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Synchronization phenomena in large populations of interacting elements are the subject of intense
research efforts in physical, biological, chemical, and social systems. A successful approach to the
problem of synchronization consists of modeling each member of the population as a phase oscillator.
In this review, synchronization is analyzed in one of the most representative models of coupled phase
oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and
many variations and extensions of the original model that have appeared in the last few years are
presented. Relevant applications of the model in different contexts are also included.
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I. INTRODUCTION

Time plays a key role for all living beings. Their activ-
ity is governed by cycles of different duration which de-
termine their individual and social behavior. Some of
these cycles are crucial for their survival. There are bio-
logical processes and specific actions which require pre-
cise timing. Some of these actions demand a level of
expertise that can only be acquired after a long period of
training, but others take place spontaneously. How do
these actions occur? Possibly through synchronization of
individual actions in a population. A few examples fol-
low. Suppose we attend a concert. Each member of the
orchestra plays a sequence of notes that, properly com-
bined according to a musical composition, elicit a deep
feeling in us as listeners. The effect can be astonishing or
a fiasco sapart from other technical detailsd simply de-
pending on the exact moment when the sound was emit-
ted. In the meantime, our hearts are beating rhythmi-
cally because thousands of cells synchronize their
activity. The emotional character of the music can accel-
erate or decelerate our heartbeats. We are not aware of
the process, but the cells themselves manage to change
coherently, almost in unison. How? We see the conduc-
tor rhythmically moving his arms. Musicians know ex-
actly how to interpret these movements and respond
with the appropriate action. Thousands of neurons in
the visual cortex, sensitive to specific space orientations,
synchronize their activity almost immediately while the
baton describes a trajectory in space. This information is
transmitted and processed through some remarkably
fast mechanisms. What more? Just a few seconds after
the last bar, the crowd occupying the auditorium starts
to applaud. At the beginning the rhythm may be inco-
herent, but the wish to get an encore can transform in-
coherent applause into perfectly synchronized applause,
despite the different strength in beating or the location
of individuals inside the concert hall.

These examples illustrate synchronization, one of the
most captivating cooperative phenomena in nature. Syn-
chronization is observed in biological, chemical, physi-
cal, and social systems, and it has attracted the interest
of scientists for centuries. A paradigmatic example is the

synchronous flashing of fireflies observed in some South
Asian forests. At night, myriad fireflies rest in the trees.
Suddenly, several fireflies start emitting flashes of light.
Initially they flash incoherently, but after a short period
of time the whole swarm is flashing in unison, creating
one of the most striking visual effects ever seen. The
relevance of synchronization has been stressed fre-
quently although it has not always been fully under-
stood. In the case of the fireflies, synchronous flashing
may facilitate the courtship between males and females.
In other cases, the biological role of synchronization is
still under discussion. Thus perfect synchronization
could lead to disaster and extinction, and therefore dif-
ferent species in the same trophic chain may develop
different circadian rhythms to enlarge their probability
of survival. Details about these and many other systems,
together with many references, can be found in the re-
cent excellent book by Strogatz s2003d.

Research on synchronization phenomena focuses in-
evitably on ascertaining the main mechanisms respon-
sible for collective synchronous behavior among mem-
bers of a given population. To attain a global coherent
activity, interacting oscillatory elements are required.
The rhythmical activity of each element may be due to
internal processes or to external sources sexternal
stimuli or forcingd. Even if the internal processes respon-
sible for rhythmicity have different physical or bio-
chemical origins and can be very complex, one may
hope to understand the essence of synchronization in
terms of a few basic principles. What might these prin-
ciples be?

There are different ways to tackle this problem. Sup-
pose that the rhythmical activity of each element is de-
scribed in terms of a physical variable that evolves regu-
larly in time. When such a variable reaches a certain
threshold, the element emits a pulse saction potential for
neuronsd, which is transmitted to the neighborhood.
Later on, a resetting mechanism initializes the state of
this element. Then, a new cycle starts. Essentially the
behavior of each element is similar to that of an oscilla-
tor. Assuming that the rhythm has a certain period, it is
convenient to introduce the concept of phase, a periodic
measure of the elapsed time. The effect of the emitted
pulse is to alter the current state of the neighbors by
modifying their periods, lengthening or shortening them.
This disturbance depends on the current state of the os-
cillator receiving the external impulse, and it can also be
studied in terms of a phase shift. The analysis of the
collective behavior of the system can be carried out in
this way under two conditions: sid the phase shift in-
duced by an impulse is independent of the number of
impulses arriving within an interspike interval, and siid
the arrival of one impulse affects the period of the cur-
rent time interval, but memory thereof is rapidly lost
and the behavior in future intervals is not affected.

There is another scenario in which synchronization ef-
fects have been studied extensively. Let us consider an
ensemble of nonlinear oscillators moving in a globally
attracting limit cycle of constant amplitude. These are
phase- or limit-cycle oscillators. We now couple them
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weakly to ensure that no disturbance will take any of
them away from the global limit cycle. Therefore only
one degree of freedom is necessary to describe the dy-
namic evolution of the system. Even at this simple level
of description it is not easy to propose specific models.
The first scenario of pulse-coupled oscillators is perhaps
more intuitive, more direct, and easier to model. How-
ever, the discrete and nonlinear nature of pulse coupling
gives rise to important mathematical complications.
While the treatment of just a few pulse-coupled ele-
ments can be done within the framework of dynamical
systems, the description becomes much more compli-
cated for a large number of such elements. Proposing a
model within the second scenario of coupled limit-cycle
oscillators leaves ample room for imagination. We are
forced to consider models that are mathematically trac-
table, with continuous time and specific nonlinear inter-
actions between oscillators. Our experience tells us that
models with the latter property are exceptional. Never-
theless some authors have been looking for a “solvable”
model of this type for years. Winfree, for example, per-
sistently sought a model with nonlinear interactions
sWinfree, 1967, 1980d. He realized that synchronization
can be understood as a threshold process. When the
coupling among oscillators is strong enough, a macro-
scopic fraction of them synchronizes to a common fre-
quency. The model he proposed was hard to solve in its
full generality, although a solvable version has been re-
cently found sAriaratnam and Strogatz, 2001d. Hence re-
search on synchronization proceeded along other direc-
tions.

The most successful attempt was due to Kuramoto
s1975d, who analyzed a model of phase oscillators run-
ning at arbitrary intrinsic frequencies and coupled
through the sine of their phase differences. The Kura-
moto model is simple enough to be mathematically trac-
table, yet sufficiently complex to be nontrivial. The
model is rich enough to display a large variety of syn-
chronization patterns and sufficiently flexible to be
adapted to many different contexts. This “little wonder”
is the object of this review. We have reviewed the
progress made in the analysis of the model and its ex-
tensions during the last 28 years. We have also tried to
cover the most significant areas where the model has
been applied, although we realize that this is not an easy
task because of its ubiquity.

The review is organized as follows. The Kuramoto
model with mean-field coupling is presented in Sec. II.
In the limit of infinitely many oscillators, we discuss the
characterization of incoherent, phase-locked, and par-
tially synchronized phases. The stability of the partially
synchronized state, finite-size effects, and open prob-
lems are also considered. Section III concerns the noisy
mean-field Kuramoto model, resulting from adding ex-
ternal white-noise sources to the original model. This
section deals with the nonlinear Fokker-Planck equation
describing the one-oscillator probability density in the
limit of infinitely many oscillators swhich is derived in
Appendix Ad. We study synchronization by first analyz-
ing the linear stability of the simple nonsynchronized

state called incoherence, in which every phase of the
oscillators is equally probable. Depending on the distri-
bution of natural frequencies, different synchronization
scenarios can occur in parameter regions where incoher-
ence is unstable. We present a complete analysis of these
scenarios for a bimodal frequency distribution using bi-
furcation theory.

Our original presentation of bifurcation calculations
exploits the Chapman-Enskog method to construct the
bifurcating solutions, which is an alternative to the
method of multiple scales for degenerate bifurcations
and is simpler than using center-manifold techniques.
Section IV describes the known results for the Kura-
moto model with couplings that are not of the mean-
field type. They include short-range and hierarchical
couplings, models with disorder, time-delayed couplings,
and models containing external fields or multiplicative
noise. Extensions of the original model are discussed in
Sec. V. Section VI discusses numerical solutions of the
noisy Kuramoto model, both for the system of stochastic
differential equations and for the nonlinear Fokker-
Planck equation describing the one-oscillator probability
density in the limit of infinitely many oscillators. Appli-
cations of the Kuramoto model are considered in Sec.
VII. They include neural networks, Josephson junctions
and laser arrays, and chemical oscillators. These applica-
tions are often directly inspired by the original model,
share its philosophy, and represent an additional step
toward the development of new ideas. The last section
contains our conclusions and discusses some open prob-
lems and hints for future work. Some technical details
are collected in five appendixes.

II. THE KURAMOTO MODEL

The Kuramoto model consists of a population of N
coupled phase oscillators uistd having natural frequencies
vi distributed with a given probability density gsvd, and
whose dynamics are governed by

u̇i = vi + o
j=1

N

Kij sinsuj − uid, i = 1, . . . ,N . s1d

Thus each oscillator tries to run independently at its own
frequency, while the coupling tends to synchronize it to
all the others. By making a suitable choice of rotating
frame, ui→ui−Vt, in which V is the first moment of
gsvd, we can transform Eq. s1d to an equivalent system
of phase oscillators whose natural frequencies have zero
mean. When the coupling is sufficiently weak, the oscil-
lators run incoherently, whereas beyond a certain
threshold collective synchronization emerges spontane-
ously. Many different models for the coupling matrix Kij
have been considered such as nearest-neighbor coupling,
hierarchical coupling, random long-range coupling, or
even state-dependent interactions. All of them will be
discussed in this review.

In this section, we introduce the Kuramoto model
with mean-field coupling among phase oscillators. For
this model, synchronization is conveniently measured by
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an order parameter. In the limit of infinitely many oscil-
lators, N=`, the amplitude of the order parameter van-
ishes when the oscillators are out of synchrony, and it is
positive in synchronized states. We first present Kura-
moto’s calculations for partial synchronization of oscilla-
tors and bifurcation from incoherence, a state in which
the oscillator phase takes values on the interval f−p ,pg
with equal probability. The stability of incoherence is
then analyzed in the limit N=`. For coupling constant
K,Kc, a critical value of the coupling, incoherence is
neutrally stable because the spectrum of the operator
governing its linear stability lies on the imaginary axis.
This means that disturbances from incoherence decay
similarly to the Landau damping in plasmas sStrogatz et
al., 1992d. When K.Kc and unimodal natural frequency
distributions are considered, one positive eigenvalue
emerges from the spectrum. The partially synchronized
state bifurcates from incoherence at K=Kc, but a rigor-
ous proof of its stability is still missing. Finally, finite-size
effects sN,`d on oscillator synchronization are dis-
cussed.

A. Stationary synchronization for mean-field coupling

The original analysis of synchronization was accom-
plished by Kuramoto in the case of mean-field coupling,
that is, taking Kij=K /N.0 in Eq. s1d sKuramoto, 1975,
1984d. The model of Eq. s1d was then written in a more
convenient form, defining the scomplex-valuedd order
parameter

reic =
1

No
j=1

N

eiuj. s2d

Here rstd with 0ørstdø1 measures the coherence of the
oscillator population, and cstd is the average phase. With
this definition, Eq. s1d becomes

u̇i = vi + Kr sinsc − uid, i = 1,2, . . . ,N , s3d

and it is clear that each oscillator is coupled to the com-
mon average phase cstd with coupling strength given by
Kr. The order parameter s2d can be rewritten as

reic = E
−p

p

eiuS 1

No
j=1

N

dsu − ujdDdu . s4d

In the limit of infinitely many oscillators, they may be
expected to be distributed with a probability density
rsu ,v , td, so that the arithmetic mean in Eq. s2d now
becomes an average over phase and frequency, namely,

reic = E
−p

p E
−`

+`

eiursu,v,tdgsvddudv . s5d

This equation illustrates the use of the order parameter
to measure oscillator synchronization. In fact, when K
→0, Eq. s3d yields ui<vit+uis0d, that is, the oscillators
rotate at angular frequencies given by their own natural
frequencies. Consequently, setting u<vt in Eq. s5d, by
the Riemann-Lebesgue lemma, we obtain that r→0 as

t→` and the oscillators are not synchronized. On the
other hand, in the limit of strong coupling, K→`, the
oscillators become synchronized to their average phase,
ui<c, and Eq. s5d implies r→1. For intermediate cou-
plings, Kc,K,`, part of the oscillators are phase

locked su̇i=0d, and part are rotating out of synchrony
with the locked oscillators. This state of partial synchro-
nization yields 0,r,1 and will be further explained be-
low. Thus synchronization in the mean-field Kuramoto
model swith N=`d is revealed by a nonzero value of the
order parameter. The concept of order parameter as a
measure of synchronization is less useful for models with
short-range coupling. In these systems, other concepts
are more appropriate to describe oscillator synchroniza-
tion since more complex situations can happen sStrogatz
and Mirollo, 1988a, 1988bd. For instance, it could hap-
pen that a finite fraction of the oscillators have the same
average frequency ṽi, defined by

ṽi = lim
t→`

1

t
E

0

t

u̇idt , s6d

while the other oscillators might be out of synchrony, or
that the phases of a fraction of the oscillators could
change at the same speed sand therefore partial synchro-
nization would occurd, while different oscillator groups
had different speeds sand therefore their global order
parameter could be zero and incoherence would resultd.
See Sec. IV for details.

A continuity equation for the oscillator density can be
found by noting that each oscillator in Eq. s1d moves
with an angular or drift velocity vi=vi+Kr sinsc−uid.
Therefore the one-oscillator density obeys the continu-
ity equation

]r

]t
+

]

]u
hfv + Kr sinsc − udgrj = 0, s7d

to be solved along with Eq. s5d, with the normalization
condition

E
−p

p

rsu,v,tddu = 1, s8d

and an appropriate initial condition. The system of Eqs.
s5d–s8d has the trivial stationary solution r=1/ s2pd, r=0,
corresponding to an angular distribution of oscillators
having equal probability in the interval f−p ,pg. Then,
the oscillators run incoherently, and hence the trivial so-
lution is called the incoherent solution, or simply inco-
herence. Let us now try to find a simple solution corre-
sponding to oscillator synchronization. In the strong-
coupling limit, we have global synchronization sphase
lockingd, so that all oscillators have the same phase, ui
=c f=vit+uis0dg, which yields r=1. For a finite coupling,
a lesser degree of synchronization with a stationary am-
plitude, 0,r,1, may occur. How can this smaller value
of r arise? A typical oscillator running with velocity v
=v−Kr sinsu−cd will become stably locked at an angle
such that Kr sinsu−cd=v and −p /2ø su−cdøp /2. All
such oscillators are locked in the natural laboratory
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frame of reference. Oscillators with frequencies uvu
.Kr cannot be locked. They run out of synchrony with
the locked oscillators, and their stationary density obeys
vr=C sconstantd, according to Eq. s7d. We have obtained
a stationary state of partial synchronization, in which
part of the oscillators are locked at a fixed phase while
all others are rotating out of synchrony with them. The
corresponding stationary density is therefore

r = 5dFu − c − sin−1S v

Kr
DGHscos ud , uvu , Kr

C

uv − Kr sinsu − cdu
elsewhere. 6

s9d

Here Hsxd=1 if x.0 and Hsxd=0 otherwise, that is,
Hsxd is the Heaviside unit step function. Note that one
can write equivalently r=ÎK2r2−v2dfv−Kr sinsu
−cdgHscos ud for −Kr,v,Kr. The normalization con-
dition s8d for each frequency yields C=Îv2− sKrd2 / s2pd.
We can now evaluate the order parameter in the state of
partial synchronization by using Eqs. s5d and s9d,

r = E
−p/2

p/2 E
−`

+`

eisu−cddFu − c − sin−1S v

Kr
DGgsvddudv

+ E
−p

p E
uvu.Kr

eisu−cd Cgsvd
uv − Kr sinsu − cdu

dudv . s10d

Let us assume that gsvd=gs−vd. Then, the symmetry re-
lation rsu+p ,−vd=rsu ,vd implies that the second term
in this equation is zero. The first term is simply

r = E
uvu,Kr

cosFsin−1S v

Kr
DGgsvddv

= E
−p/2

p/2

cos ugsKr sin udKr cos udu ,

that is,

r = KrE
−p/2

p/2

cos2 ugsKr sin uddu . s11d

This equation always has the trivial solution r=0 corre-
sponding to incoherence, r= s2pd−1. However, it also has
a second branch of solutions corresponding to the par-
tially synchronized phase s9d, satisfying

1 = KE
−p/2

p/2

cos2 ugsKr sin uddu . s12d

This branch bifurcates continuously from r=0 at the
value K=Kc obtained by setting r=0 in Eq. s12d, which
yields Kc=2/ fpgs0dg. Such a formula and the argument
leading to it were first found by Kuramoto s1975d. Con-
sidering, as an example, the Lorentzian frequency distri-
bution

gsvd =
g/p

g2 + v2 , s13d

allows an explicit evaluation of the integrals above to be
accomplished, which was done by Kuramoto s1975d. Us-
ing Eq. s13d, he found the exact result r=Î1− sKc /Kd for
all K.Kc=2g. For a general frequency distribution
gsvd, an expansion of the right-hand side of Eq. s11d in
powers of Kr yields the scaling law

r ,Î− 16sK − Kcd
pKc

4g9s0d
, s14d

as K→Kc. Throughout this review, we use the following
definitions of the symbol ; sasymptoticd which com-
pares two functions or one function and an asymptotic
series in the limit as e→0 sBender and Orszag, 1978d:

fsed , gsed ⇔ lim
e→0

fsed
gsed

= 1, s15d

fsed , o
k=0

`

ekfk ⇔ Ffsed − o
k=0

m

ekfkG ! em, ∀ m . s16d

According to Eq. s14d, the partially synchronized phase
bifurcates supercritically for K.Kc if g9s0d,0, and sub-
critically for K,Kc if g9s0d.0; see Figs. 1sad and 1sbd.
Notice that Kuramoto’s calculation of the partially syn-
chronized phase does not indicate whether this phase is
stable, either globally or locally.

B. Stability of solutions and open problems

1. Synchronization in the limit N=`

Kuramoto’s original construction of incoherent and
partially synchronized phases concerns purely stationary
states. Moreover, he did not establish any of their stabil-
ity properties. The linear stability theory of incoherence
was published by Strogatz et al. s1992d and interesting
work on the unsolved problems of nonlinear stability
theory was carried out by Balmforth and Sassi s2000d. To
ascertain the stability properties of the incoherent and
partially synchronized solutions, it is better to work with
the probability density rsu ,v , td. Let us explain first what
is known in the limit of infinitely many oscillators de-
scribed by Eqs. s5d–s7d. The linearized stability problem
for this case is obtained by inserting r=1/ s2pd
+ m̃su , t ;vd with m̃su , t ;vd=expsltdmsu ,vd in Eqs. s5d–s8d,
and then ignoring terms nonlinear in m:

− v
]m

]u
+

K

2p
Re e−iuE

−p

p E
−`

+`

eiu8msu8,v8d

3 gsv8ddu8dv8 = lm , s17d

E
−p

p

msu,vddu = 0. s18d

If Re l,0 for all possible l, incoherence is linearly
stable, while it is unstable if some admissible l has a
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positive real part. The periodicity condition implies m
=on=−`

` bnsvdeinu, which, inserted in Eq. s17d, yields

sl + invdbn =
K

2
sdn,1 + dn,−1dk1,bnl . s19d

Here we have used b−n=bn sa bar over a symbol denotes
taking its complex conjugated, and defined the scalar
product

kw,cl =
1

2p
E

−p

p E
−`

+`

wsu,vdcsu,vdgsvddvdu . s20d

Equation s19d shows that lnsvd=−inv, n= ±1, ±2, . . .,
belong to the continuous spectrum describing the linear

stability problem, provided v is in the support of gsvd.
When gsvd is a unimodal natural frequency distribution
sbeing even and nonincreasing for v.0d, Strogatz et al.
s1992d have shown that the incoherent solution is neu-
trally stable for K,Kc=2/ fpgs0dg. In fact, the afore-
mentioned continuous spectrum lies on the imaginary
axis, in this case. For K.Kc, a positive eigenvalue ap-
pears sStrogatz et al., 1992d. Although incoherence is
neutrally stable for K,Kc, the linearized order param-
eter Rstd= ke−iu , m̃su , t ;vdl decays with time. Due to
phase mixing of the integral superposition of modes in
the continuous spectrum, such a decay is reminiscent of
the Landau damping observed in plasmas sStrogatz et
al., 1992d. This can be understood by solving the linear-
ized problem with the initial condition m̃su ,0 ;vd
=2eiu / fpsv2+4dg+c.c. for gsvd= fps1+v2dg−1 and K=1.
The calculations can be carried out as indicated by Stro-
gatz et al. s1992d, and the result is

m̃su,t ;vd = S 18

v2 + 4
−

5

2iv − 1
+

1

2 − iv
D eisu−vtd

9p

+
5eiu−t/2

9ps2iv − 1d
+

eiu−2t

9ps2 − ivd
+ c.c., s21d

Rstd =
10
9

e−t/2 −
4
9

e−2t s22d

sBalmforth and Sassi, 2000d. The function m̃ contains a
term proportional to e−ivt, which is nondecaying and
nonseparable, and does not correspond to a normal
mode. As time elapses, this term becomes progressively
more crenellated, and through increasing cancellations,
integral averages of m̃ decay. Besides this, Eq. s21d con-
tain two exponentially decaying terms which contribute
to the order parameter s22d. If gsvd has bounded sup-
port, the order parameter may decay more slowly, alge-
braically with time sStrogatz et al., 1992d.

Numerical calculations for K,Kc show that the order
parameter rstd of the full Kuramoto model behaves simi-
larly to that of the linearized equation sBalmforth and
Sassi, 2000d. However, the probability density r may de-
velop peaks in the su ,vd plane for intermediate times
before decaying to incoherence as t→`. See Fig. 6 of
Balmforth and Sassi s2000d. For K.Kc, Balmforth and
Sassi s2000d show that the probability density evolves to
a distribution that corresponds to Kuramoto’s partially
synchronized phase given by Eq. s9d. Balmforth and
Sassi s2000d obtained this result by numerically simulat-
ing the full Kuramoto model with K.Kc. They also car-
ried out different incomplete exact and perturbation cal-
culations:

• Exact solution of the Kuramoto model for gsvd
=dsvd.

• Attempted approximation of the solution for other
frequency distributions near Kc assuming an unreal-
istic r that depends on v.

FIG. 1. Bifurcation and stability of the Kuramoto model: sad
supercritical bifurcation in a diagram of r vs K; sbd subcritical
bifurcation; scd phase diagram of the noisy Kuramoto model, D
vs K, showing the regions of linear stability for the incoherent
solution r0=1/ s2pd provided the frequency distribution is uni-
modal and Lorentzian with width g. The incoherent solution is
linearly stable if 0,K,2D+g, and unstable otherwise.
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• Regularizing the Kuramoto model by adding a diffu-
sive term to Eq. s7d and constructing the stationary
probability density in the limit of vanishing diffusiv-
ity by means of boundary layer methods. This regu-
larization corresponds to adding white-noise forcing
terms to the Kuramoto model s1d. The corresponding
equation for the probability density is Eq. s7d with a
diffusive term in its right-hand side, which is called
the nonlinear Fokker-Planck equation. The nonlin-
ear Fokker-Planck equation will be studied in Sec.
III.

• A mixture of multiple scales and boundary layer
ideas in the same limit of vanishing diffusivity of the
nonlinear Fokker-Planck equation, but for K near
values corresponding to the bifurcation of synchro-
nized states from incoherence.

In the small-diffusivity limit of the nonlinear Fokker-
Planck equation, D→0+, the calculations by Balmforth
and Sassi s2000d indicate that the probability density
with unimodal frequency distribution and K.Kc tends
toward a stationary phase that is concentrated around
the curve v=Kr sin u for v2,K2r2. The peak of the
probability density is attained at ÎKr / s2pDd. It would
be useful to have consistent perturbation results for the
evolution of the probability density near bifurcation
points, in the low-noise limit D→0+ of the nonlinear
Fokker-Planck equation, and also for the Kuramoto
model with D=0. Both cases are clearly different, as
shown by the fact that the synchronized phase is a gen-
eralized function sa distributiond when D=0, while it is a
smooth function for D.0. In particular, it is clear that
Kuramoto’s partial synchronization solution s9d sinvolv-
ing a delta functiond cannot be obtained by small-
amplitude bifurcation calculations about incoherence,
the laborious attempt by Crawford and Davies s1999d
notwithstanding.

Thus understanding synchronization in the hyperbolic
limit of the mean-field Kuramoto model swith N→`d
requires the following. First, a fully consistent
asymptotic description of the synchronized phase and
the synchronization transition as D→0+ should be
found. As indicated by Balmforth and Sassi s2000d, the
necessary technical work involves boundary layers and
matching. These calculations could be easier if one
works directly with the equations for ln r, as suggested
in the early paper sBonilla, 1987d. Second, and most
likely harder, the same problems should be tackled for
D=0, where the stable synchronized phase is expected
to be Kuramoto’s partially synchronized state swhich is a
distribution, not a smooth functiond. Third, as pointed
out by Strogatz s2000d, the problem of proving stability
of the partially synchronized state as a solution of the
Kuramoto model remains open.

2. Finite-size effects

Another way to regularize the hyperbolic equation s7d
is to study a large population of finitely many phase os-
cillators, which are globally coupled. The analysis of this

large system may shed some light on the stability prop-
erties of the partially synchronized state. The question
can be posed as follows. What is the influence of finite-
size effects on Kuramoto’s partially synchronized state
as N→`?

One issue with kinetic equations describing popula-
tions of infinitely many elements is always that of finite-
size effects. This issue was already raised by Zermelo’s
paradox, namely, that a system of finitely many particles
governed by reversible classical Hamiltonian mechanics
was bound to have recurrences according to Poincaŕe’s
recurrence theorem. Then, this system would come back
arbitrarily close to its initial condition infinitely many
times. Boltzmann’s answer to this paradox was that the
recurrence times would become infinite as the number
of particles tend to infinite. Simple model calculations
illustrate the following fact. A nonrecurrent kinetic de-
scription for a system of infinitely many particles ap-
proximates the behavior of a system with a large but
finite number of particles during finite time intervals,
after which recurrences set in sKeller and Bonilla, 1986d.

The same behavior, denoting the noncommutativity of
the limits N→` and t→`, is also present in the Kura-
moto model. For instance, Hemmen and Wreszinski
s1993d used a Lyapunov-function argument to point out
that a population of finitely many Kuramoto oscillators
would reach a stationary state as t→`. Our derivation
of the nonlinear Fokker-Planck equation in Appendix A
suggests that fluctuations scale as N−1/2 as N→`, a scal-
ing that, for the order parameter, is confirmed by nu-
merical simulations sKuramoto and Nishikawa, 1987;
Daido, 1990d.

More precise theoretical results are given by DaiPra
and den Hollander s1996d, for rather general mean-field
models that include Kuramoto’s and also spin systems.
DaiPra and den Hollander s1996d obtained a central
limit theorem, which characterizes fluctuations about the
one-oscillator probability density, for N=`, as Gaussian
fields having a certain covariance matrix and scaling as
N−1/2. Near bifurcation points, a different scaling is to be
expected, similarly to Dawson’s results for related mean-
field models sDawson, 1983d. Daido s1987b, 1989d ex-
plored this issue by dividing the oscillator phase and the
order parameter in Eq. s2d into two parts: their limits
achieved when N→` and their fluctuating parts swhich
were regarded as smalld. In the equations for the phase
fluctuations, only terms linear in the fluctuation of the
order parameter were retained. The result was then in-
serted into Eq. s2d, and a self-consistent equation for the
fluctuation of the order parameter was found. For uni-
modal frequency distributions, Daido found the scaling
fsKc−KdNg−1/2 for the rms fluctuation of the order pa-
rameter as K→Kc

− sfrom belowd. For coupling strengths
larger than Kc, he found that the fluctuation of the order
parameter was consistent with the scaling sK
−Kcd−1/8N−1/2 as K→Kc

+ sDaido, 1989d. Balmforth and
Sassi s2000d carried out numerical simulations to inves-
tigate finite-size effects, and discussed how sampling the
natural frequency distribution affects the one-oscillator
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probability density. In particular, they found that sam-
pling may give rise to unexpected effects, such as time-
periodic synchronization, even for populations with uni-
modal frequency distribution, gsvd. Note that such
effects do not appear in the limit N=`. Further work on
this subject would be interesting, in particular, finding a
formulation similar to Daido’s fluctuation theory for the
order parameter but for the one-oscillator probability
density instead.

III. THE MEAN-FIELD MODEL INCLUDING WHITE-NOISE
FORCES

In this section, we analyze the mean-field Kuramoto
model with white-noise forcing terms. This generaliza-
tion makes the model more physical, in that unavoidable
random imperfections can be taken into account. At the
same time, the ensuing model turns out to be math-
ematically more tractable. In fact, in the limit of infi-
nitely many oscillators, the one-oscillator probability
density obeys a parabolic equation sthe nonlinear
Fokker-Planck equationd, instead of the hyperbolic
equation s7d, which is harder to analyze. The nonlinear
Fokker-Planck equation is derived in Appendix A. Its
simplest solution is also r= s2pd−1, corresponding to in-
coherence. First, we shall study its linear stability prop-
erties. When K,Kc the incoherence turns out to be lin-
early stable, unlike what happens in the Kuramoto
model, for which incoherence is neutrally stable. When
the coupling strength is greater than the critical cou-
pling, incoherence becomes linearly unstable, since the
real part of one of the eigenvalues in the discrete spec-
trum of the linearized problem becomes positive. Then,
different bifurcation scenarios and phase diagrams will
occur, depending on the distribution of natural frequen-
cies gsvd. Synchronized phases branching off from inco-
herence have been constructed by using different singu-
lar perturbation techniques. In particular, a powerful
technique, the Chapman-Enskog method, has been used
to study in detail these synchronization transitions for a
bimodal frequency distribution which has a very rich
phase diagram.

A. The nonlinear Fokker-Planck equation

The result of adding white-noise forcing terms to the
mean-field Kuramoto model is the system of stochastic
differential equations

u̇i = vi + jistd +
K

No
j=1

N

sinsuj − uid, i = 1, . . . ,N . s23d

Here the ji’s are independent white-noise stochastic pro-
cesses with expected values

kjistdl = 0, kjistdjjst8dl = 2Ddst − t8ddij. s24d

Introducing the order parameter s4d, the model equa-
tions s23d and s24d can be written as

u̇i = vi + Kr sinsc − uid + jistd, i = 1,2, . . . ,N . s25d

The Fokker-Planck equation for the one-oscillator
probability density rsu ,v , td corresponding to this sto-
chastic equation is

]r

]t
= D

]2r

]u2 −
]

]u
svrd , s26d

vsu,v,td = v + Kr sinsc − ud , s27d

provided the order parameter reic is a known function of
time and we ignore the subscript i. In the limit N→`
and provided all oscillators are initially independent, we
can derive Eq. s5d:

reic = E
−p

p E
−`

+`

eiursu,v,tdgsvddudv , s28d

which together with Eq. s26d constitute the nonlinear
Fokker-Planck equation ssee Appendix A for detailsd.
Notice that Eq. s26d becomes Eq. s7d if D=0. The system
s26d–s28d is to be solved with the normalization condi-
tion

E
−p

p

rsu,v,tddu = 1, s29d

the periodicity condition, rsu+2p ,v , td=rsu ,v , td, and
an appropriate initial condition for rsu ,v ,0d. In most
works san exception is Acebrón et al., 1998d, the natural
frequency distribution gsvd is a non-negative even func-
tion, to be considered later.

B. Linear stability analysis of incoherence

The trivial solution of the nonlinear Fokker-Planck
equation, r0=1/ s2pd, with order parameter r=0, repre-
sents incoherent or nonsynchronized motion of all oscil-
lators. A natural method for studying how synchronized
phases with r.0 may branch off from incoherence is to
analyze its linear stability as a function of the param-
eters of the model, and then construct the possible solu-
tions bifurcating from it. The first results were obtained
by Strogatz and Mirollo s1991d. They studied the linear
stability problem setting r=1/ s2pd+ m̃su , t ;vd with
m̃su , t ;vd=expsltdmsu ,vd in Eqs. s26d and s8d, and then
neglecting terms nonlinear in m,

D
]2m

]u2 − v
]m

]u
+ K Rehe−iuke−iu8,mlj = lm , s30d

E
−p

p

msu,vddu = 0. s31d

Incoherence is linearly stable as long as Re l,0, and it
becomes unstable if some admissible l has positive real
part. The periodicity condition implies m
=on=−`

` bnsvdeinu, which, inserted in Eq. s30d, yields

144 Acebrón et al.: The Kuramoto model: A simple paradigm for synchronization phenomena

Rev. Mod. Phys., Vol. 77, No. 1, January 2005



sl + inv + n2Ddbn =
K

2
sdn,1 + dn,−1dk1,bnl . s32d

Here we have used the relation b−n=bn, and the scalar
product defined in Eq. s20d. As in the Kuramoto model,
the numbers

lnsvd = − Dn2 − inv, n = ± 1, ± 2, . . . , s33d

with v belonging to the support of gsvd, form the con-
tinuous spectrum relevant to the linear stability prob-
lem. Note that the continuous spectrum lies to the left
side of the imaginary axis when D.0 fb0=0 because of
the normalization condition s31dg. Then the eigenvalues
s33d have negative real parts and therefore correspond
to stable modes.

The case n= ±1 is special for two reasons. First, the
right-hand side of Eq. s32d does not vanish, and thus
b1= sK /2dk1,b1l / sl+ iv+Dd. Then, provided k1,b1lÞ0,
we find the following equation for l sStrogatz and
Mirollo, 1991d:

K

2
E

−`

+` gsnd
l + D + in

dn = 1. s34d

The solutions of this equation are the eigenvalues for
the linear stability problem in Eq. s30d. Clearly, they are
independent of v. Since the continuous spectrum lies on
the left half plane, the discrete spectrum determines the
linear stability of the incoherence. Second, the nonlinear
Fokker-Planck equation and therefore the linear stabil-
ity equation s30d are invariant under the reflection sym-
metry, u→−u, v→−v, assuming gsvd to be even. This
implies that two independent eigenfunctions exist, cor-
responding to each simple solution l of Eq. s34d,

m1su,vd =

K

2
eiu

D + l + iv
, m2su,vd =

K

2
e−iu

D + l − iv
. s35d

Note that these two linearly independent eigenfunctions
are related by the reflection symmetry. When l is real,
these eigenfunctions are complex conjugates of each
other. When l is a multiple solution of Eq. s34d, the
eigenvalue l is no longer semisimple sCrawford, 1994d.

C. The role of gsvd: Phase diagram of the Kuramoto
model

The mean-field Kuramoto model for infinitely many
oscillators may have different stable solutions salso
called phasesd depending on the natural frequency dis-
tribution gsvd, the values of the coupling strength K, and
the diffusion constant D. Many phases appear as stable
solutions bifurcating from known particular solutions,
which lose their stability at a critical value of some pa-
rameter. The trivial solution of the nonlinear Fokker-
Planck equation is incoherence, and therefore much ef-
fort has been devoted to studying its stability properties,
as a function of K, D, and parameters characterizing
gsvd. As explained in Sec. II, we can always consider the

first moment of gsvd to be equal to zero, shifting the
oscillator phases if necessary. Most of the work reported
in the literature refers to an even function, gsvd, gs−vd
=gsvd. In addition, if gsvd has a single maximum at v
=0, we call it a unimodal frequency distribution. For gen-
eral even unimodal frequency distributions, Strogatz and
Mirollo s1991d proved that the eigenvalue equation s34d
has at most, one solution, which is necessarily real, and it
satisfies l+D.0. Explicit calculations can be carried
out for discrete fgsvd=dsvdg and Lorentzian fgsvd
= sg /pd / sv2+g2dg frequency distributions. We find l
=−D−g+K /2, with g=0 for the discrete distribution.
Clearly, incoherence is linearly stable for points sK ,Dd
above the critical line D=−g+K /2, and unstable for
points below this line; see Fig. 1scd. In terms of the cou-
pling strength, incoherence is linearly stable provided
that K,Kc;2D+2g, and unstable otherwise. This con-
clusion also holds for D=0 in the general unimodal case,
for which Strogatz and Mirollo s1991d recovered Kura-
moto’s result Kc=2/ fpgs0dg sKc=2g in the Lorentzian
cased. When D=0, the stability analysis is complicated
by the fact that the continuous spectrum lies on the
imaginary axis.

For even or asymmetric multimodal frequency distri-
butions, the eigenvalues may be complex sBonilla et al.,
1992; Acebrón et al., 1998d. The simple discrete bimodal
distribution gsvd= fdsv−v0d+dsv+v0dg /2 has been stud-
ied extensively sBonilla et al., 1992; Crawford, 1994;
Acebrón and Bonilla, 1998; Bonilla, Pérez-Vicente, and
Spigler, 1998d. In this case, Eq. s34d has two solutions,
l±=−D+ fK±ÎK2−16v0

2g /4. The stability boundaries for
the incoherent solution can be calculated by equating to
zero the greater of Re l+ and Re l−. The resulting phase
diagram on the plane sK ,Dd is depicted in Fig. 2 sBon-
illa et al., 1992d. When the coupling is small enough sK
,2Dd, incoherence is linearly stable for all v0, whereas
it is always unstable when the coupling is sufficiently
strong, K.4D. For intermediate couplings, 2D,K
,4D, incoherence may become unstable in two differ-
ent ways. For v0,D, l± are real and incoherence is
linearly stable provided that K,Kc=2Df1+ sv0 /Dd2g,
and unstable when K.Kc. For v0.D, l± are complex
conjugate and have zero real parts at Kc=4D.

What happens in regions of the phase diagram where
incoherence is unstable? Typically there appear stable
solutions with r.0, which correspond to synchronized
phases. As discussed below, their study has been based
on bifurcation theory, for parameter values close to criti-
cal lines of the phase diagram where incoherence is neu-
trally stable. These analytical results are supplemented
by numerical simulations of the nonlinear Fokker-
Planck equation far from critical lines, or by numerical
continuation of synchronized solutions bifurcating from
incoherence sAcebrón, Perales, and Spigler, 2001d. Be-
sides this, Acebrón and Bonilla s1998d have developed a
singular perturbation description of synchronization for
multimodal gsvd, arbitrarily far from critical lines. Their
idea is to consider a gsvd with m maxima located at
v0Vl, where v0→`, gsvddv<ol=1

m aldsV−VlddV, and
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then to use a method of multiple scales. The main result
is that the solution of the nonlinear Fokker-Planck equa-
tion splits sat lowest orderd into l phases, each obeying a
nonlinear Fokker-Planck equation with a discrete uni-
modal distribution centered at Vl and a coupling
strength alK. Depending on the value of alK, the lth
phase turns out to be either synchronized or incoherent.
The overall order parameter is the weighted sum swith
weight ald of the order parameters of the corresponding
phases. If first-order terms are included, the method of
multiple scales describes incoherence, as well as oscilla-
tor synchronization for multimodal frequency distribu-
tions, rather well. These results hold for general fre-
quency distributions sboth with or without reflection
symmetryd and for relatively low values of v0 sAcebrón
and Bonilla, 1998d. Related work on multimodal fre-
quency distributions include that of Acebrón et al. s1998d
and Acebrón, Perales, and Spigler s2001d. An interesting
open problem is to generalize the method of Acebrón
and Bonilla s1998d so that both the location and the
width of the peaks in gsvd are taken into account.

D. Synchronized phases as bifurcations from incoherence,
DÞ0

At the parameter values for which incoherence ceases
to be linearly stable, synchronized phases fstable solu-
tions of the nonlinear Fokker-Planck equation, rsu ,v , td,
with r.0g may bifurcate from it. In this rather technical

subsection, branches of these bifurcating solutions will
be constructed in the vicinity of the bifurcation point by
means of the Chapman-Enskog method; see Bonilla
s2000d. We shall study the Kuramoto model with the dis-
crete bimodal natural frequency distribution, whose
phase diagram is depicted in Fig. 2. The stability bound-
aries in this rich phase diagram separate regions where
incoherence becomes unstable, undergoing a transition
to either a stationary state, when v0,D and K.Kc
=2Df1+ sv0 /Dd2g, or to an oscillatory state, when v0
.D and K.Kc=4D. The bifurcating solutions are as
follows:

s1d When v0,D /Î2, the synchronized phases bifurcat-
ing from incoherence are stationary and stable. The
bifurcation is supercritical, hence the synchronized
phases exist for K.Kc.

s2d When D /Î2,v0,D, the bifurcation is subcritical.
An unstable branch of synchronized stationary solu-
tions bifurcates for K,Kc, reaches a limit point at a
smaller coupling constant, and there coalesces with
a branch of stable stationary solutions having larger
r.

s3d When v0.D, the synchronized phases bifurcating
from incoherence are oscillatory and the corre-
sponding order parameter is time periodic. Two
branches of solutions bifurcate supercritically at Kc
=4D, a branch of unstable rotating waves and a
branch of stable standing waves.

s4d At the special point v0=D /Î2 and Kc=3D, the bi-
furcation to stationary solutions changes from super-
critical to subcritical. Near this point, the bifurcation
analysis can be extended to describe analytically
how the subcritical branch of stationary solutions
turns into a branch of stable solutions at a limit
point.

s5d At the special point v0=D and Kc=4D, which can
be called the tricritical point, a line of Hopf bifurca-
tions coalesces with a line of stationary bifurcations
and a line of homoclinic orbits. The study of the
corresponding Os2d-symmetric Takens-Bogdanov
bifurcation shows how the oscillatory branches die
at a homoclinic orbit of an unstable stationary
solution.

The Chapman-Enskog method is flexible enough to ana-
lyze all these bifurcations and, at the same time, simpler
than alternatives such as constructing the center mani-
fold sCrawford, 1994d. Other than at the two special bi-
furcation points, the simpler method of multiple scales
explained in Appendix B yields the same results sBonilla
et al., 1992; Bonilla, Pérez-Vicente, and Spigler, 1998d.
The Chapman-Enskog method sChapman and Cowling,
1970d was originally employed by Enskog s1917d in the
study of the hydrodynamic limit of the Boltzmann equa-
tion. It becomes the averaging method for nonlinear os-
cillations sBoltzmann and Mitropolsky, 1961d and is
equivalent to assuming a center manifold in bifurcation
calculations sCrawford, 1994d.

FIG. 2. Linear stability diagram for the incoherent solution
r0=1/ s2pd and the discrete bimodal frequency distribution in
the parameter space sK /D ,v0 /Dd. r0 is linearly stable to the
left of the lines K=4D, v0.D swhere Hopf bifurcations take
placed and K / s2Dd=1+v0

2 /D2, v0,D fwhere one solution of
Eq. s34d becomes zerog. To the right of these lines, the inco-
herent solution is unstable. At the tricritical point, K=4D, v0
=D, two solutions of Eq. s34d become simultaneously zero.
The dashed line separates the region where eigenvalues are
real sbelow the lined from that where they are complex conju-
gate sabove the lined. From Bonilla, Pérez-Vicente, and
Spigler, 1998.
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1. Bifurcation of a synchronized stationary phase

Let v0,D and consider K close to its critical value
Kc=2Df1+ sv0 /Dd2g. The largest eigenvalue satisfies l
,sK−Kcd / f2s1−v2 /D2dg as K→Kc. As indicated in Eq.
s35d, there are two eigenfunctions associated with this
eigenvalue, eiu / sD+ ivd and its complex conjugate. Ex-
cept for terms decaying exponentially fast in time, the
solution of the linearized stability problem at K=Kc is
therefore Aeiu / sD+ ivd+c.c., where A is a constant and
c.c. means complex conjugate of the preceding term. Let
us suppose now sand justify laterd that K=Kc+«2K2,
where « is a small positive parameter. The probability
density corresponding to initial conditions close to inco-
herence will have the form r,s2pd−1+«Astdeiu / sD
+ ivd+c.c. The correction to incoherence will be close to
the solution of the linearized stability problem, but now
we can assume that the complex constant A varies
slowly with time. How slowly? The linearized solution
depends on time through the factor elt, and l=OsK
−Kcd=Os«2d. Thus we assume t=«2t. The probability
density can then be written as

rsu,v,t ;«d ,
1

2p
H1 + «

Ast ;«deiu

D + iv
+ c.c.

+ o
n=2

`

«nrnsu,t,v ;A,ĀdJ
,

1

2p
expH«

Ast ;«deiu

D + iv
+ c.c.

+ o
n=2

`

«nsnsu,t,v ;A,ĀdJ . s36d

The corrections to 1/ s2pd can be telescoped into an ex-
ponential with a small argument, which ensures that the
probability density is always positive. Typically, by the
exponential ansatz, the parameter region, where the
asymptotic expansion is a good approximation to the
probability density, is widened. The functions sn and rn
are linked by the relations

r1 = s1 =
Ast ;«deiu

D + iv
+ c.c., r2 = s2 +

s1
2

2
,

r3 = s3 + s1s2 +
s1

3

3!
,

r4 = s4 + s1s3 +
s2

2

2
+

s1
2s2

2
+

s1
4

4!
, s37d

and so on. They depend on a fast scale t corresponding
to stable exponentially decaying modes, and on a slow
time scale through their dependence on A. All terms in
Eq. s36d that decrease exponentially in time will be omit-
ted. In Eq. s36d, the slowly varying amplitude A obeys
the equation

dA

dt
= o

n=0

`

«nFsndsA,Ād . s38d

The functions FsndsA ,Ād are determined from the condi-
tions that rn or sn be bounded as t→` son the fast time
scaled, for fixed A, and periodic in u. Moreover, they
cannot contain terms proportional to the solution of the
linearized homogeneous problem, e±iu / sD± ivd, because

all such terms can be absorbed in the amplitudes A or Ā
sBonilla, 2000d. These two conditions imply that

ke−iu,rnl = 0, n . 1. s39d

The normalization condition together with Eq. s36d
yields

E
−p

p

rnsu,t,v ;A,Āddu = 0, n ù 2. s40d

To find rn, we substitute Eqs. s36d and s38d into Eq.
s26d and use Eq. s39d to simplify the result. This yields
the following hierarchy of linear nonhomogeneous
equations:

Lr2 ; s]t − D]u
2 + v]udr2 + Kc]uhIm e−iuke−iu8,r2lj

= − Kc]uhr1 Im e−iuke−iu8,r1lj + c.c., s41d

Lr3 = − Kc]uhr2 Im e−iukeiu8,r1lj

− K2]u Im e−iuke−iu8,r1l − Fs0d]Ar1 + c.c., s42d

and so on. Clearly, r1=Astdeiu / sD+ ivd+c.c. obeys the
linearized stability problem s30d with l=0, Lr1=0 up to
terms of order «. Thus it is not obvious that each linear
nonhomogeneous equation of the hierarchy has a
bounded periodic solution. What is the necessary solv-
ability condition to ensure that the linear nonhomoge-
neous equation,

Lrn = hsu ;r1, . . . ,rn−1d = Qeiu + ¯ , s43d

has a solution of the required features? To answer this
question, we assume that, in fact, Eq. s43d has a bounded
periodic solution of the form rn=Peiu+¯. Then P is
given by

P =
Kck1,Pl

2sD + ivd
+

Q

D + iv
, s44d

from which we obtain the nonresonance condition

K1,
Q

D + ivL = 0, s45d

first found by Bonilla et al. s1992d. Note that we obtain
Eq. s45d even when k1,PlÞ0. eiu times the term propor-
tional to k1,Pl in Eq. s44d is a solution of Lr=0 and
should therefore be absorbed in the definitions of A and

Ā. This implies Eq. s39d.
Inserting r1 into the right side of Eq. s41d, we find
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Lr2 =
2A2

D + iv
e2iu + c.c., s46d

whose solution is

r2 =
A2

sD + ivds2D + ivd
e2iu + c.c. s47d

We see that r1 contains odd harmonics and r2 contains
even harmonics sa possible u-independent term is omit-
ted in r2 because of the normalization conditiond. This is
actually true in general: r2n contains harmonics ei2ju, j
=0, ±1, . . . , ±n, and r2n+1 contains harmonics eis2j+1du, j
=−sn+1d , . . . ,n. The nonlinearity of the Fokker-Planck
equation is responsible for the appearance of resonant
terms in the equations for r2n+1, which should be elimi-
nated through the terms containing Fs2nd. Then, we can
set Fs2n+1d=0 and we only need the scaling K−Kc
=Os«2d. The ultimate reason for these cancellations is, of
course, the Os2d symmetry of our problem, i.e., reflec-
tion symmetry and invariance under constant rotations,
u→u+a sCrawford, 1994d.

Similarly, the nonresonance condition for Eq. s42d
yields

Fs0d = K1,
1

sD + ivd2L−1F2K2A

Kc
2

− K1,
1

sD + ivd2s2D + ivdLAuAu2G
=

K2A

2S1 −
v0

2

D2D
−

2S1 −
2v0

2

D2 DAuAu2

S1 −
v0

2

D2DS4 +
v0

2

D2DD

. s48d

Keeping this term in Eq. s38d, we obtain dA /dt
,Fs0d, which is a reduced equation with the stationary
solution uAu=ÎsK2D /4df4+ sv0 /Dd2g / f1−2sv0 /Dd2g. The
corresponding order parameter is

r ,1sK − KcdDS4 +
v0

2

D2D
Kc

2S1 −
2v0

2

D2 D 2
1/2

, s49d

which was obtained by Bonilla et al. s1992d using a dif-
ferent procedure. The solution s49d exists for K.Kc ssu-
percritical bifurcationd provided that v0,D /Î2,
whereas it exists for K,Kc ssubcritical bifurcationd
when v0.D /Î2. The amplitude equation s38d implies
that the supercritical bifurcating solution is stable and
that the subcritical solution is unstable.

We can describe the transition from supercritical to
subcritical bifurcation at v0=D /Î2, Kc=3D, by evaluat-
ing Fs4d and adding it to the right-hand side of Eq. s38d.
The result is

dA

dt
= K2S1 − «2K2 − 2Î2v2

D
DA

−
4s7K2 − 4Î2v2d«2

9D2 AuAu2 −
272«2

171D3AuAu4; s50d

see Appendix C. The stationary solutions of this equa-
tion are the stationary synchronized phases. We see that
stable phases bifurcate supercritically for K2.0 if K2

.2Î2v2, whereas a branch of unstable stationary solu-
tions bifurcates subcritically for K2,0 if K2,2Î2v2.
This branch of unstable solutions coalesces with a
branch of stable stationary synchronized phases at the
limit point K2<−19«2s7K2−4Î2v2d2 /612.

2. Bifurcation of synchronized oscillatory phases

The bifurcation in the case of complex eigenvalues
can be easily described by the same method. The main
difference is that the solution to the linearized problem
is now

r1 =
A+std

D + isV + vd
eisVt+ud + c.c. +

A−std
D + isV − vd

eisVt−ud

+ c.c., s51d

where V2=v0
2−D2, Kc=4D, the eigenvalues with zero

real part being lsKcd= ± iV. For the two slowly varying
amplitudes, A+ ,A−, we assume that equations of the
form

dA±

dt
, o

n=0

`

«2nF±
s2ndsA+,A−,A+,A−d s52d

hold. Following the previous method, the nonresonance
conditions for Eq. s42d, with s1 given by Eq. s51d, yield
F+

s0d and F−
s0d. The corresponding amplitude equations are

sBonilla, Pérez-Vicente, and Spigler, 1998d

Ȧ+ = aA+ − sbuA−u2 + guA+u2dA+,

Ȧ− = aA− − sbuA+u2 + guA−u2dA−, s53d

where the overdot denotes differentiation with respect
to t, and

a =
1
4

−
iD

4V
, b =

D + i
D2 + v0

2

V

K2s4D2 + v0
2d

,

g =
2s3D2 + 4v0

2d + iD
3D2 + 2v0

2

V

DK2s9D2 + 16v0
2d

. s54d

To analyze the amplitude equations s53d, we define the
new variables

u = uA+u2 + uA−u2, v = uA+u2 − uA−u2. s55d

By using Eq. s53d, we obtain for u and v the system
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u̇ = 2 Re au − Resg + bdu2 − Resg − bdv2,

v̇ = 2 Re av − 2 Re guv . s56d

Clearly, u=v or u=−v correspond to traveling-wave so-
lutions with only one of the amplitudes A± being non-
zero. The case v;0 corresponds to standing-wave solu-
tions, which are a combination of rotating and counter-
rotating traveling waves with the same amplitude. We
can easily find the phase portrait of Eqs. s56d corre-
sponding to a, b, and g given by Eqs. s54d ssee Fig. 3d.
Up to, possibly, a constant phase shift, the explicit solu-
tions

A+std =ÎRe a

Re g
eimt, A−std ; 0,

m = Im a −
Im g

Re g
Re a s57d

for A+std;0 and A−std as A+std aboveg are obtained in
the case of the traveling-wave solutions, while

A+std = A−std =Î 2 Re a

Resg + bd
eint,

n = Im a −
Imsg + bd
Resg + bd

Re a s58d

are obtained in the case of the standing-wave solutions.
Note that both standing wave and traveling wave bifur-

cate supercritically with irSWi /rTW.1. Resb+gd and
Re g are both positive when K2=1, whereas the square
roots in Eqs. s57d and s58d become pure imaginary when
K2=−1. This indicates that the bifurcating branches can-
not be subcritical. An analysis of the phase portrait cor-
responding to Eq. s56d shows that the standing-wave so-
lutions are always globally stable, while the traveling-
wave solutions are unstable. This result was first pointed
out by Crawford s1994d.

3. Bifurcation at the tricritical point

At the tricritical point, K=4D, v0=D, a branch of os-
cillatory bifurcating phases coalesces with a branch of
stationary bifurcating phases and a branch of homoclinic
orbits, in an Os2d-symmetric Takens-Bogdanov bifurca-
tion point. Studying the bifurcations in the vicinity of
such a point shows how the stable and unstable branches
of oscillatory phases, standing wave and traveling wave,
respectively, end as the coupling is changed. Analyzing
transitions at the tricritical point is a little more compli-
cated because it requires changing the assumptions on
the amplitude equation sBonilla, Pérez-Vicente, and Spi-
gler, 1998; Bonilla, 2000d. First of all, at the tri-
critical point, k1, sD+ ivd−2l=ResD+ iDd−2=0. This
innocent-looking fact implies that the term −Fs0d]Ar1 on
the right-hand side of Eq. s42d dissapears in the nonreso-
nance condition, and therefore using the same ansatz as
in Eqs. s36d and s38d will not deliver any amplitude equa-
tion. Second, the oscillatory ansatz s51d breaks down

FIG. 3. Phase planes sad su ,vd and sbd suA+u , uA−ud showing the critical points corresponding to traveling wave sTWd and standing
wave sSWd solutions. From Bonilla, Pérez-Vicente, and Spigler, 1998.
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too, because V=0 at the tricritical point, and the factor
multiplying A− is simply the complex conjugate of the
factor multiplying A+. Therefore only one independent
complex amplitude exists, and we are brought back to
Eq. s36d. How should one proceed?

In order to succeed, one should recognize that a basic
slow time scale different from t does exist near the tri-
critical point. The eigenvalues with largest real part are

l = − D +
K

4
+ iÎv0

2 − SK

4
D2

= i«Î2DSv2 −
K2

4
D +

K2«2

4
+ Os«3d

along with their complex conjugates, provided that K
−4D=K2«2, v0−D=v2«2 with v2.K2 /4. Therefore the
time-dependent factors elt appearing in the solution of
the linearized problem indicate that the perturbations
about incoherence vary on a slow time scale T=«t near
the tricritical point. This leads to the Chapman-Enskog
ansatz

rsu,v,t ;«d =
1

2p
H1 + «

AsT ;«d
D + iV

eiu + c.c.

+ o
j=2

4

«jrjsu,t,T ;A,Ād + Os«5dJ , s59d

d2A

dT2 = Fs0dsA,Ād + «Fs1dsA,Ād + Os«2d . s60d

The equation for A is second order frather than first
order as in Eq. s38dg because resonant terms appear at
Os«3d for the first time. These are proportional to ATT

=d2A /dT2. The quantities Fs0d and Fs1d are evaluated in
Appendix D. The resulting amplitude equation is

ATT −
D

2
sK2 − 4V2dA −

2
5

uAu2A

= «SK2

2
AT −

23

25D
uAu2AT −

1

5D
suAu2AdTD + Os«2d .

s61d

Equation s61d is in the scaled normal form studied by
Dangelmayr and Knobloch f1987, cf. their equations
s3.3d, p. 2480g. Following these authors, we substitute

AsT ;«d = RsT ;«deifsT;«d s62d

in Eq. s61d, separate real and imaginary parts, and ob-
tain the perturbed Hamiltonian system

RTT +
]V

]R
= «SK2

2
−

38

25D
R2DRT,

LT = «SK2

2
−

28

25D
R2DL . s63d

Here L=R2fT is the angular momentum, and

V ; VsRd =
L2

2R2 −
D

4
sK2 − 4v2dR2 −

R4

10
s64d

is the potential. This system has the following special
solutions:

sid The trivial solution, L=0, R=0, which corre-
sponds to the incoherent probability density, r
=1/2p. This solution is stable for K2,0 if v2.0
and for sK2−4v2d,0 if v2,0.

siid The steady-state solution, L=0, R=R0

=Î5Dfv2− sK2 /4dg.0, which exists provided that
v2.K2 /4. This solution is always unstable.

siiid The traveling-wave solutions, L=L0

=R0
2Î2Dsv2− 19

56K2d.0, R=R0= 5
2
ÎDK2 /14.0,

which exist provided that K2.0 and v2
.19K2 /56. These solutions bifurcate from the
trivial solution at K2=v2=0. When v2=19K2 /56,
the branch of traveling waves merges with the
steady-state solution branch. This solution is al-
ways unstable.

sivd The standing-wave solutions, L=0, R=RsTd peri-
odic. Such solutions have been found explicitly
ssee Sec. V.A of Dangelmayr and Knobloch,
1987d. The standing waves branch off from the
trivial solution at K2=v2=0, exist for v2
.11K2 /19.0, and terminate by merging with a
homoclinic orbit of the steady state siid on the line
v2=11K2 /19 fsee Eq. s5.8d of Dangelmayr and
Knobloch, 1987g. This solution is always stable.

All these results are depicted in Fig. 4, which corre-
sponds to Fig. 4, IV, in the general classification of sta-
bility diagrams reported by Dangelmayr and Knobloch
s1987, p. 267d. For fixed v0.D, the bifurcation diagram
near the tricritical point is depicted in Fig. 5. Note that
Eq. s59d yields, to leading order,

rsu,v,t ;«d ,
1

2p
F1 + «

Reisf+ud

D + iv
+ c.c.G , s65d

and hence reic,«Re−if / s2Dd. It follows that r
,R / s2Dd and c,−f, which shows that, essentially, the

FIG. 4. Stability diagrams sK2 ,v2d near the tricritical point.
From Bonilla, Pérez-Vicente, and Spigler, 1998.
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solution AsT ;«d to Eq. s61d coincides with the conjugate
of the complex order parameter. For this reason, in Fig.
5 the ordinate can be either R or r. In Fig. 6 we have
depicted the global bifurcation diagram which completes
that shown in Bonilla et al. s1992, Fig. 5d.

In closing, the Chapman-Enskog method can be used
to calculate any bifurcations appearing for other fre-
quency distributions and related nonlinear Fokker-
Planck equations. As discussed in Sec. II.B, nontrivial
extensions are needed in the case of the hyperbolic limit,
D→0+.

IV. VARIATIONS OF THE KURAMOTO MODEL

We have seen in the preceding section how the long-
range character of the coupling interaction in the Kura-
moto model allows us to obtain many analytical results.
Yet one might ask how far these results extend beyond
the mean-field limit in finite dimensions. Also, one
might ask how synchronization effects in the Kuramoto
model are modified by keeping long-range interactions
but including additional sources of quenched disorder,

multiplicative noise, or time-delayed couplings. Unfortu-
nately, many of the analytical techniques developed in
the preceding section hardly cover such new topics. In
particular, the treatment of short-range couplings soscil-
lators embedded in a lattice with nearest-neighbor inter-
actionsd presents formidable difficulties at both the ana-
lytical and the numerical level. This challenges our
current understanding of the mechanisms lying behind
the appearance of synchronization. The next sections
are devoted to discussing a number of these cases. The
present knowledge of such cases is still quite modest,
and major work remains to be done.

A. Short-range models

A natural extension of the Kuramoto model discussed
in Sec. III includes short-range interaction effects sSak-
aguchi et al., 1987; Daido, 1988; Strogatz and Mirollo,
1988a, 1988bd. Kuramoto and co-workers sSakaguchi et
al., 1987d have considered the case in which oscillators
occupy the sites of a d-dimensional cubic lattice and in-
teractions occur between nearest neighbors,

u̇i = vi + Ko
si,jd

sinsuj − uid , s66d

where the pair si , jd stands for nearest-neighbor oscilla-
tors and the vi’s are independent random variables cho-
sen according to the distribution gsvd. Compared to the
Kuramoto model s23d, the coupling strength K does not
need to be scaled by the total number of oscillators.
However, convergence of the model s66d in the limit of
large d requires that K scale as 1/d. Although this model
can be extended so as to include stochastic noise, i.e.,
finite temperature T, most of the work on this type of
model has been done at T=0. Solving the short-range
version of the Kuramoto model is a hopeless task sex-
cept for special cases such as one-dimensional models—
see below—or Cayley-tree structuresd due to the diffi-
culty of incorporating the randomness in any sort of
renormalization-group analysis. In short-range systems,
one usually distinguishes among different synchroniza-
tion regimes. Global synchronization, which implies that
all the oscillators are in phase, is rarely seen except for
K~N→`. Phase locking or partial synchronization is
observed more frequently. This is the case in which a

local ensemble of oscillators verify the condition u̇i
=const, for every i. A weaker situation concerns cluster-
ing or entrainment. Although this term sometimes has
been used in the sense of phase locking, usually it refers
to the case in which a finite fraction of the oscillators
have the same average frequency ṽi defined by

ṽi = lim
t→`

uistd
t

. s67d

There is no proof that such a limit exists. However, if it
does not exist, no synchronization whatsoever is pos-
sible. The condition of clustering is less stringent than
phase locking, and therefore its absence is expected to
preclude the existence of phase locking. Note that the

FIG. 5. Bifurcation diagram sK ,Rd near the tricritical point for
v0.D fixed. K* is the coupling at which a subcritical branch of
stationary solutions bifurcates from incoherence. From Bon-
illa, Pérez-Vicente, and Spigler, 1998.

FIG. 6. Global bifurcation diagram including all stationary-
solution branches. From Bonilla, Pérez-Vicente, and Spigler,
1998.
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previous definitions do not exhaust all possible types of
synchronized stationary solutions, such as, for instance,
the existence of moving traveling-wave structures. The
concept of synchronization seither global or partiald is
different from the concept of phase coherence intro-
duced in the context of the Kuramoto model in Sec. II;
see Eq. s2d. Phase coherence is a stronger condition than
synchronization as it assumes that all phases ui are clus-
tered around a given unique value, as are their velocities

u̇i. The contrary is not necessarily true, as phases can
change at the same speed ssynchronization takes placed
while having completely different values sincoherenced.
Coherence seems less general than synchronization as
the former bears connection to the type of ferromag-
netic ordering present in the Kuramoto model. Al-
though this type of ordering is expected to prevail in
finite dimensions, synchronization seems more appropri-
ate for discussing oscillator models with structural disor-
der built in.

For short-range systems, one would like to understand
several issues:

• The existence of a lower critical dimension above
which any kind of entrainment is possible. In particu-
lar, it is relevant to prove the existence of phase lock-
ing and clustering for large enough dimensionality
and the differences between both types of synchroni-
zation.

• The topological properties of the entrained clusters
and the possibility of defining a dynamical correla-
tion length describing the typical length scale of
these clusters.

• The existence of an upper critical dimension above
which the synchronization transition is of the mean-
field type.

• The resulting phase diagram in the presence of ther-
mal noise.

Sakaguchi et al. s1987d have proposed some heuristic
arguments showing that any type of entrainment sglobal
or locald can occur only for dù2. This conjecture is sup-
ported by the absence of entrainment in one dimension.
Strogatz and Mirollo s1988a, 1988bd, however, have
shown that no phase locking can occur at any finite di-
mension. As phase locking occurs in mean-field theory,
this result suggests that the upper critical dimension in
the model is infinite. Particularly interesting results were
obtained in one dimension schains of oscillatorsd. In this
case, and for the case of a normal distribution of natural
frequencies vi, it can be proven that the probability of
phase locking vanishes as N→`, while it is finite when-
ever K<ÎN. The same result can be obtained for any
distribution snot necessarily Gaussiand of independently
distributed natural frequencies. The proof consists of
showing that the probability of phase locking is related
to the probability that the height of a certain Brownian
bridge is not larger than some given value which de-
pends on K and the mean of gsvd. Recall that by Brown-
ian bridge we mean a random walk described by n

moves of length xi extracted from a given probability
distribution, where the end-to-end distance lsnd=oi=1

n xi
is constrained to have a fixed value for a given number n
of steps. However, one of the most interesting results in
these studies is the use of block renormalization-group
techniques to show whether clustering can occur in finite
dimensions. Nearly at the same time, Strogatz and
Mirollo s1988a, 1988bd and Daido s1988d presented simi-
lar arguments but leading to slightly different yet com-
patible conclusions. For Strogatz and Mirollo s1988a,
1988bd, the goal was to calculate the probability PsN ,Kd
that a cube S containing a finite fraction aN sa,1d of
the oscillators could be entrained to have a single com-
mon frequency. Following Strogatz and Mirollo s1988a,
1988bd, let us assume the macroscopic cluster S to be
divided into cubic subclusters Sk of side l, the total num-
ber of subclusters being Ns=aN / ld which is of order N.
For each subcluster k, the average frequency Vk and
phase Qk are defined as

Vk =
1

ld o
iPSk

vi, Qk =
1

ld o
iPSk

ui. s68d

Summing Eq. s66d over all oscillators contained in each
subcluster Sk we get

Q̇k = Vk +
K

ld o
si,jdP]Sk

sinsuj − uid , s69d

where the sum in the right-hand side runs over all links
si , jd crossing the surface ]Sk delimiting the region Sk.
Considering that there are 2dld−1 terms in the surface
fand hence in the sum in Eq. s69dg, this implies that

uQ̇k − Vku ø
2dK

l
. s70d

If S is a region of clustered oscillators around the fre-
quency ṽ, then, after time averaging, the limit s67d gives
uṽ−Vkuø2dK / l for all 1økøNs. Since the Vk are un-
correlated random variables, the probability that such a
condition is simultaneously satisfied for all Ns oscillators
is pNs , p being the typical probability value such that
uṽ−Vkuø2dK / l is satisfied for a given oscillator. This
probability is therefore exponentially small when the
number of subclusters Ns is of order OsNd,

PsN,Kd , N exps− cNd . s71d

Here c is a constant, and the factor N in front of the
exponential is due to the number of all possible ways the
cluster S can be embedded in the lattice. Therefore the
probability vanishes in any dimension in the limit of
large population. This proof assumes that entrained
clusters have a compact structure such as a cubical
shape. However, this need not necessarily be true. Had
the clusters a noncompact shape ssuch as space-filling
sponges or lattice-animal treelike structuresd, the proof
would not hold anymore, since the number of subclus-
ters Ns does not have to scale necessarily as 1/ ld. There-
fore such a result does not prevent the existence of a
macroscopic entrainment in noncompact clusters.
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This finding does not appear to contradict that re-
ported by Daido s1988d, who has shown the existence of
a lower critical dimension dl, depending on the tails of a
class of frequency distributions gsvd. When

gsvd , uvu−a−1, uvu @ 1, s72d

then normalization requires a.0. Moreover, Daido
considers that aø2 for distributions with an infinite
variance, the limiting case a=2 corresponding to the
case of a distribution with finite variance ssuch as the
Gaussian distributiond. The argument put forth by
Daido resorts to a similar block decimation procedure as
that outlined in Eqs. s68d and s69d. However he reports
different conclusions from those by Strogatz and Mirollo
s1988a, 1988bd. Having defined the subcluster or block
frequencies Vk and phases Qk in Eq. s68d, Daido shows
that only for d,a / sa−1d, and in the limit when l→`,
does Eq. s70d yield the fixed-point dynamical equation

Q̇k = Vk s73d

for every k, which shows that no clustering can occur for
0,aø1 in any dimension. However, for 1,aø2, mac-
roscopic entrainment should be observed for dimensions
above dl=a / sa−1d. For the Gaussian case, a=2, en-
trainment occurs above dl=2 as was also suggested by
Sakaguchi et al. s1987d. Numerical evidence in favor of a
synchronization transition in dimension d=3 sDaido,
1988d is not very convincing. The correct value of the
upper critical dimension remains to be solved.

The Kuramoto model in an ultrametric tree has also
been studied by Lumer and Huberman s1991, 1992d.
They considered a general version of the model in Eq.
s66d, where N oscillators sit in the leaves of a hierarchi-
cal tree of branching ratio b and L levels; see Fig. 7. The
coupling among the oscillators Kij is not uniform but
depends on their ultrametric distance lij, i.e., the number
of levels in the tree separating the leaves from its com-
mon ancestor,

Kij = Kdslijd , s74d

where dsxd is a monotonically decreasing function of the
distance. The existence of a proper thermodynamic limit

requires, for dsxd in the limit of large L ,N,

o
i=1

N

Kij = K , s75d

for all j. For a given value of K, as the ultrametric dis-
tance lij increases, entrainment fades away. However, as
K increases, more and more levels tend to synchronize.
Therefore this model introduces in a simple way the
clusterization of synchronization, thought to be relevant
in the perception problem at the neural level ssee Sec.
VII.Ad. The simplest function dsxd that incorporates
such effects has an exponential decay dsxd,1/ax, where
the coupling strength decreases by a factor a at consecu-
tive levels. It can be shown sLumer and Huberman,
1992d that a cascade of synchronization events occurs
whenever bùa /asa−1d, where a is defined by Eq. s72d.
In such a regime, the model displays a nice devil’s stair-
case behavior when plotting the synchronization param-
eter as a function of K. This is characteristic of the emer-
gent differentiation observed in the response of the
system to external perturbations. Other topologies be-
yond the simple cubic lattice structure have also been
considered. Niebur, Schuster, et al. s1991d analyze spatial
correlation functions in a square lattice of oscillators
with nearest-neighbor, Gaussian sthe intensity of the in-
teraction between two sites decays with their distance
according to a Gaussian lawd, and sparse connections
seach oscillator is coupled to a small and randomly se-
lected subset of neighborsd. Overall, they find that en-
trainment is greatly enhanced with sparse connections.
Whether this result is linked to the supposed noncom-
pact nature of the clusters is yet to be checked.

An intermediate case between the long-range Kura-
moto model and its short-range version s66d occurs when
the coupling among oscillators decays as a power law,
1/ra, r denoting their mutual distance. The intensity of
the coupling is then properly normalized in such a way
that the interaction term in Eq. s66d remains finite in the
limit of large population. For the normalized case, in
one dimension, it has been shown sRogers and Wille,
1996d that a synchronization transition occurs when a
,acsKd with Ksa=0d=2/ fpgsv=0dg, corresponding to
the Kuramoto model fsee the paragraph just after Eq.
s11dg. It is found that a,2 is required for a synchroniz-
ing transition to occur at finite K. Note that the same
condition is found for one-dimensional Ising and XY
models in order to have a finite-temperature transition.
For the non-normalized case results are more interesting
sMarodi et al., 2002d, as they show a transition in the
population size srather than in the coupling constant Kd
for a,d. In such a case, synchronization occurs pro-
vided that the population is allowed to grow above some
critical value NcsK ,a,dd. The relevance of such a result
stems from the fact that sufficiently large three-
dimensional populations, interacting through a signal
whose intensity decays as 1/r2, such as sound or light,
can synchronize whatever the value of the coupling K
might be.

FIG. 7. A hierarchical tree with N=9 two-level sL=2d oscilla-
tors having branching ratio b=3. The distance lij between two
oscillators is given by the number of levels between them and
their closest common ancestor. In this example, l12= l46= l78=1
and l15= l58=2.
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Before ending the present overview of short-range
models, it is worth mentioning that the complexity of the
synchronization phenomenon in two dimensions has
been emphasized in another investigation conducted by
Kuramoto and co-workers sSakaguchi et al., 1988d. Here
they studied a model where the coupling function was
slightly modified to account for an enhancement of the
oscillator frequencies due to their interaction,

u̇i = vi + Ko
si,jd

fsinsuj − ui − ad + sinsadg , s76d

with −p /2øaøp /2. This is a nonvariational model,
since the interaction term does not correspond to the
gradient of a two-body potential. The effect of the pa-
rameter a is to decrease the entrainment among oscilla-
tors that have different natural frequencies, giving rise
to a higher value of the critical coupling. Notably this
model has been found to describe synchronization of
Josephson-junction arrays fsee Eq. s155d and the ensuing
discussiong. The parameter a already has an interesting
effect in the nondisordered model vi=0 sfor a=0 this is
the XY modeld, where neighboring phases inside a vor-
tex can differ greatly, thereby inducing an increase in the
local frequency. The vortex acts as a pacemaker, enhanc-
ing entrainment in the surrounding medium.

B. Models with disorder

The standard Kuramoto model already has disorder
built in. However, one can include additional disorder in
the coupling among the oscillators. Daido has consid-
ered the general mean-field model sDaido, 1992bd

u̇i = vi + o
si,jd

Kij sinsuj − ui + Aijd + jistd , s77d

where the couplings Kij are Gaussian distributed,

PsKijd =
N

Î2pK2
expS−

NKij
2

2K2 D , s78d

the natural frequencies being distributed according to a
distribution gsvd and j being Gaussian noise. The Aij are
real-valued numbers lying in the range f−p ,pg and stand
for potential vector differences between sites which
amount to random phase shifts. The interest of this
model lies in the fact that frustration, a new ingredient
beyond disorder, is introduced. Frustration implies that
the reference oscillator configuration, which makes the
coupling term in Eq. s77d vanish, is incoherent, i.e., ui
−ujÞ0. This is due to the competing nature of the dif-
ferent terms involved in that sum which contribute with
either a positive or a negative sign. Frustration makes
the reference configuration extremely hard to find using
standard optimization algorithms. Compared to the
models without disorder, few studies have been devoted
to the disordered case so far, yet they are very interest-
ing as they seem to display synchronization to a glassy
phase rather than to a ferromagneticlike one. Moreover,
as structural disorder tends to be widespread in many
physical systems, disordered models seems to be no less

relevant to realistic oscillator systems than their ordered
counterparts.

1. Disorder in the coupling: the oscillator glass model

The model s77d with disorder in the coupling param-
eter Kij and Aij=0 has been the subject of recent work
sDaido, 1987a, 1992b, 2000; Stiller and Radons, 1998,
2000d. The model equation is

u̇i = vi + o
si,jd

Kij sinsuj − uid + jistd , s79d

where the Kij’s are given by Eq. s78d. When vi=0 this
corresponds to the XY spin-glass model sSherrington
and Kirkpatrick, 1975; Kirkpatrick and Sherrington,
1978d, introduced to mimic the behavior of frustrated
magnets. It is well known that the XY spin-glass model
has a transition at a critical noise intensity Dc=1 from a
paramagnetic phase sD.Dcd to a spin-glass phase sD
,Dcd. When natural frequencies exist, a synchronization
transition is expected to occur from an incoherent to a
synchronized glassy phase. The most complete study
syet with contradictory results; see belowd was done
without noise and for a Gaussian frequency distribution
gsvd in two different works. One of these was done by
Daido s1992bd, the other by Stiller and Radons s1998d.
Daido s1992bd conducted a detailed numerical analysis
of the distribution pshd of the local field hj acting on
each oscillator defined by

pshd =
1

No
j=1

N

dsh − hjd , s80d

hj =
1

Ko
l=1

N

Kjl expsiuld . s81d

Daido showed how, as the value of K is increased, pshd
changes from a pure Gaussian distribution, whose maxi-
mum, h*, is located at 0, to a non-Gaussian function
where h* becomes positive. This establishes the value of
the critical coupling as Kc<8.

Glassy systems are known for their characteristic slow
relaxational dynamics, which lead to phenomena such as
aging in correlations and response functions and viola-
tions of the fluctuation-dissipation theorem sCrisanti
and Ritort, 2003d. Synchronization models are expected
to show similar nonequilibrium relaxation phenomena,
although aging is not expected to occur in the stationary
state. In particular, Daido also considered the order pa-
rameter

Zstd =
1

No
j=1

N

expfiujstdg , s82d

showing that Zstd decays exponentially with time in the
incoherent-phase case sK,Kcd, and as a power law in
time in the synchronized-phase case. These results were
criticized in a subsequent work by Stiller and Radons
s1998d. They considered the analytical solution of the
dynamics of the same model, using the path-integral for-

154 Acebrón et al.: The Kuramoto model: A simple paradigm for synchronization phenomena

Rev. Mod. Phys., Vol. 77, No. 1, January 2005



malism of Martin, Siggia, and Rose to reduce the
N-oscillator problem to a single-oscillator problem with
a correlated noise. The resulting dynamical equations
can be solved self-consistently by using the approach de-
veloped by Eisfeller and Opper for the Sherrington-
Kirkpatrick model sEissfeller and Opper, 1978d. The ad-
vantage of such a method is that it directly yields
dynamical results in the infinite-size limit. The drawback
is that the time required to solve the dynamics up to M
time steps grows as M2, so that typically no more than
M=1000 time steps can be considered. Stiller and Ra-
dons s1998d claimed that a power law for Zstd could not
be observed for values of Kc approximately above 8.
However, the results they reported in favor of their
claim were questionable. In particular, Stiller and Ra-
dons’s dynamic computations reached only time scales
much smaller than those attained by Daido using nu-
merical simulations ssee Sec. VI.Ad, who reached times
on the order of 100 Monte Carlo steps. It is difficult to
sustain a discussion on the asymptotic behavior of Zstd
with the short time scales considered in both works. This
issue has raised some controversy sDaido, 2000; Stiller
and Radons, 2000d which has not yet been resolved. Al-
though Stiller and Radons conclude that, after all, theirs
and Daido’s results might be compatible, the discrepan-
cies turn out to be serious enough to question the valid-
ity of either one’s results. Indeed, there is a discrepancy
between the critical value Kc derived in these two works
from measurements made in the stationary regime.
Stiller and Radons introduced the equivalent of the
Edwards-Anderson parameter q̃ for the XY case,

q̃ = lim
t→`

lim
N→`

lim
t0→`

ReCst0,t0 + td , s83d

where Cst ,sd is the two-times complex-valued correla-
tion function

Cst,sd =
1

No
j=1

N

exphifustd − ussdgj . s84d

The order of the limits in Eq. s83d is important: the t0
→` limit assures that the stationary regime is attained
first, the N→` limit ensures ergodicity breaking, and
the t→` limit measures the equilibrium order within
one ergodic component. Measurements of q̃ reveal a
neat transition across Kc=24 ssee Fig. 3 in Stiller and
Radons, 1998d, nearly three times larger than the value
reported by Daido ssee Fig. 2 in Daido, 1992bd. The ori-
gin of such a discrepancy is thus far unknown. Further
work is needed to resolve this question.

Before finishing this section, let us mention that the
study of the model in Eq. s79d with site-disordered cou-
plings has been considered by Bonilla et al. s1993d for
the Kuramoto model with the van Hemmen–type inter-
actions. Such interactions are characterized by the cou-
pling parameters Kij=K0 /N+ sK1 /Ndsjihj+hijjd, where
ji,hi are random independent identically distributed
quenched variables which take values ±1 with probabil-
ity 1/2. Such a model is exactly solvable, so the resulting
phase diagram can be obtained analytically. These au-

thors found several phases, depending on the ratio be-
tween K0 and K1, i.e., incoherence, synchronization,
spin-glass phase, and mixed phase swhere oscillators are
partially coherently synchronized and partially in phase
oppositiond.

2. The oscillator gauge glass model

The oscillator gauge glass model has seldom been
studied and is included here for completeness. It corre-
sponds to the model in Eq. s77d, where Kij=K /N and
frustration arises solely from the random phase shifts
AijP f−p ,pg. Note that this term by itself is enough to
induce frustration. For instance, when Aij=0 or p with
probability 1/2, such a model coincides with the previ-
ous oscillator glass model where Kij= ±1 with identical
probability. In general, for nondisordered models sin the
absence of natural frequenciesd, and in the absence of an
external magnetic field, the vector potential components
around a plaquette add to zero. In the presence of a
field, this term is an integer number times the value of
the quantized flux. Therefore the present oscillator
gauge glass model in two dimensions can be seen as a
simplified version of overdamped Josephson-junction ar-
rays. Let us just mention a study by Park et al. s1998d of
the phase diagram of the oscillator gauge glass model, in
which the stationary states were taken as the equilib-
rium states of the corresponding Boltzmann system. The
key technique was to map such a model into an equilib-
rium gauge glass model. However, as already explained
in Sec. VI.C, this approach does not guarantee a full
characterization of the stationary solutions.

C. Time-delayed couplings

One of the most natural and well-motivated exten-
sions of the Kuramoto model concerns the analysis of
time-delayed coupling among oscillators. In biological
networks, electric signals propagate along neural axons
at a finite speed. Thus delays due to transmission are
natural elements in any theoretical approach to informa-
tion processing. Time delays can substantially change
the dynamical properties of coupled systems. In general,
the dynamic behavior becomes much richer and, on oc-
casion, even surprising. One might think that time de-
lays tend to break coherence or to make it difficult in
populations of interacting units, but this is not always
the case. An important example has been the focus of
intense research in the past few years: synchronization in
chaotic systems. It has been proved that a delayed cou-
pling is the key element for anticipating and controlling
the time evolution of chaotic coupled oscillators by syn-
chronizing their dynamics sPikovsky et al., 2001; Voss,
2001d. In excitable systems the situation is quite similar.
It has been reported that delayed couplings may favor
the existence of rapid phase-locked behavior in net-
works of integrate-and-fire oscillators sGerstner, 1996d.

How important are time delays for a population of
coupled phase oscillators? This depends on the ratio of
the time delay to the natural period of a typical oscilla-
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tor. In general, the delay should be kept whenever the
transmission time lag is much longer than the oscillation
period of a given unit sIzhikevich, 1998d. On the other
hand, the delay can be neglected whenever it is compa-
rable to the period of the oscillators.

Let us start by discussing the dynamic properties of
short-range coupled Kuramoto models with time-
delayed couplings sSchuster and Wagner, 1989; Niebur,
Schuster, and Kammen 1991; Nakamura et al., 1994d:

u̇istd = vi + jistd +
K

No
j

sinfujst − td − uistdg . s85d

Here the sum is restricted to nearest neighbors, and t
is a constant time delay. In this model, each oscillator
interacts with its neighbors in terms of the phase that
they had at the time they sent a synchronizing signal.

In a simple system of two oscillators, Schuster and
Wagner s1989d found the typical fingerprint of delays in
several relevant differences between this model and the
standard Kuramoto model. When t=0, one synchroniza-
tion state is stable. However, for nonzero delays and
given values of t and K, there are multiple stable solu-
tions of Eq. s85d with more than one synchronization
frequency and different basins of attraction. In a re-
markable application, this model has been used recently
to explain the experimentally observed oscillatory be-
havior of a unicellular organism sTakamatsu et al., 2000d.

Keeping these results in mind, it is not difficult to
imagine what will happen for large ensembles of oscilla-
tors. In a 1D system, Nakamura et al. s1994d have shown
that complex structures emerge spontaneously for N
→`. They are characterized by many stable coexisting
clusters, each formed by a large number of entrained
units, oscillating at different frequencies. Such structures
have also been observed for a distribution of time delays
sZanette, 2000d. Another peculiarity of the model has
been observed for large coupling intensities and large
delays. In this regime, the system exhibits frequency
suppression resulting from the existence of a large num-
ber of metastable states. In two dimensions, Niebur,
Schuster, and Kamman s1991d have shown that the sys-
tem evolves towards a state with the lowest possible fre-
quency, selected from all the possible solutions of Eq.
s85d, for given values of K and t. More recently, Jeong et
al. s2002d have shown that distance-dependent time de-
lays induce various spatial structures such as spirals,
traveling rolls, or more complex patterns. They also ana-
lyzed their stability and the relevance of initial condi-
tions to select these structures.

The mean-field model has been studied theoretically
by analyzing the corresponding nonlinear Fokker-Planck
equation sLuzyanina, 1995; Yeung and Strogatz, 1999;
Choi et al., 2000d. As in the case of short-range cou-
plings, the delay gives rise to multistability even for
identical oscillators and without external white noise.
The phase diagram sK ,td contains regions where syn-
chronization is a stable solution of the dynamic equa-
tions, other regions where coherence is strictly forbid-
den, and still others where coherent and incoherent

states coexist. The existence of all these regimes has
been corroborated by simulations sKim et al., 1997a; Ye-
ung and Strogatz, 1999d. The same qualitative behavior
has been found for nontrivial distributions of frequen-
cies. As in the standard Kuramoto model, in noisy sys-
tems there is a critical value of the coupling Kc, above
which the incoherent solution is unstable. The value of
Kc depends on the natural frequency distribution, the
noise strength, and the delay. Yeung and Strogatz s1999d
and Choi et al. s2000d carried out a detailed analysis of
the bifurcation at Kc for the nonlinear Fokker-Planck
equation corresponding to Eq. s85d. Kori and Kuramoto
s2001d studied the same problem for more general phase
oscillator models.

D. External fields

A natural extension of the original Kuramoto model
is to add external fields, which gives rise to a much
richer dynamical behavior. External fields can model the
external current applied to a neuron so as to describe
the collective properties of excitable systems with planar
symmetry. For other physical devices, such as Josephson
junctions, a periodic external force can model an oscil-
lating current across the junctions. The Langevin equa-
tion governing the dynamics of the extended model is

u̇i = vi + jistd +
K

No
j=1

N

sinsuj − uid + hi sin ui. s86d

Shinomoto and Kuramoto s1986d studied the case hi
=h, for every i. They analyzed the nonlinear Fokker-
Planck equation associated with Eq. s86d and found two
different regions of the phase diagram: a region of time-
periodic physical observables, and a region of stable sta-
tionary synchronized states. Sakaguchi s1988d replaced
the last term in Eq. s86d by h sinsui−vftd, where vf is the
frequency of the external force. Note that, by defining
ci=ui−vft, we obtain again Eq. s86d for ci, but with
natural frequencies vi−vf. Therefore introducing a
time-periodic external force amounts to modifying the
statistical properties of the natural frequency distribu-
tion gsvd. In general, there will be a competition be-
tween forced entrainment and mutual entrainment.
When h is large, the oscillators tend to be entrained with
the external force. On the other hand, when h is small
there will be a macroscopic fraction of the population
mutually entrained displaying a synchronous collective
motion. Such a motion occurs with a frequency equal to
the mean natural frequency of the population.

Arenas and Pérez-Vicente s1994ad studied the phase
diagram of a Kuramoto model with a distribution of ran-
dom fields, fshd. They solved the nonlinear Fokker-
Planck equation through a generating functional of the
order parameters, and found analytical expressions
thereof, which fully agreed with the numerical simula-
tions. When fshd is centered at h=0, they found a phase
transition between an incoherent state with r=0 and a
synchronized state, which is similar to the transition in
the static model as well as in the model of identical os-
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cillators sArenas and Pérez-Vicente, 1993d. The only dif-
ference here is that the critical value Kc is larger. This is
reasonable because larger values of the coupling
strength are needed to counteract the effect of rotation
due to the frequency distribution. When the field distri-
bution is not centered at the origin, an effective force
arises. This makes rÞ0 for any value of the ratio K /D
sr~ khl for small K /D and for khl!1d, thereby preclud-
ing phase transitions, as in the static case.

Densities having time-dependent solutions with non-
zero order parameters sShinomoto and Kuramoto, 1986;
Sakaguchi, 1988; Arenas and Pérez-Vicente, 1994ad ex-
ist, provided that ehfshddhÞ0. Acebrón and Bonilla
s1998d studied these solutions using the two-timescale
asymptotic method mentioned in Sec. III.C. The prob-
ability density splits into independent components cor-
responding to different peaks in the multimodal fre-
quency distribution. Each density component evolves
toward a stationary distribution in a comoving frame,
rotating at a frequency corresponding to the appropriate
peak in gsvd. Therefore the overall synchronous behav-
ior can be determined by studying the synchronization
of each density component sAcebrón and Bonilla, 1998d.

Inspired by biological applications, Frank et al. s2000d
analyzed the behavior of phase oscillators in the pres-
ence of forces derived from a potential with various
Fourier modes. They studied in detail the transition
from incoherence to phase locking. Finally, Coolen and
Pérez-Vicente s2003d studied the case of identical oscil-
lators with disordered couplings and subject to random
pinning fields. This system is extremely frustrated and
several spin-glass phases can be found in it. The equilib-
rium properties of such a model depend on the symme-
tries of the pinning-field distribution and on the level of
frustration due to the random interactions among oscil-
lators.

E. Multiplicative noise

To end this section, let us discuss the effect of multi-
plicative noise on the collective properties of phase os-
cillators. As far as is known, there have been two differ-
ent approaches to this problem. Park and Kim s1996d
studied the following rather complex version of the
Kuramoto model:

u̇i = vi +
K + shistd

N o
j=1

N

sinsuj − uid + h sinsnuid . s87d

Here hi is a zero-mean delta-correlated Gaussian noise
with unit variance, s measures the intensity of the noise,
and n is an integer. In this model, the phase oscillators
are subject to an external pinning force and therefore
they represent excitable units. Thus Eq. s87d describes
the effect of multiplicative noise on a population of ex-
citable units. Through analytical and numerical studies
of the nonlinear Fokker-Planck equation, Park and Kim
s1996d found the phase diagram of the model sh ,sd for
different values of n. For identical oscillators, there are
new phases in which two or more stable clusters of syn-

chronized oscillators can coexist. This phenomenology is
strictly induced by the multiplicative noise, without re-
quiring time delays or high Fourier modes in the cou-
pling.

Kim et al. s1996; Kim, Park, Doering, and Ryu, 1997d
supplemented Eq. s87d with additive noise. Rather sur-
prisingly, the additive noise tended to suppress the ef-
fects triggered by the multiplicative noise, such as the
bifurcation from one-cluster phase to the two-cluster
state. The new phase diagram exhibited a very rich be-
havior, with interesting nonequilibrium phenomena such
as reentrant transitions between different phases. The
interesting physics induced by the combination of both
types of noise caused Kim, Park, and Rhu s1997bd to
propose a new mechanism for noise-induced current in
systems under symmetric periodic potentials.

Reimann et al. s1999d tackled the problem from a dif-
ferent standpoint. They considered the standard mean-
field equation s23d with a nonequilibrium Gaussian
noise, characterized by

kjistdl = 0, kjistdjjst8dl = 2Dsuiddijdst − t8d , s88d

where Dsud=D0+D1 cossud and D0ùD1ù0. The au-
thors considered only one Fourier mode to make their
analysis simpler, and studied the particular case D0
=D1=Q /2. Under such conditions, for identical oscilla-
tors and for arbitrarily weak couplings, time-dependent
oscillatory synchronization appears for a certain value of
the ratio K /Q, via spontaneous symmetry breaking. By
means of numerical simulations, Reimann et al. also
studied the effect of multiplicative noise in systems with
short-range couplings. In such a case, even more com-
plex behavior, including hysteretic phenomena and
negative mobility, was found.

Recently, and only for identical oscillators, Kostur et
al. s2002d studied Eq. s86d with hi=−1 for every i, with
both additive and symmetric dichotomic noise. For the
latter noise, they found a complex phase diagram with
five different regions: incoherence, bistability, phase
locking, hysteretic phenomena, and an oscillatory re-
gime.

V. BEYOND THE KURAMOTO MODEL

Many generalizations of the Kuramoto model have
been proposed to analyze synchronization phenomena
in more complex situations. First of all, periodic cou-
pling functions, which contain more harmonics than the
simple sine function considered by Kuramoto, have
been proposed. Moreover, there are oscillator models
described by two angles stops modelsd, or by phase and
amplitude samplitude oscillatorsd. Finally, the dynamical
behavior described by the Kuramoto model changes if
phase oscillators possess inertia, which makes synchro-
nization harder but the emergence of spontaneous phase
oscillations easier.
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A. More general periodic coupling functions

An immediate generalization of the mean-field Kura-
moto model is given by

u̇i = vi +
K

No
j=1

N

hsuj − uid , s89d

where hsud is a general 2p periodic coupling function,
and the natural frequencies vi are distributed with prob-
ability density gsvd, as usual. By shifting all phases, u
→u+Vt, and selecting V appropriately, we can set
e−`

+`vgsvddv=e−p
p hsuddu=0, without loss of generality.

What can we say about oscillator synchronization in this
more general context?

A particularly successful theoretical approach is due
to Daido s1992a, 1993a, 1993b, 1994, 1995, 1996a,
1996bd, who generalized Kuramoto’s idea on the order
parameter and the partially synchronized state. Let us
assume that the oscillators are phase locked at a com-

mon frequency vestd= ċ. Suppose that there exist the fol-
lowing order parameters:

Zj ; Xj + iYj = lim
t→`

1

No
k

exphijfukstd − cestdgj . s90d

If the coupling function is expanded in Fourier series as

hsud = o
j=1

`

fhj
s sinsjud + hj

c cossjudg = o
j=−`

`

hje
iju, s91d

then a simple calculation shows that we can write Eq.
s89d in the following form:

u̇i = vi − KHfui − cestdg , s92d

provided we define the order function H as

Hscd ; − o
j=−`

`

hjZje
−iju = o

j=1

`

hshj
sXj − hj

cYjdsinsjcd

− shj
cXj + hj

sYjdcossjcdj . s93d

Note the similarity between Eq. s92d and Kuramoto’s
expression, Eq. s3d. Daido s1992ad derived a self-
consistent functional equation for Hscd, assuming that
Hscd possesses only one maximum and one minimum
inside the interval −pøcøp. This equation always has
the trivial solution Hscd=0, which corresponds to inco-
herence. Nontrivial solutions describe synchronized
states of the oscillator population. Furthermore, one ex-
pects that, for K sufficiently large, the onset of mutual
entrainment is a bifurcation of a nontrivial order func-
tion from incoherence.

Keeping this in mind, Daido considered several spe-
cial cases sDaido, 1992a, 1993a, 1993bd. When the Fou-
rier series of the coupling function contains only odd
harmonics, there is spontaneous synchrony above the
critical value of the coupling constant,

Kc =
2

pgsvedh1
s . s94d

This shows that Kc depends on the first harmonic but
not on the higher modes. Notice that the Kuramoto
model belongs to this family of models fin fact hsud
=sin ug and the value given by Eq. s94d is consistent with
the results given in Sec. II. The bifurcation to the syn-
chronized state is supercritical provided that g9sved,0
and h1

s .0. These results were confirmed by numerical
simulations.

Daido s1994d worked out a bifurcation theory for the
order function whose L2 norm, iHi;fe−p

p H2scddcg1/2,
can be represented in a bifurcation diagram as a func-
tion of the coupling strength K. Near the critical cou-
pling, iHi~ sK−Kcdb, which defines the critical exponent
b. It turns out that the Kuramoto model describes the
scaling behavior of a reduced family of phase oscillators
for which b=1/2, whereas b=1 for the vast majority of
coupling functions sDaido, 1994, 1996bd. This fact sug-
gests the existence of different classes of universality.
Crawford s1995d confirmed most of these findings by
means of standard bifurcation theory, while Balmforth
and Sassi s2000d gave a simple mode-coupling explana-
tion for the different scalings in an example, where the
only nonzero harmonics are h1

s =1 and h2
s =s.

The previous theory can be generalized to order func-
tions with several peaks in the interval s−p ,pd sDaido,
1995, 1996ad. In this case, the oscillators may choose
among different coexisting phase-locking states, and
their resulting dynamical behavior is more complex than
the standard case, where only one type of entrainment is
possible sDaido, 1996ad. When the order function has
more than one local maximum and a local minimum,
there is an overlap region with at least two branches
where H8scd.0. Oscillators whose frequency lies in the
overlap region may synchronize to the phase of one
stable branch, depending on their initial condition. The
number of such states is exponentially large, and the
entropy per oscillator is an appropriate order parameter
which characterizes the corresponding macroscopic state
sDaido, 1996ad.

Work carried out by other authors confirms the pre-
dictions made by means of the order-function formalism.
For instance, Hansel et al. s1993bd considered coupling
functions with two Fourier modes and a free parameter
that controls the attractive/repulsive character of the in-
teraction among oscillators. Besides the usual states
typical of the Kuramoto model, the incoherent state and
the synchronized state, they found more complex dy-
namical occurrences, according to suitable values of the
control parameter. For instance, there was switching be-
tween two-cluster states connected by heteroclinic or-
bits. Each cluster contained a group of phase-locked os-
cillators running at a common frequency. Other studies
discussing a large variety of clustering behavior for cou-
pling functions having a large number of Fourier modes
were conducted by Golomb et al. s1992d, Okuda s1993d,
and Tass s1997d.
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Bonilla, Pérez-Vicente, Ritort, and Soler s1998d stud-
ied singular coupling functions such as hsud
=d8sud ,dsud , sinsud, etc. which possess infinitely many
nonvanishing Fourier modes. They showed that the dy-
namics of these models can be exactly solved using the
moment approach discussed in Sec. VI.C. Considering
the generating function for the moments,

r̂sx,y,td =
1

2p
o

k=−`

`

o
m=0

`

exps− ikxd
ym

m!
Hk

mstd , s95d

Hk
mstd =

1

No
j=1

N

expfikujstdgvj
m,

its time evolution satisfies

]r̂

]t
= −

]

]x
fvsx,tdr̂g + D

]2r̂

]x2 −
]2r̂

]x]y
, s96d

where the drift velocity vsx , td is defined by

vsx,td = − K o
n=−`

`

hnH−n
0 expsinxd . s97d

The moment-generating function and the one-
oscillator probability density are related by

r̂sx,y,td = E
−`

+`

eyvrsx,v,tdgsvddv . s98d

Bonilla, Pérez-Vicente, Ritort, and Soler s1998d noticed
that, for special couplings and for gsvd=dsvd fso that r̂
=rsx , tdg, it is possible to map synchronization into other
physical problems. For instance, for hsud=d8sud, Eq. s96d
becomes

]r

]t
= K

]

]x
Sr

]r

]x
D + D

]2r

]x2 , s99d

which in the literature is used to describe porous media.
It can be shown that, in this case, the incoherent solution
is stable and therefore entrainment among oscillators is
not allowed. When hsud=dsud, Eq. s96d becomes the vis-
cous Burgers equation,

]r

]t
= 2Kr

]r

]x
+ D

]2r

]x2 s100d

and synchronization is possible only at zero temperature
sD=0d. Finally when hsud=sinsud, the equation for r can
be recast as a pair of coupled nonlinear partial differen-
tial equations. Their stationary solutions can be evalu-
ated explicitly in terms of elliptic functions, and there-
fore the associated bifurcation diagram can be
constructed analytically for all K’s. In this case, multiple
solutions bifurcate from incoherence for different values
of the coupling strength. It should be mentioned that
these authors established a link between their approach
and Daido’s order-function method.

One-dimensional chains of phase oscillators with
nearest-neighbor interactions sand also beyond nearest
neighborsd and arbitrary coupling function have also

been studied recently by Ren and Ermentrout s2000d.
Given the complexity of such a problem, they studied
general properties of the model such as the conditions
required to ensure existence of phase-locking solutions.
Numerical examples were provided to confirm their the-
oretical predictions.

B. Tops models

The Kuramoto model deals with interacting units
which behave as oscillators that are described by only
one variable, i.e., their phase. However, it is not difficult
to imagine other cases in which the mutually interacting
variables are not oscillators, but rather classical spins
described by azimuthal and polar angles. Ritort s1998d
introduced a tops model, and solved the associated
phase diagram in the mean-field case.

Although the name “top” is a misnomer stops are de-
scribed by three Euler angles, rather than only twod, it is
perhaps a more appropriate word than the more correct
term “spin.” This choice may avoid some confusion in
view of the overwhelming variety of spin models existing
in the literature. The tops model might have experimen-
tal relevance whenever precession motion is induced by
an external perturbation acting upon the orientational
degrees of freedom of a given system. It can describe the
synchronized response of living beings, such as bacteria,
endowed with orientational magnetic properties, or
complex resonance effects in random magnets or NMR.

The model consists of a population of N Heisenberg
spins or tops hsW i ,1ø iøNj sof unit lengthd which precess
around a given orientation n̂i at a given angular velocity
vi. Larmor precession of the ith top is therefore de-
scribed by a vector vW i=vin̂i. Moreover, the tops in the
population mutually interact, trying to align in the same
direction. The tops-model equations of motion are

sẆ i = vW i 3 sW i −
K

No
j=1

N
]EssW i,sW jd

]si
+ hi

W std , s101d

where K is the coupling strength and EssW i ,sW jd is the two-
body energy term. Rotational invariance symmetry re-
quires E to be a function of the scalar product sW isW j, the
simplest case being the bilinear form EssW i ,sW jd=sW isW j.
Natural frequencies vW i are chosen from a distribution
PsvW id. The term hW istd is a Gaussian noise of zero mean
and variance equal to 6D, the factor 6 arising from the
three degrees of freedom. As it stands, Eq. s101d is not
yet well defined because the unit length of the vector sW i
is not constant, as can be seen by multiplying both sides
of the equation by sW i. In order to avoid such a problem,
it is convenient to project the tops onto the surface of a
unit radius sphere. This requires us to introduce the azi-
muthal angles uiP f0,pg and the polar angles fi

P f0,2pd, sW i= fcossfidsinsuid , sinsfidsinsuid , cossuidg. The
main technical difficulty in this approach arises from the
noise term, which should be described by Brownian mo-
tion constrained on a spherical surface ssee, for instance,
Coffey et al., 1996d. The use of spherical coordinates also
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requires that the natural frequency vectors vW i be speci-
fied in terms of their modulus vi, and their azimuthal
and polar angles smi ,lid. Note at this point that three
parameters enter into the description of the disordered
units, rather than only one si.e., the natural frequency
vid in the Kuramoto model. The ensuing equations of
motion are

u̇i = − KFusui,fi,mW d + viGusui,fi,li,mid + ji
u, s102d

ḟi sin ui = − KFfsui,fi,mW d + viGfsui,fi,li,mid + ji
f,

s103d

where the functions Fu, Ff, Gu, Gf can be easily ob-
tained by transforming the first two terms on the right-
hand side of Eq. s101d to spherical coordinates, and
where mW = s1/Ndoi=1

N sW i is the average magnetization. The
latter plays the role of the order parameter in the tops
model, as does the parameter r in the Kuramoto model
fsee Eq. s2d in Sec. IIg. The noise terms ji

u, ji
f are Gauss-

ian correlated with variance 2D and average D cot ui
and 0, respectively.

The solution of the tops model poses additional math-
ematical difficulties compared to the Kuramoto model,
but most of the calculations can be done for the simplest
disordered cases. Ritort s1998d accomplished the calcu-
lations were in the presence of only orientational disor-
der, where vi=v for every i. The natural frequency dis-
tribution is here given by a function psm ,ld. Perhaps the
easiest approach to solving such a model is that of using
the moment representation ssee Sec. VI.Cd, by introduc-
ing the set of moments

Mlm
pq =

1

No
i=1

N

Ylmsui,fidYpqsmi,lid . s104d

This formulation allows for a simple analysis of both the

stationary solutions and their stability in the sK̃
=K /D , ṽ=v /Dd plane, as well as providing an efficient
method for the numerical integration of the model in the
limit N→`. Ritort s1998d investigated several axially
symmetric disorder distributions where psm ,ld;psmd:

sad antiferromagnetically oriented precessing frequen-
cies with psmd= s1/4pddsm−0d+ s1/4pddsm−pd,

sbd precessing orientations lying in the XY plane,
psmd= s1/2pddsm−p /2d, and

scd isotropic disorder psmd=1/4p.

While case sad corresponds to a purely relaxational
model sthe mean-field antiferromagnetd, displaying a

single synchronization transition at K̃=3, models sbd and
scd show a more complex dynamical behavior. In fact, in
case scd it was found that the incoherent solution is

stable for K̃,3, unstable for K̃.9, and stable in the

region 3,K̃,9 whenever ṽ2. s12K̃−36d / s9−K̃d, yield-
ing a rich pattern of dynamical behavior.

More work still needs to be done on the tops model.
Especially interesting would be an experimental verifi-
cation of the orientational entrainment in magnetic sys-
tems or in magnetized living cells. Here, nonlinear ef-
fects are introduced by the inertial effects induced by
the Larmor precession of magnetic moments in a mag-
netic field.

C. Synchronization of amplitude oscillators

As long as the attraction in each oscillator to its limit
cycle dominates over the coupling among the members
of the population, a phase model suffices to account for
a number of phenomena. This is the case of the classical
Kuramoto model. On the other hand, when the coupling
is strong enough, the amplitude of each oscillator may
be affected, and hence a more comprehensive model is
required, in which the dynamics of the amplitudes as
well as those of the phases is included.

Similarly to the case of the Kuramoto model, one can
consider several interactions among the oscillators, most
importantly, nearest-neighbor salso called diffusived cou-
pling sBar-Eli, 1985d, random coupling between each os-
cillator and an arbitrary number of neighbors sSatoh,
1989d, and “all-to-all” sglobald coupling sErmentrout,
1990; Matthews and Strogatz, 1990; Matthews et al.,
1991d. Incidentally, it should be observed that in several
papers the term “diffusive coupling” is used to refer to
an “all-to-all” coupling instead of to nearest-neighbor
interaction. It is the latter, in fact, that corresponds to
the Laplace operator in a discretized form.

In this section, only amplitude models subject to a
global interaction are discussed. These models, due to
their simplicity, have been more extensively investigated
so far. For instance, a case widely studied is given by the
system of linearly coupled oscillators, each near a Hopf
bifurcation,

żj = s1 − uzju2 + ivjdzj +
K

No
i=1

N

szi − zjd, j = 1, . . . ,N .

s105d

Here zj is the position of the jth oscillator in the com-
plex plane, vj its natural frequency, picked up from a
given frequency distribution, gsvd, and K is the coupling
strength. One should notice that, when the coupling is
small, Eq. s105d also describes the behavior of a general
dynamical system close to a Hopf bifurcation. In fact,
strictly speaking, Eq. s105d with K=0 represents a dy-
namical system in the Hopf normal form, whenever the
frequency does not depend on the amplitude sCrawford,
1991d.

The oscillators in Eq. s105d are characterized by two
degrees of freedom se.g., amplitude and phased. Thus
the behavior is richer than that of phase oscillators gov-
erned by the Kuramoto model. In particular, amplitude
death and chaos may appear in some range of param-
eters characterizing the oscillator populations, such as
coupling strength and natural frequency spread sMat-
thews and Strogatz, 1990d. When amplitudes besides
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phases are allowed to vary in time, it may happen that
all the oscillator amplitudes die out, that is uzju=0 for
every j. Such a behavior is referred to as “amplitude
death” or “oscillator death,” and this phenomenon oc-
curs when sad the coupling strength is of the same order
as the attraction to the limit-cycle, and sbd the frequency
spread is sufficiently large sErmentrout, 1990d. In bio-
logical systems, this may be responsible for rhythmical
loss.

Apparently, Yamaguchi and Shimizu s1984d were the
first to derive the model equation s105d. They considered
a system of weakly globally coupled Van der Pol oscilla-
tors that included white-noise sources. Bonilla et al.
s1987d also analyzed Eq. s105d swith noised for a popula-
tion of identical oscillators. They studied the nonlinear
Fokker-Planck equation for the one-oscillator probabil-
ity density, and found a transition from incoherence to a
time-periodic state via a supercritical Hopf bifurcation
Bonilla et al. s1988d.

A comprehensive analysis of Eq. s105d is presented by
Matthews and Strogatz s1990d, Mirollo and Strogatz
s1990d, and Matthews et al. s1991d. The phenomenon of
amplitude death and its stability regions have been ana-
lyzed by Mirollo and Strogatz s1990d, in terms of the
coupling strength and the spread of natural frequencies.
In the same paper it was also shown that an infinite
system gives a good description of large finite systems.
Matthews and Strogatz s1990d and Matthews et al. s1991d
present a detailed study of all possible bifurcations oc-
curring in Eq. s105d, discussing locking, amplitude death,
incoherence, and unsteady behavior sHopf oscillations,
large oscillations, quasiperiodicity, and chaosd. Matthews
et al. s1991d survey some of the previous work, namely,
the contributions of Shiino and Francowicz s1989d and
Ermentrout s1990d. Shiino and Frankowicz, using a self-
consistent equation, established the existence of par-
tially locked solutions as well as of amplitude death
states, but gave no analytical results on stability. On the
other hand, Ermentrout was probably the first to point
out the amplitude death phenomenon, and to study its
stability analytically for certain frequency distributions
and values of the coupling.

Recently, the dynamical behavior of this model has
been revisited by Monte and D’ovidio s2002d, focusing
on the time evolution of the order parameter. This was
done by a suitable expansion, valid for any population
size, but only for strong couplings and narrow frequency
distributions. Even though the truncation of the hierar-
chy yielding the order parameter was arbitrary, several
known features of such systems were recovered qualita-
tively. Due to the limitation on the frequency spread,
however, no amplitude death could be detected.

D. Kuramoto model with inertia

Considering that the Kuramoto model is merely a
phase oscillator model and ignores the dynamical behav-
ior of the corresponding frequencies, one might attempt
to generalize the original model and cast such features in
it. The simplest way to accomplish such a task is to in-

clude inertial effects in the model. This leads to the sys-
tem of second-order stochastic differential equations:

müi + u̇i = Vi + Kr sinsc − uid + jistd, i = 1, . . . ,N .

s106d

Here Vi represents the natural frequency of the ith os-

cillator, while u̇i=vi is the instantaneous frequency.
These ideas have been developed by Acebrón and

Spigler s1998, 2000d, on the basis of the bivariate nonlin-
ear Fokker-Planck equation, corresponding to Eq. s107d,
in the limit of infinitely many oscillators. Such an equa-
tion is again a nonlinear integro-differential Fokker-
Planck-type equation, which somehow generalizes the
Fokker-plank description of the Kuramoto model. In an
earlier paper, Ermentrout s1991d revisited the special
problem of self-synchronization in populations of cer-
tain types of fireflies, as well as certain alterations in
circadian cycles in mammals. The point was that the
Kuramoto model yielded too fast an approach to the
synchronized state in comparison to the experimental
observations and, moreover, an infinite value is needed
for the coupling parameter in order to obtain a full syn-
chronization. Consequently an adaptive frequency
model was proposed for N nonlinearly coupled second-
order differential equations for the phases. In such a
formulation, the striking difference from the Kuramoto
model is that the natural frequency of each oscillator
may vary in time. Moreover, a nonlinear, in general non-
sinusoidal coupling function was considered in a noise-
less framework. On the other hand, Tanaka et al. s1997a,
1997bd considered the same problem described by Er-
mentrout, but under the mean-field coupling assumption
and with a sinusoidal nonlinearity, and still without any
noise term. They observed hysteretic phenomena sbista-
bility between incoherence and partially synchronized
stated due to a first-order phase transition, also referred
to as a subcritical bifurcation. Such phenomena, how-
ever, may also occur within the Kuramoto model when it
is governed by bimodal frequency distributions sBonilla
et al., 1992d.

Recently, the interplay between inertia and time delay
and their combined effect on synchronization within the
Kuramoto model has been investigated both analytically
and numerically by Hong et al. s2002d. The main feature
here was the emergence of spontaneous phase oscilla-
tions swithout any external drivingd. Such oscillations
were also found to suppress synchronization, whereas
their frequency was shown to decrease when inertia and
delay decreased. Hong et al. also obtained the phase dia-
gram, which shows the stationary and oscillatory re-
gimes as a function of delay, inertia, and coupling
strength. It appears clearly that, for any finite value of
inertia and time delay, the system undergoes a transition
from a stationary to an oscillatory state when the cou-
pling is sufficiently large. Further investigation, however,
seems desirable because in the strong-coupling limit the
phase model itself breaks down.

Another line of research that should be pursued con-
cerns the emergence of stochastic resonance phenomena
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ssee, for instance, Bulsara and Gammaitoni, 1996; Gam-
maitoni et al., 1998d in oscillator systems characterized
by many degrees of freedom. An investigation in this
direction has been started by Hong and Choi s2000d,
who are studying synchronization as well as noise-
induced resonance phenomena and synchronization in
systems of globally coupled oscillators, each having fi-
nite inertia. Hong, Choi, Yi, et al. s1999d considered syn-
chronization phenomena described by Eq. s107d, in the
absence of noise, but under an external periodic driving
force, that is, in systems governed by

müi + u̇i = Vi + Kr sinsc − uid + Ai cossVtd ,

i = 1, . . . ,N , s107d

where V is the frequency of external driving, and Ai is
the amplitude of the ith force term. They found that in a
system with inertia, unlocked oscillators besides those
locked to the external driving contribute to the collec-
tive synchronization, whereas in the absence of inertia,
only those oscillators locked to the external driving con-
tribute sChoi et al., 1994d.

Going back to the model equations in Eq. s107d, it was
established by Acebrón and Spigler s1998d and Acebrón
et al. s2000d that such a model is also capable of synchro-
nizing simultaneously both phase and frequency, as can
be observed within the Kuramoto model sAcebrón and
Spigler, 2000d. Proceeding formally, as in Sec. III, to de-
rive a nonlinear Fokker-Planck equation for the one-
oscillator probability density, in the limit of infinitely
many oscillators, they obtained the new equation sAce-
brón and Spigler, 1998d

]r

]t
= D

]2r

]v2 −
1

m

]

]v
hf− v + V + Kr sinsc − udgrj

− v
]r

]u
. s108d

Here the order parameter is given by

reic = E
−`

+` E
0

2p E
−`

+`

eiursu,v,V,tdgsVddVdudv ,

s109d

where gsVd is the natural frequency distribution. As in
the nonlinear Fokker-Planck equation for the Kuramoto
model, initial value and 2p-periodic boundary condi-
tions with respect to u should be prescribed. Moreover, a
suitable decay of rsu ,v ,V , td as v→ ±` is required. The
initial profile rsu ,v ,V ,0d should be normalized accord-
ing to e−`

+`e0
2prsu ,v ,V ,0ddudv=1. Setting m=0 in Eq.

s107d, one recovers the Kuramoto model. On the other
hand, the effects of a small inertia on synchronization
can be ascertained by analyzing Eq. s109d in the hyper-
bolic limit as m→0. In this limit, the first two terms on
the right-hand side of Eq. s109d are of the same order
and dominate the others. Scaling the equation accord-
ingly, the leading-order approximation to the probability
density r is a shifted Maxwellian function of the fre-

quency v times a slowly varying density function of time
and of the other variables. When one uses the
Chapman-Enskog procedure, the Kuramoto nonlinear
Fokker-Planck equation is recovered as the zeroth-order
approximation for the slowly varying density sBonilla,
2000d. More interestingly, the first-order correction to
this equation contains m and therefore consistently in-
cludes the effects of a small inertia. Similar results were
obtained earlier by Hong, Choi, Yoon, et al. s1999d, who
used an arbitrary closure assumption, thereby omitting
relevant terms that the systematic Chapman-Enskog
procedure provides sBonilla, 2000d.

The incoherent solution to Eq. s109d is a
u-independent stationary solution. According to the
definition of the order parameter in Eq. s109d, in this
case the result r=0 is obtained. Such a solution is given
by

r0sv,Vd =
1

2p
Î m

2pD
e−sm/2Ddsv − Vd2

. s110d

Following a procedure similar to that adopted to
study linear stability in the Kuramoto model ssee Sec.
IIId, one can perturb the solution r with a small term,
which can be assumed depending on time as elt, around
the incoherent solution r0. Technical difficulties, how-
ever, more serious than in the case of the Kuramoto
model, beset the general procedure. First of all, the
equation satisfied by the perturbative term is now itself a
nonlinear partial integro-differential equation. After
rather lengthy and cumbersome calculations, the equa-
tion

1 =
KemD

2 o
p=0

` s− mDdpS1 +
p

mD
D

p!

3 E
−`

+` gsVddV

l + D + iV +
p

m

s111d

was obtained for the eigenvalues l sAcebrón et al.,
2000d. Note that this equation reduces to the eigenvalue
equation for the Kuramoto model in the limit of vanish-
ing inertia m→0. The critical coupling, K=Kc, can be
found by setting Resld=0.

A surprising feature that can be established from such
a relation is that, when gsVd=dsVd, the critical coupling
turns out to be Kc=2D, exactly as in the Kuramoto
model sm=0d. For the Lorentzian frequency distribution
gsVd= s« /pd / s«2+V2d, the critical coupling was found to
be

Kc = 2«sm« + 1d +
2s2 + 3m«d

2 + m«
D + OsD2d , s112d

for small values of noise. Note that in the limit of van-
ishing mass, the result Kc=2sD+«d, occurring in the
Kuramoto model, is recovered. It should also be noted
that when the population is characterized by several fre-
quencies, the inertia does play a role, making it harder
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to synchronize the oscillator populations. In fact, the
critical coupling in Eq. s112d increases with m. Finally,
for the bimodal frequency distribution gsVd= fdsV−V0d
+dsV+V0dg /2, see the stability diagram in Fig. 8.

To sum up, increasing any of the quantities m, D, «
sinertia, noise, frequency spreadd makes it more difficult
to synchronize the oscillator population.

As for the stationary solutions, in the simplest case of
a unimodal frequency distribution, gsVd=dsVd, one can
find analytically

r0su,vd =Î m

2pD
e−sm/2Ddv2 esK/Ddr cossc−ud

E
0

2p

esK/Ddr cossc−uddu

,

s113d

where

reic = E
0

2p E
−`

+`

eiur0su,vddvdu . s114d

Despite the fact that r0 depends on m, one can check
that actually the order parameter in Eq. s114d does not
depend on the inertia. Furthermore, it coincides with the
order parameter of the Kuramoto model.

For a general frequency distribution one can extract
some information from an expansion like

rsu,v,V,td = S2pD

m
D−1/4

e−mv2/4D

3 o
n=0

`

cnsu,V,tdcnsvd , s115d

where the cn’s are given in terms of parabolic cylinder
functions sor, equivalently, Hermite polynomialsd, and
the cn’s obey a certain system of coupled partial differ-
ential equations sAcebrón et al., 2000d. Retaining a suit-

able number of such coefficients, one can analyze the
type of bifurcations branching off the incoherence. It
can be found that both supercritical and subcritical bi-
furcations may occur, depending on the value of the in-
ertia ssee Tanaka et al., 1997a, 1997b, concerning the
subcritical behaviord. For instance, in the case of a
Lorentzian frequency distribution, this behavior differs
from that observed in the Kuramoto model, where only
the supercritical bifurcation appears. Indeed, Fig. 9
shows that apart from the Kuramoto model, a transition
to a subcritical bifurcation takes place for any given
spread « when the inertia is sufficiently large sthe
smaller «, the larger md. Therefore inertial effects favor
the subcritical character of bifurcations in the transition
from incoherence to a partially synchronized state.

Concerning the numerical simulations, a number of
tools have been used. The problem is clearly harder than
treating the Kuramoto model, due to the double dimen-
sionality of the system. Extensive Brownian simulations
have been conducted on the system in Eq. s107d, and a
Fourier-Hermite spectral method has been implemented
to solve the new nonlinear Fokker-Planck equation
sAcebrón et al., 2000d. The latter approach was sug-
gested by the fact that the distribution r is required to be
2p periodic in u and decay to zero as v→ ±`, with a
natural weight e−mv2/4D.

VI. NUMERICAL METHODS

A. Simulating finite-size oscillator populations

1. Numerical treatment of stochastic differential
equations

In this section we review only some general ideas
about the numerical treatment of stochastic differential

FIG. 8. Discrete bimodal frequency distribution: Stability dia-
gram of incoherence in the parameter space sV0 ,Kd for differ-
ent mass values and D=1. From Acebrón et al., 2000.

FIG. 9. Stationary solutions of a Lorentzian frequency distri-
bution with spread «, separating the regions in parameter
space sm ,«d in which the transition to the synchronized state is
either subcritcal or supercritical: dotted line, the analytical so-
lution obtained using cn, n=0,1,2; solid line, the solution com-
puted numerically. From Acebrón et al., 2000.
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equations. The reader is referred to the review papers of
Platen s1999d and Higham s2001d, and the book of
Kloeden and Platen s1999d for more details. An autono-
mous stochastic differential equation has the form

dXstd = f„Xstd…dt + g„Xstd…dWstd , s116d

Xs0d = X0, 0 , t ø T ,

which should be considered as an abbreviation of the
integral equation

Xstd = X0 + E
0

t

f„Xssd…ds + E
0

t

g„Xssd…dWssd , s117d

for 0, tøT. Here f is a given n-dimensional vector func-
tion, g is a given n3n matrix valued function, and X0
represents the initial condition. Wstd denotes an
m-dimensional vector whose entries are independent
standard scalar Brownian motions sWiener processesd,
and the second integral on the right-hand side of Eq.
s117d is intended as a stochastic integral in the sense of
Itô. Recall that the formal derivative, dW /dt, of the
Brownian motion is the so-called white noise. The solu-
tion Xstd to Eqs. s116d and s117d is an n-dimensional
stochastic process, that is, an n-dimensional random
variable vector for each t. When g=0 the problem be-
comes deterministic and then Eq. s116d is an ordinary
differential equation.

The simplest numerical scheme to compute the solu-
tion to Eq. s116d is the natural generalization of the Eu-
ler method, which here takes on the form

Xj = Xj−1 + fsXj−1dDt + gsXj−1dDWj, s118d

for j=1, . . . ,M. Here DWj= sWj−Wj−1d, and Xj repre-
sents an approximation of Xstjd, tj= jDt, and Dt=T /M. As
is well known, the Brownian increments Wj−Wj−1 are
random variables distributed according to a Gaussian
distribution with zero mean and variance Dt. Therefore
Eq. s116d can be solved by generating suitable sequences
of random numbers. As for the error one should attach
to approximate solutions to Eq. s116d, there are two dif-
ferent types, depending on whether one is interested in
obtaining the paths or the moments. In the literature,
these are referred to as “strong” and “weak” approxi-
mations, respectively. In the strong schemes, one should
estimate the error

«s = EfuXsTd − XMug , s119d

which provides a measure of the closeness of the paths
at the end of the interval. In the weak schemes, one is
interested only in computing moments or other func-
tionals of the process Xstd. For instance, in the case of
the first moment, the error is given by

«w = EfXsTdg − EsXMd . s120d

Note that estimating the latter is less demanding. It
can be shown that the Euler scheme is of order 1/2, that
is «s=OsDt1/2d for a strong method, but of order 1 f«w

=OsDtdg for a weak method. Higher-order methods,
however, do exist; for instance, the stochastic generaliza-
tion of the Heun method,

X̄j = Xj−1 + fsXj−1dDt + gsXj−1dDWj, s121d

Xj = Xj−1 +
1
2

ffsXj−1d + fsX̄jdgDt +
1
2

fgsXj−1d

+ gsX̄jdgDWj, j = 1, . . . ,M .

Others are based on the stochastic Taylor formula,
e.g., the Taylor formula of order 3/2, which, for the sca-
lar case, reads sKloeden and Platen, 1999d

Xj = Xj−1 + fsXj−1dDt + gsXj−1dDWj +
1
2

gsXj−1dg8sXj−1d

3fsDWjd2 − Dtg +
sDtd2

2
SfsXj−1df8sXj−1d

+
1
2

fgsXj−1dg2f 9sXj−1dD + f 8sXj−1dgsXj−1dDZj

+ SfsXj−1dg8sXj−1d +
1
2

fgsXj−1dg2g9sXj−1dD
3sDtDWj − DZjd +

1
2

fgsXj−1dfg8sXj−1dg2

+ fgsXj−1dg2g9sXj−1dgS1
3

sDWjd2 − DtDDWj, s122d

where DZj are random variables, distributed according
to a Gaussian distribution with zero mean, variance
sDtd3 /3, and correlation EsDWjDZjd= sDtd2 /2. Using the
Heun method to compute paths sstrong schemed, the er-
ror can be shown to be «s=OsDtd, while for the corre-
sponding weak scheme it is OsDt2d. It can be proved that
computing paths by such a formula produces the inher-
ent error «s=OsDt3/2d, while computing moments gives
an error of order OsDt3d.

2. The Kuramoto model

The Kuramoto model for N globally coupled nonlin-
ear oscillators is given by the system

u̇i = vi +
K

No
j=1

N

sinsuj − uid + jistd, i = 1, . . . ,N s123d

made up of stochastic differential equations s23d and
s24d. System s23d can be solved numerically by the meth-
ods described in the previous subsection sSartoretto et
al., 1998; Acebrón and Spigler, 2000d. In Fig. 10, plots of
the amplitude of the order parameter as a function of
time, obtained using Euler, Heun, and Taylor formulas
of order 3/2, are compared. The reference solution was
provided by solving the nonlinear Fokker-Planck equa-
tion s26d with a spectral sthus extremely accurated
method sAcebrón, Lavrentiev, and Spigler, 2001d. Ex-
periments were conducted for increasing values of N,
which showed that results stabilize by N=500.
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The mean-field coupling assumption implies that in
the thermodynamic limit sN→`d, averaging each single
path uistd over all the noise realizations yields the same
results as averaging over the entire oscillator population.
In practice, the population size N is assumed to be suf-
ficiently large. Indeed, numerical simulations have
shown that populations of a few hundred oscillators, in
many instances, behave qualitatively almost the same as

a population consisting of infinitely many members; see
Fig. 11. In Fig. 12, the discrepancy between the order-
parameter amplitude rN, computed with N oscillators,
and that obtained when N→`, in the long-time regime,
was plotted versus N. The slope of log10 DrN, where
DrN= urN−ru, versus log10 N, shows that DrN,N−1/2 as N
grows.

B. Simulating infinitely many oscillators

In this section, the focus is on the numerical solution
of the nonlinear Fokker-Planck equation s26d, which

FIG. 11. Comparison of the results of numerical simulations
obtained solving the nonlinear Fokker-Planck equation with a
spectral method with 40 harmonics, and solving the system of
stochastic differential equations for two different population
sizes, N=500 and N=5000. Simulations were performed using
a Taylor 3/2 scheme with a time step Dt=0.1. Parameters are
the same as in Fig. 10.

FIG. 13. Numerical simulations by finite differences swith Du
=0.04, Dt=10−4d, spectral method swith 2,4,8 harmonicsd, and
the analytical stationary solution. Parameters are K=3, D=1,
and gsvd=dsvd. From Acebrón, Lavrentiev, and Spigler, 2001.

FIG. 10. Comparison of the results of numerical simulations
based on solving the nonlinear Fokker-Planck equation with
the spectral method s40 harmonicsd, and solving the system of
stochastic differential equations with three different numerical
schemes: Euler, Heun, Taylor 3/2. Here the time step is Dt
=0.1. The population is N=50 000 identical oscillators svi=0d;
K=4 and D=1.

FIG. 12. Fluctuations of the order parameter computed for a
finite number N of oscillators, around its limiting value sob-
tained for N→`d, shown as a function of N on logarithmic
scales. Dots are the computed values, while the dashed line is
the corresponding mean-square regression. The simulations
were performed using the Taylor 3/2 scheme with Dt=0.01.
Parameters are the same as in Fig. 10.
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represents the thermodynamic limit N→`, either by fi-
nite differences or by a spectral method. Let us rewrite
this equation as

]r

]t
= D

]2r

]u2 − v
]r

]u
− Ifrg

]r

]u
+ Jfrgr , s124d

where

Ifrg = E
−`

+` E
0

2p

gsvdsinsf − udrsf,v,tddfdv ,

Jfrg = E
−`

+` E
0

2p

gsvdcossf − udrsf,v,tddfdv . s125d

1. Finite differences

Explicit finite differences are easy to implement and
yield

ri
n+1 = ri

n + D
Dt

Du2 sri+1
n − 2ri

n + ri−1
n d − v

Dt

2Du
sri+1

n − ri−1
n d

−
Dt

2Du
Ifri

ngsri+1
n − ri−1

n d + Jfri
ngri

n, s126d

where ri
n is an approximation to rsiDu ,nDt ,vd, and ini-

tial and boundary data are prescribed. In Eq. s126d, for-
ward time differences and space-centered finite differ-
ences have been used. The parameter v in Eq. s126d
should be picked up from the support of the natural
frequency distribution gsvd. In general, the integral
terms Ifri

ng and Jfri
ng involve a quadrature over the fre-

quencies, which in fact requires a suitable numerical
treatment whenever gsvd is a continuous function. For
instance, when gsvd is a Lorentzian frequency distribu-
tion, the Gauss-Laguerre quadrature has been success-
fully used sAcebrón et al., 2000d.

If we use an explicit scheme, the size of the time step
Dt has to be kept sufficiently small for stability reasons:
DtD / sDud2,1/2. Using an implicit finite-difference
scheme, such as Crank-Nicholson’s sAcebrón and Bon-
illa, 1998; Bonilla, Pérez-Vicente, and Spigler, 1998d, we
can, in principle, increase the time step sfor a given Dud.
The trouble is that our problem is nonlinear, and there-
fore we need to implement an additional iterative pro-
cedure at each time step to find ri

n+1. In practice, this
reduces the time step to rather small values, as illus-
trated by numerical experiments. In Fig. 13, the station-
ary solution corresponding to the case gsvd=dsvd,

r0sud =
eKr0 cossc0−ud

E
0

2p

dueKr0 cossc0−ud

, s127d

where

r0eic0 = E
0

2p

dueiur0 s128d

is compared with the results of the numerical solution of
the nonlinear Fokker-Planck equation evaluated by ei-
ther implicit finite differences or by a spectral method.
Note that inserting Eq. s127d into Eq. s128d yields a non-
linear equation for r0 and c0, whose solution can be
computed with very high accuracy by the Brent method
sPress et al., 1992d.

2. Spectral method

The u periodicity of the distribution r in the nonlinear
Fokker-Planck equation suggests that a suitable numeri-
cal method for solving such a partial differential equa-
tion could be based on expanding r in a Fourier series
with respect to u sShinomoto and Kuramoto, 1986; Sar-
toretto et al., 1998d. Such a spectral method is known to
be very efficient, in that convergence is expected to be
achieved exponentially fast, based on the number of har-
monics sFornberg, 1996d. Expanding

r = o
n=−`

`

rnst,vdeinu,

rnst,vd =
1

2p
E

−p

p

re−inudu s129d

in the nonlinear Fokker-Planck equation leads to a sys-
tem of infinitely many ordinary differential equations:

ṙn = − n2Drn − invrn − n
K

2 Srn+1E
−`

`

r−1gsvddv

− rn−1E
−`

`

r1gsvddvD, n = 0, ± 1, ± . . . s130d

which should be truncated to a suitable number of har-
monics rn, for each frequency v in the support of gsvd.
Such a system can be solved numerically by one of nu-
merous extremely sophisticated packages that are avail-
able. Acebrón, Perales, and Spigler s2001d used a
variable-step Runge-Kutta-Felhberg routine sPress et al.,
1992d.

When, as is often the case, one is only interested in
evaluating the order parameter, a variant of the spectral
method can be used sAcebrón and Bonilla, 1998d. The
main difference consists of centering the phase in the
basis functions around the mean sunknownd phase c.
The probability density r is first expanded in a Fourier
series around the mean phase,

rsu,t,vd =
1

2p
o
j=1

N

hRj cosfjsc − udg + Cj sinfjsc − udgj ,

s131d

where
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Rnsv,td = E
−p

p

cosfnsc − udgrdu ,

Cnsv,td = E
−p

p

sinfnsc − udgrdu . s132d

Then, differentiating Rn and Cn with respect to t, us-
ing the nonlinear Fokker-Planck equation, integrating
by parts, and exploiting the 2p periodicity of r, one ob-
tains the hierarchy

Ṙn = − n2DRn + nvCn +
nKr

2
sRn−1 − Rn+1d − n

dc

dt
Cn,

Ċn = − n2DCn − nvRn +
nKr

2
sCn−1 − Cn+1d

+ n
dc

dt
Rn,

r
dc

dt
= E

−`

+`

vR1sv,tdgsvddv . s133d

Here,

rstd = E
−`

+`

R1sv,tdgsvddv ,

0 = E
−`

+`

C1sv,tdgsvddv . s134d

In many instances, for example, when gsvd is an even
function, R1 turns out to be also even as a function of v,
and thus the last equation in Eq. s133d yields dc /dt=0.
In order to compare this approach with that of Eq. s130d,
let us write Eq. s130d in terms of real quantities. Setting
rn=cn+ isn, we obtain

ṡn = − n2Dsn + nvcn + nK
p

2
fCssn−1 − sn+1d

+ Sscn+1 + cn−1dg ,

ċn = − n2Dcn − nvsn + nK
p

2
fCscn−1 − cn+1d

− Sssn+1 + sn−1dg , s135d

where

S = E
−`

+`

s1st,vdgsvddv, C = E
−`

+`

c1st,vdgsvddv .

s136d

Note that

Rn = 2pfcn cossncd − sn sinsncdg , s137d

Cn = 2pfsn cossncd + cn sinsncdg . s138d

Comparing the two hierarchies, it is now clear that Eq.
s133d is simpler, and, in fact, the corresponding numeri-
cal treatment was observed to be faster.

The spectral method of Eq. s130d has been analyzed
by Acebrón, Lavrentiev, and Spigler s2001d, who ob-
tained explicit bounds for the space derivatives. Such
bounds play a role in estimating the error term in the
Fourier-series expansion. The number N of harmonics
required to achieve a given numerical error has been
investigated as a function of the nonlinearity parameter
K, the noise strength D, and e−`

+`gsvddv. Indeed, the L2

norm swith respect to ud of the error can be estimated as

i«Nsu,t,vdi ø
ÎCp

sN + 1dp , s139d

where Cp is an estimate for the pth derivative of r with
respect to u. In practice, Cp depends on the initial data
and on the parameter sK /Dde−`

+`gsvddv. Since Cp grows
rapidly with such a parameter, larger nonlinearities as
well as lower noise levels require a higher number of
harmonics. In Fig. 14, the harmonics amplitude urnu is
plotted as a function of n for several values of K.

The performance of the spectral method is illustrated
in Fig. 13, where a comparison with the result of finite-
difference simulations is shown. In the latter, a mesh-size
Du=0.04 was used, while the former algorithm was run
with N=2,4 ,8 harmonics. In Fig. 15, the global L2 error
as a function of N, with N=1/Du, is plotted in logarith-
mic scales, which shows that the spectral method outper-
forms the finite-difference method. The CPU time
needed to implement N=12 harmonics in the spectral
method was approximately 25 times smaller than when
using finite differences with Du=0.04, Dt=10−4.

FIG. 14. The coefficients urns` ,vdu corresponding to the sta-
tionary solution are shown for various coupling strength pa-
rameters K. The frequency distribution here is gsvd=dsvd, and
the diffusion constant D=1. From Acebrón, Lavrentiev, and
Spigler, 2001.
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3. Tracking bifurcating solutions

A powerful numerical code exists that is capable of
tracking bifurcating solutions in general systems of ordi-
nary differential equations. Such a code, called AUTO
sDoedel, 1971d, is based on continuing a given solution
up to and beyond several bifurcating branches. In this
way, one is able to assess the stability properties of each
branch.

The code AUTO was applied to the system of nonlin-
ear deterministic ordinary differential equations ob-
tained through the spectral method described in the pre-
vious section sAcebrón, Perales, and Spigler, 2001d. This
made possible the analysis of the bifurcations occurring
in infinite populations of globally coupled oscillators de-
scribed by the noisy Kuramoto model in Eq. s23d. In
particular, the stability issue could be examined for the
synchronized stationary states.

In Fig. 16, a bifurcation diagram for a unimodal fre-
quency distribution is shown. The reader is referred to
Acebrón, Perales, and Spigler s2001d for other more
elaborate pictures corresponding to multimodal fre-
quency distributions. Global stability of spartiallyd syn-
chronized stationary solutions was conjectured and in-
vestigated for a rather long time by Strogatz s2000d, and
numerical evidence for such a stability was provided.

C. The moments approach

Pérez-Vicente and Ritort s1997d proposed an alterna-
tive derivation of the nonlinear Fokker-Planck equation
for the mean-field Kuramoto model to that reported in
Appendix A. The advantage of this approach is three-
fold: s1d it provides an efficient way to solve the mean-
field equations numerically in the limit of large N’s, free
of finite-size effects; s2d it provides a simple proof that
the stationary solutions of the dynamics are not Gibb-
sian, and therefore they cannot be derived within a

Hamiltonian formalism sPark and Choi, 1995d; and s3d it
can be used as a basis for including fluctuations beyond
the mean field, in the framework of certain approximate
closure schemes. The idea of such an approach relies on
the rotational symmetry of the Kuramoto model, ui
→ui+2p. The most general set of observables, invariant
under these local transformations, are

Hk
mstd =

1

No
j=1

N

expfikujstdgvj
m, s140d

where k ,m are integers with mù0. Note that Hk
mstd

= fH−k
m stdg*. Under the dynamics described by Eq. s23d,

these observables do not fluctuate in the limit of large
N’s, i.e., they are both reproducible sindependent of the
realization of noised and self-averaging sindependent of
the realization of the random set of vid.

1 After averaging
over the noise, the set of observables in Eq. s140d closes
the dynamics in the limit N→`,

]Hk
m

]t
= −

kK

2
sHk+1

m H−1
0 − Hk−1

m H1
0d − k2DHk

m

+ ikHk
m+1. s141d

The order parameter in Eq. s4d was introduced in Eq.
s141d through the relation H1

0=r expsicd. Equation s141d
leads immediately to the nonlinear Fokker-Planck equa-
tion s26d, in terms of the one-oscillator probability den-
sity

1Of course the specific set of natural frequencies for the real-
ization must be considered as typical satypical realizations such
as the nondisordered choice vi=v are excludedd.

FIG. 15. Global L2 error as a function of Du, or N, for K
=4,8. Here gsvd=dsvd. From Acebrón, Lavrentiev, and Spig-
ler, 2001.

FIG. 16. Bifurcation diagram for the unimodal frequency dis-
tribution, gsvd=dsvd. Two different numbers of harmonics
were used, N=4 and N=12. The dotted line refers to the un-
stable incoherent solution, while the solid one depicts the
stable solution. From Acebrón, Perales, and Spigler, 2001.
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rsu,v,tdgsvd =
1

No
j=1

N

dfujstd − ugdsvj − vd

=
1

2p
E

−`

+`

r̂su,is,tde−isvds , s142d

where

r̂su,s,td ;
1

2p
o

k=−`

`

o
m=0

`

exps− ikud
sm

m!
Hk

mstd . s143d

Solving the hierarchy in Eq. s141d requires specifica-
tion of the initial conditions Hk

mst=0d, where the values
of H0

m=vm=evmgsvddv are determined solely by the
natural frequency distribution gsvd. The equations can
be solved using standard numerical integration schemes.
For many purposes a Heun scheme suffices. Obviously,
the number of moments to be included must be finite,
and in general a few tens of them has been shown to
suffice. The method is particularly suited to models in
which m takes a finite number of values. For instance, in
the bimodal case sSec. III.Cd, m=2, and the set of mo-
ments Hk

m splits into two subsets Hk
+ and Hk

− correspond-
ing to m even or odd, respectively. In this case, the num-
ber of equations that have to be integrated is
considerably reduced. Moreover, to limit “boundary ef-
fects,” periodic boundary conditions within the set of
moments should be implemented. If k runs from −L up
to L, then there are 2L+1 possible values for the integer
k. For periodic conditions we have HL+1

m =H−L
m and

H−L−1
m =HL

m. At any time, H1
0=r expsicd sets the time

evolution of the synchronization parameter r. In Figs.
17–19, we show results obtained for the simple discrete
bimodal distribution with L=100 and only two values of
m: Hk

+ and Hk
−. The initial condition was ui=0 in all

cases. Figures 17 and 18 show the evolution of the real
and imaginary parts of the order parameter H1

0

=r expsicd for parameter values corresponding to the in-
coherent and synchronized regimes, respectively. Figure
19 depicts the parameter rstd corresponding to the oscil-
latory synchronized phase, after the transients have died
out. In this figure, the results obtained by the method of
moments are compared with those given by Brownian
simulations.

The moment formalism allows us to prove that the
stationary distribution is not Gibbsian. It was shown by
Hemmen and Wreszinski s1993d that the Hamiltonian

FIG. 17. Dynamical evolution of the order parameter H1
0

=r expsicd for the Kuramoto model with the discrete bimodal
frequency distribution and D=1/2 and K=1. Incoherence is
stable for these parameter values. The trajectory is repre-
sented in the complex plane sRe H1

0 , Im H1
0d. From Pérez-

Vicente and Ritort, 1997.

FIG. 18. Same as in Fig. 17 with D=0.05 and K=1. A stable
oscillatory synchronized phase exists for these parameter val-
ues. From Pérez-Vicente and Ritort, 1997.

FIG. 19. Time evolution of r for the parameter values D=2.5
and K=1/4, for which the Kuramoto model with a discrete
bimodal frequency distribution has a stable oscillatory syn-
chronized phase. The solid line was obtained by means of the
moments method described in the text, and the dots represent
a single run of a Brownian simulation with N=50 000 oscilla-
tors. From Pérez-Vicente and Ritort, 1997.
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H = −
K

N o
1øi,jøN

fcossui − ujd − viuig s144d

is a Lyapunov functional for finite N, whose minima de-
scribe completely phase-locked states at D=0. Subse-
quently, resorting to standard arguments of equilibrium
statistical mechanics, such a Lyapunov functional was
employed to characterize stationary states of the Kura-
moto model in the thermodynamic limit, at either zero
or finite “temperature” D ssee Park and Choi, 1995d.
Pérez-Vicente and Ritort s1997d objected that the latter
result applied to Gibbsian states, but not to general sta-
tionary states. In Eq. s144d, it was necessary to assume
−p,ui,p in order that H be a univalued function. As
the Langevin equation

u̇i = −
]H
]ui

+ ji s145d

leads to the nonlinear Fokker-Planck equation ssee Ap-
pendix Ad, this may suggest that, indeed, H in Eq. s144d
possesses all the properties of an energy functional. In
fact, it is well known that the stationary distribution of
the quantities in Eq. s145d will be Gibbsian only when
the probability currents across the boundaries ui=−p ,p
vanish. Only in this case, the stationary one-oscillator
probability density is described by the equilibrium dis-
tribution obtained from Eq. s144d. In the general case
ssee Appendix Ed, it is shown that the moments of the
Gibbsian equilibrium distribution function are not sta-
tionary sPérez-Vicente and Ritort, 1997d. Moreover, the
Hamiltonian in Eq. s144d is not a Lyapunov functional
because it is not bounded from below, although it decays
in time. Only at D=0 and for finite N do the local
minima of H correspond to globally synchronized solu-
tions.

The moment approach has also been applied to other
models, such as random tops sSec. V.Bd and synchroni-
zation models without disorder sSec. V.Ad. Such an ap-
proach provides an alternative and equivalent way to
describe certain dynamical features of synchronization
models sAonishi and Okada, 2002d.

VII. APPLICATIONS

The outstanding adaptability and applicability of the
Kuramoto model makes it suitable to be studied in many
different contexts ranging from physics to chemistry.
Here, we present some of the most relevant examples
discussed in the literature over the past few years, but its
potential use is certainly still growing, and new applica-
tions will appear in the future.

A. Neural networks

Perception is an old, fascinating, and unsolved neuro-
physiological problem that has attracted the attention of
neuroscientists for decades. The basic and fundamental
task of sensory processing is to integrate stimuli across
multiple and separate receptive fields. Such a binding

process is necessary to create a complete representation
of a given object. Perhaps the most illustrative example
is the visual cortex. Neurons that detect features are dis-
tributed over different areas of the visual cortex. These
neurons process information from a restricted region of
the visual field, and integrate it through a complex dy-
namical process that allow us to detect objects, separate
them from the background, identify their characteristics,
etc. All these tasks combine to give rise to cognition.

What kind of mechanisms might be responsible for
the integration of distributed neuronal activity? There is
a certain controversy around this point. It is difficult to
find a good explanation using exclusively models that
encode information only from the levels of activity of
individual neurons sSoftky and Koch, 1993d. There are
theories that suggest that the exact timing in a sequence
of firing events is crucial for certain perception tasks
sAbeles, 1991d. On the other hand, it has been argued
sTovee and Rolls, 1992d that long-time oscillations are
irrelevant for object recognition. Notice that oscillations
and synchrony need to be distinguished. Cells can syn-
chronize their responses without experiencing oscilla-
tory discharges and, conversely, responses can be oscil-
latory without being synchronized. The important point
is the correlation between the firing pattern of simulta-
neously recorded neurons. In this context, the idea that
global properties of stimuli are identified through corre-
lations in the temporal firing of different neurons has
gained support from experiments in the primary visual
cortex of the cat, showing oscillatory responses coherent
over long distances and sensitive to global properties of
stimuli sEckhorn et al., 1988; Gray et al., 1989d. Oscilla-
tory response patterns reflect organized temporal struc-
tured activity that is often associated with synchronous
firing.

This experimental evidence has motivated intense
theoretical research, which looks for models capable of
displaying stimulus-dependent synchronization in neu-
ronal assemblies. It would be a formidable task to enu-
merate and discuss all of them because they mainly con-
cern populations of integrate-and-fire neurons, which
are beyond the scope of this review. Here we shall focus
exclusively on studies in which the processing units are
modeled as phase oscillators. At this point, let us men-
tion that there are two different theoretical approaches.
The first line of reasoning is very much biologically ori-
ented, trying as the primary goal to reproduce, at least
qualitatively, experimental results. The second one is
more formal and is connected with associative memory
models of attractor neural networks, which have been
extensively studied in the past few years.

1. Biologically oriented models

Phase oscillators can be used as elementary units in
models of neural information processing. This fact can
be accepted as a natural consequence of the previous
discussion, but it is desirable to look for sound argu-
ments supporting this choice. In order to describe the
emergence of oscillations in a single column of the visual
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cortex, Schuster and Wagner s1990a, 1990bd proposed a
model of excitatory and inhibitory neurons. The main
ingredients of the model are

sad Inhomogeneous spatial distribution of connections.
Neurons are densely connected at a local scale but
sparsely connected on a larger scale. This combina-
tion of short- and long-range couplings gives rise to
the existence of local clusters of activity.

sbd Measurement of the activity of the neurons in
terms of their mean firing rate. For sufficiently
weak couplings, it is possible to describe the dy-
namics of the whole population in terms of a single
mean-field equation. Except for a more complex
form of the effective coupling among units, this
equation is analogous to that governing the evolu-
tion of the phases for a limit-cycle oscillator.

In the case of the model proposed by Schuster and Wag-
ner s1990a, 1990bd, the coupling strength depends on the
activity of the two coupled clusters, and this remarkable
feature is the key to reproducing stimulus-dependent co-
herent oscillations.

Sompolinsky and co-workers refined and extended
the previous idea in a series of papers sSompolinsky et
al., 1990, 1991; Grannan et al., 1993d. They proposed a
similar model with more elaborate interneuron coupling
ssynapsesd, in which many calculations can be performed
analytically. They considered a Kuramoto model with
effective coupling among oscillators, given by Kijsr ,r8d
=VsrdWsr ,r8dVsr8d, where V denotes the average level
of activity of the presynaptic and post-synaptic cell and
Wsr ,r8d denotes the specific architecture of the connec-
tions. To be more precise, Wsr ,r8d has two terms, one
describing strong interactions among neurons in the
same cluster swith large overlapping receptive fieldsd
and another describing the weak coupling among neu-
rons in different clusters swithout common receptive
fieldsd. In addition, neurons respond to a preferred ori-
entation as they do in certain regions of the visual cor-
tex. With all these ingredients, the model displays an
extremely rich range of behaviors. The results of Som-
polinsky et al. agree remarkably well with experiments,
even for small dynamic details, to the point that they
have made this research a reference for similar studies.
It provides a mechanism for linking and segmenting
stimuli that span multiple receptive fields through coher-
ent activity of neurons.

The idea of reducing the complexity of neuron dy-
namics to simplified phase-oscillator equations has been
very fruitful in different contexts. For instance, in order
to model the interaction of the septohippocampal region
and cortical columns, Kazanovich and Borisyuk s1994d
analyzed a system of peripheral oscillators coupled to a
central oscillator. Their goal was to understand the prob-
lem of focusing attention. Depending on the parameters
of the model, they found different patterns of entrain-
ment between groups of oscillators. Hansel et al. s1993ad
studied phase locking in populations of Hodgkin-Huxley
neurons interacting through weak excitatory couplings.

They used the phase-reduction technique to show that,
in order to understand synchronization phenomena, one
must analyze the effective interaction among oscillators.
They found that, under certain conditions, a weak exci-
tatory coupling leads to an effective inhibition among
neurons due to a decrease in their firing rates. A little
earlier, Abbott s1990d had carried out a similar program
using piecewise linear Fitzhugh-Nagumo dynamics
sFitzhugh, 1961d, instead of the Hodgkin-Huxley equa-
tions. As in previous models, a convenient reduction of
the original dynamical evolution led to a simplified
model in which neurons could be treated as phase oscil-
lators.

More recently, Seliger et al. s2002d have discussed
mechanisms of learning and plasticity in networks of
phase oscillators. They studied the long-time properties
of the system by assuming a Hebbian-like sHebb, 1949d
principle. Neurons with coherent mutual activity
strengthen their synaptic connections slong-term poten-
tiationd, while in the opposite situation they weaken
their connections slong-term depressiond. The slow dy-
namics associated with synaptic evolution gives rise to
multistability, i.e., coexistence of multiple clusters of dif-
ferent sizes and frequencies. The work of Seliger et al.
s2002d is essentially numerical. More elaborate theoreti-
cal work can be carried out provided neurons and cou-
plings evolve on widely separated times scales, fast for
neurons and slow for couplings. An example is the for-
malism developed by Jongen et al. s2001d for an XY
spin-glass model. Further work in this direction is desir-
able.

2. Associative memory models

The field of neural networks experienced a remark-
able advance during the last 15 years of the twentieth
century. One of the main contributions was the seminal
paper published by Hopfield s1982d, which was the pre-
cursor of the current studies in computational neuro-
science. He discovered that a spin system endowed with
suitable couplings could exhibit an appealing collective
behavior which mimics some basic functions of the
brain. To be more precise, Hopfield considered a system
of formal neurons, modeled as two-state units, repre-
senting the active and passive states of real neurons. The
interactions among units ssynaptic efficaciesd followed
Hebbian learning sHebb, 1949d. The resulting model ex-
hibits an interesting phase diagram with paramagnetic,
spin-glass, and ferromagnetic phases, the latter having
effective associative-memory properties. The dynamics
of the Hopfield model is a heat-bath Monte Carlo pro-
cess, governed by the Hamiltonian

H = − o
i,j

JijSiSj, s146d

where S represents the two states of the neuron s±1d and
the couplings Jij represent the synaptic strength between
pairs of neurons. The latter is given by a Hebbian pre-
scription,
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Jij =
1

N o
m=1

p

ji
mjj

m, s147d

where each set ji
m represents a pattern to be learned.

Hopfield showed that the configurations ji
m are attrac-

tors of the dynamics: when the initial state is in the basin
of attraction of a given pattern spartial information
about a given memoryd, the system evolves toward a
final state having a large overlap with this learned con-
figuration. This evolution mimics a typical associative
memory process.

Typical questions concern the number of patterns that
can be stored in the system sin other words, the amount
of information that can be processed by the modeld, the
size of the basin of attraction of the memories, the ro-
bustness of the patterns in response to noise, as well as
other minor aspects. Usually, all these issues are tackled
analytically by means of a standard method in the theory
of spin glasses, namely, the replica approach sMezard et
al., 1987d. It is not the goal of this review to discuss such
a technique, but simply to give the main results. The
number of patterns p that can be stored scales with the
size of the system snumber of neurons Nd as p
<0.138N. Therefore the storage capacity defined as the
ratio a=p /N is 0.138. A detailed analysis of the whole
phase diagram a−T can be found in many textbooks
sAmit, 1989; Hertz et al., 1991; Peretto, 1992d.

The conventional models of attractor neural networks
sANNsd characterize the activity of the neurons through
binary values, corresponding to the active and nonactive
state of each neuron. However, in order to reproduce
synchronization between members of a population, it is
convenient to introduce new variables which provide in-
formation about the degree of coherence in the time
response of active neurons. This can be done by associ-
ating a phase with each element of the system, thereby
modeling neurons as phase oscillators. A natural ques-
tion is whether large populations of coupled oscillators
can store information after a proper choice of the matrix
Jij, as in conventional ANNs. Cook s1989d considered a
static approach sno frequenciesd in which each unit of
the system is modeled as a q-state clock, and the Heb-
bian learning rule fEq. s147dg is used as a coupling. Since
the Jij’s are symmetric, it is possible to define a
Lyapunov functional whose minima coincide with the
stationary states of Eq. s146d. Cook solved the model by
deriving mean-field equations in the replica-symmetric
approximation. In the limit q→` and zero temperature,
she found that the stationary storage capacity of the net-
work is ac=0.038, much smaller than the storage capac-
ity of the Hopfield model sq=2d, ac=0.138, or of the
model with q=3 where ac=0.22. Instead of fixing the
couplings Jij, Gerl et al. s1992d undertook to estimate the
volume occupied in the space of couplings Jij according
to the couplings obeying the stability condition
ji

mojJijjj
m.kù0. By using a standard formalism due to

Gardner s1988d, they found that, in the optimal case and
for a fixed stability k, the storage capacity decreases as q
increases, and that the information content per synapse

grows when k scales as q−1. Although this final result
seems promising, it has serious limitations given by the
size of the network ssince N.qd, and also because the
time required to reach the stationary state is propor-
tional to q, as corroborated by Kohring s1993d. Other
models with similar features display the same type of
behavior sNoest, 1988d.

In the same context, the first model of phase oscilla-
tors having an intrinsic frequency distribution was stud-
ied by Arenas and Pérez-Vicente s1994bd. These authors
considered the standard Kuramoto model dynamics dis-
cussed in previous sections with coupling strengths given
by

Jij =
K

N o
m=1

p

cossji
m − jj

md , s148d

where K is the intensity of the coupling. This form pre-
serves the basic idea of Hebb’s rule adapted to the sym-
metry of the problem. Now the state of the system, de-
scribed by an N-dimensional vector whose ith
component is the phase of the ith oscillator, is changing
continuously in time. However, this is not a problem. If
there is phase locking, the differences between the
phases of different oscillators remain constant in time.
Then it is possible to store information as a difference of
phases between pairs of oscillators, which justifies the
choice of the learning rule given in Eq. s148d. Thus, if
the initial state is phase locked with one of the embed-
ded patterns, then the final state will also have a macro-
scopic correlation with the same pattern, at least for
small p.

In the limit of a→0, Arenas and Pérez-Vicente
s1994bd showed that the degree of coherence between
the stationary state and the best retrieved pattern is

m =7o
−`

`
s− 1dn

v2 + D2n2InsbmdIn−1sbmd

o
−`

`
s− 1dn

v2 + D2n2In
2sbmd 8

v

. s149d

Here m is analogous to the order parameter r defined in
previous sections, In is a modified Bessel function of the
first kind and of order n, b=J /2D, and k lv means taking
the average over the frequency distribution. In contrast
with conventional ANN models, which, in the limit a
→0, have a positive overlap below the critical tempera-
ture, in this model phase locking can be destroyed when-
ever the distribution of frequencies is sufficiently broad.
From a linear analysis of Eq. s149d, it is straightforward
to show that there is no synchronization when

E
−`

+` gsvd

S v2

D2 + 1Ddv , b−1. s150d

Similarly, Hong et al. s2001d found that, for zero tem-
perature and for a Gaussian frequency distribution with
spread s, a retrieval state can only exist above a critical
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coupling value Kc /s. The quality of the retrieval de-
pends on the number of stored patterns. Their numerical
simulations show a rather complex time evolution to-
wards the stationary state. An analysis of the short-time
dynamics of this network was performed by Pérez-
Vicente et al. s1996d.

The situation is more complex for networks that store
an infinite number of patterns sfinite ad. There have
been some attempts to solve the retrieval problem
through a standard replica-symmetry formalism sPark
and Choi, 1995d. However, as has already been discussed
in Sec. VI.C, there is no Lyapunov functional in such a
limit. Therefore other theoretical formalisms are re-
quired to elucidate the long-time collective properties of
associative memory models of phase oscillators.

The long-time properties of networks of phase oscil-
lators without a Lyapunov functional have been success-
fully determined by the so-called self-consistent signal-
to-noise analysis ssee Shiino and Fukai, 1992, 1993d. To
apply this formalism it is necessary to have information
about the fixed-point equations describing the equilib-
rium states of the system. To be more precise, the
method relies on the existence of Thouless-Anderson-
Palmer-like equations sThouless et al., 1997d, which, de-
rived in the context of spin glasses, have been very fruit-
ful in more general scenarios. These equations relate the
equilibrium time average of spins sphase oscillatorsd to
the effective local field acting on them. In general, the
effective and the time-averaged local fields are different,
and their difference coincides with the Onsager reaction
term, which can be computed by analyzing the free en-
ergy of the network. Once the Thouless-Anderson-
Palmer equations are available, the local field splits into
the “signal” and “noise” parts. Then self-consistent
signal-to-noise analysis yields expressions for the order
parameters of the problem, and the sextensived number
of stored patterns is determined as a result of this. This
method has been applied by several authors. For the
standard Hebbian coupling given in Eq. s147d, Aonishi
s1998d, Uchiyama and Fujisaka s1999d, Yamana et al.
s1999d, Yoshioka and Shiino s2000d, and Aonishi et al.
s2002d found peculiar associative memory properties for
some special frequency distributions. For instance, in the
absence of noise and for a discrete three-mode fre-
quency distribution, Yoshioka and Shiino s2000d ob-
served the existence of two different retrieval regions
separated by a window where retrieval is impossible. In
the v-a phase diagram, for sufficiently low temperature,
a nonmonotonic functional relationship is found. This
remarkable behavior, which is a direct consequence of
having nonidentical oscillators, is not observed in stan-
dard ANN models. In the appropriate limit, the results
given by Cook s1989d and Arenas and Pérez-Vicente
s1994bd are recovered.

There are complementary aspects of phase-oscillator
networks that are worth studying. For instance, how
many patterns can be stored in networks with diluted
synapses sAoyagi and Kitano, 1997; Kitano and Aoyagi,
1998d or with sparsely coded patterns sAoyagi, 1995;
Aoyagi and Nomura, 1999d? So far, these analyses have

been carried out for systems with identical oscillators, so
that a static approach can be used. The main result is
that a network of phase oscillators is more robust
against dilution than the Hopfield model. On the other
hand, for low levels of activity ssparse by coded pat-
ternsd, the storage capacity diverges as 1/a log a for a
→0, a being the level of activity, as in conventional
ANN models. It is also an open problem to analyze the
effect of intrinsic frequency distributions on the retrieval
properties of these networks.

B. Josephson junctions and laser arrays

In addition to the extensive development of synchro-
nization models, in particular the Kuramoto model, be-
cause of their intrinsic interest, in recent years, several
applications of superconducting Josephson-junction ar-
rays and of laser arrays to physics and technology have
been explored in detail. The main purpose of these ap-
plications is to synchronize a large number of single el-
ements in order to increase the effective output power.
As is well known, the Kuramoto model provides per-
haps the simplest way to describe such collective behav-
ior, and it has been shown that the dynamics of
Josephson-junction arrays sWiesenfeld, 1996d, and laser
arrays sKozireff et al., 2000, 2001; Vladimirov et al.,
2003d can be conveniently mapped onto it. Even though
a few other physical applications have been found, to
isotropic gas of oscillating neutrinos sPantaleone, 1998d,
beam steering in phased arrays sHeath et al., 2000d, and
nonlinear antenna technology sMeadows et al., 2002d in
this subsection only the first two subjects mentioned
above will be discussed at some length.

1. Josephson-junction arrays

Josephson junctions are superconducting devices ca-
pable of generating high-frequency voltage oscillations,
typically in the range 1010–1012 Hz sJosephson, 1964;
Duzer and Turner, 1999d. They are natural voltage-to-
frequency transducers. Applications to both analog and
digital electronics have been made, to realize amplifiers
and mixers for submillimeter waves, to detect infrared
signals from distant galaxies, and to use as very sensitive
magnetometers in SQUIDs ssuperconducting quantum
interference devicesd.

A large number N of interconnected Josephson junc-
tions may be combined in such a way as to achieve a
large output power. This occurs because the power is
proportional to V2, which turns out to be proportional to
N2, provided that all members oscillate in synchrony.
Moreover, the frequency bandwidth decreases as N−2

sDuzer and Turner, 1999d. Networks of Josephson-
junction arrays coupled in parallel lead to nearest-
neighbor sthat is diffusived coupling, and more precisely
to sine-Gordon discrete equations with soliton solutions.
On the other hand, Josephson-junction arrays connected
in series through a load exhibit “all-to-all” sthat is glo-
bald coupling sWiesenfeld et al., 1996d. Moreover, the lat-
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ter configuration can be transformed into a Kuramoto
model. The model equations are

"Cj

2e
f̈j +

"

2erj
ḟj + Ij sin fj + Q̇ = IB, j = 1, . . . ,N

s151d

for the junctions, and

LQ̈ + RQ̇ +
1

C
Q =

"

2e o
k=1

N

ḟk s152d

for the load circuit ssee Fig. 20d. Here f is the difference
between the phases of the wave functions associated
with the two superconductors, Q is the charge, Ij is the
critical current of the jth junction, Cj and rj are its ca-
pacitance and resistance, respectively, and IB is the “bias
current,” while R, L, and C denote resistance, induc-
tance, and capacitance of the load circuit.

Note that the load provides a global coupling, and

when Q̇=0 all the junctions work independently. In such
a case, assuming for simplicity Cj=0 and IB.Ij, the jth
element will undergo oscillations at its natural fre-
quency,

vj =
2erj

"
sIB

2 − Ij
2d1/2. s153d

By using an averaging procedure Swift et al. s1992d,
Wiesenfeld s1996d, and Wiesenfeld et al. s1996, 1998d
have shown that Eqs. s151d and s152d with Cj=0 can be
mapped onto the Kuramoto model provided coupling
and disorder are weak. The precise assumptions are
listed in Appendix F. An important step in the deriva-
tion is using the “natural” angles uj’s, defined by

uj =
2vj"

2erj

1
ÎIB

2 − Ij
2

arctan1 Ij − IB tan
fj

2
ÎIB

2 − Ij
2 2 , s154d

instead of the phases fj. These angles are called natural
because they describe uniform rotations in the absence

of the coupling, Q̇=0, while the fj’s do not. Using the
transformation to natural angles and the averaging pro-
cedure, Eq. s152d yields, to leading order,

u̇j = vj +
K

N o
k=1

N

sinsuk − uj + ad . s155d

Here K and a depend on the Josephson parameters rj,
Ij, IB, R, L, and C. Strictly speaking, the model equation
s155d represents a generalization of the classical Kura-
moto model because of the presence of the parameter
aÞ0 ssee Sec. IV.Bd. This case was studied by Sakaguchi
and Kuramoto s1986d and Sakaguchi et al. s1987d, who
observed that a.0 gives rise to a higher value of the
critical coupling sfor a given frequency spreadd, and a
lower number of oscillators are involved in the synchro-
nization.

Heath and Wiesenfeld s2000d and Sakaguchi and Wa-
tanabe s2000d pointed out that the model equation of the
Kuramoto type in Eq. s155d does not explain the opera-
tion of Josephson-junction arrays described by Eqs.
s151d and s152d in certain regimes with CjÞ0. In fact,
both physical and numerical experiments using the latter
equations showed the existence of hysteretic phenom-
ena sSakaguchi and Watanabe, 2000d which were not
found in the model equations s155d. This discrepancy
was explained by Heath and Wiesenfeld, who recog-
nized that a more appropriate averaging procedure
needed to be used. Doing that, a model formally similar
to that of Eq. s155d was found, the essential difference
being that now K and a depend on the dynamical state
of the system.

When the capacitances are assumed to be nonzero,
say Cj=C0Þ0 ssee Sakaguchi and Watanabe, 2000d, hys-
teresis and multistability are found within the frame-
work provided by Eqs. s151d and s152d. Proceeding as
above and considering a sufficiently small value of C0,
again a Kuramoto-type phase model like that in Eq.
s155d is found, where now K and a depend also on C0. A
result is that the nonzero capacitance facilitates the mu-
tual synchronization. At this point, we should stress that
the essential parameter distinguishing the two regimes
of negligible and non-negligible capacitance is given by
the McCumber parameter, b=2eIcr

2C /". Depending on
the properties of the Josephson junction sthat is, r, Ic,
and Cd, b can vary over a very broad range, say 10−6–107

ssee Duzer and Turner, 1999d.
Filatrella et al. s2000d considered a model for a large

number of Josephson junctions coupled to a cavity.
These authors were able to reproduce the synchroniza-
tion behavior reported in the experiments conducted by
Barbara et al. s1999d. Even though these experiments
concerned two-dimensional arrays of Josephson junc-

FIG. 20. Schematic circuit showing ideal Josephson junctions
seach denoted by a crossd connected in series coupled through
a resistance-inductance-capacitance sRLCd load. IB is the bias
current.
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tions, they found qualitatively no differences with re-
spect to the case of one-dimensional arrays sFilatrella et
al., 2001d. In these studies, the capacitances of the Jo-
sephson junctions are nonzero sunderdamped oscilla-
torsd, and the bias current is taken to be such that each
junction is in the hysteretic regime. Depending on the
initial conditions, the junctions may work in each of two
possible states, characterized by zero or nonzero volt-
age. When the junctions work in the latter case, the
phases of the oscillators describing them vary with time,
and the oscillators are called “active.” By a suitable av-
eraging method, Filatrella et al. s2001d derived the modi-
fied Kuramoto model,

u̇j = vj +
1

Na
o
i=1

Na Na

N
Ki sinsui − uj + ad . s156d

Here Na is the number of the “active oscillators,” and Ki
takes on two possible values, a larger value if the ith
oscillator is frequency-locked, and a smaller value if it is
not. These authors also predicted that some overall hys-
teretic behavior should be observed under certain cir-
cumstances, a feature that could not be observed in the
experiments conducted by Barbara et al. s1999d.

Daniels et al. s2003d showed that the resistively
shunted junction sRSJd equations describing a ladder ar-
ray of Josephson junctions, which are overdamped szero
capacitanced and different swith disordered critical cur-
rentsd, can be taken into a Kuramoto-type model. Such a
model exhibits the usual sinusoidal coupling, but the
coupling mechanism is of the nearest-neighbor type.
This mapping was realized by a suitable averaging
method upon which the fast dynamics of the RSJ equa-
tions can be integrated out, the slow scale being that
over which the neighboring junctions synchronize. The
effect of thermal noise on the junctions has also been
considered, finding a good quantitative agreement be-
tween the RSJ model and the locally coupled Kuramoto
model, when a noisy term was added. However, the
noise term now appearing in the Kuramoto model was
not obtained from the RSJ noisy model by the afore-
mentioned transformation procedure, which raises some
doubt about the general applicability of this result. Lo-
cally coupled Kuramoto models like this are analyzed in
more detail in Sec. IV.A.

In closing, another application should be mentioned,
in the general category of Josephson-junction arrays. A
network of superconducting wires provides an addi-
tional example of an exact mean-field system sPark and
Choi, 1997d. Such a network consists of two sets of par-
allel superconducting wires, mutually coupled by Jo-
sephson junctions at each crossing point. It turns out
that each wire interacts with only half of the others,
namely, with those perpendicular to it, which results in a
semiglobal coupling. It was found that the relevant
model equations consist of two sets of coupled phase
oscillator equations and, under special conditions, these
equations reduce to the classical Kuramoto equation.

2. Laser arrays

The idea of synchronizing laser arrays of various kinds
and analyzing their collective behavior is appealing both
technologically and theoretically. On the one hand, en-
trainment of many lasers results in a large power output
from a high number of low-power lasers. When the la-
sers are phase locked, a coherent high-power beam can
be concentrated in a single-lobe far-field pattern
sVladimirov et al., 2003d. On the other hand, this setting
provides an additional example of a physical realization
of the Kuramoto phase model. Actually, there are a few
other generalizations of the Kuramoto model, that have
been obtained by investigating systems of laser arrays, as
will be mentioned below.

It has been observed in the literature that solid-state
laser arrays and semiconductor laser arrays behave dif-
ferently, due to the striking differences in their typical
parameters. In fact, for solid-state lasers the linewidth
enhancement factor is about zero, and the upper-level
fluorescence lifetime, measured in units of photon life-
time, is about 106, while for semiconductor lasers they
are respectively about 5 and 103. It follows that they
exhibit quite different dynamical behavior.

Both local and global coupling among lasers have
been considered over the years sLi and Erneux, 1993;
Silber et al., 1993d. As might be expected, globally
coupled lasers act more efficiently when stationary syn-
chronized si.e., in-phased states are wanted. Global cou-
pling is usually obtained by means of an optical feed-
back given by an external mirror.

A widely used model, capable of describing the dy-
namical behavior of coupled lasers, is given by the so-
called Lang-Kobayashi equations sLang and Kobayashi,
1980; Wang and Winful, 1988; Winful and Wang, 1988d,
which were obtained using Lamb’s semiclassical laser
theory. They are

dEj

dt
= idjEj + s1 + iad

ZjEj

tp
+ i

ke−ivtD

N o
k=1

N

Ekst − tDd ,

s157d

dZj

dt
=

1

tc
fPj − Zj − s1 + 2ZjduEju2g , s158d

where Ej denotes the jth laser dimensionless electric-
field envelope, Zj the excess free-carrier density salso
called gain of the jth laserd, v=N−1okvk is the average
frequency in the array, dj=vj−v is the frequency mis-
match, a is the linewidth enhancement factor, and k is
the feedback rate. Other parameters are tD, the external
cavity roundtrip time sthus vtD is the mean optical phase
shift between emitter and feedback fieldsd, and tp
<10−12 s and tc<10−9 s, which are, respectively, the
photon lifetime and the free-carrier lifetime. The param-
eter Pj represents the excess pump above threshold
sVladimirov et al., 2003d. For instance, assuming that the
Zj’s are given, the first equation in Eq. s158d is reminis-
cent of the amplitude Kuramoto model ssee Sec. V.Cd,
but with time delay.
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When the coupling is realized through an external
mirror located at a Talbot distance of the order of 1 mm,
the time delay tD can be neglected. When, instead, the
array and the feedback mirror are much larger, the time
delay is important and should be taken into account.
This was done by Kozireff et al. s2000, 2001d. Here, the
synchronization of a semiconductor laser array with a
wide linewidth a was studied, writing out Ej= uEjueiFj,
and obtaining an asymptotic approximation for the Fj’s
from the third-order phase equation:

d3Fj

ds3 + «
d2Fj

ds2 + s1 + 2«Vjd
dFj

ds

= «Dj + «Ksss − sDdsinfjss − sDd − Fjssdg . s159d

Here the scaled time s=VRt ssD=VRtDd, VR

=Î2P /tctpP=N−1ojPj, has been introduced. The param-
eters appearing in Eq. s159d are «= s2P+1dÎtp /2Ptc, Vj
= sPj /P−1d /«, Dj=djtc / s1+2Pd, and K=aktc / s1+2Pd. s
and j are the amplitude and phase of the complex-
valued order parameter,

sssdeijssd =
1

N o
k=1

N

eifFkssd−vtDg. s160d

More details can be found in Vladimirov et al. s2003d.
Note that Eq. s159d represents a generalization of the
Kuramoto model equation, reducing to it, but with de-
lay, when the second- and third-order derivatives are ne-
glected ssee Sec. IV.Cd. Neglecting only the third-order
derivative, the Kuramoto model with inertia is recov-
ered ssee Sec. V.Dd. Kozireff et al. s2000, 2001d and
Vladimirov et al. s2003d showed that the time delay in-
duces phase synchronization and may be used to control
it in all dynamical regimes.

Oliva and Strogatz s2001, where the interested reader
can find additional references concerning this subjectd
investigated large arrays of globally coupled solid-state
lasers with randomly distributed natural frequencies.
Based on previous work on lasers sJiang and McCall,
1993; Braiman et al., 1995; Kourtchatov et al., 1995d, as
well as on general amplitude oscillator models, Oliva
and Strogatz considered a simplified form of the Lang-
Kobayashi equations, in which the gain dynamics were
adiabatically eliminated. The resulting model equation
was

dEj

dt
= S 1 + P

1 + uEju2
− 1 + ivjDEj +

K

N o
k=1

N

sEk − Ejd ,

j = 1, . . . ,N . s161d

Note that this is indeed an amplitude model, similar to
the Kuramoto amplitude model studied in Sec. V.C.
Analytical results, such as stability boundaries of a num-
ber of dynamical regimes, have been obtained, showing
the existence of such diverse states as incoherence,
phase locking, and amplitude death swhen the system
stops lasingd.

C. Charge-density waves

Strogatz et al. s1988, 1989d and Marcus et al. s1989d
have proposed and analyzed a model related to the
Kuramoto model for charge-density-wave sCDWd trans-
port in quasi-one-dimensional metals and semiconduc-
tors. Charge-density-wave conduction and dynamics
have been reviewed by Grüner and Zettl s1985d and
Grüner s1988d. An important consideration is that
charge-density waves are pinned by impurities for zero
applied electric field and they move for fields above a
critical level. This is called the depinning transition of
the charge-density wave. Experiments show hysteresis in
the transition between pinned and sliding charge-density
waves sGrüner and Zettl, 1985d. The model by Strogatz
et al. s1988d is as follows:

u̇i = E − h sinsui − aid +
K

No
j=1

N

sinsuj − uid . s162d

Here the ui are phase oscillators, ai are random pinning
angles, E is the applied electric field, and K is the oscil-
lator coupling constant. If the sine function in the cou-
pling term is linearized, we obtain the mean-field
Fukuyama-Lee-Fisher model of CDW dynamics
sGrüner, 1988d, which has a continuous snonhystereticd
transition from pinned to sliding charge-density waves.

The analysis of Eq. s162d is similar to that of the Kura-
moto model. For small values of E /h and K /h, there are
stationary states in which the oscillator phases are
locked to the values ai. Let us keep K /h fixed. As E /h
increases, the stationary state loses stability and a sliding
state with a nonvanishing electric current sproportional

to oiu̇i /Nd appears. This occurs at a certain depinning
threshold for the electric field, which has been evaluated
analytically by Strogatz et al. s1989d. The bifurcations of
the system s162d, in terms of the parameters E /h and
K /h, have been studied. The pinning transition turns out
to be a subcritical sdiscontinuousd bifurcation, and there-
fore hysteretic phenomena and switching between
pinned and sliding change-density waves occur. Both dis-
continuous and hysteretic behavior have been observed
experimentally in certain CDW materials sGrüner and
Zettl, 1985d.

We should note that system s162d can be recast into a
Kuramoto model affected by external field and disorder
at the same time. In fact, setting Qi=ui−ai in Eq. s162d,
we obtain

Qi = E − h sin Qi +
K

No
j=1

N

sinsQj − Qi + Aijd , s163d

where Aij=aj−ai. Clearly, h sin Qi plays the role of an
external field ssee Sec. IV.Dd, and the Aij’s represent dis-
order ssee Sec. IV.Bd. All oscillators have the same natu-
ral frequency E.
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D. Chemical oscillators

The existence of oscillations in chemical reactions is
well known. The Belousov-Zhabotinsky reaction is para-
digmatic, and models such as the Brusselator and the
Oregonator have been invented to understand its prop-
erties. These models are described in terms of a few
coupled nonlinear reaction-diffusion equations, which
may have time-periodic solutions and give rise to differ-
ent spatiotemporal patterns for appropriate parameter
values.

The relation between chemical oscillators and phase
oscillator models has been a matter of discussion for
many years. In 1975, Marek and Stuchl s1975d coupled
two Belousov-Zhabotinsky reaction systems with differ-
ent parameters and hence observed different periodic
oscillations. Each reaction occurred in a separate stirred
tank reactor, and both reactors could exchange matter
through the common perforated wall. They observed
phase locking when the oscillation frequencies in the
two reactors were close to each other. For large fre-
quency differences, the solution of the coupled system
exhibited long intervals of slow variation in the phase
difference separated by rapid fluctuations over very
short intervals. These observations were qualitatively
explained by Neu s1979d. He considered two identical
planar limit-cycle oscillators that were linearly and
weakly coupled. In addition, one oscillator had a small
imperfection of the same order as the coupling. A sin-
gular perturbation analysis showed that the phase differ-
ence between the oscillators evolved according to an
equation reminiscent of the Kuramoto model. Its analy-
sis revealed phase locking and rhythm splitting sNeu,
1979d. Neu s1980d extended this idea to populations of
weakly coupled identical chemical oscillators. Adding
small imperfections to the oscillators, the resulting
model equations became

ẋi = Fsxi,yid +
e

No
j

fKsdijdxj + lifsxi,yidg ,

ẏi = Gsxi,yid +
e

No
j

fKsdijdyj + ligsxi,yidg . s164d

Here dij=qj−qi is the spatial displacement between the
oscillators and li is a random imperfection parameter.
When e=0, there are N identical coupled oscillators hav-
ing a stable T-periodic limit cycle given by

xi = Xst + cid, yi = Yst + cid, i = 1, . . . ,N . s165d

Neu’s analysis yields the following equation for the
evolution of the phases in the slow time scale t=et:

dci

dt
=

1

No
j

KsdijdPscj − cid + lib , s166d

where P is a T-periodic function determined from the
basic limit-cycle solution s165d that satisfies P8s0d=1,
and b is a parameter sNeu, 1979d. When X=cosst+cd,
Y=sinst+cd, and Psud=sin u, Eq. s166d is essentially the

Kuramoto model. Neu s1980d analyzed synchronization
in the case of identical oscillators sli=0d for both mean-
field and diffusive coupling in the limit of infinitely many
oscillators. His method involves finding an evolution
equation for the time integral of the order parameter.
This equation can be solved in special cases and pro-
vides information on how the oscillators synchronize as
time elapses sNeu, 1980d.

Thus the Kuramoto model describes weakly coupled
chemical oscillators in a natural way, as already dis-
cussed by Kuramoto s1984d and Bar-Eli s1985d and
worked out by other authors later. Following previous
experiments on two-coupled stirred tank reactors,
Yoshimoto et al. s1993d have tried to test frustration due
to disorder in oscillation frequencies, in a system of
three coupled chemical reactors. Previous studies in sys-
tems of two coupled stirred tank reactors have shown
that, depending on the coupling flow rate, different syn-
chronization modes can emerge spontaneously: an in-
phase mode, an antiphase mode, and a phase-death
mode. Yoshimoto et al. s1993d interpreted their experi-
ment involving three reactors by using the numerical so-
lutions of Kuramoto-type equations for phase oscillators
with asymmetric couplings. Their numerical solutions
exhibited different combinations of the previous three
modes, as well as new complex multistable modes whose
features depended on the level of asymmetry in the in-
teraction among oscillators. More recently, Kiss et al.
s2002d have confirmed experimentally the existence of
all these patterns and a number of other predictions of
the Kuramoto model by using an array of 64 nickel elec-
trodes in sulfuric acid.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have extensively reviewed the main
features of the Kuramoto model, which has been very
successful in understanding and explaining synchroniza-
tion phenomena in large populations of phase oscilla-
tors. The simplicity of the Kuramoto model allows for a
rigorous mathematical analysis, at least for the case of
mean-field coupling. Still, the long-time behavior of the
Kuramoto model is nontrivial, displaying a large variety
of synchronization patterns. Furthermore, this model
can be adapted so as to explain synchronization behav-
ior in many different contexts.

Throughout this review we have mentioned a number
of open lines of investigation deserving of special atten-
tion. Let us summarize some of them. For the mean-field
Kuramoto model, the recent work by Balmforth and
Sassi s2000d raises interesting questions to be tackled in
the future. At zero noise strength, D=0, a stability
analysis of the partially synchronized phase and a rigor-
ous description of the synchronization transition are
needed. The necessary work in this direction is expected
to be technically difficult.

Much more work is needed to understand synchroni-
zation in the Kuramoto model with nearest-neighbor
coupling. Recent work by Zheng et al. s1998d on the 1D
case has shown that phase slips and bursting phenomena
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occur for couplings just below threshold. This fact is not
surprising. It is well known that spatially discrete equa-
tions with overdamped or underdamped dynamics are
models for dislocations and other defects that can either
move or be pinned. Among these models, we can cite
the 1D Frenkel-Kontorova model sBraun and Kivshar,
1998; Carpio and Bonilla, 2001, 2003bd or the chain os-
cillator models for 2D edge dislocations sCarpio and
Bonilla, 2003ad. The latter is exactly the 2D Kuramoto
model with asymmetric nearest-neighbor coupling and
zero frequency on a finite lattice. A constant external
field acts on the boundary and is responsible for depin-
ning the dislocations if it surpasses a critical value. For
these models, there are analytical theories of the depin-
ning transition, and the effects of weak disorder on the
transition are also understood. Perhaps this methodol-
ogy could be useful for understanding either synchroni-
zation or its failure in the nearest-neighbor Kuramoto
model. It would also be interesting to analyze the en-
trainment properties of large populations of phase oscil-
lators connected in a scale-free network or in a small-
world network. Perhaps new clustering properties or
multistability phenomena will come out in a natural way.

Extensions of the Kuramoto model to new scenarios
should be considered. More work is needed to under-
stand the stability properties of synchronized phases in
models with general periodic couplings or models with
inertia and time delay.

We hope the extensive discussion of the Kuramoto
model in this review helps in finding new applications of
this model. For the applications discussed here,
Josephson-junction arrays with nonzero capacitances
need to be better understood, given their frequent oc-
currence in real systems. More careful singular perturba-
tion methods should yield more general, yet tractable,
models of the Kuramoto type. On the other hand, quan-
tum noise in the form of spontaneous emission and shot
noise are important for certain laser systems sWieczorek
and Lenstra, 2004d. Examining the role of noise in such
systems suggests a new research line. Concerning bio-
logical applications, it would be interesting to investigate
in depth adaptive mechanisms that go beyond the stan-
dard learning rules discussed in this review.

Finally, models of phase oscillators different from
those discussed in this review should be explored. In this
context, recent works on the Winfree model sAriarat-
nam and Strogatz, 2001d and on circadian clocks sDaido,
2001d have pointed to paths worth pursuing.
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APPENDIX A: PATH-INTEGRAL DERIVATION OF THE
NONLINEAR FOKKER-PLANCK EQUATION

For the sake of completeness, a derivation of the non-
linear Fokker-Planck equation s26d satisfied by the one-
oscillator probability density is presented. Such a deriva-
tion follows the ideas of Bonilla s1987d, adapted to the
case of the noisy Kuramoto model. It is somewhat tech-
nical but it has an important advantage over other deri-
vations. In fact, it shows that, in the limit as N→`, the
p-oscillator probability density factorizes into the prod-
uct of p one-oscillator densities for all t.0, provided all
oscillators were statistically independent at time t=0.
This result of “propagation of molecular chaos” is usu-
ally assumed in other simpler derivations which close a
hierarchy of equations for p-oscillator densities sCraw-
ford and Davies, 1999d.

To derive the nonlinear Fokker-Planck equation, let
us first write down the path-integral representation of
the N-oscillator probability density rNst ,uI ,vI d corre-
sponding to the system of stochastic equations in Eq.
s23d. rN is equal to a product of dfuistd−Qist ;jIdg, aver-
aged over the joint Gaussian distribution for the white
noise jistd, and over the initial distribution of the oscil-
lators. Qist ;jId are the solutions of Eqs. s23d for a given
realization of the noises. We have

rNst,uI ,vI d =Kp
t

p
j=1

N

dfuistd − Qist ;jIdgL
j,u0

=Kp
t

p
j=1

N

dSvj + jjstdIm
K

N o
k=1

N

eisuk−ujd − u̇jD
3 detSRe

K

N o
k=1

N

eisuk−ujdsdkj − 1d −
d

dt
DL

j,u0

.

sA1d

This expression is then transformed using the fact that
the delta functions are the Fourier transforms of unity,
ptdsfjd=eexpfe0

t iCjfjdtgDCjstd, and the Gaussian average
kexpfe0

t iCjjjdtglj=expf−2De0
t Cj

2dtg. It follows that

rNst,uI ,vI d =E E E
uI s0d=uI0

uI std=uI

expHE
0

t

o
j=1

N F− 2DCj
2

+ iCjSvj + Im
K

N o
k=1

N

eisuk−ujd − u̇jD
+

1
2

Re
K

N o
k=1

N

eisuk−ujdsdjk − 1dGdtJ
3DCI stdDuI stdp

i=1

N

fnsui0,viddui0g , sA2d

after transforming the functional determinant as indi-
cated by Bausch et al. s1976d, Phythian s1977d, and Do-
minicis and Peliti s1978d; and averaging over the initial
conditions. In Eq. sA2d, uI =u1 , . . . ,uN are the oscillator
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angles and CI =C1 , . . . ,CN are their conjugate variables
in phase space. rN is 2p periodic in each of its phase
arguments uj. Initial data have been assumed to be inde-
pendent and identically distributed, rNs0,uI ,vI d
=pj=1

N nsuj ,vjd sthe molecular chaos assumptiond. In ad-
dition, the normalization constant in the path integral
will be omitted. Since we are interested in one-oscillator
averages for systems of infinitely many oscillators, we
should study the one-oscillator probability density
rsu ,v , td such that

rsu1,v1,td = lim
N→`

E rNst,uI ,vI dp
i=2

N

fgsviddviduig . sA3d

To analyze this function, note that the exponential in
Eq. sA2d contains double sums such as

o
j=1

N

C̃j cos ujo
k=1

N

sin uk =
1
2FSo

j=1

N

sC̃j cos uj + sin ujdD2

− So
j=1

N

C̃j cos ujD2

− So
j=1

N

sin ujD2G , sA4d

and others of a similar form. Here C̃j= iCj. Note that the
squares of the sums in the previous formulas can be
eliminated by using Gaussian path integrals,

E expH− E
0

t FNw2 + iÎ2Kwo
j=1

N

AjGdtJDwstd

= expH−
K

2N
E

0

t So
j=1

N

AjD2

dtJ , sA5d

E expH− E
0

t FNw2 + Î2Kwo
j=1

N

AjGdtJDwstd

= expH K

2N
E

0

t So
j=1

N

AjD2

dtJ . sA6d

Inserting Eqs. sA2d and sA4d–sA6d into Eq. sA3d
yields

rsu,v,td = lim
N→`

E eAsu,v,t;wI dskeAlu,vdN−1DwI std , sA7d

eA =E E E
us0d=u0

ustd=u

expH− E
0

t

f2DC2 + C̃su̇ − vd + w1
2

+ iÎ2Kw1C̃ cos u + w2
2 + w3

2 + iÎ2Kw2 sin u

+ Î2Kw3sC̃ cos u + sin ud

+ ¯ gdtJDCstdDustdnsu0,vddu0, sA8d

keAlu,v =E E eAgsvddvdu . sA9d

In Eq. sA8d, 1¯ stands for six terms of the same type
as the three previous ones. The integrals over wI std in Eq.
sA7d can be approximated by means of the saddle-point
method, resulting in

d

dwk
lnkeAlu,v = 0 sA10d

for k=1, . . . ,9. For the three terms displayed in Eq.
sA8d, Eq. sA10d yields

w1 = − iÎK

2
kC̃ cos ul, w2 = − iÎK

2
ksin ul ,

w3 = − isw1 + w2d , sA11d

where

kAl =
E A exps¯dDCstdDustdnsu0,vddu0gsvddvdu

E exps¯dDCstdDustdnsu0,vddu0gsvddvdu

.

sA12d

Here the exponential terms coincide with that in the
integrand in Eq. sA8d. After inserting Eq. sA11d in these
exponentials, and substituting the result into Eq.
sA12d, the terms containing wk sk=1,2 ,3d become

−KkC̃ sin ulcos u−Kkcos ulC̃ sin u. The denominator in
Eq. sA12d can be set equal to 1, upon appropriately de-
finining the path integral so that k1l;1. We then obtain

kC̃ sin ul=dk1l /dkcos ul=0. The other functions wk can
be determined similarly, and we obtain

rsu,v,td =E E E
us0d=u0

ustd=u

exp AsC,u ;v,td

3DCstdDustdnsu0,vddu0, sA13d

AsC,u ;v,td = − E
0

t H2DC2 + iCfu̇ − v − Kr sinsc − udg

+
Kr

2
cossc − udJdt , sA14d

reic = keiul =E E eiursu,v,tdgsvddvdu . sA15d

This is the path-integral representation of the solution of
the nonlinear Fokker-Planck equation satisfying
rsu ,v ,0d=nsu ,vd. Thus the one-oscillator density satis-
fies the nonlinear Fokker-Planck equation in the limit as
N→` sBonilla, 1987d. The same method can be used to
show propagation of molecular chaos: the p-oscillator
probability density is given by
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rpsu1,v1, . . . ,up,vp,td = lim
N→`

E rNst,uI ,vI d

3 p
i=p+1

N

fgsviddviduig

= p
j=1

p

rsuj,vj,td , sA16d

provided that the oscillators are independent and iden-
tically distributed initially and that sN−pd→` sBonilla,
1987d.

APPENDIX B: CALCULATING BIFURCATIONS FOR THE
NONLINEAR FOKKER-PLANCK EQUATION BY THE
METHOD OF MULTIPLE SCALES

Let us explain this method in the simple case of bifur-
cations to stationary synchronized phases and comment
on its relation to the Chapman-Enskog method. In this
case, there exist two time scales, t sthe fast time scaled
and t=«2t,sK−Kcdt /K2 sthe slow time scaled. The
choice of the slowly varying time scale is motivated as in
Sec. III.D, and sK−Kcd=Os«2d because the equation for
r3 is the first equation of the hierarchy derived below to
display resonant terms. We assume

rsu,v,t ;«d ,
1

2p
F1 + o

n=1

`

«nrnsu,v,t,tdG , sB1d

and insert this asymptotic expansion into Eq. s26d,
thereby obtaining the hierarchy of linear equations,

Lr1 = 0, E
−p

p

r1du = 1, sB2d

Lr2 = − Kc]uhr1 Im e−iuke−iu8,r1lj + c.c.,

E
−p

p

r2du = 0, sB3d

Lr3 = − Kc]uhr2 Im e−iuke−iu8,r1l + r1 Im e−iuke−iu8,r2lj

− ]tr1 + c.c. − K2]u Im e−iuke−iu8,r1l ,

E
−p

p

r3du = 0, sB4d

and so on. The solutions of Eqs. sB1d and sB2d are

r1 =
Astdeiu

D + iv
+ c.c., sB5d

r2 =
A2

sD + ivds2D + ivd
e2iu + c.c. +

Bstdeiu

D + iv
+ c.c.,

sB6d

respectively. Astd and Bstd are slowly varying ampli-
tudes to be determined later. Inserting Eqs. sB5d and

sB6d into sB4d and using the nonresonance condition
s45d, one obtains the relation dA /dt=Fs0d, where Fs0d is
given by Eq. s48d. Thus, to leading order, the method of
multiple scales and the Chapman-Enskog method yield
the same amplitude equation. However, for more com-
plicated bifurcations, such as the degenerate transition
described by Eq. s50d, the method of multiple scales still
yields dA /dt=Fs0d and a linear inhomogeneous equation
for the amplitude Bstd. The reason for these unphysical
results is that the method of multiple scales is severely
limited by the fact that all terms in the reduced equa-
tions provided by it turn out to be of the same order.
Equation s50d can still be derived from these two equa-
tions by an ad hoc ansatz, as was done by Bonilla, Pérez-
Vicente, and Spigler s1998d in the case of the tri-
critical point. Note that Eq. s39d implies that Bstd=0
when the Chapman-Enskog method is used.

APPENDIX C: CALCULATION OF THE DEGENERATE
BIFURCATION TO STATIONARY STATES NEAR Ω0=D /Î2

In this appendix, we evaluate the term Fs2dsA ,Ād,
needed to describe the transition from supercritical to
subcritical bifurcations at the parameters v0=D /Î2, Kc
=3D. The solution of Eq. s42d is

r3 =
eiu

D + iv
SK2A

Kc
−

Fs0d

D + iv
−

AuAu2

sD + ivds2D + ivdD
+ c.c. +

3A3ei3u

sD + ivds2D + ivds3D + ivd
+ c.c. sC1d

The additional equations in the hierarchy that are
needed are

Lr4 = − Kc]uhr3 Im e−iuke−iu8,s1lj

− K2]us1 Im e−iuke−iu8,s1l − Fs0d]Ar2 + c.c.,

sC2d

Lr5 = − Kc]uhr4 Im e−iuke−iu8,s1lj − Fs2d]As1 + c.c.

− Fs0d]Ar3 + c.c. − K2]uhr2 Im e−iuke−iu8,s1lj .

sC3d

The solution of Eq. sC2d is

r4 =
Aei2u

sD + ivds2D + ivdF3K2A

Kc
− 2Fs0dS 1

D + iv

+
1

2D + iv
D −

2AuAu2

2D + iv
S 1

D + iv
+

3

3D + iv
DG

+ c.c. +
12A4ei4u

sD + ivds2D + ivds3D + ivds4D + ivd

+ c.c. sC4d

The task of finding Fs2d becomes simpler when we note
that, near the degenerate point, the relation v0=D /Î2
+«2v2 holds. This yields
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Fs0d = K2S1 +
2Î2«2v2

D
DA +

16Î2«2v2

9D2 AuAu2 sC5d

up to Os«4d terms. Then, we only need to evaluate Fs2d at
v0=D /Î2 in order to obtain an amplitude equation con-
taining terms up to order Os«4d in Eq. s38d. The terms
rn, n=1, . . . ,4 should be inserted into the right-hand side
of Eq. sC3d, and the nonresonance condition for the re-
sulting equation should be used. In such an equation, we
can set Fs0d=K2A. The result is

Fs2d = −
K2

2

D
A −

28K2

9D2 AuAu2 −
272

171D3AuAu4. sC6d

Then the amplitude equation s50d is obtained after in-
serting Eqs. sC5d and sC6d into Eq. s38d.

APPENDIX D: CALCULATION OF THE BIFURCATION AT
THE TRICRITICAL POINT

Inserting Eq. s59d into Eq. s26d leads to the modified
hierarchy

Lr2 = − Kc]uhs1 Im e−iuke−iu8,s1lj −
ATeiu

D + iv
+ c.c.,

sD1d

Lr3 = − Kc]uhr2 Im e−iukeiu8,s1lj

− K2]u Im e−iuke−iu8,s1l − ]Tr2 + c.c., sD2d

Lr4 = − Kc]uhr3 Im e−iuke−iu8,s1l

+ v2s1 Im eiukeiu8,s1l8j

− K2]us1 Im e−iuke−iu8,s1l − ]Tr3 + c.c. sD3d

with Kc=4D. Here we have defined the “inner product”

kw,cl8 =
1

2p
E

−p

p E
−`

+`

wsu,vdcsu,vdg08svddvdu ,

g08svd =
1
2

fd8sv + v0d − d8sv − v0dg . sD4d

Equation s60d has not yet been used. Using it leads to a
correction in Eqs. sD2d and sD3d. The second term in
Eq. sD1d has the same form as s1, but it is nonresonant
because k1, sD+ ivd−2l=0 at the tricritical point. The so-
lution of Eq. sD1d is

r2 = F A2e2iu

sD + ivds2D + ivd
−

ATeiu

sD + ivd2G + c.c. sD5d

We now insert this solution into Eq. sD2d, and use the
ansatz s60d because ]Tr2 contains a factor ATT in a truly
resonant term. Recall that it is at this point that the
routine Chapman-Enskog ansatz in Eq. s38d fails to de-
liver a resonant term. Note that the ansatz in Eq. s60d
adds the term Fs1deiu / sD+ ivd2+c.c. to the right-hand
side of Eq. sD3d. The nonresonance condition for Eq.
sD2d yields

Fs0d =
D

2
sK2 − 4v2dA +

2
5

uAu2A . sD6d

The solution of Eq. sD2d is

r3 = S K2 − 4v2

4DsD + ivd
A +

Fs0d

sD + ivd3

−
AuAu2

sD + ivd2s2D + ivdDeiu + c.c.

−

AATS 1

D + iv
+

1

2D + iv
D

sD + ivds2D + ivd
e2iu + c.c.

+
A3e3iu

sD + ivds2D + ivds3D + ivd
+ c.c. sD7d

Applying the nonresonance condition to the right-hand
side of Eq. sD3d, we obtain

Fs1d =
K2

2
AT −

suAu2AdT

5D
−

23

25D
uAu2AT. sD8d

Inserting Eqs. sD6d and sD8d into Eq. s60d yields the
sought amplitude equation s61d.

APPENDIX E: STATIONARY SOLUTIONS OF THE
KURAMOTO MODEL ARE NOT EQUILIBRIUM STATES

In this appendix, we show how the stationary solu-
tions of the Kuramoto model are not equilibrium states
for the model defined by the Hamiltonian s144d. Follow-
ing Pérez-Vicente and Ritort s1997d, the equilibrium
value of the moments in Eq. s140d, Ek

m, corresponding to
Eq. s144d, can be easily evaluated:

Ek
m = Fk

meiku = eikuE
−p

p

dvgsvdvm

Jk
vSKr

T
D

J0
vSKr

T
D , sE1d

u being an arbitrary phase. The functions Jk
vsxd are of

the Bessel type,

Jk
vsxd = E

−p

p

df expsikf + x cos f + bvfd , sE2d

and b=1/T sT being the temperatured. Inserting the
equilibrium values of the moments Ek

m into Eq. s141d
yields

S ]Hk
m

]t
D

Hk
m=Ek

m
= ikvm expsikud , sE3d

where

vm = T expSKr

T
DE

−p

p

dvgsvd
vmSexpS2pv

T
D − 1D

J0
vSKr

T
D .

sE4d
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Stationarity of the equilibrium solution requires that
vm vanish. In the simple case of a symmetric frequency
distribution gsvd=gs−vd, it can be proven that v2m=0 for
every m. However, odd moments do not vanish. The
temperature dependence of v2m−1 can be analytically
evaluated in the high-temperature limit fv2m−1=v2m

+Osb3dg as well as in the low-temperature limit fv2m−1

=v2m+OsTdg. It is worth noting that, even in the zero-
temperature limit swhere a stability analysis reveals that
the synchronized solution is neutrally stable; see Sec.
II.Bd, the absolute minima of H are not stationary con-
figurations of the dynamics. This shows that the assump-
tion that the stationary solutions at T=0 are local
minima of H in Eq. s144d does not hold. For a symmetric
frequency distribution, where v0=0, this result does not
guarantee that the Boltzmann distribution Peqshuijd
~expf−bHshuijdg swhich depends on the whole set of
moments Hk

md is also stationary. In this case, in fact, both
Hk

0 =hk and the synchronization parameter r are station-
ary.

APPENDIX F: DERIVATION OF THE KURAMOTO MODEL
FOR AN ARRAY OF JOSEPHSON JUNCTIONS

By using an averaging procedure, Swift et al. s1992d,
Wiesenfeld s1996d, and Wiesenfeld et al. s1996, 1998d
have shown that Eqs. s151d and s152d with Cj=0 sthe
resistively-shunted-junction or RSJ cased can be mapped
onto the Kuramoto model, provided coupling and disor-
der are weak. The main steps of the procedure are as
follows. First, we change from the angular variables fj to
the natural angles uj, which rotate uniformly in the ab-
sence of coupling:

2erj

"

duj

vj
=

dfj

IB − Ij sin fj
. sF1d

Direct integration of this equation yields IB−Ij sin fj

= sIB
2 −Ij

2d / sIB−Ij cos ujd, which is equivalent to Eq. s154d.
In terms of the new angular variables, Eq. s152d becomes

u̇j = vj −
vjQ̇sIB − Ij cos ujd

IB
2 − Ij

2 . sF2d

Second, we want to estimate the orders of magnitude
of the terms in our equations. Equation s152d yields the
characteristic time scale over which the angular vari-

ables change, tf=" / s2er̄Īd, where r̄ and Ī are the mean
values of the resistances and critical currents in the junc-
tions. Similarly, tQ= sR+Nr̄dC is the characteristic time
scale in the resistance-inductance-capacitance sRLCd
load circuit. By assuming that tf / tQ!1, we can ignore
the first two terms on the left side of Eq. s152d. If we

ignore Q̇ into Eq. s152d, and insert the resulting ḟj into
s152d, we obtain the following order of magnitude for

the charge: Q=OsNCĪr̄d. Then Q̇=OsNCĪr̄ / tfd
=OseNCĪ2r̄2 /"d in Eq. s152d. Third, we assume that the
disorder in rj and Ij is weak. More precisely, we assume
that the fluctuations in the critical current of the junc-

tions are of the same order as Q̇=OseNCĪ2r̄2 /"d, and

that both are much smaller than Ī. Thus we assume

eNCĪr̄2

"
! 1,

tf

tQ
=

"

2eCr̄sR + r̄dĪ
! 1. sF3d

Last, and according to our assumptions, we proceed to

ignore terms Q̇ and Q̈ in Eqs. s151d and s152d. This
yields Q as a function of the angular variables. We then
insert this result into Eq. sF2d, which is averaged over
the fast time scale tf. We obtain the modified Kuramoto
model s155d.
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