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Two complementary effects modify the GHz magnetization dynamics of nanoscale heterostructures of
ferromagnetic and normal materials relative to those of the isolated magnetic constituents. On the one
hand, a time-dependent ferromagnetic magnetization pumps a spin angular-momentum flow into
adjacent materials and, on the other hand, spin angular momentum is transferred between
ferromagnets by an applied bias, causing mutual torques on the magnetizations. These phenomena are
manifestly nonlocal: they are governed by the entire spin-coherent region that is limited in size by
spin-flip relaxation processes. This review presents recent progress in understanding the
magnetization dynamics in ferromagnetic heterostructures from first principles, focusing on the role of
spin pumping in layered structures. The main body of the theory is semiclassical and based on a
mean-field Stoner or spin-density-functional picture, but quantum-size effects and the role of
electron-electron correlations are also discussed. A growing number of experiments support the
theoretical predictions. The formalism should be useful for understanding the physics and for
engineering the characteristics of small devices such as magnetic random-access memory elements.
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ferromagnet is often unstable with respect to a domain
structure that lowers the macroscopic magnetic energy.
Thermal fluctuations reduce the macroscopic moment
until it completely vanishes at the critical temperature
T.. At temperatures sufficiently below T,, the internal
dynamics of the ferromagnet are dominated by low-
energy transverse fluctuations of the magnetization, so-
called spin waves or magnons, that are the magnetic
equivalence of phonons in a lattice. Classical coarse-
grain computer simulations of the detailed position- and
time-dependent magnetization (“micromagnetism”) de-
scribe these phenomena well (Brown, 1963; Miltat et al.,
2002).

When magnetic grains become sufficiently small, the
exchange stiffness renders domain structures that are
not energetically favorable and a single-domain picture
is adequate. When the ferromagnet is exposed to a uni-
form driving field, the macroscopic magnetization dy-
namics may then be dominated by a collective preces-
sion of the entire ferromagnetic order parameter.
Restricting the ferromagnetic degrees of freedom to this
mode is often referred to as the macrospin model. In
infinite ferromagnetic media, low-energy spin waves re-
semble symmetry-restoring Goldstone modes, but in
real life, the spin-rotational symmetry is broken by mag-
netic anisotropies caused by magnetic dipolar fields or
by crystal-field spin-orbit interactions. In thermody-
namic equilibrium, the macrospin then points in a cer-
tain fixed direction with small thermal fluctuations
around it. The ferromagnet can still be coerced into mo-
tion by applying external magnetic fields at a finite angle
to the magnetization direction. The system then moves
in response, trying to minimize its Zeeman energy. The
compass needle, a freely suspended single-domain ferro-
magnet with a sufficiently high anisotropy (coercivity),
does this by alignment of its lattice. In this review, we
are interested in mechanically fixed magnets whose mag-
netic moments move in the presence of external and
anisotropy effective magnetic fields, as well as applied
electric currents. Viscous damping processes are re-
quired to achieve a reorientation (switching) of the mag-
netization, if, for example, a magnetic-field direction is
suddenly changed. Minimization of this finite switching
time by engineering magnetic anisotropies and
magnetization-damping rates is an important goal in the
design of fast magnetic memories. When the applied
magnetic fields are large enough to surmount the
anisotropies, the magnetization can be reversed, often
by large amplitude and complex trajectories, even in the
simple macrospin model. At finite temperatures, the
magnetization reorientation becomes probabilistic and is
described by a Fokker-Planck equation on the unit
sphere (Brown, 1963).

In the last two decades, a new subdiscipline in the
field of magnetism has risen that is devoted to the stud-
ies of heterostructures of ferromagnets (F) with normal
metals (N) and, to a lesser extent, semiconductors and
superconductors. Especially magnetoelectronics, the sci-
ence and technology directed at understanding and uti-
lizing the transport properties of layered structures of
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ferromagnetic and normal metals, has grown into a
mainstream topic of condensed-matter physics. Its at-
traction derives from large effects at room temperature
that can be understood easily in terms of transparent
physics and that have already found numerous applica-
tions. Two crucial discoveries in magnetic multilayers
still reverberate in recent research, viz., the nonlocal os-
cillatory exchange coupling by Griinberg et al. (1986)
and the giant magnetoresistance (GMR) by Baibich e al.
(1988) and Binasch et al. (1989). Exchange coupling
through a metallic spacer favors an antiparallel coupling
between ferromagnetic layers for certain spacer thick-
nesses, depending on the occupation of spin-polarized
quantum-well states. It is therefore a quantum-
interference effect sensitive to defect scattering, which
vanishes exponentially with increasing spacer-layer
thickness. GMR is a phenomenon in which the resis-
tance of multilayers is reduced when the magnetic con-
figuration is forced from antiparallel to parallel by an
applied magnetic field. In disordered multilayers, it is a
semiclassical transport effect that can be understood in
terms of a diffusion equation (Camley and Barnas, 1989;
Valet and Fert, 1993). In a configuration in which the
currents are oriented perpendicular to the interface
planes (CPP) (Pratt et al., 1991; Gijs et al., 1993; Gijs and
Bauer, 1997), electrical transport can be mapped onto a
two-channel (spin-up and spin-down) resistor model in
which interface and bulk resistances for a fixed spin are
simply connected in series. The spin-relaxation pro-
cesses are usually modeled by a local finite-resistance
link connecting the spin-up and spin-down circuits.

Initially, the community focused its attention on sta-
tionary magnetic states, like those responsible for the
magnetoresistance in metallic and tunneling structures
with applied dc bias. This has changed drastically in re-
cent years. The main catalyst was the experimental veri-
fications of an earlier prediction by Berger (1996) and
Slonczewski (1996) that electric currents can cause a re-
orientation of the ferromagnetic order in multilayer
structures. Tsoi et al. (1998) experimentally demon-
strated magnetization precession in (Co|Cu)y multilay-
ers by currents injected by a point contact, whereas My-
ers et al. (1999) observed switching in the orientation of
magnetic moments in Co|Cu|Co sandwich structures by
perpendicular electric currents (“CPP spin valves”).
Much earlier, a coupling between a dynamic ferromag-
netic magnetization and spin accumulation in adjacent
normal metals had been postulated by Janossy and
Monod (1976) and Silsbee et al. (1979). These authors
demonstrated that microwave transmission through
normal-metal foils facilitated by conduction-electron
spin transfer is significantly enhanced by ferromagnetic-
layer coating.

This review covers the developments in the under-
standing of the magnetization dynamics in heterostruc-
tures of ferromagnets and normal conductors in the last
five years or so. We believe that the time is ripe, since
from a microscopic point of view, much of the basic
physics is well understood. A consistent and coherent
picture has evolved that is based on the diffusion equa-
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tion for the bulk transport in metallic ferromagnets and
normal conductors with quantum-mechanical boundary
conditions at possibly sharp interfaces between them.
Noncollinearity of the magnetization directions in struc-
tures with more than one magnet is an essential ingredi-
ent in order to understand the physics. We focus here on
explicitly dynamic effects, referring to a separate article
(Brataas, Bauer, and Kelly, 2005) for the static transport
properties of magnetoelectronic circuits and devices.
The present review follows a self-consistent approach
extending the static magnetoelectronic circuit theory to
time-dependent phenomena. It provides a framework
for including on an equal footing two physical effects
that are two sides of one coin, viz., the spin-transfer
torque induced by applied currents (Slonczewski, 1996)
and the spin pumping by moving ferromagnets into ad-
jacent conductors (Tserkovnyak et al., 2002a). The
theory is derived from microscopic principles and the
material-dependent input parameters are thus accessible
to ab initio calculations. We concentrate on quasi-one-
dimensional models corresponding to, e.g., layered pillar
structures. With few exceptions, we do not attempt ac-
curate modeling of concrete device structures and devia-
tions of the magnetization dynamics from the macrospin
model, although the theory discussed in this review can
be readily generalized to treat such situations. We focus
on adiabatic effects to lowest order in the characteristic
Larmor frequency. In spite of these limitations, the
agreement with various experiments is found to be grati-
fying.

Effects beyond such a model certainly may cause ob-
servable phenomena. For example, the quantum inter-
ference that leads to inversion of the magnetoresistance
in high-quality tunnel junctions cannot be treated by the
diffusion equation (Yuasa et al., 2002). Nonlinearities re-
quire numerical simulations or a stability analysis based
on the theory of dynamic systems that are outside our
scope (Valet, 2004). High temperatures and currents can
best be treated by stochastic methods beyond the
present review (Apalkov and Visscher, 2004; Li and
Zhang, 2004b) but the input parameters of such ap-
proaches are provided here. The current-induced dy-
namics of domain walls (Li and Zhang, 2004a; Tatara
and Kohno, 2004; Barnes and Maekawa, 2005, and ref-
erences therein) are also beyond the macrospin consid-
erations central to this review. Whereas the spin-
transfer-torque—induced dynamics are a crucial
ingredient, space constraints force us to abandon com-
plete coverage of the numerous experiments published
recently.

Throughout the review, we focus on self-consistent ef-
fects arising from the time-dependent ferromagnetic ex-
change field felt by itinerant carriers in the mean-field
picture. We take the spin-orbit interaction into account
only in terms of a phenomenological spin-flip relaxation
time, Secs. II-V, but consider it more seriously in Secs.
VLB and VIL.B. Most results are not material specific,
but unless specified otherwise we have heterostructures
of transition-metal ferromagnets (and its alloys) with
noble or other simple normal metals in mind.
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The main body of this review is organized as follows.
Section I introduces several basic concepts that we rely
on in the remainder of the article, which is primarily
aimed at nonspecialists. Section II is a brief but in-depth
discussion of the magnetoelectronic circuit theory (see
also Brataas, Bauer, and Kelly, 2005), which is then gen-
eralized in Sec. III to dynamic problems by means of the
spin-pumping concept. Sections IV and V, respectively,
discuss Gilbert damping and dynamic ferromagnetic ex-
change in heterostructures, which are mediated by spin
pumping and spin-transfer torques. Section VI is de-
voted to an alternative linear-response view of the non-
local magnetization dynamics, and Sec. VII treats sev-
eral special topics before we conclude the article with a
summary and outlook in Sec. VIII.

B. Nonlocal exchange coupling and giant
magnetoresistance

The discovery that the energy of magnetic multilayers
made from alternating ferromagnetic and normal-metal
films depends on the relative direction of the individual
magnetizations (Griinberg et al., 1986) is perhaps the
most important in magnetoelectronics. The existence of
the antiparallel ground-state configuration at certain
spacer-layer thicknesses was essential for the subsequent
discovery of the giant magnetoresistance (Baibich et al.,
1988; Binasch et al., 1989). Adjacent ferromagnetic lay-
ers in such structures are coupled by nonlocal and, as a
function of normal-metal layer thickness, an oscillatory
(Parkin et al., 1990) exchange interaction that can be
qualitatively understood by perturbation theory analo-
gous to the RKKY (Ruderman and Kittel, 1954; Kasuya,
1956; Yosida, 1957) exchange coupling between mag-
netic impurities in a normal-metal host. Different oscil-
lation periods, which can be resolved in measured mag-
netization configuration as a function of spacer
thickness, are well explained in terms of the normal-
metal Fermi-surface calipers in the growth direction.
The magnetic ground-state configuration is, at least in
principle, accessible to first-principles electronic-
structure calculations in the spin-density-functional
theory formalism, and that is basically the end of the
story. However, in order to make a connection to the
main topic of this review, we briefly discuss the formu-
lation of the equilibrium exchange coupling in terms of
scattering theory (Slonczewski, 1989, 1993; Erickson
et al., 1993), which can also be formulated from first
principles and calculated by density-functional theory
(Bruno, 1995; Stiles, 1999). Another advantage of a
scattering-theory formulation is that effects of disorder
can be understood by employing the machinery of me-
soscopic physics, such as random-matrix (Beenakker,
1997) or diagrammatic perturbation theory.

Let us consider a layered N|F|N|F|N spin valve with
angle # between the magnetizations and an N spacer
with thickness L, see Fig. 1 schematic. Suppose we can
view the F|N|F trilayer as some spin-dependent scat-
terer embedded in a normal-metal medium. The trilayer
gives a f-dependent contribution to the total ground-
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FIG. 1. Spin-valve schematic: two monodomain ferromagnets
(F) separated by a normal (N) spacer and attached to normal
leads. In this current perpendicular to the interface plane
(CPP) configuration, the current flowing between two normal
reservoirs sequentially traverses two magnetic layers. Also
shown are two effective circuits discussed in Sec. II.A for the
semiclassical regime where the interlayer exchange coupling
vanishes.

state energy, given by a standard formula (Akkermans et
al., 1991)

1 (%F 4
E(L,0) = ﬁf 8; Indets(L,0,e)de, (1)

in terms of the energy-dependent scattering matrix
s(L,0,¢) of the trilayer. The scattering matrix is made
up from the matrices r and t of the reflection and trans-
mission coefficients for a basis of spin-resolved incoming
states at energy ¢ from the right normal metal, whereas
the primed ones (r’ and t’) are defined for states coming
from the left normal metal:

_(r t’) 5
=[5 @)

The scattering matrix of the total system can be com-
posed out of the transmission and reflection coefficients
of the F|N interfaces as well as of the bulk layers by
well-known concatenation rules. Quantum-well states
and resonances are formed by multiple reflections at in-
terfaces caused by potential steps and electronic-
structure mismatches. The angle and thickness depen-
dence of the total energy (1) can be understood in terms
of the variation of the interference pattern of the spin-
dependent electron waves in and close to the normal-
metal spacer. By varying L and 6, quantum-well states
enter or leave the Fermi sea with abrupt changes in the
total energy that can be large for small L. The minimum
energy for a given L is usually found at #=0 and m, i.e.,
either parallel or antiparallel configurations are favored.
Though exponentially suppressed, the coupling between
the magnetic layers persists when the insertion is an in-
sulating barrier (Slonczewski, 1989; Bruno, 1995).
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Of special interest is the asymptotic dependence of
energy E(L,6) for large L. In this limit, the sharp jumps
in energy by the population or depopulation of indi-
vidual quantum-well states as a function of L and 6 be-
come less prominent. The quasicontinuous angular de-
pendence of the energy in this limit is well described by
the lowest term in the expansion into Legendre polyno-
mials:

L J
E(L,6) = cos 62, 72 8in(qa L+ o), (3)

which is a sum of contributions from each critical caliper
at the Fermi surface of the normal-metal spacer labeled
by a. The parameters J, and ¢, are model and material
dependent (Stiles, 1999). ¢,, is the critical Fermi-
surface-spanning wave vector in the layering direction,
which determines the caliper in reciprocal space. Note
that whereas we in principle require the scattering ma-
trix for all occupied states in Eq. (1), Eq. (3) is governed
by the scattering coefficients at the Fermi energy only,
just as the transport properties at low temperature and
bias. In practice, Eq. (3) can often be used for all but the
most narrow spacer layers.

At configurations that are not at equilibrium, the de-
rivative

g
T=— %E(L,G) (4)

does not vanish. A finite 7is therefore interpreted as an
exchange torque acting on the magnetizations, pulling
them into an energetically favorable configuration.
Physically, this torque is an angular-momentum transfer
that is carried by the electron spin. A spin valve that is
“strained” by a relative misalignment of the magnetiza-
tion directions from their lowest-energy configuration
therefore supports dissipationless spin currents. The
situation is quite analogous to the Josephson junction in
which a difference of the superconducting phase over a
weak link induces a supercurrent. We note that at finite
temperatures, the ground-state energy E(L, 6) should be
replaced with the free energy F(L,6) in Eq. (4).
Essential for the existence and the magnitude of the
nonlocal exchange coupling and the corresponding per-
sistent spin currents is the phase coherence of the wave
functions in the normal spacer. An incoming electron in
the spacer with information of the left magnetization
direction has to be reflected at the right interface and
interfere with itself at the left interface in order to con-
vey the coupling information. This implies strong sensi-
tivity to the effects of impurities since the diffuse scat-
tering destroys the regular interference pattern required
by a sizable coupling. This qualitative notion has been
formulated by Waintal et al. (2000) in the scattering-
theory formalism invoking the isotropy condition for va-
lidity of the random-matrix theory. Isotropy requires dif-
fuse transport, viz., that L is larger than the mean free
path due to bulk and interface scattering. It can then be
rigorously shown that the equilibrium spin currents van-
ish on average with fluctuations that scale like N7!,
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where N stands for the number of transverse transport
channels in the normal-metal spacer. In layered metallic
structures, N is large and the static exchange coupling
and spin currents can safely be disregarded in the diffuse
limit. On top of the suppression by disorder, the magni-
tude of the coupling scales like L™ even in ballistic
samples, see Eq. (3). Experimentally, even the presum-
ably best Co|Cu|Co samples indeed do not show an ap-
preciable coupling beyond a spacer-layer thickness of
about 20 atomic monolayers.

In Sec. V we discuss the magnetization dynamics of
multilayers and superlattices. We find that, on top of the
equilibrium spin currents that communicate the nonlocal
static exchange coupling, a dynamic exchange interac-
tion with a much longer range becomes important. Any
significant coupling at equilibrium in dynamic studies
can be represented approximately in terms of param-
etrized conservative forces that react to deviations from
equilibrium without interference with nonequilibrium
spin currents.

GMR was originally discovered in a configuration in
which the current flows in the plane of the film.
Multilayer pillar structures in which the current flows
perpendicular to the planes (Pratt et al., 1991; Gijs et al.,
1993; Gijs and Bauer, 1997) are more relevant in the
present context. Assuming diffusive transport, the GMR
with current flows perpendicular to the planes is easily
understood in terms of a two-channel series-resistor
model (Valet and Fert, 1993). In the parallel configura-
tion, the charge current is short-circuited by the low-
electrical-resistance spin channel. The charge and spin
transport in intermediate configurations in which mag-
netizations vary between parallel and antiparallel is im-
portant in the context of the present review due to the
emergence of transverse spin currents that are absorbed
by magnetizations and contribute as a driving torque to
the dynamics. This dissipative channel for transverse
spins also modifies the angular magnetoresistance of
spin valves. These and other noncollinear magnetoelec-
tronic dc phenomena are reviewed by Brataas, Bauer,
and Kelly (2005).

C. Landau-Lifshitz-Gilbert phenomenology

At temperatures well below the ferromagnetic critical
temperature 7, the equilibrium magnetization of a bulk
ferromagnet saturates at some material-specific value
M,. Symmetry-restoring Goldstone modes of this
broken-symmetry state are spin waves (magnons) men-
tioned in Sec. I.A, which can condense into macroscopic
transverse magnetization dynamics. In itinerant ferro-
magnets, there are also longitudinal spin excitations, the
Stoner modes. However, since macroscopic variation of
the magnetization magnitude at 7<<T7, is very costly in
free energy, we focus on the purely transverse motion of
the position-dependent magnetization direction m
=M/M,, with a fixed magnitude |[M|=M,.

A traditional starting point in studying the transverse
magnetization dynamics in a ferromagnetic medium is
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based on the phenomenological Landau-Lifshitz equa-
tion (Landau et al., 1980). The magnetization direction
m(r,?) is treated in this approach as a classical position-
and time-dependent variable obeying equations of mo-
tion which are determined by the free-energy functional
FIM] for degrees of freedom coupled to the magnetiza-
tion distribution M(r) (such as the electromagnetic field
or itinerant electrons experiencing a ferromagnetic ex-
change field):

gm(r,1) = — ym(r,1) X Heg(r), )

where vy is (minus) the gyromagnetic ratio and

H,(r) = — oy FIM] (6)

is the effective magnetic field. Corresponding to the re-
spective contributions to the free energy, the effective
field can usually be decomposed into the applied, dipo-
lar demagnetization, crystal-anisotropy, and exchange
fields. In the case of free electrons, y=2ug/h>0, in
terms of Bohr magneton upz and Planck’s constant &
=2, and it is usually close to this value in transition-
metal ferromagnets.

It is easy to see that the Landau-Lifshitz equation (5)
with effective field (6) describes transverse magnetiza-
tion dynamics preserving the free energy F{M]. Defini-
tion (6) with the effective field depending on the instan-
taneous magnetic configuration assumes that the
magnetization dynamics are very slow on the scale of the
relevant microscopic relaxation processes. However,
some slow degrees of freedom may not respond suffi-
ciently fast to the magnetization motion, making the ef-
fective field dependent on the history of the magnetiza-
tion dynamics M(r,?). This should be associated with
dissipation of energy into the degrees of freedom that
are coupled to the magnetization.

As a specific example, consider the magnetization dy-
namics (5) described by the effective field

Heg(r,0) = — m(H(M)),, (7

where H(M) is the many-body Hamiltonian for itinerant
electrons, parametrized by a mean-field magnetic con-
figuration M(r,?) of, e.g., some localized magnetic orbit-
als (as in the s-d model), and (), evaluates its expecta-
tion value for the many-body state (or ensemble) at time
t. Setting the many-body ensemble at time ¢ to its ther-
mal equilibrium configuration determined by M(?) re-
produces the Landau-Lifshitz definition (6). In the oppo-
site extreme, when electrons do not respond at all to the
fast magnetic dynamics, ( ),~( )o, the effective field is
determined by the history-independent functional
(H(M)), instead. In the intermediate regime, a finite
time lag in the response of the itinerant electrons to the
varying magnetization causes dissipation of the magnetic
energy, as discussed in Sec. VI.B. To lowest order in
frequency (i.e., keeping only terms linear in J,), such
damping can be described by an additional torque in Eq.
(5) (Gilbert, 1955, 2004):
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dm=—ym X H 4+ am X Jm, (8)

where « is the dimensionless Gilbert constant and H.g; is
an effective field depending only on the instantaneous
magnetic configuration. (Partial time derivatives imply
here the possibility of spatial variations of the magneti-
zation, as, e.g., in the case of spin waves; the full time
derivatives are reserved for the monodomain dynamics.)
The Gilbert term in Eq. (8) has been obtained for vari-
ous microscopic formulations of the magnetization dy-
namics, see, e.g., Heinrich et al. (1967), Korenman and
Prange (1972), Lutovinov and Reizer (1979), Safonov
and Bertram (2000), Kunes and Kambersky (2002),
Tserkovnyak et al. (2002a), and Sinova et al. (2004).

Energy dissipation implied by Eq. (8) preserves the
local magnitude of the magnetization. For example, for
a constant H.; obeying Eq. (6) and @=0, m precesses
around the field vector with frequency w=yH ;. When
damping is switched on, >0 (assuming positive v, as in
the case of free electrons), the precession spirals down
on a time scale of (aw)™! to a time-independent magne-
tization along the field direction, i.e., the lowest-free-
energy state. Close to an equilibrium axis with rotational
symmetry, the Landau-Lifshitz-Gilbert equation (8) is
obeyed by a small-angle damped circular precession,
while in the presence of anisotropies, small-angle trajec-
tories are elliptic and the damping is in general a tensor.
For most of our purposes, simple circular precession
with a scalar damping « suffices (but see Sec. VIL.B). It
is sometimes convenient to work with a different Gilbert
parameter

G = ayM,. 9)

It can be made explicit that magnetization dynamics
described by Eq. (8) dissipate energy at a rate deter-
mined by «a. To this end, suppose for simplicity that
YH 5= wyZ, wy>0, is uniform throughout a monodomain
ferromagnetic sample, so that Eq. (8) describes a
damped macrospin circular precession around the z axis.
Small-angle dynamics around the z axis can thus be
resonantly excited by a (right-hand) circularly polarized
rf field with a small amplitude /¢ and frequency w close
to ay, that is, h_(t)=h(¢) ~ih,(t) = h,; exp(~iot). The mag-
netic response to such a field is M _(w)=x_,(0)h_(w),
where

YM,

(wy— w) —iaw

X—+(w) = (10)

is the transverse magnetic susceptibility. The linear-
response expression for the energy-dissipation power
per unit of volume,

ayM w*h%
(0~ @) + (aw)?’

P=wlm x_ (0)hf= (11)

does not depend on the microscopic origin of «, as long
as Eq. (8) holds. For a steady precession, one can also
show that P=—h(s)-m(¢)M, is the work done by the rf
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field h(z). The stability of the system, P >0, requires that
ay>0.

Equation (8) has been found to successfully describe
the dynamics of ultrathin ferromagnetic films as well as
bulk materials in terms of a few material-specific param-
eters that are accessible to ferromagnetic-resonance
(FMR) experiments (Bhagat and Lubitz, 1974; Heinrich
and Cochran, 1993). FMR spectra are obtained by plac-
ing the sample into a microwave cavity and sweeping the
external dc field. yH; then determines the position and
a the width of the resonance absorption peak. The FMR
linewidth can have an additional contribution due to in-
homogeneities in Hg, loosely corresponding to a finite
range of the resonance frequency w, in Eq. (11). For
example, small disorder by surface roughness or a non-
uniform surface field in exchange-biased thin films con-
tributes to the resonance broadening by (in quantum-
mechanical terms) two-magnon scattering (Mills and
Rezende, 2003). The inhomogeneous linewidth broaden-
ing is associated with dephasing of the global precession
that in general does not conserve the magnitude of the
magnetization. Whereas the Gilbert damping predicts a
strictly linear dependence of FMR linewidths on fre-
quency, the inhomogeneous broadening is usually asso-
ciated with weaker frequency dependence as well as a
zero-frequency contribution. Another common tech-
nique in studying long-wavelength spin waves is Bril-
louin light scattering (see, e.g., Demokritov and Tsym-
bal, 1994). Both FMR and Brillouin light scattering
probe magnetic excitations close to the surface, i.e.,
within the corresponding skin depth of the order of
100 nm for FMR and 10 nm for Brillouin light scattering
(Mills and Rezende, 2003). In contrast to FMR, Brillouin
light scattering excites spin waves with finite wave-
lengths in the surface plane (in the range of visible light),
bearing consequences for the signal linewidths; see Mills
and Rezende (2003) and Sec. VII.C. In closing this sub-
section, we remark that ferromagnetic magnetization dy-
namics and, in particular, magnetization relaxation pro-
cesses are collective many-body phenomena that
continue to fascinate in spite of decades of theoretical
and experimental efforts to understand them; see, e.g.,
Qian and Vignale (2002); Dobin and Victora (2003).

D. Current-induced magnetization dynamics

It has been only relatively recently realized that in
magnetic multilayers the magnets can be excited by
other means than external magnetic fields. Berger (1996)
and Slonczewski (1996) predicted that in current perpen-
dicular to the interface plane spin-valve structures a dc
current in the right direction can excite and even reverse
the magnetization of a magnetic layer. This can be ob-
served by monitoring dI/dV, which depends on the mag-
netic configuration, as in GMR. The predictions have
now been amply confirmed by many recent experiments
(Myers et al., 1999, 2002; Katine et al., 2000; Tsoi et al.,
2000; Wegrowe et al., 2000; Ji et al., 2003; Kiselev et al.,
2003; Ozyilmaz et al., 2003; Urazhdin et al., 2003; Pufall
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et al., 2004; Krivorotov et al., 2005; Sun et al., 2005).
Current-induced magnetic dynamics have also been
found to affect current noise spectra (Covington ef al.,
2004). The prediction (Polianski and Brouwer, 2004;
Stiles et al., 2004) that even a single dc-current—driven
ferromagnetic layer may undergo a resonant finite-
wave-vector spin-wave excitation has been experimen-
tally confirmed by Ozyilmaz et al. (2004); see also Ji et al.
(2003). Consequently, higher-wave-vector spin-wave ex-
citations may in some situations successfully compete
(Brataas, Tserkovnyak, and Bauer, 2005; Ozyilmaz et al.,
2005) with current-induced macrospin motion consid-
ered below. Current-induced magnetization dynamics
pose a challenging physics problem that requires under-
standing of the coupling of nonequilibrium quasiparti-
cles with the collective magnetization dynamics. It car-
ries technological potential as well. In small structures,
to write information into magnetic RAM’s, switching by
Ampere magnetic fields may need more power than
switching by current-induced magnetization reversal.
The generation of microwaves by exciting stable magne-
tization orbits with dc bias-dependent frequencies may
also satisfy technological needs (Kiselev et al., 2003; Rip-
pard et al., 2004).

Current-induced magnetization dynamics are a conse-
quence of spin-dependent transport in F|N heterostruc-
tures. For example, Slonczewski’s magnetization torque
(Slonczewski, 1996) is equivalent to absorption of an in-
cident spin current with a polarization component per-
pendicular to the magnetization (Brataas et al., 2000;
Waintal et al., 2000; Stiles and Zangwill, 2002). The com-
ponent of the electron spin perpendicular to the magne-
tization is not a constant of the motion in a ferromagnet.
On the other hand, if one neglects the effects of spin-
orbit coupling (other than the macroscopic anisotropy
already included in Hgy) and other spin-flip processes,
the total spin angular momentum is conserved. The spin
angular-momentum difference between an electron en-
tering and leaving a ferromagnet is therefore transferred
to the magnetization. Under a sufficiently large angular-
momentum transfer, the magnetization starts to move.
The component of the net spin angular-momentum flow
out of the ferromagnet I; parallel to m vanishes, since
the outflow cancels the inflow for the parallel compo-
nent (assuming spin along the uniform magnetization di-
rection is conserved). The spin-transfer torque +=-I
should be accounted for as an additional source term in
the equation motion of the magnetization. In the pres-
ence of spin-flip scattering, a component parallel to m
must be projected out to represent the torque that drives
the transverse magnetization dynamics:

7=—m X I, X m. (12)

An electron injected into a ferromagnet at the Fermi
energy and transverse polarization is not in a momen-
tum eigenstate, but should be described by a linear com-
bination of majority and minority spin eigenstates asso-
ciated with different Fermi wave vectors, kJ. and k. The
linear coefficients of up and down spins carry out oscil-
lations as a function of time and position, equivalent to a
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spin precession around the exchange magnetic field.
Fermi-level states entering the ferromagnet at different
angles precess on different length scales perpendicular
to the interface, depending on the perpendicular compo-
nent of the spin-up and spin-down wave-vector differ-
ence. In ferromagnets with a large cross-section area, a
large number of transverse modes with different spin-
precession lengths contribute to the total spin current.
The destructive interference of numerous states with dif-
ferent phases corresponds to the absorption of the trans-
verse spin current inside the ferromagnet on the scale of
the transverse-spin coherence length,

v
N 13
sc— |kF k | ( )

Nee~Ap (the Fermi wavelength), an atomistic length
scale for, e.g., transition-metal ferromagnets like Co, Ni,
and Fe, or their alloys. The smallness of penetration
depths N\, a posteriori justifies the implicitly assumed
clean limit, A<\ (the mean free path). It should be
noted that Ay sets a length scale of a power law (Stiles
and Zangwill, 2002), not an exponential suppression of
the transverse spin current.

After transmission through a ferromagnetic film much
thicker than Ay, electrons are completely polarized
along the magnetization direction. When reflection at
the F|N boundary may be disregarded, I, on the right-
hand side of Eq. (12) is simply the negative of the trans-
verse spin current incident on the ferromagnet. When
reflection cannot be neglected, the transverse polariza-
tion of the reflected electrons should be taken into ac-
count. Although reflected electrons hardly penetrate the
ferromagnet (over the Fermi wavelength), the strong ex-
change field can still induce a significant precession of
the reflected component (Stiles and Zangwill, 2002).
This can lead to a reaction torque on the ferromagnet as
an effective magnetic field oriented parallel to the spin
accumulation in the normal metal. However, at inter-
faces to transition-metal ferromagnets, positive and
negative contributions to the effective field typically av-
erage out to be small (Xia et al., 2002).

The dynamics of a monodomain ferromagnet of vol-
ume V and magnetization M| that is subject to the
torque (12) are modified by an additional source term on
the right-hand side of the Landau-Lifshitz-Gilbert equa-
tion (Slonczewski, 1996):

om b%
— = m X I, X m. (14)
ot torque MSV

For a fixed current density, Eq. (14) is proportional to
the interface area and inversely proportional to the vol-
ume of the ferromagnet. Current-induced magnetization
dynamics are usually realized in perpendicular spin
valves with one hard (highly coercive) ferromagnet that
acts as a static polarizer and a second soft ferromagnet
that responds sensitively to the spin-transfer torque.
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E. Spin emission by excited ferromagnets

When seeking a consistent theory of magnetization
dynamics in heterostructures, the current-induced mag-
netization torque discussed above is only one side of the
coin. A moving magnetization in a ferromagnet that is in
electric contact with normal conductors emits (“pumps”)
a spin current into its nonmagnetic environment (Tser-
kovnyak et al., 2002a), giving a contribution to I, in Eq.
(14). The spin pumping thus leads to an additional
source term in the Landau-Lifshitz-Gilbert equation
even when the magnetization dynamics are induced by
external magnetic fields and not by applied current bias.
In typical biased systems with current-induced dynamics,
the spin pumping is of the same order as the current-
driven torque and should be treated on an equal footing,
as explained in Sec. V.C.

Spin pumping by a precessing ferromagnet is, in some
sense, the reverse process of current-induced magnetiza-
tion dynamics. When the pumped spin angular momen-
tum is not quickly dissipated to the normal-metal atomic
lattice, a spin accumulation builds up and creates reac-
tion torques due to transverse-spin backflow into ferro-
magnets. The interplay between magnetization dynam-
ics and the nonequilibrium spin-polarized transport in
heterostructures is the central topic of this review. The
conversion of magnetization movement into spin cur-
rents and vice versa at a possibly different location is
what we mean by the nonlocality of the magnetization
dynamics in our title. In the remainder of this subsec-
tion, we put this topic into a historic perspective.

Nonlocality of the magnetization dynamics can be in-
terpreted as a nonlocal exchange coupling with explicit
time dependence. A first step in this direction was car-
ried out by Barnes (1974), who generalized the RKKY
theory for the static linear response of the electron gas
to magnetic impurities to dynamic phenomena in order
to understand the electron-spin resonance of localized
magnetic moments embedded in a conducting medium.
He showed that the dynamic part of the RKKY interac-
tion in diffuse media is limited by the spin-diffusion
length. A related experimental observation of “giant
electron-spin-resonance transmission” through a Cu foil
implanted with magnetic Mn ions on one or both sides
(Monod et al., 1972) showed that precessing impurity
magnetic moments cause nonequilibrium spin diffusion.

Subsequently, Silsbee et al. (1979) observed a strong
enhancement of the microwave transmission through a
Cu foil with a thin ferromagnetic layer evaporated on
one side, when the ferromagnetic and Cu conduction-
electron-spin resonances are tuned into a collective
mode. This is related to the enhancement of Larmor
waves in nonresonant electron-spin transmission
through normal-metal foils coated with a ferromagnetic
layer (Janossy and Monod, 1976). The experiments were
interpreted by postulating a phenomenological spin in-
terdiffusion through the F|N interface by nonequilib-
rium components of the magnetization or spin accumu-
lation on both sides. These authors concluded that the
precessing magnetic moments can be a source of non-
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equilibrium spin accumulation diffusing through the
nonmagnetic conducting medium. Vice versa, the non-
equilibrium spin accumulation can be transferred into
the magnetization motion. This picture was investigated
further by Janossy (1980) and Parks and Silsbee (1987)
and was invoked later to qualitatively interpret the ex-
periments by Hurdequint and Dunifer (1988), Hurd-
equint (1991), and Hurdequint and Malouche (1991).

The discussion of the dynamic coupling between a
precessing magnetization and itinerant electrons in lay-
ered F|N structures was (independently) revived by
Berger (1996). He predicted an enhanced Gilbert damp-
ing in thin ferromagnetic films in trilayer F|N|F configu-
rations, relying on an elementary quantum process of
magnon annihilation associated with electron spin flip.
A very different approach to the problem was consid-
ered by Tserkovnyak et al. (2002a). They used the for-
malism of parametric pumping (Biittiker et al., 1994;
Brouwer, 1998) developed in the context of mesoscopic
scattering problems in order to show that the time-
dependent magnetization induces spin emission into the
itinerant degrees of freedom; see Sec. III. [A host of
other mesoscopic spin pumps have been proposed in re-
cent years; see, e.g., Sharma and Brouwer (2003) and
references therein, at least one of which has been real-
ized experimentally (Watson et al, 2003).] The spin-
pumping picture enables us to discuss several topics of
this review in a unified manner and is easily rendered
quantitatively. More recently, a linear-response formal-
ism similar to that of Barnes (1974) has been put for-
ward by Simének and Heinrich (2003). This alternative
point of view has the advantage of being more familiar
to many in the magnetism community, but it is much less
suited for quantitative comparison with experiments, as
discussed in Sec. VI.

Il. SCATTERING-THEORY APPROACH TO
MAGNETOELECTRONICS

A. Magnetoelectronic dc circuit theory

Electron spin and charge transport in F|N hetero-
structures with static magnetic configurations has at-
tracted considerable attention since the discovery of
GMR. Most of the activity in recent years, including the
work reviewed here, has concentrated on the current
perpendicular to the interface plane geometry in which
the electrons pass sequentially through magnetic and
nonmagnetic elements of the circuit. See Gijs and Bauer
(1997) for a review. A systematic and quite general, yet
easy-to-handle, semiclassical approach to this problem—
the magnetoelectronic circuit theory—is reviewed by
Brataas, Bauer, and Kelly (2005). In the following we
give a brief account of that theory before extending it to
dynamic magnetic configurations in Sec. III.

A basic element of the magnetoelectronic circuit
theory is a magnetic “interconnector” between two nor-
mal nodes or reservoirs attached to the ferromagnet via
Ohmic leads, as shown in Fig. 2. Physically, this could be
realized, e.g., as a layered pillar N|F|N structure. The
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FIG. 2. Magnetic scatterer (interconnector) connecting two
chaotic normal-metal (N) nodes via ballistic leads that support
a quantized number of transverse channels at the Fermi en-
ergy. The scatterer includes a ferromagnetic (F) region charac-
terized by a uniform magnetic direction m (but not necessarily
uniform magnitude of the exchange spin splitting along m),
which is depicted as the gray box in the center. The dark-gray
areas of the ferromagnetic region near both F|N interfaces
mark the extent of the transverse spin coherence characterized
by A, Eq. (13). Each of the two normal-metal regions is di-
vided into a reservoir characterized by the electrochemical po-
tential w. and (vector) spin accumulation u,, a ballistic lead
with a fixed number of transport channels, and possibly a dis-
ordered region incorporated in the interconnector (depicted by
wavy lines), which accounts for relevant normal-metal scatter-
ing processes. The interconnector is described by spin-
dependent reflection and transmission coefficients forming the
scattering matrix, Eq. (21), for quantum channels in the normal
leads. The purpose of the formalism is to calculate the non-
equilibrium charge and spin flows in the leads, /. and I, in-
duced by spin accumulations and electrochemical-potential im-
balance in the nodes.

normal nodes are chaotic to the extent that the nonequi-
librium transport through the leads can be expressed in

terms of energy-dependent distribution functions f(s) in
each node (averaged over orbital states at energy ),
which are 2 X2 energy-dependent matrices in spin space
of spin-1/2 electrons. (We make a convention of denot-
ing such 2 X 2 matrices in spin space by hats.) In thermal

equilibrium f(s):fFD(s)&O, where frp(e) is the Fermi-
Dirac distribution for electrons and &y is the 2 X2 unit
matrix. In linear response, it is convenient to define local
electrochemical potentials . and spin accumulations g
in all nodes (Brataas et al., 2000, 2001):

1(” .
pe=3 j deTr[f(e)], (15)
o= f ) deTr[of(e)], (16)

€0
choosing a reference energy g that lies below the Fermi
energy by much more than the thermal energy and volt-
age biases, but which is arbitrary otherwise. o
=(dy,0y,0;) is a vector of the Pauli matrices. Notice that
in our convention, the spin accumulation u, is a vector
with the direction determined by the total nonequilib-
rium spin-imbalance density s and the magnitude given
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by the corresponding energy splitting of spins along this
direction. In linear response and at low temperatures,
these quantities are related through the Fermi-level den-
sity of states (per spin and unit volume) in the node,
Mep): s=(h/12)Nep) ps-

Here we calculate the dc charge and spin angular-
momentum currents, /. and I, entering the nodes
through the leads, which are induced by the nonequilib-
rium spin accumulations in the nodes and/or electro-
chemical imbalance between the nodes. It is convenient
to define the 2 X2 tensor current

1, e .
anlc—ga-ls, (17)

I=

whose isotropic and traceless components determine, re-
spectively, the charge and spin currents. Since, as dis-
cussed above, spin currents are not conserved at F|N
interfaces, we use the convention that it is calculated on
the normal side (unless specified otherwise). The 2 X2

current operator fl for the /th lead (/=L,R) can be ex-
pressed in terms of operators a, (¢) [b;; (e)] that annihi-
late a spin-o electron with energy e leaving (entering)
the /th node through the nth quantum channel of the

lead (Tserkovnyak and Brataas, 2001):

’ e ’ ’
177 = ZE fdsda’[afn’l(s)Ta;’n7l(8’) - b;,l(s)benJ(s')].

(18)
Suppose, as a starting point, that the momentum-space

distribution in each node is isotropic, i.e., f(s) does not
depend on orbital quantum numbers. This is true if the
nonequilibrium currents do not cause significant drift
contributions to the distribution function. (We shall re-
visit and drop this assumption in Sec. II1.B.) For the /th
lead then

(ay (8)'ay), 1 (8") = f7 (&) S Sy Sle — &), (19)
and it is now straightforward to evaluate the expectation

value (I;"’,) (also denoted simply by I}"”) of the current
operator after relating the scattered states to the incom-
ing states via the scattering matrix of the magnetic inter-
connector:

ble)= 2 sou p(eal, (e). (20)
a'n'l'

The scattering coefficients sZZ,’J,, characterize reflection
if /=0" and transmission otherwise. Equation (20) as-
sumes that the entire interconnector is elastic, so that
the electron energy is conserved upon scattering be-
tween the normal nodes. For a ferromagnet with an ex-
chang spin splitting along unit vector m and vanishing
spin-orbit interaction in the system (Brataas et al., 2000),

§rm’,ll’ Z‘S';Ln’,ll’l'ﬂ-f_‘s‘)lm/,ll’ﬁl (21)

in terms of the scattering coefficients for spins up (down)
()

along m, Syt 17

and the projection matrices
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TABLE I. Calculated interface conductances (in units of quantum channels per nm?). The results are
shown for clean and disordered interfaces. The latter are modeled by two atomic monolayers of 50%

alloy. From Zwierzycki et al., 2005.

System Interface gl gt gt gl N gF'% gF'I
Agee| Fepee clean 103 21 12.0 0.1 119 214 119
(001) alloy 10.1 4.6 119 0.1
CUjee| Copee clean 10.8 9.8 14.1 0.4 15.0 11.9 27.9
(111) alloy 10.8 8.5 14.6 -1.1
A1) — L. 5 (0) " 1 " 1
@t =2(Go+ o m). (22) | iy 7T{Z(g =8 ter— pe)m+ (g +87)

A consequence of the elastic-scattering approximation is
a rigid exchange field; there are no magnons excited by
the electron transport. If we, furthermore, assume a suf-
ficiently low temperature, voltage imbalance, and spin
accumulations, so that the scattering-matrix variation on
these energy scales is negligible, we can replace §,,,,/ /(&)
by its value at the Fermi level ep.

It is then convenient to group the conductance param-
eters into two pairs of 2 X2 matrices. For electrons inci-
dent from the right lead, we define

=[S = 17,7 )1, (23)

E )" (24)

where the index n’ is summed over the channels in the
right lead, and n runs over the channels in the right lead
in Eq. (23) and left lead in Eq. (24). The coefficients r ,
and ¢ , are reflection and transmission amplitudes, i.e.,
elements s , a of the scattering matrix (21) with /#/’
and /=/' respectlvely The range of summation for n’ in
Egs. (23) and (24), i.e., the total number of transverse
quantum channels in the right lead (for a given spin spe-
cies at the Fermi level) is called the Sharvin conductance
g%, a quantity which will be useful later. For electrons
incident from the left lead, we denote the reflection and
transmission amplitudes by primed quantities, and we
similarly define primed matrices g’ and 1"’ in terms
of the primed scattering amplitudes. We denote the
Sharvin conductance of the left lead by g’5". It should be
understood that all scattering coefficients and corre-
sponding conductance parameters are evaluated at the
Fermi level. Putting the above equations together
(Brataas et al., 2000, 2001, 2003),

e
Ik =5, 28" + 8 (er = per) + (811 = gt
X (Ms,R - /Ls,L) : m}, (25)
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X[(pts = o) - mm +2gHm X g X m
+2gM po g Xm =26/ m X pg; Xm
- 2tl',”I'Ls,L X m}, (26)

and the currents through the left lead are obtained by
interchanging L with R, g7 with g’ , and '} with ¢!,
[The superscript (0) introduced here denotes currents
with static magnetizations.] By unitarity of the scattering
matrix, g77=g"'?"=t""=¢'?" if the spin component along
the magnetization direction is conserved. The dc trans-
port in the two-terminal geometry is then determined by
two real-valued spin-dependent conductances g’ and
four complex-valued (spin-)mixing parameters gl'=g!*
+iglt, t''=¢ll+itl! (the subscripts r and i, respectively,
denoting the real and imaginary parts), g''!, and ¢'\. For
a mirror-symmetric structure, g''=g’"! and '!=¢"1}.

We now also have access to microscopic expressions
for the spin-transfer torques (12). The torque on the
right surface of the ferromagnet 7z=-—m X Ii(,)}e Xm,

1
TR:ET(g mx”‘stm—"gt M. R Xm_tr,“m

X pgp Xm—t/t g Xm), (27)

is proportional to the spin-mixing (i.e., off-diagonal)
components of the conductance matrices (23) and (24).
The first two terms in 7 involve reflection at the right
F|N junction and the last two terms transmission
through the entire N|F|N structure. The latter terms can
thus be disregarded when the ferromagnet is much
thicker than the transverse-spin coherence length A\,
Eq. (13), since transmitted electrons accumulate
phases differing by more than 7 for opposite spins
(along m). In that limit, the first term, proportional to
m X g, g Xm, is similar to the torque introduced by
Slonczewski (1996) that is respon51ble for instability
leading to magnetization precession or reversal. The
second term, proportional to u, g Xm, acts as an effec-
tive magnetic field collinear with spin accumulation in
the right normal node. In transition-metal ferromag-
nets, g,“SO.lgIl, see, e.g., Table I and Sec. VILLA.1, so



Tserkovnyak et al.: Nonlocal magnetization dynamics in ferromagnetic heterostructures

Normal
F lead N
l’-Is,R
LA~
us,L g
IC
I s
“'c,L T u'c,R

=

FIG. 3. Contact between a ferromagnetic and a normal node.
The notation is analogous to Fig. 2. Here the charge and spin
currents in the normal lead depend on the conductance matrix
g""’ defined in terms of the spin-dependent reflection coeffi-
cients from the normal-metal side, as before; see Eq. (23). The
nonequilibrium spin accumulation in the ferromagnetic node is
collinear with the magnetization m.

that the effective magnetic field can be disregarded in
many practical situations.

For ferromagnetic films much thicker than A\, the re-
maining mixing conductances g'' and g’} are insensitive
to scattering processes deep inside the ferromagnet (i.e.,
in the light-gray area of the ferromagnet in Fig. 2) and
are determined by the scattering potential of a thin slice
of the ferromagnet near the interfaces (the dark-gray
areas) and eventually the normal metal (the wavy-line
area). The mixing conductance is then a property of the
isolated F|N junction rather than the entire N|F|N scat-
terer. In this limit, we introduce a ferromagnetic node at
a sufficient distance from the interfaces and consider,
without lack of generality, the two interfaces separately.
This is allowed since in the bulk of the ferromagnet spin
accumulation becomes a well-defined semiclassical dis-
tribution function collinear with the magnetization. An
analysis entirely analogous to the one leading to Egs.
(25) and (26) results in the same equations for the cur-
rents /. and I; (on the normal-metal side of the right
interface). Only the terms proportional to ¢/* and /! in
Eq. (26) drop out now because of the collinearity of gy,
and m, the left node now being assumed ferromagnetic;
see Fig. 3 (Brataas et al., 2000, 2001). Naturally, when the
F-layer thickness is much larger than A, the mixing con-
ductance for the normal lead g'! in the F|N structure of
Fig. 3 is the same as g'! for the right lead in Fig. 2 (as-
suming the same F|N contacts, including dark-gray and
wavy-line areas at the right lead). On the other hand, the
spin-up and spin-down conductances of the N|F|N
structure are not identical to the conductance param-
eters of a single F|N interface, being dependent on two
F|N junctions and the bulk F layer.

So far, we have focused on the spin and charge flow
through a single resistive element, i.e., a single N|F|N or
F|N junction. Equations (25) and (26), which can be
viewed as a generalization of the Landauer-Biittiker for-
mulas (see, e.g., Imry, 1997), describe charge and spin
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currents in a two-terminal geometry with possibly non-
equilibrium spin accumulations in the nodes. These are
basic building blocks of the magnetoelectronic circuit
theory. We also need the Kirchhoff laws generalized in
order to consider the spin currents and spin accumula-
tions on an equal footing with the usual charge currents
and voltage biases (Brataas, Bauer, and Kelly, 2005). The
properties of a given device or circuit can be calculated
by first prudently separating it into reservoirs, nodes,
and resistors (interconnectors), where the latter are the
current-limiting elements. The nodes are supposed to
have a negligibly small resistance and their choice may
depend on the problem at hand. In a disordered
multilayer, for example, it is convenient to imagine (fic-
titious) nodes at both sides of an interface, treating the
latter as a separate resistive element (whose conduc-
tance parameters may need to be redefined, however, as
explained in Sec. I1.B). Reservoirs represent the battery
poles, i.e., large thermodynamic baths at thermal equi-
librium with a constant electrochemical potential. The
electrochemical potentials and spin accumulations in the
nodes are not known a priori, but are determined from
the generalized Kirchhoff laws based on the conserva-
tion of spin and charge. For example, disregarding spin-
flip scattering, in the stationary dc state, all spin and
charge flows into a normal-metal node must vanish:

>1.,=0, XI,=0, (28)
[ l

summing over all leads attached to the node. The net
spin flow into a ferromagnetic node projected onto its
magnetization also vanishes, whereas the transverse cur-
rents are absorbed at the interface, as discussed above.
We have also seen that the spin and charge currents in
each lead can be calculated as a function of the distribu-
tions on adjacent nodes and reservoirs in terms of well-
defined conductance parameters. The spin- and charge-
current conservation laws (28) then allow computation
of the circuit properties as a function of, e.g., the volt-
ages applied to the reservoirs. The protocol for calculat-
ing the current-voltage curves may be summarized as
follows:

(1) Divide the circuit into resistors, nodes, and reser-
VOIrs.

(2) Specify the control variables, e.g., the voltages (elec-
trochemical potentials) applied to the reservoirs. Pa-
rametrize the electrochemical potential and spin ac-
cumulation of each node.

(3) Compute the currents through the resistors as a
function of the distributions in the adjacent nodes,
which requires spin-dependent and spin-mixing con-
ductances defined earlier.

(4) Use spin- and charge-current conservation laws (28)
at each node. If there is spin decoherence, use a
modified continuity equation with spin relaxation.

(5) Solve the resulting system of linear equations to ob-
tain all currents as a function of electrochemical po-
tentials of the reservoirs.
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The charge and spin currents through the resistors, the
net spin torques on the ferromagnets, and spin accumu-
lations anywhere in the circuit can be computed this
way.

As a specific application, consider the layered spin-
valve structure and its effective circuit models sketched
in Fig. 1. The reservoirs are described by electrochemi-
cal potentials u.; and u, g. We can define four nodes on
the normal side of each F|N interface, with electro-
chemical potentials w.; and spin accumulations ;.
There are correspondingly three normal resistors in the
problem, each described by a single real-valued conduc-
tance parameter g, and two magnetic resistors, corre-
sponding to two ferromagnets, each described by two
real-valued spin-dependent conductances g'! and g!!
and four complex-valued spin-mixing conductances g'!,
g'"l, and ¢!, '\, In the absence of spin-orbit coupling,
the charge and spin currents in each node depend on the
electrochemical potentials and spin accumulations on
each side of the respective ferromagnet according to
Egs. (25) and (26). Transport across normal resistors is
described by simpler equations that could be easily ob-
tained by setting g°7, g'° , t°7, '°°" to g in Egs. (25)
and (26). By following the steps outlined above, these
equations can be used to self-consistently determine wu,;
and u,,; and then the charge and spin currents into each
node, as a function of the applied bias wu. ;- u. g Obvi-
ously, the same procedure can be carried out for current-
biased instead of voltage-biased systems. When the con-
ductance parameters are to be evaluated from first
principles, the definitions (23) and (24) have to be cor-
rected for kinetic effects when the interfaces are highly
transmitting, as discussed in the next subsection. Placing
of the nodes is to some extent arbitrary but different
choices should not lead to contradictory results. For the
system in Fig. 1, for example, it might be more conve-
nient to replace nodes 2 and 3 with a single one some-
where in the middle of the normal spacer and eliminate
nodes 1 and 4 altogether, while redefining the conduc-
tance matrices of the magnetic regions to include scat-
tering on the normal-metal sides. In such a case, the
entire structure would consist of two magnetic scatterers
connecting each reservoir with the middle of the normal
spacer. On the other hand, for sufficiently thick ferro-
magnets, we introduce four additional nodes on the fer-
romagnetic side of the interfaces and define pure
F| N-interface resistances and ferromagnetic bulk resis-
tances.

Circuit theory assumes momentum scattering in each
node but not necessarily inelastic scattering. It is only
required that the chemical-potential gradients and drops
are small enough such that linear-response theory holds,
and the energy dependence of the scattering matrix may
be disregarded. Inelastic scattering in the nodes per defi-
nition does not affect the transport properties. It is, how-
ever, often stated that the scattering approach to trans-
port is valid only when the orbital-dephasing length A, is
sufficiently longer than the dimensions of the scattering
region. This is a relevant statement only when phase
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coherence is essential for the physics under consider-
ation. In magnetoelectronic systems, we have to worry
about orbital interference only at sharp interfaces. The
spin-mixing conductances g'!, g’Tt and ¢!}, ¢/} in Eq. (26)
govern transverse spin currents under the condition that
Ng>Ng. Also, the description of conventional spin-
dependent conductances by first-principles band-
structure calculations assumes wave-function coherence
on atomistic length scales as well. These conditions are
hardly restrictive and assumed to be valid up to high
(room) temperature. When spin-flip scattering is strong
in diffusive regions, the spin-diffusion equation should
be solved there, for which Egs. (25) and (26) provide the
boundary conditions. Section IV.B demonstrates how
this is carried out in practice. Although we have illus-
trated here circuit theory using simple linear structures,
it can easily be applied to more general multiterminal
devices, such as spin transistors.

B. Interfacial and thin-film conductance matrices

In the previous subsection, the electron states in the
nodes were assumed to be occupied according to energy
and spin, but without any regard to their momentum.
Physically, this isotropy in momentum space implies that
net currents in the nodes may be disregarded. This is
allowed only when the incoming and outgoing currents
do not significantly disturb the isotropic momentum-
space distribution. When the contacts to the nodes are
relatively small (point contacts) or highly resistive (tun-
nel junctions), this approximation holds. Highly conduc-
tive metallic multilayers that are the main subject of this
review do not satisfy such a condition. The node inter-
connectors are then intermetallic interfaces or thin films.
The isotropy of distribution functions in the nodes can
be significantly distorted by the current induced at a
given voltage bias. In that limit, simple Kirchhoff laws
with Landauer-Biittiker conductances parameters, Egs.
(23) and (24), do not apply. This subsection summarizes
how to rescue circuit theory by only modifying conduc-
tance parameters (Schep et al., 1997; Bauer et al., 2003b).

We first illustrate the issue for a nonmagnetic metallic
pillar with a uniform cross section connecting two reser-
voirs. Transport through a ballistic pillar is governed by
the Sharvin conductance g, i.e., the number of propa-
gating transport channels. Let us introduce M interfaces
(e.g., grain boundaries) in series that scramble the
transverse-momentum distribution of incident electrons
without any significant backscattering. The total conduc-
tance must then still amount to g since we excluded
any reflection (Imry, 1997). If we naively carried out the
circuit-theory protocol, we could assign a conductance
g;=g>" to each interface and insert M —1 nodes between
them. We obtain the total resistance 1/g as the sum of
the individual ones:

1 g 1 M 09
g & &V
which is obviously wrong. This breakdown of the circuit
theory can be “fixed” by renormalizing the individual
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interface resistance from scattering theory 1/g; by sub-
tracting the Sharvin resistance 1/g5":

1 1 1

<= " "S- (30)

& & 8§
At the same time, contact resistances between pillar and
reservoirs are assigned half of their Sharvin resistance.
We then arrive at the total resistance

M
1 1 1
+ E —+ s =—<- (31)
i=1 8i 2gSh gSh

11
g_zgSh

In this way, we forced a vanishing local voltage drop
over each interface, corresponding to g;=2, and a finite
Sharvin resistance for the entire structure that is gov-
erned by the geometrical sample cross section. The total
conductance is g°", as it should be.

Schep et al. (1997) justified such renormalized resis-
tances, deriving a more general result for interfaces be-
tween different materials:

1 1 1(1 1
s 2 ) o
i [ i,L iR

where gls}i and g?f,‘e are Sharvin conductances on two
sides of the interface, thus allowing a comparison be-
tween first-principles calculations of interface resistances
with experimental results on diffuse multilayer systems
that access g;. Equation (32) requires global diffusivity
that separately randomizes the momentum distributions
for right- and left-moving electrons and destroys quan-
tum interference between consecutive contacts.

The renormalization of resistances by subtracting
Sharvin contributions is closely related to early contro-
versies on resistance in mesoscopic systems. The bare
Landauer-Biittiker conductance g=2,,,/|t,,/|* is suitable
for the description of the two-point measurement in
which reservoirs are current as well as voltage sources
(see, e.g., Imry, 1997). In an idealized four-point mea-
surement in which the voltage drop is measured directly
across the scatterer (e.g., an interface), the conductance
should be renormalized since there is no geometric con-
tribution. In a single-mode quantum wire with g5"=1,
the renormalized conductance reduces to the “old” Lan-
dauer formula g=g/(1-g) (Landauer, 1970). When the
scatterer is embedded in a diffuse environment and cir-
cuit theory applies, the situation is analogous to the
four-point measurement and Eq. (32) should be used. In
collinear magnetic structures, Eq. (32) should be applied
for each spin channel separately (Schep et al., 1997).

The “kinetic” corrections for magnetic structures with
noncollinear magnetizations require additional thought.
As a starting point we consider a single F|N interface as

sketched in Fig. 3 with conductance matrices g"“’ and
disregard spin-flip processes. In the presence of non-
equilibrium currents, the effective electrochemical po-
tentials and spin accumulations, Egs. (15) and (16), on
either side of the interface are different for left- and
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right-moving modes. The discussion of Sec. II.LA must
thus be modified to account for this asymmetry in the
left- and right-moving distributions (“drift”). As in
Schep et al. (1997), the central underlying assumption
that allows an easy implementation of this program
(Bauer et al., 2003a, 2003b) is a globally diffuse or cha-
otic system. In that case, the distribution of electrons
incident on each interface from either side is isotropic in
momentum space. Such a randomization is likely to be
provided in realistic structures by interfacial disorder
and bulk scattering. By extension of either the random
matrix theory of Waintal et al. (2000) or circuit theory,
the analysis (Bauer et al., 2003a, 2003b) then boils down
to a set of simple rules. Equations (25) and (26) remain
unchanged but the interfacial conductances are renor-
malized as

1 1 1[ 1 S
sor ~ gor 2\ g g ) (33)

whereas the average electrochemical potentials and spin
accumulations in the nodes have to be found self-
consistently as before. (We recall that the conductance
parameter ¢'!! drops out of the discussion for a single
F|N interface.) Additionally, the leads to real reservoirs
must be assigned half of the respective Sharvin resis-
tances for each spin o.

The renormalization (33) is significant for an under-
standing of the measured resistances of metallic multi-
layers in the current perpendicular to the interface
planes configuration (Bass and Pratt, 1999), as well as
other measurements, by ab initio calculations (Schep et
al., 1997; Xia et al., 2001, 2002; Bauer et al., 2003b; Zwi-
erzycki et al., 2005). In Table I we cite the theoretical
results (Zwierzycki et al., 2005) for two representative
N|F material combinations: Au|Fe(001) and Cu|Co(111),
the former routinely used by the Simon-Fraser group
(e.g., Urban et al., 2001; Heinrich et al., 2002; Heinrich,
Urban, et al., 2003) and the latter by the Cornell group
(e.g., Myers et al., 1999; Katine et al., 2000). The large
difference between the g’s and g’s is evident when using
Eq. (33) as the bare interfacial conductances are compa-
rable with the Sharvin conductances.

Equation (33) can be used only when the distribution
function in the ferromagnetic layers is well defined. This
is not the case anymore when the magnetic-film thick-
ness is of the order or smaller than the transverse-spin
coherence length (13). In the latter situation, calcula-
tions (Bauer et al., 2003a, 2003b) that lead to Eq. (33)
have to be repeated for two normal-metal layers sepa-
rated by a thin magnetic film as in Fig. 2. We find that
the basic circuit-theory equations (25) and (26) hold for
all film thicknesses after replacing the conductance pa-
rameters for the N|F|N sandwiches with the renormal-

. ~ !’ ~ ’
ized ones, g7 and 177 :
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1 1 1(1 1 )
~_u-o: U'(I'__ _+r_ ’
g7 g7 2\gw gt

1 1 1
Y i} ’ B - 5 (34)
F g TS g T 2g%

1 gv-glhegp"—g/ Mt -
it 4gN'gn" :

and the same after interchanging g« g’ and t—1'.

In the presence of weak (compared to momentum
scattering) spin-flip scattering during bulk diffusion, the
same renormalizations, Egs. (33) and (34), still hold for
interfacial transport. In the opposite limit of high spin-
flip rates, the layers can act as ideal sinks for spin cur-
rents. In particular, in the regime of pure spin transport,
such layers are fully equivalent to reservoirs, bearing all
consequences and rules outlined in this subsection for
the reservoirs. The regime of intermediate-strength spin
dephasing cannot be characterized by such simple state-
ments and is omitted from our discussion.

C. Time-dependent theory

In this review we are mostly interested in the dynamic
phenomena stemming from a slow variation in the mag-
netization direction m of ferromagnets that are part of
an Ohmic circuitry. We focus on the adiabatic response
of the itinerant carriers to the time-dependent m that is
driven by external magnetic fields or applied (spin) cur-
rents. It turns out that the magnetoelectronic (dc) circuit
theory discussed above already contains all necessary
parameters in the adiabatic regime. An adiabatic ap-
proximation is applicable when the frequency of the
magnetization modulation is much smaller than the
characteristic ferromagnetic exchange spin splitting,
which is safely fulfilled for transition-metal-based struc-
tures. The total current is a sum of the currents induced
by the bias applied via the reservoirs (including the spin-
transfer torques), viz., Egs. (25) and (26), and the pump-
ing component proportional to the rate of variation of
the scattering potentials (Biittiker et al., 1994):

[,= 19 4 pomp, (35)
I =10 4 pume, (36)

We shall make it a convention to include in IEO) and IE,O)
the currents driven by any charge and spin imbalance
brought about by the pumping, as well as by the applied
bias.

In Sec. III, we derive the currents pumped by a time-
dependent magnetization direction m into adjacent nor-
mal nodes:

P =, (37)
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h dm dm
TPump _ _<_ATl X — _ATL_> , 38
s,R A , M dt + A dt ( )
introducing a new complex-valued parameter
Alb= AL Al =glh -1 (39)

that determines the magnitude of the spin pumping as a
function of device parameters (Tserkovnyak et al,
2002a). Magnetism (or another source of spin-dependent
scattering) is essential for a nonvanishing pumping pa-
rameter A'l. The spin current into the left lead is similar
to Eq. (38) and governed by A'Tl=g'Tl—¢I!. When the
ferromagnet is much thicker than the coherence length
(13), the quantities ¢'' and ¢! vanish and the mixing
conductances g'! and g’"' do not depend on the thick-
ness of the ferromagnet; the spin-pumping currents
originate from the interfaces. Spin pumping (38) thus
does not depend on spin-flip processes in the ferromag-
net when far from the F|N interface on the scale of the
coherence length (13) or, in other words, when the spin-
flip scattering rate is small compared to the exchange
splitting. This is typically the case in real materials. The
spin (de)coherence in the attached normal conductors is
crucial, however, since it affects the self-consistent reac-
tion torque exerted on a slowly precessing monodomain
ferromagnet, as explained in Sec. I'V.

It can be shown that the renormalizations (34) intro-
duced in the dc circuit theory for layered structures must
also be applied to the mixing conductances in A'!, Eq.
(39), for multilayers with diffuse spin backscattering, but
not for contacts to spin-sink reservoirs. Using Eqs. (34),

for All=g!l -7l we find

ATl g”(Zg]'VSh —g'h- I”(Zgz’\,Sh — '
ZgJS\}’ N (Zg%‘ —g“)(Zg]’VSh _ ngl) — T
and the same after interchanging primed and unprimed

quantities. For mirror-symmetric structures, Eq. (40) re-
duces to simply

1 11
ar AT 2

(40)

(41)

The spin-pumping expression (38) sets the stage for
several interesting developments reviewed in the follow-
ing section. We therefore devote all of Sec. III to deriv-
ing Eq. (38) and discussing its physical content. See also
Tserkovnyak et al. (2002a, 2000b, 2003a).

lll. SPIN EMISSION BY COHERENTLY PRECESSING
FERROMAGNETS

A. Parametric spin pumping

The adiabatic spin-pumping expression (38) can be de-
rived using time-dependent scattering theory (Tser-
kovnyak et al., 2002a). Consider a N|F|N junction as in
Fig. 2, where the two normal nodes are now assumed to
be large reservoirs in a common thermal equilibrium.
Without a voltage bias, no spin or charge currents flow
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when the magnetization of the ferromagnet is static.
When it is moving, however, the time dependence of the
scattering matrix in spin space can induce nonequilib-
rium spin currents in the nonmagnetic leads. The current

1(1) pumped by the precession of the magnetization into
the right and left paramagnetic reservoirs can be calcu-
lated in the adiabatic approximation, since typical pre-
cession frequencies are several orders of magnitude
smaller than the ferromagnetic exchange field that sets
the relevant energy scale for spin-dependent transport.
The adiabatic charge-current response in nonmagnetic
systems has been derived by Biittiker et al. (1994). The
generalization to the 2 X2 spin- and charge-current ma-
trix (17) by Tserkovnyak et al. (2002a, 2002b) is ex-
plained by the following.

The 2X2 current operator fl for the I/th lead (I
=L,R) is in general given by Eq. (18). When the scatter-
ing matrix SZZ”,II’(I) of the ferromagnetic layer varies
slowly compared to the relevant microscopic time scales
of the system, an adiabatic approximation may be used,
meaning that the energy of the scattered states is as-
sumed to be weakly modulated with respect to the en-
ergy of the incoming states by the oscillating part of the

scattering matrix. The state annihilated by a, ,(e,1)
=a’, ,(e)e”*" is partitioned into states in the mth chan-
nel of lead /" with energies determined by the time de-

pendence of SZZ',,H'(SJ)”Z:J'(Svt); see Biittiker er al.
(1994). The scattering amplitude at a given energy shift

is determined by the Fourier transform of snn, 11'(8 1) in
time space. The expectation value of the current opera-

tor fl is evaluated similarly to the dc limit discussed in
Sec. II.LA. When the scattering matrix depends on the
real-valued parameter X(¢), the Fourier transform of the

current expectation value f,(w): I dtei“”f,(t) can be writ-
ten as

I(o) = gx () X(w) (42)

in terms of the frequency w and X-dependent parameter
8xir

_ @ dfep(e) e 11'(8)
Sx/w) = 47Tf e > X

- Hec. (43)

nn’ ll’(g)
nn'l'

Equation (42) is the first-order (in frequency) correction
to the dc theory of Sec. II.A. At sufficiently low tem-
peratures, one can approximate —d,frp(e) by a & func-
tion centered at the Fermi energy. The expectation value
of the 2 X2 particle-number operator Q,(») [defined by

I()=dQ,()/dt in the time or by I(w)=—iwQ,(w) in the
frequency domain] for the /th reservoir is then given by
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asnn' I
E, —S
nn' "

= Tx - H.c.)X(a)), (44)

A e
iQ/w) = ( .
where the scattering matrix is evaluated at the Fermi
energy. Because the prefactor on the right-hand side of
Eq. (44) does not depend on frequency w, the equation
is also valid in the time domain. The change in particle

number 8Q,(r) is thus proportional to the modulation
6X(?) of parameter X and the 2 X 2 matrix current reads

dl’ll dX(l)
I 45
I(0) = X ar (45)
introducing the matrix “emissivity” into lead /:
dﬁl 1 aﬁnn’ /AR
—=|— —s .| +H.c. 46
dxX (4771'"”2,[, ox Cml ¢ (46)

The right-hand side of Eq. (45) should in general be
summed over all parameters, if any, that modulate the
scattering matrix. When spin-flip scattering is disre-
garded, the scattering matrix § can be written in terms of
spin-up and spin-down scattering coefficients s'") using
projection matrices; see Eqgs. (21) and (22). The spin cur-
rent pumped by a magnetization precession is obtained
by identifying X(¢) = ¢(t), where ¢ is the azimuthal angle
of the magnetization direction in the plane perpendicu-
lar to the instantaneous rotation axis. For example, sup-
pose the magnetization rotates around the z axis: m
=(cos ¢,sin ¢,0). Using Eq. (21) it is then easy to calcu-
late the emissivity (46) for this process:

dl’lR
de 4w
Inserting this into Eq. (45) and comparing the result with

the definition (17), one finally finds that the charge cur-
rent vanishes, I2z"P=0, and the spin current

[A”(o sin ¢ — 0, cos @) — Alle,]. (47)

PP = (- Al sin @, Al cos cp,A“)—d—(P (48)
’ 4ar dt
can be rewritten as Eq. (38). Since the spin current trans-
forms as a vector in spin space, Eq. (38) is also valid in
the case of a general (slow) motion of the magnetization
direction.

Even though the mathematics of the scattering ap-
proach to adiabatic spin pumping is entirely analogous
to the charge-pumping theory developed by Biittiker et
al. (1994) and Brouwer (1998), there is an important dif-
ference in the physics. In the case of a nonmagnetic scat-
tering region, the average pumped charge current has
the same direction in the two leads because charge can-
not be accumulated or depleted for long; the net charge
entering the scattering region through one lead must
leave it via the other within a period of the external-gate
modulation. On the other hand, the total conduction-
electron-spin angular momentum does not have to be
conserved since the magnetization can act as a sink or a
source. The preceding analysis shows that a precessing
ferromagnet polarizes adjacent nonmagnetic conductors.
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The phenomenon can be called as well a spin well or
spin fountain rather than a spin pump. An excited ferro-
magnet emits spins into all adjacent conductors, spend-
ing its “own” angular momentum rather than pumping
spins from one lead into the other. If the lost angular
momentum is not replenished by an external magnetic
field, the precession invariably will die out.

Per revolution, the precession pumps an angular mo-
mentum into an adjacent normal-metal layer, which is
proportional to Al', in the direction of the precession
axis. At first sight, it may be surprising that a net dc
pumping can be achieved by a single parameter varying
in time, whereas it has been shown (Brouwer, 1998) that
at least two periodic parameters are required for that.
However, there are actually two periodic parameters
(out of phase by 7/2) hidden behind ¢(¢), viz., the pro-
jections of the unit vector defined by ¢ in the plane per-
pendicular to the axis of precession.

B. Rotating-frame analysis

It turns out that Egs. (38) and (39) for the nonequilib-
rium spin currents pumped out of a precessing ferro-
magnet can be understood as an equilibrium property by
a transformation to a rotating frame. We prove this for a
ferromagnetic film sandwiched between two normal-
metal nodes at a common thermal equilibrium, w.;
=M. g, as shown in Fig. 2. Let

H(@)=Hy+ H'(t) (49)

be the Hamiltonian experienced by conduction elec-
trons, where H, is the sum of the kinetic and potential
energies and H'(¢) is a time-dependent exchange Hamil-
tonian in the ferromagnet:

H'(1) = f drV, (1) 2 Wim[e™ - m(r,) W, (r), (50)

where V, is the local exchange interaction along the
magnetization direction m(r,f)=m(¢) that is assumed to
be uniform in the ferromagnet. ¥, is the spin-o electron
field operator.

At time ¢<<0, the entire system is in a common
thermal-equilibrium state corresponding to a time-
independent magnetization direction m(0). At r=0, m(¢)
starts to rotate with frequency w about an axis denoted z
that is perpendicular to m, m=wzXm. The time-
dependent magnetization drives the electron system out
of equilibrium.

Let us introduce a (many-body) state ®’(¢) of the elec-
trons in the rotating frame of reference for the spin vari-
ables, which is related to the solution of the Schrodinger
equation ih®(t)= H())D(2) by the unitary transformation
P)=U)P’' (). Here, U=exp(-iS,wt/h) is a spin-
rotation operator in terms of the total-spin z-axis projec-
tion S,. Since H'())=U()H'(0)U'(z), ®'(r) satisfies a
Schrodinger equation (Slichter, 1990):
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ih dq;t(t) = [H(0) - S,w]®" (1), (51)
provided [H,,S,]=0, i.e., spin-orbit coupling or other
spin-flip processes are disregarded. This is the equation
of motion for electrons subjected to a static magnetic
field w/7y in the z direction, in addition to a static ex-
change interaction (50) along m(0) in the ferromagnet.
A steady-state solution for the system in the rotating
frame is thus characterized by spin-polarized normal-
metal nodes with (s )= yw/y and (s,)=(s,)=0, where x is
their static (isotropic) spin susceptibility.

In the laboratory frame, the spin imbalance must be
identical to the polarization in the rotating frame along
the z axis. Since there is no magnetic field in the labo-
ratory frame, this spin imbalance can only be accounted
for by a nonequilibrium spin accumulation, i.e., a differ-
ence between the chemical potentials for spins parallel
and antiparallel to zZ of magnitude

M =Tho. (52)

According to the magnetoelectronic dc circuit theory,
the spin accumulation in turn drives a spin current

1
LR = (Al s+ Al g X m) (53)

from a normal-metal node back into the ferromagnet,
where the coefficients A'! have been defined in Eq. (39).
Here, we have used Eq. (26) with u,;—pu.x=0 and
M1 = My r= M. According to Eq. (52), uy=hrwz=Am Xm.
Since in the steady state the backflow spin current (53)
must cancel the spin current pumped by the ferromagnet
into the normal metal, the above arguments thus pro-
vide an alternative derivation of the spin pumping (38).
For finite-size nodes and slow rotation, equilibrium may
be established in the rotating frame in a time that is
short compared to the period of rotation. In the adia-
batic limit, the equality of the spin currents into and out
of the ferromagnet thus holds instantaneously, and not
just over the average over a period. The assumption of a
fixed rotation axis is also not essential, as long as this
axis moves slowly in time. In the limit of vanishing ex-
change splitting, A''=0 and the spin current (38) van-
ishes, as it should.

It is instructive to scrutinize the energy and spin
angular-momentum conservation laws of the combined
F|N system in the laboratory frame of reference (Tser-
kovnyak et al., 2002b). Suppose the rotation axis z is
oriented along the static effective magnetic field Hgg,
and let us focus on the nonequilibrium dynamics in the
normal metal node; see Fig. 4. After starting the magne-
tization rotation at t=0, net spin currents flow into the
normal mode in a finite time interval before reaching the
steady state. We wish to account for the energy and
angular-momentum transfer between the ferromagnet
and normal metal in this transient regime. If the normal
node is sufficiently small, the steady state is reached af-
ter a vanishingly small transfer of spins, with only little
effect on the ferromagnet. N, spins oriented along the z
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FIG. 4. The ferromagnetic magnetization m rotates around the
effective field Heg. In the steady state, the spin pumping IP*"P
cancels the spin backflow IEaCk that accompanies the nonequi-
librium spin accumulation p,=7%yH,;.

axis transferred into the normal metal correspond to an
excess energy AEy=N;u /2 and angular momentum
ALy=Nh/2. Conservation laws dictate AEg=—AFEy and
ALp=-ALy for the ferromagnet. Using Eq. (6), the
magnetic energy AEp=yALpH.; and we find Nyu,/2
=yN,(h/2)H . It follows that u,=fiyH 4=hw, where o
=vyH; is the Larmor precession frequency in the effec-
tive field. Using energy and momentum conservation,
we have thus derived a nonequilibrium spin accumula-
tion that agrees with the result of the rotating-frame
analysis.

C. FMR-operated spin battery

In the preceding subsection, we showed that precess-
ing ferromagnets inject a spin current into adjacent con-
ductors via Ohmic contacts. In this subsection, we dis-
cuss how this opens the way to creating a pure spin
source (“spin battery”) by ferromagnetic resonance
(FMR) and estimate the spin current and spin bias for
different material combinations (Brataas et al., 2002).
The spin source can be realized as a ferromagnetic layer
at resonance with a rf field. Pure spin-current injection
into low-density conductors should allow experimental
studies of spintronic phenomena in mesoscopic, ballistic,
and nanoscale systems. The combination of a ferromag-
net at the FMR in Ohmic contact with a conductor can
be interpreted as a spin battery, with analogies and dif-
ferences with charge batteries. For example, charge-
current conservation dictates that a charge battery has
two poles, plus and minus. A spin battery requires only
one pole, since the spin current does not need to be
conserved. Furthermore, the polarity is not a binary, but
a three-dimensional vector.

Devices made from metallic layered systems display-
ing the giant (Baibich et al., 1988) and tunnel (Miyazaki
and Tezuka, 1995; Moodera et al., 1995) magnetoresis-
tance have been proven useful for read-head sensors
and magnetic random-access memories. Integration of
such devices with semiconductor electronics is desirable
but difficult because a large conductivity mismatch be-
tween magnetic and normal materials is detrimental to
spin injection (Schmidt et al., 2000). Spin injection into
bulk semiconductors has so far been reported only in
optical pump-and-probe experiments (Kikkawa and Aw-
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schalom, 1999) and with high-resistance ferromagnetic
injectors (Fiederling et al., 1999; Ohno et al., 1999) or
Schottky or tunnel barriers (Monsma et al., 1998; Zhu et
al., 2001). In these cases, however, the injected spin-
polarized carriers are hot and currents are small. Desir-
able are semiconductor devices with an efficient all-
electrical cold-electron spin injection and detection via
Ohmic contacts at the Fermi energy, recently realized by
Jedema er al. (2001) for metallic devices. The spin bat-
tery discussed here is an alternative conceptual ap-
proach to accomplishing such electrical spin injection.

In the absence of spin-orbit scattering, the spin-
battery idea can be understood in terms of the rotating-
frame analysis of the previous subsection. A magnetiza-
tion undergoing a circular precession around the z axis
with frequency o induces a spin-imbalance density s
=ywz/vy in the normal metal or semiconductor adjacent
to the ferromagnet. The spin susceptibility y includes
possible effects of electron-electron interactions in the
normal metal-semiconductor. The chemical-potential
difference (52) between spin-up and spin-down electrons
along the z axis, on the other hand, is universal for the
FMR-operated spin battery with vanishing spin-orbit
coupling. Spin-orbit scattering limits the efficiency of the
spin battery in real structures, as discussed in the follow-
ing.

The important parameters of a charge battery are the
maximum voltage in the absence of a load, as well as the
maximum charge current that can be drawn from it. In
the following we discuss estimates for the analogous
characteristics of the spin battery, closely following
Brataas et al. (2002). To this end, one should solve the
dynamic problem of spin pumping (38) at the F|N con-
tact as a boundary condition for the spin-diffusion equa-
tions in the normal conductor. When the ferromagnet is
thicker than the ferromagnetic coherence length (13) (a
few A in transition metals such as Co, Ni, or Fe), the
spin current (38) emitted into the normal conductor is
determined by the mixing conductance g'! since ¢} van-
ishes. With some exceptions such as ferromagnetic insu-
lators (Huertas-Hernando et al, 2002), the imaginary
part of the mixing conductance is small (Xia et al., 2002),
see Table I, and will be disregarded in the following. The
spin current emitted into the normal metal is then

h d
I~ gl x d—';'. (54)

When the spin current (54) flows freely into the normal
metal, the corresponding loss of angular momentum in-
creases the (Gilbert) damping of the magnetization dy-
namics, as discussed in detail in the next section. Equa-
tion (54) is the maximum spin current that can be drawn
from the spin battery. The rotating-frame analysis indi-
cates that a nonequilibrium spin accumulation builds up
in the normal conductor when the spin-flip relaxation
rate is smaller than the spin-injection rate. This in turn
induces a “backflow” spin current IFYO) that opposes the
total spin current IS:IE“mp+I§O). The component of the
backflow spin current 150) parallel to the instantaneous
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magnetization direction m is canceled by an opposite
flow from the ferromagnet when the FMR frequency
and spin-flip scattering rate in the ferromagnet are much
smaller than the characteristic spin-injection rate into
the ferromagnet. The surviving component of Iio), Eq.
(26), is perpendicular to m:

i
IEO) =— ng X gy X m. (55)
4
We note that the mixing conductance in Egs. (54) and
(55) ought to be renormalized in layered structures, as
discussed in Sec. II.B.

The relation between the spin accumulation u, and
the total spin current I in a normal diffuse conductor is
governed by the spin-diffusion equation; see Sec. IV.B.
Let us consider a F|N bilayer structure with cross sec-
tion S and thickness L, diffusion coefficient D, and char-
acteristic spin-flip time 7 for the N layer. The solution
for the spin accumulation is simple when D/w<L
< \«‘“D—rsf:)\sd, requiring w> Ts_fl (Brataas et al., 2002). The
spin accumulation in the normal layer is then nearly uni-
form and time independent for a steady ferromagnetic
precession cone with angle 6:

5 sin? @ 56
Fs=0Gn2 g nz. (56)
n=1;/ 74 is a reduction factor expressed in terms of the
injection rate 7;'. When the conductance of a normal-
layer slab of thickness VD/w is much larger than the
contact conductance g/', 7' =g!'/hNSL, where N is the
normal-metal one-spin density of states per unit volume.
In the opposite limit, Ti_lz VDw/L. The former regime is
relevant for an opaque interface, such as a Schottky or
tunnel barrier. In the latter regime, 7<<1 since we have
assumed w7y>1 and L<\Dr. Large systems have a
smaller injection rate since more states have to be filled.
When 7;— %, =0 and Eq. (56) reduces to the result of
the rotating-frame analysis (52). Schmidt et al. (2000) re-
alized that efficient spin injection into semiconductors
by Ohmic contacts is difficult with transition-metal fer-
romagnets since virtually all of the applied potential
drops over the nonmagnetic part and is unavailable for
spin injection. The present mechanism of spin injection
is current rather than bias driven and thus does not suf-
fer from this conductivity-mismatch problem.

When the spin-relaxation rate is smaller than the spin-
injection rate and the precession-cone angle is suffi-
ciently large, sin> > 7, the spin bias (56) saturates at its
maximum value (52), which does not depend on the ma-
terial parameters. At resonance, sin 6=/h¢/ aH . (assum-
ing for simplicity a constant effective field H.g). For a dc
field of H.=1T, rf field Ay=1 mT, and damping «
=0.01, sin? #=0.01. In order to realize a battery with
maximum spin bias (52), a suppression factor 7=<0.01 is
thus required. Epitaxially grown clean samples with low
spin-flip rates are needed for spin batteries operating at
small precession angles. The precession-cone angle 6 in
FMR experiments is typically small, but large angles
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could in principle be achieved by sufficiently intense rf
fields and a soft ferromagnet such as Permalloy or, for
transient dynamics, by transverse magnetic-field pulses.

The dc component of the maximum spin-current bias
(54) is suppressed by sin? # upon averaging over one pre-
cession period. For operation as a spin-current source,
large-angle precession is required as well. The current
can be increased by a larger F|N interface area.

A potential practical problem of large-angle dynamics
is the FMR energy dissipation. For a total spin Sg
=M,V /vy of a ferromagnet of volume V, the dissipation
power P=asSpw?sin’ § has to be efficiently drained in
order to avoid excessive heating. On the other hand,
possible undesirable spin precession and energy genera-
tion in the nonmagnetic parts of the system is of no
concern for material combinations with different g fac-
tors, as, e.g., Fe (g=2.1) and GaAs (g=-0.4), or when
the magnetic anisotropy shifts the resonance frequency
with respect to electrons in the normal metal.

Purified elemental metals such as Al and Cu are suit-
able materials since their spin-diffusion lengths are very
long. In Cu, Ayg~1 pum at low temperatures that is re-
duced by a factor of 3 at room temperature (Jedema et
al., 2001), and similar numbers hold for Al (Jedema et
al., 2002). Indirect proof of a spin accumulation pumped
into Cu is provided by the FMR measurements of
Permalloy|Cu|Pt structures (Mizukami ef al., 2002a,
2002b) discussed in Sec. IV.B. Semiconductors have the
advantage of a larger ratio of spin bias to Fermi energy.
In lightly n-doped GaAs, the spin-flip relaxation time
can be very long: 7,=107" s at n=10'® cm™> carrier den-
sity (Kikkawa and Awschalom, 1998). This favorable
number is offset by the difficulty of forming Ohmic con-
tacts to GaAs, however. Large Schottky barriers expo-
nentially suppress the interface mixing conductance.
InAs has the advantage of a natural charge accumula-
tion layer at the surface that avoids Schottky barriers
when covered by high-density metals. However, the
spin-orbit interaction in a narrow-gap semiconductor
such as InAs is substantial, which reduces 7y In
asymmetric-confinement structures, the spin-flip relax-
ation rate is governed by the Rashba-type spin-orbit in-
teraction that vanishes in symmetric quantum wells (En-
gels et al, 1997; Nitta et al, 1997). The remaining
D’yakonov-Perel scattering rate (D’yakonov and Perel,
1971) is reduced in narrow quasi-one-dimensional chan-
nels of width w, due to waveguide diffusion modes, by a
factor of (L,/w)?, where L, is the spin-precession length
(Mal’shukov and Chao, 2000). This makes InAs and its
alloys potentially interesting materials for a spin battery
as well. In pure Si, the spin-flip relaxation time should
be very long since spin-orbit interaction is weak. Fur-
thermore, the possibility of heavy doping allows control
of Schottky barriers. Si therefore also appears to be a
good candidate for spin injection into semiconductors.

The FMR-generated spin bias can be detected nonin-
vasively via a ferromagnet that is connected to the nor-
mal metal by a tunnel junction. A voltage difference p u,
should be measurable between parallel and antiparallel
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configurations of the analyzing magnetization with re-
spect to the spin accumulation in the normal metal.
Here p=(G,;-G)/(G;+G)) is the relative polarization
of the spin-dependent tunnel conductance G? of the
contact. For a fixed analyzing magnetization, the same
voltage difference can be generated by reversing the
static magnetic field. The spin current, on the other
hand, can be measured via the drop of spin bias over a
known resistive element with weak spin-flip scattering.

Spin pumping into the normal metal can also have
consequences for nuclei via the hyperfine interaction be-
tween electrons and nuclear spins (Kawakami er al.,
2001). An initially unpolarized collection of nuclear
spins can be oriented by a spin-polarized electron cur-
rent, which transfers part of its angular momentum by
spin-flop scattering due to the hyperfine interaction. A
ferromagnetically ordered nuclear-spin system, in turn,
is felt by the electrons as the Overhauser magnetic field
which induces an equilibrium spin density s, in the nor-
mal metal (Overhauser, 1953). The spin-flop scattering
can be included in electron-spin dynamics by adding an
additional term to the total spin current, Iszlfump+lgo)
+I]", to account for the exchange of angular momen-
tum between electrons and nuclei (Brataas et al., 2002).
The nuclear spin polarization increases with spin accu-
mulation and decreasing temperature. In bulk GaAs, the
nuclear magnetic field is H,,=5.3 T when the nuclei are
fully spin polarized (Paget et al., 1977), which should oc-
cur at thermal energies sufficiently smaller than the
FMR frequency, as determined from the rotating-frame
analysis.

In conclusion, the spin battery is a source of spin, just
as a conventional battery is a source of charge. Esti-
mates of its performance for bilayers of metallic ferro-
magnets with either normal metals or doped semicon-
ductors suggest that it is a feasible concept.

IV. GILBERT-DAMPING ENHANCEMENT
A. Ideal spin sinks

In Sec. III we have shown that a moving magnetiza-
tion emits spins into adjacent nonmagnetic conductors.
This effect is necessarily associated with an energy loss
for the ferromagnet, as explained in Sec. III.B. We now
discuss spin pumping as a source of viscous damping of
the magnetization dynamics in thin films or small par-
ticles. Under quite general conditions, this damping is
consistent with the Gilbert phenomenology (8).

Consider a ferromagnet sandwiched between two nor-
mal metals labeled by /=L ,R. By conservation of angu-
lar momentum, spins ejected out of the ferromagnet ex-
ert a transverse reaction torque (12). The total spin
current

I, —E (L) + 12y (57)

that determines the spin torque, i.e., the additional term
(14) in the Landau-Lifshitz-Gilbert equation, contains
bias- and spin-pumping—-induced contributions. Suppose
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initially that normal metals act as ideal reservoirs in a
common thermal equilibrium that are perfect spin sinks
for pumped spin currents, so that I =0. This model is
valid when the spin current IF;™ is completely drained
by massive and highly conductlve reservoirs or by a ma-
terial with effective spin-flip processes that prevent any
spin-accumulation buildup and backscattering into the
ferromagnet. Using Eq. (38),

h d
1= E e = [(A” + AHm x d—‘?

dm
1, grném
+ (A + A o ] (58)

Since this spin current is polarized perpendicularly to m,
the torque (12) becomes 7=-m X I; X m=-I,. Substitut-
ing this into Eq. (14), we recover the Landau-Lifshitz-
Gilbert equation (8) with a new effective damping con-
stant a. and gyromagnetic ratio 7y, defined by

f
Yoyt

[y 59
Yett 47TMV(A Al . .

(AlV+ AT, (60)

Y
el e 477M %
Spin pumping thus affects FMR experiments as a shift of
the resonance magnetic field via Al'+A/"', whereas
Aty AT increases the relative resonance linewidth.
Al' defined by Eq. (39) is positive since, by unitarity of
the scattering matrix, it can be rewritten as

1
1 L2
Al = > > (7 = T
nn'

el k). 61)

Spin pumping by a moving magnetization therefore can-
not reverse the sign of the effective damping parameter
(without reversing the sign of the gyromagnetic ratio), as
is required by the Landau-Lifshitz-Gilbert phenomenol-
ogy; see Sec. I.C.

Enhanced Gilbert damping leads to a broader reso-
nance absorption peak (11) of a rf magnetic field. By the
fluctuation-dissipation theorem, this should be manifest
in increased fluctuations of the magnetization in thermo-
dynamic equilibrium. This additional magnetization
noise can arise from the torques exerted by Johnson-
Nyquist spin-current fluctuations that are exchanged be-
tween the ferromagnet and reservoirs or other spin
sinks. Indeed Foros, Brataas, et al. (2005) have proven
explicitly that magnetic noise caused by spin-current
fluctuations is consistent with the dissipation power pre-
dicted by spin-pumping theory for a monodomain ferro-
magnet in contact with ideal spin sinks.

Mizukami et al. (2001a, 2001b) measured room-
temperature FMR linewidths of sputtered N|Permalloy
(NiggFey,Py)|N sandwiches and discovered systematic
trends in the damping parameter as a function of Py-film
thickness d for different normal metals N. Their data for
the Gilbert parameter G, Eq. (9), are shown by symbols
in Fig. 5. In the following, we compare these measure-
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FIG. 5. Symbols represent the data points derived from FMR
experiments on N|Py|N sandwiches with N=Pt, Pd, or Cu (Mi-
zukami et al., 2001a, 2001b). The lines show fits by G+a/d.
G=0.97x10%, 1.06%x 108, and 1.31x10% s !, where, following
Eq. (63), a corresponds to gll/S:0.2, 15.3, and 25.8 nm~2 for
Cu, Pd, and Pt, respectively, taking a g factor of 2.1 for Py films
(Mizukami et al., 2001a, 2001b). The horizontal axis uses a re-
ciprocal scale.

ments with theoretical predictions based on Eq. (60).
For the Py films, d=2 nm> \, so that ¢'!, #'T!~0 and
All Eq. (39), is simply the mixing conductance g'! of the
Py| N interface. g/' <g!' for the interfaces listed in Table
I, so that

glt=glt. (62)

Equation (59) then reduces to y.;= 7y and Eq. (60) be-
comes

g,

Gy~ G
eff + 0V

(63)

Moreover, for the parameters in Table I,

gt =g\ (64)

As explained by Zwierzycki et al. (2005), Eqgs. (62) and
(64) are good approximations for intermetallic interfaces
because of the large phase differences between spin-up
and spin-down reflection coefficients (see, however, Sec.
VII.A.2 for ultrathin magnetic films, d=<\,.). We shall
assume the validity of these approximations in much of
this review. Sharvin conductances for different normal
metals (Zwierzycki et al., 2005) are listed in Table II. The
data in Fig. 5 are used to extract g!' according to Eq.
(63). A possible d dependence of the bulk G is disre-

TABLE II. Sharvin conductances (in units of quantum chan-
nels per nm?) for bulk fcc Cu, Pd, Pt, and bec Ta, density of
states N\ at the Fermi level (in units of states per Ry, atom,
spin), and Stoner enhancement factor. From Zwierzycki et al.,
2005. Typical values of the exchange-correlation integral /.
were taken from Gunnarsson, 1976 and Janak, 1977.

Cu Ta Pd Pt
gsh 15.0 25.0 16.0 17.6

N 2 10 15 12
(1-NT)™! 1.1 1.9 4.4 22
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garded in our analysis. The G’s in Fig. 5 are close to the
previously measured bulk Gilbert damping constants of
Permalloy (Patton et al., 1975; Bastian and Biller, 1976).
We see that the extracted mixing conductance for the
Pd|Py interface is similar to that expected from the Shar-
vin conductance of Pd, while that of Pt|Py is about 1.5
times larger. Mizukami ef al. (2001a, 2001b) also re-
ported FMR measurements on Ta|Py sandwiches that
had only a small damping enhancement with respect to
the bulk value.

According to earlier arguments, the absence of a sig-
nificant thickness dependence of the damping in the
Cu|Py system could correspond to an unrealistically
small conductance gll. The explanation should, however,
be sought in the long spin-flip relaxation times in clean
Cu (Meservey and Tedrow, 1978). Since the accumulated
spins drive a diffusion spin current opposite to the
pumping current, the additional damping vanishes in
clean Cu. On the other hand, Pd and especially Pt
(which is below Pd in the periodic table) have much
larger spin-relaxation rates, which can be rationalized by
the higher atomic number and complex Fermi surfaces
[Pd appears to also have an additional spin-decoherence
mechanism due to spin-flip scattering at magnetization
fluctuations; see Foros, Woltersdorf, et al. (2005)]. We
note that the spin-flip efficiency of a dirty normal metal
is determined by defects and impurities as well. Lubitz et
al. (2003) reported a significant damping contribution
that scaled as 1/d as a function of the Fe-layer thickness
d in polycrystalline Cu|Fe|Cu sandwiches in contrast to
the experiments by Mizukami et al (2001b) on
Cu|Py|Cu. This was interpreted in terms of a larger Cu
spin-relaxation rate in the Fe|Cu as compared to the
Cu|Py system. The effect of spin flip in the normal metal
on the excess damping in multilayers is treated quanti-
tatively in the next subsection.

Ingvarsson et al. (2002) also carried out FMR studies
on Py films sandwiched with normal metals Pt, Nb
(which is above Ta in the periodic table), and Cu, as well
as by insulators. Pt|Py combinations displayed a signifi-
cantly stronger damping than other structures. They also
identified an additional thickness-dependent damping
correlated with the disorder in the Py films that was not
reported by Mizukami et al. (2001a, 2001b). Damping
processes that are intrinsic to the ferromagnetic layer
cannot be addressed by the present theory, however.

Lagae et al. (2005) studied pulsed dynamics of a thin
Py layer in contact with Cu or Ta layers. In addition,
they investigated the role of a second, pinned ferromag-
netic layer attached to the free layer via a Cu spacer or
a tunnel barrier. The measured Gilbert damping was
found to be consistent with the spin-pumping picture.
We shall discuss the effect of the second ferromagnetic
layer in Sec. IV.C.

Finally, we comment on the role of electron correla-
tions in the spin-pumping formalism; see also Sec.
VILD. In order to calculate the mixing conductance, the
scattering matrix has been obtained by Xia et al. (2002)
and Zwierzycki et al. (2005) for the effective potential
from Kohn-Sham density-functional theory. This poten-
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tial is calculated self-consistently and includes electron-
electron interaction effects via the Hartree potential and
an exchange-correlation potential in the local-spin-
density approximation. The interface parameters, when
computed self-consistently and nonperturbatively, in-
clude the magnetic moments induced in the normal
metal by the proximity to the ferromagnet [also dis-
cussed by Simanek (2003)]. For Cu and Au normal-
metal films, this effect is very small due to the small
densities of states at the Fermi energy. The question
arises as to whether larger effects may be expected for
materials such as Pd and Pt with a large Fermi-level
density of states (see Table II). These metals are known
to be “almost ferromagnetic” with a Stoner-enhanced
spin susceptibility x/xo=(1-NI)~!, also listed in Table
II. So, can the increased damping of the magnetization
dynamics in contact with thin layers of Ta, Pd, and Pt as
compared to Cu (Mizukami et al., 2001a, 2001b) be con-
nected to their larger Fermi-level densities of states? In
spin-pumping theory, the quantity that governs the
damping enhancement is the mixing conductance. For
metallic structures, band-structure calculations give re-
sults that are close to the Sharvin conductance of the
normal metal, Eq. (64), thus not sensitive to the mag-
netic moments induced in the proximity to the ferro-
magnet. The Sharvin conductance for Cu, Ta, Pd, and Pt
is seen to change less than N. More significantly, the
trend does not correspond to that observed experimen-
tally for the damping enhancement. The Sharvin con-
ductance is maximal for Ta, not Pd with the highest spin
susceptibility, supporting our earlier conclusion that spin
dissipation in the normal conductors is crucial for the
enhanced magnetization damping, as is explored in
more detail below.

B. Diffuse systems

In the previous subsection, we have concentrated on
the extreme situation in which the normal-metal layer is
an ideal spin sink that immediately absorbs the injected
spin current IP""™P, by either relaxation through spin-flip
processes or the absence of backscattering. Disregarding
IEO), the total spin current through the contact, Eq. (57),
reduces to L,=I"""P. In general, we have to take into
account the spin accumulation in a diffuse normal metal
that drives a spin current IEO) back into the ferromagnet.
As a technical note, we recall that in this regime the drift
correction (34) should be applied to the conductance pa-
rameters entering Eqgs. (25), (26), and (38).

As the simplest example, we first discuss a F|N bi-
layer, in which a magnetization precession generates a
pure spin but no charge current. The spin accumulation
or nonequilibrium chemical-potential imbalance u,(x)
[similar to Eq. (16), but with spatial dependence] in the
normal metal is a vector with magnitude that depends
on the distance from the interface x, 0<x <L, where L
is the thickness of the normal-metal film (see Fig. 6).
When the ferromagnetic magnetization steadily pre-
cesses (in an easy plane) around the z axis, mXm and
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FIG. 6. Schematic view of a F|N bilayer in which the magne-
tization direction m(¢) of the ferromagnet F rotates in an easy
plane, pumping a spin current I!"™ into the adjacent normal-
metal layer N. The N layer here is not an ideal reservoir but
rather a film of the same cross section as the magnetic layer F.
The spin pumping builds up a position (x) dependent spin ac-
cumulation in N that either relaxes by spin-flip scattering or
drives a spin current back into the ferromagnet as Iio).

the normal-metal spin accumulation u(x) are oriented
along z, as depicted in Fig. 6. We shall see in the follow-
ing that the instantaneous p, is always perpendicular to
m even in the case of a precessing ferromagnet with
time-dependent rotation axis, as long as the precession
frequency w is smaller than the spin-flip rate Ts_f] in the
normal metal.

In the frequency domain, a spin accumulation diffuses
in a normal metal according to (Johnson and Silsbee,
1988)

iop, = DR~ 22 (65)
Tst
where D=v%7/3 is the diffusion coefficient (in three di-
mensions) in terms of the Fermi velocity vy and the
transport mean free time 7. It is assumed here that the
frequency w is smaller than the scattering rate 7'. The
ratio of the momentum to spin-flip scattering time is an
important parameter:

€=—. (606)
Tst
Equation (65) holds when e<1, i.e., the spin-flip relax-
ation may be treated perturbatively. The boundary con-
ditions are given by the spin current I, at the F|N inter-
face x=0 and vanishing of the spin current at the outer
boundary x=L:

=0: dpy=— ——1,
X XILS hNSD s
x=L:dpu=0, (67)

where § is the interface area and A the normal-metal
one-spin density of states per unit volume. The solution
of Egs. (65) and (67) is
cosh[k(x - L)] 2
”’s(x) = . X}
sinh k.  ANSD«k

(68)

where K=)\S‘dl\51+iw7-sf, recalling that Ayg=VD7y is the
spin-diffusion length in the normal metal. In Sec. III.C
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we used similar arguments to calculate the spin accumu-
lation generated by the precessing magnetization.
Whereas in Sec. III.C the magnitude of the spin accumu-
lation and its relevance for spintronics are discussed, we
focus here on the effect of the spin accumulation on
ferromagnetic magnetization dynamics.

We assume in the following that the precession fre-
quency o is smaller than the spin-flip relaxation rate,
<7, so that k=~\g. For a typical effective field of 1 T,
0~10" 57!, The scattering rate corresponding to a
mean free path of A\~10 nm is 7!'~10"s~!. Conse-
quently, for such metals, v << Ts"fl requires €=1073. This
condition is easily satisfied (Meservey and Tedrow, 1978)
for impurities with higher atomic numbers Z [since e
scales as Z* (Abrikosov and Gor’kov, 1962)]. The high-
frequency limit = 7', on the other hand, is relevant for
systems with weak spin-flip scattering in the normal
metal and has been discussed in the context of the spin-
battery concept in Sec. III.C. We shall see that a sizable
Gilbert damping enhancement requires a large spin-flip
probability e=10", thus w< 7', unless the frequency is
comparable to the momentum-scattering rate in the nor-
mal metal. [The latter regime lies below our treatment
based on Egs. (65) and (67).]

It is convenient to define an effective energy-level
spacing of states participating in spin-flip scattering
events in a thick (i.e., L > \4) normal-metal film as

1
NS\

The spin-diffusion length (which sets the scale for spin-
accumulation penetration into the normal layer) written
in terms of the relevant scattering times is

)\Sd =Vr\ T;-Sf . (70)

The spin-accumulation—driven spin current Iio) through
the interface is obtained by substituting puy(x=0) from
Eq. (68) into Eq. (26) to give

L= (O - pume_ gl 4 g xm),  (71)

where the spin current returning into the ferromagnet is
governed by the “backflow factor” S:

Tsfﬁsd/h
tanh(L/\y)

The last equality in Eq. (71) is obtained from Eq. (26) by
assuming that the nonequilibrium transport is limited to
spin currents that are polarized normal to the magneti-
zation. This is allowed in the adiabatic regime when w
<74 where the average angular momentum of the
pumped and backscattered spins is at a given instant
perpendicular to the magnetization. Consequently, as
long as the ferromagnetic spin-relaxation length is larger
than the transverse spin-coherence length Ay, we may
disregard spin relaxation inside the ferromagnet. B is
given by the ratio between the energy-level spacing of
the normal-metal film with a thickness Lg=min(L,\y)

s (69)

B= (72)
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and the spin-flip rate. When the normal metal is shorter
than its spin-flip diffusion length, L<\y, B— 74d/h,
where 8=(NSL)™! is the energy-level splitting. In the
opposite regime of thick normal metals, L>\y, B
— Tsfésd/h‘

By solving Eq. (71), the total spin current I, can be
expressed in terms of the pumped spin current IP"™P, Eq.
(38), to finally obtain

h dm dm
- E(m Al ™ 1 Agﬁz), 73

which has the same form as Eq. (38), but with effective
spin-pumping efficiencies Al%f:

L _ L 4 L (74)
Alk " g1 tanh(L/Ng)

Here, Ry=7464/h is the dimensionless resistance [in
units of (2¢%/h)~!] of the normal-metal layer of thickness
N¢g» Which follows from Eq. (69) and the Einstein rela-
tion o=e’DN between conductivity ¢ and diffusion co-
efficient D. When L >\, the effective spin pumping
out of the ferromagnet is governed by the mixing con-
ductance of the F|N interface in series with a diffusive
normal-metal film of thickness \y.

By accepting the approximation (62), we disregard g!*
in the remainder of this section. Im Al}; then also van-
ishes and upon substitution into Eq. (14) the damping
torque due to the spin current I, obeys the Gilbert phe-
nomenology. The effective Gilbert damping parameter
in the diffuse model reads [cf. Eq. (63)]:

R 7lﬁ,y2ng
G~ G=|1+gl—— } L
eff { T8 anh(Ling | 4mV

(75)

The prefactor on the right-hand side of Eq. (75) reflects
the reduction effect on the Gilbert damping that is
caused by spin diffusion back into the ferromagnet. This
correction has been disregarded in Sec. IV.A where nor-
mal metals were considered to be ideal spin sinks. Be-
cause spins accumulate in the normal metal polarized
transversely to the ferromagnetic magnetization, the
spin-accumulation—driven transport across the F|N con-
tact is governed by the spin-mixing conductance (just as
the spin-pumping current). The absence of spin accumu-
lations or currents polarized collinear to the magnetiza-
tion (in the limit o< 73') explains why the diagonal com-
ponents of the conductance matrix g"”’ do not enter into
Eq. (75).

The numerical values of the parameters in Eq. (75)
can be estimated with the free-electron model for the
normal metal, for which N'=k%/mhvy. Using Egs. (70)
and (69), we find Ryj=h/ 5sdrsf=4\s"mg,s\,h, where g3¢
=Ski/4m is the dimensionless Sharvin conductance
(number of transport channels) of the normal metal. Us-
ing the approximation (64) for the mixing conductance
gli, and Eq. (33) to correct for the drift contribution, we
obtain g!'~2g3". We thus estimate
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hy2 gl amy
1+ [Vetanh(L/\g)T ™"

Geri— G ~ (76)

A significantly increased damping therefore requires a
high spin-flip to spin-conserving scattering probability,
€=1072, and sufficiently thick normal layers, L=\ (L
=\, alone is not a sufficient condition, however, con-
trary to what has sometimes been assumed in the litera-
ture). Poor spin sinks that do not modify the magnetiza-
tion dynamics are characterized by a large denominator
in Eq. (76). Clean light metals with atomic number
Z =50, such as Al, Cr, and Cu, as well as heavier metals
with only s electrons in the conduction band, such as Ag,
are less effective spin sinks because of a relatively small
intrinsic spin-orbit coupling, typically in the range of
€<10"? (Meservey and Tedrow, 1978; Bergmann, 1982;
Yang et al., 1994). Heavier elements with Z=50 and p or
d character of the conduction electrons, such as Pd, Pt,
and Pb, are effective spin sinks with much larger
€=10"" (Meservey and Tedrow, 1978). Au is intermedi-
ate in € (Chiang et al., 2004), presumably due to the s
character of its outer orbital. These conclusions explain
the hierarchy of the observed Gilbert damping enhance-
ment observed by Mizukami et al. (2001a, 2001b); see
Sec. IV.A. By doping a small-e matrix with high Z or
magnetic impurities (e.g., Cu lattice with Pt atoms), a
good spin sink can be created. We conclude that the
damping parameter (and thus the switching speed) of
thin ferromagnetic films can be engineered flexibly by
coating them with suitable normal metals.

In the limit of a large ratio of the spin-flip to momen-
tum scattering, e~ 1, the spin-diffusion equation and,
consequently, Eq. (76) do not hold. In this regime, the
normal metal efficiently relaxes the spins injected from
the ferromagnet. Foros, Woltersdorf, et al. (2005) inves-
tigated this scenario for Pd (in contact with Fe) which
appears to have a spin-relaxation rate, arguably by para-
magnons, that is faster than the bulk momentum-
scattering rate. When the spin-decoherence length vy7;
is thicker, ballistic Pd films should otherwise be good
spin sinks. The ferromagnetic relaxation by ideal spin
sinks is determined by the bare spin-mixing conductance
g'l, as discussed in Sec. IV.A. The latter generally pro-
vides an upper bound for the magnitude of additional
Gilbert damping. However, in the present theory, spin-
orbit coupling is treated phenomenologically in the
diffuse-transport regime only. Strong spin-orbit coupling
immediately at interfaces, for example, requires gener-
alization of spin-pumping and circuit theories beyond
the scope of this review.

Infinite versus vanishing spin-flip rates in the normal
metal are two extremes for F| N bilayer dynamics. In the
former case, the damping parameter G, is enhanced,
and in the latter case unmodified. Both limits are experi-
mentally accessible by using Pt as a good or Cu as a poor
spin sink, as shown by Mizukami et al. (2001a, 2001b) for
N|Py|N sandwiches.

Experiments on Py where both Cu and Pt were com-
bined in a Py|Cu|Pt heterostructure (Mizukami et al.,
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FIG. 7. Gilbert damping constants (circles) in
Cu|Py(3 nm)|Cu(L)|Pt(5 nm) and Cu|Py(3 nm)|Cu(L) struc-
tures measured by Mizukami ez al. (2002a, 2002b) as a function
of Cu-layer thickness L. Solid lines are the theoretical results
according to Eq. (80) with parameters discussed in the text.
The horizontal axis uses a logarithmic scale.

2002a, 2002b) allowed for studying spin diffusion in the
central Cu layer. The measured room-temperature mag-
netization damping in Cu|Py|Cu(L) and Cu|Py|Cu(L)|Pt
structures as a function of Cu-film thickness L is shown
by circles in Fig. 7. The experiments can be understood
by a slight extension of the diffusion-theory—based dis-
cussion for F|N bilayers. The damping is governed by
the angular-momentum loss of the ferromagnet through
the normal-metal compound N;|N,, as schematically
shown in Fig. 8. Once injected into Ny, spins are either
scattered back into the ferromagnet or relax in Ny or N,.
When there is only a very weak spin-flip scattering in NV,
compared to N,, the spins have to diffuse through N,
before they can relax in the second normal-metal layer
N,. For simplicity, we model N, as an ideal sink that
instantaneously relaxes incoming spins, as is appropriate
for Pt. The analysis below illustrates that the ferromag-
netic magnetization damping as a function of L provides
important information about spin transport through N;
and the N;|N, interface. The Cu substrate on the other
side of the Permalloy film (Mizukami et al, 2002a,
2002b) can be disregarded since it is a poor spin sink.

F
dm/dt
\ LD
m
Zx
o L

FIG. 8. Similar to Fig. 6, but the normal-metal system is a
N;| N, bilayer. Ferromagnetic magnetization precession pumps
spins into the first normal-metal layer N;. The spin accumula-
tion in N; either flows back into the ferromagnet F as spin
current Ii(])), relaxes in Ny, or leaves via the second normal-
. (0) . Lo
metal layer N, as spin current I ;. The spin accumulation in
the ideal spin sink N, vanishes.
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Similar to Egs. (67), the boundary conditions for the
spin accumulation in the normal metal N, are now

x=&3d%=—£E§BLh

(77)

x=L:dps=— mlsz.

I;; and I, are the total spin currents through the left
(x=0) and right (x=L) interfaces, respectively. L
=IPmP +I£?), cf. Eq. (71) in the previous subsection, is the
sum of the pumped, Eq. (38), and the spin-
accumulation—driven, Eq. (26), spin currents. I,, on the
other hand, is entirely governed by the N;— N, diffu-
sion

8

47TMS(X =L), (78)

Is2 =
where g is the effective spin conductance of the N;|N,
interface:

1 1 1

~~ oo Sh -
8 &N|IN, 2gN1

(79)

Here, we have corrected the bare single-spin resistance
1/g¥|n, of the all-normal interface for the drift effect by
subtracting the Sharvin contribution on the N; side only
because the layer N, is assumed to be an ideal spin bath.
Solving the diffusion equation (65) with the boundary
conditions (77), we find the spin current L, which is
transferred to the magnetization as a torque, as dis-
cussed in the preceding discussion for the bilayer. The
Gilbert damping enhancement due to the spin relaxation
in the trilayer is then found to be

1+ tanh(L/\)gRy | 178
xd tanh(L/)\sd) + gde 4wV ’
(80)

where g and Ry parametrize the spin diffusion in Ny,
g!' is the renormalized mixing conductance (33) of the
F|N; interface, and g is the spin-transfer conductance
(79) of the N;|N, interface.

Setting g=0 decouples the two normal-metal systems
and reduces Eq. (80) to Eq. (75), the damping coefficient
of the F|N; bilayer. In the experiment by Mizukami et
al. (2002a, 2002b), the Permalloy thickness d=3 nm was
fixed and the Cu film thickness L was varied between 3
and 1500 nm as shown by the circles in Fig. 7. The the-
oretical result (80) is plotted in Fig. 7 for comparison,
using the following parameters: the bulk damping G
=0.7x10% s! (Patton et al., 1975; Bastian and Biller,
1976), the spin-flip probability e=1/700, and the spin-
diffusion length \¢4=250 nm for Cu (which correspond
to the mean free path A= v’?ehsd: 16 nm), in satisfactory
agreement with values reported in the literature
(Meservey and Tedrow, 1978; Yang et al., 1994; Jedema
et al., 2001), gli/ S§=16 nm~? extracted from the experi-

G- G=[1+g/'R
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mental angular magnetoresistance of Py|Cu (Bauer et al.,
2003b), and g/S=35 nm~2 for the Cu|Pt contact. This g
corresponds to the bare one-spin conductance g?’/S
=16 nm2, which is close to the Sharvin conductance of
Cu (see Table I). Figure 7 shows a satisfactory agree-
ment (within the experimental error) between experi-
ments and theory. This proves the diffusive nature of
spin transfer in the Cu spacer. Whereas the detailed
mechanism for spin injection (relaxation) at the Py|Cu
(CulPt) interface cannot be deduced directly, the agree-
ment on absolute scale obtained with parameters taken
from other sources strongly supports the spin-pumping
picture.

It is illuminating to discuss Eq. (80) in the limit of
vanishing spin flip in the spacer layer N;. Recalling the
definitions for Ay, Eq. (70), and &y, Eq. (69), and taking
the limit 7;—, we find that Eq. (80) reduces to Eq.
(63), only with 2g'! (where the factor of 2 corresponds to
two F|N interfaces in the N|F|N trilayers) replaced by

8 l%ﬁ

! ! + Ry + ! (81)
—T=--+Ry +2,
gy & g

where RNI:(ZeZ/ h)L/So is the dimensionless resistance
of the N; layer with conductivity o. The right-hand side
of Eq. (81) is simply the inverse bare mixing conduc-
tance of the diffuse N; spacer in series with its two in-
terfaces, one with F and the other with N, (Bauer et al.,
2003b). In particular, when Nj is thick enough, the total
mixing conductance gl%f is limited by the spacer separat-
ing F and N, (Brataas et al., 2000, 2001). The spin pump-
ing into layer N; with subsequent spin-conserving diffu-
sion and then spin absorption by the ideal spin sink N, is
thus equivalent to spin pumping (38) across an effective
scatterer separating the ferromagnet F from the ideal
spin sink N,.

The general trends in Fig. 7 can be understood as fol-
lows. Since Cu is a poor spin sink, a Py|Cu contact with
a single Cu film only weakly increases the damping for
all thicknesses. This enhancement saturates at L>\y
and vanishes in the limit L <\g. When a Pt film, a very
good spin sink, is connected to the bilayer and the Cu
spacer is thinner than the transport mean free path, L
<\, the spin accumulation is uniform throughout the
Cu. The spin pumping is then partitioned. One fraction
of the pumped spins is reflected back into the ferromag-
net, while the remainder is transmitted to and subse-
quently relaxes in the Pt layer. Their ratio equals the
ratio between the conductance gll of the Py|Cu and the
conductance g of the Cu|Pt interfaces, and is of the order
of unity. Since a significant fraction of the spin-pumping
current is dissipated in Pt, a large magnetization damp-
ing is achieved. When L is increased, less spins manage
to diffuse through the Cu spacer, and, in the limit L
>\, a majority of the spins scatter back into the ferro-
magnet before sensing the presence of the Pt layer. In
the intermediate regime, the spin pumping into the Pt
layer decays algebraically on the scale of the transport
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FIG. 9. Gilbert damping measured in Cu|Py(3
nm)|Cu(L)|Pt(2 nm) and Cu|Py(3 nm)|Cu(L) structures for
several Cu-layer thicknesses L at various temperatures. Solid
lines are fits based on spin-pumping theory. Adapted from
Yakata et al., 2005.

mean free path and exponentially on the scale of the
spin-diffusion length.

The temperature dependence of the Gilbert damping
in such trilayers has been measured recently by the same
group (Yakata et al., 2005); see Fig. 9. The spin-diffusion
length extracted from the data by means of an analysis
similar to the one presented here increases as the tem-
perature is lowered, indicating a reduced role of phonon
scattering at low temperatures. The good agreement
with results from electrical-transport experiments by Je-
dema et al. (2001) establishes FMR experiments as an
important tool for measuring spin transport in magnetic
heterostructures.

The dependence of the damping on the Cu-layer
thickness L in the Cu|Py|Cu(L)Pt multilayers reflects the
amount of accumulation in the normal metals. This spin
accumulation, in turn, indicates that an excited ferro-
magnet (as in the FMR experiment discussed here)
transfers spins into adjacent nonmagnetic layers accord-
ing to the spin pumping (38). The concept of the spin
battery discussed in Sec. III.C relies on this effect.

C. Enhanced Gilbert damping in spin valves:
First-principles calculations versus experiment

In F|N|F structures, the presence of two ferromagnetic
layers can make damping possible for each individual
layer even in the absence of spin-flip relaxation in the
system (Berger, 1996). The point is that if one ferromag-
net is excited while the other is static, the latter acts as a
sink for transverse spin currents pumped by the former.
In this subsection, we assume a sufficiently thick or dis-
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ordered normal spacer, so that it does not support any
persistent spin currents or, in other words, the static ex-
change interaction between the magnetic films vanishes
(see Sec. I.B). Static exchange will be taken into account
in Sec. V in discussing coupled dynamics of two or more
magnetic films. If the F|N|F magnetic structure is weakly
excited from a collinear equilibrium state, then by defin-
ing the effective (complex-valued) spin-pumping effi-
ciency AHNI r by

1 1 222L 1 )
T Tttt
Aldyr 815 h So gl

we can summarize with an analysis similar to that of the
preceding section as follows. The total spin current I
through the normal spacer consisting of the pumped and
backflow components, Eq. (36), is given by the right-
hand side of Eq. (38) with A!! replaced by A}y, where
m is the magnetization of the excited film (assuming one
of the ferromagnets is static). The effective damping
constant and gyromagnetic ratio are then given by Egs.
(59) and (60) with AHNIF substituted for A''+. 4’1\ In
Eq. (82), o is the conductivity of the N spacer, L is its
thickness, and S is the area of the trilayer. In the spirit of
the theory discussed in Sec. I11.B, Eq. (82) requires that
the spacer (in series with the two interfaces) be diffuse.
The transmission mixing conductance ¢'! is disregarded,
assuming sufficiently thick magnetic films, d >\, or in-
sulating substrate and cap for the F|N|F trilayer. Adding
inverse spin-mixing conductances in series with the
diffuse-spacer resistance in Eq. (82) reflects partitioning
of the pumped spin currents between the two magnetic
layers, having disregarded spin relaxation in the spacer.

Urban et al. (2001) reported room-temperature obser-
vations of increased Gilbert damping for a system con-
sisting of two epitaxially grown Fe layers separated by a
Au spacer layer. The complete structures were
GaAs|(8,11,16,21,31)Fe|40Au|40Fe|20Au|(001),  where
the integers represent the number of monolayers, and
the samples differ in the thickness of the thinner Fe film.
The interface magnetic anisotropies allowed Urban et al.
(2001) to separate the FMR fields of the two Fe layers
with resonance-field differences that can exceed 5 times
the FMR linewidths. Hence the FMR measurements for
thinner F layer can be carried out with a nearly static
thick layer. The FMR linewidth of the thin F layer in-
creases in the presence of the second layer. The differ-
ence in the FMR linewidths between the magnetic bi-
layer and single-layer structures is nearly inversely
proportional to the thin-film thickness d, suggesting that
the additional damping occurs due to its F|N interface.
Second, the additional linewidth is linearly dependent
on microwave frequency for both the in-plane (the satu-
ration magnetization parallel to the film surface) and
perpendicular (the saturation magnetization perpendicu-
lar to the film surface) configurations, implying that the
additional contribution to the FMR linewidth can be de-
scribed strictly as an interface Gilbert damping (Urban
et al., 2001).
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FIG. 10. Enhancement of the Gilbert damping coefficient for
an Fe|Au|Fe trilayer as a function of 1/d where d is the thick-
ness of the excited Fe layer in monolayers (MLs). The filled
circles (@) are the room-temperature values measured by Ur-
ban et al. (2001) and the open one (O) is a low-temperature
(77 K) value from Heinrich, Urban, et al. (2003). The theoret-
ical prediction based on Eq. (83) for 0 K (with o— %) is shown
as solid line and the room-temperature (RT) corrected (with
phonon scattering) one as dashed lines. The results of 0 K cal-
culations for a Au|Fe|vacuum system are given by crosses (X)
and stars (x) for specular and disordered interfaces, respec-
tively. The value of the Gilbert damping « for a single Fe film
is marked with an arrow. From Zwierzycki et al., 2005.

The magnetization of the thin ferromagnetic layer
precesses in the external magnetic field, while the other
static magnetic layer acts as a spin sink. No modification
of the damping coefficient was measured for
GaAs|Fe|Au structures without a second Fe layer. The
latter finding is consistent with the prediction given by
Eq. (75) in the L <\ limit, well fulfilled for the thin Au
films of Urban et al. (2001). In the presence of the sec-
ond Fe layer, Eq. (82) should be used. Neglecting
Im AHNI rleads to y.¢=y and the damping enhancement

hyRe AHN\F

83
47MdS ®3)

Qeff — =

where «=0.0046 is the dimensionless damping mea-
sured for a single Fe layer. Using y=2.1ug/% (Heinrich
et al., 1987) and the values of the interface and Sharvin
conductances from Table I, Eq. (83) is compared with
the experimental data in Fig. 10 for various assumptions
of o in Eq. (82). In the low-temperature limit and ne-
glecting the residual resistivity of the Au layer, o— o,
Eq. (83) yields the solid line which overestimates the
damping enhancement compared with the measured re-
sults. Using finite values of o leads to lower values of
AHN‘ rand indeed it was found experimentally (Heinrich,
Urban, et al., 2003) that lowering the temperature (in-
creasing the conductivity) increases the damping by as
much as about 20% (open circle in Fig. 10). If one uses
the room-temperature conductivity due to phonon scat-
tering in crystalline bulk Au, 0,,=0.45x10°* Q"' m™,
the dashed line is obtained which, as expected, is closer
to the room-temperature measurements. Measurements
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of the sheet conductivity (Heinrich, Urban, et al., 2003)
indicate that the Au layers used in the experiments have
non-negligible residual resistances. [We note, however,
that the conductivity entering Eq. (82) does not include
the interfacial-scattering contribution; the measurement
of the sheet conductivity therefore does not give us di-
rect information about o,..] Assuming, for example,
Ores™= 0y, Would yield the 0 K (with o=0) and room-
temperature (with o '=o L+ o-;}l‘) lines in the close vicin-
ity of the measured points.

The theoretical results represented by the straight
lines in Fig. 10 are based upon the asymptotic, single-
interface value of g!' for Au|Fe from Table I. This ap-
proximation needs to be relaxed in order to study pos-
sible size-dependent corrections in thin films. To
estimate the variation resulting from finite-size effects,
Zwierzycki et al. (2005) carried out a series of calcula-
tions for a Au|Fe|vacuum system, using vacuum instead
of GaAs for simplicity as in the experiment by Urban et
al. (2001). The mixing conductance of the other, Fe|Au,
interface in Eq. (82) was kept at its asymptotic value
(Table I). The calculated thickness (d) dependent mixing
conductance g!' was then converted into the Gilbert
damping via Eq. (83). The results for perfect (specular)
structures, marked in Fig. 10 with black crosses, exhibit
oscillations of non-negligible amplitude near the
asymptotic values given by the solid line (arbitrarily tak-
ing the low-temperature regime, i.e., c—x for refer-
ence). Introduction of interface disorder (two monolay-
ers of 50%-50% alloy) yields values for the damping
(stars in Fig. 10) essentially averaged to the limit given
by single-interface calculations of Table I.

Lubitz et al. (2003) also reported an increased magne-
tization damping in polycrystalline Cu|Fe|Cu|Fe|Cu mul-
tilayers as compared to Cu|Fe|Cu structures. The addi-
tional damping scaled as 1/d with magnetic-film
thickness d, but was considerably larger than that for
epitaxially grown systems reported by Urban et al
(2001). Besides, this damping was rapidly reduced by in-
creasing the thickness of the Cu spacer to only several
nanometers, which was interpreted by Lubitz er al
(2003) to be possibly due to a very short spin-flip length
in their Cu. We note that, based on Eq. (82), this could
be alternatively explained by a short elastic scattering
length in polycrystalline Cu. Lubitz et al. (2003) found a
moderate increase by about 10% in the additional
damping on lowering the temperature to 77 K, which is
roughly consistent with the decrease in the phonon con-
tribution to the resistivity.

This subsection has demonstrated that direct first-
principles calculations can produce values of the damp-
ing coefficient in the same range as those measured ex-
perimentally in good-quality structures. Moreover, by
taking into account various other sources of scattering in
the Au spacer and/or quantum-size effects, calculations
can be brought into close agreement with observations.
A more conclusive comparison with experiments would
require detailed knowledge of the microscopic structure
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of the experimental system, which is currently not avail-
able.

V. DYNAMIC EXCHANGE INTERACTION
A. Magnetic bilayers

The ground-state energy (free energy at finite tem-
peratures) of more than one magnetic layer embedded
in a nonmagnetic medium depends on the relative ori-
entation of the magnetic moments. This is the essence of
the static exchange coupling discussed in Sec. I.B. Dis-
order scrambles ballistic electron paths connecting mag-
netic layers and exponentially suppresses the static inter-
action as a function of the nonmagnetic spacer thickness
between magnetic layers and the inverse mean free path.
We can picture the dynamic coupling in terms of a local-
ized magnetic moment that suddenly changes its direc-
tion, thus creating a nonequilibrium local spin accumu-
lation. The latter partly precesses in the local-moment
effective field and partly diffuses away. Other magnetic
moments at distances L experience this spin accumula-
tion after a time t,=L?/D, where D is the diffusion co-
efficient, as long as t,< 7, the spin-flip time, or, equiva-
lently, L <D, the spin-diffusion length. These other
moments start to move by the torque they experience by
absorbing part of the diffusing spin accumulation, and,
in turn, emit spin currents by themselves. When mag-
netic dynamics are slow on the scale of the diffusion
time ¢, the retardation of spin diffusion may be disre-
garded and the dynamic exchange coupling is practically
instantaneous. This is the regime we treat in the present
section. (A similar discussion applies to the ballistic
transport regime.) The dynamic coupling between mov-
ing magnetizations by the exchange of nonequilibrium
spin currents is affected by spin-conserving random scat-
tering much less than the rapid suppression of the static
coupling.

When the normal spacer is much thinner than the
spin-diffusion length, the dynamic spin exchange is gov-
erned by AHN‘  Eq. (82), which does not depend on the
N-spacer width L for ballistic spacers. The coupling de-
cays as 1/L for spacer widths larger than the scattering
mean free path and is exponentially suppressed when L
becomes larger than the spin-diffusion length. The dy-
namic exchange interaction is less sensitive to disorder
than its static counterpart because the latter relies on the
orbital quantum interference between electron trajecto-
ries connecting magnetic moments or layers, whereas
the former requires spin coherence on traversing the
normal spacer. Dynamic exchange coupling was first ad-
dressed perturbatively in the context of electron spin
resonance by Barnes (1974), who pointed out its long-
range nature as compared to static coupling. However,
dynamic correlations between an individual magnetic
moment and proximate conduction electrons (which, as
described in Sec. IV, lead to magnetization relaxation)
were overlooked at that time. In the context of
ferromagnetic-resonance experiments, dynamic ex-
change coupling has been studied by Hurdequint and
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Malouche (1991) and more recently by Heinrich, Tser-
kovnyak, et al. (2003) and Lenz et al. (2004).

The spin-pumping picture of dynamic exchange cou-
pling is confirmed by recent experiments with suffi-
ciently large normal spacers (Heinrich, Tserkovnyak,
et al., 2003), as will be discussed in detail below. In the
limit when static coupling becomes appreciable, the
spin-pumping-based circuit analysis leading to Eq. (82)
may not hold exactly, however, since the circuit model of
Sec. II assumes that the interfaces and normal spacers
scramble the electron distribution in momentum space.
A sizable static exchange is thus in principle inconsistent
with the key assumption underlying the circuit model. A
rigorous treatment of dynamic coupling in the regime of
significant static exchange coupling is difficult, as ex-
plained in Sec. VII.LA.2. Here we heuristically assume
that dynamic coupling as described by spin-pumping
theory still holds in the presence of a residual static ex-
change interaction, which turns out to be sufficient to
make a connection with some recent experiments (Lenz
et al., 2004). This picture can be justified by the general
observation that in intermetallic heterostructures
quantum-size effects often modulate only weakly the
semiclassical transport contribution.

In the following, we consider the collective dynamics
of a F|N|F structure, i.e., two magnetic films separated
by a normal metal. Possible static exchange through very
thin spacers is taken into account phenomenologically
by postulating a Heisenberg-type contribution (per
cross-sectional unit area)

Ex:—.,ml‘mz (84)

to the magnetic free-energy functional that determines
effective fields (6) experienced by the ferromagnets. J is
the Heisenberg coupling constant, which is assumed to
be small compared to the magnetic bulk exchange stiff-
ness A divided by the magnetic-film thickness d,
|| << A/d. This assumption is necessary in order to treat
each individual magnetic layer as a macrospin pointing
along a unit vector m,. J depends in an oscillatory fash-
ion on the spacer-layer thickness and favors either par-
allel (/>0) or antiparallel (/<0) orientation of the mag-
netic layers, as discussed in Sec. I.B. In nanostructured
pillars, the magnetostatic interaction can also favor an
antiparallel coupling of the form (84), even at spacer
layer thicknesses at which the exchange coupling van-
ishes.

We consider magnetic films that are thinner than A/|J|
but thicker than A\, [Eq. (13)], so that they completely
absorb transverse spin currents. (Note that in typical me-
tallic structures, A/|J|>\; and A\~ \p) A precessing
magnetization vector m; of ferromagnet F; pumps spin
angular momentum at the rate (38) determined by the
spin-pumping efficiency AHNI r [Eq. (82)] into the
normal-metal spacer. We concentrate here on small-
angle excitations of a collinear magnetic equilibrium
configuration. Equation (82) applies to the typical situa-
tion in which magnetization dynamics are slow on the
characteristic time scales for electron transfer across the
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FIG. 11. (Color online) A cartoon of the dynamic-coupling
phenomenon. In the left drawing, the layer F; is at resonance
and its precessing magnetic moment pumps spin current into
the spacer, while F, is detuned from its FMR. In the right
drawing, both films resonate at the same external field, induc-
ing spin currents in opposite directions. The short arrows in N
indicate the instantaneous direction of the spin angular mo-
mentum «m; X m; carried away by the spin currents. Darker
areas in F; around the interfaces represent the narrow regions
in which the transverse spin momentum is absorbed. From
Heinrich, Tserkovnyak, et al., 2003.

spacer. When one ferromagnet is stationary, see the left
drawing in Fig. 11, the dynamics of the other film are
governed by the Landau-Lifshitz-Gilbert equation (8)
but with the effective damping parameter enhanced with
respect to the intrinsic value, as given by Eq. (83). When
both magnetizations are allowed to move, see the right
sketch in Fig. 11, the coupled Landau-Lifshitz-Gilbert
equations expanded to take into account the spin
torques (14) read

dm; Jm; dm;
o v (Hm>‘“ “a
dm; dm;
(m am _mz), 55)
dt dt

where Hg; are effective fields not including the ex-
change contribution (84), &/ =fiy; Re .AFW‘ pldmM,d;S is
given by Eq. (83) having dlsregarded Im AF]LN‘ r and j
=1(2) for i=2(1). As a first simple example, consider the
parallel equilibrium configuration, m(o) mg)), with zero
static coupling, /=0, and matched resonance conditions:
aj=ap=a and yHq=7yHy,, with magnetization-
independent effective fields H,y;. After linearizing Eq.
(85) in terms of small deviations ui(t)zmi(t)—mgo) of the
magnetization direction m; from its equilibrium value
ml(.o), we immediately see that u=(u;s;+u,8,)/(s1+5,),
where s;=y,M, ;d;, viz., the symmetric mode, is damped
with the intrinsic Gilbert parameter «, whereas the dif-
ference Au=u;—u,, viz., the antisymmetric mode, re-
laxes with enhanced damping constant a=a+a;+a;.
This demonstrates that the dynamic interaction can lead
to nontrivial collective magnetization dynamics even
when the static interaction vanishes.

Let us now analyze a more general case of a coupled
magnetic bilayer undergoing a collective circular preces-

sion near a parallel equilibrium configuration m(lo)

—m(zo)—i. For simplicity, we still focus on a nearly sym-
metric structure by setting y,=vy, ¥J/Md=0,, a;=a,
and aj=a’, but allow the effective fields yH.g,=wZ to

differ, w; # w,. Equation (85) then reduces to
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FIG. 12. The main panel displays the real part of the two
frequencies w which solve Eq. (86) for linearized dynamics of a
symmetric magnetic bilayer close to the parallel magnetization
configuration. Solid lines are obtained by setting the static cou-
pling to zero, w,=0, and dashed lines for w,=0.01w;. The
lower inset shows the corresponding imaginary part of .
When w,=0 and near the frequency crossing, w; = w,, the sym-
metric mode has a smaller imaginary part (less damping) and
only slightly larger real part. For w, <0, the symmetric mode
has a larger (real part of the) frequency than the antisymmetric
mode, whereas the antisymmetric mode acquires a higher fre-
quency for sufficiently large and positive w,. In all cases, the
antisymmetric mode remains more strongly damped. The up-
per inset shows the results for w,=0.0lw; but setting a;=0
while keeping a finite «,. This inset illustrates the effect of a
bilayer asymmetry.

dm,; dm,;
—:szm + w,m; ><m+am X —
dt dt
dm; dm;
+a(m X?_ijEl)' (86)

The linearized equations of motion in the absence of
driving force are solved by the form c«exp(iwt) with two
complex-valued natural frequencies w and definite circu-
lar polarization. The solid lines in the main panel of Fig.
12 show the real part of these w’s for various ratios
w,/ wy after setting w,=0, and the dashed lines after set-
ting w,/w;=0.01, i.e., introducing a finite static exchange
coupling. In both cases, a=a'=0.02. The lower inset
shows the corresponding normalized imaginary part of
. For w,=0 and resonance frequencies w; and w, well
separated on the scale of the enhanced damping «', viz.,
|,/ w;—1|>2a’ (assuming o’ <1), the dynamics of two
ferromagnets decouple and the spin pumping can be ac-
counted for by simply adding «' to the effective Gilbert
parameter of each F layer. When, on the other hand,
|w,/ 0 —1|=<2a’, the spin pumping locks the collective
dynamics to independent symmetric (acoustic) and anti-
symmetric (optic) normal modes with frequencies that
are nearly degenerate and close to (w;+w,)/2. It then
follows from Eq. (86) that the symmetric mode is weakly
damped, with Im(w)/Re(w) close to a, whereas the an-
tisymmetric mode experiences an enhanced Gilbert
damping a+2a’.
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FIG. 13. Dissipation power P of a symmetric bilayer in the
presence of a uniform circularly polarized rf driving field at
frequency w. The parameters are the same as those used to
generate the dashed lines in Fig. 12.

The presence of a static exchange interaction lifts the
frequency of the antisymmetric mode by 2w,, not affect-
ing the symmetric mode. When the frequencies w; are
well separated, the static interaction lifts both of them
by w,. One of the modes then acquires some symmetric
and the other some antisymmetric character even when
|wy/ w;—1|=2a’, as illustrated by the damping of both
modes (dashed lines in the lower inset of Fig. 12). In the
upper inset of Fig. 12, the calculations are repeated for
finite w,, but setting the intrinsic damping of one of the
films to zero, a;=0, while a,=a;=0.02. The dynamic
locking into symmetric or antisymmetric modes close to
the resonance crossing has disappeared. The modes are
harder to synchronize when the participating modes
have different amplitudes. A significant locking may be
expected only in a symmetric bilayer with the individual
films having similar resonant modes near parallel equi-
librium axes. In particular, a bilayer in an antiparallel
equilibrium configuration is not disposed to dynamic
locking, since individual layers have excitations with op-
posite circular (or elliptic, in the presence of anisotro-
pies) polarizations.

We now turn to a discussion of the consequences for
the observable in FMR experiments, viz., the energy-
dissipation power P of dynamically locked collective dy-
namics as plotted in Fig. 13 as a function of the fre-
quency o of the uniform and circularly polarized
transverse rf driving field. The system parameters are
the same as those used to generate the dashed lines in
Fig. 12. For the smallest ratio w,/w; in Fig. 13, the two
bilayer excitations are recognized as separated Lorentz-
ian peaks with half-widths close to (a+a’)w; see Eq.
(11). When the elementary bilayer excitations become
locked at |w,/w;—1|=<2a’, the rf radiation excites only
the symmetric mode, and the two Lorentzians merge
into a single sharper Lorentzian with half-width of only
aw. This narrowing is explained by the cancellation of
spin currents and can be quite dramatic when a<<a'.

In FMR experiments, the applied magnetic field is
swept, whereas the rf frequency w is fixed by a resonant
cavity. In Sec. IV.C, we discussed FMR experiments by
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FIG. 14. (Color online) Dependence of the static FMR fields
H, (circles) and H, (triangles) of the thin Fe film (F;) and the
thick Fe film (F,), respectively, on the angle ¢ of the static
magnetic field with respect to the Fe [100] crystallographic
axis. The sketch of the in-plane measurement in the left inset
shows how the rf magnetic field (double-pointed arrow) drives
the magnetization (on a scale grossly exaggerated for easy
viewing). The right inset shows the measured absorption peaks
for layers Fy and F, at ¢=60°. The absorption power is given
by the imaginary part of the susceptibility of the rf magnetiza-
tion component along the rf driving field, which is denoted by
x". From Heinrich, Tserkovnyak, et al., 2003.

Urban et al. (2001) on magnetic bilayers in which one of
the layers remains close to equilibrium while the other is
resonantly excited. The collective magnetization dynam-
ics were measured by Heinrich, Tserkovnyak, et al
(2003) in the same system making use of an accidental
crossing of the resonance frequencies when the static
field is reoriented relative to the crystal anisotropy axes.
The resulting spectra could be quantitatively explained
in terms of the dynamic coupling in the limit of a van-
ishing static exchange interaction. We summarize their
findings in the following.

The molecular-beam-epitaxy-grown
Heinrich, Tserkovnyak, et al. (2003) incorporates
two ferromagnetic films, a thinner 16-monolayer
(F;) and a thicker 40-monolayer (F,) Fe film, sepa-
rated by 40 monolayers of Au, grown on GaAs and
capped with Au, i.e., the stacking order is
GaAs|16Fe[40Aul40Fe[20Au(001). The uniaxial mag-
netic anisotropy in F; at the GaAs|Fe interface can be
used to intentionally tune the resonance fields for F; and
F, into a crossover by rotating the static magnetic field
by an angle ¢ with respect to the (001) crystal axis. In a
finite interval of ¢ near the crossover (shaded area in
Fig. 14), the two FMR fields clearly “stick” to each
other, a phenomenon explained above. When the reso-
nance fields are identical, H;=H,, the rf magnetization
components of F| and F, are moving in phase as de-
picted in the right drawing in Fig. 11. For similar trajec-
tories of F; and F,, the total spin current through the
spacer vanishes resulting in zero excess damping for
both films, as follows from Eq. (85). The locked collec-
tive motion is then hindered only by the intrinsic local
damping. This is experimentally verified, as shown in

structure of
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FIG. 15. (Color online) Comparison of theory (solid lines) with room-temperature measurements (symbols) close to and at the
crossover of the FMR fields, marked by the shaded area in Fig. 14. The left and right frames show FMR signals for the field
difference, H,—H;, of —78 and +161 Oe, respectively. The theoretical results are parametrized with the full set of magnetic
parameters which were measured independently (Urban ez al., 2001). The magnitude of the spin-pump current was determined by
the linewidth at large separation of the FMR peaks and agrees well with that predicted theoretically; see Sec. IV.C. The middle
frame displays the effective FMR linewidth of magnetic layers for the signals fitted by two Lorentzians as a function of the external
field. At H,=H,, the FMR linewidths reached their minimum values at the level of intrinsic Gilbert damping of isolated films. The
calculations in the middle frame did not take small variations of the intrinsic damping with angle ¢ into account, which resulted in
deviations between theory and experiment for larger |H, — H,|. Notice that AH, first increases before attaining its minimum, which
is due to a contribution of the antisymmetric collective mode. As a side comment, it should be noted that although fitting the
absorption signal by two Lorentzians is a legitimate approach to comparing theoretical calculation with experimental curves, the
analysis does not imply that the signal is always well approximated by the sum of two Lorentzians, which may not be the case very

close to the FMR-field crossover. From Heinrich, Tserkovnyak, et al., 2003.

Fig. 15. For a theoretical analysis, Heinrich, Tser-
kovnyak, et al. (2003) solved Eq. (85), taking into ac-
count the ellipticity of the magnetic motion caused by
the anisotropies. Using parameters derived from mea-
surements on the uncoupled layers, they calculated the
total FMR signal as a function of the difference between
the resonance fields, H,— H,, without additional fitting
parameters. The predictions are compared with the
measurements in Fig. 15. The remarkably good agree-
ment between experiment and theory provides strong
evidence that the dynamic exchange coupling not only
contributes to the damping but leads to a new collective
behavior of magnetic heterostructures. Heinrich, Tser-
kovnyak, et al. (2003) additionally carried out measure-
ments on samples with Au spacer thicknesses between
14 and 100 monolayers. The reported weak dependence
of the FMR response on the spacer thickness proves the
long range of the dynamic interaction.

Lenz et al. (2004) have investigated collective FMR
dynamics in Ni|Cu[Ni and Ni|Cu|Co structures with Cu
thicknesses down to 2 monolayers. Such thin Cu spacers
support a sizable static coupling between magnetic films.
Like Heinrich, Tserkovnyak, et al. (2003), Lenz et al.
(2004) have observed a sharp drop in the linewidth near
an FMR-field crossing. Far from it, the optic-mode reso-
nance is systematically broader than that of the acoustic
mode, consistent with the spin-pumping mechanism.
The difference between the optic and acoustic line-
widths exhibits an oscillatory dependence on the Cu-
spacer thickness, which roughly follows the predicted
exchange-coupling constant J. As shown in the lower
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inset of Fig. 12, a stronger coupling J would indeed re-
sult in a larger asymmetry in the two linewidths, away
from the crossing, which could lead to oscillations in the
linewidth difference. However, an inhomogeneous
spread of the coupling strengths may also contribute to
the broadening which depends nonmonotonically on the
spacer thickness, providing an alternative explanation
for the linewidth oscillations.

In the regime of very strong static exchange coupling,
|J/|=A/d, opposite to what was assumed so far, magne-
tization gradients across the bulk magnetic layers allevi-
ate the energy cost of the discontinuity in the magnetic
orientation between two magnetic layers. This reduces
the spin pumping through the spacer, and thus the addi-
tional broadening of the antisymmetric mode because
the adjacent magnetizations are better locked by the
strong static exchange interaction.

B. Magnetic superlattices

Magnetic multilayers display a rich pattern of physical
properties that have been well investigated [see, e.g.,
Camley and Stamps (1993) for a review]. However, the
relevance of dynamic exchange coupling discussed in the
previous subsection on the spin-wave dispersions and
lifetimes appears to have not been recognized yet. In the
following, we present a simple model description that
should suffice to estimate the order of magnitude of the
predicted effects that we hope will stimulate new experi-
ments. We also remark that superlattices can serve a
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FIG. 16. A schematic view of the superlattice and its geometric
parameters as considered in the text. A F|N bilayer is repeated
along the x axis, with either ferromagnetic or antiferromag-
netic alignment of the consecutive magnetic layers. The system
is translationally invariant along the two remaining axes.

theoretical purpose as toy models for describing certain
features of bulk magnetism.

Consider a periodic stack (in the x direction) of alter-
nating F and N layers forming a two-component super-
lattice. We consider the model depicted in Fig. 16 in
which a F|N bilayer forms the unit cell with thickness
b=L+d, and in which the normal-metal spacer of width
L separates the magnetic films of thickness d>\.
Translational invariance is assumed in the lateral direc-
tions. We consider here collective spin-wave excitations,
taking both static and dynamic exchange couplings into
account in exactly the same fashion as in the previous
subsection on magnetic bilayers, modeling each mag-
netic layer as a single macrospin.

Small-angle magnetization dynamics of a multilayer in
an all-parallel configuration are described in terms of
local deviations from the equilibrium: u,(£)=m;(£)—m©.
For long-wavelength excitations, it may be approxi-
mated as a continuous function u(x,7) of the coordinate
x normal to the interfaces. For a uniaxial effective field
H=H.m", the spin-wave dynamics obey the differ-
ential equation

du=m"? X [wou - 0,b’d,u+ adu — a'b?d,, ], (87)

where we have used the quantities defined for magnetic
bilayers in Sec. V.A: w,=y//Md, o'=hyRe AHNIF/
47MdS, and wy=yH4 The second term on the right-
hand side of Eq. (87) is due to static exchange interac-
tion mediated by quantum-well states of the spacer lay-
ers, and in the last term we recognize the dynamic
coupling induced by the spin pumping. The second spa-
tial derivatives simply reflect the difference of the spin
currents through two consecutive normal spacers in the
continuum limit. The static Heisenberg coupling can be
interpreted as the superlattice equivalent of the bulk ex-
change stiffness parameter A, which for the superlattice

is given by A=Jb%/d. Both w, and o' depend on the
normal-interlayer thickness L. It follows from Eq. (87)
that the small-momentum, k <b~!, spin-wave excitations
of the superlattice, propagating perpendicular to the in-
terfaces, «cexp{i[kx— w(k)(]}, obey a dispersion relation

Rev. Mod. Phys., Vol. 77, No. 4, October 2005

wy + (bk)*w,
1+i[a+ (bk)a']

When k— 0, w(k) reduces to the Larmor frequency wy of
the individual magnetic layers because static and dy-
namic exchange couplings vanish when the consecutive
magnetic layers move coherently in phase, as explained
in Sec. V.A. Equation (88) holds for momenta compa-
rable to b~! when bk is replaced by 2 sin(bk/2).

The situation is very different for an antiferromagneti-
cally aligned superlattice, which is the lowest-energy
state when, for example, /<0 and H.;=0. In this case,

—iw2a+ (bk)’a’ + Vda? - (bk)*(1 + a?)]
1+ a?+4aa’ + o' (bk)? ’
(89)

where plus and minus signs refer, respectively, to the
modes with antisymmetric and symmetric dynamics in
adjacent layers for overdamped motion, and to the right-
and left-propagating modes when the real part of w(k) is
significant. Note that now ,<0, so that Im w>0, as
required for a stable configuration. In the absence of
bulk magnetization damping, =0, Eq. (89) reduces to

+(bk)w,
1+i(bk)a’’

with linear dispersion and damping at small k. Equations
(89) and (90) can also be generalized to large momenta
by replacing bk with 2sin(bk/2). Notice that in Egs.
(87), (88), and (90), dynamic coupling modifies the damp-
ing similarly to the way static coupling affects the exci-
tation frequency of the magnetic superlattice. Crystal
and shape anisotropies on top of the simple effective
fields assumed above might become important in real
structures, and their inclusion is straightforward.

FMR experiments access the multilayer dynamics
from the sample surface down to the microwave skin
depth Ny, ~ 100 nm (which is even smaller in Brillouin
light scattering). Therefore only modes with momenta
k=m/\g;, can be measured. Since the skin depth de-
creases when the temperature is lowered, both the FMR
frequency and the damping in a ferromagnetically
aligned multilayer should grow roughly as 1/\2;, > 7, the
momentum scattering time in the normal skin-effect re-
gime. Such studies can thus give information about the
temperature-dependent scattering in superlattices; a
weak temperature dependence could indicate that scat-
tering is dominated by structural disorder. Inelastic
neutron-scattering spectroscopy may be useful in eluci-
dating the collective dynamics in thick multilayers, espe-
cially if supported by elastic neutron scattering (Fitzsim-
mons et al., 2004) which probes the magnetic profile in
the superlattice.

w(k) = (88)

w(k) =

w(k) = (90)

C. Large-angle motion in biased spin valves

Perpendicular spin valves, i.e., F,|N|F), trilayer pillar
structures with layer thicknesses down to a few mono-
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layers and submicron lateral dimensions, are ideal sys-
tems for studying precession and switching phenomena
in magnetic heterostructures. By attaching contacts on
the outer sides an electric bias can be applied perpen-
dicular to the interface planes. In many experiments, F,
is a “soft” ferromagnetic film with a magnetization that
can change easily, whereas Fj, is a “hard” magnetic layer
whose magnetization is assumed to be stationary. The
relevant variable is then the time-dependent magnetiza-
tion of the soft layer. The soft layer can be excited by a
current bias or an applied rf magnetic field (or both). In
the second case (realized as, e.g., an isolated magnetic
bilayer of Secs. IV.C and V.A), F), can be pinned by an
exchange bias or surface magnetic anisotropy (Urban et
al., 2001). In the former case, the magnetization of layer
F;, may also be rendered less sensitive to a given spin
torque simply by growing it much thicker than F; or by a
resistance anisotropy (Kovalev et al., 2002). For a suffi-
ciently thick spacer N, the static interaction between the
ferromagnetic layers can be disregarded, while the dy-
namic coupling induced by the spin pumping may still be
sizable (see Sec. V.A).

Berger (1996) and Slonczewski (1996) predicted that
spin valves should display time-dependent effects. Slon-
czewski (1996) realized that a current flowing through a
spin valve causes a spin transfer through the nonmag-
netic spacer, inducing spin torques on the ferromagnets.
Berger (1996) predicted that two ferromagnets should
interact even without an applied electric current, result-
ing in a significant contribution to the Gilbert damping
of magnetization dynamics. He further showed that an
electric current can excite zero-momentum spin waves in
the ferromagnet, an idea that was later supported ex-
perimentally; see, e.g., Tsoi et al. (2000). The condition
for the resonant spin-wave emission (Berger, 1996) is
similar to the criterion for magnetization reversal by
Slonczewski (1996, 1999), who treated the Gilbert damp-
ing parameter as a phenomenological constant. Berger
(2001), however, found a dependence of the damping
parameter in spin valves on the relative magnetization
angle. Some of Berger’s and Slonczewski’s results, as
well as the underlying theoretical models, are thus not
consistent with each other. The spin-pumping concept
unified the seminal work of these pioneers (Tserkovnyak
et al., 2003b) as explained in the remainder of this sub-
section. We shall calculate the critical current bias for
the low-temperature magnetization instability and the
configuration-dependent Gilbert damping parameter.
The treatment here is limited to the macrospin model,
ie., to small systems in which magnetic layers are
monodomain ferromagnets characterized by two magne-
tization vectors. However, if combined with micromag-
netic simulations (Lee et al., 2004), in principle the full
range of the precession and switching dynamics can be
studied.

Consider the system sketched in Fig. 17. The F||N|F,
trilayer is sandwiched between two normal-metal con-
tacts sustaining a charge-current bias /.. The soft layer F,
magnetization m; then starts moving from its equilib-
rium direction at a critical value that depends on the
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FIG. 17. Schematic of a current-biased spin valve (a “dy-
namic” version of Fig. 1). The symbols are explained in the
text.

applied magnetic field. Thermal activation facilitates
current-induced magnetization switching (Myers et al.,
2002), but we focus here on the low-temperature regime.
The spin torque on the magnetization of Fj in the pres-
ence of a spin current I; flowing from F, into the normal
spacer is given by Eq. (14). The spin current

L =I5+ (91)

s1

consists of the dynamic exchange current IS induced

by spin pumping (38) and of the current I"* driven by
an applied current bias. The former is responsible for a
dynamic coupling between the ferromagnets, see Sec.
V.A, and, as we discuss in the following, can be inter-
preted as a viscous friction term that stabilizes the rela-
tive magnetization configuration of the spin valve
against the torques exerted by I?ias or an applied mag-
netic field. In high-density metallic systems, the applied
voltages and spin accumulations are safely smaller than
the Fermi energies, which means that we are in the
linear-response regime and both spin currents may be
calculated independently of each other. Spin pumping in
the outward direction, i.e., into the external connectors,
would only increase the intrinsic damping coefficient by
a constant value, as discussed in Secs. IV.A and IV.B,
and can thus be added trivially to the intrinsic damping
a. Spin pumping into the normal spacer, which gives rise
to IS", requires more attention.

We start by considering the spin current (38) pumped
into the spacer by a time-dependent m;(¢) in the absence
of an applied current bias, /.=0. The following assump-
tions are convenient and realistic: (i) the magnetic films
are sufficiently thicker than A\, so that the transmission
contribution to the spin-pumping parameter A'' can be
disregarded, (ii) the mixing conductance g'' is real-
valued, (iii) two magnetic films including the interfaces
have the same conductances, (iv) the normal spacer is
ballistic, and (v) spin-flip processes are restricted to the
ferromagnetic layers with the spin-diffusion length Ay
>\ (Note that in this subsection Ay denotes the spin-
diffusion length inside the ferromagnets for longitudinal
spin transport along the magnetization direction.) The
spin currents out of the magnetic layers into the normal

. 0 .
spacer are then given by I;=I)/""P+I” with
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h dm;
L= —gim X = (92)

1 ZgTTgLL
O__ |25 5 om;
Isi - 477-<g“’TT+g“llml(Al‘s’ ml)

+8lm; X Apg; X mi)’ (93)

where the last equation is derived using Egs. (25) and
(26) and a circuit-theory analysis discussed in Sec. IL.A,
assuming vanishing charge current. Here m; is the
ith-layer magnetization direction and A= pon— pspm;
is the spin-accumulation difference across the N|F; inter-
face. The magnetization-precession period is typically
much longer than the electron dwell time in metallic
spacers. Assuming weak spin-flip scattering in N, conser-
vation of angular momentum then implies that L +I,
=0. It is now straightforward to calculate the exchange
spin current which is given by I"=1; when 1.=0.

The longitudinal component of the spin accumulation
My can penetrate into ferromagnets on the scale of the
spin-diffusion length Ay, whereas the transverse compo-
nent vanishes on the shorter scale of A, near the inter-
face. The longitudinal spin accumulation in the ferro-
magnet wuz, and thereby Ig.)), can be obtained for a given
uen from the diffusion equation for the (longitudinal)
spin transport in the ferromagnets, similarly to the
normal-layer spin diffusion discussed in Sec. IV.B. To be
specific, we take both the charge and spin currents to
vanish on the outer boundaries of F; and F},. It can then
be shown (Tserkovnyak et al., 2003b) that the longitudi-
nal spin current flowing into a ferromagnetic slab of
thickness d is governed by an effective conductance g*
defined by

511 4 Ll
B T (94)
g 28'1g" g tanh(d/ng)
where gy=(h/e?)(S/ )20t/ (c'+0!) and ¢ is the
spin-s conductivity of the ferromagnetic bulk, so that

1.,

I -- E[g*mi(l’«w‘ m) + gl'm; X py X mg]. (95)
The transverse spin current is determined simply by gli
since we have taken Ay to be the shortest relevant length
scale in the problem. Note that g*—0 when d <\, i.e.,
when the spin-flip relaxation vanishes, or when the fer-
romagnet is half metallic so that it completely blocks the
longitudinal spin flow for a vanishing charge flow. A new
parameter

~1] x
8 —8

v="H (96)
8 +8

characterizes the asymmetry of the absorption of trans-
verse versus longitudinal spin currents. Putting together
Egs. (92) and (95) and demanding conservation of angu-
lar momentum in the spacer (i.e., I;; + L, =0), one arrives
(after some algebra) at
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m, — vm, cos 6

1
I = | = I mg) TR,

> 97)

where cos #=m;-m,. Since the normal spacer was taken
to be ballistic, p,y is uniform. The exchange spin current
would otherwise be somewhat suppressed by the spacer
diffuse scattering, which can be taken into account easily
by solving the spin-diffusion equation as in Sec. IV.B, if
necessary. Let us estimate typical values of v for sput-
tered Cu/Co and CulPy systems at low temperatures,
taking d=5 nm. The main difference between the two
material combinations is the spin-diffusion length in fer-
romagnets. Co has a relatively long Ayq=60 nm, while
Ng=5 nm is very short in Py (Piraux et al., 1996; Bass
and Pratt, 1999; Fert and Piraux, 1999). Using known
values for spin-dependent conductivities (Piraux et al.,
1996; Bass and Pratt, 1999; Fert and Piraux, 1999), we
obtain g4/S=~2.7nm™2 for Co and 16 nm~2 for Py.
28"/ (g" +g'"]/S =20 nm~2 for the Cu|Co interface,
see Table I. We may expect the value for CulPy to be
similar. With gli/ §=~27 nm~? for Cu|Co, see Table I, and
15 nm~2 for CulPy (Bauer et al., 2003b), one finds v
~(.98 for Cu|Co and v=0.33 for CulPy.

Magnetization dynamics in the absence of an applied
bias are determined by substituting I" into Eq. (14),
which thus becomes inconsistent with a constant effec-
tive Gilbert parameter. We now analyze the configura-
tion dependence of damping in more detail, which can
be measured, in principle, by the FMR linewidth broad-
ening at high rf intensities (and therefore finite “preces-
sion cones”). For m; precessing around m,,

1 vsin® 6
h

m; XI??C Xm]:§<1—m>lﬂlmp. (98)
The angular dependence of the additional Gilbert damp-
ing parameter due to the exchange spin current then
reads (Tserkovnyak, et al., 2003b)

a'(6) vsin® 6

@'(0)  1-17cos’ 6’
where o'(0)=Ag!'/8mMdS is the damping enhance-
ment in a collinear configuration; see Eq. (83). For small
angles, 6=0, Eq. (99) can be rewritten as

a'(0) 1

a'(0) 1+s(l-cosé6)’

(99)

(100)

where

v
1-v

Equation (100) was also obtained by Berger (2001) in the
limit of small precession angles, however, for a definition
of s with s o 7 differing from Eq. (101). Expressions (99)
and (100) are plotted in Fig. 18.

As mentioned above, v is close to 0.98 for cobalt so
that the lower solid line in Fig. 18 represents the damp-
ing for Co according to Eq. (99). s=333 was found by
Berger (2001) for Cu|Co with Co 1.5 nm thick, which is

s = (101)
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FIG. 18. Solid lines display the precession-cone angle depen-
dence of the Gilbert damping parameter, Eq. (99), and the
dotted lines show the extrapolated small-angle approximation
(100). The lowest lines are representative for Co and the up-
permost ones for Py, assuming magnetic-film thickness of
5nm. Fe and Ni are expected to be intermediate between
these two cases.

remarkably similar to the estimate based on v for this
thickness when substituted into Eq. (101). Damping is
thus predicted to be significantly reduced for precession
angles deviating only slightly from the collinear configu-
rations (we expect this conclusion to also be true for Fe
and Ni). Modeling the magnetization dynamics with a
constant damping parameter is therefore not allowed for
sufficiently thin magnetic layers. For Permalloy, on the
other hand, magnetization damping is expected to re-
main significant at all angles; see the upper solid line in
Fig. 18. This implies that the magnetization reversal by
an applied magnetic field should be faster in Py than in
Co spin valves.

If m, rotates around an axis perpendicular to m,, i.e.,
only the relative angle 6 changes, then I’} L m, and
Eq. (97) reduces to IS"=IP""P/2, The corresponding
damping «'(0) thus has an angle-independent enhance-
ment with respect to the intrinsic Gilbert damping.

An applied current bias is an additional instrument
for controlling magnetization dynamics. When the con-
ductance parameters of the spin valve are mirror sym-
metric, the bias-induced spin transfer I%® is coplanar
with the magnetization directions and can be written as

m; +m,
2 cos(6/2)

for a given applied bias. This follows from expanding the
spin current as

17 = 1°35(cos 6) (102)

I?lias = fi1(cos O)my + fr5(cos O)m, + f,(cos Him; X m,

(103)

and noting that I?lias(ml,mz):l?lias(mz,ml) by symmetry,
which implies that f;;=f5, and f;,=0. The electric current
necessary to induce a given spin current I?ias depends on
6 and can be calculated readily with circuit theory sum-
marized in Sec. II.A. Equations (14), (91), and (97), and
the form of the bias current completely determine the
dynamics of m,(f). The exchange induced by the spin

Rev. Mod. Phys., Vol. 77, No. 4, October 2005

pumping causes relaxation toward an equilibrium con-
figuration, while the bias current can either relax or ex-
cite the magnetization, depending on the sign of the cur-
rent, as discussed below.

Near the parallel configuration, §=0, Eq. (97) simpli-
fies to 1" =IP'™P/2, Let m, circularly precess around a
fixed m, with the frequency w (determined by effective
fields): m; Xm;=wm; Xm, Xm;. The total projected
spin current has the Gilbert form

hg' L

: dm,
m1><Isl><m1= 877+2w le7

Instability is reached when the effective Gilbert damp-
ing coefficient becomes negative. The critical bias is thus
given by

s _ ( gl N 2aMsSd>ﬁw,

(104)

(105)

s,erit — ET h’)’
where « is the intrinsic Gilbert constant. Neglecting the
first term in the brackets, one obtains a result analogous
to that of Slonczewski (1996, 1999), while neglecting the
second term leads to a condition similar to the resonant
spin-wave emission criterion (Berger, 1996). The spin-
pumping contribution (the first term) is comparable to
the intrinsic damping (the second term) for transition-
metal films with thickness d of several nanometers, but
dominates for very thin films. When the instability is
reached, the trajectory of m;(#) can become very compli-
cated and could possibly lead to a magnetization rever-
sal to a different (meta)stable configuration. A more
complete discussion of spin torques and macrospin
switching dynamics in asymmetric spin valves can be
found in the articles by Manschot et al (2004) and
Brataas, Bauer, and Kelly (2005). Nonlinear large-angle
dynamics and field-induced switching in the presence of
spin pumping were discussed by Kim and Chappert
(2005) within the macrospin model. Nonuniform dynam-
ics have been studied by Brataas, Tserkvovnyak, and
Bauer (2005). Experimental evidence for a spin-
pumping—induced damping in current-driven spin valves
has been reported by Krivorotov et al. (2005). The im-
portance of the spin-pumping contribution to the critical
current (105) has been investigated experimentally by
Sun er al. (2005) for Co|Cu|Co spin valves.

VI. LINEAR-RESPONSE APPROACH
A. Heterostructures

This subsection is devoted to an alternative descrip-
tion of the spin emission by a dynamic ferromagnetic
magnetization embedded in a conducting nonmagnetic
matrix, as in Fig. 2, which was put forward by Siméanek
and Heinrich (2003) and further elaborated by Mills
(2003) and Simének (2003, 2004). In Sec. III we have
formulated such spin emission as a scattering pumping
process, which requires the concept of waveguide leads
for electron states that are reflected by or transmitted
through a ferromagnetic layer between normal reser-
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voirs. The time dependence of the scattering matrix
caused by a moving magnetization leads to the pumping
of spin currents, and the corresponding loss of angular
momentum by the ferromagnet to an increased viscous
damping of the magnetization dynamics. Such language
is standard in the field of mesoscopic transport phenom-
ena (Beenakker, 1997), but the magnetism community is
more accustomed to linear-response susceptibilities than
to scattering matrices. Of course, the final result should
not depend on the formalism used, as verified in the
following, but one may argue that the scattering theory
has distinct advantages over the linear-response ap-
proach for the present problem.

For a linear-response formulation, we proceed from a
Hamiltonian for conducting electrons experiencing a fer-
romagnetic exchange field as given by Egs. (49) and (50).
When the exchange field V,=—A/2 is uniform inside
the ferromagnetic volume V and vanishes outside, we
may rewrite Eq. (50) as

H'(t)=- %f d*rs(r) - M(r,1)]. (106)
sJyV

Here s(r) is the spin-density operator for conduction
electrons that are polarized by the exchange field with
strength () along the magnetization direction m=M/M,.
M is a collective property that is treated as a classical
time-dependent potential. The Hamiltonian (106) fol-
lows, e.g., from a mean-field approximation of the s-d
model. The exchange is then viewed as an external po-
tential (provided by the d electrons) that does not de-
pend on the s-electron distribution. The spin-density-
functional formulation of the magnetization dynamics in
itinerant ferromagnets, see, e.g., Capelle et al. (2001) and
Qian and Vignale (2002), leads to the Hamiltonian (106)
in the local-density approximation. The effective field
(7) due to the interaction (106) then reads

Q
Hg(r,0) = M(S(r)%. (107)
In the s-d model, this field corresponds to the reaction
torque by the nonequilibrium conduction-electron-spin
distribution inside the ferromagnet, which is excited by
the moving magnetization direction.

Simanek and Heinrich (2003) have suggested calculat-
ing the reaction torque on the ferromagnetic magnetiza-
tion directly using Eq. (107) in the Landau-Lifshitz-
Gilbert equation of motion. This appears to be very
different from the spin-pumping picture that relies on
spin currents that are emitted at the interface to the
normal metal. The two approaches are, however, related
by the continuity equation for electron-spin dynamics
(see, e.g., Capelle et al., 2001), according to which the
spin current equals the torque exerted on the magneti-
zation M by the effective field (107) up to a term given
by the time derivative of the average spin density, ($),,
times volume. When (s), follows the magnetization adia-
batically, the difference between the spin current and
torque is thus proportional to m. In the case of the s-d
model, this has a physical meaning, corresponding to the
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torque required to change the angular momentum of the
s-electron spin density. For Stoner ferromagnets in
which the conduction electrons are identical to the ones
that make up the magnetization, we have to calculate
the spin flow emitted by the ferromagnet as an addi-
tional term in the Landau-Lifshitz-Gilbert equation,
while the reaction torque on the magnetization by the
conduction electrons has no obvious physical meaning.
When treating itinerant (Stoner) ferromagnets within
the density-functional theory, the spin currents induced
by the Kohn-Sham Hamiltonian (106) in principle differ
from the physical ones inside or very close to the ferro-
magnet. However, this difference vanishes asymptoti-
cally as a function of distance from the ferromagnet
(Capelle et al., 2001). The emitted spin currents are thus
similar to those in the s-d model, and their evaluation
can thus be mapped on calculating corresponding reac-
tion torques.

A uniform small-angle dynamics (of a possibly large
Q) only weakly perturbs the system. The induced spin
imbalance (5s(r)), can therefore be expressed in terms of
the linear-response susceptibility of the unperturbed sys-
tem,

Xs,s,, (D) = L(‘)(t)f drd’r'([s,(r,0,5,(x’,0)]), (108)
a’a A% v

where () is the Heaviside step function. The effective
field due to the induced nonequilibrium spin density is
then given by

Q

SH . (2) =
eff( ) MSV

f d3”<5s(1')>t
|4

Q oo
- MZI di' Xay, , (t=1")omy ('),

Saa’ ¥ =%

(109)

where a,a’ e{x,y,z} are the indices of the Cartesian
axes and a stands for the corresponding unit vectors.
Suppose now for simplicity that the system is invariant
under spin rotations about the z axis, and consider
small-angle magnetization dynamics near this axis, ém
=m-Z. Substituting Eq. (109) into the Landau-Lifshitz-
Gilbert equation (8) then yields the following lowest-
order dynamic term:

Q% dm dm
—ym X méff(t):y_( >’

Al_ + A2m X —
M\ ar dt

which is the most general adiabatic term for axially sym-
metric systems (Mills and Rezende, 2003). Here

.dszs (o)
1= 1
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.dszsx(w)

R (111)

w=0

are real numbers. A; renormalizes the effective gyro-
magnetic ratio y.; in Eq. (8) and A, is a Gilbert-like
damping parameter,

. ,yefoZ dszsx(w)
= ot/
et M, do

Equation (112) can also be obtained by equating the en-
ergy dissipated into the itinerant degrees of freedom by
moving magnetization and the work done by an rf mag-
netic field applied against the effective viscous Gilbert
term, at a steady magnetic precession, since
lim,, o Re x; 5 (w)/w=0 in the case of spin-rotational
symmetry around the z axis. For a thermally equili-
brated s-electron subsystem, Eq. (112) implies a.gyes
>0, as required by the Landau-Lifshitz-Gilbert phenom-
enology; see Sec. I.C.

The damping constant « can generally be expressed in
terms of the response function of the total magnetiza-
tion (e.g., of the s and d electrons in the s-d model) by
inverting Eq. (11). In the present discussion, this prob-
lem is self-consistently reduced to the simpler task of
calculating the spin response of s electrons to a time-
dependent exchange field aligned with the d-electron
magnetization.

The similarity between the torque (110) and the spin-
pumping current (38) should not be surprising in light of
the above discussion. Indeed, Simanek (2003) explicitly
demonstrated that the low-frequency linear-response
and spin-pumping pictures lead to identical a.y for a
o-function magnetic layer embedded in a clean normal
metal (which corresponds to an ideal spin sink for emit-
ted spin currents in the spin-pumping language). How-
ever, evaluating the linear-response correlation functions
becomes very tedious for more realistic models; see, e.g.,
Mills (2003). It is also not obvious how to treat the
current-induced spin transfer and the spin pumping on
the same footing with the linear-response formalism. On
the other hand, the formulation in terms of the suscep-
tibilities is complementary to the spin-pumping ap-
proach. It appeals to the intuition of many researchers in
the magnetism community. Furthermore, it could be
helpful for obtaining insights into problems that are
hard to solve within scattering theory. Examples of these
are magnetic bilayers coupled by a strong static ex-
change interaction (see Sec. VII.A.2), strongly corre-
lated systems (Sec. VIL.D), and the bulk damping of
magnetization dynamics (Sec. VI.B).

(112)

w=0

B. Bulk damping

In the previous subsection, we have considered cou-
pling of the magnetization to itinerant electrons via an
exchange interaction (106). In particular, it was reas-
serted that when a ferromagnetic film is inserted into a
nonmagnetic metal, magnetization dynamics causes an
emission of spins. In the presence of a spin sink outside
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the ferromagnet, this pumping leads to a net angular-
momentum loss that is equivalent to an excess damping
of the magnetization dynamics, as discussed in Sec. IV.
An analogous mechanism could be effective in bulk fer-
romagnets provided that spin-relaxation decay channels
exist that dissipate a spin accumulation created by the
pumping. This happens in the presence of momentum-
scattering mechanisms, such as lattice impurities and
phonons, and the accompanying (or band-structure)
relativistic spin-orbit interaction. The inductive coupling
of the magnetization to the conduction electrons that
causes dissipation by eddy currents is less important in
thin layered structures and is disregarded in the follow-
ing. For simplicity, the discussion is restricted in the fol-
lowing to a mean-field s-d model.

A mechanism of bulk magnetization damping bearing
similarity to the spin-pumping picture in heterostruc-
tures was proposed a long time ago by Mitchell (1957). It
involves a transfer of the angular momentum (and en-
ergy) of a nonequilibrium ferromagnetic configuration
to the itinerant electrons via the exchange interaction,
with a subsequent spin-orbit relaxation to the lattice.
The consequences of such a process for macrospin (long-
wavelength) dynamics have been worked out for the
s-d model by Heinrich et al. (1967). The s-d picture has
been resurrected recently by Sinova et al. (2004) in order
to address the magnetization relaxation in the ferromag-
netic semiconductor (Ga,Mn)As, in which ferromag-
netism originates from the free-hole-mediated exchange
interaction between dilute, substitutional spin-5/2 Mn
atoms (Ohno, 1999). It is possible to reproduce and gen-
eralize the results of Heinrich et al. (1967) and Sinova
et al. (2004) by calculating the magnetization damping in
terms of the conduction-electron-spin dynamics in a
time-dependent exchange field similarly to Sec. VI.LA
(Tserkovnyak et al., 2004).

Consider an sp-d model of a conducting ferromagnet,
where the spin S of the itinerant s or p states (either
electrons or holes) experiences an exchange field of
magnitude () along the uniform magnetization direction
m of the localized d orbitals, as in Eq. (106):

H({t)=Hy,—Qm() - S. (113)

Here H, is a one-particle Hamiltonian reflecting the host
band structure. In (Ga,Mn)As, substitutional Mn are
paramagnetic acceptors that strongly interact with the
free holes. Although the exchange field can be highly
nonuniform on atomic scales, it is customary to start
with a simplifying assumption that it may be smeared
out. As before, we treat the magnetization m as a clas-
sical and, on the relevant length scales of the carrier
dynamics, spatially uniform variable. A suitable model
for the valence bands of a dilute p-doped semiconductor
(e.g., GaAs, Si, or Ge) is the spherical Luttinger Hamil-
tonian for spin-3/2 holes:
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FIG. 19. Gilbert damping, Eq. (116), in units of ap,y
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Inset: Geometry of the model.
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where m, is the free-electron mass and v, are the Lut-
tinger parameters (Luttinger, 1956). The spin-orbit term
couples the hole momentum p with its spin S. The four-
band model (114) is valid when the hole Fermi energy is
sufficiently smaller than the spin-orbit splitting of the
semiconductor host between the spin-3/2 and spin-1/2
valence bands. Equation (114) neglects corrections for
lattices with broken inversion symmetry. Spin-1/2 elec-
tron systems with vanishing spin-orbit coupling are re-
covered by setting y,=0. Suppose the magnetization of
the localized orbitals varies slowly in time (being uni-
form at all times) so that the time-dependent m modu-
lates the Hamiltonian (113) adiabatically. This means
that the system equilibrates on time scales faster than
the motion of m and all the quantities parametrizing the
carrier Hamiltonian remain constant. The observation of
ferromagnetic resonance indicates that time-dependent
long-range ferromagnetic order indeed exists in thin
films of magnetic transition metals (Heinrich and
Cochran, 1993) and semiconductors (Goennenwein
et al., 2003; Rappoport et al., 2004). Equation (112) may
then be taken as a microscopic definition of the Gilbert
damping parameter. In the following, « is formally
evaluated for electron and hole systems with an empha-
sis on its dependence on spin dephasing. (We shall drop
the subscripts “eff” on « and 7y from the previous sub-
section.)

We initially focus on a system without spin-orbit cou-
pling in the band structure, y,=0. Suppose the trans-
verse spin-density dynamics in the exchange field () is
described by the Bloch equation

d — t
::stm(t)_w,
dt T,

where the last term is a phenomenological relaxation
due to impurities, parametrized by the transverse
dephasing time T,. Let us assume that m(f) moves slowly
on the scales of Q! and 75,. It is then convenient to
transform Eq. (115) into a frame of reference (for spin
variables) that moves together with m(¢). When, for ex-
ample, m at a given instant rotates with frequency w
around the y axis (see inset of Fig. 19), it is stationary in

(114)

(115)
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the rotating frame at the cost of a new Larmor term
ws Xy on the right-hand side of Eq. (115), which corre-
sponds to a magnetic field along the y axis. Since the
motion is slow, it is sufficient to solve for s as the instan-
taneous stationary state in the moving frame of refer-
ence. If m points along the z axis in the rotating frame,
spin polarization along the x axis then exerts a damping
torque on m that corresponds to

'}/)ZSXSYQ QTZ AN

M, 1+(QT)*M,

(116)

a=-

where Xs s is the stationary (real-valued) response func-
tion in the rotating frame. (We recall that vy is the gyro-
magnetic ratio of d orbitals.) The calculation of the time-
dependent linear response in the laboratory frame, Eq.
(112), is thus simplified to that of the static response in
the rotating frame. Such a transformation is, however,
not possible in general, in particular for Hamiltonians
that are not spin rotationally invariant, such as Eq. (113).
Equation (116) is plotted in Fig. 19. The equilibrium spin
density s, can be calculated from the specific form of the
static Hamiltonian. « vanishes at both small and large
spin-relaxation limits.

The damping parameter (116) depends only on the
ratio of spin-relaxation-rate and exchange energy. The
low spin-relaxation-rate regime, ax 7', is analogous to
the spin-pumping damping of thin films in contact with
a spin-sink conductor. The moving magnetization
“pumps” spins into the itinerant carriers at a constant
rate, which are then relaxed with a probability 0<T§1 be-
fore exchanging spins with the ferromagnet again. The
difference is that now the spins are pumped into the
internal conduction electrons of the ferromagnet rather
than those of an externally attached metal. The other
limit, > T,, can be understood by noting that for vis-
cous dynamics of s(¢), s(f) =sy(t)— T»8y(¢) in the labora-
tory frame. axT, then follows from the torque (s
—sg) Xm. This is analogous to the “breathing Fermi-
surface” damping mechanism discussed by Kunes and
Kambersky (2002) in the regime of fast relaxation. The
itinerant carriers try to lower their energy by rearrang-
ing themselves in the field of slowly varying magnetiza-
tion direction but lag behind with a short delay time
determined by relevant relaxation processes. In the
presence of an anisotropic spin-orbit interaction in the
ferromagnet’s crystal field, the breathing Fermi surface
gives an additional contribution to damping (Kunes and
Kambersky, 2002). See also a short discussion in Sec.
VILLA.2. In the present model described by Eq. (115),
the breathing takes place in spin space.

It is interesting to note that Eq. (116) reduces to the
result obtained by Heinrich et al. (1967) for the long-
wavelength magnon lifetime due to the s-d interaction
with spin-1/2 conduction electrons in the random-phase
approximation:
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(117)

where m” is the band-structure mass and k, the Fermi
wave vector. Here it is assumed that ) < E (the Fermi
energy). The quantity in the square brackets is just the
total carrier spin density. Equation (117) was used by
Ingvarsson et al. (2002) in order to explain the measured
damping in thin Permalloy films, which scaled linearly
with the film resistivity p. A linear relation between the
two quantities is expected when Q>T,', so that «
o Tg], and using the Drude formula po 7! (7is the trans-
port mean free time) and assuming 7/7T,=const, which
depends on material and scattering-impurity type but
not on scattering rate (Abrikosov and Gor’kov, 1962).
Unlike ferromagnetic semiconductors, however, the use
of the s-d model for itinerant ferromagnets such as tran-
sition metals is questionable, since the separate treat-
ment of magnetic and conduction electrons is unphysi-
cal.

Let us turn our attention to the magnetization relax-
ation in hole-doped magnetic semiconductor (Ga,
Mn)As. Equation (116) may be used to obtain a rough
estimate of the damping coefficient. The largest achiev-
able value of a,,c=7vso/2M; occurs when the holes are
fully polarized, giving a,,~0.1-0.3, roughly one-third
the ratio of the (spin-3/2) hole to the substitutional
(spin-5/2) Mn concentrations. For realistic samples with
a spin polarization of the order of unity therefore a;,,,
~0.1. The damping « is further suppressed by a/ay.y
=2Q0T,[1+(QT,)*]'<1. For clean bulk samples of
GaAs, the spin-relaxation time is ~100 fs (Hilton and
Tang, 2003). For approximately 5% Mn doping, #{)
~0.1 eV (Dietl et al., 2001), so that QT,~10. This cor-
responds to the axT,' regime with a~0.01. Reduced
spin-relaxation times should thus result in a larger
damping. Experimentally, impurity scattering is likely to
be the easiest parameter to vary in order to tune « to a
desired value. The strong spin-orbit coupling 7y,, how-
ever, makes the validity of the phenomenological equa-
tion (115), and thus the result (116), questionable for the
hole system. Besides, a strong crystal anisotropy would
require a further refinement of the analysis. Returning
to our basic equation (112) and inserting the response
function for a noninteracting system yields
a

)
a= 7y lim TS S Do)~ o)

Xa(ﬁw-f-&‘l’—&‘]'), (118)

where i, j label the one-particle eigenstates of the sample
with volume V. When the wave vector k is conserved,
3,/ V=3,, [ d’kl(2m)*, where o,0" label spin states. For
a perfect crystal therefore « vanishes, unless there is a
finite Fermi-surface area with spin degenerate states. In-
troducing lattice defects leads to a finite «. See, e.g.,
Sinova et al. (2004) (these authors did not include impor-
tant vertex corrections in the response function, how-
ever).

Rev. Mod. Phys., Vol. 77, No. 4, October 2005

In the above analysis, we have assumed a coherent
motion of the ferromagnetic magnetization without
specifying the source of excitation. An FMR magnetic
field (with a large dc and small rf components), for ex-
ample, can be included explicitly in the Hamiltonian
(113) of the itinerant carriers. The results for the Gilbert
damping will stay unaffected, however, as long as the
exchange energy %) is much larger than the carrier Zee-
man splitting in the applied field and ferromagnetic
magnetization is mainly carried by localized orbitals.
(The energy pumped into carrier-magnetization dynam-
ics by the rf field must be taken into account otherwise.)
Inhomogeneities in the bulk magnetization are not im-
portant on the length scales set by the transverse spin-
relaxation rate and the precession frequency in the ex-
change field. Bulk spin dynamics discussed in this
subsection have no effect on the spin pumping into ad-
jacent conductors discussed in Sec. III, as long as the
transverse spin-relaxation rate is small compared to the
exchange precession frequency. In the opposite rather
unrealistic limit, the s-electron spin dynamics are locked
to the d-electron magnetization motion, suppressing spin
leakage (pumping) into adjacent normal conductors.

VIl. MISCELLANEOUS

A. Quantum-size effects

1. Ultrathin magnetic layer

As explained in Sec. III, spin pumping by a magnetic
layer in contact with normal metals is governed by the
parameter A'l=g!l—¢'l Eq. (39). When the magnetic-
film thickness d exceeds the spin-coherence length (13),
d>\, t'"" vanishes and A'! is given by the interfacial
spin-mixing conductance g'!. In this subsection, on the
other hand, we focus on the regime in which d is smaller
than or of the order of A\, i.e., for thicknesses of a few
monolayers in the case of transition-metal ferromagnets.
In this limit, the coherence between up- and down-spin
states in the ferromagnet leads to a thickness depen-
dence of A'', and thus of spin pumping and magnetiza-
tion torque (27). The decoherence of the orbital wave
function due to inelastic-scattering processes is disre-
garded, assuming its characteristic length scale is much
longer than Ag.

As in most of this review, the structures that we study
have multiple layers. A large lateral area S renders
mesoscopic phenomena such as the Coulomb blockade
irrelevant, and we focus on quantum-coherence effects
due to small layer thicknesses. For a study of magneti-
zation dynamics in magnetic nanoparticles in contact
with large reservoirs, see, e.g., Waintal and Brouwer
(2003) and Waintal and Parcollet (2005).

The linear-response framework (Simének and
Heinrich, 2003), see also Sec. VI, has been used by Mills
(2003) to calculate the enhanced Gilbert damping of
finite-thickness ferromagnetic films embedded in a con-
ducting medium. For an idealistic model of isotropic
band structure with spin-dependent exchange potential,
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FIG. 20. The real part of G’”:(ez/h)t“/S as a function of the
magnetic-layer thickness d calculated from first principles (®)
for realistic multiband electronic structures and that calculated
for an isotropic free-electron gas with Fermi energy =7 eV
(chosen to obtain the correct value of the Sharvin conductance
in Cu) and various choices of the exchange splitting A. From
Zwierzycki et al., 2005.

he found that ultrathin films display oscillatory damping
(as a function of thickness) due to quantum-size effects.
However, by calculating scattering matrices with elec-
tronic structures computed in the local-spin-density ap-
proximation, Zwierzycki et al. (2005) have shown that
quantum-size oscillations are much smaller than those
obtained by Mills (2003), and small amounts of disorder
suppress the remaining oscillations even further. Zwi-
erzycki et al. (2005) also found that the spin-pumping
torque is of the Gilbert damping form, with only a very
small correction to the gyromagnetic ratio.

The above observations have been made for copper/
cobalt and gold/iron heterostructures, of which we shall
restrict our discussion to the former. Realistic band-
structure and simple model calculations on
Cu|Co|Cu(111) trilayers are compared in Fig. 20, where
the real part of G} =(e?*/h)t'!/S is plotted as a function
of the thickness d of the magnetic layer (measured in
atomic monolayers). Solid circles in Fig. 20 show the
result of the ab initio calculation (Zwierzycki et al., 2005)
without impurities and for specular (k;-conserving) inter-
faces. The smooth solid lines represent the calculations
for the isotropic free-electron model. For exchange split-
tings A=2, 4, and 6 eV the amplitude of oscillation is
much larger and the decay is much slower in the model
than in the more realistic first-principles calculations. As
might be expected, increasing the exchange splitting
from 2 to 6 eV leads to a shorter period and more rapid
decay of the oscillations. In order to mimic the
parameter-free ab initio result, an exchange splitting of
about 10 eV, however, would be needed (not shown).
Such a large value can be justified neither on theoretical
nor experimental grounds. This discrepancy illustrates
the difficulty of quantitatively representing the complex
electronic structure of transition metals by simple model
Hamiltonians.

Figure 21 shows G’ =(e*/h)g!'/S and G calculated
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FIG. 21. Spin-mixing conductances of a Cu|Co|Cu(111) struc-
ture with disordered interfaces as a function of the Co-layer
thickness. From Zwierzycki et al., 2005.

from first principles in the presence of disorder modeled
by a monolayer of 50% alloy added on each side of the
magnetic layer. The thickness d in this case is defined as
that of the remaining clean ferromagnetic layer. The dis-
order strongly quenches the amplitudes of the oscilla-
tions as a function of d, so that G, is practically con-
stant at the level of its asymptotic (i.e., single-interface)
value. For G}, the oscillations do not vanish completely,
but their amplitude is substantially reduced to values
that are negligibly small compared to Re G’ for all but
the thinnest magnetic layers. Diffusive scattering in the
bulk of the magnetic layer, which has not been consid-
ered here explicitly, should have similar effects.

Both G’ and G, are governed by (i) the matching of
the normal-metal and ferromagnetic-metal states de-
scribed by the scattering matrix of the isolated interface
and (ii) the phases accumulated by electrons on their
quantum-coherent propagation through the magnetic
layer. The interface determines the amplitudes of the
oscillations and the asymptotic value of G’ |, whereas the
bulk term is responsible for the oscillation period. It is
instructive to interpret the transmission and reflection
coefficients of the finite-size magnetic layer in terms of
multiple scattering between the two interfaces. The task
is simplified by the simple Fermi surface of Cu, which
corresponds to only one left- and right-going state at the
Fermi energy for each value of k; and spin. The sums
over states in Egs. (23) and (24) therefore reduce to in-
tegrations over the two-dimensional Brillouin zone in-
volving the complex-valued functions r?(k;) and r’(k,).
To lowest order in the number of scattering processes
and dropping explicit reference to k,

17 =15 NN s (119)

r7=r{_ N+t NN AR s (120)

where 1§, =(t7,...,t9)7 is a vector of transmission coef-
ficients between a single propagating state in the normal
metal and a set of states in the ferromagnet, A is a

diagonal matrix of phase factors eikiLd (j is an index of
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the states in the ferromagnet), ry,_ , is a scalar reflection
coefficient for states incoming from the normal metal,
and ry_ p is a square matrix describing reflection at the
ferromagnetic side. The set of states in the ferromagnet
consists of both propagating and evanescent states. The
contribution of the latter decreases exponentially with
the thickness of the layer.

Let us first analyze the thickness dependence of ¢'!.
After inserting Eq. (119) into Eq. (24) the summation
may be carried out over terms containing phase factors

¢ikl1K/)4_ Because of the large differences between ma-
jority and minority Fermi surfaces of the ferromagnet,
this typically leads to rapidly oscillating terms that can-
cel in the two-dimensional Brillouin-zone integration
over k;. In the spirit of the theory of interlayer exchange
coupling (Bruno, 1995; Stiles and Zangwill, 2002), long-
range contributions must originate from the vicinity of
points for which Vk”(kil—k]i):o, corresponding to a
constant phase in the integrand of Eq. (24). The damped
oscillations around zero are therefore caused by the
stationary-phase Fermi-surface calipers.

By substituting Eq. (120) into Eq. (23), two thickness-
independent contributions can be identified in g''. The
first, coming from integrating the &,,, term in Eq. (23), is
the number of transport channels in the normal metal,
i.e., the dimensionless Sharvin conductance. The second
contribution comes from the r},_ yrk .y term and pro-
vides an interface-specific correction to the first contri-
bution. The thickness-dependent contributions contain,

to lowest order, phase factors e/*7.+471)d and e~ i(kiL+kj1)d,
As in the case of t!, their two-dimensional Brillouin-
zone integrals have an oscillatory character, with periods
governed by different Fermi-surface calipers. These os-
cillations now occur around the constant value set by the
first two contributions. The asymptotic value of g'' is
clearly the reflection mixing conductance of a single F|N
interface.

In metallic films, the electronic structure of all but the
outermost atomic layers is practically identical to that of
the bulk material. The period of oscillations of g!' and
¢! as a function of the magnetic-layer thickness d is thus
a bulk property of the magnetic layer. The amplitudes,
on the other hand, involve interfacial scattering coeffi-
cients introduced in Egs. (119) and (120). When
quantum-size oscillations are small, A''=~g!!, where g!!
is a property of the N|F interface instead of the entire
structure. Furthermore, g'! can be estimated by the
Sharvin conductance of the normal metal, Eq. (64). The
results of single-interface calculations are listed in Table
I for clean and disordered interfaces of Cu|Co and
Au|Fe material combinations. The disorder in Table I
was modeled by 2 monolayers of 50% alloy instead of a
single monolayer in the present subsection. In spite of
this difference, the values are practically identical to the
asymptotic ones seen in Fig. 21 for the Cu|Co combina-
tion.
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2. Ultrathin normal spacer

Let us now turn to a discussion of magnetization dy-
namics of two monodomain magnetic layers separated
by ultrathin normal-metal spacers with quantum-well
states that penetrate into and couple the ferromagnets.
As explained in Sec. 1.B, the free energy F of the system
depends on the relative angle between the two magneti-
zations even in the absence of magnetic anisotropies.
The dependence of F(M;), i=1,2, on the magnetic con-
figuration corresponds to nonlocal effective fields (6) ex-
erting torques on the magnetizations. In the following,
we comment on the dynamic component of the ex-
change interaction in time-dependent problems, cf. the
semiclassical dynamic exchange interaction discussed in
Sec. V.

Consider for simplicity an s-d model with noninteract-
ing s electrons, in which the magnetic d orbitals are
coupled to itinerant electrons via a mean-field exchange
interaction. The transverse component of the effective
field (7) entering the Landau-Lifshitz-Gilbert equation
(8) for the ith magnetic moment is then given by

H,(1) = ~ ——dp (H(m)),

Msivi
1
Msivi

&miz SK(mi)nK(mi’t)’ (121)

K

where H(m,) is the Hamiltonian for itinerant electrons,
parametrized by the magnetization directions m;, and { ),
denotes the (quantum-mechanical) expectation value at
time ¢. The sum on the second line of Eq. (121) runs over
all eigenstates of H(m;), where « labels both the orbital
and spin degrees of freedom, 7, is the occupation num-
ber corresponding to the many-body state at time ¢, and
g, 1s the energy of the «th eigenstate. Setting the many-
body ensemble at time ¢ to its equilibrium value deter-
mined by m;(#) reproduces the Landau-Lifshitz defini-
tion (6), leading to dissipationless trajectories [assuming
there are no other sources of damping, i.e., =0 in Eq.
(8)]. Such an approximation thus captures only the static
exchange component.

In reality, ( ), lags behind its instantaneous equilibrium
value. The corresponding nonequilibrium component of
n,(m;,f) in momentum space reflects the breathing
Fermi surface discussed by Kunes and Kambersky
(2002) in the context of transition-metal bulk magnetiza-
tion damping in the presence of crystal anisotropy.
Heinrich, Urban, et al. (2003) conjectured that such a
mechanism may also play a role in magnetic dynamics of
F|N|F structures. The modulation of the exchange en-
ergy stored in the normal spacer may cause an addi-
tional damping through the time lag in the itinerant-
electron response.

For a spin rotationally invariant system, the effective
field (121) reduces to
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1
Msivi

HY(r) = - 2 &dm(my0). (122)
The bulk damping coefficient (116) determined by the
transverse spin-relaxation time 7, in a model discussed
in Sec. VI.B, where the average electron spin density
lagged behind that corresponding to the instantaneous
equilibrium, can be understood to arise from such an
effective field. Spin-orbit interaction in the presence of a
crystal field in bulk ferromagnets and/or exchange cou-
pling through the normal spacer modulate ¢,(m;) via the
time-dependent m;, leading to an additional dynamic
contribution to the effective field, as follows from Eq.
(121). This contribution has a particularly simple form in
the limit of short relaxation times 7 (Kunes and Kamber-
sky, 2002; Heinrich, Urban, et al., 2003):

T de, [ dg,, dm;
Ms,-V,ZK: B(EK_SF)&mi(ami dt

H? (1) = - ) (123)

where e is the Fermi energy and assuming low tempera-
ture. It is clear that this effective field results in a (ten-
sor) Gilbert damping.

In disordered structures and/or thick spacer layers
with vanishing static exchange coupling between mag-
netic films, Eq. (121) should in principle reproduce the
dynamic exchange coupling discussed in Sec. V. In other
words, the spin pumping captures the semiclassical com-
ponent of time-dependent exchange coupling between
ferromagnetic films when the static contribution van-
ishes.

B. Spin-orbit coupling

The derivation of the spin-pumping current in Sec. 111
relies on Egs. (21) and (22), which relate the scattering
matrix in spin space, $,, ;, for given channel and lead
indices, n, n’, and [, ', to the magnetization direction m.
For systems isotropic in spin space, the scattering matrix
depends on m only through the simple projection (22).
In transition-metal ferromagnets, this is a good approxi-
mation since their exchange splitting is by far the largest
relevant energy scale. A large spin-orbit coupling in the
electronic structure, such as in p-doped magnetic semi-
conductors like (Ga,Mn)As, on the other hand, can con-
siderably modify the spin-pumping currents.

In ferromagnets with spin-orbit interaction, the
rotating-frame analysis of Sec. III.B becomes tedious be-
cause of the need to apply the transformation to the
orbital as well as spin degrees of freedom. Crystal
anisotropies or even the presence of planar interfaces
would make such an approach impractical. The
adiabatic-pumping formalism of Sec. III.A, however, still
applies. One may in general calculate the tensor current
(45) in terms of the emissivity (46) when the dependence
of the full scattering matrix on the magnetization direc-
tion is known. Of course, the 2 X2 matrices have to be
generalized to (2S+1) X (25+1) for spin-S carriers. In
the case of spin-orbit coupling in nonmagnetic leads,
however, such tensor currents are in general different
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from spin currents, since spin is not a good quantum
number for transverse quantum channels. This compli-
cates the matter beyond the scope of this article. In the
simplest case of weak spin-orbit coupling within the fer-
romagnets, Eq. (21) holds approximately near a given m
with weakly m-dependent scattering coefficients s'(") for
spin-1/2 carriers. The adiabatic spin-pumping current
is then given by Eq. (38) in terms of a possibly
m-dependent A''.

For ferromagnets with a strong spin-orbit coupling,
the most general form for the adiabatic spin-pumping
current is

M.,
dt ’

La= 2 Ay (M) (124)

aa

with constraints on the form of the 3 X 3 tensor A,, (M),
a,a’'=1,23, for a given crystal symmetry. In particular,
I, , may now have a component along the magnetization
direction. It is always the case, for example, when the
ferromagnetic exchange field varies in magnitude as well
as in direction. By conservation of the total angular mo-
mentum, the spin-pumping current (124) is accompanied
by a torque on magnetization and also transferred into
the orbital angular momentum as well as lattice torque.
Note that in the presence of magnetic anisotropies, the
Landau-Lifshitz-Gilbert equation of motion is a tensor
equation in which the scalar Gilbert parameter « is re-
placed by a 3 X3 tensor (Mills and Rezende, 2003).

C. Inhomogeneous magnetization dynamics

We have so far restricted our attention to spatially
uniform magnetization dynamics. Recall, for example,
Eq. (75) for spin-pumping-enhanced Gilbert damping in
F|N heterostructures. Several authors recently discussed
possibilities for also accessing nonuniform spin-wave
modes. Polianski and Brouwer (2004) have showed that
for sufficiently large perpendicular-current densities, a
single thin-film ferromagnet sandwiched between diffuse
normal-metal contacts becomes unstable with respect to
transverse (to the layering direction) excitations of
finite-wavelength spin waves when the source and drain
contacts are asymmetric and only for one direction (de-
termined by the asymmetry) of the current bias. Their
calculation is based on magnetoelectronic circuit theory
and adiabatic spin pumping. Stiles et al. (2004) have con-
sidered the magnetic instability in diffuse N|F|N struc-
tures in the limit of thicker F layers that can undergo
longitudinal (along the layering direction) as well as
transverse magnetization dynamics, allowing the relax-
ation of the contact-asymmetry condition. Ozyilmaz
et al. (2004) have reported an experimental study of the
current-induced excitations in Cu|Co|Cu nanopillars,
qualitatively confirming the theoretical ideas. Brataas,
Tserkovnyak, and Bauer (2005) and Ozyilmaz et al.
(2005) have investigated current-driven spin-wave insta-
bilities in spin valves, in which they compete with the
coherent macrospin motion. A detailed discussion of the
current-induced instabilities is beyond the scope of the
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present review. We would nonetheless like to outline
how Gilbert damping (75) is affected by a weak trans-
verse spin-wave excitation in a single magnetic film in
contact with a diffuse metal.

Consider a nonuniform transverse excitation of thin-
film magnetization in the limit of small amplitudes so
that spin waves at different wavelengths do not couple.
It is then sufficient to study excitations at a single wave-
length with the magnetization direction deviating from
its equilibrium value m as

m(r) —my=dmcos(q, -p+ wt+¢), (125)

where ¢ is an arbitrary phase. The spatial position vec-
tor r is decomposed here into a coordinate along the
layering direction x and a transverse vector in the inter-
face plane p. The wave vector q, of transverse spin
waves is parallel to the F|N interface and the amplitude
om does not depend on x. The derivation of the effective
Gilbert damping for transverse spin waves (Polianski
and Brouwer, 2004) closely resembles that in Sec. IV.B
for the macrospin dynamics. Let us consider a normal
layer capping one side of the ferromagnet. The presence
of two normal layers sandwiching a magnetic film
thicker than its coherence length Ay, simply doubles the
effect. For an unbiased structure, there is no charge cur-
rent or voltage imbalance as long as the dynamics are
slow on the characteristic spin-relaxation time scales, w
< Tf , which is assumed in the following. In order to find
the enhanced Gilbert damping, the diffusion equation
for spins in the normal metal (65) must be solved with
the boundary condition (67). In contrast to Sec. IV.B, the
spin-pumping current now depends on the transverse co-
ordinate p. The solution of the diffusion equation for the
spin accumulation in the normal-metal film with thick-
ness L as a function of distance x from the F|N interface
is [cf. Eq. (68)]

,(x,p) = cosh[(x — L)\ /sinh[ L/

PN

RNSD

cos(q, - p+ ot + @), (126)

where the effective spin-diffusion length for the trans-
verse mode is defined by

(o) _ Asd
=
) V1 + ()\sdqi)2

(127)
which reduces to the usual Ay, Eq. (70), for uniform
dynamics. Using a calculation similar to that of Sec.
IV.B, the wave-vector dependence of the enhanced Gil-
bert damping that generalizes Eq. (75) reads (Polianski
and Brouwer, 2004)

‘“Tl sd)\ eff)/7\Sd - ﬁ’yzg
" tanh(LA\SY) | 47V

Ge(q) -G = (128)

Thick layers with L>)\£fo) are thus the best spin sinks
for a given material composition and spin-wave wave
vector.
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There is a crossover in the behavior of the enhanced
Gilbert damping when the wavelength is comparable to
the spin-diffusion length. In the long-wavelength limit,
NewS27Ngq (\gw=27/q ), the result reduces to that of a
uniformly precessing ferromagnet; for short-wavelength
excitations, Ay, <27\y, the damping depends on the
wavelength corresponding to the reduced effective spin-
diffusion length )\iztf)%)\sw/ 2. In the latter regime, nu-
merical estimates for transition-metal ferromagnets in
contact with simple normal metals, in the spirit of Sec.
IV.B, give

hy gl 1amy
1+ [4N\gy tanh(2L/NG) "

Geff()\sw) -G~ (129)
where \ is the transport mean free path. We thus find
that a normal metal is always a good spin sink in the
limit A\, <A < L, independent of spin-relaxation rates, in
stark contrast to the long-wavelength result (76). This
can be understood by referring to the discussion of dy-
namic exchange coupling in Sec. V.A and noticing that
the pumping and backflow reabsorption of spins are
separated in space by distances of the order or larger
than A, corresponding to regions of the magnetic layer
with dynamics that are incoherent upon averaging over
various diffuse paths when Ay, <\. The damping of each
magnetic region is therefore affected by the spin pump-
ing with vanishing spin backflow, rendering the normal
metal a good spin sink. Consequently, the efficiency of
the normal metal as a spin sink increases for shorter-
wavelength spin-wave excitations and longer mean free
paths. In particular, the Gilbert damping can be en-
hanced even when there is no enhancement of the Gil-
bert damping for long-wavelength excitations. This gen-
eral conclusion can also be extended to magnetic films
that are inhomogeneous or disordered on length scales
shorter than the transport mean free path in nonmag-
netic buffers. In addition, the normal metal may become
an efficient spin sink for both short- and long-
wavelength spin waves when the frequency of these ex-
citations becomes larger than the normal-metal scatter-
ing rate, a regime not explicitly treated in this review.
(The interfacial spin-pumping current can still be evalu-
ated by the adiabatic formalism as long as the frequency
remains much smaller than the ferromagnetic exchange
energy.) Finally, we remark that quite generally, in the
limit when the normal metal effectively becomes an
ideal spin sink, the mixing conductance that determines
the strength of the spin-pumping current should not be
renormalized (following the Sec. I1.B discussion). In par-
ticular, it is g't and not g'' that enters Eq. (129) when the
denominator on the right-hand side is close to unity. In
the intermediate spin-sink regime, one has to extend the
discussion of Sec. II.B to laterally inhomogeneous sys-
tems.

D. Electron-electron interactions

The appropriate framework for describing metallic
magnetism, including the 3d transition metals, is band
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theory (Kiibler, 2000), treating the electron-electron in-
teraction in a mean-field approximation. For qualitative
purposes, this comes down to a simple Stoner or
s-d model Hamiltonian having parabolic free-electron
dispersion for conduction electrons with parametrized
masses and exchange splittings. The local-spin-density
approximation of density-functional theory is a very suc-
cessful framework for treating itinerant electron systems
from first principles. Electron-correlation effects are
taken into account by the exchange-correlation poten-
tials, be it in the local approximation. This approach has
been taken by, e.g., Zwierzycki et al. (2005) in calculating
the scattering matrix and the conductance parameters.

Simének (2003) and Simének and Heinrich (2003)
have raised the question of possible enhancement of
spin pumping in metallic F|N heterostructures by
electron-electron interactions in the normal metals. A
potential candidate would be Pd as a normal metal with
an interaction-enhanced magnetic susceptibility. Pd is
“nearly” ferromagnetic causing, e.g., giant moments
around magnetic impurities. A ferromagnetic film in
contact with such a material can thus induce magnetic
moments renormalizing the exchange potential felt by
electrons at the F|N contact. Siméanek (2003) and
Simének and Heinrich (2003) have considered the prob-
lem of an ultrathin “&-function” magnetic layer embed-
ded in a nonmagnetic material with a large Stoner en-
hancement of the spin susceptibility. Treating the
ferromagnetic exchange field as a perturbation felt by
normal-metal electrons, one can obtain a significant en-
hancement of its effective mean-field profile by electron-
electron interactions. This in turn can considerably in-
crease the spin-mixing conductances that govern the
spin pumping (Simanek, 2003). Such perturbative analy-
sis, however, overestimates the effect of electron corre-
lations on spin-mixing conductances and thereby spin
pumping in transition-metal heterostructures. It has
been explained in Sec. VII.A.1 that the mixing conduc-
tance g'' (computed nonperturbatively by density-
functional theory) of even the thinnest (and more so the
thicker) magnetic films is close to the normal-metal
Sharvin conductance, regardless of the possible Stoner
enhancement (Zwierzycki et al., 2005). The mixing con-
ductance that determines the strength of spin pumping is
thus not expected to be correlated with the normal-
metal spin susceptibility, as already emphasized in Sec.
IV.A.

In order to understand that a Stoner enhancement
does not directly affect the spin-pumping enhancement,
it is convenient to perform the rotating-frame analysis of
Sec. II1.B, which is also valid in the presence of electron-
electron interactions and invariant to the rotating-frame
transformation. The precessing ferromagnet changes the
polarization in the normal metal along the axis of rota-
tion by an amount which corresponds to the spin-
imbalance potential pu;=hw that is determined by the
precession frequency o, irrespective of the materials un-
der consideration. In particular, the steady-state spin ac-
cumulation u, due to spin pumping does not depend on
the magnetic susceptibility. Since it is u, that drives the
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nonequilibrium spin flow and not the spin density (that
is affected by the Stoner enhancement), the arguments
given before in this article remain valid for interacting
systems treated within the mean-field picture.

The electron-electron effects such as an enhanced
normal-metal susceptibility are implicitly and nonpertur-
batively taken into account in self-consistent ab initio
calculations of heterostructures. First-principles calcula-
tions of the scattering matrix (Zwierzycki et al., 2005)
fully include the electron-correlation effects which are
difficult to capture with a perturbative formalism. Al-
though many researchers in the field of solid-state mag-
netism are not familiar with scattering theory, it appears
to be the most natural language for pursuing the study
of coupled transport and magnetization dynamics.

Whereas electron-electron effects beyond the mean-
field local-spin-density approximation are probably
small for transition metals, this does not mean that they
can be neglected in other systems. For example, a sup-
pression of spin pumping by correlation effects in one-
dimensional metals (“Luttinger liquids”) has been pre-
dicted by Bena and Balents (2004). These authors found
that the spin pumping by a moving ferromagnet into a
Luttinger liquid through a tunnel barrier is given by the
same expression as for noninteracting electrons, viz., Eq.
(38), but with parameters .AIL and .A,Tl vanishing as a
power of temperature at low temperatures with an ex-
ponent characteristic for the Luttinger-liquid zero-bias
anomaly in tunneling density of states. Correlation ef-
fects might also become important if one wishes to de-
scribe spin pumping close to the ferromagnetic critical
temperature, to understand significant deviations from
the macrospin model for the magnetization, and to
quantitatively model the spin-pumping parameter for in-
terfaces with strongly correlated materials.

Vill. SUMMARY AND OUTLOOK

In this review we have presented a coherent picture of
nonlocal magnetization dynamics in heterostructures of
ferromagnets and nonmagnetic conductors. It is based
on the assumption of semiclassical transport in bulk ma-
terials that is valid for diffuse and chaotic systems, as
well as a separation of time scales of the electronic and
magnetic degrees of freedom. Interfaces are treated as
sharp quantum-mechanical boundary conditions for
electron distribution functions and nonequilibrium
transport. Except for the phenomenological treatment
of spin-flip scattering processes, the theory is derived
from first principles. The main subject in this context is
the concept of spin pumping due to moving magnetiza-
tion vectors. The magnetization dynamics affected by
the spin-transfer torque in the presence of an electrical
bias should be treated on an equal footing with spin
pumping. The crucial material parameter is the spin-
mixing conductance that can be computed from ab initio
electronic band structures.

Several phenomena can be predicted or explained
based on the basic formalism. One of them is the in-
creased Gilbert damping of thin magnetic films in good



1418 Tserkovnyak et al.: Nonlocal magnetization dynamics in ferromagnetic heterostructures

electrical contact with normal metals that efficiently dis-
sipate spin angular momentum. In more complex mag-
netic structures, we predict an interplay between spin
pumping and magnetization torques that is truly nonlo-
cal, i.e., depends on the entire spin-coherent volume of
the sample (determined by the spin-flip diffusion
length). Novel collective effects appear when different
magnetic elements in a spin-coherent circuit or device
resonate at nearby frequencies. A moving ferromagnet
can be used as a source that pumps spin currents into
normal metals or semiconductors, which leads to a spin
accumulation determined by the ferromagnetic-
resonance frequency.

Although some basic principles are rather subtle, the
final formalism is easy to use. It can often be mapped on
an equivalent circuit model that is governed by a few
parameters that can be either fitted to experiments or
computed from first principles. Such calculations can
be wused, e.g., to estimate and optimize critical
magnetization-switching currents (Manschot et al., 2004).
We have focused attention on quasi-one-dimensional
configurations and the macrospin model for the magne-
tization. Generalization of the formalism to include
spin-wave excitations in the ferromagnet or inhomoge-
neous spin currents have also been illustrated (Sec.
VII.C). Integration of micromagnetic simulations with
the transport equations based on boundary conditions at
the interfaces as described here might be necessary to
improve the accuracy of first-principles modeling.

In this review we had mainly metallic heterostructures
with transition-metal ferromagnets in mind. But since
the approach is quite general, we should by no means
exclude other materials. We have already speculated in
Sec. VI.B that the formalism can be used to understand
Gilbert damping in magnetic semiconductors. There is
little doubt that a modeling of the current-induced
switching of (Ga,Mn)As observed by Chiba et al. (2004)
requires the concept of magnetization torque. Spin
pumping into carbon nanotubes as investigated by Bena
and Balents (2004) is partly suppressed by correlation
effects. Spin pumping by ferromagnetic superconductors
(Brataas and Tserkovnyak, 2004) is entangled with
Cooper-pair pumping and depends on the spin-pairing
symmetry of the superconducting state. Spin dynamics
in heterostructures of high-density magnets in contact
with doped semiconductors (Bauer et al., 2004, 2005) are
another promising playground for the formalism de-
scribed here. Besides, it is possible to generalize the
spin-pumping picture to other symmetry-broken hetero-
structures with adiabatically varying order parameters
(Tserkovnyak and Brataas, 2005).

A critical parameter in nonlocal magnetization dy-
namics is the spin-flip diffusion length in normal-metal
components, which can be of the order of microns even
at room temperature; see, e.g., Jedema et al (2002).
Nonlocal effects in structures based on transition metals
could therefore be robust and observable at ambient
temperatures. We therefore believe that the formalism
discussed here should be useful for understanding, com-
puting, and designing magnetic-device operations. An
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example is the possibility of “a engineering” based on
the increase of the Gilbert damping in ultrathin mag-
netic films, e.g., by an order of magnitude, by just evapo-
rating a few monolayers of Pt on top of it. We also ex-
pect that with the decreasing size of magnetic circuits
and devices, the dynamic coupling discussed in this re-
view will become even more relevant. It might lead to
effects like cross talk between magnetic elements and
excess noise. On the other hand, proper engineering of
phenomena like the nonlocal dynamic locking might
lead to an increased stability against external perturba-
tions as well.

Theoretical challenges for the future include a proper
treatment of spin-orbit interactions, the coupling of
magnetic degrees of freedom to the lattice, and effects
beyond the semiclassical regime.
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