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This colloquium examines the theoretical modeling of nonequilibrium low-temperature (tens of
thousands of degrees) plasmas, which involves a juxtaposition of three distinct fields: atomic and
molecular physics, for the input of scattering cross sections; statistical mechanics, for the kinetic
modeling; and electromagnetic theory, for the simultaneous solution of Maxwell’s equations. Cross
sections come either from single-scattering beam experiments or, at very low energies (<0.5 eV),
from multiple-scattering experiments on “swarms” in gases—the free diffusion or large Debye length
limit of a plasma, where they are embedded in transport coefficient data. The same Boltzmann kinetic
theory that has been developed to a high level of sophistication over the past 50 years, specifically for
the purpose of unfolding these transport data, can be employed for low-temperature plasmas with
appropriate modification to allow for self-consistent rather than externally prescribed fields. A full
kinetic treatment of low-temperature plasmas is, however, a daunting task and remains at the
developmental level. Fortunately, since the accuracy requirements for modeling plasmas are generally
much less stringent than for swarms, such a sophisticated phase-space treatment is not always
necessary or desirable, and a computationally more efficient but correspondingly less accurate
macroscopic theoretical model in configuration space at the fluid level is often considered sufficient.
There has been a proliferation of such fluid modeling in recent times and this approach is now
routinely used in the design and development of a large variety of plasma technologies, ranging from
plasma display panels to plasma etching reactors for microelectronic device fabrication. However,
many of these models have been developed empirically with specific applications in mind, and rigor
and sophistication vary accordingly. In this colloquium, starting from the governing Boltzmann kinetic
equation, a unified, general formulation of fluid equations is given for both ions and electrons in
gaseous media with transparent and internally consistent approximations, all benchmarked against
established results. Thereby a fluid model is obtained that is appropriate for practical application but
at the same time is based on a firmer physical foundation.
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I. INTRODUCTION

For many practical applications (including the treat-
ment of organic materials, polymers, and integrated cir-
cuits), it is essential to have a nonequilibrium plasma
with gas and ion temperature practically at room-
temperature level (Lieberman and Lichtenberg, 1994,
2005). One may use the poor energy transfer in electron-
molecule collisions to make sure that electrons gain high
energy from the field and initiate plasma chemical pro-
cesses, while the low degree of ionization means that
their energy will not be transferred to ions and eventu-
ally to neutrals. Such plasmas, also known as cold or
low-temperature plasmas, are typically far from equilib-
rium and can only be described by transport theory. In
these low-temperature plasmas electron and ion-atom or
molecule collision processes generally dominate the be-
havior of weakly ionized gases and act to suppress many
(but not all) of the collective phenomena normally asso-
ciated with high-temperature plasmas. For this reason
low-temperature plasma physics has emerged as a dis-
tinct field, quite separate from fusion plasma physics,
with an importance in its own right arising from its many
high-technology industrial applications (Becker et al.,
2000).

The highly applied nature of the field has inevitably
driven the modeling of these plasmas more towards em-
piricism, and unfortunately often away from its roots in
fundamental physics. This schism further endangers
progress in the field. The ever increasing demands of
small-scale manufacturing processes can be met if and
only if the basic physics is understood and basic physical
principles are adhered to. These comments are particu-
larly pertinent to the area of fluid modeling where typi-
cally empirical equations representing a balance of mass,
momentum, and energy are constructed according to the
specific application at hand and often driven by the de-
mands of computational efficiency. Questions relating to
the scientific rigor of this approach naturally arise, with
benchmarking against established, accurate results, as
well as tests of consistency between the various fluid
models of major concern. As regards the latter, the
radio-frequency discharge benchmark analysis of Suren-
dra (1995) clearly demonstrates a high degree of varia-
tion between experiment and the various fluid models,
and between the fluid models themselves. Given the dis-
parate nature of the fluid models considered, this is
hardly surprising. More importantly, the complexity of
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the benchmark system considered may well mask defi-
ciencies in the basic physics of the models. As a general
rule, we feel it would be better to start at the most fun-
damental level, getting the physics right for simple
benchmarks and then proceeding to more complex situ-
ations. For plasmas, this means going right back to fluid
descriptions in the swarm/test particle/free diffusion
limit' and addressing questions of basic physics that re-
main unresolved even at this relatively simple level. A
discussion of fluid modeling along these lines, emphasiz-
ing basic physics, is long overdue and is the task under-
taken in the present colloquium.

Since collisions dominate in a weakly ionized gas, it is
clear that there is an inseparable link with atomic and
molecular physics, and that any modeling requires input,
either directly or indirectly, of the cross sections (or in-
teraction potentials) obtained through either one or
more of the following means: (1) measurement results
from single-scattering beam experiments (Brunger and
Buckman, 2002), (2) results of theoretical ab initio calcu-
lations (Morrison and Trail, 1993; McEachran and
Stauffer, 1997; Viehland, 2001), and/or (3) results from
inversion of swarm experimental data (Crompton, 1994).

The first and most obvious point is that there must be
correct implementation of the single-scattering collision
data in the multiple-collision context of an extended gas-
eous medium, and it is here that some of the techniques
of low-temperature plasma modeling employ a variety
of treatments. This remark is not so much directed at
modeling through Monte Carlo simulations or kinetic
equations in which single-scattering cross sections enter
into the calculations in a fairly clear way [see White et al.
(2002) and remarks in Robson et al. (2003)], but rather at
the macroscopic fluid level, where collisions are treated
in a variety of ways which are not necessarily consistent
with the data itself and/or the system under consider-
ation. There are also other issues, associated with trun-
cation of the set of fluid equations, that are indirectly
associated with the correct representation of collisional
phenomena. Thus at the fluid level of description one
always has more unknowns than there are equations to
solve, and therefore some closure hypothesis must be
made. Surendra and Dalvie (1993) express dissatisfac-
tion with the closure procedures reported in the plasma
literature, and indeed it seems to us that this crucial step
is too often dealt with in an uncritical, almost casual
manner, especially as far as the heat flux Ansatz is con-
cerned, in both the plasma and swarm literature. A criti-
cal discussion and new ideas, consistent with the correct

'For swarms the Debye length is much larger than the dimen-
sions of the drift chamber, and the “free diffusion” or “test
particle” situation prevails. On the other hand, a plasma is
defined strictly as the state of matter where the Debye length
is much smaller than any macroscopic length scale. In real gas
discharges, these opposite extremes, plus a variety of interme-
diate conditions, may prevail at various positions in the dis-
charge tube. The designation plasma tends to be used rather
more loosely nowadays [see, e.g., the review of Winkler
(2000)], possibly for this reason.
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FIG. 1. (Color online) The steps involved in constructing fluid equations for both swarms and low-temperature plasmas, starting
from the common Boltzmann equation for each of the ion and electron species, and proceeding through a common set of
approximations for collision terms and closure. The symbol S denotes the swarm limit (low charge density, external fields, linear
equations). Swarm fluid equations follow either directly as a limiting case of the plasma fluid equations or indirectly as moment
equations of the swarm limit of Boltzmann’s equation. In this picture, the plasma fluid equations are thus consistent with the
numerous established results of swarm analysis (see Sec. V.D). In addition, it is legitimate in this scheme to employ measured or
theoretically calculated swarm transport coefficients to replace approximate terms in either the swarm or plasma fluid equations,
thereby considerably enhancing computational accuracy (see Sec. V.C).

portrayal of collision dynamics, is long overdue and is
the main subject of this colloquium.

The second major point is that it is axiomatic in phys-
ics that any more general theory must produce the re-
sults of a well-established, though more restrictive
theory in the appropriate limit. The classical limit of
quantum mechanics as #— 0 and the nonrelativistic limit
of mechanics at small velocities are perhaps the best
known examples. Likewise, any fluid model of a low-
temperature plasma must produce, in the limit of low
charge densities, the well-established results of the test
particle or swarm limit [see the review of White et al.
(2002)]. One thing that strikes the reader surveying the
literature of fluid models of low-temperature plasmas is
the plethora of apparently different fluid equations cur-
rently in use. This begs a number of questions: What is
their relationship to each other? Which set gives the
most accurate results? Which has the firmer physical
foundation? Which is the more flexible? Which can be
applied to both ions and electrons? We can answer
some, but not all of these questions, by drawing upon
the experience for swarms since there the approxima-
tions and assumptions associated with collisional trans-
fer terms, in particular, have generally been more closely
examined and benchmarked (Robson, 1986; Mason and
McDaniel, 1988). In the hydrodynamic regime (Kumar et
al., 1980; Mason and McDaniel, 1988) many useful and
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well-known empirical laws have been tested and estab-
lished on the basis of low-order moment equations of
the Boltzmann equation, e.g., the Wannier energy rela-
tion, the generalized Einstein relations, Blancs law,
Tonks’s theorem, and so on. Importantly, corrections to
these laws and internal consistency and accuracy tests
have been developed over the years (Skullerud, 1984;
Robson, 1986, 1994; Mason and McDaniel, 1988).
Plasma fluid equations should be able to produce these
established swarm results in the appropriate limit, but it
is by no means obvious that they do. For all these rea-
sons, it appears to us to be highly desirable at this point
in time to establish a set of fluid equations applicable to
both swarms and plasmas.

Third, we suggest that establishment of the validity of
any approximation, together with the integrity of any
associated computational procedure, requires, in addi-
tion to comparison with experiment, an estimate of its
intrinsic accuracy by either (1) a comparison with an ex-
act benchmark result, (2) a series of successive approxi-
mations, or (3) some internally consistent and logical
method.

The question of accuracy requires some further dis-
cussion in its own right. To begin with, the motivation
for using a fluid approach needs to be established: this is
simply that it provides a relatively inexpensive computa-
tional means of analyzing low-temperature plasmas (and
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FIG. 2. The typical empirical fluid model of a low-temperature
plasma suffers from the following defects: (i) any logical con-
nection with exact moment equations derived from the Boltz-
mann equation is unclear; (ii) approximations for collision
terms, and the closure hypothesis involving the heat flux, are
not properly justified; and (iii) any commonality with swarm
analysis and results is thus severed. Such an empirical model
can therefore, in general, reproduce neither the swarm fluid
equations nor the many well-known benchmark results and
formulas established in the literature over many years (Sec.
V.D). Furthermore, after having broken the nexus, the imple-
mentation of swarm transport coefficients in the empirical fluid
equation model loses its physical foundation and can lead to
unforeseen errors (see Sec. V.C).

charged-particle swarms) as compared with a full kinetic
treatment, in which the Boltzmann equation is solved to
high numerical precision (Winkler, 2000; White et al.,
2002). However, the penalty is a significant loss of accu-
racy, often no better than 10%, and sometimes much
worse. For this reason results obtained from a fluid de-
scription of swarms (Robson, 1986; Robson, White, and
Makabe 1997), for which errors in measured transport
coefficients are typically 1% or less (Huxley and Cromp-
ton, 1974; Crompton, 1994), have hitherto been taken
more as a qualitative to semiquantitative guide to physi-
cal understanding, rather than as a quantitative prescrip-
tion. Plasma modelers, on the other hand, understand-
ably take a more empirical and pragmatic standpoint,
given that 10% is often quite an acceptable uncertainty
even for quantitative purposes. There is thus an interest-
ing contrast between accuracy requirements in the two
fields and the manner in which the fluid description is
viewed. Unfortunately, the literature has also become
divided along these lines, even though results estab-
lished in one area should carry over to the other, in ap-
propriate limits. The present colloquium emphasizes this
commonality and aims at strengthening the connection
between the two fields.

Our view of the ideal way to proceed in fluid model-
ing is summarized schematically in Fig. 1, which empha-
sizes both physical foundations and internal consistency.
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The main limitations inherent in the more traditional
empirical approaches are highlighted in Fig. 2.

Before embarking on the present overview specifically
devoted to the modeling of charged fluids, we would like
to emphasize that many of our observations concerning
the approximations involved apply equally well to other
areas of physics, whether the fluid is charged or neutral,
and whether or not there are any driving fields. This
remark applies particularly to the calculation of collision
terms, which in this colloquium follow the prescription
of momentum-transfer theory, a far more accurate, but
far less well-known approximation than the popular
mean-free-path theories of elementary kinetic theory
[see p. 144 of Mason and McDaniel (1988)]. Just as nu-
merous texts illustrate the application of the mean-free-
path analysis to a whole spectrum of transport proper-
ties in a wide variety of physical problems, so can the
discussion presented here be carried over from gaseous
electronics to the more general arena. Hot atom chem-
istry and cold muon catalyzed fusion are just two perti-
nent examples (Robson, 1986, 1988), while recent re-
search into ion clouds in ion traps deserves special
mention (Viehland, 2005).

The outline of this colloquium is as follows. In Sec. II
we review a simple, well-known example from plasma
physics to illustrate the importance of the formulation of
a plasma fluid model consistent with swarms, while in
Sec. III general fluid equations are formulated for both
ions and electrons, without any limiting assumptions,
starting from the Boltzmann equation. Approximation
of the collision terms is then discussed, along with the
question of truncation, and in particular we focus upon
the role of the heat flux vector. We then proceed from
the general equations to the hydrodynamic limit, high-
lighting the transport coefficients, and then to the gen-
eral, nonhydrodynamic problem. A benchmark solution
is found for electrons in the free diffusion limit for
plane-parallel geometry in Sec. IV, and the heat flux An-
satz is the subject of particular scrutiny. Finally, in Sec. V
we address the use of swarm transport data in fluid mod-
els and make recommendations for the correct applica-
tion in them.

II. THE IMPORTANCE OF PLASMA-SWARM
CONSISTENCY

A. The textbook model of ambipolar diffusion

For both swarms and plasmas in the hydrodynamic,
small gradient limit, the fluid equations derived below
(see Sec. V.B) yield Fick’s law of diffusion for each of the
charged species:

I'® = yOKHE - pO v & 1)

For swarms of very low charge density, in which the De-
bye length (distance over which the field of a charged
particle is effectively screened by surrounding charged
particles) is larger than any relevant macroscopic dimen-
sion, the electric field E is externally prescribed, and the
ion and electron density distributions n* evolve inde-
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pendently of each other. For plasmas (high charge den-
sity, the Debye length is much much greater than the
macroscopic dimensions), on the other hand, the ions
and electrons interact with each other to produce a self-
consistent space-charge field E and, as the usual text-
book argument goes [see, e.g., Chen (1974)], the ions
and electrons must move together, i.e.,

F(+) — l“(*) =T (2)

in order to maintain overall quasielectrical neutrality,
n®=n=n. It is important to note that in both cases
the same form of fluid equations (1) are used as the
common starting point, and that the swarm mobility and
diffusion coefficients for ions and electrons K*) and
D™, respectively, appear in both cases. Of course, what
one does with the fluid equations subsequently is a dif-
ferent matter. For swarms, one substitutes Eq. (1) into
the respective equation of continuity for each species to
generate two distinct diffusion equations, which may be
solved independently of each other. For plasmas, one
substitutes Eq. (1) into Eq. (2) to generate an expression
for the space-charge field E, which in turn yields for the
common flux

I'=-D,Vn, (3)
where
KOpH - kO p®)
aT T g kO

(4)

is the ambipolar diffusion coefficient. Equation (3) when
substituted into the equation of continuity for either
charge species then yields the ambipolar diffusion equa-
tion, which describes the common evolution of both ions
and electrons.

B. Plasma-swarm consistency

The foregoing is a straightforward illustration, implic-
itly accepted throughout the plasma community, of how
analysis of both swarms and plasmas proceeds from a
common set of fluid equations (1), which in turn stem
from the same approximations. Our suggestion is that
the same philosophy should be adhered to in all situa-
tions, with a common general set of fluid equations for
all circumstances, according to Fig. 1. One can make
subsequent approximations for the plasma as needed,
just as in the simple ambipolar diffusion problem above,
but the common origin remains clear, as does the justi-
fication for using swarm transport data in the ultimate
expression (4). It would be unthinkable to suggest that
there should be two starting points instead of the one
common point of departure (1), i.e., one set of fluid
equations for swarms, and another, different set for plas-
mas, and yet that is precisely the sort of thing that is
happening in current empirical plasma fluid modeling.
The nature of the problem is illustrated schematically in
Fig. 2: without a common foundation, inconsistencies
ranging from the conceptual to the practical are inevi-
table. It would be incorrect, for example, to use swarm
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transport coefficients in a plasma fluid model which is
itself inconsistent with basic swarm theory, and yet that
is what is currently happening. [N.B. Given its consis-
tency with Fig. 1, Eq. (4) does not suffer from this defect,
and swarm data can be legitimately substituted.]

We shall return to this point again in the course of this
colloquium.

lll. FORMULATION OF A COMMON SET OF FLUID
EQUATIONS

A. Kinetic equation

The starting point of any transport calculation is the
kinetic equation, which can be written in generic form as

<%+V.V+%[E+v>< B]-%)fz—l(ﬁF)—f(f,f),

(5)

where f(r,v,t) is the charged-particle phase-space distri-
bution function, J(f,F) is the charged-particle-neutral
molecule collision term, and F is the prescribed distribu-
tion function of the neutral gas (usually taken to be
Maxwellian at temperature T,). The definition of a
swarm is that the degree of ionization should be negli-
gible and that there should be no interactions with any
products of collisions, excited, or charged particles; the
Debye radius for a swarm experiment is infinite (or
much larger than the swarm experiment). These condi-
tions are satisfied very well in low current drift tube ex-
periments. Usually, only one species of particle of mass
m and charge ¢ is present in the gas (or if more than one
species is present, each may be treated separately), E
and B are prescribed external fields, and the electron-
electron or ion-ion interaction term J(f,f)=0. On the
other hand, for plasmas an equation like Eq. (5) exists
for each charged species, E and B are determined self-
consistently from Maxwell’s equations (and external
boundary potentials and currents); electron-excited
state, excited state—excited state, electron-electron, ion-
ion, and electron-ion interactions, as characterized by
terms in J(f,f), may be also important.

On the right-hand side of Eq. (5), the traditional col-
lision operator of Boltzmann (1872), or its differential
form in the case of electrons (Davydov, 1935), should be
used for describing elastic collisions. To describe inelas-
tic collisions, a fully classical collision operator can
sometimes be justified for ions (Viehland, 1994), but for
lighter particles, the Wang-Chang et al. (1964) semiclas-
sical collision operator (in which neutral molecules in
different excited states are effectively treated as differ-
ent species) or its approximation in a finite difference
form (Frost and Phelps, 1962) seems mandatory. The
Waldmann-Snider quantum operator (Waldmann, 1958;
Snider, 1960) may be required in some situations when
the degeneracy of rotational states is important. Further
interaction terms representing ionization, attachment,
ion-molecule reactions, etc., could be added if desired
(White et al., 2002; Winkler et al., 2002). Note that both
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ion and electron components can be treated starting
from the same form of Eq. (5), which can be solved using
the same methods and techniques.

The task of kinetic theory is to solve Eq. (5) for f and
hence to obtain quantities of physical interest such as
velocity moments. In the fluid equation approach, one
aims to obtain these moments directly, without knowing
f- The next subsection addresses this question.

B. Fluid equations, truncation, and approximations to the
collision terms

1. The general problem of truncation

Fluid equations may be derived either directly as mo-
ments of Eq. (5) or from first principles using physical
arguments. For the present, we find it convenient to
adopt the former approach. Basically, whether dealing
with swarms or plasmas, fluid equations are generated
by multiplying Eq. (5) by the set of functions ¢;(v) and
integrating over all velocities to give equations for the
averages (¢;(v)), where ¢ (v)=1, ¢(v)=mv, ¢;(v)
:%mvz, ¢4(v)=mvv, and so on. Generally speaking, the
equations are not closed—there are always more un-
knowns than equations to solve for. As Hazeltine and
Waelbroeck (1998) put it, “The derivation of a closed set
of fluid equations ... generally requires serious approxi-
mation” to fix this problem. They go on to distinguish
two possible types of closure mechanisms:

(a) Truncation, in which a high-order moment is as-
sumed either to vanish or to be expressible some-
how in terms of lower-order moments, using some
empirical criterion. In more sophisticated kinetic-
theory analysis [see, e.g., Mason and McDaniel
(1988)], one increments the size of the moment
equations systematically and closes the set when
some convergence criterion is reached, thereby
maintaining tight control. In contrast, at the fluid
level such closure is achieved by a straight-out pos-
tulate or Ansatz and is uncontrolled.

(b) Asymptotic closure, which is based upon the small-
ness of some parameter. It is possible to control
and refine such closure by successive
approximations.

Both mechanisms are employed in what follows.

2. Approximation of the collisional transfer
terms—general remarks

For simplicity, and to focus upon the essential points,
we assume a swarm or plasma for which the degree of
ionization is so low that charge-charge interactions, as
represented by the term J(f,f), are negligible, and focus
entirely upon the charge-neutral term J(f,F) in Eq. (5).
This approximation can subsequently be relaxed and the
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theory refined accordingly without any great difficulty.”
The collisional transfer terms generally contain an infi-
nite number of moments, and must therefore be ap-
proximated by some closure hypothesis. We can express
the collisional rate of change of property ¢;(v) and its
approximation formally as

f I (E Y =n 2 T (%) = n 2 T{dy(v)), (6)
j=1 j=1
where a velocity average is defined as

<...>:lf - f(v)dv.
n

A closure hypothesis amounts to some particular way of
specifying the collision rates J;; (which are matrix ele-
ments of the collision operator with respect to the basis
function set). Methods reported in the literature essen-
tially follow the philosophy expressed in Sec. III.A, and
fall into one of the following two categories described
above.

(a) Truncation by empirical means (i.e., a guess!). For
example, with ¢;(v)=myv, a favored approximation
is to set J;=v,.6;, where v, is some collision fre-
quency, so that the right-hand side of Eq. (6) is
equal to nmvv). Alternatively, the velocity distri-
bution function is often assumed to be a Maxwell-
ian (another guess!), a method which also falls into
the same category of uncontrolled approximation.

(b) Asymptotic, controlled closure via either (i) as-
sumption of a specific form for the velocity distri-
bution function, with systematically controlled re-
finements (Mason and McDaniel, 1988); or (ii)
momentum-transfer theory with systematic ap-

proximations to the J;, benchmarked by exactly

solvable models and internal error estimates. The
small parameter in this case is v,, the energy de-
rivative of the momentum-transfer collision fre-

quency. Full details can be found in Robson (1986).

Whatever the method chosen, the collision terms (6)
should be of exactly the same mathematical form for
both swarms and plasmas: collisions are not influenced
by either fields or the spatiotemporal behavior of the
plasma. The latter effects are contained in the streaming
terms, i.e., the left-hand side of the moment equations of
Eq. (5), and it is here that the differences between

’Note that at the level of momentum and energy fluid equa-
tions, the mutual ion-ion or electron-electron interaction term
J(f,f) makes no contribution in any case since

f avi(f.f)i(v) =0

for ¢;=1 ,mv,%mvz, by virtue of conservation of particle num-
ber, momentum, and energy. On the other hand, electron-ion
collisions do in fact contribute further terms to the right-hand
side of the balance equations.



Robson, White, and Petrovic: Colloquium: Physically based fluid modeling of... 1309

plasma and swarm analysis will be most obvious. We
shall return to the specifics of evaluating the collision
transfer rates in Sec. V.C.

In what follows, as a simplification to the notation, we
dispense with the brackets () representing averages
when no ambiguity will arise, and simply write v for (v),
for example.

3. Fluid equations with momentum-transfer collision
approximation

Momentum-transfer theory goes back to ideas ex-
pressed by Wannier (1953), in which the mathematical
form of expressions derived for the constant collision
frequency model are assumed to carry over to the gen-
eral, energy-dependent collision frequency case (Rob-
son, 1986; Mason and McDaniel, 1988). It is important to
realize that since collisions per se are independent of the
macroscopic characteristics of the system—fields, gradi-
ents, boundaries, etc.—the accuracy of the approxima-
tion is the same for both swarms and plasmas. Note also
that the Wannier model is really just the lowest-order
approximation in a scheme of successive approximations
to the collision terms, with corresponding procedures for
refinement and internal accuracy estimates being readily
available (Robson, 1986; Robson and Ness, 1988). At the
lowest level of approximation, this results in the follow-
ing set of equations, equally valid for both swarms and
plasmas, representing continuity, momentum, and en-
ergy balance, respectively, for particles of mass m and
charge ¢,

on+V-nv=n(v;-v,), (7)
dv
nmE+V- P-nqg(E+vXB)
m ’
=-n Mvm(ecm)v —nmv(vp+ &v,), ®)

d
na(e— %mvz) +V-J,+P:Vy
=-nv,(ecm) e~ %kBTg —5(m + M)V + Q(ecp)]
—ne(v;+ év)) — nsmv* Qv+ &v)), 9)

where n, v, and € denote number density, average veloc-
ity, and average energy of the charged particles, V is the

normal gradient operator, while M and T, refer to the

molecular mass and temperature of the neutral gas, re-
spectively. The pressure tensor P is defined as

P=nm(VV)=nkgT (10)
and the heat flux vector as
J, = sn(mV?V), (11)

where V=v—(v), while
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d
E=§t+v-v

denotes the convective time derivative. The average col-
lision frequencies for momentum and energy transfer,

2
vnlecn) =N |~ (ecw). (12)
m+M
2mM
velecy) = W’f—M)zvm(eCM), (13)

like the momentum-transfer cross section o,,(ecy) from
which they derive, are prescribed functions of the mean
energy in the center of mass,

Me+mskyT,

€ECM —
¢ m+M

where kjp is Boltzmann’s constant. The same goes for the
average ionization and attachment collision frequencies
vi(ecy) and v,(ecy), respectively. Note that the latter is
really a total ionization frequency summed over all pos-
sible channels i,

b=,
i

in which ions are produced in excited states character-
ized by energies ey). The term () represents the average
energy lost in one collisional energy relaxation time ;"
through nonelastic processes and is given by

>

M a ; i O
_ it S L (14)
m+M a Ve(GCM) i Ve(ECM)

Q

The inelastic channels « are governed by threshold en-
ergies €, and collision frequencies for inelastic and su-

perelastic processes v, and v,, respectively. The latter
are also prescribed functions of ey but need to be
specified more carefu113y in terms of the corresponding
cross sections, o(€cy)-

3t appears that the best way to take into account the colli-
sions with excited molecules in plasmas is by treating them as a
separate gas in the mixture with the buffer gas. This is so be-
cause such particles will have considerably different cross sec-
tions for both elastic and inelastic collisions and, in particular,
the thresholds are different, which is essential for maintenance
of some plasmas such as the H mode of inductively coupled
plasmas. In that case the energy gain in superelastic collisions
requires coupling to an additional equation for the kinetics of
excited species. This is solved trivially in the case of swarms
because the basic assumption in that case is that the gas is not
perturbed by charged particles so only thermal population of
excited species requires consideration. In plasmas, however,
nonequilibrium kinetics of charged particles may lead to non-
equilibrium population of excited species. With that in mind
the application of momentum-transfer or other equations to
plasmas needs no further consideration.
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Note that to first order attachment enters the momen-
tum and energy balance equations in terms of the de-
rivative of the attachment collision frequency,

_dy,

K
whereas to the same order for ionization only the ion-
ization collision frequency v; appears. This reflects the
different ways in which attachment and ionization affect
average charged-particle properties, both qualitatively
and quantitatively, as has been discussed elsewhere
(Robson, 1986; Robson and Ness, 1988). Higher-order
momentum-transfer-theory corrections could be added
to the right-hand side if desired, without in anyway al-
tering the generality of the arguments presented below.
For swarms, E and B are externally specified, spatially
uniform fields, but for plasmas, they are generally space
and time dependent, and must be obtained self-
consistently with Maxwell’s equations. For example, for
capacitively coupled plasmas (Lieberman and Lichten-
berg, 1994), this means solving the fluid equations in

conjunction with Poisson’s equation,

V‘E:Eniqi/fo, (15)

where the sum on the right-hand side extends over all
charged species i.

We emphasize that approximations have been made
only on the right-hand sides of Egs. (8) and (9), and that
the left-hand side remains exact. There is, however, fur-
ther approximation to be made before they are in a use-
ful form.

C. The streaming terms

In order to proceed further, we must specify the pres-
sure tensor P (or equivalently the temperature tensor T)
appearing on the left-hand side (the streaming terms) of
the balance equations (8) and (9). The former generally
presents less of a problem, especially for the case of
light, charged particles for which the pressure tensor be-
comes a scalar proportional to the mean energy [see Eq.
(16)]. However, with one crucial exception (see Sec.
IV.A), the latter always leads to a closure problem. If
one formulates a balance equation for J, by taking the
appropriate velocity moment of Eq. (5), a term (v*) gen-
erally results, which in turn is given by a higher-order
equation containing yet higher-order moments and so
on. This chain of equations must be broken by some
physically based Ansatz in order that a solution can be
effected, which falls into the category of an uncontrolled
truncation.

The significance of streaming terms, and consequently
the severity of the closure problem for the modeling of
any particular experimental arrangement, depends upon
the way in which spatial variations can be treated. In
many cases of interest it is simply not possible to de-
scribe the plasma or swarm even qualitatively at the hy-
drodynamic level, and the full set of nonhydrodynamic
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fluid equations must be employed. Moreover, J,, plays a
central role under these circumstances (Surendra and
Dalvie, 1993) and must be expressed in terms of the
lower-order moments #, {v), and (e) in order to close the
equations, as has long been recognized (Golant et al.,
1980). Nevertheless, as Surendra and Dalvie (1993) point
out, it is quite common in plasma modeling for J, to be
set either implicitly or explicitly to zero [e.g., by assum-
ing a drifted Maxwellian velocity distribution function
(Ingold, 1989)] or to be represented by a Fourier type of
expression that relates it to Ve.

On the whole, J, is dealt with in a rather ad hoc fash-
ion in the literature, with no standardization or bench-
marking and little or no physical or mathematical justi-
fication of the Ansatz. A notable exception to this is the
work of Suchy and Altman (2003), who present a gen-
eral, quantitative argument as to why J, might be ex-
pected to be small under near-equilibrium conditions. In
general, however, it appears that heat flux plays a major
role in determining plasma behavior (Winkler, 2000),
and it seems that solutions to the fluid equations are
generally quite sensitive to the choice of this Ansatz,
both qualitatively and quantitatively, as shown below.

All in all, the present situation regarding J, is very
unsatisfactory, and we believe that a much more thor-
ough and critical analysis is required.

IV. HEAT FLUX Ansatz AND BENCHMARKING

From this point on we consider for simplicity only
particle-conserving collisions, but it is emphasized that
ionization and attachment could be included as in Egs.
(8) and (9). Our view is that it is necessary to get the
simpler problem correct first before moving on to the
more complicated one.

A. Light particles, heat flux Ansatz

We now focus on light particles, such as electrons or
muons, for which m/mg<<1, u=m, ec\y~e> %mv2 and
the elements of the pressure tensor are given by

2

Equations (8) and (9) then become, in the absence of
ionization or attachment,

dv 2
nmd—: + 3V (10) = ng(E +v X B) = = v, (v (17)
and
d 2
nd—f+V'Jq+§neV v
3 1
=—nv,(€)| e- EkBTg — 5oV +Q(e) |, (18)
where
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disturbance or

anode
'plane source

cathode

=
N

z=0 z=z, Z—00
FIG. 3. An idealized model of the steady-state Townsend ex-
periment, in which electrons emitted at a constant rate from an
infinite plane source drift and diffuse in a uniform gas under
the influence of uniform external fields.

Q=2 e(vy—v,)/v,(e) (19)

and v,(e)=(2m/my)v,,(e). Equations (7), (17), and (18)
comprise three equations in four unknowns, n, v, €, and
J,» and the latter must be prescribed through an addi-
tional Ansatz, as explained above.

We now turn to the heat flux term which appears in
the energy balance equation. For the special case of
elastic collisions that are only described by a
momentum-transfer collision frequency v,(e)~¢€, the
following exact expression can be derived by going to
the next highest moment of the Boltzmann equation:

2 _|né| 1 nq
lo=-3, " [ vm(e)] R
X(E +v X B)—gnev, (20)

where &(€)=€ and p=1. We now postulate that Eq. (20)
applies in the more general case, involving both elastic
and inelastic collisions described by collision frequencies
with arbitrary energy dependences, where

_dlny,

= 21
dln e D)

p
and £(e) is proportional to the average of the square of
the energy. As with momentum-transfer theory, we have
at least anchored this Ansatz to a collision model for
which we know the expression to be exact. However,
unlike momentum-transfer theory, it is not obvious how
to refine Eq. (20) by successive approximations. These
considerations aside, the best way to establish the valid-
ity of Eq. (20) for practical purposes is to perform a
benchmark calculation.

B. The benchmark model

As an application of the theoretical framework pre-
sented in the previous section, consider the simple infi-
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nite plane-parallel geometry configuration shown in Fig.
3; electrons diffuse and drift away from the plane source
into an infinite gas at the same rate as they are emitted
from the source. There exists a steady state, in which
properties are independent of time and vary with posi-
tion only in the z direction. The density of these elec-
trons is assumed to be so low that they can be treated in
the swarm (free diffusion) limit. This is an idealization of
the steady-state Townsend experiment, though without
any accompanying ionization. Note that this is an inher-
ently nonhydrodynamic situation; that is, spatial varia-
tions in physical quantities cannot be accounted for by a
functional dependence upon density and its gradients.
Unphysical results occur, for examyle, if the diffusion
equation is applied to this problem.

In what follows, we seek analytic solutions in the
asymptotic region far downstream from the source.
Here gradients are small, and deviations from the spa-
tially uniform state may be treated as small perturba-
tions, facilitating linearization of the equations. A prior-
ity of the analysis is the benchmarking of the fluid
equations via direct comparison of the solution obtained
by applying various heat flux Ansatz, i.e., Eq. (20) and
others already in the literature, with an exact solution of
Boltzmann’s equation for a simple collision-model case.
Note that although we employ models for the purpose of
carrying out the present calculations, our fluid equations
are quite general and are suitable for solving problems
in real gases. In all cases we take B=0 for simplicity,
although it is emphasized that the solution for a nonzero
magnetic field is a very straightforward extension of the
analysis presented. The electric field is taken to be ho-
mogeneous for the purposes of analytic solution, but this
restriction can also be lifted when necessary.

1. Analytic solution for the asymptotic region

We now set g=-e, E=(0,0,-E), v=(0,0,v), J,
=(0,0,J,), V=(0,0,d/dz), and all derivatives with re-
spect to time equal to zero in Egs. (7), (17), (18), and (20)
to get the fluid equations corresponding to Fig. 3:

ar

— = 22
Pl (22)
29

—ﬂ =neE —nmuv,,(g)v, (23)
3 9z

*The diffusion equation

on on #n

—+vy——-D—5=0

ot 0z 0z

is valid strictly speaking only if both hydrodynamic and weak-
gradient conditions prevail. Even in the asymptotic region at
large distances downstream in Fig. 3, where gradients are
weak, hydrodynamic conditions do not prevail, and therefore
the diffusion equation is invalid.
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1| de 2ed 147 3 1
——[v—8+—8—v ——‘L]zs——kTg——MV2+Q(8),
v,| dz 39z noz 2 2
(24)
and
2 49 ng(s)] (5-2p) nas 5
Jy=——— - —Te. 25
1 3m&z{vm(s) " 3 p,(e) 3 ¢ @5)

Equation (22) shows that the particle flux does not vary
with position, i.e.,

I' = nv = const. (26)

In general, the equations shown above constitute a set
of coupled nonlinear equations that must be solved nu-
merically. Up to this point, the electric field may be con-
sidered to be space dependent, but in what follows it is
assumed to be constant. By focusing on the asymptotic
region, far downstream from the source, which for sim-
plicity we take at the origin, i.e., z=z,=0, approximate
analytic solutions are possible. Thus we write

n(z) = ny + nyeX* (27)

and similarly for all other quantities, where the subscript
0 denotes the spatially uniform regime attained as z
— oo, the subscript 1 denotes a small perturbation, and K
a wave number. The latter, which may in general be
complex, controls the rate of decay to the uniform state
and is the quantity of primary interest. Equation (27)
and others of similar form for v, ¢, and J, are substituted
into Egs. (23)-(25), and the resulting equations are lin-
earized in small quantities. Upon equating the coeffi-
cients of eX?, we obtain the following hierarchy of equa-
tions.

(i) Spatially homogeneous equations: To zero order in
eX% we find equations corresponding to the limit z —

ek =mu,,(gg)vo,

3 1

%:EkQ+5Mﬁ—Q@@, (28)
2

]qo = - gpFSO.

(ii) First-order spatially inhomogeneous equations: To
first order, after linearizing and equating coefficients of
eXz there follows

ny vy

i1,

ny Vo

(k)24 (1- 02 =0, (29)
€p Vo

; |:ﬂ+%ﬁ+i’1l:|+,yﬂ_zﬁ:0,

~K
N 3 Vo FSO €p Vo

where « is a dimensionless wave number defined by
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K=-—— 30
2 € o ( )
and
1+Qe
v= —30. (31)
€0 + Q — Ek Tg
The linearized version of the heat flux Ansatz (25) is
J
= 0(=t, (32)
FSO €p
where the dimensionless spectral heat flux is defined by
A+ B+ Ci?
Ok)=—""— (33)
k-1
while
2
a=2
3
5 2p2>
B=ap--|1 -—, 34
W73<+P 5 (34)

C=-alp-p-1),

and
5o goé' (go)
&eg)
(35)
_ &(e)
a= 5 -
€0

Equations (29) and (32) together constitute four homo-
geneous equations in the four unknowns, ny,v{,&1,qq,
and therefore have a nontrivial solution if and only if the
determinant of the coefficients vanishes. This leads to
the secular equation

§K2+ ('y+p - %)K— (y+2p)+ %K(K— 1)QO(k)=0.
(36)
We seek solutions of Eq. (36) for which
Re(k) <0, (37)

which correspond to physical quantities decaying to a
spatially uniform equilibrium state.

Before proceeding further, a comment of a general
nature needs to be made. Both the qualitative and quan-
titative nature of the solutions of Eq. (36) depend sensi-
tively upon the heat flux, i.e., upon Q(k). It is no good
simply ignoring it, for if we take Q(«)=0, Eq. (36) admits
only real solutions, regardless of the strength of the in-
elastic processes (as measured by ) or the value of p.
Thus none of the oscillatory patterns of decay known to
characterize this problem [e.g., in the Franck-Hertz ex-
periment (Robson et al., 2000; Sigeneger et al., 2003)]
can be reproduced with such a drastic assumption. Like-
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wise, neglecting heat flux in even the simple case of elas-
tic collisions governed by a constant collision frequency
(p=0, y=1) leads to solutions of Eq. (36) that are in
error by more than 50%.

Substitution of Eq. (33) into Eq. (36) leads to a cubic
equation for «:

3 3 5
— 5a’(ﬁ—p—1)K3+ (50’[3— Ep +pz)K2

+<'y+2p—%)l<—(7+2p):0- (38)

The solution can be effected after specification of the
momentum transfer and inelastic collision cross sections,
which in turn determine p and y. However, there are
two unspecified parameters, « and p, relating to the heat
flux, that need to be fixed before the problem is solved
completely.

2. Fixing the parameters of the heat flux Ansatz
a. Case of vp(e)~¢

In this case (assuming T,=0 K) p=1, and the heat flux
Ansatz (25) is exact with &(g)=¢?, that is, p=2,a=1. The
coefficient of the cubic term in Eq. (38) vanishes identi-
cally in this case, leaving a quadratic:

3 3
5K2+<7—5)K—(’y+2)=0. (39)

Note that this equation has only real solutions and that
there will therefore be no oscillatory behavior regardless
of the strength of the inelastic processes, as measured by
v. For this model also, the spectral heat flux (33) is in-
dependent of k, and has the constant value

0() = - % (40)

regardless of the value of y. In the special case where
only elastic collisions occur, y=1, Eq. (39) has one nega-
tive solution, namely,

k=—126. (41)

This model is the ideal benchmark as it is the only one
for which an exact heat flux Ansatz can be written down,
namely, Eq. (20). None of the other expressions found in
the literature are, however, consistent with it. This point
is further discussed below.

b. Case of v, =const

Contrary to expectations, the constant elastic collision
frequency model p=0,y=1, is not a trivial model, and
provides another useful benchmark. In this case, we take
&(e)=asg? in the heat flux Ansatz, and hence p=2. There
is thus only one free parameter a and Eq. (38) becomes
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TABLE I. Parameters for benchmark elastic collision models.
For cases where exact analytic results are known, explicit frac-
tions are given.

p —K a (0,
10
0 49 3.56 1.05
0.5 0.7 0.83 -0.35
_2
1 1.26 1.0 3
3 5
—EaK3+3aK2—EK—1=0. (42)

An exact analytic solution of the Boltzmann equation is
possible for this model, and a spectrum of wave numbers
k emerges (Robson et al., 2000). The member with the
lowest magnitude determines the asymptotic behavior at
large z, and has the value
10
49°

K=

(43)

Substitution of this value of « into Eq. (42) yields
a=3.56, (44)

which with Eq. (33) yields the value of the heat flux
spectral density

0(x) =1.05, (45)

a value also obtained from the exact solution of Boltz-
mann’s equation.

c. Case of v, (g)~¢'?

The Boltzmann equation has been solved numerically
for the constant elastic cross-section model (Li, 1999),
for which p=0.5, y=1, and the wave number of smallest
magnitude is found to have the approximate value

k=-0.7. (46)

As for the fluid description, for all elastic collision mod-
els we take &(g)=ae? in the heat flux Ansatz and p=2.
Equation (38) becomes in this case

3 3
—Zmé+(3a—1),<2-§x—2=0, (47)

which with Eq. (46) yields
a=0.83. (48)

The value of the spectral heat flux can then be found
from Eq. (33) to be

Q(k)=-0.35. (49)
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3. Summary and recommendation for the heat flux
Ansatz

The above results are summarized in Table I. On the
basis of these findings for the asymptotic regime, we
might go a step further and suggest a more explicit (and
therefore more useful) form of the heat flux Ansatz by
substituting

&) = ae? (50)
into Eq. (20) to obtain
L 2a [neé ) 1. nge S
J,~- m A% { Vm(é):| + 3(5 _Zp)mvm(e)E - 3nasv.
(51)

This might be expected to hold for those situations
where elastic collisions dominate since on the basis of
dimensional considerations, Eq. (50) provides the only
possible way of forming a function with the dimensions
of energy squared. However, when inelastic collisions
are important, one has to consider the threshold energy
g; and the energy function Q(g) as well, and there are
then other ways of forming &(e). The question of how to
do this is beyond the scope of this paper.

C. Other treatments of heat flux

The heat flux is represented in the literature in many
ways [see, e.g., Meyyappan and Kreskovsky (1990); Park
and Economou (1990); Surendra et al. (1990); Passchier
and Goedheer (1993); Young and Wu (1993); Lym-
beropoulos and Economou (1995); Yoon et al. (1995);
Bogaerts et al. (1999)], but the physical basis is not al-
ways clear, as discussed below, and benchmarking
against established results is rare. For example, Bu-
lowski et al. (1996) postulate in their equation (14) that
(in our notation)

Qns

9 muv,,

J,=

Ve, (52)

which in the linear regime leads to a spectral heat flux

5
Qp(k) = - ?K (53)

For the constant collision frequency model, substitution
of the exact value, k=-10/49, into the right-hand side
gives Qp= %, compared with the exact value of 1.05. For
the other cases shown in Table I, Q3 has the wrong sign.
The usefulness of Eq. (52) is therefore not clear, given
that it fails these simple tests. Otherwise, the fluid equa-
tions of Bulowski et al. (1996) seem to be tailored to the
constant collision frequency model, and there is no com-
parison possible with the more general formalism pre-
sented here.

A simple Fourier type of Ansatz, similar to that of
Bulowski er al (1996), has also been adopted in
Gogolides and Sawin (1992) and Boeuf and Pitchford
(1995), but again the justification is unclear. Golant et al.
(1980) have a slightly more sophisticated Amnsatz [see
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their equations (7.45) and (7.48)], but this too fails the
benchmark comparison test for p=1. More recent mod-
eling [see, e.g., the review of Morgan (2000)] also suffers
from this problem.

Surendra and Dalvie (1993) are perhaps the only au-
thors who have previously expressed concerns similar to
ours. They comment that “common expressions for heat
flux, such as Fourier heat conduction, are not particu-
larly accurate” and (while referring to the Fourier An-
satz or the simple assumption, J,=0) “one of the draw-
backs for fluid models is that assumptions of sometimes
questionable validity are required.” They find that even
for simple models “heat conduction can contain signifi-
cant errors.” We strongly support these observations.
While it is one thing to see what is wrong, it is quite
another to fix the problem. We have gone one step fur-
ther and have provided what we believe is a more physi-
cally sound Ansatz (51), which should work satisfactorily
(with judicious choice of the parameter «), at least when
elastic processes dominate.

V. ON THE USE OF SWARM TRANSPORT DATA IN FLUID
MODELS

A. General remarks

In plasma modeling, transport coefficients are viewed
as parameters which may be obtained either from ex-
perimental swarm data, from solutions of the Boltzmann
equation, or from Monte Carlo simulations. We note
that swarm data appearing in the literature are in the
form of tables of transport coefficients versus E/N (N is
the neutral number density; Huxley and Crompton,
1974) and are used by some plasma modelers either di-
rectly, as in “local-field” theories, e.g., Morrow and
Blackburn (2002), or indirectly as a function of some
calculated effective field, as in the relaxation continuum
theory model of Makabe and co-workers [see, e.g., Mak-
able et al. (1992)]. In this section it is pointed out that

e transport coefficients are strictly defined only in con-
nection with the hydrodynamic regime, and that
their use in other circumstances may be problematic;

e care must be taken with the definition and interpre-
tation of transport data appearing in the literature to
avoid any possibility of mismatch;

e what really appears in fluid models that derive from
Boltzmann’s equation are not transport coefficients
per se, but rather mean-energy-dependent collisional
rates, as in Egs. (12) and (13), and it is these quanti-
ties that should be evaluated from the swarm trans-
port data;

e to this end, it is necessary to recast the data in the
literature into the form of a table of transport coef-
ficients versus mean energy, the sort of “look-up”
table advocated by Robson, White, and Makabe
(1997).

These issues are addressed in Secs. V.B and V.C be-
low.
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B. Definition of transport coefficients: The hydrodynamic
regime

1. Flux-gradient relations, transport coefficient
definitions

For most swarm experiments (Huxley and Crompton,
1974) and in many plasma discharges away from bound-
aries, fields are uniform and hydrodynamic conditions
prevail. Here the space dependence of macroscopic
properties is carried solely by the number density n(r,?)
[Kumar et al., 1980]. If in addition, gradients are weak,
most terms in the left-hand side of the general fluid
equations (8) and (9) can then be regarded as small and
solutions constructed accordingly. In effect, the entire
space dependence is effectively projected out of the
problem onto the diffusion equation—see Eq. (56). This
is formalized in solutions of Boltzmann’s equation by the
familiar density-gradient expansion of the velocity distri-
bution function (Kumar et al., 1980), which to first order’
in Vn at the fluid level consists in writing

nv=nvo+Vy-Vin+ -,
ne=ney+e - Vn+ -+,
(54)
nT=nTy+T;-Vn,
Jq:ano‘i‘Jq] -Vn,

where the subscript 0 refers to the spatially uniform
state. The first of these is just Fick’s law of diffusion,

nv=nW®* -D".Vvp, (55)
in which

w® = Vo,

D(*) = - Vl

are the (flux) drift velocity and (flux) diffusion tensor,
respectively. We return to discuss these definitions
shortly.

2. Fluid equations at the hydrodynamic level

If we substitute Eq. (54) into Egs. (7)-(9) and linearize
in Vn we find

on+vy-Vn+v:VVn =0, (56)
1 1
—kTo'_Vl’l+q E + V0+V1‘_Vl’l X B
n n
= MVm(8CM,0)Vo +ul Vm(8CM,0)V1
, 1
+ v, (ecmo)Voer] . Vn, (57)
It is sufficient to go to first order only provided that colli-
sions conserve particle number. In the presence of ion-

molecule reactions, attachment, ionization, etc., second-order
terms must be retained (Kumar, 1980; Robson and Ness, 1986).
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Jo 1y St 1( + M)v2
- -~Vn=¢gy—<kT,— =(m v
v(ecmo) N 0T ey 0

+Q(gp) +{e1[1 + Q' (g9)]
—(m+M)vy-vi}- % Vn, (58)

where : denotes a contraction over two tensorial indices,
and

M <« (vi—1)
Qleg) = 1V 17
m+MT vecmyo)
3
M80+mEkBTg
femo= m+M

Upon equating coefficients of Vn, we get the following
hierarchy of equations:
(a) Spatially homogeneous equations

q[E + vy X B] = uv,(ecmo) Vo, (59)

3 1
gp= EkTg+ §(m+M)v(2)—Q(sO). (60)

(b) First-order inhomogeneous equations

—kTo+qvi X B = p[v,(ecmo)Vi + v, (ecmo)Vos1ls
(61)

e )] - Mg v (62)
Ve(8CM,o)

These equations have appeared many times in the lit-
erature [see, e.g., Robson (1986, 1994); Petrovi¢ and
Vrhovac (1998); Li et al. (2002)], in which discussions of
the balance equation for the spatially homogeneous
temperature tensor T, can also be found. It is a matter of
first solving the nonlinear equations (59) and (60), then
the linear equations (61) and (62), and the problem is
completely solved.

3. Practical application of hydrodynamic results

Equation (60) gives Wannier’s famous energy-drift ve-
locity relation in the absence of inelastic collisions ({)
=0), while Eqgs. (61) and (62) together yield the general-
ized Einstein relations linking the diffusion tensor with
the differential mobility (Robson, 1986). Tonk’s theorem
(Tonks, 1937) and the equivalent electric-field concept
(Heylen, 1980; in which a configuration of E and B fields
is replaced by a simpler one, with an effective E field
only) result from Egs. (59) and (60) (Robson, 1994).
Blanc’s law (an expression for mobility in a mixture in
terms of a mole fraction weighted sum of inverse mobili-
ties in the respective pure component gases) and correc-
tions thereto result from a simple extension of the above
theory to gas mixtures (effectively replacing the collision
terms for a single gas by a weighted sum of collision
terms corresponding to each component of the mixture;



1316 Robson, White, and Petrovic: Colloquium: Physically based fluid modeling of...

TABLE II. Columns required to calculate collision transfer
rates from the transport coefficients.

EIN =W/ E D% /o~ g DY/

Milloy and Robson, 1973). These widely used relations
are often considered to be semiempirical laws, but are in
fact firmly based upon fluid equations in the hydrody-
namic limit with the collision terms of momentum-
transfer theory. The accuracy of the laws, and thus the
accuracy of the fluid equations themselves, has been re-
peatedly tested over many years and found to be typi-
cally 10%, more or less.

The hydrodynamic fluid equations are also useful for
providing a physical understanding of various phenom-
ena that are otherwise described numerically through
solution of Boltzmann’s equation. Examples include the
frequency dependence of the mean energy of electrons
in rf fields (Robson et al., 1995) and anomalous aniso-
tropic diffusion (White et al., 1995; Maeda et al., 1997,
Robson, White, and Makabe, 1997).

The scope of the fluid equations for application in the
hydrodynamic regime is clearly enormous. We have not
been able to find any fluid models in the low-
temperature plasma physics literature that are capable
of reproducing these established results in the hydrody-
namic limit. This colloquium aims to redress such incon-
sistencies by reconciling the swarm and plasma litera-
ture.

4. Heat flux in the hydrodynamic regime

Note that only the spatially uniform heat flux J,, ap-
pears at the level of the hydrodynamic regime, and that
this term is generally considered to be small and there-
fore safe to neglect. The exception to this general rule is
when negative differential conductivity prevails (Rob-
son, 1984), in which case neglecting J,, would lead to
negative, unphysical diffusion coefficients. Since nega-
tive differential conductivity occurs in many practical
applications that are typically the target of plasma mod-
els, for example, electrons in Ar/CF, mixtures (Kuri-
hara et al., 2000), it is important to treat heat flux cor-
rectly. Methods for obtaining J , for use in such practical
circumstances were detailed by Robson, Hildebrandt,
and Schmidt (1997).

C. Application of swarm data to fluid models

1. Calculation of collision rates

We now consider how the collisional transfer rates
(the vs) in the general, nonhydrodynamic equations (8)
and (9) can be evaluated from hydrodynamic swarm
data, using the fact that these depend upon space and
time through the local, instantaneous mean energy,
rather than the instantaneous local field. Our procedure
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is consistent with the work of others [see, e.g., Boeuf
and Pitchford (1995), and references therein], but we
show how the accuracy can be improved significantly
with relative ease (Robson, White, and Makabe, 1997).
In Sec. III.B.2 we made some general remarks on how
the evaluation might proceed and now give details in the
context of the hydrodynamic theory above.

To evaluate collisional transfer rates from experimen-
tal swarm transport data, one must first systematically
reduce the fluid equations down to the swarm limit in
the hydrodynamic regime as demonstrated in Sec. V.B.2
[see Egs. (59)—(62)]. From this set of equations, one can
then generate relationships between collisional transfer
rates and measured swarm transport coefficients, and
thereby the mean energy, in a self-consistent manner.

Let us consider a dc swarm experiment (or set of ex-
periments) which measures electron mobility and trans-
verse diffusion coefficients as functions of E/N. In the
absence of ionization and/or attachment, the latter can
be interpreted as flux transport coefficients, and we can
immediately construct a table with headings of the form
shown in Table II. Such a table is to be interpreted as
specifying the function u*)(¢) of mean energy, which has
been approximated by the generalized Einstein relation
in the last entry of the table, though a more accurate
representation could be specified (Mason and McDaniel,
1988). The key point, however, is that instead of trying
to evaluate collision frequencies as a function of mean
energy from a knowledge of cross sections, one simply
replaces these collisional rates in Egs. (8) and (9) using
Eqgs. (59) and (60):

e momentum-transfer collision frequency v,,:

e

(63)

v(e) = m,u,<*)(8) 5

e clastic energy-transfer collision frequency v,:

v (&) = z%vm(s);

e inelastic energy-transfer collision parameter ():

3 1
Qe) = EkTg + E(m + M[uWEP -s.

The functional dependence upon € thus follows directly
from swarm experimental data. Alternatively, in the ab-
sence of swarm data, one can construct the table above
from theoretically determined transport coefficients, i.e.,
either from hydrodynamic solutions of Boltzmann’s
equation or from Monte Carlo simulations. In any case,
a dramatic increase in accuracy results, as was shown for
a time-dependent problem (Robson, White, and Mak-
abe, 1997). The error associated with the collision trans-
fer terms in Egs. (8) and (9) is compensated for by re-
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writing the collision frequencies according to the above
renormalization process.

If nonconservative collisional processes are signifi-
cant, then the procedure remains essentially the same,
but with the following modifications:

e The balance equations in the hydrodynamic regime
are accordingly modified (Robson, 1986) and expan-
sion to second order in Vn is required (Kumar et al.,
1980) to obtain experimentally measured bulk trans-
port coefficients.

* One must account for the fact that swarm experi-
ments actually measure only bulk transport coeffi-
cients (Robson, 1991), which must be corrected to
give the flux quantities required in Table II. Note
that Boltzmann equation calculations and Monte
Carlo simulations give both flux and bulk transport
coefficients.

2. Additional comments on the use of hydrodynamic
swarm data in plasma modeling

As for all transport coefficients across the entire sci-
entific spectrum, mobility and diffusion coefficients are
generally defined as constants in a flux-gradient relation-
ship (cf. the thermal conductivity in Fourier’s law of heat
conduction or the viscosity coefficient in Newton’s law of
viscosity) and are universal properties of the charged-
particle-gas combination for a given E/N. In swarm
physics, quantities thus defined are called flux transport
coefficients to distinguish them from the bulk transport
coefficients actually measured in swarm experiments.
Furthermore, it is only in the small gradient, hydrody-
namic regime with uniform fields that Fick’s law applies;
transport coefficients can strictly speaking be defined
only under such circumstances. Swarm experiments are
carefully arranged to meet these requirements. Plasmas,
on the other hand, may not be in hydrodynamic states,
and care must be exercised in applying results from
swarm theory and experiments.

Some error must result if Fick’s law is used outside its
regime of strict validity as, for example, in local-field
modeling of discharges with nonuniform fields in which
spatial nonhydrodynamic effects exist. Furthermore, if
ionization and/or attachment are also significant, the er-
ror is compounded by the use of uncorrected swarm-
derived transport coefficient data. It is important to be
aware of the inherent limitations of using hydrodynamic
formulas out of context (Morrow and Blackburn, 2002).
Note that there have been some attempts to generalize
definitions to nonhydrodynamic conditions (Vrhovac
and Petrovic, 1999).

Finally, we remark upon the anisotropic character of
diffusion, which has long been known [see, e.g., Wanni-
er’s classic paper (Wannier, 1953) for charged particles in
general, and the experimental work of Wagner et al
(1967) for electrons in particular]. The theory of aniso-
tropic diffusion in an electric field is in fact now text-
book material (Huxley and Crompton, 1974; Mason and
McDaniel, 1988). It is therefore of some concern that it
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is a common practice for plasma modelers to assume
that diffusion is isotropic, i.e., D=D1 (Sommerer and
Kushner, 1992; Boeuf and Pitchford, 1995). For electric
fields only, this amounts to ignoring the significant dif-
ference [sometimes a factor of 2 or 3 (Ness and Robson,
1986)] between electron diffusion coefficients parallel D,
and transverse D, to the electric field. The oversight is
further compounded by using the simple Einstein rela-
tion to determine D [see, e.g., Sommerer and Kushner
(1992); Boeuf and Pitchford (1995)], rather than the by
now well-established generalized form of the Einstein
relations involving differential mobility (Mason and
McDaniel, 1988).

In the presence of a magnetic field, anisotropy is even
more marked. Magnetic and electric anisotropies are in
fact coupled and there have been recent investigations
that have focused on the behavior of the diffusion tensor
elements in swarms in the presence of electric and mag-
netic fields (Ness, 1993; White et al., 1999). For diagonal
elements of the diffusion tensor, there can be a large
disparity in their respective magnitudes. Extended gen-
eralized Einstein relations have been developed to en-
able quick and accurate estimates of their magnitude (Li
et al., 2001). For off-diagonal elements of the diffusion
tensor it has been well documented that these elements
can have magnitudes of equivalent order to those of di-
agonal elements (Ness, 1994; White et al., 1999). Hence
any assumptions involving a diagonal diffusion tensor in
fluid models would be subject to doubt. Up to now there
have been few attempts to incorporate the off-diagonal
elements of the diffusion tensor into fluid models (Uhm
et al., 1995).

D. Hybrid models

To complete this section, we point to the existence of
promising hybrid models [see, e.g., Ventzek et al. (1993);
Fiala et al. (1994); Donko (1998); Bogaerts et al. (1999)],
in which the bulk of electrons and all (or most) ions and
neutrals are described by fluid equations, while nonequi-
librium, “fast” electrons are treated through Monte
Carlo simulation, or possibly some kinetic technique.
High-frequency and/or magnetic-field kinetic effects, for
example, may be more satisfactorily analyzed in this
way. Hybrid codes, together with proper treatment of
effects of magnetic fields, have led to an explanation of
new effects in power dissipation in inductively coupled
plasmas (Tadokoro et al., 1998; Vasenkov and Kushner,
2003). In early hybrid codes, Monte Carlo simulation
was used to calculate the ionization (source) term, and
this is still often used in dc discharge modeling. Present
day hybrid codes, however, are more sophisticated
(Ventzek et al., 1993; Rauf and Kushner, 1998).

The fluid segment of these codes still suffers from the
same limitations as for the pure fluid models discussed
above, and there are additional problems arising from
the need to connect the Monte Carlo simulation and
fluid parts. However, the advantages of the more accu-
rate treatment of electrons is considered justification for
this additional complexity. Monte Carlo simulation also
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TABLE III. Benchmark tests and models for computation of plasma and swarm transport properties.

Plasma property or model

References

Reid’s (inelastic) ramp model
Tonization models
Attachment models

Anomalous anistropic diffusion
(1997)

Time-resolved negative differential conductivity

Reid (1979); Ness and Robson (1986)

Lucas and Saelee (1975); Ness and Robson (1986)

Ness and Robson (1986)

White et al. (1995); Maeda et al. (1997); Robson, White, and Makabe

Jelenak et al. (1995); Petrovic et al. (1997); Robson, White, and Makabe

(1997); White et al. (1998); Bzenic, Petrovic, et al. (1999)

Frequency dependence of rate coefficients
Negative absolute mobility

Goto and Makabe (1990); Robson et al. (1995)
Dyatko et al. (1997); Dyatko et al. (2000); Dyatko and Napartovich (2001);

Duijko et al. (2003)

Spatial relaxation
Time-resolved E X B transport

Robson et al. (2000); Li et al. (2001); Winkler et al. (2002)
Tadokoro et al. (1998); Raspopovic et al. (2000); Petrovic et al. (2002);

White er al. (2002)

Temporal relaxation

Maeda and Makabe (1994); Loffhagen et al. (1998); Bzenic, Raspopovic,

et al. (1999); Winkler et al. (2002)

provides a continuous supply of data necessary for the
fluid model lookup table in Table II, as discussed above,
obviating the need to rely upon the literature, and in
that respect the scheme is more efficient.

On the negative side, the accuracy of the hybrid codes
remains to be determined through standard benchmark
tests. We are aware of only one such test reported in the
literature, which is the calculation of transport coeffi-
cients in dc fields (Verboncoeur et al., 1996). In that case
the kinetic parts of several codes were tested against a
two-term Boltzmann code for the case of neon, which is
not a particularly good benchmark. Even then some of
the predictions proved to be well outside the expected
limits of accuracy. It would seem desirable for a greater
range of benchmark tests to be carried out, for example,
for electrons in both E and B fields for the situations
shown in Table III.

Any failure to reproduce these results may imply
faulty representation of the physics within the codes. At
the same time these tests should be made in such a way
as to provide direct guidance as to which of these phe-
nomena are critical and which approximations are ap-
propriate for the accuracy required in the plasma mod-
eling. If done properly, hybrid models have the potential
to provide a significant improvement over pure fluid
equations in the sense that they provide the possibility
of adding some critical physics due to electron kinetics
and kinetics of fast heavy particles. These improvements
over pure fluid codes justify the additional tests to estab-
lish limits of their accuracy by comparisons to swarm
benchmarks. Further benchmarks such as Townsend dis-
charges (Arslanbekov and Kolobov, 2003) and abnormal
glow (Maric et al., 2003) may be required to establish the
accuracy of other parts of the model.

VI. DISCUSSION AND CONCLUDING REMARKS

In this paper we have identified what we believe to be
the key issues associated with fluid modeling of low-
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temperature plasma discharges and charged-particle
swarms, in both hydrodynamic and nonhydrodynamic
circumstances, at the level of momentum and energy
balance. To simplify matters, we have not considered
nonconservative collision effects, such as ion-molecule
reactions, ionization, or attachment, but these could be
included by the addition of appropriate terms in basic
fluid equations. We have concentrated on principles and
simple arguments in an attempt to promote a modicum
of unity among the plethora of fluid models in the litera-
ture, and have arrived at the following conclusions:

(a) All assumptions and approximations made in pro-
ceeding from Boltzmann’s equation to the fluid equa-
tions should be systematically and clearly spelled out.
Furthermore, we believe that whatever the form of the
fluid equations eventually derived for modeling low-
temperature plasma discharges, the established results
of swarm theory must be reproducible as limiting cases.
One such systematic approximation of collision transfer
terms, momentum-transfer theory (Robson, 1986), was
demonstrated to lead to straightforward fluid equations.
We believe that there is much unexplored scope for us-
ing this in the full plasma problem, and indeed fluid
equations have already been set out (Robson, White,
and Makabe, 1997). We readily acknowledge, however,
that there may well be other, better approximate formu-
lations possible.

(b) Assumptions and approximations concerning clo-
sure of fluid equations in general, and the heat flux term
in particular, are pivotal for nonhydrodynamic situations
and should also be clearly spelled out. We have made an
Ansatz for heat flux (20) that is exact for a particular
interaction model and that should provide better results
than existing ad hoc assumptions. We have noted several
closure schemes in the literature, but in general they are
not consistent with this benchmark model and often are
not physically sound.

(c) On the use of swarm transport data in fluid models:
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(1) Expressions used to relate collisional transfer
rates to swarm transport coefficients must be con-
sistent with the conditions under which the swarm
experiments were conducted.

(i)  The origin of the swarm data must be known and,
if appropriate, suitably modified before imple-
mentation in the fluid models.

(iti) There is a vast literature on swarms, providing
empirical relations that may be useful for a fluid
description of plasmas.

Benchmarking of numerical calculations, whether fluid,
kinetic, Monte Carlo, or hybrid in origin, is essential for
establishing the integrity of the respective approaches.
The swarm literature contains many models also suitable
for benchmarking plasmas, and we have made a strong
recommendation that this be done in particular for hy-
brid models.

Finally, we stress that plasma modelers have to solve a
large number of serious problems including lack of
cross-section data for many species that are of critical
importance, poor knowledge of boundary conditions
and complex surface processes, complex geometries, a
large number of relevant processes having time con-
stants that are different by orders of magnitude, numeri-
cal diffusion due to a small number of grid points, gen-
eration of a significant number of radicals that change
the composition of the gas, heating of the gas, etc. Thus
one may be tempted to disregard the problems discussed
in this paper on the basis that empiricism gives results of
sufficient accuracy under certain circumstances. How-
ever, one never knows whether the empirical model will
fail under different circumstances. Thus we firmly be-
lieve that it is essential to pursue a better foundation for
the basic equations and procedures that are imple-
mented in models of low-temperature plasmas.
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