
2 <1/2kj.1.

Phonons are therefore collective excitations which can
involve a large number of particles. Excitations in the
phonon regime correspond to sound waves that propa-
gate in the condensate with velocity c.

In an MIT experiment sVogels et al., 2002d, the Bogo-
liubov amplitudes uk

2 and vk
2 were observed for phonons,

with kj=0.38, as shown in Fig. 2. This corresponds to the
amplitudes uk

2 =1.53 and vk
2 =0.53. Since the density of

the condensate was inhomogenous, these values are cal-
culated in the local density approximation sLDAd, dis-
cussed in Sec. V.C. In Fig. 2, the height of the left srightd
peak is proportional to vk

2 suk
2d. This measurement was

performed using Bragg spectroscopic techniques, as sug-
gested in Brunello et al. s2000d. Bragg spectroscopy will
be discussed in Sec. V.

For kj.1 the Bogoliubov dispersion is roughly qua-
dratic, and is shifted by a constant value from the free-
particle parabola,

ek < ek
0 + gn . s10d

In this single-particle regime u2<1 and v2<0. Conse-
quently the Bogoliubov excitations are single-particle
excitations. gn is the extra energy required for these at-
oms to move with momentum kj.1. Atoms moving at
high momenta have twice the interaction energy of at-
oms in the k=0 state.

The linear dependence of ek on m=gn given by Eq.
s10d was verified experimentally, as indicated by the

FIG. 1. The Bogoliubov quasiparticle energy, plotted as a
function of kj: solid line, for a homogeneous condensate; dot-
ted line, the local-density approximation scf. Sec. V.C belowd;
dashed line, the free-particle kinetic energy. The energy is nor-
malized by the average density of the condensate, and the
healing length is evaluated at the average density.

FIG. 2. The measured Bogoliubov amplitudes. The measure-
ment, indicated by circles, was performed for phonons with
kj=0.38. The height of the left peak is proportional to vk

2 and
that of the right peak to uk

2. The solid curve is a sum of two
Gaussians. The dashed curve is the LDA result. From Vogels
et al., 2002.

FIG. 3. The density dependence of sad the static structure fac-
tor, and sbd the quasiparticle energy, for a k value correspond-
ing to ek

0 =h31.38 kHz. The filled circles are the measured val-
ues. The solid curves are the LDA results. The dotted curve
and open circles are the single-particle values for ek

0 =h
3100 kHz, as in Fig. 6sad. From Stamper-Kurn et al., 1999.
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open circles of Fig. 3sbd, which show ek−ek
0 for ek

0 =h
3100 kHz. Since this value of ek

0 is much larger than the
values of m shown in the figure, the open circles are
within the single-particle regime. The open circles were
taken from the MIT group’s experiment sStenger et al.,
1999d, and are also shown in Fig. 6sad.

B. Bogoliubov theory—Inhomogeneous condensates

Bogoliubov theory was generalized in the early 1960s,
by Gross s1961d and Pitaevskii s1961d, to the case of in-
homogeneous, trapped gases. The time evolution of the
condensate wave-function in the mean-field approxima-
tion is given by

i"
]

]t
Fsr,td = S−

"2

2m
¹2 + Vextsrd + guFsr,tdu2DFsr,td ,

s11d

which is known as the time-dependent Gross-Pitaevskii
equation. The time-independent Gross-Pitaevski equa-
tion, Eq. s2d, can be extracted from Eq. s11d by making
the ansatz Fsr , td=e−ism/"dtfsrd.

Bogoliubov excitations can be studied by inserting
into Eq. s11d a solution that has small corrections to the
ground-state wave function sPitaevskii, 1961; Dalfovo et
al., 1999d,

Fsr,td = e−ism/"dtffsrd + usrde−ivt + v*srdeivtg , s12d

where usrd and vsrd are the Bogoliubov quasiparticle
amplitudes. Substituting Eq. s12d into Eq. s11d, and
keeping terms linear in usrd and vsrd, we obtain the Bo-
goliubov coupled equations,

"vusrd = fH0 − m + 2gf2srdgusrd + gf2srdvsrd ,

− "vvsrd = fH0 − m + 2gf2srdgvsrd + gf2srdusrd , s13d

where H0=−s"2 /2md¹2+Vextsrd. The spectrum of solu-
tions of Eq. s13d gives the excitation spectrum of the
condensate.

Analytic solutions to the Bogoliubov equations are at-
tainable only for very special cases, such as a homoge-
neous condensate sno trapping potentiald, or a spheri-
cally symmetric harmonic potential in the Thomas-
Fermi limit, where kinetic energy can be neglected even
for the excitation wave function sStringari, 1996d. Gen-
erally, the Bogoliubov coupled equations have to be in-
tegrated numerically sEdwards et al., 1996; Pérez-García
et al., 1996d. Both analytic solutions in the Thomas-
Fermi limit and numerical solutions have been com-
pared with experiments performed on low-lying excita-
tions, and have been found to be in excellent agreement
sJin et al., 1996; Mewes et al., 1996; Matthews et al., 1998;
Fort et al., 2000; Onofrio et al., 2000d.

One special case for which the solutions to Eq. s13d
are of particular interest is that of an infinitely long cyl-
inder that is harmonically bound in the radial direction,
since realizable condensates in the laboratory, even
though harmonically bound in all dimensions, are often
cylindrically symmetric and very elongated. The excita-

tion spectrum of an infinite cylinder thus carries many of
the qualitative features of the spectrum of elongated
condensates sSteinhauer et al., 2003d.

The zero azimuthal angular momentum solutions to
Eq. s13d for an infinite cylinder are of the form sHutch-
inson and Zaremba, 1998; Stringari, 1998; Tozzo and
Dalfovo, 2003d

su,vdn,ksr,zd =
1

ÎL
eikzsu,vdn,ksrd . s14d

L is the length of the condensate in the axial direction z,
and is taken to infinity, while keeping N /L, the number
of atoms per unit length, constant. The excitation wave
function is seen to be factored into two terms, plane
waves in the axial direction, which are characterized by
the continuous quantum number k, and radial functions
su ,vdn,ksrd. The radial quantum number n enumerates
the number of nodes in u and v in the radial direction.
The amplitudes su ,vdn,ksrd are found by a numerical in-
tegration of Eq. s13d with Eq. s14d. For the case of an
infinite cylinder, linear momentum is a good quantum
number in the axial direction. However, momentum can
be imparted in the axial direction in different radial
modes, each having a different energy. This is analogous
to the propagation of electromagnetic radiation in a
waveguide.

IV. INTERACTIONS BETWEEN EXCITATIONS

In Bogoliubov theory, the many-body Hamiltonian is
truncated to terms that are proportional to N0, whereas
terms describing the coupling between different excita-
tions are at most proportional to ÎN0 and are therefore
ÎN0-fold suppressed. Nevertheless, the effect of
excitation-excitation coupling can hardly be ignored. For
excitations with large quantum numbers, e.g., high k, the
number of excitation modes to which an excitation in
mode k can couple can be very large. When this number
is comparable to ÎN0, the net effect of coupling to the
quasicontinuum of excitation modes becomes signifi-
cant.

A second scenario in which the Bogoliubov approxi-
mation is insufficient is that of two macroscopically oc-
cupied modes. Consider two excitation modes that are
populated with M and N excitations each. In the case of
M ,N<ÎN0, the depletion of the ground state can still be
safely ignored, but the coupling between the two modes
is comparable to the interaction between the excitations
and the condensate ground state, and therefore should
be considered.

The terms of the next lower order in ÎN0 were first
added to the Bogoliubov Hamiltonian by Beliaev in
1958 sBeliaev, 1958d. The discussion here will be limited
to homogeneous condensates. Collecting those terms in
the condensate Hamiltonian that are proportional to
ÎN0, we get the interaction term

191Ozeri et al.: Colloquium: Bogoliubov excitations in a Bose-Einstein condensate

Rev. Mod. Phys., Vol. 77, No. 1, January 2005



Ĥint = 2
g

2V
ÎN0 o

l,m,nÞ0
fâl

†âm
† ân + ân

†âlâmgdl+m,n. s15d

All these terms describe atomic collisions between at-
oms with momenta m , l ,n and one ground-state atom.

Changing to the Bogoliubov basis, the interaction
Hamiltonian between two excitation modes k and q is
sGiorgini, 1998; Rogel-Salazar et al., 2001d

Ĥint =
g

2V
ÎN0fAk,qsb̂k−q

† b̂q
†b̂k + b̂k

†b̂k−qb̂qd

+ Bk,qsb̂−sk+qd
† b̂q

†b̂k
† + b̂kb̂−sk+qdb̂qdg , s16d

where

Ak,q = 2uksuquuk−qu − uqvuk−qu − vquuk−qud − 2vksvqvuk−qu

− vquuk−qu − uqvuk−qud , s17d

and

Bk,q = − 2uksvquuk+qu + uqvuk+qu − vqvuk+qud

+ 2vksuqvuk+qu + vquuk+qu − uquuk+qud . s18d

There are two types of processes that are described by
the above interaction Hamiltonian. The first type, given
by the two terms in the first set of parentheses, describes
wave-mixing between the different Bogoliubov excita-

tion modes. The first term in the parentheses, b̂k−q
† b̂q

†b̂k,
describes the annihilation of an excitation from mode k
and the creation of two excitations in modes q and k
−q in its stead. This process, which is referred to as Be-
liaev coupling, is analogous to photonic down conver-
sion in optics. The conjugate process ssecond term in the
parenthesesd describes the annihilation of two excita-
tions, in modes q and k−q, and the creation of an exci-
tation in mode k, which is analogous to optical sum-
frequency generation. When thermal excitations are
involved, this process is termed Landau damping.

The coupling constant for both of these processes is
Ak,q, which is an interference term between different
atomic trajectories for excitation conversion. In the limit
of kj , qj!1,uk,q<vk,q and therefore Ak,q<0. This sup-
pression of Beliaev and Landau processes at low mo-
menta is a result of destructive quantum interference. In
the limit of kj , qj@1,vk,q,0, and uk,q,1, and there-
fore Ak,q<2.

The second set of parentheses in Eq. s16d describes
off-resonance, spontaneous creation or annihilation of

three excitations. The first term b̂−sk+qd
† b̂q

†b̂k
† describes the

creation of two excitations in modes q and k and then
the creation of a third excitation in mode −sk+qd that
will carry the added momentum. The second term in the
parentheses describes the conjugate process, in which
the three excitations are annihilated. Bk,q, which is again
an interference term between different atomic paths, is
highly suppressed in both the limits kj ,qj!1 and
kj ,qj@1. These terms describe the spontaneous cre-
ation and decay of excitations in an energy nonconserv-

ing manner, and are therefore usually overwhelmed by
the on-resonance Beliaev and Landau processes sRogel-
Salazar et al., 2001d.

For a more elaborate discussion of Beliaev and Lan-
dau processes, which is generalized to the cases of non-
uniform condensates and nonzero temperature, see Pi-
taevskii and Stringari s1997d, Giorgini s1998d, Morgan et
al. s1998d, and Rogel-Salazar et al. s2001d.

V. TWO-PHOTON BRAGG TRANSITIONS

Two-photon Bragg scattering has been used to impart
momentum into different velocity classes of a thermal
cloud of laser-cooled atoms sCourtois et al., 1994d. In
1999, the group of Phillips at NIST, Maryland used two-
photon Bragg transitions to impart momentum into a
Bose-condensed cloud of atoms sKozuma et al., 1999d,
and to coherently split the cloud in momentum space.
Later that year, in two seminal experiments, the group
of Ketterle at MIT used two-photon Bragg scattering to
excite Bogoliubov excitations in a condensate sStamper-
Kurn et al., 1999; Stenger et al., 1999d. The response of
the condensate to Bragg transitions of different frequen-
cies provided a spectroscopic measurement of the Bogo-
liubov excitation energy.

Bragg scattering can be viewed as diffraction of the
condensate from a moving optical lattice that is formed
by two intersecting laser beams. Atoms diffract from the
lattice given that the Bragg condition is fulfilled, i.e., that
the energy and momentum imparted to the condensate
matches the energy and momentum of the moving opti-
cal lattice. The energy of the lattice is determined by the
frequency difference between the beams, and the lattice
momentum "k is determined by the beams’ angle of in-
tersection.

Given a homogeneous condensate, "k is a good quan-
tum number. Moreover, since there is a one-to-one cor-
respondence between the excitation momentum and en-
ergy, the condensate response is a d function in the
frequency domain fneglecting, for the moment, Eq.
s15dg. Currently, realizable condensates are not homoge-
neous. Consequently, linear momentum is not a good
quantum number of the excitations. Nevertheless, the
momentum that is being transferred by the Bragg pro-
cess is well defined. As a result, the relative energetic
width that can be excited decreases as k increases. When
the wavelength of the perturbation 2p /k is smaller than
the linear size of the condensate, the response of an in-
homogeneous condensate resembles that of a homoge-
neous condensate in many respects.

A. Homogeneous condensates

Bragg scattering can be viewed as Bosonic amplifica-
tion of photon scattering from a single laser mode, due
to a macroscopic photon occupation of the target mode.

Neglecting higher-order photon scattering, the inter-
action between the atomic ensemble and the laser
beams can be written as
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ĤB =
"VB

2 o
q

fâq+k
† âq + âq+kâq

†g . s19d

The dependence of the Hamiltonian on the laser beams
and the atom-photon coupling is contained in the Bragg
Rabi frequency VB. The operator part of Eq. s19d deals
only with the external degrees of freedom of the gas.
âq

† , âq are the creation and annihilation operators of free
atoms, which are the eigenstates of a noninteracting gas.
Therefore each atom in such a gas will perform Rabi
oscillations between the momentum states q and q+k.

The case of an interacting homogeneous condensate is
somewhat more complicated, because a change in the
population of an atomic mode changes the interaction
energy between atoms. In other words, the free-atom
basis, ak

† ,ak, is inadequate and one has to move to the
Bogoliubov basis. Collecting terms in Eq. s19d that in-
volve creation or annihilation of an atom in the ground
state, and transforming to the Bogoliubov basis, we find

ĤB =
"VB

2
ÎN0

ÎSkfb̂−k + b̂k
† + b̂−k

† + b̂kg . s20d

Sk, the static structure factor, is an interference term be-
tween different atomic paths to excite the condensate,
given by

Sk = suk − vkd2. s21d

The Bogoliubov approximation is valid only as long as
the excitation population is small compared to that of
the ground state. Therefore we cannot use Eq. s20d to
describe Rabi oscillations in which the ground state is
completely depleted sKatz, Ozeri, Rowen, et al., 2004d.
Equation s20d is only adequate to describe perturbative
evolution. In the perturbative limit it is helpful to use
Fermi’s golden rule and calculate the rate of excitation
via Eq. s20d sBrunello et al., 2001d. The rate of excitation
from the Bogoliubov vacuum to some mode q is

G =
2p

"
zk1quĤBu0lz2ds"v − «qd . s22d

ĤB contains only two creation operators, one into mode
k, and the other into mode −k. Therefore it is only these
two modes into which the scattering rate Eq. s22d does
not vanish. The scattering rate into mode ±k will be

G±k =
2p

"

s"VBd2

4
N0S±kds"v − «±kd . s23d

The two modes will be on resonance at exactly the op-
posite frequency difference between the beams, the
magnitude of which is equal to the Bogoliubov quasipar-
ticle energy, «k /". The above rates are calculated for an
initial Bogoliubov vacuum state, but are also indepen-
dent of any previous population in the excited mode
sBrunello et al., 2001; Ketterle and Inouye, 2001d.

The rate Eq. s23d can be divided into a factor that
depends on the lasers and the single atom-photon cou-
pling, and a factor that depends on the intrinsic proper-
ties of the condensate,

Gk =
2p

"

s"VBd2

4
Ssk,vd . s24d

Ssk ,vd=N0Skds"v−«kd, the factor which depends only
on the condensate structure, is called the dynamic struc-
ture factor sBrunello et al., 2001; Cohen-Tannoudji and
Robilliard, 2001; Ketterle and Inouye, 2001d. This quan-
tity has a peak at the quasiparticle energy, which allows
for the measurement of the excitation spectrum, as dis-
cussed in Sec. VI.A. The measurement of Ssk ,wd via
Bragg scattering is analogous to its measurement by
neutron scattering, employed for superfluid 4He, yield-
ing the phonon-maxon-roton excitation spectrum
sNozières and Pines, 1990; Griffin, 1993d.

As seen from Eq. s23d, the response of the condensate
to two-photon Bragg scattering is proportional to Sk. In
linear response theory the response of a system to a
perturbation with momentum "k is proportional to den-
sity fluctuations with the corresponding wave vector
sPlischke and Bergersen, 1994d. To relate Sk to the den-
sity correlation function, we follow Cohen-Tannoudji
and Robilliard s2001d and consider the single-particle
density operator,

r̂srd = Ĉ†srdĈsrd . s25d

Expanding into atomic plane waves, r̂sqd, which is seen
to be the Fourier transform of r̂srd, is given by

r̂sqd =
1

Vo
k

âk+q
† âk. s26d

Note that our Bragg Hamiltonian Eq. s19d is composed
of r̂sqd and its conjugate. In the Bogoliubov basis r̂sqd is
written as

r̂sqd <
1

V
ÎN0sâq + â−qd =

1

V
ÎN0Sqsb̂q

† + b̂−qd . s27d

It is evident from Eq. s27d that the expectation value of
r̂sqd†r̂sqd with respect to the ground state is proportional
to Sq, i.e.,

Sq =
V2

N0
k0ur̂sqd†r̂sqdu0l

=
1

N0
o
R

eiq·Rk0uo
r

r̂sr + Rd†r̂srdu0l

= 1 + N0o
R

eiq·RfgsRd − 1g , s28d

where gsRd is the ground-state pair-correlation function
giving the conditional probability to find two atoms
separated by a displacement R. For a homogeneous con-
densate gsRd is isotropic and only depends on R, the
magnitude of R.

Let us now look at the behavior of Sk as a function of
k. Inserting Eq. s7d into Eq. s21d, we find
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Sk = uk
2 + vk

2 − 2ukvk =
ek

0

ek
. s29d

This relation between the excitation spectrum and the
condensate spectral response is known as the Feynman-
Bijl relation, and is the result of the f-sum rule in linear
response theory sBrunello et al., 2001d. It is a striking
result, in which the complete excitation spectrum can be
extracted from an expectation value taken with respect
to the ground state only.

The relation Eq. s29d was experimentally verified by
the MIT group using Bragg spectroscopy, as shown in
Fig. 3. As ek increases in Fig. 3sbd, Sk is seen to decrease
in Fig. 3sad. Since the condensate in the experiment was
inhomogeneous, the solid curve of Fig. 3sad gives the
result of the local density approximation ssee Sec. V.Cd.

Using the definition of the healing length, we can re-
write Eq. s29d as

Sk =
skjd2

Îskjd4 + 2skjd2
. s30d

The response of the condensate at different momenta is
now clear. For excitations in the single-particle regime,
k.j−1 and Sk.1, as one would expect for a gas of at-
oms where interatomic distances are not correlated. For
excitations in the phonon regime, k,j−1 and Sk

.kj /Î2. Thus the response of the condensate decreases
linearly with k. The decrease of the condensate response
at low momenta is a quantum interference effect, in
which atoms that, owing to interactions, are removed
from the k=0 mode, are moving in opposite directions,
and conspire to suppress oscillations in gsrd. Within the
mean-field framework, Sk never exceeds unity, which im-
plies that there is no “typical” interatomic distance in
the condensate, consistent with the dilute gas assump-
tion. This is in contrast to superfluid 4He, which has a
peak in Sk corresponding to the roton, reflecting short-
range correlations due to the liquid nature of superfluid
4He sGriffin, 1993d.

B. Trapped condensates

Although linear momentum is not a quantum number
describing excitations in trapped condensates, the re-
sponse of the condensate to the Bragg pulse is typically
measured through the efficiency of momentum transfer.
There have been several quantum-mechanical treat-
ments evaluating the momentum transfer to a trapped
condensate sBrunello et al., 2001; Blakie et al., 2002d.
Here we will describe one of these methods, the evolu-
tion of Eq. s11d under the Bragg potential sBrunello et
al., 2001; Band and Sokuler, 2002; Blakie et al., 2002;
Tozzo and Dalfovo, 2003d. Due to its simplicity and ac-
curacy, this method is the most common in analyzing the
outcome of Bragg experiments.

One view of Bragg scattering is diffraction of a matter
wave from a moving optical lattice potential, formed by
the two Bragg beams,

VBragg = ustd
"VB

2
cosskz − vtd , s31d

where z is chosen to be in the direction of the wave-
vector difference between the beams, k. ustd is a step
function that describes a sudden turn-on and a sudden
turn-off of the Bragg beams.

In order to solve for the evolution of the condensate
wave function in the presence of VBragg, it is possible to
numerically evolve Eq. s11d in time sBrunello et al.,
2001d. The momentum transferred to the condensate af-
ter time t can be calculated directly from the solution
fsr , td,

Pzstd =
− i"

2
E ff*sr,td¹zfsr,td + c.c.gdr . s32d

Within the mean-field assumptions this is a full simula-
tion of the Bragg scattering experiment.

Figure 4 ssolid linesd shows the thus calculated re-
sponse of the condensate. The simulation solves Eq. s11d
with the Bragg potential for the experimental param-
eters of Steinhauer et al. s2003d, at kj=0.74. Momentum
is imparted along the axial direction of the elongated
condensate. It is seen that for sufficiently short pulses,
the response has a single resonance, which is shifted
from the free atom energy ek

0, indicated by the dotted
line. Conversely, for longer pulses, the Gross-Pitaevski
simulations show a splitting of the resonance into a mul-
tipeak structure.

This multipeak structure is due to different excitation
spectra, each belonging to an axial quasiparticle, in a
different radial mode, corresponding to Eq. s14d sStein-
hauer et al., 2003; Tozzo and Dalfovo, 2003d. The large
aspect ratio of the condensate enables momentum trans-
fer along the axial dimension to be almost continuous,
while different radial modes are still well resolved.

FIG. 4. The condensate response to the Bragg pulse, calcu-
lated from a Gross-Pitaevski simulation, performed at the Uni-
versita Cattolica del Sacro Cuore, Brescia, Italy, by C. Tozzo
and F. Dalfovo. The simulation was done for the experimental
parameters of Steinhauer et al. s2003d, at kj=0.74 ssolid linesd.
Momentum was imparted along the axial direction of the elon-
gated condensate. Different curves, with increasing multi-
peaked structure, correspond to Bragg pulses of different du-
ration, 1, 2, 3, 4, 5, and 6 msec. These curves are compared
with the local-density approximation sLDAd average sdashed
curvesd from Eq. s41d. From Steinhauer et al., 2003.
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C. Local-density approximation and Doppler broadening

It is often useful to have an approximation that gives
an analytic form to Ssk ,vd, the condensate response to
the Bragg pulse. Such an approximation exists in the
limit k−1!RTF, in which case the change in density over
the excitation wavelength is small. The condensate can
then be treated as an ensemble of homogeneous con-
densates, each of which has its own density, local energy
spectrum, and response function sStamper-Kurn et al.,
1999; Zambelli et al., 2000d. This is called the local-
density approximation sLDAd. The Bogoliubov energy
at the point r, is then given by eksrd=Îek

0fek
0 +2nsrdgg.

For a condensate trapped in an harmonic potential, in
the Thomas-Fermi approximation, the dynamic struc-
ture factor in the LDA is given by sStamper-Kurn et al.,
1999; Zambelli et al., 2000d

Ssk,vd =
15
8

fs"vd2 − ek
02g

ek
0m2 Î1 −

fs"vd2 − ek
02g

2ek
0m

. s33d

Sk is consequently given by sStamper-Kurn et al., 1999;
Zambelli et al., 2000d

Sk =
15
4 H3 + a

4a2 −
3 + 2a − a2

16a5/2

3Fp + 2 arctanSa − 1

2Îa
DGJ , s34d

where a=2m /ek
0. ek is then given by the Feynman-Bijl

relation fEq. s29dg, which survives the LDA averaging.
In the phonon regime skj,1d, the Bogoliubov energy

can be approximated by

ek . ceffk , s35d

where

ceff ;
32

15p
Îm

m
s36d

is the speed of sound averaged in the LDA. As ex-
pected, it is lower than the speed of sound in the center
of the condensate. The excitation energy Eq. s35d is well
above the free particle energy ek

0, as was observed ex-
perimentally by the MIT group, as shown in Fig. 5. The
peak indicated by filled circles is located at a frequency

close to ek
0 /h, whereas the peak indicated by open circles

is located at ek /h.
In the single-particle regime kj.1, the Bogoliubov

energy can be written as

ek . ek
0 +

4
7

m . s37d

ek thus has the same form as in the homogeneous case,
where the mean-field shift corresponds to the value of
the shift at the average density, 4n /7. This linear depen-
dence of ek on m=gn was verified experimentally by
Stenger et al. s1999d, as shown in Fig. 6sad.

Recalling Fig. 1, we note that the LDA average sdot-
ted lined and the appropriate homogeneous condensate
excitation spectrum are nearly overlapping. This similar-
ity reflects the fact that, for large momentum transfer,
the response of the condensate is dominated by its
“bulk” properties rather than its geometry.

The LDA can also be used to compute the frequency
width of the condensate response Ssk ,vd,

FIG. 5. The normalized transferred momentum Psk ,vd. The
filled and open circles are for trapped skj=0.57d and released
slow-densityd condensates, respectively. The lines are fits of the
difference of two Gaussians. From Stamper-Kurn et al., 1999.

FIG. 6. Measurements in the single-particle regime with a k
value corresponding to ek

0 =h3100 kHz. The data were taken
with two different trap radial frequencies, vr=2p3195 Hz
scirclesd and vr=2p395 Hz strianglesd: sad the linear depen-
dence on density of Eq. s37d; sbd the total width ssolid curved,
which is the quadrature sum of the LDA width of Eq. s40d
sdashed curved and the Doppler width of Eq. s42d sdotted
curved; scd the width after subtraction of the calculated LDA
and finite-time contributions sleaving Doppler broadening con-
tribution onlyd. From Stenger et al., 1999.
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"DvLDA = Îkeksrd2lLDA − ek
2

=Î 1

N0Sk
E eksrd2nsrd

ek
0

eksrd
dr − ek

2

= Îekskeksrdl − ekd , s38d

where keksrdl= s1/N0deeksrdnsrddr, is the normal averag-
ing of eksrd over the condensate volume swithout taking
the local response into accountd.

For an external harmonic trapping potential, in the
phonon regime, the width of the response is given by
sZambelli et al., 2000d

DvLDA . 0.3ceffk . 0.3
ek

"
. s39d

In this part of the spectrum, dephasing will occur on
almost the same time scale as the phonon oscillation
period.

In the single-particle regime, the width of the re-
sponse is independent of k, and given by sZambelli et al.,
2000d

DvLDA .Î 8
147

m

"
. s40d

This relation is indicated by the dashed line in Fig.
6sbd. In this figure, the measured width of the line in the
single-particle regime was seen to be consistent with the
quadrature sum of Eq. s40d, with the Doppler width
given in Eq. s42d. For elongated traps, the inhomoge-
neous frequency broadening can be largely suppressed
using a Bogoliubov Bragg-echo technique sGershnabel,
Katz, Ozeri, et al., 2004d.

In order to compare the LDA predictions with the
results of the more accurate Gross-Pitaevski simulations,
the finite time of the Bragg pulse must be incorporated
into the LDA theory. The condensate response to the
Bragg pulse is given by the convolution of the pulse’s
normalized spectral content with the intrinsic response
of the condensate in the LDA sBrunello et al., 2001d,

Psk,vd =
1

p
E Ssk,v8d

sinfsv − v8dtBg
v − v8

dv8. s41d

Figure 4 compares the calculated response of the con-
densate using Gross-Pitaevski simulations and the LDA
approximation sSteinhauer et al., 2003d. The solid lines
are the result of Gross-Pitaevski simulations, and the
dashed lines are the result of Eq. s41d. It is seen that for
sufficiently short pulses, the response predicted by the
Gross-Pitaevski equation is in good agreement with the
LDA predictions. However, for pulses longer than tB
.2p /vr, where vr is the radial oscillation frequency of
the trap, the Gross-Pitaevski results and the LDA pre-
dictions greatly disagree. As opposed to the LDA’s
single resonance peak, the Gross-Pitaevski simulations
show a splitting into various radial modes.

The LDA cannot possibly predict the radial mode
structure in the condensate response, as it ignores the
condensate’s geometry. However, the LDA is found to

succeed in indicating which of the radial modes will be
excited. Only radial modes with energies within the
LDA peak are excited sTozzo and Dalfovo, 2003d.

Given that the Bragg potential has no radial depen-
dence, it will only act on axial degrees of freedom.
Hence radial modes will be excited in proportion to the
overlap integral of the radial part of the excitation wave
function, with the radial part of the ground-state wave
function sTozzo and Dalfovo, 2003d. In this respect, the
two conditions sLDA and overlap integrald are in very
good agreement. This agreement persists also for anhar-
monic trap geometries, where the LDA and the overlap
integrals both predict the excitations of a single or very
few radial modes, due to the much smaller inhomogene-
ity sGershnabel, Katz, Rowen, et al., 2004d.

In addition to the inhomogeneous density, the finite
size of the condensate is a source of broadening of the
response to the Bragg pulse. The finite size is translated
into a finite-width momentum distribution. The resulting
broadening is called Doppler broadening sStenger et al.,
1999d.

The Doppler width is evaluated by explicitly integrat-
ing over the ground-state momentum distribution for a
trapped condensate in the Thomas-Fermi limit as
sStenger et al., 1999; Zambelli et al., 2000d

DvD =Î8
3

vr

RTF
, s42d

where the recoil velocity vr is given by "k /m. This Dop-
pler width was seen to agree well with the measured
broadening of the response to the Bragg pulse, as shown
in Fig. 6scd sStenger et al., 1999d.

In the time domain, dephasing will occur on a time
scale of RTF/vr. This is also the time required for the
excitations to reach the edge of the condensate. This is a
manifestation of the fact that the coherence length of
the condensate is equal to its size. In fact, the opposite
point of view can be adopted, that the measurement of
the Bragg Doppler width can be viewed as a measure-
ment of the condensate coherence length. An experi-
ment at MIT showed that the coherence length is indeed
approximately equal to the condensate size sStenger et
al., 1999d. Experiments by the group of A. Aspect at
Orsay measured the coherence length of one-
dimensional quasicondensates sRichard et al., 2003d.

VI. COHERENT EXCITATION EVOLUTION

Two experimental approaches are presented for mea-
suring the excitation spectrum of a condensate. The first
is Bragg spectroscopy sStamper-Kurn et al., 1999;
Stenger et al., 1999; Steinhauer et al., 2002, 2003d. In the
second approach, the spectrum is measured by monitor-
ing the time evolution of the Bragg excited condensate
sOzeri et al., 2002d.

The dynamics that are probed in these experiments
are governed by the Bogoliubov Hamiltonian, and are
therefore coherent and time reversible. Even the excita-
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tions’ dephasing in time is caused by inhomogeneity in
the condensate, and can therefore be time reversed, by
the use of echo techniques, for example.

A. Frequency domain—Measurement of the Bogoliubov
spectrum

In order to directly measure the excitation spectrum
the following experimental procedure is employed. The
Bragg beams are directed at the condensate at a fixed
intersection angle. This angle determines the momen-
tum transfer of a single Bragg scattering event,

"k = 2"kLsinsu/2d , s43d

where 2p /kL is the Bragg laser wavelength. For each
angle of intersection, the Bragg beams are pulsed for a
time tB, and the condensate response to the pulse is
measured. The experiment is repeated for various v, the
frequency difference between the beams. The response
of the condensate to the Bragg pulse, as a function of v,
is determined by Ssk ,vd, the dynamic structure factor.
The Bogoliubov excitation energy ek is defined as the
energy averaged over Ssk ,vd sStamper-Kurn et al., 1999;
Stenger et al., 1999; Zambelli et al., 2000; Steinhauer et
al., 2002d.

The wave vector k is adjusted to be in the axial direc-
tion z of the cigar-shaped condensate. This way the
wavelength of the excitations will be much smaller than
the condensate size, for a wide range of wavelengths.

After the Bragg pulse, the atoms are allowed to ex-
pand freely, transforming the excitations into free par-
ticles. After a certain time of flight sTOFd, the atomic
cloud is imaged by an on-resonance absorption beam.
Figures 7sad and 7scd show a radial and axial density
profile generated by computerized tomography ssee Sec.
VI.Bd of the TOF absorption images of Rb condensates
excited with excitations of kj=0.67 and 0.1, respectively.
The left and right clouds correspond to the condensate
and released excitations, respectively.

For the very lowest momentum excitations, such as
kj=0.1, where the excitation energy is smaller than "vr,
the released excitations form a fringe pattern in the ex-
panding condensate sKatz, Ozeri, Steinhauer, et al.,
2004; Tozzo and Dalfovo, 2004d. At such low momen-
tum, the velocity of the excitations after changing to free
particles during the condensate expansion, is less than
the residual axial expansion velocity of the condensate.
Consequently, the excitations never leave the conden-
sate bulk, and form a matter-wave interference pattern.
This method of observing excitations via measurement
of matter-wave fringe visibility is remarkably sensitive,
since the condensate acts as a local heterodyne oscillator
for the traveling excitation atoms. However, the interfer-
ence pattern is only observed at very low excitation mo-
mentum, and therefore the momentum counting method
described below is more generally used. For higher
Bragg momentum values, the condensate and the re-
leased excitations form two fairly distinct clouds. Figures
7sbd and 7sdd are Gross-Pitaevski simulations of Figs.
7sad and 7scd, respectively.

To determine the momentum that is transferred by
the Bragg pulse, the total momentum in the axial direc-
tion relative to the center of the condensate cloud is
computed from the image, in the combined regions of
the two clouds. In the TOF image, an atom’s position is
proportional to its momentum. The absorption picture
provides nsx ,y ,zd integrated along the absorption beam
axis, fsy ,zd=ensx ,y ,zddx. The momentum of the atomic
cloud is calculated as

psk,wd =
m

t
E zfsy,zddydz , s44d

where t is the time of flight.
The pulse normalized transferred momentum Psk ,vd

is given by the momentum that was transferred to the
condensate, counted in units of "k snumber of excita-
tions formedd divided by No, the average number of at-
oms in the condensate during the Bragg pulse,

FIG. 7. Radial and axial density profiles of
the released, excited condensate after 38 msec
of flight. The profiles are generated by com-
puterized tomography of the absorption im-
ages ssee VI.Bd. The excitations’ momenta
correspond to sad kj=0.67 and scd kj=0.1. For
the lowest momentum value scd, the released
excitations form fringes in the released con-
densate. For sad the condensate and the re-
leased excitations form two fairly distinct
clouds. sbd and sdd are the result of a full
Gross-Pitaevskii equation simulation with the
same experimental parameters as in sad and
scd, respectively. From Katz, Ozeri, Stein-
hauer, et al., 2004.
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Psk,vd =
psk,vd
No"k

. s45d

The thus-measured Psk ,vd is indicated in Fig. 5 by
open circles, for kj=0.57. Psk ,vd is seen to be well ap-
proximated by the difference of two Gaussians. The Bo-
goliubov frequency is given by the average frequency of
Ssk ,vd. The resonance frequency is therefore taken as
the center value of one of the Gaussians from the fit to
psk ,vd.

The density dependence of the Bogoliubov frequency,
both in the phonon regime and in the free-particle re-
gime, were measured in two MIT experiments. The re-
sults of these experiments are shown in Figs. 3sbd and
6sad, respectively. The solid line in both figures is given
by Eq. s8d averaged in the LDA. As predicted by Eq. s8d
the quasiparticle energy is seen to increase with the
chemical potential, m=gn.

Figure 8 shows the measured excitation spectrum. The
filled circles are the measured resonance frequencies,
the solid curve is the LDA averaged Bogoliubov spec-
trum, using an independently measured value for m, and
without any free parameters. The dashed curve indicates
the free-particle parabola. The measured spectrum
shows a linear phonon regime for low k, and a parabolic
single-particle regime for high k. The excitations seen to
have the smallest value of v /k are the phonons. There-
fore, by the Landau criterion, the superfluid critical ve-
locity vc is bounded by v /k for the phonons.

A fit to the lower momentum part of the measured
spectrum gives the speed of sound for the condensate to
be ceff=2.0±0.1 mm sec−1, which is also the measured
upper bound for vc. This value is in good agreement with
the theoretical LDA value of 2.01±0.05 mm sec−1 from
Eq. s36d. The line at 2pRTF

−1 indicates the excitation
whose wavelength is equal to the Thomas-Fermi radius
of the condensate in the axial direction. The measured
vskd agrees with the LDA, even for k values approach-
ing this lower limit of the region of validity.

Since the spectral content of the pulse in Eq. s41d is
normalized, the integral of Psk ,vd over v is equal to the
integral of Ssk ,vd . Sskd is therefore given by

Sskd = 2spVB
2 tBd−1E Psk,vddv . s46d

All of the dependence on the Bragg beam parameters
is contained in the factors before the integral in Eq. s46d.
Therefore, by using the same Bragg pulse for every mea-
surement, the integral in Eq. s46d can be used to make
relative measurements of Sskd. In this way, the suppres-
sion of the response in the phonon regime was observed
in an MIT experiment, as shown in Fig. 5. The area of
the peak indicated by filled circles is proportional to
Sskd, for atoms that are approximately free slow den-
sityd. The area of the peak indicated by open circles is
proportional to Sskd in the phonon regime shigh den-
sityd. The thus-measured Sskd as a function of density is
shown in Fig. 3sad.

The filled circles in Fig. 9 are the measured values of
the static structure factor Sskd, plotted vs k, given by Eq.
s46d. The values shown have been increased by a factor
of 2.3 to give rough agreement with the LDA expres-
sion, Eq. s34d, which is indicated by a solid line. The
required factor of 2.3 probably reflects inaccuracies in
the various experimental values needed to compute VR.
The open circles are computed from the Feynman-Bijl
relation, Eq. s29d, using the measured values of vskd
shown in Fig. 8.

For large k sshort wavelengthd, Sskd approaches unity,
corresponding to noninteracting, uncorrelated atoms.
Since Sskd is always less than unity for the values of k
measured here, the density fluctuations are never
greater than in the uncorrelated case, thus confirming
the condensate’s gaseous nature.

In the measurements of Figs. 8 and 9, the time dura-
tion of the pulse was chosen such that the spectral con-

FIG. 8. The measured excitation spectrum vskd of a trapped
Bose-Einstein condensate sfilled circlesd: solid curve, the Bo-
goliubov spectrum with no free parameters, in the LDA for
m=1.91 kHz; dashed curve, the parabolic free-particle spec-
trum. For most points, the error bars are not visible on the
scale of the figure. From Steinhauer et al., 2002.

FIG. 9. The measured static structure factor and Bogoliabov
structure factor. The filled circles are the measured static struc-
ture factor, multiplied by an overall constant of 2.3 sSteinhauer
et al., 2002d. Error bars represent 1s statistical uncertainty, as
well as the estimated uncertainty in the two-photon Rabi fre-
quency. The solid line is the Bogoliubov structure factor in the
LDA for m=1.91 kHz. The open circles are computed from the
measured excitation spectrum of Fig. 8 and the Feynman-Bijl
relation, Eq. s29d. For the open circles, the error bars are not
visible on the scale of the figure. From Steinhauer et al., 2002.
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tent of the pulse was larger than the intrinsic resonance
width. In order to resolve the intrinsic line shape of the
resonance, longer Bragg pulses are needed.

Figures 10sad and 10sbd show Bragg spectra for kj
=0.74 and 0.34, respectively, and pulse durations of 6
and 10 msec, respectively. The spectral content of the
pulses is therefore smaller than vr and narrower than
DvLDA fEq. s40dg, which are calculated to be 2p
3220 Hz and 2p3446 Hz for Figs. 10sad and 10sbd, re-
spectively. The filled circles are the measured response.
The errors on these points come from the statistical
spread of data at every frequency bin. The solid lines are
the results of a Gross-Pitaevski simulation. The dotted
lines are the LDA predictions of Eq. s41d. The measured
points are in better agreement with the multi-peak struc-
ture of the Gross-Pitaevski simulation than with the
LDA curve.

The measured peaks of Fig. 10 are broader than those
of the Gross-Pitaevski simulation. This is probably due
to frequency noise in the measurement. The major
source of such noise is estimated to be random sloshing
of the condensate during the Bragg pulse, which pro-
duces a Doppler shift. The width of the peaks in the
Gross-Pitaevski simulation is determined by the finite
duration of the pulse, and for long enough pulses is lim-
ited by the density inhomogeneity along the axial direc-
tion.

The two solid lines for each of Figs. 10sad and 10sbd
indicate Gross-Pitaevski simulations of different Bragg
beam strengths. Although some additional small fea-
tures are apparent in the strong Bragg simulation, the

overall shape of the resonance is very similar for both
strengths. Thus nonlinear effects play a small role in the
observed multipeak structure. When much stronger
Bragg pulses are applied, the observed spectrum is
modified significantly due to nonlinear effects sBand and
Sokuler, 2002; Katz, Ozeri, Rowen, et al., 2004d.

To further support the observation that each of the
peaks in Fig. 10 correspond to different radial modes,
the oscillations induced by the Bragg pulse in the Gross-
Pitaevski simulation are analyzed. After a short Bragg
pulse the condensate is allowed to freely oscillate, and
density variations in time are Fourier analyzed. This
analysis shows that for every k, the density oscillates in a
superposition of modes vnskd. The observed frequencies
are indicated by arrows along the frequency axis of Figs.
10sad and 10sbd, and are seen to coincide with the peaks
of the response.

The open circles of Fig. 11 show the thus-calculated
mode frequencies as a function of k. The measured reso-
nance frequencies, which are extracted from fits to the
peaks of the measured data of Fig. 10, are indicated by
filled circles, and are seen to be in good agreement with
the Gross-Pitaevski calculation.

For the case of an infinite homogeneous cylindrical
condensate, it can be directly shown that the dynamic
structure factor consists of d functions at the radial mode
frequencies sTozzo and Dalfovo, 2003d.

B. Time domain—Direct observation of the phonon energy

The spectral response of the condensate is directly re-
lated to the time evolution of excitations. To directly
measure the phase evolution and dephasing of excita-
tions, one would have to use interferometric methods.
Ramsey and Rabi Bragg interferometry have been ap-
plied to BECs in several experiments sHagley et al.,
1999; Simsarian et al., 1999; Torii et al., 2000; Katz, Oz-
eri, Rowen, et al., 2004d. However, in all of these experi-
ments large fractions of the condensate were excited,
and therefore the time dynamics did not correspond to

FIG. 10. The response of the condensate to long Bragg pulses
sSteinhauer et al., 2003d: sad kj=0.34 and tB=10 msec; sbd kj
=0.74 and tB=6 msec. The measured values are indicated by
filled circles. Solid curves, the result of Gross-Pitaevskii simu-
lations with various Bragg beam strengths snote that the
smaller curves, corresponding to weaker pulses, have been
multiplied by a factor, indicated in the figure, in order to fit to
the figure scaled; dotted curves, the LDA predictions; dashed
curves are guides to the eye. From Steinhauer et al., 2003.

FIG. 11. Excitation frequencies vs k for a trapped, elongated
BEC: open circles, the frequencies of the normal modes with
n=0,1,2, … nodes in the radial direction, as calculated from the
Gross-Pitaevskii equation; filled circles, the positions of the
maxima of the main peaks in the measured values of Fig. 10.
From Steinhauer et al., 2003.
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that of Bogoliubov excitations. An alternative approach
would be to measure the excitation energy in the time
domain, using kinematic observations sOzeri et al.,
2002d.

In Fig. 8, the measured vskd is clearly above the para-
bolic free-particle spectrum "k2 / s2md. This energy shift
consists mainly of interaction energy between the exci-
tations and the condensate. When the trapping potential
is turned off, all the interaction energy is transformed
into kinetic energy during a short acceleration period.
The energy of a single excitation can therefore be ex-
tracted from the kinetic energy measurement of an ex-
cited condensate, after release.

The absorption picture provides nsx ,y ,zd integrated
along the absorption beam axis, which is sufficient in
order to measure the cloud momentum in the z direc-
tion. On the other hand, the measurement of the cloud’s
kinetic energy requires the knowledge of the momentum
components in three dimensions. Consequently, the full
nsx ,y ,zd is needed. In general, computerized tomogra-
phy sCTd can be used in order to reconstruct nsx ,y ,zd
from its Radon projections. Since the cloud is cylindri-
cally symmetric, nsr ,zd can be CT reconstructed from a
single absorption image sOzeri et al., 2002d. Figure 7sad
shows the reconstructed nsr ,zd for kj=0.67. The con-
densate cloud and the released excitation cloud are dis-
tinct and separate. The right cloud is clearly larger in the
radial direction than the left cloud, reflecting the inter-
action energy of the excitations.

The filled circles in the inset of Fig. 12 are the mea-
sured energy of the atoms in both clouds as a function of
the measured number of excitations for kj=0.96. The
slope of these points is Ek /h=1675±290 Hz and corre-
sponds to the energy of a single excitation. This energy
is in agreement with Ek /h=1780 Hz, calculated from the
Bogoliubov dispersion relation averaged in the LDA.
Figure 12 shows the excitation energies measured this
way, at four different momenta. The measured energies

agree with the LDA averaged Bogoliubov spectrum, in-
dicated by the solid curve.

The open circles in the inset of Fig. 12 are the mea-
sured energy in the released excitation cloud only, as a
function of the measured number of excitations. The
slope of a linear fit to these points is 2390±90 Hz. When
the average energy of an atom in the condensate cloud is
subtracted from this value, we find an energy of
1840±100 Hz per excitation in the released excitation
cloud, which is consistent with the Bogoliubov value
Ek /h=1780 Hz. This indicates that all of the excitation
energy is indeed carried by the atoms in the released
excitation cloud. A full Gross-Pitaevski simulation of
the excitation and expansion dynamics, as shown in Fig.
7sbd, confirms this result sKatz, Ozeri, Steinhauer, et al.,
2004d.

Each of the filled circles in Fig. 12 is the excitation
energy measured from the slope of the energy of the
released excitation cloud versus the number of excita-
tions sinset of Fig. 12d. Except for the kj=0.32 point, the
measured points agree with the Bogoliubov spectrum in
the LDA, indicated by the solid curve.

VII. INCOHERENT EXCITATION EVOLUTION

The Bogoliubov Hamiltonian consists of atomic pro-
cesses such as forward scattering, which do not change
the occupation of different atomic momentum modes,
but rather give rise to a phase shift in the atomic wave
function. In the Bogoliubov quasiparticle basis, these
phase shifts are manifested in the Bogoliubov quasipar-
ticle energy. The evolution of excitations under this
Hamiltonian is coherent.

When taken to the next order in ÎN0, in Eq. s15d, the
interaction Hamiltonian includes processes for which
the occupation of different momentum modes changes.
In the large momentum regime, these processes describe
an elastic collision between an excitation atom and an
atom in the ground state. In the low k regime, these
processes are more conveniently described in the Bogo-
liubov basis, as the decay of an excitation into two lower
energy excitations. For typical k values in Bragg scatter-
ing experiments, the set of modes to which an excitation
can couple form a quasicontinuum in momentum space.
The excitation evolution under a Hamiltonian, that
couples into a quasicontinuum of modes is incoherent.
Scattering of excitations causes an exponential decrease
in the mode population and the excitation phase to de-
cohere in a manner that is effectively not time revers-
ible. In the frequency domain, this decoherence leads to
a broadening of the Bragg line, which is in a sense the
excitation’s “intrinsic” linewidth. This broadening is not
caused by the inhomogeneity of the condensate, and
cannot be overcome by modern spectroscopic tech-
niques, such as echo spectroscopy.

A. Time domain—Suppression of collisional damping at
low k

In typical absorption images for kj@1, a clear spheri-
cal halo of collisional, or Beliaev damping, products is

FIG. 12. Excitation energies measured from absorption images
at different momenta: filled circles, the slope of the filled
circles of the inset, measured in the combined region of the
two clouds; open circles, the slope of the open circles in the
inset, measured in the region of the excitation cloud only; solid
line, the Bogoliubov dispersion relation, calculated in the
LDA; dashed curve, the free-particle spectrum. The inset
shows the measured energies of the clouds as a function of the
number of excitations, for kj=0.96. The solid lines in the inset
are linear fits. From Ozeri et al., 2002.
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apparent between the condensate and the released exci-
tation clouds. The two clouds are at the poles of a colli-
sional sphere. However, at lower kj such as in Fig. 7sad,
distinguishing the scattered atoms from the coherent
evolution becomes difficult.

The damping rate of N excitations in mode k is calcu-
lated from the Beliaev Hamiltonian s16d, by the use of
Fermi’s golden rule sSakurai, 1985; Ketterle and Inouye,
2001d,

G =
2p

"
o
q8

zksN − 1dk,1q8uĤintuNk,0q8lz
2dsek − eq8 − ek−q8d .

s47d

The energies in the d function are the Bogoliubov qua-

siparticle energies. The off-resonance terms in Ĥint,
which are proportional to Bk,q8, are thus neglected. At
zero temperature there is no initial occupation in the
modes q8, and therefore Landau damping processes do
not occur. We consider the case for which the time of
our experiment teff, is such that

Gteff ! Nmode, s48d

where Nmode is the number of modes q8 that fulfil the
energy-conservation d-function condition. This way, the
average number of excitations scattered into mode q8
throughout the experiment is smaller than 1. We can
therefore concentrate on the Beliaev term in the inter-
action Hamiltonian. The damping rate becomes

G =
2p

"

g2N0N

2V2 o
q8

uAk,q8u2dsek − eq8 − ek−q8d . s49d

Using momentum conservation, the energy conserva-
tion d function corresponds to a geometrical condition
on the angle u between k and q8 sKatz et al., 2002d,

cossud =
1

2kq8
fk2 + q82 + 1 − Îsek − eq8d

2 + 1g , s50d

where k and q8 are in units of j−1, and energy is in units
of gn. The inset of Fig. 13 shows the energy conserving
surfaces in momentum space, for kj=3.87, 2.49, 1.63,
and 1. For momentum values kj@1 the energy conserv-
ing surface is a sphere, as expected from a quadratic
dispersion. As kj decreases, the surface changes into an
oblate lemonlike shape. In the k→0 limit the surface
becomes a straight line, where q8 is parallel to k, as ex-
pected from the decay of excitations with a linear disper-
sion relation.

Converting the sum in Eq. s49d into an integral, and
using the above units, the cross section for a Beliaev
damping event is given by sKatz et al., 2002d

sk = 8pa2 1

2k2E
0

k

dq8q8uAk,q8u
2

ek − eq8

Î1 + sek − eq8d
2

. s51d

Figure 13 shows sk as a function of k. As seen, the Be-
liaev damping cross section is largely suppressed at low
momenta. There are two reasons for the low k suppres-
sion. First, the number of modes q8 to which an excita-
tion can damp is significantly reduced as k becomes
smaller. Second, Akq, the damping amplitude, is sup-
pressed at low momenta due to quantum interference.
The damping cross section, without the contribution of
Ak,q, is indicated by the dashed line in Fig. 13. It is ap-
parent that for most k values, a large fraction of the
suppression in the cross section is due to quantum inter-
ference rather than a reduction in phase-space density.
Contrary to impurity scattering, for which below the su-
perfluid critical velocity, collisions are completely
banned sChikkatur et al., 2000d, the cross section for ex-
citation damping, sk, is always larger than 0 for k.0.
For large k ,sk approaches 8pa2, as compared to 4pa2

for impurities. This enhancement by a factor of 2 is due
to boson exchange symmetry.

At a given k we measure the overall probability for an
excitation to undergo the first collision pk. Neglecting
secondary collisions, we find that pk=Ncount /Nmom−1,
where Ncount is the number of observed atoms in the
released excitation cloud, and Nmom is the measured mo-
mentum carried by those atoms sin units of the momen-
tum of a single excitationd. This is true since every colli-
sion adds another atom to the released excitation cloud,
while leaving the total momentum unchanged. pk is then
taken to be equal to ñskwkteff, where teff is the effective
interaction time of the excitation with the condensate
sduring the pulse and during the released, ñ is the aver-
age density, and wk is the free-particle velocity of the
excitations, given by "k /m.

The measured ratio, pk / sñwkteffd is shown in Fig. 13
and is seen to agree with the theoretical expression for
the collision cross section ssolid lined calculated as an
LDA average of Eq. s51d. Due to uncertainties in teff,
absolute calibration is not possible, and the experimen-
tal points in Fig. 13 have an overall multiplicative factor.

FIG. 13. Cross section for Beliaev damping as a function of kj,
the excitation momentum: solid line, calculated in the LDA;
dashed line, calculated without the contribution of Ak,q, the
many-body suppression factor. The experimental points from
Katz et al. s2002d show the measured cross section sscaled from
arbitrary unitsd. The inset shows the energy- and momentum-
conserving surfaces for the Bogoliubov dispersion. The ki and
k' axes correspond to the parallel and orthogonal components
of the scattered momentum k, respectively. The manifolds are
calculated for the experimental values of kj=3.87, 2.49, 1.63,
and 1 soutermost to innermostd.
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B. Frequency domain—Collisional line broadening and
shift

Our considerations in this section have thus far been
restricted to the evolution of the excitation population
in time. To study the effect of coupling to a quasicon-
tinuum on spectroscopy, one must consider the effect on
the excitation energy. As in the time domain, it is useful
to employ perturbation theory. We consider an initial
state with N excitations in mode k , uil= uNkl, coupled to a

quasicontinuum of final states ufl through Ĥint fEq. s16dg.
Ĥint introduces a shift to an excitation’s energy from the
Bogoliubov value sSakurai, 1985d,

esNkd = Nek + ND . s52d

ND, the energy shift, has both a real and an imaginary
part which can be calculated sas a first approximationd in
second-order perturbation theory to give

ResNDd = pro
f

ukfuĤintuilu2

sei − efd
,

ImsNDd = − po
f

ukfuĤintuilu2dsei − efd , s53d

where pr stands for the principal part of the sum. The
real part of the shift comes from a summation over all
possible off-resonance final states, whereas the imagi-
nary part results from a summation over all the on-
resonance states. The energy shift of a single excitation
can be calculated from Eq. s53d using Eq. s16d,

ResDd =
g2N0

4V2 pro
q8
S u2Ak,q8u

2

2sek − eq8 − euk−q8ud

−
u6Bk,q8u

2

2sek + eq8 + euk+q8ud
D , s54d

ImsDd = − p
g2N0

4V2 o
q8

1
2

u2Ak,q8u
2dsek − eq8 − euk−q8ud . s55d

The numerical prefactors in Eq. s54d and Eq. s55d are
due to bosonic exchange symmetry; the amplitudes of
indistinguishable final states must be added before
squaring.

By comparison with Eq. s49d, the imaginary part of D
can be related to G, the Beliaev damping rate, which was
calculated from Fermi’s golden rule:

ImsDd = −
1
2

"G . s56d

The evolution of the initial state in time is thus given by

uistdl = eh−si/"dfek+ResDdg−sG/2djtuist = 0dl . s57d

The excitation spectrum is given by the Fourier trans-
form of the excitation time-correlation function, defined
as

cst = 0,td = kist = 0duistdl = eh−si/qdfek+ResDdg−sG/2djt. s58d

A homogeneous condensate response to the Bragg
pulse, as given by Eq. s23d, will be modified to sCohen-
Tannoudji et al., 1998d

Gk =
2p

"

s"VBd2

4
N0Sk

G/2p

Hv −
1

"
fek + ResDdgJ2

+ sG/2d2

.

s59d

Two changes are apparent in the response of a homo-
geneous condensate to the Bragg pulse due to the cou-
pling to a quasicontinuum. First, the response is shifted
by Eq. s54d from the Bogoliubov value. This shift is due
to coupling to off-shell momentum modes. An excitation
can decay into an off-resonance state. However, since
energy is not conserved in such a process, the decay
products must recombine to the initial state fast enough
that the energy mismatch lies within the energy-time un-
certainty. This process will not change the excitation
population. However during the round trip to off-
resonance final states and back, the excitations acquire a
phase shift that is translated into a shift in the resonance
energy.

Second, the response of the condensate is broadened
from a delta function into a Lorentzian with a full width
at half maximum given by G, the Beliaev damping rate.
This broadening is caused by the finite time an excita-
tion can remain in mode k before it scatters. This broad-
ening is not caused by inhomogeneity in the condensate,
and therefore can be thought of as the “natural” line-
width of the transition. If the Bragg resonance is mea-
sured through the observation of the atomic momentum
distribution after the pulse sas described in Sec. VI.Ad,
one can measure a linewidth that is narrower than the
“natural” linewidth by post-selecting the excitations
which did not undergo Beliaev damping sKatz, Ozeri,
Rowen, et al., 2004d. For most k values, the unscattered
excitations are separated from the damping products in
the TOF image.

For cigar-shaped inhomogeneous condensates, the
broadening of different radial modes due to Beliaev
damping requires further investigation sJackson and Za-
remba, 2003d.

The line shift is much more difficult to calculate ex-
plicitly than is the line broadening, because the sum in
Eq. s54d has an ultraviolet divergence, the resolution of
which involves subtle questions of renormalization, ap-
proximation order, and convergence. The Beliaev cor-
rection to the Bogoliubov energy has been calculated for
very low-energy states, starting from sBeliaev, 1958d,
which finds a correction factor of Î1+16sna3 /pd1/2 to the
Bogoliubov speed of sound. This factor, for typical ex-
perimental conditions, is of the order of a few percent.

More recent treatments applied to gaseous BEC
sFedichev and Shlyapnikov, 1998d involve many differ-
ent possible approximations beyond second-order per-
turbation theory. For a complete and critical review of
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these results, also see Griffin s1998d and Rogel-Salazar et
al. s2001d.

VIII. WAVE MIXING OF EXCITATIONS

In the previous section the coupling of an occupied
mode of Bogoliubov excitations to a quasicontinuum of
empty modes was described. Similar to the stimulated
emission of photons, the bosonic nature of excitations
enables the emphasis of the coupling to a specific mode
through its macroscopic occupation. In this final section
we will describe the interaction between two macro-
scopically occupied modes of Bogoliubov excitations.

A. Collisional “power” broadening and “ac-Stark”
shift

Our model system is a homogenous condensate of fi-
nite volume V, with N0 atoms in the ground state. We
consider the case in which the condensate is excited with
N excitations of momentum k and M excitations of mo-
mentum q , uNk ,Mql. If k and q fulfill the Bragg condi-
tion, i.e., ek=eq+ek−q, we refer to the modes as being
on-resonance. We define d, the detuning of mode q, as

d = eq + ek−q − ek. s60d

In the d=0 case, the amplitude given by Hint for Beli-
aev damping of the k momentum excitation into two
excitations with momenta q and k−q, resulting in a state
usN−1dk , sM+1dq ,1k−ql, will be ÎM-fold larger than any
of the other damping channels. This will result in a mac-
roscopic population in the initially unpopulated k−q
momentum mode. The dynamics between the three
macroscopically populated modes is referred to as three-
wave-mixing s3WMd of excitations. Experiments along
these lines have been performed in the single-particle
regime, in which Bogoliubov excitations correspond to
single atoms, moving with momentum k. The emergence
of a fourth scounting also the 0 momentum mode and
therefore usually referred to as atomic four-wave-mixing
experimentsd macroscopically occupied mode was ob-
served sDeng et al., 1999; Vogels et al., 2003d.

Limiting ourselves to a perturbative treatment of the
mixing process, the enhanced damping rate per excita-
tion from mode k can be calculated using Eq. s49d,

G =
2p

"

g2N0M

2V2 +
2p

"

g2N0

2V2 o
q8

uAk,q8u
2dsek − eq8 − ek−q8d .

s61d

The Bragg linewidth into mode k will correspondingly
increase. This further broadening of the line is analo-
gous to power broadening of an atomic absorption line,
due to the presence of an on-resonance laser beam.

When k and q are off-resonance, no real damping will
occur from mode k to mode q. However, the energy of
mode k will be modified. Given that d!ek, the contri-
bution of mode q to the line shift can be approximated
by

D . −
g2N0M

V2

uAk,qu2

2d
. s62d

This shift is analogous to the ac-Stark shift of an atomic
line due to the presence of an off-resonance laser beam.
This collisional ac-Stark shift can be experimentally ob-
served by measuring the Bragg response for mode k.
The sign of the shift depends on the sign of d.

B. Dressed-state approach

The above perturbative treatment relies on the as-
sumption that the dynamics due to the interaction be-
tween excitations in modes k and q is overwhelmed by
decoherence. For an infinite homogeneous condensate,
the only decoherence mechanism present is that of Be-
liaev damping into the quasicontinuum. In the labora-
tory, inhomogeneous dephasing mechanisms will be the
dominant cause for decoherence. In the case where the
dynamics due to the coupling between the modes is
faster than the decoherence time of the system, the use
of perturbation theory is inadequate, and one would
have to solve Hint exactly in order to calculate the 3WM
dynamics between the various macroscopically popu-
lated excitation modes.

One method of finding such an exact solution is the
use of a dressed state basis, in which Hint is diagonalized
sOzeri et al., 2003d. In this basis the 3WM dynamics of
the condensate is readily calculated. Excitations are seen
to oscillate between the k momentum mode and the q
and k−q momenta modes. In analogy to the treatment
of spontaneous photon scattering as transfer between
dressed state manifolds of the dressed atom-laser sys-
tem, Beliaev scattering into empty modes can be treated
as transfers between dressed state manifolds. As a result
of the 3WM dynamics, Beliaev damping becomes inelas-
tic. The damping spectrum, shown in Fig. 14, is seen to
show a splitting that is analogous to the Mollow splitting
in the spectrum of photon scattering from a strongly
driven atom.

FIG. 14. Beliaev damping spectrum from the N=M=5
3103 , k=3 q /j, and q=k /Î2, dressed-state manifold. The con-
densate is homogeneous, with 33105 87Rb atoms and a density
of 331014 atoms/cm3. The two curves are ssolidd for d=0, and
sdashedd d=1.2 kHz. From Ozeri et al., 2003.
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IX. CONCLUSIONS

Bogoliubov and Beliaev theories of excitations in
weakly interacting Bose-degenerate gases were devel-
oped several decades ago sBogoliubov, 1947; Beliaev,
1958d. The experimental study of BEC, however, is rela-
tively new sAnderson et al., 1995d. In the experiments
described above, as well as in several other experiments
with Bogoliubov excitations in BEC1 these long awaited
“textbook” quantum many-body theories have been
verified. Bogoliubov mean-field theory has been proven
to provide an extremely accurate framework, within
which the time dynamics of weakly interacting conden-
sates can be calculated.

In contrast to many experimental studies of Bogoliu-
bov excitations in BEC, the experiments described here
study excitations whose wavelengths are short compared
to the condensate size. This regime has two distinctive
properties. First, the dynamics of such short-wavelength
excitations is dominated by the bulk, intrinsic properties
of the condensate, rather than by the condensate geom-
etry. Consequently, the physics of short-wavelength ex-
citations reflects the essence of Bogoliubov quasiparticle
theory, as this theory was originally formulated for an
infinite homogeneous Bose gas.

Second, Beliaev processes in the short wavelength re-
gime couple excitations to a quasicontinuum of final
states. This draws an analogy between the physics of a
macroscopically occupied Bogoliubov mode, and that of
a macroscopically occupied light mode sa laserd, which is
coupled to the electromagnetic vacuum through the
presence of an atom sCohen-Tannoudji et al., 1998d.

Two photon Bragg transitions are a powerful tool for
the experimental study of BEC. There are several future
prospects for experiments on condensates, using Bragg
transitions. One possibility is the use of Bragg spectros-
copy for probing effects that are beyond the Bogoliubov
approximation. In this review we have discussed at
length the implications of Beliaev dynamics on Bragg
spectroscopy. The introduction of strong or long-range
interactions into the condensate will require large cor-
rections to the Bogoliubov approximation. Recently
there have been several proposals to introduce such
long-range interactions by the use of a Feshbach reso-
nance, by irradiating the condensate with strong off-
resonance light fields, or by applying strong electric
fields to the condensate. Another possibility is to use a
condensate of atoms with strong dipolar interactions
sGriesmaier et al., 2005d. In all of these cases, theoretical
predictions have been made for the appearance of
second-order density correlations in the condensate,
which would form a roton minimum in the condensate
excitation spectrum sO’Dell et al., 2003; Santos et al.,
2003; Steinhauer et al., 2004d. The study of strong Bragg-
formed excitations will also require corrections to the

Bogoliubov theory. In such a case, the condensate re-
sponse to the Bragg pulse would be highly nonlinear
sBand and Sokuler, 2002; Katz, Ozeri, Rowen, et al.,
2004d.

Bragg spectroscopy can also be applied to the probing
of other condensate states as opposed to the ground
state, such as a vortex state sZambelli et al., 2000; Blakie
and Ballagh, 2001d, or for the probing of the condensate
ground state in nontrivial trapping geometries, such as a
double well or an optical lattice sBlakie and Ballagh,
2001; Menotti et al., 2003d. In the latter case, Bragg spec-
troscopy of the Mott insulator phase in an optical lattice
could produce insight into number squeezing in this
phase sGreiner et al., 2002d.
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